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ABSTRACT

This thesis supplies a unifying framework for the derivation of probabilistic

membership values, called membership probabilities, in classi�cation tasks

for two� and multi�class situations. While statistical classi�ers usually gen-

erate such probabilities which re�ect the assessment uncertainty, regulariza-

tion methods supply membership values which do not induce any probabilistic

con�dence. It is desirable, to transform or re�scale membership values to mem-

bership probabilities, since they are comparable and additionally easier appli-

cable for post�processing. In this thesis the several existing univariate calibra-

tion methods which transform two�class membership values into membership

probabilities are presented and compared by their performance in experiments

determined on various classi�cation techniques which yield membership val-

ues. Performance is measured in terms of correctness and well�calibration.

Multivariate extensions for regularization methods usually use a reduction to

binary tasks, followed by univariate calibration and further application of the

pairwise coupling algorithm. This thesis introduces a well�performing alterna-

tive to coupling that generates Dirichlet distributed membership probabilities

with a �exible one�step algorithm that bases on probability theory and is ap-

plicable to binary as well as multi�class outcomes. This Dirichlet calibration

method and multivariate classi�cation methods using coupling of calibrated

two�class probabilities are compared in further experiments. Here, the Dirich-

let calibration method yields competitive results, especially for data sets with

balanced class distributions.



1. INTRODUCTION

Data analysis is the science of extracting useful information from large data sets

or databases. In the computer era, databases and hence analysis of data have

attained more and more interest, in particular classi�cation with supervised

learning as an important tool with various application �elds. Classi�cation can

be used for speech and image recognition, in medical diagnosis as well as for

the determination of credit risks, just to name a few.

Thus, the number of competing classi�cation techniques is rising steadily, espe-

cially since researchers of two di�erent areas, Statistics and Computer Science,

are working on this topic. Nevertheless, standard methods such as the Discrim-

inant Analysis by Fisher (1936) and the Support Vector Machine by Vapnik

(2000) are still the main classi�ers being used. The common characteristic of

all classi�ers is that they construct a rule for the assignment of observations

to classes. For each observation such classi�cation rules calculate per corre-

sponding class membership values. The basis for rule construction is a given

sample of observations and corresponding class labels determined by a super-

visor. Future observations with unknown class labels are assigned to the class

that attains the highest membership value.

The methods for classi�cation can be separated into two competing ideologies,

Statistical Classi�cation and Machine Learning, which have their origins in

Statistics and in Computer Science, respectively. Membership values supplied

by statistical classi�ers such as the Discriminant Analysis or certain Machine

Learners are membership probabilities which re�ect the probabilistic con�dence

that an observation belongs to a particular class. Other Machine Learners,

e. g. the Support Vector Machine or Arti�cial Neural Networks, only generate
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unnormalized scores. In contrast to the membership probabilities, the unnor-

malized scores do not re�ect the assessment uncertainty and neither sum up

to one nor lie in the interval [0, 1].

Comparing these two kinds of membership values reveals several advantages of

probabilistic membership values. Membership probabilities make classi�ers and

their results comparable. This is desirable because of the high number of classi-

�cation techniques. Furthermore, probabilities are useful in post�processing of

classi�cation results, i. e. the combination of membership values with a given

cost matrix. Consequently, a unifying framework for supplying probabilistic

membership values and hence for the comparison of classi�cation methods is

an important target. Such a framework the calibration process o�ers in trans-

forming membership values into probabilities which cover the assessment un-

certainty.

Moreover, even membership values which claim to cover the assessment un-

certainty can be inappropriate estimates. The Naive Bayes classi�er and Tree

procedures yield membership values which tend to be too extreme, as shown

in analyses by Domingos & Pazzani (1996) for Naive Bayes and by Zadrozny

& Elkan (2001b) for Tree. Therefore, membership values generated by these

classi�ers may need to be re�calibrated in some situations as well.

In recent years, calibration of membership values has attained increased at-

tention by researchers. Di�erent ways of calibrating classi�ers have been intro-

duced, among them Logistic Regression by Platt (1999) as the most highly ap-

proved approach. This calibrator was later extended by Zhang & Yang (2004)

into a locally operating technique using Piecewise Logistic Regression. Ad-

ditionally, another calibration method was introduced by Zadrozny & Elkan

(2002) by incorporating Isotonic Regression. Common characteristic of all these

methods is that they are only applicable for the two�class case, since they es-

timate a probability for one class by mapping the membership value to a cali-

brated probability and estimate the membership probability for the remaining

class with the complement.

However, two further calibrators exist which do not map membership val-
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ues directly to calibrated probabilities but split membership values into par-

titions before calibration. Firstly, there is the Bayesian method by Bennett

(2003) which splits membership values according to their true class. Secondly,

a method using the inverted Beta distribution function and a partition of mem-

bership values according to their assigned class was introduced by Garczarek

(2002). Here, the calibration function is learnt independently in each partition.

In polychotomous classi�cation tasks, these univariate calibration procedures

are especially used for Support Vector Machines and Arti�cial Neural Net-

works, since these methods usually reduce multi�class tasks to binary deci-

sions and give no probabilistic output. Thus, the membership values gener-

ated for the binary decisions are calibrated to membership probabilities. Af-

terwards, these two�class probability vectors are usually combined with the

pairwise coupling algorithm by Hastie & Tibshirani (1998) to one probability

matrix considering the K�class task. This thesis introduces an alternative di-

rect multivariate calibration method based on probability theory for K�class

regularization methods. In just one step, this alternative method generates the

probability matrix of membership probabilities as a realized set of a Dirichlet

distributed random vector. This �exible method has got the advantage that

it is on the hand applicable to binary outcomes generated by any reduction

approach and on the other hand is also directly applicable to multi�class mem-

bership values.

Chapter 2 provides the groundwork for the classi�cation problem covering the

decision theory and its application to the learning of classi�cation rules. Rea-

sons for a preference of membership probabilities to unnormalized scores as well

as the desired output of a calibrator are also obtained in this chapter. Addi-

tionally, performance measures and estimation procedures for these measures

are presented. This includes the introduction of the Well�Calibration Ratio

based on the concept of Well�Calibration by DeGroot & Fienberg (1983).

Chapter 3 introduces the two standard regularization methods for classi�-

cation, Arti�cial Neural Networks and Support Vector Machine, and how

these methods calculate membership values. Moreover, connections between
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the choice of the loss function in regularization and the ability to estimate

membership probabilities are presented here.

Chapter 4 gives an overview of the currently known univariate calibration

methods which can be divided into four di�erent groups, simple normalization

as well as calibration via mapping, by using Bayes' rule and usage of assign-

ment values.

Multivariate extensions are introduced in Chapter 5 including the standard

procedure of reduction to binary classi�cation tasks with subsequent pairwise

coupling and a new calibrator based on the Dirichlet distribution. With this

Dirichlet calibration method the output of the binary reduction algorithms are

transformed into Beta distributed random variables and afterwards combined

to realizations of a Dirichlet distributed random vector. This calibrator is fur-

thermore applicable for a multi�class probability matrix with regarding the

columns as Beta distributed random variables and a similar combination to a

matrix of Dirichlet distributed probabilities.

In Chapter 6, the results of both an analysis for univariate and multivariate

calibration methods are shown. Basis for these analyses is a 10�fold cross�

validation, so that reliable performance measures are supplied. Finally, Chap-

ter 7 gives concluding remarks and presents an outlook.

1.1 Basic Notation

In the following the notation which will be used throughout this thesis is shown,

see Tables 1.1 to 1.3. This list is presented as easy reference.

Table 1.4 presents the abbreviations used in this thesis.
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Tab. 1.1: Notation � Vectors and matrices

Quantity Notation Comment

Vector ~x arrow

Matrix X bold typeface

Scalar product 〈~x〉

Tab. 1.2: Notation � Sets and spaces

Quantity Notation Comment

Real�valued set {a, b} curly brace

Integer set [a, b] closed squared brackets

Excluding set ]a, b[ open brackets

Positive integer space N

Positive real�valued space R+
0

Closure R̄ := R ∪ {−∞,∞} R�bar

Hilbert Space H
Training Set T see De�nition 2.1.7

Set size ||

Tab. 1.3: Notation � Functions and operators

Quantity Notation Comment

Indicator function I ()

Loss function L () see De�nition 2.1.6

Risk function RL () see De�nition 2.1.6

Expected value E ()

Mean x̄ bar
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Tab. 1.4: Abbreviations

Abbreviation Term

Ac Accuracy

ANN Arti�cial Neural Network

AS Ability to separate

AV Assignment Value

Cal Calibration Measure

CART Classi�cation and Regression Trees

Cf Con�dence

CR Correctness Rate

ECOC Error�correcting output coding

IR Isotonic Regression

LDA Linear Discriminant Analysis

LR Logistic Regression

MLP Multi Layer Perceptron

NP Non�deterministic polynomal�time

QDA Quadratic Discriminant Analysis

PAV Pair adjacent violators

PLR Piecewise Logistic Regression

RKHS Reproducing Kernel Hilbert Space

RMSE Root Mean Squared Error

SE Squared Error

SVM Support Vector Machine

WCR Well�Calibration Ratio



2. CLASSIFICATION WITH SUPERVISED LEARNING

This chapter gives an introduction to Classi�cation with supervised learning.

Since classi�cation problems are a special kind of decision problems, basic

elements of decision theory are introduced in Section 2.1. Additionally, the

application of Decision Theory to the classi�cation problem is shown to supply

a groundwork for the derivation of membership values by regularization�based

classi�cation rules which will be presented in Chapter 3.

Since membership values are often object to post�processing, see Section 2.2,

it is preferable to generate probabilistic membership values. If membership

values are not probabilistic a transformation to membership probabilities is

necessary, see Section 2.3. This process is called calibration.

Section 2.4 gives an overview about the goodness of classi�cation rules and

introduces further performance measures. A reliable estimation of performance

measures is induced by applying one of the methods presented in Section 2.4.2.

2.1 Basic De�nitions

This section supplies the basic de�nitions of decision theory which are neces-

sary for the solution of classi�cation problems with supervised learning. The

theory is based on Lehmann (1983) and on Berger (1985).

Moreover, the application of decision theory to classi�cation with supervised

learning is presented in this section.
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2.1.1 Decision�theoretical groundwork

Statistics is concerned with the collection, i. e. observation of data, their anal-

ysis and the interpretation of the results. The problem of data collection is not

considered in this thesis, since this would lead too far.

In data analysis, i. e. statistical inference, one observes p attributes and consid-

ers them as a p�dimensional vector of random variables which are determined

by a true state of the world θ.

De�nition 2.1.1 (Random vector)

A random vector of dimension p

~X = (X1, . . . , Xp)
′ : Θ→ Rp

is a map from a set of true states of the world Θ to the p�dimensional space

of real values Rp.

It also can be assumed that the random vector is not only determined by just

one true state of the world θ but by a vector ~θ of true states. Nevertheless,

this case is omitted here, since in application of decision theory in this thesis

there is only one true state of the world, i. e. the parameter class, to consider.

A particular realization ~x = (x1, . . . , xp)
′ of the random vector is determined

by an underlying joint distribution F which covers the uncertainty about the

true state of the world θ ∈ Θ. The observed data are regarded as realizations

of the random vector in a sample.

De�nition 2.1.2

Drawing a sample of size N means to independently observe a random vector

~X N times. This leads to an observation matrix X ∼ (N, p) where the rows

~xi = (xi,1, . . . , xi,p)
′ , i = 1, . . . , N , are the independently identically distributed

realizations of the random vector. The set of possible outcomes X ⊂ Rp is

called sample space.

A statistical analysis has got the aim to specify a plausible estimate for the

unknown value of θ. To simplify this estimation of parameter θ usually a�
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priori knowledge is used to narrow the underlying distribution F down to

some special family of distributions F in terms of a parametric model:

De�nition 2.1.3 (Statistical model)

A statistical model Λ covers the assumptions about the distribution of a ran-

dom vector ~X ∈ X in the form of the triple

Λ :=
(
X ,A,F ~X|Θ

)
where (X ,A) is some measurable space and F ~X|Θ :=

{
F ~X|θ, θ ∈ Θ

}
is a cor-

responding family of distributions determined by parameter θ ∈ Θ.

Statistical decision theory supplies a general framework for the estimation of

the parameter θ in which wrong estimation is penalized with a loss function.

With the statistical model speci�ed this framework for the decision process is

build in terms of a decision problem in which a possible estimate is regarded

as a decision d.

De�nition 2.1.4 (Decision problem)

A decision problem consists of three items:

• True parameter θ ∈ Θ with Θ as set of all possible parameters,

• Decision d ∈ D with D as set of all possible decisions,

• Loss function L(θ, d) : Θ×D → R+
0 which determines the loss for chosen

decision d when θ is the true parameter.

With the decision problem as framework and the observed sample X as input

the estimates are derived by a decision rule.

De�nition 2.1.5 (Decision rule)

A decision rule δ is a mapping function

δ : Rp → D

~x → d
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which assigns to every observation ~x a decision d = δ(~x) about the true state

of the world.

To compare decision rules and to �nd optimal rules it is required to determine

the goodness of the decisions. The accuracy of a decision rule δ can be measured

with the risk function.

De�nition 2.1.6 (Risk function)

The L�risk

RL(θ, δ) = E {L [θ, δ(~x)]}

with corresponding loss function L is the expected loss resulting from the use

of decision rule δ.

2.1.2 Classi�cation problems and rules

In classi�cation with supervised learning a sample includes not only a random

vector ~X, see De�nition 2.1.1, but also an additional discrete random variable

C which speci�es the referring class. The class of each observation which can

be for example an indicator for a disease in a clinical trial, a single letter in

speech recognition or a good/bad credit risk is determined by a supervisor.

The de�nitions from the previous section can be applied to the classi�cation

problem with supervised learning. The aim of supervised learning is to �nd a

rule which assigns future observations to the appropriate class. For learning

the rule a sample set is required as input.

De�nition 2.1.7 (Training set)

A training set T = {(~xi, ci) : i = 1, . . . , N} is a sample set consisting of:

• An observation matrix X ∼ (N, p) where the rows ~xi = (xi,1, . . . , xi,p)
′

are the realizations of the random vector ~X of p attribute variables,

• Class vector ~c = (c1, . . . , cN)′ where element ci ∈ C = {1, . . . , K} is the
corresponding realization of random class variable C.
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The number of observations in the training set belonging to the particular class

k, i. e. where ci = k, is denoted with Nk so that
K∑
k=1

Nk = N .

Analogous to the decision problem, see De�nition 2.1.4, the framework for the

learning of decision rules for classi�cation is the classi�cation problem.

De�nition 2.1.8 (Classi�cation problem)

A classi�cation problem consists of three items:

• True class c ∈ C = {1, . . . , K},

• Assigned class k ∈ C,

• Loss function L(c, k) : C × C → R which determines the loss for chosen

class k when c is the true class.

A systematic way of predicting the class membership of an observation is a

rule for classi�cation which is the analog to the decision rule, see De�nition

2.1.5.

De�nition 2.1.9 (Classi�cation rule)

A classi�cation rule ĉ is a mapping function

ĉ : Rp → C

~x → k

which assigns for every observation ~x a class k = ĉ(~x).

Basis for the classi�cation rule is usually the calculation of membership values

which indicate the con�dence that the realization ~xi belongs to a particular

class. A membership valuemmethod(C = k| ~X = ~xi) is produced by the classi�ca-

tion method for every observation ~xi and each class k ∈ C. Hence, application
of a classi�cation method to a training set of size N leads to a membership

matrix

M :=


m1,1 · · · m1,K

...
. . .

...

mN,1 · · · mN,K
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where rows ~mi = (mi,1, . . . ,mi,K)′ := (mmethod(1|~xi), . . . ,mmethod(K|~xi))′ repre-
sent the membership values for observation ~xi.

The classi�cation rule

ĉ(~xi) = arg max
k∈C

mmethod(k|~xi) (2.1)

is applied to the membership values and assigns realization ~xi to the class k

which attains highest con�dence.

These membership values estimated by the various kinds of classi�cation meth-

ods can be separated into two groups:

• Membership probabilities pi,k := Pmethod(C = k| ~X = ~xi) which claim to

cover the uncertainty in assessing that an observation ~xi belongs to a

particular class k, called assessment uncertainty. Regularly, statistical

classi�cation methods estimate such probabilities and output them in a

probability matrix P ∼ (N,K) with elements pi,k ∈ [0, 1]. The rows of

matrix P are probability vectors ~pi := (pi,1, . . . , pi,K)′ which sum for each

observation ~xi up to one.

• Unnormalized scores si,k := smethod(C = k| ~X = ~xi), usually given by Ma-

chine Learners in a score matrix S ∼ (N,K). In contrast to probabilities,

neither do the scores necessarily lie in the interval [0, 1] nor sum the score

vectors ~si = (si,1, . . . , si,K)′ up to one.

Naturally, a classi�cation method just outputs one type of membership value.

An equivalent decision is achieved with the application of the classi�cation rule

to either membership probabilities or unnormalized scores, so that member-

ship values mik in Equation (2.1) are replaced with pi,k and si,k, respectively.

A motivation for preference of probabilities to unnormalized scores as mem-

bership values will be given in Section 2.2 followed by some requirements the

membership probabilities have to meet, see Section 2.3. Detailed calibration

methods for two�class tasks are introduced in Chapter 4 while methods for K

classes follow in Chapter 5.
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2.2 Post�processing with Membership values

A classi�er is usually just part of a decision process in which decisions are asso-

ciated with certain costs. If the classi�er is involved in a cost�sensitive decision

with costs di�ering between classes, it is desirable that the classi�er generates

membership values which cover the assessment uncertainty of an observation

belonging to a particular class. Another advantage of a probabilistic member-

ship value is that it simpli�es the comparison and combination of results from

di�erent classi�ers, see Duda et al. (1973).

2.2.1 Comparison and combination of multiple classi�ers

In the days of data mining the number of competing classi�cation methods is

growing steadily. Naturally, there does not exist a universally best�performing

classi�cation rule and all classi�ers have got their advantages and disadvan-

tages. Hence, it is desirable to compare their performance. Therefore, it is not

su�cient to regard only the precision of a classi�cation method but also the

quality of the membership values has to be considered in the comparison.

The best way to ensure comparable membership values is to generate mem-

bership probabilities, since probabilities are consistent in their attributes. A

comparison of unnormalized scores instead would be a comparison of values

with di�erent attributes which would not make sense. Furthermore, an assess-

ment uncertainty expressed in probabilistic terms is easy to understand and

comprehensible for the user.

Additionally, if classi�er outputs are comparable an accurate combination of

classi�ers can be realized. A combination of several di�erent classi�ers can lead

to improved goodness, since di�erent methods have di�ering strengths.

2.2.2 Cost�sensitive decisions

As stated before, the creation of classi�er membership values is just one step

in a decision process. Decisions based on the results of a classi�er can be cost�
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sensitive, for example in clinical trials or in determination of credit risks. For

such decisions it is helpful to obtain membership probabilities which can be

combined with the referring costs because probabilities cover the uncertainty

in the decision for a particular class. By using probabilities in post�processing

it is guaranteed that costs are weighted consistently.

In cost�sensitive decisions it is not su�cient to use normalized membership

values which simply meet the mathematical requirements for probabilities,

i. e. sum up to one and lie in the interval [0, 1]. Such normalized membership

values can have too extreme values, see e. g. Domingos & Pazzani (1996) and

Zadrozny & Elkan (2001b), which would lead to an inappropriate weighting.

2.2.3 Multi�class problems

In Multi�class problems with number of classes K > 2 a regularization method

usually reduces the classi�cation problem to several binary tasks with either

the one�against rest or the all�pairs approach, see Chapter 5 for details. These

approaches generate for each observation several unnormalized scores per class

which have to be combined to just one membership value. Since these scores are

not normalized and do not re�ect a probabilistic con�dence they are not com-

parable and can give no basis for a reasonable combination, see Zhang (2004).

Hence, these score vectors have to be calibrated to membership probability

vectors before the combination to one matrix.

2.3 The aim of calibration

For the reasons described in Section 2.2, it is desirable that a classi�cation

method outputs membership values that re�ect the assessment uncertainty of

an observation belonging to a particular class. The solution for methods which

do not generate probabilistic membership values is to transform or calibrate

these unnormalized scores into the probability space. The aim of a calibration
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method is to scale the membership values into probabilities which are reliable

measures for the uncertainty of assessment and give a realistic impression of

the performance the rule yields on the test set. These probabilities are given

in the matrix of calibrated probabilities

P̂ :=


p̂1,1 · · · p̂1,K

...
. . .

...

p̂N,1 · · · p̂N,K


with elements p̂i,k := P̂cal(C = k|~mi) representing the probabilistic con�dence

in assignment of observation xi to class k given a generated membership value

~mi.

Regarding a calibrator as vector�valued function, the co�domain of a calibra-

tion function is the Unit Simplex U = [0, 1]K . This space, called Standardized

Partition Space by Garczarek (2002), contains all combinations of real num-

bers that sum up to one and lie in the interval [0, 1].

It can be visualized for three classes in a triplot barycentric coordinate system

showing how membership probabilities partition the observations according to

their class assignment, see Figure 2.1. Such a diagram is well known in the

theory of experimental designs, see Anderson (1958), and was introduced to

the evaluation of membership probabilities by Garczarek & Weihs (2003).

A barycentric plot illustrates the set of membership probability vectors ~p1, ~p2, ~p3

with probabilities between 0 and 1 and pi,1 + pi,2 + pi,3 = 1 by using a triangle.

The triangle is spanned by (1, 0, 0), (0, 1, 0) and (0, 0, 1) in a three�dimensional

space. The three dimensions ~p1, ~p2, ~p3 correspond to the lower left, upper and

lower right corner of the plot, respectively. The higher the con�dence is in

assignment to class 1, the closer the point is to the lower left corner. Points on

the opposite triangle side, e. g. for class 1 the right side, have a membership

probability of zero for this class. In the same way the other classes correspond

to the respective triangle sides.

The grid lines show the observations at which one membership probability

is constant, horizontal lines for example contain observations with an equal

probability for class 2. Furthermore, the thick inner lines indicate the decision
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Posterior assignments for balance scale data set

B
L
R

Fig. 2.1: Example for a barycentric plot for three classes
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borders between two classes. Thus, these lines partition the triangle into three

sectors in which each sector represents the assignment to the corresponding

class.

While the type of symbol indicates the class which is assigned to, the color of

the symbols indicate the true class of an object. Thus, symbols of one kind

only occur in the respective sector while colors can occur in every sector. A

mismatch of symbol, i. e. sector, and color indicates an object which is classi-

�ed incorrectly.

With the use of a stylized three�dimensional plot in shape of a tetrahedron,

the visualization can be even extended for up to four dimensions and hence

four classes, see Figure 2.2.

Here, the fourth class corresponds to the peak of the tetrahedron which has

got the coordinates (0, 0, 0, 1) and lies in the middle of the plot. The idea and

the interpretation is equivalent to the barycentric plot for three classes, see

above.

2.4 Performance of classi�cation rules

In learning a classi�cation rule for a particular classi�cation problem it is de-

sirable to �nd the best rule, i. e. the rule ĉ for which the L�risk RL (c, ĉ), see

De�nition 2.1.6, is minimal for all classes c ∈ C. Analogously, one can deter-

mine the optimal rule as the rule for which the counterpart of the risk, the

expected precision, is maximal.

Since it is not possible to observe a whole population, such an optimal classi�-

cation rule is learned on the basis of a �nite training set. Certainly, the task in

classi�cation is to construct a rule which is not only well�performing for this

training set but which can also be generalized for the classi�cation of new data

with unknown class labels. Thus, the classi�cation rule on the one hand and

the empirical correctness measure which approximates the expected precision

on the other hand have to be determined by di�erent observations to make

performance measures reliable estimates for the generalization performance.
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Posterior assignments for B3 data set

1
2
3
4

Fig. 2.2: Example for a barycentric plot for four classes
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In Section 2.4.2 the procedures simple validation, hold�out sets and cross�

validation for calculating precision estimates for generalization will be intro-

duced. The Theory presented here is based on Chapter 9 in Duda et al. (1973)

and on Chapter 7 in Hastie et al. (2001). Section 2.4.3 illustrates how these

methods can be additionally used for an appropriate learning of classi�cation

rules. Moreover, Section 2.4.4 introduces additive performance measures for a

better evaluation of membership probabilities.

2.4.1 Goodness estimates

The aim of a classi�cation method is usually to �nd a rule which has a minimal

empirical L�risk

rL(c, ĉ) :=
1

N

N∑
i=1

L[ci, ĉ(~xi)] . (2.2)

This empirical L�risk can be regarded as a stochastic approximation of the true

L�risk RL(c, ĉ), see De�nition 2.1.6. Since the assignment of an observation to

a class can be either correct or not, it is natural in classi�cation problems to

choose the 0�1�loss

L01(c, ĉ) :=

 0 ĉ = c

1 ĉ 6= c

as loss function. Incorporating L01 in (2.2) leads to the empirical 0�1�risk r01,

called empirical classi�cation error. r01 calculates the proportion of misclassi-

�ed examples and is the standard measure for the imprecision of a classi�ca-

tion rule. Since the counterpart of imprecision is of interest, one has to count

the proportion of correctly assigned observations instead. With a training set

T = {(~xi, ci) : i = 1, . . . , N} as basis the empirical measure for the precision

of a classi�cation method is the correctness rate

CR := 1− r01 =
1

N

N∑
i=1

I[ĉ(~xi)=ci](~xi) . (2.3)
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All sorts of di�erent classi�cation methods, see e. g. Hastie et al. (2001) or

Hand (1997), can be compared with respect to this precision criterion.

Machine Learning methods like the Support Vector Machine and Arti�cial Neu-

ral Networks, see Sections 3.1 and 3.2, respectively, try to directly minimize

the empirical L�risk (2.2) with some optimization algorithm. In this case it is

not appropriate to incorporate the 0�1�loss L01, since an optimization prob-

lem which minimizes the empirical classi�cation error r01 is Non�deterministic

Polynomial�time hard (NP�hard) and hence computationally intractable, see

Kearns et al. (1987). Therefore, these classi�ers usually minimize an L�risk

based on a convex surrogate for L01. The chosen loss function has got an e�ect

on the probability information of the generated membership values. Therefore,

Section 3.3 demonstrates the connection between the choice of loss function

and the ability to estimate membership probabilities.

Besides, most of the classi�cation methods can be regarded as rules which

minimize a certain L-risk, at least for the dichotomous case, see Table 3.1 in

Section 3.3.

2.4.2 Estimating performance reliably

The training set, see De�nition 2.1.7, is the basis for the learning of a classi-

�cation rule where usually some precision criterion like the correctness rate is

maximized. Therefore, it is not advisable to evaluate the performance of the

learned rule on the basis of the training set, since a correctness rate based

on the training set observations is not an appropriate estimate for the gen-

eralization precision of a classi�er. A straightforward approach to estimate

performance reliably is the application of simple validation.

De�nition 2.4.1 (Simple validation)

In simple validation a classi�cation rule ĉ is learned on the basis of the drawn

training set T = {(~xi, ci) : i = 1, . . . , N}. Additionally, a further sample, called

validation set, V = {(~xi′ , ci′) : i′ = 1, . . . , NV} is drawn independently. The

idea of simple validation is to apply the learned classi�cation rule ĉ to the
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validation set observations ~xi′ for estimation of their classes. The goodness of

the classi�cation rule is quanti�ed by the correctness rate (2.3) on the basis of

the true classes in the validation set.

As stated in De�nition 2.4.1 it is necessary in simple validation to draw two

samples independently. In real�life surveys this is often not possible and there

is just one sample available. An option to supply two more or less independent

data sets is to use so called hold�out sets. Here two thirds of the observations

are drawn independently from the data set and are used as training set while

the remaining third of the observations is used as validation set.

While the classi�cation rule is learned on the basis of the training set, the

validation set is ignored for the learning and is just used for the prediction of

the correctness rate. Figure 2.3 illustrates how the behavior of the correctness

rate di�ers with varying complexity of the �tted model between training and

validation set, see also Weiss & Kulikowski (1991). This stylized function clar-

i�es the necessity of using a validation set in predicting reliable correctness

estimates.

Model complexity

Low High

C
or

re
ct

ne
ss

 r
at

e

Training Set

Validation Set

Fig. 2.3: CR for validation and training set as the model complexity is varied

More precise estimates can be derived with cross�validation which is a simple
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generalization of the hold�out method presented above.

De�nition 2.4.2 (m�fold cross validation)

In m�fold cross validation the training set T is randomly divided into m dis-

joints of as nearly equal size as possible. The classi�er is trained m times, each

time with a di�erent set held out as validation set, with the remaining m− 1

sets. Hence, each observation is part of a validation set once. The estimated

correctness rate is the average correctness determined by all observations.

Cross�validation is parsimonious with data, since every observation is used ex-

actly once for validation. This parsimony leads to the fact that cross�validation

is more precise than simple validation, especially for small data sets. Since 10�

fold cross�validation is recommended for analyses, see e. g. Chapter 2 in Weiss

& Kulikowski (1991) and Chapter 9.6 in Duda et al. (1973), it is used for the

experiments in Chapter 6. Therefore, cross�validation is preferred to its major

competitor Bootstrapping, see Chapter 7.11 in Hastie et al. (2001). Cross�

validation can also be used in learning of classi�cation rules, see Section 2.4.3,

and in the determination of reliable estimates for the further performance

measures introduced in Section 2.4.4.

2.4.3 Learning of rules and the problem of over�tting

Learning a classi�cation rule just by optimizing the correctness rate (2.3) for

the training set would lead to a classi�cation rule which covers all features of

the training set and is only optimal for this special data. Since the training

set observations are just a small extract from the unknown true population

with the same statistical properties, but not exactly the same values, such a

learned rule would be far from optimal for the whole population, see Figure

2.3. This problem, called over�tting, leads to the fact that the correctness rate

estimated on behalf of the training set is not generally valid, see the previous

section. Over�tting is quite a drawback for the user, since the aim of learning

classi�cation rules is to �nd the best rule for the application on new data and
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not to �nd the best �t for some training data for which the true class labels

are already available.

Since low generalization error is the ultimate goal for a classi�cation method,

over�tting is avoided in practice by learning the classi�er until a maximum

correctness rate or an optimal analogous criterion is attained for a validation

set or in cross�validation. Basically, there exist two di�erent methods which are

applied in the learning of classi�cation rules to avoid over�tting. This can either

be a model which includes a complexity term into the objective, since over�tted

models are too complex, see Figure 2.3, or the use of a grid search. A grid

search is a simple method for the learning in which for each parameter several

candidates are tested and the particular combination of parameters is chosen

which attains the highest precision measure in the validation process. It is

also possible to combine these two methods, see for example the regularization

methods in Chapter 3.

2.4.4 Further Performance Measures

Naturally, the precision of a classi�cation method, see Section 2.4.1, is the ma-

jor characteristic of its performance. However, the goodness of a classi�cation

technique covers more than just correct classi�cation.

To determine the quality of membership probabilities and hence the perfor-

mance of a classi�cation or calibration method in comparison to other mem-

bership probabilities several measures are necessary. Such a comparison of

membership probabilities just on the basis of the correctness rate (2.3) means

a loss of information and would not include all requirements a probabilistic

classi�er score has to ful�ll. To overcome this problem, calibrated probabilities

should satisfy the two additional axioms:

• E�ectiveness in the assignment and

• Well�Calibration in the sense of DeGroot & Fienberg (1983).

In the following these two axioms will be elaborated in detail.
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E�ective assignment Membership probabilities should be e�ective in their

assignment, i. e. moderately high for true classes and small for false classes.

An indicator for such an e�ectiveness is the complement of the Root Mean

Squared Error :

1−RMSE := 1− 1

N

N∑
i=1

√√√√ 1

K

K∑
k=1

[
I[ci=k] (~xi)− P (ci = k|~x)

]2
. (2.4)

The RMSE is equivalent to other performance measures, such as the Brier

Score introduced by Brier (1950) or the Accuracy introduced by Garczarek

(2002). These measures also base on the squared di�erences between member-

ship probabilities and an indicator function for the true class.

Well�Calibrated probabilities DeGroot & Fienberg (1983) give the following

de�nition of a well�calibrated forecast: �If we forecast an event with prob-

ability p, it should occur with a relative frequency of about p.� To trans-

fer this requirement from forecasting to classi�cation it is required to par-

tition the training/test set according to the class assignment into K groups

Tk := {(ci, ~xi) ∈ T : ĉ(~xi) = k} with NTk := |Tk| observations. Thus, in a par-

tition Tk the forecast is class k. Considering Figure 2.1, these partitions are

equivalent to the sectors in the barycentric plot.

Predicted classes can di�er from true classes and the remaining classes j 6= k

can actually occur in a partition Tk. To cover these individual misclassi�cations

the average con�dence Cfk,j := 1
NTk

∑
xi∈Tk P (k|ĉ (~xi) = j) is estimated for ev-

ery class j in a partition Tk. According to DeGroot & Fienberg (1983) this con�-

dence should converge to the average correctnessCRk,j := 1
NTk

∑
xi∈Tk I[c(~xi)=j].

The average closeness of these two measures

WCR := 1− 1

K2

K∑
k=1

K∑
j=1

|Cfk,j −CRk,j| (2.5)

indicates how well�calibrated the membership probabilities are. Hence, this

measure will be called Well�Calibration Ratio in the following.
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Calibration measure On the one hand, the minimizing �probabilities� for the

RMSE (2.4) can be just the class indicators especially if over�tting occurs in

the training set. On the other hand, the WCR (2.5) is maximized by vectors

in which all membership probabilities are equal to the individual correctness

values. Based on the idea of desirability indices by Harrington (1965), it is

convenient to overcome these drawbacks with combining the two calibration

measures by their geometric mean. This yields the calibration measure

Cal :=
√

(1−RMSE) ·WCR (2.6)

which indicates how well the membership probabilities re�ect the assessment

uncertainty.

Ability to separate Finally, another performance measure is introduced by

Garczarek (2002). In the following it is explained why this measure is not re-

garded in the experiments of Chapter 6.

The ability to separate measures how well classes are distinguished by the clas-

si�cation rule. The measure is based on the non�resemblance of classes which

is the counterpart of the concept of resemblance by Hand (1997).

Classes are well distinguished by a classi�cation rule if an membership proba-

bility approaches 1 for the assigned class and is close to 0 for the classes which

the rule not assigns to. In contrast to the RMSE (2.4), the ability to separate

is based on the distance between a membership probability for a particular

class and an Indicator function indicating whether this class is the assigned

one. Analogous to the RMSE, the squared distances are summed for every

class over all observations. The sum is standardized so that a measure of 1 is

achieved if all observations are assigned without insecurity:

AS := 1− K

K − 1

1

N

N∑
i=1

√√√√ K∑
k=1

[
I[ĉi=k] (~xi)− P (C = k|~x)

]2
. (2.7)

A high ability to separate implies that the classi�cation rule works out the

characteristic di�erences between the classes, but not necessarily.
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The ability to separate has got the major drawback that it does not consider

the true classes which can lead to misinterpretations. A high AS does not

necessarily mean that the membership probabilities are of high quality, because

it just means that the probabilities for the assigned class are high and the

other ones are low. If the ability to separate is high and 1 − RMSE and/or

correctness rate are small it is an indicator for the fact that the probabilities are

too extreme and do not re�ect the assessment uncertainty. Thus, this measure

is omitted in the experimental analysis in Chapter 6.



3. REGULARIZATION METHODS FOR CLASSIFICATION

This chapter gives an overview of the two standard Regularization Methods

for classi�cation, Support Vector Machine and Arti�cial Neural Networks, in

Section 3.1 and 3.2, respectively. These methods have in common that a clas-

si�cation rule (2.1) is learned by minimizing a regularized empirical risk (2.2)

based on a convex loss function.

Subsequently, it is shown in Section 3.3 which kind of loss function has to be

chosen in regularization so that unnormalized scores contain su�cient proba-

bility information for a calibration into membership probabilities. Since reg-

ularization methods apply loss functions which are convex surrogates of the

0�1�Loss, these methods are initially constructed for two�class tasks. While

the optimization algorithm for an Arti�cial Neural Network has been extended

for K�class tasks, see Section 3.2, the idea underlying the Support Vector Ma-

chine with maximizing the margin between two classes makes a reduction to

binary classi�cation problems necessary, see e. g. Vogtländer & Weihs (2000)

as well as Duan & Keerthi (2005) for an overview. All so�called Multivari-

ate Support Vector Machines as introduced in Allwein et al. (2000), Crammer

(2000), Dietterich & Bakiri (1995), Lee et al. (2004) or Weston & Watkins

(1998) base on a reduction to binary classi�cation problems.

Chapter 4 shows the several existing methods for calibrating two�class mem-

bership values into probabilities that re�ect the assessment uncertainty while

generalization algorithms for K classes are presented in Chapter 5.
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3.1 Support Vector Machine

The Support Vector Machine (SVM), introduced by Cortes & Vapnik (1995),

is a Machine Learning method which can be used for regression as well as for

dichotomous classi�cation tasks. The Support Vector Classi�er separates the

two classes by an optimal hyperplane which maximizes the distance between

the observations for either class, see Section 3.1.1. If classes are not perfectly

separable, the optimal hyperplane is constructed so that the amount of mis-

classi�cation is hold as small as possible. Two major approaches have been

introduced in recent years, L1� and L2�SVM, which basically di�er in the pe-

nalization amount of wrongly classi�ed observations.

To enable for both approaches the possibility of creating a discriminant which

is not necessarily linear, attribute variables are mapped into a higher dimen-

sional feature space for separation, see Section 3.1.2.

The optimization procedure which bases for the L2�SVM on a grid search and

cross�validation is presented in Section 3.1.3.

Since the SVM procedure is only directly applicable for two classes, a multi�

class problem with number of classes K > 2 is reduced to several binary tasks,

see Chapter 5. The SVM theory presented in this section is mainly based on

Vapnik (2000), Burges (1998) and Cristianini & Shawe-Taylor (2000).

3.1.1 Separating Hyperplanes for two classes

This section shows how the SVM constructs an optimal separating hyperplane

for two perfectly separated classes as well as the generalization for the non�

separable case.

A hyperplane H is generally de�ned by

H = {~x : f(~x) = ~w′ · ~x+ b = 0}

where ~w is a unit vector, i. e. a vector of length ‖~w‖ = 1.

Given a training set T = {(~xi, ci) : i = 1, . . . , N} with binary class variable
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ci ∈ C := {−1,+1} it is the aim to �nd a hyperplane, i. e. a decision function

f , as basis for the classi�cation rule

ĉ(~x) := sign[f(~x)] = sign[~w′ · ~x+ b] . (3.1)

The decision function f(~x) can be used to determine a rule which is analog

to the general classi�cation rule (2.1) and assigns an observation ~x to the

class with highest membership value. Therefore, a membership value for the

positive class becomes m(+1|~x) := f(~x) and hence the membership value for

the negative class is the negative term m(−1|~x) := −f(~x).

Perfectly separable classes While Linear Discriminant Analysis, see Fisher

(1936), constructs a linear discriminant on the basis of the assumption of mul-

tivariate normality, the SVM separates the two classes by an optimal hyper-

plane H which maximizes the margin d from the hyperplane to the closest

points from either class instead. These points lie on the two additional parallel

hyperplanes H+ := {~x : f(~x) = +1} and H− := {~x : f(~x) = −1}, respectively.
Thus, H+ and H− are parallel to H with margin d, see Figure 3.1.
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Fig. 3.1: Example of an optimal hyperplane for the perfectly separable case

If classes are perfectly separable, an optimal decision function f can be found
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so that every observation is assigned correctly, i. e. cif(~xi) ≥ 0 ∀ i = 1, . . . , N .

Hence, it is possible to �nd a hyperplane H which creates the biggest margin

d to the training points for the positive and the negative class, respectively,

see Figure 3.1. This search can be formulated in the optimization problem

max
~w,b
‖~w‖=1

d (3.2)

with subject to ci (~w
′~xi + b) ≥ d, i = 1, . . . , N. Hastie et al. (2001) show that

this optimization problem can be rephrased by arbitrarily setting the norm of

the normal vector ‖~w‖ = 1/d into the minimization of the functional

Φ(~w) = ‖~w‖ (3.3)

subject to the constraint

ci (~w
′~xi + b) ≥ 1, i = 1, . . . , N . (3.4)

In the following, the optimization procedure will be only shown for the non�

separable case, see below, since this is a generalization of the perfectly separable

case.

Non�separable classes In real�life data sets classes usually overlap in the

attribute space so that they are not perfectly separable. If this is the case,

misclassi�cations have to be possible in constructing the optimal separating

hyperplane H. A hyperplane of this type is called soft�margin hyperplane, see

Cortes & Vapnik (1995). The SVM approach to create a soft�margin hyper-

plane is to modify the functional (3.3) by incorporating an error term

Φ(~w) =
1

2
‖~w‖2 +

γ

2

N∑
i=1

L(ci, ~w
′~xi + b) (3.5)

with some loss function L : R → [0,∞[ and a user�de�ned regularization pa-

rameter γ, see Burges (1998). A large value for γ corresponds to a high penalty

for errors. An error penalized by the loss function is induced by an observation

which lies on the wrong side of its corresponding hyperplane H− or H+.
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A natural choice for the loss function would be the 0�1�loss L01 (2.3), but

optimization problems based on non�convex loss functions like L01 are com-

putationally intractable, see Kearns et al. (1987). To simplify the computation

problem Cortes & Vapnik (1995) apply the q�hinge loss function

Lq�hinge[ci, f(~xi)] := max{0, 1− cif(~xi)}q (3.6)

with positive integer q is used as convex surrogate loss function. Including the

q�hinge loss into the optimization problem (3.5) leads to the functional:

Φ(~w, ~ξ) =
1

2
‖~w‖2 +

γ

2

N∑
i=1

ξqi (3.7)

where the vector of non�negative slack variables ~ξ = (ξ1, . . . , ξn)′ is the output

generated by the maximum term in the loss function (3.6). A slack variable

ξi measures the proportional amount for which observation ~xi is on the wrong

side of the corresponding hyperplane H− or H+, see Figure 3.2.
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Fig. 3.2: Example for SVM with slack variables for non�separable case

Therefore, the constraint applicable in perfect separation (3.4) can not be met

for all observations and has to be modi�ed into

ci (~w
′~xi + b) ≥ 1− ξi, i = 1, . . . , N (3.8)
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by using the slack variables which have to hold the condition

N∑
i=1

ξi ≤ constant . (3.9)

This leads to the fact that for ξi < 1 the corresponding observation ~xi is

still classi�ed correctly, while ξi > 1 implies misclassi�cation, see Figure 3.2.

With bounding the sum of slack variables (3.9) the total proportional amount

of observations on the wrong side of either margin and the total number of

misclassi�ed observations are bound as well.

In specifying the parameter q of the q�hinge loss function in (3.6) it is common

to set q = 1, see Cortes & Vapnik (1995). The corresponding classi�er is called

L1�SVM. In recent years, the competitor L2�SVM introduced by Suykens

& Vandewalle (1999) which is based on the quadratic hinge loss, i. e. setting

q = 2, has gained interest because of some better statistical properties, see

Section 3.3. Consequently, only the optimization procedures for L2�SVM will

be shown in the following.

L2�SVM To �nd the solution for the optimization of the functional (3.7) with

setting q = 2 the constraint (3.8) is incorporated into the primal Lagrange

functional

Lp =
1

2
‖~w‖2 +

γ

2

N∑
i=1

ξ2
i −

N∑
i=1

αi [ci(~w
′~xi + b)− (1− ξi)] (3.10)

where the αi are Lagrangian multipliers, see Cristianini & Shawe-Taylor (2000).

Compared to L1�SVM, see Burges (1998), a positivity constraint for the slack

variables ξi is not necessary, since slack variables are squared in the functional,

see Shawe-Taylor & Cristianini (2004).

Lp has to be minimized with respect to ~w, b and ξi. Hence, the respective
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derivatives

∂Lp

∂ ~w
= ~w −

N∑
i=1

αici~xi
!

= 0 (3.11)

∂Lp

∂b
= −

N∑
i=1

αici
!

= 0 (3.12)

∂Lp

∂ξi
= γξi − αi

!
= 0 (3.13)

are set equal to zero. Incorporating the solutions of the derivative equations

(3.11) � (3.13) in the primal Lagrangian Lp (3.10) constitutes the Lagrange

Wolfe Dual

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjcicj~x
′
i~xj −

1

2γ

N∑
i=1

α2
i

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjcicj

(
~x′i~xj +

1

γ
δij

)
(3.14)

with Kronecker�delta de�ned as δij := 1 if i = j and 0 else.

According to Kuhn & Tucker (1951) the minimum of the primal Lagrangian

(3.10) is given by the maximum of the Lagrange Wolfe Dual under constraints

(3.8) and

N∑
i=1

αici = 0 , (3.15)

αi ≥ 0 , (3.16)

αi [ci (~w
′~xi + b)− (1− ξi)] = 0 . (3.17)

Condition (3.15) is derived by solving (3.12) while condition (3.16) follows

from the solution of the derivative for the slack variables (3.13). Finally, (3.17)

is the complementary Karush�Kuhn�Tucker condition based on the Theorem

by Kuhn & Tucker (1951).

By solving the derivative for ~w (3.11) one can obtain an equation for calculating

the normal vector

~w =
N∑
i=1

αici~xi (3.18)



3. Regularization methods for classi�cation 34

which is a linear combination of the training set observations for which αi > 0,

namely the support vectors. Thus, the optimal hyperplane for separation is

induced by

f(~x) =
N∑
i=1

αici~x
′
i~x+ b . (3.19)

The training set observations in�uence the learning of the optimal hyperplane

just by the scalar product ~x′i~x , see Equations (3.14) and (3.19), which simpli�es

the generalization in Section 3.1.2.

3.1.2 Generalization into high�dimensional space

The previously presented optimization problem constructs an optimal hyper-

plane which separates two classes linearly. Since classes are not regularly sep-

arable by a linear discriminant, it is desirable to have a more �exible dis-

criminant which is not necessarily linear. For the SVM Schölkopf et al. (1995)

introduced the idea of mapping the attribute variables ~x from the attribute

space X into a higher dimensional Hilbert space H, called feature space. In

this space an optimal separating hyperplane is constructed as described in

Section 3.1.1.

According to the previous section a learned optimal hyperplane just depends

on the training set observations in terms of the scalar product ~x′i~x. Hence, for

constructing the optimal hyperplane in the feature space H it is only required

to calculate the inner products between support vectors and vectors of the

feature space. In a Hilbert space H the inner product

(~zi · ~z) = K(~x, ~xi) (3.20)

with ~z ∈ H and ~x ∈ X can be regarded as a Kernel function K. According

to Courant & Hilbert (1953) K(~x, ~xi) has to be a symmetric positive (semi�)

de�nite function.

Regular choices for K are
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• d'th degree polynomial K(~x, ~xi|d) = (1 + 〈~x, ~xi〉)d ,

• Gaussian radial basis K(~x, ~xi|σ) = exp

(
−‖~x− ~xi‖

2

2σ2

)
,

• Neural Network K(~x, ~xi|κ1, κ2) = tanh (κ1 + κ2〈~x, ~xi〉) ,

see Hastie et al. (2001). In the following the Gaussian radial basis kernel is

chosen, since it is widely recommended, see Hsu et al. (2003) and Garczarek

(2002). According to Hsu et al. (2003) the radial basis kernel has less numerical

di�culties than the polynomial kernel while the Neural Network kernel has the

drawback that it is sometimes not valid, see Vapnik (2000). Additionally, it

is an advantage that there is just one parameter to optimize for this Kernel

function and the inclusion of a further parameter as in the Neural Network

kernel might lead to a too complex model. Furthermore, according to Schölkopf

et al. (1995) the choice of the Kernel function is not crucial but estimating the

appropriate parameter σ is.

3.1.3 Optimization of the SVM Model

Summing the two previous sections up, the optimal separating hyperplane

and corresponding optimal Lagrangian multipliers α̂i found by the L2�SVM

method is the function which maximizes the Lagrange Wolfe Dual (3.14) under

the constraints (3.8) and (3.15) � (3.17). The solution can be represented as

the decision function

f(~x) =
N∑
i=1

αiciK(~x, ~xi|σ) + b .

To construct an hyperplane of this type which separates observations opti-

mally, it is required to choose optimal parameters σ̂ and γ̂ in the optimization

process. Estimates can be found by using a grid search and cross�validation,

see below.

Finally, it has been shown for example by Wahba (1998) and Schölkopf et al.

(1997) that the SVM optimization procedure can be cast as a regularization
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problem in a Reproducing Kernel Hilbert Space (RKHS), see Aronszajn (1950).

Thus, the SVM procedure using the Kernel function K can be seen as mini-

mization of the empirical regularized q�hinge�risk

rregq�hinge := λ‖f‖2
H + rq�hinge [ci, f(~xi)]

= λ‖f‖2
HK +

1

N

N∑
i=1

Lq�hinge [ci, f(~xi)] (3.21)

with convex loss function Lq�hinge (3.6) and HK the RKHS with corresponding

Kernel K. According to Hastie et al. (2001) the same solution for a function

f(~x) = h(~x) + b with h ∈ HK and o�set term b ∈ R is given by setting the

regularization parameter λ = 1/2γ.

For optimizing the Lagrangian multipliers αi in L2�SVM the conjugate gradi-

ent method is used, see Suykens et al. (1999). Furthermore, it is recommended

by Hsu et al. (2003) to apply a loose grid search on parameters σ and γ with

range γ = 2−5, 2−3, . . . , 215 and σ =
√

1/2−15,
√

1/2−13, . . . ,
√

1/23 to �nd the

best pair (σ, γ). Next step is to conduct a �ner grid search in the area around

the optimal pair of the loose grid search. Finally, the SVM is trained for the

optimal pair of σ and γ with the presented algorithm.

3.2 Arti�cial Neural Networks

The theory of Arti�cial Neural Networks (ANN) emerged separately from three

di�erent sources:

• a biological interest of understanding the human brain;

• broader issues in arti�cial intelligence to copy human abilities like speech

and use of language;

• a statistical approach to pattern recognition and classi�cation.

Biological research shows that a neuron in the human brain behaves like a

switch by activating a signal when su�cient neurotransmitter is accumulated
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in the cell body. These signals can travel parallel and serially through the brain

along synaptic connections in the nervous system.

The fundamental idea of an Arti�cial Neural Network for classi�cation is to

copy these processes in the human brain. An ANN consists of a group of nodes

which simulate neurons and are �connected� by a group of weights, analogous

to the synaptic connections. Therefore, the idea of an ANN is to apply a linear

function to the input nodes i. e., attribute variables X1, . . . , Xp, and regard

the outcome as derived features. Based on the signal activation in the human

brain the target variable ~Y is modeled as a non�linear threshold function g,

called activation function, of the derived features. In a classi�cation task with

K classes the target variable ~Y is a vector of size K where each element is an

indicator function for the corresponding class k ∈ [1, . . . , K]:

Yk := I[c( ~X)=k](
~X) .

For classi�cation tasks with K > 2 this procedure, also visualized in Figure

3.3, reduces the problem into K binary decisions for either class and is thus

equivalent to the multivariate reduction method one�against rest, see Chapter

5.

The original model by McCulloch & Pitts (1943) and the further extension

by Rosenblatt (1962) are presented in Section 3.2.1 and 3.2.2, respectively.

The Learning rule is shown in Section 3.2.3 and the parameter optimization

in Section 3.2.4.

3.2.1 McCulloch�Pitts neuron and Rosenblatt perceptron

The original model for an ANN by McCulloch & Pitts (1943) is quite similar

to Discriminant Analysis by Fisher (1936), since the McCulloch�Pitts neuron

derives features where the linear function is a weighted sum of input vari-

able realizations x1, . . . , xp. The activation function gk which is applied to the
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derived features is a threshold function. This yields the model

yk := gk

(
p∑
l=1

αk,lxl

)
=


1 if

p∑
l=1

αk,lxl − αk,0 ≥ 0

0 else

, (3.22)

with threshold αk,0 and a vector of individual weights ~αk := (αk,1, . . . , αk,p)
′.

For a schematic of the McCulloch�Pitts neuron see Figure 3.3.

Fig. 3.3: McCulloch�Pitts neuron

Since the activation function gk discontinuously jumps from a lower to an

upper limiting value, this model (3.22) de�nes a non�linear function across a

hyperplane in the attribute space. With such a threshold activation function

the neuron output is 1 on one side of the hyperplane and 0 on the other one.

Rosenblatt (1958) introduced the perceptron structure in which the neurons

segment the attribute space not only into two but into more regions. Here, the
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activation function of the McCulloch�Pitts neuron (3.22) is generalized to

yk := gk

(
p∑
l=0

αk,lxl+1

)
= gk (~α′k~x) (3.23)

where the activation function gk can be any non�linear function. The thresh-

old values αk,0 of the McCulloch�Pitts neuron (3.22) are accommodated by

including a vector of length N with constant term 1 as �rst column vec-

tor of observation matrix X with index 0, so that realization vectors become

~xi := (1, xi,1, . . . , xi,p)
′.

Estimated target values ŷi,k := gk (~α′k~xi) generated for an individual observa-

tion ~xi can be regarded as membership values m(C = k|~xi). Therefore, the
general classi�cation rule (2.1) is applicable for a target value ŷi,k estimated

by an ANN similarly to membership values generated by statistical classi�ca-

tion methods. A particular observation ~xi is assigned to the class with highest

target value ŷi,k.

3.2.2 Multi Layer Perceptron

Rosenblatt (1962) proposed the Perceptron Learning Rule for learning suit-

able weights αk,l for classi�cation tasks. However, according to the analyses by

Minsky & Papert (1969) the Rosenblatt�Perceptron does not cover many real

world problems, since such networks are only capable for linearly separable

classes. For example an exclusive�or (XOR) function on the input variables

could not be incorporated by the Rosenblatt�Perceptron. Hence, Minsky &

Papert (1969) suggested with the Multi Layer Perceptron (MLP) a further

extension which is widely used today. The MLP is a two�stage classi�cation

model in which a �rst neuron maps from an input layer to a hidden layer and

a second neuron maps from the hidden layer to an output layer, see Figure 3.4.



3. Regularization methods for classi�cation 40

Fig. 3.4: Structure of the Multi Layer Perceptron

The starting point of the �rst stage of the MLP is the input layer which is

formed by the observation matrix X including the additional column of 1's. A

neuron as in (3.23) is used to derive the nodes in the hidden layer

zh := gh (~α′h~x) , h = 1, . . . , H (3.24)

with vector of weights ~αh := (αh,0, . . . , αh,p)
′. These nodes are called hidden

units since they are not directly observed. In contrast to the �xed number of

nodes in the input and output layer, p+ 1 and K, respectively, the number H

of hidden units is �exible. The optimal number of hidden units for a particular

classi�cation task can be found by a grid search, see Section 3.2.4.

The second stage of the MLP is a further neuron pointing from the vector of

hidden units ~z := (1, z1, . . . , zH)′, including an obligatory added z0 = 1 as in

the input layer, to the target values

yk := g∗k

(
~β′k~z
)
, k = 1, . . . , K (3.25)

with vector of weights ~βk := (βk,0, . . . , βk,H)′.

Instead of choosing activation functions g and g∗ as threshold functions like
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in the McCulloch�Pitts neuron (3.22) they are chosen as sigmoidal functions

which satisfy the following conditions:

g(x)→ 0 if x→ −∞
g(x)→ 1 if x→∞
g(x) + g(−x) = 1

. (3.26)

Typically g and g∗ are set to the logistic activation function

g(x) =
1

1 + exp (−x)
=

exp (x)

1 + exp (x)
(3.27)

which meets condition (3.26).

There also exist MLP with more than one hidden layer and the optimal number

of hidden layers depends on the particular classi�cation task, but according

to Cybenko (1989) every bounded continuous function can be approximated

by an architecture with one su�ciently large hidden layer. Thus, a MLP with

only one hidden layer should lead to appropriate results for most of the existing

classi�cation problems.

3.2.3 Generalized Delta Rule

Rumelhart et al. (1986) proposed the Generalized Delta Rule for estimation of

weights in an ANN with MLP�structure. Therefore, all MLP�stages i. e., neu-

rons of the ANN can be theoretically combined into a global decision function

fk of the observations. Hence, the model regards target values

yk := fk (~x, ~w)

= g∗k

[
βk,0 +

H∑
h=1

βk,hgh (~α′h~x)

]
as a function of observation ~x and a set of complete set of unknown weights

~w :=
{
~αh, ~βk : k = 1, . . . , K;h = 1, . . . , H

}
.

The weights of an ANN for classi�cation are estimated by minimizing an ob-

jective which bases on the L�risk

rL

(
~y; ~f
)

:=
1

N

N∑
i=1

L
[
~yi; ~f (~xi)

]
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with the general vector�valued function ~f := (f1, . . . , fK).

A regular choice for the loss function in an ANN is the quadratic loss

Lquad

(
~y, ~f
)

:=
∥∥∥~y − ~f

∥∥∥
2

=
K∑
k=1

(yk − fk)2

where the corresponding risk is the mean squared error

rquad

(
~y; ~f
)

:=
1

N

N∑
i=1

K∑
k=1

[yk,i − fk (~xi)]
2 . (3.28)

For convenience a proportional term, the squared error

SE (~w) =
N∑
i=1

K∑
k=1

[yk,i − fk (~xi, ~w)]2 ∝ rquad (~y; f1, . . . , fK) (3.29)

is used as objective instead.

The generic approach to minimize the squared error (3.29) is by a iteration

procedure based on gradient descent. In this context this procedure is called

back�propagation, see Rumelhart et al. (1986).

3.2.4 Regularization and grid search

As mentioned in Section 2.4.3 learning a classi�cation rule just by optimizing

a precision criterion for the training set leads to over�tting. Therefore, the

squared error (3.29) is regularized with the additional term

J(~w) :=
K∑
k=1

H∑
h=0

β2
k,h +

H∑
h=1

p∑
l=0

α2
h,l

to avoid over�tting and therefore the objective which has to be minimized in

an ANN is

SE(~w) + λJ(~w) . (3.30)

The optimal weight decay λ which determines the penalization amount of too

complex models is found by a grid search over the interval [0.001, 0.1]. Similarly,

several candidates between 5 and 100 are tested to �nd the optimal H. One

chooses the pair (λ,H) which yields best performance in cross�validation, see

Ripley (1996).
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3.3 Consistency of convex surrogate loss functions

Membership values generated by the regularization methods described in the

two previous sections di�er to the ones usually given by statistical classi�ers.

In regularization membership values are unnormalized scores which do not

give any probabilistic con�dence about the membership to the corresponding

classes while statistical methods generate probabilities that re�ect the assess-

ment uncertainty.

Such kind of membership probabilities are to be preferred over unnormalized

scores for various reasons, see Section 2.2, and therefore unnormalized scores

need to be calibrated.

For the regularization methods ANN and SVM calibration means a transfor-

mation of unnormalized scores into membership probabilities. Hence, it has

to be justi�ed beforehand if the unnormalized classi�er scores, at least ap-

proximately, supply su�cient information to transform them into probabilities

which re�ect the assessment uncertainty. In recent years, a connection between

the choice of loss function in risk minimization procedures and ability to esti-

mate membership probabilities was investigated, initiated by Lin (1999) and

mainly extended by Zhang (2004), Steinwart (2005) and Lugosi & Vayatis

(2004).

For classi�cation tasks with a dichotomous class variable c ∈ C = {−1,+1}
regularization methods can be seen as methods which try to �nd a function

f(~x) for which the corresponding classi�cation rule ĉ := sign[f(~x)] minimizes

the L�risk RL(c, ĉ), see De�nition 2.1.6. Since the minimization of the 0�1�risk

R01 using the obvious 0�1�loss is computationally intractable, see Section 2.4,

Machine Learners usually minimize an L�risk using a convex surrogate for L01.

Conditioning this L�risk on ~x it can be formulated with incorporating f for

the dichotomous case as

RL [c, f (~x)] = E {L [c · f (~x)]}

= E {p+L [f (~x)] + [1− p+]L [−f (~x)]} , (3.31)
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with conditional probability p+ := P (+1|~x) for class of given observation ~x

being positive and complement term 1 − p+ as probability for class of given

observation ~x being negative. Therefore, this formulation of the risk includes

the membership values f(~x) which are generated by the regularization method

and the desired membership values, the membership probabilities p+.

It has been shown by Lin (1999) that the optimal function f(~x) generated by

a regularization method which minimizes (3.31) converges in probability to a

set�valued function of the conditional probability p+

f ∗L(p+) :=

{
g : RL(p+, g) = min

h∈R̄
RL(p+, h)

}
with conditional L�risk RL(p+, g) := p+L(g) + (1− p+)L(−g). By symmetry,

RL(p+, g) = RL(1 − p+,−g) holds. Thus, the optimal function f ∗L(p+) is not

necessarily uniquely determined, since f ∗L(p+) = −f ∗L(1− p+) holds. Addition-

ally, the symmetry of the optimal function implies f ∗L(0.5) = 0.

However, f ∗L(p+) is just a theoretically existing function, but it is not the op-

timal function f(~x) generated by a classi�cation method which minimizes the

L�risk with use of loss function L. f(~x) just approaches f ∗L(p+) for N → ∞.

Since the size of the training set N is usually far from in�nity, the conditional

probability p+ can not be simply estimated by f ∗−1
L [f(~x)] even if f ∗L is bijec-

tive. Nevertheless, bijectivity of f ∗L implies that f(~x) supplies information for

estimating the conditional probability p+ on basis of f(~x). Contrariwise, if fL

is not bijective, f(~x) does not contain any probabilistic information about the

assessment uncertainty. The di�erences in observed membership values just

occur from approximation and model error. Hence, it is preferable to choose a

regularization procedure which contains a convex loss function for which f ∗L is

bijective.

For an individual loss function L the particular optimal function f ∗L (p+) which

theoretically minimizes the corresponding risk can be easily found by setting

the derivative of (3.31) equal to zero and solve to f (~x). Table 3.1 shows which

optimizing functions f ∗L (p+) the optimal function f (~x) approximates for a cor-

responding loss function L.
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Tab. 3.1: Risk�minimizing probability functions for di�erent classi�ers

Classi�er Loss function L(v) f ∗L(p+) Bijective

AdaBoost Exponential exp (−v) 1
2

log
(

p+
1−p+

)
yes

ANN, CART, LDA Least Squares (1− v)2 2p+ − 1 yes

L1�SVM Hinge max (1− v, 0) sign (2p+ − 1) no

L2�SVM Quadratic hinge max (1− v, 0)2 2p+ − 1 yes

C4.5, LogitBoost,

Logistic Regression Logistic log (1 + e−v) log
(

p+
1−p+

)
yes

From Table 3.1 it follows that the L2�SVM gives more information on esti-

mating conditional probabilities than the L1�SVM and is therefore preferred

in the experimental analyses in Chapter 6. Furthermore, Table 3.1 shows that

besides the statistical methods like LDA and Logistic Regression, see Fisher

(1936) and Hosmer & Lemeshow (2000), respectively, the two most common

boosting algorithms � AdaBoost by Schapire et al. (1998) and LogitBoost by

Friedman et al. (2000) � as well as the two standard tree learners � C4.5 by

Quinlan (1993) and CART by Breiman et al. (1984) � supply su�cient infor-

mation on estimating conditional probabilities.



4. UNIVARIATE CALIBRATION METHODS

This chapter gives an overview of the univariate calibration methods which are

currently used. In terms of calibration univariate means that the set of possi-

ble classes C consists only of two classes. For convenience these two classes are

denoted as a positive and a negative class, respectively, i. e. k ∈ C = {−1,+1}.
The aim of a calibration method is to obtain an estimate for the probability

P (C = k|m) for k being the true class by given membership value m. This

chapter illustrates four di�erent approaches to provide such calibrated proba-

bility estimates:

1. Simple normalization of unnormalized scores, so that they meet mathe-

matical requirements to be a probability, i. e. sum for each observation

up to one and lie in the interval [0, 1], see Section 4.1;

2. Estimate a function which maps directly from the membership values

m+ := mmethod(+1|~x) (either unnormalized score or membership proba-

bility) for the positive class to calibrated probability P̂cal(+1|m+). De-

termine the calibrated probability P̂cal(−1|m+) for the negative class by

using the complement, see Section 4.2;

3. Estimate class priors πk as well as the class�conditional probabilities

P (s+|C = +1) and P (s+|C = −1) for unnormalized scores to derive

calibrated probabilities P̂cal(C = k|s+) with Bayes' Rule, see Section 4.3;

4. Regard membership probabilities pi,k := Pmethod(C = k|~xi) (or normal-

ized scores) for the assigned classes as realizations of a Beta distributed

random variable and optimize distributional parameters to determine the

calibrated probabilities P̂cal(C = k|pi,k), see Section 4.4.
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Multivariate Extensions of these univariate calibration methods are presented

in Chapter 5.

4.1 Simple Normalization

This section supplies simple normalization procedures for unnormalized scores.

Here, these scores are just normalized so that they meet the mathematical re-

quirements to be a probability, i. e. sum for each observation up to one and lie

in the interval [0, 1]. Furthermore, boundary values, e. g. for regularization of

unnormalized scores where s(k|~x) = 0, are transformed to boundary member-

ship probabilities with P̂ (k|~x) = 0.5.

Such normalized membership values do not cover the assessment uncertainty

of an observation belonging to a particular class, though this should be the aim

of a calibration method, see Section 2.3. Hence, these methods have no proba-

bilistic background and should only be used for pre�calibration, see Zadrozny

& Elkan (2002). Since the calibration method using assignment values, see Sec-

tion 4.4, needs either membership probabilities or normalized scores as input,

one of these simple normalization procedures has to precede a calibrator using

assignment values.

Simple Normalization The simplest way of normalization is to divide the

observed scores by their range and to add half the range so that boundary

values lead to boundary probabilities. Since the boundary in regularization is

0, the range of scores is here equal to the doubled maximum of absolute values

of scores. Hence, the following equation

P̂norm(C = k|si,k) :=
si,k + ρ ·max

i,j
|si,j|

2 · ρ ·max
i,j
|si,j|

. (4.1)

leads to normalized scores which meet the mathematical requirements to be

probabilities. The smoothing factor ρ in (4.1) is set to 1.05 if it is necessary to

have normalized membership values which are neither exactly equal to 1 nor

to 0, otherwise one can set ρ = 1.
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E�calibration A more sophisticated simple normalization procedure is the

following method, called E�calibration. Membership probabilities are derived

as

P̂e�cal(C = k|s) :=
exp [αks(C = k|~x)]

exp

[
K∑
j=1

αjs(C = j|~x)

] . (4.2)

In this method an estimation of optimal parameters α1, . . . , αK is necessary.

The speciality with setting the parameters α1, . . . , αK = 1 is called softmax�

calibration, see Bridle (1989). Nevertheless, E�calibration as well as softmax�

calibration have no probabilistic background, but are just (non�)linear trans-

formations. Hence, these methods should not be used for a determination of

membership probabilities and will be omitted in the analyses in Chapter 6.

4.2 Calibration via mapping

Calibration with mapping is basically the search for a function which maps a

membership value m+ := m(C = +1|~x) to a calibrated conditional probability

P̂cal(C = +1|m+) for the positive class. This mapping function can be learned

with one out of the various types of regression techniques.

Conditional probabilities for the negative class are usually estimated by using

the complement: P̂cal(C = −1|m+) := 1−P̂cal(C = +1|m+). Hence, calibration

methods which use mapping are regularly only applicable for binary classi�er

outputs.

All of the following mapping calibrators are applicable for a mapping from

either membership probabilities p+ := P (C = +1|~x) or unnormalized scores

s+ := s(C = +1|~x) to calibrated membership probabilities P̂cal(C = +1|m+).

The use of unnormalized scores or membership probabilities usually depends

on what kind of scores the classi�er provides. Without loss of generality, all

mapping calibration methods are introduced in the following for a calibration

of membership values.
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The three mapping methods presented in this section are based on Logistic,

Piecewise Logistic and Isotonic Regression.

4.2.1 Logistic Regression

The actually most accepted and approved method for the calibration of mem-

bership values is to model the log odds of the conditional probabilities

log
P̂lr(C = +1|m+)

P̂lr(C = −1|m+)
= g(m+) (4.3)

as a (linear) function g of the membership values for the positive class.

Replacing the probability for the negative class in the log odds (4.3) with using

the complement P̂lr(C = −1|m+) = 1− P̂lr(C = +1|m+) leads to the term for

deriving the calibrated conditional probability

P̂lr(C = +1|m+) =
exp [g(m+)]

1 + exp [g(m+)]

=
1

1 + exp [−g(m+)]
. (4.4)

A reasonable choice for g, introduced by Platt (1999), is the linear function

g(m) = Am+B with scalar parameters A and B. By using this linear function,

the calibration function is �tted with a sigmoidal shape, see Figure 4.1.

The search for the mapping function g is an optimization problem. The estima-

tors Â and B̂ are found with the optimization proceduremodel�trust algorithm,

see Platt (1999), by minimizing the log�loss error function

Olr := −
N∑
i=1

c̃i log
[
P̂lr(+1|mi+)

]
+ (1− c̃i) log

[
1− P̂lr(+1|mi+)

]
with usage of modi�ed noisy class labels

c̃i :=


1− ε+ =

N+ + 1

N+ + 2
if ci = +1

ε− =
1

N− + 2
� ci = −1

where N+ is the number of positive examples in the training set and N− is the

number of negative ones. These modi�ed noisy class labels are used instead of

modi�ed binary class labels c̃i := I[ci=+1](~xi) ∈ {0, 1} to avoid over�tting.
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Fig. 4.1: Typical calibration function by using Logistic Regression

4.2.2 Piecewise Logistic Regression

Zhang & Yang (2004) extend Platt's Logistic Regression method by using

Piecewise Logistic Regression, while the idea for applying piecewise instead

of full Logistic Regression was initiated by Bennett (2002) with his idea of

asymmetric distribution of scores, see also Section 4.3.3.

Di�erent from Platt's model (4.3) the log odds are not regarded as a linear

function of membership values, but as a piecewise linear function with four

knots (θ0 < θ1 < θ2 < θ3). Using four knots leads to a separation of mem-

bership values into the three areas obvious decision for negative class (Area

M1), hard to classify (AreaM2) and obvious decision for positive class (Area

M3), induced by Bennett (2002), see Section 4.3.3. In each of these three areas

the log odds are �tted separately and independently as a linear function, see

Figure 4.2.

It is reasonable to chose the minimum and maximum of membership values as
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Fig. 4.2: Typical calibration function by using Piecewise Logistic Regression

estimates for the outer knots θ̂0 and θ̂3, respectively. The crucial point is the

estimation of inner knots θ̂1 and θ̂2 which separate the membership values into

the three particular areas. Therefore, the following optimization procedure is

repeated by trying any pair of 5%�quantiles of the positive class membership

values as candidate pair for the two inner knots. The pair of quantiles which

yields best results on the procedure is chosen as the two estimators for the

inner knots θ̂1 and θ̂2.

As described above, the log odds of membership values (4.3) are modeled as a

piecewise linear function

g(m+) =
3∑
j=0

wjlj (m+) (4.5)

with independent weights wj and independent linear functions

lj(m+) =


m+ − θj−1

θj − θj−1

if θj−1 ≤ m+ < θj (j = 1, 2, 3)

m+ − θj+1

θj − θj+1

� θj ≤ m+ < θj+1 (j = 0, 1, 2)

0 else

.
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Estimating the weight parameters wj (j = 0, . . . , 3) by Maximum Likelihood is

equivalent to minimize the following objective

Oplr :=
3∑
j=1

∑
i:mi+∈Mj

log

{
1 + exp

[
−ci

(
wj
mi+ − θj−1

θj − θj−1

+ wj−1
mi+ − θj
θj−1 − θj

)]}

where the partitionsMj = {mi+ : θj−1 ≤ mi+ < θj, i = 1, . . . , N} of member-

ship values correspond to the three areas in Figure 4.2.

To avoid over�tting Zhang & Yang (2004) add a regularization term to the

objective function

Oplr,reg := Oplr + λ
3∑
j=2

(
wj − wj−1

θj − θj−1

− wj−1 − wj−2

θj−1 − θj−2

)2

,

where λ is the regularization coe�cient that controls the balance between

training loss and model complexity. Zhang & Yang (2004) use λ = 0.001 in

their optimizations.

By using estimated parameters ŵj in the mapping function ĝ(m+) (4.5) cali-

brated probabilities are calculated similarly to the Logistic Regression method,

described beforehand. Positive class probabiltities

P̂plr(C = +1|m+) =
1

1 + exp [−ĝ(m+ )]

are calculated as in (4.4) while negative class probabilities are derived with the

complement term P̂plr(C = −1|m+) = 1− P̂plr(C = +1|m+).

4.2.3 Isotonic Regression

As extension to Binning, see Zadrozny & Elkan (2001a), the following calibra-

tion method, introduced by Zadrozny & Elkan (2002), uses Isotonic Regression

to estimate a function g which describes the mapping from membership val-

ues mi+ to conditional probabilities P̂ir(C = +1|mi+). Isotonic Regression is a

nonparametric form of regression which leads to a stepwise�constant function,

see Figure 4.3.
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Fig. 4.3: Typical calibration function by using Isotonic Regression

This function which describes the mapping from explanatory to response vari-

able is chosen from the class of all isotonic, i. e. non�decreasing functions. The

Isotonic Regression method applies to the calibration problem the basic model

P̂ir(C = +1|mi+) = g (mi+) + εi

where g is an isotonic function and εi an individual error term. Given a training

set with learned membership values mi+ and modi�ed binary class labels

c̃i =

 1 if ci = +1

0 � ci = −1

a non�decreasing mapping function ĝ can be found, so that

ĝ := arg min
g

N∑
i=1

[c̃i − g (mi+)]2 (4.6)

holds. The algorithm pair�adjacent violators (PAV), see Algorithm 1, is used

to �nd the stepwise�constant non�decreasing function that best �ts the train-
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ing data according to the mean�square error criterion (4.6).

Algorithm 1 PAV algorithm

1: Input: training set {mi+, c̃i} sorted with respect to mi+

2: Initialize ĝi,i = c̃i, wi,i = 1

3: while ∃ i so that ĝk,i−1 > ĝi,l do

4: Set wk,l = wk,i−1 + wi,l

5: Set ĝk,l = (wk,i−1ĝk,i−1 + wi,lĝi,l)/wk,l

6: Replace m̂k,i−1 and m̂i,l with m̂k,l

7: end while

8: Solution: stepwise�constant function generated by ĝ

The PAV�algorithm basically replaces a value ĝi−1 and the sequence of values

ĝi, ĝi+1, . . . which are smaller than ĝi−1 by their average. This is shown exem-

plarily in Figure 4.4.

class labels c̃i ( 0 1 0 0 1 0 1 )︸ ︷︷ ︸ ︸ ︷︷ ︸
↓ ↓ ↓ ↓︷ ︸︸ ︷ ︷ ︸︸ ︷

function values ĝi ( 0 0.33 0.33 0.33 0.5 0.5 1 )

Fig. 4.4: Example for PAV�algorithm

An application of the PAV�algorithm to a training sample returns a set of in-

tervals and an estimate ĝi for each interval i, such that ĝi+1 ≥ ĝi. To obtain a

calibrated probability for a test example ~x, one �nds the interval i in which the

generated membership value m(C = +1|~x) falls and assigns the corresponding

function value ĝi as membership probability for the positive class. Thus, the

terms for calculating the calibrated membership probabilities become

P̂ir(C = +1|m+) = ĝ(m+)

and P̂ir(C = −1|mi+) = 1− P̂ir(C = +1|mi+).
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4.3 Calibration via Bayes Rule

While the previously described calibration methods directly map from all kinds

of membership values to calibrated probabilities, the following method is only

directly applicable for a calibration of unnormalized scores and not for a re�

calibration of membership probabilities. Furthermore, in contrast to the direct

mapping approaches this method consists of two steps to supply membership

probabilities.

At �rst, the positive class scores s+ are split into two groups according to their

true class, so that probabilities P (s+|C = k) for the score given a particular

class k ∈ {−1,+1} can be derived.

The second step is the determination of membership probabilities by applica-

tion of Bayes' Theorem to class�conditional probabilities and class priors πk.

While class priors can easily be estimated from the training set, the crucial

point in this way of calibration is the choice of the distribution type for the

class�conditional probabilities P (s+|C = k). Two di�erent approaches are pre-

sented in this section, the standard assumption of a Gaussian distribution and

a further idea using the Asymmetric Laplace distribution.

4.3.1 Idea

Main idea of this method is to estimate the membership probabilities by using

Bayes' rule

P̂bay(C = k|s+) =
πk · P (s+|C = k)

π− · P (s+|C = −1) + π+ · P (s+|C = +1)

with class priors πk and class�conditional densities P (s+|C = k).

Class priors are estimated by calculating class frequencies observed in the

training set

π̂k :=
Nk

N
, k = −1,+1 .

The estimation of the class�conditional densities is shown in Sections 4.3.2 and

4.3.3 for the Gaussian and the Asymmetric Laplace distribution, respectively.
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In estimating the class�conditional densities it is the idea to model the dis-

tribution of unnormalized scores instead of membership probabilities. Since

some of the standard classi�cation methods, see Hastie et al. (2001), only sup-

ply membership probabilities, it is necessary to transform these probabilities

to unnormalized scores. Bennett (2002) uses log odds of the probabilistic scores

to supply such unnormalized scores

smethod(C = +1|~x) = log
Pmethod(C = +1|~x)

Pmethod(C = −1|~x)
. (4.7)

In calibrating with this method such transformations have to be applied to e. g.

LDA, Naive Bayes or Logistic Regression membership values before calibration.

The unnormalized scores for the positive class, either derived with log odds

(4.7) or directly given, have to separated into two groups. One group consists

of the positive class scores for which +1 is the true class

S+ := {si+ : ci = +1, i = 1, . . . , N}

while the other one contains of the remaining positive class scores for which it

is not

S− := {si+ : ci = −1, i = 1, . . . , N} .

For each group class�conditional densities are derived independently. In the

following Sections 4.3.2 and 4.3.3 densities are derived for scores s ∈ S+ but

derivations work analogously for scores s ∈ S−.

4.3.2 Gaussian distribution

In this calibration method the density of scores s ∈ S+ has to be estimated.

The standard distributional assumption in statistics is to assume a Gaussian

distribution.

Hence, unnormalized scores s are assumed to be realizations of a Gaussian

distributed random variable S
iid∼ G(µ, σ) with parameters µ and σ. A Gaussian

distributed random variable has got the density function

fG(s|µ, σ) =
1

σ
√

2π
exp

[
−1

2

(
s− µ
σ

)2
]
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which has got a symmetric shape, see Figure 4.5.
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Fig. 4.5: Typical behavior of Gaussian class�conditional densities

The parameters of the Gaussian distribution are estimated with Maximum

Likelihood by mean and standard deviation of scores:

• µ̂+ := s̄+ =
1

|S+|
∑

i:si∈S+

si ;

• σ̂+ :=

√
1

|S+| − 1

∑
i:si∈S+

(s̄+ − si)2 .

Estimation of parameters µ̂− and σ̂− for distribution of scores s ∈ S− works

analogously.

With estimated class�conditional probabilities

P̂G(s|C = k) := fG(s ∈ Sk|µ̂k, σ̂k)

and class frequencies as estimators for class�priors

π̂k =
Nk

N

the term for calculating calibrated membership probabilities becomes

P̂gauss(C = k|s) =
π̂k · P̂G(s|C = k)

π̂− · P̂G(s|C = −1) + π̂+ · P̂G(s|C = +1)
.
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A typical behavior of a calibration function is similar to the shape of the

calibration function for the following calibration with an Asymmetric Laplace

distribution, see Figure 4.7.

4.3.3 Asymmetric Laplace distribution

According to Bennett (2002) it is not justi�able to assume for classi�er scores

a symmetric distribution, e. g. the Gauss distribution as above, but an asym-

metric one. He mentions that scores have a di�erent distributional behavior

in the area between the modes of the two distributions compared to the re-

spective other side. The area between the modes contains the scores of those

observations which are di�cult to classify, while the respective other halves

stand for the observations for which classi�cation is easier. This conclusion

leads to the separation of scores into the three areas obvious decision for the

negative class (Area A), hard to classify (Area B) and obvious decision for the

positive class (Area C), see Figure 4.6.
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Fig. 4.6: Typical behavior of Asymmetric Laplace class�conditional densities

To consider this di�erent distributional behavior of scores it is required to

model the class�conditional densities as asymmetric distributions. Bennett

(2002) applies an Asymmetric Gaussian and an Asymmetric Laplace distribu-

tion. Since calibration with the Asymmetric Laplace distribution yields better
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results in his analyses than using the Asymmetric Gaussian, only the cali-

bration with the Asymmetric Laplace distribution Λ(θ, β, γ) is presented. The

Asymmetric Laplace distribution has the density function

fΛ(s|θ, β, γ) =


βγ

β + γ
exp [−β(θ − s)] if s ≤ θ

βγ

β + γ
exp [−γ(s− θ)] � s > θ

with scale parameters β, γ > 0 and mode θ. Scale parameter β is the inverse

scale of the exponential belonging to the left side of the mode, while γ is the

inverse scale of the exponential belonging to the right side.

In estimating the parameters for distribution of the scores s ∈ S+ with given

training set ~x1, . . . , ~xN the unnormalized scores s are assumed to be realizations

of an Asymmetric Laplace distributed random variable S
iid∼ Λ(θ, β, γ) with

likelihood function

l(θ, β, γ) =
∏
si∈S+

fΛ(si|θ, β, γ) . (4.8)

For estimation of scale parameters β and γ the following procedure is repeated

for every score realization si as candidate for mode θ. The corresponding es-

timators β̂θ and γ̂θ are evaluated for each candidate by Maximum Likelihood.

Finally, the candidate θ and corresponding estimators β̂θ and γ̂θ which attain

highest likelihood are chosen as parameter estimators.

In the beginning of the estimation procedure the N+ := |S+| learned scores

are separated into two groups with scores lower/higher than candidate θ:

Sl =
{
si : si ≤ θ; i = 1, . . . , N+

}
; Sr =

{
si : si > θ; i = 1, . . . , N+

}
with potencies Nl := |Sl| and Nr := |Sr|.
Afterwards the sum of absolute di�erences between θ and the si belonging to

the left/right halve of the distribution is calculated:

Dl = Nlθ −
∑
i:si∈Sl

si ; Dr =
∑
i:si∈Sr

si −Nrθ .
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For a �xed θ the Maximum Likelihood estimates for the scale parameters are

β̂+ =
N+

Dl +
√
DrDl

; γ̂+ =
N+

Dr +
√
DrDl

.

Finally, the candidate θ which maximizes the likelihood (4.8) is chosen as mode

estimator θ̂+ with corresponding estimators β̂+ and γ̂+.

The estimation of scale parameters and mode for the class�conditional distri-

bution of scores s ∈ S− works analogously with using all observed scores as

candidates for the same procedure.

As described before, the calibrated probabilities are calculated by using Bayes'

rule

P̂alap(C = k|s) =
π̂k · P̂Λ(s|C = k)

π̂− · P̂Λ(s|C = −1) + π̂+ · P̂Λ(s|C = +1)

with class�conditional densities

P̂Λ(s|C = k) := fΛ

(
s ∈ Sk|θ̂k, β̂k, γ̂k

)
based on the estimated distributional parameters and smoothed class frequen-

cies as estimators for class�priors

π̂k =
Nk + 1

N + 2

where Nk is the number of examples in class k.

Using the Bayes method with the Asymmetric Laplace distribution leads to a

calibration function which can be split into three parts see Figure 4.7.

Each part in the calibration function represents one area of the class�conditional

density plot, see Figure 4.6. The two areas with the extreme probabilities cor-

respond to the examples which are easy to classify i. e. Area A and C. In

Figure 4.7 that is the line with points going from −6 to −3 for the negative

class and the line with points going from approximately 5 to 6 for the positive

class. Finally, the curve connecting those two areas represents the observations

which are di�cult to classify, i. e. Area B.
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Fig. 4.7: Typical calibration function by using Asymmetric Laplace densities

4.4 Calibration by using assignment values

Calibration methods based on Bayes' rule, see Section 4.3, consist of parti-

tioning and separate calibration. The partitioning is the basis for the following

independent determination of calibrated membership probabilities. While the

previous calibration method by Bennett (2002) partitions the unnormalized

scores for a chosen class according to their true class, Garczarek (2002) parti-

tions the membership values m(k|~x) according to their assignment

ĉ(~xi) := arg max
k
m(C = k|~xi)

instead. For a classi�cation problem with number of class labels k = 1, 2 the

training sample tuple T = {(ci, ~xi) : i = 1, . . . , N} is split into partitions

Tk := {(ci, ~xi) ∈ T : ĉ(~xi) = k}
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with potencies NTk = |Tk|.
The idea of this method is to model the membership values for the assigned

classes in each partition separately as Beta distributed random variables. There-

fore, unnormalized scores generated by a regularization method, e. g. the SVM,

have to be normalized or �pre�calibrated� with a simple normalization method,

see Section 4.1, so that scores sum up to one and lie in the interval [0, 1].

The calibration procedure transforms these normalized membership values

P (k|~x) for each partition to new Beta random variables P̂av(k|~x) with op-

timal parameters and regards them as membership probabilities. Since such

calibrated probabilities should cover the assessment uncertainty of the clas-

si�er, the correctness rate in the corresponding partition is regarded in this

transformation.

Transforming distributional parameters of a random variable can be easily

done by using one of the main theorems in statistics, see e. g. Hartung et al.

(2005).

Theorem 4.4.1 (Fundamental property of the distribution function)

If Y is a random variable with continuous distribution function FY , then the

random variable

U := FY (Y ) ∼ U [0, 1]

is uniformly distributed on the interval [0, 1].

For a uniformly distributed random variable U ∼ [0, 1] and any continuous

distribution function FD of a distribution D it is true that

F−1
D (U) ∼ D .

In the Sections 4.4.1 and 4.4.2 the Gamma and the Beta distribution are

introduced which are essential for the actual calibration method presented in

Section 4.4.3.
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4.4.1 Gamma distribution

Necessary for the derivation of the Beta distribution is the Gamma Distribu-

tion, see Johnson et al. (1995). A random variable X is distributed according

to G(b, p), if it has the probability density function

fG(x|b, p) =
bp

Γ(p)
xp−1 exp (−bx)

with Gamma function

Γ(p) =

∫ ∞
0

up−1 exp (−u)du .

A speciality of the Gamma distribution with parameters b = 1/2 and p = ν/2

is the χ2�distribution χ2(ν) with ν degrees of freedom.

4.4.2 Beta distribution

The quotient X := G
G+H

of two χ2�distributed variables G ∼ χ2(2 · α) and

H ∼ χ2(2 · β) is Beta distributed according to B(α, β) with parameters α and

β. A Beta distributed random variable has got the density function

fB(x|α, β) =
1

B(α, β)
xα−1(1− x)β−1

with Beta function

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
=

∫ 1

0

uα−1(1− u)β−1du .

Without loss of generality, Garczarek (2002) uses for better application of her

calibration method a di�erent parameterization for the Beta distribution in

terms of expected value

p := E(x|α, β) =
α

α + β

and dispersion parameter

N := α + β .

Calling N dispersion parameter is motivated by the fact that for �xed p this

parameter determines the variance of a Beta distributed random variable

Var(x|α, β) :=
αβ

(α + β)2(α + β + 1)
=

p(1− p)
N − 1

.
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4.4.3 Calibration by inverting the Beta distribution

As described above, this calibration method requires the determination of

membership probabilities for the assigned classes

ai,k :=

 max
k∈C

P (C = k|~xi) if ĉ(~xi) = k

not de�ned else
(4.9)

which will be called assignment values in the following. For each partition

these assignment values are assumed to be realizations of a Beta distributed

random variable Ak ∼ B(pAk , NAk) with unknown parameters pAk ∈ [0, 1] and

NAk ∈ N.

These two distributional parameters can be estimated by the method of mo-

ments:

p̂Ak := āk

N̂Ak :=
āk(1− āk)

Sk
− 1

with moments

āk :=
1

NTk

∑
i:~xi∈Tk

ai,k

Sk :=
1

NTk − 1

∑
i:~xi∈Tk

(ai,k − āk)2 .

Additionally, Garczarek (2002) introduces the parameter correctness probabil-

ity ϕk which is also seen for each partition separately as a Beta distributed

random variable ϕk ∼ B(pTk , NTk). The expected value parameter is quanti�ed

by the local correctness rate

pTk :=
1

NTk

∑
i:ci∈Tk

I[ĉ(~xi)=ci](~xi) (4.10)

and the dispersion parameter is quanti�ed by the number NTk of examples in

the corresponding partition Tk.
Since calibrated probabilities should re�ect the uncertainty about their assign-

ments, assignment values ai,k are transformed from Beta variables with ex-

pected value pAk to Beta variables with local correctness rate pTk as expected
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value. With using Theorem 4.4.1 such transformation can be easily done so

that calibrated assignment values become

P̂av(C = k|ai,k) := F−1
B,pTk ,Nk,opt

[
FB,p̂Ak ,N̂Ak

(ai,k)
]
. (4.11)

With old parameters p̂Ak and N̂Ak as well as new parameter pTk already quan-

ti�ed, it is only required to �nd an optimal new dispersion parameter Nk,opt for

calibrating probabilities. The optimal parameter Nk,opt found by the Assign-

ment Value Algorithm, see Algorithm 2, is the integer N out of the interval

{NTk , NAk} which maximizes the following objective

Oav := NTk · pTk + Ac . (4.12)

Algorithm 2 Assignment Value Algorithm

1: for all integer N ∈ {NTk , NAk} , N ∈ N do

2: Estimate calibrated assignment values

P̂av,N(C = k|ai,k) = F−1
B,pTk ,N

[
FB,pAk ,NAk (ai,k)

]
3: Determine calibrated probabilities for the class which is not assigned to

by using the complement

P̂av,N(C 6= k|ai,k) = 1− P̂av,N(C = k|ai,k)

4: end for

5: As Nk,opt choose the N and corresponding probabilities

P̂av(C = k|ai,k) := P̂av,Nk,opt(C = k|ai,k)

P̂av(C 6= k|ai,k) := P̂av,Nk,opt(C 6= k|ai,k)

which minimize the objective Oav (4.12)

Oav counts the number of correctly assigned examples regularized with the
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performance measure accuracy

Ac := 1− K

K − 1

1

N

N∑
i=1

√√√√ K∑
k=1

[
I[ci=k](~xi)− PN(C = k|s)

]2
,

to avoid over�tting. This measure is equivalent to theRMSE (2.4), see Section

2.4.4.

The Assignment Value Algorithm, see Algorithm 2, is used for each partition

separately to supply calibrated probabilities.

Since modeling and calibration works independently for both partitions the

calibration function usually has got a jump from negative to positive scores,

see Figure 4.8.
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Fig. 4.8: Typical calibration function by using assignment values

One can see in the example of Figure 4.8 that calibration with assignment

values leads to two independent non�decreasing functions.



5. MULTIVARIATE EXTENSIONS

This chapter deals with the learning of classi�cation rules for polychotomous

or multi�class problems, i. e. for tasks that cover more than two classes. There-

fore, Section 5.1 gives a short overview about how regularization�based and

other classi�cation methods solve such multi�class problems. Although many

classi�cation problems are multi�class ones, the Support Vector Machine, see

Chapter 3, is only applicable for the binary case, since this method is based

on maximizing the margin between just two classes. For the multi�class case

the common approach in regularization, especially for the SVM but also ap-

plied to other methods, is a two�step method that transfers the polychotomous

classi�cation task into several binary classi�cation problems and combines the

binary output after the learning.

A framework which uni�es the common methods for reducing multi�class into

binary is given by Allwein et al. (2000). This framework will be presented in

Section 5.2. For calibration with subsequent combination of the binary task

outcomes into multi�class membership probabilities Zadrozny (2001) gives a

general approach based on the pairwise coupling method by Hastie & Tibshi-

rani (1998), see Section 5.3. Additionally, a new one�step multivariate calibra-

tion method with using the Dirichlet distribution will be presented in Section

5.4. A detailed experimental comparison of these multivariate extensions meth-

ods follows in Chapter 6.
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5.1 Procedures in Multi�class classi�cation

A slight overview about standard classi�cation methods, based on Statistics

as well as on Machine Learning, and some of its major properties is given with

Table 5.1. This overview includes the kind of membership values the various

classi�ers generate and how these methods deal with multi�class problems.

The regularization�based classi�ers Boosting, see Schapire et al. (1998), ANN

and SVM apply or even require binary reduction algorithms for multi�class

tasks and generate unnormalized scores which have got no probabilistic back-

ground. Instead, the classi�ers Logistic Regression, Naive Bayes and Discrimi-

nant Analysis, see e. g. Hastie et al. (2001) for details on these methods, which

all base on statistical theory create membership probabilities and are directly

applicable for K�class problems. Tree learners which were initially introduced

in statistics, see CART algorithm by Breiman et al. (1984), directly generate

proportions that are considered as membership probabilities.

Additionally, Table 5.1 presents the major idea of the classi�cation methods

and some key issues which occur in the learning of the rules or in the esti-

mation of the membership probabilities. Probabilities generated by the Naive

Bayes and Tree classi�ers tend to be too extreme which has been explored by

Domingos & Pazzani (1996) and Zadrozny & Elkan (2001b), respectively. Mem-

bership probabilities generated by statistical classi�ers like Logistic Regression

or LDA and QDA base on the assumptions these methods make. Calculated

probabilities might be inappropriate, if these assumptions fail.

In contrast to the assumption�based statistical classi�ers, regularization meth-

ods try to �nd the optimal solution under pre�selected model conditions. All

these methods have di�erent opportunities of model selection that in�uence

the outcome, size and number of layers for ANN, learner in Boosting and Ker-

nel function for SVM. Additionally, Section 3.3 discusses the implication of

the chosen loss function. These vast opportunities of model selection in regu-

larization lead to the fact that there is no clear and direct way to the desired

outcome of membership values. For every particular classi�cation problem the
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model has to be adjusted.

The di�ering ways of supplying K�class membership probabilities for poly-

chotomous classi�cation tasks are presented in Figure 5.1.

Fig. 5.1: Multivariate Calibration Scheme

The fastest and apparently easiest approach is the usage of a direct multi�

dimensional classi�er like LDA or Naive Bayes. Anyway, these methods per-

form not necessarily best, due to the miscalculations when assumptions are

not met, see Table 5.1. As described in Chapter 3, this direct approach is not

possible for the SVM classi�ers and a binary reduction with one of the meth-

ods of Section 5.2 is obedient in this case.

Hence, in K�class situations SVM methods require an algorithm which com-

bines the scores generated in the binary classi�cation problems and calibrates

them into membership probabilities for the K classes. Currently, the pair-

wise coupling algorithm by Hastie & Tibshirani (1998) and its extension by
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Zadrozny (2001) are the common approaches for this problem, see Section 5.3.

Compared to this pairwise coupling with univariate calibration the new Dirich-

let calibration method which will be introduced in Section 5.4 has got the

advantage, that it conducts just one optimization procedure instead of two.

Additionally, this �exible method is applicable to outcomes of binary reduc-

tion approaches as well as directly applicable to multivariate matrix outcomes.

5.2 Reduction to binary problems

To generate membership values of any kind, the SVM needs to transfer multi�

class tasks into several binary classi�cation problems. The common methods

for reducing multi�class into B binary problems are the one�against rest and

the all�pairs approach. Allwein et al. (2000) generalize these ideas with us-

ing so�called error�correcting output coding (ECOC) matrices, introduced by

Dietterich & Bakiri (1995). Allwein et al. (2000) further introduce reduction

approaches with the sparse and the complete ECOC�matrix which are further

dealt with in Section 5.2.2 and 5.2.3, respectively.

All the reduction algorithms have in common that in each learning of a binary

rule b ∈ {1, . . . , B} observations of one ore more classes are considered as pos-

itive class observations while observations of another class (group) are treated

as negative class observations.

The way classes are considered in a particular binary task b is incorporated

into a code matrix Ψ with K rows and B columns. Each column vector ~ψb

determines the class treatment for the bth classi�cation task with its elements

ψk,b ∈ {−1, 0,+1}. A value of ψk,b = 0 implies that observations of the re-

spective class k are ignored in the current task b while values of −1 and +1

determine whether a class is regarded as negative and positive class, respec-

tively.
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5.2.1 Common reduction methods

This section presents the two widely used and recommended methods, see e. g.

Vapnik (2000) or Schölkopf et al. (1995), for a reduction to binary classi�cation

tasks, the one�against rest and the all�pairs approach. The approaches are

generalized in notation of the ECOC�matrix idea by Allwein et al. (2000).

One�against rest approach In the one�against rest approach the number of

binary decisions B is equal to the number of classes K. Each class is considered

as positive once while all the remaining classes are labelled as negative. Hence,

the resulting code matrix Ψ is of size K ×K, displaying +1 on the diagonal

while all other elements are −1. Table 5.2 shows an example of a one�against

rest matrix Ψ for four classes.

Tab. 5.2: Example of a one�against rest code matrix Ψ for four classes

Task

Class 1 2 3 4

1 +1 −1 −1 −1

2 −1 +1 −1 −1

3 −1 −1 +1 −1

4 −1 −1 −1 +1

All�pairs approach In the application of the all�pairs approach one learns a

rule for every single pair of classes. In each binary task b one class is considered

as positive and the other one as negative. Observations which do not belong to

either of these classes are omitted in the respective learning procedure. Thus,

Ψ is a K ×
(
K
2

)
�matrix with each column b consisting of elements ψk1,b = +1

and ψk2,b = −1 corresponding to a distinct class pair (k1, k2) while all the

remaining elements are 0, as shown exemplary for four classes in Table 5.3.

In comparing the all�pairs to the one�against rest approach the all�pairs ma-

trix has got on the one hand more columns and hence more binary rules to
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Tab. 5.3: Example of an all�pairs code matrix Ψ for four classes

Task

Class 1 2 3 4 5 6

1 +1 +1 +1 0 0 0

2 −1 0 0 +1 +1 0

3 0 −1 0 −1 0 +1

4 0 0 −1 0 −1 −1

learn. On the other hand, the one�against rest matrix does not include any

zeros while for four classes half of the elements of the all�pairs matrix are zeros

and with increasing number the part of zeros rises, too. This leads to the fact

that in using all�pairs one has to learn rules for more problems, but these rules

are a lot faster to learn, since they are all learned on the basis of at most just

half of the observations.

5.2.2 Sparse ECOC�matrix

Additionally, Allwein et al. (2000) present another reduction approach, the

usage of the so called sparse ECOC�matrix with B = 15 log2 (K) columns/

classi�cation tasks where all elements are chosen randomly and independently.

An element ψk,b is drawn as 0 with probability 0.5 and drawn as −1 or +1

with probability 0.25 each. 10000 matrices of this kind are created and out of

all valid matrices, the matrices which neither contain identical columns nor

columns without a −1 or a +1, the one is chosen for which the Hamming

distance

dH

(
~ψk1 ,

~ψk2

)
=

B∑
b=1

(
1− sign(ψk1,bψk2,b)

2

)
is minimal. Dietterich & Bakiri (1995) mention that by using the matrix with

minimal Hamming distance the performance in learning multi�class problems

is improved signi�cantly and robustly, since the shape of the ECOC�matrix

with minimal dH enhances the correction of errors in the binary decisions.
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Anyway, some problems which occur in the construction of such sparse ECOC�

matrices will be shown in the following.

Computational properties Idea of this approach is to generate a matrix which

on the one hand is sparse in the sense that B is smaller than for all�pairs and

has therefore less binary tasks to learn rules for, but that on the other hand

still su�ciently separates between the classes. However, the sparse ECOC�

matrix creation algorithm which is introduced by Allwein et al. (2000) has

got a major drawback. Before choosing the sparsest matrix 10000 di�erent

matrices are generated randomly. On the one hand, the computation of such

a number of matrices takes quite long, if the number of classes K is high.

On the other hand, if K is small, even these 10000 repeats do not necessarily

su�ce to supply at least one matrix that is valid. The mathematical proof for

this statement will be shown in the following. Therefore, the probability for

the creation of a valid matrix is derived on the basis of combinatorics. This

probability is the groundwork for the subsequent derivation of the probability

that at least one out of the 10000 generated matrices is valid.

At �rst, consider the probability P−,+ := P
(
−1 ∈ ~ψb ∧+1 ∈ ~ψb

)
that the

bth column of the code matrix Ψ contains at least one +1 and one −1. This

probability can be regarded as the complement of the probability that the

column vector ~ψb does not include a single +1 or not a single −1:

P−,+ = 1− P
(
−1 /∈ ~ψb ∨+1 /∈ ~ψb

)
= 1−

[
P
(

+1 /∈ ~ψb

)
+ P

(
−1 /∈ ~ψb ∧+1 ∈ ~ψb

)]
= 1− P

(
+1 /∈ ~ψb

)
− P

(
−1 /∈ ~ψb ∧+1 ∈ ~ψb

)
. (5.1)

To solve the equation for P−,+ (5.1), the required probabilities P
(

+1 /∈ ~ψb

)
and P

(
−1 /∈ ~ψb ∧+1 ∈ ~ψb

)
will be derived in the following.

Since the column vector ~ψb has length K and the probability for occurrence of

+1 is 0.25,

P
(

+1 /∈ ~ψb

)
= (1− 0.25)K = (0.75)K (5.2)
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holds for the probability that not even one +1 is included in the column vector.

The remaining probability P
(
−1 /∈ ~ψb ∧+1 ∈ ~ψb

)
that the column vector con-

tains at least one +1, but no −1 can be determined by

P
(
−1 /∈ ~ψb ∧+1 ∈ ~ψb

)
= P

(
−1 /∈ ~ψb

)
− P

(
−1 /∈ ~ψb ∧+1 /∈ ~ψb

)
(5.3)

with P
(
−1 /∈ ~ψb

)
= (0.75)K as in Equation (5.2). Furthermore, the latter

probability that neither a +1 nor a −1 is included in the column vector is

P
(
−1 /∈ ~ψb ∧+1 /∈ ~ψb

)
= P

[
~ψb = (0, . . . , 0)′

]
= (0.5)K ,

since this probability is equal to the probability that the column consists of

zeros only and these are drawn with probability 0.5.

With incorporating the derived probabilities from Equations (5.2) � (5.3) into

Equation (5.1) one gets the probability that the bth column of the code matrix

Ψ contains at least one +1 and one −1 with

P−,+ = 1− P
(

+1 /∈ ~ψb

)
− P

(
−1 /∈ ~ψb

)
+ P

(
−1 /∈ ~ψb ∧+1 /∈ ~ψb

)
= 1− (0.75)K − (0.75)K + (0.5)K

= 1− 2 · (0.75)K + (0.5)K . (5.4)

Figure 5.2 presents this probability as a function of the number of classes K.

Naturally, with increasing K the probability that at least one +1 and one −1

is in the column vector increases as well.

However, in creation of a sparse code matrix the drawing of a column vector

~ψb is repeated B times. This implicates that (P−,+)B is the probability for the

drawing of a matrix Ψ in which every column contains at least one −1 and

one +1.

Anyway, an additional requirement for a valid code matrix is that no column

vector ~ψb exists more than once in the matrix, since a doubled vector would

lead to a repetition of a binary classi�cation problem. A valid column vector is

drawn at least with probability (1/4)K if it only consists of −1 and +1. Since
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Fig. 5.2: Probability that ECOC�matrix column contains at least one -1 & one +1

it would lead to an invalid matrix if a vector is drawn again, the maximum

probability of a valid code matrix becomes

P−,+,B := P
(
−1 ∈ ~ψb ∧+1 ∈ ~ψb ∧ ~ψb 6= ~ψa|a, b = 1, . . . , B; a 6= b

)
≤ P−,+ ·

(
P−,+ −

1

4K

)
· . . . ·

(
P−,+ − (B − 1) · 1

4K

)
. (5.5)

To yield the probability that none of the 10000 created matrices is valid, one

can consider the complement probability 1−P−,+,B that at least one generated

ECOC�matrix is valid. Hence, the probability that at least one of the 10000

matrices is valid is given by

P−,+,B,10000 = 1− (1− P−,+,B)10000

This probability is the upper bound for the probability of creating a valid code

matrix and is shown in Figure 5.3 as a function of the number of classes K.

Figure 5.3 demonstrates that the use of a sparse ECOC�matrix is only rea-

sonable for classi�cation tasks with at least nine classes, since for K equal to

eight the probability is smaller than 0.4 and for K less than eight it is ap-

proximately 0. As already stated beforehand, for large number of classes the

creation of 10000 ECOC�matrices takes reasonable long time.
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Fig. 5.3: Probability for a valid ECOC�matrix with one try or 10000 repeats

Since this method is not generally applicable in classi�cation, it is omitted in

the analyses of Chapter 6, especially because most of the classi�cation tasks

cover less than nine classes.

5.2.3 Complete ECOC�matrix

The last presented ECOC procedure is the use of a Complete ECOC�matrix,

see Allwein et al. (2000), which includes all valid combinations of +1, 0 and

−1 as columns, see the Example in Table 5.4.

Tab. 5.4: Example of a complete ECOC matrix Ψ for three classes

Task

Class 1 2 3 4 5 6

1 +1 +1 0 +1 −1 +1

2 −1 0 +1 +1 +1 −1

3 0 −1 −1 −1 +1 +1

Here, one has to keep in mind that in terms of learning a binary classi�ca-

tion rule every column has a �twin�, e. g. the classi�cation task for column
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(+1,−1, 0)′ is identical to the one for column (−1,+1, 0)′, since both binary

tasks would lead to a rule and membership values which just di�er by their

algebraic sign. There exists just one unique vector without a twin, the one

which consists only of zeros.

While the elaboration of all valid out of all 3K possible combinations is rather

simple for three classes it gets more and more complicated with increasing

number of classes, which will be shown in the following derivations.

Nevertheless, the number vK of valid combinations and hence the number B of

binary decisions for a complete ECOC�matrix can be derived by using itera-

tion. From Table 5.4 it follows that v3 = 6 is the starting point. If you want to

derive the number vK+1 of valid columns for K + 1 classes you have to regard

the vK valid and the 3K−vK invalid columns for the K classes separately. Eas-

ily seen, any column of the vK valid columns can be extended in the additional

row K + 1 with either a +1, a 0 or a −1 which leads to 3 · vK non�identical

valid columns, see the example in Figure 5.4.


0

−1

+1

→


0

−1

+1

+1

 ,


0

−1

+1

−1

 ,


0

−1

+1

0


Fig. 5.4: Example for extending a valid ECOC�column for three classes

Furthermore, the 3K − vK invalid columns for the K classes can be extended

to more valid columns by adding either a −1 or a +1 in row K + 1, except

just the one row which only contains zeros. This would lead to 3K − vK − 1

additional valid columns, exemplary shown in Figure 5.5.


0

−1

0

→


0

−1

0

+1

 ;


0

0

+1

→


0

0

+1

−1


Fig. 5.5: Example for extending an invalid to a valid ECOC�column for three classes



5. Multivariate Extensions 79

Anyway, for the reasons mentioned in the beginning of this section, every one

of the 3K − 1 combinations occurs twice just with inverted algebraic signs.

Hence, the number of class K invalid columns that become valid with adding

row K + 1 is

3K − vK − 1− 1

2

(
3K − 1

)
=

1

2

(
3K − 1

)
− vK .

Thus, the number of valid columns can be derived by the iterative equation

vK+1 = 3 · vK +
1

2
·
(
3K − 1

)
− vK .

5.2.4 Comparison of ECOC�matrix based reduction approaches

Table 5.5 compares the required number of binary decisions for the four pre-

sented ECOC methods.

The comparison of B values in Table 5.5 clari�es that the application of the

complete matrix procedure is not reasonable for a number of classes K greater

than 5. Additionally, Allwein et al. (2000) mention that this method is compu-

tationally intractable with a number of classes K greater than 13. Thus, this

procedure is also omitted in the following experiments, since it is unreasonably

more time�intensive than the other reduction approaches.
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Tab. 5.5: Number of Binary decisions for ECOC reduction approaches

K One�against rest All�pairs Sparse Complete

3 3 3 24 6

4 4 6 30 25

5 5 10 35 90

6 6 15 39 301

7 7 21 42 966

8 8 28 45 3025

9 9 36 48 9330

10 10 45 50 28501

11 11 55 52 86526

12 12 66 54 261625

13 13 78 56 788970

14 14 91 57 2375101

15 15 105 59 7141686

16 16 120 60 21457825

17 17 136 61 64439010

18 18 153 63 193448101

19 19 171 64 580606446

20 20 190 65 1742343625
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5.3 Coupling probability estimates

By coupling probability estimates Hastie & Tibshirani (1998) supply a method

for estimating calibrated membership probabilities in cooperation with the all�

pairs approach. Zadrozny (2001) extends this method for the application of

outcomes generated by a reduction based on any type of ECOC�matrix.

As described before, the reduction approaches apply with each column ~ψb of

matrix Ψ as class code a binary classi�cation procedure to the data set. Hence,

the output of the reduction approach consists of B score vectors ~s+,b(~xi) for

the associated (group of) positive class(es). To each set of scores separately

one of the univariate calibration methods, described in Chapter 4, can be

applied. The outcome is a calibrated membership probability ~p+,b(~xi) which

re�ects the probabilistic con�dence in assessing observation ~xi to the set of

positive classes Kb,+ := {k;ψk,b = +1} as opposed to the set of negative classes

Kb,− := {k;ψk,b = −1} for task b. Thus, this calibrated membership probability

can be regarded as a function of the membership probabilities P (C = k|~xi)
involved in the current task:

p+,b (~xi) := P (C ∈ Kb,+|C ∈ Kb,+ ∪ Kb,−, ~xi)

=

∑
k∈Kb,+

P (C = k|~xi)∑
k∈Kb,+∪Kb,−

P (C = k|~xi)
. (5.6)

The values P (C = k|~xi) solving Equation (5.6) would be the membership

probabilities that re�ect the assessment uncertainty. However, considering the

additional constraint to membership probabilities

K∑
k=1

P (C = k|~xi) = 1 (5.7)

there exist only K − 1 free parameters P (C = k|~xi), but at least K equations

for the one�against rest approach and even more for all�pairs (K(K − 1)/2)

or other ECOC approaches. Since the number of free parameters is always

smaller than the number of constraints, no unique solution for the calculation
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of membership probabilities is possible and an approximative solution has to

be found instead. Therefore, Zadrozny (2001) supplies a generalized version

of the coupling algorithm of Hastie & Tibshirani (1998). This optimization

method �nds the estimated conditional probabilities p̂+,b(~xi) as realizations of

a Binomial distributed random variable with an expected value µb,i in a way

that

• p̂+,b(~xi) generate unique membership probabilities P̂ (C = k|~xi),

• P̂ (C = k|~xi) meet the probability constraint of Equation (5.7) and

• p̂+,b(~xi) have minimal Kullback�Leibler divergence to observed p+,b(~xi).

The algorithm Hastie & Tibshirani (1998) and Zadrozny (2001) both use for

their optimization is the model for paired comparisons by Bradley & Terry

(1952), see the mentioned papers for details.

5.4 Calibration based on the Dirichlet distribution

The idea underlying the following multivariate calibration method is to trans-

form the combined binary classi�cation task outputs into realizations of a

Dirichlet distributed random vector ~P ∼ D(h1, . . . , hK) and regard the ele-

ments as membership probabilities Pk := P (C = k|~x).

Due to the concept ofWell�Calibration by DeGroot & Fienberg (1983), see also

Section 2.4.4, one wants to achieve that the con�dence in the assignment to

a particular class converges to the probability for this class. This requirement

can be easily attained with a Dirichlet distributed random vector by choosing

parameters hk proportional to the a�priori probabilities π1, . . . , πK of classes,

since elements Pk of the Dirichlet distributed random vector have expected

values

E(Pk) = hk/

K∑
j=1

hj , (5.8)

see Johnson et al. (2002).
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5.4.1 Dirichlet distribution

Initially, the Dirichlet distribution is presented in the de�nition of Johnson

et al. (2002). A random vector ~P = (P1, . . . , PK)′ generated by K indepen-

dently χ2�distributed random variables Sk ∼ χ2 (2 · hk), see Section 4.4.1,

with

Pk =
Sk
K∑
j=1

Sj

(k = 1, 2, . . . , K) (5.9)

is Dirichlet distributed with parameters h1, . . . , hK .

The probability density function of a random vector ~P = (P1, . . . , PK) with

parameters h1, . . . , hK distributed according to a Dirichlet distribution is

f(~p) =

Γ

(
K∑
j=1

hj

)
K∏
j=1

Γ(hj)

(
1−

K−1∑
j=1

pj

)hK−1
K−1∏
j=1

p
hj−1
j

with Gamma function

Γ(x) =

∫ ∞
0

ux−1 exp (−u)du .

Let S1, . . . , SK−1 be independent Beta distributed random variables where

Sk ∼ B (hk, hk+1 + . . .+ hK). Then ~P = (P1, . . . , PK)′ ∼ D(h1, . . . , hK) where

the Pk are de�ned by

Pk = Sk ·
k−1∏
j=1

(1− Sj) , (5.10)

see Aitchison (1963).

Furthermore, the single elements Pk of a Dirichlet distributed random vector

are Beta distributed, since they are derived by a quotient of two χ2� distributed

random variables

Sk ∼ χ2 (2 · hk)
K∑
j=1

Sj ∼ χ2

(
K∑
j=1

2 · hj

)
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see Equation (5.9). As seen in Section 4.4.2 Beta distributed random variables

are derived similarly by a quotient of two χ2�distributed variables. Hence, the

values derived by Equation 5.10 are Beta distributed.

5.4.2 Dirichlet calibration

In the following the Dirichlet distribution is used as an essential for the intro-

duced calibration method. Initially, instead of applying a univariate calibration

method one simply normalizes the output vectors si,+1,b generated by the clas-

si�cation rules to proportions with simple normalization (4.1). It is required to

use a smoothing factor ρ = 1.05 in (4.1) so that pi,+1,b ∈ ]0, 1[. Reason for this

is the subsequent calculation of the product of associated binary proportions

for each class k ∈ {1, . . . , K}

ri,k :=

 ∏
b:ψk,b=+1

pi,+1,b ·
∏

b:ψk,b=−1

(1− pi,+1,b)

 (5.11)

analogous to the formula by Aitchison (1963), see Equation (5.10). Since the

elements derived with Equation (5.10) are Beta distributed, the ri,k are re-

garded as realizations of a Beta distributed random variable Rk ∼ B (αk, βk).

Therefore, parameters αk and βk are estimated from the training set by the

method of moments as in Section 4.4.3.

To derive a multivariate Dirichlet distributed random vector, the ri,k can be

transformed to realizations of a uniformly distributed random variable

ui,k := FB,α̂k,β̂k (ri,k) .

With application of the inverse of the χ2�distribution function these uniformly

distributed random variables are further transformed into χ2�distributed ran-

dom variables

F−1
χ2,hk

(ui,k)
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with hk degrees of freedom.

Normalization is applied to yield the desired realizations of a Dirichlet dis-

tributed random vector ~P ∼ D(h1, . . . , hK) with elements

p̂i,k :=
F−1
χ2,hk

(ui,k)

K∑
j=1

F−1
χ2,hj

(ui,j)

The parameters h1, . . . , hK have to be set proportional to class frequencies

π1, . . . , πK of the particular classes, since the expected value of the elements of

a Dirichlet distributed vector is equal to the hk, see Equation (5.8). Therefore,

the p̂i,k are realizations of a corresponding random variable which has an ex-

pected value that is equal to the correctness. Hence, membership probabilities

generated with this calibration method are well�calibrated as in the sense of

DeGroot & Fienberg (1983).

In the optimization procedure the factor m ∈ {1, 2, . . . , 2 ·N} with respective

parameters hk = m ·πk is chosen which leads to membership probabilities that

score highest in terms of performance determined by the geometric mean of

the three performance measures CR (2.3), 1−RMSE (2.4) and WCR (2.5),

see Chapter 2. The usage of the geometric mean is based on the idea of desir-

ability indices, see Harrington (1965). This has got the advantage in leading

to an overall value of 0 if one of the performance measures is equal to 0.

As in the univariate version of the Dirichlet distribution, the Beta distribution

as de�ned by Garczarek (2002), the factor m is the analog to the dispersion

parameter, see Section 4.4.2. Therefore, the grid search is performed on the

range N ±N , i. e. with omitting 0 from 1 to 2 ·N .

Alternatives for combination As an alternative to the derivation of the Beta

distributed random variables with using the product of binary proportions, see

Equation (5.11), several possibilities occur.
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One option is to use the geometric mean instead

ri,k :=

 ∏
b:ψk,b=+1

pi,+1,b ·
∏

b:ψk,b=−1

(1− pi,+1,b)

 1

#{ψk,b 6=0}
(5.12)

with the formula by Aitchison (1963), see Equation (5.10), slightly changed

from product to geometric mean so that values for di�erent classes become

more comparable.

The geometric mean is preferred to the arithmetic mean of proportions, since

the product is well applicable for proportions, especially when they are skewed.

Such skewed proportions are likely to occur when using the one�against rest

approach in situations with high class numbers, since here the negative strongly

outnumber the positive class observations.

Furthermore, it is reasonable to use a trimmed geometric mean instead, since

especially with higher numbers of classes outliers are more likely. Using a ro-

bust estimate is a good method to handle outliers. To calculate the geometric

trimmed mean one has to remove a truncation amount of γ percent of each

sides of the ordered scores. Then one can use the same formula as in Equation

(5.12). In the experimental analyses using a truncation of γ = 10 percent on

both sides leads to the best results.

The experimental analysis in Section 6.2 will compare the Dirichlet calibration

based on these three di�erent approaches.

Multivariate application Some classi�cation methods, e. g. the multivariate

ANN, see Section 3.2, are able to directly generate multivariate probability

matrices. Therefore, it is desirable to supply a direct calibration technique as

in Figure 5.1 that re�calibrates the elements pi,k of a multivariate probability

matrix.

These elements can be regarded as elements of a Dirichlet distributed ran-

dom vector and hence as Beta distributed random variables. Thus, ri,k as in

Equation (5.11) can be simply supplied by

ri,k := pi,k . (5.13)
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Afterwards, the parameters of the Beta distribution can be estimated as above

by the method of moments and subsequently the Dirichlet calibration can be

directly applied to such probability matrices for a re�calibration.



6. ANALYZING UNI� AND MULTIVARIATE CALIBRATORS

The following experimental analysis compares the calibration methods intro-

duced in the previous chapters. At �rst, the univariate calibration procedures

that were presented in Chapter 4 will be compared according to their perfor-

mance in Section 6.1. Performance of a calibration method is quanti�ed with

the correctness rate (2.3) re�ecting precision and the calibration measure (2.6)

re�ecting probabilistic reliability, see Section 2.4.1 and 2.4.4, respectively. 10�

fold cross�validation is used to supply reliable generalized performance mea-

sures.

Secondly, the multivariate extensions of calibration methods, see Chapter 5,

are compared in Section 6.2 according to their performance on various multi�

class data sets.

The analysis is conducted with software R, see Ihaka & Gentleman (1996).

6.1 Experiments for two�class data sets

The currently known univariate calibration procedures were presented in Chap-

ter 4. These calibrators will be compared in the following for the calibration of

outputs from several classi�ers, i. e. the regularization methods from Chapter

3 and other classi�ers.

This includes a calibration of unnormalized scores generated by the regular-

ization methods:

1. L2 Support Vector Machine (L2�SVM)



6. Analyzing uni� and multivariate calibrators 89

2. Arti�cial Neural Network (ANN).

Additionally, an analysis of re�calibrating membership probabilities generated

by the following methods is presented:

1. Naive Bayes

2. Tree.

Exemplary for a tree algorithm the R procedure tree is used. Tree, see Chapter

7 in Ripley (1996), has got a similar tree learning and pruning algorithm as

the tree procedure CART by Breiman et al. (1984).

The two latter classi�ers produce membership values which claim to re�ect

the assessment uncertainty, but analyses by Zadrozny & Elkan (2001b) and

Domingos & Pazzani (1996), respectively, show that these probabilities are in-

appropriate in re�ect the assessment uncertainty.

The applied univariate calibration methods are the Assignment Value algo-

rithm (av), Bayes calibration with using the asymmetric Laplace distribution

(bay�alap), Isotonic (ir), Logistic (lr) and Piecewise Logistic Regression (plr).

The calibrated probabilities are compared to scores generated by SVM or ANN

calibrated with simple normalization and to the original probabilities gener-

ated by the Tree and Naive Bayes classi�ers, respectively.

6.1.1 Two�class data sets

The following experiments are based on nine di�erent data sets with binary

class attributes. Most of the data sets which are presented in Table 6.1 origin

from the UCI Repository of Machine Learning, see Newman et al. (1998).

All data sets only consist of numerical feature variables and do not contain

any missing values, so that regularization methods are applicable.

The data sets are chosen so that every combination of a small, middle and high

number of attributes and a small, middle and high number of observations is

included once, see Table 6.2 for details.
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Tab. 6.1: Data sets with two classes � characteristics

Data set N p Origin

Banknotes 200 5 Flury & Riedwyl (1983)

Breast�Cancer 683 10 Newman et al. (1998)

Fourclass 862 2 Ho & Kleinberg (1996)

German Credit 1000 24 Newman et al. (1998)

Haberman's Survival 306 3 Newman et al. (1998)

Heart 270 13 Newman et al. (1998)

Ionosphere 351 32 Newman et al. (1998)

Pima Indians Diabetes 768 8 Newman et al. (1998)

Sonar, Mines vs. Rocks 208 60 Newman et al. (1998)

Tab. 6.2: Data sets with two classes � categorization

p small p middle p high

(p ≤ 5) (5 < p ≤ 20) (p > 20)

N small Banknotes Heart Sonar

(N ≤ 300) 200\ 5 270\13 208\60

N middle Haberman Breast Ionosphere

(300 < N ≤ 700) 306\3 683\10 351\32

N high Fourclass Pima Indians German

(N > 700) 862\2 768\8 1000\24
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6.1.2 Results for calibrating classi�er scores

In the following the calibration performance of the previously described uni-

variate calibration procedures is analyzed. Therefore, the basis for this analy-

sis are classi�er scores generated by the regularization methods L2�SVM and

ANN for the data sets from Table 6.1.

Calibration of L2�SVM classi�er scores First of all, we analyze the calibra-

tion of unnormalized scores for the L2�SVM classi�er.

Regarding the calibration of L2�SVM outputs, the calibration with assignment

values is the most stable one, the performance measures for this method are

shown in Table 6.3. This algorithm performs very well on the �ve data sets

Banknotes, Heart, Ionosphere, Pima Indians and Sonar. Except Pima Indians

where Bayes has slightly better Cal, this method yields best results for these

data sets. Regarding the other four data sets this method yields also moderate,

but not the best results. Compared to L2�SVM with simple normalization the

AV�algorithm is always better, but for these four data sets it is outperformed

by other methods. Especially for the German and the Haberman data set all

other calibrators perform better. Anyway, this method yields for all data sets,

except Fourclass and Pima Indians, a good Cal.

The major competitor for the AV�algorithm is the Logistic Regression (LR)

which has good results for most of the data sets, too. Compared to the assign-

ment value algorithm and to simple normalization this calibrator is better for

the four data sets Breast, German, Fourclass and Haberman, for the latter two

LR even yields the overall best performance. Furthermore, for Pima Indians

and Banknotes LR has slightly poorer correctness, but compared to simple

normalization strongly improved Cal. Anyway, for Heart and Ionosphere the

results are quite poor and for Sonar very poor.

According to Zhang & Yang (2004) Piecewise Logistic Regression (PLR), see

Section 4.2.2, gives an advantage to calibration with Logistic Regression. For

calibrating L2�SVM classi�er scores this assumption cannot be con�rmed,
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Tab. 6.3: Performance Measures for the L2�SVM classi�er

Banknotes Breast Fourclass

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.990 0.630 0.954 0.627 0.761 0.506

Pav(C|~x) 0.990 0.878 0.954 0.893 0.767 0.665

Pbay�alap(C|~x) 0.965 0.941 0.931 0.853 0.773 0.673

Pir(C|~x) 0.930 0.872 0.963 0.877 0.773 0.677

Plr(C|~x) 0.985 0.911 0.960 0.903 0.787 0.704

Pplr(C|~x) 0.940 0.902 0.959 0.902 0.784 0.686

German Credit Haberman Heart

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.649 0.408 0.679 0.423 0.829 0.461

Pav(C|~x) 0.674 0.618 0.692 0.533 0.829 0.726

Pbay�alap(C|~x) 0.700 0.607 0.722 0.386 0.811 0.724

Pir(C|~x) 0.710 0.577 0.722 0.378 0.811 0.728

Plr(C|~x) 0.700 0.613 0.722 0.408 0.814 0.733

Pplr(C|~x) 0.700 0.607 0.722 0.390 0.807 0.725

Ionosphere Pima Indians Sonar

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.928 0.468 0.743 0.489 0.783 0.452

Pav(C|~x) 0.928 0.718 0.743 0.631 0.788 0.633

Pbay�alap(C|~x) 0.860 0.723 0.743 0.659 0.730 0.570

Pir(C|~x) 0.786 0.600 0.727 0.647 0.716 0.576

Plr(C|~x) 0.905 0.758 0.742 0.659 0.730 0.564

Pplr(C|~x) 0.831 0.679 0.738 0.659 0.745 0.582
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since PLR is only better once, for data set Sonar. Logistic Regression is much

better for Banknotes, Ionosphere and Heart and slightly better for the �ve

remaining data sets.

Isotonic Regression (IR) delivers high variation in performance. On the one

hand, this method works �ne on Haberman and is even best in precision on

German and Breast, though with poorer Cal. On the other hand, this method

performs poorly on Heart and it has even the worst performance for Banknotes,

Ionosphere, Pima Indians and Sonar.

The Bayes algorithm by Bennett (2002) yields mediocre results. This method

has competitive performance for Fourclass,German, Haberman and Pima Indi-

ans, but the performance for the rest, especially Breast, Ionosphere and Sonar,

is quite poor. For the �rst two data sets this occurs due to the small number

of misclassi�ed observations. Hence, the distributional parameters for the mis-

classi�ed scores cannot be estimated adequately.

Concluding the analysis for calibrating two�class L2�SVM scores, the Assign-

ment Value algorithm and the calibration with Logistic Regression yield good

and overall more or less robust results. The three other calibrators are not

recommendable due to a high variation in performance.

Calibration of ANN�classi�er scores The results for the analysis of the cal-

ibration performance on the second classi�er � an Arti�cial Neural Network

�to an is given in Table 6.4.

Compared to the original ANN output the AV�algorithm yields equal preci-

sion for all data sets which indicates that the initial assignment to classes is

not changed by this calibrator. This method only changes the relation between

probabilities which is not necessarily a bad case, see Section 2.4.4. Addition-

ally, the Cal is better for seven out of the nine data sets. The exceptions are

Sonar and Fourclass for which it is slightly and clearly worse, respectively.

Comparing the Cal of the Assignment Value Algorithm and Logistic Regres-

sion, AV has got better values for Banknotes and Haberman while LR has for

German, Heart and Ionosphere. For the four remaining data sets the values are
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Tab. 6.4: Performance Measures for the ANN�classi�er

Banknotes Breast Fourclass

CR Cal CR Cal CR Cal

PANN(C|~x) 0.995 0.899 0.966 0.701 0.829 0.189

Pav(C|~x) 0.995 0.982 0.966 0.939 0.829 0.083

Pbay�alap(C|~x) 0.995 0.990 0.967 0.933 0.752 0.126

Pir(C|~x) 0.990 0.980 0.963 0.936 0.837 0.069

Plr(C|~x) 0.995 0.971 0.964 0.939 0.825 0.080

Pplr(C|~x) 0.995 0.974 0.959 0.936 0.827 0.077

German Credit Haberman Heart

CR Cal CR Cal CR Cal

PANN(C|~x) 0.753 0.561 0.718 0.556 0.796 0.661

Pav(C|~x) 0.753 0.600 0.718 0.569 0.796 0.676

Pbay�alap(C|~x) 0.752 0.602 0.705 0.543 0.792 0.659

Pir(C|~x) 0.755 0.617 0.712 0.557 0.792 0.681

Plr(C|~x) 0.755 0.623 0.712 0.560 0.796 0.684

Pplr(C|~x) 0.751 0.618 0.722 0.575 0.777 0.675

Ionosphere Pima Indians Sonar

CR Cal CR Cal CR Cal

PANN(C|~x) 0.900 0.700 0.695 0.561 0.793 0.675

Pav(C|~x) 0.900 0.829 0.695 0.584 0.793 0.669

Pbay�alap(C|~x) 0.871 0.798 0.671 0.558 0.798 0.658

Pir(C|~x) 0.903 0.827 0.709 0.600 0.769 0.602

Plr(C|~x) 0.900 0.843 0.688 0.583 0.783 0.668

Pplr(C|~x) 0.857 0.799 0.699 0.598 0.701 0.549
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quite similar. In the analysis occurs a little bit more variation in precision for

LR than for AV. Anyway, this is more often a decrease, since only for German

LR has a slightly better correctness rate, but it is even clearly worse for Pima

Indians and Sonar.

Comparing Piecewise (PLR) to Standard Logistic Regression (LR), PLR is

better for Haberman and Pima Indians, also slightly for Banknotes and Four-

class. Overall, this method has even the best results for Haberman and second

best for Pima Indians. However, there occur more and higher negative de-

viations, since the results are poor for Breast and Heart, even very poor for

Ionosphere and Sonar. For these four data sets and also for German Credit

PLR has got the worst results. Therefore, this calibrator is not recommend-

able for an application to ANN classi�er scores.

As for L2�SVM, see above, the behavior of Isotonic Regression (IR) has its

pros and cons. This method yields best performance measures for Fourclass,

Ionosphere and Pima Indians. For the �rst two, the correctness is even clearly

better than for all other calibrators. Also for German Credit this method has

got the highest correctness. However, the CR for all the other �ve data sets

is worse than CR for simple normalization and the AV�algorithm. Except the

Haberman data set CR for IR is always worse than for LR, too.

For calibrating ANN scores the Bayes method yields results with high varia-

tion. On the one hand, this calibrator has got the best performance for Breast,

Sonar and Banknotes. Though, the performance does not di�er very much

between all calibrators for the latter data set. On the other hand, the per-

formance is the worst one for Haberman, Pima Indians and Fourclass with

being extremely poor for the latter. Since the performance is also quite bad for

Ionosphere, this method can not be recommended for calibrating ANN scores

in spite to the good outcomes for the �rst three mentioned data sets.

Summary of calibration results Concluding the results for calibrating regular-

ization classi�er scores for two�class data sets, it is to note that the Assignment

Value algorithm gives the best and most robust results. Compared to initial
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classi�er scores this method produces membership probabilities that deliver a

performance increase for almost all data sets. The major competitor is the Lo-

gistic Regression calibration by Platt (1999) which is better for some data sets,

but overall it yields compared to AV more often worse than better results.

The Piecewise Logistic Regression calibrator yields no improvement in per-

formance compared to standard LR and is therefore not a recommendable

alternative. The two remaining calibrators, Isotonic Regression and the Bayes

approach have got their highs and lows. These methods change the whole

structure of classi�er scores and hence a higher variation in performance is

not surprising. Anyway, since in most cases this variation does not lead to an

increase in performance, these calibrators cannot be recommended for calibrat-

ing classi�er scores generated by regularization methods. Comparing the three

latter methods with the AV�algorithm and the Logistic Regression it occurs

that these methods adhere an intrinsic higher complexity and are therefore

more likely to be object of over�tting, see Section 2.4.2.

6.1.3 Results for re�calibrating membership probabilities

In the following we will regard the re�calibration of membership probabilities

generated by the Naive Bayes (NB) classi�er and a Tree procedure. These clas-

si�cation methods have issues with a re�ection of the assessment uncertainty,

see Section 5.1.

Re�Calibration of NB�classi�er scores One of the methods which produces

insu�cient membership probabilities is the Naive Bayes classi�er for which the

results are presented in Table 6.5.

In regarding the re�calibration of Naive Bayes classi�er scores for two�class

data sets the Assignment Value (AV) algorithm again yields good results. For

the data sets Banknotes, German Heart, Ionosphere and Pima Indians this

method has overall the best results. Compared to NB scores the AV�algorithm

is also performing better on Fourclass, although most of the other methods
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Tab. 6.5: Performance Measures for NB�classi�er

Banknotes Breast Fourclass

CR Cal CR Cal CR Cal

PNB(C|~x) 0.995 0.979 0.963 0.919 0.757 0.678

Pav(C|~x) 0.995 0.979 0.960 0.915 0.769 0.674

Pbay�alap(C|~x) 0.500 0.375 0.961 0.916 0.781 0.679

Pir(C|~x) 0.500 0.375 0.781 0.576 0.783 0.715

Plr(C|~x) 0.995 0.837 0.961 0.801 0.754 0.676

Pplr(C|~x) 0.605 0.416 0.963 0.722 0.793 0.719

German Credit Haberman Heart

CR Cal CR Cal CR Cal

PNB(C|~x) 0.719 0.568 0.741 0.550 0.840 0.741

Pav(C|~x) 0.738 0.648 0.735 0.573 0.844 0.758

Pbay�alap(C|~x) 0.730 0.639 0.741 0.547 0.837 0.746

Pir(C|~x) 0.736 0.637 0.751 0.581 0.837 0.667

Plr(C|~x) 0.728 0.628 0.745 0.620 0.840 0.664

Pplr(C|~x) 0.736 0.635 0.732 0.575 0.844 0.649

Ionosphere Pima Indians Sonar

CR Cal CR Cal CR Cal

PNB(C|~x) 0.823 0.685 0.761 0.642 0.677 0.505

Pav(C|~x) 0.888 0.798 0.765 0.667 0.663 0.576

Pbay�alap(C|~x) 0.840 0.730 0.714 0.643 0.701 0.560

Pir(C|~x) 0.641 0.537 0.763 0.659 0.533 0.512

Plr(C|~x) 0.854 0.641 0.755 0.652 0.692 0.553

Pplr(C|~x) 0.641 0.573 0.759 0.654 0.543 0.518
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yield higher values here. Regarding Haberman and Breast the Assignment

Value calibration results are slightly poorer than Naive Bayes while only for

Sonar the performance of the AV�algorithm is inadequate.

In re�calibrating NB scores, Logistic Regression (LR) is again the major com-

petitor for the AV�algorithm, although it yields only better results for data

sets Haberman and Sonar. Correctness is similar for Banknotes, Breast and

Heart, but the calibration measure is clearly worse in these cases. Compared

to NB scores the performance of LR is also good on German and Ionosphere,

but all other calibrators are better for the �rst data set, while for the latter LR

is only outperformed by the AV�algorithm. Considering Fourclass and Pima

Indians LR performs slightly poorer than most of the other methods.

In contrast to calibration of scores generated by regularization methods, the

Bayes approach performs comparable to the other two methods for a re�

calibration on Naive Bayes scores. For Sonar this method is even the best

and for Fourclass it is better than the previously mentioned calibrators and

the Naive Bayes classi�er. Additionally, for Breast, German, Haberman, Iono-

sphere the performance is good though the Bayes calibrator is not the overall

best here. Nevertheless, for Heart it is slightly outperformed by most of the

other methods while for Pima Indians it is clearly poorer than all other cal-

ibrators. Very poor results occur only for data set Banknotes. The almost

perfect classi�cation in combination with the hence justi�ed extreme Naive

Bayes probabilities leads to the contradicting fact, that the Bayes approach

is not adequate here. With the lack of variation in probabilities and the lack

of wrong assignment the parameters for the Asymmetric Laplace distribution

cannot be estimated correctly, since the distribution has to be also estimated

for misclassi�ed scores, see Section 4.3.

In contrast to the three previous methods, Piecewise Logistic and Isotonic Re-

gression again deliver no increase compared to uncalibrated classi�er scores.

As the Bayes approach, these methods cannot handle the probabilities which

are almost all extreme and therefor lack variation which were generated by NB

for Banknotes. Furthermore, these methods perform miserable for Ionosphere
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and Sonar. While Isotonic Regression is in comparison also poor for Breast and

Heart, PLR has even the best CR for these two data sets. With the remaining

four data sets PLR again shows high variation in performance in ranging from

overall best (Fourclass) over good (German) and mediocre (Pima Indians) to

poor (Haberman).

Apart from the �ve previously mentioned data sets which the Isotonic Re-

gression is performing very poorly for, it is the best calibrator for Haberman,

almost best and only outperformed by PLR for Fourclass and also good for

German and Pima Indians.

Re�Calibration of Tree classi�er scores Table 6.6 shows performance results

for the re�calibration of classi�er scores generated with the R procedure tree.

As for the previously presented classi�ers the Assignment Value (AV) algo-

rithm is also the best method for calibrating Tree classi�er scores, although

the performance is not much better than the original scores. In comparison,

the performance is equal or similar for almost all data sets. It is slightly better

for Breast, Fourclass and Pima Indians, (almost) equal for Banknotes, Iono-

sphere and Sonar as well as slightly worse for German Credit and Haberman.

Only for Heart the di�erence between correctness rates is a bit higher, but the

AV�algorithm is still not far better here.

In contrast to previous calibration results Logistic Regression (LR) is less com-

petitive in calibrating tree scores. There are only two data sets � Haberman

and Sonar � where the method delivers an advantage to original estimates

with being even the best method for the latter one. Additionally, this method

is similar to original scores for Pima Indians and German. Anyway, for the

remaining �ve data sets LR yields no improvement. While LR has got a cor-

rectness value for Banknotes which can be still regarded as high, correctness

is anyway much better for the AV�algorithm and the original tree scores. Fur-

thermore, it is even the worst method for Fourclass, Heart and Ionosphere.

For Breast the descent in performance to original tree scores is de�nite. The

pruning procedure in the tree algorithm leads for these data sets to scores
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Tab. 6.6: Performance Measures for Tree�classi�er

Banknotes Breast Fourclass

CR Cal CR Cal CR Cal

PTREE(C|~x) 0.985 0.902 0.935 0.901 0.964 0.941

Pav(C|~x) 0.985 0.924 0.938 0.905 0.967 0.945

Pbay�alap(C|~x) 0.500 0.381 0.918 0.860 0.954 0.917

Pir(C|~x) 0.920 0.847 0.379 0.386 0.961 0.854

Plr(C|~x) 0.960 0.894 0.869 0.547 0.946 0.880

Pplr(C|~x) 0.540 0.543 0.434 0.379 0.965 0.889

German Credit Haberman Heart

CR Cal CR Cal CR Cal

PTREE(C|~x) 0.665 0.520 0.683 0.560 0.707 0.617

Pav(C|~x) 0.659 0.514 0.679 0.554 0.714 0.619

Pbay�alap(C|~x) 0.597 0.502 0.647 0.524 0.692 0.570

Pir(C|~x) 0.667 0.414 0.712 0.568 0.685 0.592

Plr(C|~x) 0.667 0.507 0.689 0.531 0.659 0.555

Pplr(C|~x) 0.679 0.513 0.673 0.554 0.688 0.597

Ionosphere Pima Indians Sonar

CR Cal CR Cal CR Cal

PTREE(C|~x) 0.891 0.829 0.707 0.592 0.701 0.553

Pav(C|~x) 0.891 0.827 0.712 0.595 0.701 0.551

Pbay�alap(C|~x) 0.871 0.762 0.710 0.570 0.721 0.556

Pir(C|~x) 0.888 0.830 0.696 0.583 0.716 0.590

Plr(C|~x) 0.866 0.808 0.709 0.577 0.725 0.580

Pplr(C|~x) 0.894 0.843 0.701 0.590 0.663 0.554
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with a small number of parameter values which is shown in Figure A.2 in the

appendix. Hence, the linear function of the log odds cannot be estimated ap-

propriately here. In contrast to that, the linear function can be estimated more

accurately for the Naive Bayes scores, since this method leads to scores with

more variation, see Figure A.1. Summing this up, since LR is only good for

two data sets here, but worse than original scores for �ve data sets calibration

with Logistic Regression cannot be recommended for calibration if scores lack

variation.

Piecewise Logistic Regression (PLR), the Bayes approach and Isotonic Re-

gression (IR) deliver again no improvement to original classi�er scores. The

performance of PLR is unacceptable for Banknotes and Breast, for the �rst

one Bayes is also very poor and Isotonic Regression for the latter one. PLR

is indeed the best method for German Credit as well as for Ionosphere and

has also comparable performance measures for Fourclass. Nevertheless, for the

four remaining data sets PLR leads to a clear decrease in correctness and is

therefore not recommendable.

Bayes is only very good for Sonar and good for Pima Indians, while IR is

the best calibrator for Haberman, second best for Sonar and quite compara-

ble for Ionosphere. Results for the corresponding remaining data sets are poor

for correctness and/or calibration measure. Hence, these calibrators cannot be

recommended here again.

Summary of re�calibration results In conclusion, calibration of two-class clas-

si�er scores generated by tree algorithms cannot be regarded as necessary. Even

the advantage of the best�performing AV�algorithm is in doubt, since measures

are almost always comparable. All other calibration methods do not yield an

improvement but a decrease in performance compared to the tree scores.

Considering calibration of Naive Bayes scores the AV�algorithm, Logistic Re-

gression and also the Bayes approach yield good results.
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6.2 Experiments for multi�class data sets

Subsequent to the analysis of calibrating classi�er scores for two�class data

sets, in this section the performance of the multivariate extensions of cali-

bration procedures is compared. The di�erent multivariate calibrators were

presented in Chapter 5.

The correctness and calibration measures, derived with 10�fold cross�validation,

will be presented for each of the following combinations of classi�cation method

and reduction approach:

1. L2�SVM classi�er with one�against rest reduction,

2. L2�SVM classi�er with all�pairs reduction,

3. ANN classi�er with one�against rest reduction,

4. ANN classi�er with all�pairs reduction.

Both ANN reduction approaches are compared to a direct multivariate ANN.

Performance analyses for the Naive Bayes classi�er are not included for several

reasons. This classi�er is directly applicable for multi�class data sets and the

analyses, see Section 6.1.3, only show an increase in performance by applying

calibration for some data sets. Last but not least the better approach in using

the Naive Bayes classi�er is to initially check the assumption, i. e. independence

of feature variables, and then decide whether this method is applied to this

particular data set or not.

Furthermore, performance analyses for the tree algorithm are omitted here,

since results for two classes, see Table 6.6, did not show a performance increase

induced by any calibration.

Anyway, for each of these combinations the following multivariate calibration

procedures are applied:

1. Original simply normalized scores combined with coupling,
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2. Assignment value calibrated scores combined with coupling (av),

3. Scores calibrated by Logistic Regression combined with coupling (lr),

4. Dirichlet calibration with using the geometric mean (diri�g�mean),

5. Dirichlet calibration with the trimmed geometric mean (diri�g�trim),

6. Dirichlet calibration with using the product (diri�prod),

7. direct Dirichlet calibration (diri�direct).

The last calibration method is only applied to the direct multivariate ANN.

Univariate calibration methods using the Bayes approach with asymmetric

Laplace distribution (bay�alap), Isotonic (ir) and Piecewise Logistic Regression

(plr) did not yield acceptable results in two�class calibration, see Section 6.1.

Therefore and to keep comparison manageable, these methods are omitted in

the following analysis. For the sake of completeness results these calibrators

are incorporated in Tables A.1 to A.4 in the appendix.

6.2.1 K�class data sets

Nine di�erent data sets with multi�class labels, i. e. K > 2, were chosen for

the following analyses of multivariate calibrators. Like the selected two�class

data sets the multi�class ones have got only numerical feature variables and

no missing values.

Most of the data sets origin from the UCI Repository Of Machine Learning,

see Newman et al. (1998), see the overview in Table 6.7.

As another indication for further analyses class distributions in these data sets

are presented with absolute numbers and in percent in Tables 6.8 and 6.9.
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Tab. 6.7: Data sets with K classes

N p K Origin

B3 157 13 4 Heilemann & Münch (1996)

Balance 625 4 3 Newman et al. (1998)

Ecoli 336 7 8 Newman et al. (1998)

Glass 214 9 6 Newman et al. (1998)

Iris 150 4 3 Newman et al. (1998)

Segment 2310 19 7 Newman et al. (1998)

Vehicle 846 18 4 Newman et al. (1998)

Wine 178 13 3 Newman et al. (1998)

Zoo 101 16 7 Newman et al. (1998)

Tab. 6.8: Class distribution of K�class data sets � unbalanced class distribution

Balance Class B L R

N 49 288 288

% 8 46 46

Glass Class 1 2 3 5 6 7

N 70 76 17 13 9 29

% 33 36 8 6 4 14

Ecoli Class cp im imL imS imU om omL pp

N 143 77 2 2 35 20 5 52

% 43 23 1 1 10 6 1 15

Zoo Class 1 2 3 4 5 6 7

N 41 20 5 13 4 8 10

% 41 20 5 13 4 8 10

The Tables separate the data sets by the relative amount of individual classes

into balanced and unbalanced class distribution, respectively.
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Tab. 6.9: Class distribution of K�class data sets � balanced class distribution

B3 Class 1 2 3 4

N 59 24 47 27

% 38 15 30 17

Iris Class setosa versicolor virginica

N 50 50 50

% 33 33 33

Segment Class brickface cement foliage grass path sky window

N 330 330 330 330 330 330 330

% 14 14 14 14 14 14 14

Vehicle Class bus opel saab van

N 218 212 217 199

% 26 25 26 24

Wine Class 1 2 3

N 59 71 48

% 33 40 27

6.2.2 Calibrating L2�SVM scores in multi�class situations

In the following the results for calibrating L2�SVM classi�cation outputs for

multi�class data sets are presented for the one�against rest and the all�pairs

approach separately.

L2�SVM classi�cation with one�against rest reduction Table 6.10 presents

correctness and calibration measures for L2�SVM classi�cation with one�

against rest reduction.

Considering one�against rest L2�SVM classi�cation results di�er very much

between data sets. Especially for the Glass data set the performance is very

poor which indicates that the grid search on parameters, see Section 3.1.3, is
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Tab. 6.10: Performance for the L2�SVM classi�er using one�against rest reduction

B3 Balance Ecoli

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.713 0.569 0.892 0.551 0.833 0.727

Pav(C|~x) 0.694 0.590 0.894 0.754 0.791 0.784

Plr(C|~x) 0.687 0.558 0.892 0.831 0.824 0.736

Pdiri�g�mean(C|~x) 0.694 0.708 0.892 0.795 0.839 0.856

Pdiri�g�trim(C|~x) 0.694 0.708 0.892 0.795 0.839 0.856

Pdiri�prod(C|~x) 0.675 0.679 0.894 0.796 0.827 0.830

Glass Iris Segment

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.481 0.625 0.926 0.560 0.838 0.666

Pav(C|~x) 0.453 0.632 0.893 0.739 0.822 0.755

Plr(C|~x) 0.476 0.583 0.920 0.673 0.796 0.723

Pdiri�g�mean(C|~x) 0.476 0.647 0.913 0.815 0.857 0.870

Pdiri�g�trim(C|~x) 0.476 0.647 0.913 0.815 0.857 0.870

Pdiri�prod(C|~x) 0.467 0.677 0.920 0.790 0.858 0.861

Vehicle Wine Zoo

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.686 0.563 0.966 0.524 0.910 0.737

Pav(C|~x) 0.695 0.635 0.966 0.786 0.891 0.831

Plr(C|~x) 0.667 0.581 0.966 0.710 0.910 0.791

Pdiri�g�mean(C|~x) 0.700 0.717 0.971 0.850 0.920 0.878

Pdiri�g�trim(C|~x) 0.700 0.717 0.971 0.850 0.920 0.878

Pdiri�prod(C|~x) 0.703 0.706 0.971 0.811 0.891 0.892
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not su�cient here.

Nevertheless, calibration procedures di�er in their performance, too. The As-

signment Value algorithm (AV) is not as robust as for two�class tasks, see

Section 6.1.2. While the calibration measure is better than coupled normalized

L2�SVM scores for all data sets, the correctness is poorer for six data sets (B3,

Ecoli, Glass, Iris, Segment and Zoo) and comparable or slightly better only

for the three remaining data sets Balance, Vehicle and Wine.

Variation in performance of Logistic Regression (LR) can be called similar to

AV, but overall LR has got slight advantages, since it is clearly better for four

data sets (Ecoli, Glass, Iris and Zoo), but AV only for Segment and Vehicle.

Anyway, compared to L2�SVM LR is similar in CR and with better Cal for

four data sets (Balance, Iris, Wine and Zoo). The remaining data sets range

from slightly worse (Ecoli and Glass) over quite poor (B3 and Vehicle) to even

poorer for Segment.

Since Dirichlet calibration with geometric mean does not di�er in performance

to calibration with the trimmed geometric mean, description of results will

be presented bundled here. Compared to original scores these calibrators are

better for the �ve data sets Ecoli, Segment, Vehicle, Wine and Zoo. For fur-

ther data sets performance ranges from similar for Balance, over slightly worse

(Glass and Iris) to clearly worse (B3). On (almost) all data sets Cal is better

for this method than for L2�SVM scores and the two other calibrators.

Calibration performance is almost as good for the Dirichlet calibration with

product. Regarding correctness this calibration method has got some more

variation. Dirichlet calibration with product is the most precise method for

four data sets (Balance, Segment, Vehicle and Wine) and has also a good CR

for Iris. Except Balance all these data sets have a balanced class distribution.

Anyway, precision is mediocre for the unbalanced data set Ecoli and is even

the worst for B3 as well as for the two unbalanced data sets Glass and Zoo.

Summing these �ndings up, Dirichlet calibration with the geometric (trimmed)

mean appears to be the most robust calibration method in combination with

one�against rest L2�SVM classi�cation. Although, Dirichlet calibration using
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the product has got best performance for three data sets and can be recom-

mended for data sets with a balanced class distribution, the other Dirichlet

calibrator is preferable due to its robustness. Further reason for the better

performance of the geometric (trimmed) mean is that the unbalanced class

distributions in the binary learning are even intensi�ed by the one�against

rest approach. Additionally, it is to note that L2�SVM without calibration is

actually the best method for three data sets.

L2�SVM classi�cation with all�pairs reduction Table 6.11 presents the cor-

rectness and calibration measures for the calibration of scores generated by

the L2�SVM using all-pairs reduction.

The �rst point to mention here is that the original L2�SVM scores yield best

results for four data sets (B3, Vehicle, Wine and Zoo), while the Assignment

Value algorithm (AV) is the best method for two other data sets (Ecoli and

Glass). This calibrator is also good for three further data sets (Balance, Iris

and Segment). While the AV�algorithm is worse than L2�SVM for the four

remaining data sets, it is still the (one of the) best calibrators here.

Logistic Regression (LR) has got more variation in its results than the AV�

algorithm. It ranges from best method (Balance and Iris) over mediocre (Ecoli,

Glass and Segment) and poor (B3, Wine and Zoo) to worst (Vehicle).

Performance of Dirichlet calibration with geometric trimmed mean is always

better or equal to performance for applying the geometric mean. It is the best

overall method for Segment and the best calibrator for two other data sets (B3

and Zoo). Additionally, performance ranges from comparable (Balance) over

mediocre (Glass, Iris, Vehicle and Wine) to quite poor for Ecoli. The latter

data set has got a highly unbalanced class distribution with several classes

that have few observations, i. e. only two to �ve observations belong to three

(�imL�,�imS�,�omL�) out of the eight classes, see Table 6.8.

Finally, the Dirichlet calibration with product does not yield comparable re-

sults for calibrating L2�SVM using all-pairs. This method is unacceptable poor

for Ecoli which has a highly unbalanced class distribution, see above. It is also
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Tab. 6.11: Performance Measures for the L2�SVM classi�er using all�pairs reduction

B3 Balance Ecoli

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.738 0.531 0.873 0.514 0.824 0.646

Pav(C|~x) 0.694 0.672 0.889 0.781 0.842 0.808

Plr(C|~x) 0.668 0.652 0.889 0.853 0.815 0.799

Pdiri�g�mean(C|~x) 0.694 0.696 0.888 0.741 0.794 0.724

Pdiri�g�trim(C|~x) 0.694 0.696 0.888 0.741 0.794 0.724

Pdiri�prod(C|~x) 0.636 0.617 0.886 0.837 0.488 0.725

Glass Iris Segment

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.528 0.599 0.893 0.524 0.926 0.603

Pav(C|~x) 0.630 0.686 0.94 0.734 0.935 0.833

Plr(C|~x) 0.551 0.674 0.966 0.726 0.933 0.879

Pdiri�g�mean(C|~x) 0.570 0.676 0.880 0.690 0.940 0.822

Pdiri�g�trim(C|~x) 0.570 0.676 0.920 0.707 0.940 0.822

Pdiri�prod(C|~x) 0.476 0.662 0.893 0.847 0.888 0.843

Vehicle Wine Zoo

CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.703 0.561 0.971 0.476 0.960 0.622

Pav(C|~x) 0.699 0.676 0.960 0.787 0.940 0.808

Plr(C|~x) 0.634 0.660 0.938 0.749 0.920 0.740

Pdiri�g�mean(C|~x) 0.691 0.673 0.949 0.745 0.950 0.825

Pdiri�g�trim(C|~x) 0.691 0.673 0.949 0.745 0.950 0.825

Pdiri�prod(C|~x) 0.692 0.696 0.926 0.850 0.861 0.907
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the worst for two unbalanced (Glass and Zoo), but also for three balanced

data sets (B3, Segment and Wine). Furthermore, it is poor for Iris and only

comparable for the remaining two data sets (Balance and Vehicle).

Summing up the �ndings for L2�SVM with all�pairs reduction, the AV al-

gorithm is the best calibration method here, but original scores are better

for four data sets. The Dirichlet calibration with geometric trimmed mean is

an alternative for data sets with a balanced or moderately unbalanced class

distribution, since this method is only poor for Ecoli.

Summary of calibrating L2�SVM classi�er scores Concluding the analyses

on calibrating L2�SVM scores, the Dirichlet calibration with the geometric

(trimmed) mean is the best method for calibrating one�against rest outcomes

and the AV�algorithm is the best calibrator for all�pairs outcomes. Comparing

these two methods the AV�algorithm is better for four data sets (Glass, Iris,

Segment and Zoo), while results are quite similar for four (B3, Balance, Ecoli

and Vehicle) out of the remaining �ve data sets.

Furthermore, the Dirichlet calibration with geometric trimmed mean can be

recommended for calibrating all-pairs L2�SVM scores, if data sets have a bal-

anced or moderately unbalanced class distribution.

Finally, the Bayes approach (bay�alap), Isotonic (IR) and Piecewise Logistic

Regression PLR yield results with high variation, see Tables A.1 and A.2 in

the appendix. As in the analyses of two�class data sets in Section 6.1, these

methods cannot be recommended in calibration of multi�class L2�SVM out-

comes.

6.2.3 Calibrating ANN�classi�cation outcomes for K > 2

In the following performance measures will be presented for calibrating Arti�-

cial Neural Networks (ANN) with using the one�against rest and the all�pairs

reduction.
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In contrast to the L2�SVM above, the reduction approaches are also compared

in the following analyses to a multivariate ANN as described in Section 3.2.

ANN�classi�cation with one�against rest reduction Table 6.12 shows cor-

rectness and calibration measures for calibration of scores generated by ANN�

classi�cation with using the one�against rest reduction method.

The Assignment Value (AV) algorithm yields quite good results for calibrating

one�against rest ANN�scores, although with some variation. AV is once the

best calibrator (Glass) and has also very high performance measures for four

further data sets (Balance, Segment, Wine and Zoo). For the remaining data

sets it ranges from comparable (B3, Vehicle and Ecoli) to worst in correctness

(Iris).

Logistic Regression (LR) is better than AV with beating this method six times.

LR is the best method for two data sets (Ecoli and Segment) as well as very

good for four other ones (B3, Balance, Iris and Zoo). Nevertheless, it is worse

than most of the other calibrators for the three remaining data sets (Glass,

Vehicle and Wine), although the di�erences are only small here.

Dirichlet calibration with geometric (trimmed) mean yields results which com-

pared to other calibrators vary more between data sets. On the one hand, this

calibrator is (almost) best in Well�Calibration for �ve data sets (Ecoli, Glass,

Iris, Vehicle and Wine) with (very) good precision and has still high perfor-

mance measures for three of the four remaining data sets (Balance, Segment

andZoo). On the other hand, performance is poorer than most of the other

calibrators for Segment and Zoo, while it is even worst for the two remaining

data sets (B3 and Balance).

Dirichlet calibration with product again is an alternative for balanced data

sets and not at all for data sets with an unbalanced class distribution. This

method is the best calibrator once (Vehicle) and two times (Iris and Zoo) one

of the calibrators with the highest correctness. It is comparable for three data

sets (Wine, Segment and B3), although sometimes outperformed by another

method here. For the unbalanced data sets Balance and Glass the performance
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Tab. 6.12: Performance for ANN�classi�cation with one�against rest reduction

B3 Balance Ecoli

CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.700 0.727 0.982 0.893 0.860 0.845

PANN�rest(C|~x) 0.662 0.684 0.953 0.638 0.869 0.794

Pav(C|~x) 0.662 0.683 0.956 0.895 0.863 0.868

Plr(C|~x) 0.675 0.696 0.958 0.898 0.869 0.874

Pdiri�g�mean(C|~x) 0.643 0.663 0.918 0.853 0.866 0.875

Pdiri�g�trim(C|~x) 0.643 0.663 0.918 0.853 0.866 0.875

Pdiri�prod(C|~x) 0.662 0.687 0.926 0.876 0.526 0.713

Pdiri�direct(C|~x) 0.700 0.719 0.982 0.748 0.854 0.814

Glass Iris Segment

CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.598 0.680 0.966 0.881 0.654 0.758

PANN�rest(C|~x) 0.649 0.678 0.973 0.810 0.909 0.725

Pav(C|~x) 0.658 0.710 0.966 0.948 0.923 0.896

Plr(C|~x) 0.635 0.709 0.973 0.940 0.927 0.900

Pdiri�g�mean(C|~x) 0.649 0.709 0.973 0.958 0.909 0.934

Pdiri�g�trim(C|~x) 0.649 0.709 0.973 0.958 0.909 0.934

Pdiri�prod(C|~x) 0.579 0.692 0.973 0.934 0.912 0.934

Pdiri�direct(C|~x) 0.574 0.661 0.966 0.836 0.637 0.754

Vehicle Wine Zoo

CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.695 0.708 0.887 0.760 0.950 0.868

PANN�rest(C|~x) 0.743 0.632 0.960 0.788 0.970 0.898

Pav(C|~x) 0.737 0.745 0.966 0.932 0.960 0.941

Plr(C|~x) 0.732 0.751 0.955 0.927 0.960 0.908

Pdiri�g�mean(C|~x) 0.737 0.744 0.966 0.949 0.950 0.949

Pdiri�g�trim(C|~x) 0.737 0.744 0.966 0.949 0.950 0.949

Pdiri�prod(C|~x) 0.739 0.741 0.960 0.929 0.960 0.814

Pdiri�direct(C|~x) 0.679 0.702 0.893 0.845 0.950 0.908
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is poorer for Dirichlet calibration with product than for (most of) the other

calibrators. Finally, for Ecoli it is even unacceptable low due to the highly

unbalanced class distribution for Ecoli in which three of the eight classes hold

only one percent of the observations, see Table 6.8.

Direct Dirichlet calibration is the best method for two data sets (B3 and Bal-

ance) and comparable for Ecoli, but is the worst calibrator for six data set

(Glass, Iris, Segment, Vehicle, Wine and Zoo). These worse results are due to

the fact that the multivariate direct ANN yields poorer results here than the

one�against rest ANN.

Concluding the results for ANN�classi�cation with one�against rest reduction,

all one�against rest calibrators can be recommended, except Dirichlet calibra-

tion with product for data sets with unbalanced class distributions. Logistic

Regression is the best method for four data sets and beats the Assignment

Value algorithm six times, but AV yields good results, too. Dirichlet calibra-

tion with geometric (trimmed) mean is the best calibrator considering Well�

Calibration, since it has the highest Cal for �ve data sets (Ecoli, Iris, Segment,

Wine and Zoo) and also comparable for two further ones (Glass and Vehicle).

Finally, direct application of ANN with or without calibration yields poorer

results in most cases.

ANN�classi�cation with all�pairs reduction Table 6.13 presents correctness

and calibrations measures for calibrating ANN scores based on an all�pairs

reduction.

In calibrating all�pairs ANN�scores with the Assignment Value algorithm (AV)

performance is good for almost all data sets. The only exception is the B3 data

set where this method is clearly worse than original scores and Dirichlet cal-

ibration with the product. For four data sets (Glass, Iris, Vehicle and Wine)

AV has comparable correctness with good to very good Cal. For two of the

four remaining data sets (Ecoli and Segment) AV is even the best method,

while for Zoo it is only outperformed by the Dirichlet methods and for Bal-

ance only by the direct methods.
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Tab. 6.13: Performance Measures for the ANN�classi�er using all�pairs reduction

B3 Balance Ecoli

CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.700 0.727 0.982 0.893 0.860 0.845

PANN�pairs(C|~x) 0.719 0.700 0.910 0.558 0.848 0.705

Pav(C|~x) 0.707 0.736 0.974 0.932 0.877 0.884

Plr(C|~x) 0.700 0.729 0.972 0.937 0.863 0.853

Pdiri�g�mean(C|~x) 0.700 0.695 0.902 0.741 0.514 0.650

Pdiri�g�trim(C|~x) 0.700 0.695 0.902 0.741 0.514 0.650

Pdiri�prod(C|~x) 0.726 0.729 0.945 0.889 0.836 0.885

Pdiri�direct(C|~x) 0.700 0.719 0.982 0.748 0.854 0.814

Glass Iris Segment

CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.598 0.680 0.966 0.881 0.654 0.758

PANN�pairs(C|~x) 0.686 0.659 0.973 0.780 0.916 0.701

Pav(C|~x) 0.686 0.733 0.973 0.945 0.950 0.942

Plr(C|~x) 0.691 0.720 0.973 0.907 0.950 0.940

Pdiri�g�mean(C|~x) 0.630 0.700 0.973 0.817 0.942 0.801

Pdiri�g�trim(C|~x) 0.630 0.700 0.973 0.817 0.942 0.801

Pdiri�prod(C|~x) 0.677 0.730 0.973 0.941 0.918 0.938

Pdiri�direct(C|~x) 0.574 0.661 0.966 0.836 0.637 0.754

Vehicle Wine Zoo

CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.695 0.708 0.887 0.760 0.950 0.868

PANN�pairs(C|~x) 0.757 0.585 0.943 0.781 0.910 0.786

Pav(C|~x) 0.755 0.769 0.943 0.929 0.930 0.919

Plr(C|~x) 0.756 0.770 0.943 0.920 0.930 0.764

Pdiri�g�mean(C|~x) 0.754 0.759 0.943 0.826 0.960 0.719

Pdiri�g�trim(C|~x) 0.754 0.759 0.943 0.826 0.960 0.719

Pdiri�prod(C|~x) 0.749 0.727 0.943 0.923 0.940 0.919

Pdiri�direct(C|~x) 0.679 0.702 0.893 0.845 0.950 0.908
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As in calibrating one�against rest ANN�scores Logistic Regression (LR) yields

very good results for application to all�pairs outcomes, too. For six data sets

(Ecoli, Glass, Iris, Segment, Vehicle and Wine) correctness and calibration

measure range from best to third and are also very good for Balance. Never-

theless, Logistic Regression one of the worst methods for B3 and worse than

the Dirichlet calibrators for Zoo, although still with a high correctness here.

The Dirichlet calibration with geometric (trimmed) mean is not recommend-

able for calibrating scores generated by an ANN with using all�pairs on un-

balanced data sets. Although it has the highest correctness for the moderately

unbalanced data set Zoo, it is the worst method for three data sets (Balance,

Ecoli and Glass) where classes are not balanced. While being also the worst

method for B3, it is comparable to the other calibrators for the four remaining

balanced data sets (Iris, Segment, Vehicle and Wine).

As above Dirichlet calibration with product is recommendable for data sets

with balanced to moderately unbalanced class distributions. Performance is

the best for three balanced data sets (B3, Iris and Wine). For the two remain-

ing balanced data sets (Vehicle and Segment) this method is worse than LR

and AV, but it has got still high performance measures for the latter. With

one exception (Vehicle) Dirichlet calibration with product has got (almost)

the best Cal for the balanced data sets. For the two data sets with moderately

unbalanced class distributions (Glass and Zoo) it is comparable to others. Fi-

nally, for the two highly unbalanced data sets (Balance and Ecoli) it is clearly

worse than AV and LR, although still with high correctness for Balance.

Direct Dirichlet calibration is performing best for one data set (Balance) and

comparable to good for three further data sets (Ecoli , Iris and Zoo) with

similar results for the direct Multivariate ANN here. Also similar is the poor

performance for four further data sets (B3, Glass, Vehicle and Wine). For the

remaining data set (Segment) the direct multivariate ANN and hence Dirichlet

calibration is highly outpferformed by the all�pairs methods.

Summarizing the results for calibrating all�pairs ANN scores, Logistic Regres-

sion and the Assignment Value algorithm have got high performance. The
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Dirichlet calibration with product is competitive for data sets with a balanced

or moderately unbalanced class distribution, while Dirichlet calibration with

geometric (trimmed) mean is only recommendable for data sets with a balanced

class distribution. Direct Multivariate calibration has got the same variation

as the direct Multivariate ANN with being outperformed by all�pairs methods

more often than vice versa.

Summary for calibrating multi�class ANN�scores The Assignment Value al-

gorithm and Logistic Regression can be recommended for calibrating multi�

class Arti�cial Neural Network scores. These methods yield high results for

both reduction approaches on almost all data sets.

Due to comparable good results the Dirichlet calibrators can be recommended

for balanced data sets, but are not appropriate if class distributions are (highly)

unbalanced. In calibrating one�against rest ANN�scores the geometric trimmed

mean is preferable while for calibrating all�pairs the application of the product

yields more robust results.

Similar to the analyses of two�class data sets in Section 6.1 the results for

the Isotonic (IR) and Piecewise Logistic Regression (PLR) are object to high

variation, see Tables A.3 and A.4 in the appendix. Therefore, these methods

cannot be recommended in calibration of multi�class ANN outcomes. Excep-

tion is the Bayes approach (bay�alap) which performs comparable to other

calibrators for most of the data sets.

Comparing the reduction approaches to the direct ANN with or without cali-

bration both reduction approaches yield more robust results.



7. CONCLUSION AND OUTLOOK

This thesis delivers a framework for the generation of membership probabil-

ities in polychotomous classi�cation tasks with supervised learning. Machine

Learning and Statistical Classi�cation are the two research �elds that drive in-

novation and further development of classi�cation methods. As a consequence,

membership values that are generated by classi�ers can be separated into two

groups � unnormalized scores and membership probabilities. When compar-

ing these two types of membership values, membership probabilities have the

advantage that they re�ect the assessment uncertainty. Therefore, these prob-

abilities are the preferable outcome, especially in situations where the classi-

�cation outcome is subject to post�processing. If a classi�cation method only

generates unnormalized scores, calibration can be used to supply membership

probabilities.

Regularization is a major example for a type of classi�er that does not produce

membership probabilities but unnormalized scores. Therefore, the two most

common regularization methods � Arti�cial Neural Networks (ANN) and Sup-

port Vector Machine (SVM) � are the main classi�cation procedures which

generate outcomes that need to be calibrated. In application of calibration

to SVM scores, it should be considered that analyses by Zhang (2004) show

that it is preferable to use the L2�SVM instead of the L1�SVM, since scores

generated by the L2�SVM re�ect more information on estimating membership

probabilities, see Section 3.3.

While the correctness rate (CR) is the essential goodness criterion for measur-

ing the performance of a classi�cation method, a further measure is necessary

to indicate the quality of the assessment uncertainty re�ection. Therefore, the
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Well�Calibration Ratio (WCR) based on the concept by DeGroot & Fienberg

(1983) is introduced in Section 2.4.4. Using the geometric mean of WCR and

RMSE which measures the e�ectiveness in assignment to classes, goodness of

calibration can be quanti�ed by a single value.

Moreover, it is possible that classi�ers produce membership values that do

not re�ect the assessment uncertainty su�ciently and therefore need to be

re�calibrated. According to analyses from Domingos & Pazzani (1996) and

Zadrozny & Elkan (2001b) too extreme and hence inappropriate membership

probabilities are generated by both the Naive Bayes classi�er and Tree pro-

cedures, respectively. In contrast to that, analyses in Section 6.1 show that

re�calibrated membership probabilities do not produce an increase in the cali-

bration measure compared to membership probabilities derived by the R pro-

cedure tree, although they do for Naive Bayes membership probabilities. Still,

for the Naive Bayes classi�er it is nonetheless recommended to check its as-

sumptions and to decide afterwards whether to apply this method or not.

Due to the above, this thesis focusses on calibrating scores generated by regu-

larization methods such as the SVM or an ANN. Particularly, the SVM clas-

si�er has got an additional drawback, since it is only directly applicable to

two�class problems.

Hence, calibration techniques are usually introduced for dichotomous classi�-

cation tasks. Chapter 4 presents currently known univariate calibration tech-

niques, i. e. the Assignment Value algorithm, Logistic and Piecewise Logistic

Regression, the Bayes approach with an asymmetric Laplace distribution as

well as Isotonic Regression. These methods estimate membership probabilities

for one class and for the other class the membership probabilities is estimated

with the complement.

The experimental analysis of univariate calibration methods in Section 6.1

shows that the Assignment Value algorithm by Garczarek (2002) performs

most robust on various data sets and di�erent classi�cation techniques. The

major competitor for the AV�algorithm is the Logistic Regression by Platt

(1999) which yields comparable results in calibrating ANN, SVM and Naive
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Bayes classi�er scores. Although calibrating tree scores does not seem to be

necessary as for the other mentioned classi�ers, it has to be noted that this

method does not perform as well as for the other classi�ers described.

The Bayes approach using an asymmetric Laplace distribution as well as the

Isotonic and Piecewise Logistic Regression are not robust enough to supply

appropriate membership probabilities over various di�erent data sets. These

methods are more likely to over�t the classi�er outcomes due to their higher

complexity. An exception to the Naive Bayes classi�er is the application of the

Bayes method which was designed by Bennett (2003) specially for calibrating

Naive Bayes scores and yields competitive results here.

Regarding Classi�cation tasks with number of classes K greater than two reg-

ularization methods usually apply a reduction to several binary problems fol-

lowed by a combination of the evaluated binary membership values to one

membership probability for each class. The two common algorithms for a re-

duction to binary classi�cation tasks are the one�against rest and the all-pairs

approaches. While the one�against rest method is based on a smaller number

of learning procedures than the latter one, the all�pairs binary learning rules

are based on fewer observations and therefore are faster to learn. Another

advantage of the all-pairs reduction algorithm is that positive and negative

classes are balanced in the binary learning. In contrast, the one�against rest

reduction classes are unbalanced, since one class is considered to be positive

and all remaining classes negative.

Allwein et al. (2000) generalize these two reduction approaches with the idea

of using ECOC�matrices and further present two additional approaches for the

reduction of polychotomous classi�cation tasks, the sparse and the complete

ECOC�matrix. Calculations in Section 5.2 show that the reduction method

using a sparse ECOC�matrix is not appropriate for classi�cation tasks with

less than nine classes, since the proposed derivation of such a kind of ECOC�

matrix is not su�ciently elaborated. The size of a complete ECOC�matrix

is exponentially increasing with the number of classes. Hence, the reduction

algorithm is not practicable for data sets with more than �ve classes.
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The common approach for combining the membership values supplied for the

binary learning procedures all�pairs and one�against rest is the pairwise cou-

pling algorithm by Hastie & Tibshirani (1998). After learning the rules for the

binary tasks with a subsequent univariate calibration in the �rst step, multi�

class membership probabilities are generated by a pairwise coupling of these

calibrated membership probabilities as the second step.

This thesis introduces the Dirichlet calibration as an alternative one�step mul-

tivariate calibrator which is applicable to binary outcomes as well as applicable

to multivariate probability matrices. This method combines the simply nor-

malized binary classi�cation scores or the columns of the probability matrix

with either the geometric trimmed mean or the product and uses these pro-

portions to generate a Dirichlet distributed random vector. By choosing the

parameters for the Dirichlet distribution proportional to a�priori probabili-

ties these membership probabilities are usually well�calibrated, see analyses

in Section 6.2. Precision is comparable to the application of pairwise coupling

and univariate calibration with either Assignment Value algorithm or Logistic

Regression for data sets with a balanced or moderately unbalanced class distri-

bution. Here, Dirichlet calibration with the geometric trimmed mean performs

better with using L2�SVM and ANN with one�against rest while using the

product yields better results in combination with an ANN and the all�pairs

approach. With data sets where observations are highly unbalanced between

classes, these calibrators occasionally yield poor performance. Especially, this

occurs in situations where classes have got very low numbers of observations.

Here, the parameters of the Beta distribution cannot be estimated correctly

which can lead to a miscaculation of the Dirichlet distributed random vector.

Therefore, Dirichlet calibration can only be recommended for an application

on data sets with a balanced or lightly unbalanced distribution of classes. In

these situations, the performance of this method is comparable to common cal-

ibration approaches but are easier to generate due to the one step algorithm.

With the introduction of the Dirichlet calibration method, this thesis supplies

a calibrator which is a well-performing alternative for the derivation of mem-
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bership probabilities in multi�class situations applicable on dichotomous and

polychotomous classi�er outcomes.

A more thorough analysis of performance in classifyingK�class data sets could

be supplied with further simulations on bigger data sets, e. g. Letter, Dorothea,

Spambase, etc., see Newman et al. (1998). An option to investigate the de-

creasing performance of the Dirichlet calibration method on unbalanced data

sets would be to simulate data sets with di�ering class distributions ranging

from balanced over slightly unbalanced to highly unbalanced. Balanced and

unbalanced class distributions could be generated with the uniform and the

χ2�distribution, respectively. Additionally, a calibration of membership values

generated by further machine learning methods for classi�cation like Boosting

by Freund & Schapire (1995) or Random Forests by Breiman (2001) has to be

evaluated.

An option to increase the performance of the Dirichlet calibration method on

unbalanced data is the inclusion of a weighting procedure in the estimation of

the Dirichlet distributed random vector. If estimated elements of the random

vector are in doubt for classes with a low number of observations these elements

could be weighed low while classes with a reasonable number of observations

have to be weighed high.
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Fig. A.1: Logistic Regression on Naive Bayes Scores for two�class data sets
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Fig. A.2: Logistic Regression on Tree Scores for two�class data sets



A. Further analyses of calibration results 132

Tab. A.1: Performance for the L2�SVM classi�er using one�against rest � all cali-

brators
B3 Balance Ecoli

CR Cal CR Cal CR Cal
PL2�SVM(C|~x) 0.713 0.569 0.892 0.551 0.833 0.727
Pav(C|~x) 0.694 0.590 0.894 0.754 0.791 0.784
Pbay�alap(C|~x) 0.585 0.523 0.896 0.774 0.684 0.686

Pir(C|~x) 0.388 0.568 0.828 0.837 0.610 0.720
Plr(C|~x) 0.687 0.558 0.892 0.831 0.824 0.736
Pplr(C|~x) 0.503 0.557 0.865 0.865 0.675 0.693

Pdiri�g�mean(C|~x) 0.694 0.708 0.892 0.795 0.839 0.856

Pdiri�g�trim(C|~x) 0.694 0.708 0.892 0.795 0.839 0.856

Pdiri�prod(C|~x) 0.675 0.679 0.894 0.796 0.827 0.830

Glass Iris Segment
CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.481 0.625 0.926 0.560 0.838 0.666
Pav(C|~x) 0.453 0.632 0.893 0.739 0.822 0.755
Pbay�alap(C|~x) 0.378 0.607 0.793 0.625 0.634 0.706

Pir(C|~x) 0.252 0.573 0.393 0.550 0.447 0.735
Plr(C|~x) 0.476 0.583 0.920 0.673 0.796 0.723
Pplr(C|~x) 0.242 0.534 0.800 0.614 0.702 0.720

Pdiri�g�mean(C|~x) 0.476 0.647 0.913 0.815 0.857 0.870

Pdiri�g�trim(C|~x) 0.476 0.647 0.913 0.815 0.857 0.870

Pdiri�prod(C|~x) 0.467 0.677 0.920 0.790 0.858 0.861

Vehicle Wine Zoo
CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.686 0.563 0.966 0.524 0.910 0.737
Pav(C|~x) 0.695 0.635 0.966 0.786 0.891 0.831
Pbay�alap(C|~x) 0.562 0.617 0.926 0.662 0.782 0.815

Pir(C|~x) 0.492 0.630 0.668 0.692 0.752 0.808
Plr(C|~x) 0.667 0.581 0.966 0.710 0.910 0.791
Pplr(C|~x) 0.604 0.577 0.792 0.779 0.811 0.819

Pdiri�g�mean(C|~x) 0.700 0.717 0.971 0.850 0.920 0.878

Pdiri�g�trim(C|~x) 0.700 0.717 0.971 0.850 0.920 0.878

Pdiri�prod(C|~x) 0.703 0.706 0.971 0.811 0.891 0.892
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Tab. A.2: Performance for the L2�SVM classi�er using all�pairs � all calibrators

B3 Balance Ecoli
CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.738 0.531 0.873 0.514 0.824 0.646
Pav(C|~x) 0.694 0.672 0.889 0.781 0.842 0.808
Pbay�alap(C|~x) 0.630 0.666 0.883 0.813 0.684 0.729

Pir(C|~x) 0.573 0.581 0.870 0.853 0.794 0.759
Plr(C|~x) 0.668 0.652 0.889 0.853 0.815 0.799
Pplr(C|~x) 0.592 0.612 0.864 0.732 0.818 0.807

Pdiri�g�mean(C|~x) 0.694 0.696 0.888 0.741 0.794 0.724

Pdiri�g�trim(C|~x) 0.694 0.696 0.888 0.741 0.794 0.724

Pdiri�prod(C|~x) 0.636 0.617 0.886 0.837 0.488 0.725

Glass Iris Segment
CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.528 0.599 0.893 0.524 0.926 0.603
Pav(C|~x) 0.630 0.686 0.94 0.734 0.935 0.833
Pbay�alap(C|~x) 0.528 0.687 0.926 0.837 0.858 0.863

Pir(C|~x) 0.401 0.614 0.713 0.647 0.782 0.825
Plr(C|~x) 0.551 0.674 0.966 0.726 0.933 0.879
Pplr(C|~x) 0.528 0.651 0.913 0.860 0.869 0.865

Pdiri�g�mean(C|~x) 0.570 0.676 0.880 0.690 0.940 0.822

Pdiri�g�trim(C|~x) 0.570 0.676 0.920 0.707 0.940 0.822

Pdiri�prod(C|~x) 0.476 0.662 0.893 0.847 0.888 0.843

Vehicle Wine Zoo
CR Cal CR Cal CR Cal

PL2�SVM(C|~x) 0.703 0.561 0.971 0.476 0.960 0.622
Pav(C|~x) 0.699 0.676 0.960 0.787 0.940 0.808
Pbay�alap(C|~x) 0.671 0.702 0.780 0.711 0.920 0.898

Pir(C|~x) 0.622 0.653 0.887 0.834 0.811 0.846
Plr(C|~x) 0.634 0.660 0.938 0.749 0.920 0.740
Pplr(C|~x) 0.608 0.649 0.859 0.818 0.920 0.890

Pdiri�g�mean(C|~x) 0.691 0.673 0.949 0.745 0.950 0.825

Pdiri�g�trim(C|~x) 0.691 0.673 0.949 0.745 0.950 0.825

Pdiri�prod(C|~x) 0.692 0.696 0.926 0.850 0.861 0.907
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Tab. A.3: Performance for the ANN�classi�er using one�against rest � all calibrators

B3 Balance Ecoli
CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.700 0.727 0.982 0.893 0.860 0.845
PANN�rest(C|~x) 0.656 0.687 0.953 0.638 0.869 0.794
Pav(C|~x) 0.649 0.683 0.956 0.895 0.863 0.868
Pbay�alap(C|~x) 0.592 0.672 0.940 0.910 0.863 0.874

Pir(C|~x) 0.541 0.660 0.953 0.924 0.869 0.867
Plr(C|~x) 0.675 0.696 0.958 0.898 0.869 0.874
Pplr(C|~x) 0.522 0.609 0.950 0.924 0.869 0.878

Pdiri�g�mean(C|~x) 0.643 0.663 0.918 0.853 0.866 0.875

Pdiri�g�trim(C|~x) 0.643 0.663 0.918 0.853 0.866 0.875

Pdiri�prod(C|~x) 0.662 0.687 0.926 0.876 0.526 0.713

Pdiri�direct(C|~x) 0.700 0.719 0.982 0.748 0.854 0.814
Glass Iris Segment

CR Cal CR Cal CR Cal
PANN�direct(C|~x) 0.598 0.680 0.966 0.881 0.654 0.758
PANN�rest(C|~x) 0.649 0.678 0.973 0.810 0.909 0.725
Pav(C|~x) 0.658 0.710 0.966 0.948 0.923 0.896
Pbay�alap(C|~x) 0.640 0.715 0.973 0.959 0.909 0.915

Pir(C|~x) 0.635 0.720 0.966 0.956 0.922 0.902
Plr(C|~x) 0.635 0.709 0.973 0.940 0.927 0.900
Pplr(C|~x) 0.630 0.718 0.973 0.949 0.924 0.897

Pdiri�g�mean(C|~x) 0.649 0.709 0.973 0.958 0.909 0.934

Pdiri�g�trim(C|~x) 0.649 0.709 0.973 0.958 0.909 0.934

Pdiri�prod(C|~x) 0.579 0.692 0.973 0.934 0.912 0.934

Pdiri�direct(C|~x) 0.574 0.661 0.966 0.836 0.637 0.754
Vehicle Wine Zoo

CR Cal CR Cal CR Cal
PANN�direct(C|~x) 0.695 0.708 0.887 0.760 0.950 0.868
PANN�rest(C|~x) 0.743 0.632 0.960 0.788 0.970 0.898
Pav(C|~x) 0.737 0.745 0.966 0.932 0.960 0.941
Pbay�alap(C|~x) 0.739 0.754 0.955 0.943 0.960 0.945

Pir(C|~x) 0.738 0.750 0.949 0.936 0.861 0.903
Plr(C|~x) 0.732 0.751 0.955 0.927 0.960 0.908
Pplr(C|~x) 0.737 0.750 0.926 0.924 0.940 0.908

Pdiri�g�mean(C|~x) 0.737 0.744 0.966 0.949 0.950 0.949

Pdiri�g�trim(C|~x) 0.737 0.744 0.966 0.949 0.950 0.949

Pdiri�prod(C|~x) 0.739 0.741 0.960 0.929 0.960 0.814

Pdiri�direct(C|~x) 0.679 0.702 0.893 0.845 0.950 0.908
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Tab. A.4: Performance for the ANN�classi�er using all�pairs � all calibrators

B3 Balance Ecoli
CR Cal CR Cal CR Cal

PANN�direct(C|~x) 0.700 0.727 0.982 0.893 0.860 0.845
PANN�pairs(C|~x) 0.719 0.700 0.910 0.558 0.848 0.705
Pav(C|~x) 0.707 0.736 0.974 0.932 0.877 0.884
Pbay�alap(C|~x) 0.687 0.691 0.966 0.929 0.860 0.871

Pir(C|~x) 0.445 0.527 0.969 0.939 0.854 0.886
Plr(C|~x) 0.700 0.729 0.972 0.937 0.863 0.853
Pplr(C|~x) 0.566 0.626 0.966 0.938 0.839 0.860

Pdiri�g�mean(C|~x) 0.700 0.695 0.902 0.741 0.514 0.650

Pdiri�g�trim(C|~x) 0.700 0.695 0.902 0.741 0.514 0.650

Pdiri�prod(C|~x) 0.726 0.729 0.945 0.889 0.836 0.885

Pdiri�direct(C|~x) 0.700 0.719 0.982 0.748 0.854 0.814
Glass Iris Segment

CR Cal CR Cal CR Cal
PANN�direct(C|~x) 0.598 0.680 0.966 0.881 0.654 0.758
PANN�pairs(C|~x) 0.686 0.659 0.973 0.780 0.916 0.701
Pav(C|~x) 0.686 0.733 0.973 0.945 0.950 0.942
Pbay�alap(C|~x) 0.635 0.717 0.973 0.964 0.943 0.944

Pir(C|~x) 0.640 0.716 0.966 0.951 0.945 0.947
Plr(C|~x) 0.691 0.720 0.973 0.907 0.950 0.940
Pplr(C|~x) 0.630 0.720 0.966 0.946 0.949 0.944

Pdiri�g�mean(C|~x) 0.630 0.700 0.973 0.817 0.942 0.801

Pdiri�g�trim(C|~x) 0.630 0.700 0.973 0.817 0.942 0.801

Pdiri�prod(C|~x) 0.677 0.730 0.973 0.941 0.918 0.938

Pdiri�direct(C|~x) 0.574 0.661 0.966 0.836 0.637 0.754
Vehicle Wine Zoo

CR Cal CR Cal CR Cal
PANN�direct(C|~x) 0.695 0.708 0.887 0.760 0.950 0.868
PANN�pairs(C|~x) 0.757 0.585 0.943 0.781 0.910 0.786
Pav(C|~x) 0.755 0.769 0.943 0.929 0.930 0.919
Pbay�alap(C|~x) 0.748 0.769 0.938 0.912 0.950 0.922

Pir(C|~x) 0.751 0.777 0.949 0.926 0.801 0.804
Plr(C|~x) 0.756 0.770 0.943 0.920 0.930 0.764
Pplr(C|~x) 0.752 0.772 0.932 0.910 0.871 0.860

Pdiri�g�mean(C|~x) 0.754 0.759 0.943 0.826 0.960 0.719

Pdiri�g�trim(C|~x) 0.754 0.759 0.943 0.826 0.960 0.719

Pdiri�prod(C|~x) 0.749 0.727 0.943 0.923 0.940 0.919

Pdiri�direct(C|~x) 0.679 0.702 0.893 0.845 0.950 0.908


