
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

Comparing Variants of MMAS ACO Algorithms on

Pseudo-Boolean Functions

Frank Neumann, Dirk Sudholt and Carsten Witt

No. CI-230/07

Technical Report ISSN 1433-3325 May 2007

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/LS 2
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Comparing Variants of MMAS ACO Algorithms

on Pseudo-Boolean Functions

Frank Neumann

Max-Planck-Institut für Informatik

66123 Saarbrücken, Germany

Dirk Sudholt⋆ Carsten Witt∗

FB Informatik, LS 2

Universität Dortmund

44221 Dortmund, Germany

May 30, 2007

Abstract

Recently, the first rigorous runtime analyses of ACO algorithms have

been presented. These results concentrate on variants of the MAX-MIN

ant system by Stützle and Hoos and consider their runtime on simple

pseudo-Boolean functions such as OneMax and LeadingOnes. Interest-

ingly, it turns out that a variant called 1-ANT is very sensitive to the

choice of the evaporation factor while a recent technical report by Gut-

jahr and Sebastiani suggests partly opposite results for their variant called

MMAS. In this paper, we elaborate on the differences between the two

ACO algorithms, generalize the techniques by Gutjahr and Sebastiani and

show improved results.

1 Introduction

Randomized search heuristics have been shown to be good problem solvers with
various application domains. Two prominent examples belonging to this class
of algorithms are Evolutionary Algorithms (EAs) and Ant Colony Optimiza-
tion (ACO) (Dorigo and Stützle, 2004). Especially ACO algorithms have been
shown to be very successful for solving problems from combinatorial optimiza-
tion. Indeed, the first problem where an ACO algorithm has been applied was
the Traveling Salesperson Problem (TSP) (Dorigo, Maniezzo and Colorni, 1991)
which is one of the most studied combinatorial problems in computer science.

In contrast to many successful applications, theory lags far behind the practi-
cal evidence of all randomized search heuristics. In particular in the case of ACO
algorithms, the analysis of such algorithms with respect to their runtime behav-
ior has been started only recently. The analysis of randomized search heuristics

∗This author was supported by the Deutsche Forschungsgemeinschaft (SFB) as a part of
the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

(e. g., Droste, Jansen and Wegener, 2002) is carried out as in the classical al-
gorithm community and makes use of several strong methods for the analysis
of randomized algorithms (Motwani and Raghavan, 1995; Mitzenmacher and
Upfal, 2005).

Regarding ACO, only convergence results (Gutjahr, 2002) were known un-
til 2006 and analyzing the runtime of ACO algorithms has been pointed out
as a challenging task by Dorigo and Blum (2005). First steps into analyz-
ing the runtime of ACO algorithms have been made by Gutjahr (2007a), and,
independently, the first theorems on the runtime of a simple ACO algorithm
called 1-ANT have been obtained at the same time by Neumann and Witt
(2006). Later on this algorithm has been further investigated for the optimiza-
tion of some well-known pseudo-Boolean functions (Doerr, Neumann, Sudholt,
and Witt, 2007). A conclusion from these investigations is that the 1-ANT is
very sensitive w. r. t. the choice of the evaporation factor ρ. Increasing the
value of ρ only by a small amount may lead to a phase transition and turn an
exponential runtime into a polynomial one. In contrast to this, a simple ACO al-
gorithm called MMASbs has been investigated in a recent report by Gutjahr and
Sebastiani (2007) where this phase transition does not occur. Gutjahr (2007b)
conjectures that the different behavior of MMASbs and 1-ANT is due to their
slightly different replacement strategies: MMASbs accepts only strict improve-
ments while 1-ANT accepts also equal-valued solutions. We will however show
that the replacement strategies do not explain the existence of the phase tran-
sition. Instead, the reason is that the 1-ANT only updates pheromone values
when the best-so-far solution is replaced.

This motivates us to study MMAS variants where the pheromone values
are updated in each iteration. First, we consider the MMAS algorithm by
Gutjahr and Sebastiani (2007) and show improved and extended results. In
particular, we make use of the method called fitness-based partitions which
is well-known from the analysis of evolutionary algorithms. Additionally, we
study plateau functions and argue why the replacement strategy of the 1-ANT
combined with persistent pheromone updates is more natural. Investigating
the function Needle, we show that this can reduce the runtime of the ACO
algorithm significantly.

The outline of the paper is as follows. In Section 2, we introduce the algo-
rithms that are subject of our investigations. The behavior of these algorithms
on well-known plateau functions is considered in Section 3, and Section 4 deals
with analyses for some popular unimodal functions. We finish with some con-
clusions.

2 Algorithms

We consider the runtime behavior of two ACO algorithms. Solutions for a given
problem, in this paper bit strings x ∈ {0, 1}n for pseudo-boolean functions
f : {0, 1}n → R, are constructed by a random walk on a so-called construction

2

xnv3(n−1)

v3(n−1)+1

v3n

v3(n−1)+2

v0 x1

v2

v1

v6

x3 v9

v3

v5

v4

x2 . . .

v8

v7

Figure 1: Construction graph for pseudo-Boolean optimization

graph C = (V, E), which is a directed graph with a designated start vertex s ∈ V
and pheromone values τ : E → R on the edges.

Algorithm 1 (Construct(C, τ))

1.) v:=s, mark v as visited.

2.) Let Nv be the set of non-visited successors of v in C. If Nv 6= ∅:
a.) Choose successor w ∈ Nv with probability τ(v,w)/

∑

(v,u)|u∈Nv
τ(v,u).

b.) Mark w as visited, set v := w and go to 2.).

3.) Return the solution x and the path P (x) constructed by this procedure.

We examine the construction graph given in Figure 1, which is known in
the literature as Chain (Gutjahr, 2006). For bit strings of length n, the graph
has 3n + 1 vertices and 4n edges. The decision whether a bit xi, 1 ≤ i ≤ n, is
set to 1 is made at node v3(i−1). If edge (v3(i−1), v3(i−1)+1) (called 1-edge) is
chosen, xi is set to 1 in the constructed solution. Otherwise the corresponding
0-edge is taken, and xi = 0 holds. After this decision has been made, there
is only one single edge which can be traversed in the next step. In case that
(v3(i−1), v3(i−1)+1) has been chosen, the next edge is (v3(i−1)+1, v3i), and oth-
erwise the edge (v3(i−1)+2, v3i) will be traversed. Hence, these edges have no
influence on the constructed solution and we can assume τ(v3(i−1),v3(i−1)+1) =
τ(v3(i−1)+1,v3i) and τ(v3(i−1),v3(i−1)+2) = τ(v3(i−1)+2,v3i) for 1 ≤ i ≤ n. We en-
sure that

∑

(u,·)∈E τ(u,·) = 1 for u = v3i, 0 ≤ i ≤ n − 1, and
∑

(·,v) τ(·,v) = 1 for

v = v3i, 1 ≤ i ≤ n. Let pi = Prob(xi = 1) be the probability of setting the bit xi

to 1 in the next constructed solution. Due to our setting pi = τ(3(i−1),3(i−1)+1)

and 1 − pi = τ(3(i−1),3(i−1)+2) holds, i. e., the pheromone values correspond di-
rectly to the probabilities for choosing the bits in the constructed solution. In
addition, following the MAX-MIN ant system by Stützle and Hoos (2000), we
restrict each τ(u,v) to the interval [1/n, 1 − 1/n] such that every solution always
has a positive probability of being chosen.

Depending on whether edge (u, v) is contained in the path P (x) of the con-
structed solution x, the pheromone values are updated to τ ′ in the update
procedure as follows:

τ ′
(u,v) =

{

min
{

(1 − ρ) · τ(u,v) + ρ, 1 − 1/n
}

if (u, v) ∈ P (x)

max
{

(1 − ρ) · τ(u,v), 1/n
}

otherwise.

3

The following algorithm, which we call MMAS*, has been defined by Gutjahr
and Sebastiani (2007) under the original name MMASbs. Here, in each iteration
the best solution obtained during the run of the algorithm, called best-so-far
solution, is rewarded. Another property of the model is that the best-so-far
solution may not switch to another one of the same fitness.

Algorithm 2 (MMAS*)

1.) Set τ(u,v) = 1/2 for all (u, v) ∈ A.

2.) Compute a solution x using Construct(C, τ).

3.) Update the pheromone values and set x∗ := x.

4.) Compute a solution x using Construct(C, τ).

5.) If f(x) > f(x∗), set x∗ := x

6.) Update the pheromone values with respect to x∗.

7.) Go to 4.).

Using this model, it is much easier to adapt results from the well-known
evolutionary algorithm called (1+1) EA than in the case of the 1-ANT, i. e., the
MAX-MIN ACO variant examined by Neumann and Witt (2006) and Doerr,
Neumann, Sudholt, and Witt (2007). In particular, many results using the
technique of fitness-based partitions may be transferred to MMAS* by taking
into account an additional amount of time until the best solution has been
rewarded such that an improvement is obtained with a large enough probability
(see below for details). This is only possible since pheromone updates occur
in each iteration. In contrast to this, the 1-ANT only updates the pheromone
values if the best-so-far solution is replaced by solutions of at least the same
fitness, i. e., steps 5.) and 6.) in the above description are substituted by

If f(x) ≥ f(x∗), set x∗ := x and update the pheromone values
w. r. t. x∗.

This update strategy may lead to a large discrepancy between the expected
value of the next solution and the currently best one and is the main reason
for exponential runtimes of the 1-ANT even for really simple functions and
relatively large values of ρ (see Neumann and Witt, 2006; Doerr, Neumann,
Sudholt, and Witt, 2007).

If the value of ρ is chosen large enough in MMAS*, the pheromone borders
1/n or 1 − 1/n are touched for every bit of the rewarded solution. In this
case, MMAS* equals the algorithm called (1+1) EA*, which is known from the
analysis of evolutionary algorithms (Jansen and Wegener, 2001).

4

Algorithm 3 ((1+1) EA*)

1. Choose an initial solution x∗ ∈ {0, 1}n uniformly at random.

2. Repeat

a) Create x by flipping each bit of x∗ with probability 1/n.

b) If f(x) > f(x∗), set x∗ := x.

As already pointed out in (Jansen and Wegener, 2001), the (1+1) EA* has
difficulties with simple plateaus of constant fitness as no search points of the
same fitness as the so far best one are accepted. Accepting solutions with equal
fitness enables the algorithm to explore plateaus by random walks. Therefore,
it seems more natural to replace search points by new solutions that are at least
as good. In the case of evolutionary algorithms, this leads to the well-known
(1+1) EA which differs from the (1+1) EA* only in step 2.b) of the algorithm.
Similarly, we derive MMAS from MMAS* using this acceptance condition. It
should be noted that MMAS is not just a variant of the 1-ANT with different
pheromone values since it still updates pheromones in each iteration.

Algorithm 4 (Acceptance condition for the (1+1) EA and MMAS)
– If f(x) ≥ f(x∗), set x∗ := x.

In the remainder of the paper, we will examine the behavior of MMAS
compared to MMAS*. For the analysis of an algorithm, we consider the number
of solutions that are constructed by the algorithm until an optimal solution
has been obtained for the first time. This is called the optimization time of
the algorithm and is a well-accepted measure in the analysis of evolutionary
algorithms since each point of time corresponds to a fitness evaluation. Often
the expectation of this value is considered and called the expected optimization
time.

Before we derive the first results, it is helpful to introduce the quantity that
informally has been mentioned above. Suppose there is a phase such that MMAS
or MMAS* never replaces the best-so-far solution x∗ in step 5.) of the algorithm.
This implies that the best-so-far solution is rewarded again and again until all
pheromone values have reached their upper or lower borders corresponding to
the setting of the bits in x∗. The advantage is that probabilities of improvements
can be estimated more easily as soon as x∗ has been “frozen in pheromone” this
way. Gutjahr and Sebastiani (2007) call the time for this to happen t∗ and bound
it from above by − ln(n−1)/ln(1−ρ). This holds since a pheromone value which
is only increased during t steps is at least min{1 − 1/n, 1 − (1 − 1/n)(1 − ρ)t}
after the iterations, pessimistically assuming the worst-case initialization 1/n
for this value and 1 − 1/n for the complementary pheromone value. In the
present paper, we use ln(1 − ρ) ≤ −ρ for 0 ≤ ρ ≤ 1 and arrive at the handy
upper bound

t∗ ≤ lnn

ρ
. (1)

5

3 Plateau Functions

Plateaus are regions in the search space where all search points have the same
fitness. Consider a function f : {0, 1}n → R and assume that the number of
different objective values for that function is D. Then there are at least 2n/D
search points with the same objective vector. Often, the number of different
objective values for a given function is polynomially bounded. This implies an
exponential number of solutions with the same objective value. In the extreme
case, we end up with the function Needle where only one single solution has
objective value 1 and the remaining ones get value 0. The function is defined as

Needle(x) :=

{

1 if x = xOPT,

0 otherwise,

where xOPT is the unique global optimum. Gutjahr and Sebastiani (2007) com-
pare MMAS* and (1+1) EA* w. r. t. their runtime behavior. For suitable values
of ρ that are exponentially small in n, the MMAS* has expected optimization
time O(cn), c ≥ 2 an appropriate constant, and beats the (1+1) EA*. The rea-
son is that MMAS* behaves nearly as random search on the search space while
the initial solution of the (1+1) EA* has Hamming distance n to the optimal
one with probability 2−n. To obtain from such a solution an optimal one, all n
bits have to flip, which has expected waiting time nn, leading in summary to an
expected optimization time Ω((n/2)n). In the following, we show a similar result
for MMAS* if ρ decreases only polynomially with the problem dimension n.

Theorem 1 Choosing ρ = 1/poly(n), the optimization time of MMAS* on
Needle is at least (n/6)n with probability 1 − e−Ω(n).

Proof: Let x be the first solution constructed by MMAS* and denote by xOPT

the optimal one. As it is chosen uniformly at random from the search space,
the expected number of positions where x and xOPT differ is n/2 and there are
at least n/3 such positions with probability 1 − e−Ω(n) using Chernoff bounds.
At these positions the values of x are rewarded as long as the optimal solution
has not been obtained. This implies that the probability to obtain the optimal
solution in the next step is at most 2−n/3. After at most t∗ ≤ (lnn)/ρ (see
Inequality (1)) iterations, the pheromone values of x have touched their borders
provided xOPT has not been obtained. The probability of having obtained xOPT

within a phase of t∗ steps is at most t∗ · 2−n/3 = e−Ω(n). Hence, the probability
to produce a solution that touches its pheromone borders and differs from xOPT

in at least n/3 positions before producing xOPT is 1 − e−Ω(n). In this case,
the expected number of steps to produce xOPT is (n/3)n and the probability of
having reached this goal within (n/6)n steps is at most 2−n. �

The probability to choose an initial solution x that differs from xOPT by n
positions is 2−n, and in this case, after all n bits have reached their correspond-
ing pheromone borders, the probability to create xOPT equals n−n. Using the

6

ideas of Theorem 1 the following corollary can be proved which asymptotically
matches the lower bound for the (1+1) EA* given in Gutjahr and Sebastiani
(2007).

Corollary 1 Choosing ρ = 1/poly(n), the expected optimization time of
MMAS* on Needle is Ω((n/2)n).

It is well known that the (1+1) EA that accepts each new solution has
expected optimization time 2n+o(n) on Needle (see Garnier, Kallel and Schoe-
nauer, 1999; Wegener and Witt, 2005) even though it samples with high proba-
bility in the Hamming neighborhood of the latest solution. On the other hand,
MMAS* will have a much larger optimization time unless ρ is superpolynomially
small (Theorem 1). In the following, we will show that MMAS is competitive
with the (1+1) EA even for large ρ-values.

Theorem 2 Choosing ρ = Ω(1), the expected optimization time of MMAS on
Needle is 2n+o(n).

Proof: By the symmetry of the construction procedure and uniform initializa-
tion, we w. l. o. g. assume that the needle xOPT equals the all-ones string 1n.
As in Wegener and Witt (2005), we study the process on the constant function
f(x) = 0. The first hitting times for the needle are the same on Needle and the
constant function while the invariant limit distribution for the constant function
is easier to study since it is uniform over the search space.

The proof idea is to study a kind of “mixing time” t(n) after which each bit
is independently set to 1 with a probability of at least 1/2 − 1/n regardless of
the initial pheromone value on its 1-edge. This implies that the probability of
creating the needle is at least (1/2 − 1/n)n ≥ e−32−n (for n large enough) in
some step after at most t(n) iterations. We successively consider independent
phases of length t(n) until the needle is sampled. Estimating by a geometrically
distributed waiting time, the expected optimization time is bounded by O(t(n) ·
2n). The theorem follows if we can show that t(n) = poly(n).

To bound t(n), we note that the limit distribution of each pheromone value is
symmetric with expectation 1/2, hence, each bit is set to 1 with probability 1/2
in the limit. We consider a coupling of two independent copies of the Markov
chain for the pheromone values of a bit such that we start the chain from two
different states. The task is to bound the coupling time c(n), defined as the
first point of time where both chains meet in the same border state 1/n or
1 − 1/n (taking a supremum over any two different initial states). If we know
that E(c(n)) is finite, then Markov’s inequality yields that c(n) ≤ nE(c(n))
with probability at least 1 − 1/n, and the coupling lemma (Mitzenmacher and
Upfal, 2005) implies that the total variation distance to the limit distribution
is at most 1/n at time nE(c(n)). Hence, the bit is set to 1 with probability at
least 1/2 − 1/n then and we can use t(n) := nE(c(n)).

It remains to prove E(c(n)) = poly(n) for the considered coupling. Since
ρ = Ω(1), the pheromone value of a bit reaches one of its borders in t∗ = O(log n)

7

(Inequality (1)) iterations with probability at least
∏t∗

t=0(1 − (1 − 1/n)(1 −
ρ)t) = Ω(1/n) (using the same estimations for pheromone values as Gutjahr
and Sebastiani, 2007). Hence, with probability 1/2, one chain reaches a bor-
der in O(n log n) iterations. A pheromone value that is at a border does not
change within O(n log n) iterations with probability at least (1−1/n)O(n log n) =
1/poly(n). In this phase, the pheromone value of the other chain reaches this
border with probability Ω(1). Repeating independent phases, we have bounded
E(c(n)) by a polynomial. �

The function Needle requires an exponential optimization time for each
algorithm that has been considered. Often plateaus are much smaller, and
randomized search heuristics have a good chance to leave them within a poly-
nomial number of steps. Gutjahr and Sebastiani (2007) consider the function
NH-OneMax that consists of the Needle-function on k = log n bits and the
function OneMax on n− k bits, which can only be optimized if the needle has
been found on the needle part. The function is defined as

NH-OneMax(x) =

(

k
∏

i=1

xi

)(

n
∑

i=k+1

xi

)

.

Using the ideas in the proof of Theorem 1 and taking into account the log-
arithmic size of the needle of NH-OneMax, MMAS* with polylogarithmi-
cally small ρ finds the needle only after an expected superpolynomial number
2Ω(log2 n) of steps, and the following theorem can be shown.

Theorem 3 Choosing ρ = 1/polylog(n), the expected optimization time of

MMAS* on NH-OneMax is 2Ω(log2 n).

As the needle part only consists of log n bits, MMAS can find the needle
after an expected polynomial number of steps (Theorem 2). After this goal has
been achieved, the unimodal function OneMax has to be optimized. Together
with our investigations for unimodal functions carried out in the next section
(in particular the upper bound from Theorem 6), the following result can be
proved.

Theorem 4 Choosing ρ = Ω(1), the expected optimization time of MMAS on
NH-OneMax is polynomial.

4 Unimodal Functions, OneMax

and LeadingOnes

Gutjahr and Sebastiani (2007) extend the well-known fitness-level method, also
called the method of f -based partitions, from the analysis of evolutionary algo-
rithms (see, e. g., Wegener, 2002) to their considered MMAS-algorithm, i. e., the
MMAS*. Let A1, . . . , Am be an f -based partition w. r. t. the pseudo-Boolean

8

fitness function f : {0, 1}n → R, i. e., for any pair of search points x ∈ Ai, y ∈ Aj

where j > i it holds f(x) < f(y), and Am contains only optimal search points.
Moreover, let si, 1 ≤ i ≤ m − 1, be a lower bound on the probability of the
(1+1) EA (or, in this case equivalently, the (1+1) EA*) leaving set Ai. Using
the quantity t∗, the expected runtime of MMAS* on f is bounded from above
by

m−1
∑

i=1

(

t∗ +
1

s(i)

)

(which is a special case of Eq. (13) by Gutjahr and Sebastiani, 2007). Since
t∗ ≤ (lnn)/ρ, we obtain the more concrete bound

m lnn

ρ
+

m−1
∑

i=1

1

s(i)
, (2)

in which the right-hand sum is exactly the upper bound obtained w. r. t. the
(1+1) EA and (1+1) EA*. To prove the bound (2) for MMAS*, it is essential
that equally good solutions are rejected (see Gutjahr and Sebastiani, 2007, for
a formal derivation). Informally speaking: for each fitness-level, MMAS* in the
worst case has to wait until all pheromone values have their obtained upper
and lower borders such that the best-so-far solution is “frozen in pheromone”
and the situation is like in the (1+1) EA* with the best-so-far solution as the
current search point.

In the technical report by Gutjahr and Sebastiani (2007), the proposed
fitness-level method is basically applied in the context of the unimodal func-
tions OneMax and LeadingOnes. Our aim is to show how the method can
be applied to arbitrary unimodal functions both w. r. t. MMAS and MMAS*.
Moreover, we generalize the upper bounds obtained by Gutjahr and Sebastiani
(2007) for the example functions OneMax and LeadingOnes and, for the first
time, we show a lower bound on the expected optimization time of MMAS* on
LeadingOnes. This allows us to conclude that the fitness-level method can
provide almost tight upper bounds.

4.1 General Results

Unimodal functions are a well-studied class of fitness functions in the literature
on evolutionary computation (e. g., Droste, Jansen and Wegener, 2002). For the
sake of completeness, we repeat the definition of unimodality for pseudo-Boolean
fitness functions.

Definition 1 A function f : {0, 1}n → R is called unimodal if there exists for
each non-optimal search point x a Hamming neighbor x′ where f(x′) > f(x).

Unimodal functions are often believed to be easy to optimize. This holds if
the set of different fitness values is not too large. In the following, we consider

9

unimodal functions attaining D different fitness values. Such a function is op-
timized by the (1+1) EA and (1+1) EA* in expected time O(nD). This bound
is transferred to MMAS* by the following theorem.

Theorem 5 The expected optimization time of MMAS* on a unimodal function
attaining D different fitness values is O((n + log n/ρ)D).

Proof: By the introductory argument, we only have to set up an appropriate
fitness-based partition. We choose the D sets of preimages of different fitness
values. By the unimodality, there is for each current search point x a better
Hamming neighbor x′ of x in a higher fitness-level set. The probability of the
(1+1) EA (or, equivalently, MMAS* with all pheromone values at a border) to
produce x′ in the next step is Ω(1/n). By (2), this completes the proof. �

MMAS differs from MMAS* by accepting solutions that are at least as good
as the best solution obtained during the optimization process. Hence, the best-
so-far solution may switch among several solutions with the same fitness value,
and, on every fitness-level, pheromone values may perform random walks be-
tween the upper and lower pheromone borders. In comparison to MMAS*, this
behavior makes it harder to bound the expected time for an improvement, and
the following upper bound is worse than the upper bound for MMAS*.

Theorem 6 The expected optimization time of MMAS on a unimodal function
attaining D different fitness values is O((n2(log n)/ρ)D).

Proof: We only need to show that the expected time for an improvement is
O(n2(log n)/ρ). The probability that MMAS produces within O((log n)/ρ) steps
a solution being at least as good as (not necessarily better than) the best-so-far
solution x∗ is Ω(1) since after at most (ln n)/ρ steps without exchanging x∗

all pheromone values have touched their bounds and then the probability of
rediscovering x∗ is Ω(1). We now show that the conditional probability of an
improvement if x∗ is replaced is Ω(1/n2).

Let x1, . . . , xm be an enumeration of all solutions with fitness values equal
to the best-so-far fitness value. Due to unimodality, each xi, 1 ≤ i ≤ m, has
some better Hamming neighbor yi; however, the yi need not be disjoint. Let
X and Y denote the event to generate some xi or some yi, resp., in the next
step. In the worst case y1, . . . , ym are the only possible improvements, hence
the theorem follows if we can show Prob(Y | X ∪Y) ≥ 1/n2 which is equivalent
to Prob(Y) ≥ Prob(X)/(n2 − 1).

If p(xi) is the probability to construct xi, we have p(xi)/p(yi) ≤ (1− 1
n)/ 1

n =
n − 1 as the constructions only differ in one bit. Each yi may appear up to n
times in the sequence y1, . . . , ym, hence Prob(Y) ≥ 1

n

∑m
i=1 Prob(yi) and

Prob(X) =

m
∑

i=1

p(xi) ≤ (n − 1) ·
m
∑

i=1

p(yi) ≤ n(n − 1) · Prob(Y).

Therefore, Prob(Y) ≥ Prob(X)/(n2 − 1) follows. �

10

Theorems 5 and 6 show that the expected optimization times of both MMAS
and MMAS* are polynomial for all unimodal functions as long as D = poly(n)
and ρ = 1/poly(n). Since MMAS and 1-ANT do not differ in their replace-
ment strategy, this disproves the conjecture by Gutjahr (2007b) that accepting
equally good solutions leads to the phase transition behavior from polynomial
to exponential runtimes of the 1-ANT on the following example functions.

4.2 OneMax

The probably most often studied example function in the literature on evolu-
tionary computation is the unimodal function OneMax(x) = x1 + · · ·+ xn. In
the runtime analysis of the 1-ANT on OneMax by Neumann and Witt (2006),
it is shown that there exists a threshold value for ρ (in our notation basically
ρ = O(1/nǫ) for some small constant ǫ > 0) below which no polynomial runtime
is possible. As argued above, due to Theorems 5 and 6, this phase transition
can occur neither with MMAS* nor with MMAS. We are interested in improved
upper bounds for the special case of MMAS* on OneMax. The following the-
orem has already been proven for some values of ρ by Gutjahr and Sebastiani
(2007). We however obtain polynomial upper bounds for all ρ bounded by some
inverse polynomial.

Theorem 7 The expected optimization time of MMAS* on OneMax is
bounded from above by O((n log n)/ρ).

Proof: The proof is an application of the above-described fitness-level method
with respect to the partition Ai = {x | f(x) = i}, 0 ≤ i ≤ n. Using the
arguments by Gutjahr and Sebastiani (2007)—or, equivalently, the upper bound
on the expected runtime of the (1+1) EA on OneMax (Droste, Jansen and

Wegener, 2002)—we obtain that the term
∑m−1

i=0 1/(s(i)) is O(n log n). Using
(2), the upper bound O((n log n)/ρ) follows. �

The bound is never better than Θ(n log n), which is the expected runtime
of the (1+1) EA and (1+1) EA* on OneMax. At the moment, we are not
able to show a matching lower bound Ω(n log n) on the expected optimization
time of MMAS*; however, we can show that the expected optimization time is
growing with respect to 1/ρ as the upper bound suggests. We state our result in
a more general framework: as known from the considerations by Droste, Jansen
and Wegener (2002), the mutation probability 1/n of the (1+1) EA is optimal
for many functions including OneMax. One argument is that the probability
mass has to be quite concentrated around the best-so-far solution to allow the
(1+1) EA to rediscover the last accepted solution with good probability. Given
a mutation probability of α(n), this probability of rediscovery equals (1−α(n))n,
which converges to zero unless α(n) = O(1/n). The following lemma exploits
the last observation for a general lower bound on the expected optimization
time of both MMAS and MMAS*.

11

Theorem 8 Let f : {0, 1}n → R be a function with a unique global optimum.
Choosing ρ = 1/poly(n), the expected optimization time of MMAS and MMAS*
on f is Ω((log n)/ρ).

Proof: W. l. o. g., 1n is the unique optimum. If, for each bit, the success prob-
ability (defined as the probability of creating a one) is bounded from above by
1 − 1/

√
n then the solution 1n is created with only exponentially small prob-

ability (1 − 1/
√

n)n ≤ e−
√

n. Using the uniform initialization and pheromone
update formula of MMAS and MMAS*, the success probability of a bit after t
steps is bounded from above by 1 − (1 − ρ)t/2. Hence, all success probabilities
are bounded as desired within t = (ln(n/4))/(2ρ) steps since

1 − 1

2
(1 − ρ)t ≤ 1 − e−(ln n−ln 4)/2

2
= 1 − 1√

n
.

Since ρ = 1/poly(n) and, therefore t = poly(n), the total probability of creating
the optimum in t steps is still at most te−

√
n = e−Ω(

√
n), implying the lower

bound on the expected optimization time. �

Hence, the expected optimization time of MMAS* on OneMax is bounded
by Ω((log n)/ρ), too. It is an open problem to show matching upper and lower
bounds. We conjecture that the lower bound for OneMax is far from optimal
and that Ω(n/ρ + n log n) holds.

4.3 LeadingOnes

Another prominent unimodal example function, proposed by Rudolph (1997),
is

LeadingOnes(x) =

n
∑

i=1

i
∏

j=1

xj ,

whose function value equals the number of leading ones in the considered bit
string x. A non-optimal solution may always be improved by appending a single
one to the leading ones. LeadingOnes differs from OneMax in the essential
way that the assignment of the bits after the leading ones do not contribute
to the function value. This implies that bits at the beginning of the bit string
have a stronger influence on the function value than bits at the end. Because of
this, the methods developed by Neumann and Witt (2006) cannot be used for
analyzing the 1-ANT on LeadingOnes as these methods make particular use
of the fact that all bits contribute equally to the function value. In a follow-up
paper by Doerr, Neumann, Sudholt, and Witt (2007), the 1-ANT is studied
on LeadingOnes by different techniques and it is shown that a similar phase
transition behavior as on OneMax exists: for ρ = o(1/log n) (again using the
notation of the present paper), the expected optimization time of the 1-ANT is
superpolynomially large whereas it is polynomial for ρ = Ω(1/logn) and even
only O(n2) for ρ = Ω(1). We already know that this phase transition cannot
occur with MMAS* and MMAS on LeadingOnes. The following theorem,

12

special cases of which are contained in Gutjahr and Sebastiani (2007), shows a
specific upper bound for MMAS*.

Theorem 9 The expected optimization time of MMAS* on LeadingOnes is
bounded from above by O((n log n)/ρ + n2).

Proof: The theorem follows again by the bound (2). We use the same fitness-
based partition as in the proof of Theorem 7 and the expected optimization
time O(n2) of the (1+1) EA on LeadingOnes (Droste, Jansen and Wegener,
2002). �

It is interesting that an almost tight lower bound can be derived. The
following theorem shows that the expected optimization time of MMAS* is
never better than Ω(n2). The proof is lengthy, however, for the case of large ρ,
one essential idea is easy to grasp: already in the early stages of the optimization
process, many, more precisely Ω(n), pheromone values on 1-edges reach their
lower borders 1/n, and the corresponding bits are set to 0. To “flip” such a bit,
events of probability 1/n are necessary. This can be transformed into the lower
bound Ω(n2) on the expected optimization time.

Theorem 10 Choosing ρ = 1/poly(n), the expected optimization time of
MMAS* on LeadingOnes is bounded from below by Ω(n/ρ + n2).

Proof: We first show the lower bound Ω(n/ρ) on the expected optimiza-
tion time. Afterwards, this bound is used to prove the second bound Ω(n2).
Throughout the proof, we consider only runs of polynomial length since by the
assumption ρ = 1/poly(n) the lower bounds to show are both polynomial. This
allows us to ignore events with exponentially small probabilities.

For the first part, we use the observation by Doerr, Neumann, Sudholt, and
Witt (2007) on the pheromone values outside the block of leadings ones. If the
best-so-far LeadingOnes-value equals k, the pheromone values corresponding
to the bits k + 2, . . . , n have never contributed to the LO-value implying that
each of these bits is unbiasedly set to 1 with probability exactly 1/2 in the next
constructed solution. Note that these pheromone values are not necessarily
martingales, however, the probability distribution of such a pheromone value is
symmetric with expectation 1/2. Hence we distinguish two states for a bit: if it
is right of the leftmost zero in the best-so-far solution, its expected pheromone
values on 1- and 0-edges equal 1/2; if it is left of the leftmost zero, the pheromone
value of its 1-edges are monotonically increasing in each iteration until the
border 1 − 1/n is reached. We call the first state the random state and the
second one the increasing state.

While all bits in the block n/4+1, . . . , n/2 are in random state, the probabil-
ity of obtaining a LeadingOnes-value of at least n/2 is bounded from above by
2−Ω(n). Hence, with probability 1 − 2−Ω(n), the LeadingOnes-value is in the
interval [n/4, n/2] at some point of time. The randomness of the bits after the
leftmost zero allows us to apply the standard free-rider arguments by Droste,

13

Jansen and Wegener (2002). Hence, with probability 1 − 2−Ω(n), at least n/12
improvements of the LeadingOnes-value have occurred when it has entered
the interval [n/4 + 1, n/2]. This already completes the first part of the proof if
ρ = Ω(1). In the following, we therefore study the case ρ = o(1). Assume for
some arbitrarily slowly increasing function α(n) = ω(1) that only n/(α(n)2ρ)
iterations have happened until the first n/12 improvements are done. Then it
must hold (by the pigeon-hole principle) that at most n/α(n) times, the number
of iterations between two consecutive improvements is large, which is defined as:
not bounded by O(1/(α(n)ρ)). Furthermore, by another pigeon-hole-principle
argument, there must be at least n/α(n) independent so-called fast phases de-
fined as follows: each fast phase consists of at least r := ⌊α(n)/24⌋ consecutive
improvements between which the number of iterations is never large, i. e., each
time bounded by O(1/(α(n)ρ)). (For a proof, consider a fixed subdivision of
n/12 improvements into blocks of r consecutive improvements and show that at
most half of these blocks can contain a large number of iterations between some
two consecutive improvements.) In the following, we will show that a fast phase
has probability o(1). This contradicts (up to failure probabilities of 2−Ω(n/α(n)))
the assumption we have at least Ω(n/α(n)) fast phases, hence the number of
iterations for the first n/12 improvements cannot be bounded by n/(α(n)2ρ).
Since α(n) can be made arbitrarily slowly increasing, we obtain the lower bound
Ω(n/ρ) on the expected optimization time.

Consider the event that a fast phase containing r improvements is sufficient
to set at least r bits into the increasing state (the phase is called successful then).
In the beginning, all these bits are in random state. Hence, with a failure prob-
ability at most 2−Ω(r), less than r/4 pheromone values on the corresponding
1-edges (in the following called success probabilities) are at most 1/2. We as-
sume r/4 bits with this property and estimate the probability of setting all these
bits to 1 simultaneously in at least one improving step until the end of the phase
(which is necessary for the phase to be successful). The success probability of a
bit with initial pheromone value 1/2 is still at most pt := 1− (1− ρ)t/2 if it has
been only in increasing state for t steps. The total number of iterations in the
phase is O(1/ρ) by the definition of a fast phase. Hence, by the end of the phase,
all considered success probabilities are at most 1 − (1 − ρ)O(1/ρ)/2 = 1 − Ω(1).
The probability of a single improving step setting the r/4 bits to 1 is therefore at
most (1 − Ω(1))r/4 = 2−Ω(r). Adding up over all r improving steps and taking
into account the above failure probability, the probability of the phase being
successful is at most r2−Ω(r) + 2−Ω(r) = 2−Ω(α(n)) = o(1) as suggested.

Having proved that the expected number of steps for n/12 improvements is
Ω(n/ρ), we conclude that there is a constant c > 0 such that the time between
two improvements is at least c/ρ with probability at least 1/2. Otherwise Cher-
noff bounds would (up to exponentially small failure probabilities) contradict
the bound Ω(n/ρ). We exploit this to show that with high probability, a linear
number of bits in random state reaches the lower border 1/n on the success
probability during the optimization process. This will prove the second lower
bound Ω(n2) on the expected optimization time.

14

Consider a bit in random state and a phase of t∗ ≤ (lnn)/ρ iterations. We
are interested in the event that the bit is set to zero throughout all improvements
of the phase, which implies that the success probability is 1/n until the end of
the phase (the phase is finished prematurely if the border 1/n is reached in
less than t∗ steps). This event has probability Ω(1) for the following reasons:
let p0 be the initial probability of setting the bit to zero and assume p0 ≥ 1/2
(which holds with probability at least 1/2). After t steps of the phase, this
probability is at least pt := 1 − (1 − ρ)t/2 if the bit has only been set to zero
in the improvements in the phase. If the time between two improvements (and,
therefore, exchanges of the best-so-far solution) is always bounded from below by
c/ρ, the considered event has probability at least

∏∞
t=1 ptc/ρ. Using 1−x ≤ e−x

for x ∈ R and 1 − x ≥ e−2x for x ≤ 1/2, this term can be bounded from below
by

∞
∏

t=1

(

1 − (1 − ρ)tc/ρ

2

)

≥
∞
∏

t=1

(

1 − e−ct

2

)

≥
∞
∏

t=1

exp(e−ct)

= exp

(∞
∑

t=1

e−ct

)

= exp

(

e−c

1 − e−c

)

= Ω(1).

That the phase is of the desired length only with probability 1/2 is no problem
either since we can bound the probability of setting the bit to 0 after a short
phase by the probability in the beginning of the phase and argue like in the
proof of Theorem 2 by Doerr, Neumann, Sudholt, and Witt (2007). The event
of a short phase corresponds to the occurrence of a “free-rider” and the number
of short phases is geometrically distributed with success probability at most 1/2.
Hence, using the same calculations as in the mentioned proof, the probability
of the desired event is at least

∏∞
t=1

ptc/ρ

2−ptc/ρ
≥∏∞

t=1
ptc/ρ

2 = Ω(1) as claimed.

Using the observation from the last paragraph, it follows that with probabil-
ity 1−2−Ω(n), at least Ω(n) bits in random state have reached success probability
1/n by the time the LeadingOnes-value enters the interval [n/4, n/2]. The only
problem might be that these success probabilities might increase again. How-
ever, in each of the remaining improvements, we distinguish the events whether
it is relevant for an improvement to set such a bit to 1 or not. If the bit is
not relevant since it is still right of the leftmost zero after the improvement, its
success probability does not change with probability 1−1/n. Hence, in O(n) im-
provements there are in expectation still Ω(n) success probabilities equal to 1/n
left. Since, with at least constant probability, Ω(n) improvements are necessary,
the lower bound Ω(n2) on the expected optimization time follows. �

In the proof, we had to carefully look at the random bits and to study the
structure of the optimization process. It seems to be even harder to prove a
corresponding lower bound for MMAS since accepting equally good solutions
implies that more than n exchanges of the best-so-far solution can happen. Also
additional ideas are required to transfer the proof of Theorem 10 and to obtain
an improved lower bound for MMAS* on OneMax.

15

5 Conclusions

The rigorous runtime analysis of ACO algorithms is a challenging task where the
first results have been obtained only recently. In this paper, we have considered
an ACO algorithm called MMAS for which some results based on the method of
fitness-based partitions have been obtained. Previous results on this algorithm
by Gutjahr and Sebastiani have been extended and improved and compared
to our earlier findings for the 1-ANT. In particular, we have considered some
unimodal functions such as OneMax and LeadingOnes and proved upper and
lower bounds. Furthermore, we have argued why it is necessary to replace search
points by other ones that have the same fitness and shown that this improves
the runtime on the well-known plateau function Needle.

References

Doerr, B., Neumann, F., Sudholt, D., and Witt, C. (2007). On the runtime
analysis of the 1-ANT ACO algorithm. In Proc. of GECCO ’07. ACM. (to
appear).

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey.
Theor. Comput. Sci., 344, 243–278.

Dorigo, M., Maniezzo, V., and Colorni, A. (1991). The ant system: An autocat-
alytic optimizing process. Tech. Rep. 91-016 Revised, Politecnico di Milano.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. MIT Press.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1)
evolutionary algorithm. Theor. Comput. Sci., 276, 51–81.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for
binary mutations. Evolut. Comput., 7(2), 173–203.

Gutjahr, W. J. (2002). ACO algorithms with guaranteed convergence to the
optimal solution. Inform. Process. Lett., 82, 145–153.

Gutjahr, W. J. (2006). On the finite-time dynamics of ant colony optimization.
Methodol. Comput. Appli. Probab., 8, 105–133.

Gutjahr, W. J. (2007a). First steps to the runtime complexity analysis of Ant
Colony Optimization. Comput. Oper. Res. (to appear).

Gutjahr, W. J. (2007b). Mathematical runtime analysis of ACO algorithms:
Survey on an emerging issue. Swarm Intelligence. (to appear).

Gutjahr, W. J. and Sebastiani, G. (2007). Runtime analysis of ant colony op-
timization. Tech. rep., Mathematics department, ”Sapienza” Univ. of Rome,
2007/03.

16

Jansen, T. and Wegener, I. (2001). Evolutionary algorithms - how to cope with
plateaus of constant fitness and when to reject strings of the same fitness.
IEEE Trans. Evolut. Comput., 5(6), 589–599.

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing – Random-
ized Algorithms and Probabilistic Analysis. Cambr. Univ. Press.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambr. Univ.
Press.

Neumann, F. and Witt, C. (2006). Runtime analysis of a simple ant colony
optimization algorithm. In Proc. of ISAAC ’06, vol. 4288 of LNCS, 618–627.
Springer. Extended version to appear in Algorithmica.

Rudolph, G. (1997). Convergence Properties of Evolutionary Algorithms. Kovač.

Stützle, T. and Hoos, H. H. (2000). MAX-MIN ant system. J. Future Gener.
Comput. Syst., 16, 889–914.

Wegener, I. (2002). Methods for the analysis of evolutionary algorithms on
pseudo-boolean functions. In Sarker, R., Yao, X., and Mohammadian, M.
(eds.), Evolutionary Optimization, 349–369. Kluwer.

Wegener, I. and Witt, C. (2005). On the optimization of monotone polynomials
by simple randomized search heuristics. Combin. Probab. Comput., 14, 225–
247.

17

