
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

On Improving Approximate Solutions
by Evolutionary Algorithms

Tobias Friedrich, Jun He, Nils Hebbinghaus,
Frank Neumann and Carsten Witt

No. CI-231/07

Technical Report ISSN 1433-3325 June 2007

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/LS 2
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

On Improving Approximate Solutions

by Evolutionary Algorithms

Tobias Friedrich∗ Jun He† Nils Hebbinghaus∗

Frank Neumann∗ Carsten Witt‡

June 6, 2007

Abstract

Hybrid methods are very popular for solving problems from combinatorial
optimization. In contrast to this the theoretical understanding of the inter-
play of different optimization methods is rare. The aim of this paper is to
make a first step into the rigorous analysis of such combinations for combina-
torial optimization problems. The subject of our analyses is the vertex cover
problem for which several approximation algorithms have been proposed. We
point out specific instances where solutions can (or cannot) be improved by
the search process of a simple evolutionary algorithm in expected polynomial
time.

1 Introduction

Evolutionary Algorithms (EAs) have been widely applied to various optimization
problems in practice [8, 10, 13]. Especially for combinatorial optimization prob-
lems they have been shown to produce good solutions. To be competitive with
other methods such as approximation algorithms [23], Tabu Search [7], Branch and
Bound [1], or Linear Programming [20] often not a “pure” EA is used but some
knowledge is incorporated into the algorithm.

In the case of well-studied combinatorial optimization problems often the ini-
tial population is produced by running some approximation algorithm on the given
input. Such solutions are later on improved by the EA and it turns out that these
improved solutions are often not far from optimal. It contrast to the assumption
that using hybridization in evolutionary computation often yields better results
than a more general approach with problem-specific knowledge, there are up to
now no theoretical investigations with respect to the runtime behavior of such al-
gorithms. In recent years, a lot of theoretical results giving bounds on the runtime
of simple evolutionary algorithms for combinatorial optimization problems have
been obtained. Among these problems, there some of the most popular polyno-
mially solvable problems such as sorting and shortest path [19], the computation

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany
†School of Computer Science, University of Birmingham, Birmingham, United Kingkom
‡Fachbereich Informatik, LS 2, University of Dortmund, Dortmund, Germany

1

of a maximum matching [5, 6], the Eulerian cycle problem [2, 15], and the com-
putation of minimum spanning trees [16, 17]. In the case of NP-hard problems,
results have been obtained for a scheduling problem on two machines [25] and
the multi-objective minimum spanning tree problem [14]. Especially, in the case of
well-known NP-hard combinatorial optimization problems often the initial solution
is computed by an approximation algorithm and later on improved by a heuristic
method. None of previous works on the runtime analysis of combinatorial opti-
mization problems has considered this scenario. All investigations considered the
case where the solution is drawn uniformly at random from the considered search
space. Our aim is to make a first step to understand in which situations evolution-
ary algorithms are able to improve solutions obtained by specialized approximation
algorithms. We do not aim to show general results on improving the approximation
ratio of such a problem as this would be a statement which has to be made about
all possible instances. We either focus on describing different situations where the
random search process of an evolutionary might (or might not) be useful.

The subject of our investigations is the vertex cover problem. Different EAs
have been applied to this problem [3, 12]. In [11] it has been shown in an experi-
mental study that in the case of random graphs solutions obtained by a well-known
approximation algorithms are often far from optimal and may be improved in a
small number of iterations by evolutionary algorithms such that nearly optimal
ones are obtained. The first rigorous runtime analysis on classes of instances for
this problem is given in [9]. Recently, it has been shown that the well-known
(1+1) EA is not able to produce a good approximation for the vertex cover prob-
lem [4]. In this work, it has been proven that even in the case of bipartite graphs
the approximation ratio achievable by this algorithm in expected polynomial time
is almost as bad as the trivial cover choosing all vertices of the given graph.

Such a bad approximation quality can be prevented by starting with an initial
solution that has been obtained by running a good approximation algorithm for
the given problem. In the case of the vertex cover problem several approximation
algorithms are known. The first idea for such an algorithm is to start with the
empty vertex set and add in each iteration a vertex covering the largest number of
uncovered edges. It is well-known that this approach achieves an approximation
ratio of Θ(log n), where n is the number of vertices in the given graph. Some simple
ones obtain an approximation ratio of 2 which is asymptotically the best known
up to now. Such an approximation quality can e. g. be obtained by computing a
maximal matching of the given graph and including for each edge of this matching
both endpoints into the cover.

The aim of this paper is to investigate for which cases the solutions obtained by
the two described approximation algorithms can be improved by the random search
process of an evolutionary algorithm. We investigate the (1+1) EA starting with
such a solution and point out situations where such a search process has (or has
not) the ability to improve solution constructed by the approximation algorithms.

The outline of the paper is as follows. In Section 2 we introduce the vertex
cover problem and the EA that is subject to our investigations. Section 3 consid-
ers improvements achievable by the EA for the greedy approximation algorithm
and Section 4 investigates the combination with the maximal matching approach.
Finally, we finish with some conclusions.

2

2 The Vertex Cover Problem and the (1+1) EA

The vertex cover problem is one of the most studied NP-hard combinatorial op-
timization problems. Given an undirected graph G = (V, E) where |V | = n and
|E| = m, the aim is to find a subset V ′ ⊆ V of minimum cardinality such that for
each e ∈ E, e ∩ V ′ 6= ∅ holds.

We consider the well-known (1+1) EA (see Algorithm 1) for the vertex cover
problem. The search space is {0, 1}n and each bit xi of a solution x corresponds
to a vertex vi ∈ V . The vertex vi is chosen in the current solution x if xi = 1 and
otherwise it is unchosen.

Algorithm 1 (1+1) EA

1. Choose an initial solution x ∈ {0, 1}n.

2. Repeat

• Create x′ by flipping each bit of x with probability 1/n.

• If f(x′) ≤ f(x), set x := x′.

Denote by |x|1 and |x|0 the number of ones respectively of zeros in a bitstring x.
The fitness of a search point x is given by f(x) = (u(x), |x|1) where u(x) denotes
the number of uncovered edges of the solution x. In the case of the (1+1) EA,
the function should be minimized with respect to the lexicographic order. This
setting has already been examined in [4] for randomly chosen initial solutions. We
examine the effect of using an initial solution that has been computed by some
approximation algorithm. Here in any case all edges are covered and the (1+1) EA
does not accept solutions that do not constitute a vertex cover.

Our aim is to analyze the (1+1) EA by a rigorous run-time analysis until it has
produced good solutions for the vertex cover problem. The measure of interest is
the number of constructed solutions until certain goals have been achieved. Often
the expectation of this value is considered and called the expected time to achieve
such a goal.

Most of our investigations consider the approximation ability of the proposed
algorithms. The worst-case approximation ratio of an algorithm A for a given

minimization problem R is defined as maxI∈R
A(I)

OPT(I) where A(I) denotes the value

obtained by A when applied to an instance I of R and OPT(I) denotes the value of
an optimal solution for the given instance. We are mainly interested in upper and
lower bounds for the number of constructed solutions until a certain approximation
ratio has been achieved by the introduced algorithms.

As the (1+1) EA does not accept worsenings the approximation ratio achieved
is at least as good as the approximation ratio of the algorithm to compute the
initial solution.

3 Analysis of Hybrid EAs with Greedy Method

In this section we examine how an initial solution produced by a greedy algorithm
can be improved by the (1+1) EA. Whe show that the success of such a Hybrid EA
depends on the specifics of the examined graphs. We introduce two graph classes
and show that the Hybrid EA may fail on the first one to find a solution with

3

approximation ratio o(log n) in polynomial time and finds the optimum quickly for
the second class of graphs.

The greedy method is based on the following idea. In the vertex covering
problem, the aim is to find a vertex cover which uses the minimum number of
vertices to cover all edges. Therefore, a vertex with a larger degree is more likely
to appear in the optimal vertex cover. However, this is only a heuristic knowledge
and it will not lead to an optimal solution in general.

We consider the greedy method described in [18] to compute the initial solution
x:

Algorithm 2 Greedy Vertex Cover

1. Set x = 0n

2. Choose a vertex vk having the largest degree in G.

3. Set xk = 1, V := V \ {vk}, and E = E \ {e | e ∩ vk 6= ∅}

4. If G is not empty go to 2).

The greedy approach achieves an approximation ratio of O(log n). We obtain
a simple hybrid algorithm by computing the initial solution of the (1+1) EA using
Algorithm 2. The resulting algorithm we will denote by (1+1) EAG. It achieves
the same approximation ratio O(log n) as the greedy approach as it does not accept
solutions that are worse than the initial one.

Friedrich et al. [4] have shown that the (1+1) EA starting with a solution
that is chosen uniformly at random from the search space is not able to obtain a
good approximation for a specific class of bipartite graphs in expected polynomial
time. They have also shown that a greedy approach in form of multi-objective EA
is able to produce optimal solutions for such problems quickly. The same holds
for Algorithm 2. Hence, using the greedy procedure for the initial solution can
make the difference between obtaining an optimal solution or achieving only a bad
approximation of such a solution.

Compared with other approximation algorithms that achieve an approximation
ratio of 2 for the vertex cover problem, the greedy approach behaves badly in
the worst case. Therefore, the question arises whether a solution that is far from
optimal can always be improved by the (1+1) EA. The following example shows
that this is not always the case. The solution for Graph 1 computed by the greedy
approach might be far from optimal and the (1+1) EAG is likely to achieve not
even a single improvement.

Graph 1 Let the vertex set be W1 ∪ W2 ∪
⋃k

i=⌈k/2⌉ Vi with

Wℓ := {wℓ,j | j = 1, . . . , 2k} for all ℓ ∈ {1, 2}
Vi := {vi,j | j = 1, . . . , 2k} for all ⌈k/2⌉ ≤ i ≤ k

and the edge set be

E := {{vi,j1 , wℓ,j2} | ⌈k/2⌉ ≤ i ≤ k, ℓ ∈ {1, 2},
1 ≤ j1, j2 ≤ 2k, ⌈j1/2i⌉ = ⌈j2/2i⌉}.

4

Figure 1: An illustration of Graph 1 for k = 4. The grey straps should indicate
complete bipartite subgraphs. For better clarity, the edges incident to W2 are
omitted.

The number of vertices is n = (⌊k/2⌋+3) 2k and the vertices in set W1 and W2

have degree
∑k

i=⌈k/2⌉ 2i = 2k+1 − 2⌈k/2⌉ while the vertices in Vi have degree 2i+1.
The optimal cover is

C∗ := W1 ∪ W2.

In the following, we show that Algorithm 2 produces a factor Ω(log n) approxi-
mation of an optimal solution and that such a solution is hard to improve by the
search procedure of the (1+1) EA.

Theorem 1 On Graph 1 the expected time for the (1+1) EAG to obtain a solution

whose approximation ratio is o(log n) is 2Ω(
√

n log n).

Proof: We first show that the solution produced by Algorithm 2 is only a factor
Ω(log n) approximation and lower bound the expected time to improve such a
solution afterwards.

As the vertices in sets Vk have the largest degree, the greedy Algorithm 2 first
choses all vertices from Vk. After removing these nodes, the vertex degrees in W1

and W2 decrease to
∑k−1

i=⌈k/2⌉ 2i = 2k − 2⌈k/2⌉ while the vertices in Vi still have

5

degree 2i for i < k. Hence, the greedy method chooses the vertices of Vk−1 to be
added next to the cover. Iterating this procedure, the greedy method obtains the
cover

C = Vk ∪ Vk−1 ∪ . . . ∪ V⌈k/2⌉

and the approximation ratio

| C |
| C∗ | =

⌊k/2⌋ 2k

2 2k
= Θ(k) = Θ(log n).

Hence, Graph 1 is, up to a constant factor, a worst case example for Algorithm 2
with respect to approximability.

To gain an improvement if C is the current solution, a certain number of vertices
of W1 ∪W2 have to be added while a larger number of vertices of

⋃

i Vi have to be
removed. As the minimum vertex degree in Graph 1 is δ = 2⌈k/2⌉+1, at least 2δ
bits have to be flipped to gain an improvment. It remains to bound the probability
that the (1+1) EAG achieves such an improvement in one mutation step. For
this, we use Stirling’s formula, the identity n = 2log n, and (for sufficiently large n)

δ ≥
√

n
log n and

(
2
e

√
n

log n

)3

≥ n. Hence, the probability of an improvement can

be upper bounded by

(
n
2δ

)

n2δ
≤ 1

(2δ)!
≤

(
2δ

e

)−2δ

≤ n
− 2

3

q n
log n = 2−Ω(

√
n log n),

which proves the theorem. �

Theorem 1 shows that the (1+1) EAG may be unable to improve a bad greedy
solution. We will now show that there are also graph classes on which above hybrid
EA can play a positive role. On the following Graph 2, the (1+1) EA always finds
the optimal vertex cover in small polynomial time.

Consider the following well-known graph given in [18].

Graph 2 Let k ∈ N. Let the vertex set be B ∪ ⋃k
i=1 Ai with

B := {bj | j = 1, . . . , k},
Ai := {ai,j | j = 1, . . . , ⌊k/i⌋} for all 1 ≤ i ≤ k

and the edge set be

E := {{bj, ai,⌈j/i⌉} | 1 ≤ i ≤ k, 1 ≤ j ≤ i⌊k/i⌋}.

Graph 2 has the following properties. Since every vertex in Ai is connected with
exactly i vertices in B and no two vertices in B have a common neighbor in any
Ai, all vertices in B have degree at most k and all vertices in Ai have degree i. Let
us denote the total number of vertices by n. Then n = Θ(k log k). Due to [18], the

greedy algorithm (Algorithm 2) can determine the set
⋃k

i=1 Ai as a vertex cover.
This set is a factor of Ω(log n) away from the optimal vertex cover B. In contrast
to the behavior of the (1+1) EAG on Graph 1, the (1+1) EAG determines the
optimal vertex cover in expected time O(n3). We formulate this result in a more
general way in the following theorem.

6

Figure 2: An illustration of Graph 2 for k = 6.

Theorem 2 The expected optimization of the (1+1) EA is O(n3) for each initial
search point.

Proof: In [4] it is shown that the (1+1) EA produces a vertex cover in expected
time O(n log n) regardless of the chosen initial solution. Therefore, we now assume
that a vertex cover has been obtained and upper bound the expected time to
produce an optimal solution which consists of the vertex set B. If the current cover
is not a minimal one at least one vertex can be removed to achieve an improvement.
The corresponding probability for such an event is Ω(1/n) and its expected waiting
time is O(n).

If the current solution is minimal but not a minimum vertex cover at least one
vertex v1 in A2 has been chosen. Otherwise, all vertices of B must be selected (to
cover all edges between A2 and B) and no other vertex can be chosen due to the
minimality of the vertex cover. But this is the mimimum vertex cover. The chosen
vertex v1 of A2 has two neighbors v2 and v3 in B. In addition v2 is adjacent to a
vertex v4 in A1 and v3 is adjacent to a vertex v5 in B. As the current solution is a
cover which is minimal only two vertices of {v2, v3, v4, v5} have been chosen and at
least one of the chosen vertices belongs to A1. The probability of deleting a chosen
vertex of A1 and including its neighbor of B (or vice versa) in the next step is
Ω(1/n2). If not both vertices of B have been chosen, the probability of increasing
the number of vertices in B in such a step is at least 1/2 as at least one of the two
vertices of B is missing. Two of such steps are sufficient to have both vertices of
B chosen and happen with probability at least 1/4 in two consecutive operations
swichting vertices from A1 to B or vice versa. Hence, after an expected number of
O(n2) steps both vertices of B are chosen. Now the solution is not minimal as the
vertex v1 can be removed. The probability that the vertex v1 is removed before v4

respectively v5 are replaced by v2 respectively v3 is 1 − O(1
n).

Thus, the expected waiting time for such an improvement is O(n2) in any case
and the number of vertices is O(n). This implies that a minimum vertex cover is
obtained after an expected number of O(n3) steps. �

7

4 Analysis of Hybrid EAs with 2-Approximation
Heuristics

It has been known for a long time (see e. g., [18]) that the vertex cover problem
admits a 2-approximation using so-called maximal matchings. A matching is a
subset of pairwise disjoint edges of a given undirected graph. Thus, the empty set
is always a matching. A matching is called maximal if there is no edge left that
can be added to the subset without violating the matching property. Therefore the
maximal matching problem can be solved in linear time w. r. t. the number of edges
by greedily adding edges to the current matching until the matching is maximal.

Note that a maximal matching is not necessarily a matching of maximum car-
dinality. From an algorithmic point of view, the latter problem—called the maxi-
mum matching problem—is more complicated yet can also be solved in polynomial
time [18]. It is interesting that almost-maximum matchings can be found in poly-
nomial time using pure evolutionary algorithms [6].

The proposed 2-approximation algorithm works as follows:

Algorithm 3 Maximal Matching Vertex Cover

1. Compute a maximal matching.

2. Output all endpoints of the edges of the matching.

The set of vertices we obtain is a vertex cover since otherwise, the matching
would not have been maximal. Moreover, the set forms a 2-approximation since
at least one endpoint of each edge in the matching must be chosen for a minimum
vertex cover. We obtain a simple hybrid algorithm by computing the initial solution
of the (1+1) EA using Algorithm 3. In the following, this is called the Maximal
Matching (1+1) EA ((1+1) EAM). Note that in fact, a family of algorithms is
considered since the component computing the maximal matching has not been
specified yet.

In the following, we study the interplay of the maximal matching component
and the (1+1) EA in our hybrid algorithm. Due to the NP-hardness of the vertex
cover problem, we cannot expect the (1+1) EAM to always find optimal solutions
in expected polynomial time. In fact, we do not believe that there are instances
where it fails to find in polynomial time solutions that are significantly better
than 2-approximate. The best known polynomial-time approximation algorithm
for vertex cover has an approximation ratio of still 2 − o(1), so we cannot hope to
show better results for our simple hybrid algorithm. However, a simple observation
proves that the evolutionary component helps to improve solutions that are exactly
2-approximate.

Proposition 1 With probability Ω(1), the (1+1) EAM produces in expected poly-
nomial time a vertex cover with an approximation ratio of 2 − 2/n.

Proof: Suppose that the optimal vertex cover has size k. If the solution of the
maximal matching component is not (2−2/n)-approximate, k ≤ n/2 must hold and
the solution must be of cardinality greater than 2k−2k/n, hence of cardinality 2k.
This means that an optimal cover consists of exactly one endpoint of each edge in
the matching. With probability Ω(1), the first step that flips one of the 2k bits
of the solution flips only one of the bits that do not belong to the optimal vertex
cover. The new solution of 2k − 1 vertices is a (2 − 2/n)-approximation. �

8

Figure 3: An illustration of Graph 3 for k = 4.

The following considerations show that the choice of the maximal matching can
be crucial for the performance of the hybrid algorithm. We describe two examples
where specific matchings are likely to lead the (1+1) EA into local optima of
bad quality. The first one is composed of bipartite subgraphs on vertex sets of
size k = n/5. These bipartite subgraphs are connected in a chain-like manner such
that the whole graph still is bipartite. Figure 3 depicts the graph for n = 20.

Graph 3 Let the vertex set be the union of

Vi = {vi,1, . . . , vi,k}

for 1 ≤ i ≤ 5 and the edge set be the union of the sets

{
{vi,r, vi+1,s} | 1 ≤ r, s ≤ k

}

for 1 ≤ i ≤ 4.

An optimal vertex cover for Graph 3 is obtained by choosing the sets V2 and
V4. A suboptimal vertex cover of approximation ratio 3/2 is given by V1 ∪ V3 ∪ V4.
Both vertex covers are likely to be reached if the initial solution of the (1+1) EA
is V1 ∪ V2 ∪ V3 ∪ V4. This initial solution is created by, e. g., the maximal matching

M∗ :=

k⋃

r=1

{v1,r, v2,r} ∪ {v3,r, v4,r}. (1)

Theorem 3 Suppose the maximal matching component of the (1+1) EAM creates
the cover V1 ∪ V2 ∪ V3 ∪ V4 for Graph 3. Then with probability Ω(1) each,

• the (1+1) EA creates the globally optimal solution V2∪V4 in polynomial time,

• stays at the locally optimal solution V1∪V3∪V4 for a superpolynomial number
of steps.

Sketch of proof: We first observe that no vertex from V4 can be removed from the
cover unless a step adds all missing vertices from V5 simultaneously to the cover.
The latter has probability n−Ω(k) = n−Ω(n) if there are still Ω(k) vertices from V5

missing. One can show that only with a probability 2−Ω(n), too many vertices
from V5 are added to the cover before a local or a global optimum is reached. We
therefore assume that no vertex from V4 is removed from the cover in a phase of
ncn steps, where the constant c is chosen appropriately.

9

Figure 4: An illustration of Graph 4 for k = 4.

We are now faced with a situation like in the study of the (1+1) EA on the
bipartite graph B in the paper by Friedrich et al. [4, Theorem 5]. The set V1 ∪ V3

of Graph 3 plays the role of V2 of graph B and V2 plays the role of V1. With
probability Ω(1), a vertex from V1 ∪V3 of Graph 3 is removed before a vertex from
V2 is removed. Then we apply the argumentation concerning the second phase in
the proof of Theorem 5 in [4], which shows us that all vertices from V1 ∪ V3 are
removed in polynomial time with constant probability. Hence, the global optimum
is reached with constant probability.

The second claim follows by the same arguments. With probability Ω(1), a
vertex from V2 is removed first and the local optimum is reached with constant
probability. To leave the local optimum, a step that flips k bits simultaneously
has to occur. This has probability n−Ω(n) and with probability 1 − n−Ω(n), does
not happen in a superpolynomially long phase of ncn steps for a small enough
constant c > 0. �

It seems tempting to decrease the size of V2 in Graph 3 to trick the (1+1) EA
into local optima with a even worse approximation ratio than 3/2. This, however,
does not work since the maximal matching component would choose only a subset
of V1 and V3 then.

Using a less obvious, non-bipartite graph, we can show that the (1+1) EA is very
likely to get stuck at (2 − o(1))-optimal solutions if the initial maximal matching
is chosen badly. The idea is to use a composition of bipartite subgraphs on vertex
sets of size k = Ω(n) and to add an extra component of only log n bits that is fully
connected to all all other vertices. Figure 4 shows Graph 4 for n = k = 4.

Graph 4 Let n = 4k + log n. Let the vertex set be the union of

Vi = {vi,1, . . . , vi,k}

for 1 ≤ i ≤ 4 and

V5 = {v5,1, . . . , v5,log n}

10

and the edge set be the union of the sets

{
{vi,r, vi+1,s} | 1 ≤ r, s ≤ k

}

for 1 ≤ i ≤ 3 and

{
{vi,r, v5,s} | 1 ≤ i ≤ 4, 1 ≤ r ≤ k, 1 ≤ s ≤ log n

}
.

To obtain a minimum vertex cover, we must choose the special set V5 and two
appropriate sets from V1 ∪ V2 ∪ V3 ∪ V4, e. g., V1 and V3. An optimal vertex cover,
therefore, is of size 2k + log n. A bad initial solution for the (1+1) EA is produced
if all vertices V1 ∪ V2 ∪ V3 ∪ V4 are chosen but the vertices from V5 are missing.
This happens, e. g., if the maximal matching again equals M∗ (Equation 1). The
following theorem shows that it is really hard to obtain improvements from this
initial solution.

Theorem 4 Suppose the maximal matching component of the (1+1) EAM creates

the cover V1 ∪ V2 ∪ V3 ∪ V4 for Graph 4. Then with probability 1 − 2−Ω(log2 n), the
(1+1) EA needs 2Ω(log2 n) steps to obtain a solution whose approximation ratio is
better than 2 − O(1/log n).

Proof: Note that the initial cover is of approximation ratio 4k/(2k + log n) =
2 − O(1/log n). To remove one of the vertices in V1 ∪ V2 ∪ V3 ∪ V4 from the cover,
all vertices from V5 must to be added simultaneously. The latter has probability at
most (1/n)log n = 2−Ω(log2 n). Hence, the probability of an improvement in a phase

of 2c log2 n steps is still 2−Ω(log2 n) if c is chosen small enough but constant. �

In the examples above, the search of the (1+1) EAM is likely to get stuck at
local optima since a worst-case initial maximal matching is assumed. We now
turn to a more general view. In the following, we use the above-mentioned greedy
algorithm to compute the maximal matching in the (1+1) EAM . This means that
we choose uniformly free edges until there are no such edges left. Let the obtained
algorithm be called greedy (1+1) EAM ((1+1) EAGM).

With respect to the previous example Graphs 3 and 4, the probability that
the search of the (1+1) EA leads to an optimal vertex cover seems to become
higher when using the greedy maximal matching algorithm. (We do go into the
details here.) As stated above, we however cannot expect the (1+1) EAGM to find
efficiently optimal solutions on arbitrary instances. The following example shows
that when it is indeed likely to run into local optima of bad quality.

We define the bipartite graph B(k, ℓ), ℓ < k, on 2k + ℓ vertices as follows.

Graph 5 Let the vertex set be

{v1, . . . , vk}
︸ ︷︷ ︸

=:L

∪{vk+1, . . . , v2k}
︸ ︷︷ ︸

=:R

∪{v2k+1, . . . , v2k+ℓ}
︸ ︷︷ ︸

=:C

and the edge set be

{
{vi, vk+i} | i = 1, . . . , k

}

∪
{
{vi, v2k+j} | i = 1, . . . , k, j = 1, . . . , ℓ

}
.

11

Figure 5: An illustration of Graph 5 for k = 10 and ℓ = 5.

Hence, we obtain the whole edge set from the induced subgraph on L∪R, which
is a perfect matching, and the induced subgraph on L ∪ C, which is a complete
bipartite graph. A minimum vertex cover chooses all L-vertices while any vertex
cover that leaves out an L-vertex in favor of its adjacent R-vertex must choose
all C-vertices. The following theorem (note that k = Ω(n)) shows that the latter
event can mislead the (1+1) EAGM into a local optimum.

Theorem 5 Let ℓ ≤ k−2 logn. Then with probability Ω(1−ℓ/k), the (1+1) EAGM

on B(k, ℓ) needs at least 2Ω(k−ℓ) steps to create a solution that is better than
(1 + ℓ/k)-approximate.

Proof: The proof outline is as follows. We first show that the maximal matching
routine will choose all C-vertices with the claimed probability. Afterwards, it
removes with this probability at least Ω(k − ℓ) of the L-vertices from the cover
before a C-vertex flips. From this situation, it takes with probability Ω(1) at
least 2Ω(k−ℓ) steps to obtain a cover that does not choose all C-vertices. Up to
then, all covers contain at least k + ℓ vertices and are, therefore, no better than
(1 + ℓ/k)-approximate.

We call the edges that are incident on C-vertices C-edges and the remaining
edges, which are incident on R-vertices, R-edges. We are interested in matchings
that consists of ℓ C-edges and k − ℓ R-edges. If already i C-edges and j R-edges
have been chosen during the construction of the maximal matching, there are ℓ− i
free C-vertices and k− i− j free L-vertices left. Hence, the number of free C-edges
equals (ℓ − i)(k − i − j) while there are only k − i − j free R-edges left. The
probability of choosing another R-edge in this situation is

(ℓ − i)(k − i − j)

(ℓ − i)(k − i − j) + (k − i − j)
=

ℓ − i

ℓ − i + 1

Therefore, for i < ℓ, the expected number of chosen R-edges between the i-th and
the (i + 1)-st choice of a C-edge is at most

ℓ − i + 1

ℓ − i
− 1 =

1

ℓ − i

12

since the random number of steps between the two choices follows a geometric
distribution. Hence, the expected number of chosen R-edges until ℓ C-edges have
been chosen is at most

∑ℓ−1
i=0 1/(ℓ − i) ≤ (ln ℓ) + 1. By Markov’s inequality, the

number is at most k − ℓ, i. e., ℓ C-edges are chosen, with probability at least
1 − (ln ℓ + 1)/(k − ℓ). Due to our assumption on ℓ, the last expression is positive
and bounded from below by Ω(1 − ℓ/k).

For the second part of the proof, we assume that a matching with ℓ C-edges
and k − ℓ R-edges has been created and consider the subsets L∗ ⊆ L and R∗ ⊆ R
consisting of the k − ℓ vertices in L resp. R on which the R-edges of the matching
are incident. Starting from the vertex cover corresponding to the matching, the
(1+1) EA accepts each step that flips only an L∗-bit. We consider the probability
that an L∗-vertex flips before a C- or R∗-vertex flips. By simple calculations, this
probability is bounded from below by Ω(1 − k/ℓ). We assume that such a flip
occurs. Let v∗ be the flipping L∗-vertex. As long as v∗ is not added to the cover
again, no C-vertices can be removed.

In the following, we are interested in the event of reducing the number of chosen
L∗-vertices even further. Consider a phase consisting of the n/4 steps after v∗ has
been removed. With probability Ω(1), v∗ is not chosen again during the phase.
We assume this to happen. The expected number of flipping R∗-bits in the phase
is bounded from above by (k − ℓ)/4. By Chernoff bounds, the number is at most
(k − ℓ)/2 with probability 1 − 2−Ω(k−ℓ). If this event holds, there are throughout
the phase still (k − ℓ)/2 − 1 L∗-vertices left that can be (or already have been)
removed without violating the cover. We apply Chernoff-bound arguments again.
Altogether, in the end of the phase, we have with probability Ω(1) − 2−Ω(k−ℓ)

arrived at a cover that contains all C-vertices but misses at least Ω(k − ℓ) of the
L-vertices. We assume to be in such a situation.

To obtain a cover without C-vertices from this situation, all L-vertices have to
be chosen at at least one point of time. We consider the Ω(k − ℓ) R-edges whose
L-vertex is unchosen. The random number of unchosen L-vertices can be increased
or decreased. This process can be identified with the random walk of the (1+1) EA
on a needle-in-a-haystack function where the R-edges correspond to bits and an
unchosen L-vertex of an R-edge corresponds to a 0-bit and and unchosen R-vertex
to a 1-bit. With Ω(k − ℓ) bits and starting from Ω(k − ℓ) 0-bits, the time until
the all-ones string is reached is bounded from below by 2Ω(k−ℓ) with probability
1 − 2−Ω(k−ℓ) = Ω(1 − k/ℓ) (using the results in [24]). �

Theorem 5 provides only a lower bound Ω(1−ℓ/k) on the probability of reaching
the local optimum which seems to be too pessimistic for small ℓ since the bound is
only Ω(1) then. If ℓ/k converges to 0, we however conjecture that the probability
converges to 1. This can be made precise for the special case ℓ = 1.

Theorem 6 Let ℓ = 1. Then with probability 1 − O(1/
√

n), the (1+1) EAGM

on B(k, ℓ) needs at least 2Ω(n) steps to create a solution that is better than (1 +
1/n)-approximate.

Proof: The proof follows the same lines as the one of Theorem 6. Using the
arguments from the first part of the proof, it is easy to see that the greedy maximal
matching algorithm chooses with probability at least 1−1/n one C-edge and n−1
R-edges. This case means that the initial solution of the (1+1) EA chooses the
single C-vertex and n − 1 L- and R-edges. We assume this to happen.

13

Next consider the phase of the
√

n steps after initialization. With probability
1 − O(1/

√
n), the C-vertex does not flip in the phase. Using the Chernoff-bound

arguments from the proof of Theorem 6, we prove that with probability 1−2−Ω(
√

n),
at least Ω(

√
n) L-vertices are removed from the cover. Note that we need not

assume that an L-vertex flips before the first R-vertex flips.
Assuming that Ω(

√
n) L-vertices have been removed by the end of the phase,

we apply the ideas from the last paragraph of the proof of Theorem 6. Hence, the
probability that all L-vertices are in the cover again—which is necessary for the
C-vertex to flip—before 2Ω(n) steps have elapsed is 2−Ω(n). �

We are left with several interesting open problems. It would be desirable to have
an example where the (1+1) EAGM gets stuck at (2− o(1))-optimal solutions with
probability 1−o(n−c) for any constant c, i. e., the success probability should be only
superpolynomially small. Such examples should exist if the vertex cover problem
does not admit approximations with a constant factor less than 2. Moreover, one
could work on generalizations of Proposition 1. Since the (1+1) EA is able to flip
any given subset of lnn/ln lnn bits in a single step with probability n−O(1), it might
happen that it is able to explore in polynomial time the Hamming ball of radius
lnn/ln lnn centered around the initial solution. This would imply that solutions
with approximation ratio 2−O(lnn/(n ln lnn)) could be found in polynomial time
with at least polynomially small probability.

5 Conclusions

In the case of combinatorial optimization problems often hybrid methods are used
to obtain good solutions for a certain problem. The theoretical understanding of
combining evolutionary algorithms with other methods is rather weak. We have
made a first step into the rigorous analysis of such methods by considering the
combination of well-known approximation algorithms with a simple evolutionary
algorithm. In our analyses we have pointed out situations where approximate
solutions can (or cannot) be improved by the search procedure of an EA.

There are several open questions concerning the topic of analyzing the combi-
nation of evolutionary algorithms with other methods. Some regarding the vertex
cover problem and starting with solutions computed by the considered approxi-
mation algorithms have been pointed out in the Sections 3 and 4. We also want
to state a more general question. The EAs considered in this paper only use an
initial solution that has been computed by another method. In general a differ-
ent optimization procedure is applied more often during the run of an EA. These
so-called memetic approaches have already been analyzed w. r. t. their runtime on
toy problems [21, 22]. It would be nice to have some results on such methods by
rigorous analyses on a well-known combinatorial optimization problem.

Acknowledgments

J. He was supported by the UK Engineering and Physical Research Council under
Grant No. EP/C520696/1. C. Witt was supported by the Deutsche Forschungsge-
meinschaft (DFG) in terms of the Collaborative Research Center “Computational
Intelligence” (SFB 531).

14

References

[1] R. J. Dakin. A tree-search algorithm for mixed integer programming problems.
The Computer Journal, 8:250–255, 1965.

[2] B. Doerr, N. Hebbinghaus, and F. Neumann. Speeding up evolutionary algo-
rithms through restricted mutation operators. In Proc. of PPSN ’06, volume
4193 of LNCS, pages 978–987, 2006. Journal version appears in Evolutionary
Computation.

[3] I. K. Evans. Evolutionary algorithms for vertex cover. In V. W. Porto, N. Sar-
avanan, D. E. Waagen, and A. E. Eiben, editors, Proc. of Evolutionary Pro-
gramming VII, volume 1447 of LNCS, pages 377–386, San Diego, CA, USA,
1998. Springer.

[4] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximat-
ing covering problems by randomized search heuristics using multi-objective
models. In Proc. of GECCO ’07, London, UK, 2007. ACM. To appear. Also
available as ECCC Report TR07-027.

[5] O. Giel and I. Wegener. Maximum cardinality matchings on trees by ran-
domized local search. In Proc. of GECCO ’06, pages 539–546. ACM Press,
2006.

[6] O. Giel and I. Wegener. Evolutionary algorithms and the maximum matching
problem. In Proc. of STACS ’03, volume 2607 of LNCS, pages 415–426, 2003.

[7] F. Glover and M. Laguna. Tabu Search. Kluwer, Norwell, MA, 1997.

[8] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[9] J. He, X. Yao, and J. Li. A comparative study of three evolutionary algo-
rithms incorporating different amount of domain knowledge for node covering
problems. IEEE Trans. on Systems, Man and Cybernetics, 35(2):266– 271,
2005.

[10] J. H. Holland. Adaptation in Natural and Artificial System. MIT Press, Cam-
bridge, MA, second edition, 1992.

[11] B. Kehden and F. Neumann. A relation-algebraic view on evolutionary al-
gorithms for some graph problems. In Proc. of EvoCop ’06, volume 3906 of
LNCS, pages 147–158, 2006.

[12] S. Khuri and T. Bäck. An evolutionary heuristic for the minimum vertex
cover problem. In J. Hopf, editor, Genetic Algorithms within the Framework
of Evolutionary Computation – Proc. of the KI-94 Workshop, pages 86–90,
Saarbrücken, Germany, 1994.

[13] Z. Michalewicz. Genetic Algorithms + Data Structure = Evolution Program.
Springer Verlag, New York, third edition, 1996.

[14] F. Neumann. Expected runtimes of a simple evolutionary algorithm for the
multi-objective minimum spanning tree problem. European Journal of Opera-
tional Research, Volume 181, Issue 3, pages 1620-1629, 2007.

15

[15] F. Neumann. Expected runtimes of evolutionary algorithms for the Eulerian
cycle problem. In Proc. of CEC ’04, volume 1 of IEEE Press, pages 904–910,
2004.

[16] F. Neumann and I. Wegener. Minimum spanning trees made easier via multi-
objective optimization. Natural Computing, Volume 5, Number 3, pages 305–
319, 2006.

[17] F. Neumann and I. Wegener. Randomized local search, evolutionary algo-
rithms, and the minimum spanning tree problem. Theoretical Computer Sci-
ence, Volume 378, Issue 1, pages 32–40, 2007.

[18] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover, Mineola, NY, 1998.

[19] J. Scharnow, K. Tinnefeld, and I. Wegener. The analysis of evolutionary
algorithms on sorting and shortest paths problems. Journal of Mathematical
Modelling and Algorithms, pages 349–366, 2004.

[20] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and
Sons, 1998.

[21] D. Sudholt. On the analysis of the (1+1) memetic algorithm. In Proc. of
GECCO ’06, pages 493–500. ACM Press, 2006.

[22] D. Sudholt. Local search in evolutionary algorithms: the impact of the local
search frequency. In Proc. of ISAAC ’06, volume 4288 of LNCS, pages 359–368.
Springer, 2006.

[23] V. Vazirani. Appromixation Algorithms. Springer, 2001.

[24] I. Wegener and C. Witt. On the optimization of monotone polynomials by sim-
ple randomized search heuristics. Combinatorics, Probability and Computing,
14:225–247, 2005.

[25] C. Witt. Worst-case and average-case approximations by simple randomized
search heuristics. In Proc. of STACS ’05, volume 3404 of LNCS, pages 44–56,
2005.

16

