
TECHNICAL UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Design and Analysis of an
Asymmetric Mutation Operator

Thomas Jansen and Dirk Sudholt

No. CI-234/07 (revised version of CI-195/05)

Technical Report ISSN 1433-3325 November 2007

Secretary of the SFB 531 · Technical University of Dortmund · Dept. of Computer
Science/LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the Technical University of Dortmund and was printed with financial
support of the Deutsche Forschungsgemeinschaft.

Design and Analysis of an

Asymmetric Mutation Operator∗

Thomas Jansen and Dirk Sudholt

FB Informatik, Univ. Dortmund, 44221 Dortmund, Germany

{Thomas.Jansen, Dirk.Sudholt}@udo.edu

Revised November 2007

Abstract

Evolutionary algorithms are general randomized search heuristics
and typically perform an unbiased random search that is guided only
by the fitness of the search points encountered. However, in practical
applications there is often problem-specific knowledge that suggests
some additional bias. The use of appropriately biased variation opera-
tors may speed-up the search considerably. Problems defined over bit
strings of finite length often have the property that good solutions have
only very few 1-bits or very few 0-bits. A specific mutation operator
tailored towards such situations is studied under different perspectives
and in a rigorous way discussing its assets and drawbacks. This is
done by considering illustrative example functions as well as function
classes. The main focus is on theoretical run time analysis yielding
asymptotic results. These findings are accompanied by the results of
empirical investigations that deliver additional insights.

1 Introduction

General randomized search heuristics are often applied in the context of op-
timization when there is not enough knowledge, time, or expertise to design
problem-specific algorithms. One popular example belonging to this class of
algorithms are evolutionary algorithms. When analyzing such algorithms,
one typically assumes that nothing is known about the objective function
at hand and that function evaluations are the only way to gather knowledge
about it. This optimization scenario is called black-box optimization [7] and
it leads to the well-known no free lunch theorem (NFL) when taken to its ex-
treme: when there is no structural knowledge at all, then all algorithms have

∗This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) as
part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

1

equal performance [11]. In practical applications, such a scenario is hardly
ever realistic since there is almost always some knowledge about typical so-
lutions. It is well known that incorporating problem-specific knowledge can
be crucial for the success and the efficiency of evolutionary algorithms (see
[3, 18, 4] for some recent studies).

Here, we consider one specific mutation operator for binary strings that
is plausible when good solutions contain either very few bits with value 0
or very few bits with value 1. Many real-world problems share this specific
property. One example is the problem of computing a minimum spanning
tree [2]. A bit string x ∈ {0, 1}n represents an edge set where each bit corre-
sponds to exactly one edge of the graph and the selected edges correspond to
bits with value 1. Most graphs with m nodes contain Θ(m2) edges whereas
trees contain only m− 1 edges. So in this case all feasible solutions contain
only a very small number of bits with value 1.

The most common mutation operator for bit strings of length n flips each
bit independently with probability 1/n. But for the minimum spanning
tree problem, this standard mutation operator is not well suited. After
some time, one typically has some feasible solutions and waits for different
feasible solutions to be found via mutations. In case we have got a bit
string representing a spanning tree and we wait for another spanning tree
to be generated by mutation, the operator tends to create offspring with
more than m − 1 edges. Biasing the search towards strings with few 1-bits
leads to a significant speed-up for this problem. Motivated by this finding,
Neumann and Wegener [16] suggested the asymmetric mutation operator
analyzed here. This mutation operator tends, on average, to preserve the
number of 1-bits.

In the search space {0, 1}n one can think of all points with exactly i
1-bits as forming the ith level. Clearly, for i = O(1) and i = n − O(1) the
levels contain only a polynomial number of points whereas the levels with
i ≈ n/2 are exponentially large. Imagine a random walk on {0, 1}n induced
by repeated standard bit mutations only. Standard bit mutations flip each
bit independently with some fixed mutation probability, typically 1/n for bit
strings of length n. Thus, standard bit mutations tend to sample the search
space uniformly. This implies that the random walk induced by repeated
standard bit mutations spends most of the time on levels with i ≈ n/2.
When reaching a search point x with either very few or lots of 1-bits, there
is a strong tendency to return to levels i ≈ n/2 since these levels have a
much larger size.

The asymmetric mutation operator considered here is likely to preserve
the current level, on average. However, considering a random walk induced
by repeated asymmetric mutations, variance lets the random walk change
the current level. Since there is no tendency to the medium levels, the
random walk is more likely to reach levels with very few or lots of 1-bits
than the random walk based on standard bit mutations.

2

In an optimization process, if the fitness values encountered guide the
search towards areas of the search space where the number of 1-bits is ei-
ther small or large, this mutation operator is more efficient in generating
other such search points at random. However, the mutation operator is not
custom-built with one specific application in mind. It is still a quite general
mutation operator that we consider to be a natural choice when it is known
that good solutions to the optimization problem at hand have either very
few or lots of 1-bits. It has to be noted, though, that it is not an unbi-
ased operator as defined by Droste and Wiesmann [8] (assuming Hamming
distance to be a natural metric in {0, 1}n).

This paper is not about one specific mutation operator for a specific kind
of problem and the demonstration of its usefulness. Our aim is to present
a broad and informative analysis of this mutation operator. We consider
its performance on illustrative example functions and on interesting classes
of functions. All example functions considered here have been introduced
elsewhere and for completely different reasons. Thus, they are not designed
with this mutation operator in mind. With this approach we are able to
demonstrate the assets and drawbacks of this specific mutation operator in
a clear and intuitive, yet rigorous way.

Our analysis has a strong emphasis on theoretical results leading to
proven theorems. However, we aim at presenting an interesting and read-
able report on the investigation of a specific mutation operator. Therefore,
we make the reader familiar with the central ideas for proving the presented
results and refer the interested reader to the appendix for formal proofs.

Following the usual approach in the analysis of (randomized) algorithms,
the difficulty of the analysis is reduced by not taking care of the algorithms
in all tiny details but concentrating on the major effects. This leads to
asymptotic results that are expressed using the usual notions for (expected)
run times. We accompany these theoretical findings with the results of em-
pirical investigations. Clearly, such empirical data can neither prove nor
disprove the theoretical findings: proving general statements by empirical
data only is not possible for logical reasons. While in general theorems can
be falsified by a single counter-example, no empirical data can represent
a counter-example for purely asymptotical results. Nevertheless, the pre-
sentation of such empirical data has several advantages. It gives a clearer
impression of the actual run times for realistic values of n. It demonstrates
the influence of the lower order terms that are hidden in the asymptotic
notation. And it gives insights to effects that are difficult to deal with in a
theoretical analysis. We believe that the combination of theoretical results
with empirical findings delivers a more complete picture1. While present-
ing a concrete analysis for one concrete mutation operator we hope that

1A preliminary version with parts of the theoretical results without the empirical data
was presented at a conference [13].

3

this analysis can serve as an example of how a thorough analysis of new
operators and variants of evolutionary algorithms can be presented.

In the following section, we define the mutation operator, the evolution-
ary algorithm we consider, and our analytical framework. In Section 3, we
concentrate on the performance on simply structured example functions and
demonstrate that the operator shows increased efficiency as expected. This
helps to build a more concrete intuition of the properties of the asymmetric
mutation operator. In a more general context, we explain in Section 4 that
the performance on a broad and interesting class of functions does not differ
from that of an unbiased mutation operator. Section 5 presents an example
where the bias introduced by the mutation operator has an immense neg-
ative impact. Finally, we conclude in Section 6 with some remarks about
possible future research. As already remarked above, the appendix contains
the formal proofs for the results in the different sections.

2 Definitions

In order to concentrate on the effects of the mutation operator we consider
an evolutionary algorithm that is as simple as possible. This leads us to the
well-known (1+1) EA, a kind of stochastic hill-climber.

Algorithm 1 ((1+1) EA).

1. Initialization

Choose x ∈ {0, 1}n uniformly at random.

2. Mutation

y := mutate(x).

3. Selection

If f(y) ≥ f(x), x := y.

4. Stopping Criterion

If the stopping criterion is not met, continue at line 2.

Most often the (1+1) EA is applied using standard bit mutations. We
give a formal definition of this mutation operator.

Mutation Operator 1 (Standard Bit Mutations). Independently for each
bit in x ∈ {0, 1}n, flip the bit with probability 1/n.

The asymmetric mutation operator that we consider aims at leaving the
number of bits with value 1 unchanged. This can be achieved by letting
the probability to mutate a bit depend on its value. In order to give a
formal definition, we introduce the following notations. For a bit string
x = x1x2 · · · xn we denote the number of bits with value 1 in x by |x|1, i. e.,

4

|x|1 =
n
∑

i=1
xi. Analogously, |x|0 denotes the number of bits with value 0, i. e.,

|x|0 = n − |x|1.

Mutation Operator 2 (Asymmetric Bit Mutations). Independently for
each bit in x ∈ {0, 1}n, flip the bit with probability 1/(2 |x|1) if it has value
1 and with probability 1/(2 |x|0) otherwise.

In the following, we refer to the (1+1) EA with asymmetric bit mutations
as the asymmetric (1+1) EA. We use 1/(2|x|i) as mutation probability in-
stead of 1/|x|i to prevent the mutation operator from becoming deterministic
in the special case of exactly one bit with value 0 or 1. In this deterministic
case the property that any y ∈ {0, 1}n can be reached by any x ∈ {0, 1}n

in one mutation is not preserved. The value 2 is a straightforward choice
since for any x with 0 < |x|1 < n the expected number of flipping bits is
1. This coincides with the expected number of flipping bits for standard bit
mutations.

One may think that using a different initialization with asymmetric mu-
tations makes more sense. Using the asymmetric mutation operator is mo-
tivated by the wish to bias the search towards regions of the search space
with either lots of or few 0-bits. Thus, it seems reasonable to choose the
initial population in this region. While such considerations are sensible in
practical applications they are rather disadvantageous, here. Since we aim
at a fair and meaningful comparison of two different mutation operators,
we rather keep any other aspect of the evolutionary algorithm serving as a
framework unchanged.

Theoretical results concerned with the performance of evolutionary al-
gorithms as optimizers often concentrate on the expected optimization time,
i. e., the expected run time until some optimal point in the search space is
found. As usual we consider the number of function evaluations to be an
accurate measure for the actual run time.

The results on the expected run time are asymptotic ones. They use the
well-known notation for the order of growth (see for example [2]). For the
sake of completeness, we give a definition.

Definition 1. Let f, g : N0 → R be two functions. We say f grows at most
as fast as g and write f = O(g) iff there exist n0 ∈ N and c ∈ R

+ such that
for all n ≥ n0 we have f(n) ≤ c · g(n). We say f grows at least as fast as
g and write f = Ω(g) iff g = O(f). We say f and g have the same order
of growth and write f = Θ(g) iff f = O(G) and f = Ω(g). We say f grows
faster then g and write f = ω(g) iff lim

n→∞
g(n)/f(n) = 0. We say f grows

slower than g and write f = o(g) iff g = ω(f).

For many objective functions, mutations of single bits turn out to be
important leading from x to a so-called Hamming neighbor y. For x, y ∈

5

{0, 1}n the Hamming distance H (x, y) equals the number of bits where x and

y differ, i. e., H (x, y) =
n
∑

i=1
(xi ⊕ yi) where xi ⊕ yi denotes the exclusive or of

xi and yi. Using standard bit mutations, steps to Hamming neighbors have
probability Θ(1/n). It is important to note that asymmetric bit mutations
do not decrease the probability of such mutations significantly. They may,
however, increase the probability for such steps significantly.

Lemma 1. Let x, y ∈ {0, 1}n with H (x, y) = 1 be given. The probability to
mutate x into y in one asymmetric mutation is bounded below by 1/(8 |x|i)
if a bit with value i needs to flip.

Proof. Assume that one 0-bit in x needs to flip; the other case is symmetric.
For x 6= 0n, the probability to flip exactly this bit equals

1

2 |x|0

(

1 −
1

2 |x|0

)|x|
0
−1(

1 −
1

2 |x|1

)|x|
1

≥
1

8 |x|0

since (1 − 1/(2k))k ≥ 1/2 for k ∈ N. For x = 0n we obtain 1/(4 |x|0) >
1/(8 |x|0) as lower bound in the same way.

Like for standard bit mutations, the probability to flip k bits simulta-
neously in one mutation decreases drastically with k. We show exemplarily
that the probability of flipping Ω(nε) bits at once is exponentially small.
The proof is a simple application of Chernoff bounds, it can be found in the
appendix.

Lemma 2. Let ε > 0. The probability that the asymmetric mutation oper-
ator flips Ω(nε) bits in one step is bounded above by 2−Ω(nε log n).

When using standard bit mutations, the probability to mutate some
x ∈ {0, 1}n into some y ∈ {0, 1}n is determined only by the number of
bits with different values in x and y, i. e., their Hamming distance H (x, y).
Therefore, one easy way of generalizing results on specific example functions
to results on function classes is to group functions that are essentially equal
but differ only in their “coding.” We adopt the definition and notation of [5]
where the generalization of objective functions is considered in the context
of black-box complexity.

Definition 2. For f : {0, 1}n → R and a ∈ {0, 1}n we define fa : {0, 1}n →
R by fa(x) := f(x ⊕ a) for all x ∈ {0, 1}n where x ⊕ a denotes the bit-wise
exclusive or of x and a.

Since the (1+1) EA with standard bit mutations is insensitive to the
number of 1-bits in the current bit string and since it treats 1-bits and 0-
bits symmetrically, it exhibits the same behavior on f as on fa for any a.
So, the class of functions fa is a straightforward generalization of f . When

6

we use asymmetric bit mutations instead, this is not necessarily the case.
Transforming x to x ⊕ a does in general change the number of 1-bits and
therefore alters the mutation probabilities. This is one way to describe how
the asymmetric mutation operator biases the search. We will consider this
in greater detail in the following section. Note, however, that the (1+1) EA
with asymmetric bit mutations behaves the same on fa and fa where a
denotes the bit-wise complement of a. This is due to the symmetrical roles
of 0 and 1 as bit values if one replaces all 0s by 1s and vice versa. Therefore,
it suffices to consider functions fa with |a|1 ≤ n/2, only. We adopt the
widely used notation bi for the i concatenations of the letter b. Thus, the
all-one bit string of length n can be written as 1n.

We start our analysis with some very general bounds on the expected
optimization time of the asymmetric (1+1) EA that only rely on basic prop-
erties of the asymmetric mutation operator. The same considerations have
also been made for the (1+1) EA with standard bit mutations, so we have
a direct comparison of both mutation operators. For the (1+1) EA with
standard bit mutations it is known that the expected optimization time is
bounded from above by nn for all functions [6] and bounded from below by
Ω(n log n) if the global optimum is unique [12].

Theorem 1. The expected optimization time of the asymmetric (1+1) EA
on any function f : {0, 1}n → R is at most (2n)n. If f has a unique global
optimum, the expected optimization time is bounded below by n/2.

Proof. As long as the current population x is not a global optimum, the
probability to hit an optimum x∗ by a direct jump is bounded below by
(1/(2n))n. Hence the expected time to hit a global optimum is at most
(2n)n.

For the lower bound we observe that the expected number of flipping bits
when mutating x equals 1 for x /∈ {0n, 1n} and 1/2 for x ∈ {0n, 1n}. This
implies that the expected progress towards the optimum in one generation
is at most 1. As the initial population has expected Hamming distance
n/2 to the unique global optimum, a drift analysis (similar to the technique
presented by He and Yao [10]) shows that the expected optimization time
is at least n/2.

We only remark that a lower bound Ω(n) can also be shown for functions
with multiple global optima as long as the number of global optima is 2o(n).

Comparing standard bit mutations to asymmetric mutations, Theorem 1
shows no clear advantage for any operator. We also see that the resulting
bounds are weak due to the weak assumptions made on the fitness func-
tion. This motivates the investigation of concrete functions for which much
stronger results can be obtained.

There is a number of well-known example functions that we want to con-
sider in the following sections. The function OneMax(x) simply counts the

7

number of 1-bits in x. Needle(x) takes value 1 if x = 1n and 0 otherwise.
Since the function does not give any hints to find the optimum, it’s like
looking for a needle in a haystack. The function LO(x) counts the number
of leading ones in x. On Ridge(x), the function value increases on a ridge of
search points 1i0n−i into the direction of the global optimum and all other
search points give hints to reach the start of the ridge. Plateau(x) is very
similar to Ridge. The only difference is that all search points on the ridge
except the global optimum 1n form a plateau of search points with equal
fitness.

We give precise formal definitions.

Definition 3.

OneMax(x) := |x|1

Needle(x) :=
n
∏

i=1

xi

LO(x) :=
n
∑

i=1

i
∏

j=1

xj

Ridge(x) :=

{

n − |x|1 if x /∈ {1i0n−i | 0 ≤ i ≤ n}

n + i if x ∈ {1i0n−i | 0 ≤ i ≤ n}

Plateau(x) :=











n − |x|1 if x /∈ {1i0n−i | 0 ≤ i ≤ n}

n + 1 if x ∈ {1i0n−i | 0 ≤ i < n}

n + 2 if x = 1n

A point x ∈ {0, 1}n is a local optimum of a function f : {0, 1}n → R if
f(x) ≥ f(y) holds for all Hamming neighbors y of x (i. e. H (x, y) = 1). A
function f : {0, 1}n → R is unimodal iff it has exactly one local optimum.

We now cite results on the expected optimization time of the (1+1) EA
with standard bit mutations for the example functions from Definition 3.
These results are used as a bottom-line for the comparison when we use
asymmetric bit mutations instead.

Theorem 2. Let E (Tf) denote the expected optimization time of the (1+1) EA
with standard bit mutations on the function f : {0, 1}n → R.

E (TOneMax) = Θ(n log n) [6]
E (TNeedle) = Θ(2n) [9]
E (TLO) = Θ(n2) [6]
E (Tf) = O(nd) for unimodal functions f with d different function values

[6]
E (TRidge) = Θ(n2) [14]
E (TPlateau) = O(n3) [14]

8

It is important to remember that E (Tf) = E (Tfa) holds for the (1+1) EA
with standard bit mutations for any a. We will see that this is different for
the (1+1) EA with asymmetric bit mutations and that the performance gap
on f and fa can be exponentially large.

3 Assets of the Asymmetric Mutation Operator

The asymmetric bit mutation operator preserves, on average, the number
of 1-bits in the parent. This makes this mutation operator very different
from standard bit mutations if the number of 1-bits is either very small or
very large. Thus, we expect to obtain best results when good search points
have this property and when good search points lead the algorithm to the
global optimum. The well-known fitness function OneMax has all these
properties. It is therefore not surprising that the asymmetric bit mutation
operator can lead to a considerable speed-up.

Theorem 3. The expected optimization time of the asymmetric (1+1) EA
on OneMax is Θ(n).

Proof. As long as the current search point x differs from the global opti-
mum, there are |x|0 Hamming neighbors with a larger fitness value. Due
to Lemma 1, the probability of increasing the fitness value is at least |x|0 ·
1/(8|x|0) = 1/8 and the expected time to increase the fitness is at most 8.
Since the fitness value has to be increased at most n times, 8n is an upper
bound on the expected optimization time. The lower bound follows from
Theorem 1.

Asymmetric mutations outperform the standard mutation operator by a
factor of the order of log n here. However, this relies heavily on the fact that
the unique global optimum is the all-one bit string. Clearly, the objective
function OneMax can be described as minimizing the Hamming distance to
the unique global optimum. This is equivalent to maximizing the Hamming
distance to the bit-wise complement of the unique global optimum. We can
preserve this property but move the global optimum x∗ somewhere else by
defining the fitness as n − H(x, x∗). This leads us exactly to OneMaxa

with a = x∗. One may fear that the advantage of asymmetric bit mutations
for OneMax might be counterbalanced by a disadvantage when the global
optimum is far away from 1n. However, this is not the case if one considers
asymptotic expected optimization times.

Theorem 4. For any a the expected optimization time of the asymmetric
(1+1) EA on OneMaxa is Θ(n log(min{|a|0 , |a|1} + 2)).

A complete proof can be found in the appendix. It is important to
observe that the Hamming distance to the unique global optimum cannot

9

increase during the run. This is due to the elitist selection employed and
the direct correspondence between function value and Hamming distance.
Using this observation, the proof of the upper bound is a straightforward
estimation of the expected waiting times for events increasing the current
fitness. A lower bound Ω(n) follows from Theorem 1, proving the claimed
lower bound in case |a|0 = O(1) or |a|1 = O(1). If the unique global optimum
has larger Hamming distance to 0n and 1n, we can use a different way of
reasoning. We observe that, typically, a linear number of bits needs to flip
in order to reach this optimum. It is not difficult to prove a constant lower
bound on the probability that there is at least one of these bits that never
flips in O(n ln |a|1) generations. This implies the desired lower bound on the
expected optimization time.

We see that, asymptotically, there is no disadvantage for the (1+1) EA
with asymmetric bit mutations in comparison with standard bit mutations
on OneMaxa. We complement these asymptotical bounds by the results of
some experiments. All reported results are averages of 100 independent runs.
For OneMaxa, we choose a with |a|1 = c·n and c ∈ {0, .05, .1, .15, .2, . . . , .95, 1}.
We choose n, the length of the bit strings, from {100, 200, 300, . . . , 1900, 2000}.
The average optimization times can be seen in Fig. 1. Note that these
empirical findings have illustrative purposes. Therefore, we refrain from a
statistical analysis that does not yield additional insights.

 0
 500

 1000
 1500

 2000

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

generations

n|a|1/n

generations

Figure 1: Average run times on OneMaxa for n ∈ {100, 200, . . . , 2000} and
|a|1 ∈ {0, .05n, .1n, . . . , .95n, n}.

Two aspects of the empirical data displayed in Fig. 1 deserve some ex-
planation. First, we observe that the average run times are maximal in some
distance to the extreme values 0 and n and decrease towards |a|1 = n/2.
This effect is not contained in our bound. Note, that the observed differ-

10

ences are small enough not to be visible in the asymptotic notation Θ(·).
Observing concrete runs for |a|1 = c·n for small values of c, one observes that
the asymmetric mutation operator has the tendency to lead the algorithm
too close to 1n making final steps back towards the unique global optimum
necessary. This causes an increased optimization time.

 0
 500

 1000
 1500

 2000

 0 1 2 3 4 5 6 7 8 9 0

 5000

 10000

 15000

 20000

 25000

 30000

generations

n|a|1

generations

Figure 2: Average run times on OneMaxa for n ∈ {100, 200, . . . , 2000} and
|a|1 ∈ {0, 1, 2, . . . , 9}.

The second aspect that catches our attention is the steep increase of the
average optimization time at the boundaries. It seems to increase from a
value very small for |a|1 ∈ {0, n} to something clearly larger almost imme-
diately. This seems to contradict our theoretical bound Θ(n log(|a|1 + 2)).
Remembering that c = .05 implies |a|1 = n/20 = Θ(n) we see that this is
not really the case. More values for a close to 0 and n are helpful to see
this more clearly. We present average run times for |a|1 ∈ {0, 1, 2, . . . , 9} in
Fig. 2. There we see that the run time increases with |a|1 quite smoothly as
our bound predicts. We learn that the investigation of observed run times
alone without a theoretical analysis may be quite misleading.

The reader might conclude from our findings that the search is not too
clearly biased by asymmetrical bit mutations. However, for OneMaxa, the
function values point into the direction of the global optimum so clearly
that the relatively small bias introduced by the asymmetric mutations is
not important when compared to the clear bias introduced by selection.
Thus, optimization is quite efficient regardless of the location of the unique
global optimum.

In the following, we show that there is a clear bias due to asymmet-
ric bit mutations that can have a great impact on the performance of the
asymmetric (1+1) EA. We consider the asymmetric (1+1) EA on a flat fit-

11

ness function: we consider Needle. Since all non-optimal search points are
equally fit, we exclude the effects of selection on the optimization process
and, as long as the needle is not found, the search process equals the random
walk induced be repeated asymmetrical bit mutations. So, by considering
the function Needle with the needle in 1n, we can learn more about the
bias induced by asymmetric bit mutations.

As long as the needle has not been found, the asymmetric (1+1) EA
is symmetric w. r. t. bit positions. Hence, we can describe the asymmetric
(1+1) EA as a discrete Markov chain where the transition probabilities
depend on the number of 1-bits in the current bit string, only. The main
observation is that, as long as no search point in {0n, 1n} is reached, this
process is a martingale (see [1]), i. e., the expected change in the number of
1-bits over time is 0: let x ∈ {0, 1}n with 0 < |x|1 < n and x′ be a random
variable describing the result of an asymmetric bit mutation of x. Then

E
(
∣

∣x′
∣

∣

1
| x
)

= |x|1 ·

(

1 −
1

2 |x|1

)

+ |x|0 ·
1

2 |x|0
= |x|1 .

We therefore observe a Markov chain that is similar to a fair random walk
on {0, 1, . . . , n} with the main difference that arbitrary step sizes may occur.
For a fair random walk {Xt}t≥0 = X0,X1, . . . with step size fixed to 1 it
is well known that the expected time to reach either 0 or n is bounded by
X0(n−X0). We are able to generalize this result to a large class of stochastic
processes. Since this may be of independent interest, we state the lemma
here and refer to the appendix for a proof.

Lemma 3. Consider a stochastic process {Xt}t≥0 on {0, . . . , n}. Define
T := inf{t | Xt ∈ {0, n}}. If the process {Xt}t≥0 is a martingale (i. e.
E (Xt+1 | X0, . . . ,Xt) = Xt) and 0 < Xt < n implies Xt+1 6= Xt for all
0 ≤ t < T , then E (T) ≤ X0(n − X0).

Theorem 5. For any constant k ∈ N0 and all a ∈ {0, 1}n with either at
most k 0-bits or at most k 1-bits, the expected optimization time of the
asymmetric (1+1) EA on Needlea is bounded above by O(n2 + nk+1).

The full proof can be found in the appendix. As long as the needle
has not been found, the asymmetric (1+1) EA is symmetric w. r. t. bit
positions. This motivates to consider only steps where the number of 1-bits
in the current search point changes. The process induced by these steps
satisfies the conditions of Lemma 3 implying that either state 0 or state n
is reached in expected time O(n2). Moreover, the expected time to travel
between states 0 and n can be bounded by O(n2), too, which proves the
claim for k = 0.

For k > 0 we consider the case where the needle has n − k 1-bits, the
other case is symmetric. We estimate the expected time until the needle is
hit by a direct jump from 1n. The probability for such a jump is Ω(n−k) for

12

constant k and after an unsuccessful attempt the expected time to return
to 1n is O(n). Together, the bound O(n2 + nk+1) follows.

In order to get a closer picture of the actual performance, we consider
the results of 100 independent runs for k = 0 and n ∈ {100, 200, . . . , 2000}.
We report the number of runs where the unique global optimum was found
within cn2 steps for c ∈ {1, 2, . . . , 6} in Table 1.

n 1n2 2n2 3n2 4n2 5n2 6n2

100 72 90 95 100 100 100
200 73 95 100 100 100 100
300 75 90 97 99 100 100
400 78 97 99 99 100 100
500 74 92 96 99 99 100
600 73 92 96 99 100 100
700 74 93 97 100 100 100
800 74 96 100 100 100 100
900 73 96 99 100 100 100
1000 71 94 98 100 100 100
1100 71 90 95 97 100 100
1200 80 94 96 98 99 100
1300 67 90 97 99 100 100
1400 79 93 98 99 100 100
1500 70 91 99 100 100 100
1600 79 91 97 99 100 100
1700 71 89 99 99 100 100
1800 83 90 95 98 99 100
1900 75 94 97 98 99 100
2000 76 92 100 100 100 100

Table 1: Number of runs where the needle was found within the given time
bound.

Let N := {Needlea | a ∈ {0, 1}n} be the class of needle-functions with
the global optimum at some point a in the search space. It is known from
results on the black-box complexity of function classes [5] that any search
heuristic needs at least 2n−1 + 1/2 function evaluations on N on average.
Thus, while the asymmetric (1+1) EA performs very well on Needlea with
a close to 0n or 1n, it performs poorly on other functions Needlea with
a far from 0n and 1n. This is another hint that the search process of the
asymmetrical (1+1) EA is clearly biased.

Note, that the class N = {Needlea | a ∈ {0, 1}n} is closed under
permutations of the search space. Thus, the same conclusion seems to be
implied by the NFL: averaged over all such functions all algorithms make
an equal number of different function evaluations [11]. However, this result

13

has only limited relevance with respect to the expected optimization time
since it does not take into account re-sampling of points in the search space.

4 Analysis for Unimodal Functions

The results from Section 3 proved the asymmetric mutation operator to be
advantageous for objective functions where good bit strings have either many
or few 1-bits. Clearly, OneMax and Needle are both artificial examples
that do not have much in common with problems encountered in practical
applications. In order to gain a broader perspective, results on more gen-
eral function classes are needed. Here, we compare the performance of the
asymmetric (1+1) EA with the (1+1) EA with standard bit mutations on
a whole class of interesting and important functions, namely on unimodal
functions. It is interesting to note that the class of unimodal functions is
closed under the transformation of objective functions considered here. I. e.,
for any a ∈ {0, 1}n, fa is unimodal iff f is. Thus, again we can move the
unique global optimum anywhere in the search space.

An important property of unimodal functions is that they can be op-
timized via mutations of single bits, i. e., hill-climbers are guaranteed to
be successful. Starting with an arbitrary search point, there is a path of
Hamming neighbors to the unique global optimum with strictly increasing
fitness. Note, however, that paths to the unique global optimum may be
exponentially long, making such functions difficult to optimize. In fact, it
is known that any search heuristic needs in the worst case an exponential
number of function evaluations to optimize a unimodal function [7].

Using Lemma 1, it is easy to obtain a general upper bound on the ex-
pected optimization time for unimodal functions with d different function
values. The upper bound as well as its short proof are not different from
the corresponding result for standard bit mutations.

Theorem 6. Let f : {0, 1}n → R be a unimodal function with d differ-
ent function values. The expected optimization time of the asymmetric
(1+1) EA on f is bounded above by O(n · d).

Proof. We know from Lemma 1 that the probability to increase the function
value of the current population is bounded below by 1/(8n). This yields 8n
as upper bound on the expected time to increase the fitness. Clearly, at
most d − 1 fitness increases are sufficient to reach the global optimum.

We see that asymmetric bit mutations deliver the same upper bound on
an important class of functions as standard bit mutations. Of course, in both
cases, the upper bound is not necessarily tight. However, it is known to be
tight for standard bit mutations for some functions. One example of such a
function is LO, an example function where the (1+1) EA with standard bit
mutations has expected optimization time Θ(n2). Moreover, deviations from

14

the expected value by some constant factors are extremely unlikely. The use
of asymmetric bit mutations, however, leads to a considerable speed-up.

Theorem 7. The expected optimization time of the asymmetric (1+1) EA
on LO is bounded by O(n3/2).

A proof of the theorem is given in the appendix. The idea is to partition
a run into two phases with the first phase comprising the beginning of the
run as long as the function value is bounded above by n1/2 and the second
phase comprising the rest of the run. Since in the first phase the fitness value
needs to be increased at most n1/2 times and always single bit mutations
are sufficient to do so, clearly, its expected length is bounded by O(n3/2).
For the second phase, we observe that all bits following the first bit that
differs from the optimum have not yet had an impact on the fitness and
thus are subject to a random process. Since we have n1/2 leading ones that
cannot be flipped in an accepted step, the number of 0-bits in the current bit
string constitutes a supermartingale with an expected decrease of Ω(n−1/2).
A drift analysis shows that the expected time until the number of 0-bits
reaches 0 is O(n3/2).

As OneMax, the function LO has the property that the unique global
optimum is the all-one bit string 1n. Obviously, this fosters the finding of the
global optimum using asymmetric bit mutations. Therefore, it makes sense
to investigate the expected optimization time on LOa. We would like to
see whether there are some a ∈ {0, 1}n such that the expected optimization
time of the (1+1) EA using asymmetric mutations is ω(n3/2).

We consider a where the optimum has linear Hamming distance to both
0n and 1n. We will see that then the asymmetric (1+1) EA’s tendency
towards some kind of bits is more hindering than helpful.

Theorem 8. Given some constant 0 < c < 1, let a ∈ {0, 1}n be chosen
uniformly at random among all search points with cn 1-bits. The expected
(w. r. t. the random bits of a and the algorithm’s decisions) optimization
time of the asymmetric (1+1) EA on LOa(x) is Θ(n2).

Again, the full proof is placed in the appendix and we only present the
main ideas, here. Since the upper bound follows from Theorem 6, only the
lower bound needs to be proved. We consider the first point of time where
the first n/2 bits of x match the global optimum a. Then typically (w. r. t.
the choice of a) the current population subsequently has a linear number of
1-bits and 0-bits on these positions and the expected time to increase the
LOa-value by flipping the leftmost bit differing from the optimum a is Ω(n).

If a = 0n then the drift arguments from the proof of Theorem 7 reveal
that the bias by asymmetric mutations can increase the number of 1-bits
and hence the LOa considerably in one step. However, positions i with

15

ai 6= ai+1 can slow down this process: as long as the LOa-value of the cur-
rent population x is smaller than i − 1 the asymmetric (1+1) EA is invari-
ant to the bit positions of ai and ai+1, hence Prob (xi = 1 ∧ xi+1 = 0) =
Prob (xi = 0 ∧ xi+1 = 1). The probability that xixi+1 = aiai+1 is thus
bounded by 1/2. Due to the choice of a there are typically Ω(n) such con-
stellations, hence Ω(n) increases of the LOa-value are needed in expectancy
to find the optimum.

Here, we consider experiments for LOa for n ∈ {40, 80, . . . , 600} and
different bit strings a. We fix |a|1 ∈ {0, .05n, .1n, . . . , .95n, n} and choose
one such a uniformly at random for each value of |a|1. In Fig. 3 we observe
a clear increase of the average optimization time as |a|1 moves towards n/2
as could be expected.

 0 100 200 300 400 500 600

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

generations

n|a|1/n

generations

Figure 3: Average run times on LOa for n ∈ {40, 80, . . . , 600} and |a|1 ∈
{0, .05n, .1n, . . . , .95n, n}.

When looking for a known example function where the general upper
bound for unimodal functions is tight, without applying any transformation,
one may think of Ridge [17]. Whereas the unique global optimum is 1n (like
for OneMax and LO), the algorithm cannot benefit from additional 1-bits
that happen to be present in the trailing bits. The definition of Ridge

forces these bits to be 0 on the ridge. This makes it seem unlikely that the
(1+1) EA with asymmetric bit mutations can outperform its counterpart
with standard bit mutations on Ridge. We prove this intuition to be correct.

Theorem 9. The expected optimization time of the asymmetric (1+1) EA
on Ridge is Θ(n2). The same holds for Ridgea and any a ∈ {0, 1}n.

Proof. The upper bound follows from Theorem 6. With probability 1 −
2−Ω(n) the initial search point has Hamming distance at least n/3 from the

16

unique global optimum. Offspring closer to the optimum with a fitness value
smaller than n + 1 are rejected. Thus, with probability 1 − 2−Ω(n) the first
accepted search point x∗ where f(x∗) ≥ n + 1 has Hamming distance Ω(n)
to the unique global optimum.

Let S = (s0, . . . , sn−1) be the sequence of Hamming neighbors such that
f(si) = n + i for all 0 ≤ i ≤ n − 1. Then for every a there is a coherent
subsequence S′ = (s′1, . . . , s

′
m) of S of length m = Ω(n) such that f(s′1) ≥

f(x∗) and both |s′i|1 = Ω(n) and |s′i|0 = Ω(n) hold. Due to the definition of
Ridgea, this subsequence has to be traversed in order to optimize Ridgea.
The expected decrease in Hamming distance to the global optimum on this
subsequence in one mutation is O(1/n). Hence applying drift arguments
yields the lower bound Ω(n2) on the expected optimization time.

Considering the results of experiments for Ridge designed in the same
way as the experiments for LO we see that our asymptotical bounds are
confirmed (see Fig. 4). There is hardly any difference for different choices
of a.

 0 100 200 300 400 500 600

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+06

generations

n|a|1/n

generations

Figure 4: Average run times on Ridgea for n ∈ {40, 80, . . . , 600} and |a|1 ∈
{0, .05n, .1n, . . . , .95n, n}.

The performance of the (1+1) EA with standard bit mutations and asym-
metric bit mutations are asymptotically equal on Ridgea. Even the proofs
of the bounds are very similar [14]. So far, we have seen only advantages for
the asymmetric mutations and many similarities to standard bit mutations.
In the following section, we consider an example where the asymmetric mu-
tation operator leads to an extreme decline in performance.

17

5 Drawbacks of the Asymmetric Mutation Oper-

ator

The function Plateau is very similar to Ridge. The function values differ
only for n out of 2n points in the search space. These n points are the
most important ones, though. For Ridge, the increase in function values
of these ridge points leads into the direction of the global optimum. For
Plateau, the function values are constant and the evolutionary algorithm
has to perform a kind of blind random walk on this plateau. It is known that
standard bit mutations complete this random walk successfully on average
in O(n3) steps. Asymmetric bit mutations fail to be efficient in any sense,
here.

Theorem 10. The probability that the asymmetric (1+1) EA optimizes

Plateau within 2o(n1/6) steps is bounded above by 2−Ω(n1/6).

Our discussion of the performance of asymmetric (1+1) EA showed a
clear bias towards 0n and 1n. We have seen already there that this bias is
stronger towards the nearer of the two extremes in the search space. On
Plateau, the first point found on the plateau is likely to be close to 0n,
whereas the unique global optimum is 1n. The bias induced by asymmetric
bit mutations makes it hard to perform a random walk towards 1n. This
intuitive reasoning is made rigorous in a proof that can be found in the
appendix.

Note, however, that this immense drawback is due to the special defini-
tion of Plateau. In particular, we can transform the landscape in a way
that does not influence the (1+1) EA with standard bit mutations at all but
is important for the asymmetric (1+1) EA. This leads to a function where
we can prove upper bounds on the expected optimization time of the two
algorithms of equal order.

Theorem 11. For even n we define a01 := 010101 · · · 01 ∈ {0, 1}n. The
expected optimization time of the asymmetric (1+1) EA on Plateaua01

is
O(n3).

Proof. It follows from the result on OneMaxa (Theorem 4) that some point
on the plateau will be found on average within the first O(n log n) steps.
Then, the plateau cannot be left again. For each i ∈ {0, . . . , n − 1} and
some search point x on the plateau we show the following claim. If it is
possible to create search points x+i, x−i on the plateau out of x such that the
Hamming distance to the unique global optimum is increased or decreased
by i, resp., then x+i and x−i are reached with equal probability. This is due
to the choice of a01 since all plateau points of Plateaua01

have either n/2
or (n/2) + 1 1-bits and points with n/2 and (n/2) + 1 1-bits are alternating
on the plateau. Therefore,

∣

∣x+i
∣

∣

1
=
∣

∣x−i
∣

∣

1
holds and both the number of

18

flipping 1-bits and the number of flipping 0-bits is the same for x+i and x−i.
Furthermore, the choice of a01 implies that |x|1 = n/2 + O(1) for all x on
the plateau yielding a probability of Θ(1/n) to flip any bit in x.

By these arguments, an upper bound O(n3) on the expected optimization
time can be shown analogously to the results in Jansen and Wegener [14].

Again, we add to the findings of our theoretical analysis by considering
empirical data. We consider experiments for Plateaua01

measuring the
average run time of the asymmetric (1+1) EA over 100 runs for each n ∈
{10, 20, . . . , 200}. The results are shown in Figure 5. A regression analysis
with functions c · n3 yielded a good fit for c = 1.33951, thus suggesting that
the upper bound O(n3) is tight.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 20 40 60 80 100 120 140 160 180 200

ge
ne

ra
tio

ns

n

average run time
1.33951n3

Figure 5: Average run times on Plateaua01
for n ∈ {10, 20, . . . , 200} and

the fitted function 1.33951n3.

Next, we consider experiments for the asymmetric (1+1) EA on the
function Plateau. Since our theoretical result predicts overly large run
times, we measure the number of runs where the optimum is found within
16n3 steps. The factor 16 is chosen for the following reasons according to the
empirical results on Plateaua01

. First, this factor is more than ten times
larger than the factor c = 1.33951 of the fitted function for Plateaua01

.
Moreover, all runs on Plateaua01

found the global optimum within 16n3

steps.
The results on Plateau are shown in Table 2. The search space di-

mension n = 10 is too small for the bias of asymmetric mutations to have
a significant impact on the plateau. However, for larger n the asymmetric
(1+1) EA clearly fails on Plateau.

19

n successful runs

10 60
20 0
30 0
40 0
50 0
60 0
70 0
80 0
90 0
100 0

n successful runs

110 0
120 0
130 0
140 0
150 0
160 0
170 0
180 0
190 0
200 0

Table 2: Number of runs where the optimum of Plateaua01
is found within

16n3 steps.

6 Conclusions and Future Work

We presented a mutation operator for bit strings that flips bits with a prob-
ability that depends on the number of 1-bits. The operator is designed in
a way that on average the number of 1-bits is not changed. This helps to
bias the search towards areas of the search space with bit strings containing
either very few 0-bits or very few 1-bits. Such a mutation operator is mo-
tivated by applications where good solutions are known or at least thought
of having this property.

We presented a rigorous and detailed analysis of this mutation operator
by comparing it with standard bit mutations flipping each bit independently
with probability 1/n. For OneMax, a speed-up of order log n is proved.
For Needle, there is even an exponential advantage for the asymmetric
mutation operator.

For the class of unimodal functions we proved the same general upper
bound as known for standard bit mutations. For LO, a speed-up of order
n1/2 is proved in comparison to standard bit mutations. However, both mu-
tation operators lead to run times of equal order on a simple transformation
of LO and on a class of ridge functions. These results show that the general
upper bound for unimodal functions can be tight and that both algorithms
can have similar performance on broad classes of functions.

Contrarily, we demonstrated a clear weakness of the asymmetric bit mu-
tations on a function where an unbiased random walk on a plateau is needed
in order to be successful. We showed that there is an exponential gap be-
tween the performance of this asymmetric mutation operator and standard
bit mutations. However, a simple transformation of the landscape lets both
mutation operators lead to polynomial expected optimization times for this
objective function.

20

All theoretical analyses come along with additional experimental results.
The empirical data reveals details of the performance that are invisible in
the asymptotic notation of the theorems. It is possible to obtain theorems at
a greater level of detail that may cover some parts of the observations. The
decision where the effort of such additional analytical work is worthwhile is
not easy to make.

While motivated by practical applications, our presentation is purely
theoretical. In fact, Neumann and Wegener [16] introduced asymmetric bit
mutations motivated by the minimum spanning tree problem. Note, how-
ever, that this is a classical text book problem where evolutionary algorithms
are not used in practice. It would be interesting to compare the performance
of the asymmetric mutation operator in real applications where one suspects
that good solutions have only a few bits with value 0 or 1.

References

[1] P. Brémaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation,
and Queues. Springer, 1998.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2002.

[3] B. Doerr, N. Hebbinghaus, and F. Neumann. Speeding up evolutionary
algorithms through restricted mutation operators. In Parallel Problem
Solving from Nature (PPSN IX), pages 978–987, 2006. LNCS 4193.

[4] B. Doerr and D. Johannsen. Adjacency list matchings – an ideal geno-
type for cycle covers. In Genetic and Evolutionary Computation Con-
ference (GECCO 2007), pages 1203–1210. ACM, New York, 2007.

[5] S. Droste, T. Jansen, K. Tinnefeld, and I. Wegener. A new framework
for the valuation of algorithms for black-box optimization. In Founda-
tions of Genetic Algorithms 7 (FOGA), pages 253–270, San Francisco,
CA, 2003. Morgan Kaufmann.

[6] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evo-
lutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[7] S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for ran-
domized search heuristics in black-box optimization. Theory of Com-
puting Systems, 39(4):525–544, 2006.

[8] S. Droste and D. Wiesmann. On the design of problem-specific evolu-
tionary algorithms. In Advances in Evolutionary Computing: Theory
and Applications, pages 153–173. Springer-Verlag New York, Inc., 2003.

21

[9] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for
binary mutations. Evolutionary Computation, 7(2):173–203, 1999.

[10] J. He and X. Yao. A study of drift analysis for estimating computation
time of evolutionary algorithms. Natural Computing, 3(1):21–35, 2004.

[11] C. Igel and M. Toussaint. A no-free-lunch theorem for non-uniform
distributions of target functions. Journal of Mathematical Modelling
and Algorithms, 3(4):313–322, 2004.

[12] T. Jansen, K. A. De Jong, and I. Wegener. On the choice of the offspring
population size in evolutionary algorithms. Evolutionary Computation,
13:413–440, 2005.

[13] T. Jansen and D. Sudholt. Design and analysis of an asymmetric mu-
tation operator. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2005), pages 497–504. IEEE Press, 2005.

[14] T. Jansen and I. Wegener. Evolutionary algorithms — how to cope
with plateaus of constant fitness and when to reject strings of the same
fitness. IEEE Transactions on Evolutionary Computation, 5:589–599,
2001.

[15] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[16] F. Neumann and I. Wegener. Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem. In Genetic and
Evolutionary Computation Conference (GECCO 2004), pages 713–724.
Springer, 2004. LNCS 3102.

[17] R. J. Quick, V. J. Rayward-Smith, and G. D. Smith. Fitness distance
correlation and ridge functions. In Parallel Problem Solving from Nature
(PPSN V), pages 77–86. Springer, 1998.

[18] G. R. Raidl, G. Koller, and B. A. Julstrom. Biased mutation operators
for subgraph-selection problems. IEEE Transactions on Evolutionary
Computation, 10(2):145–156, 2006.

[19] C. Scheideler. Probabilistic Methods for Coordination Problems.
HNI-Verlagsschriftenreihe 78, University of Paderborn, 2000. Ha-
bilitation Thesis, available at http://www14.in.tum.de/personen/

scheideler/index.html.en.

22

Appendix

This appendix contains the complete formal proofs of the results presented
in this paper. To increase readability, we repeat the results here using the
same numbering as in the paper.

Lemma 2. Let ε > 0. The probability that the asymmetric mutation oper-
ator flips Ω(nε) bits in one step is bounded above by 2−Ω(nε log n).

Proof. Let x be the current search point and let Zx be the random variable
describing the number of bits flipping in a mutation of x. The expected
number of flipping bits equals E (Zx) = 1 if x /∈ {0n, 1n} and E (Zx) = 1/2
if x ∈ {0n, 1n}, so 1/2 ≤ E (Zx) ≤ 1. Let c be the constant hidden in the
big-Omega notation of Ω(nε). By Chernoff bounds,

Prob (Zx > cnε) <

(

ecnε−1

(cnε)cnε

)E(Z)

≤
ecnε/2

e1/2
· (cn)−ε/2·cnε

= 2−Ω(nε log n).

Theorem 4. For any a the expected optimization time of the asymmetric
(1+1) EA on OneMaxa is Θ(n log(min{|a|0 , |a|1} + 2)).

Proof. W. l. o. g., |a|1 ≤ n/2. The unique global optimum of OneMaxa is
a. We begin with a proof of the upper bound and partition a run into two
phases: the first phase starts with the beginning of the run and ends when
we have a search point with at most 2 |a|0 0-bits for the first time. The
second phase starts after the first phase and ends when the global optimum
is found.

Let x be some current search point in the first phase, then there are at
least |x|0−|a|0 positions i where xi = 0 and ai = 1. Clearly, a 1-bit-mutation
flipping such a bit increases the fitness. During the first phase |x|0 > 2 |a|0
holds. Thus, |x|0−|a|0 > |x|0 /2 and by Lemma 1 the probability of a 1-bit-
mutation flipping one of the considered bits is at least |x|0 /2 · 1/(8 |x|0) =
1/16. Therefore, the expected length of phase 1 is O(n).

At the beginning of the second phase, |x|0 ≤ 2 |a|0 holds. Moreover, we
have H (x, a) ≤ 3 |a|0 since H (x, 1n) = |x|0 ≤ 2 |a|0 and H (1n, a) = |a|0.
This implies OneMaxa(x) ≥ n − 3 |a|0 for the rest of phase 2. Thus, the
fitness has yet to be increased at most 3 |a|0 = 3 |a|1 times. There are
n − OneMaxa(x) Hamming neighbors with function value larger than x.
By Lemma 1, the probability to reach a specific Hamming neighbor by a
direct mutation is bounded below by 1/(8n). Thus, the expected length of

23

the second phase is bounded above by

3|a|
1

∑

i=1

8n

i
= 8n

3|a|
1

∑

i=1

1

i
= O(n log(|a|1 + 2)).

For the lower bound we distinguish three cases with respect to |a|1. In
case |a|1 ≤ 1 the lower bound Ω(n) follows from Theorem 1. Consider the
case 2 ≤ |a|1 ≤ n/4. Since the mutation operator is symmetric with respect
to bit positions, we can assume a = 1|a|10|a|0 without loss of generality. With
probability at least 1/2, the initial population contains at least |a|1 /2 1-bits
among the first |a|1 positions. Analogously, it contains at least |a|0 /2 1-bits
among the last |a|0 positions with probability at least 1/2. Consider the case
where both events occur which happens with probability at least 1/4. Since
the Hamming distance to the global optimum a = 0|a|11|a|0 cannot increase,
the number of 1-bits is bounded below by |a|0 /2−|a|1 ≥ n/8 during the run.
Thus, the probability that a 1-bit is flipped is bounded above by 4/n. We
have at least |a|1 /2 1-bits that all need to flip at least once. The probability
that not all of these bits flip within ((n/4)− 1) ln |a|1 mutations is bounded
below by

1 −

(

1 −

(

1 −
4

n

)((n/4)−1) ln|a|
1

)|a|
1
/2

≥ 1 −
(

1 − e− ln|a|
1

)|a|
1
/2

≥ 1 − e−1/2.

Thus, the expected optimization time is bounded below by

1

4
·
(

1 − e−1/2
)

·
(n

4
− 1
)

ln |a|1 = Ω(n log(|a|1 + 2))

in this case.
Finally, we consider the case n/4 < |a|1 ≤ n/2. Chernoff bounds [15]

yield that with probability 1 − 2−Ω(n) the initial Hamming distance to the
unique global optimum is bounded below by n/8. Moreover, it is easy to
see (similar to Lemma 2) that with probability 1 − 2−Ω(n) we only have
mutations with o(n) bits flipping simultaneously within the first O(n log n)
generations. Thus, we may consider the situation at the end when the
Hamming distance to the optimum is decreased to n/8 − o(n). As the
Hamming distance cannot increase during a run, the number of 1-bits in the
current population is always bounded below by n/8 and bounded above by
7n/8. This implies that for each bit (regardless of its value) the probability
to flip it is bounded above by 4/n. Now we are in a situation very similar
to the second case. Repeating the line of thought from there completes the
proof.

24

Lemma 3. Consider a stochastic process {Xt}t≥0 on {0, . . . , n}. Define
T := inf{t | Xt ∈ {0, n}}. If the process {Xt}t≥0 is a martingale (i. e.
E (Xt+1 | X0, . . . ,Xt) = Xt) and 0 < Xt < n implies Xt+1 6= Xt for all
0 ≤ t < T , then E (T) ≤ X0(n − X0).

Proof. Let Et (Z) abbreviate E (Z | X0, . . . ,Xt). We define {Yt}t≥0 by Yt :=

(Xt)
2 −

t−1
∑

k=0

Ek

(

(Xk+1 − Xk)
2
)

and consider

Et (Yt+1) = Et

(

(Xt+1)
2
)

−

t
∑

k=0

Et

(

Ek

(

(Xk+1 − Xk)
2
))

.

Regarding the
∑

-term, the summand for k = t equals

Et

(

Ek

(

(Xk+1 − Xk)
2
))

= Ek

(

(Xk+1 − Xk)
2
)

and for k < t we have

Et

(

Ek

(

(Xk+1 − Xk)
2
))

= Ek

(

(Xk+1 − Xk)
2
)

since the right-hand side is X0, . . . ,Xt-measurable. Secondly, by the formula
E
(

Z2
)

= (E (Z))2 + E
(

(Z − E (Z))2
)

we have

Et

(

(Xt+1)
2
)

= (Et (Xt+1))
2 + Et

(

(Xt+1 − Et (Xt+1))
2
)

= (Xt)
2 + Et

(

(Xt+1 − Xt)
2
)

.

Together,

E
(

Yt+1 | Xt
0

)

= (Xt)
2 + Et

(

(Xt+1 − Xt)
2
)

−

t
∑

k=0

Ek

(

(Xk+1 − Xk)
2
)

= (Xt)
2 −

t−1
∑

k=0

Ek

(

(Xk+1 − Xk)
2
)

= Yt.

Thus, {Yt}t≥0 is a martingale with respect to {Xt}t≥0.
In every state 0 < Xt < n there is a positive probability to get closer to

the closest state from {0, n}, hence T < ∞ follows. Since for t ≤ T

|Yt| =

∣

∣

∣

∣

∣

X2
t −

t−1
∑

k=0

Ek

(

(Xk+1 − Xk)
2
)

∣

∣

∣

∣

∣

< 4n2 + Tn2 < ∞

25

holds, we can apply the optional stopping theorem [1]. This yields E (YT) =
E (Y0) = (X0)

2 on the one hand and, along with Ek

(

(Xk+1 − Xk)
2
)

≥ 1,

E (YT) = E
(

X2
T

)

− E

(

T−1
∑

k=0

Ek

(

(Xk+1 − Xk)
2
)

)

≤ E
(

X2
T

)

− E (T)

on the other hand, which implies E (T) ≤ E
(

X2
T

)

−(X0)
2 = Prob (XT = n) ·

n2 − (X0)
2. Applying the optional stopping theorem again w. r. t. {Xt}t≥0

yields E (XT) = X0. Along with E (XT) = Prob (XT = n) · n we obtain
Prob (XT = n) = X0/n and E (T) ≤ X0(n − X0) follows.

Theorem 5. For any constant k ∈ N0 and all a ∈ {0, 1}n with either at
most k 0-bits or at most k 1-bits, the expected optimization time of the
asymmetric (1+1) EA on Needlea is bounded above by O(n2 + nk+1).

Proof. W. l. o. g. we assume that the needle has n − k 1-bits. Call a step
of the asymmetric (1+1) EA essential if the number of ones in the current
search point changes. Since the asymmetric (1+1) EA is symmetric w. r. t.
the position of ones in the current search point, it is sufficient to consider the
random process of essential steps, only. Consider one step of the asymmetric
(1+1) EA and let pi,j denote the probability that some y with |y|1 = j is
created out of some x with |x|1 = i. We have pi,i ≤ 3/4 since pi,i =
(1 − 1/(2n))n ≤ e−1/2 if i ∈ {0, n} and pi,i ≤ 1 − (pi,i−1 + pi,i+1) ≤ 3/4 by
Lemma 1 otherwise. It follows that the probability of an essential step is at
least 1/4 and the expected total number of steps is at most by a factor of 4
larger than the expected number of essential steps.

The process of essential steps fulfills the conditions of Lemma 3, thus
starting with an initial search point with i ones the expected number of
essential steps until some x∗ with |x∗|1 ∈ {0, n} is reached is i(n− i) ≤ n2/4.
With probability 1/2 we have |x∗|1 = n and are done. Otherwise, let T0→n

be the random time for the asymmetric (1+1) EA to reach 1n starting from
0n. Let i ≥ 1 be the number of ones of the search point reached from
0n in the first essential step. We know from Lemma 3 that the expected
number of essential steps to next reach some x∗∗ with |x∗∗|1 ∈ {0, n} is
bounded by i(n − i). Moreover, from the proof of Lemma 3 we know that
Prob (x∗∗ = n) = i/n, hence we return to 0n with probability 1 − i/n. This
implies the following recursion.

E (T0→n) ≤ 1 +

n
∑

i=1

p0,i

(

i(n − i) +

(

1 −
i

n

)

· E (T0→n)

)

26

By rearranging we obtain

E (T0→n) ≤
1 +

∑n
i=1 p0,i · i(n − i)
∑n

i=1 p0,i ·
i
n

≤ n +

∑n
i=1 p0,i · in

∑n
i=1 p0,i ·

i
n

= n + n2.

This implies that for k = 0 the expected number of essential steps is at most
n2/4 + 1/2 · E (T0→n) ≤ 3n2/4 + n/2 and, taking into account non-essential
steps, the bound 3n2 + 2n follows for k = 0.

For k > 0 the time until the needle is found is clearly bounded by the
expected time to reach the needle by a direct jump from 1n. The probability
for such a jump is (1/(2n))k · (1 − 1/(2n))n−k ≥ e−1/2 · (2n)−k, hence the
expected number of trials is O((2n)k). The expected return time from 1n to
1n in terms of essential steps is bounded by

1 +

n
∑

i=0

pn,i

(

i(n − i) +

(

1 −
i

n

)

· E (T0→n)

)

≤ 1 +

n−1
∑

i=0

pn,i (i(n − i) + (n − i)(n + 1))

≤ 1 + 2n ·

n−1
∑

i=0

pn,i(n − i).

The
∑

-term describes the expected number of flipping bits when mutating
1n which can be more easily computed as n · 1/(2n) = 1/2. This results
in the bound 1 + n. As the expected number of steps between two trials is
O(n), we obtain the bound O(n2 + n · (2n)k) = O(n2 + nk+1) for constant
k.

Theorem 7. The expected optimization time of the asymmetric (1+1) EA
on LO is bounded by O(n3/2).

Proof. We partition a run into two phases: the first phase starts with the
beginning of the run and ends when some search point x∗ with LO(x∗) ≥
n1/2 is reached for the first time. The second phase starts after the first
phase and ends when the global optimum is found.

Due to Lemma 1, the expected length of phase 1 is bounded by O(n3/2)
since there always are Hamming neighbors with larger fitness and the fitness
has to be increased at most n1/2 times to reach the end of phase 1.

For the investigation of phase 2, we apply drift analysis arguments pre-
sented by He and Yao [10] and choose |x|0 as a distance function to the
optimum.

27

Let x be the current population and x′ be the population of the next
generation. Then x′ = x or x′ is an accepted mutant of x. We obtain

E
(
∣

∣x′
∣

∣

0

)

= E
(
∣

∣x′
∣

∣

0
| x′ is accepted

)

· Prob
(

x′ is accepted
)

+ |x|0 · (1 − Prob
(

x′ is accepted
)

).

Since the first LO(x) 1-bits cannot flip to 0 in an accepted step,

E
(
∣

∣x′
∣

∣

0
| x′ is accepted

)

= |x|0 ·

(

1 −
1

2 |x|0

)

+ (|x|1 − LO(x)) ·
1

2 |x|1

= |x|0 −
LO(x)

2 |x|1
.

A necessary and sufficient condition for the acceptance of x′ is that the first
LO(x) 1-bits do not flip. Thus we have

p := Prob
(

x′ is accepted
)

=

(

1 −
1

2 |x|1

)LO(x)

which is bounded below by 1/2 since LO(x) ≤ |x|1. Together,

E
(
∣

∣x′
∣

∣

0

)

=

(

|x|0 −
LO(x)

2 |x|1

)

· p + |x|0 · (1 − p)

= |x|0 − p ·
LO(x)

2 |x|1

≤ |x|0 −
LO(x)

4 |x|1
.

Hence,

E
(

|x|0 −
∣

∣x′
∣

∣

0

)

≥
LO(x)

4 |x|1
≥

n−1/2

4

and using drift arguments by He and Yao [10], we obtain an upper bound
n/(n−1/2/4) = 4n3/2 on the expected time to complete phase 2.

Theorem 8. Given some constant 0 < c < 1, let a ∈ {0, 1}n be chosen
uniformly at random among all search points with cn 1-bits. The expected
(w. r. t. the random bits of a and the algorithm’s decisions) optimization
time of the asymmetric (1+1) EA on LOa(x) is Θ(n2).

Proof. The upper bound follows from Theorem 6.
W. l. o. g., n is even and c ≤ 1/2. Let k = cn. Consider a pair of

neighbored bits in a, say (ai, ai+1), such that ai 6= ai+1. Such a constellation
is called a transition. Let T be the number of transitions in the whole bit
string and Tℓ, Tr be the number of transitions within the bits a1, . . . , an/2

28

and an/2+1, . . . , an, resp. We first estimate E (T). We have
(

n
k

)

possibilities
to choose a. The event ai 6= ai+1 for some 1 ≤ i ≤ n − 1 occurs if exactly
one of these variables is 1 and the remaining k − 1 1-bits are distributed
among the remaining n − 2 bits. Hence

Prob (ai 6= ai+1) = 2

(

n − 2

k − 1

)(

n

k

)−1

=
2k(n − k)

n(n − 1)
.

By the linearity of expectation, along with k ≤ n/2, we have

E (T) = (n − 1) ·
2k(n − k)

n(n − 1)
=

2k(n − k)

n
≥ k.

Due to symmetry Tℓ and Tr are due to the same probability distribution and
since (an/2, an/2+1) is excluded we have E (Tℓ) = E (Tr) ≥ E (T) /2 − 1 ≥
k/2 − 1.

We claim that Tℓ and Tr are strongly concentrated. Observing

|E (Tℓ | a1, . . . , ai) − E (Tℓ | a1, . . . , ai−1) | ≤ 1

we can apply the method of bounded martingale differences (see, e. g., [19])
yielding

Prob

(

Tℓ ≤
k

2
−

k

4

)

≤ e−(k
4
−1)

2
/n = e−Ω(n).

Hence, with overwhelming probability Tℓ ≥ k/4 and Tr ≥ k/4.
Assuming Tℓ ≥ k/4 implies that both the number of 1-bits and the

number of 0-bits among the bits a1, . . . , an/2 is bounded below by k/8 as
every bit contributes to at most 2 transitions. Recalling that a is the global
optimum, a direct consequence is that whensoever a search point x with
LOa(x) ≥ n/2 is mutated the mutation probability for a specific bit is at
most 4/k.

Let x∗ be the first search point reached during the optimization process
where LOa(x

∗) ≥ n/2. We bound the expected optimization time by the
expected time to find the optimum starting with x∗. Let

d(x) := |{i | LOa(x) + 1 < i < n ∧ ai 6= ai+1}|

be the number of transitions to the right of the leftmost bit differing in x
and a. We now apply a drift analysis in order to estimate the expected time
until the current population’s d-value has decreased to 0, which is necessary
to find the optimum.

Let x be the current population and x′ be the population in the next
generation. A necessary condition for d(x′) < d(x) is that the leftmost
differing bit flips which has probability at most 4/k. Moreover, the positions

29

of the bits to the right have not yet had any influence on the fitness up to
now, hence for any j with LOa(x) + 1 < j < n

Prob (xj = 1 ∧ xj+1 = 0) = Prob (xj = 0 ∧ xj+1 = 1) ≤
1

2
.

We observe that in case the LOa-value increases the two bits of the following
transition both match the optimum a with probability at most 1/2. Tran-
sitions may overlap, however two matching bits can decrease the d-value by
at most 2. In case both these bits match we consider the first transition in
xj+2, . . . , xn and repeat the argumentation with independent events. If the
considered bits do not both match, the d-value decreases by at most 2. We
arrive at

E
(

d(x) − d(x′)
)

≤
4

k
·

(

2
∞
∑

i=0

2−i

)

=
16

k
.

By the same arguments E (d(x∗)) ≥ Tr − 4 ≥ k/4 − 4 follows and drift
analysis yields the bound

E (d(x∗))

16/k
≥

(

k

4
− 4

)

·
k

16
=

c2n2

64
− O(n).

Note that this bound also holds when multiplying with the probability 1 −
e−Ω(n) for Tℓ, Tr ≥ k/4 and we have proved the theorem.

Theorem 10. The probability that the asymmetric (1+1) EA optimizes

Plateau within 2o(n1/6) steps is bounded above by 2−Ω(n1/6).

Proof. By Lemma 2, the probability to flip at least n1/4 bits in one mutation
is bounded above by 2−Ω(n1/4 log n). Thus, the probability that such a muta-
tion occurs within 2o(n1/6) generations is bounded above by 2−Ω(n1/4 log n).

With probability 1 − 2−Ω(n2/3 log n), the first population on the plateau
contains at most 3n2/3 1-bits. We call a step relevant if the offspring y re-
places its parent x, y 6= x, and x is a search point on the plateau. This im-
plies that in a relevant step, we have a movement on the plateau. Secondly,
we consider phases of t = n5/12 relevant steps. Let S := {1i0n−i | 2n2/3 ≤
i ≤ 3n2/3}. The first phase starts when a point in S is reached for the first
time. The i-th phase, i ≥ 2, starts after the (i − 1)-th phase has ended and
when a point in S is reached for the next time. We ignore non-relevant steps
and steps between two phases in our bound as they can only increase the
optimization time. We remark that during a phase, if no more than n1/4

bits flip in one mutation, only search points in {1i0n−i | n2/3 ≤ i ≤ 4n2/3}
are traversed.

Let E+ denote the event that one relevant step increases the number
of 1-bits in the population. Analogously, let E− denote the event that one
relevant step decreases the number of 1-bits in the population. As long as

30

|x|1 = Θ(n2/3) holds, we can find an upper bound on Prob (E+) as follows.
On the plateau, for each value of i there is at most one search point with
Hamming distance i and a larger number of 1-bits. This yields

Prob
(

E+
)

≤

|x|
0

∑

i=1

(

1

2 |x|0

)i

<
∞
∑

i=1

n−i = O(1/n).

Clearly, the probability for a direct mutation to a Hamming neighbor on the
plateau is a lower bound on Prob (E−). By the proof of Lemma 1, we have
Prob (E−) ≥ 1/(8 |x|1) = Ω(n−2/3).

Thus, the conditional probability of |y|1 > |x|1 given a relevant step
creating y from x is

Prob
(

E+ | E+ ∪ E−
)

=
O(1/n)

Ω(n−2/3)
≤ cn−1/3 =: q

for some constant c > 0.
Let xstart be the first search point and xend be the last search point within

the current phase. In steps towards the optimum, the maximal step size is
n1/4 and in all other relevant steps, we move away from the optimum by at
least 1. If the algorithm makes r < n1/6/2 steps towards the optimum, this
implies

|xend|1 ≤ |xstart|1 + r · n1/4 − (t − r) ≤ |xstart|1 .

Thus, a necessary condition for |xstart|1 > |xend|1 is to have at least m :=
n1/6/2 steps towards the global optimum. W. l. o. g. m ∈ N, then we have

Prob (|xend|1 > |xstart|1)

≤

(

t

m

)

· qm ≤

(

t

m
· q

)m

=
(

2c · n−1/12
)n1/6/2

= 2−Ω(n1/6).

Since |xstart|1 > |xend|1 is a necessary event for finding the optimum, we
have proved the theorem.

31

