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On the Complexity of Computing the

Hypervolume Indicator
Nicola Beume, Carlos M. Fonseca, Manuel López-Ibáñez, Luı́s Paquete, Jan Vahrenhold

Abstract—The goal of multi-objective optimization is

to find a set of best compromise solutions for typically

conflicting objectives. Due to the complex nature of most

real-life problems, only an approximation to such an

optimal set can be obtained within reasonable (computing)

time. To compare such approximations, and thereby the

performance of multi-objective optimizers providing them,

unary quality measures are usually applied. Among these,

the hypervolume indicator (or S-metric) is of particular rel-

evance due to its good properties. Moreover, this indicator

has been successfully integrated into stochastic optimizers,

such as evolutionary algorithms, where it serves as a

guidance criterion for searching the parameter space.

Recent results show that computing the hypervolume

indicator can be seen as solving a specialized version

of Klee’s Measure Problem. In general, Klee’s Measure

Problem can be solved in O(nd/2 log n) for an input

instance of size n in d dimensions; as of this writing, it is

unknown whether a lower bound higher than Ω(n log n)
can be proven.

In this article, we derive a lower bound of Ω(n log n) for

the complexity of computing the hypervolume indicator in

any number of dimensions d > 1 by reducing the problem

to the so-called UNIFORMGAP problem. For the three

dimensional case, we also present a matching upper bound

of O(n log n) that is obtained by extending an algorithm

for finding the maxima of a point set.

Index Terms—Multi-objective optimization, perfor-

mance assessment, complexity analysis, computational ge-

ometry
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I. MOTIVATION AND INTRODUCTION TO

MULTI-OBJECTIVE OPTIMIZATION

In multi-objective optimization, the problem is to find

best possible compromise solutions which cannot be im-

proved according to one objective without deteriorating

the other. This type of problems arises in many applica-

tion areas ranging from Finance to Timetabling, Trans-

portation, Facility Location, Artificial Intelligence, and

many others. However, since many real-world problems

cannot be expected to be solved to optimality (whether at

all or within a reasonable amount of computing time),

the goal is usually to obtain a good approximation to

the optimal set of solutions within a reasonable amount

of time. With this aim, many stochastic optimizers,

such as multi-objective evolutionary algorithms [1], [2],

have been proposed in the literature. To evaluate and

compare the (sets of) compromise solutions suggested by

these optimizers, quality indicators have been developed.

Of major importance among these is the hypervolume

indicator whose computational complexity is analyzed

in this work.

Without loss of generality, we consider maximiza-

tion problems. A multi-objective optimization problem

consists of d objective functions f1, . . . , fd, which map

an m-dimensional vector in the search space onto a d-

dimensional vector in the objective space. Among all

such d-dimensional objective vectors, a partial order can

be defined as follows: a point p = (p1, . . . , pd) weakly

dominates a point q (notation: q � p) iff qi ≤ pi holds

for 1 ≤ i ≤ d. Two points are incomparable iff neither

point weakly dominates the other. Points that are not

weakly dominated within a set are the best ones, and are

referred to as non-dominated or maximal. 1 The elements

of the search space that generate the non-dominated

elements of the objective space form the Pareto set of

the problem, and the set of the corresponding images in

the objective space is called Pareto front.

1Depending on the application at hand, the input set may contain

duplicates; in such a situation, each of two identical points is weakly

dominated by the other. The algorithm presented in this paper does

not depend on all coordinate values being distinct, and, as such,

handles duplicates transparently.
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Multi-objective optimizers generate approximations of

the Pareto front. To assess the performance of different

optimizers, their resulting approximations have to be

compared. This may be performed by extending the

Pareto-dominance relation to sets of points (see e.g.

Zitzler et al. [3]), but, in this case, good Pareto-front

approximations are often incomparable to each other.

Therefore, many researchers have proposed quality in-

dicators for the sets of compromise solutions generated

by multi-objective optimizers that—according to several

criteria that allude high quality—map such sets onto

scalar values and thus allow for an easy comparison.

There is a general consensus about three (informal)

criteria alluding high quality: An approximation of the

optimal set is good if (1) its points are ’close’ to the

Pareto front, (2) the points are ’well-distributed’ along

the whole Pareto front, and (3) it contains ’many’ non-

dominated points. An in-depth overview of quality mea-

sures and their properties is given by Zitzler et al. [3].

The hypervolume indicator (or S-metric, Lebesgue

measure), introduced by Zitzler and Thiele [4], is re-

garded as a rather fair measure since it respects all

the aims mentioned above and has beneficial theoretical

properties [3]. Formally, the hypervolume indicator is

defined as follows:

Definition 1: Given a finite set P of points in the pos-

itive orthant IRd
≥0, the hypervolume indicator is defined

as the d-dimensional volume of the hole-free orthogonal

polytope

Πd = {x ∈ IRd
≥0 : x � p for some p ∈ P}

dominated by the points of P .

The dominated hypervolume is calculated with respect

to a reference point r which, in the above definition, is

chosen to coincide with the origin. The above definition

also assumes maximization of all objectives and strictly

positive objective values. Whenever this is not the case,

suitable affine transformations may be applied to each

objective separately. Fig. 1 shows an example of such a

polytope in two dimensions; the hypervolume indicator

consists of the area of the shaded region. Note that the

point depicted in light gray does not contribute to this

area, as it is not a maximal element of P . Since non-

maximal (or dominated) points do not contribute to the

value of the indicator, the set P is often assumed to

coincide with the set of its maxima (or non-dominated

elements).

There has been a growing interest on the compu-

tation of the hypervolume indicator in the last few

years and upper bounds on its asymptotic performance

have been devised [5], [6], [7], [8], [9], [10], [11],

[12]. Furthermore, this indicator has been integrated

Figure 1. A set of points in the positive quadrant and the

corresponding hole-free orthogonal polytope with the origin as the

reference point. Maximal points are depicted black, non-maximal

gray.

into multi-objective optimizers—mainly evolutionary al-

gorithms [13], [14], [15]—as a single-objective substitute

function to guide the optimization process. Thus, fast

hypervolume computation is essential.

In this article, a lower bound of Ω(n log n) for the

computation of hypervolume indicator in any dimension

d > 1 is proven by reducing it to the UNIFORMGAP

problem. In addition, an O(n log n) time algorithm for

the three-dimensional case is described. The combination

of these results shows that the lower bound is tight

for d = 3, and that the algorithm proposed is optimal.

In the following section, an upper bound is derived

by considering the hypervolume indicator as a special

case of Klee’s measure problem. Section III presents

the lower bound with the help of the UNIFORMGAP

problem and Section IV contains the description of

an optimal algorithm for computing the hypervolume

indicator in three dimensions. Concluding remarks are

given in Section V.

II. AN UPPER BOUND WITH KLEE’S MEASURE

PROBLEM

Klee’s Measure Problem, or the problem of computing

the length of the union of a collection of intervals on

the real line, was formulated by Klee, who also showed

that it can be solved in optimal O(n log n) time [16].

Bentley [17] generalized this problem to d dimensions,

and presented an upper bound of O(nd−1 log n). Later,

van Leeuwen and Wood [18] improved this result to

O(nd−1). The fastest known algorithm to date is due to

Overmars and Yap [19], and runs in O(nd/2 log n) time.

The d-dimensional version of Klee’s measure problem

is also known as the problem of computing the measure

of a union of hyper-rectangles [20].

Fonseca et al. [10] and Beume [11] independently

described the weakly dominated hypervolume for a point

set P ⊂ IRd
≥0 as a special case of Klee’s measure
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Figure 2. The hypervolume indicator as a special case of Klee’s

Measure Problem. The weakly dominated hypervolume of the points

is divided into rectangles spanned by a point and the reference point r.

problem. Indeed, the polytope Πd is patterned by the

collection of hyper-rectangles {Rp}p∈P with Rp :=
{x ∈ IRd

≥0 : x � p} spanned by the points in P

and the reference point r = 0 ∈ IRd
≥0. This set of

hyper-rectangles is a valid input for Klee’s measure

problem and the corresponding output is the desired

hypervolume (see Fig. 2 for an example in two dimen-

sions). This immediately establishes an upper bound of

O(n log n + nd/2 log n) time, which is lower than the

time complexity of various algorithms [7], [8], [9] pro-

posed previously for the computation of the hypervolume

indicator when d > 2. By simplifying Overmars and

Yap’s algorithm to take advantage of the fact that all

rectangles are anchored at the same point (the reference

point r), Beume and Rudolph [12] obtained an upper

bound of O(n log n + nd/2), which is the best upper

bound currently known for d > 3.

III. A LOWER BOUND WITH THE UNIFORMGAP

PROBLEM

It seems natural that the computation of the hypervol-

ume indicator may actually be easier than the general

form of Klee’s measure problem, since all rectangles

are anchored at the same point, namely the reference

point. In particular, the hypervolume indicator does not

include the disjoint-interval case used by Fredman and

Weide [21] to obtain a lower bound of Ω(n log n) for

Klee’s measure problem. When d = 1, computing the

hypervolume indicator requires only n − 1 ∈ O(n)
comparisons, since this is equivalent to determining the

single maximal element of P . However, Theorem 1

shows that the case d = 1 is the only case where

the (known) lower bounds for Klee’s measure problem

lower bound for PROBLEMA
PROBLEMA PROBLEMB

g(n)

τ

τ'

input instance
for PROBLEMA

solution to input in-
stance for PROBLEMA

input instance
for PROBLEMB

solution to input in-
stance for PROBLEMB

Figure 3. Transferring a lower bound by reduction from PROBLEMA

to PROBLEMB.

and for the problem of computing the dominated hy-

pervolume, the so-called DOMINATEDHYPERVOLUME

problem are different.

Theorem 1: Solving the DOMINATEDHYPERVOL-

UME problem for an n-element point set in IRd, d ≥ 2,

has a time-complexity of Ω(n log n) time.

In the next subsections, we first explain the method

used to derive this lower bound, and then we use this

method to provide a proof for Theorem 1.

A. Methods for Deriving Lower Bounds

The model of computation we are working in, the

fixed-degree algebraic decision tree, is the standard

model used in computational geometry (and algorithmic

complexity) and is used to prove lower bounds for

(geometric) decision problems. In a nutshell, an algebraic

decision tree captures the behavior of a (loop-unrolled)

algorithm that branches depending on the outcome of

evaluations of bounded-degree polynomials. A lower

bound on the complexity of a given problem can then be

derived by establishing a lower bound on the depth of

any such tree resembling any valid algorithm to solve this

problem. This model is a generalization of the tree-based

model used to establish an Ω(n log n) lower bound for

comparison-based sorting (as discussed by, e.g., Cormen

et al. [22]). For a more in-depth exposition, we refer

the reader to the textbook by Preparata and Shamos [20,

Sec. 1.4].

Once a lower bound for some problem PROBLEMA

has been established, a lower bound for a problem PROB-

LEMB can be derived from PROBLEMA’s lower bound if

we can prove that PROBLEMB can be used to solve any

problem instance of PROBLEMA, or that PROBLEMA

can be reduced to PROBLEMB, as illustrated in Fig. 3.

More precisely, we need to establish a transformation τ :
dom(PROBLEMA) → dom(PROBLEMB) and a trans-

formation τ ′ : im(PROBLEMB) → im(PROBLEMA)
where dom(·) denotes the set of all input instances and

im(·) denotes the set of solutions to the given problem.

Transformation τ is used to transform any input instance

A for problem PROBLEMA into an input instance τ(A)
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for problem PROBLEMB, and transformation τ ′ is used

to transform the result (of solving) PROBLEMB(τ(A))
into a valid solution for PROBLEMA.

For the correctness of the transformation we re-

quire that for any problem instance A, we have

PROBLEMA(A) = τ ′(PROBLEMB(τ(A))), i.e., the re-

sult PROBLEMA(A) obtained by running any algorithm

for directly solving PROBLEMA for A has to be ex-

actly the same as the solution that is obtained via the

above transformation. To be able to obtain a meaningful

lower bound for PROBLEMB, we also require that the

asymptotic complexity g(n) of both τ and τ ′ is strictly

less than the lower bound for PROBLEMA (here, n is

the input size). If this is the case, we can conclude that

the lower bound for PROBLEMA is a lower bound for

PROBLEMB as well—for more details, we again refer

the reader to Preparata and Shamos [20, Sec. 1.4].

If g(n) ∈ O(n) the above transformation is called a

linear-time reduction from PROBLEMA to PROBLEMB.

B. A Proof for Theorem 1

Proof: Based upon the approach presented in the

previous subsection, the lower bound for the DOMINAT-

EDHYPERVOLUME problem is established by a linear-

time reduction from the UNIFORMGAP problem. The

latter problem is to decide for a given n-element point set

on the real line whether the points are uniformly spaced,

and has been shown to exhibit an Ω(n log n) lower

bound–see, e.g. Preparata and Shamos [20]. To prove the

claimed lower bound for DOMINATEDHYPERVOLUME,

we need to establish that every problem instance of

UNIFORMGAP can be transformed (in linear time) into

an instance of DOMINATEDHYPERVOLUME and that

the result of solving the DOMINATEDHYPERVOLUME

problem for this particular instance can be used to obtain

the correct answer for UNIFORMGAP problem for the

given input instance.

Let P := {x(1), . . . , x(n)} be any (unordered) set of

points on the real line. To solve UNIFORMGAP(P), we

first construct a two-dimensional set P ′ from P using

the embedding p(i) 7→ (x(i),−x(i)). In linear time, we

then translate the embedded point set such that all points

have strictly positive coordinates. Let Q be the resulting

point set. All points of Q lie on a diagonal line in the

first quadrant (Fig. 4, top). We now run any algorithm

for solving the DOMINATEDHYPERVOLUME(Q, r) with

the origin as the reference point r and obtain some

real number a that gives the area of the dominated

hypervolume.

To obtain the answer for UNIFORMGAP(P), we first

observe that the volume a of the dominated area can be

a1

a2

a3

pmin

pmax

p

p”

p’

Figure 4. Top: Partitioning of the weakly dominated hypervolume

in three parts. Bottom: Three consecutive points that are not equally

distributed. The dark gray area is maximal in case p
′ lies in the

middle of p and p
′′ and spans a square.

written as the sum a = a1 + a2 + a3 of the volumes

of three disjoint subareas (Fig. 4, top). The volumes of

two of these areas are independent of whether or not the

points in P are equally spaced. More precisely, we have

a1 = pmin
1 · pmin

2 and a2 = (pmax
1 − pmin

1 ) · pmax
2 , where

pmin is the point with minimal first coordinate and pmax

is the point with maximal one. Both pmin and pmax can

be determined from P in linear time.

Lemma 1: In the situation of Fig. 4 (top), the area a3

is maximal if and only if the points in P are equally

spaced.

Proof: Let us assume that a3 is maximal but that

not all points in P are equally spaced. Then there exist

three points p, p′, and p′′ in Q that are consecutive in

sorted x1-order such that |p′1 − p1| 6= |p′′1 − p′1| (note

that for the purpose of this proof we do not need to

actually find these points; it is sufficient to know that they

exist). Without loss of generality, we have the situation

depicted in Fig. 4 (bottom). The contribution of the point

p′ then is the area of the dark rectangle, or |p′1 − p1| ·
|p′2 − p′′2|. Since p, p′, and p′′ lie on a line, the sum

|p′1 − p1| + |p′2 − p′′2| and thus the perimeter of the dark

rectangle is constant. For a given perimeter, a rectangle

has maximal area if and only if it is a square. Thus,

we can move p′ such that |p′1 − p1| = |p′2 − p′′2|, i.e.,

make p, p′, and p′′ equally spaced, while increasing the

area a3. This is the desired contradiction. Conversely,

we see that for an equally spaced set of points, every

three consecutive points are equally spaced, so the local
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contribution of each point is a square. Again, trying to

make any three consecutive points non-equally spaced

results in a decrease of the contribution of the middle

point and the claim follows.

Continuing the proof of Theorem 1, Lemma 1 is

used to provide the information needed to convert the

answer for DOMINATEDHYPERVOLUME(Q) into an an-

swer for UNIFORMGAP(P). To this end, we compute

the hypervolume â that the points in Q would domi-

nate if they were equally spaced for some inter-point

distance ε. Since the points pmin and pmax already have

been found in linear time, we can immediately compute

ε := (pmax
1 − pmin

1 )/(n − 1). Furthermore, we have

â = a1 + a2 + â3 (note that a1 and a2 are independent

of whether or not the points are equally spaced) where

â3 = 1
2(pmax

1 − pmin
1 )2 − 1

2
(pmax

1
−pmin

1
)2

n−1 . The formula for â3

is easily verified to give the area of the isosceles right

triangle spanned by pmax, pmin, and (pmin
1 , pmax

2 ) minus

(n− 1) times the area of an isosceles right triangle with

leg-length ε.

To obtain the answer for UNIFORMGAP(P), we sim-

ply check whether the hypervolume a reported by DOM-

INATEDHYPERVOLUME(Q) is strictly smaller than â. If

so, we know that a3 < â3, and thus, by Lemma 1, the

points are not equally spaced. Consequently the points

are equally spaced if and only if a = â.

Since both the transformation of the input and the

transformation of the output of DOMINATEDHYPER-

VOLUME(Q) take linear time and since the algorithm

given above solves the UNIFORMGAP problem for P ,

we have established the claimed lower bound for the

DOMINATEDHYPERVOLUME problem. By embedding a

two-dimensional point set into higher-dimensional space

(setting each coordinate of higher dimensions to 1), we

have also derived a lower bound for any dimension

d > 2.

IV. AN OPTIMAL ALGORITHM FOR THE

THREE-DIMENSIONAL CASE

In Theorem 1, a set of maximal (or non-dominated)

points was constructed to prove the lower bound. This

shows that even the knowledge that a particular input

instance contains only non-dominated points does not

help to accelerate the computation of the hypervolume

indicator. On the other hand, the fact that dominated

points do not contribute to the value of dominated

hypervolume suggests that identifying them may be

useful, if not necessary, in order to compute the indicator.

Therefore, an algorithm for the maxima problem would

seem to be a good starting point for the development of

an algorithm for computing the hypervolume indicator.

In this section, we present an algorithm for the prob-

lem of computing the hypervolume indicator for a point

set P ⊂ IR3, and the time complexity of this algorithm is

analyzed to match the lower bound given by Theorem 1.

Without loss of generality, we assume that all points have

positive coordinates in all dimensions.

The algorithm is a rather natural extension of Kung et

al.’s algorithm for computing the set of maxima in three

dimensions [23]. Their algorithm is based upon a simple

implication of the definition of a point p ∈ P being

maximal if and only if no point has larger coordinates

in all dimensions. This implies that processing the points

in decreasing order with respect to the d-th dimension

reduces the (static) d-dimensional problem to a sequence

of (d − 1)-dimensional problems.

Restated in terms of dominated hypervolumes, the

algorithm of Kung et al. is a space-sweep algorithm that

processes the (three-dimensional) points in decreasing

<x3
-order and keeps track of the (x1, x2)-projection of

the boundary of the dominated hypervolume above the

sweeping plane. This boundary is a monotone rectilinear

polyline (monotonically increasing in x1-direction and

monotonically decreasing in x2-direction) and thus the

points can be maintained efficiently in increasing x1-

order by using a balanced binary search tree T . To

simplify the description, we also add two dummy points

(0,∞) and (∞, 0) to T . Since all points p ∈ P have

positive (yet finite) coordinates, this ensures that each

such point p inserted into T will have a successor

succ1(p) and a predecessor pred1(p) with respect to

the increasing x1-order in T .

A description of our algorithm is given as Algorithm 1.

Let us assume that the (x1, x2)-projection of the bound-

ary of the dominated hypervolume above the sweeping

plane is maintained using a binary search tree T on the

x1-coordinates.

The algorithm then processes the next point p(i) (in

decreasing <3-order) by first locating the successor q :=
succ1(p

(i)) of p in T (Step 3a). If the x2-coordinate of q

is larger than the x2-coordinate of p(i), q dominates p(i)

in all dimensions, and nothing needs to be done (see the

point p′ in Fig. 5, top).

If, on the other hand, the x2-coordinate of q is smaller

than the x2-coordinate of p(i), p(i) is added to the set

of maximal points (see the point p in Fig. 5, top). This

update also affects the boundary of the dominated hyper-

volume, and the algorithm reflects this update by deleting

all points between succ2(p
(i)) and q (= succ1(p

(i)))
(Step 3b,iii). The point succ2(p

(i)) can be found by

going backwards in T from q and exploiting the fact

that the x1-order of the points in T corresponds to their

reverse x2-order (see Fig. 5, bottom).
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Algorithm 1 Algorithm for computing the hypervolume V dominated by a set of n points in IR3.

1) (Initialize the algorithm) Sort the points in decreasing <3-order and let (p(1), ldots,p(n)) be the resulting

sequence of points. Initialize the search structure T with two sentinel elements (∞, 0) and (0,∞) and set

the volume V computed so far to 0.

2) (Process the first point) Store p(1) in T and set the area A of the cross-section of the dominated hypervolume

and the sweeping plane to (p
(1)
1 · p

(1)
2 ). Set z, the lowest maximal point seen so far, to p(1).

3) (Process all other points) Process p(2) to p(n) in decreasing <3-order. For each point p(i) do the following:

a) Search T to find the point q that is immediately right of p(i) (next higher x1-value), i.e. q := succ1(p
(i)).

b) If p(i) is not dominated by q (i.e. if q2 < p
(i)
2 ), update T and the variables A, V , and z as follows:

i) (Update V ) Since p(i) is maximal, increase V by the volume of the slice between z (the last maximal

point seen so far) and p(i), i.e. set V := V + A · (z3 − p
(i)
3 ).

ii) (Update z) Set z to p(i).

iii) (Process points dominated by p(i)) Starting from pred1(q), scan backwards in T until the first point

t in T with t2 > p
(i)
2 , i.e. t = succ2(p

(i)), is found (see Fig. 5, bottom).

For each point s with s2 ≤ p
(i)
2 that is encountered during this scan do the following:

A) (Update A) Decrease A by the relative contribution of s, i.e. set A := A − (s1 − (pred1(s))1) ·
(s2 − q2) (the dark rectangles in Fig. 5, bottom).

B) (Update T ) Since s is dominated by p(i), remove s from T .

iv) (Update A) Increase A by the relative contribution of p(i), i.e. set A := A + (p
(i)
1 − t1) · (p

(i)
2 − q2)

(the light rectangle in Fig. 5, bottom).

v) (Update T ) Since p(i) is maximal, store p(i) in T .

4) (Computing the volume dominated by the last maximal point) Increase V by the volume of the slice between

the last maximal point z and the (x1, x2)-plane, i.e. set V := V + A · z3.

Our algorithm augments the above approach by si-

multaneously maintaining the volume V of the domi-

nated hypervolume seen so far. To do so, the algorithm

maintains the area A that is dominated by the points

currently stored in T and the last point z added to T .

Whenever a new point p(i) is identified as a non-

dominated point, the dominated volume seen so far is

increased by A · (z3 − p
(i)
3 ) (Step 3b,i), and z is updated

to p(i) (Step 3b,ii). Then, A is updated to reflect the

changed boundary stored in T (Step 3b,iii). At the end

of the algorithm, we have to add the volume of the slice

between the last maximal point and the (x1, x2) plane,

i.e. the volume (A · z3) (see Step 4).

Provided that T is threaded, the cost of updat-

ing A is linear in the number of updates to T ,

since all relevant volumes can be computed relative to

(succ2(p
(i))1, succ1(p

(i))2)—see Fig. 5, bottom.

The running time of the algorithm is easily seen to

be in O(n log n), since each point can be added to (and

removed from) T at most once. All updates to T have

logarithmic cost and each associated update to A and

to V can be done in constant time per point. Thus, the

global cost of all updates and of the initial sorting step

is O(n log n), which proves Theorem 2.

Theorem 2: Computing the hypervolume dominated

by a set of n points in IR3 can be done in optimal

O(n log n) time.

The presented algorithm can be generalized to higher

dimensions resulting in an upper bound of O(nd−2 log n)
for d > 2 (see Fonseca et al. [10]), though, for d ≥ 4, a

better bound can be obtained using the currently fastest

algorithm by Beume and Rudolph [12].

V. CONCLUDING REMARKS

The efficient computation of the hypervolume indica-

tor (or S-metric) is of particular relevance, especially for

its online application within multi-objective optimizers.

In this article, the computational complexity of the

hypervolume indicator was analyzed by relating it to

problems from computational geometry. By casting the

hypervolume indicator as a special case of Klee’s mea-

sure problem in d dimensions, the existence of faster

algorithms than those currently used by practitioners in

the field [5], [6], [7], [8], [9] was readily established.

Currently, the hypervolume indicator may be computed

in O(n log n + nd/2) time [12].

Subsequently, a lower bound of Ω(n log n) for this

problem was obtained by reduction from the geometric

problem of deciding whether n points are equally spaced

on a line. The proof exploits the fact that the maximal
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p’

p

succ1(p)

succ1(p’ )

p

succ1(p)

succ2(p)

Figure 5. (x1, x2)-projection of the intersection of the dominated

hypervolume and the sweepline. Classifying the next point during

the sweep (top) and updating the projection and the area of the

intersection (bottom).

value of the indicator for a finite set of points located on

a certain linear Pareto front is achieved only when the

distance between consecutive points is constant.

Finally, a dedicated algorithm for the case of d = 3
was developed based upon an algorithm for the problem

of identifying the maximal elements of a set. The relation

between the two problems arises due to the fact that

only non-dominated (or maximal) points contribute to

the value of the indicator. As the obtained upper bound

of O(n log n) matches the proved lower bound, the pro-

posed algorithm is asymptotically optimal. In addition,

its conceptual simplicity makes it possible to implement

it efficiently, without hiding large constants in the O-

notation.

The improvement of the current lower and upper

bounds when d > 3 remains an open problem. Future

research shall deal with the development of more ef-

ficient algorithms for the hypervolume indicator in an

arbitrary number of dimensions by further exploiting

the relationship with known geometrical problems and

taking advantage of existing results and insights from

computational geometry. Another direction for future

work is the empirical evaluation of those algorithms in

comparison to existing ones.
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