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Abstract

Maintaining diversity is important for the performance of evolution-
ary algorithms. Diversity mechanisms can enhance global exploration
of the search space and enable crossover to find dissimilar individuals
for recombination. We focus on the global exploration capabilities of
mutation-based algorithms. Using a simple bimodal test function and
rigorous runtime analyses, we compare well-known diversity mechanisms
like deterministic crowding, fitness sharing, and others with a plain algo-
rithm without diversification. We show that diversification is necessary
for global exploration, but not all mechanisms succeed in finding both
optima efficiently.

1 Introduction

The term diversity indicates dissimilarities of individuals in evolutionary com-
putation and is considered an important property. A population-based evolu-
tionary algorithm without diversity mechanism is vulnerable to the so-called
hitchhiking effect where the best individual takes over the whole population
before the fitness landscape can be explored properly. When the population
becomes redundant, the algorithm basically reduces to a trajectory-based algo-
rithm while still suffering from high computational effort and space requirements
for the whole population.

1The second author was supported by an EPSRC grant (EP/C520696/1).
2The third and fourth author were supported by the Deutsche Forschungsgemeinschaft

(SFB) as a part of the Collaborative Research Center “Computational Intelligence” (SFB 531).
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Diversity mechanisms can help the optimization in two ways. On one hand,
a diverse population is able to deal with multimodal functions and can explore
several hills in the fitness landscape simultaneously. Diversity mechanisms can
therefore support global exploration and help to locate several local and global
optima. In particular, this behavior is welcome in dynamic environments as the
algorithm is more robust w. r. t. changes of the fitness landscape. Moreover,
the algorithm can offer several good solutions to the user, a feature desirable
in multiobjective optimization. On the other hand, a diverse population gives
higher chances to find dissimilar individuals and to create good offspring by
recombining different “building blocks”. Diversity mechanisms can thus enhance
the performance of crossover.

Up to now, the use of diversity mechanisms has been assessed mostly by
means of empirical investigations (e. g., [1, 17]). Theoretical runtime analyses
involving diversity mechanisms mostly use these mechanisms to enhance the
performance of crossover. Jansen and Wegener [9] presented the first proof that
crossover can make a difference between polynomial and exponential expected
optimization times. They used a very simple diversity mechanism that only
shows up as a tie-breaking rule: when there are several individuals with minimal
fitness among parents and offspring, the algorithm removes those individuals
with a maximal number of genotype duplicates. Nevertheless, this mechanism
makes the individuals spread on a certain fitness level such that crossover is
able to find suitable parents to recombine. Storch and Wegener [14] presented a
similar result for populations of constant size. They used a stronger mechanism
that prevents duplicates from entering the population, regardless of their fitness.

The first theoretical runtime analysis considering niching methods was pre-
sented by Fischer and Wegener [2] for a fitness function derived from a general-
ized Ising model on ring graphs. The authors compare the well-known (1+1) EA
with a (2+2) GA with fitness sharing. Fitness sharing [10] derates the real fitness
of an individual x by a measure related to the similarity of x to all individuals
in the population, hence encouraging the algorithm to decrease similarity in
the population. Fischer and Wegener prove that their genetic algorithm outper-
forms the (1+1) EA by a polynomial factor. Sudholt [15] extended this study for
the Ising model on binary trees, where the performance gap between GAs and
EAs is even larger. While a broad class of (µ+λ) EAs has exponential expected
optimization time, a (2+2) GA with fitness sharing finds a global optimum in
expected polynomial time.

In all these studies diversity is used to assist crossover. Contrarily, Friedrich,
Hebbinghaus, and Neumann [3] focused on diversity mechanisms, as a means to
enhance the global exploration of EAs without crossover. Using rigorous runtime
analyses, the authors compare a mechanism avoiding genotype duplicates with a
strategy avoiding phenotype duplicates to spread individuals on different fitness
levels. It is shown for artificial functions that both mechanisms can outperform
one another drastically.

Friedrich et al. [3] were the first to focus on the use of diversity mechanisms
for global exploration, with respect to rigorous runtime analyses. However, their
test functions are clearly tailored towards one particular diversity mechanism.
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We want to obtain a broader perspective including a broader range of diver-
sity mechanisms. Moreover, we aim at results for a more realistic setting that
captures difficulties also arising in practice. Therefore, we compare several well-
known diversity mechanisms on the simplest bimodal function that may also
appear as part of a real-world problem. If a diversity mechanism is not helpful
on a very simple landscape, then we would not hope it would be effective for
more complicated functions. Firstly, we rigorously prove that diversity mecha-
nisms are necessary for a simple bimodal function since populations of almost
linear size without diversification fail to find both peaks, with high probability.
Then we analyze common diversity mechanisms and show that not all of them
are effective for avoiding premature convergence even for such a simple land-
scape. As a result, we hope to get a more objective and more general impression
of the capabilities and limitations of common diversity mechanisms.

In the remainder, we first present our bimodal test function in Section 2.
Negative results for a plain (µ+1) EA in Section 3 show that diversification
is needed to counteract the hitchhiking effect. In Sections 4 and 5 we investi-
gate the strategies previously analyzed in [3] to avoid genotype or phenotype
duplicates, resp. Section 6 deals with the well-known deterministic crowding
strategy [10] where offspring directly compete with their associated parents.
Fitness sharing, which turns out to be the strongest mechanism, is analyzed in
Section 7. We present our conclusions in Section 8.

2 A Simple Bimodal Function

We consider a simple bimodal function called Twomax that has already been
investigated in the context of genetic algorithms by Pelikan and Goldberg [13]
and Van Hoyweghen, Goldberg, and Naudts [5]. The function Twomax is es-
sentially the maximum of Onemax and Zeromax. Local optima are solutions
0n and 1n where the number of zeros or the number of ones, respectively, is
maximized. Hence, Twomax can be seen as a multimodal equivalent of One-

max. The fitness landscape consists of two hills with symmetric slopes, i. e.,
an unbiased random search heuristic cannot tell in advance which hill is more
promising. In contrast to [5, 13] we modify the function slightly such that only
one hill contains the global optimum, while the other one leads to a local opti-
mum. This is done by simply adding an additional fitness value for 1n, turning
it into a unique global optimum.

Let |x|1 denote the number of 1-bits in x and |x|0 the number of 0-bits in x.
Then for x = x1x2 . . . xn

Twomax(x) := max{|x|0 , |x|1} +

n
∏

i=1

xi.

Figure 1 shows a sketch of Twomax. Among all search points with more
than n/2 1-bits, the fitness increases with the number of ones. Among all search
points with less than n/2 1-bits, the fitness increases with the number of zeros.
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Figure 1: Sketch of Twomax. The dot indicates the global optimum.

We refer to these sets as branches and the algorithms as climbing these two
branches of Twomax.

The Twomax function may appear in well-known combinatorial optimiza-
tion problems. For example, the Vertex Cover bipartite graph analyzed in [11]
consists of two branches, one leading to a local optimum and the other to the
minimum cover. In fact similar proof techniques as those used in this paper
have also been applied in the vertex cover analysis of the (µ+1) EA for the bi-
partite graph. Another function with a similar structure is the Mincut instance
analyzed in [16].

Recombining individuals from different branches is likely to yield offspring
of very low fitness. Since we are focusing on diversity for global exploration, we
refrain from the use of recombination and only consider mutation-based EAs.

3 No Diversity Mechanism

In order to obtain a fair comparison of different diversity mechanisms, we keep
one algorithm fixed as much as possible. The basic algorithm, the following
(µ+1) EA, has already been investigated by Witt [18].

Alg. 1 : (µ+1) EA

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
Repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x with probability 1/n.
Choose z ∈ Pt with minimal fitness.
If f(y) ≥ f(z) then Pt+1 = Pt \ {z} ∪ {y}

else Pt+1 = Pt.
Let t = t + 1.

The (µ+1) EA uses random parent selection and elitist selection for survival.
As parents are chosen randomly, the selection pressure is quite low. Neverthe-
less, the (µ+1) EA is not able to maintain individuals on both branches for
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a long time. We now show that if µ is not too large, the individuals on one
branch typically get extinct before the top of the branch is reached. Thus, the
global optimum is found only with probability close to 1/2 and the expected
optimization time is very large.

Theorem 1. The (µ+1) EA with no diversity mechanism and µ = o(n/log n)
does not reach in polynomial time on Twomax the global optimum with proba-
bility 1/2 − o(1). Its expected optimization time is Ω(nn).

Proof. The probability that during initialization either 0n or 1n is created is
bounded by µ · 2−n+1, hence exponentially small. In the following, we assume
that such an atypical initialization does not happen as this assumption only
introduces an error probability of o(1).

Consider the algorithm at a point of time t∗ where either 0n or 1n is created
for the first time. Due to symmetry, the local optimum 0n is created with
probability 1/2. We now show that with high probability this local optimum
takes over the population before the global optimum 1n is created. Let i be the
number of copies of 0n in the population. From the perspective of extinction, a
good event Gi is to increase this number from i to i + 1. We have

P(Gi) ≥ i

µ
·
(

1 − 1

n

)n

≥ i

4µ

since it suffices to select one out of i copies and to create another copy of 0n.
On the other hand, the bad event Bi is to create 1n in one generation. This
probability is maximized if all µ − i remaining individuals contain n − 1 ones:

P(Bi) ≤ µ − i

µ
· 1

n
<

1

n
.

Together, the probability that the good event Gi happens before the bad event
Bi is

P(Gi | Gi ∪ Bi) ≥ P(Gi)

P(Gi) + P(Bi)
. (1)

Plugging in bounds for P(Bi) and P(Gi) yields the bound

i/(4µ)

i/(4µ) + 1/n
= 1 − 1/n

i/(4µ) + 1/n
≥ 1 − 4µ

in
.

The probability that 0n takes over the population before the global optimum is
reached is therefore bounded by

µ
∏

i=1

P(Gi | Gi ∪ Bi) ≥
µ
∏

i=1

(

1 − 4µ

in

)

.
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Using 4µ/n ≤ 1/2 and 1 − x ≥ e−2x for x ≤ 1/2, we obtain

µ
∏

i=1

(

1 − 4µ

in

)

≥
µ
∏

i=1

exp

(

−8µ

in

)

= exp

(

−8µ

n
·

µ
∑

i=1

1

i

)

≥ exp(−O((µ log µ)/n))

≥ 1 − O((µ log µ)/n) = 1 − o(1).

Adding up all error probabilities, the first claim follows. If the population con-
sists of copies of 0n, mutation has to flip all n bits to reach the global optimum.
This event has probability n−n and the conditional expected optimization time
is nn. As this situation occurs with probability 1/2 − o(1), the unconditional
expected optimization time is Ω(nn).

4 No Genotype Duplicates

It has become clear that diversity mechanisms are needed in order to optimize
even a simple function such as Twomax. The simplest way to enforce diversity
within the population is not to allow genotype duplicates. The following algo-
rithm has been defined and analyzed by Storch and Wegener [14]. It prevents
identical copies from entering the population as a natural way of ensuring di-
versity. We will, however, show that this mechanism is not powerful enough to
explore both branches of Twomax.

Alg. 2 : (µ+1) EA with genotype diversity

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
Repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x with probability 1/n.
If y /∈ Pt then

Choose z ∈ Pt with minimal fitness.
If f(y) ≥ f(z) then Pt+1 = Pt \ {z} ∪ {y}

else Pt+1 = Pt.
Let t = t + 1.

We prove that if the population is not too large, the algorithm can be easily
trapped in a local optimum.

Theorem 2. The (µ+1) EA with genotype diversity and µ = o(n1/2) does
not reach in polynomial time on Twomax the global optimum with probability
1/2 − o(1). Its expected optimization time is Ω(nn−1).

Proof. We use a similar way of reasoning as in the proof of Theorem 1. With
probability 1/2−o(1), 0n is the first local or global optimum created at time t∗.
Call x good (from the perspective of extinction) if |x|1 ≤ 1 and bad if |x|1 ≥ n−1.
At time t∗ the number of good individuals is at least 1. In the worst case (again
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from the perspective of extinction) the population at time t∗ consists of 0n and
µ − 1 bad individuals with n − 1 ones. Provided that the (µ+1) EA does not
flip n − 2 bits at once, we now argue that the number of good individuals is
monotone unless the unique 0-bit in a bad individual is flipped.

Due to the assumptions on the population only offspring with fitness at
least n − 1 are accepted, i. e., only good or bad offspring. In order to create a
bad offspring, the unique 0-bit has to be flipped since otherwise a clone or an
individual with worse fitness is obtained. Hence the number of good individuals
can only decrease if a bad individual is chosen as parent and its unique 0-bit is
flipped. If there are i good individuals, we denote this event by Bi and have
P(Bi) = (µ − i)/µ · 1/n.

On the other hand, the number of good individuals is increased from i to
i + 1 if a good offspring is created and a bad individual is removed from the
population. We denote this event by Gi. A good offspring is created with
probability at least 1/(3µ) for the following reasons. The point 0n is selected
with probability at least 1/µ and then there are n − (i − 1) ≥ (e/3) · n 1-bit-
mutations creating good offspring that are not yet contained in the population
(provided n is large enough). Along with the fact that a specific 1-bit-mutation
has probability 1/n · (1 − 1/n)n−1 ≥ 1/(en), the bound 1/(3µ) follows. After
creating such a good offspring, the algorithm removes an individual with fitness
n− 1 uniformly at random. As there are i− 1 good individuals with this fitness
and µ − i bad individuals, the probability to remove a bad individual equals
(µ − i)/(µ − 1) ≥ (µ − i)/µ. Together,

P(Gi) ≥ 1

3µ
· µ − i

µ
=

µ − i

3µ2
.

Along with inequality (1), the probability that Gi happens before Bi is at least

µ−i
3µ2

µ−i
3µ2 + µ−i

µn

=
1

1 + 3µ/n
= 1 − 3µ/n

1 + 3µ/n
≥ 1 − 3µ

n
.

The probability that the number of good individuals increases to µ before the
global optimum is reached is

µ
∏

i=1

P(Gi | Gi ∪ Bi) ≥
(

1 − 3µ

n

)µ

≥ 1 − 3µ2

n
= 1 − o(1).

Adding up all error probabilities, the first claim follows.
The claim on the expected optimization time follows as the probability to

create a global optimum, provided the population contains only search point
with at most one 1-bit, is at most n−(n−1).

5 No Phenotype Duplicates

Avoiding genotype duplicates does not help much to optimize Twomax as indi-
viduals from one branch are still allowed to spread on a certain fitness level and
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take over the population. A more restrictive mechanism is to avoid phenotype
duplicates, i. e., multiple individuals with the same fitness. Such a mechanism
has been defined and analyzed by Friedrich et al. [3] for plateaus of constant
fitness.

The following (µ+1) EA with phenotype diversity avoids that multiple indi-
viduals with the same fitness are stored in the population. If at some time step
t, a new individual x is created with the same fitness value as a pre-existing one
y ∈ Pt, then x replaces y.

Alg. 3 : (µ+1) EA with phenotype diversity

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
Repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x with probability 1/n.
If there exists z ∈ Pt such that f(y) = f(z)
then Pt+1 = Pt \ {z} ∪ {y},
else

Choose z ∈ Pt with minimal fitness.
If f(y) ≥ f(z) then Pt+1 = Pt \ {z} ∪ {y}

else Pt+1 = Pt.
Let t = t + 1.

From the analysis of Friedrich et al. [3] it can be derived that if the population
size µ is a constant, then the runtime on a simple plateau is exponential in the
problem size n. Only if µ is very close to n the expected runtime is polynomial.
In particular, if µ = n then the same upper bound as that of the (1+1) EA
for plateaus of constant fitness [8] can be obtained (i. e., O(n3)). Probably,
the phenotype diversity mechanism is not effective on simple plateaus. In the
following, by analyzing the mechanism on Twomax, we show how also on a
simple bimodal landscape, phenotype diversity does not help the (µ+1) EA to
avoid getting trapped on a local optimum.

Since the diversity mechanism does not accept multiple individuals with the
same fitness value, it does not make sense to have a population size that is
greater than the number of different fitness function values. For the Twomax

function this number is roughly n/2.
The following theorem proves that if the population is not too large, then

with high probability the individuals climbing one of the two branches will be
extinguished before any of them reach the top. Since the two branches of the
Twomax function are symmetric, this also implies that the global optimum will
not be found in polynomial time with probability 1/2 − o(1).

Theorem 3. The (µ+1) EA with phenotype diversity and µ = o(n1/2) does
not reach in polynomial time on Twomax the global optimum with probability
1/2 − o(1). Its expected optimization time is nΩ(n).
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Proof. We assume that the very unlikely situation that the global and the local
optimum are created during initialization does not happen. As proved in previ-
ous theorems such probability is exponentially small. We are interested in the
first generation T ∗ where the local optimum or the global one is created. The
probability that the local optimum is created equals 1/2 due to the symmetry
of the Twomax function.

Let individuals with i < n/2 zero-bits be called xi and ones with i < n/2
one-bits be called yi. Because of the phenotype diversity mechanism there may
be only one xi or one yi in the population at the same time for i ≥ 1. Consider a
situation where the local optimum y0 = 0n is reached before the global optimum
and note that due to the phenotype diversity y0 will remain in the population if
µ ≥ 2. We will show that with probability 1−o(1) the population {y0, . . . , yµ−1}
is created before the global optimum is found.

Then, if yi for i ≤ µ − 1 is chosen as parent, the minimum number of bits
that have to flip in order to create some xi for i ≤ µ − 1 is n − 2n1/2. This
probability is at most

(

n

2n1/2

)(

1

n

)n−2n1/2

≤ 1

(n − 2n1/2)!
= n−Ω(n).

The probability that this happens at least once in ncn steps is still exponentially
small if c > 0 is a small enough constant. This proves the claim on the expected
optimization time.

It remains to be proved that the population {y0, . . . , yµ−1} is reached with
probability 1−o(1). Let m be the smallest i such that yi+1 /∈ Pt. Note that m ≤
µ − 1. From the perspective of extinction, the following worst case population

Pt = {y0, . . . , ym, xm+1, . . . , xµ−1}

maximizes the probability of reaching the global optimum. We are optimistically
assuming that the x-individuals are always one fitness level behind each other.
It may happen that the next step creates ym+1. Then xm+1 is removed from the
population and m increases by 1. Such a step is called a good step. Note that m
is not changed if ym+i is created for i ≥ 2. For these steps, we pessimistically
assume that the current population is still the worst case population. On the
other hand, if xi for i ≤ m is created, then yi is removed and m decreases to
i− 1. This is referred to as a bad step. All other steps lead us back to our worst
case population.

We show that with high probability m increases to µ − 1 before a bad step
happens. If xi is chosen as parent, a necessary condition for a bad step is that
i − m out of i 0-bits flip. Hence the probability of a bad step is at most

µ
∑

i=m+1

1

µ

(

i

i − m

)(

1

n

)i−m

=
1

µ

µ−m
∑

i=1

(

i + m

i

)(

1

n

)i

≤ 1

µ

∞
∑

i=1

(µ

n

)i

≤ 1

µ
· µ

n − µ
=

1

n − µ
≤ 2

n
,
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using µ = o(n1/2) ≤ (1− e/3)n < n/2 if n large enough. Hence, the probability
of a good step is at least

1

µ
· n − m

en
≥ 1

µ
· n − µ

en
≥ 1

3µ

since it suffices to select ym and to flip exactly one out of n − m bits. So, the
probability that a good step happens before a bad step is at least

1/(3µ)

1/(3µ) + 2/n
= 1 − 1

n/(6µ) + 1
≥ 1 − 3µ

n
.

The probability to increase m to µ− 1 by good steps before a bad step happens
is bounded by

(

1 − 3µ

n

)µ

≥ 1 − 3µ2

n
= 1 − o(1),

which concludes the proof.

Also if the population is larger than o(n1/2) with probability 1 − o(1) the
time to reach the global optimum is exponential in the problem size if the local
optimum is found first. Drift analysis will be used to prove the above state-
ment. This proof method was initially introduced by Hajek [6] and afterwards
was extended to the run-time analysis of EAs by He and Yao [7]. A general
description of the technique can be found in [12]. The following Drift theorem
is a useful extension of the general proof method for proving run-time lower
bounds that hold with exponentially high probabilities. Its first application can
be found in [4].

Theorem 4 (Drift Theorem). Let X0, X1, X2, . . . be a Markov process over a
set of states S, and g : S → R+

0 a function that assigns to every state a non-
negative real number. Pick two real numbers a(l) and b(l) which depend on a
parameter l ∈ R+ such that 0 < a(l) < b(l) holds and let the random variable
T denote the earliest point in time t ≥ 0 where g(Xt) ≤ a(l) holds.

If there are constants λ > 0 and D ≥ 1 and a polynomial p(l) taking only
positive values, for which the following four conditions hold

1. P(g(X0) ≥ b(l)) = 1

2. b(l) − a(l) = Ω(l)

3. ∀t ≥ 0: E[e−λ(g(Xt+1)−g(Xt)) | Xt, a(l) < g(Xt) < b(l)) ≤ 1 − 1/p(l)]

4. ∀t ≥ 0: E[e−λ(g(Xt+1)−b(l)) | Xt, b(l) ≤ g(Xt)] ≤ D,

then for all time bounds B ≥ 0, the following upper bound on probability holds
for random variable T

P(T ≤ B) ≤ eλ(a(l)−b(l)) · B · D · p(l).
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The following theorem proves exponential expected time for the (µ+1) EA
with phenotype diversity on Twomax for any value of µ. We point out again
that, given the diversity mechanism, it does not make sense to have a population
size of µ > n/2.

Theorem 5. The (µ+1) EA with phenotype diversity does not reach in poly-
nomial time on Twomax the global optimum with probability 1/2 − o(1). Its
expected optimization time is eΩ( 3

√
n).

Proof. We pick up the line of thought from the proof of Theorem 3. With
probability 1 − o(1), 3

√
n + 1 = o(n1/2) individuals y0, y1 . . . y 3

√
n are created

before the global optimum is found. From the perspective of extinction the
worst case population is Pt = {y0, . . . , y 3

√
n, x 3

√
n+1, . . . , xµ}. In the following

we will use the drift theorem to prove that then with overwhelming probability it
will take exponential time before the global optimum is created. Pessimistically
arguing with worst-case populations as in Theorem 3 implies that the process
we analyze drifts away from the optimum more slowly compared to the actual
one.

Let Xt be the population at time t and let g(Xt) denote the minimal Ham-
ming distance of any individual in the population to the global optimum. Note
that this distance corresponds to the number of 0-bits of the closest individual
to the optimum and that it equals the value m+1 from the proof of Theorem 3.
We define a(l) := 0 and b(l) := 3

√
n + 1, that is, g(Xt) = a(l) = 0 contains the

global optimum, while the population Xt with g(Xt) = b(l) is 3
√

n+1 bits away.
With the µ − 3

√
n − 1 individuals one fitness level behind each other,

P(g(X0) ≥ b(l)) = 1 is satisfied. Also Condition 2 is satisfied since b(l)− a(l) =
3
√

n − 0 = Ω( 3
√

n).
Conditions 3 and 4 still have to be proved to hold. Let pj := P(g(Xt+1) −

g(Xt) = j | Xt, a(l) < g(Xt) < b(l)), then we rewrite Condition 3 as

1
∑

j=− 3
√

n

pj · e−λj ≤ 1 − 1/p(l). (2)

A move with negative j is heading towards the optimum while one with positive
j is drifting away. A move with j = 1 occurs if yg(Xt)−1 is selected as parent
and exactly one out of n − (g(Xt) − 1) ≥ n − 3

√
n zeros is flipped. Hence

p0 ≤ 1 − p1 ≤ 1 − 1

µ
· n − 3

√
n

n
·
(

1 − 1

n

)n−1

≤ 1 − 1

2eµ
.

The probability of a step of length j ≥ 1 towards the optimum is maximal if
g(Xt) = b(l) = 3

√
n. A necessary condition is to choose x 3

√
n+i and to create

x 3
√

n−j by a step flipping i+j 0-bits for some i ≥ 0. Since (i+j)! ≥ (i+1)! ·j! ≥
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((i + 1)/e)i+1 · j!, we have

p−j ≤ 1

µ

µ− 3
√

n
∑

i=0

(

i + 3
√

n

i + j

)(

1

n

)i+j

≤ 1

µ

µ− 3
√

n
∑

i=0

(

i + 3
√

n

n

)i+j

· 1

(i + j)!

≤ 1

µ
· 1

j!

µ− 3
√

n
∑

i=0

(

i + 3
√

n

n

)i+1

· 1

(i + 1)!

≤ 1

µ
· 1

j!

µ− 3
√

n
∑

i=0

(

e(i + 3
√

n)

(i + 1)n

)i+1

≤ 1

µ
· 1

j!

µ− 3
√

n
∑

i=0

(

e 3
√

n

n

)i+1

=
1

µ
· 1

j!
· O(n−2/3).

As
∑∞

j=0 eλj/(j!) = exp(eλ),

3
√

n
∑

j=1

p−je
λj =

1

µ
·

3
√

n
∑

j=1

eλj

j!
· O(n−2/3) ≤ 1

µ
· eeλ · O(n−2/3).

Together, using the trivial bound p1 ≤ 1, the left-hand side of Inequality 2 is
bounded by

e−λ

µ
+ 1 − 1

2eµ
+

1

µ
· exp(eλ) · O(n−2/3)

= 1 − 1

µ

(

−e−λ +
1

2e
− exp(eλ) · O(n−2/3)

)

≤ 1 − 1

p(l)

if λ := 2, p(l) := 6n, and n is large enough.
The proof of condition 4 is easier. The following expectation has to be

estimated:
∀t ≥ 0: E[e−λ(g(Xt+1)−b(n)) | Xt, b(n) < g(Xt)].

This is less or equal to:

E[e−λ(g(Xt+1)−g(Xt)) | Xt, b(n) < g(Xt)] ≤
0
∑

j=−n+(µ−1)

rj · e−λj

Here rj is the probability that the population Xt at time step t such that
b(l) < g(Xt) performs a step of length j. The probability of a move going
towards the optimum is highest when the process is in position j = n− (µ− 1).
In this case the population is Pt = {y0, y1 . . . , yµ−1}. From this position no

12



moves may occur heading away from the optimum. We bound the sum as
follows:

n−µ
∑

j=0

r−j · eλj ≤
∞
∑

j=0

eλj

(

n

j

)

1

nj
≤

∞
∑

j=0

eλj

j!
= exp(eλ) < D

Since the inequality is satisfied for any constant λ and D large enough con-
stant, condition 4 also holds.

Hence, the expected runtime is exponential (that is, eΩ( 3
√

n)) with overwhelm-
ing probability for B = ec·l and c sufficiently small, since λ(a(l) − b(l)) =
−Ω( 3

√
n).

6 Deterministic Crowding

In the deterministic crowding mechanism [10], offspring compete directly with
their respective parents. In the following algorithm, an offspring replaces its
parent if its fitness is at least as good.

Alg. 4 : (µ+1) EA with deterministic crowding

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
Repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x with probability 1/n.
If f(y) ≥ f(x) then Pt+1 = Pt \ {x} ∪ {y}

else Pt+1 = Pt.
Let t = t + 1.

The algorithm closely resembles a parallel (1+1) EA since µ individuals
explore the landscape independently. However, interactions between the indi-
viduals may be obtained by using other operators together with mutation. The
crowding mechanism was introduced to guarantee diversity between individuals
for the greater effectiveness of the recombination operator [10]. Recently, the
mechanism together with crossover has proved to be useful in vertex cover prob-
lems by making the difference between polynomial and exponential runtimes for
some instances [11]. Here we concentrate on the capabilities of guaranteeing di-
versity of the mechanism by analyzing the (µ+1) EA with deterministic crowd-
ing on the Twomax function. For sufficiently large populations the algorithm
can easily reach both local optima.

Theorem 6. The (µ+1) EA with deterministic crowding and µ = poly(n)
reaches on Twomax a population consisting of only local or global optima in
expected time O(µn log n). In that case the population contains at least one
global optimum with probability at least 1 − 2−µ.

13



Proof. The main observation for the second statement is that the individuals
of the population are independent due to the crowding mechanism. Due to the
symmetry of Twomax, the i-th individual in the population reaches the global
optimum with probability 1/2. The probability that at least one individual finds
the global optimum is 1 − (1/2)µ.

Let T be the random time until all individuals have reached local or global
optima on Twomax. It is easier to find a local optimum on Twomax than to
find a global optimum on Onemax, hence we estimate E(T ) by the expected
global optimization time on Onemax. Let P = {x1, . . . , xµ} and Ai,j denote
the event that the i-th 0-bit in xj is flipped by a 1-bit-mutation. (We do not
consider fixed bit positions since mutation may turn a 1-bit to 0 and a 0-bit to
1, hence exchanging these two bits.) Clearly, all individuals in the population
reach the optimum of Onemax within t steps if during this period Ai,j happens
for all 1 ≤ j ≤ µ and all 1 ≤ i ≤ |xj |0. In a single generation, we have
P(Ai,j) ≥ 1/(enµ) (provided i ≤ |xj |0) since xj is selected for mutation with
probability 1/µ and a specific 1-bit-mutation has probability at least 1/(en).
Let t := enµ(lnµ + lnn + ln 2). The probability that Ai,j does not happen
within t steps is bounded by

(

1 − 1

enµ

)enµ(ln µ+ln n+ln 2)

≤ e−(lnµ+ln n+ln 2) =
1

2nµ
.

By the Union bound, the probability that some event Ai,j does not happen
during t steps is at most 1/2. We conclude that after t steps all individuals
reached the optimum with probability 1/2. In case this does not happen, we
simply repeat the arguments with a new period of t steps. The expected number
of periods is at most 2, yielding the bound E(T ) ≤ 2t = O(µn log n) since
µ = poly(n).

7 Fitness Sharing

Fitness sharing (see, e. g., [10]) derates the real fitness of an individual x by
an amount that represents the similarity of x to other individuals in the pop-
ulation. The similarity between x and y is measured by a so-called sharing
function sh(x, y) ∈ [0, 1] where a large value corresponds to large similarities
and value 0 implies no similarity. The idea is that if there are several copies
of the same individual in the population, these individuals have to share their
fitness. As a consequence, selection is likely to remove such clusters and to keep
the individuals apart. We denote the shared fitness of x in the population P as

f(x, P ) =
f(x)

∑

y∈P sh(x, y)
.

The fitness of the population is then defined as

f(P ) =
∑

x∈P

f(x, P ).
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It is common practice to use a so-called sharing distance σ such that individuals
only share fitness if they have distance less than σ. Given some distance function
d, a common formulation for the sharing function is

sh(x, y) = max{0, 1 − (d(x, y)/σ)α}

where α is a positive constant that regulates the shape of the sharing function.
We use the standard setting α = 1 and set the sharing distance to σ = n/2 as
this is the smallest value that still enables us to distinguish between the two
branches. As Twomax is a function of unitation, we allow the distance function
d to depend on the number of ones: d(x, y) :=

∣

∣ |x|1 − |y|1
∣

∣. Such a strategy is
known as phenotypic sharing [10]. Our precise sharing function is then

sh(x, y) = max

{

0, 1 − 2

∣

∣ |x|1 − |y|1
∣

∣

n

}

.

We now incorporate fitness sharing into the (µ+1) EA. Our goal is to evolve
a good population, hence selection works by comparing candidates for next
generation’s population w. r. t. their f(P )-values. This selection strategy has
already been analyzed by Sudholt [15].

Alg. 5 : (µ+1) EA with fitness sharing

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
Repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x with probability 1/n.
Let P ∗

t := Pt ∪ {y}.
Choose z ∈ P ∗

t such that f(P ∗
t \ {z}) is maximized.

Let Pt+1 = P ∗
t \ {z} and t = t + 1.

Note that when evaluating f(P ∗
t \ {z}) the shared fitness values have to be

recomputed for all these populations. However, with the use of dictionaries it
suffices to compute f(y) and the sharing values sh(x, y) for x ∈ Pt only once.

We now show that the (µ+1) EA with fitness sharing can find both optima
on Twomax. Imagining all parents and the new offspring on a scale of |x|1, the
individuals with the smallest and the largest number of ones have the largest
distance to all individuals in the population. Therefore, fitness sharing makes
these outer individuals very attractive in terms of shared fitness, hence these
individuals are taken over to the next generation. This even holds if an outer
individual has the worst fitness in the population.

Lemma 1. Consider the (µ+1) EA with fitness sharing and µ ≥ 2 on Twomax.
Let P ∗

t be the enlarged parent population at some point of time t and w. l. o. g.
let P ∗

t = {x1, . . . , xµ+1} with |x1|1 ≤ |x2|1 ≤ · · · ≤ |xµ+1|1. If |xµ|1 < |xµ+1|1
then xµ+1 ∈ Pt+1. Also, if |x1|1 < |x2|1 then x1 ∈ Pt+1.
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Proof. We only prove xµ+1 ∈ Pt+1 for |xµ|1 < |xµ+1|1. The second claim for the
case |x1|1 < |x2|1 follows by symmetry. Let P− := P ∗

t \{xµ+1}, P+ := P ∗
t \{xµ}

and P∩ := P+ ∩ P−. We will prove f(P−) < f(P+). This implies that P−

does not have maximal population fitness among all possible next populations
P ∗

t \ {z} examined in the selection step, hence xµ+1 remains in the population.
We first assume f(xµ) ≤ f(xµ+1). Observe that sh(xµ, x) > sh(xµ+1, x)

for x ∈ P∩ due to the ordering of the xi and the definition of sh. Hence,
∑

y∈P− sh(xi, y) >
∑

y∈P+ sh(xi, y) for x ∈ P∩ and
∑

y∈P− sh(xµ, y) >
∑

y∈P+ sh(xµ+1, y). Together, we obtain

f(P−) =
∑

x∈P∩

f(x)
∑

y∈P− sh(x, y)
+

f(xµ)
∑

y∈P− sh(xµ, y)

<
∑

x∈P∩

f(x)
∑

y∈P+ sh(x, y)
+

f(xµ+1)
∑

y∈P+ sh(xµ+1, y)

= f(P+).

It remains to show f(P−) < f(P+) for the case f(xµ) > f(xµ+1). We want to
examine the impact of the distance between the two individuals on the fitness
and the sharing function. Therefore, we define

d̃ := min
{

|xµ+1|1 ,
n

2

}

− |xµ|1 .

Note that d̃ ≥ 0 as |xµ|1 ≤ n/2 follows from f(xµ) > f(xµ+1). The following
two properties follow immediately from the definition of sh(·, ·) and f(·):

∀x ∈ P∩ : sh(x, xµ+1) ≤ sh(x, xµ) − 2d̃

n
, (3)

f(xµ) − d̃ ≤ f(xµ+1). (4)

We will later also prove the following three inequalities:

∀x ∈ P∩ :
f(x, P−)

f(x, P+)
≤ 1 − 2d̃

nµ
(5)

f(xµ, P−)

f(xµ+1, P+)
< 1 +

2d̃

nµ
(6)

f(xµ+1, P
+) ≤

∑

x∈P∩

f(x, P+) (7)

Using that all terms are positive, inequalities (5), (6), and (7) suffice to prove
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our claim:

f(P−) = f(xµ, P−) +
∑

x∈P∩

f(x, P−)

< f(xµ+1, P
+) ·

(

1 +
2d̃

nµ

)

+
∑

x∈P∩

f(x, P+) ·
(

1 − 2d̃

nµ

)

≤ f(P+) − 2d̃

nµ

(

∑

x∈P∩

f(x, P+) − f(xµ+1, P
−)

)

≤ f(P+).

It remains to prove the inequalities (5), (6), and (7).
Proof of inequality (5): By inequality (3),

f(x, P−)

f(x, P+)
=

∑

y∈P+ sh(x, y)
∑

y∈P− sh(x, y)

≤
∑

y∈P∩ sh(x, y) + sh(x, xµ) − 2d̃/n
∑

y∈P∩ sh(x, y) + sh(x, xµ)

≤ µ − 2d̃/n

µ

using that the sharing function is at most 1. Reducing the last fraction by µ,
inequality (5) follows.

Proof of inequality (6): By inequality (4) and f(x) ≥ n/2 for any x ∈ {0, 1}n,
we have

f(xµ+1)

f(xµ)
≥ f(xµ) − d̃

f(xµ)
≥ n/2 − d̃

n/2
= 1 − 2d̃

n
.

Also, using inequality (3), we obtain
∑

y∈P+ sh(xµ+1, y)
∑

y∈P− sh(xµ, y)
=

1 +
∑

y∈P∩ sh(xµ+1, y)

1 +
∑

y∈P∩ sh(xµ, y)

≤
1 +

∑

y∈P∩(sh(xµ, y) − 2d̃/n)

1 +
∑

y∈P∩ sh(xµ, y)

≤ 1 + (µ − 1)(1 − 2d̃/n)

µ
. (8)

Taking the last two estimations together,

f(xµ, P−)

f(xµ+1, P+)
=

∑

y∈P+ sh(xµ+1, y)
∑

y∈P− sh(xµ, y)
· f(xµ)

f(xµ+1)

≤ 1 + (µ − 1)(1 − 2d̃/n)

µ(1 − 2d̃/n)

=
1 − 2d̃

n + 2d̃
nµ

1 − 2d̃
n

< 1 +
2d̃

nµ
,

17



which proves inequality (6).
Proof of inequality (7): First consider the right-hand side of inequality (7).

This term is minimized if all x ∈ P∩ equal xµ since then for all individuals in P∩

fitness is minimized and sharing is maximized. Along with f(xµ) ≥ f(xµ+1),

∑

x∈P∩

f(x, P+) ≥ (µ − 1) · f(xµ)

µ − 1 + (1 − 2d̃/n)
≥ f(xµ+1)

1 + 1−2d̃/n
µ−1

. (9)

Note that inequality (8) also implies
∑

y∈P+ sh(xµ+1, y) ≤ 1+(µ−1)(1−2d̃/n).
Hence, the left-hand side of inequality (7) can be estimated by

f(xµ+1, P
+) ≤ f(xµ+1)

1 + (µ − 1)(1 − 2d̃/n)
. (10)

Comparing the denominators of inequality (9) and inequality (10), inequality (7)
follows since (µ − 1)2 ≥ 1.

Now it is easy to prove an upper bound on Twomax. To the best of our
knowledge, the following theorem provides the first runtime analysis of an EA
with fitness sharing for population sizes greater than 2.

Theorem 7. The (µ+1) EA with fitness sharing and µ ≥ 2 reaches on
Twomax a population containing both optima in expected optimization time
O(µn log n).

Proof. For a population P , we consider the following characteristic values as
potential functions: m0(P ) denotes the maximum number of zeros and m1(P )
the maximum number of ones for the individuals in P . We are interested in the
expected time until both potentials become n.

According to Lemma 1, both potentials are non-decreasing. If m0(P ) = k
then we wait for an individual with k zeros to be chosen and for the number of
zeros to be increased. The expected time for this to happen is bounded from
above by O(µ · n/(n − k)). Hence, the expected time until the m0-potential
reaches its maximum value n is O(µn log n). A symmetrical statement holds
for the m1-potential, hence the expected time until both optima are found is
O(µn log n).

8 Conclusions

We have examined the behavior of different diversity mechanisms on a fitness
landscape consisting of two hills with symmetric slopes. We rigorously proved
that without any diversification the (µ+1) EA is unable to climb up both hills
(Theorem 1). This still holds if we avoid genotype or phenotype duplicates. On
the other hand, stronger diversity mechanisms like fitness sharing and deter-
ministic crowding allow the (µ+1) EA to find both optima of our test function
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Twomax with high probability. For fitness sharing we could prove this for ar-
bitrary populations of size µ ≥ 2. For deterministic crowding, a slightly larger
population is needed.

The work has also revealed important open problems. Theorems 1 and 2
apply only to sublinear population sizes. While experimental studies indicate
similar results for larger populations, a theoretical analysis is difficult. It seems
that a more thorough understanding of the long-term dynamics of genetic drift
is required to strengthen the theorems.
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