
TECHNISCHE UNIVERSITÄT DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Memetic Algorithms with Variable-Depth Search
to Overcome Local Optima

Dirk Sudholt

No. CI-238/08

Technical Report ISSN 1433-3325 January 2008

Secretary of the SFB 531 · Technische Universität Dortmund · Dept. of Computer
Science/LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the Technische Universität Dortmund and was printed with financial
support of the Deutsche Forschungsgemeinschaft.

Memetic Algorithms with Variable-Depth Search

to Overcome Local Optima

Dirk Sudholt∗

Fakultät für Informatik, LS 2

Technische Universität Dortmund

Dortmund, Germany

dirk.sudholt@cs.uni-dortmund.de

Abstract

Variable-depth search (VDS) is well-known as Lin-Kernighan strategy
for the TSP and Kernighan-Lin for graph partitioning. The basic idea is
to make a sequence of local moves and to freeze all moved combinatorial
objects to prevent the search from looping. VDS stops when no further
local move is possible and returns a best found solution.

We analyze memetic algorithms with VDS for three binary combina-
torial problems: Mincut, Knapsack, and Maxsat. More precisely, we focus
on simply structured problem instances containing local optima that are
very hard to overcome. Many common trajectory-based algorithms fail
to find a global optimum: the (1+1) EA, iterated local search, and sim-
ulated annealing need exponential time with high probability. However,
memetic algorithms using VDS easily manage to find a global optimum
in expected polynomial time. These results strengthen the usefulness of
memetic algorithms with VDS from a theoretical perspective.

1 Introduction

Over the past decades, a plethora of randomized search heuristics has been
proposed, analyzed, and applied to problems from combinatorial optimization.
Simulated Annealing is a simple hill-climber that may, however, accept worse
solutions with a probability monotone in the current temperature. The temper-
ature is typically decreased over time, which gradually changes the focus from
exploration to exploitation. Evolutionary algorithms create new solutions by
mutation and/or recombination and try to obtain good solutions by selecting
individuals with high fitness. Memetic algorithms [6] additionally incorporate

∗supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of the Collaborative
Research Center “Computational Intelligence” (SFB 531)

1

local search into this search process to speed up the evolution. One such algo-
rithm is known as iterated local search [13] where local search is used in every
generation to find a local optimum. Then a large kick move or perturbation is
performed in the hope for a basin of attraction of a better local optimum.

1.1 Strategies to Overcome Local Optima

All these heuristics have to deal with the possibility of reaching a poor local
optimum. Population-based heuristics usually rely on diversifying the search to
explore different local optima. However, it may happen that the whole popu-
lation converges to non-global local optima and then the situation is not too
different from trajectory-based algorithms, that is, algorithms maintaining only
a single current solution. These algorithms have to rely on different mechanisms
to overcome local optima.

We describe some common approaches to overcome local optima and give
pointers to related theoretical works, with a focus on combinatorial optimiza-
tion.

1. Accept solutions with inferior fitness:

Simulated Annealing may accept solutions with inferior fitness, enabling
the algorithm to climb down a hill. This well-known strategy proved to be
effective for graph bisection (Jerrum and Sorkin [10]), the two-dimensional
Ising model (Fischer [3]), and minimum spanning trees (Wegener [22]).

2. Decrease the attractiveness of local optima:

Tabu search maintains a tabu list of solutions that are ”taboo” for the
algorithm, hence making the local optimum less attractive. Diversity
mechanisms like fitness sharing may as well decrease the attractiveness
of a local optimum. If many individuals are concentrated on one local
optimum, they are forced to ”share” their fitness according to their sim-
ilarity. Hence, the algorithm is encouraged to decrease similarity in the
population. The effectiveness of fitness sharing has been shown recently
(Friedrich, Oliveto, Sudholt, and Witt [4]) for a toy problem that, how-
ever, has the same structure as the Mincut instance we will investigate in
Section 4.

3. Use larger or multiple neighborhoods:

Evolutionary algorithms typically use a stochastic neighborhood where
every search point has a positive probability to be created. This simple
property enables the approximation of maximum matchings (Giel and We-
gener [5]) and balanced partitions (Witt [23]). In addition, evolutionary
algorithms may use crossover to recombine different local optima. The
usefulness of crossover was first shown for toy problems (Jansen and We-
gener [8]). Moreover, crossover together with fitness sharing is effective
for (a problem equivalent to) 2-coloring binary trees (Sudholt [18]). The
idea of using different neighborhoods is dominant in variable neighbor-
hood search algorithms (see, e. g., [14]) exploiting that a local optimum

2

w. r. t. one neighborhood need not be a local optimum w. r. t. another one.
Memetic algorithms like iterated local search also fall into this category as
they combine mutation and local search. Their usefulness so far has only
been proven for artificial problems (Sudholt [20]).

Another common strategy is to restart the algorithm after convergence to
local optima. This can be seen as a very large perturbation and hence falls into
the third category.

1.2 Variable-depth search

In this work we will consider a special local search operator for use within
the framework of iterated local search, so-called variable depth search (VDS).
Variable-depth search is well-known for the TSP as Lin-Kernighan strategy [12]
and for Maxcut as Kernighan-Lin [11]. The idea is to perform a sequence of
local moves. The next local move is chosen in a greedy fashion. If there is
a local move that increases fitness, then a move with maximal fitness gain is
chosen. Otherwise, a move with minimal loss in fitness is selected. To prevent
the algorithm from looping, certain parts of the search space are made ”tabu”.
For binary search spaces this means that if VDS flips some bit, then this bit
cannot be flipped again during the run of VDS. The output of VDS is then a
best solution from the sequence of local moves.

Iterated local search using VDS combines approaches from all three men-
tioned categories to overcome local optima. Firstly, it easily traverses solutions
with inferior fitness if no fitness-improving move is available. Secondly, starting
with a local optimum this local optimum is made ”tabu” like in tabu search
since steps moving back towards the local optimum are not allowed. The only
difference to classical tabu search is that we do not keep a tabu list of single
individuals, but render large parts of the search space tabu. Finally, we employ
different neighborhoods: VDS and mutation as perturbation.

This combination of strategies makes it easy for VDS to overcome local
optima. Another remarkable aspect is the greedy component in VDS since we
always choose a best move among the feasible local moves. We will in the
following give examples where this greedy behavior provides a good guidance
for the algorithm in order to find a global optimum.

1.3 Our Results

We will investigate memetic algorithms with VDS on combinatorial problems
using rigorous runtime analyses. Such rigorous results for memetic algorithms
are scarce; the only rigorous runtime analyses of memetic algorithms appeared
only recently (Sudholt [19, 20]). The investigated problems are artificial pseudo-
Boolean functions, defined to demonstrate the impact of the parametrization on
the performance of memetic algorithms. Our goal is to extend such analyses to
problems from combinatorial optimization.

3

We investigate instances of problems from combinatorial optimization, namely
Mincut, Knapsack, and Maxsat. Definitions and descriptions of these problems
are postponed to the following sections. The chosen instances contain non-
global local optima with large basins of attraction that are hard to overcome.
We will see that memetic algorithms with VDS are efficient on these functions
while many of the mentioned approaches fail to find a global optimum, even if
they are given exponential time. This holds in particular for trajectory-based
algorithms like the (1+1) EA, traditional iterated local search algorithms, and
simulated annealing.

The instances we consider have a very simple structure. This helps to keep
the argumentation simple and to focus on the essentials. We assume that the
reader is familiar with basic knowledge on common combinatorial optimization
problems. For details, we refer to appropriate text books, e. g. [16, 1, 21].

The remainder of this paper is structured as follows. First, we define all
investigated algorithms in Section 2. Section 3 contains lower bounds on the
runtime after the population has converged to local optima. In Sections 4, 5,
and 6 we then deal with instances for the problems Mincut, Knapsack, and
Maxsat, respectively. We conclude in Section 7.

2 Algorithms

The most natural metric in the search space {0, 1}n is the Hamming distance
H (x, y) between x and y, i. e., the number of bits differing in these two search
points. With N 1(x) = {y | H(x, y) = 1} we denote the open Hamming neigh-
borhood of x. In general, N d(x) contains all y with Hamming distance exactly
d to x.

These notions are extended to a set S ⊆ {0, 1}n as follows. H (x, S) =
miny∈S{H(x, y)} denotes the Hamming distance from x to S. Similarly, N d(S) =
{y | H(x, S) = d} contains all points with Hamming distance d to S. The diam-
eter of a neighborhood N is defined as the largest Hamming distance between
any x, y ∈ N (z). We restrict ourselves to symmetric neighborhoods in a sense
that H (x, z) = H (y, z) implies either x, y ∈ N (z) or x, y /∈ N (z).

We first define two local search operators used throughout this work. Stan-
dard local search accepts any neighbor with strictly larger fitness and stops
whenever a local optimum is reached or the number of iterations exceeds a
predefined value δ(n) called local search depth. The pivoting rule is random,
here, although results can easily be adapted to other pivoting rules like always
choosing the best neighbor.

Operator 1 (Standard local search).

For δ(n) iterations do
Choose a random z ∈ N (y) with f(z) > f(y)

or stop with output y if no such z exists.
Let y := z.

Return y.

4

We already explained the concept of VDS. In the following procedure Z
denotes the sequence of solutions encountered during VDS and L is a set of
indices for all bits that have been locked.

Operator 2 (Variable-depth search).
Z, L := ∅.
While Vy := {z ∈ N (y) | ∀i : (yi 6= zi ⇒ i /∈ L)} 6= ∅ {

Choose a random z ∈ Vy with maximal f -value.
Z := Z ∪ {z}.
L := L ∪ {i | yi 6= zi}.
y := z.

}
Return a random z ∈ Z with maximal f -value.

Note that one VDS takes at most n iterations since in every iteration of the
loop at least one index is added to L (we assume y /∈ N (y)). Using one of these
local search operators, we now define a memetic algorithm with population size
1, the (1+1) Memetic Algorithm or shortly (1+1) MA. Mutation is done by
flipping each bit independently with a fixed mutation probability pm.

Algorithm 1 ((1+1) Memetic Algorithm).
Choose x uniformly at random.
Repeat

Mutation: Create y by flipping each bit in x
with probability pm.

Local Search: Decide whether to use local search.
If ”yes” then y := local search(y).

Selection: If f(y) ≥ f(x) then x = y.

The decision whether to apply local search or not may depend on the current
time, e. g., applying local search with a fixed frequency [19]. We may also choose
to apply local search probabilistically with a fixed probability as done in [7]. The
algorithm where local search is called in each generation is called iterated local
search [13]. In particular, we will often refer to iterated VDS as the (1+1) MA
calling VDS in every generation.

All algorithms considered so far have in common that the best-so-far fitness
cannot decrease. Simulated annealing always accepts better solutions, but it
also allows worse solutions to be accepted. This decision is made dependent on
the size of the fitness decrease and a parameter called the temperature. If the
temperature equals 0, simulated annealing behaves like a hill-climber, i. e., it
doesn’t accept worsenings. The larger the temperature, the more likely it is to
accept worse solutions. It is common practice to start with a high temperature
and then to decrease the temperature over time. This way, simulated annealing
can explore the search space in the beginning and then gradually turns into a
hill-climber focusing on exploitation. A strategy to turn down the temperature
is called a cooling schedule. Unless otherwise noted, simulated annealing uses
the Hamming neighborhood N = N 1. It is formulated for maximization to
match previously defined algorithms.

5

Algorithm 2 (Simulated Annealing).
Choose x uniformly at random.
Let t = 0.
Repeat

Choose y ∈ N (x) uniformly at random.
Set x = y with prob. min{1, exp((f(y) − f(x))/T (t))}.
t = t + 1.

Simulated annealing with a fixed temperature is usually called Metropolis
algorithm. It was long unknown whether cooling down the temperature is really
essential for natural problems. In other words, it was unknown whether sim-
ulated annealing outperforms the Metropolis algorithm with an optimal choice
of the temperature. This question was recently solved in the affirmative by
Wegener [22] for the natural problem of computing a minimum spanning tree.

For the efficiency of an algorithm a plausible performance measure is the
number of generations until a global optimum is found. We will also consider
the number of function evaluations as performance measure, referred to as op-
timization time. Thereby, we in particular account for the computational effort
of local search. Note that the number of function evaluations in a generation
with local search is bounded above by δ(n) · | N | for greedy local search and by
n · | N | for VDS.

3 Lower Bounds When Stuck in Local Optima

We start our investigations with lower bounds for different algorithms after
convergence to local optima. A local optimum is difficult for an algorithm if it
has a large basin of attraction. This is especially true if the fitness decreases
with any local move leading away from the local optimum. Combinatorial fitness
landscapes often contain several local optima that are close to one another.
Therefore, it makes sense to group such local optima into sets.

Definition 1. A non-empty set S∗ ⊆ {0, 1}n is called α-difficult for α = α(n)
w. r. t. the function f and a neighborhood N if z ∈ N (y) and H (y, S∗) <
H (z, S∗) ≤ α implies f(y) > f(z) for any y, z ∈ {0, 1}n and S∗ does not
contain global optima.

The definition of α-difficulty implies that all search points with Hamming
distance less than α to S∗ have worse fitness than any point in S∗. This imme-
diately leads to lower bounds for the (1+1) MA once S∗ has been reached.

Lemma 1. Let S∗ be α-difficult. If the (1+1) MA using standard local search
with neighborhood of diameter d = O(1) and mutation probability pm ≤ (1− ε) ·
α/n for some ε > 0 reaches S∗, the remaining time until a global optimum is
found is 2Ω(α) with probability at least 1 − 2−Ω(α).

Proof. W. l. o. g. α grows with n, otherwise the theorem is trivial. Apart from
individuals in S∗, the (1+1) MA only accepts an offspring with Hamming dis-
tance at least α−d to its parent since otherwise local search runs back into S∗ or

6

stops with an inferior solution. With mutation probability at most (1−ε) ·α/n,
the expected number of flipping bits in one mutation is at most (1− ε) ·α. The
probability that at least α − d bits flip is at most 2−Ω(α) by Chernoff bounds
(see, e. g., [15]).

Simulated annealing can accept worse solutions with a certain probability
that depends on the loss in fitness and the current temperature T = T (t).
Escaping a single local optimum is easy if the temperature is high enough such
that all local moves have a good chance to be accepted. The reason is simple:
if the current solution is close to the local optimum, there are more local moves
leading away from it than moving closer to it. If the temperature is too low (or
has been cooled down too fast), escaping a local optimum is much more difficult.
We can make this precise for a scenario where the temperature leaves us with a
noticeable bias towards search points with high fitness.

Lemma 2. Let S∗ be α-difficult and let |f(x)− f(y)| ≥ ∆ = ∆(α) if y ∈ N (x)
and x, y have Hamming distance at most α to S∗. If simulated annealing with
temperature T (t) ≤ ∆/(ln(4n/α)) reaches a search point with Hamming distance
at most α/2 to S∗, the remaining optimization time is 2Ω(α) with probability
1 − 2−Ω(α).

Proof. Observe H (y, x∗) ≥ H(y, S∗) for any y and any x∗ ∈ S∗. This allows us
to focus on a single search point x∗ ∈ S∗ with minimal Hamming distance to
the current search point x. If H (x, S∗) = k and α/2 ≤ k < α, the probability
to increase the Hamming distance to x∗ (and hence S∗) by 1 is

p+ ≤ n − k

n
· e−∆/T < e−∆/T ≤ α

4n

due to the assumption on T . On the other hand, the probability to decrease the
Hamming distance to S∗ by 1 is

p− ≥ k

n
≥ α

2n

as all k steps moving closer to x∗ are accepted. Hence, conditional on an ex-
change of the current search point, the probability to move away from S∗ is at
most 1/3.

Consider the first point of time where simulated annealing creates a search
point x with H (x, S∗) = α/2 + 1 (w. l. o. g. assuming α to be even.) We now
argue that with high probability simulated annealing returns to distance α/2
before reaching distance α. By gambler’s ruin arguments [15], this probability
is at least

2α/2 − 2

2α/2 − 1
= 1 − 1

2α/2 − 1
= 1 − 2−Ω(α).

If we create a search point with distance at most α/2, we wait until the next
solution with distance α/2 + 1 is created and repeat the argumentation. The
time for one such trial is trivially bounded below by 1. By the union bound,
the probability that 2cα trials fail to create a solution with distance α is still of
order 2−Ω(α) if c > 0 is small enough.

7

We see that an α-difficult local optimum is challenging for both memetic
algorithms and simulated annealing as both have difficulties to traverse large
”valleys” in the fitness landscape. This similarity between EAs and simulated
annealing has already been recognized by Jansen and Wegener [9].

4 Mincut

Given an undirected graph G = (V, E), the problem Mincut is to partition
all vertices into two non-empty subsets V0, V1 such that the number of edges
between V0 and V1 is minimized. Such edges are called cut edges. We remark
that specialized algorithms can solve the Mincut problem in polynomial time,
even in the case of weighted graphs [17].

Given an ordering of the vertices V = {v1, . . . , vn}, we obtain a binary
representation x = x1 . . . xn ∈ {0, 1}n for n = |V | such that vi ∈ Vxi for every
i. If V0 and V1 are non-empty, the fitness function is encoded as follows. The
fitness is chosen as the number of non-cut edges, written as

∑

{u,v}∈E(xuxv +

(1 − xu)(1 − xv)). However, if V0 or V1 is empty, i. e., x ∈ {0n, 1n}, the non-
emptiness constraint is violated and we penalize such a solution by assigning a
negative f -value.

f(x) :=







∑

{u,v}∈E

(xuxv + (1 − xu)(1 − xv)) if x /∈ {0n, 1n}

−1 if x ∈ {0n, 1n}.

Consider the following instance G = (V, E) that consists of two cliques of size
n/2, each (see Figure 1).

V = {u1, . . . , un/2, v1, . . . , vn/2},
E = {{ui, uj}, {vi, vj} | 1 ≤ i < j ≤ n/2}.

Consider a partition V = V0 ∪ V1 where w. l. o. g. u1 ∈ V0. Obviously, the
optimal partition is V0 = {u1, . . . , un/2} with a cut of size 0. All partitions with
|V0| = 1 or |V0| = n − 1 are locally optimal with a cut size of n/2 as V0 and V1

are constrained to be non-empty (see Figure 1). These points form a set S∗ that
is α-difficult for α = ⌊n/4 − 1⌋ w. r. t. N 1 as every local move shifting a vertex
to the smaller set of the partition increases the cut size, unless it contains at
least half of a clique.

Theorem 1. The (1+1) MA with mutation probability
pm ≤ 1/5 and standard local search with neighborhood N 1 needs at least 2Ω(n)

generations for the Mincut instance with probability 1/2 − O(1/
√

n).

Proof. We already argued that all local optima are α-difficult for α = ⌊n/4 − 1⌋.
If n is large enough, we have 1/5 ≤ (1− ε) ·α/n for an appropriate ε > 0, hence
the claim follows from Lemma 1 if we can prove that the algorithm reaches S∗

with probability 1/2 − O(1/
√

n).

8

cut

cut

Figure 1: A global optimum (top) and a local optimum (bottom) for the Mincut
instance with n = 16.

Let S0 contain all four (feasible and infeasible) solutions with no cut edge.
Let S1 = N 1(S0). We now argue that with high probability the algorithm
evaluates a solution in S1 before evaluating one from S0. Let p1 and p0 denote
the probabilities to generate a solution in S1 and S0, respectively, once S0 ∪ S1

is reached. We claim that p1 = Ω(p0 ·
√

n). This implies that S1 is found before
S0 with probability 1 − O(1/

√
n).

Initialization creates each of the four search points in S0 with probability
2−n, hence we assume that the current population is not contained in S0. If
S0 ∪ S1 is reached during local search, the claim is trivial. Hence we focus on
mutation and fix a search point z ∈ S0. If the current solution x has Hamming
distance k to z, we have k solutions in S1 with Hamming distance k − 1 to
x and n − k solutions in S1 with Hamming distance k + 1. The probability of
reaching a specific y ∈ N 1(z) differs from the probability P (z) to reach z in just
one bit position. More precisely, the probabilities differ by factors pm/(1− pm)
or (1 − pm)/pm, dependent on whether this bit has to be flipped or not. Let
P (N 1(z)) denote the probabiliy to reach N 1(z), then

P (N 1(z)) ≥ k · P (z) · 1 − pm

pm
+ (n − k) · P (z) · pm

1 − pm

= P (z)

(

k(1 − pm)2 + (n − k)p2
m

pm(1 − pm)

)

= P (z)

(

k(1 − 2pm) + np2
m

pm(1 − pm)

)

We see that this term is increasing with k, hence in the worst case k = 2. Along

9

with pm ≤ 1/5, we arrive at the bound

P (N 1(z)) ≥ P (z)

(

1 + np2
m

pm

)

.

In case pm ≤ 1/
√

n the term in brackets is at least 1/pm ≥ √
n. If pm > 1/

√
n,

then this term is at least npm ≥ √
n as well. We conclude

P (N 1(z)) ≥ P (z) · √n.

Since this holds for all z ∈ S0, p1 ≥ p0 ·
√

n/2 follows and S1 is found before S0

with probability 1 − O(1/
√

n).
As long as no local optimum is found, the fitness is indifferent to the ques-

tion whether the majority of the u-vertices is in V0 or in V1. The same holds
independently for the v-vertices. Hence, if the first cut in S1 is created, given
that S0 has not been found yet, all cuts in S1 have the same probability to be
found. Half of these cuts are local optima, hence the probability that a local
optimum is found equals 1/2. By the union bound, the probability to reach a
local optimum is at least 1/2 − O(1/

√
n).

Reusing ideas from the proof of Theorem 1, it is easy to show that also
simulated annealing fails with probability close to 1/2.

Theorem 2. Simulated Annealing with any cooling schedule where T (t) is
monotone decreasing needs at least 2Ω(n) steps for the Mincut instance with
probability 1/2 − 2−Ω(n).

Proof. We divide a run into two phases: the first phase ends when the tem-
perature first drops to n/12 and then the second phase starts. Let T1 be the
number of generations in Phase 1 and let S0 and S1 be defined as in the proof
of Theorem 1. We first prove that in Phase 1 no solution in S0 will be evaluated
in exponential time, with high probability.

Consider a search point x with H (x, S0) = k ≤ e−6/4 · n. The probability
to increase the Hamming distance to S0 is

p+ ≥ n − k

n
· e−n/(2T) ≥ 1

2
· e−6

as the worst fitness decrease equals n/2. The probability to decrease the Ham-
ming distance to S0 equals

p− =
k

n
≤ 1

4
· e−6.

Together, the conditional probability to decrease the Hamming distance is bounded
by 1/3, provided that the Hamming distance is changed.

The probability that simulated annealing is initialized with a search point
x such that H (x, S0) ≤ e−6/4 · n is 2−Ω(n). Repeating the gambler’s ruin
arguments from the proof of Lemma 2, the probability that S0 is reached before

10

a point with Hamming distance larger than e−6/4 ·n to S0 is reached is 2−Ω(n).
The probability that this happens within the first min{T1, 2

cn} steps is still of
the same order if c > 0 is small enough.

This concludes the proof if T1 ≥ 2cn. Otherwise, we consider Phase 2 and
assume that S0 has not been reached in Phase 1. By the locality of the search
operator S1 is reached before S0 and the probability that a local optimum is
found equals 1/2.

Given a fixed Hamming distance k ≤ n/12 from S0, the minimal fitness
difference ∆ between two neighbors, as defined in Lemma 2, is attained when
only one clique is cut. In that case the cut clique has k vertices on one side
of the partition and when moving a (k + 1)-st vertex, the fitness decreases by
n/2− 2k ≥ n/3. Applying Lemma 2 with α = n/12 and ∆(α) = n/3 proves the
claim for T ≤ ∆/(ln(4n/α)) = 1/(3 ln(48)) and hence for T ≤ n/12.

We have seen that the local optima of the Mincut instance are extremely
hard for standard evolutionary algorithms, memetic algorithms, and simulated
annealing. In contrast to this, iterated VDS easily escapes from this local opti-
mum. The following proof is surprisingly simple.

Theorem 3. Iterated VDS without mutation finds a global optimum of the
Mincut instance in at most 2 generations with probability 1.

Proof. The first VDS reaches a global or local optimum. Assume that a local
optimum is reached and that w. l. o. g. V0 consists of a single u-vertex. In the
next call, VDS starts moving u-vertices to V0 as these operations lead to a
minimal fitness decrease. If at least half of the u-clique is contained in V0, the
fitness even increases when adding more u-vertices. Once all u-vertices have
been moved to V0, a global optimum is found.

5 Knapsack

The Knapsack problem is a well-known NP-hard combinatorial problem. Sup-
pose we are given a knapsack that can hold objects up to a specified weight
limit. Among a set of objects with associated values for profit and weight, we
have to select objects for the knapsack such that the total profit is maximized
while respecting the weight limit.

As a fitness function, we take the profit of all chosen objects if the weight
limit is respected. Otherwise, the fitness function gives hints to drop selected
objects.

f(x) :=

{

∑n
i=1 xivi if

∑n
i=1 xigi ≤ G

−∑n
i=1 xi if

∑n
i=1 xigi > G

Consider the following Knapsack instance I for odd n and N = (n + 1)/2.

1 ≤ i ≤ N : vi = gi = n

N < i ≤ n : vi = gi = n + 1

G = N · n

11

For all objects profit equals weight. Hence, this instance also represents an
instance of the subset sum problem, a restricted formulation of Knapsack.

Call the objects with weight n + 1 big and the other ones small. The weight
limit is chosen such that all N small objects exactly fit into the knapsack. This
selection yields a total profit of (n2 +n)/2. On the other hand, if one big object
is chosen, there is only space for a total number of N − 1 objects. If the current
packing also contains at least one small object, the profit may be increased by
dropping a small object and adding a big object, which increases the profit by
1. Thus, a packing of all N − 1 big objects is locally optimal with a profit of
(N − 1) · (n + 1) = (n2 − 1)/2.

We see that we have a non-optimal local optimum with all big objects and
a unique global optimum with N small objects. Furthermore, when reaching
the local optimum exchanging a big object for a small one decreases the fitness
and so do additions and removals of single objects. Only if all big objects have
been removed or exchanged, the last small object may be added to yield a
global optimum solution. In other words, the local optimum of big objects is
(n − 1)/2-difficult for the neighborhood N 1 ∪N 2.

Theorem 4. The optimization time of the (1+1) MA with standard local search
using any neighborhood with diameter d = O(1) and mutation probability pm ≤
1/2 for the Knapsack instance is 2Ω(n) with probability 1 − 2−Ω(n). The same
holds for simulated annealing with constant-diameter neighborhood and an arbi-
trary cooling schedule.

Proof. Let Sk be the set of packings with k selected objects. Let A <f B for
A, B ⊆ {0, 1}n if all search points in A have lower fitness than all search points
in B. For the instance I then

S0 <f S1 <f · · · <f SN−1 and

Sn <f Sn−1 <f · · · <f SN+1 <f (SN \ OPT)

where OPT denotes the unique global optimum 1N0N−1. This also holds for
a modified instance I∗ containing n objects with profit and weight n + 1 and
weight limit G∗ = G. As long as OPT has not been found, both the (1+1) MA
and simulated annealing behave similarly on I and I∗. Only when choosing
between two packings within Sk a different behavior may occur: on I a solu-
tion with more big objects will be preferred, while the situation is completely
symmetric on I∗. By the assumption pm ≤ 1/2 a tendency towards big objects
cannot help to find solutions with many small objects. We will in the following
estimate the probability of getting close to the global optimum, that is, to have
significantly more small objects than big ones. Therefore, we are pessimistic
when considering I∗ instead of I.

The global optimum OPT for I can only be found if mutation and/or local
search create a search point in Z = {x | H(x, OPT) ≤ d}. Let xt be the t-th
evaluated search point. The probability that during the first T evaluations no

12

search point in Z is found is at most
∑T

t=1 P (xt ∈ Z). Fix t, then

P (xt ∈ Z) =
n

∑

k=0

P (xt ∈ Z | xt ∈ Sk) · P (xt ∈ Sk) .

Observe that due to the perfect symmetry of Sk, each point in Sk is equally
likely to be xt. Moreover, the size of Z is polynomially bounded while Sk has
size 2Ω(n) for k = n/2 ± O(1). Hence, P (xt ∈ Z | xt ∈ Sk) = 2−Ω(n) and the
probability to find Z within the first T generations is at most

T
∑

t=1

P (xt ∈ Z) ≤
T

∑

t=1

n
∑

k=0

2−Ω(n) · P (xt ∈ Sk) = T · 2−Ω(n).

Choosing T = 2cn for a small enough positive constant c proves that on instance
I∗ the algorithm doesn’t create OPT or a point in its neighborhood in expo-
nential time, with overwhelming probability. As chances to reach the optimum
on I are not better than for I∗, the theorem follows.

Theorem 5. Iterated VDS using neighborhood N 1 ∪N 2 without mutation finds
the global optimum of the Knapsack instance within at most two generations with
probability 1.

Proof. After initialization, VDS either runs into the local or the global optimum.
Suppose that we have found the local optimum of N−1 big objects and consider
the next call of VDS. The least decrease in fitness is to exchange a big object for
a small one. This is repeated until all big objects have been replaced by small
ones and then the last small object is added.

6 MAXSAT

Maxsat is another well-known and important combinatorial problem. Given n
Boolean variables x1, . . . , xn a literal is either a variable or a negated variable.
A clause is a disjunction of literals; for example (x1 ∨ x3 ∨ x4) is a clause with
three literals. We say that a clause is satisfied w. r. t. an assignment x to the
variables if the clause evaluates to true. Given a set C of clauses, the problem
Maxsat asks for an assignment of the variables such that the number of satisfied
clauses is maximized. This problem is known to be NP-hard even if all clauses
only contain 2 literals.

A natural choice of the fitness function is to choose the number of satisfied
clauses. This function has already been investigated by Droste, Jansen, and
Wegener [2] on the following instance.

∀i 6= j 6= k 6= i : (xi ∨ xj ∨ xk) ∈ C

(x1), (x2), . . . , (xn) ∈ C

13

f(x)

|x|
1

0 1 2n/3 n

Figure 2: Sketch of the fitness landscape according to the Maxsat instance with
n = 30.

An important observation is that this instance is symmetric in a sense that
all variables are treated equally. Note that every clause has exactly one non-
negated literal, hence the assignment 1n satisfies every clause. On the other
hand, the majority of the clauses contain two negated literals. This gives strong
hints for a search heuristic to set variables to 0. Due to this deceptive property
Papadimitriou [16] first defined this instance as a worse-case example for the
performance of a heuristic algorithm for Maxsat.

Due to symmetry of the instance, we can formulate the fitness as a function
of unitation. If |x|1 = i, then i unit clauses (i. e. clauses with just one literal)

are satisfied. Among the other
(

n
3

)

clauses there are n ·
(

i
2

)

clauses where the
last two literals evaluate to false. Moreover, there are (n − i) choices for the
first variable such that the first literal also evaluates to false. Hence, (n− i) ·

(

i
2

)

clauses of length 3 are unsatisfied. We conclude that the number of satisfied
clauses and hence the fitness is given by the formula

f(x) =

(

n

3

)

− (n − |x|1) ·
(|x|1

2

)

+ |x|1 .

It is easy to see that |x|1 = n implies a global optimum with fitness
(

n
3

)

+ n.

The search point 0n has fitness
(

n
3

)

and all x with |x|1 = 1 have fitness
(

n
3

)

+ 1

as
(

1
2

)

= 0. Assuming n ≥ 6 and n multiple of 3, the fitness decreases with
|x|1 in the interval [1, 2n/3]. Thus, S∗ = {x | |x|1 = 1} is 2n/3-difficult for the
neighborhood N 1. A sketch of the function f is shown in Figure 2.

Droste, Jansen, and Wegener [2] proved for a very large class of evolutionary
algorithms with mutation probability pm ≤ 1/2 that these algorithms need
exponential time with overwhelming probability. A look at their proof reveals
that they even show a stronger result. The borderline between the basin of
attraction of all local optima and the globally optimal one is located around
search points with 2n/3 1-bits. Droste, Jansen, and Wegener even prove that

14

the considered algorithms fail in creating a search point with at least (1/2+ ε)n
1-bits for an arbitrary small positive constant ε. Choosing ε < 1/6 we can safely
conclude that even if standard local search with constant-diameter neighborhood
is applied after mutation no search point with at least 2n/3 1-bits is found.

We give a self-contained formulation of their result, describing all necessary
properties of the investigated class of algorithms.

Theorem 6 (Droste, Jansen, and Wegener [2]).
Let A be an evolutionary algorithm with a population of at most polynomial size
initialized uniformly at random. Allow A to perform an arbitrary combination
of two types of operators: mutation with mutation probability pm ≤ 1/2 and
selection. The only requirement to selection operators is that with f(x) ≥ f(y)
the probability to select x is not less than the probability to select y.

Then the probability that during the first 2o(n1/2) offspring creations A finds

an individual with at least (1/2 + ε)n 1-bits, ε > 0, is bounded by 2−Ω(n1/2).

We see that this claim covers the (1+1) EA with mutation probability pm ≤
1/2 as well as simulated annealing with an arbitrary cooling schedule. Choosing,
say, ε = 1/8 yields that the algorithm with overwhelming probability even stays
at a distance Ω(n) to all search points with at least 2n/3 1-bits. Hence, even
if standard local search with constant-diameter neighborhood is applied at any
time, the algorithm cannot create a search point with more than (5/8)n 1-bits.
This argument not only holds for one step. Instead, Theorem 6 remains valid if
we allow standard local search as additional operator. Exploiting t · 2−Ω(n) for
t = 2cn, c a small enough positive constant, yields the following theorem.

Theorem 7. The optimization time of the (1+1) MA with standard local search
using any neighborhood with diameter d = O(1) and mutation probability pm ≤
1/2 for the Maxsat instance is at least 2Ω(n) with probability 1 − 2−Ω(n). The
same also holds for simulated annealing with an arbitrary cooling schedule.

Again, we ask ourselves what iterated VDS can do. Interestingly, iterated
VDS without mutation is not effective for the Maxsat instance.

Theorem 8. The probability that iterated VDS with neighborhood N 1 without
mutation finds the global optimum of the Knapsack instance is 2−Θ(n).

Proof. The lower bound on the success probability follows trivially from the fact
that random initialization creates the global optimum with probability 2−n.

For the upper bound, Chernoff bounds yield that the probability to start
with x such that 2 ≤ |x|1 < 2n/3 is 1 − 2−Ω(n). In that case flipping a single
1-bit increases the fitness as long as the offspring has at least two 1-bits left.
Since this bit cannot flip back to 1, VDS returns a local optimum with a single
1-bit.

Having reached a local optimum, the least fitness decrease is obtained by
flipping the unique 1-bit to 0. However, this implies that 1n cannot be reached.
As all other search points have worse fitness, VDS again returns a local optimum.

15

In contrast to the previous problems, this is a first example where mutation
is essential to find the global optimum.

Theorem 9. Iterated VDS with mutation probability pm = 1/n finds the global
optimum of the Knapsack instance in O(n) expected generations.

Proof. The first VDS either finds the global optimum or a local one. If a local
optimum with a single 1-bit is reached, mutation creates 0n with probability at
least 1/(en). Afterwards, VDS runs into the global optimum 1n with probabil-
ity 1. The expected waiting time for this event is O(n).

7 Discussion and Conclusions

We have analyzed three combinatorial problems and shown memetic algorithms
with VDS to be effective for specific instances, while many popular trajectory-
based algorithms like the (1+1) EA, iterated local search, and simulated an-
nealing fail. The list of combinatorial problems where VDS is effective is by
far not complete. Similar analyses, using techniques from Section 3, can be
performed e. g. for graph bisection, maximum clique, and vertex cover. We
have chosen Mincut, Knapsack, and Maxsat since they resemble typical and
well-known problems from different classes of problems: cutting, packing, and
constraint optimization.

Furthermore, these three problems pose different challenges for randomized
search heuristics. The Mincut instance yields a multimodal landscape with
symmetric slopes. A search heuristic typically cannot tell in advance which hill
might contain a global optimum. This secret is not revealed until the algorithm
climbs to the top of the hill and then it may have to climb down a long distance.
For Maxsat the fitness landscape is deceptive, leading typical heuristics away
from the global optimum. For the Knapsack instance we exploited that, from a
macro-perspective, optimization is like searching for a needle in a haystack. All
packings with the same number of objects have similar fitness, but only those
without (or only few) big objects are promising. From a micro-perspective the
instance is even worse since it gives deceptive hints towards big objects.

Iterated VDS can face these challenges where many common trajectory-
based algorithms fail. This is partly due to the fact that VDS can cope with de-
ceptive functions as it always encounters the bit-wise complement of the current
search point. One may argue that iterated VDS is no more than a hill-climber
tailored towards deceptive functions, like for example a hill-climber sampling
around x in addition to the current population x. However, the Mincut in-
stance cannot be optimized by such a specialized strategy. Another argument is
that for Mincut and Maxsat VDS after some time discovers a positive gradient
towards the global optimum and then is able to reach it ”on its own”, with-
out the tabu mechanism. Finally, VDS is robust w. r. t. modifications of the
instance. In the Knapsack instance the global and the local optimum are com-
plementary. However, this does not hold anymore if we add some new objects

16

with low profit and large weight. In that case a simple algorithm for decep-
tive functions fails. We conclude that VDS is more powerful than an algorithm
tailored towards deceptive functions.

The presented analyses helped to develop an understanding of how trajectory-
based algorithms can cope with difficult local optima. However, theory should
not be restricted to single instances. We regard these analyses as appetizers
on the usefulness of memetic algorithms in combinatorial optimization from a
theoretical perspective. We are still in need of a complete lunch, that is, broader
results for important classes of instances for combinatorial problems to bring
forward the theoretical understanding of hybrid algorithms.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 2nd edition, 2001.

[2] S. Droste, T. Jansen, and I. Wegener. A natural and simple function which
is hard for all evolutionary algorithms. In Proc. of IECON’2000, pages
2704–2709, Piscataway, NJ, 2000. IEEE Press.

[3] S. Fischer. A polynomial upper bound for a mutation-based algorithm on
the two-dimensional Ising model. In Proc. of GECCO’04, pages 1100–1112.
Springer, 2004.

[4] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt. Theoretical analy-
sis of diversity mechanisms for global exploration. Technical Report CI-
237/08, Collaborative Research Center 531, Technische Universität Dort-
mund, 2008.

[5] O. Giel and I. Wegener. Evolutionary algorithms and the maximum match-
ing problem. In Proc. of the 20th Annual Symposium on Theoretical Aspects
of Computer Science (STACS ’03), pages 415–426, Berlin, Germany, 2003.
Springer.

[6] W. E. Hart, N. Krasnogor, and J. E. Smith, editors. Recent Advances in
Memetic Algorithms, volume 166 of Studies in Fuzziness and Soft Comput-
ing. Springer, 2004.

[7] H. Ishibuchi, T. Yoshida, and T. Murata. Balance between genetic search
and local search in memetic algorithms for multiobjective permutation
flowshop scheduling. IEEE Transactions on Evolutionary Computation,
7(2):204–223, 2003.

[8] T. Jansen and I. Wegener. Real royal road functions: where crossover prov-
ably is essential. Discrete Applied Mathematics, 149(1-3):111–125, 2005.

[9] T. Jansen and I. Wegener. A comparison of simulated annealing with a
simple evolutionary algorithm on pseudo-boolean functions of unitation.
Theor. Comput. Sci., 386(1-2):73–93, 2007.

17

[10] M. Jerrum and G. B. Sorkin. The metropolis algorithm for graph bisection.
Discrete Appl. Math., 82(1–3):155–175, 1998.

[11] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Tech J., 49(2):291–307, 1970.

[12] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the trav-
eling salesman problem. Operations Research, 21:498–516, 1973.

[13] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In
Handbook of Metaheuristics, volume 57 of International Series in Opera-
tions Research & Management Science, pages 321–353. Kluwer Academic
Publishers, Norwell, MA, 2002.

[14] N. Mladenović and P. Hansen. Variable neighborhood search. Computers
& OR, 24(11):1097–1100, 1997.

[15] P. S. Oliveto, J. He, and X. Yao. Time complexity of evolutionary algo-
rithms for combinatorial optimization: A decade of results. International
Journal of Automation and Computing, 4(3):281–293, 2007.

[16] C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[17] M. Stoer and F. Wagner. A simple min cut algorithm. In Proceedings of
ESA ’94, LNCS 855, pages 141–147, 1994.

[18] D. Sudholt. Crossover is provably essential for the Ising model on trees. In
Proc. of GECCO’05, pages 1161–1167, Washington DC, 2005. ACM Press.

[19] D. Sudholt. Local search in evolutionary algorithms: the impact of the local
search frequency. In Proceedings of the 17th International Symposium on
Algorithms and Computation (ISAAC 2006), LNCS 4288, pages 359–368.
Springer, Berlin, Germany, 2006.

[20] D. Sudholt. On the analysis of the (1+1) memetic algorithm. In Proc. of
GECCO’06, pages 493–500. ACM Press, New York, NY, 2006.

[21] I. Wegener. Complexity Theory – Exploring the Limits of Efficient Algo-
rithms. Springer, 2005.

[22] I. Wegener. Simulated annealing beats metropolis in combinatorial opti-
mization. In Proc. of ICALP ’05, volume 3580 of LNCS, pages 589–601,
2005.

[23] C. Witt. Worst-case and average-case approximations by simple random-
ized search heuristics. In Proc. of the 22nd Annual Symposium on Theo-
retical Aspects of Computer Science (STACS ’05), pages 44–56. Springer,
2005.

18

	ci23808.pdf
	CI-23808.pdf

