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Analysis of a memetic algorithm for global optimization in chemcal
process synthesis

M. Urselmann, G. Sand and S. Engétocess Dynamics and Operations Group, TU Dortmund

Abstract— Engineering optimization often deals with very amounts of catalyst on each tray of a distillation comlumn.

large search spaces which are highly constrained by nonliee  The integer variableg correspond to design variables, e.g.
equations that couple the continuous variables. In this con the number of trays of a column

tribution the development of a memetic algorithm (MA) for . - . .
global optimization in the solution of a problem in the chemctal By fixing the integer variables the problem can be divided

process engineering domain is described. The combination iNto several continuous subproblems (NLPs) of different
of an evolutionary strategy and a local solver based on the dimensions depending on the number of trays. These sub-
general reduced gradient method enables the exploitationf@  problems have dimensions o6 —10* continuous variables,
significant reduction in the search space and of the ability b a4y ations and constraints and include nonlinear equations

local mathematical programming solvers to efficiently hande that trict th i iabl hat kes th
large continuous problems containing equality constraing. The ~ 1at FESrict the continuous variables, what maxkes them ver

global performance of the MA is improved by the exclusion difficult to solve.
of regions that are defined by approximations of the basins For the solution of these optimization problems, local

of attraction of the local optima. The MA is compared to the mathematical programming (MP) methods are available [3],
combination of a scatter search based multi-start heurist using that can efficiently handle large problems and have been
OQNLP and the local solver CONOPT. . . . N

applied - with some success - to reactive distillation pro-

|. INTRODUCTION cesses before ([4], [5]). Because of the non-convexity ef th

. . . T ... problems, only local optima can be found by these methods.
The optimal design of a reactive distillation column WlthIO . ny P y .

It is possible to reduce the search space of the continuous

respect to an economic function is an e.XamP'e of real.'worlgptimization problem to the space of the design variables (i
problems in the chemical process engineering domain. Rf?fe following stated ag € D), which comprises about 2%
active distillation columns are chemical plants that cambi '

hemical i ith distillati th i e of all variables. In this case, a computationally expensive
chemical reaction with distiiation (the separation oum_i| . simulation is needed to determine the corresponding state
mixtures based on differences in their volatilities) withi

a sinale processing unit 111, The aim of the optimizatio variables in order to evaluate the cost function and the con-
ge p 9 [4]. P 'I]]straints. The computation time needed for a single sinarati

EL%ZZ?;;eItésrngi\tgsdvsgﬁ r(;zt'rggl tgotlr?:qtgtglezlr]gnnu:lyt Olf Alis nearly half of the time that an NLP solver needs for a local
P " search in the space of all variables.

The standard approach to handle such problems is %Oln this contribution, the development, the application and

formulate them as mixed-integer nonlinear programmin& : : : .

. e analysis of a memetic algorithm for the global opti-
(MINLP) problems and to solve them by mathematica ization of a process design with fixed integer variables are
programming methods. Such an MINLP can be stated a3,

follows: scribed.

ollows: Since evolutionary algorithms are devised to escape from

min F = f(z,y) (1) local optima and in order to exploit the ability of the
. MP methods to efficiently solve large continuous problems

st.  h(z,y) =0 (2) . . :

locally, a memetic algorithm was developed that combines an

g(z,y) <0 ®3) evolutionary strategy (ES) [6] with a local NLP-solver base
reX, y€EN, on the general reduced gradient method (CONOPT [7]).

Within the memetic algorithm, the ES addresses the opti-
mization of the design variables and every individual of the
is improved by a local search of the MP solver. Thus
every feasible individual within the population of the ES
represents a local optimum of the problem at hand.

An ideal search strategy would utilize variation operators
that change the genes of the parent individuals in such a
way that every offspring is in the basin of attraction of

M. Urselmann and S. Engell are with the Department of Biodban a different local optimum. In order to guide the search to
and Chemical Engineering, Technische Universitat DorttpiEmil-Figge-  different local optima, regions are defined that approxanat

Str. 72, 44227 Dortmund (phone: 0049-231-755-7378; faxt9e@B1-755-  the hasins of attraction of each local optimum. The definitio
5129; email: maren.urselmann@bci.tu-dortmund.de). @dSs with ABB f th . is b d inf . h i K
Corporate Research, Wallstadter Str. 59, 68526 Ladenifphmpne: 0049- of the regions Is based on information on the starting point

6203-716354, fax: 0049-6203-716253, email: guido.sarel@ib.com). of the local optimization and the resulting local optimum.

where F is the cost functior,(x,y) = 0 are the equations
that describe the behavior of the system (mass and h
balances, geometry, etc.), apdr,y) < 0 are the inequali-
ties that define the specifications or constraints for féasib
choices [2]. The continuous variables denote the state
variables (in this paper denoted by the terradel variablep
and the design variablessuch as the feed flows or the



In the sequel these regions are calledu zones After The model variables are related to the operating condition
its definition, a tabu zone is excluded from the subsequemtside the column, e.g. the pressure, the steam velocities o
search procedure. the concentrations of the substances.

In Section |l the case study considered here is introduced. The set of design variablese D consists of the amounts
Then the structure of the memetic algorithm and the approwrf both feedsi = 1,2 on each trayk = 1,...N denoted by
imation of the basins of attraction is explained in Sectibn | F;(k), the amounts of catalyst on each triay- 2,..., N — 1
The main results of the numerical tests and the analysiseof tdenoted byE,..(k) and two variablesy,, and asortom €
MA are stated in Section IV. Finally, Section V compriseg0, 1) for the reflux ratio at the top and the ratio of the

the conclusion and the outlook. evaporation rate to the product removal at the bottom of the
column.
Il. THE CASE STUDY The dimension of the model depends on the number of

The case study considered here is the optimal design wéys. The cardinality of the set of design variable$lis =
a reactive distillation column for the production of theiant 3V, whereas the cardinality of the set of model variakilés
knock product methyl tert-butyl ether (MTBE). In Figure lis |[M| = 149N + 14.
the schematic structure of a reactive distillation coluran i In Figure 2 the multi modality of the design problem at
shown. MTBE is synthesized from two feed streams witthand is shown. Each of the points displayed represents one of
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the local optima known so far for the column design problem
Fig. 1. Structure of a reactive distillation column with fixed numbers of traysV = 10, ..., 60 in the space of

. ] the cost and of the revenues. The plotted line identifies the
a purity of at least99 mole-%. Feed stream oné) iS  hreshold between profit and loss. It can be recognized that

composed off "™ = 6.375 mole/s of methanol (MeOH); he quality of the local optima and the composition of thetcos
feed stream two ) comprisesF3*™ = 8.625 mole/s of & anq of the revenues of solutions which give approximately
mixture of isobutene (IB) and butane. The number of tray§ne same profit are varying significantly. These variations
denoted byV, is fixed. The reboiler and the condenser of thesfiect the differences of the design and the model variables

distillation column are modeled as trays and they are denotg; ine |ocal optima. The computation time for one local

by tray numberst = 1 andk = N. It is assumed that ghtimization of the model withV' = 60 trays, started from
fractions of both feed streams can enter the column on eaghyivial starting point in the space of all variables, is abo

tray of the column including reboiler and condenser. Thg; min.

chemical reaction is catalyzed heterogeneously. Itismae8u  Fqor a more detailed description of the design problem at

that there can be a certain amount of catalyst,() on each p5nd see 18] and [9].

tray of the column, restricted by the volume of a tray. No

reaction is taking place in the reboiler nor in the condenseft- NLP model

The diameter of the column is denoted bya. The optimization problem is modeled as an NLP opti-
The objective (1) is to minimize the annual cost whichmization problem. All variables (model variables and desig

is calculated by the annualized investment cost, annugriables) are free decision variabl&s= M UD in the opti-

operating cost and annual cost for raw materials minus dnnuaization model (in the following denoted bW T BE 1, p).

revenues for the products. The investment cost are cageclilatThis model consists of a large number of algebraic equations

by heuristic functions for the column shell, the interndéite  formulated in the modeling language GAMS [3]. These

catalyst, the condenser and the reboiler; the operating c@&gjuations correspond to the set of equations (2) for the

are calculated by the heat loads for heating and cooling. computation of the mass transfer and the reaction on each



tray of the column (the so calleshodel equationsand for

the computation of the annualized cost.

Furthermore it comprises a set of inequalities (3) to

Subsequently the ES is started. The starting population of
size u is initialized randomly within the search space of the
design variables with respect to the constraints as destrib

« fulfill the required purity of the product and the requiredin the next section.
throughputs and
« restrict operating conditions to feasible choices.

B. Simulation model

To evaluate the individuals of the initial population, the
simulation model is solved for each individual. If the local
solver cannot fulfill the model equations, it aborts at an

infeasible point. An analysis revealed, that the violatafn
The simulation model comprises a subset of the equéhie constraints at these points usually are so small, teaeth
tions (2) and the inequalities (3) of the optimization modelpoints nonetheless can be used as starting points for the
The design variables were removed from the set of decisi®ubsequent local search. Then, the constraint coupling the
variables, that isSX = M. The equations and inequalitiesdiameter Dia, some of the model variables and tt#,;
that restrict the feasible values of the design variablesewevalues which was removed from the simulation model before
also removed from the set of constraints (2) and (3). (see Section 1I-B) is checked. In case that this constraint ¢
One of the constraints couples the diameleia with  be satisfied,Dia is assigned to the minimal feasible value
the E..; values and some model variables. To eliminate thef the diameter. Otherwise it is assigned to a random value
problem that the equations in the model cannot be fulfillegiithin its bounds.
for fixed design variables because of this constraint, the The resulting points in the space of all variables are
diameter and the related constraint were removed from tipassed to the MP solver in order to perform a local search.
simulation model and are handled by the design optimizatioAccording to the evolutionary model of Lamarck, the genes
of the individuals are replaced by the values of the design

) ) ) variables of the corresponding local optima.
The two main components of the memetic algorithm are ror each localized local optimum, a region is defined (a

an evolutionary strategy as described in [6] and the locghpy zong to approximate the basin of attraction of this
NLP solver CONOPT [7]. In Figure 3 the structure ofgniimum. These regions are excluded from the subsequent
the memetic algorithm is shown. At the beginning of eaclgg cn procedure.

To create the\ offspring, A times one individual is chosen
randomly from the population. Each of these individuals is
mutated by a modified variant of the standard mutation op-
erator described in [10]. A self-adaptive step size intcztl
design variables by [6] is applied. The initial step size is denoted &yand

model variables] _Simulation is chosen with respect to the size of the feasible domain
StamT:cZTr;timizer@l of the corresponding variable. A detailed description @ th
3 mutation operator is given below.

| Generation of tabu zones | Then the simulation is called for the resulting offspring
—] Se,ezﬁonfo,repmducﬁon | indivic_iuals, and the local searc_hes are started from the

] resulting values of the model variables. The genes of these

offspring individuals are replaced by the design varialoes
the corresponding local optimum. For each of these local
optima a tabu zone is defined and the list of tabu zones is

Ill. THE MEMETIC ALGORITHM

| Initial local search |

Local optimizer, fitness of local opitmizer

ES | Initialization |
¥

Evaluation of the
first generation

design variables

model variables| ~ Simulation
starting point
local optimizer‘ Local search

Evaluation of the
offspring generation

¥

| Generation of tabu zones | expanded. . . o . .

| Select:onfor on goneration | _ If the terml_nauon criterion (here the computgtlon time
limit or a maximal number of local solver calls) is not ful-

No filled, the generation cycle is started again with the s&lact

Termination criterion fulfilled?|

of parent individuals for the next generation of offspridg.

(1 + A) selection, which is advantageous in discrete search
spaces is chosen as introduced in [10]. (Each individual of
the population represents a local optimum and the set of
o ) ] local optima is discrete and finite.) The best individuals
optimization, the mathematical solver CONOPT is startegity respect to the objective function among all indivicuial
from a trivial initial point, where all variables have theihat do not exceed a maximal 'life-span’ ef generations

value 1. This first local search is necessary to find initialyre selected to form the population of the next generation.
values for the model variables within the simulation model,

because the initialization is crucial for the solution obth A- Representation

model equations. The values of the model variables at theTo exploit the reduction in the size of the search space,
first local optimum serve as initial values for the simulatio the design variables of the problem at hand are taken as
in the following search procedure. the representation of the individuals. They constitute the

Yes

Fig. 3. Structure of the memetic algorithm (MA)



genotype space. The genes of an individual are representedn order to meet the constraints, a repair procedure is
by the vector of continuous variablgs started until the difference of the sum of the amounts of all
feed streams and""™, Ar, equals zero again. One of the
9= (F1(1),.... Fa(N), F2(1), oo, Fo(N), Eeat(2), ... remaining indices of the considered feed stream is chosen
Eeat(N = 1), Qtop, Qbottom) randomly with a uniform distribution. The value of the
corresponding stream is changed, so that either= 0 or

with the value meets one of the bouridls, ) or ubg, ). If Ap =
0 < Fy(k) <6.375, Vk, 0, the feasibility is obtained. Otherwise the repair progedu
0 < Fy(k) < 8.625, Vk is repeated for other untreated feed stream variablesthastil

repair is done successfully.
The mutation procedure described above changes only one
tops Wottom € (0,1) of the variables - that one chosen first - randomly. The other
The feasible domain of a variabieis denoted byjib,, ub,], Vvariables are changed to maintain feasibility. Therefowe t
wherelb, andub, are the lower and upper bounds of thevector of step sizes contains only one value for each feed
variable. There are two constraints with respect to thegaesi Stream.
variables that have to be fulfilled in order to get a feasible 2) Respecting the tabu zonést order to respect the tabu

0< Be(k), k=2,..,N—1,

solution. zones, which are excluded from the search procedure, the
N offspring are not allowed to be members of the zones.
Z Fi(k) = F™, (4) Therefore each offspring that is generated by the described
k=1 mutation procedure which belongs to a forbidden zone is

N mutated until it leaves the zones. If this is not possibldimit
> Fy(k) 7, (5) 3% |D| mutations of the object variables, the step size is
k=1 mutated and the mutation cycle of the object variables is
with F“™ = 6.375 and F5*™ = 8.625. In order to create restarted. This procedure is repeated upotimes. If each
and to maintain feasible individuals, these constraints aeffspring produced by the mutation is in a forbidden zone,
taken into account within the initialization procedure ahed another parent individual is chosen randomly and the proce-
mutation procedure, as explained in the next two sectionsdure is started again up t times. If no offspring outside
o the tabu zones can be generated, the overall optimization
B. Initialization procedure is stopped.
To create an initial population of feasible individuals
the constraints (4) and (5) have to be taken into account.
Therefore the variableg) (k) and F»(k) are initialized in a D. The tabu zones
random sequence with random values, chosen from a uniform
distribution within the feasible domain of the variableslan In order to approximate the basins of attraction, tabu zones
with respect to the given values of their suf&™. The last of different forms and sizes and with different locations in
variables are assigned values that fulfill the given coira relation to the corresponding local optima were testeduTab
All other variables are initialized randomly within their zones with two different forms (rectangular and spherical)
bounds. were examined. The locations of the starting points and of
) the corresponding local optima define the locations of the
C. Mutation tabu zones. All examined zones are symmetric (for each
To maintain the feasibility of the individuals, the mutatio coordinate) around their centers. If the local optimum is
also has to be performed respecting the constraints (4) ataken as the center, the tabu zones are cadlgdmetric
(5). Hence the standard mutation is modified for the feetheir size is determined by the distance between the ggartin
stream variablesg’ (k) and F»(k) and their step sizes. The point and the corresponding local optimum. If the midpoint
second aspect that has to be taken into account is thetween the starting point and the optimum is taken as the
existence of the tabu zones. center, the zones are callesymmetric The four different
1) Mutation of the feed stream$Both feed streams are types of zones that were investigated are shown in Figure 4
mutated independently. One of thé indicesk is chosen schematically in a two-dimensional space. To vary the size o
randomly from a uniform distribution, and the value of thehe tabu zones, a scaling factéiis defined. A scaling value
corresponding strean#;(k) is changed by a normal dis- of 5 = 1 corresponds to the distance between the starting
tributed random number within its bound$g, (), ubr,x)].  point and the local optimum. Before the computation of the
In order not to leave the feasible domain of the variableadius of the spherical tabu zones, the values of the vasabl
reflection is used at the bounds. Therefore the maximal stegere scaled by dividing them by a characteristic value. This
SiZ€ O pmar 1S Set 100,40, = |ub — 1b]/2 for each variable. value is chosen to be either the value in the middle of the
The resulting variables do not fulfill the constraints (4) offeasible domain (for the bounded variables) or the result of
(5) any more. the first local optimization (for the unbounded variables).
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Fig. 5. Median progress curves of the MA using different tstyg
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Fig. 4. Schematic structure of the tabu zones P ss = (1A k)

TABLE |
RESULTS OF THE STRATEGY PARAMETER TESTSNUMBERS OF THE
IV. EVALUATION LOCAL OPTIMA FOUND WITHIN ONE COMPUTATION HOUR

To test the memetic algorithm, a parameter tuning of the

strategy parametersgs = (u, A, %) for the ES was done best| St | median| 39 | worst
. . . SES quart. quart.

(see Section IV-A). Furthermore the memetic algorithm was G105 9 3 == = 5

tested using different tabu zones and different scalintpfac (5:2015) 3 775 7 7 3

0 (see Section IV-B). (5355)| 8 7 7 7 6
In Section IV-C the results of test runs of the MA Egggg g ; ; 6725 g

optimizing more complex models with a time limit of 24 (7145 8 | 7.75 Vi 7 5

hours are discussed. (7,305 7 7 6.5 6 6
Finally, the memetic algorithm with the best settings was (7495 | 8 8 7 7 6

compared to a reference algorithm (OQNLP/CONOPT) that

was used to solve the MINLP design-optimization problem

of the MTBE column before [8]. The reference algorithmvalue of the time needed to find 7 local optima3is5 CPU

is described in Section IV-D.1 and the results are given imin, that is 18% less than the second best result of using the

Section IV-D.2. parametersgs = (5,20, 5).

In all of the following test runs, the initial step size is In the following, the strategy parameter vector is fixed to
chosen to be = |ub — [b|/2 for each variable. sgs = (5,10,5).
A. Strategy parameter tests B. Evaluation of the tabu zones

In order to find good strategy parametsiss = (i, A, k) The application of the four types of tabu zones as described

for the ES, the MA was tested 10 times with = 10 trays in Section IlI-D were tested with different scaling factors
using the symmetric rectangular tabuzone and a scalingrfact3. The memetic algorithm was tested 10 times for each
B = 1.5 for each of the following parameter settings: tabu zone and each scaling factor, as well as the memetic
algorithm without the tabu zones.
%5(55505?)&7(5711210’5)5)&Ség&;)&?@igoé)ﬁ’ _ The aim of the c_)ptimization _of the problem at handl is to
PE TR ER R AT T EL AT mE B find the global optimum. The first (and the most dominant)
In Figure 5 the median progress curves of the MA usingriterion that is taken into account to choose the bestrsgali
different strategy parameters are shown. Table | compriséctor is therefore the median value of the total number
the numbers of local optima found within one hour ofof local optima found. Because of the complexity of the
computation time (all four quartiles are listed). problem at hand, the second criterion is the number of local
It can be seen that the best overall progress and the largsstver calls that is needed to find these median number of
median number of local optima found was reached by usirlgcal optima. And finally the best and the worst numbers of
the strategy parameterszs = (5,10,5). It is the only local optima found should be as large as possible.
parameter vector tested, where all known local optima were Figure 6 shows how the scaling factgrinfluences the
found within the given time in the best run. The mediarbest, median and worst values of the numbers of local optima



found within one hour of computation. 9 local optima are The application of the symmetric spherical tabu zones
known so far for the 10-trays moded. = 0 corresponds to does only improve the optimization procedure by using a

the results of the MA without any tabuzone. scaling factor ofg = 1.0. Scaling factors of3 > 1 lead to
N large tabu zones, that cover the whole feasible domain of
10 Y ° qo,  Ymmetrcrectangular some of the variables, so that the optimization procedure is
Eg—" zg aborted after one to four generations. That is attributatido
ife %6 scaling procedure, because theg,; values are unbounded.
s _ 8 —~— The characteristic value which is used to scale the vaable
4 d
o —median 5 . .. . I
g —best 3 4 —medan is a realistic value at a local optimum, but it is too small for
£2 —worst =) —Des! .
2 : —worst some of the starting values proposed by the ES.
% o5 1 152 25 3 Y- E— — For the asymmetric spherical tabu zome~= 2.0 is the
symmetric spherical asymmetrie spherical factor that leads to the smallest medium number of solver
210 —median o calls needed to find 7 local optima and to the largest median
58 best ts number of local optima found. Although the fraction of runs,
° worst g p . g . . .
EN T~ where less than 7 optima were found3ig% in comparison
54 54 — to 10% by using8 = 1.5, the significantly smaller number
£ £, —best of solver calls is the most dominant factor, because of its
" "y ert influence on the progress curves of the MA over the time.
0 051015202530 % o5 1 15 2 In comparison to the results of the MA without tabu zones,

the median value of the number of solver calls that is needed
Fig. 6. Influence of the scaling factgt on the numbers of local optima to find 7 local optima was improved by the introduction
found, spg = (5,10,5) of the asymmetric rectangular tabu zones 32yt and the
fraction of the optimizations with less than 7 located optim
% reduced by 2/3. In case of the asymmetric spherical tabu
"Yone the number of solver calls was improved by e¥&¥h,
“But the fraction of the optimizations with less than 7 lodate
optima was not improved.
TABLE I In order to compare the different types of tabu zones, the
RESULTS OF THE PARAMETER TESTS FOR THE DETERMINATION OF THE Median progress curves of the MA for each zone using the
BEST SCALING FACTORS3 FOR THE TABU ZONES- SOLVER CALLS AND best scaling factor is pIotted in Figure 7. It shows the media

The median values of the number of local solver call
needed to find 7 optima is listed in Table Il. The number i
brackets is the fraction of the test runs with less than 7llo

optima found.

FRACTION OF RUNS WHERE LESS THAN OPTIMA WERE FOUND, number of local optima found at each point of time of the
sgs = (5,10,5) optimization.
without symmetric asymmetric comparison of tabu zones
B | tabu zones| rectangular| spherical | rectangular| spherical 8r
05 - - 273 252 71 . rT
: (20%) (30%) TJI—
1.0 229 209 308 224 o Bf | ! o
: (30%) (40%) (40%) (40%) E ,—' : _'lj
15 266 193 - 183 279 25 ’
. (30%) (15%) (100%) (10%) (10%) T . /llj—’ asymmetric rectangular, B=1.5
20 336 - 260 166 2 r_f — asymmetric rectangular, =15
) (35%) (100%) (30%) (30%) 231 a I """"" symmetric spherical, =1.0
25 224 - - - § = ='"asymmetric spherical, =2.0
) (35%) (100%) = 2ty without tabu zone
20 285 - - - ;,
: (40%) (100%) 1
. . 0 ; - : : -
For the symmetric rectangular tabu zones, the best scalir 0 10 20 ; xn 40 50
Ime n min

factor is § = 1.5. By using this scaling factor the best
median number of local optima found was reached and thg, 7. median progress curves with the tabu zones using ése tested
lowest number of local solver calls was needed to find 7 locataling factors3, sgs = (5,10, 5)
optima. The fraction of runs, where less than 7 local optima
were found, was reduced i3 %. The best median number of local optima found within the
The best scaling factor for the asymmetric rectangular tal@iven time limit is 7.5 and was reached by the application
zones is als@ = 1.5. Although the best, median and worstof the symmetric rectangular tabu zones and by the applica-
numbers of local optima found is equal by usiig= 2.0, tion of both spherical tabu zones. The optimization using
the median number of solver calls needed to find 7 locdéhe spherical tabu zones show the fastest progress at the
optima and the fraction of runs with less than 7 local optimaeginning, but if the overall progress is taken into accpunt
are significantly smaller by the use gf= 1.5. the symmetric rectangular tabu zones approximate the dasin



of attraction best. composition of parent populations

MTBE with 60 trays
A closer look at the progress curves reveals, that th NLP
introduction of the symmetric rectangular tabu zone using
a scaling factorg = 1.5 reduced the time to find 7 local
optima by29% and increased the median number of loca

-

indices of local optima
ey

. Lt - - LK R A A

optima found W|th|n one hour of computation by%. The dl eesessss se DD

fraction of runs with less than 7 located optima was reduce R TR

by 2/3. O 5 10 15 20 25
generation

C. Analysis of the MA

In order to study the behavior of the MA for difficult
problems, complex models withh = 40 and 60 trays were
optimized using a time limit of 24 hours. The symmetric
rectangular tabu zones with a scaling factordot 1.5 and  gjfferent local optima (80 optima are known so far) in case of
the strategy parameter vectsgs = (5,10,5) were used. the optimization of the 40-trays model and of only 5 optima
Figure 8 shows the progress curves of the test runs. At thgut of 55 optima known so far) in case of the 60 trays-model.

For the 40-trays model each population of the generations 50

Fig. 9. Compositions of the parent populations of the MA fog 60-trays
model

progress of the MA, MTBE, , (N=40) to 120 consist ofu = 5 individuals that represent the same
s 80y P local optimum. The selection of only the best individuals
8ol [ AR PIOGTESS for the next generation prevents that the parent populgtion
= contain inferior individuals and it does not take into aatou
S 40 * progress ofthe WA that several individuals in one population may represent
'§ the same local optimum. Other selection procedures will be
820} ¢ every fifth to sixth individual is tested in the future that accept inferior individuals andtth
g ‘ . anewlocal optimum . take the diversity into account.
00 100 200 300 400 500 In Figure 11 and 12 the compositions of the offspring
number of local solver calls populations of the MA can be seen. Although there is a
. progress of the MA, MTBE, , (N=60) severe loss of diversity in the parent populations, Figure 1
£ 60r . and Figure 12 show that the MA covers a big part of the
z 4 idealprogress search space during the whole optimization procedure.
™ 401
é ~"" progress of the MA D. Comparison with the reference algorithm
o]
3 201 every fourth to fifth individual is The results of the MA were compared to the performance
E L . _ anew local optimum of a reference algorithm that was used before to optimize the
< 00 50 100 150 200 250 overall MINLP problem of the case study at hand [8]. Both
number of local solver calls algorithms were tested on a PC with 1.8 GHz and 1GB of

Fig. 8. Progress curves of the MA for the 40-trays and 60stnaapdel, memory.20 runs of e_aCh algorithm were executed for the
sps = (5,10,5) MTBENLp model with N = 10, 15, 40 and60 trays.

1) The reference algorithm:OQNLP [11] is a scatter
beginning of the optimization of the 40-trays model, a fassearch based multi-start heuristic, that generates difter
progress can be observed. With proceeding time the progredgrting points for a local MP solver in the space of all
decreases and after 392 solver calls no new local optimuvariables. Each candidate point has to pass two different
can be found by the MA. Until this point of stagnation evenyfilters (a merit filter and a distance filter) to be accepted
fifth to sixth local solver call on the average leads to a news a starting point for the local solver CONOPT [7]. As in
local optimum. The progress of the optimization of the 60the MA, the solver optimizes in the space of all variables.
trays model stagnates after 249 local solver calls. Up ® thi To allow a fair comparison of both algorithms, a parameter
call every fourth to fifth local solver call leads to a new Ibcatuning was done for the reference algorithm too (see [12]).
optimum. 2) Comparison of resultsTwo criteria are used to mea-

In order to find out why the progress stagnates, in Figuresfure the performance of the algorithms. The first criteron i
and 10 the compositions of the parent populations of ththe quality of the starting points for the local search, josgd
generations are displayed. Here all local optima known day the MA and the multi-start heuristic OQNLP. This quality
far were successively indexed ordered by the values of tlie measured by the cpu seconds the local solver needs to
objective function. find a local optimum starting at the given point. The second
Figures 9 and 10 reveal that there is a loss of diversity in th&iterion is the performance of the global search, that és th
population of the parents during the optimization processguality of the best local optimum found and the number of
The parent populations of all generations consist of only 1lbcalized optima.
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TABLE IlI

runs within the given time limit.
BEST, MEDIAN AND WORST VALUES OF COMPUTATION TIMES OF THE

In Figure 14, the best, the median and the worst numbers
of local optima found so far are plotted for each point in time
of the optimization runs. The results show that the maximal

LOCAL SOLVER CONOPTAND RATIOS OF INFEASIBLE ABORTS
(MTBENLp WITH N = 10, 15, 40AND 60 TRAYS)

OQNLP/CONOPT MA number of localized optima during the optimization process
N time | infeasible | time | infeasible . A .
[s] | aborts [%] | [s] | aborts [%] could be increased significantly by the MA in all cases. A
min 23 7.3 4 15.8 closer look at the results of the optimization of @&trays
10 | median| 34 14.2 9 18.5
max 50 219 17 220 model reveals that even the worst run of the MA was much
min 58 53 3 12 better than the best optimization run of OQNLP/CONOPT.
15 | median| 85 16.5 20 30.6
max 128 273 34 61.1 V. CONCLUSION AND OUTLOOK
min_ -\ 609 9.1 58 0.0 In this paper, the development and the analysis of a
40 | median| 737 33.3 116 0.0 . , X . 4
max | 915 69.2 223 3.6 memetic algorithm for the optimal design of chemical pro-
min | 1586 11.1 180 0.0 cesses was described. The application of an evolutionary
60 | median | 1896 317 291 22 ; inati ; ;
max | 2211 o 992 8o strategy in combination with a mathematical solver based

on the generalized reduced gradient method (CONOPT)
enabled the reduction of the search space to the set of design
variables. A good initialization procedure for the simidat

. that is needed to compute the cost for given values of design
In Table lll, the best, the median and the worst value\§ P 9 g

f th o f CONOPT and th > of th ariables leads to a significant reduction of the computatio
of the computation times o and the ratio of e for the following local search in comparison to the

Iocal_solver calls that were aborted without finding afegslb reference algorithm OQNLP/CONOPT, which works in the
solution to the total number of local solver calls are listed

) . ) pace of all variables. The introduction of tabu zones, twhic
The times for the MA comprise the times for both CONOP-Iilpproximate the basins of attraction of the local optima

calls, the simulation and the subsequent local optiminatio ; ;

whereas the times for OQNLP/CONOPT are times of thrfﬁc;lézgdslfrefa}:n%?gvt:de I{hzxggﬁg;&gs; tgfetﬁgbgiq&l t search
local search. The results show that the reduction of theekea The detailed analyses of the behavior of the MA showed
space and the initialization of the simulation model coulqhat there is a loss of diversity in the ES because of the
improve the quality of the starting points COnSideranyeThselection of only the best individuals to survive. Stragsgb
computation time needed for the local search with Startin%aintain (or reinstall) the diversity of the population iy
points pmp‘?se‘?' by OQNLP was redUCEd,bY more treity the search procedure will be examined in future work.

by the application of the MA. In the 0pt|m|zat|pn runs of The development of a step size adaptation rule with respect
f[he more complex modelsM = 40, 60), the ratio of the to the fact that all individuals represent local optima of th
infeasible aborts of the local search to the total number ?})roblem will also be investigated. The self adaptation méth

all Ioc_:al solver C?‘”S was reduced t(.) a_lvalue of less m%n used here guides the search to promising areas in the search
(m_ed.|an), even in the worst case it is less thaff. This space and it enables to adapt the step size depending on
ratio is arounds0% for the application of OQNLP/CONOPT the topology of the neighborhood. The new method should

ahnd ;IZO\.NS large flgctuations.(yTh? g‘e?\:ﬁg /ré‘gﬁ%?:zl cf)f respect the approximated basins of attraction and it should
the \ N comparison tal6.5 0 0 Q ) or guide the search to the unexplored regions of the search
the optimization of the model wittv = 15 is a result of the space

significantly greater number of solver calls of the MA within In fl'Jture work, the model used here will be extended by

the -g|ven time o#60 cpu min for the optlm-lzatlon runs. a restriction of the number of feed streams. In practicey onl
Figure 13 shows the best, the median and the worgtsmall number of feed streams is used. This restriction is

progress curves of the algorithms with regard to the besifficult to handle in an MINLP approach.
objective found during the optimization for columns with
and 60 trays. The termination criterion for the optimization
was a time limit of 1 hour for thé5-trays model and a limit ~ This research was supported by the DFG Collaborative
of 4 hours for the60-trays model. Research Centre 'Design and Management of Complex Tech-
For the model withV = 15 trays, the time to find the best nical Processes and Systems Using Computational Intelli-
local optimum known so far was87 sec (median)99 sec gence Methods’ (Sonderforschungsbereich 531) at Technis-
(best) andt50 sec (worst) for the MA and19 sec (median), che Universitat Dortmund. This support is very gratefully
164 sec (best) and524 sec (worst) for OQNLP/CONOPT. acknowledged.
For the model withN = 60 trays, the MA found the best

local optimum known so far afted4 min (median),36 min

(best). In onlyl of the 20 runs this optimum was not found [1] K. Sundmacher and.A. Kienl®eactive Distillation — Status and Future
within 4 hours. OQNLP/CONOPT needd@5 min in the Trends Whiley VCH: Weinheim, Germany, 2003.

- ) ] [2] A. W. Westerberg, “A retrospective on design and procggsthesis”,
best run and could not find the best optimumlif of 20 Computers & Chemical Engineerir@B, pp. 447-458, 2004.
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