

On the Effectiveness of Software Diversity: A Systematic Study on Real-World Vulnerabilities

Jin HAN, Debin GAO, and Robert H. DENG

School of Information Systems
Singapore Management University

- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

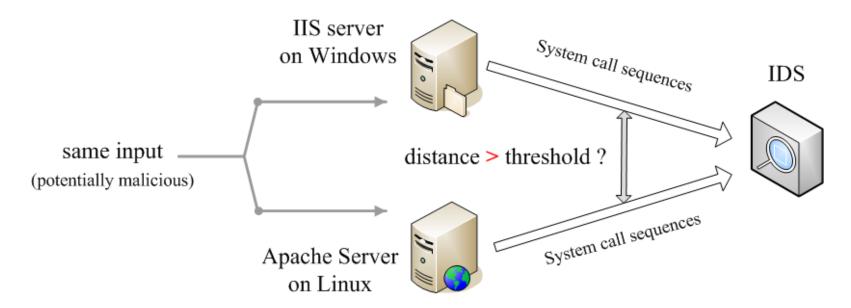
Software Diversity

 Compared to software mono-culture, software diversity can be adopted at various levels to enhance system security:

– System-level:

- Instruction-set Randomization [Barrantes(CCS'03), Gaurav(CCS'03)]
- Address Space Randomization [Bhatkar, USENIX Security '03]

– Application-level:


• N-version programming [Chen et al., 1978]

• N-variant systems [Cox et al., USENIX Security '06]

• Behavioral Distance [Gao et al., RAID '05, RAID '06]

Software Diversity Application

An example of Behavioral Distance [Gao et al., RAID05, RAID06]:

Another example:
 Utilizing diverse software in network to decrease the virulence of worms and the effectiveness of single attacks to repeated applications.
 [O'Donnell et al, CCS 04]

The assumption

 These systems which utilize diverse offthe-shelf software usually
 assume that these software products are diverse enough
 not to be compromised simultaneously
 with the same exploit Is such an assumption valid?

How accurate is this assumption?

 What is the effectiveness of utilizing diverse software in these applications?

- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

Two ways for app. diversity

 Different software with same functionalities (Software substitutes)

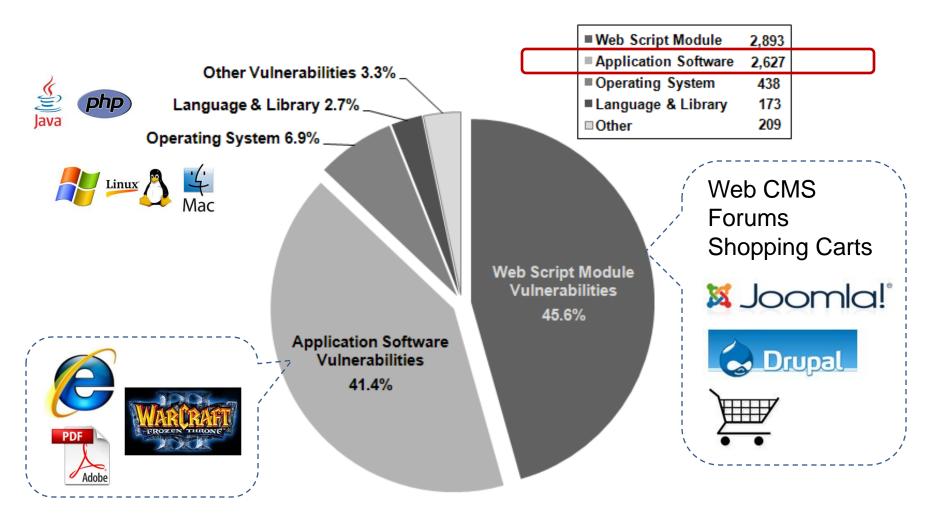
- Alternativeto: http://alternativeto.net/desktop
- Same software running on multiple OS

Research Questions

Software substitutes:

- What is the percentage of software that has potential substitutes with the same functionality?
- For those that are software substitutes of one another, do they have the same vulnerability?
- Can they be exploited with the same attack?

Software on multiple OS:


- How many software products can run on multiple OS?
- Do vulnerabilities of the software on one OS propagate to the same software on a different OS?
- If so, can they be exploited by the same attack when running on different OS?

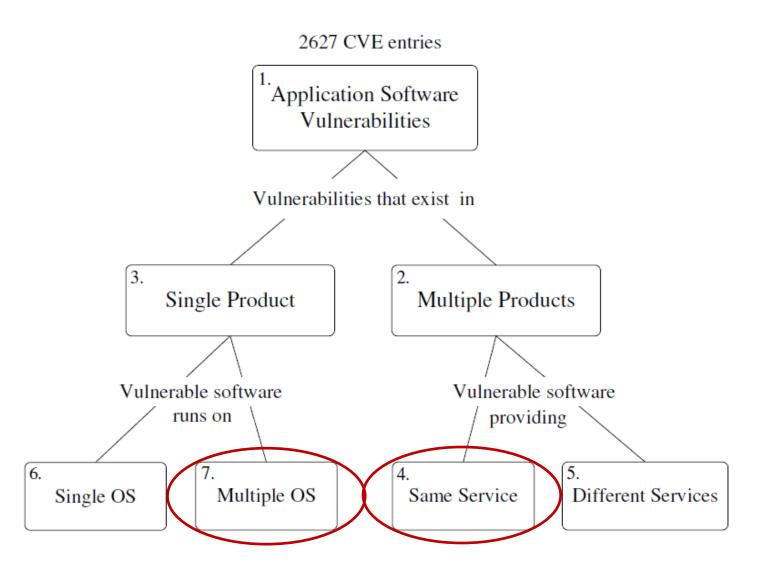
- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

Source of Information

- The main source:
 - 6,427 software vulnerabilities in 2007,
 in NVD/CVE (National Vulnerability
 Database/Common Vulnerability and Exposures)
- Other sources utilized:
 - SecurityFocus, FrSIRT, CERT, Milw0rm, Secunia,
 OSVDB, IBM X-Force, and also the bug lists from the software vendors.

Preliminary Analysis

- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

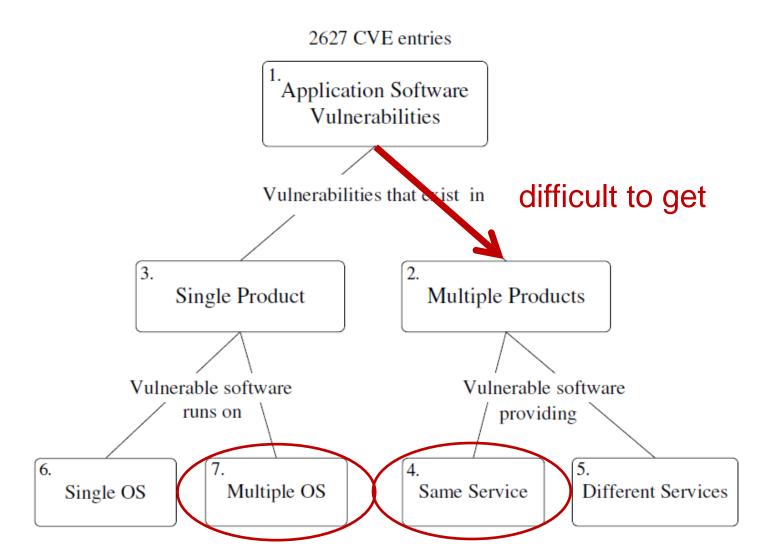

Most of app. have substitutes

- 2,627 application software vulnerabilities correspond to 1,825 distinct software products.
- Only 1.4% (25 out of 1,825) don't have substitutes

Vendor	Product	CVE entry	
ATI	Display driver	CVE-2007-4315	Llorduroro
NVIDIA	Video driver	CVE-2007-3532	Hardware drivers
Intel	2200BG Wireless driver	CVE-2007-0686	UIIVEIS
HP	Help and Support Center	CVE-2007-3180	Specific
HP	Quick Launch Button	CVE-2007-6331	software
Alibaba	Alipay ActiveX control	CVE-2007-0827	Specific
Microgaming	Download Helper ActiveX	CVE-2007-2177	plug-in

Examples of software products without substitutes

Analysis Tree

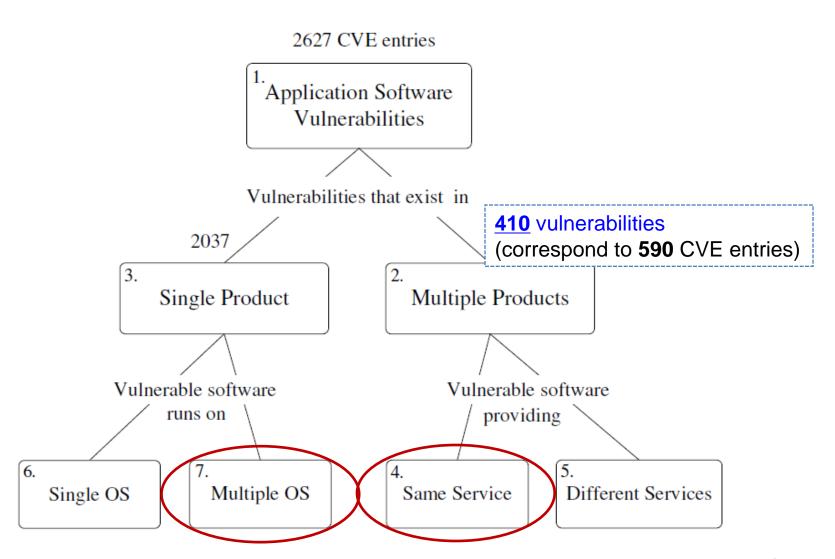

- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

Difficulties in analysis

 An interesting observation is that the same vulnerability may be represented in multiple entries in the CVE database.

CVE Entry	Description	
CVE-2007-2761	Stack-based buffer overflow in MagicISO 5.4 build 239 and	
	earlier allows remote attackers to execute arbitrary code	
	via a long filename in a .cue file.	
CVE-2007-2888	Stack-based buffer overflow in UltraISO 8.6.2.2011 and	
	earlier allows user-assisted remote attackers to execute	
	arbitrary code via a long FILE string (filename) in a .cue file.	

Analysis Tree


Speed up the analysis

- Different CVE entries that refer to the same vulnerability usually have similar descriptions.
- Vector Space Model

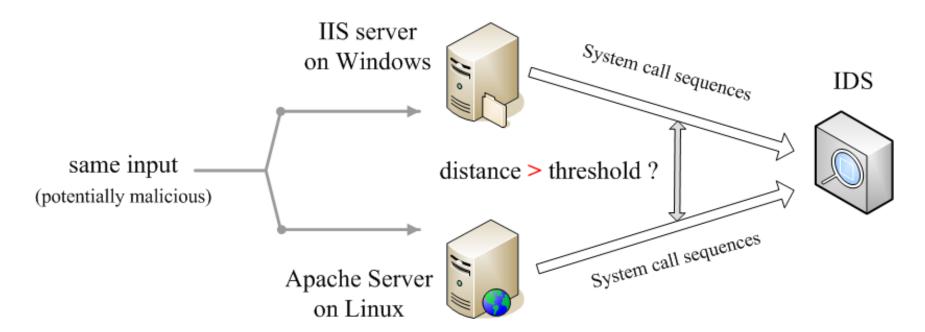
$$\operatorname{sim}(d_1,d_2) = \frac{\overrightarrow{d_1} \cdot \overrightarrow{d_2}}{|\overrightarrow{d_1}| \times |\overrightarrow{d_2}|} = \frac{\sum_{i=1}^t w_{i,1} \times w_{i,2}}{\sqrt{\sum_{i=1}^t w_{i,1}^2} \times \sqrt{\sum_{i=1}^t w_{i,2}^2}}$$

 The result: 410 vulnerabilities exist in multiple software products

Analysis Tree

Vulnerabilities in software substitutes

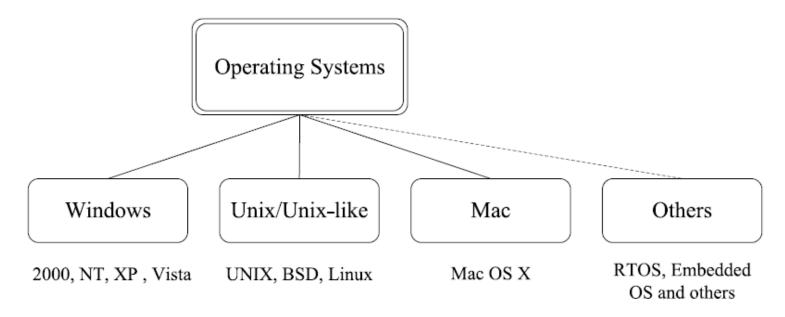
29 out of 410 vulnerabilities exist in software substitutes

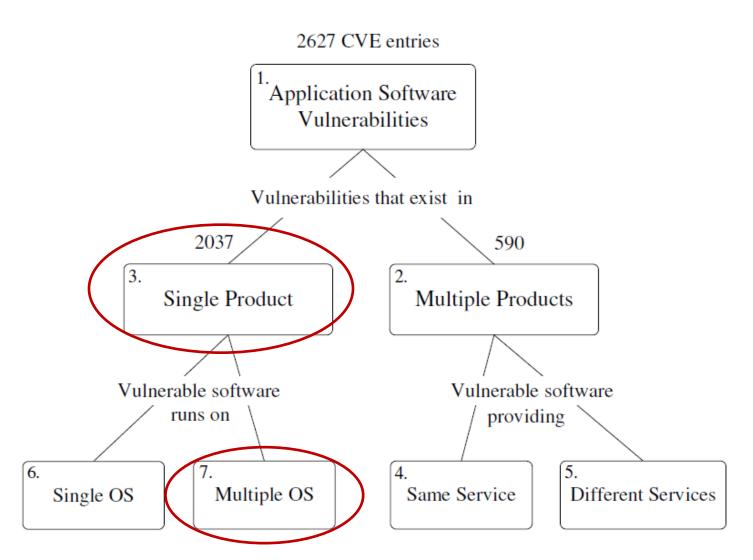

CVE Entry	Description
CVE-2007-0548	KarjaSoft Sami HTTP Server 2.0.1 allows remote attackers
	to cause a denial of service (daemon hang) via a large
	number of requests for nonexistent objects.
CVE-2007-3340	BugHunter HTTP Server (httpsv.exe) 1.6.2 allows remote
	attackers to cause a denial of service (application crash) via
	a large number of requests for nonexistent pages.
CVE-2007-3398	LiteWEB 2.7 allows remote attackers to cause a denial of
	service (hang) via a large number of requests for
	nonexistent pages.

Effectiveness of using software substitutes

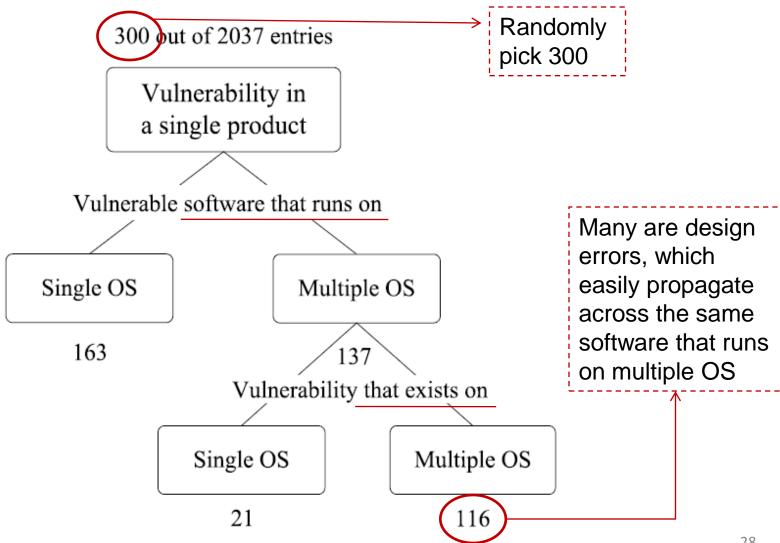
- Only 1.4% (25 out of 1,825) of the app. products don't have substitutes
- 16.8% (410 out of 2,447) vulnerabilities exists in multiple software
- 7.1% (29 out of 410) vul. exists in software substitutes
- 70% (14 out of 20), can be exploited with the same code on multiple products
- Approximately, 0.83% (16.8% * 7.1% * 70%)
 fail to detect

Software Diversity Application


• An example of **Behavioral Distance** [Gao et al., RAID05, RAID06]:


- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

Different OS


- Different kernels
 - NT for Win; Solaris, BSD, Linux kernel for UNIX-like and XNU for Mac OS X
- Different binary executable formats:
 - PE for Win, ELF for UNIX and Mach-O for Mac OS X

Analysis Tree

Software on Multiple OS

To exploit software that runs on different OS

- 84.7% (116 out of 137) of the vulnerability exist in the same software on different OS
 - Does this mean it is not effective to utilize software on different OS?
- Exploit code is unlikely to be the same:
 - Same software on different OS, usually have different source code
 - Even if source code is the same, attack codes are different due to different API and system calls across different OS

- Motivation
- Concrete Research Questions
- Data Source and Preliminary Analysis
- Application Software Vulnerabilities
 - Software substitutes
 - Software on multiple OS
- Conclusion

Conclusion

- Analyzed the vulnerabilities published in 2007 and corresponding software
- Two ways of introducing software diversity utilizing off-the-shelf software:
 - Software substitutes & Software on multi-OS
- The results show:
 - more than 98.5% have substitutes, the chance to be compromised by the same attack is very low.
 - Nearly half of the application software are officially supported to run on multi OS, their exploit code is quite different.

Contents not covered

- Vulnerabilities in other software categories
 - Web script modules
 - Operating systems
 - languages and libraries

Vulnerability Types	Number of entries	Percentage
Cross-site scripting	714	24.7%
SQL injection	669	23.1%
PHP remote file inclusion	634	21.9%
Directory/Path traversal	267	9.2%
Cross-site request forgery	50	1.7%
Others	559	19.3%
Total	2893	100%

Q & A

Thanks

Additional Slide 1

- The example for different exploit code for the same vulnerability (6 of the 20 vulnerabilities).
 - CVE-2007-4734 OTSTurntables 1_00 (m3u File)
 local buffer overflow exploit
 - CVE-2007-4735 Virtual DJ 5_0 (m3u File) Local buffer overflow exploit

Potential attack strategy to evade IDS

Algorithm to evade detection:

```
os_ret ← os_test();
if is_win(os_ret) then
   win_attack_code();
else if is_unix(os_ret) then
   unix_attack_code();
else if is_mac(os_ret) then
   mac_attack_code();
end if
```

- Different from OS fingerprinting
- Two difficulties to implement

- 1. Speak slowly
- 2. Use laser pointer
- 3. Admit to the face, try to limit the scope of its effect