
Università di Pisa Universität Dortmund

Scuola di dottorato in Ingegneria Institut für Roboterforschung
“Leonardo da Vinci” Abteilung Informationstechnik

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Ph.D. Thesis

Component Performance Modeling
and

Scheduling Strategies on Grids

Candidate

Nicola Tonellotto

Supervisor Supervisor
Prof. Ing. Luca Simoncini Dott. Domenico Laforenza

Supervisor
Prof. Dr.-Ing. Uwe Schwiegelshohn

2008

Abstract

With a Grid, networked resources, e.g. desktops, servers, storage, databases, even scien-
tific instruments, could be combined to deploy massive computing power wherever and
whenever it is needed most. In the past years, High Performance Computing (HPC)
applications have taken full benefit from this power, but to completely exploit the po-
tential of Grids, a whole new set of requirements must be handled: security, resource
discovery, access and management, application deployment, heterogeneity, dynamicity,
interoperability, quality of services (QoS), etc. To address such problems recently a new
abstraction has been introduced: the component. Component technologies have been suc-
cessfully adopted in sequential programming and distributed computing, and currently
several component-based programming models have been proposed as a solution to the
major problems arising when programming Grids.

In this thesis, three key requirements for Grid application development software are
investigated: the need of a performance model for components, in order to derive the
performance of Grid applications; the need of a performance contract for components, in
order to derive the requirements for the execution of component-based applications on
heterogeneous platforms starting from user-level performance requirements; and the need
of mapping strategies for tightly-coupled applications developed using the component
paradigm, with a particular focus on the impact of communication requirements. The
contributions of this thesis are structured as follows.

• A compositional performance model for components interacting through streams of
data is proposed. This model is derived from an analytical model of the dynamic
behavior of sequential and parallel components.

• A definition of performance contract for component-based applications is proposed.
This definition, based on the results on the steady state limit for the performance
model, is viable in general for hierarchical component models with asynchronous one-
way communications.

• A polynomial-time propagation algorithm for component contracts is proposed. Start-
ing from a performance model and a performance contract, it allows to compute the
performance parameters that every component must satisfy, so that the program, as
a whole, will fulfill the performance contract at runtime.

• Two launch-time scheduling heuristics to allocate component-based applications are
proposed. The applications are described by task interaction graphs whose nodes and
edges are labeled according to the QoS requirements derived through the contract

VI Abstract

resolution algorithm. The goal of such heuristics is to obtain feasible mappings, deal-
ing with computational and communication requirements. The first one, the Wide
Area Scheduling hEuristics (WASE) targets hierarchically structured Grids exploit-
ing qualitative information on the application structure, while the second one, the
QoS List Scheduling hEuristics (QLSE), targets unstructured global Grids trying to
exploit quantitative information on the application structure.

Acknowledgements

It has been a great privilege to have an international jointly supervised PhD disserta-
tion. My thanks go to Dr. Domenico Laforenza (ISTI-CNR), Prof. Luca Simoncini
(University of Pisa) and Prof. Dr.-Ing. Uwe Schwiegelshohn (University of Dortmund)
who have made it possible. A special thank goes to Dr.-Ing. Ramin Yahyapour, who
offered me not only writing and academic guidance, but also general support and encour-
agement. I am also deeply indebted to Ranieri Baraglia and Dr. Corrado Zoccolo,
for their continuous support and fruitful discussions. They have given me a lot of useful
ideas, many of which are contained within this work. I am also very grateful to many
other colleagues in the High Performance Computing Laboratory in Italy and the In-
stitute for Robotics Research in Germany: Dr. Fabrizio Silvestri, Diego Puppin,
Claudio Lucchese, Patrizio Dazzi, Antonio Panciatici, Marco Pasquali, Prof.
Salvatore Orlando, Renato Ferrini, Raffaele Perego, Lars Schley and Dr. Ji-
adao Li. Many thanks go to Prof. Marco Vanneschi, Prof. Marco Danelutto and
Dr. Massimo Coppola of the Computer Science Department of the University of Pisa
which supported the early stage of my work as members of the Grid.it project. I would
like to express my gratitude to the CoreGRID Network of Excellence, which made pos-
sible my joint PhD, and its members, in particular I want to thank Philipp Wieder,
Dr. Wolfgang Ziegler and Oliver Wäldrich, which help me with a fertile discussion
ground during many meetings and conferences. Many thanks also go to my friends An-
tonio, Monica, Simona, Elena, Gabriele, Alessandro, Davide, Diego, Manolo,
Francesca O., Andrea, Francesca V., Franco, Andrea K. and, in particular, Laura
and Mirella, who supported me with their love and friendship during these years.

eÊ dà faÐnetai jeasamènoic ÍmØn, ±c âk toioÔtwn âx �rq¨c Íparqìntwn, êqein �
mèjodoc ÉkanÀc par� t�c �llac pragmateÐac t�c âk paradìsewc hÎxhmènac, loipän �n
eÒh p�ltwn ÍmÀn [«] tÀn �kroamènwn êrgon toØc màn paraleleimmènoic t�c mejìdou
suggn¸mhn toØc d' eÍrhmènoic poll�n êqein q�rin.

PERI TWN SOFISTIKWN ELEGKWN
>Aristotèlhc

If, then, it seems to you after inspection that, such being the situation as it existed
at the start, our investigation is in a satisfactory condition compared with the other
inquiries that have been developed by tradition, there must remain for all of you, or
for our students, the task of extending us your pardon for the shortcomings of the
inquiry, and for the discoveries thereof your warm thanks.

ON SOPHISTICAL REFUTATIONS
Aristotle

Contents

1 Introduction . 1
1.1 Grids . 2
1.2 Components . 3
1.3 Statement of the Problem . 4

1.3.1 Purpose of the Study . 5
1.3.2 Limitations of the Study . 7

1.4 Summary . 8

2 Background . 9
2.1 Components . 9

2.1.1 Industrial Component Models . 10
2.1.2 Academic Component Frameworks . 12
2.1.3 Grid Component Frameworks . 13
2.1.4 Component Performance Models . 15
2.1.5 Component Contracts . 16
2.1.6 Discussion . 17

2.2 Grid Computing . 18
2.2.1 Grid Resource Management . 20
2.2.2 Grid Scheduling Process . 22
2.2.3 Grid Scheduling Algorithms . 23
2.2.4 Objective Functions . 24
2.2.5 Application Models . 24
2.2.6 TIG Scheduling . 25
2.2.7 Discussion . 25

3 Component Performance Model . 27
3.1 Component Structure . 27

3.1.1 Communications . 27
3.1.2 Computations . 28

3.2 Dynamic Model . 29
3.2.1 Node Behavior . 29
3.2.2 Edge Behavior . 30
3.2.3 Runtime Behavior . 31

XII Contents

3.2.4 Steady-State Behavior . 32
3.2.5 Validation . 34

3.3 Performance Model . 35
3.4 Composite Components . 38
3.5 Comparison with Queueing Network Theory . 40

4 Component Performance Contract . 43
4.1 Performance Constraints and Requirements . 43
4.2 Constraints Resolution Algorithm . 46

4.2.1 Fully Specified Models . 47
4.2.2 Over Specified Models . 47
4.2.3 Under Specified Models . 48
4.2.4 Composite Components Constraints . 49
4.2.5 Complexity . 50

4.3 Performance Annotations . 51
4.4 Performance Contract . 53

4.4.1 Validation . 53

5 Component Applications Scheduling on Hierarchical Grids 57
5.1 Introduction . 57
5.2 Application Model . 58
5.3 Platform Model . 58
5.4 Algorithm Architecture . 60
5.5 Performance Evaluation . 62

5.5.1 Simulation Environment . 63
5.5.2 Performance Metrics . 64
5.5.3 Evaluation for synthetic Grid scenarios . 64
5.5.4 Validation . 69

6 Component Applications Scheduling on Global Grids 73
6.1 Introduction . 73
6.2 Application Model . 74
6.3 Platform Model . 74
6.4 Algorithm Architecture . 75

6.4.1 Tasks Ordering . 76
6.4.2 Hosts Ordering . 77
6.4.3 LAN Clustering . 77
6.4.4 Component Allocation . 78
6.4.5 Scheduling Heuristics . 78

6.5 Performance Evaluation . 78

7 Conclusions . 83
7.1 Summary . 83
7.2 Research Directions . 84

References . 87

List of Figures

2.1 Example of a scheduling infrastructure for Enterprise Grids. 21
2.2 Example of a scheduling infrastructure for HPC Grids. 21
2.3 Example of a scheduling infrastructure for Global Grids. 22
2.4 Three phases process for Grid resource management 23

3.1 Sequential component at runtime . 29
3.2 Graph of the render-encode application . 34
3.3 Comparison of actual execution and simulation of the parallel renderer . . . 35
3.4 Convergence to steady-state of averaged performance features 35
3.5 Component-based application with two sources of data 36
3.6 Composite component . 38
3.7 A program that deadlocks if i42 and i43 are synchronized to activate the

computation e4 . 40

4.1 Example application graph for equations reordering . 44
4.2 Polyhedron of the LP problem in the example . 49
4.3 Graph of the render-encode application . 53
4.4 Two executions of the application on homogeneous and heterogeneous

resources. 55

5.1 Implementation of multicast (left) and merge (right) streams 58
5.2 Grid network topology (left) represented as a dendrogram (right) 59
5.3 Percentage of scheduling failures (1) . 65
5.4 Percentage of scheduling failures (2) . 65
5.5 Comparison of percentage of scheduling failures . 66
5.6 Average scheduling time . 66
5.7 Comparison of average scheduling times . 67
5.8 Scheduling of TIG (4 hosts per LAN) . 67
5.9 Average LAN Hit Ratio (WASE) . 68
5.10 Average LAN Hit Ratio (Greedy) . 68
5.11 Minimum Task Machine Affinity (TIGs with 8, 16, 32, 64 and 128 tasks) . 69
5.12 Graph of the render-encode application . 70
5.13 Graph of the real Grid testbed . 70

XIV List of Figures

5.14 Different clustering results of the test application . 71

6.1 Example of a weighted Task Interaction Graph with 14 nodes 74
6.2 Example of a modeled Grid with bandwidth information 75
6.3 Layered ordering of tasks of the TIG in Fig. 6.1 . 76
6.4 Bandwidth distribution of Grid in Fig. 6.2 and its quartiles 78
6.5 Average percentage of scheduling failures . 80
6.6 Average LAN Hit Ratio . 81
6.7 Average component-resource computational ratio . 81
6.8 Average scheduling times . 82

List of Tables

4.1 Deployment annotations for the application. 54

5.1 Computational power of resources in the Grid testbed 70
5.2 Allocation results for the use case application . 71

6.1 Parameters used to generate TIGs . 80
6.2 Parameters used to generate Grids . 80

List of Algorithms

1 The performance requirements propagation algorithm 49
2 The hierarchical scheduling algorithm . 62
3 The local scheduling function LocalScheduling(N, g) 62
4 The neighbor search procedure NeighborSearch(P, g) 63
5 The QoS List Heuristics . 79

1

Introduction

Scientists are always facing increasingly complicated problems and a single computer is
not enough for the calculations they want to do. Even the computers leading the world
in terms of processing capacity (supercomputers) have shown their limits in term of the
problems they are able to solve (e.g. problem size and speed). In the nineties, a new type of
distributed computing paradigm was proposed. This paradigm, called metacomputing [1]
tried to overcome the lack of computing power by linking up supercomputer centers with
what were, at the time, high speed networks. However supercomputers are expensive and
a relatively small number of companies and research centers were able to have one of
them. Building a metacomputer was an extremely complex task, and very few scientists
were able to access one and to fully exploit its capabilities.

Fortunately, the last twenty years have seen a considerable increase in computer
and network performance. In few years, it became clear that it was possible to reach
impressive computing power simply by linking together several commodity-off-the-shelf
homogeneous computers hosted in research center rooms. The idea to exploit the com-
puting power of homogenous workstations interconnected through a local area network
gave birth to the cluster of workstations (COW). This idea proved successful and was
further investigated. The restriction of local interconnections between the resources was
relaxed and workstations in different academic and research institutions were connected,
crossing their respective borders in a network of workstations (NOW). Next, the restric-
tion of resource homogeneity was relaxed, and thus far more resources could be pooled,
with different interconnection characteristics: the dream is to exploit idle cycles of the
computers connected to the Internet. This global scale vision of distributed computing
is often referred as Grid computing.

Grid computing has specific requirements due to its inherent largely distributed and
heterogeneous nature. Research efforts first focused on the access to physical resources by
providing tools for search, reservation and allocation of resources, and for the construction
of Virtual Organizations (VOs) [2]. Managing the Grid resources is a first necessary step
for taking advantage of the Grid infrastructure, and the second step is to offer adequate
development models and environments. A new research area therefore emerged, focusing
on programming models and tools to efficiently program Grid applications.

Traditionally, the target for parallel programming has been limited to some special-
ists with interest in, and knowledge of, the problem being solved. They developed their

2 1 Introduction

parallel algorithms often from scratch, using low level programming tools, for the lack
of powerful parallel programing tools and, of course, performance. Parallel programming
tools were not effective from the point of view of software companies. The first commercial
prototypes of such tools were introducing too much overhead with respect to low level
programming. The subsequent widespread adoption of low cost clusters and networks
of workstations changed this scenario, and the need of high level parallel programming
tools became more urgent. The adoption of structured parallel languages [3] permitted
the reuse of sequential code to build parallel algorithms, which could in turn be composed
to build a parallel application. This programming paradigm was able to raise the level of
abstraction provided to programmers as well as to provide separation of concerns between
application and system programmers. With the advent of Grid computing a whole new
set of requirements is introduced: security, resource discovery, access and management,
application deployment, heterogeneity, dynamicity, interoperability, quality of services
(QoS), etc.

To address such problems, a new abstraction has recently been introduced: the com-
ponent [4]. A component is a reusable piece of code which can be invoked according to a
well-defined interface. Structured parallel programming and component technologies are
two non mutually exclusive ways of structuring code in order to simplify the development
of complex parallel applications, starting from simpler building blocks.

Component technologies have been successfully adopted in sequential programming
and distributed computing. Currently several component-based programming models
have been proposed to overcome the major problems arising when programming Grids.

1.1 Grids

The popularity of the Internet and the availability of powerful computers and high-
speed networks as low-cost commodity components have led to the possibility of using
geographically distributed and multi-owner resources to solve large-scale problems in sci-
ence, engineering and commerce. Recent research on such topics has led to the emergence
of a new computing paradigm known as Grid computing. The term Grid was chosen as
an analogy to a power Grid that provides consistent, pervasive, dependable transpar-
ent access to electricity, irrespective of its source [5]. The concept of Grid computing
started as a project to link geographically dispersed supercomputers [6], but has now
grown far beyond that original intent. The use of the Grid infrastructure can benefit
many applications, including collaborative engineering, data exploration and distributed
supercomputing [7].

It is possible to distinguish different general layers in a Grid architecture [2]: at the
lowest level the local resources (computers, networks, sensors, databases). On top of it,
the middleware is built, in order to hide the heterogeneous nature of underlying resources
and to provide a small set of low-level tools to access and manage such resources. The
Globus Toolkit1 is the “de facto” standard middleware to build Grid infrastructures.

These two layers just define the running environment of the true beneficiaries of the
Grid infrastructures, the applications. The next layer of the Grid architecture must then

1 http://www.globus.org/toolkit

http://www.globus.org/toolkit

1.2 Components 3

provide a set of high-level tools to allow the development and the execution of applications
that can not be run on different architectures. Grid applications are currently developed
exploiting directly the Grid middleware. Overall, the tools and APIs of the middle-
ware burden directly the programmers with the control over Grid resources, process and
communication management. Currently, only a few classes of applications are success-
fully executed on Grids: minimal communication applications (embarrassingly parallel
computations), staged applications (get inputs/computes data/visualize outputs), single
resource applications (get something from A, do something at B). In coming years, ap-
plications will use Grids in more sophisticated ways, adapting to dynamic configurations
of resources and performance variations to achieve the goals of autonomic computing [8].
To reach these goals, some key research areas that will provide the building blocks for
future Grids are:

• Adaptive applications: the development of software which is self-optimizing, self-
configuring, self-healing and self-protecting will allow programs to adapt to the dy-
namic performance that can be delivered by Grid resources. Moreover, as the Grid
infrastructure grow in size and complexity, it will need a robust and flexible architec-
ture that can easily adapt to change.

• Grid programming environments: high-level programming environments hiding
the complexities of the Grid infrastructures will be the key factor to increase the
productivity of Grid environments. Application developers will concentrate on the
problem being solved rather than on the issues introduced by the target architec-
ture. New compile-time and runtime tools for applications are needed. Such tools
must interact with resource discovery and selection mechanisms to best target their
programs, and to migrate them during execution in case of performance failures.

• New technologies: new access devices and new information sources will be inte-
grated in the Grid infrastructure. Mobile systems such as cell phones or PDAs will
allow ubiquitous access to Grid infrastructures, as well as new information sources.
Moreover, new sensors and sensor nets will provide an immense source of data, cre-
ating a new level of potential for scientific applications.

• Grid economies: the Grid is growing to be a global-scale complex system. In the
future, this system will require policies, structure and economies to maintain stability
and provide efficient performance.

1.2 Components

Component-based programming takes the idea of using construction blocks and elements
for building manufactured products, and applies it to software[9]. A component is a
reusable program building block that can be combined with other components in the
same or other computers in a distributed network to form an application. Components
can be seen as an extension of objects: they are aiming, like objects, at code reuse, but
focusing also on the issues of software interoperability, providing language independence,
compiler independence, and seamless access to distributed object resources.

Components rely on the decoupling of interfaces and implementations: interfaces are
defined in a special purpose Interface Definition Language (IDL), and are bound to im-
plementations (written in one of the supported languages) by means of an IDL compiler.

4 1 Introduction

Components are composed according to a composition model (in order to build a more
complex application). In this way the programmer is relieved from programming the
low-level interactions of different components; rather it is responsibility of the compo-
nent programming framework to implement it efficiently.

Component-based programming is good to use for the following three reasons:

• Encapsulation: components are seen as black-boxes, which define functionalities
offered and functionalities required through interfaces; they rely on the decoupling of
interfaces and implementations.

• Composition: components are composable; this facilitates the design of complex
systems by simply assembling functional software units, and hierarchical models offer
abstractions of composed sub-systems.

• Description: assemblies of components can be analytically described with a stan-
dard Architectural Description Language (ADL). The description of components and
component-based applications can also include performance and deployment infor-
mation, to be used during the deployment of the application and at runtime.

The software development process benefits from this approach. The clear separation
between interfaces and implementations allows the basic components to be developed
by specialists with knowledge in the functionalities offered and programming skills to
certify the quality of the implementation. Because of this, the complex components can
be assembled by composing other components. The interactions between software units
are completely specified by the components’ interfaces, and an application developer can
not just select the right components and connect their interfaces to build a complete
application. The modularity and encapsulation of components make them perfect candi-
dates for the execution of applications in distributed environments, which can be easily
carried out by the component framework. Moreover, the description of components and
applications allows to build automatic mechanisms to deal with deployment and runtime
issues typical of distributed computing.

1.3 Statement of the Problem

It is becoming increasingly clear that existing Grid middleware, such as the Globus
Toolkit and associated software, does not provide the required support to enable easy
and reliable application construction and execution in a Grid environment [10]. Impres-
sive applications have been developed, but only by teams of specialists. Entirely new
approaches to software development and programming are required for Grid computing
to become broadly accessible to non specialist scientists, engineers, and other problem
solvers.

New Problem Solving Environments (PSEs) are required, to automatically manage
the Grid issues and to provide to programmers the facilities to hide the Grid infrastruc-
ture. To implement this invisible Grid [11], new programming environments, models, and
tools are required. Recently, some promising Grid application development softwares have
been prototyped. The GrADS2 project has implemented a new program development

2 http://hipersoft.rice.edu/grads/

http://hipersoft.rice.edu/grads/

1.3 Statement of the Problem 5

and execution structure, encapsulating applications in configurable object programs to be
dynamically mapped on Grid resources, and relying on specific performance contracts
to steer the configuration of applications at runtime to achieve expected performance.
The Grid.it project has improved the structured parallel programming environment AS-
SIST3, whose design is aimed at raising the level of abstraction in Grid programming
exploiting structured high performance components and implementing dynamic resource
discovery and selection as well as dynamic adaptation of applications.

However, such Grid software needs a number of auxiliary technologies to support
complex applications development and execution. Component-based programming is cur-
rently the most promising paradigm for programming complex systems, breaking them in
smaller and simpler pieces: it is well suited to efficiently face the new challenges in terms
of programmability, interoperability, code reuse and efficiency that mainly derive from
the features that are peculiar to Grids. Nevertheless, the integration of this programming
model with the Grid infrastructure and its adoption from the scientist communities still
faces several research challenges, including:

• component interactions must be defined precisely and in such a way that complex,
multidisciplinary applications can be constructed by the composition of building block
components, possibly obtained by suitably wrapping existing code;

• performance/cost models must be defined to allow the development of tools for rea-
soning about components and their deployment;

• suitable tools must be designed which will allow for seamless integration of the com-
ponent runtime environment with the Grid middleware;

• existing algorithms must be adapted to work with component applications and their
performance models; if necessary, new solutions must be proposed.

Clearly, for this execution scenario to work, we must have a reasonable performance
model and mapping strategies for each application. Performances models are needed to
correctly drive the resource selection phase at launch time. At runtime, performance
models can be automatically managed by the framework to selected new resources where
components should be migrated to fulfill the application QoS. Mapping strategies are
needed to manage the new complex applications and to handle their execution on the
target Grids, facing issues like heterogeneity in resources architecture, power and data
formats and limited, varying communication bandwidths.

1.3.1 Purpose of the Study

This thesis investigates three key requirements for Grid application development soft-
wares:

• the need for a performance model for components, in order to derive the performance
of Grid applications;

• the need for a performance contract for components, in order to derive the require-
ments for the execution of component-based applications on heterogeneous platforms
starting from user-level performance requirements;

3 http://www.di.unipi.it/Assist

http://www.di.unipi.it/Assist

6 1 Introduction

• the need for mapping strategies for tightly-coupled applications developed using the
component paradigm, with a particular focus on the impact of communication re-
quirements.

The adoption of the component paradigm to develop Grid applications allows different
programmers to implement specific-purpose components. The programmer’s expertise in
the implementation should allow him to describe in detail the performance characteristics
of the specialized component. A compositional performance model is then envisioned, in
which performance features of different components can be composed to automatically
build the performance model of the whole application.

Often application users do not have the knowledge or expertise needed to fully under-
stand the structure and the performance of applications. Typically, Grid users express
their requirements on the execution of an application expressing an high-level goal (e.g.
I want an overall throughput of x data/sec, I want the application to execute in less
than 2 hours). In doing so they stipulate with the application execution framework a sort
of “contract” that the application should respect at runtime. This contract may include
rewards and penalties for the fulfillment of the requirements. The runtime environment
of the application (execution support and system middleware) is in charge of controlling
the fulfillment of the contract exploiting the performance features of the model.

Composing components to build applications can easily drive to the building of very
complex programs, which have several computing components interconnected with struc-
tured and unstructured communication patterns. However, the mapping of such applica-
tions on Grids is difficult. The general problem of mapping a set of tasks on distributed
resources is known to be NP-complete and even if some special instances are solvable
in polynomial time, the dynamicity of the Grid can make an optimal or quasi-optimal
solution useless in short time. Instead of elaborating very complex heuristics to try to
optimally map components on a Grid, it is preferable to devise a launch-time schedul-
ing heuristics able to find a mapping to guarantee the QoS required by the end-user (a
feasible mapping). With optimal mappings, a dynamic change of resource characteristics
may result in a probable loss of optimality, so the time and computational efforts in
deriving them might not be justifiable. The main current approach to dynamic changes
management is to rely on dynamic rescheduling mechanisms. Recalculating an optimal
assignment may be again time-consuming, while devising new feasible mapping for just
the components violating the QoS constraints may be more reasonable.

This thesis proposes the following contributions:

• A compositional performance model for components interacting through streams of
data. This model is derived from an analytical model of the dynamic behavior of
sequential and parallel components.

• A definition of performance contract for component-based applications. This defi-
nition, based on the results on the steady state limit for the performance model,
is viable in general for hierarchical component models with asynchronous one-way
communications.

• A polynomial-time propagation algorithm for component contracts. Starting from a
performance model and a performance contract, it allows the computation of the per-

1.3 Statement of the Problem 7

formance parameters which every component must satisfy, in order for the program,
as a whole, will fulfill the performance contract at runtime.

• Two launch-time scheduling heuristics to allocate component-based applications. The
applications are described by task interaction graphs whose nodes and edges are la-
beled according to the QoS requirements derived through the contract resolution al-
gorithm. The goal of such heuristics is to obtain feasible mappings, dealing with com-
putational and communication requirements. The first one, the Wide Area Scheduling
hEuristics (WASE) targets hierarchically structured Grids exploiting qualitative in-
formation on the application structure, while the second one, the QoS List Scheduling
hEuristics (QLSE), targets unstructured global Grids trying to exploit quantitative
information on the application structure.

The performance model and contract have been applied to the problem of the de-
ployment onto a Grid platform of an ASSIST applications. This has been done as part
of the Italian national project Grid.it (Enabling Platforms for High-Performance Com-
putational Grids Oriented to Scalable Virtual Organizations).

The launch-time scheduling heuristics have been studied to evaluate the impact of
communication requirements on the mapping of applications on Grids. This work has
been done as part of the CoreGRID Network of Excellence (European Research Network
on Foundations, Software, Infrastructures and Applications for large scale, distributed,
GRID and Peer-to-Peer technologies).4

1.3.2 Limitations of the Study

The proposed performance model for components interacting through streams of data is
an innovative, general approach to the analytical modeling of hierarchical components.
Although the model is limited to streams, which are a common communication pattern
in high performance and high throughput computing, it is viable for hierarchical com-
ponent models with asynchronous one-way communications like Fractal [12]. It can
be exploited to reason about the dynamics of running components and it is suited for
simulation and control environments (e.g. Simulink®5).

The proposed performance contract is, at the best of the author knowledge, the first
approach in Grid computing to a performance contract not focused just on the monitoring
and runtime reconfiguration of an application, but also on the management of user-level
QoS requirements. The performance model/contract and the execution platform are inde-
pendent, so it is viable to exploit the application performance characteristics on different
models of Grid resources, although their applicability needs further investigation.

The proposed scheduling heuristics are not sub-optimal algorithms. Their approxi-
mation of the optimal solution is not, in general, quantifiable. This is due to the main
assumption that the dynamicity of the Grid will hinder the use of optimal mappings,
and thus dynamic rescheduling approaches must be exploited. The initial mapping can
be considered a good “hint” to start the execution of an application on a Grid. The
dynamic changes in resources during the execution can not be easily included in launch-
time strategies. The proposed approach must be coupled with rescheduling strategies at
4 http://www.coregrid.net
5 http://www.mathworks.com/products/simulink/.

http://www.coregrid.net
http://www.mathworks.com/products/simulink/

8 1 Introduction

runtime to solve such problems. The presented steady state model can be exploited at
runtime to adapt the behavior of components to changes in resource performances [13].

1.4 Summary

The rest of the thesis is organized as follows. In Chapter 2 backgrounds on component
technologies and Grid computing are given, positioning the presented work with respect
to the state of the art. The dynamic model of components and their steady-state behavior
is illustrated in Chapter 3, and in Chapter 4 the steady-state limit is exploited to define
the performance contract and the relative contract propagation algorithm is presented
and discussed. In Chapter 5 and Chapter 6 the Wide Area Scheduling hEuristics (WASE)
and the QoS-constrained List Scheduling hEuristics (QLSE) are presented, respectively.
Their performance evaluation is provided. In Chapter 7 the conclusions on the presented
work are drawn, and further developments are discussed.

2

Background

This chapter reviews the state of the art of component technologies, component perfor-
mance model and Grid scheduling. First, it will review the most important component
technologies in industry and research, focusing on the component frameworks proposed
in Grid computing, followed by an introduction of the Grid concept and a presentation
of the topics related to the contents of this thesis. The end of each section will discuss
the positioning of this work with respect to the presented topics.

2.1 Components

Traditionally, the target for parallel programming has been limited to specialists, with
interest in and knowledge of the problem being solved. They often developed their par-
allel algorithms from scratch, using low-level programming tools, because of the lack
of powerful parallel programing tools and, of course, performance. From the point of
view of software companies, parallel programming tools were not effective, and their first
prototypes introduced too much overhead with respect to low-level programming. Sub-
sequently, low cost clusters and networks of workstations were adopted and the scenario;
the need of high level parallel programming tools became more urgent. The adoption of
structured parallel languages (i.e. skeletons [3, 14]) permitted the reuse of sequential code
to implement parallel algorithms, which could in turn be composed to build a parallel ap-
plication. This programming paradigm was able to raise the level of abstraction available
to programmers and to provide separation of concerns between application and sys-
tem programmers. However, the advent of Grid computing has introduced a completely
new set of requirements which must be handled by programming environments: secu-
rity, resource discovery, access and management, application deployment, heterogeneity,
dynamicity, interoperability, quality of services (QoS).

Recently a new software abstraction has been introduced to address these problems:
the component. The underlying idea is to construct software in the same way as hardware,
i.e. by assembling reusable components. The initial concept of component was introduced
by McIllroy in 1968 [9]. Since then the notion of component has developed several defi-
nitions of a component are grown in the literature [15, 16, 4] because components have
many varied forms and characteristics. Today, the commonly accepted definition of com-
ponent is that of Szyperski [4]:

10 2 Background

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.

This definition states that a component must have clearly specified interfaces and its
implementation must be encapsulated in the component itself, not directly reachable from
the environment. This implies that component dependencies must be designed in such a
way to be treated as independently as possible. Moreover, to be deployed autonomously,
a component must be clearly distinct from its environment and from other components.

Indeed, object oriented programming [17] enabled the development of reusable class
libraries, such as the Standard Template Library (STL) [18] or Java Foundation Classes
(JFC) [19]. Moreover, distributed technologies like the Common Object Request Broker
Architecture (CORBA) [20] and Java Remote Method Invocation (JavaRMI) [21] gave
the impulse to distributed object computing environments.

However, object-oriented methodology never achieved software reuse and composition
in the large, mainly because:

• a large number of fine-grained classes are generated during object-oriented modeling;
• these classes are entangled in a web of association, aggregation and generalization

relationships;
• the deployment context of a class does not change after compilation, and often the

source code is required, making difficult to reuse existing components;
• these technologies mainly target sequential applications, also in distributed environ-

ments, and they are completely unaware of the underlying running environment;
• fine-grained aggregation of classes makes well-defined, context-independent interfaces

for composition difficult to expose.

The next section will review several technologies and related models for components.
For each component model discussed, it is defined what the component is, what the
interfaces look like and how components interact and communicate.

2.1.1 Industrial Component Models

Several companies (e.g Microsoft and Sun Microsystems) have recognized the need of
distributed computing environments built on top of components. Several commercial
standards have been proposed, and today Microsoft’s COM/.NET, OMG’s CCM and
Sun’s EJB represent the most common component models used in industry.

COM/.NET

The first proposal for a component model fostered by Microsoft was the Component
Object Model (COM)1. COM is a binary standard not tied to a particular language,
and its goal is to specify how COM components (represented by binary executable files)
interact with other objects. In doing so, COM enforces a clear separation between the
implementation and the interface parts of an object. In fact, the fundamental entity
of COM objects is the interface, which represents the access point to the object. Such

1 http://www.microsoft.com/com.

http://www.microsoft.com/com

2.1 Components 11

interfaces are externally specified through the Microsoft Interface Definition Language
(Microsoft IDL), and the interaction is implemented through stubs and proxies with
remote procedure calls.

Moreover, the COM framework implements a set of key services and functionalities to
provide interfaces introspection and dynamic interface discovery. The COM framework
has evolved and now includes COM+, Distributed COM (DCOM) and ActiveX Controls.
COM+ enriches the set of COM services providing new mechanisms for resource pooling,
event publication and subscription and distributed transactions. DCOM adds distributed
communication capabilities, taking charge of the low-level details of network protocols.
ActiveX Controls define standard COM interfaces for compound documents. The COM
framework is now being superseded by the .NET technology2, providing a broader set of
services and interoperability, notably through web services.

CCM

The CORBA Component Model (CCM) [22] is an Object Management Group (OMG)
specification to build system- and language-independent, distributed, robust, heteroge-
neous business components. CCM is built on the OMG’s CORBA specification and ex-
tends its concept of distributed objects. A CORBA component is a black box CORBA
object with the following access interfaces: a self-referent interface (allowing introspec-
tion), a set of facets (provided interfaces), a set of receptacles (required interfaces), a
set of event sources and sinks (implementing asynchronous communications) and a set
of configuration attributes. CORBA components are automatically deployed in a con-
tainer and created by a home. The container provides services for persistency, security
and transactions.

The CCM framework provides tools to build multi-component applications, connect-
ing facets of one component to receptacles of another component. It also provides asyn-
chronous communication patterns: in addition to CORBA’s RPC mechanism, it supports
event-based communications.

EJB

Enterprise Java Beans (EJB)3 is a Sun technology that allows the modular construction
and management of server-side applications. The EJB specification is built upon beans,
which are distributed objects incapsulating business code. A bean’s whole lifecycle is
managed automatically by a container, which is also in charge of the management of
non functional features like persistency, security and load balancing. Beans are created
and managed by a home container service, and they can be deployed independently in
different EJB containers through specific deployment descriptors. Descriptors are XML
files containing information about the bean’s name, Java interfaces and implementing
classes, persistent data and security policies.

However, the programming model of these applications is still client-server, and the
interaction mechanism follows the RMI/CORBA approach. Moreover, EJB does not

2 http://www.microsoft.com/net.
3 http://java.sun.com/products/ejb/.

http://www.microsoft.com/net
http://java.sun.com/products/ejb/

12 2 Background

directly address the issue of language interoperability. Although the Java Native Interface
library supports interoperability with C and C++, using the Java virtual machine to
mediate communication between components would incur an intolerable performance
penalty on every inter-component function call.

2.1.2 Academic Component Frameworks

Research communities have proposed different component models and frameworks (e.g.
CCA, ASSIST, Fractal). These models are not widely adopted in production envi-
ronments and they usually focus on a specific research topic (e.g. high performance,
interoperability, quality of service, adaptivity), facing a problem unsolved in actual com-
putational frameworks [23].

CCA

The Common Component Architecture (CCA) [24] is a specification of a minimal com-
ponent architecture for high-performance computing. This specification establishes the
basic rules to build components portable between frameworks, specifying a minimal set
of interactions between components and the framework and the minimal set of behaviors
a component must exhibit. Components are software entities living inside a framework
and accessible through client and server ports. A framework is a container for build-
ing, connecting and executing components. The component ports and the interactions
with the framework are described through the scientific IDL (SIDL), which at the same
time provides the basis for the interoperability. SIDL enriches CORBA IDL with high-
performance specific data types. Components must be reflective, but the programmer is
responsible for the implementation of introspection. Component binding is carried out
by Babel [25], a specialized tool which automatically generates the required wrapper
code. Ports and their connections are fully dynamic. They can be added, removed and
connected at runtime. However, hierarchical composition is not included in the CCA
specification.

The CCA specification has been implemented in several projects, each one tailored
for specific needs. For example, XCAT [26] implements components as Grid services
exploiting the Globus Toolkit services, CCAFFEINE [27] targets at high-performance
SPMD computations, exploiting a reduced set of functionalities for message passing and
distributed memory, while DCA [28] bases its implementation on MPI to benefit from
its high performance and scalability.

ASSIST

ASSIST (A Software development System based on Integrated Skeleton Technology)
[29] provides programmers with a structured coordination language. This language can
be used to express parallel programs at a very high level of abstraction. The ASSIST
coordination language programs are made up of two specific parts. A module graph de-
scribes how a set of modules, either parallel or sequential, interact with each other using a
set of data-flow streams. A set of modules implements the nodes of the graph. Sequential
modules are basically procedure-like wrappings of sequential code written in C, C++

2.1 Components 13

or Fortran code. Parallel modules are programmed instantiating an ASSIST-specific
parallel module.

In addition to the structured coordination language and related tools, ASSIST pro-
vides several features, such as external libraries and objects that can be encapsulated in
CORBA objects. Moreover tools to compile ASSIST programs into CCM components
[30] or even into standard Web Services [31] are available.

Fractal

Fractal is a modular and extensible component model [12] consisting of a generic com-
ponent model, several implementations (e.g. Julia and AOKell) and a set of tools and
reusable components. It relies on the strong decoupling between interfaces (constituting
the membrane of a component) and implementation. Fractal provides standard APIs
to access component information (introspection) and to dynamically modify a component
configuration (intercession). Moreover, standard APIs are included in the model which
allows the control of the lifecycle, the attributes and the bindings of a component. A
prominent feature of this model is its composition model, allowing the composite compo-
nents to be built from simpler ones, in such a way that offers a uniform point of view of
applications at various levels of abstraction. Another interesting feature of the Fractal
component model is the enforcement of the separation of concerns between functional
interfaces (granting access to business code) and non-functional ones (devoted to the
management of the component).

2.1.3 Grid Component Frameworks

The Grid infrastructure imposes new requirements on component frameworks. On the
one hand, coupling component frameworks with structured parallel programming will
allow to rise the level abstraction to build complex applications that can really benefit
from the Grid infrastructure. On the other hand, these frameworks must extend the set of
provided services to manage all the details which programmers must typically deal with
when programming Grid applications. The following frameworks are the first research
prototypes trying to face these requirements (GridCCM/PadicoTM, GCM, Grid.it, HOC
and ProActive).

GridCCM/PadicoTM

Exploiting the concept of parallel objects investigated in several research prototypes
(ParDIS [32], PaCO++ [33]), GridCCM [34] is an ongoing project aiming at leverag-
ing the CCM capabilities (support for heterogeneity, open standards and deployment
mechanisms) to include high-performance SPMD codes with optimized collective com-
munications. While GridCCM is trying to raise the level of abstraction required to run
high-performance applications, PadicoTM is designed to be a portable and efficient run-
time environment for computational Grids that allows components to communicate with
each other using the available underlying network.

14 2 Background

GCM

The Grid Component Model (GCM) [35] is a research effort of the CoreGRID Network of
Excellence to define a standard component model for Grid applications. Starting from the
Fractal component model, the GCM aims to address the new challenges of Grid com-
puting - heterogeneity and dynamicity - in terms of programmability, interoperability,
code reuse and efficiency. The main features that a component framework must exhibit to
conform to the GCM specification are hierarchical composition of (GCM) components,
structured communications, autonomic reconfiguration, functional and non-functional
dynamic adaptation, behavioral protocol specifications and deployment on Grid infras-
tructures.

Several preliminary studies have been conducted to investigate implementations of
such features. A new research project (GridCOMP4) was funded to build a reference
implementation of the GCM.

Grid.it

The ASSIST programming model has been extended with the concept of component in
the context of the Grid.it project5[36]. Its model has a recursive, hierarchical definition,
which allows the wrapping of applications developed with other frameworks (e.g. CCM,
Web Services) in a Grid.it component, mainly thanks to different interaction seman-
tics. The runtime support is implemented on top of a Grid Abstract Machine (GAM)
[37], providing the Grid functionalities required by the programming environment as
abstract services (resource discovery, management, monitoring, component deployment,
execution and wiring, routing of communications). Each Grid.it component has a set of
non-functional interfaces that both report at runtime the details and performance of the
component, and perform a sequence of dynamic reconfigurations.

Moreover, the ASSIST component framework proposes the concept of supercompo-
nent, a graph of basic components automatically managed by a hierarchical structure of
controller entities able to enforce the desired performance through dynamic reconfigura-
tion at runtime [38].

HOC

High Order Components (HOCs) [39] are founded on the concept of components as a
reusable unit of composition and algorithmic skeleton, to raise the level of abstraction in
high-performance computing. A gap exists between Grid and components and is bridged
by HOC-Service architecture (HOC-SA) [40], implemented using the Web Service Re-
source Framework (WSRF) [41]. The most innovative feature of HOC components is
their ability to distribute over the network executable code, to tailor the behavior of
components on a per-user basis. Such code mobility (which not only includes Java, but
C++ as well) is implemented through a code service, where users can upload custom code,
and a remote code loader, integrated in HOC-SA services, to download the required code
from the code server when needed.
4 http://gridcomp.ercim.org/.
5 http://www.grid.it.

http://gridcomp.ercim.org/
http://www.grid.it

2.1 Components 15

ProActive

The ProActive middleware6 is a Java library aiming to achieve seamless programming
for concurrent, parallel, distributed and mobile computing. It is based on the concept
of active object, a remotely accessible object (via method invocations) implementing
asynchronous and group communications, code migration and automatic deployment.

ProActive has been extended to provide a distributed implementation of the Frac-
tal component model [42]. Thus all the features of the Fractal specification are avail-
able in distributed, heterogeneous environments, and the ProActive implementation is
in charge of the management of the Grid technical issues.

2.1.4 Component Performance Models

Performance specification of components and their interactions is a basic problem that
must be solved to enable software engineers to assemble efficient applications [43]. More-
over, performance modeling is one of the key aspects that needs to be addressed in order to
face scheduling/mapping problems in heterogeneous platforms. This arises in automatic
component placement and reconfiguration. Several recent works focus on performance
modeling techniques to analyze the behavior of component-based parallel applications
on distributed, heterogenous, dynamic platforms. These include analytic performance
models, symbolic performance models, asymptotic steady-state analysis, structural per-
formance models and trace-based performance models.

Analytic performance models in software engineering make extensive use of UML
formalism to describe software component behavioral models [44, 45] and to derive models
based on Queuing Networks [46] or Layered Queueing Networks [47] to be exploited
in design phase of the lifecycle of software. The same holds for Stochastic Petri Nets
[48, 49] and Stochastic Process Algebras [50, 51]. These models typically translate a
parallel application into an analytic representation of its execution behavior and the
target runtime system (according to the Software Performance Engineering methodology
[52]). A detailed survey of of such models is in [53].

Symbolic performance modeling [54] is a methodology that enables rapid development
of low complexity and parametric performance models. Symbolic performance models can
be derived from simulation models, trading off result accuracy for model evaluation cost.
In [54] a symbolic performance model for the Pamela modeling language is introduced. It
derives lower bounds for steady-state performances of applications starting from a model
of the program and of the shared resources, combining deterministic DAGs7 modeling
with mutual exclusion. One of the strengths of the Pamela approach is that it is fast
and easy to transform a regularly structured application into a performance model. The
main limitation of this approach is that it computes lower bounds of the performance of
a program.

The asymptotic steady-state analysis was pioneered by Bertsimas and Gamarnik [55].
This approach has been recently applied to mapping and scheduling problems of parallel
applications on heterogeneous platforms [56, 57, 58], in which the analysis is applied to
particular classes of parallel applications (divisible load [56], master/slave [58], pipelined
6 http://www-sop.inria.fr/oasis/ProActive/.
7 Direct Acyclic Graph, see Sect. 2.2.5.

http://www-sop.inria.fr/oasis/ProActive/

16 2 Background

and scatter operations [57]), in the hypothesis that the set of resources is known in
advance.

Structural performance models [59] are the first effort to develop compositional per-
formance models for component applications. As discussed in Sect. 2.1.3, most scientific
and Grid component models rely on the concept of the algorithmic skeleton. Skeletons
are common, reusable and efficient structured parallelism exploitation patterns. One ad-
vantage of the skeletal approach is that parametric cost models can be devised for the
evaluation of runtime performance of skeleton compositions. In [60, 61] different cost
models are associated to each skeleton of an application to enhance its runtime perfor-
mance through parallelism/replication degree adjustments and initial mapping selection,
respectively. The authors of [60] propose parametric cost models for pipe, farm and
multiblock skeletons, that can be arbitrarily composed and nested. In [61], analytic cost
models for applications, composed by pipes and deals, are derived within a stochastic
process algebra formulation.

Trace-based performance models [62, 63, 64] are currently exploited in parallel/Grid
environments to model the performance of sets of kernel applications. Recording and
analyzing execution traces on reference architectures of these applications, it is possible,
with a certain degree of precision, to forecast the performance of the same or similar
applications on different resources.

The problem of deriving a performance model for components has also been addressed
in the context of component frameworks such as COM+/.NET [66], EJB [65] and CCA
[67]. Such works apply to the analytical performance model (LQN) or trace-based per-
formance model in order to derive a model for components. In [68], trace-based models
are exploited to select the most suitable components out of multiple available choices for
building an optimal application, from the point of view of performance.

2.1.5 Component Contracts

Recalling the definition of component in Sec. 2.1, it is clear that the whole lifecycle of
a component is related to contractually specified interfaces. This concept is not new: in
object-oriented design, the concept of design-by-contract [69] introduces the object con-
tract (specified as pre- and post-conditions). When making components contract-aware
[70], contracts can be divided in the following levels: syntactic (signatures of data types),
behavioral (semantic descriptions of data types), synchronization (management of con-
currency issues) and Quality of Service (management of all non-functional requirements
and guarantees).

The essential elements needed to deal with these contracts are mechanisms to specify
them, to verify their correctness and to enforce and monitor them at runtime. There have
been many proposals for contract specification languages, both for syntactical/behavioral
contracts (e.g. Jass [71], OCL [72], AsmL [73]) and for QoS contracts (QML [74], CQML
[75], CQML+ [76]). Every component is described in terms of quality attributes and the
compositional/behavioral correctness is checked via matching/ordering relationships.

Commercial component architectures (.NET, CCM, EJB) describe components sim-
ply in terms of syntactical/behavioral contracts [77, 78]. Some scientific/Grid component
frameworks introduce the concept of a performance contract [63, 79], while other works
report studies on the forecast of the performance in distributed computing environments

2.1 Components 17

[80]. In this research, the performance contract is defined as the forecast of performance
of an application on a given computational resource. More precisely, given a set of re-
sources which have certain capabilities and an application with given characteristics, a
performance contract states the achievement of specified and desired performance. These
contracts are used at runtime to monitor the performance of the application, to identify
contract violations (which subsequently trigger corrective actions).

2.1.6 Discussion

Compositional component frameworks represent a promising solution to the problem of
Grid applications development. Components seem well suited to efficiently face the new
challenges, in terms of programmability, interoperability, code reuse, and efficiency, that
mainly derive from the other features of Grids. Coupled with structured parallel pro-
gramming methodologies, they might fill the gap between high performance computing
and the Grid.

But to reach the concept of invisible Grid [36] several research challenges must be
solved. A generic performance model for components must be identified and studied. In
this thesis a performance model for a hierarchical component model is proposed. In the
following paragraphs, the main differences between the proposed model and the existing
one are highlighted.

Analytical performance models typically translate a parallel application into an ana-
lytic representation of its execution behavior and the target runtime system. This transla-
tion is usually not straightforward, it may require approximations to obtain mathematical
models [81] for which a closed-form solution is known. Stochastic models usually require
the solution of the underlying Markov chain which can easily lead to numerical problems
due to the space state explosion [53]. More complex models can be solved by means of
simulation, but at the cost of a larger computation time.

Symbolic performance models share several properties with the proposed model: both
can be extracted from the structure of programs, are parametric, and can be efficiently
evaluated. However the main difference is that the presented model computes not only a
lower bound, but the asymptotic steady-state performance of an application, that is in
general a better approximation of the real performance.

The existing steady-state approaches apply only to a restricted class of structured
parallel applications, assuming to know the runtime environment in such a way to derive
optimal scheduling of the application components. In a dynamic environment, like a
Grid, an optimal initial placement of the components may become useless very soon,
because the conditions of the execution platform will most likely vary dynamically. The
presented steady-state analysis can be applied to a broader class of structured parallel
applications and tries to solve a different problem, i.e. building a concrete model of
components/applications to be exploited in their mapping on previously-unknown target
platforms.

Structural performance models are extended by the presented model by proposing
a methodology well-suited for the generic composition of skeletons and by taking into
account the synchronization problems introduced by using streamed communications.

Trace information is exploited in the presented model, but this is done in different
way with respect to the existing approaches. Instead of profiling a whole application

18 2 Background

on a set of representative resources, the application model is kept independent from
resources. When the application is mapped on actual resources, historical information
will be used to model the runtime behavior of single components. This information will
then be coupled with the component interactions information to obtain a prediction of
the performance of the whole application.

Analytical, symbolic and structural performance models need the full knowledge of
the target platform to derive performance measures. Therefore, to compare the results of
different mappings, they must be evaluated multiple times. The presented approach will
decouple the modeling of the application performance from the target platform, allowing
to evaluate the model once in order to derive enough information to drive the mapping
process. Trace-based approaches are used to overcome such limitation, but they are not
compositional. Therefore, they must be applied from scratch to every new application,
even if it is built from a same set of components.

A hierarchical component model allows large scale Grid-aware applications to be
built. As soon as the application requests to exploit a user-defined QoS, this approach
can rapidly lead to intolerable complexity. The deployment and execution frameworks of
applications of such complexity have to provide automated mechanisms to manage all
low-level operations needed to enforce the desired QoS of the application. This can be
obtained with the specification of a performance contract. The current approaches which
exploits performance contracts are focused on the use of such contracts to verify at de-
sign time or to monitor at runtime the expected behavior of components. The approach
to performance contracts proposed in this work completes such approaches introducing
quantitative performance methodologies and measures exploitable both at launch time
and runtime. A methodology to derive performance contracts for component-based ap-
plication is proposed. Contracts must include the application performance model and its
parameters, as well as the desired overall performance goal. To support adaptive compo-
nents management, a contract may include runtime policies for (some of the) components.
Policies specify how to react to dynamic changes, steering the application performance
toward the goal. Exploiting such a contract we should be able to map the application
components on Grid resources, and to generate Service Level Agreements (SLAs) with
those resources, both at launch time, and at runtime, with suitable renegotiation of the
SLAs.

2.2 Grid Computing

In 1996, Ian Foster and Carl Kesselman proposed the first version of a software toolkit
“to enable the construction of networked virtual supercomputers, or metacomputers, ex-
ecution environments in which high-speed networks are used to connect supercomputers,
databases, scientific instruments, and advanced display devices, perhaps located at geo-
graphically distributed sites” [6]. Together with Steve Tuecke, they evolved the Globus
Toolkit, incorporating not just CPU management but also storage management, se-
curity provisioning, data movement, monitoring and a toolkit for developing additional
services based on the same infrastructure including agreement negotiation, notification
mechanisms, trigger services and information aggregation. They incorporated a new
set of previously ignored problems in the metacomputing and distributed computing

2.2 Grid Computing 19

paradigms, leading to the very first definition of (computational) Grid [82]: “A computa-
tional Grid is a hardware and software infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end computational capabilities”. The term Grid
was chosen as an analogy to a power Grid that provides consistent, pervasive, dependable
transparent access to electricity, irrespective of its source [5].

Considerable progress has since been made on the construction of such an infrastruc-
ture, and now the term Grid computing has grown far beyond its original intent. Three
stages of Grid evolution can be identified [7]. The objective of the first generation sys-
tems was to provide computational resources to a range of high performance applications
[83, 84]. They tried to overcome a number of issues to be able to work efficiently and
effectively, including communications, resource management and manipulation of remote
data. The second generation systems correspond to the vision of Grid computing given
in [82]. New issues and old ones had to be confronted, including heterogeneity, scalability
and adaptability. This second wave of Grid computing technologies relied on two success
concepts to address such issues: middleware and (open) standards. Middleware is a set
of services needed to support a common set of applications in a distributed network en-
vironment [85], and generally it is viewed as a software layer between operating systems
and user applications, which provides a variety of services required by applications to
work correctly. Standards are publicly available documents that contain implementable
specifications, allowing increased compatibility between software entities compatible with
the same specification. Middleware has been used to hide the heterogeneous nature of
Grid resources and standards are the key factor which allows interoperability of different
systems through common protocols, APIs8 and services. Representative middleware sys-
tems of this second generation include the Globus Toolkit [86], Unicore [87] and Legion
[88]. The third generation systems reflect the current status of Grid technologies. These
systems involve increasing adoption of a service oriented model, which allows the reuse of
existing software components, and also an increasing attention to metadata, to shift the
view from the resources to applications. Moreover, with the increase of scale and hetero-
geneity, humans can no longer directly control the steering and execution of applications
on Grid. This new issue forces the introduction of autonomy features at various levels of
the Grid.

According to the Grid foundation paper [2] “the real and specific problem that underlies
the Grid concept is coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations”. According to this statement, to give a clear definition
of what a Grid is, a clear understanding of what a virtual organization represents is
necessary.

A virtual organization (VO) is a set of individuals and/or institutions who
share access to computers, softwares, data and other resources for solving collab-
oratively problems in science, industry and engineering, in an highly controlled
manner, with resource providers and consumers defining clearly and carefully just
what is shared, who is allowed to share and the conditions under which sharing
occurs.

8 Application Programming Interfaces.

20 2 Background

Given this definition of a VO, in [89, 90] a Grid is defined by the following list of
minimum properties that must be exhibited by a system.

A grid is a system that:
1. Coordinates resources that are not subject to centralized control
2. Uses standard, open, general-purpose protocols and interfaces
3. Delivers nontrivial qualities of services

Note that this is not the definition of “the Grid” but the definition of “a Grid”. In fact,
there can be different types of Grids, depending on the virtual organizations they are
addressing. The nature of the resources shared, the standards used and the definition of
the ultimate qualities of service depend on the problems and the applications a virtual
organization must solve/use.

2.2.1 Grid Resource Management

Generally, Grid resource management is the process of identifying application require-
ments, locating various types of capability, arranging for their use, utilizing them and
monitoring their state [91] in order to run Grid applications as efficiently as possible9.
A Grid Resource Management System (RMS) is central to the operation of a Grid, and
its design must consider aspects including site autonomy, heterogeneity, extensibility,
coallocation, scheduling, online control.

Although several Grid RMS have been proposed, currently there are none that sup-
ports the full set of functionalities required by a Grid RMS. This is due to the inherent
complexity of the entire resource management process.

Current Grid systems are application-specific, either in research or commercial envi-
ronments. Most of them are focused on the scheduling mechanisms to select when and
where an application should be run. The Grid scheduler strongly reflects the organization
of the resources boing part of a Grid. Three common Grid scheduling scenarios have been
identified, according to the currently deployed Grid systems [92].

Enterprise Grids

Enterprise Grids represent a scenario of commercial interest in which the available IT
resources within a company are better exploited and the administrative overhead is low-
ered by the employment of Grid technologies. The resources are typically not owned by
different providers and are therefore not part of different administrative domains. In this
scenario there is a centralized scheduling architecture; i.e. a central Grid scheduler is
the single access point to the whole infrastructure and manages the resource manager
interfaces that interact directly with the local resource managers (see Fig. 2.1).

High Performance Computing Grids

High Performance Computing (HPC) Grids represent a scenario in which different com-
puting sites, e.g. scientific research labs, collaborate for joint research purposes. Here,

9 This process has been defined as Grid scheduling, meta-scheduling and resource brokering.

2.2 Grid Computing 21

Local Resource
Manager

Local Resource
Manager

Local Resource
Manager

Resource Manager
Interface

Resource Manager
Interface

Resource Manager
Interface

Scheduler

Local Resource
Manager

Resource Manager
Interface

user

Fig. 2.1. Example of a scheduling infrastructure for Enterprise Grids.

compute- and/or data-intensive applications are executed on the participating HPC com-
puting resources which are usually large parallel computers or cluster systems. In this
case the resources are part of several administrative domains, with their own policies and
rules. A user can submit jobs to a Grid scheduler at institute or VO level (see Fig. 2.2).

Local RM Local RM

RM Interface RM InterfaceRM Interface

Institute
Scheduler

RM Interface

Local RM

user 1
Institute

Scheduler

Institute
Scheduler

Local RM Local RM

VO Scheduler

Local RM

user 4

user 3
VO Scheduler

user 2

VO A VO B

Virtual Organisation
Layer

Institute Layer

Interaction Layer

Resource Layer

Inst. A Inst. B

Inst. C

Fig. 2.2. Example of a scheduling infrastructure for HPC Grids.

22 2 Background

Global Grids

Global Grids comprise very heterogeneous resources, from single desktop machines to
large-scale HPC machines, which are connected through a global network. This scenario
is the most general one. Introducing physical constraints on resources, their interconnec-
tions and their interaction we can fall back in the previous case. In this a fully decen-
tralized architecture, any scheduler can accept jobs to be scheduled, forward them to
other schedulers and fulfill scheduling requests on the behalf of any other scheduler (see
Fig. 2.3).

P2P Resource
Manager RM Interface

P2P Resource
Manager user 1

P2P
Scheduler

LRM

P2P
Scheduler

user 3

user 2

LRM LRMLRMLRM

VO SchedulerP2P
Scheduler

P2P Resource
Manager

Fig. 2.3. Example of a scheduling infrastructure for Global Grids.

2.2.2 Grid Scheduling Process

The three scenarios illustrated in the previous section show several entities interact-
ing to perform scheduling. To solve scheduling problems, these entities have to execute
several tasks [93], often interacting with other services. A general architecture of the
Grid scheduling process has been delineated in [94], identifying three major phases in the
scheduling process: resource discovery and filtering according to application requirements,
resource selection and scheduling, according to certain objectives, and job submission and
monitoring (see Fig. 2.4).

Phase 1. Resource Discovery: This phase requires first a security mechanism to
determine the set of resources that the user submitting the application has access to.
Then a standard way to express application structure and requirements is necessary.
Eventually, the list of accessible resources must be refined, excluding the resources that
does not match the application requirements. Typically in this phase static resource
requirements are considered.

Phase 2. System Selection: This phase determines the (best) set of resources that
will be chosen to execute the application. This selection requires the gathering of detailed

2.2 Grid Computing 23

1. Authorization Filtering

2. Application Definition

3. Min. Requirement Filtering

Phase 1: Resource Discovery

4. Information Gathering

5. System Selection

Phase 2: System Selection

6. Advance Reservation

7. Job Submission

8. Preparation Tasks

9. Monitoring Progress

10. Job Completion

11. Clean-up Tasks

Phase 3: Job Execution

Fig. 2.4. Three phases process for Grid resource management

dynamic information from resources. This information is used to rank the remaining
resources in the list and to select the best ones according to specific criteria. In the case
of complex applications, a performance model may be required during this phase.

Phase 3. Job Execution. The last phase involves all the steps required in running
a job. Once resources are chosen, the application can be submitted to the resources.
Depending on the resources, part or all of them may have to be reserved in advance.
Before the actual execution of a job, setup, staging, claiming a reservation, or other
actions needed to prepare the resource to run the application. When the job is finished,
the user is notified and temporary files/settings removed.

2.2.3 Grid Scheduling Algorithms

In [95], a hierarchical taxonomy for scheduling algorithms in parallel and distributed
computing systems is proposed. This taxonomy has been reviewed in [96], focusing on
Grid computing as a special distributed system. Grid scheduling uses information about
the whole system to allocate tasks to multiple resources in order to optimize a system-
wide performance objective. That is, Grid scheduling falls under the global scheduling
category, in contrast to local scheduling algorithms, managing the allocation of a single
resource. Then global scheduling algorithms are grouped in static and dynamic schedul-
ing algorithms, based on the time the scheduling decisions are made. Both static [97, 98]
and dynamic scheduling [99] are widely adopted in Grid computing. Besides other clas-
sifications, both families can be categorized further in optimal and sub-optimal algo-
rithms. Optimal algorithms are able to find the minimum of an objective function, while
sub-optimal ones do not find the optimum, but an “good” solution, according to some
specified criteria. Another important characterization of scheduling algorithms concerns
the nature of the input problem. The jobs/applications submitted to the scheduler can
be completely specified off-line or their characteristics (or part of them) may be known
only at submission time (i.e. online).

It should be clear that Grid scheduling covers a huge set of problem types. Each
problem type can be characterized by different objective functions, applications charac-
teristics, platform models, etc. Most of such problems are known to be NP-hard, so the
procedure to determine an optimal solution can be exponentially complex. It is clear that

24 2 Background

sub-optimal solutions are required to find “approximate” good solutions. Such solutions
are calculated by algorithms that can be divided in the last two categories: approximate
and heuristics algorithms. While the approximate algorithm aims to find sub-optimal so-
lutions with tight bounds on their “goodness” (i.e. the distance between the optimal value
of the objective function and the actual one), the heuristics algorithm cannot typically
give optimality bounds on the solutions they found, but they “perform well” in a large
category of the test cases. Most part of Grid scheduling solutions fall in this category.

2.2.4 Objective Functions

From the point of view of the objective functions, scheduling for Grids can be divided
in two approaches: resource-centric and application-oriented [100]. The resource-centric
approach focuses on the optimization of the performance of a resource or the whole
Grid system, e.g. throughput, average response, or utilization. The application-oriented
approach focuses on the optimization of the performance of individual applications/jobs.
As well-known examples, AppLeS addresses specifically the scheduling aspects on an
application level [101], while the Condor approach focuses on the optimization of idle
cycles of CPUs working at resource level [102].

As the Service Oriented Architecture [103] embraces current Grid technologies [104],
the quality of services is becoming central in many Grid applications. The meaning of
QoS typically varies according to the goals of different users, but in general it represents
a set of conditions (service level objectives, SLOs) grouped in an agreement (service level
agreement, SLA) that must be respected to successfully execute an application [105].
Of course, the application runtime support must interact with the Grid infrastructure
(through middleware and standards) to manage heterogeneity and dynamicity of the
involved resources. Nevertheless, most current QoS concerns are at the resource manage-
ment level rather than at the application scheduling level.

2.2.5 Application Models

There exists a large body of literature covering scheduling on heterogeneous platforms
such as Grids. Such works differ not only on the Grid infrastructure model and the
objective function to optimize, but also on the nature of the applications to schedule.
The applications can be categorized according to different features: for example, we
can have applications requiring a single resource (e.g. a single executable file), a set of
homogeneous resources (e.g. a parallel application requiring a set of identical CPUs) or
any kind of resources (e.g. a complex multidisciplinary application). The characteristics
describing an application with respect to the objective function (e.g. deadline, reservation
slots, execution time) or the execution environment (e.g. coallocation, security, licenses)
can vary. Typically more information means higher complexity of the application and its
scheduling algorithms.

A main dichotomy regards the dependencies between the tasks of an application.
These kinds of dependencies arise when the execution of a set of tasks composing an ap-
plication must be coordinated in order to correctly execute the application. Typical exam-
ples of task dependency are coallocation and precedence relationships. For independent
task scheduling several heuristics have been proposed [97, 98, 106]. For dependent tasks,

2.2 Grid Computing 25

two major problems are under investigation in the Grid community, namely workflow
scheduling and coallocation. The former arises when the tasks composing an application
have precedence order. In this case a popular model for the application is the Directed
Acyclic Graph (DAG) [107], in which a node represents a single task and a directed edge
represents the precedence order between its endpoint. In the case of coallocation, there is
not a standard model adopted in Grid scheduling. In its base form, coallocation simply
requires that the tasks of an application should be scheduled on several resources at the
same time, and no additional information is provided to drive such allocation. In order to
fulfill specific QoS requirements, more information about the structure and the behavior
of the applications is required. In these cases, a promising model is represented by the
Task Interaction Graph (TIG) [107], in which a node represents a single task and an
undirected edge represent a communication between its endpoints.

2.2.6 TIG Scheduling

The TIG model and the related scheduling problem was introduced first in [108]. Here, a
TIG was used to model sequentially executing tasks and the objective was to minimize the
sum of computation and communication costs on a homogeneous platform assuming non-
overlapping communications and computations [109]. As a result of the sequential nature
of execution, in the case of identical processors, it will always be optimal to execute tasks
on a single processor [110]. An optimal solution exists for the two processors case and in
other particular cases (chain and tree TIGs) but the general case with four processors or
more is known to be NP-complete [111].

Apart from the applications structure, the platform model and the objective func-
tion, the existing heuristics to address the scheduling of generic TIGs have been cat-
egorized according to the method used to explore the solutions space [112, 113]. The
solution methods are categorized in the following methods: graph-theoretic, mathemati-
cal programming, state-space search, probabilistic/randomized optimization methods. In
particular, a class of graph-theoretic methods use task clustering methods [114, 115]

2.2.7 Discussion

Grid computing represents both a great opportunity and a grand challenge. The vision
of a “globally interconnected set of computers through which everyone could quickly access
data and programs from any site” 10 [116] and the forecast that “we will probably see
the spread of ‘computer utilities’, which, like present electric and telephone utilities, will
service individual homes and offices across the country” 11[117] is becoming effective with
the widespread adoption of Grid technologies. In addition to low-level tools required to
uniformly access and exploit a huge set of heterogeneous resources, security concerns,
application performance and efficient use of such resources are some of the main challenges
that must be addressed by researchers to allow the pervasive use of such potential.

10 Licklider, 1962, first head of the computer research program at DARPA, which leaded in 1969
to the creation of DARPANET, the world’s first operational packet switching network.

11 Kleinrock, 1969, creator of the basic principles of packet switching, the technology underpin-
ning the Internet.

26 2 Background

This work investigates the problem of resource management, focusing on the execution
of component-based applications. At first glance, such applications are basically a set of
executable files that must run concurrently to perform their functions, thus coallocation
is a fundamental requirement. This is a current issue in Grid computing, and several
prototypes and solutions have been presented in the past. With the new strong accent
on Service Oriented Architecture (SOA), new improvements to coallocation should be
brought in order to manage QoS requirements. Due to the dynamic nature of the Grids
and virtual organizations, it is feasible to assume that there will not be a long-standing,
high-level service infrastructure to execute component applications. Of course, the basic
services needed by the middleware will be always available, but the runtime environments
for such applications should be deployed and/or executed on demand depending on the
application submission time and the status of the available Grid resources. Moreover, to
enforce the user performance requirements, a more in-depth description of this type of
application should be provided to steer the scheduling of the application components on
the Grid.

In this thesis, the assumption of a hierarchical component model with clear commu-
nication semantics enables us to provide this information to new Grid resource manage-
ment services. Exploiting well-known information providers for Grid resources, resource
managers for execution environments [118] and new management services for network
resources [119], this thesis investigates two new heuristics to exploit his information in
the coallocation of components trying to find a scheduling fulfilling as close as possible
the user contract.

3

Component Performance Model

A “suitable” description of a software component is needed to design and implement au-
tomatic deployment and execution tools. In particular, if a scheduler needs a description
of an application we have to provide “numbers” (e.g. some type of weighted graph) about
its structure and performance.

The following chapter illustrates a mathematical characterization of the behavior of
a component. The main target of this characterization is the decoupling of the structural
behavior from the runtime behavior.

The content of this chapter has been presented in [29, 120, 121, 122].

3.1 Component Structure

In general, a composite component is defined as a composition of components, obtained
by connecting their interfaces. The building blocks of composite components are called
primitive components, representing sequential as well as parallel computations whose
structure (or behavior) is described with non-component technologies. In a hierarchical
component model, an application can be seen as a composite component with no external
interfaces. Communications between components are usually expressed through remote
procedure calls or streams.

A composite component can be structured as a hypergraph whose nodes represent
primitive components and whose (hyper)edges represent communications or synchroniza-
tions between components. Nodes (either representing primitive and composite compo-
nents) interact with input (server) interfaces and output (client) interfaces. Edges are
directed and can connect two or more nodes through their interfaces. Two nodes may be
linked by more than a single edge.

3.1.1 Communications

In this thesis data-flow stream communications are studied. Communications between
components are implemented through input/output interface bindings. Every primitive
component receives data through one or more input interfaces, performs some computa-
tions, and generates new data to be sent through one or more output interfaces.

In this context, a stream represents a typed, unidirectional communication channel
between a non-empty, finite set of components (producers) and a non-empty, finite set of

28 3 Component Performance Model

components (consumers). The atomic piece of information transferred through a stream
is called item. A producer is connected to a stream through an output interface, while
a consumer is connected to a stream through an input interface. Every node can be
producer or consumer of several streams, and it is possible to specify cyclic structures
(i.e. the communication structure is not restricted to be a DAG).

Components can be connected by streams according to three different patterns:

• unicast: one-to-one connection. Every item sent on the output stream interface is
received in order by the input stream interface.

• merge: many-to-one connection. Every item sent on the output stream interfaces and
is received by the input stream interface. The temporal ordering of the items coming
from each input interface is preserved, but the interleaving between the different
sources is non-deterministic.

• broadcast: one-to-many connection. Every item sent on the output stream interface
is received in order by the input stream interfaces. The receptions happening on
different input interfaces are not synchronized.

3.1.2 Computations

Primitive components implement sequential as well as parallel computations. A sequential
component executes a single function in a single active thread, processing items as they
are received. For a parallel component, two scenarios are possible:

• data parallel: a single function is executed in parallel on different portions of the
same data;

• task parallel: several functions (or activations of the same function) are executed in
parallel on independent data.

A primitive component (either sequential or parallel) at runtime repeatedly receives
items from its input streams, performs computations and delivers result items to its
output streams.

A component can have several input streams. The set of input streams is partitioned
among the computations associated with the components. Each input stream is associated
to only one computation; nevertheless, spontaneous computations may exist, which do not
need input items to activate, but follow their own activation policies (e.g. periodically).

A computation can be activated if the following conditions hold:

• the component can execute a new function (this means that it is idle, either it is
parallel and threads are available to execute it),

• the associated input items have been received or no item is necessary.

A sequential component can activate a new function only when it is idle. A parallel
component can either have at most one active data-parallel computation at any given
time (composed by a fixed number of threads), or several task-parallel computations
running in parallel (up to the maximum number of threads in the component).

A component can have several output streams. One or more computations of the
component can dispatch data on each output stream.

3.2 Dynamic Model 29

3.2 Dynamic Model

In this section the runtime behaviors of primitive components and streams are modeled,
exploiting techniques borrowed from system theory [123]. In the following section this
model will be used to derive a simpler description of a component behavior based on
steady-state analysis.

3.2.1 Node Behavior

In order to describe the behavior of a computation at runtime, consider Fig. 3.1.

i1(t)

ik(t)

in(t)

e(t)

o1(t)

om(t)

oj(t)

Fig. 3.1. Sequential component at runtime

Without loss of generality, a sequential component is considered; the displayed quan-
tities represent:

• ik(t): total number of received items at time t from the kth input interface;
• e(t): total number of computations carried out at time t;
• oj(t): total number of sent items at time t through the jth output interface.

Continuous quantities are used to model partial evolution, e.g. e(t) = 3.5 means that the
node reached the half way point in the fourth computation.

The activation of a computation can happen only when the number of items com-
pletely received on each associated stream is greater than the number of partially com-
puted items:

∀k = 1, . . . , n
⌊
ik(t)

⌋
− e(t) > 0 (3.1)

The node implementation will exploit finite buffers to store received items for each input
interface, therefore for each input interface and associated computation the following
must hold:

∀k = 1, . . . , n ik(t)−
⌊
e(t)

⌋
≤ τ1k (3.2)

where τ1k represents the maximum number of elements that can be received on the kth

input interface before the stream blocks. Then the maximum admissible value for ik(t)
at time t is:

imax
k (t) = τ1k +

⌊
e(t)

⌋
(3.3)

Assuming that no sensible delays are present between the end of computations and the
beginning of the transmission of the produced items, the total number of transmitted
items is related to the progress of the computations of the node. In the general case of a
node with s functions, the following equation holds for each output interface:

∀j = 1, . . . ,m oj(t) = fj

(
e1(t), . . . , es(t)

)
(3.4)

30 3 Component Performance Model

where ei(t) represents the number of activations carried out at time t for the i−thfunction.
The transfer function fj relates the number of data outputs (oj(t)) to the number of
performed computations (e1(t), . . . , es(t)).

3.2.2 Edge Behavior

In order to describe the behavior of a data transmission on a stream, consider a unicast
stream. The involved variables are o(t), total number of items sent at time t from source
interface, and i(t), total number of items received at time t by the destination interface.

A new transmission begins only when a full item is produced:

i(t) ≤ bo(t)c (3.5)

The previous equation holds even if there is a sensible latency ∆ in the transmission:

i(t) ≤ bo(t−∆)c ≤ bo(t)c (3.6)

The edge implementation will exploit finite communication buffers and the network
layer transfers chunks of data. Let q−1 be the minimum fraction of the item transferred
atomically. This means that for each item to be transferred, actually there are q chunks
of that item transferred physically through the network. Then

o(t)− bq · i(t)c
q

≤ τ2 (3.7)

where τ2 represents the maximum number of items that can be buffered. This equation
embodies also the fact that an item is available at destination only when all of its chunks
have been completely transferred. Therefore the maximum admissible value for o(t) at
time t is:

omax(t) = τ2 +
bq · i(t)c

q
(3.8)

Whenever an edge buffer is full, a producer will block as soon as it tries and sends a new
item. From (3.4) we obtain:

omax(t)− f
(
e1(t), . . . , em(t)

)
≥ 0 (3.9)

For merge streams with k source interfaces and broadcast streams with k destination
interfaces, the general constraints (Eqs. (3.5) and (3.7) for the unicast stream) become:

merge:
{
i(t) ≤

∑
k ok(t)∑

k ok(t)− i(t) ≤ τ2k
(3.10)

broadcast:
{
∀k ik(t) ≤ o(t)
∀k o(t)− ik(t) ≤ τ2k

(3.11)

For simplicity, in the previous equations the network quantization constant q has been
suppressed.

3.2 Dynamic Model 31

3.2.3 Runtime Behavior

At runtime, a component can be seen as a dynamic system. The system state at time
t is described by a set of state variables: i1,...,ni

(t), e1,...,ne
(t), o1,...,no

(t). Thus, the state
space P is a n = ni + ne + no dimension Euclidean space. The dynamic behavior of a
component can be modeled by a trajectory p(t) in this state space.

The runtime behavior of a component is fully specified when it is coupled with hosting
resources. A computing resource is modeled by w(t), the available computing power
at time t (measured in MFlop/s) and a communication link is modeled by b(t), the
instantaneous bandwidth at time t (measured in MB/s). Moreover, a characterization of
the items is required. It is assumed that an item processed by a component requires l units
of computing work to be processed (measured in MFlop) and s units of communication
work to be transmitted (measured in bytes).

Introducing the step function u(x) (its value is 0 if x ≤ 0, 1 otherwise), the number
of performed (partial) computations per time unit is:

de

dt
= u

(
min

(⌊
i1(t)

⌋
, . . . ,

⌊
in(t)

⌋)
− e(t)

)
· u
(
omax(t)− f

(
e1(t), . . . , em(t)

))
· w(t)

l
(3.12)

This equation simply states formally that a new computation is performed if there are
new input items to be processed (first factor), i.e. the input buffers are not empty, and
the output buffer is not full (second factor).

The equations governing the number of packets flowing in the unicast, merge and
broadcast streams per time unit are, respectively:

di

dt
= u

(⌊
o(t)

⌋
− i(t)

)
· u
(
imax(t)− i(t)

)
· b(t)
s

(3.13a)

di

dt
= u

(∑
k

⌊
ok(t)

⌋
− i(t)

)
· u
(
imax(t)− i(t)

)
· b(t)
s

(3.13b)

dik
dt

= u
(⌊
o(t)

⌋
− ik(t)

)
· u
(
imax(t)− ik(t)

)
· b(t)
s

(3.13c)

These equations state that a new transmission is performed if there are new output items
to be sent on a stream (first factor) and the receiving input buffers are not full.

Note that an important assumption has been made. The work required to perform
a computation is assumed to be independent from the values of the incoming items;
their values are used only to perform computations1. This is a common assumption in
parallel data-flow programming, but there are applications (e.g. query processing and
data mining) that do not respect this assumption.

The dynamic equations provided by the model can be written in the general form:

ṗ(t) = U(p(t))α(t) (3.14)

We denoted with U : P→Mn,n the function that, for each point in the state space, pro-
vides the control part of the differential equations (the ones involving the step functions),
and with α(t) the resources part (involving w(t) and b(t)).

1 This is called ergodicity in stochastic models.

32 3 Component Performance Model

We observe that the control matrix is piece-wise constant over non-infinitesimal time
intervals; it derives from quantization in the general equations for the nodes (3.12),
and in the equations for the streams (3.13). Then, the Cauchy problem can be solved
constructively. Starting with t0 = 0, p0(t0) = 0, U0 = U(0), we inductively define

pi(t) =
∫ t

ti

Uiα(τ)dτ

ti+1 = sup{t > ti|U(pi(t)) = Ui}
Ui+1 = lim

t→t+i

U(pi(t))

In this way, p(t) is defined as the concatenation of the pieces pi|[ti,ti+1): it is a continuous
function (pi(ti) = pi+1(ti)) and piece-wise differentiable.

3.2.4 Steady-State Behavior

The steady-state behavior of the system can be analysed by studying mean values p̄ for
the rate of change of the state variables:

p̄ = E[ṗ|[t0,∞)] =
∫ ∞

t0

ṗ(t)dt = lim
t→∞

p(t)− p(t0)
t− t0

(3.15)

The choice of t0 is arbitrary, in fact the weight of the transient phase fades away consid-
ering infinite executions. However, to ease the reasoning about these quantities, we can
interpret t0 as the end of the transient phase, e.g. when the last stage consumes the first
data item in a pipeline.

The essential aspect to point out is that for the steady-state model the focus is on
relations among the steady-state variables, rather than in their values. In this way it is
possible to abstract from particular target platforms, and capture the class of all possible
steady-state behaviors of an application.

The steady-state behavior of a node can be modeled associating each computation
ek(t) with its activation rate

ēk = lim
t→∞

ek(t)− ek(t0)
t− t0

(3.16)

Spontaneous computations are free variables in the steady-state model. Computations
that are activated by data reception, instead, are subject to the following condition.

Proposition 1. The steady-state execution rate of a computation is bound to be equal to
the input rates on the input interfaces that activate the computation.

Proof. Let k be an index relative to an input stream activating computation ei; we will
prove that ēi − ı̄k = 0

ēi − ı̄k = lim
t→∞

ei(t)− ei(t0)
t− t0

− lim
t→∞

ik(t)− ik(t0)
t− t0

= lim
t→∞

ei(t)− ei(t0)− ik(t) + ik(t0)
t− t0

= lim
t→∞

ei(t)− ik(t)
t− t0

− ei(t0)− ik(t0)
t− t0

3.2 Dynamic Model 33

The numerator of the first summand is limited by constants: (3.1) gives

ei(t)− ik(t) ≤ 0

and (3.2) (noting that e(t) ≥ be(t)c) gives

ei(t)− ik(t) ≥ −τ1k

while the numerator of the second summand is constant, so the limit tends to zero when
the denominator tends to infinity. ut

The data transmission rate ōk of an output stream will depend on the activation
rates of one or more computations of the node. In the previous section, the number of
data outputs has been related to the number of performed computations by means of a
transfer function fk (Eqn. (3.4)).

Proposition 2. If the transfer function is (asymptotically) linear

ok = fk(e1, . . . , em) = α1
ke1 + . . . αm

k em + ck(e1, . . . , em) with lim
‖e‖→∞

‖ck(e)‖
‖e‖

= 0

then a steady-state is eventually reached, in which the output rate is a linear combination
of the computation rates:

ōk =
m∑

i=1

αkiēi (3.17)

Proof.

ōk = lim
t→∞

fk(e(t))− fk(e(t0))
t− t0

=

lim
t→∞

αk · (e(t)− e(t0)) + c(e(t))− c(e(t0))
t− t0

=

αk · lim
t→∞

e(t)− e(t0)
t− t0

+ lim
t→∞

c(e(t))− c(e(t0))
t− t0

=

αk · ē+ 0 =
m∑

i=1

αm
k ēi

ut

The steady-state behavior of streams can be modeled by associating its data trans-
mission rate to each endpoint. Balance equations relating input and output endpoints
are derived.

Proposition 3. The steady-state transmission rate at the endpoints of a stream are char-
acterized by the following balance equations:

unicast: ō = ı̄ (3.18a)

merge: ō1 + ō2 = ı̄ (3.18b)

broadcast: ō = ı̄1 = ı̄2 (3.18c)

These equations are easily extended in the case of more endpoints.

34 3 Component Performance Model

Proof. The proof is similar to the one of Prop. 1, exploiting:

• (3.5) and (3.7) for unicast,
• (3.10) for merge,
• (3.11) for broadcast.
ut

3.2.5 Validation

The following example demonstrates that the presented model accurately models the
dynamic behavior of a real application, and therefore can be exploited to derive further
models more amenable to automatic manipulation.

The example is the video rendering pipeline presented in Fig. 3.2.

Frame
Sequencer

Parallel
Renderer

DivX
Encoder

Output
Store

GOP
Assembler

C1 C2 C3 C4 C5

S1 S2 S3 S4

Fig. 3.2. Graph of the render-encode application

The first stage requests the rendering of a sequence of scenes while the second stage
renders each scene (exploiting the PovRay rendering engine), interpreting a script de-
scribing the 3D model of objects, their positions and motion. The third stage collects
images rendered by the second, and builds Groups Of Pictures (GOP), that are sent
to the fourth stage, which performs DivX compression. The last stage collects DivX
compressed pieces and stores them in an AVI output file.

The execution of the application has been conducted on a Blade cluster consisting of
32 computing elements, each equipped with an Intel Pentium III Mobile CPU at 800MHz
and 1GB of RAM, interconnected by a switched Fast Ethernet dedicated network. The
application was configured to exploit 20 machines in the render computation, and one
machine for each remaining node.

Note that each scene may require different computational time according to its com-
plexity. To replicate this condition in the simulation, the sequential rendering time of
each scene has been recorded. This information has been exploited to derive the dynamic
parameters of the resources (computation-related components of α(t) in (3.14)). Infor-
mation statically derived from the application code and execution platform has been
exploited to determine the remaining parameters of the simulation (data sizes, buffer
dimensions, network bandwidths, quantization constant).

Figure 3.3 shows a comparison between the evolution of the computation of the actual
execution and the simulation performed using the analytical model. For each GOP, the
absolute completion time measured from the start of the execution is displayed. The ana-
lytical model is able to accurately reproduce the dynamic behavior of the state variables
of the application.

Figure 3.4 shows that the application behavior actually tends to steady-state.

3.3 Performance Model 35

Fig. 3.3. Comparison of actual execution and simulation of the parallel renderer

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800

b
a

n
d

w
id

th
 (

a
c
ti
v
a

ti
o

n
/s

)

frame

Rendering engine
GOP Assembler

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60

b
a

n
d

w
id

th
 (

a
c
ti
v
a

ti
o

n
/s

)

GOP

Encoder
Collector

Fig. 3.4. Convergence to steady-state of averaged performance features

Performance features are measured as in (3.16), i.e. averaging the number of per-
formed tasks on the duration of the computation. The left diagram shows the perfor-
mance of the Render and the GOP Assembler nodes, which operate on frames. The right
diagram shows the Encoder and Collector nodes, which operate on GOPs. The similarity
of the curves in the left and the right diagrams shows empirically that Prop. 2 is satisfied
not only at the steady-state, but also during the finite computation, as soon as buffers
are filled (curves in the same diagram are related by a factor of 1, while between the two
diagrams there is a scaling factor of 12).

Moreover, Fig. 3.4 shows that the averaged computation rates stabilize during the
computation, allowing to adopt a steady-state model to approximate the actual applica-
tion run.

3.3 Performance Model

Propositions 1, 2 and 3 can be operatively exploited to model the steady-state behavior of
a program/component. The example in Fig. 3.5 shows how the steady-state behavior of a

36 3 Component Performance Model

generic component application is modeled within the proposed framework. An execution

1

2

3

4

5

e1

e2
e3

e4

e5

e6

e7

i1

i2

i3
i4

i5

o1

o2

o3

o4

o5

o6

Fig. 3.5. Component-based application with two sources of data

rate ek is associated to each computation (nodes 1, 3 and 5 represent sequential com-
ponents, nodes 2 and 4 represent parallel components). To each input/output interface
its data transfer rate (ik and ok respectively) is associated. These variables completely
specify the application state from the point of view of its performance, therefore they
will be called performance features of the application.

Prop. 1 allows to express which input interfaces activate each computation, directly
relating the respective rates. If, for example, each computation in node 4 has its own
input interfaces, then:

i1 = e4 first input
i2 = e5 second input
i3 = e6 third input
i4 = e7 fourth input
i5 = e7 fifth input

Note that the computation of node 7 is activated when there is a new item both on input
4 and input 5. In case of activation with every single new item, there should be a merging
of input streams 4 and 5 in a single input interface in node 7.

Prop. 2 allows to express output rates as linear combinations of execution rates,
provided that the related coefficients are known:

o1 = f1(e1) = a1e1 node 1
o2 = f2(e2, e3) = a22e2 + a23e3 node 2
o3 = f3(e2, e3) = a32e2 + a33e3 node 2
o4 = f4(e4) = a4e4 node 3
o5 = f5(e5, e6) = a55e5 + a56e6 node 4
o6 = f6(e5, e6) = a65e5 + a66e6 node 4

These coefficients must be provided by developers of programs/components by means of
some component annotations to the compiler.

Eventually, Prop. 3 allows to relate output rates to input rates on the four streams:
i1 = o1 broadcast
i2 = o1 broadcast
i3 = o2 unicast
i4 = o4 + o5 merge
i5 = o3 + o6 merge

3.3 Performance Model 37

The derived equations define the performance model of the example application; with
this approach, a compiler exploiting simple annotations (the values of coefficients aij and
the graph structure) can automatically find an analytical performance model for com-
plex graph structures, obtaining the same predictive power provided by the performance
models for skeletons, but it is not limited to few, well-known skeletons.

In general, denoting with i the vector of the input rates, with e the vector of the
execution rates and with o the vector of the output rates, the component annotations
can be expressed as systems of linear equations:

i = Ae (3.19)

o = Be (3.20)

i = Co (3.21)

where (3.19) relates the input rates to execution rates, (3.20) relates the execution rates
to output rates and(3.21) describes the connection structure of the graph.

The performance model is therefore defined as an homogeneous system of simul-
taneous linear equations, that describe the relations that hold in the steady-state among
the performance features:

−I A 0

0 B −I

−I 0 C

i

e

o

 =

0

0

0

 (3.22)

The set of solutions of the system is a vector subspace of the space Rn (where n
is the total number of variables, either input rates, output rates or execution rates);
the dimension of the solution space gives the number of degrees of freedom of the
application. If this dimension is 1, then the system is completely determined when a
single value for any variable is imposed. The degenerate case of a space with dimension
0 implies that the only solution to the system is the null vector (i.e. every variable
must be zero): this means that the predicted steady-state is a deadlock state, in which
no computation or communication can proceed. The number of degrees of freedom of
the system will impact how many constraints must be provided in order to derive the
expected values for every variable.

Clearly, only positive values of the rates are meaningful, so every assignment of pos-
itive values for the vector

[
i e o

]T ∈ Rn that is a solution of the system is a possible
“operation point” for the modeled application.

This can be mathematically stated by the side conditions: i
e
o

 ≥
 0

0
0

 (3.23)

The solution space, then, is a convex, possibly infinite polyhedron.
The approach outlined before is efficient, in fact the simplification of the simultaneous

equations can be achieved using well known techniques from linear algebra, for which a
fast algorithms has been designed (see Chapter 4).

38 3 Component Performance Model

3.4 Composite Components

The presented model is suitable to describe single components (and therefore whole pro-
grams, as a special case), starting from their fine grain structure as graph of components.

Now consider the composite component with two input and two output interfaces
shown in Fig. 3.6.

i1

i2

i3

e1

e2
e3

o1

o2

o3

oA

oBiB

iA

Fig. 3.6. Composite component

When designing the component, the internal structure is known, so the full model
can be constructed:

iA = i1 = i2 input interface iA
iB = i3 input interface iB
i1 = e1 activation e1
i2 = e2 activation e2
i3 = e3 activation e3
o1 = a1e1 computation o1
o2 = a22e2 + a23e3 computation o2
o3 = a32e2 + a33e3 computation o3
oA = o1 + o2 output interface oA

oB = o3 output interface oB

In the equations of the component model some variables appear, that can be identified
with the interfaces of the composite component, and others that are related to its in-
ternal composition; moreover, the equations describe exactly the connection between its
constituent components. To describe only the observable behavior of the component (i.e.
the relations between its input and output interfaces) the observable variables (in this
case iA, iB , oA and oB) must be discerned from the internal variables.

To do so, write the system of simultaneous equations in matrix form as Ax = 0,
ordering the vector x = [i1, i2, i3, e1, e2, e3, o1, o2, o3, iA, iB , oA, oB]T (and therefore the
columns of A) with the internal variables before the observable ones.

3.4 Composite Components 39

−1 0 0 0 0 0 0 0 0 1 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 0 0 1 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 a1 0 0 −1 0 0 0 0 0 0
0 0 0 0 a22 a23 0 −1 0 0 0 0 0
0 0 0 0 a32 a33 0 0 −1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 0 −1

iA = i1
iA = i2
iB = i3
i1 = e1
i2 = e2
i3 = e3
o1 = a1e1

o2 = a22e2 + a23e3
o3 = a32e2 + a33e3
oA = o1 + o2
oB = o3

The Gauss-Jordan elimination algorithm simplifies systems of simultaneous equations
producing an block upper triangular system. In other words, as in the example, the last
two equations will relate only the observable variables. The algorithm performs several
steps, each one consisting in the elimination of one variable (this gives the name to
the algorithm) from all the equations below the one considered. In its basic form, the
algorithm can perform row exchange (swapping equations), but not column exchange to
the matrix (this would imply a reordering of the components of the solution vector x).
The elimination is achieved, conceptually, by solving the considered equation for that
variable, and substituting the solution in the following equations.

Note that the chosen ordering for x, in which internal variables appear before observ-
able ones, is intended to produce equations in which only the observable variables appear,
because the internal ones have been substituted by equivalent expressions involving only
the observable ones.

The resulting matrix is:

1 0 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 a1 0 0 0
0 0 0 0 0 0 0 1 0 a22 a23 0 0
0 0 0 0 0 0 0 0 1 a32 a33 0 0
0 0 0 0 0 0 0 0 0 −a1 − a22 −a23 −1 0
0 0 0 0 0 0 0 0 0 −a32 −a33 0 −1

The resulting system can be split in two parts:

1. a first part relating internal quantities to the external ones (the first nine equations)
2. a second part relating only observable quantities (the last two equations).

The second part can be seen as the black-box model of the composite component, and
can be used to enforce the encapsulation of the internal structure of each component.

The first part, instead, is useful when, once solved the high-level performance model
of the program to fulfill the performance constraints, it is necessary to propagate them to
primitive components, in order to drive the mapping mechanisms as well as the dynamic
adaptation mechanisms.

40 3 Component Performance Model

3.5 Comparison with Queueing Network Theory

The results of the presented model for the steady-state behavior of a component resembles
the job flow analysis performed when studying queuing networks. This section discusses
the similarities and the differences between the two approaches.

A component is described by a set of equations, which describe the flow of tasks in
the application: in the previous example, every task produced by a stage is sent over
the stream to the next stage. More complex situations can be accommodated: when
multiple destinations are possible for tasks departing from a node, each destination has
an associated coefficient, that can be seen as the probability that a task will follow a
specific route, exactly as in the queuing network framework. Moreover, the ergodicity of
the queueing network is the hypothesis commonly assumed to be able to mathematically
solve the network, The ergodicity condition implies the hypothesis of Prop. 2, i.e. the
transfer function is asymptotically linear, with routing probabilities as coefficients.

The proposed model extends the possible set of behaviors for the nodes, in fact a
computation in a node, activated by a task, can produce more than a single task as
output, or, as well, can absorb a number of input tasks to produce a single output. These
behaviors are captured by the same coefficients, which now are seen as the product of
the routing probability by the task multiplication/division factor.

A known limitation of queuing network models is that they cannot model event syn-
chronization. The proposed model overcomes this limitation for the recurring, uncondi-
tional synchronizations happening when a single computation is activated by the simul-
taneous presence of a token on every associated input interface. To demonstrate this,
the following example (see Fig. 3.7) shows that the proposed model captures deadlocks
occurring in malformed programs.

i2

i3

e2

e3

o1

o2

o3

e1 e4

i42

i43

Fig. 3.7. A program that deadlocks if i42 and i43 are synchronized to activate the computation
e4

The following equations describe the example in Fig. 3.7:

o1 = e1 comp. 1 output
o1 = i2 = i3 broadcast
i2 = e2 comp. 2 input
o2 = 3e2 comp. 2 output
i3 = e3 comp. 3 input
o3 = 2e3 comp. 3 output
o2 = i42 unicast
o3 = i43 unicast
i42 = i43 = e4 comp. 4 input D

If the simultaneous equations are solved, the result is that the system has zero degrees
of freedom, and all the rates must be zero at steady-state. This means that every infinite

3.5 Comparison with Queueing Network Theory 41

computation would eventually stall. This does not imply that cannot exist finite compu-
tations that complete successfully; indeed, a trivial computation of a zero-length stream
is an example of successful computation. However, this shows that the limited form of
synchronization of the computational model is captured by the performance models.

4

Component Performance Contract

Given a component-based application, the user will typically require a minimum perfor-
mance level during the execution of the application. Component applications can easily
grow in size, and the normal user could not be aware of the whole structure of the ap-
plication. In composing an application, a user can exploit components provided “as-is”
without a complete knowledge of their implementation. Nevertheless such components
can be structured as composite components on their own.

Such a user will therefore require a limited set of performance, for example the min-
imum frame rate for a visualization of the results of a computation or the minimum
number of record operations per minute on a database collecting experimental results.

Such performance requirements can be easily translated in requirements on execution,
input or output rates of some components of the whole application. The application pro-
gramming framework/runtime support is in charge of deriving the necessary conditions
to be respected in order to guarantee such performance.

Section 4.1 shows a formal model of performance requirements, and a detailed anal-
ysis of the impact of such requirements on the application model presented in Chap. 3
is shown. Section 4.2 propose an algorithm to derive the performance requirements on
each component of an application given a small set of requirements on the whole appli-
cation. Section 4.3 shows how to related the performance requirements with the runtime
platform. Eventually, Sect. 4.4 propose a definition of performance contract, according
to the definitions of performance features, annotations, model and requirements.

The content of this chapter has been presented in [121, 122, 124].

4.1 Performance Constraints and Requirements

Given the definitions of performance features and the performance model given in Chap.
3, a performance constraint is defined as an inequality in the form:

xi ≥ ci (4.1)

where xi is a performance feature (input, output or execution rate) and ci is a strictly pos-
itive real number representing the desired operational value of the feature xi. A constraint
is satisfied (at runtime) if the measured value of the associated performance feature (xi)
is greater than or equal to the specified value (ci).

44 4 Component Performance Contract

Let a set of k performance constraints be given by the user. Such user-provided con-
straints are called performance requirements. They represent the user expected QoS
of some application components at runtime. When this happens, the following ques-
tion arises: “What values should the other performance features assume at runtime to
satisfy the performance requirements?”. We are looking for is a methodology to derive
performance constraints on each feature of the performance model, given the interactions
between the components and few performance requirements.

Let the vector x ∈ Rn indicate the performance features; the vector xc ∈ Rk repre-
sents the features constrained by the user requirements, and xuc ∈ Rn−k indicates the
unconstrained features. For simplicity, the elements of x are ordered in such a way that
x = [xuc|xc]T . Moreover, c ∈ Rk denotes the vector of the performance requirement
values.

In order to express every performance feature as a function of the constrained fea-
tures, the rows of the performance model matrix are reordered in such a way that the
constrained variables appear last (according to the ordering of x). Then exploiting the
Gauss-Jordan elimination algorithm, the performance matrix is row reduced into block-
echelon form.

The application graph in Fig. 4.1 presents an example of this.

e1

e2

e4

e5

i4

i5
o1

o2

o4

i23

i13

i43

o35

o34

e31
e32
e34

Fig. 4.1. Example application graph for equations reordering

The performance features characterizing the performance model are:

i =

i13
i23
i43
i4
i5

 e =

e1
e2
e31
e32
e34
e4
e5

o =

o1
o2
o34
o35
o4

Each input interface activates the corresponding computation in nodes 4 and 5. Compu-
tations in nodes 1 and 2 are spontaneous. The first computation of node 3 is activated
by data from node 1, the second one is activated by data from node 2 and the third
one by data from node 4. The equations relating output interfaces to node computations

4.1 Performance Constraints and Requirements 45

must be provided by developers, in order to fully specify the performance model. The
equations reported here are an example. Therefore, the structure of the application is
captured by the following equations:

1. Input interfaces

i13 = e31
i23 = e32
i43 = e34
i4 = e4
i5 = e5

⇒ i =

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 e

2. Output interfaces

o1 = e1
o2 = e2

o34 = 3
4 e31 + 4

5 e32 + 9
10 e34

o35 = 1
4 e31 + 1

5 e32 + 1
10 e34

o4 = e4

⇒ o =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 3

4
4
5

9
10 0 0

0 0 1
4

1
5

1
10 0 0

0 0 0 0 0 1 0

 e

3. Communications

i13 = o1
i23 = o2
i43 = o4
i4 = o34
i5 = o35

⇒ i =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

o

Next, the performance matrix is calculated. Note that for this example the system has
been partially reduced to improve readability by eliminating some variables without loss
of generality. From an algorithmic point of view, the whole system can be analyzed in the
same manner. The analysis is limited to the variables e31, e32, e34, e4 and e51. Reducing
the previous system the following equations are obtained:

e1 = e31
e2 = e32
e4 = e34

e4 = 3
4 e31 + 4

5 e32 + 9
10 e34

e5 = 1
4 e31 + 1

5 e34 + 1
10 e34

Substituting o34 and o35 with i4 and i5 first, then with e4 and e5 respectively, the
following homogeneous system is obtained:

3
4

4
5

9
10 −1 0

1
4

1
5

1
10 0 −1

0 0 1 −1 0

e31
e32
e34
e4
e5

 = 0

1 The unicast streams and the omitted transfer functions do not introduce new degrees of
freedom.

46 4 Component Performance Contract

At this point, depending on the degrees of freedom of the performance model and the
type of the performance requirements provided by the user, it may be possible to derive
the constraints on the unconstrained features.

In the following examples, different choices of the constrained features are selected,
and the matrix is subsequently transformed with the Gauss-Jordan algorithm.

1. e34 and e4 are constrained:

3
4 0 −12 3

2 3

0 − 1
5 −3 − 3

5 1
0 0 0 1 −1

e31
e32
e5
e34
e4

⇒
 e31 = 16e5 − 2e34 − 4e4
e32 = −15e5 − 3e34 + 5e4
e34 − e4 = 0

In this case, the constraints can not fully specify the system. Yet, the last row does
express the correlation between e34 and e4 which must be respected. It is impossible,
however, to specify e5 (the variable related to the third column) using only the con-
strained variables. In this case the performance model is said to be under specified
by the set of user constraints.

2. e31 and e5 are constrained:
4
5 0 0 4

5 − 4
5

0 − 1
2 0 − 1

4 4

0 0 1 1
2 −8

e32
e34
e4
e31
e5

⇒
 e32 = −e31 + e5
e34 = −0.5e31 + 8e5
e4 = −0.5e31 + 8e5

In this case each unconstrained variable can be expressed as a linear combination
of the constrained variables. Here, the performance model is fully specified by the
set of constraints. Nevertheless it is also possible to obtain negative solutions (e.g.
choosing e31 = 2 and e5 = 1), which imply that the constraints can not be fulfilled.

3. e31, e32 and e5 are constrained:

9
10 0 9

4
9
5 −9

0 1
9

1
6

1
9 −1

0 0 −1 −1 1

e34
e4
e31
e32
e5

⇒

e34 = −2.5e31 − 2e32 + 10e5
e4 = −1.5e31 − e32 + e5
e5 + e31 − e32 = 0

In this case the unconstrained variables can be expressed as a linear combination
of the constrained variables, but there is a relation between the constrained vari-
ables expressed by the last row, and the constraints must fulfill it. In this case, the
performance model is over specified by the set of constraints.

4.2 Constraints Resolution Algorithm

The form that the performance matrix assumes as a result the Gauss-Jordan transfor-
mation can be used to recognize whether the set of constraints is well specified, if new
constraints should be added or if some constraints should be relaxed.

4.2 Constraints Resolution Algorithm 47

In general a performance model with n performance features and m equations is fully
specified by a set of k constraints if the result matrix has the form I(n−k)×(n−k) D(n−k)×k

0(m−n+k)×(n−k) E(m−n+k)×k

 (4.2)

Note that m− n+ k can be zero, and in that case the form is

[
Im×m Dm×(n−m)

]
(4.3)

4.2.1 Fully Specified Models

When the system is fully specified, it is easy to solve the final system to find the minimum
values of the application unconstrained variables. In fact, recalling that the vector xuc

(xc) denotes the unconstrained (constrained) variables and the vector c the performance
constraints values, by substituting xc with c the following holds:

xuc +Dc = 0 that is equivalent to xuc = −Dc (4.4)

If negative solutions are found, it is possible to compute the nearest set of constraints
c′ = c + h with h ∈ Rk, h ≥ 0 such that xuc = −Dc′ ≥ 0, solving the following linear
optimization problem:

min
∑
hi

s.t. xuc = −D(c+ h)
xuc ≥ 0
h ≥ 0

(4.5)

In this way it is easy to find the correct values for the constrained variables xc = c + h

and for the unconstrained variables xuc. Note that the constraints h ≥ 0 assure the new
values of xc respect the original constraints.

4.2.2 Over Specified Models

When the model is over specified, there are too many constraints with respect to the
degrees of freedom of the model, and thus the values of the constrained features cannot
be arbitrarily fixed. When this occurs, the performance matrix has the following form: I M1

0 M2

 (4.6)

where the matrices M1 and M2 have different sizes with respect to Eq. (4.2). For this to
work, the following must be satisfied:

M2xc = 0 (4.7)

48 4 Component Performance Contract

By substituting xc with c in Eq. (4.7), the system is not verified for some ci, and instead
the following holds:

M2c = d (4.8)

At this point, a new set of constraints c′ = c+h with h ∈ Rk, h ≥ 0 must be chosen, which
satisfies M2c

′ = 0 and the need for the new values of the constraints to be as close as
possible to the user specified ones. Moreover, the admissible values for the unconstrained
variables are positive numbers and therefore −M1c

′ ≥ 0 must also be satisfied.
To compute c′ different techniques can be used. To do this, it is possible to simply

minimize
∑
hi subject to the previous constraints:

min
∑
hi

s.t. M2h = −d
−M1(c+ h) ≥ 0
h ≥ 0

(4.9)

and determine the new values c′ = c + h for the constrained variables and the values
xuc = −M1(c+ h) for the unconstrained variables.

In the previous example it holds xuc = [e31 e32 e5]T ; if c = [1 1 1]T then the last
relation is violated (d = 1). The minimization problem to solve is:

minh31 + h32 + h5

s.t.
h31 + h32 − h5 = −1
h31 ≥ 0
h32 ≥ 0
h5 ≥ 0

In this simple case, the solution of the problem can be found by direct inspection: h31 = 0,
h32 = 0 and h5 = 1.

4.2.3 Under Specified Models

The aim of the proposed approach is to uniquely identify the performance requirements
on every component. An under specified model has an infinite number of solutions. The
application of the simplex method to the under specified model would find a wrong
solution, in the sense that it is not the one desired by the user.

For example, consider a simple application with two independent nodes that send
data to a third node through a merge stream. Consider only the variables o1, o2 and i3
that characterize the stream, and the structure equation o1 + o2 = i3.

If a user specifies the performance constraint i3 ≥ 5, the equivalent linear optimization
problem should be:

min o1 + o2 + (i3 − 5)
s.t.
o1 + o2 − i3 = 0
o1 ≥ 0
o2 ≥ 0
i3 ≥ 5

4.2 Constraints Resolution Algorithm 49

5

5

5

A B

C

D

o1

o2

i3

Fig. 4.2. Polyhedron of the LP problem in the example

A visual representation of the polyhedron of the example is depicted in Fig. 4.2, where
the polyhedron D is the planar surface delimited by the lines A, B and C.

The gradient of the function to be minimized projected on this surface is normal
to the line B; it means that every point on this line is a solution of the LP problem.
However, the simplex algorithm will return a vertex (either [5 0 5]T or [0 5 5]T), without
providing any warning about the infinite number of solutions. The solutions found in this
way hardly are the ones intended by the user (why he put two components producing the
stream, if in the solution only one is working?). This suggests that such indeterminate
conditions should be flagged as errors, so that the user can better detail the behavior he
desires from the application.

The following algorithm summarizes the whole procedure.

Input: performance matrix M , requirements values vector c
Output: constraint values vector or an error message

M1 = column-reorder(M);1

M2 = gauss-jordan(M1);2

if (M2 is fully specified) then3

return [c | −Dc];4

else if (M2 is over specified) then5

h = linear-program(M2, c);6

return [c | −D(c+ h)];7

else8

return error(“Too few requirements”);9

end10

Algorithm 1: The performance requirements propagation algorithm

4.2.4 Composite Components Constraints

So far, it has been shown how to derive the input, output and execution rates of a
component, either primitive or composite, given its structure (the performance model

50 4 Component Performance Contract

and its features) and a set of (few) performance requirements. Given such information,
the methodology proposed in the previous sections can be used to derive the performance
constraints on every feature that are as close as possible to the high-level performance
requirements requested by the user.

Given a general multi-component application, it can be seen as a collection of inter-
acting components. Such components may be primitive or composite. Clearly, to proceed
to the mapping of the application, the performance constraints on every primitive com-
ponent must be known, in order to identify the requirements for every computation and
communication. Once the constraints on the application components are known, they can
be projected to the composite components. The constraints obtained on the input/output
interfaces of a composite component can be considered as performance requirements for
its inner structure. At this point it is easy to apply the proposed methodology again to
the graph of inner components. Note that, by construction of the model of composite
components (as in (3.22)), the constraints will univocally determine the values of the rel-
ative sub-components, so just the reordering and the Gauss-Jordan triangulation steps
are required.

This procedure may be recursive. In fact, composite components may have different
composite components in their implementation, but this recursion will eventually end,
because the final building blocks are always primitive components.

4.2.5 Complexity

The computational complexity of the algorithm is polynomial in time, w.r.t. the input
size n of the performance features. The time complexity T1(n0) of the algorithm is given
by

T1(n0) = TGJ(n0) + TLP (n0) (4.10)

where n0 is the number of observable performance features (typically n0 is greater than
the number of constraints), TGJ(n0) is the time complexity of the Gauss-Jordan algo-
rithm (O(n3

0)) and TLP (n0) is the complexity of the Karmarkar algorithm for the linear
optimization problem (O(n3.5

0)).
The time complexity T2(ni) for the projection of the constraints in the generic ith

composite component is
T2(ni) = TGJ(ni) (4.11)

where ni is the number of the inner performance features of the ith composite component.
Considering the input size n of the whole algorithm as the sum of the observable

performance features and all the inner performance features, the time complexity T (n)
is given by:

T (n) = T1(n0) +
k∑

i=1

T2(ni) = O(n3.5
0) +O(n3

0) +
k∑

i=1

O(n3
i)

= O(n3.5
0) +

k∑
i=0

O(n3
i) = O(n3.5

0) +O(n3) (4.12)

Typical values for n (which roughly correspond to the total number of component
interfaces in the application) are in the range between few tens up to several hundreds, for

4.3 Performance Annotations 51

reasonably sized Grid applications. The algorithm run time is usually a small fraction of
the total time needed to determine the application mapping and start the application. The
longest parts consists of retrieving all candidate resources and staging the applications
binaries onto remote machines.

4.3 Performance Annotations

So far, the proposed theory has only been concerned with the components performance,
their relationships and the performance of a component-based application given some
user requirements.

At this point, a major part of information needed so far does not need human inter-
vention and can be obtained by automatic inspection on the composition of components.
Now, the human intervention is needed to provide:

1. component annotations for each component, describing the steady-state relation-
ships between computations and output interfaces (see Sect. 3.3) and

2. performance requirements, describing the user desired QoS for the whole application.

While the performance requirements are needed for every execution of the application
(different users/runs can require different QoS), the component annotations should be
given just once, by the component developer. Assuming a good level of expertise, the
component developer must be very accurate in providing such information, and it can be
attached to the component as a component metadata.

However, the mapping of the application components on a target platform, requires
additional information. It is now necessary to state clearly the dependencies between
component computations and computing resources and between stream communications
and network resources.

Computations can be characterized in terms of the work they perform per activation
(e.g. number of floating point operations, amount of data exchanged with memory or
disk). The hypothesis assumed in Sect. 3.2.3 permits such activation parameters to be
considered independent from the actual values of the received items.

Different metrics are possible (e.g. [125]) and multiple metrics can be considered
simultaneously. Thus in general the work performed by a computation can be measured
as an array of the values of the considered metrics, l = [l1, . . . , ln]. Such values can
be obtained in two ways: by profiling or by historical records. Profiling can be done
by the component developer or provider, while historical records can be obtained via
controlled executions on reference resources. It is clear that these values depend on the
characteristics of the computing resource. Therefore, one metric could be measured in
MFlop/act (floating point operations required) and another in MB/act (megabytes of
memory required).

Likewise, a computing resource can be described through work performed in the
time unit, called subsequently bandwidth. Each computation metric has an associated
resource bandwidth, e.g. a computational bandwidth (measured in MFlop/s) or a memory
bandwidth or an I/O bandwidth (measured in MB/s). A computational resource should
be described at minimum with the bandwidths that corresponds to the component work
metrics.

52 4 Component Performance Contract

With a single work metric l (e.g. MFlop/act), it is easy to translate a performance
constraint c (e.g. act/s) into a resource bandwidth requirement w (MFlop/s) and vice-
versa; for example:

w = l · c (4.13)

Once the number of activations per second c is known, its inverse represents the service
time of an activation on the given resource.

With multiple metrics, given a work vector l = [l1, . . . , ln] and a bandwidth vector
w = [w1, . . . , wn], Eq. 4.13 is still valid to derive the individual values, but the service
time results:

ts =
n⊕

i=1

li
wi

(4.14)

where
⊕

is a combinator to be selected. For example, the combinator can be a sum
operator if the work per activation is done sequentially, or a max operator for work
carried out in parallel. In this case, the inverse of the service time represents the number
of activations per second that the resource is able to provide with respect to the particular
activation described by l.

Eventually, communications are easily described simply by the size (in bytes) of the
items flowing through the streams. In this way it is to check if a stream with a certain
input rate (number of items flowing per second) and a certain item size can be “mapped”
on a particular network resource characterized by its bandwidth (typically measured in
Mb/s).

The characteristics discussed up to now should be provided as metadata for each
component; again, the component developer, having the deepest knowledge of the com-
ponent implementation, should be in charge of providing this information. This infor-
mation is required to correctly map the entire application on a target environment with
heterogeneous resources like a Grid, then they will be called deployment annotations.
Deployment annotations are not restricted to this type of annotations, e.g. they may
specify the minimum hardware requirements to run a component. This is important to
note because some measures such as the work performed by a computation can be af-
fected by a particular kind of resource. For example, a matrix multiplication operation, if
it is executed on a machine with sufficient memory, requires a certain number of floating
point operations and data fetch from main memory. Otherwise, the operating system will
perform some I/O operations (page swapping) to overcome memory limitations, which
will dramatically change the performance of the program; in this case, the execution time
would be dominated by the I/O operations, that are orders of magnitude slower than
memory access.

Placement constraints are provided as deployment annotations; in this way it is possi-
ble to specify that a particular component should be instantiated on a particular resource,
or inside a given administrative domain (e.g. for privacy issues) or on a resource that has
a copy of a given file or installed software. Both component and deployment annotations
are called performance annotations.

4.4 Performance Contract 53

4.4 Performance Contract

The information provided by performance annotations, supported by the values of the
activation and input/output rates provided by the solved constraints, is sufficiently de-
tailed and low level that it can be exploited by an automatic program launcher performing
resource selection and mapping on behalf of the user. Therefore it s incorporated in the
description of the application at launch time through a performance contract.

Now it is possible to define a performance contract for a component, primitive or
composite as a list of metadata containing the following items

• the component performance model, provided by the component and/or application
developers;

• the component performance requirements, provided by the end-user;
• for each primitive component, deployment annotations for its computations, provided

by the component developer (through profiling) or automatic tools (through execution
traces analysis);

• for each composite component:
– a performance contract for the composite component;
– a mapping of its external performance features to the ones of the inner subcom-

ponents.

Clearly the performance contract for a component-based application is that of its top-
most component. A performance contract is said to be assessed if the performance
requirements have been propagated to each component and the constraints for every
performance feature have been calculated

4.4.1 Validation

The following demonstrates the applicability of the proposed approach to select resources
for a test application. The application is depicted in Fig. 4.3, also used in Sect. 3.2.5.

Frame
Sequencer

Parallel
Renderer

DivX
Encoder

Output
Store

GOP
Assembler

C1 C2 C3 C4 C5

S1 S2 S3 S4

Fig. 4.3. Graph of the render-encode application

For groups of pictures of 12 pictures, the performance model for the application is :

C1e = C1o = C2i = C2o = C3i = 12 · C3o = 12 · C4i = 12 · C4o = 12 · C5i

and has one degree of freedom.
Suppose that the user wants 1 frame/sec at the last stage (the constraint is expressed

byC5i ≥
1
12

, because each input for C5 is composed by 12 frames). By applying the per-
formance model, the required computation and the transfer rates for each computation

54 4 Component Performance Contract

and communication are derived. These values, paired with performance annotations (see
Tab. 4.1) on the weight of computations or communications, e.g. MFlop per task/MB
transferred to/from memory and message size, respectively, can be used to derive require-
ments that the resources must fulfill in order to meet the performance requirements on
the application. For instance, the requirement for stream S2 = C2o is discussed. Since

Table 4.1. Deployment annotations for the application.

Component C1 C2 C3 C4 C5

Processor i686 i686 i686 i686 i686
Memory (MB) - 64 256 64 -
CPU Work - 3307 - 52 -
Mem. Work - 302 - 104 -

Stream S1 S2 S3 S4

data type param pic GOP zip
data size 54 B 1.19 MB 14.24 MB 2 MB

it is required to carry 1.19 MB messages with at least rate 1 message/s, a link of 9.52
Mb/s is sufficient. Likewise, the test application will never scale above 10 frames/s with
a 100 Mb/s network. Such bandwidth can guarantee 10.5 messages per second. If a frame
corresponds to a message, the application needs to be redesigned, if higher performances
are required.

According to the discussion in Sec. 4.3, each computation is described by the vector
l = [lMFlop, lMB]T , specifying the number of floating point operations and the data
transferred to/from the main memory per activation. Resource bandwidths are described
by the vector w = [wMFlop/s, wMB/s]T and execution time is roughly estimated2 as

t(l,w) =
lMFlop

wMFlop/s
+

lMB

wMB/s

This model can be employed also to find an appropriate degree of parallelism for
parallel computation nodes. In fact, it is possible to relate t(l,w) for an aggregate resource
characterized by the bandwidths w1, . . . ,wn. Assuming perfect speedup:

t(l,w) =

(
n∑

i=1

t(l,wi)−1

)−1

In this way it is possible to derive, for each computation node, matching resource
requirements. These will concern single resources for sequential nodes, and aggregate
resources for parallel nodes.

In Fig. 4.4, two execution runs with different mappings (top: run on homogeneous clus-
ters of Athlons XP 2600+, bottom: run on a set of heterogeneous resources: 9 P4@2GHz, 1
Athlon XP 2800+, 1 P4@2.8GHz) for the same constraint are displayed. At a first review
it is notable that, even if the heterogeneous run has more variance in achieved bandwidth,

2 We assume for simplicity no pipelining and latency hiding.

4.4 Performance Contract 55

Fig. 4.4. Two executions of the application on homogeneous and heterogeneous resources.

the average bandwidth is comparable with the homogeneous one. This provides evidence
that the employed performance model correctly handles heterogeneous sets of resources,
for determining the correct parallelism degree (i.e. the number of replicas of C2 and C4

components). The good performance in heterogeneous run (its completion time is even
shorter than the one for homogeneous run) is explained by the fact that the model can
match computation requirements with suitable resources, i.e. schedule memory bound
computations (e.g. encoding) on machines with faster memory and schedule FPU bound
computations (e.g. rendering) on machines with faster FPU.

The obtained results are as expected: the mapping computed using the performance
model fulfills the constraint, during the begin of and throughout most of the application
run time. This occurs because, in order to build the model, the achieved performance
has been sampled on the first frames of the movie, but the application workload slightly
changes with the evolution of the movie. This is unavoidable in complex applications,
and may require dynamic rescheduling [13].

Although the heterogeneous run shows greater variance in the achieved bandwidth,
the average bandwidth is comparable with the homogeneous case. This provides evidence
that the performance model properly handles heterogeneous resources.

5

Component Applications Scheduling on Hierarchical
Grids

This chapter proposes and discusses a launch-time scheduling heuristics which aims to
schedule component-based parallel applications on hierarchical Grids. The goal of this
heuristics is three-fold: to meet the minimal component computational requirements, to
try to maximize the throughput between communicating components, and to evaluate
on-the-fly the resource availability in order to minimize the effects of the dynamic changes
of resource information (i.e. the aging effect). The evaluation of the proposed heuristics
has been included, using simulations which apply it to a suite of task graphs and Grid
platforms randomly generated, as well as further tests to schedule a real application on
a real Grid.

The content of this chapter has been presented in [126, 127].

5.1 Introduction

The problem of component scheduling in a structured Grid environment deals with find-
ing the proper assignment of components to Grid resources in order to optimize a per-
formance metric. In a dynamic environment, this optimization goal is very complex. The
general problem of scheduling a set of tasks on distributed resources is known to be very
complex and even if some special scheduling problems are solvable in polynomial time,
the dynamicity of the Grid can make an optimal or quasi-optimal solution useless in
short times. Rather than elaborating very complex heuristics to try to optimally map
components on a Grid, it is preferable to devise a launch-time scheduling heuristics which
is able to find a schedule that can guarantee the QoS required by the end-user (a feasible
schedule).

Current Grid resources are usually distributed in a clustered fashion. Resources in
the same local network usually belong to the same organization and are relatively more
homogeneous and less dynamic in a given period. Moreover, the hierarchical structure of
the network, organized in local, metropolitan and wide are networks (LANs, MANs and
WANs respectively) make easier the collection of coarse information on network perfor-
mance. These characteristics can be exploited to steer the scheduling of a component-
based application in such a way as to to allocate highly interacting components to the
same local area network. This is done in order to minimize the use of unreliable network
resources shared between a large number of users, i.e. in MANs and WANs.

58 5 Component Applications Scheduling on Hierarchical Grids

5.2 Application Model

The application model presented in Sec. 3.3 is refined, considering the actual implemen-
tation of multicast and merge communication patterns. At resource level, merge and
multicast are both implemented with distinct network links (see Fig. 5.1).

o1

o2

o1

o1

o1 o1

o2

Fig. 5.1. Implementation of multicast (left) and merge (right) streams

In the case of multicast streams, every network link must provide a transmission
bandwidth at least equal to the stream performance requirement (o1 in Fig. 5.1), while
for merge streams every network link must provide a different bandwidth, depending on
the stream source (o1 and o2 in Fig. 5.1).

By transforming these types of streams (hyperedges in the original graph model) into
simple links, the application graph can be seen as a simple graph. Besides this refine-
ment, in the following the information on the directionality of the streams will not be
exploited. In this way, the application graph GApp = (N,V) can be viewed as a weighted
Task Interaction Graph (TIG) [107]. In GApp a vertex ni ∈ N models a computation, and
a undirected edge aij ∈ V , with i 6= j, models a communication occurring between vertex
ni and vertex nj . Vertices have an associated weight wi representing the minimum com-
putational bandwidth to execute the computation respecting the associated performance
requirement, and edges have an associated weight wij representing the amount of data
exchanged between two vertices in the time unit. As discussed in Sec. 4.3, such weights
can be obtained either by static code analysis or by executing the code on reference
systems.

5.3 Platform Model

Three different kinds of networks are modeled: Wide Area Networks (WANs), Metropoli-
tan Area Networks (MANs) and Local Area Networks (LANs). A hierarchical graph (i.e.
a dendrogram [128]) denoted as GGrid = (LN,MN,WN) is adopted to model the Grid.
LN is the set of nodes that represents sets of the Grid’s computational resources (i.e.
LANs), while MN and WN abstracts the MANs and WANs respectively. The root of
the graph is a “virtual node” grouping together all the WANs. Every node in the den-
drogram is a set of resources. The LAN set contains the resources to be exploited for
tasks execution, while higher-level nodes contain all the resource of the lower-level nodes.
Figure 5.2 shows a dendrogram including two MANs.

5.3 Platform Model 59

Fig. 5.2. Grid network topology (left) represented as a dendrogram (right)

Within the proposed approach, the basic assumption is that intra-LAN communica-
tions are characterized by higher bandwidth and a lower level of congestion with respect
to any other network communication.

It is assumed that for the j − th computational resource in LAN i mij ∈ ani, its
nominal computational bandwidth Lij and its percentage of current computational load
cload
ij are known. The current computational bandwidth of a resource lij is computed as
follows:

lij = Lij · (1− cload
ij) (5.1)

It is assumed that each computational resource supports a multiprogramming envi-
ronment. The current and average computational bandwidth of a LAN ani containing k
hosts are computed through the following formulas:

li =
k∑

j=1

lij (5.2)

li =
li
k

(5.3)

The current computational bandwidths of a MAN and a WAN are defined in a similar
way.

In terms of communication links, the current bandwidth b(ani, anj) is assumed to be
known, where ani and anj are two dendrogram vertices with the same father. In this way,
only information about the bandwidths between LANs in the same MAN, MANs in the
same WAN and between all the WANs is required. Both the structure of the dendrogram
and the characteristics of the networks can be obtained using tools like Network Weather
Service [129] and TopoMon [130]1.

1 The former returns the network and computational resource performances, while the latter
returns an abstraction of the network topology.

60 5 Component Applications Scheduling on Hierarchical Grids

5.4 Algorithm Architecture

The algorithm takes in input the GApp and GGrid graphs, and it is structured according
to two phases.

Phase 1 (Clustering): The goal of this preprocessing step is to elaborate GApp to
find a set of subgraphs (called clusters) S = (S1, . . . , Sk) by grouping the tasks with high
inter-communication costs. The clustering is carried out by using the ε-approximation
correlation clustering algorithm proposed in [131]. The goal of the clustering algorithm
is to partition the application graph in clusters exploiting a similarity degree associated
to each edge (i.e. trying to put nodes that have higher communication cost among them
into the same subgraph). A positive similarity degree between two nodes means that the
algorithm should try to put the two linked nodes in the same cluster, while a negative
number will force the two nodes in two different clusters. Basically, the clustering problem
is formulated as an integer linear programming problem with boolean variables. This
problem is then relaxed and solved with standard LP methods and the solution is rounded
to the integer solution exploiting the Region Growing technique [132]. This clustering
algorithm does not need a meta-parameter (e.g. number of clusters), and the following
quantity, derived from the edge weights, is considered as the similarity measure:

sij = log
(

wij

wmax − wij

)
(5.4)

where wmax is the maximum value of edge weights in the application graph. The more
communication cost between two components (i.e. wij value), the more confidence that
the tasks are similar. As a result, components within the same cluster need higher com-
munication bandwidth than those belonging to different clusters. Therefore, according to
the heuristics assumption that the better communication quality is inside a LAN with
respect to MANs and WANs, the algorithm attempts to allocate all the tasks within a
cluster onto the machines within the same LAN.

Phase 2 (Scheduling): The components within the clusters have to be scheduled
onto Grid resources. First, the clusters in S are arranged in descending order with respect
to their minimal computational bandwidth w(Si):

w(Si) =
∑
j∈Si

wj (5.5)

Then, adopting a priority-based policy, the clusters are scheduled onto the resources
of suitable LANs to run each cluster’s tasks.

Selected a cluster and starting from the user LAN (lnu), a Closest First Search (CFS)
is applied to GGrid in order to find a suitable LAN to host all the tasks within the selected
cluster. The Closest First Search first visits the local LANs (i.e. the LANs in the user
MAN) in descending order of current link bandwidth, measured from the user LAN.
Then it moves upward to the user MAN, and again visits the MANs, in the user WAN,
in decreasing order of current link bandwidth, measured from the user MAN. Finally,
it moves upward visiting the WANs following the same bandwidth order. Note that, in
general, the search does not visit all the nodes of the dendrogram, but it ends when
enough resources are found to satisfy the application requirements. With a certain bias,

5.4 Algorithm Architecture 61

this heuristics tries to minimize the communication overhead, and therefore performance
degradation by MAN and WAN network links, by putting strongly communicating nodes
within single LANs.

The LAN lnj suitability with respect to cluster Si is computed according to the
following formula:

Suitability(Si, lnj) =
lj [Si]

w(Si) + σw(Si)
(5.6)

where lj [Si] is the mean computational power offered by the more powerfulmin(|Si|, |lnj |)
resources of the LAN lnj

2, w(Si) is the mean minimal computational power requested
by the cluster:

w(Si) =
w(Si)
|Si|

(5.7)

and σw(Si) is the standard deviation of the cluster computational power:

σw(Si) =

√√√√√√
∑
k∈Si

(
wk)− w(Si)

)2

|Si|
(5.8)

The LAN lnj is suitable for Si if and only if Suitability(Si, lnj) ≥ 1. The tasks within
a cluster are scheduled onto the machines of the first suitable LAN in CFS order.

The tasks are arranged in descending order with respect to their computational re-
quirement (i.e. the wi value), and then they are scheduled to the suitable LAN’s machines
by adopting a priority-based policy. The machine onto which schedule a task is selected
according to the following parameter:

Affinity(ni,m) =
lm
wi

(5.9)

The resource m is suitable for a task ni if and only if Affinity(ni,m) ≥ 1. Every
task is scheduled on the machine with the highest affinity rank in the suitable LAN. The
allocation of the task ni on the machine m causes a reduction of lm equals to wi.

Since statistical information is used to select a suitable LAN, the chosen LAN may
not be able to host all the tasks inside a cluster. It could happen that some tasks do not
find any suitable machine. To overcome this problem, unallocated tasks are scheduled
onto machines of a LAN as close as possible to the other tasks in terms of locality and
available bandwidth in the network tree.

This process is repeated until all the cluster’s tasks are allocated or until the root
of the GGrid graph is reached. In this last step the scheduling algorithm fails, ending
without a valid allocation.

The following algorithms summarize the entire procedure.

2 Note that if the number of tasks is greater than the number of machines, lj [Si] corresponds
to the mean computational of the LAN, as in (5.2).

62 5 Component Applications Scheduling on Hierarchical Grids

Input: Set of component clusters S, Grid topology GGrid

Output: A list L containing feasible allocation of components to resources
or an error message

Initialize the scheduling list L;1

Initialize a pending nodes set P ;2

Order clusters s ∈ S into a cluster queue QC in decreasing order of w(s)3

values;
repeat4

s = QC .removeFirst();5

Get first LAN g in GGrid such that Suitability(s, g) ≥ 1 by visiting6

GGrid from the user LAN in a CFS fashion;
if (g 6= ∅) then7

P = LocalScheduling(s, g);8

else9

return error(“Unable to find a feasible scheduling”);10

if (!P .empty()) then11

NeighborSearch(P , g);12

until (QC .empty()) ;13

Algorithm 2: The hierarchical scheduling algorithm

Input: A set of component nodes N , a Grid node (LAN, MAN, WAN or
root) g

Output: A set of pending nodes P

Initialize a pending node set P ;1

Order nodes ni ∈ N into a component queue QN in decreasing order of wi2

values;
repeat3

ni = QN .removeFirst();4

Get resource m ∈ g with highest value of Affinity(ni,m);5

if (Affinity(ni,m) ≥ 1) then6

L.insert(ni, m);7

lm = lm − wi;8

if (lm = 0) then GGrid.remove(m);9

else10

P .add(ni);11

until (QN .empty()) ;12

return P ;13

Algorithm 3: The local scheduling function LocalScheduling(N, g)

5.5 Performance Evaluation

This section shows an evaluation of the performance of the scheduling solution carried out
by the proposed algorithm. The objective is to investigate the effect of the applications
computational and communication requirements on reaching the algorithm goals. The
evaluation has been conducted by simulations applying the algorithm to a suite of task

5.5 Performance Evaluation 63

Input: A set of pending nodes P , a Grid node (LAN, MAN, WAN or root)
g

Output: A set of pending nodes P ∗

Initialize a pending node set P ∗;1

Order g brothers in GGrid in a Grid nodes queue QG in decreasing order of2

bandwidth values (measured from g);
repeat3

g∗ = QG.removeFirst();4

P ∗.addAll(LocalScheduling(P , g∗));5

until (P .empty() || QG.empty()) ;6

if (P ∗.empty() ∧ g 6= root) then7

g∗ = father of g; NeighborSearch(P ∗, g∗);8

if (P ∗.empty()) then return error(“Unable to find a feasible9

scheduling”);
Algorithm 4: The neighbor search procedure NeighborSearch(P, g)

graphs and Grid platforms randomly generated. Moreover, a more thorough test was
conducted by using a real life example of a rendering application.

5.5.1 Simulation Environment

To carry out a set of meaningful statistical information to evaluate the proposed heuris-
tics a large number of simulations was conducted. As there is no existing information
on parameterizing the algorithm, several parameter sets as first examples are assumed.
Because of this, it cannot be concluded that these parameters are optimal nor feasible
for other job scenarios. The evaluation exploits randomly generated TIGs with 8, 16, 32,
64 and 128 nodes with a variable number of edges. the weights of both the nodes and
the edges weights are randomly generated from a uniform distribution U(1, 10).

In order to evaluate the effect of the tasks’ communication cost on the LAN configu-
rations, TIGs were clustered changing the correlation function to obtain 1-3, 4-6 and 7-9
tasks per cluster for each generated TIG, i.e. the more the value of the correlation degree,
the more is the communication similarity value and therefore greater is the number of
tasks inside a cluster. To calculate the performance constraints, four different QoS level
have been selected. Each QoS level specifies the performance constraints on the graph
nodes with weight 13, and the QoS values are 25, 50, 75, 100 MFlop/s.

The Grids platforms have been generated to satisfy the following constraints:

1. Grids structured as real-world wide area grid by adopting specific topologies and
realistic features for the computational machines and communication links;

2. The grid topology must be organized with a hierarchical structure (i.e. WANs, MANs
and LANs);

3. The values of the bandwidth and the latency of each link must reflect those of real
grid environments, especially by considering the different communication bandwidths
among LAN, MAN and WAN networks.

3 The performance constraints for the other nodes can be found multiplying the nodes weights
by the provided QoS value.

64 5 Component Applications Scheduling on Hierarchical Grids

The previous requirements are satisfied by the Tiers tool [133]. The machines’ loads
and links have been obtained by referring to the traces stored in the Network Weather
Service web site, where information of several hosts connected in different networks are
available. Grids were then generated with 32, 64, 128, 256 and 512 machines, grouped in
LANs with 4, 8 and 16 machines. Then, a value representing the computational power
has been associated to each host on the basis of a uniform distribution with values from
600 to 1300 MFlop/s. In order to run all the tests, 240 application TIGs and 15 Grids
were generated.

5.5.2 Performance Metrics

To validate the results obtained a greedy best fit scheduling was implemented and it has
been applied to every test case. To evaluate the schedules carried out by the proposed
algorithm three different criteria are exploited: the percentage of scheduling failures, the
component-resource affinity, the LAN hit ratio and the intra-cluster “distance” among
components allocated on different Grid nodes.

The percentage of scheduling failures indicates the ratio of test applications which
both algorithms failed to schedule. This can be due to the fact that it was impossible
to find a schedule for the application or the selected algorithm failed to find one of the
existing solutions. In the following criteria, the average values are computed discarding
the simulations resulting in scheduling failures.

The component-resource affinity represents how many times the power of the resource
on which a component is allocated is greater than the task minimal computation require-
ment. Hence, this parameter gives us an accurate estimation of the satisfaction level
obtained by the algorithms in allocating a component.

The LAN hit ratio shows how many components of a cluster are allocated onto the
resources of the suitable LAN. According to the algorithm hypothesis, the more the
LAN hit ratio increases the more the throughput between communicating components
increases.

Finally, the intra-cluster “distance” represents a scheduling distribution to estimate
the reduction of the communication quality among the components of a cluster when
some of them are not allocated in the suitable LAN.

These results have been obtained running the algorithms on a Pentium4 processor
with a clock frequency of 3.0GHz and a memory of 1GB.

5.5.3 Evaluation for synthetic Grid scenarios

To evaluate the schedules carried out by the proposed algorithm, first the percentage
of scheduling failures is evaluated. Figure 5.3 and Figure 5.4 show the percentage of
scheduling failures with respect to the number of tasks per TIG and the number of
tasks per cluster respectively. As expected increasing the number of tasks or the size of
a cluster causes an exponential increment of the number of failures. In Figure 5.5 the
algorithm is compared with the scheduling carried out by a greedy scheduling algorithm.
This algorithm simply orders the task queue in decreasing order of node weights and
the resource queue in decreasing order of computational power and it performs a best fit

5.5 Performance Evaluation 65

scheduling. As can be seen, in the simulations, the percentage of failures of the greedy
algorithm is lower than the percentage failure of the proposed one.

Fig. 5.3. Percentage of scheduling failures (1)

Fig. 5.4. Percentage of scheduling failures (2)

In the following evaluations, the average values are computed discarding the simula-
tions resulting in scheduling failures.

66 5 Component Applications Scheduling on Hierarchical Grids

Fig. 5.5. Comparison of percentage of scheduling failures

In Figure 5.6 the average scheduling times of the proposed algorithm that was needed
for conducting the simulation on the aforementioned resource are shown. It grows expo-
nentially with the number of components per TIG. In Figure 5.7 these times are compared
with those obtained by a greedy algorithm on the same simulations.

Fig. 5.6. Average scheduling time

It can be seen that the proposed algorithm presents better values than the greedy
heuristics. It is mainly due to the fact that the greedy one must find the “best fit” on the

5.5 Performance Evaluation 67

Fig. 5.7. Comparison of average scheduling times

queue of the resources for each components, while the other just tries to exploit user LAN
resources. This is shown in Figure 5.8. For realistic Grid systems as the ones generated by
Tiers, the proposed algorithm was always able to schedule tasks in the first suitable LAN
or in LANs belonging to the same MAN, efficiently exploiting the Grid communication
resources.

Fig. 5.8. Scheduling of TIG (4 hosts per LAN)

The LAN hit ratio is the percentage of the tasks of a cluster that are allocated into
the suitable LAN. Since the allocation of the tasks in the same LAN allows to obtain a

68 5 Component Applications Scheduling on Hierarchical Grids

better communication quality, higher values of the LAN hit ratio mean an improvement
of the application throughput.

Fig. 5.9. Average LAN Hit Ratio (WASE)

Fig. 5.10. Average LAN Hit Ratio (Greedy)

Figure 5.9 and Figure 5.10 show the results of the average LAN hit ratio using pro-
posed and greedy algorithms, respectively. In such tests it can be observed that the LAN
hit ratio of the proposed algorithm is around 90%, while the one of the greedy algorithm

5.5 Performance Evaluation 69

spans from 20% to 60%. This result demonstrate that the proposed algorithm is able to
allocate the tasks of a cluster in the same LAN and this allows to avoid a degradation of
the communication quality.

Finally, Figure 5.11 shows a limit of the proposed solution: changing the size of the
Grid, the minimum task-machine affinity does not change. This is due to the fact that
the algorithm always search for good resources starting from the user LAN and moving
in nearby LANs/MANs. This behavior prevents the algorithm to explore distant LANs,
even if such LANs are able to host a whole cluster of tasks.

Fig. 5.11. Minimum Task Machine Affinity (TIGs with 8, 16, 32, 64 and 128 tasks)

5.5.4 Validation

Figure 5.12 shows the structure and the weights of the video rendering application used
in this experiment. The weights have been collected through a short profiling execution
of the application on a reference architecture.

In Figure 5.13 the testbed used to evaluate the algorithm is shown. It is a Grid
composed by 23 heterogeneous computational resources (7 workstations and 2 clusters)
distributed in three LANs connected through 1Gb/s optical links. The nominal compu-
tational power of each machines is listed in Table 5.1. The average initial load on each
one has been set to 30%.

The clustering algorithm has been applied with three different similarity thresholds to
obtain different clusters as shown in Figure 5.14. Then, the proposed algorithm has been
applied with three different QoS levels, always considering ISTI as the user LAN. The
allocation results, obtained as function of the number of clusters, are shown in Table 5.2.

It can be seen that increasing the QoS level causes a decrease in the average task-
machine affinity. This is due to the increase of the computational power requested by the

70 5 Component Applications Scheduling on Hierarchical Grids

1.2 2.2 36 2.52.5 2.5 1

6

6

6

6

8 1

1

1 593

593

593

1 593

1 593

2969 1646
1622

1622

209

209

18

4

4

DivX Encoder

GOP Assembler

Parallel Renderer

Output StoreFrame Sequencer

Fig. 5.12. Graph of the render-encode application

Fig. 5.13. Graph of the real Grid testbed

Resource Pi (MFlop/s) Resource Pi (MFlop/s)
rubentino 1000 w01 650
sangiovese 950 w02 625
verduzzo 1000 w03 700
n01 1350 w04 650
n02 950 w05 1250
n03 950 w06 1300
n04 950 w07 1100
n05 950 w08 700
n06 950 fermi 1350
n07 950 galileo 1350
n08 950 rubbia 1300

segre 1325
Table 5.1. Computational power of resources in the Grid testbed

tasks within a cluster. Moreover, the more the number of clusters increase, the more the
inter-LAN communications increases (more clusters, more edges on the cuts). This is a
kind of optimality parameter for the results of the allocation phase. In fact, consider the
clustering result as the best one for the application. If the scheduling phase is able to

5.5 Performance Evaluation 71

3 clusters 5 clusters 10 clusters

Fig. 5.14. Different clustering results of the test application

LAN LAN LAN Average
MCR ISTI CNIT IET Affinity
50 14 0 0 13.35

3 clusters 100 14 0 0 5.63
150 8 1 5 4.32
50 14 0 0 13.93

5 clusters 100 14 0 0 6.72
150 6 1 7 4.48
50 14 0 0 14.75

10 clusters 100 14 0 0 7.00
150 9 1 4 4.82

Inter LAN Inter LAN
Communication Communication
(clustering) (scheduling)

0.00%
3 clusters 0.12% 0.00%

20.81%
0.00%

5 clusters 3.98% 0.00%
24.48%
0.00%

10 clusters 30.27% 0.00%
26.04%

Table 5.2. Allocation results for the use case application

schedule every single cluster completely onto a single LAN, eventually we cannot obtain
an inter-LAN communication value worse than the previous one. During the scheduling
phases, the inter-LAN communication values are influenced by two effects:

72 5 Component Applications Scheduling on Hierarchical Grids

1. a single cluster may be too “large” to be scheduled on a single LAN, and it must
be split across several LANs. It happens with few and big clusters, and this effect
worsen the final inter-LAN communication value;

2. several clusters may be scheduled on the same LAN, if there are available resources,
improving the final inter-LAN communication value.

Both effects are present in the test results. In the case of three clusters, the scheduling
algorithm is forced to split the big cluster in several LANs, while in the case of ten
clusters, the heuristics is able to completely allocate the largest cluster on a LAN and to
allocate several small clusters on the same LANs.

6

Component Applications Scheduling on Global Grids

In this chapter a launch-time scheduling heuristics is proposed and discussed. It aims to
schedule component-based parallel applications on global Grids. The performance model
developed in Chapters 3 and 4 is exploited to exploit a modified list heuristics (e.g max-
max) including information on network bandwidths. In the case of global grids, although,
the lack of structured information on the topology of the Grid and the high variability
of the wide area networks characteristics make the qualitative approach developed in
Chapter 5 unfeasible. To take care of this problem a fast statistical analysis of the network
characteristics is employed, in order to identify clusters of resources characterized by
similar, high-performance network bandwidths.

The content of this chapter has been presented in [134, 135].

6.1 Introduction

To fully exploit the network bandwidth increase which characterizes current computa-
tional Grids, several applications like parallel communication intensive and multimedia
applications require the definition of alternative models and scheduling heuristics. The
goal of these heuristics is to map a set of highly interacting tasks to a set of Grid re-
sources connected by an acceptable bandwidth communication. For this reason, a suitable
model of the Grid is needed as well. A Grid interconnection structure may include links
with heterogeneous performances, hence no constraint on the network topology can be
assumed. A Grid interconnection structure may include links with alternative perfor-
mances, ranging from high speed optical ones connecting MANs to relatively slow links
connecting different LANs within a MAN. Hence, no constraint on the network topology
can be assumed and a hierarchical model is not appropriate.

The scheduling algorithm proposed in this chapter (QLSE) considers applications de-
scribed by a TIG whose nodes and edges are labeled according to the Quality of Service
requirements of the application. Node and edge labels describe, respectively, the Minimal
Computational Requirement of the corresponding task and the Minimal Bandwidth Re-
quirement of the corresponding communication. The Grid is modeled as a graph whose
nodes and labels correspond to, respectively, LANs and connections among LANs. To
avoid the resource aging phenomena, QLSE maps at launch time an application by ap-
plying a modified list heuristics exploiting dynamic information about the Grid status

74 6 Component Applications Scheduling on Global Grids

returned by typical Grid monitoring tools. QLSE detects subsets of LANs connected
by threshold values of communication bandwidth by clustering the Grid graph. These
thresholds are defined by a statistical analysis of the QoS of the communications required
by the user. QLSE orders the tasks of the applications according to a priority which takes
into account both their computational requirement and their bandwidth requirements.
The clusters and the LANs within each cluster are ordered on the basis of a combi-
nation of their computational power and communication bandwidth. Then, a max-max
scheduling algorithm is applied to the resulting lists.

6.2 Application Model

The application model presented in Chapter 5 is exploited. The application graph
GApp = (N,V) is a weighted Task Interaction Graph (TIG) (see Fig. 6.1), where a
vertex ni ∈ N models a computation, and a undirected edge aij ∈ V , with i 6= j, models
a communication occurring between vertex ni and vertex nj . Vertices have an associated
weight wi representing the minimum computational bandwidth to execute the compu-
tation respecting the associated performance requirement, and edges have an associated
weight wij representing the amount of data exchanged between two vertices in the time
unit.

0
192

1
143

2
186

3
184

4
153

5
172

6
151

7
187

8
158

9
198

10
191

11
117

12
188

13
167

14
199

25
20

22

18

17
16

20
13

27
10

16

20

25

26 13

28

17

28 30

18

28

19

15

27

Fig. 6.1. Example of a weighted Task Interaction Graph with 14 nodes

6.3 Platform Model

A Grid is modeled as a set of computational resources geographically dispersed and
interconnected through an interconnection network, e.g. Internet (a global Grid). To
model this network, each resource is connected to a single, well known Local Area Network
(LAN). A LAN is shared between the interconnected resources (i.e. shared bus), and it is
characterized through its nominal communication bandwidth, expressed in Mb/s. Several

6.4 Algorithm Architecture 75

LANs are interconnected through an unreliable network whose topology is unknown.
Exploiting network monitoring tools it is possible to estimate the bandwidth between
two separate LANs. However, it is not viable to monitor every single communication
path, and some paths may not exist or have a very limited bandwidth (e.g. smaller than
1 Mb/s). Nevertheless, without loss of generality, a connected topology is considered.

For each LAN, it is we assumed to know the following information: the number of
hosts connected to the LAN and their instantaneous computational bandwidth1 and the
inner communication bandwidth of the LAN. An example of a Grid model is shown in
Fig. 6.2. Note that if there is not a direct connection between two LANs, they can not
communicate, even if there is a path between them composed by more than one edge. This
assumption has a strong impact on the scheduling of two communicating components.
In fact, they are forced to be mapped on the same LAN or onto two directly connected
LANs.

LAN 1 LAN 2 LAN 3

LAN 4 LAN 5 LAN 6

10 Mb/s 100 Mb/s

1 Gb/s

10 Mb/s

100 Mb/s 100 Mb/s

20
38

28 28

29

34 34

LAN 7

100 Mb/s

LAN 8

100 Mb/s

30

3132 37

37

Fig. 6.2. Example of a modeled Grid with bandwidth information

6.4 Algorithm Architecture

The proposed algorithm takes as input the weighted graph of an application GApp and
the weighted graph of the target Grid GGrid. The algorithm’s goal is to find a schedule
of the application tasks to the Grid hosts in a way to fulfill simultaneously the mini-
mum computational requirements of tasks and the minimum bandwidth requirements of
communications.

1 Each computational resource supports a multiprogramming environment.

76 6 Component Applications Scheduling on Global Grids

The algorithm exploits a list scheduling heuristics which, by “appropriately” ordering
the tasks, LANs and hosts, tries to meet the application QoS requirements by scheduling
communicating tasks on the same LAN or on directly connected LANs.

6.4.1 Tasks Ordering

Task are ordered according to a score assigned to each of them. This score takes into
account the weight of each node and it incorporates information on the topology of the
application in order to exploit the high communication bandwidth of a LAN:

∀ni ∈ N, scorei = wi +
∑

aij∈E

(
αTwij + βTwj

)
(6.1)

where αT is a conversion factor and βT ∈ [0, 1] is a relative weight of the communicating
tasks’ computational requirements. This means that the score of a node is the sum of
its weight, its complete communication requirement (the sum of edge weights) and a
percentage of the weights of the nodes which it is communicating with. After several
experiments to tune such parameters, the best results have been obtained with αT = 1
and βT = 0.25.

The tasks are then structured in layers. The highest score task is placed in the first
layer. The tasks directly connected to tasks in the previous layer are in the subsequent
layer. The tasks in each layer are then grouped in subsets of communicating tasks; i.e.
tasks directly connected in the TIG are put in the same subset. Then the subsets are
ordered in decreasing order of number of tasks, and, inside a subset, tasks are ordered
in descending order of score. The final task ordering is built considering the task in the
first position, followed by the ordered tasks of the second layer and so on. In Fig. 6.3 an
example in which the TIG of Fig. 6.1 structured in layers is shown, where the dashed
lines identify the node subsets.

Layer 1

Layer 2

Layer 4

0

1

2

3

4

5

6

7 8

9

10

11 12

1314
Layer 3

Fig. 6.3. Layered ordering of tasks of the TIG in Fig. 6.1

According to this ordering, we will try to allocate communicating tasks in the same
LAN or in directly connected LANs. A problem may arise when dealing with cycles
in the application graph. With the proposed ordering, we have no guarantee that the
first and the last allocated tasks of a cycle will be allocated in the same LAN or in

6.4 Algorithm Architecture 77

directly connected LANs, thus generating a schedule that could be unable to fulfill the
communication requirements. To solve this issue, we force all the cycle’s tasks but the
first to be considered part of the same subset of tasks.

6.4.2 Hosts Ordering

Each host in a LAN shares the same communication medium, so in a LAN the hosts
can be ordered in decreasing order of computational power. The priority of a LAN is
calculated similarly to (6.1):

∀Li ∈ NLAN , prioi =
∑

hij∈Ri

rij +
∑

(ij)∈ELAN

(
αLbwij + βL

∑
hjk∈Rj

rjk

)
(6.2)

where NLAN is the set of the Grid LANs, Ri is the set of hosts connected to the LAN
Li, hij is the jth host of the LAN Li and rij is its computational power and bwij is the
average bandwidth of the link between Li and Lj . ELAN represents the set containing
the edges of the graph modeling the connections between the LANs (see Fig. 6.2):

Also in this case, αL is a conversion factor and βL ∈ [0, 1] is a relative weight of the
total power of the directly connected LANs. Again, the best results are obtained choosing
αL = 1 and βL = 0.25.

6.4.3 LAN Clustering

LAN to LAN interconnections are unreliable. To try to guarantee the required bandwidth
performance during the execution of the application, we would like to exploit LAN to
LAN interconnections with the highest communication bandwidths. To do so, we can, in
first instance, ignore the low bandwidth links of the Grid. However we have no guarantees
that this link removal will allow us to find feasible solutions. Anyway, we can proceed
with some “tentative mappings”, starting from a Grid graph with only the highest com-
municating edges. Then, if no solution is admissible, we add some other edges, and we
continue until, at the end, we consider the original Grid graph.

After several tries, we have decided to use the quartiles of the links bandwidth distri-
bution to set the values of the edges to be removed in each step. In Fig. 6.4 an example
of bandwidth distribution and its quartiles is shown.

In the first tentative mapping, we consider the x1.00 quartile, hence removing every
LAN to LAN interconnection from the Grid graph. In doing so, we are looking for a single
LAN able to hosts the whole application. In the second tentative mapping, we remove
from the Grid graph the edges with bandwidth values smaller than the upper quartile
x.75. In doing so, we may obtain several disconnected LAN clusters. In such case, we
order the clusters and we try to find a solution on a single cluster. If no cluster allowing
an admissible value is found, we repeat the procedure with the middle quartile x.50, then
with the lower quartile x.25 and eventually with the original Grid graph (in general we
can assume x.00 = 0).

The clusters are ordered in decreasing order of their priority. The priority of a cluster
is computed as the sum of the computational and communication bandwidths of the
cluster LANs and the communication bandwidths between the LANs of the cluster.

78 6 Component Applications Scheduling on Global Grids

Fig. 6.4. Bandwidth distribution of Grid in Fig. 6.2 and its quartiles

6.4.4 Component Allocation

When a component and a LAN are selected, the allocation of the selected component on
the selected LAN can be performed if the following allocation conditions are met:

• The LAN contains at least one host with computational power greater than or equal
to the component weight.

• The sum of the weights of the edges between the selected component and the commu-
nicating ones already allocated on the selected LAN must be smaller than or equal
to the LAN bandwidth.

• The sum of the weights of the edges between the selected component and the com-
municating ones already allocated on another LAN must be smaller than or equal to
the bandwidth between the two LANs.

If such conditions are met, the component is allocated to the LAN and the computational
power of the selected resource is decreased by the task’s weight, the LAN bandwidth is
decreased by the sum of the weight of the edges between the component and the already
allocated ones and the LAN-LAN bandwidths are decreased similarly.

6.4.5 Scheduling Heuristics

According to the previous considerations, the proposed scheduling heuristics performs
the following steps:

6.5 Performance Evaluation

The evaluation of the scheduling solutions carried out by QLSE was conducted by
simulations applying the algorithm to a suite of task graphs and Grid platforms randomly
generated.

6.5 Performance Evaluation 79

Input: Application Graph GApp, Grid graph GGrid

Output: A feasible allocation of components to resources or an error
message

Compute the score of each node of GApp according to (6.1);1

Build the hierarchical structure of GApp eliminating cyclic paths;2

Build the ordered array A1 of components;3

Compute the priority of each LAN according to (6.2);4

Compute the quartiles x1.00, . . . , x.00 of Ggrid;5

foreach (quartile (from x1.00 to x.00)) do6

The Grid graph is clustered;7

The ordered array A2 of clusters is built;8

foreach (cluster in A2) do9

The ordered array A3 of LANs is built according to their10

priorities;
Copy locally A1 to Atmp

1 ;11

foreach (component in Atmp
1) do12

c = Atmp
1 .remove();13

Search in A3 the first LAN l meeting the allocation14

conditions in 6.4.4 for component c;
if (l 6= ∅) then15

Allocate c on l decreasing computational power and16

bandwidths;
else17

Restart with the next cluster;18

if (Atmp
1 .empty()) then19

return allocation;20

if (an allocation has been found) then21

return allocation;22

else23

Restart with the next quartile;24

return error(“Unable to find a feasible scheduling”);25

Algorithm 5: The QoS List Heuristics

Tables 6.1 and 6.2 show the bounds values defined for each parameter used by a
uniform distribution to generate TIGs and Grids, respectively. The use of this distribution
is due to the lack of experimental data sets on TIGs and Grids. It is assumed that the
use of such distribution will provide a more uniform coverage of cases. TIGs and Grids
with three different sizes were used in each test. To obtain valid statistical values, for all
the 2187 combinations obtained from the TIGs and Grids parameters, 10 TIGs and 10
Grids were randomly generated to run a test. In total, 21870 test cases were generated.

To validate and evaluate QLSE we implemented a greedy scheduling algorithm, and
we applied it to every test case. This algorithm simply orders the TIG’s tasks queue in
decreasing order of MCR and the LANs queue in decreasing order of aggregate com-
putational power. The machines belonging to a LAN are ordered in decreasing order of

80 6 Component Applications Scheduling on Global Grids

Size # Components Node weights (MFlop/s) Edge weights (Mb/s)
Small 8− 32 100− 200 10− 30

Medium 32− 48 200− 400 20− 40
Large 48− 64 400− 600 30− 50

Table 6.1. Parameters used to generate TIGs

Size # LAN # Resources Resource Power Inter-LAN
per LAN (MFlop/s) bandwidth (Mb/s)

Small 8− 16 4− 12 600− 800 20− 40
Medium 12− 24 8− 24 800− 1000 30− 50
Large 16− 32 16− 48 1000− 1300 40− 60

Table 6.2. Parameters used to generate Grids

computational power. The algorithm performs a best fit heuristics to map the queued
tasks on the LANs’ hosts.

The validation of QLSE was based on the criterion that it would be able to carry out
at least a feasible solution, i.e. a solution that satisfies the MCRs and MBRs required by
an application, when at least a valid solution exists for a TIG schedule. This criterion
can be deterministically evaluated generating TIGs and Grids in such a way that a valid
solution exists. Figure 6.5 shows the average percentage of scheduling failures obtained
by both algorithms w.r.t. the number of tasks per TIGs. A scheduling failure occurs when
the algorithm is not able to map a TIG satisfying both MCRs and MBRs requirements.
An increment of the number of tasks causes an almost linear increment of the scheduling
failures obtained by the Greedy algorithm, while QLSE is able to carry out almost all
the valid solutions.

Fig. 6.5. Average percentage of scheduling failures

To evaluate the scheduling carried out by QLSE we exploited different criteria: the
LAN hit ratio, the task-machine computational ratio, and the average scheduling time.
The LAN hit ratio returns the percentage of communications allocated on the same LAN.
It is computed as the ratio between the sum of TIG’s MBRs associated to the commu-
nicating tasks mapped in the same LAN and the TIG’s MBRs’ sum. An higher LAN
hit ratio corresponds to an higher throughput between communicating tasks increases.

6.5 Performance Evaluation 81

The task-machine computational ratio measures how the more powerful machines are
exploited to run TIG’s tasks. An higher task-machine computational ratio corresponds
to an higher application throughput. It is defined as the ratio between the computa-
tional power of the machine where a task is mapped and the task’s MCR. The average
scheduling time of QLSE is exploited to evaluate the effectiveness of the algorithm with
respect to the aging effect of the resources. To compute these performance parameters
values only the simulations that carried out a feasible solution by both algorithms were
considered.

Figure 6.6 shows the results of the average LAN hit ratio, expressed in percentage,
w.r.t. the number of tasks per TIG, using QLSE and the greedy algorithm.

Fig. 6.6. Average LAN Hit Ratio

In these tests both algorithms obtain a LAN hit ratio very close to 100%. We can
observe that QLSE is always able to obtain better values than the greedy algorithm, since
it is able to allocate in the same LANs the tasks with an higher degree of communication.

Figure 6.7 shows the average component-resource computational ratio w.r.t. the num-
ber of tasks per TIG.

Fig. 6.7. Average component-resource computational ratio

It can be observed that QLSE is able to map the tasks on machines with a compu-
tational power 2 or 3 times greater than their MCR. The Greedy algorithm obtained a
average task-machine computational ratio always greater than QLSE, because it selects
first the LANs with a greater aggregate computational power, thereafter it exploits for

82 6 Component Applications Scheduling on Global Grids

the valid solutions a smaller number of LANs (no more than 2 in our test cases) than
QLSE to map a TIG. However, by exploiting appropriate inter-LANs links, QLSE is able
to guarantee the communication QoS (i.e. the required TIG’s MBRs) also when TIG’s
tasks are mapped on more LANs.

The scheduling time grows almost linearly with the number of tasks per TIG in
both algorithms. Differences between the two algorithms are appreciable starting from
about 50-nodes TIGs. Scheduling 64-nodes TIGs, QLSE requires an execution time10%
greater than the one required by the greedy solution. This is obviously due to the higher
complexity of QLSE, which, to be able to find a valid solution in almost all test cases,
analyses the inter-LAN links capabilities more accurately than the greedy algorithm.

Figure 6.8 shows the results of the average scheduling time, expressed in msec. It can
be seen that the scheduling time grows with the number of tasks per TIG. Differences
between the two algorithms are appreciable starting from about 50-nodes TIGs.

Fig. 6.8. Average scheduling times

These results have been obtained running the algorithms on a Pentium4 processor
with a clock frequency of 3.0GHz and a memory of 1GB.

7

Conclusions

7.1 Summary

This thesis investigated three key requirements for the developments of Grid applications:
the need for a performance model of such applications, the need for a formal specification
of a performance contract and the need for scheduling strategies to map such applications
on different Grids, exploiting the information provided by models and contracts.

More precisely, the decision to investigate component-based applications has been mo-
tivated by the current research trends in Grid programming model. A dynamic model for
applications interacting through streams of data, processed by several autonomous soft-
ware components is presented. This model has been exploited to describe the structural
behavior of a large class of applications in a general way. This description is completely
independent from the runtime target platform. Then a formal methodology has been in-
troduced to specify performance models and contracts for hierarchical component-based
applications. This thesis presented an algorithm to translate a user-specified performance
contract into elementary resource requirements exploiting component annotations. The
suitability of this approach to complete automatization has been discussed, and the eval-
uation of the whole methodology with a real application deployed on homogeneous and
heterogeneous sets of resources has been evaluated. Exploiting the proposed performance
model and contract such applications have been described with task interaction graphs,
whose nodes and edges are labeled according to the QoS requirements derived through the
performance contract resolution algorithm. Then two launch time scheduling heuristics
have been proposed to map parallel component-based applications on specific Grid plat-
forms. The effort needed devise an almost optimal initial scheduling of an application on
a set of dynamic resource may not pay, mainly because the dynamicity can invalidate the
(sub-)optimality of the proposed solution in short times. Then two scheduling heuristics
have been designed, both being able to quickly identify feasible initial scheduling solutions
dealing with computational and communication requirements. The first heuristics (Wide
Area Scheduling hEuristics, WASE) targets hierarchically structured Grids exploiting
qualitative information on the application structure, while the second heuristics, (QoS
List Scheduling hEuristics, QLSE) targets unstructured global Grids trying to exploit
quantitative information on the application structure. Both heuristics try to schedule a
parallel application satisfying the minimal computational requirements of its tasks, and
exploiting the intra-LAN communications in order to maximize the throughput between

84 7 Conclusions

communicating components. WASE and QLSE pre-process the application model and/or
the Grid model to find clusters requiring/providing high communication characteristics.
Then the allocation strategy is carried out by exploiting a priority-based technique to
satisfy the task minimum computational requirement. The heuristics try to allocate tasks
in resource clusters, in order to maximize the throughput between communicating tasks.
In order to evaluate the quality of the scheduling algorithm, several tests were conducted
by simulating the execution of a large number of parallel applications on a number of
Grids both randomly generated. Moreover, such analysis compared the proposed algo-
rithm with a greedy one, which exploits a best fit heuristics. This simple algorithm has
been chosen mainly because it is the faster and simpler available algorithm compared to
the proposed heuristics. The tests demonstrated that the presented algorithms were able
to carry out a valid solution (i.e. satisfying the QoS) in a good percentage of the simulated
test cases. Moreover, the high values obtained for both the tasks’ communication and
computation throughputs demonstrated the applicability of the approach. Eventually,
the LAN hit-ration performance was introduced, to evaluate the objective to keep most
communications in clusters of resources with high communication bandwidth available,
and very good results have been obtained.

Nevertheless, the presented performance model is not general, for two reasons. First,
communications with stream semantics were modeled, because a large number of Grid
applications use these mechanisms for communications. However, several distributed ap-
plications exploit the Remote Procedure Call (RPC) semantics. These applications, and
those exploiting mixed semantics, are not covered by the presented model.

Second, the ergodicity condition imposed on communications to derive the steady
state model limits the number of stream-based applications it can be applied to. For
example, several data-mining applications are composed by module whose execution
times does not depend only on how many items they receive, but on their values as
well.

Moreover, annotations still have to be inserted in component descriptions by their
developers, along with their basic performance characteristics. Such measures can be
difficult to obtain, and the whole methodology strongly depends on them.

Concerning the scheduling heuristics, the initial mapping should be considered a
good “hint” to start the execution of an application on a Grid. The dynamic changes in
resources during the execution can not be easily included in launch time strategies. The
presented approach must then be coupled with rescheduling strategies at runtime to solve
such problems. Nevertheless, the presented performance model/contract can be exploited
at runtime to adapt the behavior of components to changes in resource performances. In
this way, it should be possible to fulfill the QoS requirements during the whole execution
of the application.

7.2 Research Directions

The presented work has several interesting research directions as improvements or ex-
tensions. The proposed performance model is, to the best of the author’s knowledge, the
first attempt in giving an analytical performance characterization to component-based

7.2 Research Directions 85

distributed applications. Although some required constraints are difficult to remove (e.g.
ergodicity), some choices can be relaxed. The next logical step is to remove the limit on
the stream semantics. RPC-like communication semantics are exploited in several dis-
tributed programming frameworks, such as, for example, the asynchronous future calls
semantics present in the ProActive framework and its implementation of the Fractal
component model. In fact, component interfaces with this semantic returning void types
can be seen as communications with a lazy stream semantics.

To fully understand the potentiality of the presented model, a sensitive analysis of
its robustness should be performed. The applicability of the model relies on two basic
assumptions: the correctness of the structural behavior specification and the reliability
of the performance annotations. The effect of quantitative errors in such assumptions
has not been evaluated, but it is mandatory in the next future to understand the impact
of such errors on the runtime performance. The information provided by this analysis
might give indications on improvements to the constraints resolution algorithm.

Furthermore, the component developer must still provide performance annotations.
Besides architectural and measurement peculiarities, a general performance evaluation
procedure for components has not been proposed. This procedure is, in general, difficult
and complex, but components have a structure that could be exploited to make simpli-
fying assumptions and build standard performance evaluation/monitoring mechanisms.

The adoption of the proposed performance model/contract should simplify some tasks
that are common in high performance computing for Grids. As an example, this approach
can be exploited to design and implement middleware services targeting: fault-tolerance
(by means of data replication and/or checkpointing), runtime component instantiation
and runtime reconfiguration.

Eventually, the presented heuristics can be further investigated in several directions.
A first development should be to refine the suitability function to a better choice of
the LAN for a group of communicating components. Such analysis might reduce the
fragmentation effect of the tasks belonging to the same group mapped on different LANs.
Another improvement should be the support of the dynamic spawning of new tasks of a
running application. In fact, several parallel applications are able, at runtime, to carry
out dynamic load-balancing by creating new components or by splitting a big component
in several sub-components. Furthermore, during the evaluation phases some parameters
have been chosen empirically. It is important to determine if such parameters have a
general applicability or if they depend on the application/graph and how they could be
determined in such case. With this analysis, the functionalities of the heuristics could be
extended to new classes of parallel applications.

References

1. L. Smarr and C. E. Catlett. Metacomputing. Communications of the ACM, 35(6):44–52,
1992.

2. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High Performance Computing Applications,
15(3):200–222, 2001.

3. M. I. Cole. Algorithmic Skeletons : Structural Management of Parallel Computation. PhD
thesis, MIT, MA, October 1989.

4. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley/ACM Press, 2nd edition, 2002.

5. M. Chetty and R. Buyya. Weaving Computational Grids: How Analogous Are They with
Electrical Grids? Computing in Science and Engineering, 4(4):61–71, 2002.

6. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance Computing,
11(2):115–128, 1996.

7. D. D. Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt. The Evolution of the
Grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Computing: Making the Global
Infrastructure a Reality. John Wiley and Sons Ltd, 2003.

8. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36(1):41–
50, January 2003.

9. D. McIllroy. Mass Produced Software Components. In P. Naur and B. Randall, editors,
Software Engineering: Report on a Conference by the NATO Science Committee, pages
138–155. NATO Scientific Affairs Division, Brussels, 1968.

10. Expert Group Report. Next Generation Grids 2: Requirements and Options for Euro-
pean Grids Research 2005-2010 and Beyond. ftp://ftp.cordis.europa.eu/pub/ist/
docs/ngg2_eg_final.pdf, July 2004.

11. M. Aldinucci, M. Coppola, S. Campa, M. Danelutto, M. Vanneschi, and C. Zoccolo. Struc-
tured Implementation of Component-based Grid Programming Environments. In V. Getov,
D. Laforenza, and A. Reinefeld, editors, Future Generation Grids, CoreGRID series, pages
217–239. Springer Verlag, November 2005.

12. E. Bruneton, T. Coupaye, M. Leclercq, V. Quèma, and J.-B. Stefani. The Fractal com-
ponent model and its support in Java: Experiences with Auto-adaptive and Reconfigurable
Systems. Software Practice & Experience, 36(11/12):1257–1284, 2006.

13. M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applications in ASSIST. In J. C.
Cunha and P. D. Medeiros, editors, Proc. of 11th International Euro-Par 2005: Parallel
and Distributed Computing, volume 3648 of Lecture Notes in Computer Science, pages
771–781, Lisboa, Portugal, September 2005. Springer Verlag.

14. M. I. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel Computing, 30(3):389–406, March 2004.

15. J. W. Hooper and R. O. Chester. Software Reuse: Guidelines and Methods. Perseus
Publishing, NY, 1991.

ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg2_eg_final.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg2_eg_final.pdf

88 References

16. K. Crenecky and U. Eisenecker. Generative Programming. Addison-Wesley, MA, 2000.
17. G. Booch. Object-oriented analysis and design with applications. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA, 2nd edition, 1994.
18. A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report X3J16/94-

0095, WG21/N0482, Hewlett-Packard, 1994.
19. D. I. Joshi and P. A. Vorobiev. JFC: Java Foundation Classes. John Wiley & Sons, Inc.,

1998.
20. Object Management Group. Common Object Request Broker Archictecture. http://www.

omg.org/docs/formal/04-03-12.pdf, July 1995.
21. W. Grosso. Java RMI. O’Reilly Media, October 2001.
22. Object Management Group. The CORBA Component Model. http://www.omg.org/docs/

formal/06-04-01.pdf, April 2006.
23. A. J. van der Steen. Issues in computational frameworks. Concurrency and Computation:

Practice and Experience, 18(2):141–150, 2006.
24. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and

B. Smolinski. Toward a Common Component Architecture for High-Performance Scien-
tific Computing. In Proc. of 8th IEEE International Symposium on High Performance
Distributed Computing (HPDC99), pages 115–124, Washington, DC, USA, August 1999.
IEEE Computer Society.

25. T. Dahlgren, T. Epperly, G. Kumfert, and J. Leek. Babel User’s Guide. CASC, Lawrence
Livermore National Laboratory, Livermore, CA, 2006.

26. D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Simmhan, and A. Slominski. On
Building Parallel & Grid Applications: Component Technology and Distributed Services.
Cluster Computing, 8(4):271–277, 2005.

27. A. P. W. Benjamin A. Allan, Robert C. Armstrong, J. Ray, D. E. Bernholdt, and J. A.
Kohl. The CCA core specification in a distributed memory SPMD framework. Concurrency
and Computation: Practice and Experience, 14(5):323–345, 2002.

28. F. Bertrand and R. Bramley. DCA: A Distributed CCA Framework Based on MPI. In
Proc. of 9th International Workshop on High-Level Parallel Programming Models and Sup-
portive Environments (HIPS 04), pages 80–89, Los Alamitos, CA, USA, April 2004. IEEE
Computer Society.

29. M. Aldinucci, M. Coppola, M. Danelutto, N. Tonellotto, M. Vanneschi, and C. Zoccolo.
High Level Grid Programming with ASSIST. Computational Methods in Science and Tech-
nology, 12(1):21–32, 2006.

30. M. Coppola, L. Presti, M. Pasquali, and M. Vanneschi. An Experiment with High Perfor-
mance Components for Grid Applications. In T. Kielmann, E. Aubanel, V. C. Bhavsar,
M. Frumkin, and R. F. van der Wijngaart, editors, Proc. of 10th International Workshop on
High-Level Parallel Programming Models and Supportive Environments (HIPS 05), Wash-
ington, DC, USA, April 2005. IEEE Computer Society.

31. M. Aldinucci, M. Danelutto, A. Paternesi, R. Ravazzolo, and M. Vanneschi. Building
interoperable grid-aware ASSIST applications via WebServices. In G. R. Joubert, W. E.
Nagel, F. J. Peters, O. Plata, P. Tirado, and E. Zapata, editors, Parallel Computing:
Current & Future Issues of High-End Computing, PARCO 2005, volume 33 of NIC, pages
145–152. Research Centre Jülich, December 2005.

32. K. Keahey and D. Gannon. PARDIS: CORBA-based Architecture for Application-level
Parallel Distributed Computation. In Proc. of the 1997 ACM/IEEE Conference on Super-
computing (Supercomputing 97), pages 1–14, New York, NY, USA, 1997. ACM Press.

33. A. Denis, C. Pérez, and T. Priol. Achieving portable and efficient parallel CORBA objects.
Concurrency and Computation: Practice and Experience, 15(10):891–909, 2003.

34. A. Denis, C. Pérez, T. Priol, and A. Ribes. PADICO: A Component-Based Software
Infrastructure for Grid Computing. In Proc. of 17th International Symposium on Parallel
and Distributed Processing (IPDPS 03), Washington, DC, USA, 2003. IEEE Computer
Society.

35. Basic Features of the Grid Component Model. CoreGRID’s Programming Model Virtual
Institute, http://www.coregrid.net/mambo/content/blogcategory/13/292/, September
2006.

http://www.omg.org/docs/formal/04-03-12.pdf
http://www.omg.org/docs/formal/04-03-12.pdf
http://www.omg.org/docs/formal/06-04-01.pdf
http://www.omg.org/docs/formal/06-04-01.pdf
http://www.coregrid.net/mambo/content/blogcategory/13/292/

References 89

36. M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for high performance Grid programming in
Grid.it. In V. Getov and T. Kielmann, editors, Proc. of the Workshop on Component
Models and Systems for Grid Applications, CoreGRID series, Saint Malo, France, January
2005. Springer Verlag.

37. R. Baraglia, M. Danelutto, T. Fagni, D. Laforenza, S. Orlando, A. Paccosi, N. Tonel-
lotto, M. Vanneschi, and C. Zoccolo. HPC Application Execution on Grids. In V. Getov,
D. Laforenza, and A. Reinefeld, editors, Future Generation Grids, CoreGRID series.
Springer Verlag, November 2005.

38. M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic QoS in ASSIST grid-aware
components. In B. D. Martino and S. Venticinque, editors, Proceedings of the 14th Euromi-
cro Conference on Parallel, Distributed and Network-based Processing (PDP2006), pages
221–230, Montbéliard, France, February 2006. IEEE Computer Society Press.

39. S. Gorlatch and J. Dünnweber. From Grid Middleware to Grid Applications: Bridging the
Gap with HOCs. In V. Getov, D. Laforenza, and A. Reinefeld, editors, Future Generation
Grids, CoreGRID series. Springer Verlag, November 2005.

40. S. Gorlatch and J. Dünnweber. HOC-SA: A Grid Service Architecture for Higher-Order
Components. In Proc. of the 2004 IEEE International Conference on Services Computing
(SCC 04), Sahngai, Cina, September 2004. IEEE Computer Society.

41. OASIS. Web Service Resource Framework Specification (WSRF). http://www.
oasis-open.org/committees/documents.php, March 2006.

42. F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical Grid Com-
ponents. In Proc. of the International Symposium on Distributed Objects and Applications
(DOA), volume 2888 of Lecture Notes in Computer Science, pages 1226–1242, Dresden,
Germany, November 2003. Springer Verlag.

43. M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden, and A. L. N. Reddy. Performance
specification of software components. In Proc. of the 2001 Symposium on Software Reusabil-
ity (SSR 01), pages 3–10, Toronto, Ontario, Canada, 2001. ACM Press.

44. L. G. Williams and C. U. Smith. PASA(SM): An Architectural Approach to Fixing Soft-
ware Performance Problems. In Proc. of 28th International Computer Measurement Group
Conference, pages 307–320, Reno, Nevada, USA, 2002.

45. V. Cortellessa and R. Mirandola. PRIMA-UML: a performance validation incremental
methodology on early UML diagrams. Science of Computer Programming, 44(1):101–129,
2002.

46. K. Kant. Introduction to Computer System Performance Evaluation. McGraw-Hill, 1992.
47. C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar. The Stochastic Rendezvous

Network Model for Performance of Synchronous Client-Server-like Distributed Software.
IEEE Trans. on Computer, 44(1):20–34, 1995.

48. S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence diagrams and statecharts
to analysable petrinet models. In Workshop on Software and Performance, pages 35–45,
2002.

49. P. J. B. King and R. Pooley. Derivation of Petri Net Performance Models from UML
Specifications of Communications Software. In Proc. of 11th International Conference on
Computer Performance Evaluation: Modelling Techniques and Tools (TOOLS 00), pages
262–276, London, UK, 2000. Springer-Verlag.

50. S. Gilmore and J. Hillston. The PEPA workbench: a tool to support a process algebra-based
approach to performance modelling. In Proc. of 7th International Conference on Computer
Performance Evaluation: modelling techniques and tools, pages 353–368, Secaucus, NJ,
USA, 1994. Springer-Verlag New York, Inc.

51. S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Software performance modelling using
PEPA nets. In Proc. of 4th International Workshop on Software and Performance (WOSP
04), pages 13–23, New York, NY, USA, 2004. ACM Press.

52. C. U. Smith. Performance Engineering of Software Systems. Addison-Wesley, 1990.
53. S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-Based Performance Predic-

tion in Software Development: A Survey. IEEE Trans. on Software Engineering, 30(5):295–
310, 2004.

http://www.oasis-open.org/committees/documents.php
http://www.oasis-open.org/committees/documents.php

90 References

54. A. J. C. van Gemund. Symbolic Performance Modeling of Parallel Systems. IEEE Trans.
on Parallel and Distributed Systems, 14(2):154–165, 2003.

55. D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm for job shop scheduling
and packet routing. Journal of Algorithms, 33(2):296–318, 1999.

56. L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A realistic network/application model
for scheduling divisible loads on large-scale platforms. In Proc. of 19th International Par-
allel and Distributed Processing Symposium (IPDPS 05) (IPDPS’05), April 2005.

57. O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-State Scheduling on Hetero-
geneous Clusters: Why and How? In Proc. of 18th International Parallel and Distributed
Processing Symposium (IPDPS 04) (IPDPS’04), April 2004.

58. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Scheduling
Strategies for Master-Slave Tasking on Heterogeneous Processors platforms. IEEE Trans.
on Parallel and Distributed Systems, 15(4):319–330, April 2004.

59. J. Schopf. Structural prediction models for high-performance distributed applications. In
Proc. of the Cluster Computing Conference (CCC’97), Atlanta, USA, March 1997.

60. M. Dìaz, B. Rubio, E. Soler, and J. M. Troya. SBASCO: Skeleton-based Scientific Compo-
nents. In Proc. of 12th Euromicro Conference on Parallel, Distributed, and Network-Based
Processing (PDP’04), A Coruña, Spain, February 2004.

61. A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Scheduling Skeleton-Based Grid Applica-
tions Using PEPA and NWS. The Computer Journal, 48(3):369–378, 2005.

62. W. Smith, I. T. Foster, and V. E. Taylor. Predicting Application Run Times Using His-
torical Information. In Proc. of the Workshop on Job Scheduling Strategies for Parallel
Processing (IPPS/SPDP 98), pages 122–142, London, UK, 1998. Springer-Verlag.

63. F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed. Performance Contracts: Predicting
and Monitoring Grid Application Behavior˙In Proc. of 2nd International Workshop on Grid
Computing (GRID 01), pages 154–165, London, UK, 2001. Springer-Verlag.

64. L. J. Senger, M. J. Santana, and R. H. C. Santana. Using Runtime Measurements and
Historical Traces for Acquiring Knowledge in Parallel Applications. In M. Bubak, G. D. van
Albada, P. M. Sloot, and J. J. Dongarra, editors, Proc. of the 2004 International Conference
on Computational Science (ICCS 04), volume 3036 of Lecture Notes in Computer Science,
pages 661–665, Kraków, Poland, June 2004. Springer Verlag.

65. J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy. Performance modeling and prediction
of enterprise javabeans with layered queuing network templates. In Proc. of the 2005
Conference on Specification and Verification of Component-based Systems (SAVCBS 05),
New York, NY, USA, 2005. ACM Press.

66. N. Dumitrascu, S. Murphy, and L. Murphy. A Methodology for Predicting the Performance
of Component-Based Applications. In Proc. of 8th International Workshop on Component-
Oriented Programming (WCOP 03), Darmstadt, Germany, July 2003.

67. J. Ray, N. Trebon, R. C. Armstrong, S. Shende, and A. D. Malony. Performance Mea-
surement and Modeling of Component Applications in a High Performance Computing
Environment: A Case Study. In Proc. of 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 04), Santa Fé, USA, April 2004.

68. N. Trebon, A. Morris, J. Ray, S. Shende, and A. Malony. Performance Modeling of Com-
ponent Assemblies with TAU. In Proc.of CompFrame 2005, Atlanta, USA, June 2005.

69. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
70. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components Contract

Aware. Computer, 32(7):38–45, 1999.
71. D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - Java with Assertions. In

Proc. of 13th Conference on Computer Aided Verification (CAV 01), 2001.
72. Object Management Group. The Object Constraint Language Specification. http://www.

omg.org/docs/formal/06-05-01.pdf, May 2006.
73. M. Barnett, W. Grieskamp, C. Kerer, W. Schulte, C. Szyperski, N. Tillmann, and A. Wat-

son. Serious Specification for Composing Components. In I. Crnkovic, H. Schmidt,
J. Stafford, and K. Wallnau, editors, Proc. of 6th ICSE Workshop on Component-Based
Software Engineering: Automated Reasoning and Prediction, May 2003.

http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf

References 91

74. S. Frolund and J. Koistinen. QML: A Language for Quality of Service Specification. Tech-
nical Report HPL-98-10, Hewlett-Packard Laboratories, Palo Alto, CA, USA, 1998.

75. J. O. Aagedal. Quality of Service Support in Development of Distributed Systems. PhD
thesis, University of Oslo, 2001.

76. S. Röttger and S. Zschaler. CQML+ : Enhancements to CQML. In Proc. of 1st Inter-
national Workshop on Quality of Service in Component-based Software Engineering, pages
43–56, 2003.

77. M. Barnett and W. Schulte. Runtime verification of .NET contracts. Journal of System
Software, 65(3):199–208, 2003.

78. E. Teiniker, R. Lechner, G. Schmoelzer, C. Kreiner, Z. Kovacs, and R. Weiss. Towards
a Contract Aware CORBA Component Container. In Proc. of 29th Annual International
Computer Software and Applications Conference (COMPSAC 05), pages 545–550, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

79. P. Caruso, G. Laccetti, and M. Lapegna. A Performance Contract System in a Grid En-
abling, Component Based Programming Environment. In P. M. A. Sloot, A. G. Hoekstra,
T. Priol, A. Reinefeld, and M. Bubak, editors, Proc. of Advances in Grid Computing, Eu-
ropean Grid Conference (EGC 2005), volume 3470 of Lecture Notes in Computer Science,
pages 982–992, Amsterdam, The Netherlands, February 2005. Springer Verlag.

80. N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive Application-Performance
Modeling in a Computational Grid Environment. In Proc. of 8th IEEE International
Symposium on High Performance Distributed Computing (HPDC 99), pages 47–54, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

81. B. Spitznagel and D. Garlan. Architecture-Based Performance Analysis. In Y. Deng and
M. Gerken, editors, Proc. of 10th International Conference on Software Engineering and
Knowledge Engineering (SEKE 98), pages 146–151, 1998.

82. I. Foster and C. Kesselman. Computational Grids. In I. Foster and C. Kesselman, editors,
The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann Publishers,
1998.

83. FAFNER: Factoring via network enabled recursion. Web Page, Syracuse University, http:
//www.npac.syr.edu/factoring.html.

84. I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software Infrastructure for
the I-WAY High Performance Distributed Computing Experiment. In Proc. 5th IEEE
Symposium on High Performance Distributed Computing, pages 562–571, 1997.

85. R. Aiken, M. Carey, B. Carpenter, I. Foster, C. Lynch, J. Mambretti, R. Moore,
J. Strasnner, and B. Teitelbaum. Network Policy and Services: A Report of a Workshop on
Middleware. IETF, RFC 2768, http://www.ietf.org/rfc/rfc2768.txt, February 2000.

86. The Globus Toolkit. Web Page, Globus Alliance, http://www.globus.org/toolkit/.
87. UNICORE: Uniform Interface to Computing Resources. Web Page, http://www.unicore.

eu.
88. LEGION: Worldwide Virtual Computer. Web Page, University of Virginia, http://

legion.virginia.edu/.
89. I. Foster. What is the Grid? A Three Point ChecklistWhat is the Grid? A Three Point

Checklist. GRIDtoday, 1(6), July 2002.
90. I. Foster and C. Kesselman. Concepts and Architecture. In I. Foster and C. Kesselman,

editors, The Grid 2: Blueprint for a Future Computing Infrastructure, chapter 4, pages
37–64. Morgan Kaufmann Publishers, 1st edition, 2004.

91. I. Foster and C. Kesselman. The Grid in a Nutshell. In J. Nabrzyski, J. M. Schopf,
and J. Weglarz, editors, Grid Resource Management: state of the art and future trends,
chapter 1. Kluwer Academic Publishers, Norwell, MA, USA, 2004.

92. N. Tonellotto, P. Wieder, and R. Yahyapour. A Proposal for a Generic Grid Scheduling
Architecture. In S. Gorlatch and M. Danelutto, editors, Integrated Research in GRID
Computing, CoreGRID series, pages 227–239. Springer Verlag, 2007.

93. U. Schwiegelshohn and R. Yahyapour. Attributes for Communication between Scheduling
Instances. In J. Nabrzyski, J. M. Schopf, and J. Weglarz, editors, Grid Resource Manage-
ment: state of the art and future trends, chapter 4. Kluwer Academic Publishers, Norwell,
MA, USA, 2004.

http://www.npac.syr.edu/factoring.html
http://www.npac.syr.edu/factoring.html
http://www.ietf.org/rfc/rfc2768.txt
http://www.globus.org/toolkit/
http://www.unicore.eu
http://www.unicore.eu
http://legion.virginia.edu/
http://legion.virginia.edu/

92 References

94. J. M. Schopf. Ten Actions When Grid Scheduling. In J. Nabrzyski, J. M. Schopf, and
J. Weglarz, editors, Grid Resource Management: state of the art and future trends, chap-
ter 2. Kluwer Academic Publishers, Norwell, MA, USA, 2004.

95. T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Trans. on Software Engineering, 14(2):141–154, 1988.

96. F. Dong and S. G. Akl. Scheduling Algorithms for Grid Computing: State of the Art and
Open Problems. Technical Report 2006-504, School of Computing, Queen’s University,
Kingston, Ontario, Canada, January 2006.

97. T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Distributed Computing, 61(6):810–837, 2001.

98. H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for Scheduling Param-
eter Sweep Applications in Grid Environments. In Proc. of 9th Heterogeneous Computing
Workshop (HCW00), page 349, Washington, DC, USA, 2000. IEEE Computer Society.

99. H. Chen and M. Maheswaran. Distributed Dynamic Scheduling of Composite Tasks on
Grid Computing Systems. In Proc. of 16th International Parallel and Distributed Processing
Symposium (IPDPS02), page 119, Washington, DC, USA, 2002. IEEE Computer Society.

100. Y. Zhu. A Survey on Grid Scheduling Systems. Technical report, Computer Science
Department, Hong Kong University of Science and Technology, Hong Kong, China, 2003.

101. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov. Adaptive
Computing on the Grid Using AppLeS. IEEE Trans. on Parallel and Distributed Systems,
14(4):369–382, 2003.

102. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the Condor
experience. Concurrency and Computation: Practice and Experience, 17(2–4):323–356,
February 2005.

103. OASIS. Reference Model for Service Oriented Architecture (SOA-RM). http://www.
oasis-open.org/committees/documents.php, August 2006.

104. AA. VV. The Emergence of Grid and Service-Oriented IT: An Industry Vision for Business
Success. Tabor Communications, Inc., 2006.

105. X. He, X. Sun, and G. von Laszewski. Qos guided min-min heuristic for grid task scheduling.
Journal of Computer Science and Technology, 18(4):442–451, 2003.

106. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic Matching
and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Systems.
In Proc. of 8th Heterogeneous Computing Workshop (HCW 99), Washington, DC, USA,
1999. IEEE Computer Society.

107. O. Sinnen and L. Sousa. A Classification of Graph Theoretic Models for Parallel Com-
puting. Technical Report RT/005/99, INESC-ID, Instituto Superior Técnico, Technical
University of Lisbon, Portugal, May 1999.

108. H. S. Stone. Multiprocessor Scheduling with the Aid of Network Flow Algorithms. IEEE
Trans. on Software Engineering, SE-3(1):85–93, 1977.

109. M. G. Norman and P. Thanisch. Models of machines and computation for mapping in
multicomputers. ACM Computing Surveys, 25(3):263–302, September 1993.

110. S. H. Bokhari. A Shortest Tree Algorithm for Optimal Assignments Across Space and Time
in a Distributed Processor System. IEEE Trans. on Software Engineering, SE-7(6):583–
589, 1981.

111. D. Fernández-Baca. Allocating Modules to Processors in a Distributed System. IEEE
Trans. on Software Engineering, 15(11):1427–1436, 1989.

112. M. Kafil and I. Ahmad. Optimal Task Assignment in Heterogeneous Distributed Comput-
ing Systems. IEEE Concurrency, 6(3):42–51, 1998.

113. M. K. Dhodhi, I. Ahmad, A. Yatama, and I. Ahmad. An integrated technique for task
matching and scheduling onto distributed heterogeneous computing systems. Journal of
Parallel and Distributed Computing, 62(9):1338–1361, 2002.

114. Y.-C. Ma, T.-F. Chen, and C.-P. Chung. Branch-and-bound task allocation with task
clustering-based pruning. Journal of Parallel and Distributed Computing, 64(11):1223–
1240, 2004.

http://www.oasis-open.org/committees/documents.php
http://www.oasis-open.org/committees/documents.php

References 93

115. B. Ucar, C. Aykanat, K. Kaya, and M. Ikinci. Task assignment in heterogeneous computing
systems. Journal of Parallel and Distributed Computing, 66(1):32–46, 2006.

116. J. Licklider and W. Clark. On-Line Man Computer Communication, August 1962.
117. L. Kleinrock. UCLA to be first station in nationwide computer network. UCLA Office of

Public Information, http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html, July 1969.
118. R. Baraglia, M. Danelutto, T. Fagni, D. Laforenza, S. Orlando, A. Paccosi, N. Tonel-

lotto, M. Vanneschi, and C. Zoccolo. HPC Application Execution on Grids. In V. Getov,
D. Laforenza, and A. Reinefeld, editors, Future Generation Grids, CoreGRID series, pages
263–282. Springer Verlag, November 2005.

119. D. Adami, S. Giordano, M. Repeti, M. Coppola, D. Laforenza, and N. Tonellotto. Design
and Implementation of a Grid Network-Aware Resource Broker. In T. Fahringer, editor,
Proceedings of IASTED International Conference on Parallel and Distributed Computing
and Networks (PDCN2006). IASTED, ACTA press, February 2006.

120. M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneschi, and C. Zoccolo. A Performance
Model for Stream-based Computations. In P. D’Ambra and M. M. Guarracino, editors,
Proceedings of the 15th Euromicro Conference on Parallel, Distributed and Network-based
Processing (PDP2007), pages 91–96, Napoli, Italy, February 2007. IEEE Computer Society
Press.

121. N. Tonellotto and C. Zoccolo. Characterization of the performance of ASSIST programs.
Technical Report TR-0007, Institute on Programming Model & Institute on Resource
Management and Scheduling, CoreGRID - Network of Excellence, June 2005.

122. M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneschi, and C. Zoccolo. A Performance
Model for Stream-based Computations. Submitted to International Journal in Computer
Science and Engineering, Jul 2007.

123. C.-T. Chen. Linear System Theory and Design. Oxford University Press, 3rd edition, 1998.
124. M. Coppola, M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneschi, and C. Zoc-

colo. Managing user expectations with component performance contracts. In O. Rana,
P. Wieder, W. Ziegler, and R. Yahyapour, editors, Proceedings of the CoreGRID Workshop
on Usage of Service Level Agreements in Grids, Austin, Texas, USA, September 2007.
CoreGRID, IST.

125. A. Litke, A. Panagakis, A. Doulamis, N. Doulamis, T. Varvarigou, and E. Varvarigos. An
Advanced Architecture for a Commercial Grid Infrastructure. In Grid Computing, volume
3165 of Lecture Notes in Computer Science, pages 32–41, Berlin, Germany, 2004. Springer
Verlag.

126. R. Baraglia, R. Ferrini, N. Tonellotto, D. Adami, S. Giordano, and R. Yahyapour. A
Study on Network Resources Management. In S. Gorlatch, M. Bubak, and T. Priol, edi-
tors, Integrated Research in GRID Computing, pages 213–224. Academic Computer Centre
CYFRONET AGH, Kraków, Poland, October 2006.

127. R. Baraglia, R. Ferrini, N. Tonellotto, L. Ricci, and R. Yahyapour. A Launch-time Schedul-
ing Heuristics for Parallel Applications on Wide Area Grids. Journal of Grid Computing,
Online First, 2007.

128. H.-U. Heiss. Mapping Tasks onto Processors at Run-time. In E. Gelenbe, U. Halici, and
N. Yalabik, editors, Proc. of 7th International Symposium on Computer and Information
Sciences (ISCIS VII), pages 515–518, Antalya, Turkey, November 1992.

129. R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: a distributed
resource performance forecasting service for metacomputing. Future Generation Computing
Systems, 15(5-6):757–768, 1999.

130. M. den Burger, T. Kielmann, and H. Bal. TOPOMON: A monitoring tool for grid network
topology. In Proc. of the International Conference on Computational Science, Berlin,
Germany, 2002. Springer Verlag.

131. E. Demaine and N. Immorlica. Correlation Clustering with Partial Information. In Proc. of
6th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, Berlin, Germany, 2003. Springer Verlag.

132. R. Adams and L. Bischof. Seeded Region Growing. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 16(6):641–647, 1994.

http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html

94 References

133. M. Doar. A Better Model for Generating Test Networks. In Proceedings of Globecom ’96,
1996.

134. R. Baraglia, R. Ferrini, N. Tonellotto, L. Ricci, and R. Yahyapour. QoS-constrained List
Scheduling Heuristics for Parallel Applications on Grids. Technical Report TR-0093, Insti-
tute on Resource Management and Scheduling, CoreGRID - Network of Excellence, August
2007.

135. R. Baraglia, R. Ferrini, L. Ricci, N. Tonellotto, and R. Yahyapour. QoS-constrained List
Scheduling Heuristics for Parallel Applications on Grids. In J. Bourgeois and D. El Baz, ed-
itors, Proceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-
based Processing (PDP2008), Toulose, France, February 2008. IEEE Computer Society
Press.

	Introduction
	Grids
	Components
	Statement of the Problem
	Purpose of the Study
	Limitations of the Study

	Summary

	Background
	Components
	Industrial Component Models
	Academic Component Frameworks
	Grid Component Frameworks
	Component Performance Models
	Component Contracts
	Discussion

	Grid Computing
	Grid Resource Management
	Grid Scheduling Process
	Grid Scheduling Algorithms
	Objective Functions
	Application Models
	TIG Scheduling
	Discussion

	Component Performance Model
	Component Structure
	Communications
	Computations

	Dynamic Model
	Node Behavior
	Edge Behavior
	Runtime Behavior
	Steady-State Behavior
	Validation

	Performance Model
	Composite Components
	Comparison with Queueing Network Theory

	Component Performance Contract
	Performance Constraints and Requirements
	Constraints Resolution Algorithm
	Fully Specified Models
	Over Specified Models
	Under Specified Models
	Composite Components Constraints
	Complexity

	Performance Annotations
	Performance Contract
	Validation

	Component Applications Scheduling on Hierarchical Grids
	Introduction
	Application Model
	Platform Model
	Algorithm Architecture
	Performance Evaluation
	Simulation Environment
	Performance Metrics
	Evaluation for synthetic Grid scenarios
	Validation

	Component Applications Scheduling on Global Grids
	Introduction
	Application Model
	Platform Model
	Algorithm Architecture
	Tasks Ordering
	Hosts Ordering
	LAN Clustering
	Component Allocation
	Scheduling Heuristics

	Performance Evaluation

	Conclusions
	Summary
	Research Directions

	References

