
Preprocessing for Controlled Query Evaluation
in Complete First-Order Databases

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universit�at Dortmund

an der Fakult�at f�ur Informatik

von

Lena Wiese

Dortmund

2009

Tag der m�undlichen Pr�ufung: 19.08.2009

Dekan: Prof. Dr. Peter Buchholz

1. Gutachter: Prof. Dr. Joachim Biskup

2. Gutachterin: Prof. Dr. Gabriele Kern-Isberner

Under the rose (sub rosa). In strict con�dence. Cupid gave
Harpocrates (the god of silence) a rose, to bribe him not
to betray the amours of Venus. Hence the ower became
the emblem of silence. It was for this reason sculptured on
the ceilings of banquet-rooms, to remind the guests that
what was spoken sub vino was not to be uttered sub divo.
{ E. Cobham Brewer, Dictionary of Phrase and Fable

Abstract i

Abstract

This dissertation investigates a mechanism for con�dentiality preservation in �rst-
order logic databases. The logical basis is given by the inference control framework
of Controlled Query Evaluation (CQE). Beyond traditional access control, CQE
incorporates an explicit representation of a user's knowledge and his ability to rea-
son with information; it hence prevents disclosure of con�dential information that
would occur due to inferences drawn by the user.
This thesis pioneers a new approach in the CQE context: An unprotected database
instance is transformed into an\inference-proof" instance that does not reveal con�-
dential information; the inference-proof instance formally guarantees con�dentiality
with respect to a representation of user knowledge and a speci�cation of con�dential
information. Hence, inference-proofness ensures that all user queries can truthfully
be answered by the database; no sequence of responses enables the user to infer con-
�dential information. Due to this concept, query evaluation on the inference-proof
instance does not incur any performance degradation. As a second design goal, the
availability requirement to maintain as much as possible of the correct information
in the input database is accounted for by minimization of a distortion distance.
The transformation modi�es the input instance to provide the user with a consis-
tent view of the data. The algorithm relies on query evaluation on the database
to e�ciently identify those tuples that are to be added or deleted. Due to unde-
cidability of the general �rst-order case, appropriate fragments are analyzed. The
formalization is started with universal formulas (for which a restriction to \allowed"
formulas is chosen); it moves on to existential formulas and then �nishes up with
tuple-generating dependencies accompanied by existential and denial formulas. The
due proofs of refutation soundness engage a version of Herbrand's theorem with se-
mantic trees.
An e�ort was made to present a broad background of related work. Last but not
least, exposition and analysis of a prototypical implementation prove practicality
of the approach.

ii

Overview iii

Overview

Abstract . i

Overview . iii

I Introduction and Related Work 1

1 Inference Control in Databases . 3

2 Related Work . 6

3 A Selection of Prior Work . 16

4 Controlled Query Evaluation . 22

5 Contributions and Outline of this Thesis 28

6 Contributions to Published Work . 32

II Preprocessing for Complete Databases 33

7 Preprocessing for CQE in Complete Databases 35

8 Active Domain Semantics For the Universal Fragment 47

9 preCQE for Allowed Universal Constraints 56

Summary of Part II . 79

III preCQE for Existential Constraints 81

10 Finite Invention For the Existential Fragment 83

11 preCQE for Existential Quanti�cation 87

12 89-Quanti�ed Constraints . 97

13 preCQE for Weakly Acyclic Constraints 103

Summary of Part III . 113

iv Overview

IV Extensions and Related Research 115

14 Adjustments and Extensions . 117

15 Related Research Areas . 127

Summary of Part IV . 131

V Implementation and Analysis of a Prototype 133

16 Propositional Logic . 135

17 Propositional Encodings . 137

18 A preCQE Implementation for Propositional Logic 141

19 Test Cases . 144

Summary of Part V . 156

References . 159

List of Figures . 171

List of Tables . 173

List of De�nitions . 175

List of Theorems . 177

Full Contents . 179

Index . 185

Danksagung . 189

1

I. Introduction and Related Work

Contents

1 Inference Control in Databases . 3

2 Related Work . 6

2.1 Data Model . 6

2.2 Constraint Model . 9

2.3 User Model . 10

2.4 Interaction Model . 12

2.5 Policy Model . 12

2.6 Inference Model . 13

2.7 Protection Model . 14

2.8 Execution Model . 16

3 A Selection of Prior Work . 16

4 Controlled Query Evaluation . 22

4.1 Data Model . 23

4.2 Constraint Model . 24

4.3 User Model . 25

4.4 Interaction Model . 25

4.5 Policy Model . 26

4.6 Inference Model . 27

4.7 Protection Model . 27

4.8 Execution Model . 28

5 Contributions and Outline of this Thesis 28

6 Contributions to Published Work . 32

Prefer the single word to the circumlocution.
{ H.W. Fowler, The King's English

2

3

1 Inference Control in Databases

Inference in its generality can be seen as a cognitive reasoning process that { starting
from particular premises { leads to particular conclusions. Simon Blackburn de�nes
inference in \The Oxford Dictionary of Philosophy" as:

\The process of moving from (possibly provisional) acceptance of some
propositions, to acceptance of others." [Bla96]

While human thought is far too complex to capture its internal workings and repre-
sent it by computational processes, mathematical logic has been the foundation of
a computational notion of inference and several automated reasoning mechanisms.
From a logical point of view, inference can be subdivided into three categories,
namely deduction (infer facts from axioms by application of rules), induction (in-
fer general propositions from example instances) and abduction (infer justi�cations
for observed behavior). Induction and abduction both involve some kind of uncer-
tainty in terms of validity of the inferred facts (which makes both of them unsound),
whereas deduction has the nice property of giving a well-de�ned set of conclusions
(see also [Bla96]). In this work, inference is seen as a deductive process, namely
based on implications in �rst-order logic.

On top of that, logic also comes into play when talking about the theoretical foun-
dations of databases. Roughly speaking, databases represent information as data
tuples which again can be seen as logical facts. Moreover, database constraints
(often codi�ed as logical formulas) restrict the set of possible database states to
\admissible" or \semantically meaningful" ones that obey these constraints; that is,
data tuples are meant to form a database state that is \consistent" with the con-
straints.
The main purpose of databases is to store data in a way that makes the contained
information easily accessible to database users. Specialized query languages facili-
tate data access for its users. Although a short introduction to database theory is
given in this thesis in the appropriate sections, we will not dwell on all the details.
[AHV95] is a good starting point for further studies.

In computerized systems where information ow from information sources to in-
formation recipients takes place, some kind of information may be con�dential in
the sense that this con�dential information is not meant to be accessed by some of
the recipients. Not surprisingly, this is also true when an information source is a
database system and an information recipient is a database user. In the database
system, information has to be administered in terms of data in the database; con-
�dentiality requirements have to be speci�ed in terms of these data, too. In this
abstract setting, we assume that there is on the one hand a database administrator
dbadm whose task is to maintain the data in the database independent of their
con�dentiality requirements. On the other hand, a security administrator secadm

4 1 Inference Control in Databases

is charged with devising an appropriate policy to control access of users to con�-
dential information.
In the \traditional" access control (AC) setting, the policy has to be mapped to
access rights for certain users on certain data items { either done by hand by the
security administrator or with automated support. This general AC setting is illus-
trated in Figure 1 where the user sends a query sequence Q and retrieves a sequence
A of query responses based on \ordinary query evaluation" (denominated eval�)
which will be formalized shortly; some responses may be denied by the database as
indicated by the access control policy and the ensuing access rights.

dbadm

db
user

secadm

AC policy

maintains

speci�es

queries

answers

Q = h�1;�2; : : :i

A = heval�(�1)(db);
eval�(�2)(db);
: : :i

Figure 1: Schematic view of uncontrolled queries and access control

Plain access control on speci�c data items is in most cases not su�cient to prevent
disclosure of con�dential information: a user may dispose of additional background
knowledge beyond the information revealed purely in the direct information ow.
The user's background knowledge might for example consist of:

� common knowledge (information that can be assumed to be generally known)

� domain knowledge (information speci�c to the topic of interest)

� content knowledge (information about the data stored in the system; for ex-
ample data constraints that have to be enforced in the system)

� external knowledge (information retrieved from outside of the system)

� system knowledge (information about the functionality of the system; for ex-
ample internal workings of query evaluation functions or access control mech-
anisms)

� meta-knowledge (knowledge about knowledge; the user might suspect what
the security administrator supposes him to know)

The user can employ his knowledge (combined with the information returned di-
rectly by the system) to derive con�dential information. Figure 2 depicts this situ-
ation for a database instance db that contains some medical facts about a patient

5

called Mary. The AC policy denies access to the information that a person su�ers
from aids, hence the response to the user's �rst query asking for all patients with
aids (that is, Ill(x;Aids)) is denied. Yet, the second response (all patients being
treated with some medicine A, that is, Treat(Mary;MedA)) is truthfully returned.
Now we assume that the user possesses a set of knowledge called prior (because
he had this knowledge a priori before he started querying db) that tells him that
every patient taking medicine A is de�nitely ill with aids. Combining this and the
truthful response enables him to derive (with the help of \DB-implication" j=DB

which will be de�ned later on) the con�dential information.
Consequentially, in the AC situation if the secadm and his AC policy take too

dbadm

db =
fIll(Mary;Aids);
Treat(Mary;MedA)g user

prior =
f8xTreat(x;MedA)

! Ill(x;Aids)g

secadm

policy :
for any x
deny access
to Ill(x;Aids)

maintains

speci�es

queries

answers

Q = hIll(x;Aids);Treat(x;MedA)i

A = hdenied;Treat(Mary;MedA)i

prior [A j=DB Ill(Mary;Aids)

Figure 2: Insecurity of access control

narrow a view of the user knowledge, \harmful" inferences revealing con�dential
information can come up. The other way round, if the secadm gets paranoid, too
strict an AC policy may unnecessarily deny access to information that does not lead
to such inferences. The research area of inference control aims at the design and
analysis of automated mechanisms that prevent such harmful inferences while still
allowing for maximum availability of non-sensitive information.

As large amounts of data are stored in databases, inference control in databases
is of paramount interest. It has long since been investigated in the context of
statistical databases; some more details on this area are given below. In general-
purpose databases (that is, databases not just released for statistical evaluations),
inferences are mostly established based on a speci�ed set of database constraints.
This includes approaches for relational and multilevel secure databases; some of
these approaches are presented below. Recently, inference control in semi-structured
data (for instance, in XML documents) has come up as a new research area. See
[YL04, SF04, FBJ06] for some approaches for inference control in tree-based repre-
sentations of data.

6 2 Related Work

Inference control in databases has been approached with di�erent means which
have not been systematically compared yet. It is the author's contention that a
categorization of the di�erent parameters of inference control is necessary. We
propose the following categorization:

1. Data Model: describes what kind of database is handled

2. Constraint Model: describes the types of constraints on data that should hold
in the database

3. User Model: describes assumptions about the user made by the system

4. Inference Model: describes what kind of inferences the user can draw

5. Policy Model: describes the way con�dentiality (and sometimes availability)
requirements are speci�ed

6. Interaction Model: describes how the user interacts with the system

7. Protection Model: describes by which means con�dentiality (and availability)
is enforced

8. Execution Model: describes the modus operandi of the inference control mech-
anism

A schematic view of the categories and the taxonomy of inference control is given
in Figure 3. In the following we present related work in the inference control area
but structure it based on the above categories. In Section 3 we describe and discuss
some of the most prominent approaches to inference control since the 1980s a bit
more in detail.

2 Related Work

In prior publications on the topic of inference control in databases, di�erent notions
of databases and di�erent forms of con�dentiality policies are employed; there exists
also a great variety of execution techniques.
In this section we want to present some of the existing approaches structured by
the categories as de�ned in the previous section, in order to facilitate a compar-
ison between the disparate existing approaches. We also develop a homogeneous
terminology for all aspects surrounding inference control.

2.1 Data Model

As previously mentioned, historically, inference control mechanisms di�er strongly
in the case that a database is solely released for the purpose of statistical evaluation
of the data (the \statistical databases"), and the case that the database is meant

2.1 Data Model 7

Figure 3: Taxonomy of inference control

8 2 Related Work

for data storage where several iterations of querying or manipulating data items are
desirable (the \general purpose databases"). We will relax this distinction a bit and
start with a short description of the \relational model" as a kind of base case. Then
we describe its extension to the\multilevel secure data model", as well as\statistical
databases" as special purpose applications of the relational model. Lastly, a more
abstract model is introduced: the \logical databases".

2.1.1 Relational Databases

The relational database model has been introduced by Codd ([Cod70]) and forms
the basis of most of today's database management systems. The basic notions are
those of a database schema, de�ning several relation schemas and a set of global
constraints where a relation schema de�nes a set of attributes and a set of local
constraints. The invariant static de�nition of the database schema forms a mold
for the actual database instance, where each relation instance consists of a set of
data tuples obeying all the constraints.

2.1.2 Multilevel Secure Databases

In multilevel secure databases, a relational database is accompanied by a lattice of
classi�cations: a classi�cation denotes a level of con�dentiality; the lattice de�nes
a partial order on classi�cations. Classi�cations are then assigned to \security ob-
jects". This can be done in di�ering granularity: either at the element level (that
is, each single attribute value of a tuple is considered a security object), at the
tuple level, or the attribute level (for combinations of attributes independent of any
attribute values). More simple cases are relation level and database level classi�ca-
tions. [QL92] show that a tuple with element level classi�cation can be replaced by
a set of tuples with tuple level classi�cation { at the cost of having more redundancy
in the database. Pernul [Per94] notes that \[...] careful labeling is necessary because
otherwise it could lead to inconsistent or incomplete label assignments". A host of
work attends to the many-faceted problems of inference control in MLS databases;
we will look at some of them more closely in the following subsections.

2.1.3 Statistical Databases

A statistical database consists of relational tables that are released to the public (for
example by a census bureau) as a basis for statistical analyses. Such a database
is meant to execute aggregate queries on it (like summing values, counting rows
etc.) yielding the desired statistical values as results. The main focus of inference
control in statistical databases is that no sensitive information about an individual
entity can be derived. In other words: if the data contain personalized information
about individuals, attributing particular attribute values to an individual should
be impossible. This has already been a research topic for decades (see for example

2.2 Constraint Model 9

[DS83]) but is still of high interest today (see for example [DF02] and the Protection
Model below).

2.1.4 Logical Databases

From a general point of view, a database instance can be seen as an interpretation
for some of the syntactical elements of a logical language L that forms the basis of
the system. As such, the instance should be a \model" of the database constraints {
that is, the interpretation satis�es all the constraints based on appropriate notions
of models and formula satisfaction. In this model-theoretic case, one can assume
that the interpretation (and thus the database) is \complete": for every closed for-
mula a de�nite evaluation (either true or false) can be given.
Even more generally, a database instance can represent not just one but a set of
models: The only restriction is that the instance (plus the constraints) form a
consistent set of formulas; the logical closure of the formulas (according to some
consequence operator) contains all the true propositions. In this case, the database
is \incomplete" as the evaluation of some closed formulas may be inde�nite. With
an incomplete database, the instance can also be called a\knowledge base"or\belief
base". These terms are often used in arti�cial intelligence and related areas; see for
example [Win90] for a comparison.
Essentially, this logical point of view can subsume the above special cases when
de�ning an appropriate base logic and axiomatically specifying the necessary con-
straints and restrictions. For example, [SW92] give a belief-based semantics for
MLS databases. The whole database is represented by a Kripke structure { that is,
a set of partial databases (one partial database for each classi�cation) and a binary
relation between them whenever the classi�cation of one database dominates the
classi�cation of the other.

2.2 Constraint Model

Database constraints are crucial for inference control; they are the primary knowl-
edge that enables users to draw inferences { of course under the assumption that
the user is fully aware of these constraints. Put di�erently, database constraints can
be seen as the set of rules that a user employs to deduce information. Restricting
the class of constraints inuences tractability and performance of inference control.
That is why some authors just consider functional dependencies or multivalued
dependencies (for example [HS96] and [S�O91]). [DH96, DH94] extend their ini-
tial procedure for functional dependencies to transitive associations in general. In
[BFJ00] Horn clause constraints are permitted.
Generally, the inference control approaches assume that the database constraints
are well-de�ned in the sense that they are satis�able and hence there is at least one
database instance that satis�es them.

10 2 Related Work

2.3 User Model

As already illustrated in Section 1, a database user may have certain background
knowledge. When trying to model a real-world user, we have to admit that we can
merely produce an approximation of human knowledge. That is, the representation
of the user's knowledge in an inference control system (for example as a set of
logical sentences) is most likely neither expressive nor comprehensive enough to
incorporate the user's \real" knowledge. Moreover, inuencing or controlling the
user's knowledge acquisition from other information sources (apart from the to-
be-controlled database) is probably impossible if not undesirable anyway. That is
why inference control in databases necessarily has to assume a closed system where
a user's knowledge (background knowledge and knowledge gained by querying and
manipulating the database) is known inside the system and cannot be changed from
outside of the system. Mostly, it is also assumed that the user's knowledge can only
be incremented; that is, technically the user cannot be forced to forget some part
of his knowledge. Jajodia and Meadows [JM95a] describe these facts as follows:

\An inference of sensitive data from non-sensitive data can only be rep-
resented within a database if the non-sensitive data itself is stored in the
database. We have no way of controlling what data is learned outside
of the database, and our abilities to predict it will be limited. Thus
even the best model can give us only an approximate idea of how safe
a database is from illegal inferences. This fact should always be kept in
mind when dealing with inference problems."

Consequently, in all inference control approaches, some fundamental open questions
remain with respect to the User Model: In how far is it possible to realistically model
human knowledge and reasoning? How can the system avoid or notice knowledge
acquisition from other sources external to the system? How can the system avoid or
at least detect collaboration of users? Yet, we argue that all kinds of \traditional"
access control mechanisms su�er from these di�culties, too, when designing a secure
system; even standard access control policies have to make assumptions about user
knowledge and collaborations to be e�ective { or they simply ignore theses issues.

For statistical databases, inference control is mostly executed without an explicit
user model. The data in the statistical database are modi�ed to achieve indistin-
guishability for individual entries { independently of any assumed user knowledge.
Obviously, a user with statistical knowledge about some of the individual entries
might be able to deduce facts about other individual entries from the released data.
In MLS databases, the typical scenario is a multi-user one: a \clearance level" is as-
signed to each user. The clearance level { loosely speaking { determines which data
the user is allowed to read or write (see the Policy Model for more details). [CC94]
introduce a �ner grained user model that gives the same user di�erent clearances
for di�erent attributes (for example, access to Secret values for one attribute and
to Unclassi�ed values for another).

2.3 User Model 11

Some of the approaches for the MLS model and most of the approaches for relational
and logical databases model user knowledge in their inference control systems. In
some cases a user history is maintained, that is augmented with the database's re-
sponses to the user's queries. This is for example the case for the \data-dependent
mode" in [BFJ00]. In other cases, a user's a priori knowledge is taken into account:
In [HTS94, HS96] while the data model is relational, the authors model a user's a
priori knowledge in a relation with fuzzy values.
Typically a single-user scenario is assumed; this single user however could also repre-
sent a group of users that are assumed to collaborate. In most cases the database is
not exposed to updates. Some approaches go further than that as will be ampli�ed
in the following two subsections.

2.3.1 Collusion and Sybil Attacks

Obviously, the single-user scenario but also the MLS multi-user scenario are not
realistic in general. In a real-life setting, the strict mapping of one database user
identity to one existing person can easily be subverted: for example, users have the
opportunity to collaborate and share information they received from the database
(this is known as an inter-user collusion attack), or a person can generate multiple
database user identities, use all of them to query the database and accumulate all
results (this is known as a sybil attack).
An approach (using cryptographic primitives) to counter such attacks is the one by
Staddon [Sta03]: She applies results from the area of secure group communication
to inference control. Even this approach relies crucially on how realistic the User
Model is regarding the extent in which users collaborate (see Section 3 for more
information).

2.3.2 Updates

Quite intricate issues arise if the database is subject to updates by the database ad-
ministrator. If a user history is maintained, the updated database may contradict
the now outdated user history; truthful responses to upcoming queries may lead
to an inconsistent user history. One way to avoid such inconsistency is that the
database actively informs the user about changes (with respect to his knowledge
accumulated before the update). However, one could also argue that the database
should be more reticent and give updated information only if the user poses a query
resulting in a response that would leave the user history in an inconsistent state.
Alternatively, one could allow an inconsistent user history and use a paraconsistent
logic to administer and reason with the user history. The situation becomes even
more problematic if not only the data but also the database schema is allowed to
change.
So far, most of the inference control approach ignore the update problem. One
not totally satisfactory solution is the \Dynamic Disclosure Monitor" (D2Mon; see
[FTE01]): The authors annotate entries in a user's history with updated informa-

12 2 Related Work

tion. See Section 3 for a discussion of the shortcomings. As a totally di�erent
approach [MSS88] assume that the database user himself is allowed to update the
data via transactions and the user's inferences are based on the denial to execute
some transactions.

2.4 Interaction Model

User interaction is another crucial point for inference control because it inuences
the kind of inferences a user can make. Most approaches just consider read-only
databases, yet some assume that users also can execute updates on the database
(see for example [JS91, MSS88]).

2.5 Policy Model

The main concern of inference control for general purpose, MLS and logical databases
is con�dentiality of secret data. In some articles, the speci�cation which data is se-
cret is simply called \security policy". We will use the term \con�dentiality policy"
instead as it connotes more attention to the fact that con�dentiality is the primary
security goal of inference control. Obviously, the de�nition of a what is a secret
is closely connected with the user model. That is, a con�dentiality policy links a
user to a set of permissions or prohibitions to know some data in terms of query
evaluation in the database.
For statistical databases the security goal is quite di�erent: the user can compute
statistics on the data but should not be able to learn individual entries as this
is considered sensitive information. These security requirements are not speci�ed
in an explicit con�dentiality policy but in terms of statistical properties: Denning
([Den82], page 339) calls perfect secrecy in a statistical database the fact that no
sensitive statistic is disclosed but names it an impracticable and unreasonable ob-
jective for statistical databases. She instead gives a de�nition of protection (based
on con�dence intervals) and a de�nition of security (based on non-sensitive data).
She concludes that inference control mechanisms for statistical databases must be
imprecise. See also the Protection Model (Section 2.7) for further details.

Depending on the Data Model, con�dentiality policies come in di�erent avors: For
an MLS database, [DdVLS02, DdVLS99] specify con�dentiality requirements with
so called \lower bound constraints"; they express the lower bounds of classi�cation
for attributes in an MLS database. Although the authors do not explicitly mention
it, such a policy could be speci�ed for any user's clearance level. [BFJ00] assume a
single (\universal") relation. Basically, their con�dentiality policy consists of clas-
si�cations for queries; that is, it speci�es to which queries the user (for a given
user identi�cation) is not allowed to know the responses. From this policy, in their
\data-dependent" mode (where the database entries are taken into account), they
compute the set of all database entries (in this case, partial tuples) that the user is
not allowed to access.

2.6 Inference Model 13

For logical databases, [SdJvdR83] specify the con�dentiality policy as a set of closed
formulas. They introduce the semantics of \secrecies" for a policy: the user is not
allowed to learn whether a policy entry is true or false in the database instance.
[BKS95] introduce a di�erent concept of a secret: the user is not allowed to learn
that a policy entry is true in the database instance.
Note that an access decision according to a �xed con�dentiality policy at one point
of time is a binary decision: either the user is allowed to retrieve the present query
response, or he is not.

Availability of correct data is always a secondary goal for inference control: not
responding to any user queries whatsoever would de�nitely ensure con�dentiality
but the database would not be of any use for the user at all.
Often availability (sometimes also called\visibility") is only an implicit requirement.
Yet, some approaches involve explicit availability policies. For instance, [DdVLS02,
DdVLS99] use \upper bound constraints" to express that an attribute should not
be classi�ed higher than the classi�cation permitted by the constraint.
For statistical databases, availability also goes under the name of \precision" and
can be viewed as ensuring that the computed statistics on the modi�ed database
are as close as possible to the actual statistics on the original database. Denning
([Den82], page 339) mentions the conict between availability of correct data and
con�dentiality of secret information:

\Whereas secrecy is required for privacy, precision is required for freedom
of information."

2.6 Inference Model

As already described above in the Policy Model, in statistical databases inferences
are based on a combination of several statistics of the database entries.
In all other data models, inferences occur whenever the user applies the plain repre-
sentation of his knowledge (as for example the user history) to deduce data beyond
this representation. A harmful inference is one with which the user can deduce
secret data (as speci�ed by the con�dentiality policy).
Some approaches present a restricted set of inference rules that the user can base
his inferences on (see for example [YL98a, YL98b]). Analogously, the restriction
of database constraints to certain constraint classes (like functional and multival-
ued dependencies or Horn clause constraints; cf. the Constraint Model) e�ectively
bounds the assumed inference capabilities of the user. Such restrictions lead to in-
ference systems that are sound, meaning that all computed inferences can actually
be drawn by the user; but such systems might be incomplete in the sense that the
user is able to draw more inferences than the ones modeled in the system.
There are also approaches that base inferences on a probability distribution and
engage an information-theoretic notion of con�dentiality ([MS07, GH08]; see also
Section 3).

14 2 Related Work

2.7 Protection Model

In general, there are two basic protection mechanisms that achieve con�dentiality by
reducing the availability of correct of data in the database: data restriction (that is,
restriction of access to some data items) and data modi�cation (that is, modi�cation
of some data items); yet, both come in di�erent avors depending on the underlying
data model. We amplify the description of these core techniques in the following
subsections. Both mechanisms only a�ect the database and leave the remaining
input and the con�dentiality requirements unchanged; we do not consider other
techniques like schema modi�cation, query modi�cation, reclassi�cation of users or
downgrading.

2.7.1 Data Restriction

For statistical databases, protection has to be conceived on the basis of statistical
evaluation techniques. For instance, whenever the size of a query response is under a
certain threshold a query has to be denied because identi�cation of individual tuples
is possible. As an example, Denning ([Den82], page 337) states the \n-respondent,
k%-dominance rule", which de�nes query results as sensitive whenever they contain
n or less than n tuples but cover more than k percent of an aggregated value (for
example, summed total of salaries). \Cell suppression" removes entries from the
database which also e�ectively restricts access to the data.

For relational, MLS and logical databases data restriction is enforced in terms of de-
nial of access. Sicherman, de Jonge and van de Riet ([SdJvdR83]) pioneer \refusal"
in logical databases. In MLS databases, data restriction is mostly based on the
Bell-LaPadua access policy stating that a user with a particular clearance level is
allowed access to data items of a certain classi�cation level and below but is denied
access to data items with a higher classi�cation level (in the case of a read-only
database).
[DdVLS02, DdVLS99] ensure con�dentiality by upgrading attributes; that is, some
attributes retrieve a higher classi�cation than in the original database. Combined
with the Bell-LaPadua policy this e�ectively denies access to data items that poten-
tially cause harmful inferences. They use a graph structure (a \constraint graph")
to compute the upgraded classi�cations.
[BFJ00] use a chase algorithm (that is, an application of their Horn clause con-
straints on the user history) to determine whether the present response discloses
con�dential data; if so, the present query is denied.

2.7.2 Data Modi�cation and Cover Stories

For statistical databases, there are strategies that modify the database entries
such that the individual tuples do not contain correct information anymore but
the overall statistics are not a�ected; the terms \perturbation" and \addition of
noise"are often used as synonyms for these modi�cation strategies (see also [Den82],

2.7 Protection Model 15

page 371). Similar strategies have been developed under the term \k-anonymity"
([Swe02, MGKV06, LLV07]). The work on inference control in online analytical
processing (OLAP; [WLWJ03]) systems is also related to this.

While data modi�cation is quite common for statistical databases, for relational,
MLS and logical databases the situation is more complex: their purpose is to re-
turn individual data items; data modi�cation may however a�ect the integrity of
such data items and consequentially reduce the reliability of database responses in
general. Yet, for MLS databases, addition of incorrect data items may sometimes
be necessary for sake of consistency. Cover stories in MLS databases ensure a con-
sistent database view to a low-level user without revealing high-level information;
this is basically achieved by adding additional harmless tuples that cover up for
con�dential tuples. [CC94] argue that without cover stories (that is, just using
refusal to answer as data restriction), the existence of sensitive information can be
disclosed.
One way to add and manage cover stories is to have a polyinstantiated database
([SJ90, SJ92]). For such databases, [Den87] coins the notion of an \apparent pri-
mary key", which can occur multiply in a polyinstantiated database as the actual
primary key now is only unique with respect to classi�cation levels. Using this
concept, a database instance with element or tuple level classi�cation is de�ned to
be polyinstantiated if it contains tuples with identical apparent primary key val-
ues. Databases with relation level or attribute level classi�cation are not a�ected:
\Polyinstantiation does not arise when access classes are assigned to relations or
individual attributes." (see [JM95b]). In polyinstantiated databases, a new notion
of \polyinstantiation integrity" has to be de�ned that ensures that users with dif-
ferent clearances have a view of the database instance that is consistent with the
database constraints. Its correct de�nition was discussed for a long time by sev-
eral researchers; [QL92] describe some of the di�erent de�nitions and their e�ects.
[JS91] de�ne insert, delete and update operations for polyinstantiated databases.
[CC94] emphasize the need for consistency of level-wise views; they propose an al-
gorithm that restores a consistent view for each level by \merging" data items of a
level and all lower levels based on some heuristics. Their �rst assumption is that
high-level data items are more reliable than low-level data items. Then they intro-
duce \topics" that group together semantically related values. Most notably, they
draw a connection between polyinstantiation and modi�ed database entries:

\In a situation where data are polyinstantiated, the high users try to lie
to the low users in order to cause them to believe something which is
incorrect."

Cuppens and Gabillon ([CG01]) describe cover stories as \lies introduced in the
multilevel database in order to protect some existing higher classi�ed data". They
do not use polyinstantiation but instead explicitly declare which data comprise a
cover story. They state that this technique avoids semantic ambiguities inherent
to polyinstantiation; with polyinstantiation, it may for instance not be possible to

16 3 A Selection of Prior Work

distinguish the cover story from the correct data.
Last but not least, the belief-base approach of [SW92] presents di�ering views of
the world according to a user's clearance. Their partial databases can thus also be
seen as containing cover stories for users of insu�cient clearance.

Summing up, we can say that the great interest in cover stories shows that there
is indeed a need for data modi�cation, and data restriction in some situations does
not su�ce to achieve con�dentiality.

2.8 Execution Model

Mode and time of execution are distinguishing characteristics of the di�erent in-
ference control methods. The most distinctive feature is whether inference control
is executed only in a (what we call it) content-independent way or in a content-

dependent way. The terms \data level" (see [YL98a]) or \data dependent" (see
[BFJ00]) are equivalent to our term \content-dependent". It is commonly agreed
that content-dependent inference control increases availability (compared to content-
independent inference control): inferences can be controlled in a �ner grained way
because the outcome depends on the content of the database instance and not just
on the database schema.
Moreover some approaches make a coarse distinction between \online" and \o�ine"
inference control. Others employ the term dynamic inference control for inference
control at query time (see for example [Sta03]) or when updates are allowed (see
[Qia94]). To avoid confusion, we will use the following unambiguous terms to de-
note the point of time when inference control takes place: design time, instantiation
time, query time, or update time.

3 A Selection of Prior Work

This section organizes some of the inference control approaches in a more coher-
ent fashion. The reader not interested in the minor details of these approaches is
encouraged to skip this section with a clear conscience.

For statistical databases some successful applications have been developed for ex-
ample in the Datay project ([Swe97]). Inference control for statistical databases
has to be put into practice when statistics are released to the public.
As one example for inference control in statistical databases, the approach of Chang
and Moskowitz [CM00] is described in more detail. They consider the two techniques
\blocking" and \aggregation" in a statistical database. They identify combinations
of attributes whose values are \similar" to the values of so-called target attributes;
similar attribute values are those that lead to a disclosure of sensitive data (in the
worst case there is a bijection between the similar values and the sensitive target
values). Similar values are then blocked (that is, replaced by a question mark) or

17

aggregated (that is, a number of more speci�c values are summarized by a more gen-
eral value). As a measure of data quality, a probabilistic \quality index" is de�ned
as well as a \ratio of reduction". Data modi�cations are executed as long as the
reduction ratio is not reached. Assuming that the original data already have some
error probability, the reduction ratio acts as a threshold for the decrease of data
quality in the modi�ed database instance. As already mentioned in Section 2.7,
a huge amount of other statistical techniques exist. A good collection of these
techniques can be found in [DF02, DFT04, DFF06].

The approaches for relational databases are quite dispersed. Mazumdar et al.
([MSS88]) consider a database environment with a set of speci�ed transactions.
They analyze whether a user can draw conclusions by observing success or fail-
ure of a transaction; causes of a failure can be the transaction's not satisfying
integrity constraints or preconditions. They assume a single user being aware of
the constraints, preconditions and the transaction's program. Secret information
is speci�ed as a set of open formulas; a revelation of a secret happens if the user
learns a valid instantiation of the free variables. The transactions are analyzed at
compile time with the help of a theorem prover who imitates the reasoning of the
user; yet, this method restricts capabilities of the user by modeling him as a sound
but incomplete deductive system. In particular, the authors examine iterated exe-
cutions of transactions and partial inferences. They formally de�ne a partial order
on secrets de�ned by logical implication: a \stronger" secret allows a user to deduce
other secrets.
Delugach et al. [DH96, DH94] approach the inference problem in a semantic way:
they employ conceptual graphs to visualize \facets" of a database schema (and
possibly some instances). Di�erent \facets" denote semantic relationships between
entities or activities. While they designed a tool to identify inference paths from
unclassi�ed to classi�ed or sensitive information based on a lossless-join algorithm,
user interaction of a so called inference analyst is crucial to build the conceptual
graph and weigh inference paths according to their severity.
Hale et al. ([HTS94, HS96]) emphasize the existence of fuzzy inference in precise
and fuzzy relational databases based on functional dependencies. Fuzzy inference
also covers classical precise and imprecise inference: Precise inference means the dis-
closure of singleton sets, imprecise inference is the disclosure of a set of values and
fuzzy inference is the disclosure of fuzzy sets of values. The authors propose to add
common sense knowledge as a fuzzy \catalytic relation" to a precise database. They
combine the fuzzy and precise notions in an abstract relational database model.
This also includes a notion of consistency between precise, imprecise and fuzzy
values and a notion of redundancy of fuzzy values; these are based on partitions:
attribute domains are partitioned by equivalence relations giving a form of seman-
tically indistinguishable elements.
Yip and Levitt ([YL98a, YL98b]) design a content-based inference detection sys-
tem for a single (universal) relation. They present several inference rules { which
taken together are sound but not complete { that a user can apply to a set of query

18 3 A Selection of Prior Work

results; in this sense this inference detection system assumes a user with restricted
reasoning capabilities. Query results are multisets of return tuples, which leads to
the situation that the user can also draw cardinality-based inferences. The main
concern is the detection of return tuples which can be combined and thus disclose
additional information. It remains however unclear how the con�dentiality policy
is speci�ed; the authors just give the combination of two attributes as an example.
The inference rules can either be applied online (although the authors state that
this involves signi�cant runtime overhead) or o�ine (unfortunately the authors do
not explain how this can be achieved). They also give experimental results for
randomly generated tables and queries. They observe the percentage of disclosed
data and performance of the system for varying parameters (for example, number
of attributes and tuples or distribution of data values).

MLS databases have attracted some attention in military environments where clear-
ance levels of users can be established quite easily. The SeaView project (see
[LDS+90]) is one of the most comprehensive inference control approaches for MLS
databases. SeaView stores single-level relations and combines (reconstructs) them
to multilevel relations as logical views. In the same context, Qian [Qia94] de�nes
the restriction of an MLS Database (with tuple level classi�cation) to a range of
classi�cations. Integrity constraints can have assigned ranges of classi�cations. She
considers \static" inference channels (in databases without updates) and \dynamic"
inference channels (in databases with updates).
For the DISSECT system, Stickel ([Sti94]) describes a procedure that eliminates
inference channels in an MLS database. He assumes a total order of classi�ca-
tions given; in the basic setting classi�cation is possible only at the attribute level.
A given inference channel as well as the classi�cation lattice are translated into
a set of Boolean constraints. A model for these constraints is searched for with
the SAT solving procedure of Davis, Logeman, Loveland and Putnam (DPLL) (see
[DLL62, DP60]). Because the classi�cation lattice is explicitly encoded in the prob-
lem, only minimal models of the constraints assure an optimal upgrading of ob-
jects: an object's classi�cation is not higher than necessary in a minimal model.
Additionally, the author describes how to assign costs to pairs of an object and a
classi�cation. These costs de�ne the \feasibility and desirability" of assigning the
object the given classi�cation. The DPLL procedure can than be adopted to �nd a
model with minimal costs. Extensions to tuple level classi�cation and to partially
ordered classi�cation lattices are sketched.
Cuppens and Gabillon ([CG01]) de�ne a more elaborate form of cover stories for
MLS databases. In the authors' data model, a multilevel database consists of
(ground) facts each of which is classi�ed at a certain level; integrity constraints
(written as closed formulas) have classi�cation levels, too. Cover stories can ei-
ther be facts or integrity constraints and are stored separately from the data in
the database. As already mentioned in Section 2.7.2 this allows for distinguishing
cover stories from correct data. The authors de�ne a \view" of the database at a
certain classi�cation level l to consist of all facts and constraints classi�ed at level

19

l or below. They de�ne a notion of consistency of databases and views. Security
(i.e., con�dentiality in this case) of a view then means that the view itself and all
views at a lower level are consistent. They also handle updates of a database with
cover stories: an update consists of a transaction at a certain \transaction level"
which is equal to or below the user's clearance level. A transaction may only insert,
update or delete data at its transaction level. It can only be committed if the re-
sulting database view at the transaction level is secure. Transactions can render the
database inconsistent for views at levels above the transaction level; in such a case
the security property has to be restored either automatically by the database sys-
tem or manually by a security administrator. The automatic restoration procedure
deletes a fact from the database if there is a duplicate entry at a lower classi�cation
level; it deletes a cover story if it does not match a fact in the database. Addi-
tions of cover stories may also be necessary; new cover stories can be computed
with the help of minimal inconsistent sets. In some situations however automatic
determination of cover stories is impossible and semantic guidance by the security
administrator is essential.
Dawson et al. ([DdVLS02, DdVLS99]) avoid inference problems in an MLS database
by computing minimal classi�cations for attributes. They assume a lattice of classi�-
cations given. Con�dentiality requirements are speci�ed by a set of lower bound con-
straints, determining the classi�cations the attributes should at least be assigned.
Explicit availability requirements are stated in a set of upper bound constraints,
denoting the classi�cations the attributes should at most be assigned. This way, a
subject's prior knowledge can also be speci�ed. The constraints are visualized in a
constraint graph and classi�cations are established by back-propagation from leaves
in the constraint graph. For the simplest case (an acyclic graph with only \simple
constraints") there is a unique minimal solution, whereas for an acyclic graph with
\complex constraints" there may be multiple minimal solutions whose order of ap-
pearance depends on the evaluation order of the constraints. A cyclic graph with
only simple constraints can simply be resolved by assigning all attributes in a cycle
the same classi�cation. The most di�cult case is a cyclic graph with complex con-
straints. The authors devise a stepwise \forward-lowering" algorithm to accomplish
a minimal solution. The set of lower bound constraints is always consistent: all
lower bound constraints are satis�ed when all attributes are classi�ed with the top
element of the lattice. Yet inconsistency can occur due to upper bound constraints.
The authors propose to ignore the upper bound constraints in such cases, e�ectively
giving con�dentiality precedence over availability.
The\Disclosure Monitor" (DiMon) of Brodsky et al. ([BFJ00]) ensures con�dential-
ity in a read-only database while maximizing availability by extending the manda-
tory access control (MAC) mechanism. Their underlying system consists of a uni-
versal relation, a set of Horn-clause constraints, classi�cations for users as well as
tuples or queries (i.e., attribute combinations), and a history of user queries. The
authors present algorithms that compute a sound, complete and compact \disclo-
sure cover" that represents the inferences that can be drawn by the user; this can

20 3 A Selection of Prior Work

either be based on a concrete instance and a user history containing pairs of queries
and the corresponding results (they call it \data-dependent mode") or on a his-
tory just containing the queries (the \data-independent mode"). They compute the
disclosure by employing a chase of the Horn-clause constraints on the given user
history and the current query (accompanied by its result in data-dependent mode).
Afterward they check whether the chase led to a fact that the user is not allowed
to know. The proof of termination of their algorithms is based on the fact that
applications of Horn-clause constraints do not introduce new symbols.
With the \Dynamic Disclosure Monitor" (D2Mon; [FTE01]) the authors extend the
static DiMon with an update consolidator that expands a user's history �le with
values added to (or deleted from) the underlying MLS database. They claim that
their approach improves availability, because inferences based on \outdated" infor-
mation leading to invalid conclusions are considered harmless; this includes that
wrong responses can be returned to the user. In the user's history �le, results once
given are kept and eventually annotated (\stamped") with the updated values; that
is, when checking for harmful inferences, the user history also includes the update
information of which the user is (currently) not aware. The authors mention a sec-
ond module for controlling statistical inference without giving details. In [TFE05]
the authors give an improved algorithm for applying (\chasing") a set of constraints
on the history �le. Yet this approach su�ers from some unspeci�ed issues: The
authors do not de�ne a user model in terms of system awareness of the user (Does
the user know which information is classi�ed? Does the user know the workings of
the algorithm?) neither do they consider the user's pondering over a refused query
or a query result that would actually enable the user to infer a secret. In their
example, an \outdated" tuple containing salary and name (though classi�ed) can
be inferred if the salary changed in the meantime. Assuming that the user knows
the MLS classi�cation (that is, the con�dentiality policy), we consider it reasonable
that the user might have the ability to reect on the given results and conclude
that at least one of his inference premises must have been invalidated in the current
database.

Sicherman, de Jonge and van de Riet ([SdJvdR83]) are among the �rst to con-
sider inference control in logical databases. They introduce secrets, queries and
user knowledge as arbitrary well-formed (closed) formulas in �rst-order logic and a
complete but possibly in�nite database instance as an arbitrary structure in a logic.
They emphasize that this makes their system a deterministic system (in contrast
to other systems dealing with probabilities). Secrets are de�ned to be sentences
that hold in the database. They also assume that information in the database is
absolutely correct and does not change over time. And they presume that there
is only a single user in a single \session". As a main point they also consider that
the user has knowledge about the system's refusal mechanism. As a consequence
of this, inferences based on the mechanism are also considered and thus negations
of query results are checked for their harmfulness. They also de�ne a secret to
be \safely concealed" whenever there is an \alternative system" that gives identical

21

responses (as the original system) but the secret does not hold such that \the user
cannot deduce which system he is talking to". The authors introduce the notion
of \secrecies", and take into account the user's awareness of secrecies. In several
theorems they establish conditions for safety of answers. In their conclusion they
name several relaxations of their system settings, as for example allowing \wrong
answers", reducing the user awareness or allowing changes in the database. They
also raise the question of feasibility of such a system.
[BKS95] examine privacy concerns in propositional databases with the help of modal
logic. They de�ne modalities to express the secret information and the beliefs of
the user. They also de�ne axioms that model the reasoning behavior of the user.
They introduce lying as a data modi�cation technique. Then they extensively study
lying as well as refusal in both complete and incomplete databases with a \logic of
interaction".

There are some techniques that embed inference control into a broader context. An
approach (using cryptographic primitives) to counter inter-user collusion or sybil
attacks is the one by Staddon [Sta03]: She applies results from the area secure
group communication to query-time inference control. On the one hand, each user
is provided with a set of cryptographic keys (which might be identical for all users or
at least some users have some keys in common if they are assumed to collaborate).
On the other hand { after all inference channels in a database are appropriately
identi�ed { all objects in such an inference channel are assigned tokens encrypted
with (a subset of) the users' keys. At query time, whenever a user queries an object
in an inference channel, he sends along the object's token encrypted with one of his
keys. From all other objects in the inference channel, their tokens encrypted with
exactly this query key are revoked, signaling that this key has already been used
to query an object in this inference channel. All further queries with the revoked
key are then denied. The number of keys that are used to encrypt tokens in an
inference channel is strictly less than number of objects in the inference channel,
such that the users are never able to \complete" the inference channel { that is, to
query all objects in the channel.
Woodru� and Staddon [WS04] combine collusion-resistant inference control and pri-
vate information retrieval and thus not only ensure con�dentiality of data but also
privacy of a user's query: they devise a \private inference control" (PIC) scheme to
prevent the database server from knowing the query results that it returns to the
querying user.
Chen and Chu ([CC06]) propose a centralized probabilistic inference detection sys-
tem: they consider knowledge acquisition from di�erent sources but assume that
the user's knowledge gain can be fully modeled in the centralized \knowledge ac-
quisition module". They model semantic dependencies between data with a graph
structure and specify sensitive nodes in the graph. They assign conditional prob-
abilities to attribute values based on the dependencies and map the graph to a
Bayesian network. In the Bayesian network the probability of a harmful inference
can be calculated at runtime with respect to the user's query history. If a threshold

22 4 Controlled Query Evaluation

is exceeded, the current query is denied.

Last but not least, there are some information-theoretic approaches that { although
not running under the name inference control { can be used to detect inferences
before some data (\views") are released to the public. Those views are de�ned
over a relational database in [MS07] and over an \information system formalism"
in [GH08] (which contains the relational databases as a special case). The common
feature of these approaches is that they assume that the user has �xed a probability
distribution over all possible database instances; then their notions of con�dentiality
(called \security", \privacy" or \safety") require that the a priori probability of a
response to a \secret query" be equal to its a posteriori probability (after releasing
the views). [MS07] incorporate a priori knowledge of the user which is added as
a condition while computing the probabilities of the secret query. [GH08] assume
that the database schema is exposed to changes (\evolves"); the a priori probability
is computed on the original schema and the a posteriori probability on the evolved
schema. Most notably, both approaches later on identify conditions under which
the assumption of a probability distribution is unnecessary. [MS07] reduce their
probabilistic framework to checking containment of \critical tuples" in the views;
they concede that, \[t]his result translates the probabilistic de�nition of query-view
security into a purely logical statement, which does not involve probabilities. This
is important, because it allows us to reason about query-view security by using
traditional techniques from database theory and �nite model theory". On the other
hand, [GH08] get rid of the probabilities by checking whether the system returns
the same responses before and after the views are released. Moreover, in both
approaches availability is not considered.

4 Controlled Query Evaluation

In spite of the di�ering ambitious approaches for inference control, no generic rep-
resentation has been found so far. Such a uniform representation would preferably
incorporate and combine all prior approaches. Indeed, due to its generality, this
representation should have a logical basis.

We now introduce the extensive work on inference control called Controlled Query
Evaluation (CQE; see [BW08b, BEL08, BW08a, Wei08, BL07, BBWW07, BW07,
BB07, BW06, BB04a, BB04b, BW04, BB01, Bis00]). Controlled Query Evaluation
is a logic-based framework for inference control and covers a broad range of param-
eters. In our opinion, this predestines CQE to be the general representation for
inference control we are looking for.
It is fundamental for CQE to choose an appropriate logic. So far, propositional
logic and a fragment of function-free �rst-order logic with equality have been in-
vestigated. Figure 4 gives a schematic view of a query-time (\censor-based") CQE
system, whose components are detailed in the following.

4.1 Data Model 23

We assume here that installation, initialization and maintenance of the CQE sys-
tem is a task to be distributed between three di�erent kinds of administrators (we
will use these administrator types here though they are not explicitly introduced
in the references cited above). The database administrator dbadm has the task of
maintaining the database; plus, it falls into his responsibility to choose the logic
and determine a language L of the logic that speci�es a syntax for all necessary
input to the system. The security administrator secadm declares the con�dentiality
policy. He can do this essentially independent of the database as long as he sticks
to the syntax as dictated by the language L . As a third expert we introduce the
user administrator useradm: He is the one who models the a priori knowledge of the
database users in the system, again using the language L . Originally, CQE was de-

dbadm

db eval�

user

secadm

policy censor

useradm

prior log

maintains

declares

declares
an
sw
er
s

queries

cqe

Q = h�1;�2; : : :i

A = hcqe(�1);
cqe(�2);
: : :i

Figure 4: Schematic view of censor-based CQE

signed as a query-time inference control system as visualized in Figure 4. It is based
on the ordinary query evaluation function eval� that will be de�ned shortly. A cen-

sor module checks at query time whether unwanted inferences can occur based on a
user history called log . The censor module essentially decides whether distortion of
the answer is necessary or not. The censor may be accompanied by a \modi�cator"
module, that distorts the answer based on the censor's decision; the modi�cator is
left out of Figure 4 for simplicity. We develop the elements and variants of CQE in
detail in the following paragraphs.

4.1 Data Model

The CQE data model is of the form of a logical database. A database instance
(denoted as db) is de�ned as a �nite and consistent set of closed formulas in the

24 4 Controlled Query Evaluation

chosen logic. The data model is furthermore subdivided into the following two cases
(as were already introduced in Section 2.1.4):

� complete database: an instance db of a complete database is a �nite set of
ground atoms in the underlying logical language L . Each ground atom in
the instance is evaluated to the truth value true; it represents a true fact
in the modeled world. By employing a closed world assumption, all other
ground atoms have the value false. More complex formulas can be evaluated
iteratively from the values of the ground atoms. In this way, the database
corresponds to an interpretation with a �nite positive part in a classical two-
valued logic. Accordingly, to every user query the database can return a
de�nite response as de�ned in the Interaction Model.
Complete propositional databases are investigated in [Bis00, BB01, BB04b,
BB04a, BW06]. The complete logic-based setting basically coincides with
the relational data model whenever predicate logic is used as a speci�cation
language and we furthermore assume that the set of predicate symbols and
all relations are �nite. Query-time CQE for relational databases is studied in
[BB07, BEL08, BL07]. In [BEL08, BL07] schemas for the considered relations
are explicitly stated { including functional dependencies as constraints. In
the other approach ([BB07]), the database schema (called DS) is left implicit
and its syntactical elements can be deduced from the database instance db;
in this case and in the propositional approaches, the database constraints are
incorporated into the user knowledge prior .

� incomplete database: an instance db of an incomplete database is a consistent
set of arbitrary sentences in the underlying logical language. In particular, no
closed world assumption is made and an incomplete db may for example con-
tain disjunctive and existential formulas, which makes some query responses
unde�ned (see [BW08a, BW04, Wei08]).

4.2 Constraint Model

In CQE, the assumption is made that the user is aware of the database constraints.
That is why database constraints form part of the user knowledge prior . More
generally, the knowledge of the user as a whole is seen as a set of constraints for the
CQE system: all database responses have to be consistent with the user knowledge
(see also the User Model).
While for the propositional approaches no syntactical restrictions of the constraints
are necessary, in the relational approaches, the system is confronted with the issue of
undecidability. That is why for some specialized applications (see [BL07, BEL08]),
database constraints are restricted to functional dependencies and database rela-
tions are required to be in object normal form (ONF). The restrictions for [BB07]
are explained in the Execution Model below.

4.3 User Model 25

4.3 User Model

CQE is run in single-user mode (cf. Section 2.3); collusion resistance and sybil
attacks have not been examined so far but consideration along the lines of [Sta03]
might be possible. The user is modeled in the system as a set prior of closed
formulas of L . For query-time CQE, a user history called \user log" or simply
log is maintained in the system and incremented with each query response; that
is, log i contains all entries in log i�1 plus the responses to the ith query �i in the
query sequence Q (cf. Figure 4) and log0 is equal to the a priori knowledge prior .
For incomplete databases a transition to modal logic was made in order to account
for secrets with an unde�ned value (see [BW08a, BW04, Wei08]). With this user
model, CQE encounters the same limitations as do other inference control systems
with regard to a correct and comprehensive representation of the user knowledge;
this was already discussed in Section 2.3.

Beyond the speci�cation of the user knowledge, several awareness assumptions can
be made in the system settings. For example, CQE can account for a user that
knows the speci�cation of the con�dentiality policy (the \known policy" case) or
not (the \unknown policy" case). The user also has system knowledge in so far that
he knows which protection mechanisms the CQE system employs.
Moreover, the user is assumed to be \sophisticated" in the sense that he is able to
reason rationally based on his knowledge and his awareness of the system settings.
In order to achieve a strong attacker model, it is also assumed that the user is not
bounded by computational restrictions (whereas the CQE system as the defender
clearly is). An alternative user model of a \plain" user who does not exploit all his
reasoning capabilities but instead believes anything the database responds is briey
considered in [Wei08]. Plain users can pose a threat in the strictly logical CQE
setting and could be examined further.

4.4 Interaction Model

From the user's point of view, CQE o�ers read-only databases; that is, user in-
teraction consists of the evaluation of queries with respect to the current database
instance. Its basis is ordinary uncontrolled query evaluation (denoted eval� and
de�ned in De�nition 7.4). In order to control the query responses, ordinary query
evaluation is wrapped in a controlled query evaluation function (for brevity denoted
cqe in Figure 4). For complete relational databases it was shown how controlled
evaluation of open queries can be achieved by repeated invocations of controlled
evaluation for closed queries; this approach is based on a �xed enumeration of an
in�nite set of constant symbols and an additional completeness test.
In some cases the query language was restricted (for example, to contain only exis-
tentially quanti�ed ground atoms in [BL07], or to the positive existential relational
calculus in [BB07]).

26 4 Controlled Query Evaluation

4.5 Policy Model

In CQE, con�dentiality requirements are always explicitly stated in a set policy of
formulas in the underlying logic. Such an explicit con�dentiality policy is declared
by secadm independently (that is, without considering the database instance). A
con�dentiality policy in CQE can have one of two di�erent semantics that were
briey introduced in Section 2.5. We amplify their description as follows:

� Secrecies: A con�dentiality policy of secrecies is a set of formulas denoted
secr . Any truth valuation of a secr entry is sensitive and has to be hidden
from the user. In complete databases this means that the user is neither
allowed to assume that the secrecy is true, nor that the secrecy is false.

� Potential secrets: A con�dentiality policy of potential secrets is a set of
formulas denoted pot sec. For a pot sec entry only its evaluation to true is a
sensitive fact. That is, if a potential secret is true in the database, the user
must not notice this; instead, he may assume that it is false (if a complete
database is considered).

For complete propositional databases, both policy models have been studied exten-
sively (see [BB04a, BB04b]). In incomplete databases, modal potential secrets are
handled in order to account for the protection of the value unde�ned (see [Wei08]).
In special cases, the speci�cation language of con�dentiality policies has to be re-
stricted; for example, in [BL07] only atoms are allowed as potential secrets.

As other inference control approaches (cf. Section 2.5), CQE addresses the implicit
need for availability of correct data in the query responses. In query-time censor-
based CQE this highly depends on the actual query sequence of the user. Due to
the dynamics of the user's queries, availability cannot be globally captured with-
out knowing the query sequence in advance. Instead, there is a local \last-minute
distortion strategy": based on the query and knowledge of a user the system re-
turns correct responses as long as possible; this strategy however could lead to more
distortions than necessary in the long run.

If availability of some database entries is more important than availability of other
entries, the dbadm can additionally declare an explicit availability policy avail as a
set of formulas. In the simplest case, avail and policy are non-contradictory. Then,
all avail entries can be handled as \must-know" facts: they are added to prior and
thus an a�rmative response is given if the user queries them.
More exibility can be gained when alternating a set of explicit con�dentiality and
availability requirements in a policy hierarchy (see [BBWW07]). In this manner,
the secadm can specify �ne-grained preferences.

4.6 Inference Model 27

4.6 Inference Model

Inferences in the CQE framework are precise. Inferences are in particular based
on the user's knowledge as modeled by the appropriate current user history log i.
The user commands over all knowledge that he can deduce from his current user
image log i by means of logical consequence. In CQE, logical consequence Cn is
based on model-theoretic implication in the given logic. A harmful inference oc-
curs, if the consequential closure of the user image contains a secret: 	 2 Cn(log i)
for any 	 2 pot sec. Apart from these log-dependent inferences, other inferences
occur due to the user's system knowledge; for example, knowledge about the con-
�dentiality policy and the protection mechanisms. To account for all those kinds
of inferences, for query-time CQE \con�dentiality-preserving censors" are de�ned
(see for example [BB04a]). These de�nitions demand the existence of an alternative
database instance based on the sentences in the user history log i, some sentences
of the con�dentiality policy policy and a �nite pre�x of the query sequence.

4.7 Protection Model

CQE implements the two basic mechanisms data restriction on the one hand and
data modi�cation on the other hand (cf. Section 2.7):

� Refusal is the means of restriction: to a sensitive closed query the database
does not return the correct answer (as retrieved by ordinary query evaluation)
but instead a special value (denoted mum or refuse) is returned to indicate that
the system refuses to answer.

� Lying is the means of data modi�cation: to a sensitive closed query the
database returns the negation of the correct answer in a complete database;
additionally, in an incomplete database, the value unde�ned may occur as a
lie.

As already mentioned, protection for open queries is based on these primitives for
closed queries (see [BB07]). If refusal is the only protection mechanism available, it
is called \uniform refusal". Analogously, \uniform lying" describes the setting with
lying as the only protection mechanisms. The \combined lying and refusal"method
uses both mechanisms.

For the di�erent protection mechanisms, preconditions have also been identi�ed
(and maintained as invariants) that ensure that no log i leads to harmful inferences.
Remarkably, as a precondition for uniform lying and potential secrets the disjunc-
tion of all potential secret must not be inferable a priori by the user. This is also
the reason why secrecies can only be protected by means of refusal: for lying there
always has to be a non-secret alternative left that can be used as a lie.
Whereas for uniform refusal the precondition is simpler, so-called metainferences
pose a threat for a con�dentiality of potential secrets: if only the sensitive truth

28 5 Contributions and Outline of this Thesis

value of a query response is refused, but the insensitive truth value is always re-
turned, the user can conclude that the refusal is equivalent to the sensitive truth
value. That is why refusal has to be extended to also cover the insensitive truth
value.

4.8 Execution Model

In general, CQE implements content-dependent inference control. Yet, CQE can
also be used to execute content-independent inference control on schema level. In-
deed, for uniform refusal and known policies it has been found out that the refusal
decision is independent of the actual evaluation of the query in the database. In
[BL07] conditions for a reduction of CQE to access control have been formalized.

When CQE is executed at query-time, a censor module has to simulate the infer-
ences of the user. Indeed, (a fragment of) the underlying logic has to be chosen in
such a way that implication in it is decidable (if not e�ciently computable); that
is, implication problems on the current log i and the present query �i+1 (or the
corresponding response eval�(�i+1)(db)) have to be solved for every i. For exam-
ple, in [BB07] decidability results for the Bernays-Sch�on�nkel class (�rst-order logic
without function symbols with formulas in prenex normal form and the pre�x 9�8�)
are used to show decidability of implication between universally and existentially
quanti�ed formulas.

5 Contributions and Outline of this Thesis

We believe that the strict logical framework of CQE is able to subsume other infer-
ence control approaches based on relational and logical databases { maybe even MLS
and statistical databases when adapted accordingly. Probability based approaches
can possibly be emulated in CQE with appropriate notions of interpretations and
logical implication. One particular advantage of CQE is that it forms a clear and
semantically sound basis for both complete and incomplete databases as well as
con�dentiality policies and user knowledge declarations.

The topic of this thesis is a novel constituent of Controlled Query Evaluation. In
contrast to the existing variants of Controlled Query Evaluation { namely, the
query-time censor with all its subvariants and the reduction of CQE to traditional
access control { this thesis covers a distinct characteristic of the CQE framework:
briey, the goal is to develop and analyze an e�cient algorithm that, given the
input constraints (that is, the potential secrets and the user's a priori knowledge),
preprocesses the original database instance into an \inference-proof" instance which
preserves con�dentiality of the speci�ed secrets. The user can interact with the
inference-proof instance with ordinary uncontrolled query evaluation and thus he
does not su�er from performance loss at runtime. Moreover, a main advantage

29

of this setting is that preservation of availability can e�ectively be measured in
terms of \distortion minimality". While the algorithm (called preCQE) is designed
for predicate logic and hence faces the problem of undecidability, restrictions to
fragments of the logic and their e�ects on termination, soundness and completeness
are studied comprehensively.

preCQE extends and improves upon related work in several points. We summarize
the achievements in brief. The preCQE algorithm

� comprises a unique combination of model generation and distance minimiza-
tion in an in�nite domain.

� handles quanti�ers immediately without a need to expand them into ground
conjunctions or disjunctions.

� puts only minor restrictions on the syntax of constraint formulas in compar-
ison to other approaches, where restriction to CNF, TGDs or even simpler
syntax is required.

� incorporates both addition and deletion of tuples as modi�cation primitives
and is hence more general as for example the chase procedure.

� is optimized for complete databases and can thus take advantage of an e�cient
query evaluation function.

� outputs a complete database instance and does not switch to an incomplete
instance; other approaches introduce null values and hence eschew concrete
instantiations of variables.

� is proved to be sound and complete; the proof of refutation soundness applies
semantic trees to non-clausal formulas in an innovative manner.

� is highly extensible (for example to other distance measures or other policy
models).

The particular parts of this thesis make the following contributions:

� Part I

{ At the outset, Section 1 introduced the basic notions of inferences and
inference control in databases. It illustrated the substantial shortcom-
ings of access control and the importance of accounting for background
knowledge of a user in inference control systems; it set forth a taxonomic
categorization of the parameters of inference control systems.

{ Section 2 used this taxonomy to broadly garner information about pre-
vious work in the inference control context. This also provided a review
of the basic notions for the reader.

30 5 Contributions and Outline of this Thesis

{ A more detailed view of some inference control systems was procured in
Section 3 to put the disparate approaches in perspective.

{ Section 4 served the purpose of establishing the background of Controlled
Query Evaluation (CQE). The basic terminology in the CQE context was
introduced.

� Part II

{ Section 7 sets terminology for the upcoming parts of this thesis. In its
subsections, central notions like \DB-interpretation", \DB-satis�ability",
\DB-implication", \query evaluation", \inference-proofness" and \distor-
tion minimality" are de�ned. While the former are borrowed from pre-
vious work on CQE, the latter two (inference-proofness and distortion
minimality) are novel de�nitions for con�dentiality and availability in
the context of this thesis.

{ Section 8 is concerned with �nding conditions under which DB-satis�ability
of the universal fragment (of pure predicate logic) can be decided. This
involves the use of an inductive de�nition of \allowed formulas" { a well-
known subclass of safe formulas that (when used as database queries)
ensure �nite responses. For the purposes of this section it su�ces to
consider allowed universal formulas; for this class of formulas, we estab-
lish the following results by elaborating the proofs based on the structure
of the formulas:

1. the conjunctive normal form of an allowed universal formula is an
allowed formula

2. some simple properties of the conjunctive normal form can be used
to identify allowed universal formulas

3. the negation of an allowed universal formula is an allowed formula

These results are a step toward the main contribution of this section:
for allowed universal formulas, consideration of active domain constants
(constants in the input instance and the constraints) is su�cient to
achieve inference-proofness. Lastly, we show that also distortion min-
imality can be ensured with the active domain semantics.

{ Section 9 presents the preCQE algorithm that is devised to search for
an inference-proof and distortion minimal solution instance in a \Branch
and Bound" approach. In the search process, the algorithm proceeds by
marking tuples (possibly in an auxiliary column of the data tables). Ap-
propriate model operators and evaluation functions for marked database
instances are de�ned. It makes abundant use of the evaluation functions
to identify constraints that are currently violated and determine their
ground instances; for open formulas only evaluation for the positive part

31

is needed which is ensured to be �nite due to the allowed property. Hence
the preparation in the previous section now nicely allows for disregard-
ing structural properties of formulas in the algorithm. The preCQE
algorithm improves upon previous work by scrutinizing both the possi-
bility to delete as well as to add tuples to the database instance while
at the same time minimizing the amount of distortion. It is by far more
e�cient than �nding a solution instance merely by complete enumer-
ation of all active domain tuples. Termination as well as satis�ability
soundness and refutation completeness of the algorithm can be estab-
lished quite straightforwardly by a thorough analysis of the pseudocode.
The proof of refutation soundness and satis�ability completeness requires
more intricate arguments; to show it we resort to Herbrand's theorem
and semantic trees. Lastly, distortion minimality of the solution instance
is derived.

� Part III

{ Section 10 shifts the attention to the existential fragment. We argue that
Skolemization is not appropriate for our goals of inference-proofness and
distortion minimality. Instead, we single out the following two important
aspects: an existential formula has the �nite model property, and con-
stants outside of the active domain are generic from the point of view of
inference-proofness and distortion minimality. Hence we conclude that
a solution instance can be found only by considering the active domain
and a �nite (\invented") set outside of it; yet several alternative instan-
tiations of variables have to be pursued to guarantee distortion minimal-
ity. Proofs of termination, soundness and completeness move along very
much like in the universal case; still the proof of refutation soundness re-
quires particular attention on how �nite invention is used for existentially
quanti�ed variables.

{ Section 12 regards a more general type of formulas: tuple-generating
dependencies (TGDs) that combine universal and existential quanti�ca-
tion. While greatly improving expressiveness they have the disadvantage
that di�culties in avoiding in�nity axioms are exacerbated. We apply a
well-known result for weakly acyclic TGDs to our settings to ensure the
applicability of �nite invention. Additionally, denial and purely existen-
tial formulas may occur. The resulting version of the preCQE algorithm
requires a more elaborate presentation than the previous versions and
the proofs are also a bit more involved.

� Part IV

{ Section 14 presents a sizable set of extensions that can be pursued further
whenever additional requirements arise.

32 6 Contributions to Published Work

{ Section 15 establishes the connection to related research areas that do
not focus on con�dentiality but turned out to be helpful resources for
preCQE.

� Part V

{ Section 16 ampli�es the special case of propositional logic.

{ Section 17 determines how the preCQE problem can be encoded in sev-
eral versions of the propositional satis�ability problem.

{ Section 18 provides a brief description of a prototypical implementation
for propositional logic in which current SAT solving technology is applied.

{ Section 19 documents two sets of test cases. Interestingly, the transfor-
mation of the input format into the SAT solver format caused a signi�-
cant overhead in many cases whereas the performance level of the SAT
solver was absolutely favorable.

6 Contributions to Published Work

A predecessor of the preCQE algorithm was described in the conference paper
[BW06] and then extended to include an availability policy in the invited journal
article [BW08b]. The published articles are my original work and the theoretical ex-
position contained therein laid the foundation for the prototypical implementation
that will be covered in Part V of this thesis. The articles are co-authored by my
advisor Joachim Biskup. His contribution comprised joint exploration of potential
approaches, ongoing discussions, proof-reading and general advisory.
Nevertheless, we point out that this previous work di�ers from the preCQE ap-
proach in this thesis in several points: �rst and foremost, the algorithms in the
published articles are purely designed for propositional clause logic; the published
algorithms and preCQE do not even coincide in the propositional case because
with preCQE non-clausal input can be handled and only violated constraints are
processed. Second, in the articles no formal proofs are given; in particular, in
the published propositional case no decidability issues arise and no soundness and
completeness results are established. Hence the work contained in this thesis sig-
ni�cantly extends and improves upon the algorithms in [BW06] and [BW08b].

33

II. Preprocessing for Complete Databases

Contents

7 Preprocessing for CQE in Complete Databases 35

7.1 Data Model . 37

7.2 Constraint Model . 38

7.3 Inference Model . 39

7.4 User Model . 39

7.5 Interaction Model . 40

7.6 Policy Model . 41

7.7 Protection Model . 42

7.8 Execution Model . 42

7.9 Introductory Example . 42

7.10 Inference-Proofness and Distortion-Minimality 44

8 Active Domain Semantics For the Universal Fragment 47

9 preCQE for Allowed Universal Constraints 56

9.1 The preCQE Algorithm . 61

9.2 Termination, Soundness and Completeness of preCQE 68

Summary of Part II . 79

Science is operated according to the judicial system.
A theory is assumed to be true if there is enough evi-
dence to prove it `beyond all reasonable doubt'. On the
other hand, mathematics does not rely on evidence from
fallible experimentation, but it is built on infallible logic.
{ Simon Singh, Fermat's Enigma

34

35

7 Preprocessing for CQE in Complete Databases

In the following sections, we develop an algorithm that constructs a so-called
\inference-proof" database instance from a given speci�cation of a problem for Con-
trolled Query Evaluation. The algorithm is called preCQE because it\preprocesses"
an instance in the sense that it is executed before a user starts querying the database.

We adopt the terminology and notation of the general CQE framework as de�ned
in Section 4. From a general point of view, the original database db, the user's a
priori knowledge prior and the speci�cation of the con�dential information pot sec

(in the case of potential secrets), form the input of the transformation routine
preCQE that computes a database instance db 0. The user can issue any sequence of
queries to db 0; these queries are evaluated on db0 with ordinary uncontrolled query
evaluation (as de�ned in De�nition 7.4). This is possible because preCQE ensures
that the answers do not disclose any information that would enable the user to infer
con�dential information. This property of db0 is exactly what we call \inference-
proofness". The general thought of this is depicted in Figure 5; a formal de�nition
will be given in Section 7.10.

dbadm

db

secadm

pot sec preCQE db0

user

useradm

prior

maintains

declares

declares

queries

answers

Q = h�1;�2; : : :i

A = heval�(�1)(db
0);

eval�(�2)(db
0);

: : :i

Figure 5: Schematic view of preCQE settings

Before moving on to a detailed description of the system settings, some more words
on notational conventions in this thesis are due: As already mentioned previously,
the administrators express the input (that is, db, pot sec and prior) as �nite sets
of formulas of a logical language L . preCQE is designed for \pure" predicate logic
(that is, �rst-order logic without function symbols except constant symbols); we do
not consider a special equality predicate (which would have an in�nite extension)
or similar arithmetic or \built-in" predicates, either. An incorporation of those
would be no obstacle, though; see Section 14.4 for a comment. More formally,

36 7 Preprocessing for CQE in Complete Databases

the language L includes a �nite set P of predicate symbols and an in�nite (albeit
recursive) set dom of constant symbols. L further includes an in�nite set V of
variables, the quanti�ers 9 and 8 and the connectives : (negation), _ (disjunction)
and ^ (conjunction); sometimes material implication ! is used as an abbreviation
(for a negation and a disjunction).
In general, P and Q represent arbitrary predicate symbols from P. The function
arity(�) returns the arity of a predicate symbol. A single constant from dom is
denoted a, a vector of constants ~a; for disambiguation, indices are used for sets of
di�erent constants, for example fa1; : : : ; ang. Similarly, x, y and z are variables
from V and ~x is a vector of variables. In some contexts, ~a is used as the set of
constants occurring in it, and ~x is used as the set of variables occurring in it. Yet,
to have intuitive examples for the predicate and constant symbols in the examples,
more �gurative denominators like the predicate symbol Ill and the constant symbol
Mary are chosen. Moreover, for the examples it is also assumed that a position
of a predicate symbol only accepts constants from a more speci�c in�nite subset
of dom { the sort of the position { to avoid creation of nonsensical atoms in the
examples. The use of sorts is not incorporated in the general theoretic expositions
to keep presentation simple and readable; however, sorts can be included without
any di�culties.
We write � or 	 and later on � (on occasion with indices) to denote arbitrary
formulas of the language L ; these may sometimes be parametrized with a vector
of their free variables { for example, �(~x) or �(x1; : : : ; xn) { to emphasize that
a formula is open. To speci�cally denote a ground formula (a formula without
quanti�ers and variables) we write � or . Moreover, � and stand for an open
atomic formula (that is, a formula consisting of just one predicate) and a ground
atom, respectively. To denote a literal (that is, an atom that might be negated) we
write �, respectively � for a ground literal; if the atom inside a literal is seeked, we
access it by j�j and j�j. The conjugate of a literal is denoted � or �. On occasion, �
denotes a substitution { in particular, a one-to-one mapping that assigns variables
a constant from dom.
In all formulas, we assume that variables are standardized apart: no variable is
bound by more than one quanti�er and no variable occurs bound and free at the
same time. We assume that variables are also standardized apart between the
formulas; that is, formulas do not have variables in common.
Frequently, we will use\normal form"representations of a formula �. More precisely,
the following normal forms are needed:

� PNF: the prenex normal form pnf (�), where only quanti�ers and variables
are allowed to appear in the \prenex" of the formula; the remaining \matrix"
of the formula is quanti�er-free

� NNF: the negation normal form nnf (�), where negation symbols are only
allowed immediately in front of atoms but nowhere else in the formula

� PLNF: the prenex literal normal form (borrowed from De�nition 4.2 of [GT91])

7.1 Data Model 37

plnf (�) which is a combination of PNF and NNF: it has a prenex of quanti-
�ers and variables and a quanti�er-free matrix where negation symbols occur
immediately in front of atoms.

� CNF: the conjunctive normal form cnf (�), which is a formula in PLNF where
additionally the matrix consists of a conjunction of disjunctions of literals; the
disjunctions of atoms are often referred to as \clauses".

� DNF: the disjunctive normal form dnf (�), which also is a formula in PLNF
but this time with a matrix of a disjunction of conjunctions of literals.

Note that all these normal form representations are equivalent to the original for-
mula �. See also the equivalence-preserving rewrite rules in [AHV95] (Figure 5.1
in Chapter 5).
For sets, the operator card(�) returns the cardinality of a set. For sake of brevity,
singleton sets are usually written without braces. Other notation is introduced as
needed and de�ned in its context. Based on these notational conventions, we now
formalize the basic system settings and the input elements for preCQE with the
help of the taxonomy de�ned in Section 1.

7.1 Data Model

preCQE speci�cally handles the case of complete databases such that the dbadm

speci�es a database schema DS = hPi: the schema consists of the set of relation
symbols P and is based on the set dom as attribute values. In the complete case, we
let DS de�ne L : the set of predicate symbols is P and the set of constant symbols
is dom. An analogous de�nition of a language based on a database schema can be
found in [ABK00].

After having de�ned the database schema DS and thus P, dom and L , the ad-
ministrator dbadm has to create a database instance according to the schema. We
consider a complete database such that the \input instance" db is a �nite set of
ground atoms of the language L and a closed world assumption is made to account
for the negative part of the database. The database instance represents a special
form of interpretation which is called a \DB-interpretation"; this notion is borrowed
from [BB07] (De�nition 1) { albeit with slight notational changes. It is based on
a Herbrand-like interpretation for the constant symbols: we identify the in�nite
universe (of discourse) U of semantic individuals of an interpretation I with the set
dom of constant symbols and let every constant symbol be interpreted by itself; that
is, the interpretation involves a function j that maps each constant symbol from
dom to itself. Furthermore, a DB-interpretation demands that a predicate symbol
corresponds to a �nite relation; that is, the interpretation involves a function i that
maps each predicate symbol of arity n to a �nite relation over domn.

38 7 Preprocessing for CQE in Complete Databases

De�nition 7.1 (DB-interpretation (cf. [BB07], De�nition 1))
A logical structure I = hU ; i ; j i is a DB-interpretation for L i�

1. U = dom

2. i(P) �finite (dom)arity(P) for every P in P
3. j (a) = a for every a in dom

To denote speci�cally the interpretation that is \induced" by a database instance
db we write Idb . The database instance db represents Idb in the following sense: As
we do not have function symbols and the constant interpretation is �xed, the only
thing that is left to be de�ned by db is the interpretation for the predicate symbols
of P. More precisely, for each ground atom P (~a), ~a 2 i(P) if and only if P (~a) 2 db.
Based on such a DB-interpretation I we can now indeed de�ne satisfaction of a
formula of L under I. Starting with ground atoms, we say that I satis�es a
ground atom P (~a) if and only if ~a 2 i(P); alternatively, we say that P (~a) is satis�ed
or true in I, or that I is a model of P (~a); we use the standard model operator j=
to denote satisfaction: I j= P (~a). We ignore variable assignments of free variables,
as we do not need open formulas in the following. This notion of satisfaction is
inductively extended from the ground atoms to arbitrary closed formulas based on
the structure of the formulas.
With these de�nitions of interpretation and satisfaction, we have established the
logical foundation for complete databases (to each query a database returns either
true or false) with instances that are �nitely representable by a set of ground atoms
as their �nite positive part. We �nally require that the database is static and thus
not exposed to updates.

7.2 Constraint Model

As explained previously, database constraints are not speci�ed in the schema, but
in the user's a priori knowledge prior . We require prior to be a set of closed formu-
las (of the language L). More generally in a CQE system, prior can be seen as a
set of constraints that database instances have to satisfy. We assume that already
the input instance db obeys these constraints in prior . Thus, we demand that the
database interpretation induced by db be a model of prior (that is, Idb j= prior)
and thus assigns all formulas in prior the truth value true.
Based on our Data Model we must make sure that prior is indeed satis�able by a
DB-interpretation. We will thus assess sets of formulas in terms of DB-satis�ability:

De�nition 7.2 (DB-satis�ability)
A closed formula � is DB-satis�able i� there is a DB-interpretation I such that

I j= �.
A set S of closed formulas is DB-satis�able i� there is a DB-interpretation I such

that for all formulas � 2 S, I j= �.

7.3 Inference Model 39

In the following parts of this thesis we are in particular interested in �nding syntacti-
cal restrictions for a set of constraint formulas (including prior) to be DB-satis�able.

7.3 Inference Model

In this thesis, we consider precise inference in �rst-order logic. We base inference
on DB-implication as de�ned in [BB07] as follows:

De�nition 7.3 (DB-implication (cf. [BB07], De�nition 2))
For a set S of closed formulas of L and a a closed formula �, S implies � by DB-
implication (written as S j=DB �) i� for all DB-interpretations I such that I j= S

also I j= �.

That is, though �nitely represented by prior the user's a priori knowledge com-
prises the closure of prior under j=DB . Upon querying the database, the a priori
knowledge is augmented with query responses; the closure of prior and all query re-
sponses under j=DB is the knowledge the user disposes of after a number of queries.
Note that the response to an open query always consists of an in�nite set as both
the negative and the positive part of the response are returned explicitly; this is
formalized in the Interaction Model.

As a matter of fact, the user is aware of other facts that cannot explicitly be repre-
sented in prior : he has system knowledge (confer to the description of knowledge
types in Section 1) that extends his inference capabilities. These additional infer-
ences and their treatment in preCQE are explained in the User Model.

7.4 User Model

In this thesis, as opposed to censor-based CQE, only the user's a priori knowledge
prior has to be represented; there is no need for a log �le that records the history
of responses to the user's queries. We make the following assumptions regarding
the user's knowledge:

(a) [Consistent knowledge] The user knowledge has to be consistent set of
formulas because from inconsistent knowledge the user is able to deduce any
proposition in the strict logical settings CQE bases on. This implies that prior
as well as all database responses have to form a consistent set of knowledge.

(b) [Closed system] The user's a priori knowledge is fully represented in prior .
Further, while querying the database, he does not retrieve information outside
of the inference-proof database instance db 0 (at least no information relevant
to the protection of the secrets). As discussed previously in Section 2.3, this
assumption is usual in inference control systems.

40 7 Preprocessing for CQE in Complete Databases

(c) [Monotonic knowledge] The user's knowledge is incremental in the sense
that he just adds (non-contradictory) information to his knowledge. Notably,
he never forgets information once added to his knowledge.

(d) [A priori protection] The a priori knowledge does not imply a secret; for
otherwise if the user inferred a secret already from prior , we could not protect
it. That is,

for all 	 2 pot sec : prior 6j=DB 	

(e) [Disjunctive closure of secrets] For the uniform lying mechanism, we have
an even stricter precondition (that actually implies precondition (d)): The
user must not know (a priori) that the disjunction of the potential secrets is
true.

prior 6j=DB pot sec disj (where pot sec disj :=
_

	2pot sec

) (1)

This is already a precondition for the censor-based CQE with uniform lying
and there kept as an invariant of the user log. As a justi�cation for this
precondition, assume that we have a con�dentiality policy pot sec = f�;	g
(for formulas � and 	 that are both true according to db) and prior = f�_	g;
to the query � the CQE system would return the lie :�, but this would enable
the user to conclude that 	 was true (although he is not allowed to know this);
thus, without requiring Equation 1, the system could run into a situation
where even a lie reveals a secret. In preCQE, we need this precondition in
order to be able to �nd an inference-proof instance (with only lying) that can
give the user responses that are consistent with prior .

(f) [Sophisticated user] The user is sophisticated in the sense that he is a ratio-
nal reasoner and computationally unrestricted in his inference process. Apart
from knowledge of the Constraint Model we also assume some user knowledge
that is not explicitly represented in prior . To wit, the user is aware of the
system settings: He knows the Data Model (a complete database without up-
dates), he knows the Policy Model (the speci�cation of the potential secrets
without knowing their actual truth values in db), and he knows the Protection
Model (uniform lying).

7.5 Interaction Model

The intention of an inference-proof database instance is that the user (as modeled
by prior) is allowed to retrieve uncontrolled responses to any query. That is why
he can interact with the database with the ordinary query evaluation eval�. This
means the preCQE does not incur any query-time performance degradations at all;
all computations are shifted into the preprocessing step. Ordinary query evaluation
is de�ned in [BB07] for complete database instances as follows (again, we slightly

7.6 Policy Model 41

altered notation):

De�nition 7.4 (Ordinary query evaluation for complete db ([BB07]))
An open formula � is evaluated in a complete database instance db according to the

following function that returns a set of formulas in L (where } is the power set

operator):

eval�(�(~x)) : DS ! }f 	 j 	 is a closed formula of L g

with

eval�(�(~x))(db) := f�(~a) j ~a � dom and Idb j= �(~a)g

[f:�(~a) j ~a � dom and Idb 6j= �(~a)g

For a closed formula �, ordinary query evaluation reduces to a singleton set (for

which curly braces are skipped):

eval�(�)(db) :=

(
� if Idb j= �
:� else

7.6 Policy Model

Due to the restriction of the Protection Model to uniform lying, only a policy se-
mantics of potential secrets is of interest { we already mentioned in Section 4.7
that in the case of secrecies, any truth value has to be protected which can only be
achieved by refusal. Hence, for preCQE the dbadm speci�es a set called pot sec of
closed formulas. preCQE protects the value of a secret only if it actually evaluates
to true in the input instance db; which means, in the case of a complete database,
the user is instead allowed to know the value false for a secret.
So far, we do not pose any restrictions on pot sec, apart from the fact that pot sec
must not contain (or imply) tautologies: we cannot prevent a user from knowing
things that are valid in every model. Furthermore, there is delicate connection be-
tween the potential secrets and the user's a priori knowledge: we assume that the
user cannot infer the disjunction of all secrets already from prior . This condition
has been formalized and justi�ed in the User Model.
In the course of this thesis, the potential secrets will be transformed into a set of con-
straints. We will apply to them the same syntactic conditions for DB-satis�ability
that were already mentioned in the Constraint Model for prior .

Implicitly, not only con�dentiality of the potential secrets has to be guaranteed but
also availability of correct data has to be ensured as much as possible. In preCQE
this is made precise with a so called \distortion distance" (whose exact de�nition
will be deferred until Section 7.10) and its minimization. This distortion distance
makes a crucial di�erence to censor-based CQE as described in Section 4.5: while

42 7 Preprocessing for CQE in Complete Databases

in censor-based CQE availability is captured solely by a heuristics, in preCQE the
distortion distance measures availability in concrete �gures.
An explicit speci�cation of availability requirements in a separate availability policy
avail is presented as an extension: its syntax and semantics are de�ned in Section
14.8.

7.7 Protection Model

In contrast to approaches that concentrate on data restriction (upgrading and re-
fusal / denial of access), we design an algorithm for data modi�cation; we adopt the
method of uniform lying from the prior work in censor-based CQE. In Section 7.10
we will ultimately de�ne the notion of an \inference-proof" as well as \distortion-
minimal" database instance, which corresponds to the de�nition of \con�dentiality-
preserving censor" of censor-based CQE. Intuitively, an inference-proof database
instance can be seen as an instance that contains cover stories (as described above
in Section 2.7.2 for MLS databases) for a single user and his associated clearance
level. The novel approach is that we design a fully automated algorithm to ob-
tain the solution database instance and provide the due correctness proofs. [CG01]
present an (incomplete) set of rules that are meant to establish a consistent view of a
database instance containing cover stories; yet, they neither analyze the complexity
of their algorithm nor give a proof of correctness.

7.8 Execution Model

preCQE is content-dependent in the sense that it processes the data of an input
database instance: the entries of the input instance db are taken into account to �nd
the solution instance db0. As long as no updates are considered in the Data Model,
preCQE is executed at instantiation-time { directly after a database instance has
been created.

7.9 Introductory Example

It may be worthwhile to give an example for the CQE settings before continuing
the theoretical exposition. We consider a database with medical data consisting of
two relations: the one called \Ill" relates a person with a diagnosis, the one called
\Treat" relates a person with a medical treatment.

Example 7.5: The database administrator speci�es the language L as having the
�nite set of predicate symbols

P = fIll(Name;Diagnosis);Treat(Name;Treatment)g;

(recall that P coincides with the database schema DS), as well as the in�nite set
of constants

dom = fPete;Mary; Lisa;Paul;Aids;Flu;Cancer;Myopia;MedA;MedB;MedC; : : :g

7.9 Introductory Example 43

In this example, we assume the predicates to be sorted and have the following
in�nite sort subsets of dom: Name = fPete;Mary; Lisa;Paul; : : :g, Diagnosis =
fAids;Flu;Cancer;Myopia; : : :g and Treatment = fMedA;MedB;MedC; : : :g.
As the original database instance db, we have

Ill Name Diagnosis

Pete Aids

Mary Cancer

Treat Name Treatment

Pete MedA

Mary MedB

Ordinary query evaluation on this database instance would for example give the
following results:

eval�(Treat(Pete;MedC))(db) = :Treat(Pete;MedC)

eval�(9xTreat(x;MedA))(db) = 9xTreat(x;MedA)

eval�(Ill(x; y))(db) = fIll(Pete;Aids);:Ill(Pete;Cancer);

:Ill(Pete;Flu); : : : ;

:Ill(Mary;Aids); Ill(Mary;Cancer);

:Ill(Mary;Flu); : : : ;

:Ill(Lisa;Aids); : : : ;

: : : g

The user's a priori knowledge is declared in prior by the user administrator useradm;
we assume in this example, that if the user knows the treatment of a patient, then he
can narrow down the set of possible diagnoses (these formulas could also represent
global integrity constraints of the database):

prior = f8x(Treat(x;MedA)! Ill(x;Aids) _ Ill(x;Cancer));

8x(Treat(x;MedB)! Ill(x;Cancer) _ Ill(x;Flu))g

The security administrator secadm speci�es the potential secrets; in our example,
the modeled user should not be able to infer that there is a patient with the diagnosis
Cancer or the diagnosis Aids.

pot sec = f9xIll(x;Aids);9xIll(x;Cancer)g

Unfortunately, some ordinary query responses enable the user (as modeled by prior)
to infer a potential secret; for instance:

eval�(Ill(Pete;Aids))(db) j=DB 9xIll(x;Aids)

prior [eval�(9x(Treat(x;MedB) ^ :Ill(x;Flu)))(db) j=DB 9xIll(x;Cancer) }

44 7 Preprocessing for CQE in Complete Databases

7.10 Inference-Proofness and Distortion-Minimality

In this section we set forth all the terminology necessary to analyze and avoid the
problem of harmful inferences due to ordinary query evaluation. As a main contri-
bution, \inference-proofness" for a database instance with respect to given speci�ca-
tions of a user's a priori knowledge prior and potential secrets pot sec is introduced.
It serves the purpose of setting terms for the security goal of con�dentiality on the
strict logical background of CQE. First of all, an inference-proof instance db 0 has
to be consistent with the user's knowledge: from database responses that are in-
consistent with prior , the user can infer any proposition whatsoever { including all
potential secrets. Consistency involves that the interpretation Idb

0
induced by db0

is a model of prior . We also demand that Idb
0
is not a model of any of the potential

secrets. This gives rise to the following de�nition within the CQE settings relevant
to this part of the thesis, particularly the complete database case.

De�nition 7.6 (Inference-proofness for complete database instance)
Given a set prior and a set pot sec, a complete database instance db0 is called

inference-proof (with respect to prior and pot sec) if and only if

(i) Idb
0
j= prior

(ii) Idb
0
6j= 	 for every 	 2 pot sec

We now show that this formal de�nition coincides with the intention that ordinary
query evaluation can be used to respond to the queries of a user without enabling
the user to infer secrets. That is, assuming a complete inference-proof database
instance db 0 and the speci�cation of potential secrets pot sec known to a user with
a priori knowledge prior , no �nite response sequence reveals secret information.

Theorem 7.7 (Non-inferability of secrets)
For an inference-proof database instance db 0 and a �nite sequence of queries Q =
h�1; : : : ;�ni, the following is true:

prior [
[

i=1:::n

eval�(�i)(db
0) 6j=DB 	, for every 	 2 pot sec

Proof. From inference-proofness we know that Idb
0
j= prior and from the de�nition

of ordinary evaluation we know that Idb
0
j= eval�(�i)(db

0) (for i = 1 : : : n), such
that the union of prior and the query responses eval�(�i)(db

0) is a consistent set of
formulas with model Idb

0

Idb
0

j= prior [
[

i=1:::n

eval�(�i)(db
0):

Second, inference-proofness gives us Idb
0
6j= 	 (for every 	 2 pot sec). That is, Idb

0

is a counterexample for the DB-implication (j=DB) of any potential secret: while
being a model (j=) of the left-hand side of the DB-implication, it is not a model of
the right-hand side.

7.10 Inference-Proofness and Distortion-Minimality 45

Recall from Section 4.5 that under the assumption of a \known policy" the user is
aware of the speci�cation of pot sec. In this case, for complete databases we are
left only with the option to evaluate potential secrets to false in the inference-proof
database:

Corollary 7.8 (Negated potential secrets for known policy)
For a complete database and known pot sec, Item (ii) in De�nition 7.6 is equivalent

to

Idb
0

j= :	 for every 	 2 pot sec

This is justi�ed by the fact that to a query 	 (for 	 2 pot sec), db 0 de�nitely has
to respond with :	 { independent of whether this a lie or a truthful response. In
the following we will thus often need the set of negations of potential secrets:

De�nition 7.9 (Set of negated potential secrets)
For a set pot sec of potential secrets the negated potential secrets are de�ned as

Neg(pot sec) := f:	j	 2 pot secg

Summarizing, for the case of a complete database and a known policy of po-
tential secrets, an inference-proof instance db0 is one that induces a model of
prior [Neg(pot sec):

Idb
0

j= prior [Neg(pot sec)

From now on we call the set prior [Neg(pot sec) \constraint set" { written C for
short { and speak of its elements as \constraints"; that is:

De�nition 7.10 (Constraint set)
For a set prior and a set pot sec, the constraint set is

C := prior [Neg(pot sec)

In the following theorem we utilize the precondition for the a priori knowledge (as
given in Item (e) of the User Model in Section 7.4) to show that the corresponding
constraint set is DB-satis�able.

Theorem 7.11 (Satis�ability of constraint set)
Assuming prior 6j=DB pot sec disj , the constraint set C is DB-satis�able.

Proof. The assumption ensures that pot sec disj is not a tautology (otherwise it
would be implied by prior) such that Neg(pot sec) is indeed satis�able. prior itself
is satis�able, too, as we require the user knowledge to be consistent. More precisely,
applying the de�nition of DB-implication (De�nition 7.3) in contraposition, there
is a DB-interpretation I such that I j= prior and I 6j= pot sec disj . But then, for
all 	 2 pot sec also I 6j= 	 holds and thus (for complete db) I j= :	 holds. In other
words, I j= Neg(pot sec). This ensures that indeed I j= C.

46 7 Preprocessing for CQE in Complete Databases

While inference-proofness is intended to ensure con�dentiality, \distortion minimal-
ity" responds to the issue of availability. We de�ne the \distortion distance" of a
database instance db0 with respect to the original input instance db as the number
of ground atoms that have a di�erent evaluation in db 0 than in db. In essence, we
calculate the cardinality of the symmetric di�erence of the two instances. The sym-
metric di�erence is the standard cardinality-based distance, which is widely used
in belief revision and related �elds; there it is often called \Dalal's distance" (see
[Win90]).

De�nition 7.12 (Distortion distance)
The distortion distance of a database instance db0 with respect to the input instance
db is

db dist(db0) := card(db � db 0):

As we are interested in minimizing the di�erences between the input instance and
the inference-proof solution instance, we also need the notion of \distortion mini-
mality":

De�nition 7.13 (Distortion minimality)
An inference-proof database instance db 0 is distortion-minimal, i� there is no other

inference-proof database instance db00 such that

db dist(db0) > db dist(db 00):

We continue Example 7.5 to illustrate the notions of inference-proofness and dis-
tortion minimality.

Example 7.14: As a preparation for the constraint set C, Neg(pot sec) is produced:

Neg(pot sec) = f8x:Ill(x;Aids); 8x:Ill(x;Cancer)g

prior is identical to the one in Example 7.5. Now the task is to �nd a satisfying DB-
interpretation for the constraint set C = prior [Neg(pot sec); in other words, we
are looking for a model of C that can be represented by an inference-proof database
instance. To start with, we can see that the precondition of Theorem 7.11 is satis�ed
in this example, that is (after standardizing variables apart in pot sec disj) it holds
that prior 6j=DB 9x(Ill(x;Aids)) _ 9y(Ill(y;Cancer)). From Theorem 7.11 we know
that C is DB-satis�able. Indeed we notice that the empty database instance db 01 = ;
is a solution candidate: Idb

0
1 is a model of prior , but it's not a model of any of the

potential secrets. We can calculate that its distortion distance is db dist(db01) = 4.
A second inference-proof instance is the following db 02:

Ill Name Diagnosis

Mary Flu

Treat Name Treatment

Mary MedB

47

db 02 also has distortion distance db dist(db02) = 4. We can see that both instances are
distortion-minimal because other inference-proof instances have greater distances.}

The de�nitions of this and the previous section form the basis for the forthcoming
examination of the topic. In the following sections, we de�ne di�erent syntactical
restrictions for the constraint set C and study their e�ect on the decidability and
the complexity of the problem. Yet, in general we assume formulas to be in PLNF
which does not reduce expressiveness and can easily be obtained by pushing negation
symbols inward and moving quanti�ers to the front of the formula.

8 Active Domain Semantics For the Universal Fragment

Given that the satis�ability problem for general �rst-order logic and also full predi-
cate logic is undecidable (see for example the book on the classical decision problem
[BGG01]), it is appropriate to narrow our sights to speci�c fragments of predicate
logic. In this section, we restrict the formulas under consideration in the following
manner: we require that the formulas be closed and additionally be in PLNF (as
de�ned in Section 7) where we further assume that the prenex contains only uni-
versal quanti�ers; we call such formulas \universal formulas":

De�nition 8.1 (Universal formulas)
A formula � = 8~x	(~x) is a universal formula i� it is a closed formula in PLNF

with universal prenex 8~x and ~x consists of all variables occurring free in the matrix

	(~x).

We will also extensively use the notion of the \active domain" of a set of formulas
and thus introduce it already here:

De�nition 8.2 (Active domain)
The active domain of a set S of formulas is the set of all constant symbols that

occur in some formula of S:

adom(S) := f a j a 2 dom and a is a constant in a formula of Sg

We are speci�cally interested in the active domain of the original database in-
stance db and the active domain of the constraint set C: we simply write adom for
adom(db [C) if db and C are clear from the context.

When looking for constraints that are DB-satis�able we see that a restriction to
universal formulas is not enough: If arbitrary universal formulas are allowed in C,
it may be the case that the constraints are not satis�able by a database instance
with a �nite positive part. For example, a constraint 8xP (x) can only be satis�ed
by positing P (a) for all the in�nitely many values a of the in�nite domain dom;
thus, in�nitely many database entries would be necessary to satisfy it. We must

48 8 Active Domain Semantics For the Universal Fragment

agree on some restrictions for the constraints to ensure �niteness of the positive
part.
In database theory, the problem of �niteness of query answers has long been in-
vestigated; it lead to the de�nition of \safe" queries, that is, queries that have a
�nite response based on a �xed domain. On the other hand, \domain-independent"
queries are those that evaluate to the same responses for a given database instance
even in di�erent domains; that is, evaluation of a domain-independent query de-
pends only on the instance and not on the domain. The reader may readily note
that for database instances, domain-independent queries are also safe, because their
evaluation can e�ectively be restricted to the �nite active domain of the database
instance. As both safety and domain independence of queries are undecidable,
syntactic restrictions for queries that de�ne a decidable subclass of safe or domain-
independent queries were seeked. Several characterizations of di�ering complexity
have been proposed; see [AHV95] (Chapter 5.3) for an overview.

We pose analogous syntactic restrictions on the formulas in the constraint set C.
To be able to decide e�ciently whether a given formula complies with the restric-
tions (and also to keep proofs short and readable), we aim at characterizing such
restrictions based on the CNF representation of a formula. We resort to the de�-
nitions of van Gelder and Topor (see [GT91]) for their \allowed" formulas, though
in this section we will only consider universal formulas and thus we do not allow
existential quanti�cation and equality for now. Yet, to begin with, we state the
general de�nition of allowed formulas based on the gen-relation (as an abbreviation
for \generated") between variables and formulas. Intuitively, the allowed property
ensures that each subformula that has to be evaluated returns a �nite result; in
other words, variables that could be bound to in�nitely many values when evaluat-
ing one subformula are bound to only �nitely many values when evaluating another
subformula and additionally this second subformula can be evaluated �rst. More
precisely, van Gelder and Topor state that for a variable x and a formula �(x)
(where x occurs freely) if gen(x;�(x)) holds, x will be bound to constants that
appear in the formula � directly or to constants that occur in the database rela-
tions whose relation symbols appear in � (see [GT91], page 244): that is, when the
formula � is evaluated, x ranges over a subset of adom.
Van Gelder and Topor de�ne the gen-relation by stating a set of rules and taking the
closure of these rules after a �nite number of applications. To facilitate readability,
we changed the inductive statements of their de�nition from the rule notation to
a de�nitional notation (with \i�s" and one \if") { which is similar to the inductive
de�nitions in [Dem92].

De�nition 8.3 (Allowed formulas / gen-relation ([GT91]))
An arbitrary formula � is allowed (or has the allowed property) i�

� for every x that is free in �, gen(x;�) holds

� for every subformula 9x	 of �, gen(x;) holds

49

� for every subformula 8x	 of �, gen(x;:) holds

The relation gen for an atom �1 is de�ned by:

gen(x;�1) holds i� x is free in �1 (2)

This de�nition is inductively extended as follows:

gen(x;:�1) does not hold if �1 is an atom (3)

gen(x;:�1) holds i� gen(x; pushnot(:�1)) holds

and �1 is not an atom (4)

gen(x;9y�1) holds i� x and y are distinct and gen(x;�1) holds (5)

gen(x;8y�1) holds i� x and y are distinct and gen(x;�1) holds (6)

gen(x;�1 _ �2) holds i� both gen(x;�1) and gen(x;�2) hold (7)

gen(x;�1 ^ �2) holds i� gen(x;�1) or gen(x;�2) holds (8)

where again the function pushnot is de�ned for the following formulas:

pushnot(:(�1 ^ �2)) = (:�1) _ (:�2)

pushnot(:(�1 _ �2)) = (:�1) ^ (:�2)

pushnot(:9x�1) = 8x:�1

pushnot(:8x�1) = 9x:�1

pushnot(::�1) = �1

The reader will readily note that ground formulas (that is, formulas without vari-
ables) always have the allowed property by this de�nition. Now we apply this
general de�nition to our special case of universal formulas. When restricted to uni-
versal formulas, De�nition 8.3 reduces to the following De�nition 8.4; note that all
quanti�ed variables are distinct and thus their quanti�ers can be skipped due to
Rules 4 and 5 and the pushnot de�nition for :8:

De�nition 8.4 (Allowed universal formulas)
Let � = 8~x	(~x) be a universal formula. � is an allowed universal formula i� for

every x 2 ~x, gen(x;:	(~x)) holds.

Consider � = 8x(Treat(x;MedA) ! Ill(x;Aids)) as a tiny example formula: it is
an allowed universal formula because, when replacing the connective ! (with a :
and an _ symbol), we have � = 8x(:Treat(x;MedA) _ Ill(x;Aids)). We can now
verify that for x the gen-relation gen(x;:(:Treat(x;MedA) _ Ill(x;Aids))) indeed
holds; after two applications of pushnot , we are left with gen(x;Treat(x;MedA) ^
:Ill(x;Aids)) and this holds because gen(x;Treat(x;MedA)) holds: the variable x
occurs freely in the ground atom Treat(x;MedA).

50 8 Active Domain Semantics For the Universal Fragment

While van Gelder and Topor show that the \evaluable" property (originally by De-
molombe [Dem92]) of a formula can be e�ciently veri�ed with the help of its CNF
representation (cf. [GT91], Theorem 7.2), there is no such characterization for
allowed formulas in general. The problem with arbitrary allowed formulas is that
moving the quanti�ers into the prenex (that is transforming the formula into PLNF)
can destroy the allowed property; for example, a formula like �_9x	(x) (where x
does not occur in �) is allowed but 9x (� _	(x)) is not.
In the following we show that for our allowed universal formulas (that is, allowed
formulas that are already in PLNF with universal prenex) such a CNF-based veri�-
cation for the allowed property is possible. While van Gelder and Topor concentrate
on the evaluable property and the corresponding con(strained)-relation, we extend
their results (cf. [GT91], Theorem 6.6) to our case of allowed universal formula and
elaborate the proofs for the gen-relation. As a preliminary step, we show that the
CNF representation of an allowed universal formula is allowed and vice versa. Note
that this is not the case for arbitrary allowed or evaluable formulas.

Lemma 8.5 (Allowed property of CNF)
A universal formula � = 8~x	(~x) is allowed i� its CNF representation cnf (�) is
allowed.

Proof. The CNF representation of � is the CNF representation of 	 and the unal-
tered prenex: cnf (�) = 8~x cnf ((~x)) by de�nition of CNF formulas. Now, when
transforming 	 into CNF, only the distributive law of \pushing ors" is necessary:

	1 _ (2 ^	3) � (1 _	2) ^ (1 _	3)

We have to show that gen(x;:	(~x)) holds if and only if gen(x;:cnf ((~x))) holds
(for every x 2 ~x); that is, in essence we have to show that the application of the
pushnot-function as well as the application of the distributive law do not interfere
with the allowed property.
First, when starting with the left side of the distributive law, we see that:

gen(x;:(1 _ (2 ^	3))) holds

() gen(x; pushnot(:(1 _ (2 ^	3)))) holds

() gen(x;:	1 ^ :(2 ^	3)) holds

() gen(x;:	1) holds or gen(x;:(2 ^	3)) holds

() gen(x;:	1) holds or gen(x; pushnot(:(2 ^	3))) holds

() gen(x;:	1) holds or gen(x;:	2 _ :	3) holds

() gen(x;:	1) holds or both gen(x;:	2) and gen(x;:	3) hold

Second, when starting from the right side, we have:

gen(x;:((1 _	2) ^ (1 _	3))) holds

() gen(x; pushnot(:((1 _	2) ^ (1 _	3)))) holds

51

() gen(x;:(1 _	2) _ :(1 _	3)) holds

() both gen(x;:(1 _	2)) and gen(x;:(1 _	3)) hold

() both gen(x; pushnot(:(1 _	2))) and gen(x; pushnot(:(1 _	3))) hold

() both gen(x;:	1 ^ :	2) and gen(x;:	1 ^ :	3) hold

() at least one of (gen(x;:	1) and gen(x;:	2)) holds as well as

at least one of (gen(x;:	1) and gen(x;:	3)) holds

() gen(x;:	1) holds or both gen(x;:	2) and gen(x;:	3) hold

Thus, we reach at the same conclusion as in the �rst part from the left side. From
these equivalences the claim of the lemma follows.

We now move on to our main result for the recognition of allowed universal formulas:
the allowed property of a universal formula can be veri�ed by means of syntactical
characterization of its CNF representation. This result { the following Theorem 8.6
{ will be of great help for the forthcoming considerations of inference-proof database
instances.

Theorem 8.6 (CNF-based veri�cation of allowed property)
A universal formula � = 8~x	(~x) is allowed i� every variable x 2 ~x occurs in every

conjunct of cnf (�) in a negative literal (x may or may not occur in other negative

or positive literals in a conjunct).

Proof. We start with the \left-to-right" direction. From Lemma 8.5 we know that
8~x	(~x) is allowed if and only if 8~x cnf ((~x)) is allowed. From the allowed property
we know that gen(x;:cnf ((~x))) has to hold for any x 2 ~x. We thus take a closer
look at the structure of the CNF representation. We know that cnf ((~x)) consists
of conjuncts �i:

cnf ((~x)) = �1 ^ : : : ^�m

and each conjunct �i consists of a disjunction of literals �ij :

�i = �i1 _ : : : _ �ini :

Now, a transformation into NNF can be achieved by pushing the negation symbols
inwards; nnf (:cnf ((~x))) consists of disjuncts �i:

nnf (:cnf ((~x))) = �1 _ : : : _�m

where each �i is a conjunction of the conjugates of the literals �ij :

�i = �i1 ^ : : : ^ �ini :

We now have to make sure that pushing negation does not inuence the gen-
property. This is basically an application of the de�nitions:

gen(x;:(1 ^	2)) holds () gen(x; pushnot(:(1 ^	2))) holds

52 8 Active Domain Semantics For the Universal Fragment

() gen(x;:	1 _ :	2) holds

() both gen(x;:	1) and gen(x;:	2) hold

gen(x;:(1 _	2)) holds () gen(x; pushnot(:(1 _	2))) holds

() gen(x;:	1 ^ :	2) holds

() gen(x;:	1) or gen(x;:	2) holds

gen(x;::) holds () gen(x; pushnot(::)) holds

() gen(x;) holds

From these equivalences we know that gen(x;nnf (:cnf ((~x)))) holds if and only
if for every �i, gen(x;�i) holds. And this is equivalent to the fact that (for every
�i) there is a ji such that for the literal �iji indeed gen(x;�iji) holds. This again
means that �iji has to be an atom where x occurs freely. From this we conclude
�iji has to be a negative literal and such a literal has to exist for every conjunct �i

in the CNF representation. As all these deductions are based on equivalences, the
opposite direction follows, too.

Our tiny example formula � = 8x(Treat(x;MedA)! Ill(x;Aids)) is already in CNF
{ to wit, cnf (�) = 8x(:Treat(x;MedA) _ Ill(x;Aids)). In the single conjunct of
its matrix, :Treat(x;MedA) _ Ill(x;Aids), x occurs not only in the positive literal
Ill(x;Aids) but also in the negative literal :Treat(x;MedA) which makes it allowed.

Note that Theorem 8.6 provides an elegant mechanism to recognize allowed univer-
sal formulas: instead of checking the gen-relation inductively for every subformula,
it is possible to recognize allowed universal formulas by their CNF representation.
Yet, the preCQE algorithm (as will be presented in Section 9) does not depend
on CNF input; on the contrary, it accepts allowed universal formulas of arbitrary
structure. We consider this a great advantage of preCQE over other CNF-dependent
�rst-order procedures; further comments on this will be given in Section 15.
Internally, preCQE transforms an allowed universal input formula � by

1. negating the formula: :�

2. pushing the negation inwards such that the formula is in PLNF: plnf (:�)

3. dropping the prenex of the formula (including all the quanti�ers) such that
only its matrix is left where all variables now occur free: dropprenex (plnf (:�))
(we implicitly introduce the function dropprenex here that e�ectively returns
the matrix of its input formula)

While the technical details will be �lled in in Section 9, we anticipate here a novel
theoretical result for negations of allowed universal formulas that are transformed
into PLNF and freed of their prenex { that is, quanti�er-free formulas of the form
dropprenex (plnf (:�)).

Lemma 8.7 (Negations of allowed universal formulas)
If � is an allowed universal formula, dropprenex (plnf (:�)) is an allowed formula.

53

Proof. As � is allowed universal of the form � = 8~x	(~x), the PLNF of its nega-
tion has the form plnf (:�) = 9~xnnf (:	(~x)). We drop the prenex such that
dropprenex (plnf (:�)) = nnf (:	(~x)). Yet, we can easily see that nnf (:�) is an
allowed formula (by De�nition 8.3): Due to � being allowed universal, we can be
sure that gen(x;:	(~x)) holds. What is left to show is that pushing the nega-
tion inwards does preserve the allowed property. That is, we have to show that
gen(x;nnf (:	(~x))) holds for every x 2 ~x; as already shown in Theorem 8.6, this is
the case because the gen-relation is actually de�ned (De�nition 8.3) by pushing :
inwards and thus the allowed property carries over to nnf (:	(~x)).

Lastly, we briey motivate why the treatment of allowed universal formulas and
their negations is sensible:

Remark 8.8 (Evaluation properties of allowed formulas): The transformed formula
dropprenex (plnf (:�)) inherits the nice properties of allowed formulas; to wit, when
an allowed formula is evaluated in a database instance,

� all results (including intermediate results) will be �nite such that the evalua-
tion can e�ectively be computed; van Gelder and Topor show this by devising
a procedure that transforms allowed formulas into a\relational algebra normal
form" RANF.

� all free variables are mapped to a subset of adom such that the evaluation
result consists of a �nite set of ground formulas with adom constants. }

The reader may observe, that our properties are stricter than the properties for
range-restricted formulas (see [Nic82] or page 102 of [AHV95]) or evaluable formulas
(see [GT91]): in range-restricted and evaluable formulas, quanti�ed variables are
allowed to be absent in some conjuncts of the CNF-formula, while in our de�nition
they have to occur in every conjunct owed to the fact that quanti�ed variables
become free after an application of dropprenex . Yet, this obvious disadvantage is
compensated by our treatment of a constraint set (instead of analyzing a single
query alone).

We now want to show that for a constraint set C that contains only allowed uni-
versal formulas, e�ectively the \active domain semantics" (see [AHV95]) can be
employed. We allege that we only have to consider values from adom when looking
for an inference-proof instance db0. We denote by db0jadom the set of ground atoms

such that db 0jadom � db 0 where all ground atoms of db 0 that contain constants not
in the active domain adom are removed. More formally:

De�nition 8.9 (Restriction to active domain)
The restriction to adom of a database instance db 0 is

db0jadom := f j 2 db0 and all constants in are in adom g

54 8 Active Domain Semantics For the Universal Fragment

The main result of this section in terms of inference-proofness is presented next:
The restriction to adom of an inference-proof database instance is also an inference-
proof database instance.

Theorem 8.10 (Active domain semantics for allowed constraints)
For a set C = prior [Neg(pot sec) of allowed universal formulas, and an inference-

proof database instance db0, db 0jadom is an inference-proof database instance.

Proof. Due to db0jadom � db0, db 0jadom is clearly a database instance with a �nite
positive part that complies with the database schema.
To show that db0jadom also satis�es De�nition 7.6, we �rst of all prove that if Idb

0
j= C

then also I
db0

jadom j= C by contradiction. Thus, assume that I
db0

jadom 6j= C. This
means that there is a constraint � in C that is not satis�ed in db 0jadom ; that is,

I
db0

jadom 6j= �. � cannot be a ground formula because db 0 and db 0jadom coincide on

ground atoms with only adom constants by de�nition: Idb
0
j= if and only if

I
db0

jadom j= . Thus, � is an allowed universal formula of the form � = 8~x	(~x).
This in turn means that there is a tuple ~a of constants for which the ground formula

	(~a) is not satis�ed in db0jadom , that is, I
db0

jadom 6j= 	(~a).

Due to equivalence, also the CNF representation is not satis�ed: I
db0

jadom 6j= cnf ((~a)),
where cnf ((~a)) consists of the (ground) conjuncts �i: cnf ((~a)) = �1 ^ : : : ^ �m
and the conjunct �i consists of literals: �i = �i1 _ : : : _ �ini . Thus we know that

there is one �i for which I
db0

jadom 6j= �i and accordingly I
db0

jadom 6j= �ij for all literals
�ij in �i. We now di�erentiate the following cases:

1. �ij contains only adom constants

(a) if �ij is a negative literal, then j�ij j 2 db0jadom ; but because db
0
jadom � db0

(by de�nition) then also j�ij j 2 db 0 and Idb
0
6j= �ij

(b) if �ij is a positive literal (that is, a ground atom), then also Idb
0
6j= �ij ;

because otherwise Idb
0
j= �ij if and only if �ij 2 db 0 and hence also

�ij 2 db 0jadom but then I
db0

jadom j= �ij would hold { a contradiction

2. �ij contains a constant a 2 ~a which is not in adom

(a) �ij cannot be a negative literal because otherwise j�ij j 2 db 0jadom but

db0jadom does not contain any non-adom constants by de�nition

(b) if �ij is a positive literal, the allowed property (of �) demands that there
be a negative literal �i(a) which contains the non-adom constant a; yet,
the Case 2a) impedes the existence of such a negative literal �i(a)

From these cases we conclude that Idb
0
does not satisfy the conjunct �i which

contradicts our assumption that db 0 is an inference-proof database instance. That

55

is, we can be sure that I
db0

jadom j= C and use Corollary 7.8 to conclude that db 0jadom
is indeed inference-proof.

We illustrate the notions of the allowed property and the active domain semantics
with the help of Example 7.14.

Example 8.11: Note that Example 7.14 illustrates the settings for allowed universal
constraints: When replacing the material implication \!" in C, the constraints are
already in CNF:

C = f8x(:Treat(x;MedA) _ Ill(x;Aids) _ Ill(x;Cancer));

8x(:Treat(x;MedB) _ Ill(x;Cancer) _ Ill(x;Flu));

8x:Ill(x;Aids);

8x:Ill(x;Cancer)g

They have the allowed property because the variable x appears in every conjunct in
a negated literal. We also see that both db 01 and db02 do not contain any non-adom
constants. }

We conclude from Theorems 8.10 and 7.11 that under the CQE precondition for
uniform lying (as already used in Theorem 7.11) for allowed universal constraint
formulas there is at least one inference-proof instance in which only adom constants
occur:

Corollary 8.12 (Inference-proof instances with active domain semantics)
Given a constraint set C of allowed universal formulas and assuming prior 6j=DB

pot sec disj , there exists an inference-proof solution instance (with respect to prior

and pot sec) that contains only adom constants.

In Example 7.14 we have already veri�ed that this precondition for the example
sets prior and pot sec holds.

To be sure that the restriction to the active domain is a good choice, we must now
show that the restricted instance db 0jadom has at least as good a distortion distance
as the unrestricted instance db0. This is done in the following theorem.

Theorem 8.13 (Distortion minimization with active domain semantics)
For a set C of allowed universal constraints, the distortion distance of db0jadom is

not greater than the one of db0; that is,

db dist(db0jadom) � db dist(db 0):

Proof. First of all note that db n db 0 is the same as db n db 0jadom : both the restricted
and the unrestricted instance only di�er on ground atoms that are not contained
in db because the ground atoms in db only contain values from adom. On the
other hand, we can see that (db0jadom n db) � (db0 n db) because db0jadom � db0. In

conclusion, we have card(db � db0jadom) � card(db � db0).

56 9 preCQE for Allowed Universal Constraints

With the active domain semantics we know that we only have to check instantiations
of database predicates with constants in adom to �nd an inference-proof database
instance. That is, we can establish an upper bound for the distortion distance as
the number of all possible ground atoms with adom constants.

Corollary 8.14 (Upper bound of distortion distance)
For a set C of allowed universal constraints, the distortion distance for db0jadom (for

any inference-proof instance db 0) can be bounded as follows

db dist(db0jadom) �
X
P2P

P occurs in C

card(adom)arity(P)

To illustrate the upper bound, we continue the running example.

Example 8.15: Continuing Example 8.11, we can now calculate an upper bound
value for the distortion distance; we identify as the active domain of db and C the
set fPete;Mary;Aids;Cancer;Flu;MedA;MedBg and thus card(adom) = 7. Yet, for
the sorted predicate symbols we consider in this example we can restrict the general
active domain to the active domains of the sorts; in this case, the upper bound can
be calculated as

db dist(db 0) � card(adom \Name) � card(adom \Diagnosis)

+card(adom \Name) � card(adom \ Treatment)

= 6 + 4 = 10 }

9 preCQE for Allowed Universal Constraints

Based on the theoretical background of the previous section, we present an algorithm
for the case of allowed universal constraints as de�ned in Section 8 { recall that this
means that the formulas are closed and in prenex literal normal form (PLNF) with
only universally quanti�ed variables that additionally have the allowed property; we
have already remarked that this especially includes ground formulas in NNF. We
�nd the solution instance db 0 by searching along branches in a binary \search tree".
Some leaf in the search tree is then chosen as an instruction how to transform the
original instance db into the solution instance db 0. The tree is traversed in depth-
�rst search manner: one branch at a time is processed.
Branches are constructed by a \splitting" operation that creates two child nodes.
It assigns a ground atom the value false in the left child node; in other words, the
ground atom is either removed from the database instance (if it was included in
db) or left out of the instance (if it was not included). In the right child node, the
ground atom is assigned true; in other words, the ground atom is added to or kept

57

in the database instance.
Yet, it may occur that there is actually no need for a splitting operation: only
one of the two truth values (either true or false) for a ground atom promises the
opportunity to satisfy a constraint. Then no new nodes are created but instead the
unique truth value is assigned to the ground atom in the current node. In particular,
this strategy applies to \unit constraints" { the ones containing only a single literal;
thus, the truth valuations of all the ground atoms a�ected by a unit constraint are
set to the truth value that is predetermined by the constraint. Before starting with
the technical details we give an example of a preCQE input in Example 9.1 and
show its associated search tree in Figure 6.

Example 9.1: We continue Example 8.15. That is, we have the input instance

db = fIll(Pete;Aids); Ill(Mary;Cancer);Treat(Pete;MedA);Treat(Mary;MedB)g

and the constraint set

C = f8x(:Treat(x;MedA) _ Ill(x;Aids) _ Ill(x;Cancer));

8x(:Treat(x;MedB) _ Ill(x;Cancer) _ Ill(x;Flu));

8x:Ill(x;Aids);

8x:Ill(x;Cancer)g

Figure 6 shows how a solution for this input could be found. At the outset, we sat-
isfy the two unit constraints 8x:Ill(x;Aids) and 8x:Ill(x;Cancer): the removal of
the two entries Ill(Pete;Aids) and Ill(Mary;Cancer) in the root node is unequivocal.
The �rst splitting step then corresponds to the decision whether to keep the atom
Treat(Pete;MedA) or not. The splitting gives rise to a further splitting step in the
left child node v1 where ultimately in node v2 the solution instance db 01 is found.
Node v3 also yields a solution instance { db 02 { in the following manner: After the
splitting operation, we furthermore have to add Ill(Mary;Flu) (in order to satisfy
the second constraint formula). Yet, in this situation we do not have to split any-
more because the other atoms in the formula (in this case, Treat(Mary;MedB) and
Ill(Mary;Cancer)) have already been treated.
The root's right child node v4 fails (that is, its branch is \pruned"): With the
splitting operation we decided to keep the database entry Treat(x;MedA) but then
the atom Ill(Pete;Cancer) has to be added (in order to satisfy the �rst constraint
formula). This indeed constitutes an unresolvable conict with the unit constraint
8x:Ill(x;Cancer).
Note that this procedure results exactly in the solution candidates db01 and db

0
2 from

Example 7.14. }

We now move on to a technical description of the preCQE procedure. preCQE
assigns truth values by marking ground atoms in the original database instance:
a special value is temporarily appended to the ground atom that designates the

58 9 preCQE for Allowed Universal Constraints

node r
remove Ill(Pete;Aids)
remove Ill(Mary;Cancer)

node v1
remove Treat(Pete;MedA)

node v2
remove Treat(Mary;MedB)

node v3
keep Treat(Mary;MedB)
add Ill(Mary;Flu)

node v4
keep Treat(Pete;MedA)
add Ill(Pete;Cancer)

db01
db 02

PRUNE

Splitting

Splitting

Figure 6: Example for active domain semantics

intended truth valuation for the ground atom in the resulting instance db0. In
this way, the markers represent an interpretation for the predicate symbols in the
languageL . In some cases, a ground atom has to be added to the database instance
before its marker is set. In what follows, we will speak of a \marked database
instance" dbv and mean by it the database instance with marked ground atoms in
a node v of the search tree. More precisely, a marked database instance dbv is a
�nite set of ground atoms some of which are marked.
The following markers are used:

1. \keep" (k) signifying that the according ground atom of db should be retained
in db0

2. \add" (a) signifying that the according ground atom is not contained in db

but should be added to db 0

3. \remove" (r) signifying that the according ground atom of db should not occur
in db0

4. \leave" (l) signifying that the according ground atom is not contained in db

and should also be left out of db 0

As a more general notation, we use the function markerv () to access and set
the marker for a ground atom in a marked database instance dbv. We can for
example write markerv (P(~a)) := a to set a marker a for a ground atom P (~a); its
meaning is that P (~a) was false in the input instance db (due to the closed world

59

assumption for complete databases), but that it has to be true in the solution
instance db 0. To denote that no marker for is set (that is, is \unmarked"), we
write markerv () 62 fk; a; r; lg; this applies to both ground atoms contained in
dbv as well as ground atoms not contained in dbv. We extend the marker -function
to also be applicable to ground literals; that is, for a ground literal �, markerv (�)
returns the marker markerv () of the ground atom = j�j.
Markers can be implemented by an additional attribute in each relation (that is,
an additional column in the data tables); values for the markers are inserted in
the column when descending the search tree. This implementation also facilitates
backtracking in the search tree as this now corresponds to a deletion of some marker
values. A slightly di�erent notion (using a bit vector) can be found in [EFGL08]
(page 10:36) in the context of consistent query answering. Yet, when using a ground
atom in the theoretical exposition we will not include the marker as a an additional
attribute; instead, we will access the marker only with the help of the marker -
function. This is crucial when a new model operator is introduced in De�nition 9.4.

For an arbitrary formula �, we de�ne the function unmarkedv (�) that returns the
set of all unmarked ground literals in � { that is, all literals that contain an un-
marked ground atom; this de�nition is extended to sets of formulas:

De�nition 9.2 (Set of unmarked ground literals)
For a formula � and a marked instance dbv, the following function returns the set

of ground literals that are unmarked with respect to dbv:

unmarkedv (�) := f� j � is ground literal in � and markerv (�) 62 fk; a; r; lgg

For a set S of arbitrary formulas

unmarkedv (S) :=
[
�2S

unmarkedv (�)

Note that unmarkedv (�) does not contain j�j if � is a negative literal. To denote that
a ground atom is unmarked in dbv, we can now abbreviatorily write unmarkedv () =
; to denote that a marker for is set, we can write unmarkedv () = ; or analo-
gously card(unmarkedv ()) = 0.

A marked database instance corresponds to a\normal"unmarked database instance
when all the ground atoms that are marked with r or l are removed; that is, the
marked database instance is restricted to the \positive" ground atoms:

De�nition 9.3 (Positive restriction of dbv)
The positive restriction of a marked database dbv is:

dbposv := f j 2 dbv and markerv () 62 fr; lg g

60 9 preCQE for Allowed Universal Constraints

Upon execution of the algorithm, formulas have to be evaluated according to a
marked database instance dbv. Analogously to an unmarked database instance, a
marked instance can also be seen as a �nite representation of an interpretation. We
base evaluation for marked instances on a new notion of a model of a formula (see
also the description of the model operator in Section 7.1). We thus de�ne the model
operator for ground atoms with respect to a marked instance:

De�nition 9.4 (Model operator for marked database instance)
The interpretation Idbv induced by a marked database instance dbv is a model of a

ground atom (written as Idbv j=) in the following case:

Idbv j= i� 2 dbv and markerv () 62 fr; lg

In all other cases, Idbv is not a model of (written as Idbv 6j=).

In other words, a ground atom is true in Idbv if it is contained in (the positive part
of) dbv and either marked with k or a or unmarked; it is false in Idbv if it is either
not contained in dbv or marked with r or l.

De�nition 9.4 extends as usual to formulas containing Boolean connectives or quan-
ti�ers. This way we get a full-blown model operator j= for marked database in-
stances. Again, we only use this operator with closed formulas and we dispense
with a variable assignment for free variables. Note that the induced interpretation
for a marked database instance coincides with the one for its positive restriction:
Idbv = Idb

pos
v . With the help of the new model operator, we now formally de�ne

the evaluation function called evalv for closed as well as open formulas in a marked
database instance; we di�erentiate the positive and the negative part of a response.

De�nition 9.5 (Evaluation function for marked database instance)
A closed formula � is evaluated in a marked database instance dbv according to the

following functions { the positive and the negative evaluation (again, we skip the

curly braces for singleton sets):

evalposv (�) =

(
� if Idbv j= �
; else

and

evalnegv (�) =

(
; if Idbv j= �
:� else

In general,

evalv(�) =

(
� if Idbv j= �
:� else

An open formula �(~x) is evaluated in a marked database instance dbv according to

the following functions (for the positive and the negative part of Idbv):

evalposv (�(~x)) := f�(~a) j ~a � dom and Idbv j= �(~a)g

9.1 The preCQE Algorithm 61

evalnegv (�(~x)) := f:�(~a) j ~a � dom and Idbv 6j= �(~a)g

The combined positive and negative part are retrieved with the function:

evalv(�(~x)) := evalposv (�(~x)) [evalnegv (�(~x))

Next, we have to identify those constraints in the constraint set C that are \vio-
lated" in a marked database instance dbv; that is, in a complete database, their
negation is satis�ed in dbv. As all the constraints are closed formulas, we can de�ne
them via their evaluation in a marked database instance as follows.

De�nition 9.6 (Violated constraints)
A constraint � 2 C is violated in a marked database instance dbv i� its evaluation

returns its negation, that is

evalv(�) = :�

9.1 The preCQE Algorithm

Having de�ned all the necessary terminology, we move on to an algorithmic de-
scription of how an inference-proof and distortion-minimal solution instance can be
computed. As mentioned earlier, in this section we concentrate on an algorithm
for allowed universal formulas. preCQE for allowed universal constraints comprises
some procedures operating on marked database instances; they are given in pseudo
code in Listings 1 to 5 with numbered lines. preCQE starts with the initialization
procedure INIT in the root node of the search tree. The PRUNE procedure { re-
sponsible for backtracking (or backjumping) in the search tree { is not explicitly
adduced.

preCQE achieves con�dentiality (by means of inference-proofness) and availabil-
ity (by means of distortion minimality) at the same time. While con�dentiality
requirements are strict (the solution instance must represent a model of the con-
straints), availability optimization is achieved by a \Branch and Bound" approach
on the distortion distance db dist . Branch and Bound (B&B, for short) is a method
for �nding solutions to an optimization problem more e�ciently than purely by a

1. INIT: Initialization for root node r
1.1. create root node r
1.2. dbr:=db;
1.3. min liesr := 0;
1.4. Cr := C;
1.5. dbbest := unde�ned;
1.6. min liesbest :=1;
1.7. GROUND(r);

Listing 1: preCQE { Initialization for root node r

62 9 preCQE for Allowed Universal Constraints

2. GROUND(v): Determine ground violations in node v
2.1. Cvio

v
:= f� 2 Cv j evalv(�) = :�g;

2.2. if (Cvio
v

= ;)
2.2.1. dbbest := dbv;
2.2.2. min liesbest := min liesv;

2.3. else
2.3.1. foreach �i 2 C

vio
v

2.3.1.1. �0

i
:= plnf (:�i);

2.3.1.2. �00

i
:= dropprenex (�0

i
);

2.3.2. Vv :=
S

i
evalpos

v
(�00

i
);

2.3.3. SIMP(v);
2.3.4. if (there is 2 Vv with card(unmarkedv ()) = 0)
2.3.4.1. PRUNE; //(conicting markers)

2.3.5. else if (there is 2 Vv with card(unmarkedv ()) = 1)
2.3.5.1. take unique literal � 2 unmarkedv ();

2.3.5.2. MARK(v,�);
2.3.5.3. GROUND(v);

2.3.6. else
2.3.6.1. SPLIT(v);

Listing 2: preCQE { Computing ground violations

3. SIMP(v): Simpli�cation of violation set Vv
3.1. repeat until no more changes occur:

3.1.1. foreach subformula 0 of a formula 2 Vv
3.1.1.1. if (0 = � ^ and markerv () 2 fk; ag

or 0 = � ^ : and markerv () 2 fr; lg
or 0 = � _ : and markerv () 2 fk; ag
or 0 = � _ and markerv () 2 fr; lg)

3.1.1.1.1. replace 0 with �; //(unit resolution)
3.1.1.2. if (0 = � ^ and markerv () 2 fr; lg

or 0 = � _ and markerv () 2 fk; ag)
3.1.1.2.1. replace 0 with ; //(unit subsumption)
3.1.1.3. if (0 = � ^ : and markerv () 2 fk; ag

or 0 = � _ : and markerv () 2 fr; lg)
3.1.1.3.1. replace 0 with :; //(unit subsumption)

Listing 3: preCQE { Simplifying violation set

4. SPLIT(v): Splitting on a ground atom in node v
4.1. choose 2 Vv;
4.2. choose � 2 unmarkedv ();
4.3. generate two child nodes vleft and vright;
4.4. dbvleft

:= dbvright
:= dbv;

4.5. Cvleft
:= Cvright

:= Cv;
4.6. min liesvleft

:= min liesvright
:= min liesv;

4.7. MARK(vleft,:j�j);
4.8. GROUND(vleft);
4.9. MARK(vright,j�j);
4.10. GROUND(vright);

Listing 4: preCQE { Splitting on a ground atom

9.1 The preCQE Algorithm 63

5. MARK(v,�): Marking an unmarked ground atom in dbv
5.1. := j�j;
5.2. if (� = and evalv() =)

5.2.1. markerv () :=k;
5.3. else if (� = and evalv() = :)

5.3.1. markerv () :=a;
5.3.2. min liesv++;

5.4. else if (� = : and evalv() =)
5.4.1. markerv () :=r;
5.4.2. min liesv++;

5.5. else if (� = : and evalv() = :)
5.5.1. markerv () :=l;

5.6. if (min liesv �min liesbest) PRUNE; //(bad bound)

Listing 5: preCQE { Marking a ground atom

complete search with backtracking. It o�ers the features \branching", \bounding"
and \pruning". These three feature are briey desribed as follows.

� Branching: dividing the problem into adequate subproblems

� Bounding: e�ciently computing local lower and upper bounds for subprob-
lems

� Pruning: discarding a subproblem due to a bad bound value

For a minimization problem (as ours), a global upper bound is maintained stating
the currently best value. A B&B-algorithm may have a super-polynomial running
time; however, execution may be stopped with the assurance that the optimal
solution's value is in between the global upper bound and the minimum of the local
lower bounds. The branching step of B&B coincides with the splitting operation
with which we search for satisfying truth value assignments for ground atoms.

When the algorithm is run, the Branch and Bound search tree is (virtually) con-
structed. For each node v in the search tree we need the following elements:

� a marked database dbv that might however still be inconsistent with the con-
straints; in other words, it might be the case that Idbv 6j= C. Yet, if v is an
unpruned leaf in the search tree, we can be sure that Idbv j= C.

� a lower bound for the distortion distance db dist called min liesv, de�ned as
the number of ground atoms (of L) with di�erent evaluation in db than in
dbv:

min liesv := f j eval�()(db) 6= evalv()g

The value of min liesv is monotonically nondecreasing between a node v and
its child nodes.

� a local constraint set Cv. In fact, for universal constraints (in this �rst version
of the algorithm we present here) these constraint sets are the same in every

64 9 preCQE for Allowed Universal Constraints

node v. Yet, when allowing existential quanti�cation in Section 10 (or intro-
ducing simpli�cation of constraints), these constraint sets will indeed change
from node to node; that is why we use v as an index.

We also have a current global optimum dbbest that stores the best solution found so
far; that is, dbbest (which is a marked database instance) is a model of C: I

dbbest j= C.
The same is true for its positive restriction dbposbest (which is an unmarked database

instance): Idb
pos

best j= C. In other words, the marked database instance dbbest cor-
responds to a leaf in the search tree whose branch is completely explored and all
constraints are satis�ed. For such optima dbbest we can be sure that the value
min liesbest is indeed the value of the distortion distance (for which the positive
restriction is used): min liesbest = db dist(dbposbest).

There are two conditions under which exploration of the current branch is stopped
(that is, the branch is pruned) and backtracking to an alternative branch is started;
the two conditions are:

1. [Conict] A conicting truth value assignment has been found; that is, there
is a violated constraint but in at least one of its violating ground instantiations
all literals are already marked. The current instance dbv cannot be adjusted
to satisfy the violated constraint. Hence, in this case the con�dentiality re-
quirements are violated.

2. [Bad distortion distance] In the current instance dbv there are already more
lies than (or as many as) in the current global optimum. The current branch
will never result in an instance with a better distortion distance. Hence, in
this case the availability requirements are met better (or equally well) with
the currently best solution. This condition is checked directly after the local
lower bound was recalculated (see Line 5.6.)

We now describe each procedure in detail referring to the line numbering of List-
ings 1 to 5:

INIT (Listing 1) preCQE starts with some initialization in the root node of the
search tree. The marked database instance (called dbr) is identical to the input
instance with all entries unmarked (Line 1.2.); therefore, the local lower bound for
the distortion distance is 0 (Line 1.3.). The local constraint set Cr (Line 1.4.) is
initialized with C. The global optimum is unde�ned (Line 1.5.) and initially the
global upper bound for the distortion distance is1 (Line 1.6.). Then, the treatment
of the constraints is started with a call to GROUND (Line 1.7.).

GROUND (Listing 2) When starting the GROUND procedure, all violated constraints
are determined (Line 2.1.). If none is detected, a new global optimum is found
(Line 2.2.1.) and the global upper bound for the distortion distance is set to the
optimum's distance value (Line 2.2.2.).

9.1 The preCQE Algorithm 65

If there are violated constraints, their satisfaction is achieved as follows. The con-
straints are negated and transformed into their PLNF representation (Line 2.3.1.1.).
Then, for all these formulas, the prenex (including all quanti�ers) is dropped (see
Line 2.3.1.2.). The resulting formulas are evaluated in the marked database instance
dbv (Line 2.3.2.) such that we have the set Vv of \ground violations": all database
entries that impede the satisfaction of the constraints. The violation formulas are
simpli�ed with the SIMP operation.
It may happen that an unresolvable conict is found (Line 2.3.4.): the markers for
a ground instantiation of a constraint are already set, but still the corresponding
constraint is not satis�ed. In this case, the branch is pruned (Line 2.3.4.1.).
Next, we try to set markers (of unmarked ground atoms in the violations) in such a
way that the constraints are satis�ed. If there is a violation with only one ground
literal unmarked (see Line 2.3.5.1.), we take advantage of the fact that the viola-
tions are transformed into PLNF and thus negations only appear directly in front of
atoms. When trying to satisfy the constraint formula, our only chance is by assign-
ing the violating ground literal � the truth value false (or conversely, � the truth
value true; see Line 2.3.5.2.). Note that the distortion distance for each marked
instance is checked and adjusted in the MARK procedure (see Lines 5.3.2. and 5.4.2.
and the description below). Then, a recursive call to GROUND is executed in which
the e�ect of the new assignment on the constraints (including the constraint for
which the marker was set) is checked.
When none of the above cases holds, we start the expansion of the search with a
call to the SPLIT procedure (Line 2.3.6.1.).

SIMP (Listing 3) If markers for literals have been set, the ground formulas in the
violation set Vv can be simpli�ed: a subformula that contains a marked literal can
be replaced by a simpler formula. These replacements yield an equivalent formula
in accordance with the partial interpretation that is represented by the markers.
More precisely, the SIMP procedure di�erentiates the following cases:

� In a subformula �^� or �_� (see Line 3.1.1.1.), the marked literal � does not
inuence the solution anymore, but still markers can be set in the subformula
�; then, � is removed and only � is kept.

� In a subformula � ^ � or � _ � (see Lines 3.1.1.2. and 3.1.1.3.), the marked
literal � determines the truth valuation of the whole subformula 0, and thus
markers in the subformula � do not inuence the solution; then, � is removed
and only � is kept.

Note that commutativity of the Boolean connectives ^ and _ is assumed; that is,
the procedure not only applies to � ^ but also to ^ � and analogously for the
other cases. This kind of truth value simpli�cation is also used in a slightly di�erent
form in [GT91] (De�nition 8.2). Our version here helps us exclude those unmarked
ground literals that are \don't care" in the current partial interpretation Idbv and
thus can retain their truth value without the need of setting any markers for them.

66 9 preCQE for Allowed Universal Constraints

As a small example consider db = fTreat(Mary;MedA)g and

C = f:Treat(Mary;MedA);Treat(Mary;MedA) ^ :Ill(Mary;Aids)g

Assume that markerv (Treat(Mary;MedA)) = r. Then, the violation set is in fact
Vv = f:Treat(Mary;MedA) _ Ill(Mary;Aids)g where the literal :Ill(Mary;Aids) is
unmarked. Yet, the simpli�ed violation set is Vv = f:Treat(Mary;MedA)g (by
application of Line 3.1.1.3.) where no literal is unmarked; now we can immediately
prune (see Line 2.3.4.1.) and no marker for :Ill(Mary;Aids) has to be set.
Note that this ground simpli�cation is only possible on the set Vv (which contains
only ground formulas) but not on the non-ground constraint set C.

SPLIT (Listing 4) If there are only violations with more than one unmarked
literal, one literal of one of the violations is chosen as the splitting literal (Line 4.2.)
and two child nodes are generated and initialized with the current node's values
(Lines 4.3. to 4.6.). Then, �rst the left branch is explored where the splitting literal's
ground atom is assigned false (Line 4.7.); we continue with the GROUND procedure in
the left branch (Line 4.8.). Afterward, the complementary right branch is treated
with the ground atom assigned true (Lines 4.9. and 4.10.).

MARK (Listing 5) The MARK procedure takes as input a yet unmarked literal and
retrieves the ground atom from it (Line 5.1.). Then the marker of the ground
atom in the current instance dbv is adjusted to satisfy the input literal. This is
done according to the four types of markers that can occur (see Lines 5.2.1., 5.3.1.,
5.4.1. and 5.5.1.). Whenever the marker changes the evaluation of the ground atom
(that is, swaps its truth value as is the case with the markers a in Line 5.3. and r

in Line 5.4.), the local lower bound of the distortion distance is incremented (see
Lines 5.3.2. and 5.4.2.). Finally, the current distortion distance is compared with
the global optimum value and the branch is pruned if necessary (see Line 5.6.).

Now we can have a second look at Example 9.1 and see how it is processed by
preCQE; Table 1 shows the markers in the di�erent nodes as pictured in Figure 6.

Example 9.7: In the INIT procedure, we determine the constraint set of the root
node:

Cr = f8x(:Treat(x;MedA) _ Ill(x;Aids) _ Ill(x;Cancer));

8x(:Treat(x;MedB) _ Ill(x;Cancer) _ Ill(x;Flu));

8x:Ill(x;Aids);

8x:Ill(x;Cancer)g

When GROUND is started in root node r, we �nd that both unit constraints are
violated, that is Cvio

r = f8x:Ill(x;Aids);8x:Ill(x;Cancer)g and the violations are

9.1 The preCQE Algorithm 67

Ill Name Diagnosis r v1 v2 v3 v4
Pete Aids r r r r r

Mary Cancer r r r r r

Mary Flu a

Pete Cancer a

Treat Name Treatment r v1 v2 v3 v4
Pete MedA r r r k

Mary MedB r k

Table 1: Markers set by preCQE

computed as

Vr = evalposr (Ill(x;Aids)) [evalposr (Ill(x;Cancer))

= fIll(Pete;Aids); Ill(Mary;Cancer)g

Both of these ground atoms are marked with r by executing MARK(r;:Ill(Pete;Aids))
and MARK(r;:Ill(Mary;Cancer)) in two subsequent calls of GROUND. Afterward we
already have min liesr = 2.
Then the next recursion of GROUND is started. We �nd that both non-unit constraints
are violated and the violations are evaluated as

Vr = evalposv (Treat(x;MedA) ^ :Ill(x;Aids) ^ :Ill(x;Cancer))

[evalposv (Treat(x;MedB) ^ :Ill(x;Cancer) ^ :Ill(x;Flu))

= fTreat(Pete;MedA) ^ :Ill(Pete;Aids) ^ :Ill(Pete;Cancer);

Treat(Mary;MedB) ^ :Ill(Mary;Cancer) ^ :Ill(Mary;Flu)g

We see that a call to SPLIT is necessary as both violations have two unmarked
literals each. We choose the �rst formula in Vr as according to Line 4.1. and
decide to split on the unmarked literal Treat(Pete;MedA) (see Line 4.2.). In the
root's left child node v1, this ground atom is marked with r (see Line 4.7.) which
leads to min liesv1 = 3. In the following GROUND operation, we �nd the violations

Vv1 = fTreat(Mary;MedB) ^ :Ill(Mary;Cancer) ^ :Ill(Mary;Flu)g

We decide to split on Treat(Mary;MedB): in the left child node v2, it is marked
with r. Afterward, no violated constraints are left such that the marked database
of v2 is the currently best solution candidate (dbbest := dbv2) with a distance value
db distbest = 4.
The right child node of v1 is called v3; here, Treat(Mary;MedB) is marked with
k. Another GROUND operation follows. Again we �nd the same constraint violated
in v3, but :Ill(Mary;Flu) is the only unmarked literal. The violation can only be

68 9 preCQE for Allowed Universal Constraints

avoided by marking the ground atom with a (see Line 2.3.5.2.). This actually gives
an equally good solution as v2 (with distance 4), but it is pruned (see Line 5.6.) as
we prefer the �rst solution found.
We continue the search in the root's right child node v4. Treat(Pete;MedA) is
marked with k (see Line 4.9.), such that the lower bound remains unchanged after
the splitting: min liesv4 = 2. However, in the subsequent GROUND operation we �nd

Vv4 = fTreat(Pete;MedA) ^ :Ill(Pete;Aids) ^ :Ill(Pete;Cancer)g

Of the violation only :Ill(Pete;Cancer) is unmarked and its ground atom has to be
marked with a (see Line 2.3.5.2.). In the next recursion, we �nd the unit constraint
:Ill(Pete;Cancer) violated (see Line 2.3.4.); that is why the branch is pruned. }

9.2 Termination, Soundness and Completeness of preCQE

We now examine the general properties in terms of termination, soundness and
completeness of the preCQE procedure as described in the previous section. The
constraint set C is restricted to be a set of allowed universal constraints owed to the
fact that for arbitrary constraints termination cannot be ensured. We start with
the observation that the violation sets Vv are �nite.

Lemma 9.8 (Finite violation sets with adom constants)
For a set C of allowed universal constraints, the set Vv of ground violations (ac-

cording to Line 2.3.2.) is always �nite for any node v and contains only ground

formulas with constants from adom.

Proof. The constraint set C is a �nite set of closed formulas; thus, also Cv is. In
the GROUND procedure, the set of violated constraints Cvio

v is determined, which is
a subset of Cv and thus �nite.
Then, each of these violated constraints is negated and put into PLNF and the
prenex of the formula is dropped (if the formula is a non-ground formula) such
that only its matrix is left and all variables now occur freely. At this point, we
can resort to Lemma 8.7 and Remark 8.8 to assure ourselves that the evaluation
returns a �nite set of ground formulas; and, what is more, the formulas contain only
constants from adom.

The pivotal result of this part is that for allowed universal constraints termination
of preCQE can be ensured:

Theorem 9.9 (Termination of preCQE)
For a set C of allowed universal constraints, preCQE terminates in a �nite amount

of time.

Proof. The �rst argument is that all sets of formulas that are computed in a preCQE
run are �nite. We easily see that this is the case for Cvio

v in Line 2.1. (as it is
a subset of the local constraint set Cv which is exactly the �nite constraint set

9.2 Termination, Soundness and Completeness of preCQE 69

C). This implies that there are only �nitely many iterations of the foreach loop
that processes each formula of Cvio

v in Line 2.3.1. Moreover, each violation set Vv
(see Line 2.3.2.) is �nite: we have shown its �niteness for allowed constraints in
Lemma 9.8; we already commented on its computability in Remark 8.8. But then
indeed we can be sure that

� the foreach loop in SIMP (Line 3.1.1.) needs only a �nite number of iterations

� the if-conditions in Lines 2.3.4. and 2.3.5. can be checked in �nite time

� the selection of the splitting formula (see Line 4.1.) is based on the �nite set
Vv

Moreover, as the set Vv consists of formulas of �nite length, the repetition of the
simpli�cation of formulas of Vv (see Line 3.1.) only takes �nite time because, when-
ever an application is possible, the length of one of the formulas decreases (see
Lines 3.1.1.1.1., 3.1.1.2.1. and 3.1.1.3.1.). All other steps in the �ve procedures
consist of �nite instructions.
Next, we have to show that the number of (recursive) calls of the procedures is
�nite. We observe that GROUND and SPLIT are the only procedures involved in the
recursion: GROUND calls itself in Line 2.3.5.3. or calls SPLIT; SPLIT recurs to GROUND
twice (Lines 4.8. and 4.10.). The recursion is only stopped in the following three
cases (which correspond to leaves in the search tree):

1. a (new) optimum is found (Line 2.2.)

2. the �rst pruning condition arises: the current partial interpretation contains
a conict (see Line 2.3.4.1.)

3. the second pruning condition arises: a better solution than the current partial
interpretation has already been found (see Line 5.6.)

Each recursive call to GROUND is preceded by a MARK operation (see Lines 2.3.5.2., 4.7.
and 4.9.). We can apply Lemma 9.8 to note that the MARK operation is only executed
on ground literals with adom constants that are taken from ground formulas in Vv.
We have already in Corollary 8.14 used the fact that there are at most k di�erent
ground atoms with adom constants where

k :=
X
P2P

P occurs in C

card(adom)arity(P)

This implies that there are at most 2k literals containing such ground atoms. More
precisely, MARK is only applied to unmarked literals. Yet, with each MARK operation
the overall number of unmarked ground atoms (with adom constants) decreases and
so does the number of unmarked literals. From this it follows that the recursion
depth is in fact bounded by k. This corresponds to the fact that the length of each
branch in the tree is bounded by k.
Moreover, the search tree is binary (due to splitting) and there are 2k ways to assign

70 9 preCQE for Allowed Universal Constraints

each of these k ground atoms either the truth value true or the truth value false.
This is why there are at most 2k branches in the search tree.

Based on this termination result, we have to make sure that the algorithm is sound
and complete. To this end, we �rst of all observe that dbbest is either a marked
database instance or dbbest is unde�ned ; second we di�erentiate the cases that C
is a satis�able constraint set and the case that C is unsatis�able. Due to this, we
investigate the algorithm's satis�ability soundness and satis�ability completeness

{ the algorithm �nds a marked database instance if and only if there exists an
inference-proof solution. Owed to the fact that we already proved termination, we
can equivalently show the algorithm's refutation soundness and refutation complete-

ness { the algorithm returns unde�ned if and only if there does not exist a solution.
We start with the proof of satis�ability soundness.

Theorem 9.10 (Satis�ability soundness of preCQE)
For a set C of allowed universal constraints and after running preCQE to com-

pletion, if dbbest is a marked database instance, then its positive restriction is an

inference-proof database instance.

Proof. The assignation of a marked database instance to dbbest happens only if in
some node v, Cvio

v is empty (Line 2.2.); that is, no violated constraint is left: there
is no � 2 C with evalv(�) = :�. This again means that Idbbest j= C and thus (by
De�nitions 9.3 and 9.4) Idb

pos

best j= C. With the help of Corollary 7.8 we conclude
that dbposbest is an inference-proof database instance.

Refutation completeness follows from satis�ability soundness as the contraposition
of Theorem 9.10.

Corollary 9.11 (Refutation completeness of preCQE)
For a set C of allowed universal constraints, if C is unsatis�able, then { after

running preCQE to completion { dbbest is unde�ned.

Proof. If C is unsatis�able, there does not exist a model of C and thus for every
node v there is a � 2 C with evalv(�) = :�. Because of this, Cvio

v is never empty.
But then, dbbest is never assigned a marked database instance and the initialization
of dbbest with unde�ned is never changed.

As for satis�ability completeness, due to the active domain semantics for allowed
universal constraints that was shown in Section 8, a trivially complete algorithm
would simply test all possible assignations of truth values for all ground instantia-
tions of atoms with adom constants. We state that preCQE has a good chance of
doing better than the trivially complete algorithm on adom-ground atoms:

Remark 9.12 (E�ciency of preCQE): With the preCQE algorithm at best not all
adom-ground atoms have to be explicitly marked (that is, assigned the truth values
true or false) due to the following reasons:

9.2 Termination, Soundness and Completeness of preCQE 71

1. Only violated constraints and the ground atoms a�ected by these are consid-
ered.

2. If a truth assignment is unequivocal, ground atoms are marked directly with-
out splitting.

3. Branches are pruned if a better solution has already been found.

4. Branches are pruned as soon as a conict occurs.

This means that the preCQE search in the best case does not contain all the possible
2k branches mentioned in Theorem 9.9 but contains considerably less and shorter
branches. This de�nitely applies to Example 9.7 and Figure 6: Observing that

adom = fMary;Pete;Cancer;Aids;Flu;MedA;MedBg

we deduce the following set of ground atoms of Ill and Treat with adom constants
(respecting the sorts):

f Ill(Mary;Cancer); Ill(Mary;Aids); Ill(Mary;Flu);

Ill(Pete;Cancer); Ill(Pete;Aids); Ill(Pete;Flu);

Treat(Pete;MedA);Treat(Pete;MedB);

Treat(Mary;MedA);Treat(Mary;MedB) g

That is, a complete search tree (with respect to adom) that assigns to each and
every of these ground atoms one of the values true or false along a branch, has
210 = 1024 distinct branches of length 10 each. In contrast, Figure 6 shows that
there are only 3 branches necessary; moreover, along a branch there occur only 4
to 5 truth value assignments (instead of 10). }

Owed to this increased e�ciency of the search, we have to con�rm, that no solu-
tion is erroneously skipped with preCQE. More precisely, we �rst show refutation
soundness of the algorithm and then obtain satis�ability completeness as its con-
traposition. In the proof of refutation soundness, we need one form of \Herbrand's
Theorem". We quote it as stated by Cook and Nguyen in [CN09] (page 34) but
ignore their incorporation of equality axioms and function symbols both of which
we do not need in our settings.

Theorem 9.13 (Herbrand's Theorem (cf. [CN09]))
Let S be a set of closed universal formulas. Then S is unsatis�able i� some �nite

set S0 of ground instances of formulas in S is propositionally unsatis�able.

Cook and Nguyen de�ne a \ground instance" of a universal formula as obtained by
removing the prenex and substituting the variables in the matrix by constant sym-
bols ([CN09], page 34). There they also de�ne propositional (un-)satis�ability with
the help of truth value assignments to ground formulas of a �rst-order language L .
Further, we will take advantage of results of \semantic trees" that are known to be

72 9 preCQE for Allowed Universal Constraints

sound for propositional unsatis�ability. While the concept of semantic trees was
�rst introduced by Robinson for his resolution procedure, we will use [CL73] (pages
56 { 66) as well as [Fit96] (pages 70{72) as references. A semantic tree is usually
de�ned for a set of clauses { that is, a set of disjunctions of literals. This de�nition
is caused by the fact that resolution crucially relies on clausal input. Note however,
that we will need a semantic tree for our non-CNF preCQE input in the upcoming
Theorem 9.17. Yet, we know that for a ground formula there are equivalence-
preserving rewrite rules that transform it into CNF; moreover, any set of ground
CNF formulas can be easily transformed into a set of ground clauses by treating
each conjunct of a formula as a single clause. Due to this equivalence-preservation
we can be sure that a set of ground formulas is (propositionally) satis�able if and
only if the union of the sets of clauses obtained from the formulas is. Hence, we
expand the de�nition of [CL73] to apply to a set of ground formulas (instead of a
set of ground clauses).

De�nition 9.14 (Semantic tree, failure node)
Let S0 be a set of ground formulas and let A0 be the set of ground atoms occurring

in S0. A semantic tree for S0 is a binary tree where

1. the root node has no label

2. the inner nodes of the tree have the following labels

(a) each right child node v has as its label a ground atom chosen from A0

(b) the left sibling of v has : as its label

3. for any path from the root node to a node v, in the union of all labels along

the path, there does not occur a complementary pair of literals.

A failure node is a node in a semantic tree that falsi�es a formula from S0 but

none of its ancestors does; that is, the union of labels on the path from the root to

the failure node form an interpretation of the ground atoms that makes the formula

false.
A semantic tree is closed if all its leaves are failure nodes.

Note that in the general de�nition of [CL73] a semantic tree need not be binary;
in fact the general condition is that for any set of siblings the disjunction of their
labels has to be a valid (that is, tautologous) formula. For our purposes however
binary semantic trees as de�ned in De�nition 9.14 su�ce. Note, also, that in [CL73]
a semantic tree is de�ned for a �xed enumeration of the Herbrand base pertaining
to the considered set of clauses. Yet, for our �nite and function-free case, the enu-
meration is of no importance; this is also noted by [Fit96] (page 63). This implies
that we do not run into di�culties with our choosing formulas and splitting literals
non-deterministically (in Lines 2.3.5., 4.1. and 4.2.).

It is possible to restate Herbrand's theorem with the help of semantic trees; a similar
statement is contained in [CL73] but again they only consider a set of clauses. We
thus extend it to a set of universal formulas here.

9.2 Termination, Soundness and Completeness of preCQE 73

Theorem 9.15 (Herbrand's Theorem with semantic tree)
Let S be a set of closed universal formulas. Then S is unsatis�able i� for some

�nite set S0 of ground instances of formulas in S there is a closed semantic tree.

We will use this version of Herbrand's Theorem to show refutation soundness of
preCQE. We begin with the de�nition of how a semantic tree is constructed out of
a given preCQE search tree. An illustration of the construction and the arguments
applied in the proof of the upcoming Theorem 9.17 follows in Example 9.18.

De�nition 9.16 (Construction of semantic tree)
Let T be a search tree obtained by running preCQE on a constraint set C (of allowed

universal formulas) and an input instance db.
T � is the semantic tree constructed from T by traversing T from the root to each

leaf and adding nodes to T � for every node v in T as follows:

� If v is the root node in T , it is also the unlabeled root node in T �.

� For each literal that was marked in v in a GROUND procedure (in Line 2.3.5.2.),

a new level of nodes has to be created in T � (in the subtree having node v as its

root): Assume there are m literals �1 : : : �m that are marked in v (according

to Line 2.3.5.2.); then,

{ for �1 two new child nodes of v have to be created in T �; the left child is

labeled with the negative literal :j�1j, while the right child is labeled with

the positive j�1j. We refer to the two new nodes as the \level of �1".

{ for each �i (for i = 2 : : :m) two new nodes are created in T � which are

referred to as the \level of �i". They are appended as child nodes to that

node in the level of �i�1 that is labeled with �i�1; that is, no child nodes

are appended to the node in the level of �i�1 that is labeled with �i�1 .

� If �nally a splitting occurs in v and vleft and vright are the two child nodes of v

in T (see Line 4.3.), vleft and vright are also contained in T � and labeled with

the literal that was marked in the SPLIT call; that is, vleft is labeled with :j�j
and vright is labeled with j�j. We only have to adjust their position in T � if

new nodes were created in T � immediately before the splitting; that is, if there

is a �m that was marked in v (according to the previous step), then vleft and

vright in T
� are the child nodes of that node in the level of �m that is labeled

with �m.

The new tree T � indeed has the properties of a semantic tree (as de�ned in De�-
nition 9.14): all nodes in T � are labeled appropriately and we can be sure that no
path contains labels with a complementary pair of literals because labels are based
on the markers that are set in T and MARK is only called for unmarked literals. It
is obvious that the height of T � is greater than (or equal to) the height of T : the
new levels possibly increase the height of T �; yet each such level contains only two

74 9 preCQE for Allowed Universal Constraints

nodes and only one of them has two further child nodes while the other is a leaf.
We will show later on that any such newly created leaf is indeed a failure node {
that is the reason why we do not append any child nodes to such a node in our
construction of T �. This in fact will play a signi�cant role in the following theorem
of refutation soundness of preCQE.

Theorem 9.17 (Refutation soundness of preCQE)
For a set C of allowed universal constraints and after running preCQE to comple-

tion, if dbbest is unde�ned, then C is unsatis�able.

Proof. Let T be a search tree constructed when running preCQE on C. By as-
sumption, dbbest is unde�ned. This can only happen if all branches in the tree T
are pruned due to conicting markers; that is, in each leaf v of T a violation was
encountered in Vv for which all markers are set. Recall from Theorem 9.9 that there
are only two other cases in which recursion in preCQE is stopped: either an opti-
mum was found or bad bound pruning takes place; both of them imply that dbbest is
not unde�ned but contains a marked database instance instead which immediately
violates our assumption.
We aim to prove that the preCQE search tree is a sound method to show the
unsatis�ability of the constraint set C. The proof consists of two steps:

1. We identify a �nite set C0 of ground formulas that are ground instances of
formulas in the constraint set C.

2. We expand the preCQE search tree to be a closed semantic tree for C0. Then
we rely on the fact that this closed semantic tree is a sound method to prove
propositional (that is \truth-functional") unsatis�ability of C0.

After these two steps, what follows is that if dbbest is unde�ned, then C0 is indeed
unsatis�able and by Herbrand's Theorem C also is.
For the �rst step, we construct C0 with the help of ground formulas that are chosen
from the violation sets Vv in preCQE. We make the following observation: For a
ground formula in a violation set Vv we know that was obtained by

1. negating a formula � of Cvio
v and taking its PLNF representation (Line 2.3.1.1.)

2. dropping the prenex of this formula to obtain an open formula (Line 2.3.1.2.)

3. computing the positive evaluation of the open formula on the database in-
stance dbv (Line 2.3.2.)

That is, it holds that 2 evalposv (dropprenex (plnf (:�))). Due to this and by
negating and taking its PLNF representation, we deduce that plnf (:) is in fact
a ground instance of �; the reader should bear in mind the fact that negation is
used twice: once on the non-ground constraint formula � and once on the ground
violation formula . We collect these ground instances while running the preCQE
algorithm { that is, when the preCQE search tree T is built. We have a closer look
at the GROUND procedure and identify the ground formulas that are added to C0:

9.2 Termination, Soundness and Completeness of preCQE 75

� GROUND Line 2.3.4.: for a 2 Vv with card(unmarkedv ()) = 0, add plnf (:)
to C0 if was not simpli�ed in Line 2.3.3.; otherwise, if was obtained by
simpli�cation from a ground formula � (in Line 2.3.3.), add plnf (: �) to C0

� GROUND Line 2.3.5.: for a 2 Vv with card(unmarkedv ()) = 1, add plnf (:)
to C0 if was not simpli�ed in Line 2.3.3.; otherwise, if was obtained by
simpli�cation from a ground formula � (in Line 2.3.3.), add plnf (: �) to C0

We now come to the second step: show that the set C0 is unsatis�able by showing
that there is a closed semantic tree for C0. Let T

� be the semantic tree constructed
from the preCQE search tree T by De�nition 9.16. We will in fact show that T �

is a closed semantic tree for C0. Recall that each branch in the search tree T is
pruned. We now show that each leaf in the semantic tree T � is a failure node that
falsi�es a formula in C0. Hence, let v

� be a leaf in T �.

1. If v� is identical to a leaf v in T , then v was pruned in T because there is a con-
icting formula 2 Vv (after simpli�cation) such that card(unmarkedv ()) =
0. This pruning occurred as a consequence of a MARK operation for a literal
�� in v that makes �� true in v; but then, by construction of T �, v� is labeled
with �� and �� is also true in v�. Moreover, all labels on the path from the
root of T � to v� correspond to the markers in T . Hence, v� falsi�es plnf (:).
Next, let � be the formula from which was obtained by simpli�cation.
Then, v� also falsi�es plnf (: �) because simpli�cation indeed preserves the
(un-)satis�ability in a given (partial) interpretation. Lastly, plnf (: �) is a
formula of C0 by construction.

2. If v� is not contained in T , then it is a leaf in a new level of a literal �� in T �.
But �� was marked (as true) in a node v in T because �� was chosen from
a formula 2 Vv (after simpli�cation) with card(unmarkedv ()) = 1. This
node v is then an ancestor of v� in T �.

� If v� is labeled with ��, then �� is false in v�. We convince ourselves that
v� falsi�es plnf (:): because contains ��, plnf (:) contains ��; yet,
�� is the only unmarked literal of plnf (:) and all other marked literals
do not satisfy plnf (:). By construction, all ancestors of v� are labeled
according to the markers in T . Thus plnf (:) is indeed false in v�.
In analogy to the previous case, let � be the formula from which was
obtained by simpli�cation. Then, v� also falsi�es plnf (: �) because of
satis�ability-preservation. And again, plnf (: �) indeed is a formula of
C0 by construction.

� If v� is labeled with �� then v was pruned in T immediately after �� was
marked in v because otherwise v� would not be a leaf in T �. But then
again, there is a formula 0 2 Vv such that card(unmarkedv (

0)) = 0.
Hence, v� falsi�es plnf (: 0) and also plnf (: 0�) if 0� is the formula
from which 0 was obtained by simpli�cation.

76 9 preCQE for Allowed Universal Constraints

No ancestor of v� in T � falsi�es a formula in C0, because otherwise pruning would
have occurred earlier in T . These are all cases that have to be considered and thus
T � falsi�es C0. From this the claim of the theorem follows.

Example 9.18: As an example for refutation soundness of preCQE we consider the
following unsatis�able constraint set:

C = f8x(:Treat(x;MedA) _ Ill(x;Aids) _ Ill(x;Cancer));

Treat(Mary;MedA) ^ :Ill(Mary;Cancer);

:Ill(Mary;Aids)g:

We assume that the input database instance is

db = fTreat(Mary;MedA); Ill(Mary;Aids)g

preCQE processes C in a tree as the one given in Figure 7; all branches are pruned
and no inference-proof solution is found.

The set C0 for this C is

C0 = f:Treat(Mary;MedA) _ Ill(Mary;Aids) _ Ill(Mary;Cancer);

Treat(Mary;MedA) ^ :Ill(Mary;Cancer);

:Ill(Mary;Aids)g:

The closed semantic tree for C0 is pictured in Figure 8. Note that two new levels
exist in this semantic tree: one for :Ill(Mary;Aids) and one for Ill(Mary;Cancer). }

node r
remove Ill(Mary;Aids)

node v1
remove Treat(Mary;MedA)

node v2
keep Treat(Mary;MedA)
add Ill(Mary;Cancer)

PRUNE PRUNE

Figure 7: Example for unsatis�able constraints

Satis�ability completeness now follows from refutation soundness.

Corollary 9.19 (Satis�ability completeness of preCQE)
For a set C of allowed universal constraints, if C is satis�able, then { after running

preCQE to completion { dbbest is a marked database instance.

9.2 Termination, Soundness and Completeness of preCQE 77

node r

:Ill(Mary;Aids)

node v1
:Treat(Mary;MedA)

node v2
Treat(Mary;MedA)

:Ill(Mary;Cancer) Ill(Mary;Cancer)

Ill(Mary;Aids)

Figure 8: Closed semantic tree

Proof. From the fact that C contains only allowed universal formulas and the fact
that the set C as a whole is satis�able we also know that C is DB-satis�able and
thus a solution instance exists. From Theorem 8.10 we know that there also ex-
ists a solution instance db 0 with only adom constants such that Idb

0
j= C. Now

assume that dbbest is not a marked database instance and thus unde�ned. But then
Theorem 9.17 tells us that C has to be unsatis�able { a contradiction.

db
dbposbest

db 0

2: l
y

1: r

3: k
y

4: a

5: k
y

6: l
y

7: r

8: a

y: or unmarked

Figure 9: Markers in dbposbest for ground atoms with adom constants

Last but not least we have to prove that preCQE does not just �nd some inference-
proof solution instance but indeed a distortion-minimal solution; hence the avail-
ability requirements are also obeyed as good as possible.

78 9 preCQE for Allowed Universal Constraints

Theorem 9.20 (Optimality of solution)
For a set C of allowed universal constraints, if preCQE �nds a solution dbbest , then

its positive restriction dbposbest is distortion-minimal.

Proof. We show that for an arbitrary inference-proof and distortion-minimal in-
stance db 0 it holds that

db dist(dbposbest) � db dist(db0) (9)

We do this by investigating the inuence of the ground atoms with adom constants
on the distortion distance. The eight di�erent types of adom ground atoms are
illustrated in Figure 9. There are the following trivial cases where dbbest and db0

coincide and we can easily establish (9):

� 1 and 2 do not cause di�erent distances for db
pos
best and db

0: they are contained
in neither of the two instances.

� 3 and 4 do not cause di�erent distances for db
pos
best and db

0: they are contained
in both of the two instances.

The more interesting cases are when there are ground atoms on which db 0 and dbbest
di�er:

� On 5 and 6 db
pos
best coincides with db while db0 does not.

� On 7 and 8 db
0 coincides with db while dbposbest does not.

We will use the preCQE search tree T in the argument. Observe �rst of all that
the local lower bound min liesv for the distortion distance is monotonically nonde-
creasing along each branch in the tree and counts the number of ground atoms on
which the current marked database instance dbv di�ers from the input instance db.
There must be a branch in T that corresponds to db0: Otherwise db 0 would deviate
into a branch that only exists in the semantic tree T � constructed from T but not
in T itself; but then the single new node in that branch is a failure node { as was
shown in Theorem 9.17 { and db0 is no inference-proof instance.
We will now show that the distortion distance of dbposbest is not worse than the one
of db 0 although literals of type 7 are contained in db0and literals of type 8 are
not contained in db 0. db0 and dbposbest have a common subpath in T starting in the
root node r up to a certain node v0 (v0 itself maybe identical with r). After v0

they diverge into di�erent branches (the \db 0-branch" and the \dbposbest -branch") in
T due to a splitting step. Because dbposbest is the solution returned by preCQE, the
dbposbest -branch is the only branch in T that is not pruned neither due to conict nor
due to a bad bound value. The db 0-branch cannot be pruned due to conict by
preCQE because db 0 is assumed to be inference-proof and thus no conict occurs
along this branch. We analyze how the two branches are positioned in T :

1. The �rst case is that the db0-branch is on the left of the dbposbest -branch; that is,
in the splitting either a literal of type 5 was removed in db

0 while kept in dbposbest

9.2 Termination, Soundness and Completeness of preCQE 79

or a literal of type 8 was left out of db
0 but added to dbposbest . Then preCQE

must have explored the db 0-branch before entering the dbposbest -branch because in
a splitting the left child node is treated �rst. If db0 were distortion-minimal,
the dbposbest -branch would be pruned due to a bad bound value and db 0 (or
another distortion-minimal instance that was found earlier in a branch more
to the left) would be the solution instance, which contradicts our assumption
that dbposbest is the solution instance. Hence the case that a distance-minimal
solution exists in T on the left of the solution instance does not occur.

2. The second case is that the db0-branch is on the right of the dbposbest -branch;
that is, in the splitting either a literal of type 7 was removed in dbposbest while
kept in db 0 or a literal of type 6 was left out of db

pos
best but added to db0. The

dbposbest -branch was explored before the db 0-branch; dbbest was found as a new
optimum with a global upper bound min liesbest = db dist(dbposbest). But then
db dist(dbposbest) is as good as db dist(db0) because otherwise db0 would replace
dbposbest as the new optimum. Hence, the db0-branch must be pruned due to a
bad bound as soon as the value of db dist(dbposbest) is reached by the local lower
bound in that branch.

Summary of Part II

In this part the theoretical basis for preCQE was laid. As the pertinent data
model, complete databases and their corresponding DB-interpretations were identi-
�ed; an evaluation function and the terms\DB-satis�ability"and\DB-implications"
were de�ned. As novel contributions to the �eld of Controlled Query Evaluation
the notions of inference-proofness with respect to a constraint set and distortion
minimality were presented to ensure both con�dentiality as well as a maximum
of availability. Most notably, the precondition for the query-time CQE with lying
(that is, the disjunction of the potential secrets is not known a priori) carries over
to our case.
For the universal fragment the allowed formulas were speci�ed as syntactic restric-
tions that guarantee DB-satis�ability of a constraint set. More precisely, only the
active domain of the input instance and the constraints is a�ected in the search for
an inference-proof and distortion minimal solution instance.
The listed preCQE algorithm takes advantage of the active domain semantics and
the fact that negations of allowed formulas are also allowed and hence yield �nite
responses. The algorithm makes use of markers and appropriate de�nitions of an
evaluation function and a model operator are adduced. Termination, soundness,
completeness and optimality results of the algorithm were established. The proof
of refutation soundess reduced the preCQE search tree to a semantic tree for which
refutation soundess is a well-known fact.

80 9 preCQE for Allowed Universal Constraints

81

III. preCQE for Existential Constraints

Contents

10 Finite Invention For the Existential Fragment 83

11 preCQE for Existential Quanti�cation 87

11.1 The preCQE Algorithm . 89

11.2 Termination, Soundness and Completeness of preCQE 92

12 89-Quanti�ed Constraints . 97

13 preCQE for Weakly Acyclic Constraints 103

13.1 The preCQE Algorithm . 105

13.2 Termination, Soundness and Completeness of preCQE 109

Summary of Part III . 113

Whatever Logic is good enough to tell me is worth writing

down,' said the Tortoise. `So enter it in your note-book,
please. We will call it
(E) If A and B and C and D are true, Z must be true.

Until I've granted that, of course I needn't grant Z. So it's
quite a necessary step, you see?'
`I see,' said Achilles; and there was a touch of sadness in
his tone.
{ Lewis Carrol, \What the tortoise said to Achilles"

82

83

10 Finite Invention For the Existential Fragment

We now assume that the constraint set C contains constraints in PLNF with only
existentially quanti�ed variables. That is, we handle \existential formulas" now:

De�nition 10.1 (Existential formulas)
A formula � = 9~x	(~x) is an existential formula i� it is a closed formula in PLNF

with existential prenex 9~x and ~x consists of all variables occurring freely in the

matrix 	(~x).

Again, we include ground formulas in this de�nition. Intuitively, an existentially
quanti�ed variable denotes that there should be at least one substitution of the
variable with a constant that makes the matrix of the formula true. Based on this,
it is a well known fact that the existential fragment of �rst-order logic has the\�nite
model property"; that is, if an existential formulas is satis�able, there is a model
with a �nite domain that satis�es the formulas (see for example [BGG01], Propo-
sition 6.4.27). In fact, in [BGG01] a general result for an existential formula with
equality and function symbols is exhibited where terms in a formula can be arbi-
trarily nested. We will only need their result for pure predicate logic here (where
the only terms are constants and variables). More precisely, an existential formula
(in pure predicate logic) can be satis�ed in a �nite domain that has a size of at most
the sum of the number of variables and the number of constant symbols occurring
in it. Recall from De�nition 8.2 that the set of constant symbols occurring in a set
S of formulas is called the \active domain" adom(S); we let vars(S) denote the set
of variables occurring in S.

Proposition 10.2 (Finite model property of existential formula)
A satis�able existential formula � = 9~x	(~x) has a model with a �nite domain of

size card(adom(f�g)) + card(vars(f�g)).

If the actual value is of no interest to the application (for example, when merely
testing for satis�ability) often \Skolemization" is used to introduce a new function
symbol (or constant symbol) for the existentially quanti�ed variable. This strat-
egy however is not constructive in the sense that the mapping of the new function
symbols to values of the domain under consideration is not explicitly stated. Thus,
Skolemization is of no direct use for preCQE as the database schema (specifying
the �xed domain dom) is not changed and both the solution database and the in-
put database are de�ned over dom. Moreover, the distortion distance is computed
on ground atoms over dom. Explicit values of dom for all existentially quanti�ed
variables are therefore needed and probably have to be introduced in ground atoms
of the solution instance db 0.
We assume in our system settings (see Section 7.4) that the user is aware �rst of
all of his a priori knowledge prior and second of the policy speci�cation pot sec. In
this setting, the constant symbols occurring in the constraint set C already have a

84 10 Finite Invention For the Existential Fragment

particular meaning for the user. Yet, all other constants do not bear such a mean-
ing as they do not occur in the user knowledge. In this sense, the non-adom(C)
constants are invariant under isomorphisms from the user's point of view; this prop-
erty is often called \genericity" (see for example [ST99, GS02]). More precisely, we
employ the notion of adom(C)-genericity (see [HS94, HS91]; the original term is
\C -genericity" of a query where C is meant to be a �nite set of constants from
an in�nite domain). We now establish genericity of inference-proof instances with
respect to adom(C); distortion minimality will be examined in Corollary 10.5.

Proposition 10.3 (Genericity of inference-proof instances)
For a constraint C and an input instance db, inference-proof instances are adom(C)-
generic; that is, for every permutation � of the domain dom that is the identity on

adom(C), if db0 is an inference-proof instance for db, then there exists an instance

db00 that is an inference-proof instance for the input instance �(db) (with constant

symbols permuted according to �) and �(db0) = db00.

As a corollary of Theorem 7.11 and Propositions 10.2 and 10.3 we can now state
more precisely what an inference-proof solution instance looks like. Indeed, if a
set of existential constraints is satis�able (in an arbitrary interpretation), it is also
DB-satis�able. Consequently, we only need to apply the CQE precondition for uni-
form lying (as already used in Theorem 7.11) as a condition for DB-satis�ability
of a set of existential constraints; no other restriction { in particular, no syntactic
restriction { has to be posed on a set of existential constraints. We need to con-
sider only a �nite number of values outside of the active domain of the constraint
set C to �nd a DB-interpretation for C: in the worst case, for each variable in a
constraint in C, one non-adom(C) value has to be chosen in the solution instance
(recall that the formulas in C are assumed to be standardized apart). In the context
of database queries, this is called \�nite invention" in [HS94] and thus if l is the
number of variables in C, we need at most l invented constants. This is formalized
in the following corollary.

Corollary 10.4 (Inference-proof instances with �nite invention)
Given a constraint set C of existential formulas and assuming prior 6j=DB

pot sec disj , there exists an inference-proof solution instance that contains only

constants from the set adom(C)[invent, where invent � (dom n adom(C)) of car-
dinality l and l := card(vars(C)) is the number of distinct variables occurring in

C.

Proof. All constants in invent are generic by construction. That is, there is a model
of C with �nite domain adom(C)[invent (of size card(adom(C))+card(vars(C))).
We keep the interpretation of predicates in the �nite model as the interpretation
over the in�nite domain dom. Hence, we have a DB-interpretation for C. We easily
see that because the �nite model satis�es C, the DB-interpretation satis�es C, too:
by construction it holds that adom(C) [invent � dom and if the �nite model

85

interprets predicate symbols with relations over constants from adom(C) [invent

such that all formulas in C are satis�ed, then the DB-interpretation interprets them
the same.

When looking for an upper bound of the distortion distance, we can de�ne it based
on the DNF representations of all constraint formulas and use �nite invention for
the existentially quanti�ed variables: for a formula � in the constraint set C, at
least one disjunct �i of dnf (�) has to be satis�ed. For an upper bound for the
distortion distance db dist we can count the number of literals in each disjunct,
take the maximum and sum up over all formulas in C. That is, in the worst case
all literals in the longest disjunct of each formula swap their truth values in the
solution instance.

Corollary 10.5 (Upper bound of distortion distance)
For a constraint set C of existential formulas, the distortion distance for any

inference-proof and distortion-minimal database instance db 0 can be bounded by

db dist(db0) �
X
�2C

(max
�i2dnf (�)

card(f �ij j�ij is a literal in �ig))

As a tiny illustration take the constraint set C = f:Ill(Mary;Aids); 9x Ill(x;Aids)g
and the input instance db = fIll(Mary;Aids)g: we see that both constraints are in
DNF with a single disjunct each. Both these disjuncts contain one literal; this gives
an upper bound of 2. And indeed, Ill(Mary;Aids) has to be removed, and then a
new constant for x { for example Pete { has to be invented and Ill(Pete;Aids) has
to be added to result in the solution instance db 0 = fIll(Pete;Aids)g.

We have to concede that instantiations with invent constants are not su�cient to
achieve distortion minimality. This inuences the way how a solution instance can
be found. A justi�cation is given in the following remark.

Remark 10.6 (Finite invention and distortion minimization): We have to examine
more closely how �nite invention inuences the distortion distance. In some cases,
instantiations with invented constants lead to distortion-minimality. For instance,
for

db = fIll(Mary;Flu); Ill(Mary;Cancer); Ill(Mary;Myopia)g;

and

C = f9x (Ill(x;Aids) ^ Ill(x;Flu) ^ :Ill(x;Cancer) ^ :Ill(x;Myopia))g

with adom(C) \ Name = ; and adom(db) \ Name = fMaryg. Satisfying C by
instantiating x with Mary results in db01 = fIll(Mary;Aids); Ill(Mary;Flu)g and dis-
tortion distance 3. In contrast, assuming that Pete 2 invent , the solution instance
db 02 = fIll(Pete;Aids); Ill(Pete;Flu)g has distortion distance 2.
Unfortunately, if just choosing values outside of the active domain of C for all
existentially quanti�ed variables, the distortion distance might be worse than the

86 10 Finite Invention For the Existential Fragment

possible optimum, too. One can see that the constants in the database instance db
(more precisely, constants in adom(db) n adom(C)) have to be taken into account
when looking for a distortion-minimal solution. Consider the following example:

db = fTreat(Mary;MedA)g

and

C = f9x Ill(x;Aids); Treat(Mary;MedA)! Ill(Mary;Aids)g

with adom(C) \ Name = fMaryg. Adding Ill(Pete;Aids) (in order to satisfy the
�rst constraint) would not avoid the addition of Ill(Mary;Aids) (in order to satisfy
the second constraint); this solution has a distortion distance of 2. In contrast,
adding Ill(Mary;Aids) for the �rst constraint already satis�es the second constraint
and results in a distortion distance of 1.
Consequently, we see that in terms of distortion minimality preCQE is indeed adom-
generic (recall that adom is short for adom(C [db)). More formally, if db 0 is an
inference-proof and distortion minimal solution instance for the input instance db,
for every permutation � of the domain that is the identity on adom, �(db0) is an
inference-proof and distortion minimal instance for db, too. Hence, we have to
check not only adom(C) constants but also adom(db) constants as instantiations
(in addition to �nite invention) for existentially quanti�ed variables in order to �nd
a distortion-minimal solution. The same technique is used as a rule in the Extended
Positive (EP) tableaux system [BT98, BEST98] that checks satis�ability of a set
of formulas (without distance minimization). This rule makes the EP tableaux
system complete for �nite satis�ability in an in�nite domain. A similar approach
can be found in [HS94] to show equivalence of several query semantics in an in�nite
domain. }

Lastly, we remark on a crucial aspect of DB-interpretations that is based on the
fact that DB-interpretations have a �nite positive part but the database domain
dom is in�nite and �xed.

Remark 10.7 (Tautologies in in�nite domain): A peculiarity of DB-interpretations
is that a negative literal containing an existentially quanti�ed variable is always
satis�ed in an in�nite domain: A formula like 9x:P (a; x) is a tautology because
there are in�nitely many constants b in the domain dom for which :P (a; b) holds.
More generally, we can again analyze the DNF representation of an existential
formula � and come up with a su�cient condition for its being tautologous: if
in cnf (�) = 9~x(�1 _ : : : _ �m) there is a disjunct �i = �i1 ^ : : : ^ �ini where
each �ij is a negative literal and contains a variable from ~x, � is indeed satis�ed
in any DB-interpretation. We can exclude those tautologous formulas from the
constraint set C: performance of preCQE is improved when it does not have to
check tautologous formulas that are satis�ed by default over and over again; not
excluding such formulas has however no impact on correctness of the algorithm.
For other kinds of tautology removal see Section 14.1. }

87

11 preCQE for Existential Quanti�cation

After the theoretical considerations in Section 10, we now approach an algorith-
mic description for �nding an inference-proof database instance for existential con-
straints. Violated existential constraints can again be identi�ed as in De�nition 9.6:
evaluating a violated constraint in dbv (as a closed formula) returns its negation.

To be able to �nd a distortion-minimal solution instance, violated existential con-
straints must be treated by several alternative instantiations of the existentially
quanti�ed variables. More precisely, we need the notion of active domain in a node
v of the preCQE search tree; it is de�ned as the set of constants occurring in the
constraint set Cv or in the marked database dbv.

De�nition 11.1 (Active domain in a node v)
The active domain in a node v of the search tree is

adomv := adom(Cv) [adom(dbv)

When instantiating an existentially quanti�ed variable in a node v, �rst of all, all el-
ements of the active domain adomv are tried as instantiations in di�erent branches
of the search tree. Finally, in a further branch, one constant symbol outside of
adomv is chosen. Note that the constraint set is now modi�ed upon traversal of the
search tree due to instantiations; hence, the active domain adom(Cv) can change
from node to node due to the addition of constants chosen from the set invent .
When handling existentially quanti�ed variables from left to right in the order in
which they appear in the quanti�er pre�x, instantiating one existentially quanti�ed
variable with all values of adomv plus one new invent constant corresponds to the
creation of card(adomv) + 1 child nodes in the search tree. In each child node, the
partially instantiated constraint replaces the original { however, no ground atoms
are marked in this step yet. To distinguish these child node creations from the
splitting that marks a ground atom, we call this process \case di�erentiation" from
now on. Let us look at an example for such a case di�erentiation. Figure 10 shows
a search tree for Example 11.2 where l stands for a \leave" and a stands for an
\add" marker as before.

Example 11.2: We again assume that there are sorts for the variables as were in-
troduced in Example 7.5. Indeed, the notion of active domain carries over to the
sorts again as we already saw in Example 8.15. We start the search with an empty
input instance db = ; and the constraint set

C = f:Ill(Pete;Aids);

:Ill(Mary;Cancer) ^ :Ill(Mary;Aids);

9x (Ill(x;Aids) _ Ill(x;Cancer)) g

88 11 preCQE for Existential Quanti�cation

node r

node v1

node v2
l: Ill(Mary;Aids)
a: Ill(Mary;Cancer)

node v3
a: Ill(Mary;Aids)
l: Ill(Mary;Cancer)

node v4

node v5
l: Ill(Pete;Aids)
a: Ill(Pete;Cancer)

node v6
a: Ill(Pete;Aids)

node v7

node v8
l: Ill(Lisa;Aids)
a: Ill(Lisa;Cancer)

node v9
a: Ill(Lisa;Aids)

PRUNE PRUNE

PRUNE

db01

db02

db03

Case di�erentiation

Splitting

Cr = f:Ill(Pete;Aids);
:Ill(Mary;Cancer) ^ :Ill(Mary;Aids);

9x Ill(x;Aids)_Ill(x;Cancer)g

Cv1 = Cv2 = Cv3 = f:Ill(Pete;Aids);
:Ill(Mary;Cancer) ^ :Ill(Mary;Aids);

Ill(Mary;Aids)_ Ill(Mary;Cancer)g

Figure 10: Example for �nite invention

Note that the constraints contain only one existentially quanti�ed variable x of the
sort Name; for the search we need only an invention of cardinality 1 and we assume
here that invent = fLisag � dom. In the root node r, the existential formula is the
only violated constraint and adomr \Name = fMary;Peteg. Thus, in the root node
we start with a case di�erentiation of size 3. That is, the existentially quanti�ed
variable x is instantiated with the adomr constant Mary in node v1, with the adomr

constant Pete in node v4 and with the invent constant Lisa in v7. The constraint
sets in these nodes are changed accordingly: the instantiated constraint replaces
the original constraint. Figure 10 shows the constraint sets Cr and Cv1 (which is
equal to the sets Cv2 and Cv3 later on).
Splitting on ground atoms still has to be executed to determine the truth values for
ground atoms and �nd a distortion-minimal solution instance. Solution candidates
are the inference-proof instances db01 = fIll(Pete;Cancer)g, db02 = fIll(Lisa;Cancer)g

11.1 The preCQE Algorithm 89

and db 03 = fIll(Lisa;Aids)g. They each have a distortion distance of 1. }

11.1 The preCQE Algorithm

We now move on to a description of the procedures for preCQE with existential
constraints as presented in Listings 6 to 11.

INIT (Listing 6) remains unaltered from the previous INIT procedure: the root
node is created and all local values are initialized; then, GROUND is executed.

GROUND (Listing 7) still determines the set of violated constraints Cvio
v (Line 7.1.)

and sets the new optimum whenever there are no more violated constraints (Line 7.2.).
After these two steps, GROUND changes its functionality radically from the universal
case. First of all, formulas in the set Cvio

v are simpli�ed (Lines 7.3.1. and 7.3.2.; see
below). Simpli�ed formulas are saved in the set Csimp

v ; we use this temporary set
because simplifying Cvio

v directly would modify formulas that will be needed in the
CASE procedure. Moreover, we cannot simplify formulas in Cv directly because this
would alter the active domain of the constraints which will be needed in the CASE

procedure, too. Csimp
v is directly checked for violated ground formulas in which all

literals are marked (Line 7.3.3.); if such a ground formula exists, we cannot satisfy
it anymore in the current marked database instance in node v. Accordingly, the
current branch is pruned due to a conict in the current partial interpretation.
The next step (Line 7.3.4.) covers the case that after simpli�cation there is a vio-
lated ground formula that contains only one unmarked literal. In this case we only
try setting this literal to true (Line 7.3.4.2.) and then recur to GROUND.
If there are no such ground formulas but there is indeed an unmarked literal in some
formula in Csimp

v (see Line 7.3.5.), we try to expand the current database instance
dbv with a value for this literal: a SPLIT is executed (Line 7.3.5.1.) that creates two
child nodes of the node v (see below).
If none of the above cases holds, our last option is to execute a CASE (Line 7.3.6.1.)
that removes an existential quanti�er and creates several child nodes for it (see
below). Note that the previous if-conditions ensure that Csimp

v is not empty and
there are no unmarked ground literals left; that is, there must be a literal containing
an existentially quanti�ed variable.

6. INIT: Initialization for root node r
6.1. create root node r
6.2. dbr:=db;
6.3. min liesr := 0;
6.4. Cr := C;
6.5. dbbest := unde�ned;
6.6. min liesbest :=1;
6.7. GROUND(r);

Listing 6: preCQE { Initialization for existential formulas

90 11 preCQE for Existential Quanti�cation

7. GROUND(v): Check ground formulas in node v
7.1. Cvio

v
:= f� 2 Cv j evalv(�) = :�g;

7.2. if (Cvio
v

= ;)
7.2.1. dbbest := dbv;
7.2.2. min liesbest := min liesv;

7.3. else
7.3.1. Csimp

v
:= Cvio

v

7.3.2. SIMP(v);
7.3.3. if (there is ground � 2 Csimp

v
with card(unmarkedv (�)) = 0)

7.3.3.1. PRUNE; //(conicting markers)
7.3.4. else if (there is ground � 2 Csimp

v
with card(unmarkedv (�)) = 1)

7.3.4.1. take unique literal � 2 unmarkedv (�);
7.3.4.2. MARK(v,�);
7.3.4.3. GROUND(v);

7.3.5. else if (there is � 2 Csimp
v

with card(unmarkedv (�)) > 0)
7.3.5.1. SPLIT(v);

7.3.6. else
7.3.6.1. CASE(v);

Listing 7: preCQE { Check ground formulas

8. SIMP(v): Simpli�cation of violated constraints
8.1. repeat until no more changes occur:

8.1.1. foreach subformula �0 of a formula � 2 Csimp
v

8.1.1.1. if (�0 = 	 ^ and markerv () 2 fk; ag
or �0 = 	 ^ : and markerv () 2 fr; lg
or �0 = 	 _ : and markerv () 2 fk; ag
or �0 = 	 _ and markerv () 2 fr; lg)

8.1.1.1.1. replace �0 with 	; //(unit resolution)
8.1.1.2. if (�0 = 	 ^ and markerv () 2 fr; lg

or �0 = 	 _ and markerv () 2 fk; ag)
8.1.1.2.1. replace �0 with ; //(unit subsumption)
8.1.1.3. if (�0 = 	 ^ : and markerv () 2 fk; ag

or �0 = 	 _ : and markerv () 2 fr; lg)
8.1.1.3.1. replace �0 with :; //(unit subsumption)
8.1.1.4. if a variable disappeared from � remove its quanti�er from the prenex

Listing 8: preCQE { Simpli�cation for existential formulas

9. SPLIT(v): Splitting on a ground atom in node v
9.1. choose � 2 Csimp

v
with card(unmarkedv (�)) > 0;

9.2. choose � 2 unmarkedv (�);
9.3. generate two child nodes vleft and vright;
9.4. dbvleft

:= dbvright
:= dbv;

9.5. Cvleft
:= Cvright

:= Cv;
9.6. min liesvleft

:= min liesvright
:= min liesv;

9.7. MARK(vleft,:j�j);
9.8. GROUND(vleft);
9.9. MARK(vright,j�j);
9.10. GROUND(vright);

Listing 9: preCQE { Split for existential formulas

11.1 The preCQE Algorithm 91

10. CASE(v): Case di�erentiation in node v
10.1. choose 9x�(x) 2 Cvio

v
where x also occurs in Csimp

v
;

10.2. foreach a 2 adomv

10.2.1. generate child node va;
10.2.2. dbva := dbv;
10.2.3. Cva

:= Cv [f�(a)g n f9x�(x)g;
10.2.4. min liesva := min liesv;
10.2.5. GROUND(va);

10.3. choose a0 2 invent n adomv;
10.3.1. generate child node va0;
10.3.2. dbv

a
0
:= dbv;

10.3.3. Cv
a
0
:= Cv [f�(a

0)g n f9x�(x)g;
10.3.4. min liesv

a
0
:= min liesv;

10.3.5. GROUND(va0);

Listing 10: preCQE { Case di�erentiation for existential formulas

11. MARK(v,�): Marking an unmarked ground atom in dbv
11.1. := j�j;
11.2. if (� = and evalv() =)

11.2.1. markerv () :=k;
11.3. else if (� = and evalv() = :)

11.3.1. markerv () :=a;
11.3.2. min liesv++;

11.4. else if (� = : and evalv() =)
11.4.1. markerv () :=r;
11.4.2. min liesv++;

11.5. else if (� = : and evalv() = :)
11.5.1. markerv () :=l;

11.6. if (min liesv �min liesbest) PRUNE; //(bad bound)

Listing 11: preCQE { Marking for existential formulas

92 11 preCQE for Existential Quanti�cation

SIMP (Listing 8) is only slightly changed from preCQE for universal constraints:
not the violation set Vv (which is not computed in the existential case) but instead
the violated constraints in Cvio

v are simpli�ed. Csimp
v is the set that gathers all

simpli�ed violated constraints. Simpli�cation here not only applies to ground for-
mulas but instead existential quanti�ers and variables occur. But still only ground
unit resolution and subsumption based on marked ground atoms in the constraint
formulas is executed; non-ground atoms are not a�ected.

SPLIT (Listing 9) chooses one simpli�ed non-ground violated formula with at
least one unmarked literal (see Line 9.1.) and then chooses one of the unmarked
literals of that formula (Line 9.2.). Two child nodes (Line 9.3.) are created to try
both truth values for the literal (Lines 9.7. and 9.9.). In both cases, a recursion to
GROUND takes place.

CASE (Listing 10) instantiates one existentially quanti�ed variable x of a formula
in the set of violated constraints (Line 10.1.); x need not be the �rst existentially
quanti�ed variable in the prenex: there may occur other variables in front of x. Note
that we restrict instantiation to those variables x in a formula 9x�(x) that also
occur in the simpli�ed formula in Csimp

v because those variables that are simpli�ed
away do not inuence the satis�ability of the violated formula. For instantiation
however we take the unsimpli�ed formula from Cvio

v to be able to delete this formula
from Cv. First of all, child nodes where the variable is instantiated with all possible
constants of adomv are created (see Lines 10.2. to 10.2.5.). Afterward (Lines 10.3.
to 10.3.5.) one invent constant that is not yet contained in adomv is chosen as
the instantiation. In both cases (Lines 10.2.3. and 10.3.3.) the original existential
constraint is removed from the constraint set Cv and the instantiated constraint
is added to Cv instead; in other words, the instantiated constraint subsumes the
original constraint: once the instantiation is satis�ed, the original constraint is also
satis�ed. In every child node, GROUND is called (Lines 10.2.5. and 10.3.5.).

MARK (Listing 11) is unchanged from preCQE for universal constraints: ground
atoms of ground literals are marked depending on their evaluation in the current
database instance.

11.2 Termination, Soundness and Completeness of preCQE

We now analyze the properties of the above algorithm. At �rst, we convince our-
selves that no in�nite recursion occurs and the preCQE algorithm for existential
constraints terminates.

Theorem 11.3 (Termination of preCQE)
For a set C of existential constraints, preCQE terminates in a �nite amount of

time.

11.2 Termination, Soundness and Completeness of preCQE 93

Proof. We observe that Cv is always a �nite set in every node v because C is �nite
and each time an instantiated constraint is added, the original constraint is deleted
from the set Cv (see Lines 10.2.3. and 10.3.3.). Obviously, Cvio

v is a �nite subset
of Cv. This is why the SIMP procedure on Csimp

v (in analogy to the universal case)
takes only �nite time: the repetition of the simpli�cation of formulas (see Line 8.1.)
only takes �nite time because, whenever an application is possible, the length of
one of the formulas decreases (see Lines 8.1.1.1.1., 8.1.1.2.1. and 8.1.1.3.1.).
Next we observe that in CASE the number of generated child nodes (Lines 10.2.1.
and 10.3.1.) is �nite: the active domain of a constraint set Cv is not altered in any
other procedure than CASE; after a CASE step, adomv contains at most one new
constant taken from invent . Hence we can establish that in any node v, adomv �
(adom [invent). That is, the number of generated child nodes is bounded by
card(adom) + card(invent). Note that SPLIT still creates just two child nodes. All
other steps in the six procedures consist of �nite instructions.
We still have to show that the recursion in preCQE is bounded and with it the
depth of the preCQE search tree. As in the universal case, the recursion is only
stopped in the following three cases (which correspond to leaves in the search tree):

1. a (new) optimum is found (Line 7.2.)

2. the �rst pruning condition arises: the current partial interpretation contains
a conict (see Line 7.3.3.1.)

3. the second pruning condition arises: a better solution than the current partial
interpretation has already been found (see Line 11.6.)

In the existential case however, not only GROUND and SPLIT are involved in the
recursion, but also GROUND calls CASE (Line 7.3.6.1.) and CASE recurs to GROUND

(Lines 10.2.5. and Lines 10.3.5.). We �rst argue that there can only be a �nite
number of recursive calls to CASE: CASE is only called if there is at least one non-
ground existentially quanti�ed formula left in Cvio

v (see Line 7.3.6.1.); in each of the
child nodes generated in CASE, the new node's constraint set contains one existen-
tially quanti�ed variable less than the constraint set Cv had before (see Lines 10.2.3.
and 10.3.3.). That is, there can be at most l recursive calls to CASE (where again l
is the number of existentially quanti�ed variables in C).
Next we apply the argument that each GROUND call is preceded by a MARK opera-
tion (either in Line 7.3.4.2. or in Lines 9.7. and 9.9.). The ground literals that are
marked are either already contained in C or are obtained by instantiating existen-
tially quanti�ed variables with exactly one constant. That is, the number of MARK
calls is bounded by the number of atoms occurring in C. Hence, for

k0 := card(f � j � is an atom in a formula in Cg);

the length of a branch in the preCQE search tree is bounded by l + k0.
Note that with k0 we do not count multiple occurrences of atoms in C while still
assuming that variables are standardized apart.

94 11 preCQE for Existential Quanti�cation

Based on this termination result and analogously to the universal fragment, we
have to make sure that the preCQE algorithm is satis�ability sound and complete:
that is, the marked database instance that the preCQE algorithm �nds is really an
inference-proof solution and if there exists such a solution, the algorithm actually
�nds a marked database. Still dbbest is either a marked database instance or dbbest
is unde�ned. Again, the conceptual counterpart is to analyze refutation soundness
and completeness.
For satis�ability soundness nothing changes in comparison to the universal case.

Theorem 11.4 (Satis�ability soundness of preCQE)
For a set C of existential constraints and after running preCQE to completion, if

dbbest is a marked database instance, then its positive restriction is an inference-

proof database instance.

Proof. See Theorem 9.10.

Again, refutation completeness follows from satis�ability soundness.

Corollary 11.5 (Refutation completeness of preCQE)
For a set C of existential constraints, if C is unsatis�able, then { after running

preCQE to completion { dbbest is unde�ned.

To show refutation soundness we employ Corollary 10.4.

Theorem 11.6 (Refutation soundness of preCQE)
For a set C of existential constraints and after running preCQE to completion, if

dbbest is unde�ned, then C is unsatis�able.

Proof. Using Corollary 10.4 and the general results on Skolemization, we see that
C is unsatis�able if and only if the set of ground formulas obtained by instantiating
each existentially quanti�ed variable with a unique constant from the set invent is
unsatis�able. Without loss of generality, we assume that the mapping of existen-
tially quanti�ed variables to invent constants is �xed before starting preCQE; that
is, we determine a one-to-one mapping � with

� : vars(C)! invent

where vars(C) is the set of variables occurring in C. Let C0 be the set of constraint
formulas instantiated with � values (inclusive of all ground formulas of C):

C0 := f �(�(x1); : : : ; �(xn)) j 9x1; : : : ; xn�(x1; : : : ; xn) 2 Cg

Let now T be the preCQE search tree, obtained from a run of preCQE using �; that
is, the last child node created in a CASE operation (Line 10.3.1.) is now assumed to
instantiate the case variable x with �(x). We now show that again we can construct
a semantic tree T � from T such that each node of T � is a failure node for C0. This

11.2 Termination, Soundness and Completeness of preCQE 95

can be achieved along the lines of the proof of Theorem 9.17. Here we are interested
in (un-)satis�ability of the constraints for which consideration of invent constants
as instantiations for existentially quanti�ed variables su�ces; that is, we disregard
instantiations with adom constants at once as they only play a role in distortion
minimization.
To begin with, we use the same construction as in De�nition 9.16 but we add a
step to the construction that removes all those nodes from T � that were created in
a CASE step { we will call these node \case nodes" in the following. More precisely,
whenever a set of sibling case node is encountered upon construction of T �, we only
keep the rightmost of these sibling, where the case variable x is instantiated with
�(x) { we will call this node the \invention node". All other case nodes (including
all the subtrees below them) are immediately removed. Then, the construction of
T � is continued in the invention node. When T � is fully expanded, we traverse T �

once again and remove all invention nodes (note that invention nodes do not have
any siblings in T �), but keep the subtrees below them: we append all child nodes
of an invention node to the parent of the invention node; if an invention node has
an invention node as its child we also remove the child invention node.
After removal of invention nodes, T � is indeed a semantic tree obeying De�ni-
tion 9.14: The nodes that were added upon construction of T � (due to GROUND)
and the splitting nodes still are of binary structure; the two siblings are labeled
in such a manner that one of them is labeled with a literal and the only sibling is
labeled with the literal's conjugate. By moving these nodes up one or more levels
(when removing invention nodes), we regain a binary structure of T �. Moreover, we
still can be sure that no path contains labels with a complementary pair of literals
because labels are based on the markers that are set in T and MARK is only called
for unmarked literals.
We will now prove refutation soundness by arguing that in the semantic tree T �

every leaf node v� is a failure node for C0; that is, C0 is unsatis�able and hence C
also is. As was already analyzed in Theorem 9.17 either v� is also a leaf in T or
v� is a new level node of some literal �; the only di�erence is that for existential
constraints the marked literals are taken from a formula in Cvio

v (and not from a
violation set Vv).

1. If v� is identical to a leaf v in T , then v was pruned in T because there
is a conicting ground formula � 2 Cvio

v (after simpli�cation) such that
card(unmarkedv (�)) = 0. This pruning occurred as a consequence of a MARK

operation for a literal �� in v that makes �� true in v; but then, by construc-
tion of T �, v� is labeled with �� and �� is also true in v�. Moreover, all labels
on the path from the root of T � to v� correspond to the markers in T . Hence
v� falsi�es � in T �.
Let �� be the ground formula from which � was obtained by simpli�cation.
Then, v� also falsi�es �� because simpli�cation is (un-)satis�ability-preserving
for a given (partial) interpretation. Lastly note that �� indeed is a formula of
C0 because T

� contains only �-instantiated formulas by construction.

96 11 preCQE for Existential Quanti�cation

2. If v� is not contained in T , then it is a leaf in a new level of a literal �� in T �.
But �� was marked (as true) in a node v in T because it was chosen from a
ground formula � 2 Cvio

v (after simpli�cation) with card(unmarkedv (�)) = 1.
This node v is then an ancestor of v� in T �. By construction, all ancestors of
v� in T � are labeled according to the markers in T .

� If v� is labeled with ��, then �� is false in v�. We convince ourselves that
v� falsi�es �: �� is the only unmarked literal of � and all other marked
literals do not satisfy �, and thus � is indeed false in v�.
Analogously to the previous case, let �� be the formula from which �

was obtained by simpli�cation. Then, v� also falsi�es �� because of
satis�ability-preservation. And again, �� indeed is a formula of C0 by
construction.

� If v� is labeled with �� then v was pruned in T immediately after ��

was marked in v because otherwise v� would not be a leaf in T �. But
then again, there is a violated ground formula �0 2 Cvio

v for which
card(unmarkedv (�

0)) = 0. Hence, v� falsi�es �0 and also �0� if �0� is
the formula from which �0 was obtained by simpli�cation.

No ancestor of v� in T � falsi�es a formula in C0, because otherwise pruning would
have occurred earlier in T . These are all cases that have to be considered and thus
T � falsi�es C0. By Herbrand's Theorem the claim of the theorem follows.

From refutation soundness follows satis�ability completeness with the help of the
previous termination result.

Corollary 11.7 (Satis�ability completeness of preCQE)
For a set C of existential constraints, if C is satis�able, then { after running preCQE

to completion { dbbest is a marked database instance.

Lastly, we manifest that preCQE for existential constraints returns a distortion-
minimal solution.

Theorem 11.8 (Optimality of solution)
For a set C of existential constraints, if preCQE �nds a solution dbbest , then its

positive restriction dbposbest is distortion-minimal.

Proof. We have seen in Theorem 9.20 that splitting and the marking in GROUND as
well as both of the pruning conditions do not miss out a solution. For existential
formulas, the two di�erences are

� that GROUND marking as well as conict pruning are now executed on ground
formulas in Cvio

v .

� that splitting is also executed on non-ground formulas.

97

Yet, this does not inuence the optimality of the solution.
The crux for existential formulas is thus that the CASE operation tries out all relevant
non-isomorphic instantiations of variables: all constants from adomv plus one new
invent constant.

12 89-Quanti�ed Constraints

We now come to a more general constraint set: C contains closed formulas with a
prenex consisting of a sequence of universally quanti�ed variables followed by a se-
quence of existentially quanti�ed variables. The combination of 8 and 9 quanti�ers
has some undesirable consequences: even when restricted to a set of allowed for-
mulas, this fragment contains formulas that are not satis�able in an interpretation
with a �nite positive part { these are the so called \in�nity axioms". Such a case of
a non-DB-satis�able constraint set is illustrated in the following example; a similar
example was used in [BEST98].

Example 12.1: The following constraint set describes an employment hierarchy; it
can only be satis�ed in an in�nite model.

C = f 8x(Employee(x)! 9yBoss(x; y));

8xy(Boss(x; y)! Employee(x) ^ Employee(y));

8xyz(Boss(x; y) ^ Boss(y; z)! Boss(x; z));

8x(:Boss(x; x));

Employee(Pete) g

We observe that each of the formulas has the allowed property: all universally quan-
ti�ed variables appear in a negated literal in each conjunct of the CNF represen-
tations of the formulas. The gen-relation also holds for the existentially quanti�ed
variable but only because the formula is not in PLNF (see below for an explana-
tion). We start with an empty input instance db = ;. Figure 11 illustrates the
in�nite search tree that the preCQE algorithm would construct. Note that each
ground atom contained in the illustration is meant to be added to the database
instance and Employee is abbreviated with Emp there. In fact, a new constant has
to be invented as the boss of each employee because nobody can be the boss of their
own according to the third constraint. Thus the hierarchy is in�nite and invention
never stops. }

We note that the allowed property of formulas of this fragment does not get along
well with the PLNF representation: observe in the example that moving the exis-
tential quanti�er to the prenex destroys the allowed property of the �rst constraint
formula. This mainly lies in the fact that pushing 9 quanti�ers to the front of the
formula does not preserve the gen-relation for the existentially quanti�ed variables

98 12 89-Quanti�ed Constraints

a:Emp(Pete)

a:Boss(Pete;Pete)
a:Boss(Pete;Mary)
a:Emp(Mary)

a:Boss(Mary;Pete)
a:Boss(Pete;Pete)

a:Boss(Mary;Mary)
a:Boss(Mary; Lisa)
a:Emp(Lisa)
a:Boss(Pete; Lisa)

a:Boss(Lisa;Pete)
a:Boss(Lisa; Lisa)

a:Boss(Lisa;Mary)
a:Boss(Lisa; Lisa)

a:Boss(Lisa; Lisa)a:Boss(Lisa;Paul)

PRUNE

PRUNE
PRUNE

PRUNE PRUNE
PRUNE

Figure 11: Example for in�nity axiom

(see also Example 6.1 of [GT91]). The PLNF representation does however com-
ply with the \evaluable" property (see also [GT91]). Evaluable formulas form a
more general class of safe queries which can be de�ned by a inductive de�nition of
a \con(strained)"-relation akin to the gen-relation for allowed formulas. But even
with evaluable formulas the constraint set can only be satis�ed in an in�nite model
and thus is not DB-satis�able. This is why in this section we do not only require
the allowed or evaluable property for constraint formulas, but have to follow a dif-
ferent path to restrict this fragment. When viewing the constraints as database
dependencies we can apply results from dependency theory to our problem. More
precisely, we only allow the combination of 8 and 9 quanti�ers in \tuple-generating
dependencies" and construct a \dependency graph" of C. These concepts are also
used by Fagin et al. (see [FKMP05]) in the context of\data exchange"; in particular,
the notion of \weak acyclicity" of the dependency graph originates from [FKMP05].

De�nition 12.2 (Tuple-generating dependencies)
A tuple-generating dependency (TGD) is a closed formula of the form

8~x (�(~x)! 9~y	(~x; ~y))

where �(~x) and 	(~x; ~y) are conjunctions of atomic formulas. �(~x) is called the

body and 	(~x; ~y) is called the head of the TGD.

A TGD is called full if there are no existentially quanti�ed variables ~y in 	.

99

We introduce TGDs here in implicational notation (using material implication !)
for better readability. Yet, the preCQE algorithm will only accept TGDs in which
the material implication is replaced by one negation and one disjunction and which
is in prenex literal normal form (PLNF; see Section 7). Then, the TGD looks like
this:

8~x9~y (�0(~x) _	(~x; ~y))

where �0(~x) = :�1(~x) _ : : : _ :�m(~x) is a disjunction of negative literals and
	(~x; ~y) = �01(~x; ~y) ^ : : : ^ �0n(~x; ~y) is a conjunction of positive literals (that is,
atomic formulas). A variable x in ~x need not occur in each �i nor in each �0j , and
a variable y in ~y need not occur in each �0j either. We will call this the \PLNF
representation" of a TGD.
In addition to TGDs (and going beyond the approach of [FKMP05]), we will still
allow existential formulas { including ground formulas in NNF { in a constraint
set C. C may also contain allowed universal formulas that are a disjunction of
negative literals; that is, formulas of the form 8~x:�1(~x)_ : : :_:�m(~x) where each
atom �i need not contain all of the variables in ~x. Such formulas are called \denial
constraints" in [CM05]; we will borrow this term for our purposes.
In Example 12.1, the �rst constraint is a TGD, the second and third constraint
are full TGDs, the fourth constraint is denial constraint and the last constraint is
ground.

We will use weak acyclicity of the dependency graph for a set of TGDs as a su�cient
condition for DB-satis�ability of a constraint set C containing not only these TGDs
but also existential and denial constraints. While the basic notions are borrowed
from [FKMP05], our approach di�ers in many points from theirs. We will exhibit
the di�erences in more detail in Section 15.

De�nition 12.3 (Dependency graph / weak acyclicity ([FKMP05]))
For a set S of tuple-generating dependencies, its dependency graph is determined

as follows:

� for each predicate symbol P occurring in S, create arity(P) many nodes

P1; : : : ; Parity(P) { the positions of P

� for every TGD 8~x (�(~x) ! 9~y	(~x; ~y)) in S: if a universally quanti�ed vari-

able x 2 ~x occurs in a position Pi in � and in a position P 0
j in 	, add an edge

from Pi to P
0
j (if it does not already exist).

� for every TGD 8~x (�(~x) ! 9~y	(~x; ~y)) in S: if a universally quanti�ed vari-

able x 2 ~x occurs in a position Pi in � and in a position P 0
j1

in 	, and an

existentially quanti�ed variable y 2 ~y occurs in a position P 00
j2

in 	, add a

special edge marked with 9 from Pi to P
00
j2
(if it does not already exist).

A dependency graph is weakly acyclic, i� it does not contain a cycle going through

a special edge.

100 12 89-Quanti�ed Constraints

We call a set of TGDs weakly acyclic whenever its dependency graph is weakly
acyclic.

Example 12.4: The dependency graph for Example 12.1 has one normal edge from
Emp1 to Boss1 and one special edge from Emp1 to Boss2 for the �rst constraint. It
has two normal edges from Boss1 and Boss2 to Emp1 for the second constraint. The
third constraint causes a normal edge each from Boss1 and Boss2 to themselves. We
see in Figure 12 that the dependency graph has a cycle involving a special edge. We
could delete the �rst formula containing the existential quanti�er in order to make
the graph acyclic; in this case, for example the solution instance db01 = fEmp(Pete)g
satis�es the remaining constraints. Yet we could also remove the second formula to
break the cycle in the dependency graph; in this case, a solution instance would be
db02 = fEmp(Pete);Boss(Pete;Mary)g. }

Emp1 Boss1

Boss2

9

Figure 12: Dependency graph for in�nity axiom

As an aside, we remark that the removal of cycles containing special edges in the
dependency graph need not be the only way to resolve an in�nity axiom: in Ex-
ample 12.1, we could also remove the third formula (that is, abandon the transi-
tivity property of predicate Boss); in this case, a solution instance would be db 0 =
fEmp(Pete);Emp(Mary);Boss(Pete;Mary);Boss(Mary;Pete)g. Or we could remove
the fourth formula and get a solution like db 0 = fEmp(Pete);Boss(Pete;Pete)g.

The salient point of this chapter is that weakly acyclic TGDs can be satis�ed with
�nite invention. There are two crucial di�erences to �nite invention for the exis-
tential fragment: First of all, universal quanti�ers in the constraints bind variables
to constants of adom(db) such that we have to consider constants from the active
domain adom of C as well as db (in contrast to just considering the non-isomorphic
adom(C) constants in the existential case). Second, TGDs require much more in-
vented constants because for any tuple that satis�es the body of the TGD, invention
for the existentially quanti�ed variables has to take place. The next lemma analyzes
how the invention can be bounded. Its proof is quite analogous to the one of Theo-
rem 3.8 in [FKMP05] with the crucial di�erence that we only count the amount of
invention that is necessary due to existential quanti�cation (instead of counting the
total amount of constants that can occur in all positions of the dependency graph);
this has the e�ect that we only take into account those positions in the dependency

101

graph that have incoming special edges (as opposed to considering all positions in
[FKMP05]) because invention only takes place due to existential quanti�ers. We
furthermore explicitly allow constants to occur in the TGDs.

Lemma 12.5 (Finite invention for TGDs)
Given a constraint set C of weakly acyclic TGDs, and assuming prior 6j=DB

pot sec disj , there exists an inference-proof solution instance that contains only

constants from the set adom [invent tgd, where invent tgd � (dom n adom), and
there is a polynomial in card(adom) that bounds the cardinality of invent tgd.

Proof. The proof is based on the structure of the dependency graph; it analyzes
the number of special edges on paths in the graph. Our �rst observation is that
paths with special edges in the graph are �nite: The graph is assumed to be weakly
acyclic such that there are no cycles with special edges. Hence, the number of spe-
cial edges on a path is �nite and we can determine the maximum of special edges
over all paths; we denote this maximum max9.
Next, we group together those positions that have incoming special edges and
where no path ending in such an edge has more than i special edges (i ranges
over f1 : : :max9g and Pi0 stands for arbitrary positions in the graph):

Pos i := f Pi0 j there is a path with i special edges ending with a special edge

in Pi0 but there is no such path with more than i special edges g

i is called the \rank" of the positions in Pos i. We will also need the maximum
number of special edges entering a position in Pos i (the maximum \fanin" of spe-

cial edges); we denote this number maxfanini . An upper bound for the amount
pi(card(adom)) of invented constants can be inductively de�ned over the ranks
i = 1 : : :max9 as follows. The base case is rank 1: For any position in Pos1 and
any incoming special edge, constants in the position from where the special edge
originates can only range over adom (otherwise the rank would be greater than
1). Depending on the fanin, invention occurs for tuples of adom constants (due to
variables occurring in both the body and the head of a TGD); that is, for each of

the card(adom)max
fanin
1 tuples at most one new constant has to be invented. As the

same position may occur in more than one TGD, we lastly factor in card(C):

p1(card(adom)) := card(Pos1) � card(adom)max
fanin
1 � card(C)

We now see that for all other ranks essentially the same arguments apply with the
exception that we have to sum up the constants that were invented in nodes with
lesser ranks; these invented constants can indeed cause invention in a higher ranked
position:

pi(card(adom)) := card(Pos i) � (card(adom)+
i�1X
j=1

pj(card(adom)))max
fanin
i � card(C)

102 12 89-Quanti�ed Constraints

Consequently, to count the amount of invention necessary to satisfy the set C of
TGDs, we sum up all the pi values; hence, the cardinality of invent tgd can be

bounded by
Pmax9

i=1 pi(card(adom)). This is in fact a polynomial in card(adom) if
C is assumed to be �xed.

We now go one step further and allow not only TGDs but also existential and de-
nial constraints in C. We can establish DB-satis�ability of such a more general
constraint set as a corollary of Theorem 7.11 and Lemma 12.5.

Corollary 12.6 (Inference-proof instances for weakly acyclic constraints)
Given a constraint set C of weakly acyclic TGDs, existential formulas and denial

constraints and assuming prior 6j=DB pot sec disj , there exists an inference-proof so-

lution instance that contains only constants from the set adom[invent9[invent tgd,
where

� invent9 � (dom n adom)
� invent tgd � (dom n (adom [invent9))
� card(invent9) = l where l is the number of variables occurring in existential

constraints

� there is a polynomial in card(adom [invent9) that bounds the cardinality of

invent tgd.

Proof. Existential constraints can be satis�ed with �nite invention as exhibited in
Corollary 10.4; this situation does not change in the presence of denial constraints
and TGDs: Still at most one constant per variable has to be invented in order to
satisfy an existential constraint. That is, we take invent9 as the invention necessary
for the satisfaction of all existential constraints. Denial constraints can only be sat-
is�ed by removal of database entries and hence never increase the active domain.
Turning our attention to TGDs, we observe that invented constants from invent9
can potentially be copied to other positions by TGDs. That is, invention for TGDs
not only occurs for values of adom, but also for values from invent9. To estimate
the amount of constants necessary to satisfy all TGDs, we compute the same poly-
nomials pi as in Lemma 12.5 but replace card(adom) with card(adom [invent9).

When looking for an upper bound of the distortion distance, we have to keep in
mind the fact that constants can be copied from one position to another by TGDs.
This implies that invented constants potentially do not only appear in those predi-
cate symbols (or positions) that are in the scope of an existential quanti�er but also
in other predicate symbols (or positions) occurring in C. That is, in any predicate
symbol in C, constants from adom [invent9 [invent tgd can occur in any position.
We estimate that any such tuple changes its truth value in db0.

103

Corollary 12.7 (Upper bound of distortion distance)
For a constraint set C of weakly acyclic TGDs, existential formulas and denial

constraints, the distortion distance for any inference-proof and distortion-minimal

database instance db 0 can be bounded as follows

db dist(db 0) �
X
P2P

P occurs in C

card(adom [invent9 [invent tgd)
arity(P)

13 preCQE for Weakly Acyclic Constraints

In the upcoming algorithm, we combine the previous approaches for universal and
existential constraints and treat the quanti�ed variables from left to right (as given
by the order of their quanti�ers) in a kind of \lazy" partial instantiation: For uni-
versally quanti�ed variables again violation sets are computed and according to
these the ground instantiations of atoms are determined; for existentially quanti�ed
variables again instantiations with active domain constants plus one new invented
value are tried. Whenever a ground literal is reached (by a partial instantiation
of variables), a splitting �rst tries to satisfy the constraint by marking the literal
appropriately; afterward, instantiation continues to �nd another ground literal. For
this strategy we rely on the fact that all constraint formulas are in PLNF { also the
TGDs are assumed to be in PLNF.

Before listing the algorithm, we provide a small example that gives some intuition
about the approach taken to handle TGDs. Its preCQE search tree can be found
in Figure 13.

Example 13.1: We have a set of constraints saying that no patient receives medical
treatment without having been diagnosed a disease, no patient is ill with Aids, and
there are already two known patients with a treatment

C = f 8xz (Treat(x; z)! 9yIll(x; y));

8x:Ill(x;Aids);

Treat(Mary;MedA);

Treat(Lisa;MedB) g

and the input instance

db = fTreat(Mary;MedA);Treat(Lisa;MedB)g

We observe that the dependency graph for the TGD in C is acyclic (and thus also
weakly acyclic) and the precondition for Corollary 12.6 holds.

104 13 preCQE for Weakly Acyclic Constraints

node r

node v1
r:Treat(Mary;MedA)

node v2
k:Treat(Mary;MedA)

node v3
r:Treat(Lisa;MedB)

node v4
k:Treat(Lisa;MedB)

node v5
a: Ill(Mary;Aids)

node v6
a: Ill(Mary;Flu)

node v7
a: Ill(Lisa;Aids)

node v8
a: Ill(Lisa;Flu)

node v9
a: Ill(Lisa;Myopia)

PRUNE

PRUNE

PRUNE

PRUNE db01 db02

Figure 13: Example for weakly acyclic constraints

We then start with the construction of the preCQE search tree where dbr is identical
to db. We �nd only the �rst constraint violated in dbr. The �rst quanti�er is 8; we
handle it { as in the universal case { by evaluating the PLNF representation of its
negation (without the universal quanti�ers) on dbr. This gives us

Vr = f 8yTreat(Mary;MedA) ^ :Ill(Mary; y);

8yTreat(Lisa;MedB) ^ :Ill(Lisa; y) g

as the violation set. Because Treat(Mary;MedA) is ground, we split on it. Re-
moving it however immediately violates the third constraint: Treat(Mary;MedA)
is marked with r and hence not satis�ed in dbv1 . The same argument applies to
Treat(Lisa;MedB) in node v3. In node v4, still the �rst constraint is violated with
the same violation set as before but all ground atoms are marked. Now case di�er-
entiation for the existentially quanti�ed variable takes place: for the patient Mary,
Ill(Mary;Aids) is tried in v5 because Aids is contained in adomv4 \ Disease; but
then immediately a conict is detected in the violation set (because of the second
constraint { the denial constraint). In v6 the disease Flu is invented. Case di�er-

13.1 The preCQE Algorithm 105

entiation for Lisa follows: adomv6 \ Disease now contains both Aids and Flu and
Myopia is invented. We see that both dbv8 and dbv9 result in solution instances with
distortion distance 2 each. }

13.1 The preCQE Algorithm

INIT (Listing 12) remains unaltered from the previous INIT procedure: the root
node is created and all local values are initialized; then, GROUND is executed.

GROUND (Listing 13) is more complicated than in the previous sections. It still
determines the set of violated constraints Cvio

v (Line 13.1.) and sets the new opti-
mum whenever there are no more violated constraints (Line 13.2.).
Instantiations of violated constraints with universal quanti�ers are computed �rst:
the violation set Vv (see Line 13.3.3.) is obtained by determining the positive eval-
uation evalposv of the PLNF representations of the negations of violated constraints
without the existential prenex. Note that for general TGDs with existential quan-
ti�ers, the evaluation is a set of formulas with universally quanti�ed variables; only
for full TGDs and denial constraints, the evaluation returns ground formulas. To be
able to distinguish the di�erent non-ground violation formulas, variables are stan-
dardized apart in Line 13.3.4. (this is exactly what the function standardizevariables
is supposed to do).
For each formula 	 in the violation set, the PLNF of its negation (plnf (:)) is
formed and put into the \instantiation set"Cinst

v (Line 13.3.5.). Only those formu-
las are added to Cinst

v of which no instance is contained in Cv; in other words, there
is no formula in Cv, that

� has the same structure of the matrix

� has less or equally many existential quanti�ers in its prenex

� has identical constants in the non-quanti�ed positions in the matrix

More formally, there must not exist a substitution

�0 : vars(plnf (:))! dom [vars(Cv)

such that (plnf (:))[�0] 2 Cv (that is, applying the substitution to all variables
of plnf (:) and ignoring unnecessary existential quanti�ers). For example, the

12. INIT: Initialization for root node r
12.1. create root node r
12.2. dbr:=db;
12.3. min liesr := 0;
12.4. Cr := C;
12.5. dbbest := unde�ned;
12.6. min liesbest :=1;
12.7. GROUND(r);

Listing 12: preCQE { Initialization for weakly acyclic constraints

106 13 preCQE for Weakly Acyclic Constraints

13. GROUND(v): Check ground formulas in node v
13.1. Cvio

v
:= f� 2 Cv j evalv(�) = :�g;

13.2. if (Cvio
v

= ;)
13.2.1. dbbest := dbv;
13.2.2. min liesbest := min liesv;

13.3. else
13.3.1. C8

v
:= f� 2 Cvio

v
j outermost quanti�er is 8g;

13.3.2. foreach �i 2 C
8
v

13.3.2.1. �0

i
:= plnf (:�i);

13.3.2.2. �00

i
:= dropexistentialprenex (�0

i
);

13.3.3. Vv :=
S

i
evalpos

v
(�00

i
);

13.3.4. standardizevariables(Vv);
13.3.5. Cinst

v
:= fplnf (:) j 	 2 Vv, no instance of plnf (:) in Cvg;

13.3.6. C9
v
:= Cinst

v
[Cvio

v
n C8

v
;

13.3.7. Csimp
v

:= C9
v
;

13.3.8. SIMP(v);
13.3.9. if (there is ground � 2 Csimp

v
with card(unmarkedv (�)) = 0)

13.3.9.1. PRUNE; //(conicting markers)
13.3.10. else if (there is ground � 2 Csimp

v
with card(unmarkedv (�)) = 1)

13.3.10.1. take unique literal � 2 unmarkedv (�);
13.3.10.2. MARK(v,�);
13.3.10.3. GROUND(v);

13.3.11. else if (there is � 2 Csimp
v

with card(unmarkedv (�)) > 0)
13.3.11.1. SPLIT(v);

13.3.12. else
13.3.12.1. CASE(v);

Listing 13: preCQE { Ground violations for weakly acyclic constraints

14. SIMP(v): Simpli�cation of violated constraints
14.1. repeat until no more changes occur:

14.1.1. foreach subformula �0 of a formula � 2 Csimp
v

14.1.1.1. if (�0 = 	 ^ and markerv () 2 fk; ag
or �0 = 	 ^ : and markerv () 2 fr; lg
or �0 = 	 _ : and markerv () 2 fk; ag
or �0 = 	 _ and markerv () 2 fr; lg)

14.1.1.1.1. replace �0 with 	; //(unit resolution)
14.1.1.2. if (�0 = 	 ^ and markerv () 2 fr; lg

or �0 = 	 _ and markerv () 2 fk; ag)
14.1.1.2.1. replace �0 with ; //(unit subsumption)
14.1.1.3. if (�0 = 	 ^ : and markerv () 2 fk; ag

or �0 = 	 _ : and markerv () 2 fr; lg)
14.1.1.3.1. replace �0 with :; //(unit subsumption)
14.1.1.4. if a variable disappeared from � remove its quanti�er from the prenex

Listing 14: preCQE { Simpli�cation for weakly acyclic constraints

13.1 The preCQE Algorithm 107

15. SPLIT(v): Splitting on a ground atom in node v
15.1. choose � 2 Csimp

v
with card(unmarkedv (�)) > 0;

15.2. choose � 2 unmarkedv (�);
15.3. generate two child nodes vleft and vright;
15.4. dbvleft

:= dbvright
:= dbv;

15.5. Cvleft
:= Cvright

:= Cv;
15.6. min liesvleft

:= min liesvright
:= min liesv;

15.7. MARK(vleft,:j�j);
15.8. GROUND(vleft);
15.9. MARK(vright,j�j);
15.10. GROUND(vright);

Listing 15: preCQE { Splitting on a ground atom for weakly acyclic constraints

16. CASE(v): Case di�erentiation in node v
16.1. choose 9x�(x) 2 C9

v
where x also occurs in Csimp

v
;

16.2. foreach a 2 adomv

16.2.1. generate child node va;
16.2.2. dbva := dbv;
16.2.3. Cva

:= Cv [f�(a)g n f9x�(x)g;
16.2.4. min liesva := min liesv;
16.2.5. GROUND(va);

16.3. choose a0 2 invent n adomv;
16.3.1. generate child node va0;
16.3.2. dbv

a
0
:= dbv;

16.3.3. Cv
a
0
:= Cv [f�(a

0)g n f9x�(x)g;
16.3.4. min liesv

a
0
:= min liesv;

16.3.5. GROUND(va0);

Listing 16: preCQE { Case di�erentiation for weakly acyclic constraints

17. MARK(v,�): Marking an unmarked ground atom in dbv
17.1. := j�j;
17.2. if (� = and evalv() =)

17.2.1. markerv () :=k;
17.3. else if (� = and evalv() = :)

17.3.1. markerv () :=a;
17.3.2. min liesv++;

17.4. else if (� = : and evalv() =)
17.4.1. markerv () :=r;
17.4.2. min liesv++;

17.5. else if (� = : and evalv() = :)
17.5.1. markerv () :=l;

17.6. if (min liesv �min liesbest) PRUNE; //(bad bound)

Listing 17: preCQE { Marking of ground atoms for weakly acyclic constraints

108 13 preCQE for Weakly Acyclic Constraints

formula Ill(Mary;Aids) is an instance of 9y Ill(Mary; y) and hence the second for-
mula would not be added to Cinst

v . And again 9y Ill(Mary; y) is an instance of both
9x0y0 Ill(x0; y0) and 9y00 Ill(Mary; y00) and thus both formulas would not be added to
Cinst
v . Note that the second type of instance is sometimes called a \variant" of a

formula; to avoid an abundant terminology, we will stick with the term \instance"
also for such kinds of formulas. Note, too, that due to standardizing no identical
variable names will occur in a formula and its instances. All this will be important
after instantiating existentially quanti�ed variables in the CASE procedure.
Cinst
v is generated because these formulas are later on added to the set C9

v of exis-
tential formulas (Line 13.3.6.). C9

v contains on top of that all existential formulas
in Cvio

v ; but it does not contain the formulas with universal quanti�ers because
with the help of the set Cinst

v , violating ground instantiations for the universally
quanti�ed variables have already been determined. Then, Csimp

v is the set that is
simpli�ed (see Lines 13.3.7. and 13.3.8.) and later on used to avoid unnecessary in-
stantiations and markers. Keeping C9

v unsimpli�ed ensures that in CASE the correct
formulas can be deleted from Cv.
GROUND proceeds as in the previous sections by checking whether there is a conict
in a ground formula (Lines 13.3.9. and 13.3.9.1.). When there is a ground for-
mula with one unmarked literal, a marker satis�es this literal (Lines 13.3.10.1. and
13.3.10.2.). As long as there are ground formulas with more than one unmarked
ground literal, or non-ground formulas with at least one unmarked literal, a SPLIT

is executed (Line 13.3.11.1.). If none of the above cases holds, we can be sure that
there are only violated constraints with existential prenex in Cvio

v ; then, our last
option is to execute a CASE (Line 13.3.12.1.) that removes an existential quanti�er
and creates several child nodes for it (see below).

SIMP (Listing 14) is the same as for existential formulas.

SPLIT (Listing 15) chooses one simpli�ed violated formula with at least one
unmarked literal (see Line 15.1.) and then chooses one of the unmarked literals of
that formula (Line 15.2.). Two child nodes (Line 15.3.) are created to try both
truth values for the literal (Lines 15.7. and 15.9.). In both cases, a recursion to
GROUND takes place.

CASE (Listing 16) proceeds as in the preCQE version for existential formulas: It
instantiates one existentially quanti�ed variable x of a formula in the set of violated
existential constraints C9

v (Line 16.1.) for which the variable x also occurs in the
simpli�ed version of the formula in Csimp

v . Again, x need not be the �rst existentially
quanti�ed variable in the prenex; that is there may occur other variables in front
of x in the prenex that however do not occur in Csimp

v .
There are only minor di�erences to the existential case. First, in Line 16.3. we
assume that there is a set invent � (dom n adom) such that invent = invent tgd [
invent9 according to Corollary 12.6. Second, the removal of the existential formula

13.2 Termination, Soundness and Completeness of preCQE 109

(in Lines 16.2.3. and 16.3.3.) only succeeds if there was such an existential formula
in Cv before; if instead the existential formula was added in C

9
v due to the violation

of some TGD, the instantiated formula is just added to Cv without removing any
formula from it. But then, in an interplay of GROUND and CASE, only instances of
the newly added constraint will later on appear in Cinst

v (for v and all nodes below
v). In each of the card(adomv) + 1 child nodes, GROUND is called (Lines 16.2.5. and
16.3.5.).

MARK (Listing 17) is unchanged from the previous preCQE versions: ground
atoms of ground literals are marked depending on their evaluation in the current
database instance.

13.2 Termination, Soundness and Completeness of preCQE

As with the previous versions of the preCQE algorithm we start by showing that
the algorithm terminates for weakly acyclic TGDs, existential formulas and denial
constraints. The termination proof will be supported by the following lemma that
establishes �niteness of the violation sets Vv.

Lemma 13.2 (Finite violation sets with adom [invent constants)
For a set C of weakly acyclic TGDs, existential formulas and denial constraints, the

set Vv of ground violations (according to Line 13.3.3.) is always �nite for any node v

and contains only ground or existential formulas with constants from adom[invent
(where invent = invent tgd [invent9 from Corollary 12.6).

Proof. The formulas for which violation sets are computed are those with universal
quanti�ers in their prenex. Denial constraints as well as full TGDs are allowed
formulas; in these cases, the same arguments as in Lemma 9.8 apply with the
only di�erence that adom is augmented with invention for existentially quanti�ed
variables.
We are left with showing that for TGDs with existentially quanti�ed variables the
positive evaluation of their negations in dbv is �nite. More precisely, for a TGD
in PLNF representation � = 8~x9~y (�0(~x) _	(~x; ~y)) (where �0(~x) = :�1(~x) _ : : : _
:�m(~x) is a disjunction of negative literals and 	(~x; ~y) = �01(~x; ~y) ^ : : : ^ �0n(~x; ~y)
is a conjunction of positive literals), we see that

plnf (:�) = 9~x8~y (�1(~x) ^ : : : ^ �m(~x) ^ (:�01(~x; ~y) _ : : : _ :�
0
n(~x; ~y)))

and gen(x; plnf (:�)) (for every x 2 ~x) holds because x occurs in at least one �i (for
i = 1 : : :m); note that the x 2 ~x are free after an application of dropexistentialprenex .
As for the y 2 ~y, we verify that the relation con(y;:(plnf (:�))) holds because y
is absent from all �i but contained in at least one �0j (for j = 1 : : : n). We do not
�ll in the details here but refer to [GT91] for the complete de�nition of the con-
relation; there, the authors also state that the evaluable formulas form the largest
class of domain-independent formulas and thus for database instances, �nite query

110 13 preCQE for Weakly Acyclic Constraints

responses are ensured. What is more, plnf (:�) could easily be transformed into
an equivalent allowed formula before evaluating it on dbv by pushing the universal
quanti�er inward. Hence, in any of the ways, the evaluation returns a �nite set of
formulas that contain only constants from adom [invent .

Pro�ting from the experiences with universal and existential formulas, we can now
transfer the termination result to the more general constraint set.

Theorem 13.3 (Termination of preCQE)
For a set C of weakly acyclic TGDs, existential formulas and denial constraints,

preCQE terminates in a �nite amount of time.

Proof. As in the previous cases, we can argue with the help of Lemma 13.2 that all
computed sets of formulas are �nite and again simpli�cation with SIMP also takes
�nite time. As before in the existential case, the number of generated child nodes
in a CASE step is bounded by card(adom) + card(invent) except for the fact that
the present set of invented constants is larger.
We now concentrate on showing that recursion stops and thus the preCQE search
tree has no in�nite branches. First we argue that there can only be �nitely many
calls to CASE along a branch in the search tree. Most notably, it may happen that
new existential formulas are added to but none are removed from a constraint set
Cv (see Lines 16.2.3. and 16.3.3.): whenever CASE is called for the �rst time for an
instance of a TGD in Cinst

v , the formula 9x�(x) is only contained in C9
v but not in

Cv and hence the instantiations �(a) or �(a0) are added to Cv without removing
9x�(x). This addition only happens if all the universally quanti�ed variables of a
TGD have been bound to constants in adomv (with the help of C

inst
v in Line 13.3.5.)

and all its ground atoms are marked. Moreover, the instance test in Line 13.3.5.
ensures that as soon as such a formula has been added to Cv no more general
formula for the same tuple of adomv constants but with more existentially quanti�ed
variables will ever be added again. That is, for every instantiation of the universally
quanti�ed variables in the head of a TGD with adom [invent constants, at most
once one existential formula is added to Cv: the body of the TGD will be simpli�ed
because all its atoms are marked. At an outside estimate, if d is the number of
TGDs in C that have existentially quanti�ed variables in their head and e is the
maximum amount of universally quanti�ed variables occurring in these TGDs, at
most d � card(adom [invent)e existential formulas are added to Cv. Let now f be
the maximum amount of existentially quanti�ed variables occurring in the heads of
TGDs, then at most

l0 := d � card(adom [invent)e � (f � 1)

new existentially quanti�ed variables occur in Cv due to Line 13.3.5. and standard-
ization in Line 13.3.4. (we use f�1 because one variable is immediately instantiated
before adding the formula to Cv).

13.2 Termination, Soundness and Completeness of preCQE 111

In all subsequent instantiations of existentially quanti�ed variables, indeed the in-
stantiation replaces the original formula in Cv. We can in fact be sure that the
amount of existentially quanti�ed variables decreases with such a replacement.
Hence now we can argue that there cannot be more than l + l0 recursive calls
to CASE (where l is again the number of variables occurring in existential formulas
in C).
Lastly, we argue (as in the previous versions) that the number of MARK calls on
ground atoms is bounded. More precisely, there are

k00 :=
X
P2P

P occurs in C

card(adom [invent)arity(P)

di�erent ground atoms and again each recursive GROUND call (either in Line 13.3.10.2.
or in Lines 15.7. and 15.9.) is preceded by a MARK operation { except for the GROUND
calls in CASE which we already have accounted for. That is, after at most l+ l0+ k00

operations, either pruning occurs or a new optimum is found. Hence the length of
a branch in the preCQE search tree is bounded by l + l0 + k00.

We next see that also in this �nal version of the preCQE algorithm, dbbest is only set
if no violated constraint is left; that is why satis�ability soundness is still ensured.

Theorem 13.4 (Satis�ability soundness of preCQE)
For a set C of weakly acyclic TGDs, existential formulas and denial constraints,

and after running preCQE to completion, if dbbest is a marked database instance,

then its positive restriction is an inference-proof database instance.

Proof. See Theorem 9.10.

Again, refutation completeness follows from satis�ability soundness.

Corollary 13.5 (Refutation completeness of preCQE)
For a set C of weakly acyclic TGDs, existential formulas and denial constraints, if

C is unsatis�able, then { after running preCQE to completion { dbbest is unde�ned.

Refutation soundness (and satis�ability soundness as its corollary) can be estab-
lished by combining the proofs of Theorems 9.17 and 11.6.

Theorem 13.6 (Refutation soundness of preCQE)
For a set C of weakly acyclic TGDs, existential formulas and denial constraints, and

after running preCQE to completion, if dbbest is unde�ned, then C is unsatis�able.

Proof. We again assume that a mapping from variables to invented constants is �xed
and that this mapping is used in the preCQE search tree T whenever invention takes
place. Yet, this time we have to expand the mapping to range over all variables that
ever occur in C9

v { that is, we also include the variables that were newly introduced

112 13 preCQE for Weakly Acyclic Constraints

by standardization. We denote the mapping �00:

�00 :
[

v in T

vars(C9
v)! invent

where invent still is the set invent tgd [invent9 from Corollary 12.6.
The construction of the semantic tree T � from the preCQE search tree T proceeds
as in Theorem 11.6: new levels are introduced for single unmarked literals, only the
subtrees below invention nodes are added to T �, and lastly, all invention nodes are
removed such that only their binary subtrees are retained in T �.
Next, we identify the set C0 of ground instances of C that will be shown to be refuted
by T �. All those formulas ever added to a set C9

v with all the existentially quanti�ed
variables instantiated according to �00 tender themselves as ideal candidates; all
universally quanti�ed variables are instantiated according to some violation set Vv:

C0 :=
[

v in T

f �(�00(x1); : : : ; �
00(xn)) j 9x1; : : : ; xn�(x1; : : : ; xn) 2 C

9
v g

Showing that every leaf node of T � is a failure node for C0 follows the same argu-
mentation as in the proof of Theorem 11.6; we repeat the important aspects:

� a leaf of T � that is also contained in T falsi�es the formula of Csimp
v that caused

the pruning; but then also the unsimpli�ed (and possibly �00-instantiated)
formula in C0 is falsi�ed.

� a leaf in a new level in T � that is labeled with the conjugate of a literal
marked in T immediately falsi�es the formula containing this literal as the
single unmarked literal.

� a leaf in a new level in T � that is labeled with a literal marked in T falsi�es
a ground formula in C0 that caused the pruning in T .

Consequently, T � is a closed semantic tree for C0 and by Herbrand's Theorem, C
is unsatis�able.

From refutation soundness follows satis�ability completeness as in the previous
cases.

Corollary 13.7 (Satis�ability completeness of preCQE)
For a set C of weakly acyclic TGDs, existential formulas and denial constraints, if

C is satis�able, then { after running preCQE to completion { dbbest is a marked

database instance.

Likewise, we can resort to Theorem 11.8 to show distortion minimality of the so-
lution instance. The only di�erence is that now the larger invent set for TGDs is
used.

Theorem 13.8 (Optimality of solution)
For a set C of weakly acyclic TGDs, existential formulas and denial constraints,

if preCQE �nds a solution dbbest , then its positive restriction dbposbest is distortion-

minimal.

13.2 Termination, Soundness and Completeness of preCQE 113

Proof. See Theorem 11.8.

Summary of Part III

This part started with a consideration of existential formulas. Two signi�cant prop-
erties { the �nite model property and genericity { were used to derive the fact that
only a �nite invention of variables is necessary to obtain an inference-proof instance.
With respect to distortion minimality however the active domain constants are not
isomorphic and hence all instantiations of existentially quanti�ed variables have to
be tried to obtain a distortion minimal solution. This in fact is done by the ex-
istential version of the preCQE algorithm. The termination result of the preCQE
algorithm was based on �nite invention and refutation soundness was proved by
�xing a one-to-one mapping from variables to invented constants.
The part moved on to 89-quanti�ed constraints. First of all, tuple-generating de-
pendencies (TGDs) were analyzed. The de�nition and a result for weak acyclicity
of the dependency graph were adapted to show applicability of �nite invention
to TGDs. The constraint set is then extended to additionally contain existential
and denial constraints. The algorithm handles universally quanti�ed variables by
instantiations and existentially quanti�ed variables by �nite invention. The due
termination, soundness and completeness proofs were given.

114 13 preCQE for Weakly Acyclic Constraints

115

IV. Extensions and Related Research

Contents

14 Adjustments and Extensions . 117

14.1 Simpli�cation of Constraints . 117

14.2 Iterative Deepening or Best-First Search 117

14.3 Non-ground Splitting and Advanced Distance Measures 118

14.4 Built-In Predicates, Numerical Domains and Aggregation 118

14.5 Other First-Order Fragments . 119

14.6 Relaxation of In�nite Domain Assumption 119

14.7 Reliable Database Responses . 120

14.8 Availability-Preservation with an Explicit Availability Policy 121

14.9 Adding Last-Minute-Distortion . 123

14.10 Role-Based Access Control and Authorization Views 124

14.11 Hierarchical Constraint Solving . 125

14.12 Incomplete Databases and Refusal . 126

15 Related Research Areas . 127

15.1 Automated Theorem Proving and Model Generation 128

15.2 Database Repairs and Data Exchange . 129

15.3 Belief Revision . 130

Summary of Part IV . 131

Rudy listened to TJ's solution to the two-bisectors problem.
TJ had not proved that it was true, but he'd proved that ev-
erything else was false, a proof he called reductio ad absurdum.
The proof required only a few simple steps, and Rudy was able
to follow it without di�culty. The only problem, TJ said, was
that some mathematicians didn't accept reductio ad absurdum
as a valid principle. But Rudy accepted it, so it didn't matter.
{ Robert Hellenga, Philosophy Made Simple

116

117

14 Adjustments and Extensions

The basic preCQE algorithm can be adjusted to meet special needs that arise in
some application areas. In the following, we �rst discuss techniques that help make
the algorithm more e�cient in terms of its time-complexity. Afterward we move on
to advanced requirements like introducing other distance measures, as well as adding
last-minute distortion and explicit availability policies, or considering reliability,
incomplete databases and refusal.

14.1 Simpli�cation of Constraints

Additional techniques can help optimize the constraint set C such that it can be
processed more e�ciently. For example, for sets of propositional formulas in CNF,
subsumption removal [Zha05], tautology removal, reduction of the number of clauses
[EB05] or elimination of variables [SP04] have been proposed in the SAT solving
context. As for �rst-order logic, methods to simplify the input sets have been inves-
tigated since long for automated theorem proving (see for example [BH80]). Those
techniques can greatly help reduce the size of the constraint set C { both before
starting the preCQE algorithm and at runtime after instantiations of existentially
quanti�ed variables. Subsumption removal has however been discussed critically
in the context of belief revision ([Wil97], see Section 15 for a description of their
approach): As it is a costly procedure, the impact on performance might outweigh
the advantages of a smaller constraint set.

14.2 Iterative Deepening or Best-First Search

If it is impossible to syntactically restrict the input formulas in any of the ways
described in this thesis, in�nity axioms in the constraint set may not be recognized;
in this case, an in�nite number of ground atoms are marked in at least one branch
of the search tree with the depth-�rst search approach. Yet, also with syntactically
restricted formulas for which we can be sure that they are DB-satis�able, possibly
some of the branches treated early in the depth-�rst approach execute an unac-
ceptably high amount of marking steps before a better solution is found. To avoid
getting stuck in such a branch, we can set a threshold for the number of marking
steps in a branch. As soon as the threshold is exceeded, backtracking to the next
branch is executed. If no solution within the threshold is found, the threshold can
be incremented and conict-free branches can be reexplored; that is, the branches
in the tree are deepened iteratively. Iterative deepening has been proposed in �-
nite model generation where either the domain size (see [CS03]) or the nesting
depth of function symbols (see [HRCS02]) is gradually increased. To make itera-
tive deepening for preCQE e�cient with respect to time complexity, all partially
explored branches must be remembered; hence this is e�ectively a breadth-�rst-

118 14 Adjustments and Extensions

search approach which arouses the issue of space requirements. On the other hand
the algorithm de�nitely �nds a �nite model if one exists { even if some branches of
the tree are in�nite.
We could also modify the splitting procedure slightly and apply a best-�rst search
look-ahead heuristics: we process that child node �rst that leaves the lower bound
of the distortion distance unchanged.

14.3 Non-ground Splitting and Advanced Distance Measures

Resolution is a well-established method to achieve refutation of a set of non-ground
input clauses with the help of most general uni�cation. Moreover, splitting on
non-ground formulas has been a research topic for the cases of �nite satis�ability
or model generation (see Section 15 for a description of FDPLL and Darwin) for
clause logic. In sharp contrast to our requirements, the concern of these techniques
is to either refute the input or �nd models of minimal size. preCQE requires min-
imization of a distortion distance with respect to the input database instance db.
Whether it is possible to incorporate non-ground splitting in the search for such a
distance minimal model depends crucially on how the distance is de�ned. For our
cardinality-based { but also for inclusion-based distances { the symmetric di�erence
on ground atoms is calculated. Hence a splitting decision has to be taken for every
a�ected ground atom in the preCQE search tree; moreover local lower bounds for
the distortion distance have to be computed based on ground atoms. Non-ground
splitting would only improve preCQE if a new distance semantics can be found {
without the need to consider ground atoms { or if a reasonable lower bound of the
distortion distance can be estimated in a non-ground splitting step.
A di�erent issue regarding the distortion distance is that preCQE could employ
an even more �ne-grained distance. Instead of calculating distances on sets of
ground atoms, attribute-based distances can be used: they measure the amount
of distortion in terms of the number of attribute values that are changed (see for
example [ADB06, ADB07]). An interesting approach is also the one of [BBFL08]
that speci�es distances for numerical domains to accommodate aggregate queries
on the modi�ed values.

14.4 Built-In Predicates, Numerical Domains and Aggregation

Special handling of equality or other built-in predicates are necessary in some ap-
plication areas, for example, to express functional dependencies. For \consistent
query answering" (see Section 15) [ABK00] explicitly mention \built-in predicates
that have in�nite extensions, identical for all database instances". For resolution,
equality is addressed with the means of paramodulation. In the presence of function
symbols, [CW94] require equality literals to be attened. As a fortunate fact for
our approach of allowed formulas, [GT91] incorporate equality in their de�nition of
allowed formulas and state that other built-ins can be included analogously. Hence
the evaluation-based approach of preCQE can probably adapted to handle equality

14.5 Other First-Order Fragments 119

and other built-in predicates without much di�culty.
We also remark here that the data modi�cation approach as proposed for preCQE
inherently has some di�culties in numerical domains. When for example trying to
keep a salary secret, introducing a lie for the salary that however amounts to nearly
the same numerical value, is useless. Hence, to be e�ective for \numerical lies", a
range of secret values has to be declared in the con�dentiality policy { possibly with
the help of built-in predicates.
Similarly, preCQE can be adapted to support aggregate queries as well as data
modi�cation that respects some statistical properties of the data. There is a lot
of previous work considering these requirements; for example, \microaggregation"
(see for example [LZWJ02]), simulatable binding (see [ZJB08]) or multidimensional
range queries in OLAP systems (see [WLWJ03]).

14.5 Other First-Order Fragments

We could study the applicability of preCQE to fragments of �rst-order logic other
than the ones examined in the previous parts of this thesis. Appropriate restrictions
have to be identi�ed that ensure DB-satis�ability of the constraint set as a whole;
one could probably take the conjunction of all constraint formulas and apply a re-
striction to this conjunction. Most notably, the �nite model property of constraints
is in general not su�cient to ensure DB-satis�ability. For example, a formula of the
Bernays-Sch�on�nkel class like 9x8y Ill(x; y) indeed has fIll(Mary;Flu)g as a model in
the �nite domain fMary;Flug (assuming sorts as before). But it is not DB-satis�able
in the in�nite domain dom. Similarly, the PRQ formulas of [BT98, BEST98] are
as expressive as full predicate logic and hence contain in�nity axioms. The same
might apply to the guarded fragment. Analogously to [BT98, BEST98], we may be
able to prove that if a DB-model for a constraint set of PRQ formulas exists, it is
found by preCQE; otherwise the algorithm is not guaranteed to terminate.

14.6 Relaxation of In�nite Domain Assumption

In all practical implementations, the domain size cannot be in�nite but must be
�nite. In some applications hence quanti�ers are eliminated by propositionalization:
a universal quanti�ers leads to a conjunction of all possible instantiations with
domain elements; an existential quanti�er results analogously in a disjunction. With
an in�nite domain a full expansion of constraint formulas clearly is impossible:
expansion of a universal quanti�er results in an in�nite conjunction and expansion
of an existential quanti�er results in an in�nite disjunction. But also with a �nite
domain a full expansion is only feasible with very small domain sizes. Fortunately,
the active domain semantics as well as the �nite invention approach show that for
the considered restrictions a �nite subset of the in�nite domain su�ces. Indeed,
for a �xed �nite domain the preCQE algorithm is also applicable (recall that the
domain is assumed to be �xed by the database schema): instead of DB-implication
for the evaluation function we have to use �nite implication (denoted j=�n). Our

120 14 Adjustments and Extensions

concern can then be formulated as follows: if the constraints are �nitely satis�able
in the given domain and the precondition for lying holds, �nd a model that is closest
to the input instance db.

14.7 Reliable Database Responses

With the lying method, some database responses may be unreliable in the sense
that the user cannot be sure whether a response was lied or not, but the user may
have higher interest in de�nitely correct (and thus reliable) responses. The issue of
reliability for censor-based CQE was raised in [BB04b]; there, reliability was de�ned
with respect to a query sequence such that an answer (in the corresponding answer
sequence) is reliable if it is satis�ed in all the database instances that return the
same controlled answer sequence.
We propose to de�ne reliability of responses in the context of inference-proof databases
such that the inference-proof instance and all its\possible pre-images"are taken into
account. There may be several solutions (that is, distortion-minimal and inference-
proof database instances) for a given db; on the other hand, for one inference-proof
instance db 0 there may be more than one original instance. Seeing the preCQE
computation as a mapping from the input instance to a set of solution candidates
(that is, instances with the same distortion distance), reliability for inference-proof
databases can now be stated in terms of possible pre-images. Because we assume
that the user has no incorrect a priori knowledge and an original database speci�es
correct information, we also require that a pre-image is a model of prior :

De�nition 14.1 (Possible pre-image)
A database instance dbpre is a possible pre-image of an inference-proof database

instance db 0, if db0 is a distortion-minimal inference-proof database instance for

dbpre (with respect to �xed sets of a priori knowledge prior and potential secrets

pot sec) and Idb
pre

j= prior.

For inference-proof database, reliability of a database response can thus de�ned as
follows:

De�nition 14.2 (Reliable database response)
Given prior and pot sec, the response eval�(�)(db 0) to a closed query � from an

inference-proof database instance db0 is reliable if all database instances dbpre that
are possible pre-images of db0 return the same response for �; that is,

eval�(�)(db0) = eval�(�)(dbpre)

for all possible pre-images dbpre.

As we assume that the user knows the policy speci�cation (and his a priori knowl-
edge), he can compute whether a database response is reliable or not. Due to the

14.8 Availability-Preservation with an Explicit Availability Policy 121

�niteness of a database instance and our de�nition of distortion minimality, the set
of possible pre-images for a given db 0 is �nite. One could extend this de�nition in
the fashion of probability-based approaches and determine a probability distribution
over the pre-images; hence a probabilistic notion of reliability could be established.

14.8 Availability-Preservation with an Explicit Availability Policy

We pointed out in Section 4.5 that not only con�dentiality but also availability
requirements can be explicitly stated. For preCQE this means that still inference-
proofness and distortion minimality via the distance db dist is achieved but addi-
tionally the signi�cance of some data is accentuated. Analogous to the con�dential-
ity policy, the availability requirements are declared in an availability policy called
avail . More precisely, avail is a set of formulas of the chosen base language L {
in contrast to the con�dentiality policy we also allow open formulas in avail . For
preCQE we give the availability policy a special, instance-dependent semantics: for
each closed formula � in avail , its truth value (that is, eval�(�)(db)) should be
retained in the solution instance db0 { if this does not contradict the inference-
proofness of db0; for each open formula � in avail , the truth values of all the closed
ground instantiations (substitutions of the free variables with constants from dom)
should be retained in db 0.
To achieve this, we determine a set of closed formulas by evaluating the policy avail
in db and taking only the positive part of the evaluation with an evaluation func-
tion evalpos (in analogy to the positive evaluation for a marked database instance
in De�nition 9.5). We have to ensure that this is a �nite set of closed formulas
and thus restrict the availability policy avail to safe formulas (that is, those with
a �nite positive part of their evaluation); as a syntactical condition for this we em-
ploy the allowed property of De�nition 8.3 once again. In this way, we de�ne the
following \availability distance" as the primary measure of availability in a solution
instance db0: we count the number of closed formulas and the number of ground
instantiations of open formulas that have a di�erent evaluation in db than in db 0.
It is su�cient to compute the positive evaluation to count these di�erences.

De�nition 14.3 (Availability distance)
The availability distance of a database instance db 0 with respect to an availability

policy avail of ground and allowed formulas and an input instance db is

avail dist(db 0) := card(
[

�2avail

evalpos(�)(db) �
[

�2avail

evalpos(�)(db0)):

We decide to maximize this availability distance in the �rst place and thus make
\availability maximality" our primary optimization criterion:

122 14 Adjustments and Extensions

De�nition 14.4 (Availability maximality)
An inference-proof database instance db0 is availability maximal, i� there is no other

inference-proof database instance db00 such that

avail dist(db00) > avail dist(db0):

Distortion minimality is maintained as a secondary optimization criterion: from all
availability-maximal candidate instances we choose one with minimal db dist . This
way, the availability of avail entries is respected as good as possible, albeit at the
cost of more distorted entries in the solution instance.
We reinforce that inference-proofness { that is, Idb

0
being a model of C { still is

our main interest: no potential secrets will be divulged by an availability-maximal
solution instance.

For the Branch and Bound approach on the availability distance we need a lo-
cal lower bound of this distance for each node v in the search tree. We call it
min unavail and de�ne it using the initial dbr:

min unavailv := card(
[

�2avail

evalposr (�) �
[

�2avail

evalposv (�)):

After a ground literal has been marked in a node v, the lower bound min unavailv
can be calculated in the MARK procedure. Based on the fact that only a single ground
atom changes its truth value in one call to MARK, min unavailv can be calculated
more e�ciently than evaluating all avail formulas in each marked database instance
dbv with evalposv : evidently, only the avail formulas a�ected by can potentially
increase min unavailv.
Lastly, we have to adjust the pruning condition due to a bad lower bound to con-
sider both min unavailv and min liesv: a branch is pruned in the MARK procedure
whenever

min unavailv > min unavailbest or

min unavailv = min unavailbest and min liesv � min liesbest :

We lastly illustrate this approach with an example. As the original database in-
stance db, we again take

Ill Name Diagnosis

Pete Aids

Mary Cancer

Treat Name Treatment

Pete MedA

Mary MedB

As a priori knowledge and con�dentiality policy we again have

prior = f8x(Treat(x;MedA)! Ill(x;Aids) _ Ill(x;Cancer));

8x(Treat(x;MedB)! Ill(x;Cancer) _ Ill(x;Flu))g

14.9 Adding Last-Minute-Distortion 123

pot sec = f9xIll(x;Aids);9xIll(x;Cancer)g

We add an availability policy that says that the ground instantiations for a treat-
ment with MedA and MedB should best be unchanged { for both the cases that
such an instantiation is true in Idb and that it is false. This might be justi�ed by
the fact that the medication has serious side e�ects or mutual reactions with other
medicine; a distortion of information regarding the medication might thus cause
detrimental e�ects for a patient.

avail = fTreat(x;MedA);Treat(x;MedB)g

In Figure 14 it is shown how a solution instance is found. We �nd a unique solution
in v3 because we calculate

min unavailv3

= card(fTreat(Pete;MedA);Treat(Mary;MedB)g � fTreat(Mary;MedB)g)

= 1

while

min unavailv2 = card(fTreat(Pete;MedA);Treat(Mary;MedB)g � ;)

= 2

Because of the solution's uniqueness, we do not even have to use db dist here.

14.9 Adding Last-Minute-Distortion

With an inference-proof database instance, availability of correct information is en-
forced globally by distortion minimality. More precisely, in the setting with allowed
universal constraints, when a query sequence covers the whole active domain, max-
imal availability is asserted for it. Yet, if not the whole active domain is covered
in a query sequence, db0 may return more lies than necessary for this speci�c se-
quence: if there is a second distortion-minimal inference-proof database, it might
return more correct answers for the query sequence than db 0 does. But because
we assume that the query sequence is not known beforehand and may also be in�-
nite, those dynamic aspects are hard to capture. Yet, for censor-based CQE, that
dynamically determines at runtime which responses can be given, it is possible to
employ a \last-minute distortion strategy" (see [BB04b]): Depending on a speci�c
query sequence, the CQE system should return correct answers as long as possible
before e�ecting a distortion. This is a heuristics to improve availability for short
query sequences in censor-based CQE.
When considering the preprocessing approach of this thesis, with an inference-proof
solution instance db 0, last-minute distortion might be lost for some query sequences
but not for others; that is, db0 may return lies too early when considering a spe-
ci�c query sequence Q. To overcome this restriction of inference-proof databases,

124 14 Adjustments and Extensions

node r
remove Ill(Pete;Aids)
remove Ill(Mary;Cancer)

node v1
remove Treat(Pete;MedA)
min unavailv1 = 1

node v2
remove Treat(Mary;MedB)
min unavailv2 = 2

node v3
keep Treat(Mary;MedB)
add Ill(Mary;Flu)
min unavailv3 = 1

node v4
keep Treat(Pete;MedA)
add Ill(Pete;Cancer)
remove Ill(Pete;Cancer)

dbbest

PRUNE

Figure 14: preCQE with explicit availability policy

we propose to store the whole set (or at least a subset) of all inference-proof and
distortion-minimal solution instances (with respect to �xed db, prior and pot sec)
whenever this is possible from the point of view of available preprocessing time and
storage capacity. All these solution instances ensure con�dentiality of the given
potential secrets with a minimum of lies; however at runtime when a speci�c query
sequence is handled, the system can choose one solution instance out of the stored
set such that a correct answer is returned as long as possible. As a similar concept,
[BCFP03] de�ne a model-theoretic semantics for access control that \assigns to a
logic program a number (possibly zero) of alternative models, each representing a
set of consistent authorizations that can be possibly assigned to subjects".
Note that last-minute distortion is just a heuristics and may be contradictory to
query-dependent availability (or \cooperativeness") also in the dynamic censor-
based setting: returning correct answers in the beginning may lead to more lies
than necessary for a speci�c query sequence in the long run.

14.10 Role-Based Access Control and Authorization Views

In the formal presentations in this thesis we abundantly talked of a \single user".
This can easily be extended by introducing roles and specifying a con�dentiality
policy and a priori knowledge for each role; that is, roles enable modeling groups of

14.11 Hierarchical Constraint Solving 125

users instead of each single user.
Another way of simplifying the speci�cation of the preCQE input is the utilization
of parameters. This mechanism is having a wide repercussion in the access control
�eld; for example, [RMSR04] present authorization views (a special type of param-
eterized views) as a common means of access control; the virtual private database
(VDP) mechanism of the Oracle database system is simpler but similar. The un-
derlying idea is that there is one access control rule de�ned with some parameters
that are instantiated at query time (for example, the user identity or the access
time). Access control is enforced by using these parameters in some more or less
complicated where-clause of a SQL query.
Although parameterized views are inherently a query-time mechanism, we could
incorporate parameters into our con�dentiality policy of potential secrets as well as
the a priori knowledge: they can be declared once by the administrators but auto-
matically have a di�erent instantiation according to each particular user. Hence,
preCQE (and CQE in general) can combine parameterization of policies with the
logic-based con�dentiality properties of inference control; in the opposite direction,
CQE can inuence the incorporation of a user model into view-based access control.
Conceiving inference-proof database instances as views raises the question in how
far the preCQE approach can be pushed back in the direction of a query-time mech-
anism. Usually a distinction is made between materialized view (data in the view
are stored in the database system) or a virtual view (the data in the view are com-
puted at query time). It is an interesting open question if it is possible to maintain
the preCQE input as a virtual view; similar problems are tackled by data integra-
tion systems (see for example [CCGL02]). It may also be possible to materialize
only relevant parts of an inference-proof instance according to a constraint set with
parameters.
Changing the Interaction Model and allowing updates has tremendous consequences:
when on the one hand updates by the database administrator are allowed, the
inference-proof instance has to be updated, too. What is more, it has to be up-
dated without violating con�dentiality of secrets. If on the other hand the user is
allowed to execute updates on the inference-proof instance, we face the problem of
view updates and also have to ensure that no harmful inferences can occur due to
an update.

14.11 Hierarchical Constraint Solving

In order to give the database administrator greater exibility when specifying the
policies, instead of solving a maximization problem where prior and Neg(pot sec)
have to be fully satis�ed and avail has to be maximally satis�ed, we can extend
the algorithm to solve a hierarchical maximization problem: while only prior is in
hierarchy level 0 (and thus has to be fully satis�ed), there can be other hierarchy
levels consisting of alternating sets of con�dentiality and availability policies that
have to be satis�ed as good as possible while lower levels take precedence over
higher levels. In this way, the administrator can specify �ne-grained con�dentiality

126 14 Adjustments and Extensions

and availability requirements. In this setting, we can also skip requirement (e) (see
Section 7.4) as we now solve a MAXSAT problem for the negations of the potential
secrets and not all secrets have to be protected. This approach has been published
in a more generalized form for a hierarchical constraint solver in [BBWW07].

14.12 Incomplete Databases and Refusal

An incomplete database instance db in the CQE context (see Section 4) is a �nite
and consistent set of formulas. With this data model we cover null values (via ex-
istential quanti�cation) as well as disjunctive information. The evaluation function
is then based on logical implication: query evaluation returns the value unde�ned
to those closed queries for which neither the query sentence nor its negation are
implied by db.

eval(�)(db) :=

8><
>:

true if db j=FOL �
false if db j=FOL :�
unde�ned else

Inference-proofness for incomplete databases has a strong similarity with belief re-
vision or belief contraction techniques (see [CW94] for a well-known belief revision
approach that we also describe in Section 15) in the following way: for a potential
secret 	, we could for example revise its negation :	 into the incomplete original
instance db (thus using negation as a lie) or contract 	 from db (thus using unde-

�ned as a lie). The protection of an unde�ned value is probably more intricate. In
a similar way, data restriction (\refusal") can probably be implemented: whenever
a query or its negation is implied by the input instance but not by the contracted
instance, the query response is refused (\access denied").
However, consistency with the a priori knowledge prior has to be ensured without
actually revising it into db. The notion of belief change (see [DS07, DS04]) might be
helpful to tackle this problem: belief change is an approach for simultaneous belief
revision (in a consistency based way) and belief contraction (in an entailment based
way) for propositional knowledge bases. Optimization criterion for solutions is the
inclusion-based maximization of a set of equivalences between the propositional
language of the knowledge base and the propositional language of the revision set.
Transforming db into an inference-proof incomplete database db0 may be seen as
a so-called belief change scenario B = (db; prior ; pot sec) such that db 0 represents
the knowledge

Cn(db [prior [EQ) \ (pot sec [f?g) = ;

where Cn is an appropriate consequence operator computing the deductive closure
of its input, db is appropriately renamed with a language disjoint to prior , EQ
is a set of equivalences between the languages and the bottom element ? avoids
inconsistencies if pot sec is empty.
Yet, the consequence operator presents us with a new problem: db 0 must be rep-
resentable as a �nite set of formulas. Hence, belief base revision (that is meant

127

to return a �nite belief base as its result) may be appropriate here. Furthermore,
[Ros06, CLR03] provide several semantics for query evaluation over incomplete and
inconsistent data.

For incomplete databases, we also want to maximize availability by minimizing a
distortion distance. Apart from cardinality-based distances (as de�ned and used
in this thesis), preorders on models can be de�ned by considering the set inclusion
of their symmetric di�erences (see for instance [Win90, CW94] for a description
of both methods and a characterization of their local and global behavior); these
inclusion-based orders might be reasonable when starting with a set of original
models (that is, an incomplete database in our case).

15 Related Research Areas

There are several research areas that { although not focusing on security require-
ments { have inuenced the development of preCQE. Yet none of them readily �ts
the bill of the preCQE problem statement as they either do not consider database
instances in an in�nite domain or do not follow a distance minimization approach or
they apply a di�erent data model as well as di�erent modi�cation primitives. With
preCQE we made an e�ort to combine the expedient features of all of them. We
discuss the approaches and their inuences on preCQE in the following subsections;
Figure 15 illustrates the situation.

preCQE

Belief Revision

knowledge bases

logical closure

minimal change

SAT propositional logic

MAXSAT optimization
Automated

Theorem Proving

function symbols

Model Generation

�nite models

Satis�able
Integrity

Constraints

in�nite domain
Data Exchange

consistency

Database Repairs

predicate logic

Figure 15: Related research areas

128 15 Related Research Areas

15.1 Automated Theorem Proving and Model Generation

Automated theorem proving provides mechanisms that aim to show that a �rst-
order theorem follows from a set of axioms by deriving a refutation from the axioms
and the negation of the theorem. Model generation on the other hand strives for
(in most cases) �nding �nite models of a set of �rst-order formulas. Both topics
do not incorporate a notion of \minimal change" as it is the case with distortion
minimization in preCQE.
In the propositional context, satis�ability problem solvers (SAT solver) try to �nd a
satisfying interpretation for a set of clauses (i.e. disjunctions of literals). The basis
for nearly all non-probabilistic SAT solvers is the so-called DPLL-algorithm (see
[DP60, DLL62]). It builds an interpretation step-by-step by assigning propositional
variables a truth value with the methods:

1. elimination of one-literal clauses (also called\boolean constraint propagation",
BCP): a unit clause (i.e., a clause consisting of just one literal) must be
evaluated to true

2. a�rmative-negative rule: whenever a literal occurs \purely" in the clause set
{ that is, its conjugate does not occur {, set it to true

3. splitting on variables: take one yet uninterpreted variable, set it to false (to
get one subproblem) and to true (to get a second subproblem), and try to
�nd a solution for at least one of the subproblems

Whenever a variable is assigned a value, the set of clauses can be simpli�ed by unit
subsumption (if a clause contains a literal that is evaluated to true, remove the
whole clause) or unit resolution (if a clause contains a literal that is evaluated to
false, remove this literal from the clause but keep the remaining clause). If there is
only the empty set left (which is equivalent to true), the current interpretation is
satisfying; however, if the clause set eventually contains the empty clause (which
is equivalent to false), the interpretation is not satisfying.
For SAT indeed optimization variants exist: the maximum SAT (MAXSAT) and
the partial MAXSAT (PMSAT) problems as well as their weighted extensions. A
prototypical implementation of preCQE that is based on SAT solving will be the
topic of the upcoming Part V.

Coming back to �rst-order logic, we present two examples of model generation.
[BT98, BEST98] employ the \extended positive tableaux" (EP tableaux) method
in their \Satis�ability Checking for Integrity Constraints" (SIC) system. If a set of
database constraints is �nitely satis�able, SIC generates a minimal �nite model; if
they are unsatis�able, it refutes the constraints. They consider a logical language
with a denumerable number of constants but no function symbols. They de�ne
term interpretations to be Herbrand interpretations { with the di�erence that the
interpretation's domain is the set of all constants occurring in ground atoms that
are satis�ed by the interpretation. Therefore, if a term interpretation satis�es a

15.2 Database Repairs and Data Exchange 129

set of formulas, the constants (in the formula set) outside of the domain of the
interpretation are mapped to a special constant.
The SIC database constraints are a set of syntactically restricted formulas { so
called \positive formulas with restricted quanti�cation" (PRQ formulas) having the
same expressive power as unrestricted �rst-order logic. Arbitrary formulas can be
transformed into PRQ formulas by restricting quanti�ed variables with the help of
an explicit predicate ranging over the domain of the term interpretation and all con-
stants occurring in the set of formulas. Four tableaux expansion rules are applied
to unsatis�ed formulas in the constraint set either until all branches contain the
atom ? (denoting unsatis�ability), or a branch with all formulas satis�ed has been
constructed (denoting �nite satis�ability), or rule applications never stop (denoting
in�nite satis�ability). Also fairness of a tableau is considered meaning that e�ect of
each possible rule eventually takes place. The tableaux method is shown to be sound
and complete for unsatis�ability, as well as sound for satis�ability and complete for
�nite satis�ability. We expounded previously in Section 10 that the handling of ex-
istential formulas in preCQE originates from the according EP tableaux rule. The
restriction to process only unsatis�ed formulas (hence \violated" constraints in the
preCQE terminology) is also applied in preCQE. Yet SIC and preCQE di�er in
the model �nding strategy: SIC is a tableaux system and as such has very little in
common with the preCQE search tree; what is more, the SIC system does not make
use of a query evaluation function, nor does it follow a minimal change approach
(that is, minimize a distance between database instances).
FDPLL [Bau00] and its successor Darwin with the Model Evolution Calculus [BT05,
BT08] provide a procedure that generates models of possibly in�nite size. It pro-
cesses clauses in predicate logic (without equality). Models are represented as sets
of non-ground formulas. The authors state that Darwin is a decision procedure for
the Bernays-Sch�on�nkel class. The main achievement of both FDPLL and Darwin
is that they lift the rules of the propositional DPLL method to �rst-order logic (for
example, the splitting rule). Both aim purely at model generation { hence, they do
not consider minimal change either. The work on FDPLL contains a hint on the
use of semantic trees that led to the author's involvement with the exposition in
[CL73]. Anyway, the work on FDPLL does not elaborate any proofs with the help
of semantic trees as the ones that can be found in this thesis. We reinforce the point
that the Model Evolution Calculus is designed for clause logic; in contrast, preCQE
allows a much more general syntax of constraint formulas. We already discussed in
Section 14.3 that incorporation of lifted splitting into preCQE is desirable but then
the computation of the distortion distance has to be supported accordingly.

15.2 Database Repairs and Data Exchange

Both, database repairs [ABK00, BC03, CM05, BBFL08] and data exchange [AK08,
FKMP05, MS07], are concerned with restoring consistency with respect to a set
of constraints. Database repairs emerged in the context of consistent query an-
swers (CQA): when a user queries a database that is inconsistent with respect

130 15 Related Research Areas

to a set of constraints, identify those responses that are consistent with the con-
straints. Most approaches use the smallest symmetric set di�erence to ensure only
a minimal amount of changes that make a database instance consistent with the
constraints. In this way, their approach is identical to the inclusion-based distance
measure used in belief revision. In [BBFL08] a generalization that also considers
cardinality-based distances is given. Such a minimally changed database instance is
called a \repair". A consistent database answer (for an open query) is then de�ned
as a tuple of constants for which the query is satis�ed in all repairs of the original
(inconsistent) database instance; similarly, true or false can be consistent answers
for a closed query. The approaches are mostly restricted to universal constraints
(sometimes only denial constraints) and they only allow deletions of tuples to re-
pair a database. Extensions to inclusion dependencies with existential quanti�ers
are presented in [BB04c, CM05]; but for their purposes the authors only deem the
addition of null values as appropriate. This makes the resulting database repairs
incomplete: \[a]llowing repairs constructed using insertions makes sense only if the
information in the database may be incomplete" ([CM05]). Hence what makes the
main di�erence between database repairs and preCQE is the incorporation of tuple
additions and the treatment of existential quanti�ers; the result of preCQE remains
in the complete data model. On the other hand, [CM05] are interested in tractability
and identify minimal classes of constraints for which their consistent query answer
problem lies outside of the complexity class P { while we are interested in �nding
a maximal set of constraints that is decidable and soundness and completeness of
preCQE can be ensure.
Data exchange on the other hand materializes data from sources into a target based
on a set of \source-to-target" dependencies (and possibly respecting an additional
set of target dependencies). [FKMP05] apply the chase procedure to the dependen-
cies to take over data from the sources into the target. As already mentioned in
Section 12, the notion of weakly acyclic TGDs originates from them. But during
their chase procedure, existential quanti�ers lead to introducing null values in the
target which makes the target incomplete; this again in contrast to how preCQE
handles existential quanti�ers. Furthermore, every time the body of a TGD is sat-
is�ed, the chase adds tuples in the head to the target; in contrast, with preCQE
it is also possible to delete tuples a�ected by the body to achieve consistency. In
contrast to [FKMP05], preCQE is able to handle additionally existential and denial
constraints.

15.3 Belief Revision

Belief revision is about accommodating a set of knowledge (a \knowledge base" or
\belief base") to new { possibly contradictory { information. A knowledge base
corresponds to our notion of an incomplete database and hence as we require our
preCQE result to be complete is not totally applicable. Nevertheless, minimal
changes semantics is inherent to belief revision and most notions of distances on
models originate from it. But research on belief revision mostly focused on theo-

15.3 Belief Revision 131

retical properties (\postulates") rather than practical implementations. In the fol-
lowing, we present two of the few algorithmic approaches here. Moreover, we men-
tioned already in Section 14.12 the concept of belief change scenario [DS07, DS04]
for propositional knowledge bases.
[CW94] implement model-based belief revision: they minimize the distances be-
tween models of the knowledge and the new information. They use negation (\in-
consistencies") to determine minimal ippings of ground literals in order to establish
consistency with the new information. Inconsistencies are akin to our violation sets
but require putting the formula into CNF beforehand { which we with preCQE
do not. After a foundational propositional algorithm, they propose a �rst-order
algorithm including the handling of function symbols. Yet this approach remains
preliminary as the universe is assumed to be �nite and thus allows for elimination
of quanti�ers.
[Wil97] widen the extent of belief revision to include rankings among the beliefs:
the higher the rank, the more �rmly the belief is held. As a result, forfeiting sev-
eral lower ranked beliefs might in total be better than withdrawing a higher ranked
belief. They call the input of their algorithm a \theory base". The algorithm incor-
porates a procedure that moves formulas up or down in the ranking; yet, it does
not alter the syntactical appearance of the formulas. Hence, the outcome of the re-
vision depends on the syntax of the input (not on its models). While this approach
seems to be quite powerful for its purpose of belief revision (dealing with inher-
ently incomplete knowledge bases), it is not the right tool for preCQE in complete
databases.

Summary of Part IV

Several open issues that extend preCQE to meet special needs were regarded in
this part. Non-ground splitting and \numerical lies" give some room for optimiza-
tion. More abstract goals like reliability and explicit availability requirements were
handled appropriately. The incorporation of updates, incomplete information and
refusal are major open problems.
Last but not least, a connection between preCQE and some related approaches was
drawn. The di�erences between preCQE and the presented research areas show
that preCQE indeed adds new results to the topic.

132 15 Related Research Areas

133

V. Implementation and Analysis of a Prototype

Contents

16 Propositional Logic . 135

17 Propositional Encodings . 137

17.1 Translation to MINONES Without Availability Policy 137

17.2 Translation to W-MAXSAT and PMSAT 138

18 A preCQE Implementation for Propositional Logic 141

19 Test Cases . 144

19.1 Medical Record Tests . 145

19.2 Cascading Constraints Tests . 154

Summary of Part V . 156

This error message was generated by an \errmessage

command, so I can't give any explicit help.

Pretend that you're Hercule Poirot: Examine all clues,

and deduce the truth by order and method.

{ LATEX error message

134

135

16 Propositional Logic

At our department, we implemented a prototypical application that accepts propo-
sitional input. The reason why we con�ne ourselves to propositional logic is that
we can use up-to-date highly e�cient SAT solving technology (which we introduce
in Section 18) for the computation of preCQE solution instances.
We assume to have a propositional language based on an in�nite number of propo-
sitional variables (the propositional \alphabet"A). This is equivalent to banishing
quanti�ers and variables from formulas in our language L of predicate logic. This
equivalence is shown in [GA07]. Beyond the restrictions of FOL that Gammer and
Amir de�ne in their article, we do not even allow equality and free variables; that
is, we use a subset of their GL= logic. In this case, each propositional variable from
A can be identi�ed with a ground atom of L . This has the following e�ects on our
input formulas and thus the constraint set C: While db is still de�ned as a set of
ground atoms, prior , pot sec and avail are now restricted to contain only ground
formulas with a �nite number of conjunctions and disjunctions. Furthermore, SAT
solving normally refers to input formulas in CNF such that all preCQE input for-
mulas have to be converted into an equivalent or equisatis�able set of \clauses";
recall that a clause is a disjunction of literals.

One crucial point for the e�ciency of the algorithm is to note that only the �-
nite number of ground atoms (in other words, the �nite number of corresponding
propositional variables) that are contained in prior , pot sec or avail have to be
considered when searching for an inference-proof and distortion-minimal solution
instance; we will call these ground atoms \decision atoms" (or \decision variables"
in the propositional way of talking):

De�nition 16.1 (Decision atoms / decision variables)
If prior, pot sec and avail contain only propositional formulas, the decision atoms
(or equivalently, decision variables) are

Dec := f j is a propositional variable that occurs in prior ; pot sec or availg

We can be sure that upon execution of preCQE, min liesv is never greater than
the number of the decision atoms: in the worst case, interpretations for all decision
atoms have to be swapped in db 0 but not more than these. Interpretations for the
remaining { non-decision { atoms can remain unchanged in db 0 which gives us a
distortion distance of 0 for them; this is the best value we can achieve in terms of
distortion minimization. More formally, for any node v in the preCQE search tree,

min liesv � card(Dec) (10)

136 16 Propositional Logic

This way we have found an upper bound for the distortion distance in the proposi-
tional case.

Corollary 16.2 (Upper bound of distortion distance)
If prior, pot sec and avail contain only propositional formulas, the distortion dis-

tance for any inference-proof instance db 0can be bounded by

db dist(db0) � card(Dec)

That is, in Line 1.5. of the algorithm, 1 can be replaced with the value card(Dec)
for min liesbest without changes in the execution of the algorithm.

Example 16.3: Example 7.5 can be transformed into a propositional problem as
follows: The database administrator speci�es the in�nite alphabet of propositional
variables

A = f pete aids; pete cancer; pete flu; : : : ;

mary aids; mary cancer; mary flu; : : : ;

lisa aids; lisa cancer; lisa flu; : : : ;

pete medA; mary medA; lisa medA; : : : ;

pete medB; mary medB; lisa medB; : : : g

As the original database instance, we then have

db = fpete aids; mary cancer; pete medA; mary medBg

The user administrator useradm declares the user's a priori knowledge in prior as
propositional formulas; due to the abandonment of quanti�ers, only a �nite amount
of propositions can be declared:

prior = f pete medA! pete aids _ pete cancer;

pete medB! pete cancer _ pete flu;

mary medA! mary aids _ mary cancer;

mary medB! mary cancer _ mary flu g

Analogously, the security administrator secadm speci�es the potential secrets as
propositional formulas:

pot sec = fpete aids; pete cancer; mary aids; mary cancerg

We see that

Dec := f pete aids; pete cancer; pete flu;

mary aids; mary cancer; mary flu;

pete medA; pete medB; mary medA; mary medBg

137

Thus, the distortion distance will be less or equal to card(Dec) = 10. Analogously
to Example 7.14, we obtain the inference-proof and distortion-minimal solution
instances db 01 = ; and db 02 = fmary medB; mary flug each with distortion distance
4. }

17 Propositional Encodings

The Branch and Bound approach for propositional logic can be encoded by a trans-
formation of the input constraints such that the distance value need not be main-
tained explicitly. More precisely, preCQE for propositional logic can be seen as
a variant of an optimization problem for the satis�ability (SAT) problem. In the
upcoming sections we present three possible representations of preCQE as SAT
optimization problems: MINONES, weighted MAXSAT and weighted PMSAT.

17.1 Translation to MINONES Without Availability Policy

The\minimum ones"MINONES problem is the problem of �nding a model for a set
of propositional clauses and in the process minimizing the number of propositional
variables that are interpreted with true (see [Jon97, Kan94, HS92] for analysis
and applications of MINONES and its generalization\minimum distinguished ones"
MINDONES). A preCQE input can be transformed into a MINONES input; then,
explicit maintenance of the distortion distance is unnecessary because the distance
value can immediately be read o� from the output. The MINONES transformation
depends on the evaluation of decision atoms in the input instance db.

In detail, each decision atom in a formula of the constraint set C is replaced
by a literal (containing a new propositional variable X from a new propositional
alphabet A0 disjoint from A) as follows:

replace : Dec 7! A0

replace() =

(
:X if eval�()(db) =

X else

replace(C) is the set of formulas resulting from a replacement of all ground atoms
in C. An interpretation IA of all the newly introduced variables X has to be found
that satis�es the new constraint set replace(C). Based on this interpretation, the
X indicate whether the truth valuation of the ground atom has to be ipped in
the solution database instance db 0 or not; that is, the following is valid:

eval�()(db 0) = eval�()(db) if I(X) = true

eval�()(db 0) = eval�()(db) else

Minimizing the distortion distance for db 0 while satisfying the constraints C is now
equivalent to minimizing the amount of true-assignments in an interpretation for

138 17 Propositional Encodings

replace(C). More precisely, the number of true-assignments (that is, \ones") in the
resulting interpretation with minimum ones is equal to the distance value db dist of
the solution instance db 0 found with Branch and Bound. A Branch and Bound solver
for MINONES can be implemented analogously to the one presented in Section 9;
yet, instead of maintaining the distortion distance, the amount of true-assignments
is counted and minimized.
While the (decision version of) the general MINONES problem is NP-complete, it
is well known that plain SAT solving for a Horn formula (that is, a set of clauses
where each clause contains at most one positive literal), is decidable in polynomial
time, and thus is in the complexity class P ; it can even be solved in time linear with
respect to the formula length, if a special data structure is used. This plain SAT
algorithm for Horn clauses consists of initializing an interpretation with all propo-
sitional variables interpreted as false and then { starting from the unit clauses {
setting as few variables as possible to true. This e�ectively minimizes the amount
of true-assignments in the interpretation and thus results in a MINONES interpre-
tation of the Horn clauses.
What advantage can we draw from this for preCQE? Notably, we can assure that if
for �xed inputs db and C the MINONES formulation yields a set of Horn clauses, a
solution instance can be found in linear time { provided that the mentioned e�cient
data structure is employed. As this formulation depends on the input instance db,
this case occurs if in all the input clauses c from C at most one literal is in conict
with db (that is, evaluated as false in db), and necessarily at least one violated unit
constraint has to be in C. Still, as the occurrence of this case depends on actual
inputs db and C, we cannot give a general syntactic condition for this to happen.
A MINONES solver for the Horn case runs without splitting.
In Example 16.3, if we change db to dbHorn that additionally contains the ground
atoms pete_cancer and mary_flu, we have an example for the Horn clause case:
each of the constraints only has at most one conicting literal with respect to dbHorn .
To �nd the solution instance db0 (which e�ectively is the empty database in this
example), only unit propagation has to be applied.

17.2 Translation to W-MAXSAT and PMSAT

Another way to encode the problem without explicitly maintaining the distortion
distance is to transform it into a weighted maximum satis�ability (W-MAXSAT)
problem. Here it is crucial to see the constraints C as a set of clauses. Each clause
has an associated non-negative integer as a weight. The optimization function of W-
MAXSAT is to maximize the sum of weights of satis�ed clauses in an interpretation.
Giving the C-clauses a su�ciently higher weight than the db-clauses ensures that
the resulting interpretation satis�es the constraints.

When considering the �nite set Dec of decision atoms, preCQE without availability
policy can be represented by a W-MAXSAT problem with the following weights
for the clauses. Let n be the number of decision atoms n := card(Dec). We make

17.2 Translation to W-MAXSAT and PMSAT 139

the clauses in C so called hard constraints (that necessarily have to be satis�ed) by
giving each constraint in C a weight of n+1. One more type of clauses is necessary:
All decision atoms have to be transformed to soft constraints with respect to their
evaluation in db. That is:

eval�(Dec)(db) :=
[

2Dec

eval�()(db)

is the set of soft constraints that all have weight 1. In this setting, any solution
that violates a hard constraint but instead satis�es more soft constraints has lower
weight than the one that satis�es more hard constraints.
When we have found an interpretation IMAX for theW-MAXSAT input, the preCQE
solution instance db 0 can be derived from it as follows (assuming that all hard con-
straints are indeed satis�ed):

db 0 := f j 2 Dec and IMAX () = trueg [(db nDec)

That is, for decision atoms their interpretation is dictated by IMAX ; for all non-
decision atoms the interpretation is the same as in the input instance db. The
distortion distance db dist(db0) is equal to the number (or in this case equivalently
the weight) of unsatis�ed soft constraints.
It is quite interesting to note that without availability policy non-CNF constraint
formulas in C can also be handled by this procedure: although a non-CNF formula
in general must be transformed into several clauses(in order to be processable by a
W-MAXSAT solver; see Section 18 below), each of these clauses receives the weight
card(Dec) + 1; that is, all these clauses have to be ful�lled by the W-MAXSAT
solution. The soft constraints { which do not have to be satis�ed totally { are a set
of ground literals and thus are not modi�ed in the CNF representation. Thus, we
do not face the problem of loss of structure in this case.
In Example 16.3, all constraint formulas (that are in CNF when replacing the ma-
terial implication !) have weight 11 in a W-MAXSAT translation of the problem.
As soft constraints we have pete_aids, mary_cancer, pete_medA and mary_medB

as well as :pete_cancer, :pete_flu, :pete_medB, :mary_aids, :mary_flu and
:mary_medA each with weight 1.

The translation of a preCQE input with explicit availability policy into a W-
MAXSAT input is also possible but more involved: First, a third, intermediate
weight has to be determined for the formulas in avail . Second, recall that the se-
mantics of the availability policy is that only a maximum but possibly not all of
the formulas in eval�(avail)(db) can be satis�ed in the solution instance db0 (we use
eval�(avail)(db) as an abbreviation for

S
�2avail eval

�(�)). If we take a formula �
out of eval�(avail)(db) and determine its CNF representation cnf (�) (in order to be
processable by a W-MAXSAT solver), all the clauses (that is, conjuncts) of cnf (�)
have to be treated as \belonging together" when counting their weight. We can
achieve this with the help of auxiliary 0-ary predicate symbols (or simply, auxiliary

140 17 Propositional Encodings

propositional variables) denoted S�. For each formula � in eval�(avail)(db), cnf (�)
is transformed as follows:

1. To each clause c of cnf (�) conjoin :S� which gives us c _ :S�

2. Add these augmented conjuncts to C

Now we can start assigning weights to clauses. For the decision atoms nothing
changes: eval�(Dec)(db) is the set soft constraints at the lowest level with weight 1.
Then we add a second level of soft constraints with intermediate weight: for each
S�, we create a clause S� with weight card(Dec) + 1; we call them the \auxiliary
constraints" or \auxiliary clauses" from now on. Finally all the clauses in C (in-
cluding the newly added, augmented avail -clauses) have as weight the sum of the
weights of all the constraints at lower levels plus 1: (card(avail) � (card(Dec)+ 1)+
card(Dec)) + 1. We can show that a solution of this W-MAXSAT input represents
an inference-proof, availability-preserving and distortion-minimal propositional so-
lution instance for the preCQE input. The main argument is that whenever an
auxiliary variable S� is true, all clauses of cnf (�) also have to be true in order to
satisfy the augmented hard constraints created from cnf (�) and thus � is satis�ed
in db 0; yet, if S� is false, all augmented hard constraints created from cnf (�) are
already satis�ed without satisfying each clause of cnf (�) and thus � is not satis�ed
in db0.
We could also specify the auxiliary clauses and the augmented clauses based on the
DNF representation dnf (�) for � 2 eval�(avail)(db); this is advantageous if dnf (�)
is shorter than cnf (�). We do not go into detail here; essentially, for every formula
in avail one auxiliary clause is created with intermediate weight and several hard
constraints are added to C that represent the formula � 2 eval�(avail)(db). A full
account of the technical details can be found in the technical report [Tad08].

W-MAXSAT can be simulated by plain MAXSAT (without weights) by simply
duplicating clauses according to their weight and then maximizing the number
of satis�ed clauses. Internally, many MAXSAT solving programs (see Section 18
below) actually implement a Branch and Bound algorithm for propositional input in
CNF. Interestingly, MAXSAT is still in NP if the input consists only of propositional
Horn clauses whereas SAT for Horn clauses is in P .

\Weighted Partial MAXSAT" (W-PMSAT) is a variant of W-MAXSAT where some
clauses can explicitly be designated as hard constraints that necessarily have to
be satis�ed. Its advantage is that optimization has to be done only on the soft
constraints. Internally, with the W-PMSAT input format this is done by specifying
the weight of a hard constraint explicitly in the input; all clauses with this weight
(or above) are satis�ed with the plain SAT procedure without referencing their
weight. Put di�erently, the disadvantage of the W-MAXSAT input format is that
the weights for the hard constraints are maintained and summed up explicitly and
suboptimality of a solution with an unsatis�ed hard constraint is possibly detected
very late, because probably solutions where some hard constraints are not satis�ed

141

are tried �rst; these suboptimal solutions accordingly have a lower weight than the
precomputed lower bound in the W-PMSAT input format.
For soft constraints, the weights for the W-PMSAT encoding for a preCQE input
are equal to the ones in the W-MAXSAT encoding: Without an availability policy,
C is the set of hard constraints; eval�(Dec)(db) is the set of soft constraints with
weight 1. With an explicit availability policy, C and the augmented clauses for the
avail -formulas comprise the set of hard constraints; the auxiliary constraints at the
intermediate level and the soft constraints from db at the lowest level are weighted
in analogy to the W-MAXSAT encoding. For our test cases (see Section 18), a
problem in the W-MAXSAT encoding performed worse than in the W-PMSAT
encoding.

18 A preCQE Implementation for Propositional Logic

We have seen in Section 16 how a preCQE problem based on �nite, quanti�er-
free input formulas is reduced to the purely propositional case. More precisely,
in Section 17.2 it could be seen how a reduction to the W-MAXSAT and the W-
PMSAT problems can be made. In recent years, propositional SAT solving has seen
a huge improvement in performance. Several highly e�cient implementations take
part in the yearly SAT competition (in conjunction with the SAT conference). We
should reinforce the point that SAT solvers are just interested in pure satis�ability of
propositional CNF-formulas without any optimization. Luckily, as a subpart of the
SAT competition there also is a \MAXSAT evaluation" that includes competition
categories for both the W-MAXSAT and W-PMSAT problems. As a consequence,
there are several MAXSAT solvers based on the same technology that employ a
Branch and Bound strategy for propositional input. While the SAT competition is
already quite established, the MAXSAT evaluation has been organized just for the
third time in 2008. This shows that the interest in e�cient solving strategies for
this optimization problem has come up very recently.

We wanted to apply this highly e�cient MAXSAT technology to our problem and
bene�t from up-to-date solver implementations. To this end, at our department
Cornelia Tadros developed a program that translates propositional preCQE input
formulas into a W-MAXSAT or a W-PMSAT instance. The program o�ers the
following functionality:

1. It o�ers a convenient graphical interface for the speci�cation of the input (db,
prior and pot sec) and the presentation of the solution database.

2. It transforms the speci�ed input into a W-MAXSAT or W-PMSAT instance.

3. It transforms this input into the input format of the selected solver.

142 18 A preCQE Implementation for Propositional Logic

4. It calls the selected solver on this instance (in W-MAXSAT or W-PMSAT
encoding).

5. It measures the runtime of the whole computation as well as the runtime for
the solver alone.

6. It transforms the solver output into the solution instance db0.

The graphical interface can be found in the package called preCQE view, all other
procedural parts in the package preCQE core as visualized in Figure 16. Figures 17
and 18 show screenshots of the program with db and prior as well as db and db 0. As
the input format we chose the TPTP format for �rst-order formulas (see [Sut07]);
it is a standard format for Automated Theorem Proving and comes along with a
set of libraries to convert �rst-order input into several solver speci�c formats.

dbadm

db
TPTP
conversion

secadm

pot sec
weights
assignation

useradm

prior SAT solver

format
conversion

db 0

TPTP
for-
mat

TPTP
for-
mat

TPTP
for-
mat

TPTP
for-
mat

preCQE
view

preCQE
core

preCQE
view

Figure 16: Implementation of Prototype

Our program has been tested with three di�erent solvers for both the W-MAXSAT
and the W-PMSAT problem:

� MiniMaxSAT (see [HLO08])

� MAX-DPLL (as part of the SAT solver Toolbar; see [LHdG08])

� SAT4J (http://www.sat4j.org/)

143

Figure 17: Screenshot with db and prior

The technical advantage of all these solvers is that they are freely available. Mini-
MaxSAT is run on a Linux system while we executed Toolbar on a Solaris platform.
SAT4J is written purely in Java.

MiniMaxSAT is one of the most e�cient solvers of the 2007 and 2008 MAXSAT
evaluation; the number of instances solved and the runtime evaluation are competi-
tive. Toolbar performed well in the 2007 and 2008 evaluations, too. During our test
runs it however showed di�culties with larger inputs; already for small input sizes it
had to be forcefully stopped without having found a solution. SAT4J in comparison
is the worst solver in nearly all the categories. This might be compensated by its
platform-independence thanks to the Java technology: it can be run on nearly all
operating systems, albeit for relatively small input instances.

As already mentioned, TPTP o�ers conversion libraries that transform an input
in TPTP format into other input formats { to wit, all usual formats of current
automated theorem provers. The W-MAXSAT solvers we chose are all able to
process the DIMACS wcnf-maxsat format such that the input db, Neg(pot sec)
and prior are converted into this format by calling the external TPTP conversion
library. Afterward, the weights of the MAXSAT clauses are calculated internally

144 19 Test Cases

Figure 18: Screenshot with db and db0

and set for each clause as described above. With this step, the CQE input has
been fully transformed into a W-MAXSAT instance. On this instance, an external
W-MAXSAT solver is run to �nd an optimal solution. The runtime of the solver is
internally recorded. When the solution is found, the TPTP output speci�es which
ground atom of the preCQE input was mapped to which internal propositional
variable. The preCQE core uses this information to translate the TPTP output
into a preCQE output instance db0.

19 Test Cases

The MAXSAT evaluation is { among others { run on a benchmark of W-MAXSAT
and W-PMSAT instances; more precisely, the benchmark consists of three sepa-
rate subcases: randomly generated, crafted and (only for W-PMSAT) industrial
instances. Unfortunately, neither of these cases readily �t our requirements such
that the evaluation results could not be transferred plainly to the CQE case. Thus,
to test our prototype we made an e�ort to simulate problems speci�c to the database
domain. Yet, it was not an easy task to generate appropriate test data. We started

19.1 Medical Record Tests 145

with tests for the previously used example medical records that we gradually ex-
panded and then moved on to tests for cascading constraints. All our test runs
below have been performed with MiniMaxSAT to achieve optimal results. Tool-
bar performed much worse than MiniMaxSAT and seems to have a worse memory
management because test often aborted due to insu�cient memory. SAT4J showed
similar problems for which probably the slower Java technology can be blamed.
The tests were run on several standard desktop PCs with a Linux operating system.
As the tests were run with di�erently sized inputs, for every input size we tested
10 randomly permuted instances to avoid a bias caused by the input order. The
runtime graphs below show the average runtime taken from all 10 instances per size
as well as the deviation of the individual running times.

19.1 Medical Record Tests

The �rst tests are a generalization of Example 7.5 and its propositional version
in Example 16.3. At the outset, we chose 3 constants of the sort Diagnosis and
2 constants of the sort Treatment to take part in decision atoms; the amount of
constants of the sort Name in the decision atoms is gradually increased. For one
�xed Name constant there are 23 = 8 possible combinations with a Diagnosis

constant; that is, we have 8 decision variables for the combination of a patient's
name with a diagnosis. Similarly, there are 22 = 4 possible combinations of a
Name constant with a Treatment constant; that is, we have 4 decision variables
for the combination of a patient's name with a diagnosis. Hence, in total there
23+2 = 25 = 32 propositional decision variables. The empty combination (that
is, only the Name value set without any Diagnosis or Treatment) is not allowed
because the combination has to de�ne a full tuple in the database where a name
is combined with a diagnosis or a treatment. Hence, there remain 31 permissible
combinations. Further, our precondition on db demands that entries have to be
consistent with prior . Consequentially, all combinations with a Treatment value
set but without one of the demanded Diagnosis values are left out; there are 7 of
them. Hence, we are left with 24 \patient types" that are consistent with prior .
They are listed in Table 2 in propositional notation. We used the abbreviations N1
to N24 to denote 24 di�erent patient names. Then we (in the role of the dbadm)
entered a propositional input instance db that contains each patient type exactly
once; that is, if the db contains for example Ill(N1;Aids) in �rst-order notation, this
ground atom is propositionally represented1 as `n1_aids'. Note that there are 66
propositional variables in the propositional db.

Then again, the potential secrets and the a priori knowledge are entered (in the
roles of the secadm and the useradm, respectively) in TPTP syntax for each of
the 24 patient names as propositional formulas. For example, for N1 the propo-

1Actually the exact TPTP syntax is fof(r0,axiom,`n1_aids').; we only state the relevant part

here.

146 19 Test Cases

Name db entries Name db entries Name db entries

N1 n1_aids N2 n2_cancer N3 n3_flu

N4 n4_aids,
n4_cancer

N5 n5_aids,
n5_flu

N6 n6_cancer,
n6_flu

N7 n7_aids,
n7_cancer,
n7_flu

N8 n8_medA,
n8_aids

N9 n9_medA,
n9_cancer

N10 n10_medA,
n10_aids,
n10_cancer

N11 n11_medA,
n11_aids,
n11_flu

N12 n12_medA,
n12_cancer,
n12_flu

N13 n13_medA,
n13_aids,
n13_cancer,
n13_flu

N14 n14_medB,
n14_cancer

N15 n15_medB,
n15_flu

N16 n16_medB,
n16_aids,
n16_cancer

N17 n17_medB,
n17_aids,
n17_flu

N18 n18_medB,
n18_cancer,
n18_flu

N19 n19_medB,
n19_aids,
n19_cancer,
n19_flu

N20 n20_medA,
n20_medB,
n20_cancer

N21 n21_medA,
n21_medB,
n21_aids,
n21_cancer

N22 n22_medA,
n22_medB,
n22_aids,
n22_flu

N23 n23_medA,
n23_medB,
n23_cancer,
n23_flu

N24 n24_medA,
n24_medB,
n24_aids,
n24_cancer,
n24_flu

Table 2: Permissible patient types in db

19.1 Medical Record Tests 147

sitional prior contains2 the formulas `n1_medB'=>(`n1_cancer'|`n1_flu') and
`n1_medA'=> (`n1_aids'|`n1_cancer') and the propositional pot sec contains
`n1_aids' as well as `n1_cancer'. These entries are entered for all 24 patients;
that is, we have 48 entries in prior , and 48 entries in pot sec, too. As mentioned
previously, all input is permuted at random to make tests independent of the order
of input.

We recall that the potential secrets are put into negative form Neg(pot sec) and
joined with the a priori knowledge in the constraint set C is before starting the
TPTP conversion into the wcnf_maxsat format or the wcnf_pmsat format.
As for the weights, they are calculated in the preCQE core package for this example
as follows: all the 24�5 = 120 decision variables are transformed into soft constraints
receiving the weight 1; the 66 positive entries of db as positive literals and the
remaining 114 decision variables occurring in prior and pot sec as negative literals.
All constraint formulas in C receive the weight 121.

For this simplest input, a solution was found in milliseconds. Obviously, we are
interested in more meaningful results for databases with much more entries. The
general idea for the expansion of our tests was to uniformly repeat the 24 patient
types and test up to what number of repetitions a moderate runtime performance
can be achieved. So, our �rst step was to repeat each patient type 10 times (each
repetition with a new name) such that we have a db with 660 entries, prior with 480
entries and pot sec with 480 entries; for 10 repetitions there are hence 24 � 5 � 10 =
1200 decision variables. We ran tests up to 150 repetitions with 9900 db entries,
7200 prior and pot sec entries each and 18000 decision variables. Figure 19 shows
the runtime for the wcnf_pmsat format which performed better than wcnf_maxsat

for the reasons given in Section 17.2; Table 3 shows the measured running times as
well as the number of decision variables and soft and hard clauses. What can be
seen is that a huge amount of time is needed for the creation of the wcnf_pmsat

input { this includes the TPTP conversion, the creation of Neg(pot sec), as well
as the calculation and assignment of weights { whereas the MiniMaxSAT solver
appears quite unimpressed by the increased size of the input.

After these promising results, we made two more test runs with di�erent patient
types: a thorough analysis of the patient types reveals that there are four patient
types with multiple optimal solutions; namely, N14 (n14_medB, n14_cancer), N16
(n16_medB, n16_aids, n16_cancer), N20 (n20_medA, n20_medB, n20_cancer) and
N21 (n21_medA, n21_medB, n21_aids, n21_cancer). We separated them from the
remaining 20 patient types that have a unique solution and examined whether the
existence of multiple optima would slow down the SAT solver. That is, for the
multiple optima case with one repetition we have 12 entries in db, 8 entries in prior

and pot sec, respectively, and 4 � 5 = 20 decision variables. We tested up to 600

2Again, in full TPTP syntax this is fof(r1,axiom,`n1_medB'=>(`n1_cancer'|`n1_flu')). and

fof(r0,axiom,`n1_medA'=> (`n1_aids'|`n1_cancer')).

148 19 Test Cases

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

se
co
n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Figure 19: Performance of preCQE for 24 patient types

total runtime (msec) solver runtime (msec) dec. clauses
rep. min max avg. min max avg. vars. soft hard

1 1832 2175 1930 178 208 184 120 120 96
25 10981 12246 11974 2214 3206 3092 3000 3000 2400
50 29333 32149 31304 4412 6360 6135 6000 6000 4800
75 58530 62026 60459 6503 9439 8991 9000 9000 7200
100 93275 101551 95792 8803 9001 8902 12000 12000 9600
125 139835 150095 142843 11000 11472 11171 15000 15000 12000
150 197389 206099 202067 13231 18253 16429 18000 18000 16800

Table 3: Performance of preCQE for 24 patient types

repetitions of these four types; that is up to 7200 entries in db, 4800 entries in prior

and pot sec, respectively, and 12000 decision variables. Figures 20 shows the results
of the test runs; Table 4 shows the measured running times as well as the number
of decision variables and soft and hard clauses for the multiple optima case.

Then we tested the remaining 20 patient types separately. For one repetition there
are 54 entries in db, and 40 entries in prior and pot sec, respectively, with a total
of 20 �5 = 100 decision variables. We made tests with up to 300 repetitions; that is,
16200 entries in db, and 12000 entries in prior and pot sec, respectively, and a total
of 30000 decision variables. Figures 21 shows the results of the test runs; Table 5
shows the measured running times as well as the number of decision variables and
soft and hard clauses for the unique optima case.

19.1 Medical Record Tests 149

total runtime (msec) solver runtime (msec) dec. clauses
rep. min max avg. min max avg. vars. soft hard

1 1617 1945 1673 78 96 85 20 20 16
50 4100 4343 4185 1052 1070 1062 1000 1000 800
100 7477 7865 7611 2041 2290 2077 2000 2000 1600
150 11744 12721 11940 3033 3071 3047 3000 3000 2400
200 17111 17818 17429 4035 4094 4071 4000 4000 3200
250 23468 24071 23771 5121 5165 5138 5000 5000 4000
300 30835 31652 31194 6108 6186 6153 6000 6000 4800
350 39215 42328 40156 7179 7231 7207 7000 7000 5600
400 48748 50074 49332 8225 8305 8256 8000 8000 6400
450 59310 67434 60906 9180 9339 9259 9000 9000 7200
500 71220 73194 72087 10528 10673 10602 10000 10000 8000
550 84340 90991 86307 11627 12113 11747 11000 11000 8800
600 98902 103383 100476 13205 13306 13258 12000 12000 9600

Table 4: Performance of preCQE for multiple optima

total runtime (msec) solver runtime (msec) dec. clauses
rep. min max avg. min max avg. vars. soft hard

1 1761 2135 1839 140 168 156 100 100 80
50 21973 22788 22195 3700 3747 3721 5000 5000 4000
100 68106 71299 69415 7286 7465 7353 10000 10000 8000
150 140329 151528 143251 10863 11248 11066 15000 15000 12000
200 236707 249837 241230 14570 14978 14858 20000 20000 16000
250 373767 462364 419816 19012 31093 22250 25000 25000 20000
300 514403 575354 528843 23046 28447 23833 30000 30000 24000

Table 5: Performance of preCQE for unique optima

150 19 Test Cases

0

20

40

60

80

100

120

0 100 200 300 400 500 600

se
co
n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Figure 20: Performance of preCQE for multiple optima

0

100

200

300

400

500

600

0 50 100 150 200 250 300

se
co
n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Figure 21: Performance of preCQE for unique optima

In a next testing step we introduced an explicit availability policy; that is, we
supplied a set avail with two entries for each patient type:

avail = fn1 medA; n1 medB; n2 medA; n2 medB; : : :g

In the preCQE implementation, they are �rst of all evaluated according to db (that

19.1 Medical Record Tests 151

is, eval�(avail)(db) is computed). The resulting formulas are translated as described
in Section 17.2 into clauses augmented with an auxiliary propositional variable
that are added to the hard constraints in C and into auxiliary constraints with an
intermediate weight, as well.
In the simplest case with one repetition per patient type we thus have 120 decision
variables again with lowest weight 1. As there are 48 formulas in avail , we have 48
auxiliary constraints with weight 121. Finally there are 48 + 48 + 48 = 144 hard
constraints with weight 120+(48 �121)+1 = 5929. That is, when satisfying all hard
constraints, the solution has a weight of at least 853776. We experienced problems
with these high weight values, because after 55 repetitions of patient types, we faced
an integer overow: the computed solution suddenly had a negative weight. This
was also the case with the PMSAT input format, although the weights of the hard
clauses should be ignored and not be included in the optimization process in this
case. The results of the test runs can be found in Figure 22 and Table 6 for up to
50 repetitions of the 24 patient types; that is, we tested up to 6000 clauses with
lowest weight, 2400 auxiliary clauses and 7200 hard clauses.

0

10

20

30

40

50

60

0 10 20 30 40 50

se
co
n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Figure 22: Performance of preCQE with availability policy

We then examined the performance of a reduced set of patient types. We removed
the patient types with medA-entries, such that only 13 were left: we kept N1, N2,
N3, N4, N5, N6, N7, N14, N15, N16, N17, N18, N19 and their corresponding entries
in db, prior , pot sec and avail . The results can be found in Figure 23 and Table 7.
Quite unexpectedly, we were able to repeat these 13 patient types much more often
than the full 24 patient type set. Probably only the search with the full set led to
the integer overow, while for the reduced set this was not the case.

152 19 Test Cases

total runtime (msec) solver runtime (msec) dec. clauses
rep. min max avg. min max avg. vars. low aux. hard

1 1878 2386 2097 181 229 206 120 120 48 144
5 3285 3551 3334 617 896 660 600 600 240 720
10 6091 6363 6154 1716 1756 1729 1200 1200 480 1440
15 9268 9837 9460 2530 2604 2571 1800 1800 720 2160
20 13124 14417 13408 3397 3524 3431 2400 2400 960 2880
25 17522 19044 17952 4240 4324 4289 3000 3000 1200 3600
30 22778 23064 22937 5178 5302 5232 3600 3600 1440 4320
35 28483 29429 28879 6086 6279 6156 4200 4200 1680 5040
40 35083 37233 35992 7081 7255 7168 4800 4800 1920 5760
45 42315 45121 42962 8101 8288 8209 5400 5400 2160 6480
50 50189 53000 50925 9172 9383 9260 6000 6000 2400 7200

Table 6: Performance of preCQE with availability policy

total runtime (msec) solver runtime (msec) dec. clauses
rep. min max avg. min max avg. vars. low aux. hard

1 1744 2102 1841 142 162 146 65 65 26 78
25 8068 8308 8166 2051 2118 2077 1625 1625 650 1950
50 19028 20650 19423 4009 4121 4076 3250 3250 1300 3900
75 35061 37300 35706 5981 6266 6132 4875 4875 1950 5850
100 54295 63201 57153 5712 8375 8002 6500 6500 2600 7800
150 107971 117968 113187 8695 12533 12017 9750 9750 3900 11700
200 187700 195847 190946 11601 16924 16131 13000 13000 5200 15600
250 277757 296878 289068 15119 21247 20257 16250 16250 6500 19500
300 397551 425732 407416 18031 26073 24910 19500 19500 7800 23400
350 537890 562223 548090 22343 31778 30152 22750 22750 9100 27300

Table 7: Performance of preCQE without medA-entries

total runtime (msec) solver runtime (msec) dec. clauses
rep. min max avg. min max avg. vars. low aux. hard

1 1941 2934 2182 225 337 264 120 120 48 120
25 18283 23445 20439 4630 6530 5362 3000 3000 1200 3000
50 50486 58167 52449 9651 12052 9966 6000 6000 2400 6000
75 101453 105935 103266 15904 16270 16115 9000 9000 3600 9000
100 164611 175434 170920 18185 23374 22623 12000 12000 4800 12000
125 252737 276016 260537 28020 32737 31255 15000 15000 6000 15000
150 351488 380984 367471 32437 40160 39087 18000 18000 7200 18000

Table 8: Performance of preCQE with conjunctive secrets

19.1 Medical Record Tests 153

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350

se
co
n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Figure 23: Performance of preCQE without medA-entries

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

se
co
n
d
s

repetitions per patient type

deviation
total runtime

deviation
solver runtime

Figure 24: Performance of preCQE with conjunctive secrets

Lastly, we made a test with the full set of 24 patient types but we changed the
potential secrets into a conjunctive format:

pot sec = fn1 aids ^ n1 cancer; n2 aids ^ n2 cancer; : : :g

This means that for every patient it is allowed to know if the patient has either aids

154 19 Test Cases

or cancer but it is not allowed to know that a patient has both aids and cancer at the
same time. This o�ers a greater set of possible solutions and the SAT solver is forced
to make more decision steps. The results are detailed in Figure 23 and Table 7.
Yet, as the amount of formulas in pot sec is half of what it was before { only one
entry per patient type { the number of hard clauses is reduced: for one repetition
we have 120 low level constraints, 48 auxiliary constraints and 48 + 48 + 24 = 120
hard constraints.

Further tests that expand the setting (for example introducing a third medicine
medC and adapting pot sec and prior accordingly) were started but not yet thor-
oughly analyzed.

19.2 Cascading Constraints Tests

The Medical Record Tests contained independent subproblems in the sense that
for each patient a satisfaction of the constraints could be reached without a�ecting
the entries of other patients. Hence, as a second class of test cases we looked
for constraints that are more involved and where the search for a solution requires
several splitting and backtracking steps because the clauses share variables and thus
are interconnected. Moreover we wanted to test formulas with increasing length.
We perceived this to be a lot more challenging task for the SAT solvers.

0

20

40

60

80

100

120

0 50 100 150 200 250

m
in
u
te
s

n (number of c-variables)

total runtime

� � � � � �
�

�

�

�

�
�

solver runtime

+ + + + + +
+

+

+

+

+
+

Figure 25: Performance of preCQE with cascading constraints

We adapted one example taken from [Win90] (page 36) which originally was con-
ceived in the setting of deletion of constraints { roughly speaking { in order to make
the set of constraints satis�able after an update. We on the contrary were look-

19.2 Cascading Constraints Tests 155

n total runtime solver runtime dec. soft hard
(msec.) (msec.) vars. clauses clauses

25 4249 876 625 625 648
50 11914 4922 2500 2500 2548
75 39555 22439 5625 5625 5698
100 125470 80787 10000 10000 10098
125 316619 221291 15625 15625 15748
150 695302 532373 22500 22500 22648
175 1418657 1112157 30625 30625 30798
200 2663476 2162016 40000 40000 40198
225 4456381 3694283 50625 50625 50848
250 7144284 6038346 62500 62500 62748

Table 9: Performance of preCQE with cascading constraints

ing for a satis�able set of constraints where however the detection of a W-PMSAT
model is quite complicated. Consider the following input sets:

db = fc1; c2; c3g

pot sec = fc3g

prior = fc3<=>((~v3_1|~v3_2|~v3_3)& c2);

c2<=>((~v2_1|~v2_2|~v2_3)& c1)g

We see that Neg(pot sec) = f:c3g, which is a unit constraint. The �rst prior -
formula is violated when the unit constraint is satis�ed; it can be satis�ed by adding
all three variables v3_1, v3_2 and v3_3 to db, or removing c2 from db. In the latter
case, the second prior -formula is violated; it can be satis�ed by adding all three
variables v2_1, v2_2 and v2_3 to db, or removing c1 from db. Obviously, the
solution where all c-variables are removed (that is db0 = ;), is distortion-minimal
with distortion distance 3, while the other two solutions are not { they have distance
4 and 5, respectively. The challenging task for the SAT solver is, that it also has
to search on the v-variables until the unique solution is found. Note that the �rst
prior formula is transformed into the following �ve clauses in the TPTP conversion
step; that is, CNF conversion is done automatically by the TPTP library:

~c3|~v1_1|~v1_2|~v1_3 ; ~c3|c2 ; c3|~c2|v1_1 ; c3|~c2|v1_2 ; c3|~c2|v1_3

Analogously, the second prior formula is transformed into:

~c2|~v2_1|~v2_2|~v2_3 ; ~c2|c1 ; c2|~c1|v2_1 ; c2|~c1|v2_2 ; c2|~c1|v2_3

We expanded this example as follows: whenever there are n c-variables, in every
prior -formula there are n distinct v-variables. There are n � 1 such formulas in
prior ; thus in total there are n2 decision variables. The number of clauses after

156 19 Test Cases

CNF conversion is n2 as a soft constraint for each variable, 1 for the unit constraint
in pot sec, and (n + 2)(n � 1) = n2 + n � 2 for the formulas in prior(that is, we
have (n+ 2)(n� 1) = n2 + n� 1 hard constraints).

Summary of Part V

This part showed how the special propositional case can be interpreted as a SAT
solving problem. We proposed several alternative encodings; the W-PMSAT prob-
lem was the most appropriate to emulate preCQE. The presented prototype makes
use of current SAT solver technology and uses the TPTP library which is standard
in automated theorem proving. Two sets of test runs showed that the preprocessing
approach is feasible for a large number of database entries.

157

158

References 159

References

[ABK00] Marcelo Arenas, Leopoldo E. Bertossi, and Michael Kifer. Applications
of annotated predicate calculus to querying inconsistent databases.
In John W. Lloyd, Ver�onica Dahl, Ulrich Furbach, Manfred Kerber,
Kung-Kiu Lau, Catuscia Palamidessi, Lu��s Moniz Pereira, Yehoshua
Sagiv, and Peter J. Stuckey, editors, First International Conference
on Computational Logic, Proceedings, volume 1861 of Lecture Notes in
Computer Science, pages 926{941. Springer, 2000.

[ADB06] Ofer Arieli, Marc Denecker, and Maurice Bruynooghe. Distance-based
repairs of databases. In Michael Fisher, Wiebe van der Hoek, Boris
Konev, and Alexei Lisitsa, editors, JELIA Logics in Arti�cial Intelli-

gence, Proceedings, volume 4160 of Lecture Notes in Computer Science,
pages 43{55. Springer, 2006.

[ADB07] Ofer Arieli, Marc Denecker, and Maurice Bruynooghe. Distance se-
mantics for database repair. Annals of Mathematics and Arti�cial In-

telligence, 50(3{4):389{415, 2007.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[AK08] Foto N. Afrati and Phokion G. Kolaitis. Answering aggregate queries
in data exchange. In Maurizio Lenzerini and Domenico Lembo, ed-
itors, Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, Proceedings, pages 129{138. ACM,
2008.

[Bau00] Peter Baumgartner. FDPLL - a �rst order Davis-Putnam-Logeman-
Loveland procedure. In David A. McAllester, editor, 17th International
Conference on Automated Deduction, Proceedings, volume 1831 of Lec-
ture Notes in Computer Science, pages 200{219, 2000.

[BB01] Joachim Biskup and Piero A. Bonatti. Lying versus refusal for known
potential secrets. IEEE Transactions on Data & Knowledge Engineer-

ing, 38(2):199{222, 2001.

[BB04a] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation
for enforcing con�dentiality in complete information systems. Interna-
tional Journal of Information Security, 3(1):14{27, 2004.

[BB04b] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for
known policies by combining lying and refusal. Annals of Mathematics

and Arti�cial Intelligence, 40(1-2):37{62, 2004.

160 References

[BB04c] Loreto Bravo and Leopoldo E. Bertossi. Consistent query answering
under inclusion dependencies. In Hanan Lut�yya, Janice Singer, and
Darlene A. Stewart, editors, Conference of the Centre for Advanced

Studies on Collaborative research, Proceedings, pages 202{216. IBM,
2004.

[BB07] Joachim Biskup and Piero A. Bonatti. Controlled query evaluation
with open queries for a decidable relational submodel. Annals of Math-

ematics and Arti�cial Intelligence, 50(1-2):39{77, 2007.

[BBFL08] Leopoldo E. Bertossi, Loreto Bravo, Enrico Franconi, and Andrei
Lopatenko. The complexity and approximation of �xing numerical at-
tributes in databases under integrity constraints. Information Systems,
33(4-5):407{434, 2008.

[BBWW07] Joachim Biskup, Dominique Marc Burgard, Torben Weibert, and Lena
Wiese. Inference control in logic databases as a constraint satisfaction
problem. In Patrick Drew McDaniel and Shyam K. Gupta, editors,
Third International Conference on Information Systems Security, Pro-

ceedings, volume 4812 of Lecture Notes in Computer Science, pages
128{142. Springer, 2007.

[BC03] Leopoldo E. Bertossi and Jan Chomicki. Query answering in inconsis-
tent databases. In Jan Chomicki, Ron van der Meyden, and Gunter
Saake, editors, Logics for Emerging Applications of Databases, pages
43{83. Springer, 2003.

[BCFP03] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A
logical framework for reasoning about access control models. ACM

Transactions on Information and System Security, 6(1):71{127, 2003.

[BEL08] Joachim Biskup, David W. Embley, and Jan-Hendrik Lochner. Reduc-
ing inference control to access control for normalized database schemas.
Information Processing Letters, 106(1):8{12, 2008.

[BEST98] Fran�cois Bry, Norbert Eisinger, Heribert Sch�utz, and Sunna Torge.
SIC: Satis�ability checking for integrity constraints. In 6. Workshop on

Deductive Databases and Logic Programming, Proceedings, volume 22
of GMD Report, pages 25{36, 1998.

[BFJ00] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. Secure
databases: Constraints, inference channels, and monitoring disclosures.
IEEE Transactions on Knowledge & Data Engineering, 12(6):900{919,
2000.

[BGG01] Egon B�orger, Erich Gr�adel, and Yuri Gurevich. The Classical Decision
Problem. Springer, 2001.

References 161

[BH80] W. W. Bledsoe and Larry M. Hines. Variable elimination and chaining
in a resolution-based prover for inequalities. In Wolfgang Bibel and
Robert A. Kowalski, editors, 5th Conference on Automated Deduction,

Proceedings, volume 87 of Lecture Notes in Computer Science, pages
70{87. Springer, 1980.

[Bis00] Joachim Biskup. For unknown secrecies refusal is better than lying.
IEEE Transactions on Data & Knowledge Engineering, 33(1):1{23,
2000.

[BKS95] Piero A. Bonatti, Sarit Kraus, and V. S. Subrahmanian. Foundations of
secure deductive databases. IEEE Transactions on Data & Knowledge

Engineering, 7(3):406{422, 1995.

[BL07] Joachim Biskup and Jan-Hendrik Lochner. Enforcing con�dentiality
in relational databases by reducing inference control to access control.
In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and Ren�e Per-
alta, editors, 10th International Conference on Information Security,

Proceedings, volume 4779 of Lecture Notes in Computer Science, pages
407{422. Springer, 2007.

[Bla96] Simon Blackburn. The Oxford Dictionary of Philosophy. Oxford Uni-
versity Press, 1996. Entries on \Inference" and \Logic".

[BT98] Fran�cois Bry and Sunna Torge. A deduction method complete for refu-
tation and �nite satis�ability. In J�urgen Dix, Luis Fari~nas del Cerro,
and Ulrich Furbach, editors, JELIA Logics in Arti�cial Intelligence,

Proceedings, volume 1489 of Lecture Notes in Computer Science, pages
122{138. Springer, 1998.

[BT05] Peter Baumgartner and Cesare Tinelli. The model evolution calculus
with equality. In Robert Nieuwenhuis, editor, 20th International Con-

ference on Automated Deduction, Proceedings, volume 3632 of Lecture
Notes in Computer Science, pages 392{408. Springer, 2005.

[BT08] Peter Baumgartner and Cesare Tinelli. The model evolution calculus
as a �rst-order DPLL method. Arti�cial Intelligence, 172(4-5):591{632,
2008.

[BW04] Joachim Biskup and Torben Weibert. Refusal in incomplete databases.
In Csilla Farkas and Pierangela Samarati, editors, 18th Annual IFIP

WG 11.3 Conference on Data and Applications Security, Proceedings,
pages 143{157. Kluwer, 2004.

[BW06] Joachim Biskup and Lena Wiese. On �nding an inference-proof com-
plete database for controlled query evaluation. In Ernesto Damiani
and Peng Liu, editors, 20th Annual IFIP WG 11.3 Conference on Data

162 References

and Applications Security, Proceedings, volume 4127 of Lecture Notes

in Computer Science, pages 30{43. Springer, 2006.

[BW07] Joachim Biskup and Torben Weibert. Con�dentiality policies for con-
trolled query evaluation. In Steve Barker and Gail-Joon Ahn, editors,
21st Annual IFIP WG 11.3 Conference on Data and Applications Se-

curity, Proceedings, Lecture Notes in Computer Science, pages 1{13.
Springer, 2007.

[BW08a] Joachim Biskup and Torben Weibert. Keeping secrets in incomplete
databases. Internation Journal of Information Security, 7(3):199{217,
2008.

[BW08b] Joachim Biskup and Lena Wiese. Preprocessing for controlled query
evaluation with availability policy. Journal of Computer Security,
16(4):477{494, 2008.

[CC94] Laurence Cholvy and Fr�ed�eric Cuppens. Providing consistent views
in a polyinstantiated database. In Joachim Biskup, Matthew Morgen-
stern, and Carl E. Landwehr, editors, Database Security, VIII: Status

and Prospects, Proceedings of the IFIP WG11.3 Working Conference

on Database Security, volume A-60 of IFIP Transactions, pages 277{
296. North-Holland, 1994.

[CC06] Yu Chen and Wesley W. Chu. Database security protection via in-
ference detection. In Sharad Mehrotra, Daniel Dajun Zeng, Hsinchun
Chen, Bhavani M. Thuraisingham, and Fei-Yue Wang, editors, IEEE
International Conference on Intelligence and Security Informatics,

Proceedings, volume 3975 of Lecture Notes in Computer Science, pages
452{458. Springer, 2006.

[CCGL02] Andrea Cal��, Diego Calvanese, Giuseppe De Giacomo, and Maurizio
Lenzerini. Data integration under integrity constraints. In Anne Banks
Pidduck, John Mylopoulos, Carson C. Woo, and M. Tamer �Ozsu, edi-
tors, 14th International Conference on Advanced Information Systems

Engineering, Proceedings, volume 2348 of Lecture Notes in Computer

Science, pages 262{279. Springer, 2002.

[CG01] Fr�ed�eric Cuppens and Alban Gabillon. Cover story management. Data
& Knowledge Engineering, 37(2):177{201, 2001.

[CL73] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and

Mechanical Theorem Proving. Academic Press, 1973.

[CLR03] Andrea Cal��, Domenico Lembo, and Riccardo Rosati. On the decidabil-
ity and complexity of query answering over inconsistent and incomplete
databases. In Twenty-Second ACM SIGACT-SIGMOD-SIGART Sym-

References 163

posium on Principles of Database Systems, Proceedings, pages 260{271.
ACM, 2003.

[CM00] LiWu Chang and Ira S. Moskowitz. An integrated framework for
database privacy protection. In Bhavani M. Thuraisingham, Reind P.
van de Riet, Klaus R. Dittrich, and Zahir Tari, editors, Fourteenth An-
nual Working Conference on Database Security, Proceedings, volume
201 of IFIP Conference Proceedings, pages 161{172. Kluwer, 2000.

[CM05] Jan Chomicki and Jerzy Marcinkowski. On the computational
complexity of minimal-change integrity maintenance in relational
databases. In Leopoldo E. Bertossi, Anthony Hunter, and Torsten
Schaub, editors, Inconsistency Tolerance, volume 3300 of Lecture Notes
in Computer Science, pages 119{150. Springer, 2005.

[CN09] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Com-
plexity. Cambridge University Press, 2009. To be published by the
Perspectives in Logic series of the Association for Symbolic Logic.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377{387, 1970.

[CS03] Koen Claessen and Niklas S�orensson. New techniques that improve
mace-style �nite model �nding. In CADE-19 Workshop: Model Com-

putation { Principles, Algorithms, Applications, Proceedings, 2003.

[CW94] Seng-Cho Timothy Chou and Marianne Winslett. A model-based belief
revision system. Journal of Automated Reasoning, 12(2):157{208, 1994.

[DdVLS99] Steven Dawson, Sabrina De Capitani di Vimercati, Patrick Lincoln,
and Pierangela Samarati. Minimal data upgrading to prevent infer-
ence and association. In Eighteenth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, Proceedings, pages 114{
125. ACM Press, 1999.

[DdVLS02] Steven Dawson, Sabrina De Capitani di Vimercati, Patrick Lincoln,
and Pierangela Samarati. Maximizing sharing of protected information.
Journal of Computer and System Sciences, 64(3):496{541, 2002.

[Dem92] Robert Demolombe. Syntactical characterization of a subset of domain-
independent formulas. Journal of the ACM, 39(1):71{94, 1992.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-
Wesley, 1982.

[Den87] Dorothy E. Denning. Lessons learned from modeling a secure multilevel
relational database system. In Carl E. Landwehr, editor, Database
Security: Status and Prospects, Results of the IFIP WG 11.3 Initial

Meeting, pages 35{43. North-Holland, 1987.

164 References

[DF02] Josep Domingo-Ferrer, editor. Inference Control in Statistical

Databases, From Theory to Practice, volume 2316 of Lecture Notes

in Computer Science. Springer, 2002.

[DFF06] Josep Domingo-Ferrer and Luisa Franconi, editors. Privacy in Statis-

tical Databases, CENEX-SDC Project International Conference, Pro-

ceedings, volume 4302 of Lecture Notes in Computer Science. Springer,
2006.

[DFT04] Josep Domingo-Ferrer and Vicen�c Torra, editors. Privacy in Statis-

tical Databases: CASC Project International Workshop, Proceedings,
volume 3050 of Lecture Notes in Computer Science. Springer, 2004.

[DH94] Harry S. Delugach and Thomas H. Hinke. Using conceptual graphs to
represent database inference security analysis. Journal of Computing

and Information Technology, 2(4):291{307, 1994.

[DH96] Harry S. Delugach and Thomas H. Hinke. Wizard: A database in-
ference analysis and detection system. IEEE Transactions on Data &

Knowledge Engineering, 8(1):56{66, 1996.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394{
397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quan-
ti�cation theory. Journal of the ACM, 7(3):201{215, 1960.

[DS83] Dorothy E. Denning and Jan Schl�orer. Inference controls for statistical
databases. IEEE Computer, 16(7):69{82, 1983.

[DS04] James P. Delgrande and Torsten Schaub. Two approaches to merg-
ing knowledge bases. In Jos�e J�ulio Alferes and Jo~ao Alexandre Leite,
editors, 9th European Conference on Logics in Arti�cial Intelligence,

Proceedings, volume 3229 of Lecture Notes in Computer Science, pages
426{438. Springer, 2004.

[DS07] James P. Delgrande and Torsten Schaub. A consistency-based frame-
work for merging knowledge bases. Journal of Applied Logic, 5(3):459{
477, 2007.

[EB05] Niklas E�en and Armin Biere. E�ective preprocessing in SAT through
variable and clause elimination. In Fahiem Bacchus and Toby Walsh,
editors, 8th International Conference on Theory and Applications of

Satis�ability Testing, Proceedings, volume 3569 of Lecture Notes in

Computer Science, pages 61{75. Springer, 2005.

References 165

[EFGL08] Thomas Eiter, Michael Fink, Gianluigi Greco, and Domenico Lembo.
Repair localization for query answering from inconsistent databases.
ACM Transactions on Database System, 33(2):10:1{10:51, 2008.

[FBJ06] Csilla Farkas, Alexander Brodsky, and Sushil Jajodia. Unautho-
rized inferences in semistructured databases. Information Sciences,
176(22):3269{3299, 2006.

[Fit96] Melvin Fitting. First-order Logic and Automated Theorem Proving.
Springer, 1996. Second Edition.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Ren�ee J. Miller, and Lucian Popa.
Data exchange: semantics and query answering. Theoretical Computer
Science, 336(1):89{124, 2005.

[FTE01] Csilla Farkas, Tyrone S. Toland, and Caroline M. Eastman. The in-
ference problem and updates in relational databases. In Fifteenth An-

nual Working Conference on Database and Application Security, Pro-

ceedings, volume 215 of IFIP Conference Proceedings, pages 181{194.
Kluwer, 2001.

[GA07] Igor Gammer and Eyal Amir. Solving satis�ability in ground logic with
equality by e�cient conversion to propositional logic. In Ian Miguel
and Wheeler Ruml, editors, 7th International Symposium on Abstrac-

tion, Reformulation, and Approximation, Proceedings, volume 4612 of
Lecture Notes in Computer Science, pages 169{183. Springer, 2007.

[GH08] Bernardo Cuenca Grau and Ian Horrocks. Privacy-preserving query
answering in logic-based information systems. In Malik Ghallab, Con-
stantine D. Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris,
editors, 18th European Conference on Arti�cial Intelligence, Patras,

Proceedings, volume 178 of Frontiers in Arti�cial Intelligence and Ap-

plications, pages 40{44. IOS Press, 2008.

[GS02] Martin Grohe and Luc Segou�n. On �rst-order topological queries.
ACM Transactions on Computational Logic, 3(3):336{358, 2002.

[GT91] Allen Van Gelder and Rodney W. Topor. Safety and translation of
relational calculus queries. In ACM Transactions on Database Systems,
volume 16, pages 235{278. ACM, 1991.

[HLO08] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT: An
e�cient Weighted Max-SAT Solver. Journal of Arti�cial Intelligence

Research, 31:1{32, 2008.

[HRCS02] John N. Hooker, G. Rago, V. Chandru, and A. Shrivastava. Partial
instantiation methods for inference in �rst-order logic. Journal of Au-
tomated Reasoning, 28(5):371{396, 2002.

166 References

[HS91] Richard Hull and Jianwen Su. On the expressive power of database
queries with intermediate types. Journal of Computer and System

Sciences, 43(1):219{267, 1991.

[HS92] Klaus-Uwe H�o�gen and Hans-Ulrich Simon. Robust trainability of
single neurons. In Fifth Annual ACM Conference on Computational

Learning Theory, Proceedings, pages 428{439, 1992.

[HS94] Richard Hull and Jianwen Su. Domain independence and the relational
calculus. Acta Informatica, 31(6):513{524, 1994.

[HS96] John Hale and Sujeet Shenoi. Analyzing FD inference in relational
databases. IEEE Transactions on Data & Knowledge Engineering,
18(2):167{183, 1996.

[HTS94] John Hale, Jody Threet, and Sujeet Shenoi. A practical formalism for
imprecise inference control. In Joachim Biskup, Matthew Morgenstern,
and Carl E. Landwehr, editors, Database Security, VIII: Status and

Prospects, Proceedings, volume A-60 of IFIP Transactions, pages 139{
156. North-Holland, 1994.

[JM95a] Sushil Jajodia and Catherine Meadows. Inference problems in multi-
level secure databasemanagement systems. Information Security - An

Integrated Collection of Essays, pages 570{584, 1995.

[JM95b] Sushil Jajodia and Catherine Meadows. Solutions to the polyinstan-
tiation problem. Information Security - An Integrated Collection of

Essays, pages 493{530, 1995.

[Jon97] Peter Jonsson. Tight lower bounds on the approximabil-
ity of some NPO PB-complete problems. Link�oping Elec-

tronic Articles in Computer and Information Science, 2(4), 1997.
http://www.ep.liu.se/ea/cis/1997/004/.

[JS91] Sushil Jajodia and Ravi S. Sandhu. Toward a multilevel secure rela-
tional data model. In James Cli�ord and Roger King, editors, ACM
SIGMOD International Conference on Management of Data, Proceed-

ings, pages 50{59. ACM Press, 1991.

[Kan94] Viggo Kann. Polynomially bounded minimization problems that are
hard to approximate. Nordic Journal of Computing, 1(3):317{331,
1994.

[LDS+90] Teresa F. Lunt, Dorothy E. Denning, Roger R. Schell, Mark Heck-
man, and William R. Shockley. The SeaView security model. IEEE

Transactions on Software Engineering, 16(6):593{607, 1990.

References 167

[LHdG08] Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach
to e�cient Max-SAT solving. Arti�cial Intelligence, 172(2-3):204{233,
2008.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-
closeness: Privacy beyond k-anonymity and l-diversity. In 23rd Inter-

national Conference on Data Engineering, Proceedings, pages 106{115.
IEEE Computer Society, 2007.

[LZWJ02] Yingjiu Li, Sencun Zhu, Lingyu Wang, and Sushil Jajodia. A privacy-
enhanced microaggregation method. In Thomas Eiter and Klaus-Dieter
Schewe, editors, Second International Symposium on Foundations of

Information and Knowledge Systems, Proceedings, volume 2284 of Lec-
ture Notes in Computer Science, pages 148{159. Springer, 2002.

[MGKV06] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthu-
ramakrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-
anonymity. In Ling Liu, Andreas Reuter, Kyu-Young Whang, and
Jianjun Zhang, editors, 22nd International Conference on Data Engi-

neering, Proceedings, pages 24{36. IEEE Computer Society, 2006.

[MS07] Gerome Miklau and Dan Suciu. A formal analysis of information dis-
closure in data exchange. Journal of Computer and System Sciences,
73(3):507{534, 2007.

[MSS88] Subhasish Mazumdar, David W. Stemple, and Tim Sheard. Resolv-
ing the tension between integrity and security using a theorem prover,
proceedings. In Haran Boral and Per-�Ake Larson, editors, ACM SIG-

MOD International Conference on Management of Data, pages 233{
242. ACM Press, 1988.

[Nic82] Jean-Marie Nicolas. Logic for improving integrity checking in relational
data bases. Acta Informatica, 18:227{253, 1982.

[Per94] G�unther Pernul. Database security. Advances in Computers, 38:1{72,
1994.

[Qia94] Xiaolei Qian. Inference channel-free integrity constraints in mulitlevel
relational databases. In IEEE Symposium on Security and Privacy,

Proceedings, pages 158{173, 1994.

[QL92] Xiaolei Qian and Teresa F. Lunt. Tuple-level vs element-level classi�-
cation. In Database Security, VI: Status and Prospects. Results of the

IFIP WG 11.3 Workshop on Database Security, volume A-21 of IFIP
Transactions, pages 301{316. North-Holland, 1992.

[RMSR04] Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan Roy.
Extending query rewriting techniques for �ne-grained access control. In

168 References

Gerhard Weikum, Arnd Christian K�onig, and Stefan De�loch, editors,
ACM SIGMOD International Conference on Management of Data,

Proceedings, pages 551{562. ACM, 2004.

[Ros06] Riccardo Rosati. On the decidability and �nite controllability of query
processing in databases with incomplete information. In Stijn Vansum-
meren, editor, Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, Proceedings, pages 356{365.
ACM, 2006.

[SdJvdR83] George L. Sicherman, Wiebren de Jonge, and Reind P. van de Riet.
Answering queries without revealing secrets. ACM Transactions on

Database Systems, 8(1):41{59, 1983.

[SF04] Andrei Stoica and Csilla Farkas. Ontology guided XML security engine.
Journal of Intelligent Information Systems, 23(3):209{223, 2004.

[SJ90] R. Sandhu and S. Jajodia. Restricted polyinstantiation or how to close
signaling channels without duplicity. In Third RADC Workshop on

Multilevel Database Security, Proceedings, 1990.

[SJ92] Ravi S. Sandhu and Sushil Jajodia. Polyinstantation for cover stories.
In Yves Deswarte, G�erard Eizenberg, and Jean-Jacques Quisquater,
editors, Second European Symposium on Research in Computer Secu-

rity, Proceedings, volume 648 of Lecture Notes in Computer Science,
pages 307{328. Springer, 1992.

[S�O91] Tzong-An Su and Gultekin �Ozsoyoglu. Controlling FD and MVD in-
ferences in multilevel relational database systems. IEEE Transactions

on Data & Knowledge Engineering, 3(4):474{485, 1991.

[SP04] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. Niver: Non
increasing variable elimination resolution for preprocessing SAT in-
stances. In 7th International Conference on Theory and Applications

of Satis�ability Testing, Proceedings, 2004.

[ST99] Alexei P. Stolboushkin and Michael A. Taitslin. Finite queries do not
have e�ective syntax. Information and Computation, 153(1):99{116,
1999.

[Sta03] Jessica Staddon. Dynamic inference control. In Mohammed Javeed
Zaki and Charu C. Aggarwal, editors, 8th ACM SIGMOD workshop on

Research issues in data mining and knowledge discovery, Proceedings,
pages 94{100, 2003.

[Sti94] Mark E. Stickel. Elimination of inference channels by optimal upgrad-
ing. In IEEE Symposium on Security and Privacy, Proceedings, pages
168{174, 1994.

References 169

[Sut07] Geo� Sutcli�e. TPTP, TSTP, CASC, etc. In Volker Diekert,
Mikhail V. Volkov, and Andrei Voronkov, editors, Computer Science

- Theory and Applications, Proceedings, volume 4649 of Lecture Notes
in Computer Science, pages 6{22. Springer, 2007.

[SW92] Kenneth Smith and Marianne Winslett. Entity modeling in the MLS
relational model. In Li-Yan Yuan, editor, 18th International Confer-

ence on Very Large Data Bases, Proceedings, pages 199{210. Morgan
Kaufmann, 1992.

[Swe97] Latanya Sweeney. Datay: A system for providing anonymity in med-
ical data. In Database Security XI: Status and Prospects, Proceedings,
volume 113 of IFIP Conference Proceedings, pages 356{381. Chapman
& Hall, 1997.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. In-

ternational Journal on Uncertainty, Fuzziness and Knowledge-based

Systems, 10(5):557{570, 2002.

[Tad08] Cornelia Tadros. Erzeugen einer inferenzsicheren und optimal verf�ug-
baren Datenbank mit gewichtetem Max-SAT. Technische Universit�at
Dortmund, Fakult�at f�ur Informatik, Lehrstuhl 6, October 2008.

[TFE05] Tyrone S. Toland, Csilla Farkas, and Caroline M. Eastman. Dynamic

disclosure monitor (D2Mon): An improved query processing solution.
In Willem Jonker and Milan Petkovic, editors, Second VLDB Work-

shop on Secure Data Management, Proceedings, volume 3674 of Lecture
Notes in Computer Science, pages 124{142. Springer, 2005.

[Wei08] Torben Weibert. A Framework for Inference Control in Incomplete

Logic Databases. PhD thesis, Technische Universit�at Dortmund, 2008.

[Wil97] Mary-Anne Williams. Anytime belief revision. In Fifteenth Interna-

tional Joint Conference on Arti�cial Intelligence, Proceedings, pages
74{81. Morgan Kaufmann, 1997.

[Win90] Marianne Winslett. Updating Logical Databases. Cambridge University
Press, 1990.

[WLWJ03] Lingyu Wang, Yingjiu Li, Duminda Wijesekera, and Sushil Jajodia.
Precisely answering multi-dimensional range queries without privacy
breaches. In Einar Snekkenes and Dieter Gollmann, editors, 8th Eu-

ropean Symposium on Research in Computer Security, Proceedings,
volume 2808 of Lecture Notes in Computer Science, pages 100{115.
Springer, 2003.

[WS04] David P. Woodru� and Jessica Staddon. Private inference control. In
Vijayalakshmi Atluri, Birgit P�tzmann, and Patrick Drew McDaniel,

170 References

editors, ACM Conference on Computer and Communications Security,

Proceedings, pages 188{197, 2004.

[YL98a] Raymond W. Yip and Karl N. Levitt. Data level inference detection
in database systems. In 11th IEEE Computer Security Foundations

Workshop, Proceedings, pages 179{189, 1998.

[YL98b] Raymond W. Yip and Karl N. Levitt. The design and implementation
of a data level database inference detection system. In Database Secu-

rity XII: Status and Prospects, IFIP TC11 WG 11.3 Twelfth Interna-

tional Working Conference on Database Security, Proceedings, volume
142 of IFIP Conference Proceedings, pages 253{266. Kluwer, 1998.

[YL04] Xiaochun Yang and Chen Li. Secure XML publishing without infor-
mation leakage in the presence of data inference. In Mario A. Nasci-
mento, M. Tamer �Ozsu, Donald Kossmann, Ren�ee J. Miller, Jos�e A.
Blakeley, and K. Bernhard Schiefer, editors, 30th International Con-

ference on Very Large Data Bases, Proceedings, pages 96{107. Morgan
Kaufmann, 2004.

[Zha05] Lintao Zhang. On subsumption removal and on-the-y CNF simpli�-
cation. In Fahiem Bacchus and Toby Walsh, editors, 8th International

Conference on Theory and Applications of Satis�ability Testing, Pro-

ceedings, volume 3569 of Lecture Notes in Computer Science, pages
482{489. Springer, 2005.

[ZJB08] Lei Zhang, Sushil Jajodia, and Alexander Brodsky. Simulatable
binding: Beyond simulatable auditing. In Willem Jonker and Mi-
lan Petkovic, editors, 5th VLDB Workshop on Secure Data Manage-

ment, volume 5159 of Lecture Notes in Computer Science, pages 16{31.
Springer, 2008.

List of Figures 171

List of Figures

1 Schematic view of uncontrolled queries and access control 4

2 Insecurity of access control . 5

3 Taxonomy of inference control . 7

4 Schematic view of censor-based CQE 23

5 Schematic view of preCQE settings 35

6 Example for active domain semantics 58

7 Example for unsatis�able constraints 76

8 Closed semantic tree . 77

9 Markers in dbposbest for ground atoms with adom constants 77

10 Example for �nite invention . 88

11 Example for in�nity axiom . 98

12 Dependency graph for in�nity axiom 100

13 Example for weakly acyclic constraints 104

14 preCQE with explicit availability policy 124

15 Related research areas . 127

16 Implementation of Prototype . 142

17 Screenshot with db and prior . 143

18 Screenshot with db and db 0 . 144

19 Performance of preCQE for 24 patient types 148

20 Performance of preCQE for multiple optima 150

21 Performance of preCQE for unique optima 150

22 Performance of preCQE with availability policy 151

23 Performance of preCQE without medA-entries 153

24 Performance of preCQE with conjunctive secrets 153

25 Performance of preCQE with cascading constraints 154

172 List of Figures

List of Tables 173

List of Tables

1 Markers set by preCQE . 67

2 Permissible patient types in db . 146

3 Performance of preCQE for 24 patient types 148

4 Performance of preCQE for multiple optima 149

5 Performance of preCQE for unique optima 149

6 Performance of preCQE with availability policy 152

7 Performance of preCQE without medA-entries 152

8 Performance of preCQE with conjunctive secrets 152

9 Performance of preCQE with cascading constraints 155

174 List of Tables

List of De�nitions 175

List of De�nitions

7.1 DB-interpretation (cf. [BB07], De�nition 1) 38

7.2 DB-satis�ability . 38

7.3 DB-implication (cf. [BB07], De�nition 2) 39

7.4 Ordinary query evaluation for complete db ([BB07]) 41

7.6 Inference-proofness for complete database instance 44

7.9 Set of negated potential secrets . 45

7.10 Constraint set . 45

7.12 Distortion distance . 46

7.13 Distortion minimality . 46

8.1 Universal formulas . 47

8.2 Active domain . 47

8.3 Allowed formulas / gen-relation ([GT91]) 48

8.4 Allowed universal formulas . 49

8.9 Restriction to active domain . 53

9.2 Set of unmarked ground literals . 59

9.3 Positive restriction of dbv . 59

9.4 Model operator for marked database instance 60

9.5 Evaluation function for marked database instance 60

9.6 Violated constraints . 61

9.14 Semantic tree, failure node . 72

9.16 Construction of semantic tree . 73

10.1 Existential formulas . 83

11.1 Active domain in a node v . 87

12.2 Tuple-generating dependencies . 98

12.3 Dependency graph / weak acyclicity ([FKMP05]) 99

14.1 Possible pre-image . 120

14.2 Reliable database response . 120

176 List of De�nitions

14.3 Availability distance . 121

14.4 Availability maximality . 122

16.1 Decision atoms / decision variables . 135

List of Theorems 177

List of Theorems, Lemmas, Propositions, Corollaries and Remarks

7.7 Non-inferability of secrets . 44

7.8 Negated potential secrets for known policy 45

7.11 Satis�ability of constraint set . 45

8.5 Allowed property of CNF . 50

8.6 CNF-based veri�cation of allowed property 51

8.7 Negations of allowed universal formulas 52

8.8 Evaluation properties of allowed formulas 53

8.10 Active domain semantics for allowed constraints 54

8.12 Inference-proof instances with active domain semantics 55

8.13 Distortion minimization with active domain semantics 55

8.14 Upper bound of distortion distance . 56

9.8 Finite violation sets with adom constants 68

9.9 Termination of preCQE . 68

9.10 Satis�ability soundness of preCQE . 70

9.11 Refutation completeness of preCQE . 70

9.12 E�ciency of preCQE . 70

9.13 Herbrand's Theorem (cf. [CN09]) . 71

9.15 Herbrand's Theorem with semantic tree 73

9.17 Refutation soundness of preCQE . 74

9.19 Satis�ability completeness of preCQE 76

9.20 Optimality of solution . 78

10.2 Finite model property of existential formula 83

10.3 Genericity of inference-proof instances 84

10.4 Inference-proof instances with �nite invention 84

10.5 Upper bound of distortion distance . 85

10.6 Finite invention and distortion minimization 85

10.7 Tautologies in in�nite domain . 86

178 List of Theorems

11.3 Termination of preCQE . 92

11.4 Satis�ability soundness of preCQE . 94

11.5 Refutation completeness of preCQE . 94

11.6 Refutation soundness of preCQE . 94

11.7 Satis�ability completeness of preCQE 96

11.8 Optimality of solution . 96

12.5 Finite invention for TGDs . 101

12.6 Inference-proof instances for weakly acyclic constraints 102

12.7 Upper bound of distortion distance . 103

13.2 Finite violation sets with adom [invent constants 109

13.3 Termination of preCQE . 110

13.4 Satis�ability soundness of preCQE . 111

13.5 Refutation completeness of preCQE . 111

13.6 Refutation soundness of preCQE . 111

13.7 Satis�ability completeness of preCQE 112

13.8 Optimality of solution . 112

16.2 Upper bound of distortion distance . 136

Full Contents 179

Full Contents

Abstract . i

Overview . iii

I Introduction and Related Work 1

1 Inference Control in Databases . 3

2 Related Work . 6

2.1 Data Model . 6

2.1.1 Relational Databases . 8

2.1.2 Multilevel Secure Databases 8

2.1.3 Statistical Databases . 8

2.1.4 Logical Databases . 9

2.2 Constraint Model . 9

2.3 User Model . 10

2.3.1 Collusion and Sybil Attacks 11

2.3.2 Updates . 11

2.4 Interaction Model . 12

2.5 Policy Model . 12

2.6 Inference Model . 13

2.7 Protection Model . 14

2.7.1 Data Restriction . 14

2.7.2 Data Modi�cation and Cover Stories 14

2.8 Execution Model . 16

3 A Selection of Prior Work . 16

4 Controlled Query Evaluation . 22

4.1 Data Model . 23

4.2 Constraint Model . 24

180 Full Contents

4.3 User Model . 25

4.4 Interaction Model . 25

4.5 Policy Model . 26

4.6 Inference Model . 27

4.7 Protection Model . 27

4.8 Execution Model . 28

5 Contributions and Outline of this Thesis 28

6 Contributions to Published Work . 32

II Preprocessing for Complete Databases 33

7 Preprocessing for CQE in Complete Databases 35

7.1 Data Model . 37

7.2 Constraint Model . 38

7.3 Inference Model . 39

7.4 User Model . 39

7.5 Interaction Model . 40

7.6 Policy Model . 41

7.7 Protection Model . 42

7.8 Execution Model . 42

7.9 Introductory Example . 42

7.10 Inference-Proofness and Distortion-Minimality 44

8 Active Domain Semantics For the Universal Fragment 47

9 preCQE for Allowed Universal Constraints 56

9.1 The preCQE Algorithm . 61

INIT (Listing 1) . 64

GROUND (Listing 2) . 64

SIMP (Listing 3) . 65

SPLIT (Listing 4) . 66

MARK (Listing 5) . 66

Full Contents 181

9.2 Termination, Soundness and Completeness of preCQE 68

Summary of Part II . 79

III preCQE for Existential Constraints 81

10 Finite Invention For the Existential Fragment 83

11 preCQE for Existential Quanti�cation 87

11.1 The preCQE Algorithm . 89

INIT (Listing 6) . 89

GROUND (Listing 7) . 89

SIMP (Listing 8) . 92

SPLIT (Listing 9) . 92

CASE (Listing 10) . 92

MARK (Listing 11) . 92

11.2 Termination, Soundness and Completeness of preCQE 92

12 89-Quanti�ed Constraints . 97

13 preCQE for Weakly Acyclic Constraints 103

13.1 The preCQE Algorithm . 105

INIT (Listing 12) . 105

GROUND (Listing 13) . 105

SIMP (Listing 14) . 108

SPLIT (Listing 15) . 108

CASE (Listing 16) . 108

MARK (Listing 17) . 109

13.2 Termination, Soundness and Completeness of preCQE 109

Summary of Part III . 113

IV Extensions and Related Research 115

14 Adjustments and Extensions . 117

14.1 Simpli�cation of Constraints . 117

182 Full Contents

14.2 Iterative Deepening or Best-First Search 117

14.3 Non-ground Splitting and Advanced Distance Measures 118

14.4 Built-In Predicates, Numerical Domains and Aggregation 118

14.5 Other First-Order Fragments . 119

14.6 Relaxation of In�nite Domain Assumption 119

14.7 Reliable Database Responses . 120

14.8 Availability-Preservation with an Explicit Availability Policy 121

14.9 Adding Last-Minute-Distortion . 123

14.10Role-Based Access Control and Authorization Views 124

14.11Hierarchical Constraint Solving . 125

14.12Incomplete Databases and Refusal 126

15 Related Research Areas . 127

15.1 Automated Theorem Proving and Model Generation 128

15.2 Database Repairs and Data Exchange 129

15.3 Belief Revision . 130

Summary of Part IV . 131

V Implementation and Analysis of a Prototype 133

16 Propositional Logic . 135

17 Propositional Encodings . 137

17.1 Translation to MINONES Without Availability Policy 137

17.2 Translation to W-MAXSAT and PMSAT 138

18 A preCQE Implementation for Propositional Logic 141

19 Test Cases . 144

19.1 Medical Record Tests . 145

19.2 Cascading Constraints Tests . 154

Summary of Part V . 156

References . 159

Full Contents 183

List of Figures . 171

List of Tables . 173

List of De�nitions . 175

List of Theorems . 177

Full Contents . 179

Index . 185

Danksagung . 189

184 Full Contents

Index 185

Index

abduction, 3
access control, 4, 10, 28
active domain, 47, 53, 70, 83, 87, 93, 100,

103
acyclicity, see weak acyclicity
administrator, 3, 23, 37, 42, 136
aggregate queries, 8, 118, 119
aggregation, 16
allowed formula, 48{53, 56, 68, 97, 118
automated theorem proving, 117, 128
availability, 5, 13, 14, 26, 41, 61, 64
availability policy, 26, 121, 139
awareness, 21, 25, 45, 83

background knowledge, 4, 10
backtracking, 59, 61
Bayesian network, 21
belief base, 9, 127, 130
belief revision, 46, 117, 126, 130
Bell-LaPadua, 14
Bernays-Sch�on�nkel class, 119, 129
best-�rst search, 118
blocking, 16
Branch and Bound, 61
built-in predicates, 118

case di�erentiation, 87
case node, 95
censor, 23, 27
chase algorithm, 14, 20
chase procedure, 130
classi�cation, 8, 12, 14, 18
clause, 72
clearance level, 10, 12, 14, 19, 42
closed system, 10, 39
closed world assumption, 24, 37
collusion, see inter-user collusion attack
complete database, 9, 24, 37, 38, 45
completeness, 18, 19, 70, 76, 94, 111
con�dentiality, 5, 12, 26, 44, 61, 64

con�dentiality policy, 12, 26, 41, 43
conict, 74
constraint model, 6, 9
constraints, 8, 9, 18, 24, 38, 43, 45, 48, 63,

83, 97, 128
content-dependent, 16, 42
content-independent, 16
Controlled Query Evaluation, 22, 25, 126
cover story, 15, 18, 42
CQE, see Controlled Query Evaluation
cryptographic keys, 21
cyclicity, 19, see weak acyclicity

Darwin, 129
data exchange, 98, 129
data model, 6
data modi�cation, 14, 27, 42, 119
data restriction, 14, 27
database

complete, 9, 24, 37, 38, 45
general-purpose, 5, 8
incomplete, 9, 126
logical, 8, 9, 23
multilevel secure, 5, 8, 18
relational, 5, 8, 24
statistical, 5, 8

database administrator, 3, 23, 37, 42, 136
database constraints, 8, 9, 24, 38, 43, 128
database instance, 23, 37
database repairs, 129
database schema, 8, 24, 37, 42
Datay, 16
DB-implication, 39, 44
DB-interpretation, 37, 84
DB-satis�ability, 38, 45, 47, 77, 84, 99
decidability, 24, 28, 47
deduction, 3
denial constraint, 99, 109, 130
denial of access, 14
dependency graph, 98, 100

186 Index

depth-�rst search, 56, 117
design time, 16
DiMon, 19
distortion distance, 41, 46, 56, 85
distortion minimality, 46, 55, 61, 77, 86, 96,

103, 112, 135
domain-independent query, 48, 109
DPLL, 18, 128, 142

e�ciency, 70
equality, 118
evaluable formula, 50, 53, 98
evaluation, 25, 35, 40, 43, 44, 53, 60, 74
execution model, 6, 16
existential formula, 83, 87, 108

failure node, 72, 74, 94
FDPLL, 129
�nite invention, 84, 88, 100
�nite model property, 83, 119
function symbols, 118
fuzzy inference, 17

general-purpose database, 5, 8
genericity, 84, 86
global optimum, 64, 66
global upper bound, 63
guarded fragment, 119

harmful inference, 5, 13, 44, 125
Herbrand, 37, 71, 72, 96, 112, 128
hierarchical constraint solving, 125

implication, 27, 28, 39, 44
incomplete database, 9, 126
induction, 3
inference, 3, 17, 27, 43

harmful, 5, 13, 44, 125
inference control, 5
inference detection, 21
inference model, 6, 13
inference-proofness, 35, 44, 54, 61, 70, 102,

135
in�nite domain, 36, 47, 83
in�nity axiom, 97, 119

information retrieval, 21
information theory, 13, 22
instance, 23, 37, 71, 74, 108, 112
instantiation, 64, 65, 70, 87, 97, 103, 108,

110, 121
instantiation time, 16, 42
integrity, 15
inter-user collusion attack, 11, 21
interaction model, 6, 12
interpretation, 9, 24, 37, 84

induced, 38, 45, 60
invention, see �nite invention
invention node, 95
iterative deepening, 117

k-anonymity, 15
knowledge, 4, 10, 24, 35, 38, 39, 43
knowledge base, 9, 130
known policy, 25, 45

label, 72
last-minute distortion, 26, 123
level, 73, 95, 112
literal, 36
logical consequence, 27
logical database, 8, 9, 23
logical language, 9, 23, 35, 42, 135
lower bound, 63, 66
lying, 21, 27, 42, 55, 119, 126

MAC, see mandatory access control
mandatory access control, 19
marked database instance, 58{61
marker, 57{61, 87
MAXSAT, 128, 138
metainferences, 27
MiniMaxSAT, 142, 145
minimum ones, 137
MINONES, 137
MLS classi�cation, 8, 12, 14, 18
MLS clearance, 10, 12, 14, 19, 42
MLS database, see multilevel secure

database
modal logic, 25

Index 187

model

constraint model, 6, 9

data model, 6

execution model, 6, 16

inference model, 6, 13

interaction model, 6, 12

policy model, 6, 12

protection model, 6, 14

user model, 6, 10

model (logical), 9, 38, 44, 59, 60, 63, 70

model generation, 128

multilevel secure database, 5, 8, 18

negated potential secrets, 45

negative part, 37, 61

normal form, 36, 47, 50{53, 56, 72, 83, 85,
97, 103

notation, 35

numerical domains, 119

paramodulation, 118

permutation, 84, 86

perturbation, 14

PIC, see private inference control

PMSAT, 128, 140

policy hierarchy, 26

policy model, 6, 12

polyinstantiation, 15

position, 99

positive part, 38, 47, 61

positive restriction, 59, 70

potential secrets, 26, 35, 41, 43

precision, 13

preCQE, 35, 56, 87, 103

predicate logic, 24, 35, 83, 119, 135

private inference control, 21

private information retrieval, 21

probability, 17, 21, 22, 121

probability distribution, 13

propositional logic, 135

protection model, 6, 14

PRQ formulas, 119, 129

pruning, 63, 64, 74

query evaluation, see evaluation
query time, 16, 125

range-restricted formula, 53
refusal, 27, 126
refutation, 70, 74, 94, 111
relation schema, 8
relational database, 5, 8, 24
reliability, 15, 120
roles, 124

safe query, 48, 98
SAT, see satis�ability problem
SAT4J, 142, 145
satis�ability, 38, 45, 70, 71, 76, 77, 83, 94,

99, 111
satis�ability problem, 128, 135{144
schema, 8, 24, 37, 42
search tree, 56, 63, 94
SeaView, 18
secrecies, 13, 21, 26
secure group communication, 11, 21
security administrator, 3, 23, 43, 136
semantic tree, 71{75, 94
semi-structured data, 5
SIC, 128
simpli�cation, 65, 89, 117
single user, 11, 20, 25, 42, 124
Skolemization, 83, 94
sophisticated user, 25, 40
sort, 36, 43, 87
soundness, 18, 19, 70, 94, 111
special edge, 99, 101
splitting, 56, 103, 118, 128
SQL, 125
standardization, 36, 84, 93
statistical database, 5, 8
sybil attack, 11, 21

tautology, 45, 86, 117
termination, 68, 92, 109, 119
test cases, 144
Toolbar, 142, 145
TPTP, 142, 143

188 Index

transaction, 17
tuple-generating dependency, 98, 103, 109,

130

unit constraint, 57
universal formula, 47
universe, 37
update time, 16
updates, 11, 18{20, 125
upgrading, 14, 18
user administrator, 23, 43, 136

user history, 11, 23, 25
user knowledge, 4, 24, 35, 38, 39, 43
user model, 6, 10

view, 22, 125
violation, 61, 65, 68, 87, 105, 109
visibility, 13

weak acyclicity, 98, 100, 103, 109, 130

XML, 5

Danksagung 189

Danksagung

Mein besonderer Dank gilt Joachim Biskup f�ur seine fachliche und menschliche Be-
gleitung und Anleitung w�ahrend des gesamten Prozesses der Promotion.
Danken m�ochte ich auch Gabriele Kern-Isberner als Zweitgutachterin und Heiko
Krumm und Hubert Wagner f�ur ihre Bereitschaft als Mitglieder der Pr�ufungskom-
mission das Promotionsverfahren zum Abschluss zu bringen; ich lege sehr gro�en
Wert auf ihr fachliches Urteil.
Cornelia Tadros bin ich zu gro�em Dank verpichtet f�ur ihre herausragenden Leis-
tungen bei Implementierung und Test des Prototypen.
In den ersten beiden Jahren der Promotionszeit war ich Stipendiatin im DFG-
Graduiertenkolleg \Mathematische und ingenieurwissenschaftliche Methoden f�ur
sichere Daten�ubertragung und Informationsvermittlung"; dieses Stipendium hat mir
einen gelungenen Einstieg in das wissenschaftliche Arbeiten erm�oglicht.
Schlie�lich ein dickes DANKE! an all die Menschen, die im Gro�en und im Kleinen
zum Gelingen dieser Doktorarbeit beigetragen haben; ohne euch w�are diese Arbeit
nicht so weit gediehen!

