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ABSTRACT 
 

In this paper, a new approach for prediction of protein solvent accessibility is presented. The 
prediction of relative solvent accessibility gives helpful information for the prediction of na-
tive structure of a protein. Recent years several RSA prediction methods including those that 
generate real values and those that predict discrete states (buried vs. exposed) have been de-
veloped. We propose a novel method for real value prediction that aims at minimizing the 
prediction error when compared with existing methods. The proposed method is based on 
Pace Regression (PR) predictor. The improved prediction quality is a result of features of PSI-
BLAST profile and the PR method because pace regression is optimal when the number of 
coefficients tends to infinity. The experiment results on Manesh dataset show that the pro-
posed method is an improvement in average prediction accuracy and training time. 
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INTRODUCTION 
 

Due to the strict relation between pro-
tein function and structure, the prediction of 
protein 3D-structure has become one of the 
most important tasks in bioinformatics. 

Prediction of the 3D structure from pro-
tein sequence should be feasible based on 
the well-established credo that protein se-
quence uniquely determines protein struc-
ture (Anfinsen, 1973). Despite several dec-
ades of extensive researches in tertiary 
structure prediction, this task is still a big 
challenge, especially for sequences that do 
not have a significant sequence similarity 
with known structures (Ginalski & Rych-
lewski, 2003).  

The prediction of solvent accessibility 
(Garg et al., 2005) is an intermediate step in 
prediction of the protein tertiary structure. 

The relative solvent accessibility (RSA) 
reflects the degree to which a residue inter-
acts with the solvent molecules. Since pro-
tein-protein and protein-ligand interactions 
occur at the protein surface, only the resi-
dues that have a large surface area exposed 
to the solvent can possibly bind to the 
ligands and other proteins. As a result, pre-
diction of solvent accessibility provides 
useful information for prediction of binding 
sites (Huang & Schroeder, 2006) and is vi-
tally important for understanding the bind-
ing mechanism of proteins (Chou, 1988). It 
has been pointed that the burial of core 
residues is the driving force in protein fold-
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ing, which suggests that knowledge of lo-
calization of individual residues (surface vs. 
buried) provides useful information to re-
construct the tertiary structure of proteins 
(Chan & Dill, 1990; Wang et al., 2005; 
Arauzo-Bravo et al., 2006). 

The existing solvent accessibility pre-
diction methods use the protein sequence, 
which is converted into a fixed-size feature-
based representation, as an input to predict 
the RSA for each of the residues. These me-
thods can be divided into two main groups: 

Real value predictors predict RSA value 
(the definition is given in the Material’s 
section). The representative existing meth-
ods are based on linear regression (Wagner 
et al., 2005), neural network based regres-
sion (Adamczak et al., 2004), neural net-
works (Ahmad et al., 2003), support vector 
regression (Yuan & Huang, 2004; Xu et al., 
2005), and look up table (Wang et al., 
2004). In the study of Ahmad et al. (2003) 
binary coding of the sequence was taken as 
the input features, while all other studies 
use the evolutionary information in the 
form of the PSSM profile derived with PSI-
BLAST as the input features (Wagner et al., 
2005; Yuan & Huang, 2004; Adamczak et 
al., 2004; Wang et al., 2004; Xu et al., 
2005). 

Discrete value predictors classify each 
residue into a predefined set class. The 
classes are usually defined based on a thre-
shold and include buried, intermediate, and 
exposed classes (in most cases the predic-
tions concern only two classes, i. e., buried 
vs. exposed). 

The corresponding prediction methods 
apply fuzzy-nearest neighbor (Sim et al., 
2005), neural network (Cuff & Barton, 
2000; Ahmad & Gromiha, 2002; Gianese & 
Pascarella, 2006), support vector machine 
(Kim & Park, 2004; Yuan et al., 2002), two 
stage support vector machine (Nguyen & 
Rajapakse, 2005), information theory (Na-
deri-Manesh et al., 2001) and probability 
profile (Gianese et al., 2003). Early studies 
only use sequence to generate features 
(Ahmad & Gromiha, 2002; Naderi-Manesh 
et al., 2001), while recent studies use the 
evolutionary information in the form of the 

PSSM profile to generate features (Nguyen 
& Rajapakse, 2005; Kim & Park, 2004). 

The PSI-BLAST profile (Altschul et al., 
1997) was recently introduced as an effi-
cient sequence representation that improves 
classification accuracy (Cuff & Barton, 
2000). 

This paper investigates whether pace 
regression method could lead to improving 
the RSA predictions. In prediction of pro-
tein solvent accessibility with evolutionary 
information, the dimensions of features are 
high, i. e. N*20, where N is the size of the 
window. The idea of this paper is based on 
this hypothesis that if we use regression 
method which could be optimal with high 
number of features, then prediction accu-
racy would be improved. This result in a 
simplified prediction model, reduced com-
putational time and optimized prediction 
quality. 

A web based program of this algorithm 
(RSA-PRP) is available at 
http://bioinf.cs.ipm.ac.ir/rsa. It requires a 
protein sequence as input and reports the 
relative solvent accessibility or two states 
accessibility (exposed or buried) depending 
on predefined threshold by user. 

 
METHODS 

 
Datasets 

The dataset used in this paper is referred 
to as the Manesh dataset (Naderi-Manesh, 
et al., 2001) and consists of 215 low-
similarity proteins, i. e., < 25 %. The se-
quences are available online at 
http://gibk21.bse.kyutech.ac.jp/rvp-net/all-
data.tar.gz. The Manesh dataset was widely 
used by researchers to benchmark predic-
tion methods (Garg et al., 2005; Ahmad et 
al., 2003; Wang et al., 2004; Xu et al., 
2005; Ahmad & Gromiha, 2002; Gianese et 
al., 2003), and this motivated us to use it to 
design and validate our method. 

 
Relative solvent accessibility 

RSA reflects the percentage of the sur-
face area of a given residue that is accessi-
ble to the solvent. RSA value, which is 
normalized to [0,1] interval, is defined as 
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the ratio between the solvent accessible sur-
face area (ASA) of a residue within a three-
dimensional structure and ASA of its ex-
tended tri-peptide (Ala-X-Ala) conforma-
tion 

 

(1) 
 

 
Feature representation 

PSI-BLAST profile. PSI-BLAST is used 
to compare different protein sequences to 
find similar sequences and to discover evo-
lutionary relationships (Altschul et al., 
1997). PSI-BLAST generates a profile rep-
resenting a set of similar protein sequences 
in the form of a 20 × N position-specific 
scoring matrix, where N is the length of the 
sequence (window) and where each amino 
acid in the sequence (window) is described 
by 20 features. We used PSI-BLAST with 
the default parameters and the BLOSUM62 
substitution matrix. The profile was com-
puted for a 13 residues wide window cen-
tered on a target residue. 

Terminals feature. The amino acids that 
are located at the two terminals of the se-
quence have larger probability of being ex-
posed to the solvent. This fact was imple-
mented during RSA prediction by using one 
feature with two states (0,1) that indicates if 
a given residue is located close to either 
terminus or not. Terminals feature set to 1, 
for the amino acids that are located at the 
first six positions at the N terminal and the 
last six position at the C terminal, otherwise 
this feature set to 0. 
 
Linear regression 

Linear regression is a well-known 
method of mathematical modeling of the 
relationship between a dependent variable 
and one or more independent variables 
(Wagner et al., 2005). Regression uses ex-
isting (or known) values to forecast the re-
quired parameters. 

A linear regression with p coefficients 
and n data points (number of samples), as-
suming that n>p, corresponds to the con-
struction of the following expression: 

 

  

 
(2) 

 
 
 

where yi is the predicted RSA value, xi 
= (xi1, xi2,…, xip ) is the vector of p features 
representing ith protein sequence, βi (con-
stant) is parameter to be estimated, and εi is 
the standard error. The above formula can 
be written in vector-matrix form as: 

(3) 
 

The solution to minimize the mean 
square error ||ε i|| is 

 
(4) 

 
 

Pace regression 
Projection adjustment by contribution 

estimation (Pace) regression is a recent ap-
proach to fitting linear models, based on 
considering competing models (Wang, 
2000). 

The basic idea of regression analysis is 
to fit a linear model to a set of data. The 
classical ordinary least square’s estimator is 
simple and has well-established theoretical 
justification. Nevertheless, the models pro-
duced are often not satisfactory. Pace re-
gression improves the classical ordinary 
least square’s regression by evaluating the 
effect of each variable and using a cluster-
ing analysis to improve the statistical basis 
for estimating their contribution to the 
overall regressions. Under regularity condi-
tions, pace regression is provably optimal 
when the number of coefficients tends to 
infinity. Wang and Witten (2002) devel-
oped pace regression, and showed that it 
performs the best compared with other re-
gression models for high dimensional data. 

As with other forms of linear regres-
sion, our model for the relative solvent ac-
cessibility is a linear combination of the 
features in the following format: 

 

ripeptideextended tASA in an 
e l structurDimensionaASA in  RSA −

=
3

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

…
…

…

…

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

nnnpnn

p

p

n . x  x x
.  ...   ...  ... 

. x  x x

. x  x x

y

y
y

ε

ε
ε

β

β
β

......
1
1

1

1

...
2

1

2

1

21

22221

11211

2

1

εX.βy +=

X.βyε
yXX)(Xβ ΤΤ

−=
= −

rr

r1



EXCLI Journal 2009;8:211-217  ISSN 1611-2156 
Received: June 28, 2009, accepted: August 16, 2009, published: August 18, 2009 

 

214 

RSA=α1*Ai-6+α2*Ni-6+α3*Di-6+α4*Qi-6+α5*Ei-6+… 
(5) 

where the values of αi are assigned by 
the regression process. It is important to 
note that the resulting model is a linear 
combination of the features. This results in 
a simplified prediction model and reduced 
computational time. 

 
RESULTS AND DISCUSSION 

 
The pace regression predictor was im-

plemented in Weka, which is a comprehen-
sive open-source library of machine learn-
ing methods (Witten & Frank, 2005). The 
evaluation was performed using two test 
types to allow for a comprehensive com-

parison with previous studies. To compare 
with Garg et al., (2005) and Ahmad et al., 
(2003), 5-folds cross-validation was exe-
cuted. On the other hand, following several 
other prior studies (Wang et al., 2004; 
Gianese & Pascarella, 2002; Gianese et al., 
2003), Manesh dataset was divided into two 
subsets, 30 sequences were used for train-
ing and the remaining 185 as independent 
test set. The results of both tests, i. e., 5 
folds cross-validation and independent test, 
are reported in Tables 1 and 2. In total, the 
proposed method was compared with seven 
RSA prediction methods (Garg et al., 2005; 
Ahmad et al., 2002; Ahmad et al., 2003; 
Wang et al., 2004; Adamczak et al. 2004; 
Xu et al., 2005; Gianese et al. 2003).

 
Table 1: Comparison between our method and other reported methods; the results were reported 
based on 3 or 5-folds cross-validation test; the real value predictions were converted to two states pre-
diction (buried vs. exposed) with different threshold (5 %~50 %); unreported results are denoted by “-“. 

 
Table 2: Experimental comparison between our method and other reported methods; the results were 
reported based on a test on the independent dataset (30 sequences for training and 185 sequences 
for test); the real value predictions were converted to two states prediction (buried vs. exposed) with 
different threshold (5 %~50 %); unreported results are denoted by “-“. 
 

Accuracy for two-states (buried vs. exposed) prediction Prediction 
method Reference MAE 

(%) 
Correlation 
coefficient (r) 5% 10% 20% 30% 40% 50% 

Look-up 
table 

(Wang et al., 
2004) 18.8 0.48 - - - - - - 

Neural  
Network 

(Ahmad & 
Gromiha, 2002) - - 74.6% 71.2% - - - 75.9% 

Neural  
Network 

(Gianese et al., 
2003) 16.3 0.58 75.7% 73.4% - - - 76.2% 

Pace  
Regression This paper 13.40 0.6264 76.21% 74.14% 74.70% 77.30% 79.20% 86.10% 

 
 
 
 

Accuracy for two-states (buried vs. exposed) prediction cross-validation  
methods 

MAE 
(%) 

Correlation 
coefficient (r) 5% 10% 20% 25% 30% 40% 50% 

NETASA (Ahmad  
et al. 2002) - - 74.6% 71.2% - 70.3% - - 75.9% 

NN (Ahmad  
et al., 2003) 18.0 0.50 - - - - - - - 

PP (Gianese  
et al., 2003) - - 75.7% 73.4% - 71.6% - - 76.2% 

NN (Garg et al., 
2003) 15.2 0.67 74.9% 77.2% 77.7% - 77.8% 78.1% 80.5% 

SABLE (Adamczak 
et al., 2004) - - 76.8% 77.5% 77.9% 77.6% - - - 

SVR (Xu et al., 
2005) 16.3 0.58 - - -  - - - 

PR This paper 13.14 0.6403 76.82% 74.84% 75.35% 76.7% 77.75% 79.86% 86.32% 
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Evaluation measures 
Two widely used measures for real val-

ue ASA prediction are adopted in this study 
to evaluate existing ASA predictors. 

The first measure, mean absolute error 
(MAE), is defined as follows: 

 
(6) 
 

 
where n is the total number of residues 

to be predicted, and MAE is the absolute 
difference between predicted and observed 
(from experiments) RSA values. The sec-
ond measure is Pearson's correlation coeffi-
cient, which is defined for a pair of vari-
ables (X, Y) as follows: 

 
(7) 

 

 
where X  is the mean of X and Y  is the 

mean of Y. The value of r is bounded within 
[-1, 1] interval. Higher absolute value of r 
corresponds to stronger correlation between 
X and Y. 

Residues were classified into two states 
(buried – exposed) by different thresholds. 
The prediction accuracy was evaluated by 
the percentage of correctly predicted resi-
dues divided by the total number of resi-

dues in the test dataset. For example, for the 
two states we have  

⎥
⎦
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⎢
⎣

⎡ +
=

total

EB

N
NN

Q%  (8) 

where Q% is the percentage of correctly 
predicted residues, NB  and NE represent the 
number of residues correctly predicted as 
buried and exposed, respectively. 

 
Comparison with competing prediction 
methods 

Table 3 shows the results of our ap-
proach for its effectiveness by three cross-
validation tests and independent test. For 
the five folds cross-validation test, the mean 
absolute error (MAE) and the correspond-
ing Pearson's correlation coefficient (r) val-
ues of the proposed method are equal to 
13.14 and 0.6403 respectively with Manesh 
dataset. 

Figure 1 shows the experimental and 
predicted values for each residue in thiore-
doxin (PDB code: 1ABA). We selected this 
protein as an example, because residues fall   
within different ranges of RSA values 
which are indicative of the high degree of 
accuracy of this prediction across a wide 
range of RSAs and amino acid residues. It 
shows good linear relationship between the 
experimental and predicted values. 

 
Table 3: Evaluation of our approach with Manesh dataset 
 

Accuracy for two-states (buried vs. exposed) prediction cross-validation  
methods 

MAE (%) Correlation 
coefficient (r) 5% 10% 20% 30% 40% 50% 

13.13 0.6401 76.79% 74.80% 75.29% 77.71% 79.83% 86.32% 
13.14 0.6403 76.82% 74.84% 75.35% 77.75% 79.86% 86.32% 
13.15 0.6394 76.83% 74.81% 75.24% 77.77% 79.77% 86.31% 

7 fold cross-validation 
5 fold cross-validation 
3 fold cross-validation 
Independent dataset 13.40 0.6264 76.21% 74.14% 74.70% 77.30% 79.20% 86.10% 
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Figure 1: Example of predicted (red) and 
experimental (blue) RSA values for a protein 
(PDB code 1ABA) 
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Table 1 shows the comparison between 
the proposed PR model and recent methods 
for RSA prediction, which include neural 
network and support vector regression 
models (Ahmad et al., 2002; Ahmad et al., 
2003; Gianese et al., 2003; Garg et al., 
2003; Adamczak, et al., 2004; Xu, et al., 
2005). MAE of the proposed method is 2.06 
to 4.86 lower than above mentioned meth-
ods.  

Since some methods predict discrete 
valued classes (exposed vs. buried), we also 
examined the performance of our method 
by converting the real value prediction into 
the two states prediction. We followed the 
standard approach in which the state is de-
fined based on the predicted RSA value and 
a predefined threshold. For instance, a 5 % 
threshold means that the residues having an 
RSA value (%) greater or equal to 5 % are 
defined as exposed, and otherwise they are 
classified as buried.  

For the independent test, the MAE 
value for the PR method is equal to 13.4 
and the corresponding Pearson's correlation 
coefficient (r) is equal to 0.63. Table 2 
shows the comparison of the PR model with 
recent methods for RSA prediction, which 
include neural network and look-up table 
based methods (Wang et al., 2004; Ahmad 
& Gromiha, 2002; Gianese et al., 2003). 
MAE of the proposed method is 2.9 to 5.4 
lower than above mentioned methods. 
Similar to the 5-folds cross-validation test, 
we also evaluated the performance of our 
method by converting the real value predic-
tion into the two states prediction. The thre-
shold value was adjusted between 5 and 
50 %, see Table 2. When compared with 
the best performing, competing method 
based on neural network (Gianese et al., 
2003), our prediction results have higher 
accuracy over all thresholds, and also better 
MAE and correlation coefficient values. 

As a final remark on experimental re-
sults, it should be pointed out that the focus 
of the paper was mainly on the impact of 
using a pace regression method that per-
forms well for high dimensional data, on 
the overall performance of RSA prediction. 
The fact that Garg et al. (2003) obtained 

better results in some thresholds is not sur-
prising, because that system being based on 
a two stage method and therefore it uses 
more features to predict real value for ac-
cessible surface area and they are computa-
tionally more expensive than our simple 
method. 
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