

Science, Technology & Innovation Studies
Vol. 4, No. 1, July 2008

ISSN: 1861-3675

SSTTII
SSttuuddiieess
www.sti-studies.de

Balancing Requirements of Decision and Action:
Decision-Making and Implementation in
Free/Open Source Software Projects*

Niels C. Taubert (University of Bielefeld)

received 30 June 2006, received in revised form 16 June 2008, accepted 26 June 2008

Abstract

This article deals with decision-making processes about new development aims in
Free/Open Source software (FOSS) projects. It focuses on the question how com-
munity driven projects manage to not only make decisions but also implement
them successfully. Following the approach of Nils Brunsson, the requirements of
(rational) decision-making and action are somewhat antagonistic: On the one
hand, rationality of decision-making implies extensive evaluation of alternatives
and arguments that can lead to an uncertainty as to which of the alternative will be
chosen. On the other hand, a good basis for collective action is established when
uncertainty is reduced and consistent expectations exist as to what kind of action
will be performed. Corroborating on an empirical analysis of a decision-making
process and interviews conducted with FOSS developers, three mechanisms of end-
ing a discussion are identified. The paper concludes evaluating to what extent each
of these mechanisms serves the requirements for decision-making and action.

* The research for this paper has been carried out in a PhD project within the Research
Training Group ‘Genese, Strukturen und Folgen von Wissenschaft und Technik’ at the ‘Insti-
tute of Science and Technology Studies’ (Bielefeld University). The paper is largely indebted
to the discussion of an earlier version of the paper in the ‘Methodenwerkstatt’ held by Alfons
Bora and to Alfons Bora’s advice. I would like to thank the DFG for supporting the PhD-
project with a doctoral grant and I would also like to thank two anonymous referees of STI-
Studies for their helpful and instructive comments. Without the help of Felicitas Krämer and
Marc Weingart I would not have been able to write this article.

 STI Studies 2008: 69-88

70

1 Introduction

The field of Free/Open Source Soft-
ware (FOSS) development has become
a field of interest for the disciplines
concerned with technological devel-
opment and innovation activities. Al-
though the phenomenon is still quite
new there are a variety of aspects that
have already been studied in detail. In
this paper I will focus on a particular
aspect of FOSS development. I will
deal with the question, how a certain
type of FOSS project – so called com-
munity driven projects – manage to
decide about their aims and to imple-
ment these decisions. In these projects,
developers mainly participate on a vol-
untary basis, and most projects display
a low degree of role differentiation and
a weak hierarchy. Thus, it is neither
self-evident nor trivial that these pro-
jects manage these tasks. But the exis-
tence of FOSS shows that there must
be a solution to the decision-making
and implementation problems. This
observation serves as a starting point.
By analyzing a decision-making proc-
ess I will show that community driven
FOSS projects are not only orientated
to decision rationality but also have to
consider how to implement the deci-
sions through collective action. How-
ever, the analysis undertaken in this
paper has a limited scope in two re-
spects. Firstly, it deals with decision-
making and implementation only with
respect to a certain type of community
driven FOSS projects. In other kinds of
FOSS projects different mechanisms
may exist. Secondly, the paper has an
explorative nature. It analyzes deci-
sion-making in FOSS projects on an
empirical ground, but is far from pro-
viding final evidence that there are not
more mechanisms or even that the
mechanisms analyzed here are the
most important ones.

The paper is organized as follows: In
providing an overview of the literature
of the FOSS development, I will high-
light some main characteristics of
FOSS projects that are important for
the question of collective action. Sub-

sequently, a theoretical framework is
developed that allows to differentiate
between decision-making on the one
hand, and actions to implement these
decisions on the other hand. In the
fourth section the methodology of the
analysis is outlined and the case of a
community driven project is intro-
duced. The fifth section deals with a
decision-making process and its im-
plementation. The various factors that
influence this process are analyzed and
enriched with findings derived from
interviews with FOSS developers. In
the conclusion the results will be
summarized, and it will be evaluated
how well different outcomes of deci-
sion-making processes meet the re-
quirements of rational decision-
making and action.

2 FOSS: Main characteristics1

The distinction between Free/Open
Source Software and other types of
Software is based on different types of
licenses by which the use of the soft-
ware is regulated (Stallman 2002: 41).
FOSS is protected through a special
license permitting everyone unre-
stricted use, copying, distribution, and
modification. Other software licenses
that do not grant these four rights to
everyone make software proprietary.2
The first, most important and widely
used license3 guaranteeing permissive

1 We can only refer to a selected body of
research on Free/Open Source Software
development here. For a very good over-
view of the current state of the discussion
cf. von Krogh/von Hippel (2006: 976-982)
for management science and Holt-
grewe/Brand (2007: 28-30) for the social
sciences more generally.
2 There are of course various proprietary
software licenses for different purposes.
For the argumentation developed here, the
rough distinction between free and non-
free software is sufficient. For a category of
free and non-free software see the website
of the GNU-project: (http://www.gnu.org/
philosophy/categories.html, last access
03/2008).
3 Lerner and Tirole 2002a; Bonac-
corsi/Rossi 2003a: 9, 2003b: 1248.
O’Mahony (2003) argue that FOSS licenses

Taubert: Balancing the Requirements of Decision and Action 71

application of software is the GNU
General Public License (GNU GPL).4 In
contrast to some of the FOSS licenses,5
it specifies one important restriction:
the terms of the license have to be ap-
plied to any modified or non-modified
version of the program. As a conse-
quence, permissive application of the
program and its derivates is guaran-
teed in the future. This ‘repetition
clause’ makes a program ‘copyleft’ and
prevents FOSS from being changed
into proprietary software.6 The conse-
quence of the license is that FOSS be-
comes a privately produced public
good (O’Mahony 2003: 1180) without
rivalry in consumption. 7

FOSS can be developed in various
ways. It is not uncommon that a FOSS
program is developed by an individual
programmer,8 produced behind closed

are an integral part of a more complex sys-
tem of regulations that include legal and
normative sanctions, incorporation of the
project, individual copyright transfer and a
protection of trademark brands.
4 The GNU project was the first to develop
free software. For the history of the project,
see Stallman (2002: 15-30; 1999). The aim
of the GNU GPL is to protect the work of
the project and prevent FOSS from being
turned into proprietary software. For the
original terms of the license see:
(http://www.gnu.org/licenses/gpl.html,
last access 04/2008).
5 An example for this type is the BSD Li-
cense that, like all other free software li-
censes, allows free use, copy, distribution
and modification. For the original terms of
the license, see: (http://www.opensource.
org/licenses/bsd-license.php, last access
06/2006).
6 The GNU GPL also has an ‘infective char-
acter’. If some code protected by the GNU
GPL is used in a larger work the license
enforces that the GNU GPL is applied for
the whole program (see Holtgrewe/Werle
2001: 54).
7 For this reason, the frequently used term
‘almende’ (e.g. Grassmuck 2002) is some-
what misleading. An important characteris-
tic of the almende is that there is rivalry of
consumption. This characteristic leads to
an overexploitation of the resource and a
‘tragedy of the commons’ (Hardin 1968).
8 Ghosh/Robles/Glott (2002: 19) found out
that the vast majority of the FOSS projects
is carried out by one or two developers.

doors of a firm (and released) and dis-
tributed as FOSS after completion, or
is produced in projects in which indi-
vidual developers cooperate with
firms.9 But there is also a unique social
structure that can only be found in the
field of FOSS: The original and still
very important – in terms of numbers
of software projects – type is ‘commu-
nity founded’ and predominantly
‘community driven’. In this type of pro-
ject, the social structure in terms like
e.g. the pattern of decision-making and
the coordination of programming ac-
tivities arises by self-organisation. This
structure first appeared in 1991 in the
Linux project, developing a free oper-
ating system for different hardware
platforms.10 This kind of social struc-
ture has a special feature: It is often
highlighted that the absence of any
technical restrictions and free access to
the project infrastructure enables any-
one who is interested to participate. In
principle, each participant can pose
questions, suggest new aims of the pro-
ject, monitor and participate in deci-
sion-making processes, and even con-
tribute to the code of the program.

One important focus of research on
FOSS projects concerns the motivation
of the participants. It was Lerner and
Tirole (2000, 2002b) who asked, tak-
ing a rational-choice perspective, why
people should contribute to the pro-
duction of a common good if no one
can be excluded from its use even
when not having contributed to the
production of the good. Lerner and
Tirole argue that there are various fac-
tors guiding developers to participate
in FOSS projects. They suggest to dis-
tinguish between immediate benefits
like payment, fixing a bug, or custom-
izing the program to one’s own needs

9 Like RedHat, SUSE and Mandriva Conec-
tiva for example.
10 Eric Raymond highlights the relevance of
the innovation of open software projects in
his influential essay ‘The Cathedral and the
Bazaar’ (1999: 27-78). For a sociological
analysis of this organisational innovation
and the consequences for the development
of FOSS see Taubert 2006: 72-87.

 STI Studies 2008: 69-88

72

on the one hand and delayed benefits
and rewards on the other. To the latter
count ego gratification incentives (peer
recognition) and career concern incen-
tives that may lead to future monetary
rewards (Lerner/Tirole 2002b: 213 f.).

In contrast to these early explanations
of participations in FOSS development,
other scholars highlight that – espe-
cially in the case of community driven
projects – the intrinsic interest in de-
veloping software itself is one impor-
tant incentive (cf. Osterloh/Rota/Kus-
ter 2002; Hertel/Niedner/Herrmann
2003; Lakhani/Wolf 2005; Taubert
2006). Others claim that it is even the
most important factor (Brand/Holt-
grewe 2004: 17) that leads to contribu-
tions in FOSS projects. Futhermore,
surveys with FOSS developers show
that they feel highly creative while
tackling development problems, and
they frequently or always lose track of
time (Lakani/Wolf 2005).

A critique of the earlier rational-choice
explanation of Lerner and Tirole con-
cerns the assumption that a situation
of choices precedes the contributions.
It is suggested to differentiate between
the first contribution and enduring en-
gagement in FOSS projects. Exhaustive
consideration of costs and benefits are
more likely to occur in the first than in
the second case (Taubert 2006: 141).
Other studies show that the motives
for a first participation differ from the
motives of a long-term participation
(Shah 2006: 1004), and that the rele-
vance of intrinsic motivations in-
creases in long-term participation.
Moreover, it is supposable that the
relevance of different factors varies
with the type of the project. In the case
of community driven projects it seems
plausible to assume that monetary
payment plays a less important role
than in projects where software com-
panies contribute.

Another research focus on FOSS pro-
jects concerns the way the develop-
ment process is organized. A common
observation is that the degree of in-
volvement varies to a large extent and

that the group of highly involved de-
velopers is relatively small. For exam-
ple Koch and Schneider (2002) found
out that the majority of the 301 devel-
opers identified contribute a small
amount to the code11 while the 15 most
active developers contribute 48% of
the lines of the code (Koch/Schneider
2002: 30). Those findings suggest that
these highly active developers also
make the decisions. Thus, the group of
decision makers is relatively small. Al-
though no one in particular is the
owner of a certain program, a certain
role structure seems to exist. In the
literature it is very common to distin-
guish between the maintainer, the
core-developer and the community of
users (Grassmuck 2002: 237-239). The
different groups of participants not
only vary with respect to the degree of
activity, but also with regard to their
contributions. For instance, users re-
port bugs and sometimes also suggest
solutions. Co-developers participate in
these activities but also analyze and
contribute to the code. Core-
developers and the maintainer, how-
ever, contribute to the already men-
tioned activities, but are additionally
involved in decision-making processes
(Gläser 2006: 270).

But even if the number of participants
involved in decision-making is small,
how are decisions made in FOSS pro-
jects? Some authors highlight the role
of ‘leadership’ or ‘leadership-teams’
and the moral authority of the main-
tainer (e.g. Lerner/Tirole 2001: 823).
This is indeed true for some of the
prominent projects of high strategic
importance, such as Linux and Apache
(Lerner/Tirole 2002b). But there are
also big projects in which the degree of
formalization of the organization is
low.12 In these projects the question of
how the participants manage to decide

11 In terms of lines of the code.
12 An example for this type of project is the
K Desktop Environment (KDE) that devel-
ops a graphic user interface for Unix- and
Linux Operation Systems (See Holt-
grewe/Brand 2007: 36).

Taubert: Balancing the Requirements of Decision and Action 73

about and pursue their aims without
having recourse to a hierarchical mo-
dus of decision-making seems to re-
main open. In the next section, a theo-
retical framework is developed, which
is adequate to explain for decision-
making processes in the case of FOSS
projects.

3 Theoretical Framework

In sociology and management science
a large body of literature about deci-
sion-making exists. An overview of the
most important concepts could start
with the rationalistic tradition rooted
in theory of bureaucratisation by Max
Weber (1972). It postulates that or-
ganizations are rational actors that
make decisions on the principles of
impersonal application of rules, re-
cords and control. Important contribu-
tions that should be mentioned are the
critique of the assumption of rational-
ity of decision-making in Cyert/March
(1963) and March (1994), and the gar-
bage can model of decision-making
where decision rationality seems to be
lost (Cohen/March/Olson 1972). It is
not the place here to unfold such an
overview. One thing I wish to highlight
by mentioning the work of these emi-
nent scholars of the field is the focus of
these theories of decision-making. The
focus is very much on the ‘logic of the
choice’ of alternatives and far less con-
cerned with processes of the imple-
mentation of the decisions.13

A more adequate theory about deci-
sion-making in FOSS projects should
offer a broader perspective. The aim of
FOSS projects is not to make decisions
but to develop software. Therefore,
making a choice is not an end in itself
but a step towards the implementation
of a decision. A scholar in the field of
organisational studies, who offers a
theoretical framework that allows the
integration of both aspects, is Nils
Brunsson. In the first of his main

13 This observation has been made by
Brunsson (1985): aside from his contribu-
tion the situation did not change much.

works, ‘The Irrational Organization’
(1985), he starts with an overview of
the main components of classical man-
agement theory and its normative de-
cision-making theory. The picture
drawn there suggests that managers
mainly deal with decision-making and
ample suggestions are made as to how
the rationality of decision-making can
be improved. In this context ‘rational-
ity’ means that managers make deci-
sions on the ground of stable prefer-
ences, careful consideration of all al-
ternatives regarding the costs and
benefits and the likeliness that these
costs will occur and the benefits will be
realized.14

From this starting point Brunsson
comes to the common observation that
decision-making in real life organiza-
tions frequently violates the rules of
rationality. He does not intend to ex-
plain the differences between the nor-
mative standards of rational decision-
making and empirical decision-making
processes in a ‘chauvinist’ manner. Ex-
amples for those explanations would
be that “subjects are not clever enough
to behave rationally”15 (Brunsson 1985:
17), that there are “certain types of ir-
rationality” “inherent in the human
character” (ibd.) or that there are
“practical constraints” (ibd.). Bruns-
son, however, does not argue that
these explanations are fundamentally
wrong. Instead, he formulates a cri-
tique on the way the topic ‘decision-
making’ is usually framed: „A decision
making perspective fails to recognize
that managers do more than make de-
cisions. Making a decision is merely a
step toward action. The decision is not
the end product. Managers get things

14 In this field the rational-choice paradigm
is very prominent. For an overview see El-
ster (1986).
15 This kind of assumption can also be
found in the concept of ‘bounded rational-
ity’. In this concept it is argued that, com-
pared to the complexity of the world, the
capacity of the human mind for formulat-
ing and solving problems is low (Simon
1957: 198; March/Simon 1958, March
1978).

 STI Studies 2008: 69-88

74

done – act and induce others to act.”
(ibd. 18) Therefore, Brunsson suggests
extending the perspective from the
narrow focus on decision-making to a
broader perspective: on decision-
making and its implementation in or-
ganisational action.16 With this change
of the perspective a good deal of devia-
tion from ‘rationality’ can be explained
through the demands of ‘action’. To
put it differently, many aspects of deci-
sion-making that seem to be irrational
from a decision-making perspective
can be regarded as rational from the
action point of view, if they improve
the conditions for collective action.

What are the requirements of action?
And what aspects does a decision
maker have to take into account in or-
der to prompt action? Brunsson points
out that, for organisational action, dif-
ferent actors have to cooperate, and
that a common cognitive, motivational,
and commitment-related ground has
to be reached. First, in the cognitive
dimension it is important that there
are consistent expectations about fu-
ture action. Members of the organisa-
tion find it worthwhile to act only if
they believe that “their doing will re-
sult in an organizational action”
(Brunsson 1985: 19). If the individuals
are not sure whether or not an organ-
isational action is going to take place,
they will not find it worthwhile to act.
The second condition for organisa-
tional action is motivation. In this con-
cept, ‘motivation’ means that people
desire to contribute to the organisa-
tional action with their individual ac-
tion. They will merely contribute if
they regard the aim of the organisa-
tional action as a good thing (ibd. 19).

16 Brunsson’s theory only deals with a spe-
cific type of action: organisational action
for change. Action means any activity that
is not purely cognitive in character, organ-
isational action means that action is „ac-
complished by several organization mem-
bers in collaboration“ (Brunsson 1985: 6),
and action for change means „that a new
kind of organizational action is undertaken,
or that a previous type of action is discon-
tinued, or both“ (ibd. 9).

The social aspect of action is commit-
ment. This third condition for organ-
isational action can be described by the
fact that the members of the organisa-
tion trust on a certain type of behav-
iour, or attitude, which is shared by the
rest of the organisational members in-
volved in the action. If they do not
trust in the existence of this attitude, or
behaviour, they are not willing to take
part in the action (ibd. 20). At this
point of Brunsson’s argumentation it
appears to be clear that a certain be-
haviour, which leads to an improve-
ment of decision rationality (e.g. taking
more alternatives into account, analys-
ing the consequences of an action in
greater detail and so on), does not nec-
essarily improve the conditions for or-
ganisational action.

In community driven FOSS projects
the requirements of actions deserve
closer attention because of specific
framework conditions under which
decision-making and the implementa-
tion of decisions takes place. Like other
organisations solely relying on volun-
tary (unpaid) work, the projects them-
selves usually do not have financial
resources that could be used for moti-
vational purposes. This feature has an
effect on the creation of the conditions
for action: Since a lack of agreement
cannot be compensated by financial
means, the motivation to participate in
collective action depends to a large de-
gree on considering the chosen action
as a ‘good thing’. Therefore, one can
expect that the agreement on a specific
aim be of higher relevance in the case
of community driven projects than in
organisations, which can offer other
resources for the motivation of the
members.

In order to better understand the re-
quirements of action, Brunsson gives a
variety of practical examples of tech-
niques for the improvement of the con-
ditions for collective action. The main
scope of these techniques is to reduce
uncertainty, since uncertainty ob-
structs the cognitive, motivational and
commitment-related conditions for
action. Here, I will stress only two of

Taubert: Balancing the Requirements of Decision and Action 75

them. A first technique or strategy is to
limit the numbers of alternatives taken
into account. This helps to reduce the
degree of uncertainty and makes it
more likely that a given action is going
to take place. A typical way to limit the
alternatives is to propose alternatives
that are clearly unacceptable, in order
to highlight the advantages of the one
(and only) acceptable alternative (ibd.
23). From a decision point of view this
behaviour is irrational. But from an
action point of view this strategy is ra-
tional: in the motivational dimension
this strategy clarifies which alternative
is desirable and in the cognitive di-
mension it helps to elucidate the ex-
pectations about which option will be
chosen, and what kind of organisa-
tional action will be performed.

Brunsson describes a similar tech-
nique, which concerns the assessment
of consequences. The rational calcula-
tion of the likeliness of positive and
negative outcomes and the exhaustive
assessment of the consequences is
highly rational from a decision-making
point of view. But as far as it creates
uncertainty, it is highly irrational from
an action point of view. A technique to
avoid uncertainty is to reduce the ra-
tionality of decision-making by looking
at the consequences in one direction
only, by assessing desirable conse-
quences for the acceptable alternative,
and by suppressing any negative con-
sequences it might have (ibd. 28). This
strategy aims to improve the condi-
tions for action at least in the motiva-
tional dimension.

But these conditions also depend on
the outcome of collective decision-
making. It makes a difference if the
process of decision-making is con-
cluded through consensual agreement,
compromise or disagreement.

• The most ‘harmonic’ outcome of a
decision-making is consensus. All
actors involved in the decision-
making process are convinced that
the chosen alternative is the appro-
priate one, and there is no antago-
nism within the participants of the

project. The absence of antagonism
is not necessarily the result of a ra-
tional and extensive discourse, but
can emerge in different ways. For
example, it can arise in situations
where only a few alternatives are
taken into consideration and it is
obvious which one is preferable.

• Compromise is a distinct outcome
of a decision-making process. Al-
though all actors accept the out-
come, the compromise is in no ac-
cordance with the interest and pref-
erences of at least one actor. Actors
usually agree to a compromise after
bargaining on the ground of the in-
sight that it is the best result that
can be reached if the diversity of
perspectives, interests, and prefer-
ences of the other actors involved
are taken into account.

• A third outcome is dissent. Here,
neither consensus nor compromise
can be reached in a decision-
making process, and the antago-
nism still persists. In the case of
FOSS-projects, and with respect to
the action dimension, different
situations can arise: (a) the devel-
opment process stagnates, (b) the
project splits up in different sub-
projects (forking), or (c) an alterna-
tive is enforced by an actor, (and is
accepted by the others).

Before starting to analyze a decision-
making process in a community driven
FOSS-project – and before considering
the question of how the specific deci-
sion outcomes and routines serve the
requirements of decision-making and
action – the methodology on which the
data collection is based will be out-
lined.

4 Methodology

The following analysis is based on a
case study of a project that serves as a
typical example of a community driven
project. The project was selected be-
cause it met the following criteria:

 STI Studies 2008: 69-88

76

• Size of the project: The number of
developers involved in FOSS pro-
jects vary on a large scale between
the many one- or two-person-
projects and the few big (and
mostly very famous) projects where
some hundred developers are in-
volved. Therefore, it was ensured
that the selected case would be big
enough that problems of coordina-
tion would most probably appear.
The big and famous projects were
excluded because they represent ex-
treme cases, with partly exceptional
social structures and coordination
routines.

• Duration of the project/success: To
find a case where established solu-
tions or mechanisms for coordina-
tion and decision-making can be
observed, a project was selected
that has already released a stable
version17 of the program

• Mailing list with an archive: This
criterion was set up for practical
reason. It was formulated to guar-
antee easy access to the earlier
communication of the project.

• Type of the program: Due to an
interest in the influence of users for
the development of software in the
study, (although this is not the
main focus here) a project was se-
lected that develops a program,
which addresses users who do not
have to have competencies in pro-
gramming. On account of this crite-
rion all projects developing pro-
gramming tools were excluded.

One project that meets these criteria is
‘KMail’, which develops an email client

17 A feature of FOSS is that new versions of
the program are published rapidly. The
projects distinguish between developer
versions or unstable versions on the one
hand (that are used by developers in order
to remove bugs and make the program
more reliable), and official releases on the
other hand (that are well proven and that
are intended to be used by users, who do
not have any special technical competency
in programming for their normal day-by-
day use).

for the desktop environment ‘KDE’. It
includes functions such as send-
ing/receiving emails, tools for writing
emails (editor and spell checker), an
address book, and the integration of
PGP encryption. From a user perspec-
tive, it resembles other email clients
such as Microsoft Outlook or
Mozilla/Netscape Mail & Newsgroup.
Since the foundation of the project in
1997, 48 project members have worked
intensively on the project and made
substantial contributions to the pro-
gram. As a result, they are listed as ‘au-
thors’ on the project’s website.18 Prima
facie and with respect to the number of
developers involved, the project seems
to be a large one. However, this im-
pression needs to be put into perspec-
tive by considering the high level of
fluctuation: Most developers join the
project, work on a part of it for a while,
and then leave after the work on this
specific part is done. Only the project’s
maintainer and the core developer re-
main involved for longer periods. In
the case of KMail, usually less than ten
(core-) developers work on the project
simultaneously.

The KMail project is based on an ad-
vanced technological infrastructure. Its
website provides information about the
program, its features, and its authors;19
a bug-track system for collecting user
feedback on the program’s unexpected
behavior;20 a download site where one
can obtain the latest versions of the
program; and a current version reposi-
tory (CVS) for the management of the
development version of the source
code on which the members of the pro-
ject are working. Communication con-
cerning the development of the pro-
gram takes place between the pro-
grammers on a mailing list. This list is

18 See: (http://kontact.kde.org/kmail/
authors.php, last access 03/2008).
19 See: (http://kontact.kde.org/kmail/, last
access 03/2008)
20 KMail shares a bugtracking system with
the master project KDE of which KMail is
part of. See: (http://bugs.kde.org/, last
access 02/2008)

Taubert: Balancing the Requirements of Decision and Action 77

the ‘location’ of the project where col-
lective decision-making takes place.21 A
notable point about the mailing list is
that everybody who is interested may
not only follow the discussion, but can
also send an email to the list and be-
come actively involved.

The research design is based on two
types of material. The communication
on the mailing list is one type of mate-
rial: it was analyzed for a period of
twelve months. Furthermore, twelve
interviews with FOSS-programmers
who participated in different commu-
nity driven project were conducted,
transliterated and analyzed.22 These
types of material are complementary:23
The communication on the mailing list
offers an access to the public commu-
nication of the project. Here, the dis-
cussion on decision-making with its
rituals and routines can be observed.
The interviews were conducted with an
interview guideline. They give insights
in the interpretations, beliefs and nor-
mative orientations of the developers
that form a common background
which is not made explicit in the dis-
cussions of the developers on the mail-
ing list.

21 This list can be found at: (http://
lists.kde.org/?l=kmail-devel, last access
3/2008). In the course of the integration of
KMail and other programs like KOrganizer,
KAddressbook, and KAlarm into a ‘per-
sonal information management package’
the projects now share a developer mailing
list. For further information see: (https://
mail.kde.org/mailman/listinfo/kde-pim,
last access 03/2008). The integration took
place after this study had been accom-
plished.
22 The communication on the KMail mail-
ing list was observed and analyzed between
01/2001 and 12/2001. For a more detailed
description of the methodology see Taubert
(2006: 120-123). Two of the interviewees
came from the KMail project, the other 10
developers were involved in different
community driven FOSS projects. This de-
sign was chosen to compare the conclu-
sions drawn from the KMail project with
other projects for validation.
23 See the methodical remarks in Hofmann
1999: 198.

The communication on the mailing list
and the interviews were analyzed by
applying qualitative-hermeneutic in-
terpretations.24 Three aspects of the
interpretation of the material should
be highlighted here. First, the chrono-
logical appearance of the communica-
tion was taken into account, following
the aim to find different interpreta-
tions, and to exclude one after another
in the progress of interpretation when-
ever inconsistency occurs. This impli-
cates that the material was interpreted
in the context of its appearance. Sec-
ond, much attention was concentrated
on the beginning of episodes on the
mailing list,25 since the starting se-
quence sets the scene for the further
course of the discussion.26 Third, it was
proven systematically whether there
was any empirical evidence that con-
flicted with the interpretation of the
material.27

5 Decision-making and its
implementation in a com-
munity driven FOSS project

The framework conditions of commu-
nity driven FOSS projects raise the
question how the participants manage
to achieve an aim successfully. Follow-
ing the perspective of Brunsson, it be-
comes clear that this question is two-
fold: On the one hand, one has to ask
how decisions are made, and on the
other hand, it has to be analyzed how
(good) conditions for collective action
are created. I will answer these two
questions by taking a closer look at a

24 The interpretations were presented and
discussed in great detail in a seminar on
qualitative methods with around 10 other
researchers from different disciplines in-
cluding sociologists. My thanks go to the
participants of this seminar.
25 The beginning of a new episode is often
(but not always) marked by a new subject-
line in the emails on the mailing list.
26 The first two aspects were borrowed from
sequence analysis (Oevermann 1990: 10).
27 This step of the analysis was inspired by
grounded theory methods (Strauss/Corbin
1990: 108-109).

 STI Studies 2008: 69-88

78

decision-making process on the mail-
ing list of the KMail project. A case that
provides a good starting point for the
empirical analysis is a suggestion con-
cerning the graphical user interface
(GUI), that is, the graphical appear-
ance of the program on the screen that
a user would call ‘the program’.

5.1 Argumentation and Bargain-
ing

This discussion starts28 with the follow-
ing email by a developer who had not
contributed to the project thitherto,
but gained a high reputation for his
work in the KDE project, of which
KMail is part:

„Hi all, ok, I have some small but
important things that we (KD 7, KD
8 and I) discussed out that we need
for kmail and which I like to do and
need the others approval. Sorry that
KD 8 changed things this week
without asking and even I didn’t see
what was g Balancing Requirements
of Decision and Action oing on.“
(KD 6, 2001-05-30 10:31:09)

The way in which the developer KD 6
addresses a new aim on the KMail
mailing list is a bit untypical. The stan-
dard procedure is to post an email on
the mailing list, and then to discuss it
there, instead of announcing it as
something that has already been dis-
cussed with other developers some-
where else. With the suggestion of a
new aim, a decision-making situation
arises and it is shaped as a selection
between two alternatives: the project
has to decide whether or not it is going
to implement the aim.

The reference to the other developers
who have already agreed on the sug-
gestion and who began with the im-
plementation of the feature points to
the action dimension of the decision-
making process. The activity of the de-
velopers indicates to the other partici-
pants that there are developers with a
commitment to the suggested aim.

28 The beginning of the discussion is
marked by a new subject line.

The fact that the developer posts an
email on the list in which he asks for
the approval of the others, his apolo-
gies for the action that has already
been undertaken by one developer and
the explanation he gives (instead of
implementing the desired functionality
directly) points to a first rule that has
to be followed in decision-making
processes in this project: aims have to
be discussed first so that other devel-
opers have the opportunity to influence
the decision-making process and the
development-path that is followed by
the project.

„Now, what do we need and why do
we need it?

What we need:

the default setting should be a long
folder list

why: because it’s the common look
of mail clients and other applica-
tions having a slit view.“ (KD 6;
2001-05-30 10:31:09)

The suggested aim is introduced rhet-
orically with a two-part question: one
referring to the subject of the sug-
gested development aim (‘what’), and
the other referring to the reason for
this (‘why’). The rhetorical structure of
the email reflects an important aspect
of the decision-making process. The
normal mode for reaching a decision in
this project is argumentation, that is,
to convince other developers by virtue
of one’s arguments. From the theoreti-
cal perspective developed above, the
obligation to give reasons and to dis-
cuss the aim is a norm that improves
decision rationality. It allows other
members of the project to participate
in the discussion and to bring in other
arguments, so that the argumentative
basis of the decision is broadened.

The first suggestion for the new look of
the GUI concerns the standard setting
of the folder view on the left side of the
screen: The setting can be changed by
users if other settings will meet their
needs in a better way. The change of
the appearance is justified as an ad-
justment of the program to fit the look

Taubert: Balancing the Requirements of Decision and Action 79

of other email clients. In the following,
we shall jump to the third suggestion
in order to avoid redundancy in our
analysis:

„c) more columns in the folder view
and the mail view for various pur-
poses

which ones: a column in the folder
view for the unread mails and one
for the total mails, just like knode.29

why: this is pretty standard and has
proved to be efficient towards the
user looking at the folder view, also
makes the clients look more consis-
tent.

Another one in the listbox of the
mails to sort threaded/unthreaded.
I know that can be done via the
menu or the configuration but even
I had to look very hard for that fea-
ture to find it.“ (KD 6; 2001-05-30
10:31:09)

The suggestion shows the same struc-
ture as the one analyzed above. But,
this time, the argument is explained in
greater detail. The reference to another
program exemplifies that, again, the
idea for the suggestion derives from it.
But mentioning the other program
means more than just indicating the
source of the idea for the suggestion of
KD 6. Imitating the look-and-feel of
other widespread and approved pro-
grams is regarded as a way to guaran-
tee an efficient use of KMail: KD 6
connects the suggestion with an
evaluation criterion, which legitimates
the developmental aim, and an expla-
nation of how the suggested aim im-
proves the program with respect to the
evaluation criterion. In other words,
the aim is contextualized within a
complex interpretation.30 In the follow-

29 Newsreader for the KDE desktop, See
also the website of the project: (http://
kontact.kde.org/knode/, last access
04/2008).
30 See also Holtgrewe and Brand (2007).
This study applies Boltanski’s and
Thévenot’s concept of ‘polity order’ to ex-
plain how new aims in FOSS projects are
legitimated.

ing this criterion will be named as ‘effi-
ciency of use’ in short.

The developer closes his email as fol-
lows:

„We would like to have these little
changes done for 2.2 and would like
to do them with you guys together
as we think these are needed GUI
improvements that would make
kmail look *a lot* better and make
it much easier for beginners to han-
dle it. Please feel free to comment
and blame me if something goes
wrong if you’re also up with these
ideas.“ (KD 6; 2001-05-30
10:31:09)

The concluding remarks give an out-
look on the time schedule for imple-
menting these features. The Code 2.2
indicates the next major release of the
KDE project.31 Referring to the date
and to the developers who are ready to
implement the changes, the author of
the email moves from the require-
ments of the decision-making process
(the argumentation for and justifica-
tion of an aim) to the requirements of
action. By describing a concrete point
in time where he and his co-workers
are planning to have these new aims
implemented, he reduces uncertainty
as he evokes the expectation that ac-
tion towards the aim will be under-
taken.

For the purpose of my analysis it is in-
teresting to notice that developer KD 6
explicitly invites other project mem-
bers to discuss his aims. This invitation
shows that he strives toward an
agreement with other developers. Fur-
thermore, he tries to avoid unneces-
sary work when announcing the plan,
by asking whether anybody else is al-
ready working on the implementation
of these (or similar) changes.

31 The date of release was August the 15th
2001. The version was introduced as an
‘easy-to-use Internet-enabled desktop for
Linux and other UNIXes’. See: (http://
www.kde.org/announcements/announce-
2.2.php, last access 04/2008).

 STI Studies 2008: 69-88

80

The email interpreted above triggered
different responses on the KMail mail-
ings list. Moreover, it marks the start-
ing point for a detailed discussion of
the aims. Its intensity can be explained
by two reasons: First, the graphical
appearance of a program is an attrib-
ute of high importance as this part of
the program is literally in front of every
user’s face. Therefore, it can be as-
sumed that most, if not all, developers
involved have a preference concerning
the GUI. Second, the developer KD 6
has signaled strong commitment to the
aim, and the other participants in the
project have to expect that the group of
the three developers will strive towards
action as soon as the discussion is
closed and a decision is made.

Some responses in the following dis-
cussion are questions concerning the
aim leading to further explanations.
However, some of the subsequent
emails show disagreement. Especially
suggestion ‘c’, the implementation of
more columns, leads to controversy.
One developer comments on it as fol-
lows:

„I think you should be able to turn
that off, though. I don’t think it’s
possible with the kmail version
from kde-2.1.1 to delete columns
but I think that would really be a
good idea. You could then add as
much columns as you want without
doing something wrong. You’d have
to talk about the default setting
though.“ (KD 9; 2001-05-30
10:49:42)

The developer KD 9 picks up the idea
about the graphical appearance of the
program but makes an alternative sug-
gestion. Thus, from a decision point of
view the decision-making process is
becoming more complex and the deci-
sion rationality is improved: KD 9 does
not only bring a third alternative into
play (aside from leaving the GUI as it is
and the original suggestion of devel-
oper KD 6), but also introduces an-
other evaluation criterion. While KD 6
argues for ‘efficiency of use’ KD 9 high-

lights the relevance of ‘adaptability’ of
the program for different user’s needs.

From an action-rationality perspective
the posting from KD 9 tends to ob-
struct the basis for action, as it in-
creases the level of uncertainty. He
signals commitment to his own sugges-
tion so that it is becoming less likely
that the original suggestion from KD 6
will be implemented. Besides this, the
introduction of a different evaluation
criterion also affects the motivational
basis for action: On the one hand, the
original suggestion of KD 6 cannot be
regarded as a good thing, if one applies
the evaluation criterion ‘adaptability’.
On the other hand, the suggestion of
KD 9 is not desirable if one has the ‘ef-
ficiency of use’-criterion in mind. Now,
since the likeliness of action is re-
duced, it is not very surprising to see
that KD 6 is unhappy with the emer-
gence of an alternative. He argues for
his initial suggestion:

„Hmm... I think changing the de-
fault by itself without making that
configurable does make the most
sense. Please have a look at knode
for what I mean (nsmail and out-
look express do the same as pretty
every mail client around) [...]

What I want is to have it look like
this:

column1: Foldername column 2:
number of unread mails column 3:
number of total mails in folder.
That’s the precise look :)” (KD 6;
2001-05-30 11:35:09).

This reply makes another reference to
the other program which offers the
same functionality. More empirical
evidence is given by KD 6 that the
modification is widespread, and there-
fore makes KMail easier and more effi-
cient to use. The second paragraph has
a more illustrative character. A con-
crete picture is drawn as to how the
GUI will look like, after the implemen-
tation is made. Again, it takes only a
few moments until developer KD 9 re-
plies to this email.

Taubert: Balancing the Requirements of Decision and Action 81

„I don’t understand why you feel
that you should take the choice of
what the user wants out of his
hands. That is IMO32 pretty stupid.
Sure, the default is very important
as most beginners don’t change it
but if the user KNOWS what he
wants then he should be able to do
it.

> column1: Foldername col-
umne2: number of unread mails
column 3: number of total mails in
folder. That’s the precise look :)

Now that I understand it I think it’s
a good idea“ (KD 9; 2001-05-30)

Like KD 6, KD 9 argues for his evalua-
tion criterion. He emphasizes the high
relevance of ‘adaptability’ of the pro-
gram to the needs and habits of differ-
ent users. At this point, it becomes
clear that the antagonism is not only
about different aims, but also about
different evaluation criteria that KD 6
and KD 9 apply.

Whereas KD 9 rejects the initial sug-
gestion of KD 6 in the first part of the
email, it is interesting to see that the
evidence and the illustrations given by
KD 6 convince him to agree on one of
the changes. A third suggestion arises
here that can be regarded as a com-
promise between the two initial ones:
changing the default setting of the
graphical appearance (that meets the
evaluation criterion ‘efficiency of use’),
but at the same time making columns
configurable (this meets the evaluation
criterion ‘adaptability’ of different
user’s needs).

After the other developers have shown
that they agree with this compromise,
KD 6 pipes up again and stresses the
previous decision-making process:

„Ok, that33 was probably too drastic.
We can make it configurable with a
checkbox like „use old Kmail user
interface“ or something

32 Acronym for ‘in my opinion’.
33 This refers to the initial suggestion by KD
6 to modify the GUI without implementing
a configuration option.

>> column1: Foldername col-
umne2: number of unread mails
column 3: number of total >> mails
in folder. That’s the precise look :)

> Now that I understand it I think
it’s a good idea“

ok, then we agree on this as well“
(KD 6; 2001-05-30 14:20:55)

Triggered by the disagreement of KD 6,
KD 9 completes his suggestion with a
configuration option that allows users
to adapt the program to their needs. It
seems that a mutual understanding has
been reached, a new aim has been
found, and that the decision-making
process has been closed.

This first step in our analysis of a deci-
sion-making process in a community
driven project, points to the following
features: In decision-making proc-
esses, developers are oriented toward
the norms of transparency and open-
ness. Suggestions are open for discus-
sion, situations in which decisions
have to be made are marked as such,
so that the other members of the pro-
ject can participate. This orientation
could already be seen in the first mail
that opened the discussion. The devel-
oper KD 6 had to make excuses for
having immediately begun with the
implementation instead of having dis-
cussed the aim on the mailing list be-
fore. But argumentation is not just a
ritual: As the decision process concern-
ing the default setting of the graphical
appearance shows, developers can be
convinced by virtue of an argument.

But there is a second mechanism of
closing a decision-making process. The
analysis shows that aims do not only
have to be suggested, but also have to
be justified by interplays of sugges-
tions, evidence, evaluation criteria, and
arguments. The different evaluation
criteria the proponents refer to are not
taken into question but function as an
anchor of the justification. In cases
comparable to the one analyzed above,
dissent arises with reference to these
criteria. Here, it is likely that the an-
tagonism cannot be solved by rational
argumentation. Finding a compromise

 STI Studies 2008: 69-88

82

and balancing the suggested aims and
evaluation criteria on a broader bar-
gaining level is the way to come to a
decision in those cases. The discussion
strives towards an absence of protest
(usually uttered as ‘exit’ or ‘voice’)34
then, in such a way that everyone in-
volved accepts that his or her prefer-
ences are cut back.

In the light of Brunsson’s distinction
between the decision- and the action-
dimension, the first step of the analysis
yields the following results: The
framework conditions of the project
Kmail and the normative obligation for
argumentation enhance decision ra-
tionality. The openness of the project
and the opportunity to participate in
the decision-making process foster the
emergence of alternative aims and dif-
ferent evaluation criteria. More alter-
natives are compared, discussed,
modified, and evaluated under differ-
ent viewpoints.

From the collective action point of
view, the results of the first step of the
analysis look somewhat different. Two
mechanisms that effectively reduce the
numbers of alternatives could be iden-
tified: The first one is convincing the
members of the project of the advan-
tages of one alternative by argumenta-
tion. The second one is the search for a
compromise which can be reached
through bargaining. If a stable consen-
sus is reached, the first solution of the
decision problem connects the ration-
ality of decision-making with the con-
ditions for action well. It serves the
requirements for collective action as it
makes clear which alternative is desir-
able and for what reason. Aside from
the motivational aspect, it also reduces
the number of alternatives to a single
one. Therefore, it permits clear expec-
tations about the collective action that
will be performed in the cognitive di-
mension.

But, as the analysis shows, not all dis-
sent can be transferred into consensus

34 For this distinction, see Hirschman
(1970).

by rational argumentation. The second
solution – finding a compromise –
serves the conditions for action less
well. A compromise has an irrational
aspect from an action point of view:
Why should a developer agree with the
compromise if he is not convinced that
the compromise meets his evaluation
criterion? Can a developer trust on the
other developers’ commitment con-
cerning the compromise, when he
knows that the other developers are
not necessarily convinced of its superi-
ority? It can be stressed that the com-
promise as an outcome is a rather
weak basis for collective action.

5.2 The influence of reputation

Therefore, it is likely that other
mechanisms help FOSS projects to
manage decision-making and imple-
mentation successfully. An element of
the social structure of FOSS projects is
reputation and one may wonder
whether reputation bears capacity for
closing decisions and coordinating ac-
tion. In the literature many scholars
highlighted the importance of the
reputation system: Developers in a
project receive recognition from peers,
particularly if their contributions are of
high quality and have been made over
a longer period of time (Lerner/Tirole
2000; Edwards 2001; Oster-
loh/Rota/Kuster 2002; Taubert 2006).
In the long run, highly involved par-
ticipants usually attain a considerable
reputation. Consequently, mature pro-
jects reveal significant differences in
the amount of recognition enjoyed by
their participants. The observation fre-
quently made in other, loosely coupled
or loosely integrated social structures
such as scientific communities, is that
reputation has some coordinating ca-
pability.35 Subsequent to this observa-
tion, the question will be addressed
here, whether reputation influences
decision-making processes in the case

35 In sociology of science it is often high-
lighted that reputation is a basic principle
for social order, as it directs attention. See
for example Hagstrom 1965; Luhmann
1990; Franck 2002.

Taubert: Balancing the Requirements of Decision and Action 83

of the Kmail project. If so, how does
this work? To be more precise: Do de-
velopers with a reputation for being
active and productive participants in
the project have more influence on de-
cision-making than those who have
less or even no reputation? Again,
some hints can be found in the case of
the GUI.

A highly committed member who is
also the maintainer of the project36
pipes up some hours after the com-
promise has been reached. After some
comments on a different theme, he be-
comes engaged in the decision-making
process about the GUI:

“Hi, I didn’t say anything about
several columns. I prefer the way it
is currently. When I don’t have any
unread mails, then I also don’t need
an empty column for their number.
[...] At least I like to have as few
columns as possible to not waste
space with unimportant things.“
(KD 10; 2001-05-30, 18:09:49)

By stating that he has not said any-
thing about the suggested aim, KD 10
positions himself as a relevant player
in the decision-making process. This
positioning is marked by the ‘hi’ which
is not located at the beginning of the
email but rather in the middle. He does
not regard the decision-making proc-
ess as being closed in this passage (and
the reaction of KD 6 shows acceptance
of this positioning), and it becomes
apparent that KD 10’s agreement is
considered to be highly relevant for
any decision-making in the project.

His contribution to the discussion
shows that even developers with a high
reputation, and the position of a main-
tainer of the project, cannot reject a
suggestion right away only by virtue of
his reputation or his position. The fact

36 For my argumentation it is not important
that the developer is also the maintainer of
the project. In the other cases on the KMail
mailing list other developers with high
reputation caused a reopening of the argu-
mentation that already seemed to be
closed.

that he formulates a proper argumen-
tation suggests the interpretation, that
neither reputation nor high involve-
ment in the project frees developers
from the obligation to give proper rea-
sons for their points of view. Compared
with reputation, the obligation to give
reasons for a viewpoint is the more
fundamental principle.

In his response to this email KD 6 re-
fers explicitly to KD 10's role as main-
tainer of the project:

„Yes, well, agreed you’re the main-
tainer, that gives your personal
preference a great influence in the
behavior [of the program, N.C.T]. I
agree with you that this might be
true for some users, especially long-
term kmail and unix users. But if
you want to get windows users to
use it, the default has to be different
and, most important, consistent
with knode which orients itself on
the „standard“ user interface.“ (KD
6 2001-05-30 18:53:26)

Although the developer affirms that a
maintainer is a relevant player in a de-
cision-making process, KD 6 does not
behave in a way that is different than
in situations of dissent with other de-
velopers (e.g. the situation analyzed
above). He takes note of the disagree-
ment, but does not give up his sugges-
tion as one might expect. Instead, he
begins to give reasons for it again. In
this email he frames his argument in a
slightly different way. The imitation of
the appearance of other programs
makes it easier for beginners to work
with KMail. Aside from the evaluation
criterion ‘efficiency’, there is another
one that can be named ‘market share’
or ‘market success’ of the program.

What can we learn about the influence
of reputation on decision-making
processes from this example? The in-
tervention of the project’s maintainer
takes place at a point in time at which
the protagonist KD 6 is trying to move
from decision-making to the imple-
mentation and it has the same effect
the dissent between KD 6 and KD 9
had above. It increases the degree of

 STI Studies 2008: 69-88

84

uncertainty and obstructs the condi-
tions for action on the cognitive, moti-
vational and commitment-related di-
mension. Neither KD 10's high reputa-
tion nor his role as a maintainer lead to
the rejection of the suggestion but to a
rehashing of the argument, with its
positive effects for decision rationality
and negative effects for the conditions
for action. In other words, the example
suggests that in the project KMail nei-
ther reputation nor hierarchy play a
decisive role in paving the way toward
collective action.

But this is not the only conclusion that
can be drawn from the analysis. The
reopening of the decision-making
process after a situation in which a
compromise seemed to have been
reached, suggests that the maintainer
of a project is regarded as a relevant
actor in respect to decision-making by
other participants. He is treated as an
actor with whom an agreement has to
be reached.

This finding supports a common ob-
servation in the literature, namely that
reputation is a precondition for influ-
encing the decision-making process in
the sense that the respective actor is
included in the discussion process and
that his arguments are taken into ac-
count (Brand/Holtgrewe 2004: 14;
Taubert 2006. 172 ff). The more gener-
alized hypothesis that should be inves-
tigated on empirical grounds would be:
Reputation influences decision-making
as the consideration of an argument
depends on the extent of reputation
the respective actor enjoys.

5.3 Indecisiveness of community
driven FOSS projects?

So far, the initial question of how
community driven projects manage to
make decisions and implement them
remains unanswered in cases where an
agreement cannot be reached by ar-
gument and a compromise cannot be
found. In those cases the development
process could easily stagnate. The evi-
dence given above suggests that, in the
case of Kmail, neither hierarchy nor
reputation will help in those situations.

Therefore, one could expect that con-
troversies continue for a long time
without a possibility to solve them.
Therefore, one could assume that
community driven FOSS projects like
Kmail struggle with a certain weakness
or even indecisiveness of decision-
making. But, in fact, this kind of situa-
tion rarely emerges in the analyzed
case, since two non-communicative
elements operate silently in the back-
ground. They prevent stagnation and
help break down blockades.

Therefore, I conclude the analysis of
the GUI and provide some evidence for
these elements from two interviews
conducted in this study. One KMail
developer describes the factors that
prevent a project from running into
blockades. When asked if dissent about
aims leads to trouble and block the de-
velopment, the developer answered:

„No, not in the long run. Well there
would be a thread of 50 emails or
so. [...] That might go on for one
and a half weeks in an extreme case.
It goes on and on until people are in
such a snit that they get it all to-
gether and implement something. It
may well be that the one or the
other isn’t happy with it afterwards,
but you can’t please all the people
all the time.” (KD 1, interview)37

This quotation confirms the analysis
above, that there are cases of dissent,
which cannot be solved by argumenta-
tion. The developer describes that par-
ticipants come to a point at which they
get tired of discussing the issue, break
up the argumentation, and start to im-
plement something. One can say that,
in situations of enduring dissent, time
helps to come to a solution as partici-
pants are aware that stubbornly insist-
ing on one’s own point of view – re-
peating arguments, providing more
evidence and reformulating evaluation
criteria – neither helps the decision-
making process nor its implementation

37 The interviews were originally conducted
in German, the quotations in this section
are translated by the author.

Taubert: Balancing the Requirements of Decision and Action 85

in collective action. I would like to sug-
gest that such an increase of a prag-
matic willingness to act should be in-
terpreted with reference to a frame-
work condition of the project. It seems
reasonable to assume that the willing-
ness to come to a solution is very
strong in projects, where an intrinsic
interest serves as an eminent motiva-
tion. In these cases stagnation deters
the developers from developing soft-
ware, viz. an activity they are very
much interested in.

Aside from consensus and compro-
mise, there is a third way to come to a
decision that can be found in the inter-
views. The following passage from an-
other KMail developer illustrates this:

“Most importantly, there is no one
(in FOSS projects, N.C.T.) who
really says how the work has to be
done if the project can’t decide. In
the extreme case, it is the one who
opens the editor and writes down
the patch. The one who does the
work and not the one who babbles
on and on.” (KD 2, interview)

This quotation gives evidence that a
stagnation of the development process
can occur, and that there is no decision
maker who can decide top-down in a
hierarchical manner. Instead, the lack
of a legitimized decision maker who
decides in the case of dissent is com-
pensated by another mechanism,
which is the opportunity to switch over
from decision-making to action with-
out having reached an agreement in
the project. It is interesting to note that
the developer describes the develop-
ment activity very demonstratively and
colorfully with terms such as ‘doing the
work’ and ‘opening the editor’, whereas
participation in the discussion is re-
ferred to in quite disrespectful terms.
Contrasting these two kinds of in-
volvement shows that practical devel-
opment work is held in higher esteem
than participation in the argument.
But as seen in the case analyzed above,
the argument is a crucial factor: It is
necessary to discuss the suggestion
before switching to the development

activity. Remember that the developer
KD 6 had to apologize because the de-
velopment activity already started
without any prior discussion.38

6 Conclusion

Collective decision-making and im-
plementation in FOSS projects take
place in a constellation of conflicting
demands. On the one hand, a larger
number of developers being involved
improve the search for solutions (Kuk
2006: 1034). On the other hand, a lar-
ger number of developers complicate
the process of reaching a decision. This
does not only lead to an increase of
communication and cooperation costs
(Brooks 1975) but, with reference to
Brunsson, it also increases uncertainty,
and can obstruct the basis for action.
In this analysis three outcomes of the
decision-making and implementation
problem could be identified in the case
of Kmail. Therefore, in this closing sec-
tion the different outcomes will be dis-
cussed in the context of the theory de-
veloped above. In addition, it will be
evaluated how they match the re-
quirements of decision-making and
action.

(a) Rational consensus as an outcome
seems to match the requirements of
decision-making and the require-
ments of action well. Closing the

38 An often discussed result of dissent is
forking a project and developing different
versions in separate projects. In this case
study such a dramatic change of the project
structure could not be observed and it
seems that forks seldom happen. There are
two factors that stand against forks. First,
in community driven projects splitting a
project would also imply to split-up man-
power. This would increase the workload
for each participant, slow down the speed
of the development progress and could lead
to the necessity to cut down the project’s
aims. Second, it is likely that incompatibili-
ties between the different versions of the
program would arise. This effect is critical
in cases where software with large network
effects is developed. The negative impact of
those events is well known to FOSS-
developers from the history of the UNIX
operating system (see McKusick 1999).

 STI Studies 2008: 69-88

86

decision-making process by virtue
of an argument after having differ-
ent suggestions discussed in-depth,
leads to a well-founded decision.
After a decision is made, it is clear
what kind of action has to be ex-
pected on a cognitive level and for
what reason the action is desirable.
Those circumstances should lead to
a high level of motivation among
the developers. And it is also likely
that the protagonists of the chosen
alternative have expressed com-
mitment to the aim during the dis-
cussion (like in the example above),
so that a good basis for collective
action should be created.

The only critical aspect of this solu-
tion of the decision problem is a
considerable degree of uncertainty
that can emerge during long-lasting
discussions. I would like to suggest
that this relatively high level of un-
certainty, allowed in the course of a
decision-making, should be under-
stood with reference to the motives
of the developers to participate in
FOSS projects. As stated above,
they are intrinsically interested in
the development process itself and
in the success of the project, and
they can expect that other develop-
ers share this attitude. These frame-
work conditions might permit a
higher level of uncertainty than in
other organizations where such
conditions do not exist.

(b) Compromise matches requirements
of rational decision and action less
well than rational consensus. When
a compromise is introduced in the
decision-making process, the devel-
opers have usually discussed the
suggestions in detail. Therefore, it
is unlikely that new arguments will
be pushed forward and the rational-
ity of the decision will be improved
by further discussion. From the re-
quirements of action the compro-
mise reveals a particular irrational-
ity: Why should a developer par-
ticipate in the implementation of a
certain compromise, although it is
only second choice for her or him,

and not the right thing to do? If the
lower degree of motivation of part
of the developers is taken into ac-
count, it is supposable that he or
she accept that other developers
work on the implementation of the
aim, but is not getting involved in
the work him- or herself. In other
words, a compromise is a solution
for the problem of decision-making
as it marks an end of a discussion
that tends to become unfruitful. But
it nevertheless is inclined to ob-
struct the motivation for collective
action if some developers think that
there are better ways to go.

(c) Moving from decision toward indi-
vidual action is the last solution for
the problem of decision-making
and its implementation in FOSS
projects. The idea of collaborative
work is abandoned here as it is fore-
seeable that only the (group of) de-
veloper(s) who regard(s) the option
as the right thing will contribute to
the process of the implementation.
Since a basis for collective action
cannot be created, individual action
takes its place. From the viewpoint
of decision rationality this option is
also not preferable: It might happen
that the developer who moves from
decision towards individual action
only takes his own suggestion, ar-
guments, and evaluation criteria
into account, so that the final level
of rationality of the decision is low.
Thus, individual action seems to be
the worst way to deal with the prob-
lem of decision-making and action
in FOSS projects. But from the
viewpoint of a social structure aim-
ing to develop software, there is one
situation that should be avoided at
all costs: To be stuck in the devel-
opment process for a longer period
of time.

7 References

Bonaccorsi, Andrea/Cristina Rossi, 2003a:
Licensing schemes in the production
and distribution of Open Source soft-
ware. An empirical investigation.
<http://papers.ssrn.com/sol3/papers.c

Taubert: Balancing the Requirements of Decision and Action 87

fm?abstract_id=432641> (last access
04/2008).

Bonaccorsi, Andrea/Cristina Rossi, 2003b:
Why Open Source Software can suc-
ceed. Research Policy 32 (7), 1243-
1258.

Brand, Andrea/Ursula Holfgrewe, 2004:
KDE im Kontext: Open Source Soft-
ware Entwicklung und öffentliche Gü-
ter. <http://www.uni-due.de/imperia/
md/content/soziologie/ abuh-indsoz-
604.pdf> (last access 04/2008).

Brooks, Frederic, 1975: The Mythical Man
Month: Essays on software engineering.
Reading: Addision-Wesley.

Brunsson, Nils, 1985: The Irrational Or-
ganization. Irrationality as a Basis for
Organizational Action and Change.
Chichester et al.: John Witley & Sons.

Cohen, Michael D./James G. March/Johan
P. Olsen, 1972: A garbage can model of
organizational choice. In: Administra-
tion Science Quarterly Vol. 17 (1), 1-25.

Cyert, Richert M./James G. March, 1963: A
behavioural theory of the firm. Pren-
tice-Hall: Englewood.

Edwards, Kasper, 2001: Epistemic Com-
munities, Situated Learning and Open
Source Software Development. Techni-
cal University of Denmark: Working
Paper. <http://opensource.mit.edu/
papers/kasperedwards-ec.pdf> (last ac-
cess 04/2008).

Elster, John, 1986: Rational Choice. Ox-
ford: Blackwell.

Franck, Georg, 2002: The Economy of At-
tention. Scientometrics Vol 55 (1), 3-26.

Gläser, Jochen, 2006: Wissenschaftliche
Produktionsgemeinschaften. Die
soziale Ordnung der Forschung. Frank-
furt/New York: Campus.

Gosh, Rishab Aiyer/Gregorio Robles/
Ruediger Glott, 2002: Free/
Libre and Open Source Software: Sur-
vey and Study. D 18: Final Report. Part
V. Software Source Code Survey.
<http://www.infonomics.nl/FLOSS/re
port/> (last access 04/2008).

Grassmuck, Volker, 2002: Freie Software
zwischen Privat- und Gemeineigentum.
Bonn: bpb.

Hagstrom, Warren O., 1965: The Scientific
Community. New York/London: Basic
Books.

Hardin, Garret, 1968: The Tragedy of the
Commons. In: Science 162 no. 3859,
December 1968, 1243-1248.

Hertel, Guido/Sven Niedner/Stefanie
Herrmann, 2003: Motivations of soft-
ware developers in Open Source pro-
jects: An Internet-based survey of con-
tributors to the Linux Kernel. In: Re-
search Policy 32 (7), 1159-1177.

Hirschman, Albert O., 1970: Exit, voice and
loyality: Responses to decline in firms,
organizations, and states. Cambridge:
Harvard University Press.

Hofmann, Jeanette, 1999: „Let a thousand
proposals bloom“ - Mailing-Listen als
Forschungsquelle. In: Bernad Batinic/
Andreas Werner/Lorenz Gräf/Wolfgang
Bandilla (eds.), Online Research. Me-
thoden, Anwendungen und Ergebnisse.
Göttingen et al.: Hogrefe.

Holtgrewe, Ursula/Andreas Brand 2007:
Die Projektpolis bei der Arbeit. Open
Source Software-Entwicklung und der
neue Geist des Kapitalismus. In: Öster-
reichische Zeitschrift für Soziologie,
Vol. 32 (3), 25-45.

Holtgrewe, Ursula/Werle Raymund 2001:
De-Commodifiyin Software - Open
Source Software Between Business
Strategy and Social Movement. Science
Studies 14 (2), 43- 65.

Koch, Stefan/Georg Schneider 2002: Ef-
fort, co-operation and co-ordination in
an open source software project:
GNOME. Information System Journal
12 (1), 27-42.

Kuk, George 2006: Strategic Interaction
and Knowledge Sharing in the KDE De-
veloper Mailing List. Management Sci-
ence 52 (7), 1031-1042.

Lakhani, Karim/Robert G. Wolf, 2005:
Why Hackers Do What They Do: Un-
derstanding Motivation and Effort in
Free/Open Source Software Projects.
MIT Sloan School of Management.
<http://ocw.mit.edu/NR/rdonlyres/
Sloan-School-of-Management/15-
352Spring-2005/D2C127A9-B712-
4ACD-AA82-C57DE2844B8B/0/
lakhaniwolf.pdf> (last access 04/2008).

Lerner, Josh/Jean Tirole, 2000: The Sim-
ple Economics Of Open Source. Wor-
king Paper 7600. Cambridge: National
Bureau of Economic Research.
<http://www.hbs.edu/research/facpub
s/workingpapers/papers2/9900/00-
059.pdf> (last access 04/2008).

Lerner, Josh/Jean Tirole, 2001: The open
source movement: Key research ques-
tions. In: European Economic Review
45 (4-6), 819-826.

Lerner, Josh/Jean Tirole, 2002a: The
Scope of Open Source Licensing. Har-
vard Buisness School Working Paper.
http://www.people.hbs.edu/jlerner/OS
License.pdf (last access 04/2008).

Lerner, Josh/Jean Tirole, 2002b. Some
Simple Economics of Open Source. In:
Journal of Industrial Economics 50(2),
197-234

Luhmann, Niklas 1990: Die Wissenschaft
der Gesellschaft. Frankfurt a.M.:
Suhrkamp.

March, James G./Herbert A. Simon, 1958:
Organizations. New York et al.: Wiley.

March, James G., 1994: A Primer on Deci-
sion Making. How Decisions Happen.
New York: Free Press.

March, James G., 1978: Bounded Rational-
ity, Ambiguity, and the Engineering of

 STI Studies 2008: 69-88

88

Choice. In: The Bell Journal of Eco-
nomics Vol. 9 (2), 587-608.

O`Mahoney, Siobhán, 2003: Guarding the
commons: how community managed
software projects protect their work.
Research Policy 32 (7), 1179-1198.

McKusick, Marshall Krik, 1999: Twenty
Years of Berkeley Unix: From AT&T-
Owned to Freely Redistributable. In:
Chris DiBona/Sam Ockman/Mark
Stone (eds.), Open Sources. Voices from
the Open Source Revolution. Beijing et
al. O’Reilly.

Oevermann, Ulrich, 1990: Klinische Sozio-
logie. Konzeptualisierung, Begrün-
dung, Berufspraxis und Ausbildung.
<http://publikationen.ub.uni-frankfurt.
de/volltexte/2005/534/pdf/KlinischeS
oz-1990.pdf> (last access 04/2008).

Osterloh, Margit/Sandra Rota/Bernd
Kuster, 2002: Open Source Software
Production, Climbing on the Shoulders
of Giants. <http://opensource.mit.edu/
papers/osterlohrotakuster.pdf> (last
access 04/2008).

Raymond, Eric S., 1999: The Cathedral &
the Bazaar. Musings on Linux and
Open Source by an Accidental Revolu-
tionary. Bejing et al.: O’Reilly.

Shah, Sonali K., 2006: Motivation, Govern-
ance, and the Viability of Hybrid Forms
in Open Source Software Development.
In: Management Science 52 (7), 1000-
1014.

Simon, Herbert A., 1957: Models of Man.
Mathematical Essays on Rational Hu-
man Behaviour in a Social Setting. New
York: John Wiley.

Stallman, Richard M., 2002: Free Soft-
ware, Free Society. Selected Essays of
Richard M. Stallman. Boston: GNU
Press.

Stallman, Richard M., 1999: The GNU Op-
erating System and the Free Software
Movement. In: Chis DiBona/Sam Ock-
man/Mark Stone (eds.), Open Source.
Voices from the Open Source Revolu-
tion. Beijing et. al.: O`Reilly, 53-70.

Strauss, Anselm/Juliet Corbin, 1990: Ba-
sics of Qualitative Research. Grounded
Theory Procedures and Techniques.
London et al.: Sage.

Taubert, Niels C., 2006: Produktive Anar-
chie? Netzwerke freier Softwareent-
wicklung. Bielefeld: transcript.

von Hippel, Eric, 2001: Open Source
Shows the Way: Innovation by and for
Users – No Manufacturer Required.
<http://ebusiness.mit.edu/research/
papers/133%20von %20hippel%20
OSS%20innovation.pdf> (last access
04/2008).

von Krogh, Georg / Eric von Hippel 2006:
The Promise of Research on Open
Source Software. In: Management
Science, Vol. 52 (7), 975-983.

Weber, Max, 1972: Wirtschaft und Gesell-
schaft. Grundriß der verstehenden So-
ziologie. 5. rev. Aufl. Tübingen: Mohr.

	Introduction
	FOSS: Main characteristics
	Theoretical Framework
	Methodology
	Decision-making and its implementation in a community driven
	Argumentation and Bargaining
	The influence of reputation
	Indecisiveness of community driven FOSS projects?

	Conclusion
	References

