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1 Introduction

In this thesis we are concerned with efficient solution techniques for equation systems arising

in finite element simulations of elasticity problems. In computational solid mechanics (CSM)

the need for high performance computing (HPC) techniques has not evolved as early as, e. g.,

in the field of computational fluid dynamics (CFD): Many practical problems could – and still

can – be solved with a simple workstation in a reasonable amount of time. However, there

is an increasing need to simulate more complex real-world processes, e. g., industrial manu-

facturing, structural optimisation, static and dynamic behaviour of buildings or bridges, crash

tests in the automotive industry or geological phenomenons like earthquakes. Especially, the

treatment of nearly incompressible materials (e. g., rubber) is a demanding task. Such mate-

rials are frequently used in manufacturing, e. g., as flexible diaphragms in hydraulic systems

to adjust the pressure, as bushings in suspension systems to minimise vibrations or to absorb

shocks, and, more generally, to provide damping in complex mechanical systems or to carry

large loads (e. g., tires or gaskets). Hence, there is a great need to simulate nearly incompress-

ible materials in industrial applications. For such real-world problems, desktop computers are

often not sufficient: Complicated nonlinear material models and time-dependent processes can

lead to unreasonable computation times, while large, intricate geometries can result in discrete

problem sizes that exceed the computer’s main memory.

The simulation of the underlying physical processes which are usually modelled in terms of

partial differential equations (PDEs), often requires to repeatedly solve discrete equation sys-

tems. For complex real-world applications, these systems are usually much too large to be

solved with a direct solution method, such that iterative solution schemes are mandatory. The

efficiency of such methods can be crucially influenced by different factors:

• material parameters,

• nonlinear effects,

• the shape of the geometry,

• the size and the quality of the underlying computational mesh,

• algorithmic parameters, and

• the number of processors in a parallel computing system.
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We distinguish between three different aspects of ‘efficiency’: The processor efficiency char-

acterises the degree to which a simulation software is able to actually exploit the processor’s

computational power. The parallel efficiency describes the ratio between computation and com-

munication times on distributed computer systems, while the numerical efficiency refers to the

convergence behaviour of the numerical solution algorithm. The development of ‘black-box’

solution techniques that gain high efficiencies in all three aspects and that are robust with re-

spect to the perturbing influences listed above is a demanding task. Additionally, these solution

techniques should be flexible: Although this thesis is confined to the treatment of elasticity

problems, the goal is to develop solver strategies that can be applied – without or with only

slight modifications – to other physical problem settings, as well. The solution algorithms

should exclusively use standard operations that are available in basic PDE software packages;

special problem-dependent modifications should be avoided.

We build this solver machinery on top of our parallel finite element solution toolkit FEAST

(Finite Element Analysis & Solution Tools). It is specialised to solve scalar elliptic equations

in a highly efficient way, exploiting the abilities of modern supercomputers and clusters of

commodity based processors. The goal is to design solvers that reduce the solution of multi-

variate problems to the solution of a series of scalar problems, such that the efficiency of the

underlying FEAST library can be fully exploited. The corresponding concepts are realised and

explained by means of the program module FEASTsolid, a new application on top of FEAST

for solving stationary and transient, small and finite deformation, compressible and (nearly)

incompressible elasticity problems.

This thesis mainly focusses on the development of solution techniques for multivariate elastic-

ity problems. However, further important aspects of the finite element discretisation and the

overall solution process are treated: A fundamental weakness of FEAST’s scalar solver concept

is identified, and a possible remedy to overcome this problem is presented. Furthermore, the ro-

bustness of FEAST’s scalar solvers is improved by incorporating multigrid-Krylov techniques,

and the whole solution approach is critically discussed. To treat (nearly) incompressible mate-

rial we apply a mixed finite element formulation that needs to be stabilised. Standard stabilisa-

tion techniques are often not suited for irregular meshes. We present an enhanced stabilisation

variant that is efficient for arbitrary meshes, and we modify this variant for the case of nonlinear

finite deformation elasticity.

The following outline shows that this thesis covers a wide range of different aspects. Hence,

parts of the work naturally have a survey character, and not all topics can be treated in full

detail. For the same reason, we use numerical experiments rather than theoretical analysis to

examine and test the developed concepts. The thesis is organised as follows:

• In Chapter 2 we describe in detail the basic FEAST library, in particular the idea of

hardware-oriented numerics. We emphasise that the concept of data locality, which many

finite element tools are lacking, is essential to alleviate the so called ‘memory wall prob-

lem’ and to minimise communication overhead. We illustrate the conflicting demands of

processor and parallel efficiency on the one hand, and numerical efficiency on the other
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hand, and we illustrate how FEAST’s solver concept ScaRC tries to resolve these con-

flicts. ScaRC is a generalised multilevel domain decomposition/multigrid (MLDD/MG)

solver with minimal overlap. One of its core ideas is to use a global multilevel method

which is smoothed by local schemes that are adapted to the local situation, e. g., local

mesh irregularities. When this local scheme is a multigrid solver itself, we call the en-

tire solver 2-layer-ScaRC, when it is an elementary smoother like Jacobi, then the whole

solver is referred to as 1-layer-ScaRC. We describe a fundamental deficiency of the lo-

cal multigrid solver, which is a consequence of how the concept of minimal overlap is

realised. We demonstrate that this deficiency especially becomes evident in the case of

the elasticity equation, and we present a technique to overcome the problem. Further-

more, we show how the robustness of the ScaRC solvers can be significantly increased

by adding Krylov schemes on the global and on the local layer. Finally, we critically

compare the 1-layer-ScaRC and the 2-layer-ScaRC approach, and examine under which

circumstances 2-layer-ScaRC is superior.

• In Chapter 3 we present the continuum mechanical basics of elasticity, including the im-

portant restriction to 2D linearised elasticity. We describe the finite element discretisation

in terms of a pure displacement formulation and in terms of a mixed displacement/pres-

sure formulation which is used to treat (nearly) incompressible material. We motivate the

use of the low-order bilinear finite element Q1 and discuss its advantages and disadvan-

tages with respect to software aspects on the one hand, and with respect to typical locking

effects that occur in solid mechanical simulations on the other hand. Stabilisation tech-

niques for the unstable Q1/Q1 element pair for discretising the mixed formulation are

presented. We develop an enhanced stabilisation method which is suitable for highly

irregular meshes. All stabilisation variants are extensively compared by means of nu-

merical examples, including nonlinear finite deformation tests. Finally, the deficiencies

of the stabilised Q1/Q1 formulation are illustrated, especially for the case of transient

simulations.

• In Chapter 4 we motivate and describe our main strategy to bring down the process of

solving multivariate problems to the solution of a series of scalar problems. The main

motivation is to automatically provide the programmer of multivariate physical appli-

cations with FEAST’s fully parallel and processor-efficient discretisation and numerical

linear algebra concepts, and its support of special hardware technologies. The appli-

cation profits – without being changed – from future improvements and adaptations to

forthcoming HPC trends, i. e., the underlying technical details can be completely hidden

from the application programmer. The concept is illustrated with the example of lin-

earised elasticity for compressible material, and it is realised by means of the program

module FEASTsolid; the general idea, however, is applicable in most general-purpose

PDE solution tools.

We demonstrate the efficiency of using FEAST’s scalar ScaRC solvers as precondition-

ers for multivariate solvers. However, we also show that it is not always sufficient to use

a ‘simple’ outer solver and to fully rely on the efficiency and robustness of the scalar
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ScaRC solvers. In some situations, e. g., when the global domain is strongly anisotro-

pic, we have to use more sophisticated multivariate solvers. Similar to Chapter 2, we

emphasise the importance of multigrid-Krylov techniques. In extensive numerical tests,

we compare various combinations of local/global and scalar/multivariate solver com-

ponents, and we identify an efficient solver with potential ‘black-box’ character. We

demonstrate that the processor and parallel efficiency of the underlying FEAST library

fully transfers to the multivariate solvers, and we show that the possible superiority of

the 2-layer-ScaRC approach can also be observed when employed for preconditioning

an outer multivariate solver.

In the second part of Chapter 4 we are concerned with the solution of finite deforma-

tion elasticity problems for compressible materials. The nonlinear equation is treated

by means of the Newton-Raphson method. In each nonlinear iteration, a linear equation

system has to be solved for which the same techniques can be applied as in the linearised

elasticity case. Hence, also the solution of nonlinear elasticity problems can essentially

be reduced to the solution of scalar subsystems, and the whole nonlinear solver automat-

ically runs in parallel. We examine techniques to adaptively determine the accuracy for

the linear solves in order to decrease the arithmetic costs of the Newton-Raphson method,

and we use line-search methods to significantly increase its robustness.

• In Chapter 5 we examine solution strategies for the important class of saddle point sys-

tems. Such systems stem from the mixed displacement/pressure formulation that is used

to robustly treat (nearly) incompressible materials. Due to the similarity to the Stokes

equation, we can apply techniques that are commonly used in CFD. We distinguish two

main solver classes: on the one hand, segregated methods, i. e., pressure Schur comple-

ment and block preconditioning approaches, and on the other hand, coupled methods,

i. e., Vanka-type multigrid solvers. The former allow the application of our basic strategy

of reducing the solution of multivariate systems to the solution of scalar systems, while

the latter fully operate on the basis of local representations of the entire multivariate sad-

dle point system such that a reduction to scalar components is not possible. On the other

hand, segregated methods urgently require efficient Schur complement preconditioners

that are usually problem dependent, while coupled solvers do not need such precondi-

tioners. Vanka solvers are very popular for solving saddle point problems, especially in

the context of CFD. We show that the segregated methods using the underlying FEAST

library are much more efficient (provided an efficient Schur complement preconditioner

is available) than the coupled solvers. We describe Schur complement preconditioning

techniques for stationary and transient linearised elasticity problems. It turns out that

the transient preconditioners are not robust with respect to the time step size, which is

probably due to the essential deficiency of the stabilised Q1/Q1 element pair in the small

time step limit which is described in Chapter 3.

Segregated saddle point solvers need to solve subsystems that have the same structure

as those stemming from the pure displacement formulation. However, the solver that

we identified as favourite in Chapter 4 is not efficient when applied as a subsolver in
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saddle point schemes. It turns out that it is generally difficult to identify the best seg-

regated solver. Such a saddle point solver has to nest iterative schemes on up to three

different layers. We demonstrate that for complicated configurations, it can be necessary

to use multigrid schemes on all three layers in order to obtain convergence at all, while

for simple configurations one multigrid scheme (e. g., on the scalar layer) is often suf-

ficient. However, a saddle point solver using multiply nested multigrid scheme exhibits

bad parallel efficiency, i. e., it should only be employed if it is actually necessary from a

numerical point of view.

The numerical studies of the various saddle point solvers are confined to the case of lin-

earised and stationary elasticity problems. We demonstrate by means of one example

that FEASTsolid is able to solve nonlinear and transient saddle point systems, as well.

We briefly discuss the possible deterioration of the standard Schur complement precon-

ditioners in more complicated situations, and mention possible alternatives.





2 Multilevel Solvers for Scalar Elliptic

Equations

The solution of elliptic partial differential equations (PDEs) is one of the most important, but

also one of the most challenging tasks in the numerical simulation of physical and technical pro-

cesses, especially in the fields of CSM and CFD. While the equations of (linearised) elasticity,

representing the most important model in CSM, are elliptic by themselves, scalar elliptic sub-

problems have to be solved for the (linear) Stokes and (nonlinear) Navier-Stokes equations. The

treatment of these subproblems is the most time-consuming part in the course of the iterative

process to solve the entire saddle point systems (see Kilian [94], Turek [158]). This observation

was the main motivation for the development of the so called ScaRC solvers and their technical

realisation within the FEAST (Finite Element Analysis & Solution Tools) project. They repre-

sent a class of generalised multilevel domain decomposition/multigrid solvers that are highly

specialised for scalar elliptic equations. In this chapter we explain the underlying concepts of

ScaRC and develop substantial improvements of important solver components. This work has

to be seen as continuation and extension of the theses of Kilian [94] and Becker [16] and as a

contribution to the FEAST project.

In Section 2.1 we illustrate the general difficulty of achieving good numerical efficiency and

exploiting modern computer hardware at the same time. We describe how FEAST overcomes

this problem. Section 2.2 gives a brief overview of domain decomposition methods, while

Sections 2.3 and 2.4 describe FEAST’s grid and refinement model and the concept of minimal

overlap. In Section 2.5 we define and classify FEAST’s solver concept ScaRC, whereas we

choose a different focus than Kilian [94] and Becker [16]: We are especially interested in the

two possible interpretations of the solver scheme as a block-smoothed multigrid method or a

multilevel Schwarz method. This point of view is taken up in Section 2.6.4 where we numer-

ically compare the two concepts. In Section 2.6 we show how important ScaRC components

can be significantly improved. In Section 2.6.1, especially, we illuminate an intrinsic weakness

of the ScaRC approach, which has been paid only minor attention until now, and we offer a pos-

sible remedy. Finally, we describe open problems and future work on ScaRC in Section 2.7.

2.1 Numerical Efficiency vs. Hardware Efficiency

In order to assess the quality of a numerical method, different efficiency aspects have to be

considered:
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• The numerical efficiency characterises the amount of work a numerical method needs

to achieve some desired goal. On the one hand, this means the convergence rates and

robustness of iterative solution methods, i. e., the required number of iterations and how

this number varies with respect to changing algorithmic or physical parameters. On

the other hand, it means the ability of the method to employ goal-oriented adaptation

techniques, for example the concentration of grid refinement to regions of interest in

order to keep the total number of unknowns small.

• The processor efficiency describes the ability of an algorithm to exploit the CPU’s full

capacities. It is mainly determined by the success of the algorithm to circumvent the so

called ‘memory wall problem’ (see Section 2.1.1).

• The parallel efficiency determines the ratio of communication and computation, i. e., it

relates the number of data exchanges between processors and the amount of exchanged

data to the amount of arithmetic work performed on the processors. In view of today’s

compute clusters consisting of several thousand processors, it is critical how this ratio

scales when the number of processors increases.

• The term hardware efficiency is used to summarise the two terms ‘processor efficiency’

and ‘parallel efficiency’.

The main motivation for the development of FEAST is the realisation of ‘hardware-oriented

numerics’ [162], i. e., to achieve good efficiency in all these aspects. Due to conflicting re-

quirements this is a demanding task: First, flexible and dynamic grid structures are needed

to describe complicated geometries and to facilitate adaptivity techniques (→ numerical effi-

ciency), while highly regular grid patterns are required to exploit modern processor technology

(→ processor efficiency). Second, global data transfer is needed to achieve good convergence

rates (→ numerical efficiency), while locality is desired for good parallel performance (→ par-

allel efficiency). The following two sections describe these conflicts in more detail and explain

FEAST’s strategy to resolve them. For a general discussion how computer hardware trends

influence numerical methodology, especially for PDEs, see, for example, Colella et al. [53],

Keyes [93] and Rüde [135].

2.1.1 Processor Efficiency

All efforts to achieve good processor efficiency have to be based on the insight that in modern

computer architectures not data processing, but data moving is critical. This well known fact

is generally denoted as the ‘memory wall problem’ [174].

The following statistics are taken from Graham et al. [77]. Over the last decades peak processor

performance improved at a rate of nearly 60 % per year. While at the end of the 1980s commod-

ity processors showed a peak performance of about one million floating point operations per

second (1 MFLOP/s), they were about 1000 times faster in the year 2004. In contrast, improve-

ments in memory bandwidth and memory latency happened much more slowly: While memory
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bandwidth increased by roughly 30 %, memory latency improved by only 5.5 % per year. This

means, while in 1992 one floating point operation (FLOP) took about the same time as ac-

cessing the memory, in 2004 one FLOP was about 100 times faster than memory access. This

‘memory gap’ is expected to broaden at a similar rate over the next years and, thus, is consid-

ered the main obstacle for achieving high processor performance in data intensive applications.

Especially FEM codes suffer from this development, since they deal with sparse matrices and

thus exhibit a low arithmetic intensity, which means that only few arithmetic operations are

performed per data transfer. Consequently, the performance of FEM codes is usually not bound

by the processor peak, but by the memory bandwidth.

Today’s commodity processors try to bridge this memory gap by using a cache system – a hi-

erarchy of intermediate memory layers which can be accessed by the processor very fast but

have relatively small storage size only. In order to ‘keep the processor busy’, one of the key

properties of modern software has to be seen in the ability to exploit this caching technique. A

prerequisite for this is to develop applications that work on structured data with high spatial

and temporal locality: In order to reach a considerable ratio of the processor’s peak perfor-

mance, an algorithm has to be able to fetch ‘the right data at the right moment’ into the cache,

to sufficiently exploit the cache size (spatial locality), and to perform as many operations as

possible on this data (temporal locality, enabling ‘data reuse’).

A major drawback of many FEM codes is that they do not fulfil this demand. The reason is

the use of grids, which are either initially unstructured or lose their structure in the course of

the simulation. The former may stem from automatic grid generation tools that are mainly fo-

cussed on geometry approximation but not on creating well structured grids. The latter are a

consequence of adaptive grid refinement, which is one of the key components in modern simu-

lation tools to achieve high numerical efficiency: Guided by the user or by some automatic error

control mechanism, the grid is refined only where necessary. Especially in 3D computations it

is prohibitively expensive – in terms of memory consumption and computation times – to uni-

formly refine the whole grid in order to achieve a desired accuracy. Such adaptive refinement

procedures usually result in highly unstructured grids. FEM matrices – being directly connected

to the grid data – are often stored in the standard compact sparse row (CSR) format [13] which

provides the necessary flexibility to account for the missing structure in the grid. However,

this enforces the usage of pointer structures (‘indirect addressing’) which violates the locality

paradigm and, thus, prevents the employment of cache-oriented techniques. What follows is

that, for instance, matrix vector multiplications – one of the core components of many com-

putational routines – are often executed with less than one percent of the theoretically possible

MFLOP/s rate of the processor. Multigrid solvers perform even more slowly, thus often losing

the linear dependency of computing time on the problem size (see Köster et al. [102], Turek

et al. [161, 162] for more details).

So, the following critical question arises: Is it possible to work with complex geometries and

adaptive refinement strategies and, at the same time, maintain (some degree of) grid structure

that allows for achieving high processor efficiency?
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A corresponding global matrix is only implicitly represented by applying the local matrices

and exchanging information on patch boundaries. Knowing the exact matrix structure a priori,

highly optimised linear algebra routines can be developed. The crucial advantage compared

to the standard sparse storage technique is the possibility of direct addressing: matrix entries

can be immediately accessed via array indices such that no intermediate pointer structure is

necessary. Consequently, FEAST’s data structure exhibits high locality and thus fulfils the pre-

condition for cache-oriented programming. The described concept has been realised within the

SparseBandedBLAS library and its BlockedBanded version which represent an important part

of the FEAST project. Especially, matrix vector multiplications, which consume most of the

time in finite element simulations, can be performed at significantly higher MFLOP/s rates than

with standard sparse storage techniques. The band structure of the matrices is further exploited

by applying specialised line-wise working tridiagonal multigrid smoothers. Due to the ‘gaps’

in the bands (see Figure 2.2), which are a consequence of the rowwise numbering, the tridi-

agonal part of the matrix splits into
√

n blocks where n is the number of vertices in the patch.

This blocking allows for highly efficient cache-aware implementations of the corresponding LU

decompositions [2]. An alternating direction Gauß-Seidel variant of the tridiagonal smoother

(ADITriGS) has been shown to be very robust with respect to anisotropies occurring in the grid

or in the operator (see Altieri [2], Turek et al. [161, 162] for details and also Section 2.5.3.1).

FEAST’s grid adaptation strategies are out of the scope of this work and described in detail in the

dissertation of Grajewski [78]. Here, we only briefly illustrate how to combine the described

meshing concept with such grid adaptation techniques. A first possibility is to use different

patch refinement levels, i. e., patch-wise h-adaptivity. Which patches to refine is decided either

by the user (a priori), or automatically by some error control mechanism (a posteriori). Fig-

ure 2.3 shows how this concept can be used to better resolve the tip of the slit. FEAST allows for

Figure 2.3: Example for h-adaptivity: Adaptively refined coarse grid of the slit configuration.

‘1-irregular hanging nodes’ on patch boundaries, i. e., the refinement levels of two neighbouring

patches may differ by at most one. On the one hand, this provides some degree of flexibility

in the refinement process, e. g., the introduction of transition elements is not necessary. On

the other hand, however, the concept can also be too restrictive since strongly localised effects

will finally result in refinement of regions which are of minor interest. If, for instance, the inner

patches of Figure 2.3 were refined once more also the outer patch ring would have to be refined.



22 2 Multilevel Solvers for Scalar Elliptic Equations

That is why FEAST additionally allows for anisotropic refinement (see Section 2.3) and grid

deformation techniques (r-adaptivity) (see Figure 2.4) to obtain more flexible adaptive designs.

In this manner boundary layers or singularities (like the tip of the slit) can be resolved. It is

(a) before grid deformation (b) after grid deformation

Figure 2.4: Example for r-adaptivity: Deformed grid of the slit configuration and magnified view of the slit tip.

The coarse grid of this configuration consists of four patches (not shown).

important to note that meshes which are subject to anisotropic refinement or grid deformation

do not lose the tensor product property, i. e., the before mentioned caching techniques are still

applicable.

2.1.2 Parallel Efficiency

Besides processor efficiency, another crucial criterion for modern software with respect to ex-

ploitation of today’s (super)computer architectures is parallel efficiency. The main problem of

parallelising a numerical algorithm is that parallel efficiency and numerical efficiency are of-

ten two contrary properties. To achieve good convergence rates global information is needed,

which is especially true for elliptic problems: The solution in an interior mesh node is influ-

enced by all boundary values, i. e., information has to ‘travel’ at least once through the whole

mesh. In contrast, locality is urgently required to minimise communication between proces-

sors. A similar argument as for the ‘memory gap’ (see Section 2.1.1) holds for the performance

increase of the interconnecting network: Advances in global bandwidth and global latency are

significantly slower than in processor technology. Some facts presented by Graham et al. [77]

show this: The improvement rates of network technology over the last years were roughly 30 %

per year (compared to 60 % for processor performance). However, these rates are not expected

to be sustainable due to physical constraints like the speed of light. As an example, when in

2004 one inter-processor communication took about as long as 4000 FLOPs, then in the year

2020 roughly 670,000 FLOPs can be performed during one communication. So, the overall

parallel performance of an algorithm clearly is and will be determined by the amount of data

exchange.

Another trend observable in parallel computer architectures is an increasing number of pro-

cessors. While high-end supercomputers in the year 2004 employed up to 4000 processors,

this number is expected to rise by a rate of about 20 % per year such that supercomputers in
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the year 2020 will be likely equipped with more than 70,000 processors.1 This trend enforces

parallel algorithms to be scalable: The runtime should decrease inversely proportional to the

number of processors (‘strong scaling’), or, when increasing the problem size and the number

of processors by the same factor, the runtime should (ideally) remain constant (‘weak scaling’).

In the context of finite element simulations a higher degree of parallelism is typically achieved

by dividing the computational domain into more smaller subdomains. In doing so, the number

of boundary nodes per subdomain decreases by a lower factor than the total number of nodes

per subdomain, i. e., the ratio between communication and computation naturally deteriorates.

Only when exhibiting a high degree of locality, one has the chance to weaken this loss of scal-

ability. This means that data locality has to be considered again as the critical requirement for

the solution algorithm to achieve high parallel efficiency.

In summary, parallel solution methods have to meet the following requirements:

• low inter-processor communication

• high processor loads

• good scalability

• good convergence behaviour

• robustness with respect to complicated geometries, mesh refinement level, mesh irregu-

larities, and number/size of subdomains

The first three points determine the solver’s parallel efficiency, the latter two the numerical

efficiency, where all aspects, of course, influence each other and can thus not be considered

completely disjunct. The critical question is now how to design such a solution method.

State-of-the-art solvers for elliptic problems that are able to meet the requirements concerning

the numerical efficiency are multilevel domain decomposition (MLDD) and multigrid methods

(MG). Both approaches employ coarse grids and are thus able to ‘transport information faster

through the domain’. For elliptic problems, this feature is mandatory for achieving good con-

vergence rates that do not depend on the refinement level of the mesh. So, the question is how

the two solution approaches can be parallelised. In multilevel domain decomposition methods,

which are described in more detail in Section 2.2, the computational domain is subdivided into

overlapping subdomains. Parts of the overall solution process are performed independently on

these subdomains, such that MLDD methods can be naturally parallelised by distributing the

subdomains and the corresponding operations to the available processors.

Multigrid methods act on a hierarchy of nested meshes, employing a combination of smoothers,

grid transfer operators and coarse grid solvers. Their success is based on the fact that elementary

iterative methods like Jacobi or Gauß-Seidel have poor solving abilities, though, but smooth

oscillations in the defect vector after only few iterations. This smoothed vector can then be

1The current ‘Top500’ list (http://www.top500.org/list/2009/06/100) of the most powerful computer sys-

tems in the world shows, that reality already caught up with this forecast: There already exist systems with more

than 100,000 processors.

http://www.top500.org/list/2009/06/100
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well approximated on a coarser grid. The alternating procedure of smoothing and restricting

the defect vector is repeated over all refinement levels until the problem on the coarsest mesh is

solved exactly. The resulting coarse grid correction is prolongated to the finer level and used to

update the solution vector there, possibly followed by a postsmoothing process. This procedure

is repeated until the finest level is reached. Due to the highly recursive nature of smoothing

operations like Gauß-Seidel or ILU, multigrid algorithms exhibit a very poor parallelisation

potential. A typical way to overcome this problem is to subdivide the mesh, such that the

smoother can be defined block-wise and perform concurrently on the single subdomains, while

the other MG components are still applied globally. The resulting algorithm is referred to as

block-smoothed multigrid method.

Actually, multilevel domain decomposition methods and block-smoothed multigrid methods

have much in common. FEAST’s solution scheme exploits this fact to combine the two methods

in a generalised MLDD/MG concept called ScaRC. The specific features that distinguish the

two methods are discussed in Sections 2.5.2 and 2.5.3. They play an important role for the

development and the evaluation of the ScaRC concept. Section 2.5 shows that ScaRC is able

to largely fulfil above listed requirements of a modern parallel solution method.

2.2 A Brief Survey of Domain Decomposition Methods

Domain decomposition methods are used to solve linear systems of equations, Ax = b. The

core idea of these methods is a classical ‘divide and conquer’ strategy: The computational

domain is decomposed into several (eventually overlapping) subdomains, the (large) global

problem is restricted to (smaller) local ones, which are solved to obtain local corrections for the

global solution vector. The process is repeated until the coupling between the local parts of the

solution is sufficiently resolved. Hence, domain decomposition methods are always embedded

into some ‘outer’ iterative solution procedure. The simplest iterative algorithm is the following

defect correction scheme,

x← x+ωÃ(b−Ax), (2.1)

where the operator Ã is a preconditioner of the matrix A and ω a damping parameter. In

general, Ã is not available in closed matrix form, but rather stands for a possibly complicated

algorithm to calculate the application of the preconditioner. Here, it represents the application

of a domain decomposition method. Procedure (2.1) is also called basic iteration or precon-

ditioned Richardson iteration. The aim of preconditioning is to significantly decrease the

number of iterations that are necessary to satisfy a predefined termination criterion and, thus,

reduce the overall costs of the solution procedure. A good preconditioner has to fulfil two

requirements:

1. The matrix ÃA should be ‘close to identity’, i. e., its condition number should be much

smaller than that of the matrix A.

2. The application of Ã should be inexpensive compared to the computation of A−1.
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The first requirement is necessary for improving the convergence rate of the iteration, but it

is not sufficient to make the overall algorithm more efficient. This becomes clear when con-

sidering the extremal case Ã := A−1. Although method (2.1) will terminate after one iteration

in this case, the overall costs are not reduced but simply shifted to the preconditioning phase.

Hence, preconditioning offers the potential to actually reduce the total solving time only if the

second requirement is met, as well. Domain decomposition methods fulfil both requirements:

On the one hand, the global operator is approximated by a combination of local restrictions of

this operator, and, on the other hand, the solution of several local problems is cheaper than the

solution of one global problem, especially when they can be solved in parallel. Consequently,

it makes sense to consider decomposition methods as preconditioners.

There are two classes of domain decomposition algorithms, nonoverlapping and overlapping

methods. The former are often denoted as (iterative) substructuring or Schur complement meth-

ods, popular representatives are Neumann-Neumann, Dirichlet-Neumann and FETI methods.

Overlapping domain decomposition methods go back to the alternating Schwarz method on

overlapping subdomains [142] and are thus often referred to as Schwarz methods. FEAST’s

solver approach belongs to the latter class. An overview of the numerous variants of domain

decomposition algorithms, or a comparison between overlapping and nonoverlapping methods

is clearly out of the scope of this work. We refer to the monographs by Smith et al. [150], Toselli

and Widlund [156] for a general overview, and to the dissertation of Kilian [94] for a exten-

sive comparison of those domain decomposition methods that are important for the derivation

of FEAST’s solving concept. The computational overhead and the additional communication

effort is considered to be the main disadvantage of the Schwarz methods compared to nonover-

lapping methods. FEAST alleviates this effect by using a concept of minimal overlap (see

Section 2.3). On the other hand, Schwarz methods are considered to be applicable to a wider

class of problems, while substructuring methods often need special preconditioners to treat the

arising interface problems. In terms of data structures, nonoverlapping methods need to take

extra care of interfaces and Schur complement systems, especially the extension from 2D to 3D

is much more complicated than for overlapping methods.

Schwarz methods are divided into one-level, two-level and multilevel methods. The critical

drawback of the classical one-level Schwarz methods, which work on a single grid, is that the

convergence rate of the outer iterative algorithm depends on the number of subdomains. This is

due to the nature of elliptic problems: The solution in an interior point depends on all boundary

values, i. e., information has to traverse the domain completely from one end to the other at least

once. Each subdomain exchanges data only with its neighbouring subdomains, hence the pace

at which information spreads depends on the number of subdomains. This can be overcome by

solving the equation additionally on a much coarser grid, thus providing a global exchange of

information within one iteration step. Although the costs for solving this coarse grid problem

are usually low compared to other components of the overall algorithm, its addition suffices

to render the convergence rates of the resulting two-level Schwarz methods independent of

the number of subdomains. When there are many subdomains, the coarse grid problem might

be too large to be solved directly. In this case, it can be solved iteratively by using another
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two-level Schwarz method. Applying this idea recursively leads to the concept of multilevel

Schwarz methods (see Section 2.5).

There are two ways to combine the local operators in overlapping domain decomposition meth-

ods: While additive Schwarz methods solve the local problems independently of each other

and update the global solution vector simultaneously, multiplicative Schwarz methods treat

these subproblems after each other such that recent solution updates can immediately be incor-

porated into the right hand sides of the local subproblems which are to be solved next. Intu-

itively, it is clear that multiplicative methods exhibit better convergence properties since they

propagate information faster through the grid. The relation between additive and multiplica-

tive Schwarz methods is comparable to the relation between (block-)Jacobi and (block-)Gauß-

Seidel methods. Actually, the latter two can be interpreted as additive and multiplicative

Schwarz methods, resp., with zero overlap. Two-level and multilevel methods offer the ad-

ditional degree of freedom how to combine operators from different grid levels, i. e., whether

they work additively or multiplicatively between levels. Thus, we obtain purely additive (addi-

tive within and between levels), purely multiplicative (multiplicative within and between levels)

methods, and so called hybrid methods [150]. FEAST’s solver concept belongs to the category

of hybrid multilevel methods that are additive within levels and multiplicative between levels.

2.3 Grid Partitioning and Refinement

The starting point is a macro decomposition of the domain Ω̄ into M = m(0) quadrilateral

patches Ωi = Ω
(0)
i . These subdomains build a triangulation T (0) := {Ω(0)

i | i = 1, . . . ,m(0)} (on

level 0) with Ω̄ = Ω̄(0) :=
⋃M

i=1 Ω̄
(0)
i in case the boundary of Ω is captured exactly, and Ω̄≈ Ω̄(0)

otherwise (e. g., in case of curved boundaries). The intersection of Ω̄
(0)
i and Ω̄

(0)
j with j 6= i is

either empty, a single vertex or an edge. Figure 2.5a illustrates a macro decomposition of the

(a) Level 0 Ω̄(0). (b) Level 1 Ω̄(1). (c) Level 2 Ω̄(2). (d) Level 3 Ω̄(3).

Figure 2.5: Example for grid partitioning and refinement: The unitsquare Ω̄ decomposed into M = m(0) = 9

quadrilateral patches, showing four refinement levels Ω̄(i) = Ω̄
(i)
1 ∪ . . .∪ Ω̄

(i)
9 , i = 0, . . . ,3

unitsquare into nine patches of equal size. By successive regular subdivision (see below) a

hierarchy of L+1 grid levels is created such that the level l version Ω
(l)
i (l = 0, . . . ,L) of each
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subdomain Ωi contains m
(l)
loc := 4l elements e

(l)
i, j

(
j = 1, . . . ,m

(l)
loc

)
and n

(l)
loc := (2l +1)2 vertices

v
(l)
i,k

(
k = 1, . . . ,n

(l)
loc

)
(see Figures 2.5b, 2.5c and 2.5d).2 Finer-grid vertices that correspond to

curved boundaries are projected to the real boundary of Ω, such that Ω̄(l)→ Ω̄ for l→ ∞. We

obtain the (level l) grid

Ω̄(l) :=
M⋃

i=1

Ω̄
(l)
i , l = 1, . . . ,L, (2.2)

which is decomposed into M subgrids Ω
(l)
i and consists of m(l) := M ·m(l)

loc elements e
(l)
j ( j =

1, . . . ,m(l)) and n(l) < M · n(l)loc vertices v
(l)
k (k = 1, . . . ,n(l)). We denote the number of vertices

and elements on the finest grid with n := n(L) and m := m(L), respectively. Correspondingly, we

define the (level l) triangulation3

T (l) := {e(l)j | j = 1, . . . ,m(l)}. (2.3)

The initial grid Ω̄(0) only serves for defining the macro decomposition of the domain, but is

not used as computational grid. For implementational reasons, the actual coarse grid of all our

multigrid/multilevel algorithms is Ω̄(1).

We apply two different kinds of refinement. In case of isotropic refinement, the midpoints of

two opposite element edges are connected. In case of anisotropic refinement we move the

points to be connected along the edges to create four elements with varying aspect ratios. In

detail, we use a function sss(l) : R2×R
2 7→R

2 that defines the refinement from level l−1 to level

l and is given by

sss(l)(zzz1,zzz2) :=





zzz1 +aF
1
2
(zzz2− zzz1), l = 1

zzz1 +aI
1
2
(zzz2− zzz1), l = 2, . . . ,L−1

zzz1 +aL
1
2
(zzz2− zzz1), l = L.

(2.4)

Here, zzz1 and zzz2 are start and end point of an edge on level l− 1, and the three factors 0 <
aF,aL,aI < 2 determine the vertex positions for the first, the last and all intermediate refine-

ments, respectively. Two opposite edges are refined equally such that at the end six factors

ax
F,a

x
M,ax

L and a
y
F,a

y
M,ay

L are necessary to completely define the anisotropic refinement. Fig-

ure 3.8 on page 158, for example, illustrates various refinements of the unitsquare. Setting

all factors to 1.0 coincides with isotropic refinement. For two neighbouring subdomains the

refinements along the common boundary have to match to obtain a valid triangulation.

2In principle, FEAST is able to handle grids consisting of subdomains with different refinement levels (cf. Sec-

tion 2.1.1). In this thesis, however, we only work with equal refinement levels.
3To ease notation, the symbol e simultaneously denotes the ‘topological’ element (as part of the triangulation

e ∈ T consisting of edges and vertices) and the ‘geometric’ element (as part of the domain e⊂ Ω̄).



28 2 Multilevel Solvers for Scalar Elliptic Equations

The aspect ratio of an element e is defined as follows. We denote the four vertices of the element

(ordered counterclockwise) with vvv1, . . . ,vvv4 and the midpoints of the edges with mmm1, . . . ,mmm4,

where mmmi =
1
2
(vvvi + vvvmod(i,4)+1) (see Figure 2.6). The four values

σ1 := max

{ |mmm3−mmm1|
|mmm4−mmm2|

,
|mmm4−mmm2|
|mmm3−mmm1|

}
σ2 := max

{ |vvv2− vvv1|
|vvv4− vvv3|

,
|vvv4− vvv3|
|vvv2− vvv1|

}

σ3 := max

{ |vvv3− vvv2|
|vvv4− vvv1|

,
|vvv4− vvv1|
|vvv3− vvv2|

}
σ4 := max

{ |vvv3− vvv1|
|vvv4− vvv2|

,
|vvv4− vvv2|
|vvv3− vvv1|

}
,

describe the ratio of lengths of the two lines connecting the edge midpoints (σ1), the ratio of

lengths of opposite edges (σ2 and σ3) and the ratio of lengths of the two element diagonals

(σ4). With these values we define the element aspect ratio as

σ := max{σ1,σ2,σ3,σ4}. (2.5)

Figure 2.6a illustrates, why σ1 is not sufficient to characterise the anisotropy of an element, and

Figure 2.6b shows why σ4 is necessary. The (degree of) anisotropy of a mesh is determined

(a) σ1 = σ3 = σ4 = 1,σ2 = 3. (b) σ1 = σ2 = σ3 = 1,σ4 ≈ 7.4.

Figure 2.6: Two examples illustrating the calculation of the element aspect ratio.

by the maximal element aspect ratio occurring in the mesh.

The grid hierarchy is used to discretise continuous operators with Q1 bilinear finite elements,

resulting in a hierarchy of matrices and vectors corresponding to the bilinear and linear forms

of the respective boundary value problem. For details about the finite element discretisation,

see Section 3.2.

2.4 Minimal Overlap and Extended Dirichlet Boundary Conditions

The grid decomposition described in the previous section defines on each level a domain de-

composition with minimal overlap in the sense that the only vertices that neighbouring subdo-

mains share are the vertices on the common boundary. More precisely, let V (l) be the index set

of all grid vertices on level l, and V
(l)

i the indices of all vertices in Ω̄
(l)
i . Then, with |V (l)|= n(l)

and |V (l)
i | = n

(l)
loc, we define the prolongation matrix P

(l)
i ∈ R

n(l)×n
(l)
loc . It takes the entries of
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a local node vector x
(l)
i defined on Ω̄

(l)
i , distributes them to the corresponding positions of a

global vector x(l) and sets all remaining entries to zero, i. e.,

(x(l))k = (P
(l)
i x

(l)
i )k :=

{
(x

(l)
i )

loc
(l)
i (k)

k ∈ V
(l)

i

0 k ∈ V (l)\V (l)
i ,

where loc
(l)
i (k) is the local index within Ω̄

(l)
i of the vertex with global index k. The correspond-

ing restriction matrix R
(l)
i := (P

(l)
i )

T

∈Rn
(l)
loc×n(l) extracts the entries belonging to a subdomain

Ω̄
(l)
i from a global vector. Thus, we can define the matrix A

(l)
i that corresponds to the subdomain

Ω̄
(l)
i via

A
(l)
i := R

(l)
i A(l)P

(l)
i , (2.6)

i. e., A
(l)
i ∈ R

n
(l)
loc×n

(l)
loc is exactly the submatrix of A(l) corresponding to the vertex indices V

(l)
i .

Since the matrix entries corresponding to the boundary vertices of the subdomain Ω
(l)
i are

the sum of integrals over all surrounding elements, an overlap of exactly one element layer

results. We say the local matrix contains full entries on subdomain boundaries and denote

the (open) subdomain that results from extending Ω
(l)
i by this adjacent element layer (being

part of the neighbouring subdomains) with Ω̂
(l)
i . Figure 2.7 illustrates this with the help of the

unitsquare example from Section 2.3. This procedure allows for the following interpretation:

(a) level 2 grid Ω̄(2) = Ω̄
(2)
1 ∪ . . .∪ Ω̄

(2)
9 . (b) Extended subdomain Ω̂

(2)
5 (grey).

Figure 2.7: Illustration of the concept of full entries on subdomain boundaries.

The integrals are computed over this extended subdomain Ω̂
(l)
i , Dirichlet boundary conditions

are set on the boundary ∂Ω̂
(l)
i of the extended subdomain, and all matrix rows and columns

corresponding to the boundary vertices are eliminated. The matrix resulting from this process

is exactly the local matrix A
(l)
i . A direct conclusion of this interpretation is that A

(l)
i is regular.

Thus, for the solution of the corresponding local linear systems no special boundary treatment

is necessary and no pure Neumann problems have to be solved. This is a significant advantage

over other domain decomposition approaches that need such special measures. On the other

hand, special care has to be taken when applying local multigrid solvers which will be examined

in Section 2.6.1.
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For the following description of FEAST’s solver concept, we usually speak of the subdomain

Ω
(l)
i itself and not of the extended one Ω̂

(l)
i , which is just used to illustrate the concept of full

entries on subdomain boundaries. However, to remind of this interpretation we will define the

term extended Dirichlet boundary conditions, which is from now on used to describe the

treatment of boundaries on inner subdomain boundaries. Consequently, a subdomain boundary

exhibits Dirichlet or Neumann boundary conditions, if it lies on the geometric boundary of the

domain, and extended Dirichlet boundary conditions when it is an interior boundary.

2.5 ScaRC: A Multilevel Domain Decomposition Method with

Minimal Overlap

We now have all notations at hand to define FEAST’s domain decomposition solver. As already

mentioned, it is a hybrid multilevel Schwarz method that works additively within levels and

multiplicatively between levels.

2.5.1 The Global Multiplicative Scheme

First we describe the multiplicative multilevel part of the overall solution algorithm. Since

this is the outermost scheme, we introduce it as solver and not as preconditioner. We need

to define grid operators that transfer information between levels. The prolongation matrix

P(l) ∈Rn(l)×n(l−1)
transfers a vector from grid level l−1 to level l via bilinear interpolation. The

restriction matrix R(l−1) ∈Rn(l−1)×n(l) is defined as the adjoint operation, R(l−1) :=(P(l))
T

, and

restricts a vector from level l to level l−1. So, the superscript always refers to the destination

level of the operation. Let Ã(l) denote a generic preconditioner for the level l matrix A(l).

This preconditioner will be described in more detail in Section 2.5.5. One iteration of the

multiplicative multilevel Schwarz solver to solve the equation system A(L)x(L) = b(L) consists

of the following substeps:

x(L)← x(L)+ Ã(L)(b(L)−A(L)x(L)) (2.7a)

For l = L−1, . . . ,2 :

b(l)← R(l)(b(l+1)−A(l+1)x(l+1)), x(l)← Ã(l)b(l) (2.7b)

l = 1 :

b(1)← R(2)(b(2)−A(2)x(2)), x(1)←
(
A(1)

)−1
b(1) (2.7c)

For l = 2, . . . ,L :

x(l)← x(l)+P(l)x(l−1), x(l)← x(l)+ Ã(l)(b(l)−A(l)x(l))
(2.7d)

So, in the first step (2.7a) the preconditioner Ã(L) is applied to the defect on the finest level L.

Then, in the restriction phase (2.7b) each substep consists of computing the current defect,
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restricting it to the next coarser level and applying the generic preconditioner Ã(l). This is

repeated until the coarsest level is reached, where we do not apply the preconditioner Ã(1)

(which would also be possible), but solve the resulting system (see equation (2.7c)). If it is

‘small enough’ (e. g., less than 20000 unknowns), then we use the direct solver UMFPACK [55],

otherwise some Krylov solver.4 Then, in the prolongation phase (2.7d) each substep consists of

prolongating the correction to the next finer level, updating the solution, computing the defect

and applying the preconditioner Ã(l) again. This is repeated until the finest level is reached.

The whole process is iterated until a prescribed stopping criterion is met.

Scheme (2.7) resembles a classical multigrid approach. It can be seen as a block-smoothed

V-cycle multigrid, where the block-smoother is given by Ã(l). The question whether to inter-

pret the method as multilevel Schwarz or as multigrid with a block-smoother is discussed in

Section 2.5.3.

2.5.2 The Global Additive Preconditioner

The crucial task of the preconditioner Ã(l) used within the multilevel solver (2.7) is to realise

the connection between the global and the local layer. This is done via an additive Schwarz

method which we want to express again in terms of a preconditioning operator Ã
(l)
AS. So, the

preconditioner Ã
(l)
AS does not equal the preconditioner Ã(l), but is only a part of it. In Sec-

tions 2.5.5 and 2.6.3 it will become clear, why we make this distinction. We further denote

with

Ã
(l)
i (2.8)

a local preconditioner for the local matrix A
(l)
i corresponding to subdomain Ω

(l)
i , i. e., the op-

erator Ã
(l)
i in some sense approximates the inverse (A

(l)
i )−1. In Section 2.5.3 we will exam-

ine different possibilities how the operator can be realised. The additive one-level Schwarz

method with minimal overlap is now defined as

Ã
(l)
AS := ∑̃

M

i=1
P
(l)
i Ã

(l)
i R

(l)
i . (2.9)

It takes a global (defect-)vector, restricts it to the i-th subdomain, applies the local precondi-

tioner (2.8) and extends the resulting local correction to the global layer again. The special

sum symbol ∑̃ indicates that after summation values on subdomain boundaries have to be aver-

aged, i. e., divided by the number of adjacent subdomains: Due to the minimal overlap concept

described in the Section 2.4 the local solution vectors already contain full entries on the bound-

aries (see Kilian [94] for details).

The numerical efficiency of one-level (and also two-level) domain decomposition methods cru-

cially depends on the size of the overlap. If it is chosen too small (especially if only minimal

overlap is used), the convergence rates of such methods deteriorate significantly when a critical

4Note that the level 1 grid is the coarsest computational grid in the hierarchy (see Section 2.3).
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parameter (refinement level, number of subdomains) increases [94, 150]. Multilevel domain

decomposition methods, however, show robust convergence behaviour also in case of minimal

overlap [94]. Hence, the usage of minimal overlap is justified, and for three essential reasons,

FEAST is actually restricted to it:

1. Local submeshes preserve the tensor product structure.

2. High parallel efficiency can be achieved due to a minimal amount of data exchange.

3. Implementation and data structures are greatly simplified.

Consequently, FEAST’s domain decomposition method strongly resembles a block-smoothed

multigrid method, which is usually characterised by minimal overlap. However, in the next

section another feature is identified that distinguishes the two solution approaches.

2.5.3 The Local Preconditioner

While the two previous sections explained the global structure of FEAST’s solution algorithm,

i. e., the transfer between the levels and the interaction of global and local layers, we will now

take a closer look at the local operations. We want to distinguish between two main strategies

how to realise the local preconditioner (2.8) within the additive Schwarz preconditioner (2.9).

The choice of the strategy also determines whether the multiplicative scheme (2.7) is interpreted

as multigrid method with a block-smoother or as multilevel Schwarz method.

2.5.3.1 First strategy: Apply one step of some elementary iterative scheme like Jacobi

or Gauß-Seidel

The strategy to employ such elementary schemes within a multilevel method is well known

from classical multigrid methods. Due to their property to rapidly dampen high frequencies

in the error, they are called smoothers in this context. In standard multigrid schemes, these

smoothers are applied to the entire matrix at once. To reduce the highly recursive character

of this procedure, they can also be applied blockwise, i. e., simultaneously and independently

to submatrices corresponding to local subdomains of a decomposed grid. This is exactly what

is done within the additive preconditioner (2.9). Hence, when the local preconditioner (2.8)

represents the application of a standard smoother like Jacobi, Gauß-Seidel, etc., then the overall

method is usually not denoted as multilevel Schwarz method, but as multigrid method with a

block-smoother. These methods have been studied in detail by Kilian [94].

In this thesis, we use two different block-smoothers, Jacobi and an alternating direction Gauß-

Seidel like smoother called ADITriGS [2, 16, 94]. Omitting the superscript for the refinement

level, we represent the local matrix Ai as decomposition of its three ‘lower bands’, three ‘centre

bands’ and three ‘upper bands’,

Ai = (LL
i +LC

i +LU
i )+(CL

i +CC
i +CU

i )+(UL
i +UC

i +UU
i ),
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each triple itself consisting of a lower, a centre and an upper single band. With this notation,

the local Jacobi smoother is simply given by

ÃJacobi
i := (CC

i )
−1, (2.10)

i. e., its action consists of scaling a given vector with the inverted main diagonal CC. A standard

Gauß-Seidel smoother is correspondingly defined as

ÃGS
i := (LL

i +LC
i +LU

i +CL
i +CC

i )
−1,

i. e., it takes the complete lower triangular matrix (including the main diagonal). An extension

is the so called TriGS smoother that involves the complete triple of centre bands, i. e.,

ÃTriGS
i := (LL

i +LC
i +LU

i +CL
i +CC

i +CU
i )
−1.

In case of rowwise numbering the three centre diagonals stem from nodes coupling with them-

selves and with their left and right neighbours. Mesh or operator anisotropies ‘in horizontal

direction’ are thus well caught, while this is not the case for anisotropies ‘in vertical direction’.

For this reason, we use a variant of the TriGS smoother in which we implicitly change the num-

bering of the local subdomain into a columnwise one. This mirrored TriGS smoother (MTriGS),

is then able to deal with the anisotropies ‘in vertical direction’. In realistic simulations, how-

ever, a mixture of all kinds of anisotropies is common, hence, we need a smoother that is able

to robustly treat them all at the same time. A simple and successful strategy is to use TriGS and

MTriGS in an alternating fashion, leading to the alternating direction Gauß-Seidel like smoother

ADITriGS. This smoother has been shown to be extremely robust with respect to grid anisotro-

pies [2, 16, 94]. Further significant advantages of this smoother are that it yields best results

with a damping parameter of 1.0 and that it can be implemented in a very efficient, hardware-

oriented manner (see Section 2.1.1). In Section 2.6 we examine advantages and disadvantages

of Jacobi and ADITriGS as block-smoothers.

2.5.3.2 Second strategy: Apply some iterative or direct solution method to

(approximately) solve the local system

One of the basic ideas of Schwarz methods is to replace the solution of one large global system

by the solution of several smaller local systems. In practice this often means that the (eventually

specialised) solver which usually treats the global system is then simply employed to solve the

local systems, while the global coupling is provided by some iterative process, e. g., a Krylov

method. Hence, when the local preconditioner (2.8) is realised by a ‘full’ solution method, then

the overall algorithm (2.7) can be considered as multilevel Schwarz method.

We now discuss the choice of the local solver. It is intuitively clear that the convergence of

the global iterative scheme depends – to some degree – on the accuracy the local systems are

solved with. From this point of view, the best possible local solution method is a direct solver
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that solves the system exactly (up to machine precision). In this case, we obtain a ‘perfect’

local preconditioner (2.8), which can be written in closed form as

Ãdirect
i := (Ai)

−1. (2.11)

However, the computational costs and storage requirements of direct solvers increase rapidly

with the local system size. Hence, there is a threshold where the application of direct solvers is

too costly or simply not possible anymore. This threshold depends on different factors:

• The computational costs of direct solvers are usually dominated by the initial LU decom-

position. Consequently, it makes a difference whether the LU decomposition has to be

done once per linear solve (e. g., within a Newton iteration) or if several linear solves

can be performed with one LU decomposition (e. g., within a time stepping scheme or a

projection method).

• The size of the available memory physically limits the maximal problem size.

• Direct solvers cannot be applied at all when the system is not uniquely solvable, e. g.,

when it results from a pure Neumann problem.

So, there are situations where it is advantageous or even mandatory to switch to iterative meth-

ods to solve the local systems. One possibility is to employ a suitable Krylov method. However,

for these methods it is well known that the convergence rate depends on the refinement level

of the mesh. So, there might be a range in the problem size for which Krylov methods can be

efficiently used and perform better than direct solvers, but beyond this range the performance

will be unsatisfying. In this case, an iterative method has to be employed whose convergence

rate does not deteriorate with increasing problem sizes, i. e., a multigrid method. The strategy

to use multigrid for solving the local systems within a global multilevel Schwarz method, is one

of the core ideas of FEAST’s solution concept.

A crucial advantage of direct solution methods is the fact that they are ‘black box’ solvers:

Independent of the physical problem or the quality of the mesh, they return the correct solution5

of the local systems in constant time (i. e., only depending on the problem size), while the user

does not have to adjust any parameter. When it is unavoidable to switch to an iterative solution

method, then the user immediately has to deal with quite a number of parameters and settings,

particularly in case of a multigrid method (stopping criterion, type of cycle, type of smoother,

number of smoothing steps, coarse grid solver, etc.).

On the one hand this is clearly a disadvantage: Unsuitable settings might lead to bad con-

vergence behaviour or even failure of the solution method; settings that are optimal for one

problem configuration or in one part of the mesh, might be completely unsuited for the next

problem configuration or in another part of the mesh. Furthermore, the user has to decide how

accurately to solve the local systems in order to optimally balance local costs and number of

global iterations and thus obtain minimal runtime of the overall algorithm. On the other hand

5Of course, accumulating round-off errors resulting from badly conditioned system matrices might deteriorate the

quality of the solution.
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this freedom of choice can also be seen as an advantage which will be explained in the next

section.

As local multigrid smoothers we use the two elementary schemes, Jacobi and ADITriGS, that

have been introduced as block-smoothers for the first strategy in Section 2.5.3.1. In Sec-

tion 2.6.2 we describe a method that automatically switches between direct solvers and multi-

grid solvers.

2.5.4 The ScaRC Concept

In order to motivate FEAST’s solver concept, we discuss advantages and disadvantages of the

two strategies for local preconditioning, which have been introduced in the previous section,

with respect to different aspects. For the second strategy we assume that the local systems are

too large for the application of direct solvers and confine ourselves to the case of using multigrid

as local solver. We can then characterise the difference between the first and the second strategy

as follows: Where the block-smoothed multigrid applies just one step of an elementary iterative

scheme (e. g., Jacobi), the multilevel Schwarz method uses a complete multigrid solver with

this elementary scheme as smoother (also compare Listings 2.4 and 2.5 in Section 2.5.5). The

critical revision of FEAST’s solution concept in Section 2.6 will focus on this difference, so we

examine it here in detail.

Storage requirements At first glance the difference in terms of storage requirements may ap-

pear significant since for block-smoothed multigrid just an elementary smoother (acting

on one level) has to be prepared for each subdomain, while for multilevel Schwarz entire

local multigrid solvers (acting on several levels) have to be provided. However, the level

hierarchy of matrices and vectors needed for local multigrid has been allocated anyway

in order to realise the global multilevel method: As described in Section 2.1.1, there exist

no global matrices and vectors. Instead, global operations and objects are represented by

local ones, combined with according data exchange operations. These local data objects

can be reused – with slight modifications [94] – for the local multigrid operations. So,

the only additional storage requirement – compared to the first strategy – are the aux-

iliary vectors needed for the local multigrid scheme. Hence, when assuming the same

elementary iterative scheme as (block-)smoother, then the storage requirements for the

second strategy are only slightly higher than for the first strategy.

Arithmetic costs Where the first strategy only does one step of an elementary iterative scheme,

the second strategy performs one or more entire multigrid cycles including smoothing,

defect calculations, grid transfer operations and eventually norm calculations on each

level. So, it is clear that the arithmetic costs per outer iteration are significantly higher

for the second strategy.

Communication vs. computation From the point of view of parallel execution, the previous

point can be formulated in a positive way: Each application of the local preconditioner is
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followed by a global defect computation which involves communication between neigh-

bouring subdomains. Hence, the ratio between communication and floating point oper-

ations is much more favourable for the second strategy. This, however, can only turn

into an advantage when the second strategy is able to significantly reduce the number of

global iterations.

Flexibility For both strategies, it is possible to select different smoothers on different subdo-

mains. For example, one can use Jacobi for ‘easy subdomains’ and ADITriGS for ‘dif-

ficult’ ones. The second strategy offers the additional possibility to determine for each

subdomain how accurately to solve the local system. Furthermore, one can potentially

adjust all the other multigrid parameters per subdomain to adapt to the local situation.

In practice, however, this is useless as long as the user has to perform these settings

manually. So, this additional flexibility can only turn into actual gain of performance or

robustness when it is accompanied by some ‘automatic control system’.

‘Black box’ character The higher number of parameters in case of the second strategy and the

resulting increase of flexibility automatically means to abandon the ‘black box’ character

of the solution method to some degree. Each additional parameter the user has to adjust

bears the risk of deteriorated solver performance due to unsuitable settings. Hence, as

long as these additional parameters are not set automatically (also see the previous point),

the first strategy is more favourable in this regard as there are simply less parameters to

set.

Influence on the global iteration A crucial disadvantage of the first strategy is that irregu-

larities in only one subdomain can influence the convergence behaviour of the overall

algorithm. The block-smoothed multigrid performs the same number of smoothing steps

in each subdomain. While specific features of ‘easy subdomains’ may be ‘sufficiently

resolved’, this does not have to be the case for ‘difficult subdomains’ that exhibit irreg-

ularities in the mesh or in the operator. Hence, the global scheme has to iterate until the

error in these ‘difficult subdomains’ is sufficiently reduced, as well. Thereby, it does not

play a role whether the fraction of ‘difficult subdomains’ is close to 5% or close to 95%.

With the second strategy, however, one has the possibility to reduce the residual norm

of the local problem by a certain factor (e. g., ‘gain one digit’). The specific features of

the different subdomains can thus be resolved in a homogeneous way such that from the

point of view of the outer iterative scheme all subdomains return similar error reductions.

Consequently, the global convergence rate does not suffer from local irregularities.

Load balancing In case of the first strategy the same amount of work is performed on each

subdomain. Load balancing can thus be realised by ‘simply counting subdomains’, i. e.,

trying to assign an equal number of subdomains to each processor (which is – depending

on the topology of the domain – already difficult enough under the condition that the set

of subdomains residing on the same processor should be connected in order to minimise

communication). The flexibility of the second strategy to reduce the residual norm of

the local problems by a certain factor instead of performing a fixed number of iterations,
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however, prevents this simple way of load balancing. The solution of one ‘difficult’ local

problem potentially requires more work than solving several ‘easy’ local problems. It is

extremely complicated – if not impossible – to reasonably estimate the required work a

priori and correspondingly distribute subdomains to processors. This is especially true

when the ‘difficulty’ of the local problem does not result from local mesh irregularities

(which would still be predictable somehow), but, for example, from localised operator

nonlinearities (which are not readily assessable). Hence, significant conceptual and im-

plementational work is necessary to develop an adequate load balancer that facilitates a

satisfactory parallel efficiency for the second strategy (cf. Section 2.7.4).

Employment of co-processors When using co-processors to outsource parts of the arithmetic

work (see Göddeke et al. [73, 75] and references therein) this always means that some

amount of data has to be transferred to the co-processor (e. g., the current defect vector)

and some data has to be returned to the main processor (e. g., the local correction). These

transfer operations – eventually together with changing the precision of the data (from

single to double or vice versa) – are much slower compared to the actual computation and

thus usually constitute a severe bottleneck. Consequently, the more work is performed

on the co-processor with the given data (i. e., the higher the arithmetic intensity is), the

higher the benefit of the overall procedure will be. In this regard, there is a significant

advantage for the second strategy: Performing one or several complete multigrid cycles

clearly justifies the expensive movement of data to the co-processors. On the other hand,

when performing just one step of an elementary iterative scheme as in the first strategy,

the time for moving data will likely dominate the overall runtime.

Table 2.1 summarises the advantages and disadvantages of the two local preconditioning strate-

gies. From this table it becomes clear that it is not possible to give a global answer to the

Storage requirements 1 ◦•◦◦ 2

Arithmetic costs 1 •◦◦◦ 2

Communication vs. computation 1 ◦◦◦• 2

Flexibility 1 ◦◦•◦ 2

‘Black box’character 1 ◦•◦◦ 2

Influence on global iteration 1 ◦◦◦• 2

Load balancing 1 •◦◦◦ 2

Co-processors 1 ◦◦◦• 2

Table 2.1: Comparison of the two strategies for local preconditioning. The position of the black dot indicates how

strong the first strategy (left) or the second strategy (right) is favoured.

question which of the two preconditioning strategies should be preferred. The answer depends

on several factors like regularity and homogeneity of the computational mesh or amount and

type of compute resources. Since these factors change from simulation to simulation, or even

within one computation, the solution method must be able to dynamically adapt to the current

situation. This is the core idea of FEAST’s solution concept ScaRC. ‘Sca’ stands for ‘scal-
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able’6 , which means that solver components can be adjusted independently of each other and

thus optimised with respect to different aspects of the current computation. This especially

involves that ScaRC does not represent explicitly one of the two concepts discussed above,

but it comprises both: It can switch between the two strategies or even use both at the same

time in different parts of the domain. This means on the one hand that ScaRC can reduce to a

standard block-smoothed multigrid scheme, when the configuration allows this. On the other

hand, ScaRC can represent a highly diversified combination of different local preconditioners,

potentially ranging from an elementary Jacobi iteration to direct solvers to multigrid schemes

which are smoothed by ADITriGS and achieve different accuracies.

In this sense, ScaRC can be interpreted as generalisation of the two concepts ‘block-smoothed

multigrid’ and ‘multilevel domain decomposition’. From now on, we want to distinguish the

two concepts within ScaRC as following: The multilevel domain decomposition concept is

characterised by the fact that on subdomains ‘full’ solvers are used to treat the local problems.

In this case, ScaRC consists of two nested (iterative) solution schemes – on the one hand the

outer multilevel algorithm (2.7) solving the global problem, on the other hand an inner iterative

multigrid scheme (or a direct solver) for the local subdomain problems. Hence, the algorithm

starts solvers on two different hierarchical layers which we simply call the global layer and

the local layer. The restriction and prolongation matrices Ri and Pi introduced in Section 2.4

formally ‘toggle’ between these two layers. The overall algorithm is then referred to as 2-

layer-ScaRC. Correspondingly, when the solver exclusively applies the first strategy for local

preconditioning (i. e., it reduces to a block-smoothed multigrid) then we denote it as 1-layer-

ScaRC.

The advantages of the generalised ScaRC approach can be described as follows (also see Becker

[16], Kilian [94]):

• Due to the multilevel ansatz the convergence rates are independent of the refinement

level, and for meshes with only mild macro anisotropies they are also independent of the

number of subdomains.

• The domain decomposition approach allows for the possibility to define the local pre-

conditioners completely independent of each other: The additive Schwarz precondi-

tioner (2.9) simply ‘collects and combines’ the local corrections, no matter how these

have been computed.

• Both 1-layer- and 2-layer-ScaRC can choose the elementary smoother corresponding

to the local situation. For instance, Jacobi is sufficient on isotropic submeshes, while

ADITriGS can be used for anisotropic ones. When a subdomain does not fulfil the tensor

product property, then some general smoother like ILU can be applied (which is not done

in this thesis).

• Local irregularities in the mesh or in the operator can be ‘hidden’ from the outer iterative

scheme when applying the 2-layer-ScaRC strategy: Reducing the local residuum norms

6For an explanation of the acronym ‘RC’ see Section 2.7.2.
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by a certain factor (e. g., ‘gain one digit’) lets the subdomains appear ‘equally difficult’

to the outer solver. Hence, the number of global iterations is not affected by (increasing)

local irregularities and can be held constant, thus resulting in a high numerical efficiency

of the overall algorithm. This is especially important in case the mesh is adaptively – and

eventually anisotropically (cf. Section 2.3) – refined in the course of the simulation.

• If such irregularities are strongly localised (e. g., they appear in only one subdomain),

then ScaRC can be configured to treat the uncritical subdomains with a simple local

preconditioner. So, in the extreme case the local preconditioner on a ‘difficult subdomain’

is a multigrid smoothed by ADITriGS gaining one digit, and on an ‘easy subdomain’

merely one single Jacobi step. Several of these ‘easy subdomains’ can then be treated in

the same time as one ‘difficult subdomain’. Applying the complex preconditioner to all

subdomains might eventually lead to a slightly better global convergence, though, but it

will likely be much too expensive in terms of arithmetic work and storage requirements.

Hence, by applying strong local preconditioners only where necessary the ScaRC ansatz

bears the potential to optimally balance convergence behaviour and computational costs.

• Due to the tensor product property of the subdomains, local operations can exploit the

cache-optimised SparseBandedBLAS library (see Section 2.1.1) and thus achieve high

processor efficiency in terms of MFLOP/s rates.

• As a consequence of the previous points, ScaRC is able to achieve a high degree of data

locality and a good ratio between computation and communication, overall resulting in a

high parallel efficiency.

This list of advantages shows that ScaRC indeed has the potential to successfully combine so-

phisticated solution strategies with high performance computing techniques and to thus achieve

both numerical and hardware efficiency at the same time. Kilian [94] and Becker [16] confirm

this with the help of extensive numerical studies. However, ScaRC also (still) exhibits some

disadvantages:

• The ratio between computation and communication necessarily deteriorates when per-

forming operations on smaller refinement levels. This, however, is inherent to the global

multilevel approach – which is indispensable from a numerical point of view – and can

thus not be avoided.

• The additive domain decomposition approach shows the typical block-Jacobi property

to be very sensitive with respect to macro anisotropies. The solver especially loses its

independency of number of subdomains when too large macro anisotropies are present.

This problem can partially be resolved by combining the multilevel scheme with a Krylov

solver (see Becker [16], Kilian [94] and Section 2.6.3). Another promising approach is

to add a third intermediate layer (‘3-layer-ScaRC’) and/or to merge subdomains (see

Becker [16] and Section 2.7.2).
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• The local multigrid solvers within the 2-layer-ScaRC scheme are nonconforming and

thus require special treatment. In Section 2.6.1 we describe this problem in detail and

present a feasible solution.

• Due to the complexity of the ScaRC solvers – especially of the 2-layer variant – there

are many parameters to adjust. Especially the two damping parameters are critical: They

decisively influence the convergence behaviour and can even cause divergence if not

properly set. In Section 2.6.3 we describe how to set these parameters automatically and

to thus considerably increase the robustness of the overall solution method. We try to

identify configurations that could serve as a sort of ‘black box’ solver.

• ScaRC’s ability to adapt solver components to locally varying problem complexities is

only useful when this adaptation happens automatically. First steps in this direction are

taken by Becker [16]. We will further discuss this topic in Section 2.7.3.

• The strategy to let the local solvers ‘gain one digit’ makes load balancing in a parallel

computation extremely challenging. This problem is discussed in Section 2.7.4.

2.5.5 Algorithmic Formulation

In this section we try to give a concise algorithmic description of the ScaRC solvers which is

aggravated by their complexity and versatility. To ease this task we will consider the global

multilevel scheme (2.7) on page 30 as multigrid solver (and not as multilevel Schwarz method)

– regardless of which strategy is used for local preconditioning. In case of 2-layer-ScaRC

we will then speak of the global multigrid and local multigrid to refer to the outer and the

inner multigrid solver, respectively. This enables us to use the same algorithmic description for

both solvers. For the sake of clarity we split the overall algorithm into different subroutines.7

The following listings use Fortran-like pseudo code, which should be comprehensible for non-

Fortran-programmers, too.

We begin with the outer multigrid scheme, which is represented in a non-recursive form in

Listing 2.1. Also compare the definition of the multiplicative multilevel Schwarz solver (2.7)

in Section 2.5.1. For simplicity, we only show here the V-cycle; for a schematic representation

of F- and W-cycles, see Figure 2.10 on page 48. The difference to standard multigrid imple-

mentations is the additional variable Λ that determines the layer the solver acts on. This can be

the local layer (Λ =’LOCAL’), i. e., one subdomain, or the global one (Λ =’GLOBAL’), i. e., the

whole domain (cf. Section 2.5.4). The choice of the local preconditioner T , which is passed

to the multigrid algorithm, to some degree depends on the layer, i. e., not every combination

of layer and preconditioner makes sense (cf. Listing 2.3). For simplicity, we assume that on

all subdomains the same preconditioner T is used. The input variables A,b and x denote the

entire hierarchy of matrices and vectors. The input variable L (or l) then determines which level

7The presentation resembles the actual implementation in FEAST: There is only one multigrid routine to realise

both the global and the local variant, and the nested iterative solution schemes are represented by distinct,

recursively called subroutines.
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1 subroutine MG(A, b, x, Λ, L, T)

2 !Input: matrix A, RHS b, start vector x, layer Λ,
3 ! max. level L, type of local preconditioner T

4 !Output: solution x

5 !Parameters: tolerance ε, maximal number of iterations K,

6 ! number of smoothing steps Kpre,Kpost
7

8 δ←‖b(L)−A(L)x(L)‖ !norm of initial residuum

9 do k = 1, . . . ,K !main loop

10 do l = L, . . . ,2 !restriction loop

11 call RICH(A,b,x,Λ, l,Kpre,T ) !presmoothing

12 b(l−1)← R(l−1)(b(l)−A(l)x(l))

13 x(l−1)← 0

14 enddo

15 x(1)←
(
A(1)

)−1
b(1) !solve coarse grid problem

16 do l = 2, . . . ,L !prolongation loop

17 x(l)← x(l)+P(l)x(l−1)

18 call RICH(A,b,x,Λ, l,Kpost,T ) !postsmoothing

19 enddo

20 if (‖b(L)−A(L)x(L)‖6 δε) then !convergence control

21 exit

22 endif

23 enddo

24 end subroutine MG

Listing 2.1: Multigrid (resp., multilevel domain decomposition) algorithm working on global or local layer. The

smoother is realised by a Richardson iteration which is described in detail in Listing 2.2.

to choose from the hierarchy. Some of the variables that are necessary for the definition of a

multigrid solver are declared as ‘parameters’ in the subroutine description. This is only to keep

the routine interface short – the variables could just as well be declared as input variables.

1 subroutine RICH(A,b,x,Λ, l,K,T )
2 !Input: matrix A, RHS b, start vector x, layer Λ, current level l,

3 ! number of iterations K, type of local preconditioner T

4 !Output: solution x

5 !Parameters: damping parameter ω
6

7 do k = 1,2, . . . ,K !main loop

8 c(l)← 0

9 r(l)← b(l)−A(l)x(l) !current defect

10 call PRECON(A,r,c,Λ, l,T ) !preconditioning

11 x(l)← x(l)+ωc !damped update of the solution

12 enddo

13 end subroutine RICH

Listing 2.2: Preconditioned Richardson scheme performing a fixed number of iterations. This algorithm realises

the smoother within the multigrid implementation in Listing 2.1.
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The pre- and postsmoothing process within the multigrid scheme is realised by a preconditioned

Richardson iteration which is described in Listing 2.2. In Section 2.6.3 it will become clear

why we use this rather unusual representation for smoothing. The number of smoothing steps

in the multigrid algorithm (Kpre,Kpost) defines the number of Richardson iterations. The two

most important ingredients of the Richardson scheme are the damping parameter ω and the

preconditioner (represented by a call of the routine defined in Listing 2.3). They are linked in

the sense that the choice of a ‘good’ damping parameter crucially depends on the choice of the

preconditioner.

1 subroutine PRECON(A,b,x,Λ, l,T )
2 !Input: matrix A, RHS b, start vector x = 0, layer Λ, current level l,

3 ! type of local preconditioner T

4 !Output: solution x

5

6 if (Λ .eq. "GLOBAL") then

7 do i = 1,2, . . . ,M !add. Schwarz loop over subdomains

8 b
(l)
i ← R

(l)
i b(l) !restrict defect to i-th subdomain

9 call PRECON(Ai,bi,xi,"LOCAL", l,T ) !local precond. on i-th subdomain

10 enddo

11 x(l)← ∑̃
M

i=1P
(l)
i x

(l)
i !combine local corrections

12 else if (Λ .eq. "LOCAL") then

13 if (T .eq. "JACOBI") then !1-layer-ScaRC

14 x(l)←
(
ÃJacobi

)(l)
b(l) !apply Jacobi preconditioner

15 else if (T .eq. "MG-JACOBI") then !2-layer-ScaRC

16 call MG(A,b,x,"LOCAL", l,"JACOBI") !apply local multigrid

17 else if (T .eq. "DIRECT") then !2-layer-ScaRC

18 x(l)←
(
Ãdirect

)(l)
b(l) !apply local direct solver

19 endif

20 endif

21 end subroutine PRECON

Listing 2.3: Generic preconditioning routine that realises the additive Schwarz preconditioner and all local

preconditioners/smoothers. (Jacobi is used representatively.)

The algorithm depicted in Listing 2.3 represents the core preconditioning routine within ScaRC.

It is used for both local and global preconditioning. On the one hand, when called on the subdo-

main layer, it implements the three types of local preconditioners described in Section 2.5.3:

1. application of one Jacobi step ÃJacobi (see equation (2.10) on page 33)

2. call of a local multigrid solver smoothed by Jacobi

3. call of a direct solver Ãdirect (see equation (2.11) on page 34)

Jacobi is used here only as representative for all the other elementary smoothers. On the other

hand, when called on the global layer, it realises the additive Schwarz preconditioner (2.9)

on page 31 which establishes the connection between the two layers. For each subdomain,

the routine recursively calls itself and applies the corresponding local preconditioner. After
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the subdomain loop the local corrections are summarised as described in Section 2.5.2. So,

this routine is responsible to algorithmically distinguish between 1-layer-ScaRC and 2-layer-

ScaRC solvers. Of course, not every parameter combination makes sense. For example, there

seems to be no point in smoothing a local multigrid scheme with another local multigrid (which

would be possible from the implementational point of view).

We now briefly turn back to the definition of the multiplicative multilevel Schwarz solver (2.7)

in Section 2.5.1. There, we introduce the generic preconditioning operator Ã(l) that ‘contains’,

but is not equal to the additive Schwarz preconditioner (2.9) defined in Section 2.5.2. The

reason why we make this distinction is clear now: The preconditioner Ã(l) is represented by

the Richardson iteration (see Listing 2.1, lines 11 and 18, and Listing 2.2) which enables us to

apply several smoothing steps. The additive Schwarz preconditioner is called only within this

iteration, where the operator Ã
(l)
AS is represented by lines 7–11 of the algorithm in Listing 2.3.

2.5.5.1 The ScaRC File Format

In FEAST, the ScaRC solvers are defined in an ASCII file format. We use it in the following

sections to describe the different solvers we are working with. The format naturally imitates

the recursive structure of the ScaRC solvers and is thus intuitively comprehensible. For ex-

ample, the ScaRC file in Listing 2.4 describes a 1-layer-ScaRC solver performing at most 128

iterations, stopping the solution process when the initial residuum is reduced by a factor of

10−6 (‘gain 6 digits’), using a V-cycle with 2 pre- and 2 postsmoothing steps. The smoother is

1 solver=MG, maxiter=128, tol=REL:1e-6, cycle=V:2:2

2 smoother=JACOBI, damp=0.7

3 coarse=UMFPACK

Listing 2.4: Typical 1-layer-ScaRC solver (operations on the local layer highlighted in grey).

Jacobi with a damping parameter of ω = 0.7. Note that in all descriptions of ScaRC files those

portions of the algorithm that work on the local layer are highlighted in grey.8 UMFPACK is

used for solving the global coarse grid problem.

A typical 2-layer-ScaRC solver can be seen in Listing 2.5. It replaces the elementary smoother

1 solver=MG, maxiter=128, tol=REL:1e-6, cycle=V:2:2

2 smoother=LOCAL, damp=0.8

3 solver=MG, maxiter=32, tol=REL:1e-1, cycle=F:1:1

4 smoother=JACOBI, damp=0.7

5 coarse=UMFPACK

6 coarse=UMFPACK

Listing 2.5: Typical 2-layer-ScaRC solver (operations on the local layer highlighted in grey).

8In FEAST, all elementary iterative schemes like Jacobi, Gauß-Seidel, etc. are working block-wise. So, when such

a scheme is used in ScaRC files, there is no need to explicitly mention this.



44 2 Multilevel Solvers for Scalar Elliptic Equations

by an indirect one acting on the local layer (‘smoother=LOCAL’) damped with ω = 0.8. This

indirect smoother is realised by a local multigrid scheme, performing at most 32 iterations,

gaining 1 digit and applying a F-cycle with 1 pre- and 1 postsmoothing step of Jacobi damped

with ω = 0.7. UMFPACK is employed for both the local and the global coarse grid problem.

Note, that the definition of the local solver (lines 3-5) formally equals that of the 1-layer-ScaRC

solver in Listing 2.4. When the local problems are to be solved by direct solvers, the 2-layer-

ScaRC has to be modified as shown in Listing 2.6.

1 solver=MG, maxiter=128, tol=REL:1e-6, cycle=V:2:2

2 smoother=LOCAL, damp=0.8

3 solver=UMFPACK

4 coarse=UMFPACK

Listing 2.6: 2-layer-ScaRC scheme with UMFPACK solving the local systems (highlighted in grey).

2.5.5.2 Short Notation of ScaRC Solvers

We now introduce a short notation that will be used in the following sections to identify and

distinguish different ScaRC solvers within the running text without being forced to always

provide or refer to a detailed ScaRC file description. The short notation adheres to the following

rules:

• As already mentioned in the previous section, we refer to the global multilevel algorithm

simply as global or outer multigrid. So, we can use the shortcut ‘MG’ which also applies

to the local multigrid schemes.

• The shortcut ‘MG’ is followed by the indication of the smoother and the coarse grid solver.

• The elementary iteration schemes Jacobi and ADITriGS are denoted with ‘JAC’ and ‘ADI’,

respectively. By definition, they act on the local layer.

• The application of a direct solver is denoted with a ‘D’.

• Switching between local and global layer is denoted with a double underscore ‘__’.

• Solver components on the same layer are separated by a single hyphen ‘-’.

• Optionally, solving parameters can be added in parentheses, separated by commas:

– number of iterations (‘2’)

– stopping criterion (‘1e-6’)

– damping parameter (‘0.7’)

– multigrid cycle and pre- and postsmoothing steps (‘V11’)
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Note that the number of iterations, stopping criterion and damping parameter are always

written in integer, exponent and decimal notation, respectively, as to uniquely distinguish

them.

• Singlegrid (Krylov) solvers (see Section 2.6.3) are abbreviated as follows:

– Richardson: ‘RICH’

– Conjugate Gradients: ‘CG’

– Stabilised Bi-conjugate gradients (BiCGstab): ‘BICG’

– (Flexible) Generalised Minimal Residuals (GMRes, FGMRes) without restart para-

meter: ‘GMRES’, ‘FGMRES’

– GMRes, FGMRes with restart parameter 20: ‘GMRES20’, ‘FGMRES20’

The ScaRC solvers in Listings 2.4, 2.5 and 2.6 thus read in minimalistic short notation:

MG__JAC__D

MG__MG-JAC-D__D

MG__D__D

In a more verbose short notation they exemplarily read:

MG(128,V22,0.7)__JAC__D

MG(1e-6,0.8)__MG(F11,1e-1,0.7)-JAC-D__D

MG(0.8)__D__D

2.6 ScaRC Revisited: Improvements and a Critical Review

Kilian [94] introduces the 2-layer-ScaRC approach and generally demonstrates its efficiency by

means of extensive numerical studies. Becker [16] realises the ‘Recursive Clustering’ aspect

(see Section 2.7.2) and examines the entire solution strategy from a hardware-oriented point of

view. In this thesis we want to concentrate on three different aspects:

1. In Sections 2.6.1 and 2.6.2 we take a closer look at the local multigrid solver.

2. In Section 2.6.3 we present possibilities to increase the robustness of ScaRC.

3. In Section 2.6.4 we critically compare 1-layer-ScaRC and 2-layer-ScaRC.

In view of the immense arithmetic costs of employing multigrid schemes on the local layer,

we especially want to discuss the question if and when the 2-layer-ScaRC approach is actually

beneficial.
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2.6.1 A Modified Multigrid Method for Solving Local Subdomain Problems

When in a 2-layer-ScaRC solver the local subproblems become too large for the application

of a direct solution method (cf. Section 2.5.3.2), then a multigrid solver has to be employed.

It acts on a hierarchy of local meshes based on the partition of the global mesh hierarchy (cf.

Section 2.3). Due to the regular tensor product property of the local submeshes, all multigrid

components can be implemented in a very hardware-efficient way (cf. Sections 2.1.1 and 2.5.3).

So, at first glance we seem to have perfect conditions at hand to apply conventional, yet highly

efficient multigrid solvers. Unfortunately, this is not the case as we will illustrate now with the

help of an example.

2.6.1.1 The Fundamental Problem

We consider the unitsquare introduced in Figure 2.5 on page 26 and assume that the finest grid

level is L = 3. We take a look at the central subdomain Ω̄
(5)
1 . Due to the concepts of mini-

mal overlap and extended Dirichlet boundary conditions described in Sections 2.4 and 2.5.2,

the local subproblem to be solved is actually defined over the extended subdomain Ω̂
(3)
5 (see

Figure 2.8a). When we want to apply a multigrid scheme to solve this problem, we need grids

(a) level 3 grid Ω̄(3);

extend. subdomain Ω̂
(3)
5 .

(b) level 2 grid Ω̄(2);

extend. subdomain Ω̂
(2)
5 .

(c) level 1 grid Ω̄(1);

extend. subdomain Ω̂
(1)
5 .

(d) Nonconforming grids

Ω̂
(1)
5 ,Ω̂

(2)
5 ,Ω̂

(3)
5 .

Figure 2.8: Example grid in three refinement levels with extended subdomains highlighted.

on level 2 and level 1. These are naturally given by the corresponding extended subdomains

Ω̂
(2)
5 and Ω̂

(1)
5 (see Figures 2.8b and 2.8c). Displaying the three extended subdomains on top

of each other as in Figure 2.8d reveals the basic problem: The size of the computational do-

main increases as the grid level decreases. Consequently, we are faced with a nonconforming

multigrid method.

The basic procedure of multigrid methods is to smooth the defect, restrict it to a coarser grid,

compute a defect correction there, and prolongate it back to update the iteration vector. The

problem is now, that this coarse grid correction is actually based on a different configuration

since it is computed on a larger domain. Hence, the coarse grid correction cannot be optimal

and might even be harmful for the convergence process. The higher the number of levels in the
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grid hierarchy, the greater the difference in size between the domain on the finest grid and that

on the coarsest grid will be. Consequently, we have to expect that the convergence behaviour

of the multigrid solver is not level independent, i. e., one of the most important properties of

typical multigrid methods is lost. Furthermore, standard multigrid theory does not fully apply

such that convergence cannot be guaranteed.

We will use the example grid of Figure 2.8 to show that these are not only theoretical consid-

erations, but that they indeed cause severe problems in practice. We solve the standard Poisson

equation, discretised by Q1 bilinear finite elements, with constant right hand side, −∆u = 1,

applying zero Dirichlet conditions on the left and the bottom boundary and zero Neumann

boundary conditions on the remaining two boundaries (see Figure 2.9a). We focus on the upper

(a) Geometric Neumann (‘N’) and

Dirichlet (‘D’) boundary

conditions.

(b) Top right subdomain with two

Neumann and two extended

Dirichlet (‘E’) boundaries.

(c) Reference configuration with

two Neumann and two (standard)

Dirichlet boundaries.

Figure 2.9: Test configurations.

right subdomain Ω9, which consequently exhibits two boundaries with zero Neumann condi-

tions and two boundaries with extended Dirichlet conditions (see Figure 2.9b). In order to

assess the negative influence of the extended Dirichlet boundary conditions, we will use a ref-

erence configuration for comparison in which these extended Dirichlet boundary conditions are

replaced by standard zero Dirichlet boundary conditions (see Figure 2.9c).

We use the solver depicted in Listing 2.7 to solve the local problems. The outer Richardson

scheme is just a ‘dummy’ needed to start the local multigrid solver on each subdomain. We also

consider F-cycles (MG(64,1e-6,F22,0.7)-JAC-D) and W-cycles (MG(64,1e-6,W22,0.7)-

JAC-D) (see Figure 2.10).

1 solver=RICH, maxiter=1, tol=IGNORE

2 prec=LOCAL, damp=1.0

3 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:2:2

4 smoother=JACOBI, damp=0.7

5 coarse=UMFPACK

Listing 2.7: Local solver MG(64,1e-6,V22,0.7)-JAC-D (highlighted in grey) as part of a ‘dummy’ global

Richardson scheme.
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Figure 2.10: Schematic representations of V-, F- and W-cycle multigrid over 5 levels. Black dots indicate

smoothing, while black squares stand for coarse grid solving.

To show the influence of the increasing domain size on coarser levels, we fix the maximal

grid level and vary the minimal level (on which the direct coarse grid solver is applied). We

exemplarily show the convergence rates of the local multigrid solvers for maximal grid level 8

and minimal level varying between 7 (2-grid method) and 1 (8-grid method). The convergence

rate is computed as

c :=
(‖rk‖
‖r0‖

)1/k

, (2.12)

where ‖r0‖ is the norm of the initial residual and ‖rk‖ is the residual norm after the k-th iter-

ation. If a method diverges (c > 1.0), we display the convergence rate after the last iteration,

where we cut off the graphs appropriately. Note that the y-axis (denoting the convergence rate)

of the following graphs is varied in order to better recognise and compare the features of the

different methods.

First of all, the results obtained on the reference configuration (see the graphs labelled ‘ref’ in

Figure 2.11) show that using 2 pre- and postsmoothing steps with Jacobi damped by ω = 0.7
is suitable – for both V- and F-cycle the convergence rates are below c = 0.1. Exchanging

the Dirichlet boundary conditions (Figure 2.9c) with extended Dirichlet boundary conditions

(Figure 2.9b) has dramatic consequences: The graph labelled ‘standard’ in Figure 2.11a shows

that the standard V-cycle 2-grid method still converges with a rate of about c = 0.5, though, but

as soon as 3 or more grid levels are used the method diverges. The slope of the curve clearly

shows that the divergence gets worse the more grid levels are used. Using the F-cycle we obtain

convergence at least up to 7 grid levels (minimal level 2), where the rates are already quite bad

in comparison to the reference computation. For 8 grid levels, however, also the F-cycle fails

(see Figure 2.11b).9

This simple example already shows that standard multigrid techniques are not suited to solve

subproblems with extended Dirichlet boundary conditions. Until now, FEAST applied some

heuristic to circumvent this deficiency of the local multigrid schemes: In grid transfer opera-

tions between grid levels, the values corresponding to subdomain boundaries were treated in

9The graphs labelled ‘ACGC’ are explained in Section 2.6.1.3.
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Figure 2.11: Convergence rates of local multigrid MG(64,1e-6,[V|F]22,0.7)-JAC-D (maximal grid level 8,

varying minimal level) on the subdomains in Figures 2.9c (‘ref’) and 2.9b (‘standard’, ‘heuristic’, ‘ACGC’).

a special way (see Kilian [94] and Becker [16]). Looking at the graphs labelled ‘heuristic’ in

Figure 2.11 one can see that this indeed helps to improve the convergence behaviour. At least,

the F-cycle now shows robust convergence for this configuration. The V-cycle, however, still

diverges when more than 5 grid levels are involved. Consequently, we have to state that the

V-cycle multigrid method with heuristically modified grid transfer operations is not suited to

solve subproblems with extended Dirichlet boundary conditions. It is mandatory to use the

F-cycle instead.

Unfortunately, for more complicated configurations the heuristic fails even when using the

F-cycle. To illustrate this we change the shape of the subdomains and introduce slight aniso-

tropies (see Figure 2.12). The difficulty of this configuration is not only caused by the higher

(a) level 3 grid Ω̄(3);

extend. subdomain Ω̂
(3)
8 .

(b) level 2 grid Ω̄(2);

extend. subdomain Ω̂
(2)
8 .

(c) level 1 grid Ω̄(1);

extend. subdomain Ω̂
(1)
8 .

(d) Nonconforming grids

Ω̂
(1)
8 ,Ω̂

(2)
8 ,Ω̂

(3)
8 .

Figure 2.12: Anisotropic grid in three refinement levels with extended top centre subdomain highlighted.

element aspect ratios, another issue is the varying size of neighbouring subdomains. We focus

on the top centre subdomain Ω8. Although the subdomain itself is square shaped and refined

in an isotropic way, anisotropies enter the subproblem through the minimal overlap. The corre-

sponding matrix entries depend on the size and the shape of the neighbouring subdomains. In

other words, although the subdomain Ω8 is perfectly regular, the extended subdomain Ω̂8 ac-
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tually exhibits an irregular refinement pattern. The negative effect of the increasing subdomain

sizes on coarser grid levels is correspondingly aggravated as Figure 2.12d illustrates.

We now examine the local multigrid method in this top centre subdomain Ω8. We perform the

same tests as for the previous configuration 2.9b, only omitting a reference computation which

yields similar results as the one in configuration 2.9c. This time we use ω = 0.6 as damping pa-

rameter for the local multigrid smoother. The graphs ‘standard’ and ‘heuristic’ in Figure 2.13a

show that the standard V-cycle multigrid and the V-cycle multigrid with modified grid transfer

operations fail even more drastically than in the isotropic configuration. Furthermore, Fig-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

7/8 6/8 5/8 4/8 3/8 2/8 1/8

c
o

n
v
. 

ra
te

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

min./max. level

standard
heuristic

ACGC

(a) V-cycle .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

7/8 6/8 5/8 4/8 3/8 2/8 1/8

c
o

n
v
. 

ra
te

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

min./max. level

standard
heuristic

ACGC

(b) F-cycle .

Figure 2.13: Convergence rates of local multigrid MG(64,1e-6,[V|F]22,0.6)-JAC-D (maximal grid level 8,

varying minimal level) on the top centre subdomain in Figure 2.12.

ure 2.13b shows that already 3 grid levels are enough to let the standard F-cycle multigrid

scheme diverge (on the isotropic configuration divergence occurred only for 8 grid levels). The

heuristic F-cycle multigrid, which converged robustly for the isotropic configuration, now be-

haves inconsistently: It surprisingly fails for problems with only few grid levels, but solves the

6-, 7- and 8-grid problems.

This behaviour changes for the local multigrid scheme acting on the top right subdomain (see

Figure 2.14). Now, the subdomain itself exhibits higher element aspect ratios of σ ≈ 4.67 (cf.

(a) level 3 grid Ω̄(3);

extended subdomain Ω̂
(3)
9 .

(b) level 2 grid Ω̄(2);

extended subdomain Ω̂
(2)
9 .

(c) level 1 grid Ω̄(1);

extended subdomain Ω̂
(1)
9 .

(d) Nonconforming grids

Ω̂
(1)
9 ,Ω̂

(2)
9 ,Ω̂

(3)
9 .

Figure 2.14: Anisotropic grid in three refinement levels with extended top right subdomain highlighted.
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equation (2.5) on page 28), which in general impairs the solution process. To show this we per-

form a reference computation corresponding to that in Figure 2.9c, i. e., with two Neumann- and

two Dirichlet boundaries, on the anisotropic subdomain. Comparing the resulting convergence

rates (graphs ‘ref’ in Figure 2.15) with those of the isotropic configuration (graphs ‘ref’ in Fig-

ure 2.11), clearly shows that this local problem is generally much more complicated to solve.

Figure 2.15a demonstrates that standard and heuristic V-cycle multigrid again fail completely.
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Figure 2.15: Convergence rates of local multigrid MG(64,1e-6,[V|F]22,0.6)-JAC-D on top right subdomain in

Figure 2.14 (maximal grid level 8, varying minimal level).

The standard and heuristic F-cycle multigrid schemes now behave somehow contrarily to the

case of the top centre subdomain (see Figure 2.12): They solve the problems exhibiting only

few grids, but fail for those with more than 4 and 5 grids, respectively (see Figure 2.15b).

We tried to ‘rescue’ the F-cycle multigrid solver by increasing the number of smoothing steps.

In order to let the F-cycle 8-grid solver converge on the top right subdomain (see Figure 2.14),

we had to invest 16 pre- and postsmoothing steps which is, of course, much too expensive for

the problem at hand. Furthermore, this number of smoothing steps was again insufficient to let

the 9-grid solver converge. So, we have to conclude that also the F-cycle multigrid scheme with

modified grid transfer operations is not suited to solve subproblems with extended Dirichlet

boundary conditions.

We tested other heuristics to improve the robustness of the local V- and F-cycle multigrid

method. For example, we used artificial zero Dirichlet boundary conditions on coarser grid

levels in order to ‘switch off’ the problematic terms coming from the increasing subdomain

size, or we moved grid points on coarser levels to align domain sizes with each other. However,

all these heuristics quite drastically violate standard multigrid methodology. Furthermore they

are inflexible, i. e., they do not allow adjustment to locally varying problem configurations, and

the implementation is intricate and requires non-standard modifications of basic finite element

routines (like matrix assembly, grid organisation, etc.). Finally, although these heuristics yield

partially better results than those of Kilian [94] and Becker [16], they are also not reliable: For

each heuristic we found configurations for which the solver failed.
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2.6.1.2 W-Cycle Multigrid

Kilian [94] and Becker [16] state that the F-cycle usually behaves similarly to the W-cycle.

Since the latter is more expensive, they neglect it and exclusively use the F-cycle for their

numerical tests. However, in view of the deficiencies of V- and F-cycle demonstrated in the

previous paragraphs, we have to repeat the experiments employing the W-cycle this time. The

results are presented in Figure 2.16 and have to be compared to those in Figures 2.11, 2.13

and 2.15, respectively. We can make some interesting observations. First, the reference com-
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(a) Isotropic configuration (compare with Figure 2.11).
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(compare with Figure 2.15).

Figure 2.16: Convergence rates of local W-cycle multigrid MG(64,1e-6,W22,0.6)-JAC-D (maximal grid level 8,

varying minimal level).

putations (graphs labelled ‘ref’) show that F- and W-cycle indeed behave similarly on default

configurations. However, when considering local problems with extended Dirichlet conditions,

we see a clear advantage of the W-cycle multigrid: It converges for all three configurations, also

where the F-cycle failed (graphs labelled ‘standard’). However, the convergence behaviour is

strangely oscillatory in the sense that the convergence rates are clearly better when the number

of grid levels is odd. This is some consequence of the extended Dirichlet boundary conditions,

which is not quite understood yet. We tested the standard W-cycle for many more configu-
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rations and grid levels and found these results confirmed: These strange oscillations occur to

some extent, but apart from that, the method yields robust convergence behaviour. The W-cycle

multigrid scheme with modified grid transfer operations (graphs labelled ‘heuristic’) seemingly

behaves quite robustly, too. However, the divergence of the 2-grid method on the top centre sub-

domain (see Figure 2.13) shows that this is not the case. Such ‘glitches’ also occurred for other

grid levels – rarely, though, but sufficiently often to actually render the method unreliable.

After all, the standard W-cycle scheme is the only one of all multigrid methods tested so far that

solves local problems with extended Dirichlet boundary conditions in a relatively robust way.

All other methods, i. e., the standard V- and F-cycle multigrid schemes and the V-, F- and W-

cycle multigrid schemes with modified grid transfer operations, are prone to diverge and thus

have to be rejected. This situation is quite unsatisfying: First, the standard W-cycle multigrid

method shows the described oscillations, and second, W-cycles are expensive. So, the question

is if there is a technique that on domains with extended Dirichlet boundary conditions either

restores robustness of standard V- and F-cycle multigrid schemes, or that at least removes the

oscillatory behaviour of the W-cycle multigrid scheme. The positive answer is given in the

following section.

2.6.1.3 Adaptive Coarse Grid Correction

The problem caused by the extended Dirichlet boundary conditions is that the coarse grid so-

lution obtained on level l− 1 is not an optimal correction for the solution vector on level l

since it actually has been computed on a larger domain. So, the idea is to adaptively damp the

coarse grid correction with the aim to sufficiently suppress its unfavourable parts. Therefore,

we do not add the full prolongated coarse grid correction vector, but determine an ‘optimal’

steplength for this update. This technique is also employed by other authors to increase the

robustness of multigrid methods. While Braess [30] uses it to alleviate locking effects (also

compare Section 3.2.2), Turek [158] and John and Tobiska [89] identify the technique as es-

sential for solving linear systems stemming from nonconforming finite element discretisations.

Reusken [134] examines theoretical aspects of steplength optimisation in multigrid methods.

We focus on the update of the iteration vector by the prolongated coarse grid correction within

the local multigrid method (compare equation (2.7d) on page 30 for the analogous global mul-

tilevel method and line 17 in Listing 2.1 on page 41). On each level l = 2, . . . ,L, we damp this

update with a steplength parameter α:

x(l)← x(l)+αP(l)x(l−1).

(We omit the subscripts denoting the subdomain here.) This damping parameter is chosen in

such a way that the updated vector x(l) minimises the energy norm

(x(l)−x∗)
T

A(l)(x(l)−x∗),
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where x∗ is the exact solution. When A(l) is symmetric this leads to

α =
c(l)

T
d(l)

c(l)
T

A(l)c(l)
, (2.13)

where c(l) := P(l)x(l−1) is the prolongated coarse grid correction and d(l) := b(l)−A(l)x(l) the

current defect. One could also optimise with respect to the defect norm, d(l)Td(l), but numerical

experiments (which we do not present here) showed that energy minimisation yields better

results (also compare Turek [158]).

We enhance the standard multigrid cycles by applying the described adaptive coarse grid correc-

tion (ACGC) and repeat the tests above. The graphs labelled ‘ACGC’ in Figures 2.11, 2.13, 2.15

and 2.16 make the success of this technique apparent. The V-cycle converges for all configu-

rations now, though it shows a dependence on the number of grid levels. The F-cycle behaves

even more robustly, only on the top centre subdomain a slight dependence on the number of grid

levels can be observed. The W-cycle converges smoothly now, the oscillations that are char-

acteristic for the standard W-cycle vanish completely. Furthermore, the W-cycle with ACGC

exhibits better convergence rates: On the isotropic configuration (Figure 2.16a) and on the top

centre subdomain of the anisotropic configuration (Figure 2.16b) the convergence rate is about

c = 0.2 while that of the standard W-cycle oscillates between c = 0.3 and c = 0.5 and between

c = 0.4 and c = 0.8, respectively. On the top right subdomain of the anisotropic configuration

(Figure 2.16c) the differences are not as crucial since the convergence behaviour in this subdo-

main is dominated by the high aspect ratios (and not by the influence of the extended Dirichlet

boundary conditions).

In summary, enhancing multigrid with adaptive coarse grid correction exactly achieves the

desired goals on domains with extended Dirichlet conditions: It prevents divergence of the

V- and F-cycle multigrid methods and it suppresses the oscillations of the standard W-cycle

multigrid method. Compared to the heuristics discussed in the previous sections, the adaptive

coarse grid correction has some further advantages:

• It is an established technique whose functionality has also been examined from the theo-

retical point of view [134].

• It can be implemented very easily with standard techniques, i. e., matrix vector multipli-

cations and scalar products with data that is readily available. Non-standard modifica-

tions of kernel routines like grid transfer or matrix assembly are not necessary.

• Its arithmetic costs (one matrix vector multiplication, two scalar products) are compara-

tively low (cf. page 58).

• The damping value is adaptively computed per subdomain. It will be small on subdo-

mains that strongly suffer from the extended Dirichlet boundary conditions, and it will

be close to 1.0 on those subdomains that are only mildly affected. This way the overall

solution process is not unnecessarily impaired in general.
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Above plots only show exemplary results for maximal multigrid level 8. For sake of complete-

ness, we now want to present the results for other grid levels, as well. Therefore, we vary

the minimal grid level between 1 and 5, and the maximal grid level between 6 and 10, such

that the solvers vary between 2-grid (minimal level 5, maximal level 6) and 10-grid methods

(minimal level 1, maximal level 10). Figure 2.17 shows the results for those methods that were

identified as robust: V-, F- and W-cycle multigrid with ACGC and standard W-cycle multigrid,

each of them applied to the three configurations used above. Reading the plots ‘horizontally’

shows how the convergence rates vary when the maximal multigrid level, i. e., the number

of unknowns, is increased. Reading the plots ‘vertically’ shows the influence of varying the

minimal multigrid level (with fixed number of unknowns). Overall, the plots confirm all the

observations made before. First of all, all tests converge. The V-cycle multigrid with ACGC

exhibits the strongest dependencies ‘in horizontal and vertical direction’, while the W-cycle

multigrid with ACGC behaves almost perfectly independent of maximal and minimal grid level

and yields the best convergence rates. The F-cycle multigrid with ACGC lies in between, with

respect to both, variations and absolute convergence rate values. The convergence rates of the

standard W-cycle multigrid (without ACGC) are worse than those of the F- and W-cycle multi-

grid with ACGC, but better than those of the V-cycle multigrid with ACGC. Additionally, the

unfavourable oscillations of the standard W-cycle consistently occur for all multigrid levels.

In summary, the W-cycle multigrid method with ACGC clearly shows the best convergence be-

haviour. However, this method also is the most expensive one in terms of number of floating

point operations (FLOPs) per iteration. We compare the four methods now in this regard. First,

we estimate the costs of the three multigrid cycles without ACGC. We denote the number of

unknowns in a subdomain on level l with n
(l)
loc (cf. Section 2.3).10 Due to the regular refine-

ment strategy we have n
(l)
loc = (2l + 1)2 = 4l−Ln

(L)
loc , where L denotes the maximal level (see

Section 2.3). The costs of one complete Jacobi smoothing step (including defect calculation,

application of the smoothing operator and update of the iteration vector) on level l sum up to

23n
(l)
loc, while for the additional defect calculation and grid transfer operations within the multi-

grid cycle about 24n
(l)
loc operations are necessary [16]. Assuming that the minimal grid level is

l = 1 and denoting the total number of smoothing steps with s, the arithmetic costs of complete

multigrid cycles on maximal level L > 2 are:

FLOPV(L,s) = FLOPUMF(n
(1)
loc)+(23s+24)n

(L)
loc

L

∑
l=2

4l−L,

FLOPF(L,s) = (L−1)FLOPUMF(n
(1)
loc)+(23s+24)n

(L)
loc

L

∑
l=2

(L− l +1)4l−L,

FLOPW(L,s) = 2L−2 FLOPUMF(n
(1)
loc)+(23s+24)n

(L)
loc

L

∑
l=2

2L−l4l−L.

(2.14)

10Due to the finite element discretisation with Q1 bilinear elements, the number of unknowns coincides with the

number of mesh nodes (disregarding Dirichlet boundary nodes).



56 2 Multilevel Solvers for Scalar Elliptic Equations

 0

 0.2

 0.4

 0.6

 0.8

 1

6 7 8 9 10

c
o

n
v
. 

ra
te

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

max. level

min. level 5
4
3
2
1

 0

 0.2

 0.4

 0.6

 0.8

 1

6 7 8 9 10

c
o

n
v
. 

ra
te

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

max. level

min. level 5
4
3
2
1

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

6 7 8 9 10

c
o

n
v
. 

ra
te

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

max. level

min. level 5
4
3
2
1

(a) V-cycle with ACGC.
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(b) F-cycle with ACGC.
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(c) W-cycle with ACGC.
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(d) standard W-cycle.

Figure 2.17: Different multigrid methods on isotropic configuration 2.9b (left), on top centre subdomain of

anisotropic configuration 2.12 (centre), and top right subdomain of anisotropic configuration 2.14 (right),

respectively. The x-axis shows the maximal multigrid level (6 – 10), and each of the five graphs represents a

minimal multigrid level (1 – 5). (Note the varied y-axis of the right hand plots.)

The term FLOPUMF(n) represents the number of FLOPs UMFPACK needs for forward and

backward substitution of a system with n unknowns.11 In the literature, this number is usually

specified as O(n2). In FEAST, however, the local systems always have the same special band

structure, i. e., independent of the equation and the grid shape, UMFPACK will always need

11The costs for the LU decomposition are neglected here since it is only performed once in the initialisation phase.
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about the same number of FLOPs on a given level. So, we can simply determine this number

by enquiring the UMFPACK statistics after solving. We did so and considered UMFPACK solves

on levels 1 to 10. Figure 2.18 shows the resulting number of FLOPs per degree of freedom

(DOF). Without knowing the exact functional dependency on the number of unknowns, we can

at least estimate FLOPUMF(n) = O(n logp(n)) with 1.5 < p < 2.
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Figure 2.18: Actual number of UMFPACK FLOPs per DOF on different multigrid levels and reference curves

log1.5(n) and log2.0(n). The number of unknowns on level l is given by n
(l)
loc = (2l +1)2.

We denote the sums at the end of the formulas (2.14) with ΣV(L),ΣF(L) and ΣW(L), respec-

tively. The factors L− l +1 and 2L−l for the F- and W-cycle become clear when looking at the

schematic representation of the cycles in Figure 2.10 on page 48. Neglecting the coarse grid

solver, these sums represent the factors by which the work performed on the finest level (here

(23s+24)n
(L)
loc ) has to be multiplied to obtain the costs of the complete cycle. Applying index

shifts and formulas for geometric series12, these sums can be computed precisely:

ΣV(L) =
L−2

∑
l=0

4−l =
1

3
(4−42−L)

L→∞−−−→ 4

3
,

ΣF(L) =
L−2

∑
l=0

4−l(l +1) = ΣV(L)+
1

9

(
(2−3L)42−L +4

) L→∞−−−→ 16

9
,

ΣW(L) =
L−2

∑
l=0

2−l = 2−22−L L→∞−−−→ 2.

We see that the W-cycle is about 1.5 (1.125) times more expensive than the V-cycle (F-cycle)

when considering mere FLOP counts. The addition of UMFPACK FLOPs (see equation (2.14)

and Figure 2.18) does not significantly change these ratios. However, for the preparation of

UMFPACK solves, RHS and solution vectors have to be converted between FEAST’s and UMF-

PACK’s format. Consequently, since UMFPACK is called 2L−2 times in case of the W-cycle, in

practice one has to expect some degradation of performance compared to the V-cycle (F-cycle)

where UMFPACK is only called once (L−1 times).

12The two formulas are ∑n
k=0 qk = 1−qn+1

1−q and ∑n
k=0 kqk =

nqn+2−(n+1)qn+1+q

(1−q)2 for q 6= 1.
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We now consider the additional costs for the adaptive coarse grid correction. In detail, after each

prolongation from level l−1 to level l one matrix vector multiplication (17n
(l)
loc FLOPs) and two

scalar products (4n
(l)
loc FLOPs) have to be performed (cf. equation (2.13)). This means, that the

factor (23s+24)n
(L)
loc in formulas (2.14) increases to (23s+45)n

(L)
loc . Figure 2.19 compares the

arithmetic costs for the four types of multigrid cycles, i. e., V-, F- and W-cycle with ACGC

and W-cycle without ACGC. The plots display the number of FLOPs per DOF needed for a
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Figure 2.19: Number of FLOPs per DOF for one multigrid cycle with Jacobi smoothing.

complete cycle performing 2+2 or 8+8 Jacobi smoothing steps with minimal level 1. One can

see that despite the additional work for the computation of the optimal step length, the V-cycle

with ACGC is less costly than the W-cycle without ACGC. When more work is invested into the

smoothing process, then the share of the step length computation in the total costs decreases:

When applying only 2+2 Jacobi smoothing steps (Figure 2.19a), the F-cycle with ACGC is

more expensive than the W-cycle without ACGC, though, but when the number of smoothing

steps is increased to 8+8 (Figure 2.19b), this is the other way around. A similar effect has to be

expected when instead of Jacobi a more expensive smoother like ADITriGS is used.

There is obviously a relation between costs per cycle and convergence behaviour. The W-cycle

with ACGC yields the best convergence rates, but is also the most expensive method. So, we

consider the total arithmetic efficiency of the four multigrid methods now. We use FEAST’s

built-in mechanism for FLOP counting to get the exact number of FLOPs that the four methods

need to obtain the desired 6 digits in the above configurations. The total arithmetic efficiency

in terms of FLOPs is then defined by

total arithmetic efficiency =− #FLOPs

#DOF×#iter× log10(c)
, (2.15)

i. e., the number of FLOPs scaled with the number of DOF and with the digits the iteration

actually gained (cf. equation (2.12) on page 48). So, the total arithmetic efficiency tells how
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many FLOPs are needed per DOF to gain one digit and, hence, represents a suitable measure

to compare the arithmetic costs of different solution algorithms.13

Figure 2.20 shows that the costs of the V-cycle with ACGC clearly rise with the increasing

multigrid level. The results that are out of range of Figure 2.20c are 12419 (level 8), 20570
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(a) Isotropic configuration.
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(b) Anisotropic configuration, top

centre subdomain.
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Figure 2.20: Total arithmetic efficiency of the methods MG(1024,1e-6,[V|F|W]22,[0.6|0.7])-JAC-D (with or

without ACGC) to solve the local systems, minimal level 1.

(level 9) and 35096 (level 10) FLOPs, respectively. So, it can clearly not compete with the

three other methods whose costs show no or only mild dependence on the number of unknowns.

The W-cycle with ACGC exhibits the smallest dependencies, though, but it is not always the

least expensive one. Especially on the top right subdomain where the convergence behaviour is

dominated by the high element aspect ratios, the F-cycle with ACGC and the W-cycle without

ACGC are less expensive.

These examples already show that it is hardly possible to give a general answer to the question

which of the methods is best suited to solve local problems with extended Dirichlet boundary

conditions. In terms of robustness, the W-cycle with ACGC seems to be clearly the best choice,

but it is not always the best candidate in terms of total costs.

Local Multigrid Schemes within Global Solves

To better assess the presented local methods, we will now actually examine them in their role

as local smoothers in a global 2-layer-ScaRC solver. Until now, we rather considered them as

‘stand-alone’ solvers in order to compare their general convergence behaviour, neglecting the

global problem. Unfortunately, we cannot simply transfer the obtained results to the case where

the local solvers are used as preconditioners in a 2-layer-ScaRC scheme: Here, the local solvers

are applied repeatedly to local systems with possibly varying degree of difficulty, and these

13One has to be aware, however, that the amount of arithmetic work does not directly translate into corresponding

runtimes, not even for serial computations on a single commodity processor. Different hardware characteristics,

especially the size of the cache, influence the actual runtimes. For example, operations on smaller grid levels, for

which the necessary data completely fits into the cache, potentially perform significantly faster since expensive

memory access is minimised. (See, for example, Becker [16] for more detailed hardware-specific discussions

and examples.) In Section 4.2.7.4 we will also introduce the total runtime efficiency, for which the number of

FLOPs in equation (2.15) is replaced by the runtime in microseconds.
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systems are usually not solved as accurately as it is done in the previous tests. Hence, we now

solve the isotropic configuration depicted in Figure 2.9 and the anisotropic one (Figure 2.12)

globally with a 2-layer-ScaRC solver. We use a global V-cycle multigrid with 1 pre- and 1

1 solver=MG, maxiter=32, tol=REL:1e-6, cycle=V:1:1

2 smoother=LOCAL, damp=0.7

3 solver=MG, maxiter=64, tol=REL:1e-1, cycle=V:2:2, cgcdamp=ADAP

4 smoother=JACOBI, damp=0.7

5 coarse=UMFPACK

6 coarse=UMFPACK

Listing 2.8: 2-layer-ScaRC solver MG(1e-6,V11)__MG(64,1e-1,V22,0.7)-JAC-D__D with adaptive damping of

the coarse grid correction ‘cgcdamp=ADAP’ (operations on the local layer highlighted in grey).

postsmoothing step and damping ω = 0.7. As local solvers we use the four multigrid schemes

examined above, with the only difference that we now gain only 1 digit. Listing 2.8 exemplarily

shows the version with a local V-cycle with ACGC.

Figure 2.21 displays the total arithmetic efficiency of the four schemes to solve the global sys-

tems on varying maximal level and fixed minimal level 1. On the isotropic configuration all
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Figure 2.21: Total arithmetic efficiency of the 2-layer-ScaRC solver in Listing 2.8 to solve the global systems,

minimal level 1.

variants with ACGC need 6 or 7 global iterations to achieve the desired accuracy, while the

number of global iterations for the standard W-cycle varies between 7 and 9. On the anisotro-

pic configuration all variants need 11 or 12 iterations. Figure 2.21a shows that on the isotropic

configuration the standard W-cycle is clearly the most expensive one and shows a certain de-

gree of irregularity and dependency with regard to the maximal grid level. F- and W-cycle with

ACGC behave similarly to each other, where the F-cycle is consistently less expensive. Both

show a mild dependency on the grid level and behave quite regularly. The V-cycle with ACGC,

however, shows a stronger level dependency, such that it is cheaper for levels 6 – 8, though, but

already more expensive than the F-cycle with ACGC on levels 9 and 10, and even nearly as ex-

pensive as the W-cycle with ACGC on level 10. On the anisotropic configuration (Figure 2.21b)

the behaviour is similar. Here, the V-cycle also shows the strongest level dependency and is the
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cheapest method on levels 6 – 9. On level 10, however, it is more expensive than the F-cycle

with ACGC and than the standard W-cycle. The W-cycle with ACGC is the most expensive

method on the anisotropic configuration. The standard W-cycle behaves surprisingly well, but

it also shows a slight level dependency. F- and W-cycle with ACGC behave slightly irregularly,

though, but in total the costs per DOF seem not to rise significantly for increasing grid levels

(cf. level 6 and level 10).

The most remarkable observation, however, is that the costs of the global solution process

are not consistent with the results we obtained for the local solvers. In view of the immense

costs of the local V-cycle multigrid with ACGC (cf. Figure 2.20), it is especially surprising

how comparatively well it performs, when the whole global solution process is considered.

So, it is obvious that the previous results for local solvers can not simply be transferred to the

global situation. In order to better understand this circumstance, we now examine how the

local solvers behave in the course of the global iteration. We use a global V-cycle multigrid

performing 1 pre- and 1 postsmoothing step (see Listing 2.8), i. e., in each global iteration

the local solvers are called two times per level, once in the restriction phase and once in the

prolongation phase. In Figure 2.22 we show the corresponding convergence rates for the local

solvers in the top right subdomain of the isotropic configuration (Figure 2.22a) and the top

centre and top right subdomain of the anisotropic configuration (Figures 2.22b and 2.22c). For

the sake of a clearer representation, we restrict ourselves to the convergence rates of maximum

level 10 and minimum level 1.

Looking at the three plots, the discrepancy between local and global results becomes apparent

immediately: The convergence behaviour of the very first local solves (presmoothing in the

first global iteration) is – in most cases – significantly worse than that for the following solves.

Especially the difference of the convergence rates in the presmoothing phase (denoted with

‘\’) and the postsmoothing phase (denoted with ‘/’) of the first global iteration is remarkable:

The convergence rate of the V-cycle with ACGC in the isotropic configuration, for instance,

improves from c ≈ 0.9 for presmoothing to c ≈ 0.05 for postsmoothing (see Figure 2.22a).

While the other local methods perform clearly better in the first global presmoothing step (c≈
0.4 for F- and W-cycle with ACGC, c≈ 0.6 for standard W-cycle), their convergence rate in the

first postsmoothing phase is similar to (or even slightly worse than) that of the V-cycle.

We observed the phenomenon, that the first local solves are much more difficult, on all subdo-

mains and in all computations we performed. In this sense, our detailed tests of local solvers

(see Figures 2.11, 2.13, 2.15, 2.16, 2.17 and 2.20) are not representative for the overall solution

process. However, solving the local systems in the first global presmoothing step in a robust

and efficient way is a prerequisite for the success of the overall solution method. Hence, the

local solver tests remain valid and still make sense, since they cover exactly this ‘worst case’

configuration.

We can observe further aspects in Figure 2.22:

• In the isotropic configuration (Figure 2.22a) we see a regular pattern: The local solver

performance in the global presmoothing phase is clearly worse than in the postsmoothing
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 0

 0.2

 0.4

 0.6

 0.8

 1

\ 
1

/ \ 
2

/ \ 
3

/ \ 
4

/ \ 
5

/ \ 
6

/ \ 
7

/ \ 
8

/ \ 
9

/ \ 
10

/ \ 
11

/

c
o

n
v
. 

ra
te

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

global it.

V + ACGC
F + ACGC

W + ACGC
W

(b) Anisotropic configuration, top centre subdomain.

 0

 0.2

 0.4

 0.6

 0.8

 1

\ 
1

/ \ 
2

/ \ 
3

/ \ 
4

/ \ 
5

/ \ 
6

/ \ 
7

/ \ 
8

/ \ 
9

/ \ 
10

/ \ 
11

/

c
o

n
v
. 

ra
te

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

global it.

V + ACGC
F + ACGC

W + ACGC
W

(c) Anisotropic configuration, top right subdomain.

Figure 2.22: Convergence rates of local multigrid schemes on level 10 in the course of the global iteration. ‘\’

denotes the local solve in the restriction phase of the global multigrid, ‘/ ’ the local solve in the prolongation phase.

phase. In the anisotropic configuration (Figures 2.22b and 2.22c) this is no longer true in

general. It partially even seems to be the other way around.

• The standard W-cycle shows strong irregularities on the top centre subdomain of the

anisotropic configuration (Figure 2.22b).
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• Apart from the standard W-cycle the local convergence rates on the top centre subdomain

of the anisotropic configuration (Figure 2.22b) are on average even better than those of

the isotropic configuration (Figure 2.22a).

• The convergence behaviour on the top right subdomain of the anisotropic configuration

(Figure 2.22c) is dominated by the high element aspect ratios. That is why the con-

vergence rates of all four methods group around c ≈ 0.8 in later global iterations. It is

interesting that here the V-cycle with ACGC and the standard W-cycle are partially better

than the F- and W-cycle with ACGC.

Currently, we are not able to explain every feature of the convergence curves in Figure 2.22.

In summary, however, the plots show that the performance of the local multigrid methods on

subdomains with extended Dirichlet boundary conditions crucially depends on the given right

hand side data. The influence of the extended Dirichlet boundary conditions decreases due to

the residuals getting smaller and smoother in the course of the global iteration.

2.6.1.4 Extended Dirichlet Boundary Conditions with ADITriGS

In order to show that above deficiencies of (standard) multigrid grid schemes are not due to

the simple Jacobi smoother, we will now examine ADITriGS. We use the solver scheme de-

picted in Listing 2.9, where the global Richardson scheme is again just a dummy to call the

local solvers. We perform two pre- and two postsmoothing steps, the first smoothing step being

1 solver=RICH, maxiter=1, tol=IGNORE

2 prec=LOCAL, damp=1.0

3 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:2:2

4 smoother=ADITRIGS, damp=1.0

5 coarse=UMFPACK

Listing 2.9: Local solver MG(64,1e-6,V22)-ADI-D (highlighted in grey) as part of a ‘dummy’ global Richardson

scheme.

TriGS, respectively, and the second one MTriGS (cf. Section 2.5.3.1). We also consider F- and

W-cycles. To justify the usage of ADITriGS we take the grid in Figure 2.14 on page 50 and

increase the anisotropies (see Figure 2.23). We only examine the top right subdomain, which

Figure 2.23: Anisotropic grid used for the ADITriGS tests.
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exhibits two Neumann boundaries, two extended Dirichlet boundaries and element aspect ra-

tios of σ = 18. We perform reference computations on this subdomain (denoted with ‘ref’ in

the following plots) where we exchange the two extended Dirichlet boundaries with standard

Dirichlet boundaries (cf. Figure 2.9c on page 47).

Figure 2.24 exemplarily shows level 8 computations with varying minimal level. One can see
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Figure 2.24: Convergence rates of local multigrid MG(64,1e-6,[V|F]22)-ADI-D on top right subdomain in

Figure 2.23 (maximal grid level 8, varying minimal level).

that the standard V-cycle and the V-cycle with modified grid transfer operations (graphs la-

belled ‘standard’and ‘heuristic’, respectively) fail when 4 or more grid levels are involved (see

Figure 2.24a). The corresponding F-cycles, however, work well (see Figure 2.24b), although

they show some strange dependency on the number of grid levels. For both cycles, the ACGC

version clearly yields the best results, both in terms of absolute convergence rate and in terms

of independency of the number of grid levels. In the case of Jacobi, the corresponding config-

uration was already sufficient to let the standard F-cycle fail (cf. Figure 2.15b on page 51). In

case of ADITriGS, however, level 8 and also level 9 still perform well. Only on level 10, the

method suddenly diverges when 6 or more grid levels are involved (see Figure 2.25a).

The F-cycle multigrid with modified grid transfer operations using ADITriGS as smoother per-

forms well on all levels. It was also successful in other configurations we tested. Unfortunately,

this robustness seems to be confined to the simple case of the standard Poisson operator −∆u

we used for our tests so far. In Section 4.2.4 we will see that the scalar operators arising from

the elasticity problem are elliptic, though, but not isotropic. They have the form−a∂xxu−b∂yyu

with varying degree of anisotropy a
b
. We repeated the previous tests with a = 10 and b = 1 (in-

stead of a = b = 1). Figure 2.25b shows that now also the F-cycle with modified grid transfer

operations fails on level 9 when 5 or more grid levels are used. (For maximal level 8 the method

still converges robustly for all numbers of grid levels.)

So, we have to conclude that the F-cycle multigrid with modified grid transfer operations using

ADITriGS as smoother may be robust for the standard Poisson operator (which was exclusively

used in the numerical studies of Kilian [94] and Becker [16]), but it is clearly not robust in case
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(a) Isotropic operator −∆u (maximal grid level

10, varying minimal level).
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(maximal grid level 9, varying minimal level).

Figure 2.25: Convergence rates of local F-cycle multigrid MG(64,1e-6,F22)-ADI-D on top right subdomain in

Figure 2.23.

of the operators that arise, for instance, in the context of solid mechanics. The F-cycle with

ACGC, however, converges robustly and independently of the number of grid levels also in

case of such more complicated operators. The V-cycle with ACGC also solves these problems

robustly, though, but it exhibits some dependency on the number of grid levels (results not

presented here).

Figure 2.26 shows the convergence behaviour of the different W-cycles for the isotropic and the

anisotropic operator. We see that both the standard and the heuristic W-cycle converge for all
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Figure 2.26: Convergence rates of local W-cycle multigrid MG(64,1e-6,W22)-ADI-D on top right subdomain in

Figure 2.23 (maximal grid level 8, varying minimal level).

numbers of grid levels, though, but they show a similar oscillating behaviour as in the Jacobi

case (cf. Figure 2.16 on page 52). The W-cycle with ACGC again shows the best convergence

behaviour. The results on level 9 and 10 (not presented here) are qualitatively equal to those of

level 8.
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Local Multigrid Schemes within Global Solves

Just like in the Jacobi case, it is not feasible to directly deduce the global solver costs from

the local solver results. So, we treat the global problem now with the solver depicted in List-

ing 2.10. Due to the high macro anisotropies in the grid, we perform a global F-cycle with 2

1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=F:2:2

2 smoother=LOCAL, damp=0.7

3 solver=MG, maxiter=64, tol=REL:1e-1, cycle=V:2:2, cgcdamp=ADAP

4 smoother=ADITRIGS, damp=1.0

5 coarse=UMFPACK

6 coarse=UMFPACK

Listing 2.10: 2-layer-ScaRC solver MG(1e-6,F22)__MG(64,1e-1,V22)-ADI-D__D, here with adaptive damping

of the coarse grid correction (operations on the local layer highlighted in grey).

pre- and 2 postsmoothing steps. Figure 2.27 shows the total arithmetic efficiency of the five

methods that behaved robustly in the previous tests. We fix the minimal level 1 and vary the

maximal level. Figure 2.27a displays the results for the isotropic operator and Figure 2.27b

those of the anisotropic one.14 We can see that the V-cycle with ACGC is clearly the cheapest
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Figure 2.27: Total arithmetic efficiency of the 2-layer-ScaRC solver in Listing 2.10 to solve the global systems,

minimal level 1.

method and the W-cycle with ACGC the most expensive one. The other three methods lie in

between where the F-cycle with ACGC and the standard W-cycle are quite close to each other

and in general slightly less costly than the W-cycle with modified grid transfer operations. It

is interesting to observe that the total arithmetic efficiency of the V-cycle with ACGC does not

deteriorate with increasing grid level as it was the case with Jacobi as smoother (cf. Figure 2.20

on page 59). Consequently, the corresponding global 2-layer-ScaRC solver is the least expen-

sive one over all grid levels. With Jacobi as smoother this was only the case on the smaller grid

levels (cf. Figure 2.21 on page 60).

14In the example at hand, the number of global iterations decreases with increasing multigrid level, which explains

the negative slope of the curves.
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2.6.1.5 Varying Local Cycles

Considering the phenomenon that the first local solves seem to be much more difficult than all

the following ones, we want to briefly discuss a simple, yet obvious strategy:

In the first global iteration, use W-cycle with ACGC for the local multigrid. Then, switch to

local V-cycle multigrid with ACGC.

So, the first (difficult) local solves are robustly treated with the expensive W-cycle, which is,

however, oversized for the following (easier) solves. These can be performed much more effi-

ciently with the inexpensive V-cycle. To show the success of this strategy we repeat the tests

above (isotropic Poisson operator, grids depicted in Figure 2.9a on page 47 and Figure 2.12

on page 49). Figure 2.28 shows the total arithmetic efficiency of the global solver with Jacobi

smoothing. It contains the same results as Figure 2.21 on page 60, extended with the results for
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Figure 2.28: Total arithmetic efficiency of the 2-layer-ScaRC solver in Listing 2.8 to solve the global systems,

minimal level 1.

the new strategy (denoted with ‘W/V + ACGC’). As expected, the new strategy leads to the most

efficient solver. The strong level dependency of the V-cycle with ACGC is clearly weakened

and now comparable to that of the other methods. This especially shows that the level depen-

dency of the V-cycle with ACGC is mainly caused by its bad performance within the very first

local solves.

Figure 2.29 is the corresponding extension of Figure 2.27 for ADITriGS smoothing. Here, we

only compare with the V-cycle with ACGC, which was the least expensive one for these tests.

We can observe, that here the effect of the new strategy is not so drastic as in the case of Jacobi

smoothing. Only on level 10, the global solution scheme can actually benefit from the strategy

and outperform the pure V-cycle with ACGC. This is due to the fact that the overall problem

needs comparatively many iterations such that the impact of the local solves in the very first

global iteration is not as large as in the Jacobi tests.

The idea of varying the local multigrid cycle in the course of the global iteration is promising,

though, but the question is how it behaves in other situations. For example, in the next sections
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Figure 2.29: Total arithmetic efficiency of the 2-layer-ScaRC solver in Listing 2.10 to solve the global systems,

minimal level 1.

we will examine the global multigrid scheme not as a solver but as a preconditioner for an outer

Krylov solver. It is not clear how the degree of difficulty of the local multigrid solves varies

then. The situation is even more unclear when we use ScaRC solvers as preconditioner for

treating multivariate (possibly nonlinear) solid mechanical problems (see Chapters 4 and 5). Do

we then still have use the W-cycle only in the very first local solves? Or in the first local solves

per Krylov-step, or per iteration of the CSM solver or per nonlinear iteration, respectively?

Another question is how the initial conditions (boundary conditions, RHS, etc.) influence the

local multigrid solvers.

Especially in view of these open questions, there are many further studies necessary to sat-

isfyingly assess the strategy of varying the local multigrid cycles in the course of the global

iteration. Such studies, however, are beyond the scope of this thesis and will be part of future

work. As long as the effect of the varying performance of the local solves is not fully under-

stood, we will ignore this strategy and stick to the non-varying local multigrid cycles examined

in the previous sections.

2.6.1.6 Summary

We want to briefly summarise the obtained results about the performance of multigrid solvers

on subdomains with extended Dirichlet boundary conditions:

• The standard V- and F-cycle and the V-cycle with modified grid transfer operations are

generally unsuited.

• The F-cycle with modified grid transfer operations is not suited in connection with the

Jacobi smoother. When using ADITriGS, the method still fails for more complicated

operators as they arise, for instance, in solid mechanics.
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• The W-cycle with modified grid transfer operations does not diverge in connection with

ADITriGS, but it is unreliable when using Jacobi.

• The standard W-cycle converges in all cases, though, but it also shows strange oscillations

depending on the number of grid levels.

• V-, F- and W-cycle with ACGC converge in all cases.

• The performance of the V-cycle with ACGC and Jacobi as smoother deteriorates with

increasing grid level. With ADITriGS, however, this dependency is weakened or even

vanishes completely.

• In terms of total arithmetic efficiency, the F-cycle with ACGC seems to be the best choice

in case Jacobi is used as smoother. In case of ADITriGS, the V-cycle with ACGC is clearly

favourable.

Especially motivated by the last item in this list, we will from now on stick to the following

rules for the local multigrid scheme within a 2-layer-ScaRC solver:

1. In case of Jacobi as elementary smoother, we use the F-cycle with ACGC.

2. In case of ADITriGS as elementary smoother, we use the V-cycle with ACGC.

Of course, there are configurations where one of the other local schemes will perform better

(e. g., the standard W-cycle in Figure 2.21b). But overviewing the results we obtained on the

different configurations suggests that the two rules are a good compromise. In forthcoming

numerical tests we will examine further aspects of multilevel solvers. Sticking to the two rules

above greatly helps to keep the amount of possible parameter combinations manageable and

presentable.

2.6.2 Truncation of Multigrid Cycles

All the computations we perform are based on a macro decomposition of the domain which is

then regularly refined several times (cf. Section 2.3). Multigrid solvers act on this hierarchy of

nested grids. If possible, the size of the coarsest grid problem should be small enough such that

its solution (by UMFPACK or some Krylov solver) does not dominate the overall solution time.

Usually, the level 1 grid represents the coarsest grid in the multigrid hierarchy. However, when

the corresponding coarse grid problem is very small, FEAST offers the possibility to define

the grid on a higher level to be the coarsest grid in the hierarchy, such that the coarser grids

are completely ignored during the computation. We used this functionality in the tests of the

previous section where we varied the minimal multigrid level.

In domains that consist of many subdomains, however, this functionality is not very useful. The

smallest possible problem size per subdomain is n
(1)
loc = 9 unknowns (level 1 grid consisting of

four elements), i. e., the size of a global coarse grid problem consisting of M×M subdomains

is given by n(1) = (2M + 1)2. When the grid consists of, for instance, M×M = 642 = 4096
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subdomains, the coarse grid system already has a size of n(1) = 1292 = 16641 unknowns, which

is clearly efficiently solvable with a direct solver. Declaring the level 2 grid as coarsest grid is,

however, already questionable since the direct solver would then have to deal with a system size

of n(2) = 2572 = 66049 unknowns. This means, depending on the number of subdomains one

may be forced to actually go down to level 1 in order to efficiently solve the resulting coarse

grid problem.

Unfortunately, this means that in a 2-layer-ScaRC solver also the local multigrid schemes go

down to the level 1 grid, where then coarse grid problems consisting of 9 unknowns have to be

solved. Treating such tiny amounts of data clearly results in an unfavourable ratio between the

time that is actually spent on arithmetic work and the time that is spent on data organisation

and code instructions like function calls. Hence, it makes sense to cut off the restriction process

of the local multigrid solvers already on a higher grid level, a technique we call truncation

of the local multigrid cycle. In Figure 2.30 we schematically depict global 5-grid V-cycles

(solid lines) that use local V-cycle multigrid for smoothing (dashed lines). In the top figure,

Figure 2.30: Schematic representation of truncation of local multigrid cycles: No truncation (top figure),

truncation on level 3 (bottom left), truncation on level 5 (bottom right). Solid lines represent the global V-cycle,

dashed lines local V-cycles. The black square stands for the solution of the global coarse grid problem on level 1,

while white squares represent the local coarse grid solves. White circles indicate local smoothing (Jacobi or

ADITriGS).

no truncation is applied (the truncation level is 1, respectively), such that each local V-cycle

goes down to level 1 and applies the coarse grid solver there (white squares). In the bottom left

figure, the truncation level is 3. Consequently, when the local smoothers are called on levels

lower than or equal to 3, no local multigrid cycle is applied, but the solver which usually works

as coarse grid solver of the local multigrid is started directly. This especially means, that local

LU decompositions for direct solution methods do not only have to be prepared for level 3, but

also for level 2. In the extreme case, the truncation level equals the maximal level (bottom right

figure). Then, actually no local multigrid is performed but all local systems are directly solved

by the corresponding coarse grid solver. This method then exactly represents what is usually

referred to as classical multilevel Schwarz method, in which the local systems are treated by

singlegrid solvers like UMFPACK or Krylov methods (cf. Section 2.5.3.2). Instead of setting
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the truncation level equal to the maximal level, one could also directly choose, e. g., UMFPACK

for local solving as depicted in Listing 2.6 on page 44.

Truncating local multigrid cycles on some level l, 1 < l 6 L, can have further advantages:

The convergence behaviour of the multigrid method usually improves since the problem on

level l is already solved exactly instead of only approximately by means of a multigrid cycle

starting on this level. This improvement is expected to be significant when the multigrid solver

is not optimally suited for the problem at hand, e. g., when on an anisotropic grid Jacobi is

used as smoother. Furthermore, by omitting the coarsest grid levels 1, . . . , l− 1, the special

problem of extended Dirichlet boundary conditions, i. e., the increasing subdomain sizes on

coarser grid levels (see previous section), is automatically alleviated. On the other hand, using

UMFPACK as coarse grid solver on finer grid levels bears the already discussed disadvantages,

i. e., the increasing storage requirements (see Section 2.5.3.2) and the additional time needed

for computing the LU decompositions and for converting data formats (see page 57). We will

perform some comparative tests in Section 2.6.4 that show the possible benefit of truncating

multigrid cycles.

2.6.3 Using Krylov Methods to enhance ScaRC

The idea to improve multigrid performance by employing Krylov methods has been applied by

many authors (see, e. g., Elman et al. [64] and the references therein). We distinguish between

two variants: On the one hand, multigrid as preconditioner of a Krylov method, and, on the

other hand, a Krylov method as smoother of multigrid.15

2.6.3.1 Multigrid as Preconditioner

The most common way to combine multigrid and Krylov schemes is to use multigrid not as

stand-alone solver but as preconditioner in an outer Krylov iteration. This may help to improve

the robustness, especially when the multigrid iteration is not guaranteed to be a convergent

process. However, when the multigrid method itself is already robust and efficient, then the

embedding into an outer Krylov method usually does not significantly improve the overall per-

formance. Kilian [94] and Becker [16] successfully apply this technique to improve ScaRC’s

convergence behaviour on certain configurations. They usually perform one ScaRC iteration to

precondition an outer CG or BiCGstab method.

To illustrate the mechanism, we consider a standard 2-layer-ScaRC solver (see Listing 2.11)

and embed it as preconditioner into an outer BiCGstab solver (see Listing 2.12). The term

‘prec=GLOBAL’ indicates that a solver working on the global layer is used as preconditioner.

15Pflaum [128] introduces another approach to combine multigrid and Krylov techniques: The orthogonalisation

procedure is applied to the space of restricted residuals, i. e., on each level an orthogonal correction direction

is computed. This technique is shown to be superior for some Poisson problems with jumping coefficients.

However, in this thesis we do not consider this approach.
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1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:4:4

2 smoother=LOCAL, damp=0.8

3 solver=MG, maxiter=64, tol=REL:5e-1, cycle=F:4:4, cgcdamp=ADAP

4 smoother=JACOBI, damp=0.7

5 coarse=UMFPACK

6 coarse=UMFPACK

Listing 2.11: Standard 2-layer-ScaRC solver MG__MG-JAC-D__D (operations on the local layer highlighted in

grey).

1 solver=BICG, maxiter=64, tol=REL:1e-6

2 prec=GLOBAL, damp=1.0

3 solver=MG, maxiter=1, tol=IGNORE, cycle=V:4:4

4 smoother=LOCAL, damp=0.8

5 solver=MG, maxiter=64, tol=REL:5e-1, cycle=F:4:4, cgcdamp=ADAP

6 smoother=JACOBI, damp=0.7

7 coarse=UMFPACK

8 coarse=UMFPACK

Listing 2.12: Standard 2-layer-ScaRC as preconditioner of BiCGstab (BICG-MG__MG-JAC-D__D).

The notation ‘tol=IGNORE’ means that no convergence control is necessary since a fixed num-

ber of iterations is performed. Applying the rules listed in Section 2.5.5.2, the solver in List-

ing 2.12 reads in short notation

BICG(1e-6)-MG(1,V44,0.8)__MG(F44,5e-1,0.7)-JAC-D__D,

and in minimalistic notation

BICG-MG__MG-JAC-D__D.

Note that BiCGstab and the outer MG are acting on the same layer and are thus separated by a

single hyphen ‘-’ instead of two underscores.

Until now, the strategy to use multigrid not as solver, but as preconditioner was restricted to the

global solver in FEAST. However, it is feasible and makes sense to apply the same idea also to

the local multigrid scheme within a 2-layer-ScaRC solver. We implemented this feature such

that FEAST now also offers solver definitions as the one in Listing 2.13.

1 solver=BICG, maxiter=64, tol=REL:1e-6

2 prec=GLOBAL, damp=1.0

3 solver=MG, maxiter=1, tol=IGNORE, cycle=V:4:4

4 smoother=LOCAL, damp=0.8

5 solver=BICG, maxiter=64, tol=REL:5e-1

6 prec=LOCAL, damp=1.0

7 solver=MG, maxiter=1, tol=IGNORE, cycle=F:4:4, cgcdamp=ADAP

8 smoother=JACOBI, damp=0.7

9 coarse=UMFPACK

10 coarse=UMFPACK

Listing 2.13: Embedding the global and the local multigrid scheme as preconditioners into BiCGstab solvers

(BICG-MG__BICG-MG-JAC-D__D).
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2.6.3.2 Krylov as Smoother

Another possibility to enhance multigrid with the help of Krylov methods is to use the latter as

smoothers. To illustrate how this works, we again consider the standard 2-layer-ScaRC solver

in Listing 2.11. In Section 2.5.5 we explained that the smoothing process is actually realised

by a preconditioned Richardson iteration (see Listing 2.2 on page 41). So, we can interpret this

process as application of a ‘stand-alone’ solver and write the ScaRC scheme correspondingly

in the equivalent form depicted in Listing 2.14. So, the Richardson solver takes the role of

1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:1:1

2 smoother=GLOBAL, damp=1.0

3 solver=RICH, maxiter=4, tol=IGNORE

4 prec=LOCAL, damp=0.8

5 solver=MG, maxiter=64, tol=REL:5e-1, cycle=F:1:1, cgcdamp=ADAP

6 smoother=LOCAL, damp=1.0

7 solver=RICH, maxiter=4, tol=IGNORE

8 prec=JACOBI, damp=0.7

9 coarse=UMFPACK

10 coarse=UMFPACK

Listing 2.14: Standard 2-layer-ScaRC solver, smoothing process written as Richardson iteration

(MG-RICH__MG-RICH-JAC-D__D).

the multigrid smoother, and what has been the multigrid smoother becomes the preconditioner

for the Richardson solver. Correspondingly, the damping parameter for smoothing turns into

the damping parameter for the preconditioner within the Richardson iteration. The damping

parameter for smoothing can consequently be ignored, i. e., set to 1.0. Note that the V:4:4

(F:4:4) cycle in the simple notation in Listing 2.11 turned into an V:1:1 (F:1:1) cycle and the

instruction to perform 4 smoothing steps is now contained in the definition of the Richardson

solver (‘maxiter=4’). In short notation the solver can be written as

MG(V11)-RICH(4,0.8)__MG(F11)-RICH(4,0.7)-JAC-D__D.

Inflating the notation of the standard 2-layer-ScaRC solver like this does, of course, not make

sense on its own. But it is perfectly suited to explain how Krylov solvers are employed as

multigrid smoothers. Actually, we only have to replace the Richardson solvers in Listing 2.14

by the desired Krylov solver. When, for instance, the global multigrid scheme is to be smoothed

by FGMRes and the local multigrid scheme by BiCGstab, this is realised by the solver scheme

depicted in Listing 2.15 which in short notation reads

MG(V11)-FGMRES4(4)__MG(F11)-BICG(2)-JAC-D__D.

It is well known that the Jacobi smoother of the inner multigrid in Listing 2.14 is extremely sen-

sitive with respect to the damping parameter. Its optimal value depends on several factors (e. g.,

the degree of mesh anisotropy), it can hardly be set automatically a priori, but has to be adjusted

manually by the user. When the value is chosen too large, divergence of the overall method is

likely. A similar sensitivity has to be expected with respect to the global damping parameter

in Listing 2.14: In Section 2.5.2 we explained that the Schwarz preconditioner within one level

works additively, i. e., it exhibits a block-Jacobi character. Since the Schwarz preconditioner
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1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:1:1

2 smoother=GLOBAL, damp=1.0

3 solver=FGMRES, maxiter=4, tol=IGNORE, restart=4

4 prec=LOCAL, damp=1.0

5 solver=MG, maxiter=64, tol=REL:5e-1, cycle=F:1:1, cgcdamp=ADAP

6 smoother=LOCAL, damp=1.0

7 solver=BICG, maxiter=2, tol=IGNORE

8 prec=JACOBI, damp=1.0

9 coarse=UMFPACK

10 coarse=UMFPACK

Listing 2.15: 2-layer-ScaRC solver with global multigrid scheme smoothed by FGMRes and the local one by

BiCGstab (MG-FGMRES4__MG-BICG-JAC-D__D).

is integrated in terms of a Richardson process, a corresponding sensitivity with respect to the

damping parameter has to be expected.

Comparing Listings 2.14 and 2.15, one can see the crucial advantage of the Krylov smoothers:

There are no damping parameters to adjust.16 It is a typical feature of Krylov methods like

CG, BiCGstab and GMRes to implicitly compute optimal step lengths for the update vector

obtained in the preconditioning step. The process is similar to the computation of the adaptive

coarse grid correction in equation (2.13) on page 54. We will see in the following numerical

tests that Krylov smoothers indeed significantly increase the robustness of the overall solution

algorithm.

With ADITriGS as smoother the local damping parameter can be set to 1.0 anyway (see Sec-

tion 2.5.3.1), so we do not expect significant improvements when using a Krylov smoother

in this situation. However, in a 2-layer-ScaRC scheme we still have to deal with the global

damping parameter such that a Krylov smoother on the global layer makes sense.

When using Krylov methods as smoothers, one cannot in general expect an improvement of the

multigrid convergence, since the smoothing property of Krylov solvers is not necessarily better

than that of the Richardson scheme. However, Krylov solvers can lead to more robust multigrid

methods in the sense that they are able to prevent divergence of the smoothing process.

The employment of Krylov schemes is actually standard in the context of domain decomposi-

tion methods. In practice, 1-level additive Schwarz preconditioners are never embedded into a

global Richardson solver, since the resulting solver is not guaranteed to converge [150]. Instead,

suitable Krylov methods are used to provide the global coupling. Considering 2-layer-ScaRC

solvers as multilevel domain decomposition methods, we simply apply the strategy used for

1-level Schwarz methods on each level.

16The notation of the 4 damping parameters in Listing 2.15 can just as well be omitted completely.
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2.6.3.3 Combining both Strategies

We will see in the numerical tests below that both strategies of combining multigrid and Krylov

methods have the ability to improve the efficiency of the overall solution method. So, an obvi-

ous idea is to use both strategies at the same time, i. e., an outermost Krylov method is precon-

ditioned by a multigrid scheme which is smoothed on each level by another Krylov scheme.

Such techniques have, for example, been employed by Köster [100] to improve standard multi-

grid techniques. In FEAST we can go a step further and apply this idea to both the local

and the global layer, such that we end up with quite complex solver definitions as the one in

Listing 2.16. The question is, of course, whether or not the positive effects of both strategies

1 solver=BICG, maxiter=64, tol=REL:1e-6

2 prec=GLOBAL, damp=1.0

3 solver=MG, maxiter=1, tol=IGNORE, cycle=V:1:1

4 smoother=GLOBAL, damp=1.0

5 solver=FGMRES, maxiter=2, tol=IGNORE, restart=2

6 prec=LOCAL, damp=1.0

7 solver=BICG, maxiter=64, tol=REL:5e-1

8 prec=LOCAL, damp=1.0

9 solver=MG, maxiter=1, tol=IGNORE, cycle=F:1:1, cgcdamp=ADAP

10 smoother=LOCAL, damp=1.0

11 solver=BICG, maxiter=2, tol=IGNORE

12 prec=JACOBI, damp=1.0

13 coarse=UMFPACK

14 coarse=UMFPACK

Listing 2.16: Exemplary 2-layer-ScaRC solver with both multigrid schemes used as preconditioner of and

smoothed by Krylov schemes (BICG-MG-FGMRES__BICG-MG-BICG-JAC-D__D).

actually accumulate and thus further improve the overall solver efficiency, especially in view of

the enormous storage requirements and arithmetic work per iteration. We will treat this issue

in the following numerical tests.

2.6.3.4 Suitable Krylov Methods

The classical representative of Krylov space methods is the Conjugate Gradient (CG) method

by Hestenes and Stiefel [79]. It is applicable to symmetric positive definite systems only. The

main difference compared to elementary iterative methods like Jacobi or Gauß-Seidel is that

CG minimises the error between the approximate xk and the real solution x∗ over a growing

subspace, the Krylov space

K k := span{r0,Ar0, . . . ,Ak−1r0},

where r0 = b−Ax0 is the initial residual. More precisely, we have

‖xk−x∗‖A = min
x∈K k
‖x−x∗‖A
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with ‖·‖A being the norm induced by the inner product xTAx. Thus, when neglecting roundoff

errors, convergence within n steps (n being the problem size) is guaranteed. In real-life simu-

lations where n is large, this is actually of no practical relevance. Nevertheless, the method can

be very efficient when provided with a good preconditioner.

Based on the CG method, many further Krylov methods have been developed for various kinds

of linear systems. A recent overview can be found in Simoncini and Szyld [149]. For imple-

mentational considerations, see Barrett et al. [13]. We confine ourselves to Krylov solvers that

have the ability to

• solve nonsymmetric systems,

• do this without the transpose of the system matrix,

• employ variable preconditioners.

Even if the system matrix is symmetric, the application of a nonsymmetric preconditioner (e. g.,

ADITriGS) forbids the usage of standard CG. Variable preconditioners are, for example, inner

solvers that gain one digit instead of performing a fixed number of iterations. Also local multi-

grid solvers that employ adaptive coarse grid correction (see Section 2.6.1.3) have to be con-

sidered as variable preconditioners. As representatives of more general Krylov space methods

that fulfil the desired requirements we only consider BiCGstab [167] and FGMRes [136] (the

flexible version of GMRes [137]), probably the most widely used iterative methods for non-

symmetric and/or indefinite systems. Both schemes are briefly described now in terms of their

advantages and disadvantages.

GMRes [137] (Generalised Minimal Residual) minimises the residual in the standard l2-norm

over the Krylov subspace, i. e.,

‖rk‖= min
x∈K k
‖f−Ax‖.

To guarantee this property, the basis of the growing space K k has to be stored which becomes

prohibitively expensive (array of size n ·k) for increasing iteration numbers k and large problem

sizes n. One remedy to overcome this is to use a restarted version, GMRes(m). The idea is

to omit the Krylov basis after m iterations and restart the process based on the current iterate

and residual. Unfortunately, convergence of the process is no longer guaranteed then. Further-

more, the user has to adjust yet another parameter, the maximum Krylov subspace dimension

m. See Simoncini and Szyld [149] for an overview of more sophisticated restarting strategies

and alternatives to limit the memory consumption. A further disadvantage of GMRes(m) is that

it is only applicable for fixed preconditioners. However, once implemented, it is simply extend-

able to deal with variable preconditioners, leading to the flexible version FGMRes [136]. The

flexibility comes with the cost of roughly doubled memory consumption which again has to be

circumvented by using a restarted version, FGMRes(m). GMRes(m) needs m+3 auxiliary vec-

tors, while FGMRes needs 2m+3 auxiliary vectors. Hence, when m is large the storage costs

are enormous compared to a standard multigrid solver which needs about 3 auxiliary vectors.

For this reason we employ FGMRes(m) only as inner Krylov smoother, where we perform a

fixed number of iterations.
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As outermost Krylov solver we use BiCGstab (Bi-Conjugate Gradient stabilised), which can

be viewed as an extension of BiCG and CGS (Conjugate Gradient Squared). From these three

methods, which are all able to deal with nonsymmetric matrices, BiCGstab is considered to be

the most robust one [92]. However, there is no convergence theory available and the algorithm

can break down in certain situations. The norm of the residual is known to oscillate although

these oscillations are significantly weakened compared to the other two methods (which ex-

plains the term ‘stabilised’). The crucial advantage of BiCGstab is that by exploiting two

coupled short-term recurrences, only seven auxiliary vectors are necessary, i. e., the memory

consumption does not increase as the iteration proceeds. This renders the method suitable as

outermost solver, for which the number of iterations is not known a priori. The implementa-

tion of BiCGstab is very similar to that of CG, ‘non-standard operations’ like solving a least

squares problem as in GMRes do not have to be provided. BiCGstab is able to deal with varying

preconditioners (see Vogel [170]).17

Beside the additional storage requirements, a further disadvantage of global Krylov methods

has to be seen in the significant increase of communication in parallel computations. Especially,

the calculation of scalar products and norms is expensive as it requires global communication

(see Kilian [94, Section A.2.2, p. 221]). The following numerical tests, however, show that it is

justified to employ global Krylov schemes despite these disadvantages.

2.6.3.5 Numerical Tests

In order to avoid special convergence effects which may arise on purely isotropic unitsquare

configurations with isotropic operators, we use the distorted geometry in Figure 2.31. The

domain consists of four subdomains (refinement level 1 displayed), and is partitioned/refined

in four different ways:

(a) Isotropic macro decomp.,

isotropic refinement (ISO/ISO).

(b) Isotropic macro decomp.,

anisotropic refinement (ISO/ANISO).

(c) Anisotropic macro decomp.,

isotropic refinement (ANISO/ISO).

Figure 2.31: Distorted test grid consisting of four subdomains, three different decompositions/refinements, level 1

displayed.

17Notay [118] examines a flexible version of CG that is able to deal with variable preconditioners. The method,

however, lacks the key property of short-term recurrence, such that the storage requirements are, in principle,

the same as for GMRes.
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1. Isotropic macro decomposition, isotropic refinement (ISO/ISO, see Figure 2.31a). The

maximal element aspect ratio is σ≈ 2.2 (cf. equation (2.5) on page 28).

2. Isotropic macro decomposition, anisotropic refinement (ISO/ANISO, see Figure 2.31b).

Subdomains 1 and 2 are anisotropically refined towards the bottom, subdomains 1 and 4

are anisotropically refined towards the left with the anisotropy factors aF = 0.2,aL = aI =
1.0 (cf. equation (2.4) on page 27). Subdomain 3 is isotropically refined. The maximal

element aspect ratio is σ≈ 17.0.

3. Anisotropic macro decomposition, isotropic refinement (ANISO/ISO, see Figure 2.31c).

The inner point and the central boundary points of the macro decomposition are moved

to introduce macro anisotropies. The subdomains are refined isotropically. The maximal

element aspect ratio is σ≈ 12.7.

4. Anisotropic macro decomposition, anisotropic refinement (ANISO/ANISO, not displayed

in Figure 2.31). The same macro decomposition as in Figure 2.31c, combined with the

anisotropic refinement of Figure 2.31b. The maximal element aspect ratio is σ≈ 63.6.

To further aggravate the problem configuration, we use the equation

−∂xxu−4∂yyu = 1 (2.16)

instead of the isotropic Poisson operator. Bottom and right side of the domain exhibit zero

Dirichlet boundary conditions, while zero Neumann boundary conditions are applied to top

and left side (see Figure 2.31).

In view of the possible complexity of the 2-layer-ScaRC solvers, it is impossible to examine the

whole parameter space. We performed excessive numerical studies on different configuration

(which are not presented here) in order to confine ourselves to a manageable subset of parameter

combinations. We use the following settings:

• When no Krylov smoother is used, the global multigrid scheme performs a V:4:4 cycle.

• As global Krylov smoother we perform 4 iterations of FGMRes(4) (which are then em-

bedded into a V:1:1 cycle).

• When Jacobi (ADITriGS) is used as elementary smoother (without local Krylov smooth-

ing), the local multigrid scheme performs an F:4:4 (V:2:2) cycle. Remember, that in

case of ADITriGS the first smoothing step performs TriGS and the second one MTriGS (cf.

Section 2.5.3.1).

• In case of local Krylov smoothing with Jacobi as elementary preconditioner, we perform

2 BiCGstab smoothing iterations, embedded into a local F:1:1 cycle. For ADITriGS no

local Krylov smoothing is performed.
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• The local problems are solved with a relative stopping criterion of ε = 0.5. This seems

to be quite inaccurate, but it turned out to be a good compromise between the amount of

local arithmetic work on the one hand and number of global iterations on the other hand.

Gaining, e. g., one digit (ε = 0.1) often decreases the global number of iterations only

marginally or not at all, while it significantly increases the amount of arithmetic work

(see Section 2.6.4).

• The local multigrid schemes always perform the adaptive coarse grid correction (ACGC)

technique (see Section 2.6.1.6).

To further reduce the amount of data, we present in a first stage only computations with min-

imal level 1 and maximal level 8, which means 66189 unknowns per subdomain and 263169

unknowns for the global problem.

We begin with examining the global multigrid solver within the 2-layer-ScaRC scheme. There-

fore, we use a direct solver to solve the local problems in order to exclude dependencies of

the results on the way how the local problems are solved. In a first test we only consider

standard multigrid (see Listing 2.17) and multigrid as preconditioner for an outer BiCGstab

scheme (see Listing 2.18). For both variants, the global damping parameter has to be set by the

user (denoted in bold face). Figure 2.32 shows the total arithmetic efficiency of the two solver

1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:4:4

2 smoother=LOCAL, damp=0.7

3 solver=UMFPACK

4 coarse=UMFPACK

Listing 2.17: 2-layer-ScaRC solver with UMFPACK as local solver MG(64,1e-6,V44,0.7)__D__D (operations on

the local layer highlighted in grey).

1 solver=BICG, maxiter=64, tol=REL:1e-6

2 prec=GLOBAL, damp=1.0

3 solver=MG, maxiter=1, tol=IGNORE, cycle=V:4:4

4 smoother=LOCAL, damp=0.7

5 solver=UMFPACK

6 coarse=UMFPACK

Listing 2.18: Solver of Listing 2.17 used as preconditioner of an outer BiCGstab scheme

BICG(64,1e-6)-MG(1,V44,0.7)__D__D.

schemes on the four test grids, where the global damping parameter varies between ω = 0.5
and ω = 0.9. The results for ω = 1.0 are not displayed since the performance deteriorated by

a factor of 4–10 compared to ω = 0.9. The plots show that for the ISO/ANISO configuration

the damping parameter ω = 0.7 is the best choice, while for the other configurations ω = 0.8
yields the best results. However, the difference between the two is relatively small compared to

the other values of ω. Figure 2.32b shows that the outer BiCGstab scheme clearly weakens the

sensitivity with respect to the damping parameter. When considering only the best damping pa-
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(a) MG(64,1e-6,V44,ω)__D__D (Listing 2.17).
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(b) BICG(64,1e-6)-MG(1,V44,ω)__D__D
(Listing 2.18).

Figure 2.32: Total arithmetic efficiency of two solver schemes with varying global damping parameter ω on the

four test grids.

rameter per grid, one can see that the total arithmetic efficiency is slightly improved compared

to Figure 2.32a.

To get rid of the necessity to adjust the global damping parameter, we now use 4 FGMRes(4) it-

erations as Krylov smoother. The corresponding enhanced versions of the two previous solvers

are depicted in Listings 2.19 and 2.20. These enhanced solvers are now compared to those

1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:1:1

2 smoother=GLOBAL, damp=1.0

3 solver=FGMRES, maxiter=4, tol=IGNORE, restart=4

4 prec=LOCAL, damp=1.0

5 solver=UMFPACK

6 coarse=UMFPACK

Listing 2.19: Solver of Listing 2.17 enhanced by a Krylov smoother MG(64,1e-6,V11)-FGMRES4(4)__D__D.

1 solver=BICG, maxiter=64, tol=REL:1e-6

2 prec=GLOBAL, damp=1.0

3 solver=MG, maxiter=1, tol=IGNORE, cycle=V:1:1

4 smoother=GLOBAL, damp=1.0

5 solver=FGMRES, maxiter=4, tol=IGNORE, restart=4

6 prec=LOCAL, damp=1.0

7 solver=UMFPACK

8 coarse=UMFPACK

Listing 2.20: Solver of Listing 2.19 used as preconditioner of an outer BiCGstab scheme

BICG(64,1e-6)-MG(1,V11)-FGMRES4(4)__D__D.

versions of the simple solvers, which performed best on the respective grid. The results are

summarised in Figure 2.33. The most important observation is that on each of the four grids the

multigrid solver using Krylov smoothing (MG-FGMRES__D__D) is the most efficient one. It not

only frees the user from setting the global damping parameter, it also clearly outperforms the
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Figure 2.33: Total arithmetic efficiency of the solver schemes in Listings 2.17, 2.18 (the respective best one per

grid), 2.19 and 2.20).

manually optimised multigrid solvers without Krylov smoothing. The second important obser-

vation is that additionally enclosing the solver as preconditioner into an outer BiCGstab scheme

(BICG-MG-FGMRES__D__D), does not necessarily improve the total arithmetic efficiency – for

the two configurations ISO/ISO and ISO/ANISO it does (only slightly, though), for the other two

it does not.

We now examine the local multigrid solvers within the 2-layer-ScaRC scheme. Therefore,

we fix the global solver to be MG-FGMRES. For the local solver we choose, on the one hand, a

standard multigrid for which we have to adjust the damping parameter (see Listing 2.21) and,

on the other hand, a multigrid smoothed by BiCGstab for which no damping parameter has

to be set (see Listing 2.15 on page 74). We vary the local damping parameter in Listing 2.21

1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:1:1

2 smoother=GLOBAL, damp=1.0

3 solver=FGMRES, maxiter=4, tol=IGNORE, restart=4

4 prec=LOCAL, damp=1.0

5 solver=MG, maxiter=64, tol=REL:5e-1, cycle=F:4:4, cgcdamp=ADAP

6 smoother=JACOBI, damp=0.7

7 coarse=UMFPACK

8 coarse=UMFPACK

Listing 2.21: 2-layer-ScaRC solver with global multigrid scheme smoothed by FGMRes

(MG-FGMRES4(4)__MG-JAC-D__D).

between ω = 0.5 and ω = 1.0. For ω > 0.8 divergence occurs on all four grids, the solver with

ω = 0.7 only converges on the ISO/ISO grid. In Figure 2.34 the results of the converged solvers

are compared to the solver using BiCGstab as local Krylov smoother (see Listing 2.15). One

can observe the crucial advantage of the latter solver: It converges on all four grids and yields

a significantly better total arithmetic efficiency on the three anisotropic grids. On the ISO/ISO

grid, it is only slightly more expensive than the other solvers.

Analogously to the global solver, we additionally embedded the local multigrid scheme as pre-

conditioner into an outer local BiCGstab solver (see the local part of the solver in Listing 2.16

on page 75). This, however, did not improve the total arithmetic efficiency of the overall solver
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Figure 2.34: Total arithmetic efficiency of the solver schemes in Listings 2.21 and 2.15.

scheme, neither for the four configurations in Figure 2.31, nor for the more complicated con-

figurations in Figures 2.38 and 2.39. So, we will neglect this solver configuration and confine

ourselves to use as local solver a multigrid scheme smoothed by BiCGstab.

In order to get a better picture of the performance of our favourite solver MG-FGMRES4(4)__-

MG-BICG-JAC-D__D (see Listing 2.15 on page 74), we show in Figure 2.35 results for varying

minimum and maximum grid level on the four test grids. One can see that all tests converge and

that the results are fairly consistent with each other. A dependence on both the minimum and the

maximum multigrid level is observable, which is most prominent in case of the ANISO/ANISO

configuration. This, however, is mainly due to an increase of local work – the global number

of iterations is constant or rises only mildly within one configuration. For example, on the

ISO/ISO configuration all tests need exactly 3 iterations, and on the ANISO/ANISO configuration

the number of iterations increases from 4 on level 6 to 5 on level 10 (for all minimum levels).

The increase of local work is a consequence of the extended Dirichlet boundary conditions (cf.

Sections 2.4 and 2.6.1.1) and of the grid/operator anisotropies which are quite a challenge for

the simple Jacobi smoother (cf. the following ADITriGS tests).

For sake of completeness, we repeat the previous tests with ADITriGS as elementary smoo-

ther. The results are as expected: A damping parameter of ω = 1.0 usually yields the best

1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:4:4

2 smoother=LOCAL, damp=0.7

3 solver=MG, maxiter=64, tol=REL:5e-1, cycle=V:2:2, cgcdamp=ADAP

4 smoother=ADITRIGS, damp=1.0

5 coarse=UMFPACK

6 coarse=UMFPACK

Listing 2.22: 2-layer-ScaRC solver with ADITriGS as elementary smoother (MG(V44,0.7)__MG-ADI-D__D).

results (only in rare cases, ω = 0.9 leads to marginally better results). Consequently, the usage

of BiCGstab as local Krylov smoother does not improve the performance. However, global

Krylov smoothing is beneficial as Figure 2.36 demonstrates. It shows the results of the solver

in Listing 2.22 with varying global damping parameter and of the solver in Listing 2.23 on

the four configurations in Figure 2.31. Similar to the Jacobi case, the simple multigrid solver
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(a) ISO/ISO configuration.
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(b) ISO/ANISO configuration.
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(c) ANISO/ISO configuration.
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(d) ANISO/ANISO configuration.

Figure 2.35: Total arithmetic efficiency of the solver MG-FGMRES4__MG-BICG-JAC-D__D (see Listing 2.15 on

page 74) on the four test grids with varying multigrid levels. (Note the different y-scales.)

1 solver=MG, maxiter=64, tol=REL:1e-6, cycle=V:1:1

2 smoother=GLOBAL, damp=1.0

3 solver=FGMRES, maxiter=4, tol=IGNORE, restart=4

4 prec=LOCAL, damp=1.0

5 solver=MG, maxiter=64, tol=REL:5e-1, cycle=V:2:2, cgcdamp=ADAP

6 smoother=ADITRIGS, damp=1.0

7 coarse=UMFPACK

8 coarse=UMFPACK

Listing 2.23: 2-layer-ScaRC solver with global multigrid scheme smoothed by FGMRes and ADITriGS as

elementary smoother (MG-FGMRES4__MG-ADI-D__D).

shows strong variations with respect to the global damping parameter, and the solver using

Krylov smoothing performs best on each configuration. The additional enhancement by using

the multigrid schemes as preconditioner for BiCGstab does not yield any performance gain on

the four test grids (results not shown here). In Figure 2.37 we see the results of the solver MG-

FGMRES4__MG-ADI-D__D (see Listing 2.23) for varying minimum and maximum grid levels on

the four test configurations. One can see that ADITriGS behaves much more robust with respect

to the anisotropies. While the total arithmetic efficiency in case of Jacobi ranges from 1300 to

18500, the ADITriGS results lie between 850 and 2500. Furthermore the level dependency is
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Figure 2.36: Total arithmetic efficiency of the solver schemes MG(V44,ω)__MG-ADI-D__D and

MG-FGMRES4__MG-ADI-D__D (see Listings 2.22 and 2.23).
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(a) ISO/ISO configuration.
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(b) ISO/ANISO configuration.
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(c) ANISO/ISO configuration.
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(d) ANISO/ANISO configuration.

Figure 2.37: Total arithmetic efficiency of the solver MG-FGMRES4__MG-ADI-D__D (see Listing 2.23) on the four

test grids with varying multigrid levels.

much weaker in case of ADITriGS and, again, mainly driven by an increase of local work: The

global iteration numbers are between 3 and 4 for all tests.

To further demonstrate the strength of the Krylov-smoothed ScaRC solvers, we will now con-

sider two more complicated geometries: On the one hand, the 2D cross section of a crossover
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(a) Macro decomposition (level 0) consisting of 64 subdomains. The boundary segments with zero Neumann

boundary conditions are labelled ‘N’, the remainder of the boundary exhibits zero Dirichlet boundary conditions.

(b) Computed solution.

Figure 2.38: CROSSOVER configuration.

which is used to slow down street traffic, on the other hand, the so called ASMO configuration

which represents a car shape in a wind tunnel. The former configuration is used in Wobker and

Turek [175], the latter configuration in Kilian [94] and Becker [16]. Figures 2.38a and 2.39a

display the macro decompositions and the arbitrarily chosen boundary conditions of the two

configurations. The computed solutions of the anisotropic equation (2.16) on these two con-

figurations are shown in Figures 2.38b and 2.39b. For our numerical tests we choose for both

configurations three different kinds of grid refinement (see Table 2.2 for detailed statistics and

equation (2.4) on page 27 for the definition of the anisotropy factors):

1. Isotropic refinement with anisotropy factors aF = aL = aI = 1.0 (denoted as ISO).

(a) Macro decomposition (level 0) consisting of 70 subdomains.

(b) Computed solution.

Figure 2.39: ASMO configuration.
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2. Refinement with anisotropy factors aF = 0.05,aL = aI = 1.0 (denoted as ANISO1). In the

CROSSOVER configuration all subdomains around the holes are anisotropically refined

towards the holes, in the ASMO configuration the subdomains are anisotropically refined

towards the upper and lower boundary of the channel and towards the car shape.

3. Refinement with anisotropy factors aF = 0.25,aL = 0.35,aI = 0.5 (denoted as ANISO2).

The anisotropic refinement is applied to the same subdomains as in the case of the

ANISO1 refinement. Note, that the ANISO2 refinement leads to level dependent max-

imum element aspect ratios with maximum values of σ ≈ 12200 in the case of the

CROSSOVER configuration and σ≈ 226000 in the case of the ASMO configuration.

CROSSOVER (64 subdomains) ASMO (70 subdomains)

max. AR max. AR

lev #DOF ISO ANISO1 ANISO2 #DOF ISO ANISO1 ANISO2

5 6.66e+4 2.91 20.4 1.83e+2 7.26e+4 18.2 3.64e+2 3.39e+3

6 2.64e+5 5.23e+2 2.89e+5 9.69e+3

7 1.05e+6 1.50e+3 1.15e+6 2.77e+4

8 4.20e+6 4.27e+3 4.59e+6 7.91e+4

9 1.68e+7 1.22e+4 1.84e+7 2.26e+5

Table 2.2: Number of DOF and maximal element aspect ratios (AR) of the different CROSSOVER and ASMO

configurations.

On the two isotropic configurations we use the 2-layer-ScaRC solver with Jacobi as smoother

(see Listing 2.15), while ADITriGS is employed for the four anisotropic configurations (see

solver in Listing 2.23). We furthermore embed the two solvers as preconditioners into an outer

BiCGstab scheme and compare the results with the help of the six plots in Figure 2.40. We vary

the maximum grid level from 5 to 9, the minimum level is always 1.

In total, the results show that all configurations are robustly solved. Only the solution of the

ASMO-ISO configuration is comparatively expensive which is due to the usage of Jacobi for the

relatively high aspect ratios of σ ≈ 18.2. In most (but not in all) cases the usage of an outer

BiCGstab scheme is beneficial, the differences, however, are not dramatic. Hence, in view

of the additional storage requirements, the employment of this additional BiCGstab solver is

questionable. The fact that the huge element aspect ratios in case of the ANISO2 configurations

affect the total arithmetic efficiency only mildly or even not at all (compared to the ANISO1

configurations), shows the enormous robustness and efficiency of the ADITriGS smoother.

2.6.3.6 Summary and Open Problems

In summary, the Krylov-smoothed 2-layer-ScaRC methods represent powerful solution mech-

anisms that are able to robustly solve even complicated configurations as those in Figures 2.38

and 2.39. The most important advantage of the solvers is that the user is relieved from adjusting

the critical damping parameters.
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(a) CROSS-ISO.
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(b) CROSS-ANISO1.
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(c) CROSS-ANISO2.
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(d) ASMO-ISO.
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Figure 2.40: Total arithmetic efficiency of the solver MG-FGMRES4__MG-BICG-JAC-D__D (see Listing 2.15) and its

enhanced variant BICG-MG-FGMRES4__MG-BICG-JAC-D__D on the two isotropic configurations (Figures 2.40a

and 2.40d) and of the solver MG-FGMRES4__MG-ADI-D__D (see Listing 2.23) and its enhanced variant

BICG-MG-FGMRES4__MG-ADI-D__D on the anisotropic configurations (Figures 2.40b, 2.40c, 2.40e and 2.40f).

However, the presented solution schemes still exhibit sources of instability. For example, it

is impossible to solve the ASMO-ISO configuration with MG-FGMRES2(2)__MG(5e-1)-BICG-

JAC-D__D, i. e., when performing only 2 instead of 4 global FGMRes smoothing steps. The

solver simply stagnates in this case. Also the results on the four test grids (see Figure 2.35)

are much more irregular when using only 2 global FGMRes smoothing steps, in rare cases the

solver stagnates as in the case of the ASMO configuration. Using an outer global BiCGstab

scheme helps to let the iteration converge, though, but still leads to very irregular behaviour.

Another possibility to ‘rescue’ the solver is to use a relative tolerance of ε = 0.2 instead of

ε = 0.5 for the local problems (MG-FGMRES2(2)__MG(2e-1)-BICG-JAC-D__D).18

Another problem we encountered is that embedding the local multigrid schemes into an outer

(local) BiCGstab solver, sometimes negatively influences the global multigrid-Krylov iteration.

When solving the local problems more accurately (e. g., gaining 2 digits), these problems vanish

since it does not play a crucial role then how the two digits are gained. When solving the local

problems less accurately (as we do in the numerical tests above), the way how the systems are

solved (e. g., if and which Krylov solvers are used) seems to play a bigger role.

18When using ADITriGS it seems to be no problem to only perform 2 instead of 4 global FGMRes smoothing steps.

This is possibly due to the fact that the local solves gain more than the desired tolerance of ε = 0.5 already in

the first iteration.
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The solvers

MG-FGMRES4(4)__MG(5e-1)-BICG-JAC-D__D

BICG-MG-FGMRES4(4)__MG(5e-1)-BICG-JAC-D__D

perform quite robustly in our numerical tests, though, and also do so for many other configu-

rations we tried. But there is no guarantee that the solvers converge for all configurations. It

may be necessary to further increase the number of global Krylov smoothing steps in certain

situations. Another issue is whether we have to expect negative consequences when nesting

up to four (global and local) Krylov schemes as in the solver in Listing 2.16 on page 75. Do

the different Krylov schemes somehow influence each other in a negative way, or can they be

safely nested in an arbitrary manner?

We see that there are still some uncertainties and unanswered questions. However, we want to

stress that the ScaRC-Krylov solvers introduced in this section – although not fully understood

and not being perfect – already behave significantly more robust than the standard 2-layer-

ScaRC schemes without Krylov smoothing.

2.6.4 1-layer-ScaRC vs. 2-layer-ScaRC

In Section 2.5.3 we presented two general possibilities for local preconditioning: On the one

hand, applying single steps of an elementary iterative method like Jacobi, leading to the in-

terpretation block-smoothed multigrid or 1-layer-ScaRC, on the other hand, applying ‘full’

solution methods to solve the local problems, leading to the interpretation multilevel Schwarz

or 2-layer-ScaRC. In Section 2.5.4 we discussed and compared the two strategies with respect

to different aspects. We now want to verify some of these aspects with the help of some numer-

ical examples. We are especially interested in the question whether and when the application

of the (expensive!) 2-layer-ScaRC schemes is beneficial. We examine this issue separately for

Jacobi and ADITriGS as elementary smoother.

2.6.4.1 Jacobi as Elementary Smoother

In a first step, we try to reduce the arithmetic costs of the 2-layer-ScaRC schemes by applying

the truncation strategy introduced in Section 2.6.2. Therefore, we use our favourite 2-layer-

ScaRC solver MG-FGMRES4__MG-BICG-JAC-D__D (see Listing 2.15 on page 74) and truncate

the local multigrid schemes. We compare truncation level 1 (i. e., no truncation), level 6 (4225

DOF), level 7 (16641 DOF) and level 8 (66089 DOF). Figure 2.41 shows the total arithmetic

efficiency of the corresponding solvers. One can see that in those cases where the truncation

level is greater than or equal to the maximum level, the total arithmetic efficiency is by far

better. It especially does not depend on the degree of anisotropy, i. e., it is nearly the same for

all four configurations. This is of course due to the fact, that all local problems are solved by

UMFPACK (cf. Figure 2.30 on page 70), which does not suffer from the increasing anisotropies.

But also in those cases where the truncation level is smaller than the maximum level, the total
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(b) ISO/ANISO.
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(c) ANISO/ISO.
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Figure 2.41: Total arithmetic efficiency of the solver MG-FGMRES4__MG-BICG-JAC-D__D (see Listing 2.15) for

varying truncation levels.

arithmetic efficiency in most cases improves with increasing truncation level. In view of the

increasing storage requirement and initialisation time for UMFPACK’s LU decomposition (cf.

the discussion in Section 2.5.3.2), we consider the level 7 truncation as good compromise for

all the following tests. We abbreviate the corresponding solver with MG-FGMRES4__MG(T7)-

BICG-JAC-D__D, where ‘T7’ stands for ‘truncation on level 7’.

1 solver=MG, maxiter=2048, tol=REL:1e-6, cycle=V:1:1

2 smoother=GLOBAL, damp=1.0

3 solver=FGMRES, maxiter=4, tol=IGNORE, restart=4

4 prec=JACOBI, damp=1.0

5 coarse=UMFPACK

Listing 2.24: 1-layer-ScaRC solver with multigrid scheme smoothed by FGMRes and Jacobi as elementary

preconditioner (MG-FGMRES4__JAC__D).

We compare this solver to the 1-layer-ScaRC solver depicted in Listing 2.24, for which we

use the same strategy as in Section 2.6.3.2 to get rid of the critical damping parameter: The

multigrid scheme is not smoothed by Jacobi directly, but by four iterations of a global FGMRes

solver which uses Jacobi as local preconditioner. We again use the four test grids of the previous
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section (see Figure 2.31 on page 77). We already found out that for these configurations the

2-layer-ScaRC solver does not necessarily benefit from enclosing it into an outer BiCGstab

scheme, so we neglect this solver variant for these tests. For the 1-layer-ScaRC solver, however,

we still have to check how an additional outer BiCGstab scheme influences the overall solver

performance. So, we additionally consider the solver depicted in Listing 2.25.

1 solver=BICG, maxiter=1024, tol=REL:1e-6

2 prec=GLOBAL, damp=1.0

3 solver=MG, maxiter=1, tol=IGNORE, cycle=V:1:1

4 smoother=GLOBAL, damp=1.0

5 solver=FGMRES, maxiter=4, tol=IGNORE, restart=4

6 prec=JACOBI, damp=1.0

7 coarse=UMFPACK

Listing 2.25: 1-layer-ScaRC solver of Listing 2.24 as preconditioner for BiCGstab (BICG-MG-FGMRES4__JAC__D).

Figure 2.42 shows the total arithmetic efficiency of the three solvers on the four test grids. We

want to analyse these plots in combination with Table 2.3 which shows the number of global
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(b) ISO/ANISO.
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Figure 2.42: Comparison of the total arithmetic efficiency of the 1-layer-ScaRC solvers MG-FGMRES4__JAC__D

and BICG-MG-FGMRES4__JAC__D and the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-BICG-JAC-D__D where

the local multigrid is truncated on level 7 (see Listing 2.15).
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MG-FGMRES4 BICG-MG-FGMRES4 MG-FGMRES4__MG

lev I/I I/A A/I A/A I/I I/A A/I A/A I/I I/A A/I A/A

6 48 392 488 1024 48 240 208 - 24 24 32 24

7 48 512 536 1640 48 384 304 1856 24 24 32 24

8 48 672 592 2472 48 656 432 - 24 32 40 32

9 56 848 600 3432 48 688 496 - 24 32 40 40

10 56 976 600 4336 48 464 496 - 24 32 40 40

Table 2.3: Total number of global smoothing steps for the 1-layer-ScaRC solvers MG-FGMRES4__JAC__D and

BICG-MG-FGMRES4__JAC__D and for the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-BICG-JAC-D__D on the

four test configurations ISO/ISO (denoted as I/I), ISO/ANISO (I/A), ANISO/ISO (A/I) and ANISO/ANISO (A/A).

Dividing the numbers by 8, 16 and 8, respectively, yields the number of outer iterations of the three solvers.

smoothing steps that are performed by the outer solver on the finest level. This quantity is

chosen for two reasons:

1. Simply displaying the number of iterations of the outermost scheme is inappropriate for

a fair comparison between different solvers. The arithmetic costs per iteration of the

solver MG(V11)__JAC__D are, for instance, roughly half as high as those of the solver

BICG-MG(V11)__JAC__D and roughly a quarter of the costs of the solver MG(V11)-

FGMRES4(4)__JAC__D. On the other hand, using the number of global smoothing steps

per iteration on the finest grid level (which are 2, 4 and 8, respectively, for these three

solvers) facilitates a fair solver comparison.

2. Each call of the global smoother is accompanied by (at least) one global defect correction

and a call of the additive Schwarz preconditioner (cf. Section 2.5.2 and Listing 2.3 on

page 42). These are operations that require communication in a parallel computation. Of

course, there are other communicating operations like global norm calculations or – in

case of Krylov methods – scalar products, but the number of their calls is usually directly

proportional to the number of calls of the global smoother. Hence, the number of global

smoothing steps is well suited to estimate the amount of communication the algorithm

requires.

We can make several interesting observations:

• While the 1-layer-ScaRC solver MG-FGMRES4 converges on the ANISO/ANISO configu-

ration, the corresponding BICG-MG-FGMRES4 variant fails on this configuration. It only

converges on level 7, while it stagnates on the other levels. Also its relatively good

performance on level 10 of the ISO/ANISO configuration has to be taken with a grain

of salt: On level 8 and 9 it behaves much worse and on level 11 (not shown here) the

solver stagnates again. This shows that it is not always safe to arbitrarily combine sev-

eral Krylov methods: The addition of the outer BiCGstab scheme significantly impairs

the robustness of the solver instead of improving it (also see Section 2.6.3.6).19 Due to

19Remember, that the 2-layer-ScaRC variant with an outer BiCGstab solver is not necessarily more efficient than

the 2-layer-ScaRC variant without BiCGstab, though, but it behaves at least as robustly.
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its unreliable behaviour we will neglect the solver BICG-MG-FGMRES4__JAC__D for the

further discussion.

• The performance of the 2-layer-ScaRC solver abruptly deteriorates when switching from

level 7 to level 8, which is due to the truncation of the local multigrid schemes on level 7

(cf. Figure 2.41). From level 8 on, the total arithmetic efficiency of the 2-layer-ScaRC

solver is clearly level dependent. Table 2.3, however, shows that this is mainly due to an

increase of local work: The number of global iterations rises only mildly, or even stays

constant in the case of the ISO/ISO configuration.

• On the ISO/ISO configuration, the 1-layer-ScaRC solver behaves independently of the

grid level and exhibits a much better total arithmetic efficiency than the (level dependent)

2-layer-ScaRC solver. The number of global smoothing steps (and consequently, the

number of global iterations) is roughly twice as high as for the 2-layer-ScaRC solver.

• The results change drastically in the presence of anisotropies. There, also the 1-layer-

ScaRC solver exhibits level dependent behaviour, and the 2-layer-ScaRC solver shows a

clearly better total arithmetic efficiency. The discrepancy is biggest on the ANISO/ANISO

configuration.

• Beside its superiority in terms of total arithmetic efficiency, another essential advantage

of the 2-layer-ScaRC solver is revealed in Table 2.3. The number of global smoothing

steps of the 1-layer-ScaRC directly depends on the maximum element aspect ratio of the

underlying grid: On level 10 it performs 56, 976, 600 and 4336 global smoothing steps

for aspect ratios of 2.2, 17.0, 12.7 and 63.6, respectively. The 2-layer-ScaRC solver, on

the other hand, is able to hide these micro anisotropies from the outer solver: Its number

of global smoothing steps is mainly influenced by the macro anisotropies of the grid and

ranges between 24 and 40. This becomes apparent, when we exemplarily compare the

ANISO/ISO and the ANISO/ANISO configuration: Although the maximum element aspect

ratio increases by a factor of 5 (from 12.7 to 63.6), the number of global iterations stays

constant (namely, 5 for both configurations). The number of global iterations of the 1-

layer-ScaRC solver increases by a factor of 7 on these two configurations (from 75 to

542). Hence, the communication effort of the 1-layer-ScaRC solver is more than 100

times bigger than that of the 2-layer-ScaRC solver on the ANISO/ANISO configuration.

We now want to check whether these results are valid for the more realistic configurations

CROSSOVER and ASMO (see Figures 2.38 and 2.39), as well. In Figure 2.43 the total ef-

ficiencies of the 1-layer-ScaRC solver MG-FGMRES4__JAC__D and the 2-layer-ScaRC solver

MG-FGMRES4__MG(T7)-BICG-JAC-D__D are compared.20 Table 2.4 lists the number of global

smoothing calls. We see that all the results obtained on the four test grids are basically con-

firmed: The performance jump of the 2-layer-ScaRC solver from level 7 to level 8 and its

level dependency (in terms of total arithmetic efficiency) from level 8 on (due to increase of

20The corresponding variants with BiCGstab as outer solver are omitted: The 1-layer-ScaRC variant shows similar

deficiencies as on the four test grids in the previous tests, and the 2-layer-ScaRC variant, though behaving

robustly, does not yield a better efficiency than the simple multigrid variant.
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(b) CROSS-ANISO1.
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Figure 2.43: Comparison of the total arithmetic efficiency of the 1-layer-ScaRC solver MG-FGMRES4__JAC__D and

the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-BICG-JAC-D__D.

MG-FGMRES4 MG-FGMRES4__MG

lev CR-I CR-A1 AS-I CR-I CR-A1 AS-I

5 88 352 776 32 32 48

6 96 464 1016 32 32 48

7 104 552 1296 32 32 48

8 112 624 1504 32 32 48

9 120 680 1688 32 32 56

Table 2.4: Total number of global smoothing steps for the 1-layer-ScaRC solver MG-FGMRES4__JAC__D and the

2-layer-ScaRC solver MG-FGMRES4__MG(T7)-BICG-JAC-D__D on the configurations CROSS-ISO (denoted as

CR-I), CROSS-ANISO1 (CR-A1) and ASMO-ISO (AS-I). Dividing the numbers by 8 yields the number of outer

iterations of the two solvers.

local work); the superiority of the 1-layer-ScaRC solver in case of the CROSS-ISO configura-

tion (maximum aspect ratio of 2.91) and the superiority of the 2-layer-ScaRC solver in case of

the other two configurations CROSS-ANISO1 (maximum aspect ratio of 20.4) and ASMO-ISO

(maximum aspect ratio of 18.2); 1-layer-ScaRC’s dependence of the number of global smooth-

ing steps on the micro anisotropies (increase from 120 for the CROSS-ISO configuration to 680

for the CROSS-ANISO1 configuration) and 2-layer-ScaRC’s ability to hide these local anisotro-

pies from the global solver (same number of global smoothing steps on the CROSS-ISO and the

CROSS-ANISO1 configuration).

2.6.4.2 ADITriGS as Elementary Smoother

We now repeat above tests with ADITriGS as elementary smoother. We begin with examining

the truncation of the local multigrid solvers. Figure 2.44 shows the total arithmetic efficiency

of the solver MG-FGMRES4__MG-ADI-D__D (see Listing 2.23 on page 83) for truncation levels

1 (no truncation), 6, 7 and 8. The results are very similar to those of the Jacobi smoother (see

Figure 2.41 and its evaluation). The only difference is that the solvers using ADITriGS exhibit a

much weaker level dependency. Correspondingly, the results for the different truncation levels
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(b) ISO/ANISO.
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(c) ANISO/ISO.
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Figure 2.44: Total arithmetic efficiency of the solver MG-FGMRES4__MG-ADI-D__D (see Listing 2.23 on page 83)

for varying truncation levels.

do not vary as strongly as in the Jacobi case. Again, we use the level 7 truncation, i. e., the

2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D, for all the following tests.

We compare this solver to the two 1-layer-ScaRC solvers depicted in Listings 2.26 and 2.27.

In contrast to the 1-layer-ScaRC solver with Jacobi smoothing (see Listing 2.24), ADITriGS

1 solver=MG, maxiter=2048, tol=REL:1e-6, cycle=V:2:2

2 smoother=ADITRIGS, damp=1.0

3 coarse=UMFPACK

Listing 2.26: 1-layer-ScaRC solver with ADITriGS as elementary smoother (MG(V22)__ADI__D).

1 solver=BICG, maxiter=1024, tol=REL:1e-6

2 prec=GLOBAL, damp=1.0

3 solver=MG, maxiter=1, tol=IGNORE, cycle=V:2:2

4 smoother=ADITRIGS, damp=1.0

5 coarse=UMFPACK

Listing 2.27: 1-layer-ScaRC solver of Listing 2.26 as preconditioner for BiCGstab (BICG-MG(V22)__ADI__D).
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(b) ISO/ANISO.
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(c) ANISO/ISO.
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Figure 2.45: Comparison of the total arithmetic efficiency of the 1-layer-ScaRC solvers MG(V22)__ADI__D and

BICG-MG(V22)__ADI__D and the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D (see Listing 2.23) on

the four prototypical configurations ISO/ISO, ISO/ANISO, ANISO/ISO and ANISO/ANISO. The local multigrid of the

2-layer-ScaRC solver is truncated on level 7.

usually performs best with the damping parameter ω = 1.0, such that a global Krylov smoo-

ther, which would ‘automatically adjust’ this parameter, is not necessary.21 Figure 2.45 shows

the total arithmetic efficiency of the three solvers on the four prototypical test configurations.

Table 2.5 displays the number of global smoothing steps. We can make the following observa-

tions:

• The total arithmetic efficiency of the 2-layer-ScaRC solver deteriorates with increasing

multigrid level. This level dependent deterioration is not as drastic as in the Jacobi case

and it is fairly independent of the anisotropies in the grid.

• The 1-layer-ScaRC solvers show a level independent behaviour.

• The 1-layer-ScaRC solvers suffer a little bit stronger from the macro anisotropy than the

2-layer-ScaRC solver (compare ISO/ISO with ANISO/ISO and ISO/ANISO with ISO/AN-

ISO). This is especially true for the solver MG(V22)__ADI__D, whose number of global

21We tested the solver MG-FGMRES2(2)__ADI__D and indeed found that it does not perform better than the simple

solver MG(V22)__ADI__D.
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MG(V22) BICG-MG(V22) MG-FGMRES4__MG

lev I/I I/A A/I A/A I/I I/A A/I A/A I/I I/A A/I A/A

6 32 32 64 44 24 32 40 32 24 24 32 24

7 32 32 64 48 24 32 40 40 24 24 32 24

8 32 32 64 48 32 32 40 40 24 24 32 24

9 32 32 68 48 32 32 48 40 24 24 32 32

10 32 32 68 52 32 32 48 40 24 24 32 32

Table 2.5: Total number of global smoothing steps for the 1-layer-ScaRC solvers MG(V22)__ADI__D and

BICG-MG(V22)__ADI__D and for the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D on the prototypical

configurations ISO/ISO (denoted as I/I), ISO/ANISO (I/A), ANISO/ISO (A/I) and ANISO/ANISO (A/A). Dividing the

numbers by 4, 8 and 8, respectively, yields the number of outer iterations of the three solvers.

smoothing steps shows the strongest increase from the ISO/... to the ANISO/... configu-

rations.

• On the two configurations without macro anisotropies (ISO/...), the two 1-layer-ScaRC

solvers show the same efficiency. On the other two configurations (ANISO/...), however,

the BiCGstab is able to weaken the negative influence of the macro anisotropies.

• On all four configurations, both 1-layer-ScaRC solvers are clearly more efficient than the

2-layer-ScaRC solver.

• The 2-layer-ScaRC solver exhibits the smallest number of global smoothing steps, but

the differences are much less dramatic compared to the Jacobi case.

Figure 2.46 and Table 2.6 show that these results are essentially true for the CROSS-ANISO2,

ASMO-ANISO1 and ASMO-ANISO2 configurations, too. A difference is, that on the CROSS-

ANISO2 configuration the number of global smoothing steps of the two 1-layer-ScaRC solvers

rise with increasing multigrid level. This does not happen for the 2-layer-ScaRC solver. Never-

theless, the two 1-layer-ScaRC solvers still exhibit a much better total arithmetic efficiency.

MG(V22) BICG-MG(V22) MG-FGMRES4__MG

lev CR2 AS1 AS2 AC1 CR2 AS1 AS2 AC1 CR2 AS1 AS2 AC1

5 64 56 56 300 40 40 40 100 32 40 40 56

6 72 56 56 316 44 40 40 108 32 40 40 56

7 80 56 56 320 44 40 40 116 32 40 40 56

8 88 60 56 320 48 44 44 116 32 40 48 56

9 96 60 60 324 52 44 44 116 32 48 48 56

Table 2.6: Total number of global smoothing steps for the 1-layer-ScaRC solvers MG(V22)__ADI__D and

BICG-MG(V22)__ADI__D and for the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D on the

configurations CROSS-ANISO2 (denoted as CR2), ASMO-ANISO1 (AS1), ASMO-ANISO2 (AS2) and

ACCORDION-ANISO1 (AC1). Dividing the numbers by 4, 8 and 8, respectively, yields the number of outer

iterations of the three solvers.
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(a) CROSS-ANISO2.
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(b) ASMO-ANISO1.
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(c) ASMO-ANISO2.
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(d) ACCORDION-ANISO1.

Figure 2.46: Comparison of the total arithmetic efficiency of the 1-layer-ScaRC solvers MG(V22)__ADI__D and

BICG-MG(V22)__ADI__D and the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D on the configurations

CROSS-ANISO2, ASMO-ANISO1, ASMO-ANISO2 and ACCORDION-ANISO1.

So, we see that on the configurations where the 2-layer-ScaRC Jacobi solver outperforms the

1-layer-ScaRC Jacobi solver, the 1-layer-ScaRC ADITriGS solvers are still clearly more effi-

cient than the 2-layer-ScaRC ADITriGS solver. In search of configurations, where this situation

changes, we found that the simple 1-layer-ScaRC solver MG(V22)__ADI__D does have some

problems on the domain depicted in Figure 2.47, which we want to denote – due to its shape

and for lack of a better name – with ACCORDION. It consists of 20 subdomains and contains

21.0 M vertices on level 10. We anisotropically refine towards the holes, towards the verti-

cal boundaries above and below the holes, and towards the vertical boundary in the centre of

the domain, using the ANISO1 refinement (see page 85). Figure 2.46d and the fifth column in

Table 2.6 show that the solver MG(V22)__ADI__D is indeed quite inefficient compared to the

other three configurations. As a consequence, the 2-layer-ScaRC solver at least shows a better

total arithmetic efficiency on level 6 and 7 (where all local problems are solved by UMFPACK).

From level 8 on, however, the 1-layer-ScaRC solver is more efficient again. On the other

hand, the 1-layer-ScaRC solver needs roughly 5 times more global smoothing steps which is

a clear advantage for the 2-layer-ScaRC solver. However, using an outer BiCGstab scheme

improves the performance significantly here: The solver BICG-MG(V22)__ADI__D is roughly
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(a) Macro decomposition (level 0) consisting of 20 subdomains.

(b) Computed solution.

Figure 2.47: ACCORDION configuration.

2.5 times better (in terms of total arithmetic efficiency and number of smoothing steps) than

the solver MG(V22)__ADI__D. Consequently, it clearly outperforms the 2-layer-ScaRC solver

again in terms of total arithmetic efficiency (1300 vs. 3900), where it needs roughly twice as

many smoothing steps (116 vs. 56).

We perform a final test, that confirms these results. In Section 2.5.4 we explained that the

ScaRC solvers in principle suffer from strong macro anisotropies which is a consequence of

the block-Jacobi character of the additive Schwarz preconditioner (also see Kilian [94]). We

want to examine how the two 1-layer-ScaRC solvers and the 2-layer-ScaRC solver manage

this difficulty. Therefore, we consider again the ANISO/ISO configuration which consists of

2× 2 subdomains (cf. Figure 2.31c on page 77). We increase the number of subdomains by

simply subdividing each subdomain regularly into four. We do this three times, such that we

obtain the configurations ANISO/ISO-2X2, ANISO/ISO-4X4, ANISO/ISO-8X8 and ANISO/ISO-

16X16 with 2× 2, 4× 4, 8× 8 and 16× 16 subdomains, respectively. We adapt the multigrid

level correspondingly such that we always deal with the same number of unknowns ranging

from 66.0 k (level 7 for the 2X2 configuration, level 4 for the 16X16 configuration) to 16.8 M

(level 11 for the 2X2 configuration, level 8 for the 16X16 configuration).

Figure 2.48 shows the total arithmetic efficiency of the three solvers on the four grids and

Table 2.7 the corresponding number of global smoothing steps. One can see that the simple

1-layer-ScaRC solvers suffers most from the increasing number of subdomains – its total arith-

metic efficiency deteriorates by a factor of roughly 3.5 (from 700 to 2400) and the number of

global smoothing steps increases by the same factor (from 68 to 236). The total arithmetic

efficiency of the 2-layer-ScaRC solver, however, does not vary so strongly: It deteriorates from

2400 on the 2X2 configuration to 2900 on the 16X16 configuration. The number of smoothing

steps increases by a factor of 1.5 from 32 to 48. Consequently, the 2-layer-ScaRC solver can
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(a) ANISO/ISO-2X2.
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(b) ANISO/ISO-4X4.
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(c) ANISO/ISO-8X8.
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(d) ANISO/ISO-16X16.

Figure 2.48: Comparison of the total arithmetic efficiency of the 1-layer-ScaRC solvers MG(V22)__ADI__D and

BICG-MG(V22)__ADI__D and the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D on the ANISO/ISO

configuration with increasing number of subdomains.

MG(V22) BICG-MG(V22) MG-FGMRES4__MG

DOF 2X2 4X4 8X8 16X16 2X2 4X4 8X8 16X16 2X2 4X4 8X8 16X16

6.60e+4 64 108 140 236 40 56 60 88 32 40 40 56

2.63e+5 64 112 136 228 40 60 60 80 32 40 40 48

1.05e+6 68 108 136 228 44 64 68 84 32 40 40 48

4.20e+6 68 108 136 232 44 64 64 84 32 40 40 48

1.68e+7 68 108 140 236 44 64 68 84 32 40 40 48

Table 2.7: Total number of global smoothing steps for the 1-layer-ScaRC solvers MG(V22)__ADI__D and

BICG-MG(V22)__ADI__D and for the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D on the

configurations ANISO/ISO-2X2 (denoted as 2X2), ANISO/ISO-4X4, ANISO/ISO-8X8 and ANISO/ISO-16X16.

Dividing the numbers by 4, 8 and 8, respectively, yields the number of outer iterations of the three solvers.

compete with the simple 1-layer-ScaRC solver at least up to level 7 where all local problems

are solved by UMFPACK. Beyond level 7 the 2-layer-ScaRC solver is still more expensive.

However, the solver BICG-MG(V22)__ADI__D again clearly outperforms the other two solvers.

Its number of global smoothing steps only doubles from the 2X2 to the 16X16 configuration,



100 2 Multilevel Solvers for Scalar Elliptic Equations

and the total arithmetic efficiency only deteriorates by a factor of 2, such that at the end the total

arithmetic efficiency of the 1-layer-ScaRC BiCGstab solver is roughly 2.5 times better than

that of the 2-layer-ScaRC solver, and its number of global smoothing steps is roughly twice as

high. Figure 2.49 displays the results on the finest level of the four grids (1.68e+7 DOF) in one

diagram. It once again shows that the simple 1-layer-ScaRC solver suffers strongest from the
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Figure 2.49: Comparison of the total arithmetic efficiency of the 1-layer-ScaRC solvers MG(V22)__ADI__D and

BICG-MG(V22)__ADI__D and the 2-layer-ScaRC solver MG-FGMRES4__MG(T7)-ADI-D__D on the finest level

(1.68e+7 DOF) of the ANISO/ISO configuration with increasing number of subdomains.

increasing number of subdomains. The 1-layer-ScaRC BiCGstab and the 2-layer-ScaRC solver

do not vary as strongly such that the 1-layer-ScaRC BiCGstab solver is the clear favourite due

to its much lower costs.22

2.6.4.3 Summary and Critical Discussion

On the configurations we tested, the employment of 2-layer-ScaRC solvers is only beneficial

in the case that Jacobi is used as elementary smoother. With ADITriGS as smoother the 1-layer-

ScaRC schemes are clearly more efficient, especially when using BiCGstab as outer solver.

The reason is that the 2-layer-ScaRC methods can only tap their full potential when there are

local irregularities to ‘hide’. In case of the Jacobi smoother such local irregularities are given

by localised mesh anisotropies. The ADITriGS smoother, however, is designed to robustly deal

with anisotropies. Consequently, the ADITriGS smoother itself already fulfils the task to hide

these local irregularities from the outer solver. In this sense, the embedding into an 2-layer-

ScaRC scheme can yield no (or only marginal) further improvement since there is, plainly

spoken, ‘nothing to hide’.

This situation is unsatisfactory since the employment of local multigrid schemes is one of the

core ideas of FEAST. However, we believe that the ADITriGS smoother itself is simply ‘too

strong’ such that there is no chance to show the superiority of the 2-layer-ScaRC strategy

with the help of the configurations we considered for our tests. It needs more than anisotropic

22Kilian [94] and Becker [16] always compared the 2-layer-ScaRC solvers with the simple MG__ADI__D solver, but

never with the corresponding BiCGstab variant BICG-MG__ADI__D.



2.6 ScaRC Revisited: Improvements and a Critical Review 101

elliptic linear operators in 2D and irregular grids with high aspect ratios to sufficiently impair

the efficiency of 1-layer-ScaRC ADITriGS solvers, such that 2-layer-ScaRC can eventually win

the comparison. We believe that ADITriGS will lose its efficiency to some degree when applied

in the context of more complicated physical equations. It is also unclear, how ADITriGS behaves

in 3D computations.23 However, a configuration where 1-layer-ScaRC ADITriGS is clearly

outperformed by 2-layer-ScaRC ADITriGS still has to be found.

Now, one could argue that for the linear elliptic case we are currently dealing with, the 2-layer-

ScaRC approach is unnecessary; the 1-layer-ScaRC ADITriGS solver embedded into an outer

BiCGstab solver treats all problems more efficiently and at least as robustly. However, there are

situations where the employment of ADITriGS is unsuited or even not possible:

• ADITriGS needs about 9 times more additional storage than Jacobi. Hence, changing

ADITriGS for Jacobi is usually not beneficial in terms of arithmetic work, but it clearly

is in terms of storage requirements. This means, even if Jacobi performs worse it might

nevertheless be advantageous (or even necessary) to switch to Jacobi on systems where

the amount of RAM is critical. In such cases one can readily benefit from the 2-layer-

ScaRC approach as our numerical tests show. However, this argument is weakened by

the fact that Jacobi needs an additional Krylov-smoother for sufficient robustness as the

tests in Section 2.6.3.5 show.

• ADITriGS is only applicable on subdomains that fulfil the tensor product property (see

Section 2.1.1), while Jacobi can be used on arbitrarily structured meshes. If such sub-

meshes exhibit strong anisotropies, then other smoothers like ILU have to be employed.

For such smoothers, the 1-layer-ScaRC and 2-layer-ScaRC approaches still have to be

compared.

• The efficiency of ADITriGS decisively depends on the hardware-oriented implementation

within the SparseBandedBLAS library (see Section 2.1.1). The implementation has to

be adapted and optimised for each finite element; in FEAST, it has been realised for Q1

until now. It is not clear yet how the ADITriGS approach will perform in 3D or even how

it has to be realised for non-standard finite elements like the rotated bilinear element Q̃1

(see Turek [158]). The Jacobi smoother, however, is always available and its efficient

implementation is straightforward since it only needs to scale vectors with the inverse of

the main diagonal of the system matrix.

• An efficient implementation of ADITriGS on vector machines like the NEC-SX maintained

by the HLRS Stuttgart (http://www.hlrs.de) is extremely complicated. The MFLOP/s

rates of a multigrid solver using ADITriGS are roughly 5 times worse than those of a

multigrid solver using Jacobi (see Becker [16, p. 118]). On meshes which exhibit not too

strong anisotropies, the Jacobi smoother consequently has the chance to outperform the

23In 2D, ADITriGS is realised by implicitly changing the rowwise numbering scheme into a columnwise one in

every second step to catch mesh anisotropies in both spatial directions (see Section 2.5.3.1). It is not clear yet

how this concept is efficiently transferred to 3D and if it is able to treat all kinds of anisotropies that can occur

in 3D in an equally robust way.

http://www.hlrs.de
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ADITriGS smoother, thereby exploiting the 2-layer-ScaRC concept. On standard archi-

tectures, however, the MFLOP/s rates of the two smoothers are similar to each other (also

see Becker [16, p. 118]).

• The recent trend to outsource parts of the computational work to fast co-processors

like GPUs (see Göddeke et al. [73, 75] and references therein) requires great imple-

mentational efforts, despite the availability of programming tools like NVIDIA’s cuda

(http://www.nvidia.com/cuda). Algorithms and data structures have to be adapted

and tuned for the specific kind of hardware at hand. Consequently, the implementation

of such highly sophisticated and complicated procedures like ADITriGS smoothing is a

tedious and time-consuming task. Furthermore, there is no guarantee that algorithms and

data structures exist that efficiently realise a specific procedure and, at the same time,

fully exploit the strengths of the specific co-processor. Hence, in a first phase a co-

processor library most likely offers only simple procedures (like Jacobi smoothing), and

scientific or economic constraints can significantly extend the length of this initial phase.

These arguments show that, despite of the advantages of the 1-layer-ScaRC ADITriGS approach,

the 2-layer-ScaRC strategy is fully justified.

The strongest argument for 2-layer-ScaRC, however, has to be seen in its ability to minimise

the number of global iterations (respectively, global smoothing steps) and, thus, the amount

of communication. In view of the development of future hardware systems, especially the

increasing gap in the improvement of network and processor technology (cf. Section 2.1.2), this

property will become more and more important. Due to the trend to distribute computational

problems to ever more parallel processors, communication will be the decisive factor for the

overall efficiency of an algorithm. At the same time, the pure amount of (local) arithmetic

work will become less critical, especially when extremely fast co-processors can be employed.

This prospective also alleviates the definite deficiency of the 2-layer-ScaRC solvers to exhibit

level dependent arithmetic costs. In the tests we presented in previous sections, it seems, at

first glance, that we pay quite a high price to minimise the number global iterations: In some

cases, the reduction of number of iterations by only 50% is accompanied by tripled arithmetic

costs. On a massively parallel compute cluster, though, these 50% may already be sufficient to

obtain a shorter total runtime. This, however, is only possible in combination with a sufficiently

sophisticated load balancing system, which is not yet available and whose development has to

be seen as one of the most critical future tasks (cf. Section 2.7.4). The (already) good scalability

properties of 2-layer-ScaRC are demonstrated, for example, by Becker [16] and Göddeke et al.

[71, 75].

Basing on the findings of this chapter, we want to specify which ScaRC solvers are to be

favoured for the solution of elliptic equations. When the choice of the elementary smoother

is confined to Jacobi, then the solver MG-FGMRES4__MG-BICG-JAC-D__D (see Listing 2.15 on

page 74) is the best choice for a wide range of configurations. Despite its complexity, it ex-

hibits a relatively high ‘black box’character, which is due to the fact that there are no damping

parameters to adjust. For highly challenging configurations the four global FGMRes smooth-

ing steps may turn out to be insufficient (cf. Section 2.6.3.6), but on the (already non-trivial)

http://www.nvidia.com/cuda
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configurations we tested they yielded good results. The modification of other parameters (e. g.,

the type of the global multigrid cycle) turned out to have no significant influence on the overall

performance. When ADITriGS is available as elementary smoother, than the favourite solver

is BICG-MG__ADI__D (see Listing 2.27 on page 94). While ADITriGS is able to robustly treat

even extreme micro anisotropies, the outer BiCGstab scheme alleviates the negative effects of

complicated geometries or macro anisotropies. In Chapter 4 we examine whether our results

can be transferred to the elasticity solvers that use ScaRC for preconditioning.

2.7 Future Work on ScaRC

In this final section we want to describe open problems and possible further studies on ScaRC,

that have emerged from the examinations and results within this chapter. All these topics offer

various directions for future work, ranging from theoretical to software-specific aspects. In

order to make further substantial progress with respect to FEAST’s flexibility, robustness and

usability, it is required to find adequate solutions to the problems indicated in the following

subsections.

2.7.1 Theoretical Aspects

The extended Dirichlet boundary conditions described in Sections 2.4 and 2.6.1.1 render the

local multigrid schemes nonconforming. In order to better understand their convergence be-

haviour, theoretical examinations are necessary. Literature about multigrid methods on non-

nested grids, or, more generally, about nonconforming multigrid methods could be helpful in

this context. The adaptive coarse grid correction represents a suitable strategy to overcome

the problems arising with the extended Dirichlet boundary conditions, but a deeper theoretical

understanding could yield a more specific and eventually more efficient solution.

Another issue is the employment of Krylov schemes as outer solvers or as smoothers. In Sec-

tion 2.6.3 we have seen that the usage of several nested Krylov schemes is not necessarily

beneficial, or can even by disadvantageous. Furthermore, applying too few Krylov smoothing

steps can lead to instabilities. A deeper understanding is necessary how nested Krylov schemes

influence each other and how they interact with multigrid solvers, especially when combined

on the different layers.

2.7.2 Recursive Clustering

In this thesis, we only discuss the ‘Sca’ part of the acronym ‘ScaRC’, which stands for ‘scal-

able’ (see Sections 2.5.4 and 2.7.3). The acronym ‘RC’ means ‘recursive clustering’. The idea

is outlined by Kilian [94], while Becker [16] realises the concept within FEAST and performs

extensive numerical studies to examine it. The approach can be regarded as an extension of the
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2-layer-ScaRC strategy, with the goal to alleviate the negative effects of strong macro anisotro-

pies. We want to briefly describe the concept.

The term ‘clustering’ refers to the process of combining several subdomains. There are two

different ways how to do this. On the one hand, the meshes of k neighbouring subdomains

can be merged in the sense that instead of k local matrices only one local matrix is assembled.

The resulting submesh (merged of k tensor product meshes) does in general not have the tensor

product property anymore. This means, that specialised smoothers like ADITriGS can not be

applied to the corresponding local problem. Instead, general smoothers like ILU can be used.

Figure 2.50 illustrates the concept with the help of a simple example grid consisting of three

subdomains, two of them being slightly anisotropic. Figure 2.50b represents a standard 2-

(a) Domain consisting of three

subdomains.

(b) Standard 2-layer-ScaRC

approach.

(c) 2-layer-ScaRC approach with

merged subdomains.

Figure 2.50: Schematic illustration of the first clustering strategy ‘merging subdomains’.

layer-ScaRC solver which applies three local multigrid solvers to three subproblems, while

Figure 2.50c shows a 2-layer-ScaRC solver that applies one local MG-ILU solver to the two

merged anisotropic subdomains. The advantage of this approach is that the macro anisotropies

are now ‘hidden’ from the outer solver which only ‘sees’ the (isotropic) merged subdomain.

The convergence rate of the global solver improves accordingly. The disadvantage is the lack

of the tensor product property and the corresponding deterioration of the processor efficiency

(cf. Section 2.1.1).

The second way to cluster subdomains is to introduce an intermediate layer between the global

and the local ones and to define an additional multigrid solver there, leading to the concept of

3-layer-ScaRC. This approach is especially meaningful in parallel computations: In general,

the number of subdomains does not equal the number of available processors such that sev-

eral subdomains have to be scheduled to one processor. In order to minimise inter-processor

communication it is beneficial to define a multigrid solver on the cluster of subdomains that

reside on the same processor (which defines the intermediate layer then). When this solver

gains, e. g., one digit, then the number of iterations of the global solver is minimised. The
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intermediate layer does not necessarily have to be defined by the distribution of subdomains to

the processors, its definition can also be based on geometric considerations. The local subdo-

mains can (but do not have to) be treated by local multigrid solvers. To decide whether this

is advantageous or not, the same guidelines can be applied as for the question whether to use

1-layer-ScaRC or 2-layer-ScaRC (see Section 2.6.4). If on the local layer multigrid is used, as

well, there are three nested multigrid schemes in total, spread over three layers, which justi-

fies the name 3-layer-ScaRC. This hierarchical layer structure and the correspondingly nested

multigrid schemes motivate the term ‘recursive’ and explain the ‘R’ in the acronym ‘ScaRC’.

Figure 2.51 illustrates the concept with the help of an extension of the grid depicted in Fig-

ure 2.50a. It consists of six subdomains, distributed to two processors (P1 and P2). The global

(a) Domain consisting of six subdomains

distributed to two processors (P1 and P2).

(b) 3-layer-ScaRC approach.

Figure 2.51: Schematic illustration of 3-layer-ScaRC, the second clustering strategy.

multigrid solver is smoothed by the two intermediate multigrid schemes (each one acting on

one processor), which are smoothed again by local multigrid schemes acting on single (MG-

ADI) or merged (MG-ILU) subdomains. This example also demonstrates that the two kinds of

clustering can be combined.

Becker [16] shows that the clustering strategies indeed alleviate the dependence on macro an-

isotropies and thus increase the robustness of ScaRC solvers. But he also states that the defi-

ciencies of the two approaches – the lack of the tensor product property in case of the ‘merging’

strategy and the considerable overhead of arithmetic work in case of 3-layer-ScaRC – lead to

significantly longer total (parallel) execution times. Hence, he concludes that clustering is not

advantageous.

However, in view of the ScaRC improvements we achieved in this chapter (adaptive coarse grid

correction, truncation of local multigrid methods, employment of Krylov smoothers), clustering

has to be reevaluated. Especially, ACGC and Krylov smoothing have to be employed addition-

ally for the intermediate multigrid solver acting on the clustered subdomains. The question to
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be answered is whether the expected gain of robustness and performance is sufficient to render

the clustering approach superior.

Another issue that is worth examining in this context is the following: When several sub-

domains reside on one processor, then the corresponding local solves have to be performed

subsequently. Hence, one could combine the local contributions in a multiplicative way (block-

Gauß-Seidel), i. e., immediately incorporate the local solutions into the right hand sides of the

local systems to be treated next. This does not influence the parallel efficiency of the overall

solver, but can considerably improve the numerical efficiency.

2.7.3 ScaRC with Automatic Scaling

One of the advantages of ScaRC is its ability to locally adapt solving parameters. This po-

tential, however, can only be exploited, when there is an automatic system that performs this

adaptation. When the user has to make these settings manually, the concept is plainly not prac-

ticable in the case of realistic simulation scenarios. Becker [16] realises first steps towards

such an automatic system. He shows how the total storage requirements can be significantly re-

duced by using Jacobi as smoother where possible and ADITriGS only where necessary, instead

of using ADITriGS everywhere. The decision process is automated by evaluating the shape of

the subdomains and the refinement factors (see equation (2.4) on page 27) and choosing the

smoother accordingly.

This automatic system has to be extended. We want to list some possible aspects:

• The automatic choice of the elementary smoother has to be refined. Not only the shape of

the subdomain itself has to be considered, but also the shapes of the neighbouring subdo-

mains which influence the local system via the minimal overlap. For example, the bottom

left subdomain in the grid depicted in Figure 2.31c on page 77 itself is fairly isotropic, but

due to its strongly elongated and larger neighbours, the simple Jacobi smoother performs

badly.

• Whether to use 1-layer-ScaRC or 2-layer-ScaRC can be decided basing on the speed

of the network connection in a parallel computing environment and on the geometric

properties of underlying mesh (also compare Section 2.7.4). The network quality can

also influence the choice how many digits to gain in local solves: The slower the network

(in terms of bandwidth and latency), the more important the minimisation of the number

of global smoothing steps.

• There has to be a mechanism to detect strong macro anisotropies and to automatically

apply clustering techniques if necessary (see Section 2.7.2).

• The results of Section 2.6.4 show that the higher the truncation level for the local multi-

grid solvers is, the more robust the overall solver behaves. Hence, the truncation level
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should be chosen automatically as high as possible, thereby respecting the kind of simu-

lation (how often can one LU decomposition be used?) and the available memory which

represents a hard limit (cf. the discussion in Section 2.5.3.2).

The requirements for such an automatic system rise drastically when dynamic grid adaptation

techniques are employed. Finally, the realisation of a ‘perfect expert system’ that relieves the

user from all decisions is very unlikely. However, the goal should be to automate as many

processes as possible.

2.7.4 Load Balancing

One of the most challenging tasks in parallel computing is to equally distribute the work to the

available processors in order to achieve a satisfying parallel efficiency (‘load balancing’). In

case of 1-layer-ScaRC the amount of local arithmetic work is constant over all subdomains, i. e.,

one ‘only’ has to count subdomains and distribute them equally to the available processors. In

FEAST, this already extremely difficult task is performed by the partitioning tool METIS [90].

The problem is significantly aggravated when 2-layer-ScaRC solvers are used: The crucial

advantage of the 2-layer-ScaRC approach is its ability to ‘hide’ local irregularities and to min-

imise the number of global iterations. This is only made possible by ‘gaining digits’ in the

local solves instead of performing a fixed number of iterations. Consequently, the local solvers

do different amounts of arithmetic work, depending on the difficulty of the local situation.

For example, we consider the solver MG-FGMRES4__MG-BICG-JAC-D__D (see Listing 2.15 on

page 74) applied to the ANISO/ANISO configuration (see Figure 2.31 on page 77). The amount

of arithmetic work it spends on the bottom right subdomain is roughly 8 (2.5, 5) times bigger

than that on the top right (top left, bottom left) subdomain. So, when the four subdomains are to

be distributed to two processors, the best solution would be to schedule the bottom right subdo-

main to one processor and the other three subdomains to the second one. The obvious solution

to use two subdomains per processor would deteriorate the parallel efficiency significantly.

This trivial example is, of course, not representative for realistic configurations consisting of

dozens, hundreds or even thousands of subdomains, where a balanced distribution to processors

is much more complicated. Knowing the strengths and weaknesses of the solver components at

hand, one might be able to do some a priori estimates of the amount of local arithmetic work.

For example, one could use information about mesh anisotropies to estimate the performance of

Jacobi smoothers. This, however, is complicated by the fact that – due to the minimal overlap –

the geometry of neighbouring subdomains also plays an important role, i. e., it is not sufficient

to consider the shape of the respective subdomain alone.24 It gets even more complicated when

24A possible remedy for this problem would be to not use the real minimal overlap, but so called ‘mirror boundary

conditions’ for the local problems. An artificial overlap is created by (implicitly) ‘mirroring’ the outer cell

layer to the outside of the subdomain and to apply Dirichlet boundary conditions to this layer of virtual cells.

This corresponds to multiplicating matrix and vector entries that belong to boundary points by the number

of subdomains that meet in the respective boundary point. The shape of the neighbouring subdomains will

not influence the local system anymore, though, but this technique will surely impair the convergence of the
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the operator of the underlying equation is anisotropic or even nonlinear. In the latter case, it is

extremely hard to predict where in the mesh nonlinearities rise up and to estimate local solver

performance correspondingly.

Hence, instead of using a priori estimates, it might be a better strategy to perform some sort

of ‘trial’ computation (e. g., performing one solver iteration on a coarser grid level), to gather

solver statistics, to distribute subdomains to processors correspondingly, and to start the actual

computation only then. In a dynamic or nonlinear simulation one can exploit statistics of the

previous time step or Newton step to improve load balancing. Similar to the issue of automatic

scaling described in Section 2.7.3, dynamic grid adaptation techniques will further aggravate

the task of equally distributing work.

We consider the problem of load balancing as one of the most critical ones. As long as this

is not adequately solved, the 2-layer-ScaRC strategy can not be fully exploited in practice and

has no chance to be superior over 1-layer-ScaRC on (massively) parallel compute systems.

global iteration, especially, when neighbouring subdomains strongly variate in shape and size. In this sense, this

approach is inconsistent with ScaRC’s design goal to minimise the number of global iterations.



3 Elasticity

Elasticity is a continuum mechanical discipline that examines the deformation of solid elastic

bodies under external loads. A body is considered as solid and deformable when mechanical

forces change its shape, but not its continuous coherence. Furthermore, the body is elastic

when the loading process is reversible, that means the body returns to its initial state after

removal of the loads. Here, only ‘purely’ elastic materials are considered, extensions like

thermoelasticity (including thermal effects), viscoelasticity (time-dependent elastic behaviour)

or elastoplasticity (critical loading states result in changes of the material’s micro-structure,

rendering the deformation process irreversible) go beyond the scope of this study.

Solid material in general shows heterogeneous structures on a microscopic level, but to enable

a mathematical description a body is considered in an idealised way as continuous set of ma-

terial points. Throughout this work we further assume, that the material is homogeneous and

isotropic, i. e., all material points have identical properties which are independent of the spatial

direction. The latter is, for instance, not true for wood which shows different properties along

its fibres than across them. All considerations are based on the deterministic theory saying that

each material point is uniquely identifiable at each point in time. This is different, for example,

in the analysis of gases where a statistical approach might be more appropriate. Finally, we as-

sume that deformation does not destroy the continuous coherence of the body, i. e., the material

does not break.

The chapter is organised as follows: In Section 3.1 we present the basics of (finite deformation)

elasticity, including kinematics (Section 3.1.1), balance equations (Section 3.1.2), constitutive

laws (Section 3.1.3) and dynamics (Section 3.1.4). After collecting and characterising the non-

linear boundary value problems (Section 3.1.5), the important restrictions to linearised (small

deformation) elasticity (Section 3.1.6) and to two spatial dimensions (Section 3.1.7) are dis-

cussed.

Section 3.2 deals with the spatial discretisation of the continuous problems by means of the

finite element method (FEM), beginning with the standard displacement formulation for the lin-

earised elasticity case (Section 3.2.1) and a description of its drawbacks (Section 3.2.2). Then,

the mixed displacement/pressure formulation is motivated and described (Section 3.2.3). Both

formulations are then presented in terms of the finite deformation setting (Section 3.2.4).

Section 3.3 covers the important topic of stabilising equal-order finite element pairs. We in-

troduce standard methods (Sections 3.3.1 and 3.3.3) and present a new stabilisation technique

for unstructured meshes (Section 3.3.2). We extend our considerations to the nonlinear case
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(Section 3.3.4) and compare different stabilisation methods by means of several numerical tests

(Section 3.3.5).

Section 3.4 deals with the discretisation of time dependent problems. A method commonly used

in CSM is briefly introduced in Section 3.4.1. Finally, a severe drawback of stabilised mixed

finite element methods occurring in the case of small time steps is described in Section 3.4.2.

3.1 Continuous Formulation

In this section, which is mainly based on the monograph of Ciarlet [52], we derive the basic

equations of elasticity.

3.1.1 Kinematics

We consider a body as coherent continuum of material points, occupying the area Ω̄ = Ω∪∂Ω

with Ω being a bounded, open, connected subset of R3 with Lipschitz-continuous boundary1

∂Ω, i. e., Ω is a domain (in the mathematical sense). Ω̄, the so called undeformed or reference

configuration, represents the initial state of the body before any deformation has occurred.

A deformation results from exposing the body to external loads and is defined as smooth,

orientation-preserving vector field

ϕϕϕ :

{
Ω̄→ R

3

XXX 7→ xxx := ϕϕϕ(XXX),
(3.1)

which is injective on Ω.2 The deformed state ϕϕϕ(Ω̄) of the body is called the deformed or cur-

rent configuration.3 The properties defining a deformation mapping mathematically describe

the aforementioned assumptions of uniquely identifiable material points and non-breaking ma-

terial. With the help of the partial derivatives
∂ϕi

∂X j
, i, j ∈ {1,2,3}, we can define the deformation

gradient

FFF := Grad(ϕϕϕ) =

(
∂ϕi

∂X j

)

i j

=




∂ϕ1

∂X1

∂ϕ1

∂X2

∂ϕ1

∂X3

∂ϕ2

∂X1

∂ϕ2

∂X2

∂ϕ2

∂X3

∂ϕ3

∂X1

∂ϕ3

∂X2

∂ϕ3

∂X3


 (3.2)

1A Lipschitz-continuous boundary can be represented locally as a graph of a Lipschitz-continuous function with

Ω lying on one side of this graph. For a precise definition and examples of boundaries being not Lipschitz-

continuous see, for example, Ciarlet [52].
2Since self-contact of the body is allowed, the deformation mapping ϕϕϕ does not necessarily have to be injective on

the boundary ∂Ω.
3Following continuum mechanics literature, quantities corresponding to the reference and to the current configura-

tion are denoted with uppercase letters (XXX ,Div,Grad, . . .) and lowercase letters (xxx,div,grad, . . .), respectively.

In some cases, however, when this distinction is not appropriate, quantities of the current configuration are

denoted with the superscript (·)c.
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which can also be denoted as ∂xxx
∂XXX

= ( ∂xi

∂X j
)i j.

45 The postulation of a deformation being orienta-

tion-preserving is equivalent to the property

J := det(FFF)> 0 in Ω̄.

The deformation gradient FFF allows for the following interpretation: Let the point XXX be con-

tained in a line segment lying parallel to the j-th coordinate vector eee j in the undeformed con-

figuration. Then, the j-th column vector of FFF(XXX), i. e.,
∂ϕϕϕ(XXX)

∂X j
, is the tangent vector of the

deformed image of this line segment in the point xxx. In this respect, the deformation gradient

completely describes the deformation up to first order.

Closely connected to the deformation ϕϕϕ is the vector field of displacements uuu : Ω̄→R
3, deter-

mined by

ϕϕϕ = id+uuu. (3.3)

The relation between the deformation gradient and the displacement gradient

HHH := Grad(uuu) =

(
∂ui

∂X j

)

i j

is obviously given by

FFF = III +HHH,

with III denoting the identity matrix in R
3×3.

Basically, there are two possibilities to describe the motion of a body, the Eulerian view and

the Lagrangian view. Generally speaking, they differ by the point of view from which the

physical process is observed. In the Eulerian view movement is described with respect to the

coordinates of the current configuration. It can be interpreted as the observer residing at a

fixed location in space, measuring the physical properties of material points moving by in the

course of time. This description is commonly used in computational fluid dynamics (CFD). In

the Lagrangian view, however, the basis of description are the coordinates of the reference

configuration. Here, the observer follows the material points through space and measures their

location and properties over time. This description is mostly used in solid mechanics, as it will

be throughout this work.

In order to employ the Lagrangian approach we must be able to express quantities of the

deformed configuration (describing the ‘real’ physical state of the body) with respect to the

reference configuration, and vice versa. The corresponding transformations are called ‘push

forward’ (from reference to current configuration) and ‘pull back’ (from current to reference

configuration). Here, we are interested in transforming volume elements, area elements, and

length elements.

4The components of a vector vvv ∈ R
3 are written as vi or (vvv)i and always refer to the canonical Cartesian basis

{eee1,eee2,eee3} with eeei being 1 in the i-th component, and 0 otherwise, e. g., XXX = ∑3
i=1 Xieeei.

5Although the deformation gradient is computed for a point XXX ∈ Ω̄, we preferably omit the argument and write FFF

instead of FFF(XXX). The same holds for similar quantities to be introduced later.
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3.1.1.1 Transformation of Volume Elements

With ϕϕϕ being a deformation mapping we can apply the rule of change of variables in integrals

in the following special form: With V ⊂ Ω̄ and V c := ϕϕϕ(V ) holds

volV c :=
∫

V c

dx =
∫

V

∣∣det
(
Grad(ϕϕϕ)

)∣∣dX =
∫

V
J dX . (3.4)

This equation shows how to compute volumes in the current configuration and especially re-

veals the relation between the volume element dX of the reference configuration and the vol-

ume element dx of the current configuration:

dx = J dX . (3.5)

3.1.1.2 Transformation of Area Elements

Area elements can be associated similarly via surface integrals, whose definition requires Ω to

be a domain, i. e., a open, bounded, connected subset with Lipschitz-continuous boundary.6 For

simplicity, we assume in the following that the deformation ϕϕϕ is smooth enough and injective

on Ω̄ such that Ωc := ϕϕϕ(Ω) is a domain, as well, and Ω̄c = ϕϕϕ(Ω̄). See Ciarlet [52] for details

in this regard. Surface integrals can be related to volume integrals via the well-known Green’s

formula. Before we do this we need two fundamental definitions.

With M
3 denoting the set of square matrices R

3×3, a tensor field of second order (short:

tensor) is given by the mapping

TTT :

{
Ω̄→M

3

XXX 7→ TTT (XXX).

Since all quantities (of both the reference and the current configuration) are defined with respect

to the canonical Cartesian coordinate system, we can identify a tensor TTT with its representing

coordinate matrix

(Ti j) =




T11 T12 T13

T21 T22 T23

T31 T32 T33


 ,

where Ti j : Ω̄→ R. In continuum mechanics literature tensors are often used in a more general

sense, i. e., a specific matrix notation is avoided by not restricting to a fixed basis (see, e. g.,

6This explains why Lipschitz-continuity is a suitable postulation for the solid body’s boundary: All necessary

integrals are defined, although the body’s surface does not have to be ‘too smooth’. Especially, polyhedrals are

feasible, which makes discretisation and numerical treatment of the elasticity problem possible in the first place.
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Stein and Barthold [151]). When the tensor field is smooth enough, its divergence is defined

as7

Div(TTT ) :=




∂T11

∂X1
+ ∂T12

∂X2
+ ∂T13

∂X3

∂T21

∂X1
+ ∂T22

∂X2
+ ∂T23

∂X3

∂T31

∂X1
+ ∂T32

∂X2
+ ∂T33

∂X3


=

3

∑
i=1

(
3

∑
j=1

∂Ti j

∂X j

)
eeei.

Tensors in the current configuration are defined correspondingly. As an example, we compute

the divergence of the displacement gradient in the current configuration,

div
(
grad(uuu)

)
= div




∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


=




∂2u1

∂x1∂x1
+ ∂2u1

∂x2∂x2
+ ∂2u1

∂x3∂x3

∂2u2

∂x1∂x1
+ ∂2u2

∂x2∂x2
+ ∂2u2

∂x3∂x3

∂2u3

∂x1∂x1
+ ∂2u3

∂x2∂x2
+ ∂2u3

∂x3∂x3


= ∆∆∆uuu,

yielding the Laplacian of uuu. In CFD literature, this relation is often written as ∇∇∇ ·∇∇∇uuu.

With these definitions, the divergence theorem for tensor fields (in the reference configuration),

a consequence of the fundamental Green’s formula, can be formulated:

∫
Ω

Div(TTT )dX =
3

∑
i=1

( 3

∑
j=1

∫
Ω

∂Ti j

∂X j

dX
)

eeei =
3

∑
i=1

( 3

∑
j=1

∫
∂Ω

Ti jn j dA
)

eeei =
∫

∂Ω
TTT nnndA. (3.6)

Here, nnn and dA denote the unit outer normal vector and the area element along ∂Ω, respec-

tively. The aim is now to connect dA to the area element da of the current configuration via the

equation ∫
∂V

TTT nnndA =
∫

∂V c

TTT cnnnc da, (3.7)

where V is a subdomain of Ω, V c := ϕϕϕ(V ), and nnnc the unit outer normal vector along ∂V c =
ϕϕϕ(∂V ). In order to derive relation (3.7) we choose the current configuration (representing the

‘real’ physical state of the body) as starting point and assume that the tensor TTT c is given. The

important Piola transform then determines how TTT c translates into the corresponding tensor TTT

of the reference configuration:

TTT = JTTT cFFF−T. (3.8)

Here, we use the short notation FFF−T := (FFFT)−1. With the help of the divergence theorem for

tensor fields (3.6) and the relation

Div(TTT ) = J div(TTT c) (3.9)

(see Ciarlet [52, Theorem 1.7-1]), one can derive relation (3.7) via
∫

∂V
TTT nnndA

(3.6)
=

∫
V

Div(TTT )dX
(3.9)
=

∫
V

J div(TTT c)dX
(3.4)
=

∫
V c

div(TTT c)dx

(3.6)
=

∫
∂V c

TTT cnnnc da.

7The last term ∑3
i=1

(
∑3

j=1
∂Ti j

∂X j

)
eeei is often written as

∂Ti j

∂X j
eeei, assuming the repeated index convention for summation.

This convention, however, is not used in this work.
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Since this equation holds for every subdomain V , we have

TTT nnndA = TTT cnnnc da. (3.10)

For the special case TTT c = III this equation reads JFFF−TnnndA = nnnc da, leading to

J‖FFF−Tnnn‖dA = da. (3.11)

This can be used to establish – corresponding to relation (3.4) – a rule for transforming areas:

areaSc :=
∫

Sc
da =

∫
S

J‖FFF−Tnnn‖dA.

Here, S is a measurable subset of ∂V and Sc := ϕϕϕ(S).

3.1.1.3 Transformation of Length Elements

To see how length elements change under the deformation ϕϕϕ, we consider a fixed point XXX ∈ Ω̄

and an arbitrary line element YYY with XXX +YYY ∈ Ω̄. Assuming that ϕϕϕ is differentiable in XXX , we can

write8

ϕϕϕ(XXX +YYY )−ϕϕϕ(XXX) = FFF(XXX)YYY +o(‖YYY‖),
such that the squared Euclidean distance between the two points ϕϕϕ(XXX) and ϕϕϕ(XXX +YYY ) in the

current configuration can be expressed as follows:

‖ϕϕϕ(XXX +YYY )−ϕϕϕ(XXX)‖2 =‖FFF(XXX)YYY‖2 +o(‖YYY‖2)

=
(
FFF(XXX)YYY

)T
FFF(XXX)YYY +o(‖YYY‖2)

=YYYTFFF(XXX)TFFF(XXX)YYY +o(‖YYY‖2).

The tensor

CCC(XXX) := FFF(XXX)TFFF(XXX) (3.12)

is known as the right Cauchy-Green strain tensor. It is symmetric and – due to the properties

of ϕϕϕ – induces a positive definite quadratic form

(YYY ,YYY ) 7→ YYYTCCC(XXX)YYY = ‖FFF(XXX)YYY‖2.

Thus, for the length element dL of the reference configuration,

dL =

√
YYYTYYY ,

we can express the corresponding length element dl of the current configuration as

dl =

√
YYYTCCC(XXX)YYY .

In this regard, the tensor CCC can be interpreted as describing the local change of length under the

deformation ϕϕϕ.

8The ‘o-notation’ o(h),h ∈ R, means that o(h) = hε(h) with limh→0 ε(h) = 0.
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3.1.1.4 Rigid Body Motions

The right Cauchy-Green strain tensor CCC is suited to characterise rigid body motions. These

are defined by

∃bbb ∈ R
3,QQQ ∈O

3
+ : ϕϕϕ(XXX) = QQQXXX +bbb, XXX ∈ Ω̄, (3.13)

where O
3
+ ⊂M

3 denotes the set of orthogonal matrices with positive determinant +1. This

means that the body is translated and rotated, but it does not change its shape. For such rigid

body motions obviously FFF(XXX) = QQQ holds, and hence

CCC(XXX) = FFF(XXX)TFFF(XXX) = III, (3.14)

indicating that no strains occur. Actually, the latter relation suffices to determine a rigid body

motion: If for a smooth enough mapping ϕϕϕ, equation (3.14) holds with det(ϕϕϕ)> 0, then ϕϕϕ fulfils

condition (3.13). For a proof, see Ciarlet [52, Theorem 1.8-1]. In summary, a deformation ϕϕϕ

describes a rigid body motion, if and only if its right Cauchy-Green strain tensor CCC is the

identity matrix.

Another strain measure, the so called Green-St. Venant strain tensor

EEE := 1
2

(
CCC− III

)
,

is suited to estimate how a deformation deviates from a rigid body motion. From a mechanical

point of view this is the ‘natural’ strain measure since it is zero in the case of a rigid body

motion, which induces no strain and no stress. The Green-St. Venant strain tensor is often

expressed in terms of displacements,

EEE(uuu) = 1
2

(
Grad(uuu)+Grad(uuu)T+Grad(uuu)T Grad(uuu)

)
, (3.15)

revealing the connection to the linearised strain tensor (cf. Section 3.1.6).

3.1.2 Equilibrium Equations

A solid body deforms when it is exposed to some external load. We consider two kinds of load,

namely body forces and surface forces. Contact forces, which occur when the body touches

itself or some other object, are not taken into account. For simplicity, also inertial forces are

neglected for the time being. They will be introduced in Section 3.1.4. Since the deformed con-

figuration describes the actual physical state of the body, we begin our examinations there.

Body forces, acting on the interior of the deformed body, are given by a vector field

fff c : Ωc→ R
3. (3.16)

More precisely, fff c represents the (density of the) applied body force per unit volume in the

current configuration. An example of such a body force is gravity,

fff c(xxx) =
(
0,0,−gρc(xxx)

)T
,
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where ρc(xxx) ∈ R is the body’s mass density in the point xxx of the current configuration, and g

denotes the gravity constant.

Surface forces act on parts of the deformed body’s boundary and can be described by a vector

field

gggc : Γc

N→ R
3, (3.17)

the (density of the) applied surface force per unit area in the current configuration. The

boundary of the body, denoted by Γc := ∂Ωc, decomposes into two parts

Γc = Γc

D +Γc

N, Γc

D∩Γc

N = /0.

Γc
D is the part of the boundary where the body is fixed (corresponding to Dirichlet bound-

ary conditions in the language of boundary value problems), while Γc
N is the free part where

surface forces apply and which is allowed to move (corresponding to Neumann boundary

conditions).

Loads that do not depend on the deformation ϕϕϕ are called dead loads. Gravity, for instance, is

such a dead load since it does not change its direction in the course of the deformation process.

For surface forces, however, it is in general unrealistic to assume dead loads – the direction of a

surface force usually changes when the body deforms. Nevertheless, for simplicity we neglect

this and will throughout this work apply surface forces as dead loads.

With the definition of applied forces at hand we can now derive the fundamental equilibrium

conditions which are expressed in terms of partial differential equations (PDEs). Their deriva-

tion is based on the following central axiom of continuum mechanics, going back to Euler and

Cauchy:

AXIOM 3.1 (stress principle of Euler and Cauchy)

For a body Ωc loaded by forces fff c : Ωc→ R
3 and gggc : Γc

N→ R
3, there exists a vector field

tttc : Ω̄c×S1→ R
3, (xxx,nnnc) 7→ tttc(xxx,nnnc) (3.18)

where S1 :=
{

vvv ∈ R
3
∣∣ ‖vvv‖= 1

}
, such that:

1. For arbitrary V c ⊂ Ω̄c and for any xxx ∈ Γc
N∩∂V c where the unit outer normal vector nnnc

exists,

tttc(xxx,nnnc) = gggc(xxx).

2. For arbitrary V c ⊂ Ω̄c,

∫
V c

fff c(xxx)dx+
∫

∂V c

tttc(xxx,nnnc)da = 000,

which is the axiom of force balance.
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3. For arbitrary V c ⊂Ωc,

∫
V c

xxx× fff c(xxx)dx+
∫

∂V c

xxx× tttc(xxx,nnnc)da = 000,

which is the axiom of moment balance. Here, ‘×’ denotes the vector product in R
3.

The axiom states that any subdomain of a solid body loaded by volumetric forces and, possibly,

surface forces at points xxx∈ Γc
N∩∂V c, where the unit outer normal vector exists, is in static equi-

librium due to the existence of additional surface forces tttc arising on the remaining boundary

part. Furthermore, these surface forces depend on the subdomain only via the normal vector,

and not, for instance, via the curvature of the subdomain’s boundary. The vector tttc(xxx,nnnc) is

called the Cauchy stress vector

A famous theorem of Cauchy states that the Cauchy stress vector field depends linearly on the

normal vector and expresses the relation between the stresses and the applied surface forces in

terms of a PDE:

THEOREM 3.2 (Cauchy’s theorem)

Let the applied body force fff c : Ωc→ R
3 be continuous, let the Cauchy stress vector field tttc

be continuously differentiable with respect to the variable xxx ∈ Ω̄c for each nnnc ∈ S1 and

continuous with respect to the variable nnnc ∈ S1 for each xxx ∈ Ω̄c. Then, it follows from

the axioms of force and momentum balance (Axiom 3.1) that there exists a continuously

differentiable tensor field

TTT c : Ω̄c→M
3

that satisfies

1. the following relation to the Cauchy stress vector

tttc(xxx,nnnc) = TTT c(xxx)nnnc, xxx ∈ Ω̄c,nnnc ∈ S1, (3.19)

2. the PDE

−div
(
TTT c(xxx)

)
= fff c(xxx), xxx ∈Ωc, (3.20a)

3. the symmetry properties

TTT c(xxx) = TTT c(xxx)T, xxx ∈ Ω̄c, (3.20b)

4. and the boundary conditions

TTT c(xxx)nnnc = gggc(xxx), xxx ∈ Γc

N. (3.20c)

For a proof, see Ciarlet [52, Theorem 2.3-1].
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The tensor TTT c(xxx) introduced in this theorem is called the Cauchy stress tensor at the point xxx.

Equations (3.20) are known as the equations of equilibrium in the deformed configuration.

The boundary value problem given by equations (3.20a) and (3.20c) can be transformed into an

equivalent weak or variational formulation

∫
Ωc

TTT c : grad(θθθc)dx =
∫

Ωc

fff c ·θθθc dx+
∫

Γc
N

gggc ·θθθc da, θθθc = 000 on Γc

D,

with smooth enough functions θθθc : Ωc→ R
3, uuu · vvv denoting the Euclidean vector inner product

and AAA : BBB = trace(AAATBBB) the matrix inner product. For a proof of equivalence, see Ciarlet [52,

Theorem 2.4-1]. This equation is known as the principle of virtual work in the deformed

configuration.

To actually compute the deformation of a loaded body, neither the equilibrium equations in

the deformed configuration, nor their variational formulation are directly applicable since they

implicitly use exactly this unknown deformation field as a variable, e. g., in terms of the Euler

variable xxx = ϕϕϕ(XXX). Therefore, the equations have to be expressed with respect to the reference

configuration, which is possible with the help of the relations introduced in Section 3.1.1. First,

we build the Piola transform (cf. equation (3.8)) of the Cauchy stress tensor:

TTT = JTTT cFFF−T. (3.21)

The tensor TTT : Ω̄→M
3 is called the first Piola-Kirchhoff stress tensor. Correspondingly, we

define the first Piola-Kirchhoff stress vector ttt(XXX ,nnn) via

ttt(XXX ,nnn)dA = tttc(xxx,nnnc)da,

which together with

TTT nnndA = TTT cnnnc da

(cf. relation (3.10)) leads to the counterpart of equation (3.19) in the reference configuration:

ttt(XXX ,nnn) = TTT nnn, XXX ∈ Ω̄,nnn ∈ S1.

Then, due to equation (3.9), we have the following simple relation for the divergence:

Div(TTT ) = J div(TTT c).

Finally, we define the vector field fff : Ω→ R
3 as the (density of the) applied body force per

unit volume in the reference configuration and the vector field ggg : ΓN→ R
3 as the (density

of the) applied surface force per unit area in the reference configuration by relating them

to the applied forces of the deformed configuration via

fff (XXX)dX = fff c(xxx)dx, xxx = ϕϕϕ(XXX) ∈Ωc,

ggg(XXX)dA = gggc(xxx)da, xxx = ϕϕϕ(XXX) ∈ Γc

N.
(3.22)
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Due to equations (3.5) and (3.11), resp., the following relations between the force vectors of

the reference and the current configuration hold:

fff (XXX) = J fff c(xxx),

ggg(XXX) = J‖FFF−Tnnnc‖gggc(xxx).

With these definitions at hand, we can provide the analogon of Cauchy’s theorem 3.2 for the

reference configuration:

THEOREM 3.3

Let the forces fff and ggg defined by equations (3.22) be given. Then the first Piola-Kirchhoff

stress tensor TTT defined by relation (3.21) fulfils

−Div
(
TTT (XXX)

)
= fff (XXX), XXX ∈Ω, (3.23a)

FFFTTT (XXX)T = TTT (XXX)FFFT, XXX ∈Ω, (3.23b)

TTT (XXX)nnn = ggg(XXX), XXX ∈ ΓN. (3.23c)

Equations (3.23) are called the equations of equilibrium in the reference configuration. With

θ : Ω̄→ R
3 being smooth enough vector fields, equations (3.23a) and (3.23c) can be trans-

formed into the equivalent variational formulation

∫
Ω

TTT : Grad(θθθ)dX =
∫

Ω
fff ·θθθdX +

∫
ΓN

ggg ·θθθdA, θθθ = 000 on ΓD, (3.24)

known as the principle of virtual work in the reference configuration. For proofs of this

equivalence and of Theorem 3.3, see Ciarlet [52, Theorem 2.6-1].

Relation (3.23b) shows that the first Piola-Kirchhoff stress tensor is in general not symmetric.

This motivates the definition of the second Piola-Kirchhoff stress tensor

SSS = FFF−1TTT .

Substituting TTT with FFFSSS in equation (3.23b) yields

SSST = SSS, (3.25)

showing the symmetry of the second Piola-Kirchhoff stress tensor. The equations of equi-

librium in the reference configuration and the corresponding weak formulation can now be

expressed in terms of the second Piola-Kirchhoff stress tensor, as well: We simply replace

equation (3.23b) by equation (3.25) and every occurrence of TTT in equations (3.23) and (3.24)

by FFFSSS.
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3.1.3 Constitutive Laws

It is intuitively clear that a body consisting of steel reacts differently to an applied force than an

equally shaped body consisting of rubber. The model equations presented in the previous sec-

tion do not contain any information about the material and are consequently incomplete. This

is also evident from a mathematical point of view. There are nine unknowns in the equilibrium

equations (3.23) – the three components of the deformation ϕϕϕ and six components of the first

Piola-Kirchhoff stress tensor TTT (taking into consideration relation (3.23b) or the symmetry of

the second Piola-Kirchhoff stress tensor). The equilibrium conditions (3.23a), however, only

consist of three equations, thus representing an undetermined system. The six missing equa-

tions are now provided by specifying the dependence of the stress tensor on the deformation.

The underlying continuum mechanical model, which this thesis confines to, has been described

at the beginning of this chapter. The properties and restrictions accompanying this model are

now expressed mathematically, finally resulting in concrete forms of the boundary value prob-

lem (3.23) which will serve as basis for the discretisation (cf. Section 3.2).

3.1.3.1 Elastic Material

A material is elastic if the second Piola-Kirchhoff stress tensor9 in a point XXX only depends

on the deformation gradient FFF(XXX) = Grad
(
ϕϕϕ(XXX)

)
and the point XXX itself, i. e., if there is a

mapping

ŜSS : Ω̄×M
3
+→M

3,

called the response function for the second Piola-Kirchhoff stress tensor, such that the con-

stitutive equation

SSS(XXX) = ŜSS(XXX ,FFF(XXX)
)
, XXX ∈ Ω̄

holds.10 If the response function is independent of the specific point XXX of the reference config-

uration, i. e., if SSS(XXX) = ŜSS(FFF(XXX)
)
,XXX ∈ Ω̄, then the material is called homogeneous. To simplify

notations we assume from now on the material to be homogeneous and consequently omit the

first variable of the response function. The following results, however, are also valid for inho-

mogeneous materials.

The constitutive equation is significantly simplified when the material is isotropic, which intu-

itively means that a material point responds identically in all directions. The axiom of material

frame-indifference, which holds for all materials, further restricts the form of the response func-

tion: When a deformed configuration is rotated around the origin, then the axiom says that the

Cauchy stress vector is transformed by the same rotation. For the mathematical definitions

9Elastic material can analogously be defined via the Cauchy or the first Piola-Kirchhoff stress tensor.
10While the axioms of force and momentum balance and the resulting equilibrium conditions are widely accepted

and used as the basis for continuum mechanical problems, there are possibilities to vary or extend the character-

isation of elastic materials. For example, in nonlocal elasticity the stress tensor SSS(XXX) is assumed to additionally

depend on all other points YYY ∈ Ω̄, while the theory of elastic materials of second grade incorporates higher-order

derivatives of the deformation tensor. For references in this regard, see Ciarlet [52, p. 93].
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of frame-indifference and isotropy, see Ciarlet [52, pages 104 and 106]. One can show [52,

Theorem 3.6-2] that the response function of a frame-indifferent, homogeneous and isotropic

material can be expressed in the simple form

ŜSS(FFF) = S̃SS(CCC) = γ0(ιιιCCC)III + γ1(ιιιCCC)CCC+ γ2(ιιιCCC)CCC
2,

where γi, i = 0,1,2, are real-valued functions of the three principal invariants11 of the matrix

CCC = FFFTFFF . To further concretise the representation of the stress tensor we assume that the

reference configuration of the body is stress-free, i. e., that the residual stress tensor TTT R :=
ŜSS(III) = S̃SS(III) is zero in all points. In this case the reference configuration is called a natural

state. Note that a reference configuration subjected to a rotation is still in a natural state. Now

we take a closer look at the response function S̃ in the case of a deformation ‘near a natural

state’. The Green-St. Venant strain tensor EEE = 1
2
(CCC− III) (see definition (3.15) on page 115)

measures the deviation of the deformation from a rigid body transformation. Accordingly, it

makes sense to consider the deviation S̃(III+2EEE)− S̃(III) by computing a Taylor expansion around

S̃(III) and considering the first order terms. Doing so results in the following theorem:

THEOREM 3.4

Let there be a solid body which consists of frame-indifferent, homogeneous, isotropic,

elastic material and whose reference configuration is in natural state. If the functions γi,

i = 0,1,2, are differentiable at the point ιιιIII = (3,3,1) (the three principal invariants of the

identity matrix), then there are two constants µ and λ such that the response function can be

written as12

ŜSS(FFF) = S̃(CCC) = Š(EEE) = 2µEEE +λ tr(EEE)III +o(EEE). (3.26)

For a proof, see Ciarlet [52, Theorems 3.7-1 and 3.8-1].

Remarkable about this representation is the reduction to only two material constants, which

are called the Lamé constants. Furthermore, the constant µ is called the shear modulus of

the material. ‘Ideal’ experiments, which are realised by performing special deformations (pure

shear, pure traction, pure compression), show that both constants must be positive. Such ex-

periments are actually used in practice to determine numerical values of the two constants for

11The three principal invariants ιιιAAA =
(
ι1(AAA), ι2(AAA), ι3(AAA)

)
of a matrix AAA ∈M

3 are the coefficients of the char-

acteristic polynomial det(AAA− λIII) = −λ3 + ι1(AAA)λ
2− ι2(AAA)λ+ ι3(AAA). They can be expressed in terms of the

eigenvalues λ1,λ2 and λ3 of the matrix AAA:

ι1(AAA) = tr(AAA) = λ1 +λ2 +λ3

ι2(AAA) =
1

2

(
tr(AAA)2− tr(AAA2)

)
= λ1λ2 +λ2λ3 +λ3λ1

= det(AAA) tr(AAA−T) (if AAA invertible)

ι3(AAA) = det(AAA) = λ1λ2λ3.

12The definition of the ‘o-notation’ o(EEE) is analogous to that in footnote 8 on page 114.
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a given material. The properties of an elastic material can also be specified in terms of two

other constants, the Poisson ratio ν and the Young modulus E. The relation between the four

constants is given by the following equations:

E =
µ(3λ+2µ)

λ+µ
, µ =

E

2(1+ν)
,

ν =
λ

2(λ+µ)
, λ =

Eν

(1+ν)(1−2ν)
.

(3.27)

From µ,λ > 0, E > 0 and 0 < ν < 0.5 follows. The limit case of ν = 0.5 is considered at the

end of this section.

Equation (3.26) straightforwardly leads to one of the most popular materials in actual compu-

tations, the St. Venant-Kirchhoff material. Its response function is given by simply omitting

the remainder in equation (3.26),

Š(EEE) = S̃(III +2EEE) = 2µEEE +λ tr(EEE)III, (3.28)

thus defining a frame-indifferent, homogeneous, isotropic, elastic material with reference con-

figuration at natural state. Due to its definition, it is clear that this material model is only valid

for ‘small’ strains. It is noteworthy that, although the relation EEE → Š(EEE) is obviously linear,

the St. Venant-Kirchhoff material model is still nonlinear in terms of the displacements since

the kinematic relation (3.15) is nonlinear.

3.1.3.2 Hyperelasticity

To overcome the limitation to small strains we take a different view at the deformation problem,

namely as an energy minimisation problem. We once again consider the applied forces (cf.

equations (3.16), (3.17), (3.22)). If the body force is a dead load, we define the functional

F : {ψψψ : Ω̄→ R
3}→ F(ψψψ) =

∫
Ω

F̂(XXX ,ψψψ(XXX))dX

where

F̂ : Ω×R
3→ R, F̂(XXX ,ηηη) = fff (XXX) ·ηηη

is the potential of the applied body force.13 Then, we can write the volume integral on

the right hand side of the principle of virtual work (3.24) as the Gâteaux derivative14 of the

functional F :

F ′(ϕϕϕ)θθθ =
∫

Ω
F̂(XXX ,θθθ(XXX))dX =

∫
Ω

fff (XXX) ·θθθ(XXX)dX .

13This definition can be extended to forces that are not dead loads, leading to the definition of conservative forces

(see Ciarlet [52, pp. 81f]).
14The Gâteaux (or directional) derivative of a function f at the point aaa in direction of the vector hhh is given by

f ′(aaa)hhh =
d

dt
f (aaa+ thhh)

∣∣∣
t=0
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Analogously, let G be a functional whose Gâteaux derivative yields the surface integral on the

right hand side of the principle of virtual work. Then it is desirable to also express the left hand

side in terms of a functional W , which motivates the following definition: A homogeneous

elastic material with response function T̂TT is hyperelastic if there is a differentiable function

Ŵ : M3
+→ R such that

T̂TT (FFF) =
∂Ŵ

∂FFF
(FFF), FFF ∈M

3
+.

The potential Ŵ is called the stored energy function and describes the locally stored den-

sity of elastic energy during the deformation process. Deriving the response function from a

potential allows for the following physical interpretation: The energy needed to deform a hy-

perelastic body from state A into state B is independent of the deformation path. Consequently,

a cyclic deformation process (e. g., from state A over state B back to state A) does not dissipate

energy.

The desired functional W can then be defined by

W (ψψψ) =
∫

Ω
Ŵ (Grad(ψψψ))dX

and is denoted as strain energy. Physically, it can be interpreted as the amount of work which

is necessary to bring the hyperelastic body into its current state. In conjunction with the func-

tionals F and G it determines the total energy

I(ψψψ) =W (ψψψ)−
(
F(ψψψ)+G(ψψψ)

)
.

Now, it can be shown that the principle of virtual work (3.24) is equivalent to the condition

I′(ϕϕϕ)θθθ = 0, θθθ = 000 on ΓD

with θθθ : Ω→ R
3 being smooth enough (see Ciarlet [52, Theorem 4.1-1]). This leads to the

following important theorem:

THEOREM 3.5

Let a hyperelastic, homogeneous material be subjected to body and surface forces that are

dead loads. A sufficiently smooth mapping ϕϕϕ that satisfies

ϕϕϕ ∈ΦΦΦ := {ψψψ : Ω̄→ R
3 | ψψψ = ϕϕϕ0 on ΓD}

and

I(ϕϕϕ) = inf
ψψψ∈ΦΦΦ

I(ψψψ),

solves the following boundary value problem:

−Div

[
∂Ŵ

∂FFF

(
Grad(ϕϕϕ

(
XXX)
))]

= fff (XXX), XXX ∈Ω, (3.29a)

ϕϕϕ(XXX) = ϕϕϕ0(XXX), XXX ∈ ΓD, (3.29b)

∂Ŵ

∂FFF

(
Grad

(
ϕϕϕ(XXX)

))
nnn = ggg(XXX), XXX ∈ ΓN. (3.29c)

For a proof, see Ciarlet [52, Theorems 4.1-1 and 4.1-2].
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This theorem states the intuitive idea that the solution of a deformation problem describes a

state of minimal energy.

Corresponding to the definitions for response functions of elastic materials (cf. Section 3.1.3.1),

isotropy and frame-indifference of the stored energy function lead to the representation Ŵ (FFF)=
W̃ (FFFTFFF). This form corresponds to the response function of the symmetric second Piola-

Kirchhoff stress tensor via

ŜSS(FFF) = S̃SS(CCC) = 2
∂W̃

∂CCC
(CCC), FFF ∈M

3
+

(see Ciarlet [52, Theorem 4.2-2]). The stored energy function can equivalently be expressed in

terms of the Green-St. Venant strain tensor EEE = 1
2
(FFFTFFF− III), i. e.,

ŜSS(FFF) = ŠSS(EEE) =
∂W̌

∂EEE
(EEE), FFF ∈M

3
+.

Analogously to Section 3.1.3.1 it can be shown that a frame-indifferent, isotropic stored energy

function of a hyperelastic material only depends on the three principal invariants of the matrix

CCC = FFFTFFF , i. e.,

Ŵ (FFF) = Ẇ (ιιιCCC), FFF ∈M
3
+.

The response function of the second Piola-Kirchhoff stress tensor can then be written as

S̃SS(CCC) = 2
∂W̃

∂CCC
(CCC) = 2

∂Ẇ

∂CCC
(ι1(CCC), ι2(CCC), ι3(CCC))

= 2
∂Ẇ

∂ι1

∂ι1

∂CCC
+2

∂Ẇ

∂ι2

∂ι2

∂CCC
+2

∂Ẇ

∂ι3

∂ι3

∂CCC

= 2
∂Ẇ

∂ι1

III +2
∂Ẇ

∂ι2

(
ι1(CCC)III−CCC

)
+2

∂Ẇ

∂ι3

ι3(CCC)CCC−1

= 2
∂Ẇ

∂ι1

III +2
∂Ẇ

∂ι2

(
tr(CCC)III−CCC

)
+2

∂Ẇ

∂ι3

det(CCC)CCC−1, (3.30)

where we use ∂Ẇ
∂ιi

as short form of ∂Ẇ
∂ιi

(ιιιCCC) (cf. Ciarlet [52, Theorems 4.4-1 and 4.4-2]). With

this representation at hand, we can construct, analogously to Theorem 3.4, a simple form of the

stored energy function for isotropic, hyperelastic materials in the case of deformations ‘near a

natural state’:

W̌ (EEE) = µ tr(EEE2)+
λ

2
tr(EEE)2 +o(‖EEE‖2).

Omitting the remainder15 leads to the stored energy function of the St. Venant-Kirchhoff mate-

rial (3.28),

W̌ (EEE) = µ tr(EEE2)+
λ

2
tr(EEE)2, (3.31)

which shows that this material is hyperelastic (see Ciarlet [52, Theorem 4.4-3 and 4.5-1]).

15For the definition of the ‘o-notation’ o(‖EEE‖2) see footnote 8 on page 114.
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We now want to express the already stated limitation of the St. Venant-Kirchhoff material to

small strains in terms of the stored energy function. This motivates the definition of a constitu-

tive equation which is suitable for large strains, as well. Apparently, states of extreme strains

should involve extreme stresses. For example, when compressing a material in such a way that

det(FFF)→ 0, then the stress should tend to infinity. In other words, infinite energy should be

necessary to cancel volumes. This intuitive idea has to be reflected by the stored energy func-

tion. Mathematically, we can express this via the following two assumptions how the stored

energy function should behave for large strains:16

det(FFF)→ 0 ⇒ Ŵ (FFF)→+∞, FFF ∈M
3
+

‖FFF‖+‖CofFFF‖+det(FFF)→+∞ ⇒ Ŵ (FFF)→+∞, FFF ∈M
3
+

Considering the St. Venant-Kirchhoff material, it is obvious that it is not able to meet the first

assumption as its stored energy function (3.31) does not explicitly depend on det(FFF). An exam-

ple of a hyperelastic material which fulfils both assumptions and which still has a quite simple

form and is thus often used in practice, is the Neo-Hooke material. It does not depend on

the second principal invariant ι2(CCC) and is usually expressed in terms of J = det(FFF) instead of

det(CCC). Representation (3.30) thus simplifies to

S̃SS(CCC) = 2
∂Ẅ

∂CCC
(ι1(CCC),J) = 2

∂Ẅ

∂ι1

III +
∂Ẅ

∂J
JCCC−1.

We choose a variant of Neo-Hooke material which is frequently used in the literature [133, 145,

176]. Its stored energy function is given by

Ẅ (ι1(CCC),J) =
µ

2

(
tr(CCC)−3−2ln(J)

)
+

λ

4

(
J2−1−2ln(J)

)
, (3.32)

yielding the following form of the second Piola-Kirchhoff stress tensor:

SSS = µ(III−CCC−1)+
λ

2
(J− 1

J
)JCCC−1. (3.33)

Due to the logarithmic terms, the stored energy function tends to infinity when detFFF → 0, and

additionally it provides a stress-free reference configuration (SSS = 000 for CCC = III).

3.1.3.3 (Nearly) Incompressible Materials

Some materials react to volume changes with a large increase of stored energy. Such materials

are called nearly incompressible. In the limit case, when the material does not allow any

change of volume, it is called incompressible. Mathematically, this constraint is expressed in

terms of the determinant of the deformation gradient,

detFFF = 1. (3.34)

16CofFFF := det(FFF)FFF−T is the cofactor matrix of FFF .
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For nearly incompressible material, i. e., when J = detFFF is close to 1, it is obvious from the

second term of equation (3.32) that a large increase of energy due to volume changes is only

possible if the material constant λ is large. Consequently, this constant can be interpreted as

reflecting how the material reacts to compression – the larger λ, the ‘less compressible’ the

material. The degree of incompressibility can also be expressed in terms of the Poisson ratio ν.

From equation (3.27) follows (for fixed shear modulus µ) the relation

ν→ 0.5⇔ λ→ ∞.

Consequently, a Poisson ratio of ν = 0.5 characterises incompressible material which makes

it very convenient in a computer program to switch from nearly incompressible material, e. g.,

ν = 0.49999 to incompressible material, ν = 0.5.

In the case of the incompressible limit, corresponding to J = 1 and ‘λ = ∞’, the stress ten-

sor reduces to SSS = µ(III −CCC−1), and the computation has to be accompanied by a Lagrange

multiplier p to enforce the constraint J = 1. This additional unknown can be interpreted as

pressure. In the nearly incompressible case, however, imposing the condition J ≈ 1 is also

a severe constraint to the class of admissible deformations, and it is intuitively clear that the

problem of finding a solution for the boundary value problem (3.29) is overconstrained. When

not accounting for this problem, the effect is clearly observable in actual computations and is

widely known as volume locking: The loaded body behaves much stiffer than it actually is and

consequently shows too small deformations in response. A mathematical explanation of this

effect will be given for the linear case in Section 3.2.1.

As in the incompressible case, a possibility to overcome this problem is to use an additional

pressure variable

p :=−λ

2
(J− 1

J
) (3.35)

and replace the ’compressibility part’ of the second Piola-Kirchhoff stress tensor (3.33) accord-

ingly:17

SSS = µ(III−CCC−1)− pJCCC−1 (3.36)

The boundary value problem (3.29) is extended by relation (3.35), the so called continuity

equation (see equation (3.43b) on page 130). We call the resulting problems (3.44) and (3.49)

mixed uuu/p formulation, or simply mixed formulation.18 Accordingly, the problems (3.40)

and (3.47) containing the displacements as only unknowns are denoted as displacement for-

mulation. The advantage of the mixed formulation is, that for actual computations one does

17The Cauchy stress tensor corresponding to the second Piola-Kirchhoff stress tensor (3.36) has the form

TTT c = µ(FFFFFFT− III)− pIII.

This shows that the definition (3.35) represents the ‘real’ pressure in the deformed configuration. When regard-

ing the variable p merely as a Lagrange multiplier (ignoring its physical interpretation), then one could, for

example, also set p =− λ
2 (J

2−1) or p =−λ(J−1).
18A similar strategy can be applied to treat (nearly) incompressible St. Venant-Kirchhoff material: One can, e. g.,

define p :=−λ tr(EEE) and replace the second Piola-Kirchhoff stress tensor (3.28) by SSS = 2µEEE− pIII.
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not have to distinguish anymore between nearly incompressible and incompressible material

– in the latter case, all terms containing the constant λ simply vanish from the equations. In

addition, the formulation can just as well be applied to the compressible case (ν ≈ 0.3). Of

course, due to the additional unknowns it is computationally more expensive, but in terms of

accuracy it might be advantageous over the displacement formulation. This has been observed,

for instance, by Suttmeier [153] and will be confirmed in Section 3.3.5.

3.1.3.4 Examples of Elastic Materials

We want to finish this section about constitutive laws by listing the physical properties of some

common elastic materials (see Table 3.1). Some of the numerical simulation examples in this

Material E [ Pa] ν [-] µ [ Pa] λ [ Pa] ρ [
kg

m3 ]

Steel/Iron 2.1 ·1011 0.29 8.14 ·1010 1.1 ·1011 7.8 ·103

Aluminium 7.0 ·1010 0.35 2.6 ·1010 6.0 ·1010 2.7 ·104

Lead 1.6 ·1010 0.44 5.6 ·109 4.1 ·1010 1.34 ·104

Rubber 2.5 ·107 0.499–0.5 8.2 ·106 4.1 ·109 1.0 ·103

Table 3.1: Some average material constants. Poisson ratio ν, shear modulus µ and density ρ serve as input for the

program FEASTsolid.

work use these materials. The rubber material is representative for the wide class of natural and

synthetic elastomers like caoutchouc or polybutadiene with varying degrees of compressibility.

Table 3.2 lists some physical quantities and relations.

velocity m
s length per time

acceleration m
s2 length per time squared

force N = kg m
s2 mass × acceleration (Newton)

density
kg

m3 mass per volume

body force N
m3 = m

s2

kg

m3 force per volume or acceleration × density

surface force (pressure) Pa = N
m2 force per area (Pascal)

Table 3.2: Physical quantities and their units.

3.1.4 Transient Problems

The physical model considered so far completely neglects dynamic effects which occur due

to external loads that strongly variate in time. Actually, each deformation process is time-

dependent, but when loads are applied ‘very slowly’ and do not further change over time, then
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one can neglect the ‘intermediate path’ of the deformation and only compute the final static

state. This justifies the elastostatic formulation we considered in the previous sections.

In elastodynamics the deformation function ϕϕϕ additionally depends on the time variable t,

i. e.,

ϕϕϕ : [0,T ]× Ω̄→ R
3, (t,XXX) 7→ ϕϕϕ(t,XXX),

where I := [0,T ] is the time interval of interest and the reference configuration coincides with

the body at time t = 0. Inertial forces enter the equilibrium equation (3.29a) as additional body

forces (D’Alembert’s principle):

ρϕ̈ϕϕ−Div

(
∂Ŵ

∂FFF

)
= fff in I×Ω,

where ϕ̈ϕϕ is the acceleration and ρ the density of the body in the reference configuration. The

weak formulation is extended accordingly (see equations (3.47) and (3.49)).

3.1.5 Definition and Characterisation of the Boundary Value Problems

We now summarise the boundary value problems for the various continuous models described

in the previous sections. We provide the according variational problem, which will serve as

basis for the discretisation process (see Sections 3.2 and 3.4). From now on we shift the fo-

cus from the deformations ϕϕϕ to the displacements uuu = ϕϕϕ− id and consider the latter as the

unknowns which are to be computed. Let there be given prescribed displacements ūuu imposed

on the boundary part ΓD, dead surface forces ggg acting on the boundary part ΓN, and dead body

forces fff . For transient problems, let I = [0,T ] be the time interval of interest, ūuu0 and v̄vv0 the

initial values for displacements and velocities, respectively, at time t = 0, and uuut(XXX) := uuu(t,XXX).
With VVV and M we denote functional spaces for displacements and pressure, respectively, where

we assume that they are suitably defined for each of the following problems (for details in this

regard, see for example Ciarlet [52], Le Tallec [105] and Braess and Ming [34]). Furthermore,

we define the following products

(
AAA,BBB

)
Ω

:=
∫

Ω
AAA(XXX) : BBB(XXX)dX , AAA,BBB ∈ L2(Ω,M3) (3.37a)

(aaa,bbb)Ω :=
∫

Ω
aaa(XXX) ·bbb(XXX)dX , aaa,bbb ∈ L2(Ω,R3) (3.37b)

(aaa,bbb)ΓN
:=

∫
ΓN

aaa(XXX) ·bbb(XXX)dA, aaa,bbb ∈ L2(ΓN,R
3) (3.37c)

and the functional of external loads

L(vvv) := ( fff ,vvv)Ω +(ggg,vvv)ΓN
. (3.38)

For the sake of a compact presentation we briefly collect the basic definitions used in the fol-

lowing problem formulations:
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• Deformation field (equation (3.1) on page 110): ϕϕϕ : Ω̄→ R
3

• Displacement field (equation (3.3) on page 111): uuu = ϕϕϕ− id

• Deformation gradient (equation (3.2) on page 110): FFF = Grad(ϕϕϕ)

• Determinant of the deformation gradient: J = det(FFF)

• Green-St. Venant strain tensor (equation (3.15) on page 115):

EEE =
1

2
(FFFTFFF− III) = 1

2

(
Grad(uuu)+Grad(uuu)T+Grad(uuu)T Grad(uuu)

)

• Pressure field (equation (3.35) on page 126): p =−λ
2
(J− 1

J
)

• First Piola-Kirchhoff stress tensor (equation (3.21) on page 118): TTT = JTTT cFFF−T with TTT c

denoting the Cauchy stress tensor (see Theorem 3.2 on page 117)

3.1.5.1 The static compressible case

Boundary value problem:

−Div(TTT ) = fff , in Ω (3.39a)

uuu = ūuu, on ΓD (3.39b)

TTT nnn = ggg, on ΓN (3.39c)

Variational problem:

Find uuu− ūuu ∈VVV such that

(
TTT ,Grad(vvv)

)
Ω
= L(vvv), vvv ∈VVV (3.40)

St. Venant-Kirchhoff material:

TTT = FFFSSS = 2µFFFEEE +λ tr(EEE)FFF (3.41)

Neo-Hooke material:

TTT = µ(FFF−FFF−T)+
λ

2
(J2−1)FFF−T (3.42)
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3.1.5.2 The static (nearly) incompressible case

Boundary value problem:

−Div(TTT ) = fff , in Ω (3.43a)

−1
2

(
J− 1

J

)
− 1

λ p = 0 in Ω, (3.43b)

uuu = ūuu, on ΓD (3.43c)

TTT nnn = ggg, on ΓN (3.43d)

Variational problem:

Find (uuu− ūuu, p) ∈VVV ×M such that

(
TTT ,Grad(vvv)

)
Ω
= L(vvv), vvv ∈VVV (3.44a)

−
(

1
2

(
J− 1

J

)
,q
)

Ω
− 1

λ(p,q)Ω = 0, q ∈M (3.44b)

Neo-Hooke material:

TTT = µ(FFF−FFF−T)− pJFFF−T (3.45)

Note, that the terms 1
λ p in equation (3.43b) and 1

λ(p,q)Ω in equation (3.44b) vanish in the case

of incompressible material.

3.1.5.3 The transient compressible case

Initial boundary value problem:

ρüuu−Div(TTT ) = fff in I×Ω (3.46a)

uuu0 = ūuu0, u̇uu0 = v̄vv0 in Ω (3.46b)

uuu = ūuu, in I×ΓD (3.46c)

TTT nnn = ggg, in I×ΓN (3.46d)

Variational problem:

Find uuu− ūuu ∈ L2(I,VVV ) such that

∫ T

0

[
ρ(üuu,vvv)Ω +

(
TTT ,Grad(vvv)

)
Ω

]
dt =

∫ T

0
L(vvv)dt, vvv ∈ L2(I,VVV ) (3.47)

(first Piola-Kirchhoff stress tensor TTT given by equation (3.41) or (3.42))



3.1 Continuous Formulation 131

3.1.5.4 The transient (nearly) incompressible case

Initial boundary value problem:

ρüuu−Div(TTT ) = fff in I×Ω (3.48a)

− 1
2

(
J− 1

J

)
− 1

λ p = 0 in I×Ω (3.48b)

uuu0 = ūuu0, u̇uu0 = v̄vv0 in Ω (3.48c)

uuu = ūuu, in I×ΓD (3.48d)

TTT nnn = ggg, in I×ΓN (3.48e)

Variational problem:

Find (uuu− ūuu, p) ∈ L2(I,VVV )×L2(I,M) such that

∫ T

0

[
ρ(üuu,vvv)Ω +

(
TTT ,Grad(vvv)

)
Ω

]
dt =

∫ T

0
L(vvv)dt, vvv ∈ L2(I,VVV ) (3.49a)

∫ T

0

[
−
(

1
2

(
J− 1

J

)
,q
)

Ω
− 1

λ(p,q)Ω

]
dt = 0, q ∈ L2(I,M) (3.49b)

(first Piola-Kirchhoff stress tensor TTT given by equation (3.45))

3.1.5.5 Characterisation of the Partial Differential Equations

The equilibrium equations occurring in the boundary value problems (3.39), (3.43), (3.46)

and (3.48) build a system of three nonlinear partial differential equations of second order with

respect to the displacements ui, i = 1,2,3. Due to the divergence structure, the PDEs are quasi-

linear, i. e., they depend linearly on the second-order derivatives (see Ciarlet [52, p. 251]), but

they are not semilinear since the coefficients of the second-order derivatives depend on the

unknown solutions.

Actually, the PDEs exhibit a highly nonlinear character. First, there is the geometric non-

linearity between the displacements and the strains in form of the Green-St. Venant strain

tensor (3.15) (or, equivalently, between the deformations and the right Cauchy-Green strain

tensor (3.12)). Then, the relation between the strains and the stresses is nonlinear in the case of

the Neo-Hooke constitutive law (3.33), which is called material nonlinearity. Furthermore,

the constraints det(FFF) > 0, specifying a deformation mapping, and det(FFF) = 1, characterising

incompressible material, are nonlinear.19

Such nonlinear PDEs are not necessarily uniquely solvable. There are many classical examples

of simple deformation problems which possess multiple solutions. However, the numerical

19Other sources of nonlinearity (which are not considered in this thesis) are external forces that depend on the

deformation (i. e., that are not dead loads), and certain kinds of boundary conditions, for example, when contact

with an obstacle occurs.
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tests performed in this study are such that the difficulty of non-uniqueness does not arise. For

details in this regard and for theoretical existence results we refer to Ciarlet [52] and Le Tallec

[105].

3.1.6 Linearised Elasticity

Considering the highly nonlinear character of the elasticity problem, it seems to be physically

questionable to treat it in a completely linear fashion. As suggested by Ciarlet [52, p. 286], one

should avoid the term linear elasticity, since elasticity itself is nonlinear. The linear equations

which are examined in this section result from a linearisation of the nonlinear problem near the

origin. Accordingly, one should rather speak of linearised elasticity and keep in mind that the

computed solutions only represent approximations to the ‘real’ displacements. Nevertheless,

linearised elasticity is widely used in engineering applications to numerically approximate the

solutions of solid mechanical problems. Likewise, our examinations of robust solving methods

(see Chapters 4 and 5) will mainly focus on the linearised theory. This is justified, since the

numerical strategy to solve nonlinear problems (see Section 4.3) in fact consists of solving a

series of linear problems that represent linearisations around the current solution. These linear

problems have the same structure as the ones to be introduced in this section. So, even if the

following explanations might seem as a mere ‘by-product’ of the nonlinear theory and might

be unrealistic from a physical point of view, they serve as basis for the development of our

solution strategy and are thus of major importance for this work.

First, we linearise the kinematic relation between displacements and strains: We omit the

quadratic terms of the Green-St. Venant strain tensor (3.15) and thus obtain the linearised

strain tensor20

εεε(uuu) := 1
2

(
∇∇∇uuu+∇∇∇uuu

T
)
,

which is also referred to as symmetric gradient of uuu. For details about this linearisation and

the following ones we refer to Stein and Barthold [151, chapter 6]. Replacing the real strain

tensor by its linearised version is only feasible when the displacements are small. Consequently,

linearised elasticity requires the assumption of small deformations.21

Next, we need a linear stress-strain relation. The St. Venant-Kirchhoff constitutive law (3.28)

fulfils this requirement, but is still nonlinear in terms of the displacements. So, we simply

replace the Green-St. Venant strain tensor by the linearised strain tensor, which leads to Hooke’s

law for isotropic material:

σσσ = 2µεεε+λ tr(εεε)III. (3.50)

The symmetric tensor σσσ is the linearisation of the second Piola-Kirchhoff stress tensor SSS de-

fined by the response function (3.28). Linearising the corresponding first Piola-Kirchhoff stress

20For linearised elasticity, we use the symbol ∇∇∇ to denote the gradient. Furthermore, we do not distinguish between

the coordinates of reference and deformed configuration, and use small letters (xxx, div, etc.) only.
21When the small deformation assumption is dropped, this is then often emphasised in the literature by using the

terms large deformation or finite deformation.
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tensor TTT or the Cauchy stress tensor TTT c leads to the same result. So, we can interpret the tensor

σσσ as an approximation of the ‘real’ physical Cauchy stresses occurring in the deformed body.

The corresponding stored energy function is given by

W̌ (εεε) = µ tr(εεε2)+ λ
2

tr(εεε)2

Finally, for the treatment of (nearly) incompressible material we have to translate the nonlinear

continuity equation (3.43b) into a linear relation. The linearisation of the incompressibility

constraint, detFFF = 1, results in the condition

div(uuu) = 0,

which is well known from the (Navier-)Stokes equations describing the flow of incompressible

fluids [158]. Again, we emphasise that the condition div(uuu) = 0 characterises incompressibility

only approximately. Nevertheless, for the sake of convenience we relax the notation for the

linearised case and still use the terms incompressible for ν = 0.5 and nearly incompressible

when ν is close to 0.5.

With the definitions given at the beginning of Section 3.1.5 we can now define the boundary

value problem of linearised elasticity for the compressible case, the so called Lamé equation:

−2µ div(εεε)−λ∇∇∇div(uuu) = fff in Ω (3.51a)

uuu = ūuu on ΓD (3.51b)

σσσnnn = ggg on ΓN. (3.51c)

Defining the bilinear form

k(uuu,vvv) := 2µ
(
εεε(uuu),εεε(vvv)

)
Ω
+λ
(
div(uuu),div(vvv)

)
Ω

(3.52)

and the space

VVV :=
{

vvv ∈ H1(Ω)3
∣∣ vvv = 000 on ΓD

}
, (3.53)

the corresponding variational formulation reads:

Find uuu− ūuu ∈VVV such that

k(uuu,vvv) = L(vvv), vvv ∈VVV , (3.54)

where the right hand side L(vvv) is defined by equation (3.38). The bilinear form k(·, ·) is VVV -

elliptic and continuous,

∃α,C > 0 : α‖vvv‖2
1 6 k(vvv,vvv)6C‖vvv‖2

1, vvv ∈VVV , (3.55)

and the variational problem (3.54) has a unique solution [32].
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For (nearly) incompressible material we apply the same strategy as in the finite elasticity case:

The part of the stress tensor that responds sensitively to volume changes is replaced by a

pressure-like variable. With the definition

p :=−λdiv(uuu)

the boundary value problem for (nearly) incompressible material is then given by

−2µ div(εεε)+∇∇∇p = fff in Ω (3.56a)

−div(uuu)− 1
λ p = 0 in Ω (3.56b)

uuu = ūuu on ΓD (3.56c)

σσσnnn = ggg on ΓN. (3.56d)

With VVV defined by (3.53), M := L2(Ω) and the three bilinear forms

a(uuu,vvv) := 2µ
(
εεε(uuu),εεε(vvv)

)
Ω
, (3.57a)

b(vvv, p) :=−(div(vvv), p)Ω, (3.57b)

c(p,q) :=−(p,q)Ω, (3.57c)

the corresponding variational formulation reads:

Find (uuu− ūuu, p) ∈VVV ×M such that

a(uuu,vvv)+b(vvv, p) =L(vvv), vvv ∈VVV (3.58a)

b(uuu,q)+ 1
λ c(p,q) =0, q ∈M. (3.58b)

Again, for incompressible material the terms containing the constant λ vanish from equa-

tions (3.56b) and (3.58b). This representation reveals the structure of a saddle point prob-

lem with a penalty term, where the penalty term is given by 1
λ , tending to zero as the degree

of incompressibility increases. For the existence of a unique solution the VVV -ellipticity of the

bilinear form a(·, ·) is not sufficient. Additionally, the two spaces VVV and M have to fulfil a com-

patibility condition. Together, these two requirements form the well-known Babuška-Brezzi

conditions [32]:

1. The continuous bilinear form a(·, ·) is VVV0-elliptic:

∃α > 0 : a(vvv,vvv)> α‖vvv‖2
1, vvv ∈VVV0, (3.59)

where VVV0 := {vvv ∈VVV | b(vvv,q) = 0, q ∈M}.

2. The continuous bilinear form b(·, ·) fulfils the inf-sup condition:

∃β > 0 : inf
06=q∈M

sup
000 6=vvv∈VVV

b(vvv,q)

‖vvv‖1‖q‖0

> β. (3.60)
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Here, ‖·‖0 and ‖·‖1 are the usual norms induced by the scalar products of the spaces L2(Ω) and

H1(Ω)3, respectively. The bilinear forms a(·, ·) and b(·, ·) and the spaces VVV and M fulfill these

conditions. Additionally, c(·, ·) is continuous and c(q,q)6 0,q ∈M. So, problem (3.58) has a

unique solution [32].

For the sake of completeness, we present the transient linearised elasticity equations, as well.

For the compressible case we have the initial boundary value problem

ρüuu−2µ div(εεε)−λ∇∇∇div(uuu) = fff in I×Ω (3.61a)

uuu0 = ūuu0, u̇uu0 = v̄vv0 in Ω (3.61b)

uuu = ūuu, in I×ΓD (3.61c)

TTT nnn = ggg, in I×ΓN (3.61d)

and the according variational formulation:

Find uuu− ūuu ∈ L2(I,VVV ) such that

∫ T

0

[
ρ(üuu,vvv)Ω +2µ

(
εεε(uuu),εεε(vvv)

)
Ω
+λ
(
div(uuu),div(vvv)

)
Ω

]
dt =

∫ T

0
L(vvv)dt, vvv ∈ L2(I,VVV ).

(3.62)

For the (nearly) incompressible case we have the initial boundary value problem

ρüuu−2µ div(εεε)+∇∇∇p = fff in I×Ω (3.63a)

−div(uuu)− 1
λ p = 0 in I×Ω (3.63b)

uuu0 = ūuu0, u̇uu0 = v̄vv0 in Ω (3.63c)

uuu = ūuu, in I×ΓD (3.63d)

TTT nnn = ggg, in I×ΓN (3.63e)

and the according variational formulation:

Find (uuu− ūuu, p) ∈ L2(I,VVV )×L2(I,M) such that

∫ T

0

[
ρ(üuu,vvv)Ω +2µ

(
εεε(uuu),εεε(vvv)

)
Ω
− (div(vvv), p)Ω

]
dt =

∫ T

0
L(vvv)dt, vvv ∈ L2(I,VVV )

(3.64a)∫ T

0

[
−(div(uuu),q)Ω− 1

λ(p,q)Ω

]
dt = 0, q ∈ L2(I,M).

(3.64b)

3.1.7 Restriction to Two-Dimensional Elasticity

The elasticity problem naturally applies to the three-dimensional physical world. However,

consider a solid body which is long in X3-direction and whose geometry does not vary along
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this direction. Additionally, assume the applied forces to be independent of X3 and to have zero

X3-components, i. e.,

fff (XXX) =
(

f1(XXX), f2(XXX), f3(XXX)
)
=
(

f̃1(X1,X2), f̃2(X1,X2),0
)
.

Then it is justified to only consider a cross section in the (X1,X2)-plane and to assume the

displacements and strains in the X3-direction to be zero. This describes the so called plane

strain model, which can be considered as the actual 2D analogon to the three-dimensional case

in the following sense: All the physical quantities (force vectors, strain tensors, stress tensors

etc.) introduced in this chapter can be simply restricted to their 2D-versions by removing all

components that are connected to the X3-component. All relations and computations remain

valid.22

The remainder of this work is confined to the two-dimensional plane strain model. One motiva-

tion for this is to simplify notation at some places, thus keeping the presentation clear and avoid-

ing unnecessary complications. The second motivation is that also our numerical examples will

be two-dimensional. The reason for this is that the 3D-version of FEAST as underlying library

for FEASTsolid is work in progress and not finished yet. However, all the concepts, equations

and algorithms described in the following sections can be extended to the three-dimensional

case without any complications.

3.2 Discretisation in Space

In order to solve the elasticity problem numerically, the continuous equations derived in the pre-

vious sections have to be transformed into discrete representations. In this section we address

the spatial discretisation, while the temporal discretisation is treated in Section 3.4.

The most popular spatial discretisation method, especially in CSM, is the finite element method

(FEM). For a general introduction, with emphasis on solid mechanics, we refer to basic text-

books [15, 32, 176, 178, 179] and the references therein. Starting from a variational formulation

(see Sections 3.1.5 and 3.1.6), the finite element method consists, roughly speaking, of two in-

gredients – the partition of the continuous body Ω̄ into ‘elements’ and the restriction of the

variational solution spaces VVV and M to finite dimensional subspaces.

The domain discretisation has been described in Section 2.3. For the following, we neglect

the multilevel representation of the domain, as well as its division into subdomains, and only

22This is different for the two-dimensional plane stress model which applies to structures that are thin in X3-

direction and only loaded in the (X1,X2) plane (e. g., a vertically loaded thin wall). Here, the stresses in X3-

direction can be neglected and are thus assumed to be zero. This assumption, however, changes the stress-strain

relation such that, for instance, Hooke’s law (3.50) for the two-dimensional plane stress case reads:

σσσ = 2µεεε+λ
(
1− λ

2µ+λ

)
tr(εεε)III.
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consider the finest-level grid Ω(L) (see definition (2.2) on page 27) and the corresponding trian-

gulation T (L) (see definition (2.3)). We will from now on omit the superscript denoting the grid

level and use instead the superscript h which refers to the characteristic size of the quadrilateral

elements e that build the triangulation. In summary, we have

Ω̄≈ Ω̄h =
⋃

e∈T h

e,

where the intersection of two elements ei,e j, i 6= j, is either empty, a vertex, or an edge (also

see footnote 3 on page 27.) In the following sections we introduce the space discretisations in

terms of linearised elasticity and give additional remarks about the nonlinear case.

3.2.1 Displacement Formulation

The standard procedure in Galerkin finite element methods is to use polynomial basis func-

tions with local support to build the discrete function spaces. Throughout this work, we use

the conforming, bilinear finite element, denoted as Q1. This particular choice has some severe

disadvantages as we will show in the following, but nevertheless it is very popular in practical

applications. The main reason for this is that such low-order elements are very convenient from

an implementational point of view. The data structures can be kept simple, especially as the four

nodes corresponding to the four nodal basis functions per element coincide with the geometric

grid vertices, which, for example, facilitates boundary condition structures and communication

structures in a parallel program environment (data exchange over inner subdomain boundaries).

Additionally, the size of the resulting algebraic systems is significantly smaller than for higher-

order elements (especially in 3D), and the matrices usually have a smaller bandwidth (which

is especially important when direct solving techniques are applied). Of course, for higher-

order elements a much coarser grid representation might suffice to achieve the same accuracy,

such that at the end the total number of unknowns might be equal (or even smaller). This ar-

gument, however, is weakened by two points: First, complicated geometries often require a

minimum grid resolution which would then lead to unnecessarily large algebraic systems when

using higher-order elements. Second, the high accuracy of higher-order elements is often lost

in regions where the solution is irregular, e. g., near the boundary or near a singularity. An-

other implementational issue is the necessary adaption of certain algorithmic components to

the element type. Here, we want to exemplarily mention grid transfer operations in a multigrid

solver (see Köster and Turek [101]) and FEAST’s SparseBandedBLAS package. As described

in Section 2.1.1, the latter is highly specialised to exploit the matrix band structure resulting

from the mesh’s tensor product property. Such specialisation often comes with a certain loss

of flexibility, such that an extension to higher-order elements means reimplementation of sig-

nificant parts of the library. Similar to FEAST’s ongoing extension to 3D, this is again just a

‘technical software issue’, nevertheless it is extremely time consuming. Currently, this is work

in progress, and the SparseBandedBLAS library does not support higher-order elements yet.
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Let

Q1(e
b) :=

{
q

∣∣∣ q(ξ,η) = ∑
06i, j61

ci jξ
iη j
}

be the space of bilinear polynomials over the basis element23eb = [−1,1]2. Following the

isoparametric concept, each element e of the triangulation T h can be represented as a bilinear

transformation of the basis element, i. e.,

e = ψψψe(e
b), ψψψe ∈ Q1(e

b)2. (3.65)

Using the definition

Q1(e) := {q◦ψψψ−1
e | q ∈ Q1(e

b)},
we can describe the finite dimensional subspace VVV h ⊂VVV formed by Q1 finite elements as

VVV h :=
{

vvv ∈C(Ω)2
∣∣ vvv|e ∈ Q1(e)

2 ∀e ∈ T h, vvv = 000 on ΓD

}
. (3.66)

The dimension of this space is dim(VVV h) = 2n where n is the number of vertices in the discrete

mesh Ω̄h (see Section 2.3). Denoting the n grid vertices with xxxi, i = 1, . . . ,n, then the basis of

VVV h is given by the nodal basis functions

φi : Ω̄h→ R, φi(xxx j) = δi j, (3.67)

which are defined element-wise by functions from Q1(e) (sometimes called ‘shape functions’).

Here, δi j is the Kronecker symbol. The discrete version of the variational problem (3.54) now

simply reads:

Find uuuh− ūuu ∈VVV h such that

k(uuuh,vvv) = L(vvv), vvv ∈VVV h. (3.68)

The finite element solution uuuh =
(
uh

1,u
h
2

)
∈VVV h is given in terms of the nodal basis functions,

uh
j(xxx) =

n

∑
i=1

(u j)iφi(xxx), j = 1,2, (3.69)

with u = (u1,u2)
T ∈R2n being the (unknown) coefficient vector. Correspondingly, the bilinear

form k(·, ·) leads to the discrete stiffness matrix K ∈ R
2n×2n and the linear form L(·) to the

discrete load vector f ∈ R
2n, resulting in the linear system of equations

Ku = f. (3.70)

For details about the structure of this system and about the solution process see Chapter 4.

Throughout this work we use bold upright letters to denote discrete vectors and matrices.

23We do not use the term ‘reference element’ here in order to avoid confusion with ‘elements in the reference

configuration’ which have to be distinguished from those in the current configuration in the context of finite

deformation.
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The discrete variational problem (3.68) naturally raises the question about the error between

the finite element solution uuuh and the exact solution uuu. The Céa-Lemma relates this error to the

approximation error in terms of the H1-norm:

‖uuu−uuuh‖1 6
C

α
inf

vvv∈VVV h
‖uuu− vvv‖1. (3.71)

The constants α > 0 and C > 0 are defined by the VVV -ellipticity and continuity of the bilinear

form k(·, ·) (see equation (3.55)). The Céa-Lemma confirms the intuitive idea that ‘enlarging’

the discrete function space leads to a better approximation of the exact solution. This improve-

ment can also be quantified. Under certain conditions regarding the domain Ω, the triangulation

T h and the regularity of the solution uuu, the following error estimates can be derived [32]:

‖uuu−uuuh‖1 6 ch‖uuu‖2,

‖uuu−uuuh‖0 6 ch2‖uuu‖2.
(3.72)

Here, c is a generic positive constant, containing the factor C
α from the Céa-Lemma (3.71) which

plays a role in the next sections. The estimates (3.72) are, for example, no longer guaranteed,

when Ω is not convex (e. g., the slit domain in Figure 2.1 on page 20).

3.2.2 Shear Locking and Volume Locking

Although the error estimates (3.72) guarantee convergence towards the exact solution as the

mesh is refined (h→ 0), standard polynomial finite element approximations might nevertheless

show unexpectedly large errors in certain situations. This is especially true for low-order Q1

elements. Generally speaking, the deficiency is caused by some parameter approaching zero

or infinity which leads to a corresponding increase of the error constants in relations (3.72);

the problem does not converge uniformly with respect to this degenerating parameter. Conse-

quently, on coarser grids the constants dominate, and excessive grid refinement is necessary

for compensation. Usually, finite element computations show too small displacements in such

situations which coined the term ‘locking’. Mathematical explanations of locking effects can

be found in Babuška and Suri [9] and Braess [32]; mechanically motivated interpretations are

presented, for example, by Koschnick [99]. We now present two kinds of locking effects, shear

and volume locking. Both significantly influence the condition of the resulting linear systems

and therefore play an important role with respect to our solving strategies (see Chapters 4

and 5). Furthermore, it turns out that the volume locking effect can only be treated robustly if a

more advanced finite element discretisation is applied (see Section 3.2.3).

3.2.2.1 Shear Locking

The classical example for demonstrating the shear locking effect is a cantilever beam. A rect-

angular body with length L and height H, where L≫ H, is fixed on one of its narrow ends
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mation vvv as given in example (3.74). The right hand side terms (body and surface forces) are

computed according to the prescribed solution such that we are able to compute the L2-error

‖uuu−uuuh‖0. Figure 3.1 exemplarily displays the resulting deformation of the middle beam. The

plots in Figure 3.2 show that for the longer beams the expected L2 error reduction of 4 is only

attained on higher refinement levels. This confirms that on coarser grids the error constant

dominates.
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Figure 3.2: Results of the tests with analytical solutions for the three BEAM configurations.

The shear locking problem is particularly severe for the Q1 element, which is not well suited

to perform such bending dominated deformations. This is often illustrated by the following

simple example. The two opposite sides of the basis element eb = [−1,1]2 are ‘tilted’ as shown

in Figure 3.3. When denoting the displacements of the four corners with
(
(u1)i,(u2)i

)
, i =

1 2

34

Figure 3.3: The basis element under pure bending.

1, . . . ,4 (at the same time representing the coefficients of the finite element function uuuh, cf.

equation (3.69)), this corresponds to

(u1)1 =−(u1)2 = (u1)3 =−(u1)4,

(u2)1 = (u2)2 =−(u2)3 =−(u2)4.
(3.75)

Such a pure bending situation is characterised by zero shear strains, i. e.,

εεε12(uuu
h) =

1

2

(∂uh
1

∂η
+

∂uh
2

∂ξ

)
= 0. (3.76)
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Defining the four bilinear basis functions

φ1(ξ,η) =
1
4
(1−ξ)(1−η), φ2(ξ,η) =

1
4
(1+ξ)(1−η),

φ3(ξ,η) =
1
4
(1+ξ)(1+η), φ4(ξ,η) =

1
4
(1−ξ)(1+η),

and considering relations (3.75), the finite element function is given by

uh
1(ξ,η) =

4

∑
i=1

(u1)iφi(ξ,η) = (u1)1ξη, (3.77)

uh
2(ξ,η) =

4

∑
i=1

(u2)iφi(ξ,η) =−(u2)1η, (3.78)

yielding

εεε12(uuu
h) = 1

2
(u1)1ξ.

Condition (3.76) thus leads to (u1)1 = 0, implying that in a single element only zero displace-

ments can fulfil the pure bending condition (3.76), or – to put it differently – non-zero displace-

ments ‘produce non-physical shear strains’, which has to be compensated for by increasing the

number of grid cells. Higher-order elements like Q2 do not exhibit this deficiency as they have,

roughly speaking, ‘enough degrees of freedom’ to resolve such bending deformations. Unfor-

tunately, FEAST does not support higher-order elements, so a direct comparison is not possible

here. Instead, we exemplarily illustrate the effect by applying two different loading states to the

BEAM-LH2-ISO configuration (see Figure 3.4) with material parameters µ= 8.14 ·104 MPa and

ν = 0.29 (steel/iron). The first loading state is a horizontal traction force stretching the beam

(see Figures 3.4a and 3.4c), the second one is a ‘rotational’ force causing a bending moment

(see Figures 3.4b and 3.4d). For these tests the analytical solutions are not known, so we take

the finite element solutions obtained on the level 11 grid (16.8 M DOF) as reference solution,

denoted as uuu∗. Figure 3.5 shows the relative error (in percent) of the displacement’s magnitude

in the upper right corner AAA = (0.04,0.01) of the beam, i. e.,

erel := 100
‖uuuh(AAA)−uuu∗(AAA)‖
‖uuu∗(AAA)‖ .

The left plot shows that on coarser meshes the approximation of the bending situation is ex-

tremely poor, and the right plot reveals that about three extra grid refinements are necessary

to achieve a similar accuracy as in the stretching case.24 We want to emphasise that this test

only serves as illustration to hint at Q1’s deficiencies in bending dominated configurations. A

further example is presented in Section 4.3.2 for the case of finite deformation elasticity (see

Figure 4.23 on page 236). For more elaborate examinations and comparisons with Q2, we refer

to Brink and Stein [41], Koschnick [99] and Papoulia [124].

In summary, whenever long, thin structures and/or bending-like deformations occur, the Q1

element might produce less accurate solutions than expected, eventually demanding a finer

24The latter statement does only make sense if we assume that the reference solutions are ‘similarly close’ to the

real solutions.
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A

F

(a) Stretched beam: coarse grid, reference point

AAA = (0.04,0.01) and load F = 2.5 ·104 MPa.

F

(b) Bended beam: coarse grid and load F =−106y MPa.

(c) Stretched beam: deformed state (Level 4), ‖uuu‖
displayed.

(d) Bended beam: deformed state (Level 4), ‖uuu‖
displayed.

Figure 3.4: Two different loading states of the BEAM-LH2-ISO configuration.
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Figure 3.5: Beam stretching vs. beam bending: Relative error of the displacements in the upper right corner

AAA = (0.04,0.01) over varying number of degrees of freedom (level 1–7).

grid resolution. Since the poor behaviour is triggered by geometric factors (shape of the body,

boundary conditions, bending-like deformation), the effect is also referred to as geometric lock-

ing.

3.2.2.2 Volume Locking

In contrast to shear locking, the volume locking phenomenon, which has already been intro-

duced in Section 3.1.3 on page 125, emanates from a local property of the material, and is

therefore also denoted as material locking. It occurs when standard polynomial finite elements
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are used to compute deformations of nearly incompressible material, which leads to an over-

constrained problem setting. The degenerating parameter is the Lamé constant λ tending to

infinity as the degree of incompressibility increases. From equation (3.55) follows α . µ and

C & µ+λ [32], i. e.,

λ→ ∞ ⇒ C

α
&

µ+λ

µ
→ ∞.

This means that the constants in the Céa-Lemma (3.71) and in the error estimates (3.72) in-

crease with λ, and the finite element solution does not converge uniformly with respect to this

parameter. Especially for coarser grid resolutions large errors can be expected, as the following

illustrating example shows. We consider the stretched beam configuration (see Figure 3.4a), a

traction force of F = 5.0 MPa and rubber materials with Poisson ratios between ν = 0.4 and

ν = 0.49999 and shear modulus µ = 8.2 MPa. Again, we evaluate the relative displacement

error (in percent) in the upper right corner of the beam, where we use the level 11 solution ob-

tained with a locking-free formulation (see Section 3.2.3) as reference. The plots in Figure 3.6
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Figure 3.6: Volume locking: Relative error of the displacements in the upper right corner AAA = (0.04,0.01) of the

stretched beam (Figure 3.4a) over varying number of degrees of freedom (level 1–7) for different degrees of

compressibility. Left normal y-scale, right logarithmic y-scale.

clearly show how the approximation quality of the displacement formulation deteriorates with

increasing degree of incompressibility. The less compressible the material is, the worse are

especially the coarse grid approximations and the slower is the convergence towards the exact

solution. In the case of the most incompressible material (ν = 0.49999) the relative error on the

level 7 grid (66.3 k DOF) is still about 7%. In contrast to shear locking, the usage of higher-

order elements like Q2 does not significantly alleviate the volume locking problem (see, e. g.,

Brink and Stein [41]).

In Chapters 4 and 5 we show that standard linear solvers severely suffer from the described

locking situations. It will turn out that the impact of shear locking on iterative solver perfor-

mance is clearly observable, though, but that it can be significantly weakened by using robust

solution methods (see Section 4.2.7.3). The effect of volume locking, however, is much more

severe, and it is very difficult to solve the resulting linear systems at all (see Section 5.2.1.7).

When additionally considering the need for excessively fine meshes to achieve reasonable small
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discretisation errors, this renders the standard Q1 displacement formulation useless for the treat-

ment of nearly incompressible material.

3.2.3 Mixed Displacement-Pressure Formulation

Many techniques have been developed to counteract locking effects. In view of the shear lock-

ing problem, however, we consider it justified to still use the standard Q1 displacement discreti-

sation, even if ‘non-standard’ versions might perform better [107, 146, 154]. In contrast, it is

mandatory to switch to an advanced finite element technique in order to overcome the volume

locking problem. Some popular approaches in this regard are mixed displacement-pressure for-

mulations (see below), nonconforming methods, especially Enhanced Assumed Strain (EAS)

methods [146], and selective reduced integration (SRI) techniques [107]. EAS and SRI can be

shown to be equivalent to certain mixed methods [31, 107], but have the advantage that the dis-

placements remain the only unknowns in the formulation and that the resulting linear systems

remain positive definite. This is different for mixed formulations where additional unknowns

are introduced, leading to eventually indefinite saddle point systems. However, for both EAS

and SRI special care has to be taken to avoid instabilities of the volumetric terms (‘checker-

board modes’), also known from the Q1/P0 mixed element [31, 107]. A countermeasure is, for

example, to consider macro elements consisting of four elements [31, 32]. Such techniques,

however, are (currently) prohibitive in the FEAST context since they introduce additional cou-

pling and thus change the band structure of the resulting discrete matrices (cf. Section 2.1.1).

Furthermore, the linear systems arising from EAS and SRI are not suited for standard multigrid

methods [33, 140]. To avoid degeneration of convergence rates, special transfer and smoothing

operations are necessary, which is clearly unfavourable in view of the desired ‘black box’ solver

(see Chapter 1). Additionally, standard EAS methods may suffer from nonphysical instabilities

(‘hourglassing’), especially in finite deformation computations, requiring special non-trivial

stabilisation methods [132, 133, 176].

These considerations are one motivation for our decision to use the mathematical well-estab-

lished mixed displacement-pressure formulation to handle nearly incompressible material. An-

other crucial motivation is that highly developed discretisation and solution techniques from

the field of computational fluid dynamics (CFD) can be employed. This is possible since the

discrete systems arising from the (Navier-)Stokes equations for incompressible fluids exhibit a

similar structure as the systems stemming from the mixed formulation of (nearly) incompress-

ible elasticity. Especially the fact, that for the solution only ‘standard’ multigrid components are

needed (in contrast to the necessary modifications for displacement formulations; see previous

paragraph), is very advantageous for the development of ‘black box’ solvers. Using the mixed

displacement-pressure formulation enables us to treat incompressible material (ν = 0.5), for

which pure displacement formulations degenerate. However, the mixed formulation also comes

along with some disadvantages. Due to the additional pressure variable the linear systems to be

solved are larger, and their saddle point structure requires special solving techniques (see Sec-

tion 5.1), such that the computational work compared to one of the robust pure displacement
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formulations described above is clearly higher. Another disadvantage is the restrictive choice

of finite element spaces for displacements and pressure, especially the need for stabilisation in

the case of equal-order elements (see Section 3.3).

Many authors have considered the (stabilised) mixed displacement-pressure formulation in the

context of CSM. For example, Sussmann and Bathe [152] develop models for finite elasticity

based on a mixed displacement-pressure formulation. Also in the framework of finite elas-

ticity, Brink and Stein [41] compare different stable mixed methods, which is pursued by

Klaas et al. [95] for the stabilised Q1/Q1 pair and by Maniatty et al. [108] for stable and

stabilised higher-order pairs. In the same context, Papoulia [124] draws comparisons to SRI

methods. Suttmeier [153], Cervera et al. [49] and Commend et al. [54] apply stabilised mixed

displacement-pressure methods to elastoplastic materials under small deformations. Ramesh

and Maniatty [131] and Agelet de Saracibar et al. [1] extend this to finite deformation elasto-

plasticity, while Pastor et al. [125] consider applications of elastic and viscoplastic failure. In

the framework of linearised elasticity, Klawonn [96, 97] develops block-preconditioners for

the saddle point systems arising from the mixed formulation, Braess and Blömer [33] compare

multigrid performance for mixed and SRI methods, and Wieners [173] analyses a multigrid

solver applied to the pure displacement formulation with a smoother based on the mixed for-

mulation. Pantuso and Bathe [122] and Auricchio et al. [5] combine the mixed displacement-

pressure formulation with the EAS method and systematically study this approach for the case

of finite elasticity [4, 123]. Chiumenti, Valverde, Agelet de Saracibar, and Cervera apply the

mixed formulation with orthogonal sub-scale stabilisation to linearised elasticity [51], elasto-

plasticity [49] and finite deformation elastoplasticity [1].

The discrete form of the variational mixed displacement-pressure problem (cf. equation (3.58)

on page 134) reads:

Find (uuuh− ūuu, ph) ∈VVV h×Mh such that

a(uuuh,vvv)+b(vvv, ph) =L(vvv), vvv ∈VVV h (3.79a)

b(uuuh,q)+ 1
λ c(ph,q) =0, q ∈Mh. (3.79b)

Corresponding to the displacement formulation (3.70), the discretisation process finally leads

to a linear system of equations

(
A B

BT Cc

)(
u

p

)
=

(
f

0

)
. (3.80)

The matrix Cc contains the ‘compressibility terms’25, i. e., we have Cc = 0 in the incompress-

ible limit, revealing the saddle point structure of the system.

In order to obtain a robust formulation, the choice of the finite element spaces VVV h and Mh

is crucial. This choice is guided by the observation, that problem (3.56) on page 134 bears

25The superscript ‘c’ is added to distinguish this matrix from the stabilisation matrix Cs which is introduced in

Section 3.3.
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resemblance to the Stokes equation for viscous incompressible fluids: When considering the

limit case ν = 0.5, replacing the strain tensor εεε(uuu) by the gradient ∇∇∇uuu and using the relation

∆∆∆uuu = div(∇∇∇uuu), this results in

−2µ∆∆∆uuu+∇∇∇p = fff in Ω (3.81a)

div(uuu) = 0 in Ω. (3.81b)

When interpreting Ω as fluid, uuu as the fluid’s velocity, p as pressure and 2µ as dynamic viscosity,

this is the classical form of the stationary Stokes equation. Due to this equivalence, element

pairs which have been found to be efficient for the Stokes equation, are also suitable for the

discretisation of the mixed displacement-pressure formulation [32].

If the finite element spaces VVV h and Mh fulfil a discrete analogon of the Babuška-Brezzi con-

ditions (3.59) and (3.60) (see equation (3.99) on page 152), then the finite element solution

converges robustly, i. e., independently of the parameter λ, to the exact solution [32]. Such

element combinations are called stable. An example is the Qk/Pk−1 pair for k > 2, where espe-

cially the case k = 2 is very popular in CSM [15, 41, 80, 105, 152]. For other stable elements

see, e. g., Braess [32].

FEAST’s current restriction concerning the finite element library limits our choice of element

combinations to Q1/P0 and Q1/Q1. The first is ineligible due to the considerations at the

beginning of this section, such that only Q1/Q1 remains. Hence, we choose the space VVV h as in

equation (3.66) on page 138, and the space Mh likewise:

Mh :=
{

q ∈C(Ω)
∣∣ q|e ∈ Q1(e) ∀e ∈ T h

}
. (3.82)

It is well known, that equal-order combinations Qk/Qk, k > 1, are unstable [32], such that some

sort of stabilisation procedure is necessary, which will be introduced in Section 3.3.26

3.2.4 Finite Deformation

The discrete variational formulations of the boundary value problems of compressible and

(nearly) incompressible finite deformation (see equations (3.39) and (3.43) on page 129) are

obtained analogously to the linearised case, choosing the same discrete spaces VVV h and Mh (see

equation (3.66) on page 138 and equation (3.82)). For theoretical convergence results see, e. g.,

Le Tallec [105] and Braess and Ming [34].

3.2.4.1 Displacement Formulation

First, we consider the nonlinear displacement formulation for compressible material. Replac-

ing in equation (3.40) on page 129 the function space VVV by the discrete one, VVV h, the discrete

variational formulation reads:

26With ‘stabilisation’ we always refer to the Babuška-Brezzi stabilisation. Other kinds of stabilisation as they are

used in CFD (e. g., to handle convective terms) are not treated in this thesis.
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Find uuuh− ūuu ∈VVV h such that

(
TTT (uuuh),Grad(vvv)

)
Ω
= L(vvv), vvv ∈VVV h, (3.83)

where the first Piola-Kirchhoff stress tensor TTT (uuuh) is given by relation (3.41) or (3.42) on

page 129. The argument uuuh emphasises the tensor’s nonlinear dependence on the solution.

Defining the functional

Ruuuh(vvv) :=
(
TTT (uuuh),Grad(vvv)

)
Ω
−L(vvv), (3.84)

we can express problem (3.83) in residual form as:

Ruuuh(vvv) = 0, vvv ∈VVV h. (3.85)

We take a closer look at the resulting algebraic system of nonlinear equations. To ease the

notation, we split the linear form (3.38) on page 128,

L(vvv) := L1(v1)+L2(v2),

where

L j(v j) := ( f j,v j)Ω +(g j,v j)ΓN
, j = 1,2. (3.86)

Then we define the discrete vectors

fex := (fex
1 , fex

2 )T, f in(u) :=
(
f in
1 (u), f in

2 (u)
)T ∈ R

2n

of external and internal forces, respectively, with

(fex
j )i := L j(φi), i = 1, . . . ,n, j = 1,2,

(
f in

j (u)
)

i
:=
(
TTT j•(uuu

h),Grad(φi)
)

Ω
, i = 1, . . . ,n, j = 1,2.

Here, TTT j•(uuuh) denotes the j-th row of the first Piola-Kirchhoff stress tensor TTT (uuuh), φi the nodal

basis functions and u the unknown coefficient vector of the finite element solution uuuh (cf. rela-

tions (3.67) and (3.69) on page 138). Then, we can define – corresponding to equation (3.84) –

the residual vector

r(u) := f in(u)− fex ∈ R
2n, (3.87)

which measures the imbalance of internal and external forces. The nonlinear problem (3.85)

can then be represented in compact, algebraic form as

r(u) = 0. (3.88)

In order to solve this nonlinear problem, we need to consider its linearisation around the current

solution state uuuh. Performing the linearisation leads to the linear variational problem:

Find ûuuh ∈VVV h such that

k̃(ûuuh,vvv) =−Ruuuh(vvv), vvv ∈VVV h, (3.89)
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where the bilinear form k̃(·, ·) is defined by27

k̃(ûuuh,vvv) :=
∂Ruuuh

∂uuu
ûuuh. (3.90)

Corresponding to the small deformation case (see equation (3.70) on page 138), the variational

problem (3.89) can be represented as linear algebraic equation system

K̃û =−r(u),

where û is the unknown coefficient vector of the finite element function ûuuh, r(u) the residual

vector defined by relation (3.87), and K̃û the algebraic representation of the bilinear form de-

fined in equation (3.90). Note, that the matrix K̃ depends on the current solution state u, i. e.,

K̃ = K̃(u) and is called tangent matrix, or simply tangent.

3.2.4.2 Mixed Formulation

Now, we turn to the nonlinear mixed formulation for (nearly) incompressible material. Replac-

ing in equation (3.44) the function spaces VVV and M by discrete ones, VVV h and Mh, the discrete

weak mixed formulation reads:

Find (uuuh− ūuu, ph) ∈VVV h×Mh such that

(
TTT (uuuh, ph),Grad(vvv)

)
Ω
= L(vvv), vvv ∈VVV h (3.91a)

−
(

1
2

(
J(uuuh)− 1

J(uuuh)

)
,q
)

Ω
− 1

λ(ph,q)Ω = 0, q ∈Mh, (3.91b)

where TTT (uuuh, ph) is defined in equation (3.45) on page 130. Corresponding to the displacement

formulation, we define the functionals

Ruuuh,ph(vvv) :=
(
TTT (uuuh, ph),Grad(vvv)

)
Ω
−L(vvv) (3.92a)

Suuuh,ph(q) :=−
(

1
2

(
J(uuuh)− 1

J(uuuh)

)
,q
)

Ω
− 1

λ(ph,q)Ω, (3.92b)

and express problem (3.91) in residual form as:

Ruuuh,ph(vvv) = 0, vvv ∈VVV h, (3.93a)

Suuuh,ph(q) = 0, q ∈Mh. (3.93b)

The resulting nonlinear algebraic equation system can be derived analogously to the displace-

ment formulation. Let the discrete vectors

fex =
(
fex
1 , fex

2 , fex
3

)T
, f in(u,p) =

(
f in
1 (u,p), f in

2 (u,p), f in
3 (u,p)

)T ∈ R
3n

27We use the tilde notation k̃(·, ·) to distinguish the bilinear form from its small deformation counterpart (see

equation (3.52) on page 133).
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of external and internal forces be given by

(fex
j )i := L j(φi), i = 1, . . . ,n, j = 1,2,

fex
3 := 0,

(
f in

j (u,p)
)

i
:=
(
TTT j•(uuu

h, ph),Grad(φi)
)

Ω
, i = 1, . . . ,n, j = 1,2,

(
f in
3 (u,p)

)
i
:=−

(
1
2

(
J(uuuh)− 1

J(uuuh)

)
,φi

)
Ω
− 1

λ(ph,φi)Ω, i = 1, . . . ,n.

Then we define – corresponding to relation (3.92) – the residual vector

r(u,p) := f in(u,p)− fex ∈ R
3n, (3.94)

such that problem (3.93) can be represented in the compact, algebraic form

r(u,p) = 0.

The linearisation of the nonlinear equation (3.93) leads to following saddle point problem:

Find (ûuuh, p̂h) ∈VVV h×Mh such that

ã(ûuuh,vvv) + b̃(vvv, p̂h) = −Ruuuh,ph(vvv), vvv ∈VVV h (3.95a)

d̃(ûuuh,q)+ c̃(p̂h,q) = −Suuuh,ph(q), q ∈Mh. (3.95b)

The bilinear forms are given by

ã(ûuuh,vvv) :=
∂Ruuuh,ph

∂uuu
ûuuh, b̃(vvv, p̂h) :=

∂Ruuuh,ph

∂p
p̂h,

d̃(ûuuh,q) :=
∂Suuuh,ph

∂uuu
ûuuh, c̃( p̂h,q) :=

∂Suuuh,ph

∂p
p̂h.

(3.96)

Finally, problem (3.95) can be written as algebraic linear equation system

(
Ã B̃

D̃ C̃c

)(
û

p̂

)
=−r(u,p), (3.97)

whose block matrix depends on the current solution state (u,p)T. In contrast to the small

deformation case (see equation (3.80) on page 146), this system is not necessarily symmetric

since, in general, D̃ 6= B̃T holds.

3.2.4.3 Computation of the Tangent Matrix

The calculations that are needed to build the gradients (3.90) and (3.96) are elementary, though,

but their implementation is technical and tedious, especially for the fourth order tensor, that
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results from differentiating the first Piola-Kirchhoff stress tensor.28 Additionally, implementa-

tions have to be redone, whenever a new constitutive law or a new stabilisation method (see

Section 3.3) is added to the code. This motivated us to compute the tangent matrix not ana-

lytically, but numerically via finite differences. We only present the mixed formulation, the

displacement formulation is treated analogously. For theoretical considerations in this regard

see Kelley [92].

Let e j denote the vector of generic length with the j-th component equal to 1 and the other

components equal to 0. Furthermore, the value ε j describes the step size of the finite difference

scheme and is given by

ε j := γmax{1, |u j|},
where γ > 0 is a perturbation parameter. Then, the single matrix blocks of the saddle point

system (3.97) can be approximated as follows:

Ãi j ≈
ri(u+ ε je j,p)− ri(u− ε je j,p)

2ε j

, i, j = 1, . . . ,2n,

B̃i j ≈
ri(u,p+ ε je j)− ri(u,p− ε je j)

2ε j

, i = 1, . . . ,2n, j = 1, . . . ,n,

D̃i j ≈
ri+2n(u+ ε je j,p)− ri+2n(u− ε je j,p)

2ε j

, i = 1, . . . ,n, j = 1, . . . ,2n,

C̃c
i j ≈

ri+2n(u,p+ ε je j)− ri+2n(u,p− ε je j)

2ε j

, i = 1, . . . ,n, j = 1, . . . ,n.

(3.98)

It is worth noting that due to the sparse matrix structure resulting from the finite element dis-

cretisation, the assembly process can be realised in O(n) time and does, consequently, not slow

down the overall solving process. In Section 4.3.4 we examine how to choose the perturbation

parameter γ.

3.3 Stabilisation

Equal-order element pairs, especially the low-order Q1/Q1 pair, are very popular from an im-

plementational point of view since data structures can be kept simple: Only one set of basis

functions has to be managed and the resulting system matrix only consists of square submatri-

ces which all exhibit the same band structure. Element pairs like Qk/Pk−1, for example, lead

to ‘rectangular’ submatrices with different band patterns. Especially in view of such highly

specialised linear algebra libraries like FEAST’s SparseBandedBLAS (see Section 2.1.1), the

use of equal-order pairs reduces the implementational effort tremendously. Furthermore, if a

finite element software package, which is not yet able to treat mixed problems, is planned to be

extended in this respect, this is relatively simple when – at least in a first stage – equal-order

28For a detailed representation of the linearised tensors, see, e. g., Brink and Stein [41], Klaas et al. [95], Le Tallec

[105] and Wriggers [176].
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pairs can be employed, since many parts of the code can be reused in this case (matrix assembly,

solver components, etc.). Another advantage of stabilised equal-order pairs is their efficiency,

i. e., the ratio between computational costs and accuracy. Norburn and Silvester [117], for ex-

ample, show that the stabilised (triangular) P1/P1 element is more than competitive with its

stable counterparts in this regard. It can be assumed that this is analogously true for the sta-

bilised (quadrilateral) Q1/Q1 element, for which to our knowledge a corresponding study is not

available, though.

The widespread popularity and application of the equal-order Q1/Q1 pair justifies a detailed

examination in the context of CSM. Our aim is to discover the specific disadvantages accompa-

nying this approach in terms of the finite element discretisation (see this section) and in terms of

iterative solution methods (see Chapter 5). We try to evaluate how severe these disadvantages

are and give some hints for possible improvements. This study can be considered as preparation

for later comparisons to stable element pairs like Q2/P1 on the one hand, and to EAS or SRI

methods (see Section 3.2.3) on the other hand. Such comparisons first require the mentioned

extensions of the FEAST library and are not part of this thesis.

The lack of stability of the equal-order ansatz can be illustrated with the help of the discrete

version of the inf-sup condition (3.60) on page 134:

∃β > 0 : inf
06=qh∈Mh

sup
0006=vvvh∈VVV h

b(vvvh,qh)

‖vvvh‖1‖qh‖0

> β. (3.99)

This can also be read as: For each qh ∈ Mh there must be a vvvh ∈ VVV h such that b(vvvh,qh) >
β‖vvvh‖1‖qh‖0. In the case of the incompressible limit, the term b(vvvh, ph) is the only one in

which the pressure is tested, namely by functions from VVV h (see equation (3.79a) on page 146). If

condition (3.99) is not fulfilled, there might be a ph 6= 0 with b(vvv, ph) = 0, i. e., a non-vanishing

function that does not contribute to the equation. In other words: For a given displacement

space VVV h, the corresponding pressure space Mh must not be ‘too large’, otherwise there might be

pressure modes which cannot be tested by functions from VVV h and, hence, ‘remain undetected’,

eventually leading to nonphysical oscillations of the pressure field, the pressure tending to

infinity or even prohibiting the solution of the problem at all.

For more than twenty years now, great efforts have been made to stabilise low-order finite ele-

ment pairs, pushed by CFD researchers seeking efficient solution methods for the incompress-

ible Navier-Stokes equations. Two of the first contributions in this regard are those of Brezzi

and Pitkäranta [40] and Hughes et al. [82]. The vast number of publications forbids a concise

survey of the different approaches within this thesis, so we exemplarily refer to the overviews in

Barrenechea and Blasco [12], Barth et al. [14], Bochev et al. [27], Braack et al. [29], Wall [171]

and the references therein. Here, we examine two approaches, one going back to the classical

Galerkin/Least-Squares scheme [68], and a more recent pressure projection method [27].
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3.3.1 A Galerkin/Least-Squares Approach

One possibility to account for the disproportion between the two discretisation spaces VVV h and

Mh described in the previous section is to regularise the discrete equations and thus coarsening

the pressure approximation: The continuity equation is equipped with an additional bilinear

form testing the pressure field, which – together with the tests provided by the form b(vvvh, ph) –

helps to cancel the spurious pressure modes. In Galerkin/Least-Squares (GLS) methods these

additional terms are least-squares forms of the momentum equation’s residual. When the exact

solution is inserted, these additional terms vanish, rendering the method consistent. While

the term Galerkin/Least-Squares was introduced by Hughes et al. [83], the approach is also

denoted as residual-based stabilisation or Pressure-Stabilising/Petrov-Galerkin (PSPG)29. We

now introduce the method of Franca and Stenberg [68], which extends the method of Hughes

and Franca [81] to the case of (nearly) incompressible linearised elasticity.

The starting point is the discrete weak formulation (3.79) on page 146, which can equivalently

be written as:

Find (uuuh− ūuu, ph) ∈VVV h×Mh such that

Q(uuuh, ph;vvv,q) = L(vvv), (vvv,q) ∈VVV h×Mh, (3.100)

where Q(·, ·; ·, ·) is a bilinear form on the product space VVV h×Mh defined by

Q(uuuh, ph;vvv,q) := a(uuuh,vvv)+b(vvv, ph)+b(uuuh,q)+ 1
λ c(ph,q).

The forms a(·, ·), b(·, ·) and c(·, ·) are defined in relation (3.57) on page 134. The variational

problem (3.100) is now extended in the following manner:

Find (uuuh− ūuu, ph) ∈VVV h×Mh such that

Q(uuuh, ph;vvv,q)+ cGLS(uuu
h, ph;vvv,q) = L(vvv)+LGLS(vvv,q), (vvv,q) ∈VVV h×Mh, (3.101)

where the GLS stabilisation terms are given by

cGLS(uuu
h, ph;vvv,q) :=− α

2µ
∑
e

h2
e

(
−2µ div

(
εεε(uuuh)

)
+∇∇∇ph,−2µ div

(
εεε(vvv)

)
+∇∇∇q

)
e
, (3.102a)

LGLS(vvv,q) :=− α

2µ
∑
e

h2
e

(
fff ,−2µ div

(
εεε(vvv)

)
+∇∇∇q

)
e
. (3.102b)

Here, α is a stabilisation parameter, he describes the characteristic size of element e (see Sec-

tion 3.3.2), and (·, ·)e denotes the L2 inner product over the element e, i. e.,

(a,b)e :=
∫

e
a(xxx)b(xxx)dx, a,b ∈ L2(e,R),

(aaa,bbb)e :=
∫

e
aaa(xxx) ·bbb(xxx)dx, aaa,bbb ∈ L2(e,R2).

29In analogy to Streamline-Upwind/Petrov-Galerkin (SUPG) methods used in CFD.
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The variational system (3.101) allows for the following interpretation: Considering the bound-

ary value problem (3.56) on page 134, one can derive the weak formulation (3.58) by multiply-

ing the momentum equation (3.56a) with test functions vvv ∈VVV h and integrating over the domain

Ω. The variational formulation (3.101) including the GLS terms, however, can formally be

obtained by using ‘perturbed’ test functions of the form

ṽvv := vvv− α

2µ
h2

e

(
−2µ div

(
εεε(vvv)

)
+∇∇∇q

)
,

which justifies the notation Petrov-Galerkin method (see also Hughes et al. [82]). Considering

the GLS terms (3.102), one can easily see that the stabilised weak problem (3.101) actually

results from adding the residual of the momentum equation (3.56a), i. e.,

−2µ div
(
εεε(uuuh)

)
+∇∇∇ph− fff ,

weighted by the above stabilisation terms. This explains the notation residual-based stabilisa-

tion. As a consequence, when inserting the exact solution (uuu, p) into the equation, the residual

is zero and all stabilisation contributions vanish. In this sense, the method can be consid-

ered as being consistent. Finally, the term Galerkin/Least-Squares results from interpreting the

sum (3.102a) as the first variation of the least-squares term

− α

2µ
∑
e

1

2
h2

e

∥∥2µ div
(
εεε(uuuh)

)
+∇∇∇ph− fff

∥∥2

e
,

which represents the penalty term of the penalised Lagrangian functional whose optimality

system is the variational equation (3.101) (see Barth et al. [14] for details).

Franca and Stenberg prove stability and optimal convergence of the method [68, Theorem 3.1].

For the Q1/Q1 case, they show that under the usual regularity assumptions on the exact solution

(uuu, p) and for 0 < α <CI problem (3.101) has a unique solution (uuuh, ph) satisfying

‖uuu−uuuh‖1 +‖p− ph‖0 6C(h‖uuu‖2 +h2‖p‖2), (3.103a)

‖uuu−uuuh‖0 6C(h2‖uuu‖2 +h3‖p‖2). (3.103b)

Here, C is a generic constant independent of h and λ, and the upper bound CI for the stabil-

isation parameter α follows from an inverse inequality which is needed to prove the stability

of the method (for details, see Franca and Stenberg [68]). This upper bound depends on the

subdivision of the mesh and renders the method conditionally stable (see below and Barth et al.

[14]).

A simplified version of the presented GLS scheme is that of Hughes et al. [82], which we de-

note – following the nomenclature of Barth et al. [14] – as simplified Galerkin/Least-Squares
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(SGLS). The method can be defined by replacing the stabilisation terms cGLS,LGLS in equa-

tion (3.101) by30

cSGLS(uuu
h, ph;q) :=− α

2µ
∑
e

h2
e

(
−2µ div

(
εεε(uuuh)

)
+∇∇∇ph,∇∇∇q

)
e
, (3.104a)

LSGLS(q) :=− α

2µ
∑
e

h2
e( fff ,∇∇∇q)e . (3.104b)

The approach is also known as pressure-Poisson stabilised Galerkin method or simply as

pressure-Poisson stabilisation. In Brezzi and Douglas [38], the method is analysed and similar

error estimates as (3.103) are derived, but using a mesh-dependent norm for the pressure. Barth

et al. [14] observe that SGLS, although considered as conditionally stable, actually behaves like

an absolutely stable method: Numerical studies show that there seems to be no upper bound

for the stabilisation parameter, while the choice of this parameter is indeed critical in the case

of the GLS method of Franca and Stenberg [68]. In Bochev and Gunzburger [25], an enhanced

version of the SGLS method is developed which turns out to fulfil the above error estimates

in the natural (mesh-independent) norm and is absolutely stable (i. e., there is no upper bound

for the stabilisation parameter). The question, whether the original SGLS method is absolutely

stable, is still unanswered.

The presented stabilisation approaches (3.102) and (3.104) contain second derivative terms of

the form

div
(
εεε(uuuh)

)
. (3.105)

If VVV h consists of bilinear functions, then these terms cannot be represented correctly. Further-

more, in standard Q1 finite element implementations second derivatives are not calculated at

all, such that the stabilisation terms (3.105) can consequently be omitted right from the begin-

ning. The resulting method does not belong to the class of residual-based stabilisation and is

not consistent. In fact, it is a penalty method introducing a penalty error of ‖div(uuu)‖0 = O(h)
(see Brezzi and Douglas [38]). The method, which we want to call penalty pressure-Poisson

(PPP), is given by replacing the stabilisation terms cGLS,LGLS in equation (3.101) by

cPPP(ph,q) :=− α

2µ
∑
e

h2
e(∇∇∇ph,∇∇∇q)e , (3.106a)

LPPP(q) :=−β
α

2µ
∑
e

h2
e( fff ,∇∇∇q)e . (3.106b)

Since this method is not consistent anyway, it is questionable whether the addition of the right

hand side terms (3.106b) is reasonable at all. The same question arises for the stabilisation

methods (3.109), (3.112) and (3.115) introduced in the next section. Indeed, numerical experi-

ments (which we do not present here) for all these stabilisation methods show: When the right

hand side stabilisation terms are added, then the displacement L2 error slightly deteriorates, the

displacement H1 error is nearly unaffected, and the pressure L2 error sometimes improves and

30Actually, Hughes et al. [82] use a formulation in which the continuity equation and, consequently, the stabilisation

term ∇q are multiplied by −1. For a discussion in this regard, see Barth et al. [14].
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sometimes deteriorates (depending on the grid and the stabilisation method). However, these

differences are only marginal and the convergence rate of the finite element solution towards

the exact solution is qualitatively not affected. As a consequence, we consider the right hand

side terms as negligible and set β = 0 for the remainder of this thesis.31 Hence, method (3.106)

coincides with the method of Brezzi and Pitkäranta [40] for the Stokes equation (see also Brezzi

and Douglas [38]). As pointed out by Hughes and Franca [81], the upper bound on the stabili-

sation parameter α in the GLS method is only necessary to control the terms (3.105) on element

interiors. Consequently, since these terms are not existent in the PPP method, the upper bound

can be dropped. Actually, the penalty method introduced by Brezzi and Pitkäranta [40] works

without any parameter. The analysis in Brezzi and Douglas [38] shows, that the method exhibits

the same asymptotic error estimates as SGLS.

REMARK 3.6

The degradation of the consistent GLS and SGLS schemes to actually inconsistent penalty

methods in the case of bilinear elements motivated some authors to make improvements in

this regard. Droux and Hughes [59] add boundary integrals to the SGLS scheme to account

for the vanishing divergence terms; a similar approach, which is only applicable in the 2D

case, is pursued by Pierre [129] for the penalty method of Brezzi and Pitkäranta [40]. This

strategy is justified since the additional term (−∇∇∇p+ fff ,∇∇∇q)Ω can be interpreted as impos-

ing the natural boundary condition (∇∇∇p− fff ) · nnn = 0 for the pressure [171]. Hence, when

the divergence terms are neglected, the pressure tends to adopt to this non-physical bound-

ary condition, which is shown in a numerical example in Section 3.3.5 (see Figure 3.18 on

page 176). Jansen et al. [85] and Bochev and Gunzburger [25] describe methods to recon-

struct the second order terms to retain consistency of the stabilisation approach in the case

of low-order elements. This, however, requires the costly introduction of an extra variable

and a modification of the standard solution process.

In this thesis we confine ourselves to the ‘standard’ method, i. e., for all our numerical tests and

the following considerations we will use the PPP method. The implementation of one of the

‘advanced’ methods mentioned in Remark 3.6 is a topic for future work.

Finite element discretisation of the bilinear form cPPP(·, ·) leads to a corresponding stabilisation

matrix Cs. Defining the matrix

C := Cc +Cs,

consisting of the compressibility and stabilisation contributions, the stabilised version of the

linear saddle point problem (3.80) on page 146 is given by

(
A B

BT C

)(
u

p

)
=

(
f

0

)
. (3.107)

In the incompressible limit we have C = Cs.

31For the stabilisation methods (3.109), (3.112) and (3.115) introduced in the next section the notation of the right

hand side stabilisation terms is omitted completely.
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3.3.2 Modification for Unstructured Meshes

The PPP method makes use of the characteristic element size he. Possibilities to choose this

value are for example

harea
e :=

√
area(e), (3.108a)

hmin
e := min

i=1,...,4
{hi

e}, (3.108b)

hmax
e := max

i=1,...,4
{hi

e}, (3.108c)

where h1
e , . . . ,h

4
e are the lengths of the four element edges. For square-shaped elements the

three values coincide, and on irregular, but isotropic elements with moderate aspect ratios (cf.

definition (2.5) on page 28), they differ only slightly. The situation is different on highly an-

isotropic meshes, where the three definitions differ significantly, depending on the degree of

anisotropy. To retain robustness of the stabilised formulation on anisotropic meshes, Becker

and Rannacher [19] suggest a split of the stabilisation terms with respect to the spatial direc-

tions (see also Becker [17]). Their approach is restricted to Cartesian grids (i. e., element edges

are aligned to the coordinate axes). With he,1 and he,2 denoting the element extension in x1- and

x2-direction, respectively (see Figure 3.7a), the stabilisation terms are given by

cPPPBR(ph,q) :=− α

2µ
∑
e

h2
e,1(∂1 ph,∂1q)e +h2

e,2(∂2 ph,∂2q)e . (3.109)

In the special case of square shaped elements, the scheme coincides with the PPP method (see

(a) Anisotropic element aligned to the coordinate axes. (b) Irregular element with local coordinate system.

Figure 3.7: Two element types.

equation (3.106)). Becker [17] proves stability and optimal convergence of the approach on

anisotropic meshes.

REMARK 3.7

Becker [17] emphasises the importance of a constant κ entering the estimates. It is given by

κ−1he,1 6 hê,1 6 κhe,1 and κ−1he,2 6 hê,2 6 κhe,2, ê ∈N (e),
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where N (e) is the set of all neighbour elements of e. This constant describes how the aspect

ratios of neighbouring elements vary. Consequently, in those areas of the mesh where these

variations are large, the solution quality might suffer. We confirm this in the numerical ex-

amples in Section 3.3.5. In view of the objective to develop methods which are robust with

respect to mesh anisotropies (see Chapter 1), this has to be seen as a severe drawback. We es-

pecially have to be careful when using the anisotropic refinement routine (2.4) on page 27:

The more the factors aF,aI,aL deviate from 1.0, the larger the critical variations become,

which can be observed in the examples in Figure 3.8. Additionally, when two neighbour-

(a) (aF,aI,aL) = (0.6,0.6,0.6). (b) (aF,aI,aL) = (0.4,0.4,0.4). (c) (aF,aI,aL) = (0.1,1.0,1.0).

Figure 3.8: Three examples of anisotropic refinement with increasing value κ (refinement level 3 shown).

ing cells of the initial macro decomposition (see Section 2.3 on page 27) exhibit strongly

deviating aspect ratios, this directly transfers to the two element layers at the corresponding

subdomain boundary on the finest grid. So, even when applying isotropic refinement, such

undesirable effects can occur.

The main drawback of the PPPBR method is that it is restricted to Cartesian meshes. To over-

come this restriction we now introduce an extended version which is applicable to arbitrary

meshes. Consider an irregular quadrilateral and its local coordinate system as shown in Fig-

ure 3.7b. Now, instead of using partial derivatives ∂1 ph, . . ., we employ directional derivatives

rrre ·∇∇∇ph, . . . , along the axes rrre = (re
1,r

e
2) and ssse = (se

1,s
e
2) of the element’s local coordinate

system. Precisely, rrre and ssse are the vectors connecting the midpoints of two opposing ele-

ment edges, respectively (see Figure 3.7b). The resulting PPP stabilisation method using local

coordinates (denoted as PPPLC) is then given by

cPPPLC(ph,q) :=− α

2µ
∑
e

(rrre ·∇∇∇ph,rrre ·∇∇∇q)e +(ssse ·∇∇∇ph,ssse ·∇∇∇q)e . (3.110)

Written in terms of the partial derivatives and the three constants

c1 := (re
1)

2 +(se
1)

2, c2 := (re
2)

2 +(se
2)

2, c3 := re
1re

2 + se
1se

2, (3.111)
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we obtain

cPPPLC(ph,q) :=− α

2µ
∑
e

c1(∂1 ph,∂1q)e + c2(∂2 ph,∂2q)e

+ c3

[
(∂1 ph,∂2q)e +(∂2 ph,∂1q)e

]
. (3.112)

Our method can be regarded as ‘natural extension’ of the PPPBR method: On Cartesian meshes

the two methods coincide, since re
1 = he,1,s

e
2 = he,2,r

e
2 = se

1 = 0 holds and the partial derivatives

are nothing else but the directional derivatives along the coordinate axes (1,0) and (0,1). As a

consequence, the drawback described in Remark 3.7 also applies to PPPLC.

Alternatively, the PPPLC method can be expressed with the help of the transformation ψψψe

between the basis element eb = [−1,1]2 and the element e (cf. equation (3.65) on page 138).

The Jacobi matrix of this mapping, which we denote by JJJe, describes the mapping up to first

order.32 Consequently, when applying the Jacobi matrix evaluated in the element centre to the

local coordinate axes (2,0) and (0,2) of the basis element eb, the local coordinate axes of the

element e result:

(
Je

11(0,0) Je
12(0,0)

Je
21(0,0) Je

22(0,0)

)(
2

0

)
=

(
re

1

re
2

)
,

(
Je

11(0,0) Je
12(0,0)

Je
21(0,0) Je

22(0,0)

)(
0

2

)
=

(
se

1

se
2

)
.

So, we have the relation

(
re

1 se
1

re
2 se

2

)
= 2

(
Je

11(0,0) Je
12(0,0)

Je
21(0,0) Je

22(0,0)

)
= 2JJJe(0,0), (3.113)

i. e., the local coordinate axes rrre and ssse of the element e build the columns of the (scaled) Jacobi

matrix evaluated in the element centre. Reformulating the summands in definition (3.110),

(rrre ·∇∇∇ph,rrre ·∇∇∇q)e +(ssse ·∇∇∇ph,ssse ·∇∇∇q)e

=

((
rrre ·∇∇∇ph

ssse ·∇∇∇ph

)
,

(
rrre ·∇∇∇q

ssse ·∇∇∇q

))

e

=

((
re

1 re
2

se
1 se

2

)
∇∇∇ph,

(
re

1 re
2

se
1 se

2

)
∇∇∇q

)

e

,

and using the definition JJJe
0 := JJJe(0,0), the PPPLC method can consequently be written as

cPPPLC(ph,q) =−2α

µ
∑
e

(JJJe
0
T∇∇∇ph,JJJe

0
T∇∇∇q)e =−

2α

µ
∑
e

(JJJe
0JJJe

0
T∇∇∇ph,∇∇∇q)e , (3.114)

i. e., the relation to the three constants (3.111) is given by

4JJJe
0JJJe

0
T =

(
c1 c3

c3 c2

)
.

When the element e is a parallelogram, then ψψψe is an affine mapping and the Jacobi matrix

is constant over the element, i. e., JJJe = JJJe
0. In this case, our method is similar to the recently

32Also compare the interpretation of the deformation gradient FFF on page 111.
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published work of Blasco [23], who solves incompressible flow problems with linear triangular

elements. The difference to our method is discussed in Remark 3.8. Blasco proves stability

and convergence of his method in a mesh-dependent norm and shows its superiority over the

standard GLS method and over the method of Micheletti et al. [111] by means of numerical

examples using anisotropic irregular grids.

In the case of an arbitrary quadrilateral element e, the mapping ψψψe is not necessarily affine and

the Jacobi matrix is not constant over the element. Consequently, the Jacobi matrix evaluated

in the element centre, JJJe
0, only represents parts of the element’s geometry information. Con-

sider, for example, the two elements in Figure 3.9: Although the shapes of the elements differ

significantly, they share the same local coordinate system. To incorporate more geometric in-

Figure 3.9: Two differently shaped elements with the same local coordinate system.

formation of an arbitrarily shaped element, one would have to use the locally varying Jacobi

matrix JJJe, instead of the constant one, JJJe
0. The resulting stabilisation method, which we want

to denote with PPPJ, is then given by

cPPPJ(ph,q) :=−2α

µ
∑
e

(JJJeT∇∇∇ph,JJJeT∇∇∇q)e . (3.115)

However, numerical tests (which are not presented here) show that there is practically no dif-

ference between PPPLC and PPPJ: For all the configurations that are used in Section 3.3.5,

the error graphs of the two methods are indistinguishable. Furthermore, iterative solvers show

equal convergence behaviour. We conclude that it is sufficient to use the constant Jacobian JJJe
0

also for elements that are not parallelograms: Incorporating more details of the element geom-

etry by means of the PPPJ method has no impact on the quality of the stabilisation. Therefore,

we abandon this idea and use the PPPLC method for all kinds of elements.

REMARK 3.8

The difference between our PPPLC stabilisation method (3.114) and the one described in

Blasco [23] (which we want to denote with PPPBL) is that the latter uses the non-transposed

Jacobian where we use the transposed, i. e., the stabilisation terms are given by

cPPPBL(ph,q) =−2α

µ
∑
e

(JJJe
0∇∇∇ph,JJJe

0∇∇∇q)e =−
2α

µ
∑
e

(JJJe
0
T

JJJe
0∇∇∇ph,∇∇∇q)e . (3.116)
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As counterparts of the three constants (3.111) we thus obtain

c̃1 := (re
1)

2 +(re
2)

2, c̃2 := (se
1)

2 +(se
2)

2, c̃3 := re
1se

1 + re
2se

2. (3.117)

Both methods can be interpreted as extension of the PPPBR method of Becker and Ran-

nacher [19] (which takes only the diagonal of the Jacobian into account), but only our ver-

sion using the transpose can be motivated geometrically (see page 159). The motivation to

use the non-transposed Jacobian is simply given by the fact that this method often leads to

smaller pressure L2 errors [24]. We confirm this observation in Section 3.3.5.1. However, in

the same section we also show that iterative solvers have severe problems to solve the linear

equation systems that result from using the non-transposed Jacobian.

We further illustrate the difference between the stabilisation methods PPPLC and PPPBL

by means of an example. Consider a Cartesian anisotropic element e of width he,1 = a and

height he,2 = 1 with a≫ 1 (cf. Figure 3.7a on page 157). Then consider the rotation of this

element around its centre by the angle δ, which can be represented by the Jacobi matrix

JJJe =
1

2

(
re

1 se
1

re
2 se

2

)
=

1

2

(
acos(δ) −sin(δ)
asin(δ) cos(δ)

)
.

The three constants (3.111) of our PPPLC method (3.114) and the three constants (3.117) of

the PPPBL method (3.116) are then respectively given by

c1 = a2 cos2(δ)+ sin2(δ) c̃1 = a2,

c2 = a2 sin2(δ)+ cos2(δ) c̃2 = 1,

c3 = (a2−1)cos(δ)sin(δ) c̃3 = 0.

One can see that method (3.116) completely ignores the rotation of the element, i. e., in this

case it reduces to the method of Becker and Rannacher [19] which is actually intended for

Cartesian meshes only. Currently, we are not able to explain why the PPPBL method yields

in many cases slightly better pressure approximations than PPPLC. However, the fact that

standard iterative solving schemes have extreme problems with the linear systems resulting

from PPPBL (see Section 3.3.5.1) indicates that the approach might be unfeasible.

3.3.3 A Pressure Projection Approach

Bochev et al. [27] introduced a stabilisation procedure for the Stokes problem that is based on

pressure projections instead of residuals. To our knowledge, this approach has not been applied

to CSM problems in the literature yet. The authors derive the method by characterising the

instabilities of the Q1/Q1 pair in terms of a weak inf-sup condition (cf. relation (3.99)):

∃β1,β2 > 0 : sup
000 6=vvv∈VVV h

b(vvv,q)

‖vvv‖1

> β1‖q‖0−β2h‖∇q‖0, q ∈Mh. (3.118)
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For a proof, see Bochev et al. [27, Lemma 2.1]. The term h‖∇q‖0 can be interpreted as the

‘destabilising’ contribution which has to be ‘balanced’. The GLS and PPP methods introduced

in the previous sections do this by directly incorporating this term into the stabilisation. Bochev

et al., however, use a different characterisation of the critical term. They define the projection

operator

Π : L2→ Q0,

where Q0 denotes the space of piecewise constant functions, and prove that there exists a con-

stant C > 0 such that

Ch‖∇q‖0 6 ‖q−Πq‖0, q ∈Mh.

Then, the authors deduce the alternative form of the weak inf-sup condition,

∃C1,C2 > 0 : sup
000 6=vvv∈VVV h

b(vvv,q)

‖vvv‖1

>C1‖q‖0−C2‖q−Πq‖0, q ∈Mh,

in which the constants do not depend on the parameter h. Based on this characterisation of the

Q1/Q1 instability, the authors suggest to add the (suitably scaled) bilinear form c(ph,q) = (ph−
Πph,q−Πq)Ω to the variational form of the Stokes equation. Under two mild assumptions

concerning the projection operator Π, stability and optimal convergence of the method is proven

(see Bochev et al. [27, Theorem 4.1, Theorem 5.1]). The authors choose the projection operator

defined by

Πq|e :=
1

area(e)

∫
e
qdx,

i. e., the mean value of q over the element e. This choice fulfils all necessary requirements,

and has the additional advantages that it can be computed with standard techniques available in

each finite element code, that it can be computed locally on element level, and that the resulting

stabilisation matrix is symmetric. When adapting the scaling factor to the elasticity case, the

variational problem (see equation (3.100) on page 153) can finally be stabilised by adding the

bilinear form

cPROJ(ph,q) :=− 1

2µ
∑
e

(ph−Πph,q−Πq)e . (3.119)

Obviously, this method has some advantages – beside the already mentioned ones – compared

to the GLS stabilisation methods: It is absolutely stable, i. e., there is no need for a stabilisation

parameter, and it does not depend on any mesh-dependent parameters (like the characteristic

element size). However, similar to the PPP method of Brezzi and Douglas [38], it is not con-

sistent. Interestingly, from their analysis the authors deduce that their method and the PPP

method have similar stability properties. On anisotropic/irregular meshes, however, the PPP

method has to be adapted to retain stability (PPPBR, PPPLC, PPPJ). It is not clear a priori if

the presented projection method can robustly deal with such mesh irregularities, or if an adap-

tion is necessary, as well. We want to examine this by means of detailed numerical tests in

Section 3.3.5.
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3.3.4 Finite Deformation

In this section we want to apply the stabilisation methods introduced in the previous sections to

finite deformation elasticity. To our knowledge, analytical convergence and stability results are

not available for this case. However, many authors successfully applied stabilised equal-order

element pairs to nonlinear solid mechanics problems (see the overview on page 146).

As described in the previous sections, the stabilisation terms take the geometry of the element

into account, for example by defining one constant value characterising the element size (PPP)

or by using the element’s local coordinate system (PPPLC). In finite deformation computations

one has to distinguish between the current and the reference configuration (cf. Section 3.1.1).

So, the question arises how to treat the stabilisation terms and whether the geometry of the

deformed or of the undeformed element should be considered.

Before we discuss two different variants, we introduce some further notations. For an element

e⊂ Ω in the reference configuration we denote its deformed counterpart in the current config-

uration as ec ⊂ Ωc. Correspondingly, (·, ·)ec denotes the L2 inner product over the deformed

element ec, i. e.,

(a,b)ec :=
∫

ec
a(xxx)b(xxx)dx, a,b ∈ L2(ec,R),

(aaa,bbb)ec :=
∫

ec
aaa(xxx) ·bbb(xxx)dx, aaa,bbb ∈ L2(ec,R2),

while

(a,b)e :=
∫

e
a(XXX)b(XXX)dX , a,b ∈ L2(e,R),

(aaa,bbb)e :=
∫

e
aaa(XXX) ·bbb(XXX)dX , aaa,bbb ∈ L2(e,R2)

is the L2 inner product over the element e in the reference configuration. The characteristic

size he and the local coordinate system (rrre,ssse) of the undeformed element are correspond-

ingly denoted by hec and (rrrec ,sssec), respectively, for the deformed element. The pull back (cf.

Section 3.1.1) of grad(q) is given by FFF−T Grad(q) (see, e. g., Stein and Barthold [151, chap-

ter 3]).

3.3.4.1 Stabilisation Based on the Current Configuration

In the first variant the stabilisation is applied to the current configuration. This means on the one

hand, that the stabilisation constants are based on the deformed geometry, and on the other hand,

that a pull back to the reference configuration is performed. The motivation for this approach is

that the current configuration describes the ‘real’ physical state of the body, and consequently

its actual shape. We want to denote this approach by appending ‘-C’ (for ‘current’) to the

name of the stabilisation method (e. g., PPP-C). Klaas et al. [95] apply this variant to the SGLS
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stabilisation (see equation (3.104) on page 155). They include the second order stabilisation

terms and also derive the corresponding linearisation, though, but for the numerical examples

they only use the stabilised linear/linear element, such that their method actually reduces to

PPP-C. Only in Maniatty et al. [108], the authors extend their examinations to higher order

methods.

The PPP stabilisation terms of the current configuration transform into the reference configu-

ration as follows (cf. Klaas et al. [95]):

ĉPPP-C(ph,q) :=− α

2µ
∑
e

h2
ec

(
grad(ph),grad(q)

)
ec

=− α

2µ
∑
e

h2
ec

(
JFFF−T Grad(ph),FFF−T Grad(q)

)
e

=− α

2µ
∑
e

h2
ec

(
JFFF−1FFF−T Grad(ph),Grad(q)

)
e

=− α

2µ
∑
e

h2
ec

(
JCCC−1 Grad(ph),Grad(q)

)
e
.

To derive the PPPLC-C method for finite deformation, we have to consider the local coordinate

system of the deformed element, (rrrec ,sssec). Analogously to definition (3.110) we obtain

ĉPPPLC-C(ph,q) :=− α

2µ
∑
e

(
rrrec ·grad(ph),rrrec ·grad(q)

)
ec
+
(
sssec ·grad(ph),sssec ·grad(q)

)
ec

=− α

2µ
∑
e

((
rec

1 rec

2

sec

1 sec

2

)

︸ ︷︷ ︸
=:HHH

grad(ph),

(
rec

1 rec

2

sec

1 sec

2

)
grad(q)

)

ec

=− α

2µ
∑
e

(
HHH grad(ph),HHH grad(q)

)
ec

=− α

2µ
∑
e

(
J HHHFFF−T︸ ︷︷ ︸

=:H̃HH

Grad(ph),HHHFFF−T Grad(q)
)

e

=− α

2µ
∑
e

(
JH̃HH Grad(ph), H̃HH Grad(q)

)
e

=− α

2µ
∑
e

(
JH̃HH

T
H̃HH Grad(ph),Grad(q)

)
e
. (3.120)

Note, that the matrix HHH is constant, i. e., it is not affected by the pull back operation and in

the integral term
(
HHHFFF−T Grad(ph),HHHFFF−T Grad(q)

)
e

only the part FFF−T Grad(·) has to be

evaluated in the cubature points.

In the linear case we presented an alternative formulation of the PPPLC method using the

Jacobi matrix JJJe
0. This is also possible for the finite deformation case. Therefore, we consider

the composed mapping ϕϕϕ◦ψψψe : eb→ ec from the basis element into the deformed element (cf.

equation (3.65) on page 138), whose Jacobi matrix is simply given by FFFJJJe. The local coordinate

axes of the deformed element can be obtained by applying the transpose of this matrix to the
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local coordinate axes of the basis element. So, corresponding to relation (3.113) on page 159

we have

HHH =

(
rec

1 rec

2

sec

1 sec

2

)
= 2
(

FFF
(
ψψψe(0,0)

)
JJJe

0

)T
= 2JJJe

0
T

FFF
(
ψψψe(0,0)

)T
.

For a consistency check, consider the special case that the deformation ϕϕϕ is affine over the

element. Then the deformation tensor FFF is constant, i. e., FFF(XXX) = FFF
(
ψψψe(0,0)

)
,XXX ∈ e, and the

matrix H̃HH in equation (3.120) reduces to

H̃HH = HHHFFF−T = 2JJJe
0
T

FFFTFFF−T = 2JJJe
0
T.

This means, when the deformation mapping is linear, then the stabilisation is consistent with

the stabilisation for the linearised small deformation case (see equation (3.114) on page 159).

To adapt the pressure projection stabilisation of Bochev et al. [27] (see Section 3.3.3) to the

finite deformation setting based on the current configuration, we introduce the projection oper-

ator

Πcq|ec :=
1

area(ec)

∫
ec

qdx,

which calculates the mean value of q over the deformed element ec. Observing that the term

q−Πcq is invariant under the pull back operation, we obtain the stabilisation

ĉPROJ-C(ph,q) :=− 1

2µ
∑
e

(ph−Πcph,q−Πcq)ec

=− 1

2µ
∑
e

(
J(ph−Πcph),q−Πcq

)
e
.

3.3.4.2 Stabilisation Based on the Reference Configuration

The second variant is a ‘naive’ approach: We simply ignore the difference between reference

and current configuration and directly apply the stabilisation to the Lagrangian form. This

means that no pull back of the stabilisation terms is performed and the geometry of the unde-

formed element is taken into account. On the one hand this seems to be a ‘numerical crime’,

on the other hand, however, one can argue as follows:

Due to the nonlinear nature of the finite deformation setting, there is no guarantee that the

stabilisation methods adapted from the linearised setting are successful at all – for some defor-

mations they might work, for others they might not. Also compare the discussion in Le Tallec

[105, Section 14] about the use of stable finite elements for finite deformation. The stabilisation

terms of the first variant based on the current configuration are themselves nonlinear and might

consequently ‘add to this uncertainty’. To avoid this, one should use the linear stabilisation ‘as

it is’ and apply it directly to the (nonlinear) variational equation in Lagrangian formulation –

even if this approach ignores the physical interpretation on which the first variant is based.
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We want to denote this approach by appending ‘-R’ (for ‘reference’) to the name of the stabili-

sation method (e. g., PPP-R). The stabilisation terms for the PPP-R method are

ĉPPP-R(ph,q) :=− α

2µ
∑
e

h2
e

(
Grad(ph),Grad(q)

)
e
,

the PPPLC-R method is given by

ĉPPPLC-R(ph,q) :=− α

2µ
∑
e

(
rrre ·Grad(ph),rrre ·Grad(q)

)
e
+
(
ssse ·Grad(ph),ssse ·Grad(q)

)
e

=− 2α

µ
∑
e

(JJJe
0
T Grad(ph),JJJe

0
T Grad(q))e ,

and finally the projection method PROJ-R reads

ĉPROJ-R(ph,q) :=− 1

2µ
∑
e

(ph−Πph,q−Πq)e .

In Section 3.3.5 we examine whether this ‘naive’ approach is successful.

3.3.5 Numerical Tests

In this section we want to examine some aspects of the spatial discretisation treated in the

previous sections by means of numerical examples. We consider the following issues in the

context of linearised elasticity:

• comparison of the presented stabilisation methods (Section 3.3.5.1)

• comparison of pure displacement and mixed formulation for increasing incompressibility

(Section 3.3.5.2)

• effect of the stabilisation methods’ inconsistency (Section 3.3.5.3)

Finally, we compare the four stabilisation variants in the context of finite deformation elas-

ticity (Section 3.3.5.4). In all the following tests we are mainly interested in the accuracy of

the computed solution. Only in Section 3.3.5.1 we also consider aspects of iterative solver

performance.

3.3.5.1 Comparison of Stabilisation Methods

We first compare different stabilisation methods in the context of linearised elasticity:

• PPPmin, PPPmax, PPParea - the simple PPP stabilisation method (3.106a) considering

the three possibilities to compute the characteristic element size (see equation (3.108))
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(a) QUAD1, QUAD2 and QUAD3; 1 subdomain. (b) RUBBERBUSHING2 and RUBBERBUSHING6, holes

with diameter 0.02 m and 0.06 m, resp.; 8 subdomains.

(c) BLOCKWITHHOLES; 10 subdomains. (d) ACCORDION; 20 subdomains.

Figure 3.10: Level 1 macro decompositions of the configurations for the stabilisation tests. ’N’ marks boundary

segments with Neumann conditions, unmarked boundary segments exhibit Dirichlet conditions.

• PPPLC - our enhanced variant (3.112) of PPP considering the element’s local coordinate

system (the transposed Jacobian matrix, resp.)33

• PPPBL - Blasco’s variant (3.116) of PPP for triangular elements considering the non-

transposed Jacobian matrix, applied to quadrilaterals

• PROJ - the pressure projection method (3.119) of Bochev et al.

max. AR

QUAD1 QUAD2 QUAD3

lev #DOF ISO ANISO1 ANISO2 ISO ANISO1 ANISO2 ISO ANISO1 ANISO2

3 8.67e+2 1.41 26.9 88.4 21.5 1.90e+2 3.16e+2 3.71 52.1 1.70e+2

4 3.27e+3 2.21e+2 7.89e+2 4.26e+2

5 1.27e+4 5.52e+2 1.97e+3 1.06e+3

6 4.99e+4 1.38e+3 4.93e+3 2.66e+3

7 1.98e+5 3.45e+3 1.23e+4 6.65e+3

Table 3.3: Number of DOF and maximal element aspect ratios (AR) of the different QUAD configurations.

For all PPP variants we choose α = 0.1 as stabilisation parameter. We want to assess the stabil-

isation methods for a wide variety of domain geometries and element shapes and thus perform

tests on the seven configurations depicted in Figure 3.10. The three QUAD configurations are

solved with three different refinement modes: ISO with anisotropy factors aF = aL = aI = 1.0
(cf. equation (2.4) on page 27), ANISO1 with aF = 0.1,aL = aI = 1.0 and ANISO2 with aF =
aL = aI = 0.4. All other configurations are refined isotropically. The resulting maximal element

33For an application of the PPPLC method to the Stokes- and Navier-Stokes equation, see Buijssen [44].
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RUBBUSH2 RUBBUSH6 BLOCKWITHHOLES ACC

lev #DOF max. AR max. AR #DOF max. AR #DOF max. AR

3 1.73e+3 7.89 2.01 2.13e+3 8.49 4.29e+3 5.71

4 6.53e+3 8.11e+3 1.63e+4

5 2.53e+4 3.16e+4 6.33e+4

6 9.98e+4 1.25e+5 2.49e+5

7 3.96e+5 4.95e+5 9.90e+5

Table 3.4: Number of DOF and maximal element aspect ratios (AR) of the RUBBERBUSHING,

BLOCKWITHHOLES and ACCORDION configurations.

aspect ratios and the number of DOF are collected in Tables 3.3 and 3.4. The inner circles of the

two rubber bushings34 are slightly rotated to introduce some additional element irregularities.

(a) QUAD3. (b) RUBBERBUSHING6. (c) BLOCKWITHHOLES.

(d) ACCORDION.

Figure 3.11: Computed pressure solutions of selected configurations, corresponding to analytical test functions.

At first we solve problems with right hand sides corresponding to known analytical functions

and examine L2 errors. For the QUAD and ACCORDION configurations we use the functions

uuu(x1,x2) =

(
sin(πx1−0.7)sin(πx2 +0.2)
cos(πx1−0.7)cos(πx2 +0.2)

)
,

p(x1,x2) = 2µsin(πx1 +0.4)cos(πx2−0.3),

(3.121)

and for the RUBBERBUSHING and BLOCKWITHHOLES configuration the functions

uuu(x1,x2) =

(
sin(2π(x1 +0.02))sin(2π(x2 +0.02))
cos(2π(x1 +0.02))cos(2π(x2 +0.02))

)
,

p(x1,x2) =−2µsin(4π2(x1 +0.02))cos(4π2(x2 +0.02)).

(3.122)

34Rubber bushings connect two solid parts (e. g., metal) and facilitate flexible movement of the two parts. They are,

for example, employed in suspension systems to minimise vibrations or to absorb shocks.
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The pressure solutions are depicted in Figure 3.11. We use an incompressible rubber material

with Poisson ratio ν = 0.5 and shear modulus µ = 8.2 MPa. All linear systems are treated

with the direct solver UMFPACK [55]. Due to the a priori error estimates the pressure L2 error

converges at least with a rate of O(h) (see Section 3.3.1). In practice, however, often a rate

of order O(h3/2) can be observed (see Becker and Braack [18] for a discussion and further

references). This is also the case in most of our numerical experiments. Figure 3.12 shows the

results for the nine QUAD configurations, and Figure 3.13 those of the other four configurations;

Figures 3.12j and 3.13e, respectively, show the results on the highest level in more detail.

The most important observation is that all stabilisation methods – except for PPPmin and

PPParea – exhibit similar and smooth convergence behaviour; neither irregular element shapes,

nor high element aspect ratios lead to significant deterioration of L2 errors. The convergence

behaviour of PPPmin and PPParea, however, is clearly worse in some cases (see, e. g., Fig-

ure 3.12h). Ignoring PPPmin and PPParea, it is interesting that the other methods show L2

errors so close to each other, especially on the four more realistic geometries. The simple

PPPmax stabilisation method (which does not account for element shapes or aspect ratios)

performs surprisingly well: Figures 3.12j and 3.13e show that for all configurations it yields

either the best or the second best result. A direct comparison of PPPLC and PPPBL shows that

the latter yields (slightly) better results in many cases (as already mentioned in Remark 3.8 on

page 160), but in some cases the former performs better (e. g., on the QUAD3-ISO configura-

tion). The PROJ stabilisation is quantitatively slightly worse than PPPLC and PPPBL on the

QUAD configurations, but qualitatively the three methods yield equal results.

Now we examine real loading situations for the configurations RUBBERBUSHING and BLOCK-

WITHHOLES. We move the inner solid (which we assume to be rigid) of the rubber bushing,

i. e., we apply a non-zero Dirichlet boundary condition on the inner circle. The outer boundary

is fixed on the upper part and can move freely on its bottom part (see Figure 3.14a). For the

small hole and large hole rubber bushing we apply a movement of uuu = (−0.01 m,−0.01 m)T

and uuu = (−0.003 m,−0.003 m)T, respectively. The block is loaded by a vertical line force

of F = −10 MPa, i. e., we apply a non-zero Neumann boundary condition. The top side

of the block is fixed in x1-direction, while the bottom side is fixed in x2-direction (see Fig-

ure 3.14d). We use a rubber material with Poisson ratio of ν = 0.49999 and shear modulus

µ = 8.2 MPa. The resulting deformation and the pressure distribution are displayed in Fig-

ures 3.14b, 3.14c and 3.14e. We enquire the computed pressure solution ph in the points AAA

marked in Figures 3.14a and 3.14d. Note that these points lie in the interior of the domain; val-

ues on the boundary are not reliable due to the inconsistency of the stabilisation (cf. Remark 3.6

on page 156 and Section 3.3.5.3). Lacking a better reference solution, we compare the values to

the finite element solution p∗ obtained on the level 10 grid exhibiting 25.2 M DOF and 31.5 M

DOF, respectively. The plots in Figure 3.15 display the relative error in percent, i. e.,

erel := 100

∣∣∣ ph(AAA)− p∗(AAA)
p∗(AAA)

∣∣∣.

We can observe that the results partially differ from those obtained in the analytical tests above.

On the RUBBERBUSHING6 configuration (Figure 3.15b) the PPPmax method, for example,
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(a) QUAD1-ISO.

 0.001

 0.01

 0.1

 1

867 3267 12675 49923 198147

re
l.
 p

re
s
s
u

re
 L

2
 e

rr
o

r
<

--
--

 s
m

a
lle

r 
is

 b
e

tt
e

r 
<

--
--

#DOF

1.5
PPPLC

PROJ
PPPBL

PPPmax
PPParea
PPPmin

(b) QUAD1-ANISO1.
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(c) QUAD1-ANISO2.
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(d) QUAD2-ISO.
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(e) QUAD2-ANISO1.
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(f) QUAD2-ANISO2.
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(g) QUAD3-ISO.
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(h) QUAD3-ANISO1.
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(i) QUAD3-ANISO2.
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(j) Results of the nine configurations above on level 7 (198147 DOF).

Figure 3.12: L2 error between the computed and the analytical pressure solution.
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(a) RUBBERBUSHING2.
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(b) RUBBERBUSHING6.

 0.0001

 0.001

 0.01

 0.1

 1

2133 8109 31581 124605 494973

re
l.
 p

re
s
s
u

re
 L

2
 e

rr
o

r
<

--
--

 s
m

a
lle

r 
is

 b
e

tt
e

r 
<

--
--

#DOF

1.5

PPPLC
PROJ

PPPBL
PPPmax
PPParea
PPPmin

(c) BLOCKWITHHOLES.
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(d) ACCORDION.
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(e) Results of the four configurations on level 7.

Figure 3.13: L2 error between the computed and the analytical pressure solution.

performs worst now, on the BLOCKWITHHOLES configuration (Figure 3.15c) it performs best.

While PPPmin and PPParea show very large errors on the coarser RUBBERBUSHING6 grids,

they yield the smallest error on the highest grid level. PPPLC and PROJ are very close together

on all three configurations, PPPBL performs slightly worse. It is interesting that these three

methods seem to exhibit a slightly worse convergence rate than the three simple PPP methods

on the BLOCKWITHHOLES configuration (Figure 3.15c). In summary, a clear favourite can not

be identified; it clearly depends on the configuration, which of the six methods performs best,

and the differences are not significant.

We now want to show that there are crucial differences between the six stabilisation methods

when considering iterative solving behaviour. Saddle point solvers are not introduced before

Chapter 5, but we use three typical representatives already now, two segregated and one coupled

method. For details about the these solvers, see Section 5.1. Figure 3.16 shows the convergence

rates of the three solvers for six of the QUAD configurations (see Figure 3.10a), using the known

analytical solution (3.121). The iterative solvers stop the iteration when the initial residual norm

is reduced by the factor 10−12. The coupled solver BiCG-MG-VankaP is not efficient for strongly

anisotropic meshes, so it is applied to only two of the grids (Figure 3.16c). Missing bars mean

that the corresponding solution process diverged.

We can see that on the simple QUAD1-ISO grid, all stabilisation methods result in satisfying

convergence rates: The solver BiCG-SCBTria[BSor] shows only slight variations for this grid

(see Figure 3.16a), while for the other two solvers the convergence rates vary a little bit stronger,

but are still below 0.15 (Figures 3.16b and 3.16c). For all the other grids, there are large
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(a) RUBBERBUSHING6, AAA≈ (−0.0057,0.0111)
(AAA≈ (−0.0019,0.0204) for RUBBERBUSHING2).

(b) RUBBERBUSHING2. (c) RUBBERBUSHING6.

(d) BLOCKWITHHOLES, AAA = (0.1,0.05). (e) BLOCKWITHHOLES.

Figure 3.14: Boundary conditions and reference points AAA (left), deformation and pressure solution (right).
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(a) RUBBERBUSHING2.

 0.01

 0.1

 1

 10

 100

1728 6528 25344 99840 396288

e
rr

o
r 

in
 p

  
[%

]
<

--
--

 s
m

a
lle

r 
is

 b
e
tt
e
r 

<
--

--

#DOF

PPPLC
PROJ

PPPBL
PPPmax
PPParea
PPPmin

(b) RUBBERBUSHING6.
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(c) BLOCKWITHHOLES.
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(d) Results of the configurations on level 7.

Figure 3.15: Relative error (%) between the computed pressure solutions and the level 10 reference solution.
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(a) BiCG-SCBTria[BSor].
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(b) BiCG-MG-SCBTria[BSor].
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(c) BiCG-MG-VankaP.

Figure 3.16: Convergence rates of three saddle point solvers for selected grids. Note the varying, logarithmic scale.

differences: The only stabilisation methods that are successful for all solvers on all grids, are

PPPLC, PROJ, and PPPmin. For the solver BiCG-SCBTria[BSor] the two methods PPPLC

and PROJ are quite close together, with a slight advantage for PPPLC (especially on the two

QUAD3 grids). For the other two solvers, PPPLC is clearly superior to PROJ. PPPmin exhibits

by far worse convergence rates than PPPLC and PROJ for all three solvers.

The performance of the three stabilisation methods PPPBL, PPPmax and PPParea is not robust:

For the solver BiCG-SCBTria[BSor], the convergence rates are above 0.7 on four of the six

grids, partially even very close to 1.0. On the grid QUAD3-ANISO1, the method PPPmax even

leads to divergence. The additional multigrid scheme in the solver BiCG-MG-SCBTria[BSor]

seems to react more sensitively to the underlying stabilisation: Here, PPPBL and PPPmax result

in divergence on four grids; PPParea lets the solver diverge in two cases, while in the other two

cases it converges with a rate very close to 1. For the solver BiCG-MG-VankaP the situation is

not so dramatic on the two ISO grids, but on QUAD3-ISO we see again a clear deterioration for

all methods but PPPLC, where the PPPBL method performs worst.

We want to remark that the described behaviour is qualitatively the same for all the other con-

figurations used in this section, and also for all the other solvers that are described in Chapter 5.

Hence, we can state that our stabilisation method PPPLC is clearly superior. PPPLC and PROJ
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turn out to be the only ones that lead to a satisfying iterative solver performance for a wide

range of grids and solvers. The three simple PPP methods and especially PPPBL produce

linear systems that seem to be unfavourable for standard linear solving methods.

Summary

In principle, all the presented stabilisation methods exhibit (more or less) satisfying conver-

gence behaviour. Only PPPmin and PPParea show clear deficiencies in single configurations

(see, for example, Figure 3.12h). The PPPmax method behaves surprisingly well overall, par-

tially even better than the three more complicated methods PPPLC, PPPBL and PROJ. The

results show that none of the methods is superior in general, it depends on the specific config-

uration (geometry, loading state, boundary conditions, ...) which method performs best. So,

when only considering error convergence rates, we have to conclude that the choice of the sta-

bilisation method is not as crucial as one might believe – the simple variants PPPmin/max/area

perform comparatively well, even on highly irregular and anisotropic grids (despite the noted

deficiencies of PPPmin and PPParea). Realising this, one could refrain from implementing

the more complicated methods PPPLC, PPPBL and PROJ, and stick to the simple variants.

This, however, is only advisable when using direct solvers to treat the linear systems: In Fig-

ure 3.16 we showed that all stabilisation methods except for PPPLC and PROJ produce linear

equation systems which are extremely difficult to solve for standard saddle point solvers. This

is especially surprising for the PPPBL stabilisation. We can conclude that from the set of pre-

sented stabilisation methods, PPPLC and PROJ are the only ones that can be used in practice

for solving large-scale simulations with (nearly) incompressible material, where our PPPLC

stabilisation method seems to result in better iterative solving behaviour.

3.3.5.2 Pure Displacement vs. Mixed Formulation

In Section 3.2.2.2 we already showed the deficiencies of the pure displacement formulation

when applied to nearly incompressible material in terms of a real loading situation (see Fig-

ure 3.6 on page 144). We now want to confirm these results in terms of an analytical test case

and show the superiority of the mixed formulation. Therefore, we repeat the analytical test

on the BLOCKWITHHOLES configuration (see equation (3.122) on page 168 and Figure 3.10c

on page 167) for different degrees of compressibility, i. e., the Poisson ratio ranging between

ν = 0.4 and ν = 0.49999. Figure 3.17 shows the errors for the pure displacement and the mixed

formulation on different grid refinement levels. Figure 3.17a displays the relative displacement

L2 error, which is expected to decrease by O(h2), and Figure 3.17b the relative displacement

H1 error, which should decrease by O(h) (see estimates (3.72) on page 139 and (3.103) on

page 154). One can see that the pure displacement formulation clearly fails to achieve these

convergence rates for higher degrees of incompressibility. The mixed formulation, however,

shows the expected behaviour – nearly independently of the value of ν such that the graphs are

hardly distinguishable. The L2 error on the finest level, for example, is consequently three or-

ders of magnitude smaller than that of the pure displacement formulation. Another interesting
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(a) Relative displacement L2 error.
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Figure 3.17: Comparison of displacement (‘DISP’) and mixed formulation (‘MIXED’) for varying compressibility.

observation is that even for the compressible material (ν = 0.4) the mixed formulation yields

a smaller L2 error. (The H1 is also smaller, but the differences are only marginal.) This has

already been observed by Suttmeier [153]; also compare Section 3.1.3.3. In Section 5.2.1.7 we

show that the bad convergence of the pure displacement formulation for nearly incompressible

material is accompanied by a strong degradation of linear solver performance. In summary,

we can confirm that the pure displacement formulation is absolutely unsuited to treat nearly

incompressible material and the switch to a more advanced finite element discretisation – like

the mixed uuu/p formulation – is mandatory.

3.3.5.3 The Effect of Inconsistency

In Sections 3.3.1 and 3.3.3 we explained that the stabilisation methods used in this work are

inconsistent. Although this fact does not impair the general convergence quality of the finite

element solution, it nevertheless influences the pressure solution on a given grid. We want to

illustrate two effects that result from the inconsistency: The degraded accuracy at the boundary

(cf. Remark 3.6 on page 156) and the influence of jumps in element sizes (cf. Remark 3.7 on

page 157).

We perform tests using the analytical solution (3.121) on the unitsquare which is slightly

anisotropically refined towards the lower left corner with anisotropy factors aF = 0.3,aL =
aI = 1.0 (cf. equation (2.4) on page 27). We tested our PPPLC method (see equation (3.112))

and the pressure projection method PROJ (see equation (3.119)). The results are qualitatively

the same, so we only present those of the PPPLC method.

Figure 3.18 shows the pressure solution for four different refinement levels, additionally dis-

playing the computational mesh for the two coarser levels (Figures 3.18a and 3.18b). On the

first three grids we can clearly see the irregular behaviour of the contour lines; on the one hand,

in the vicinity of the boundaries, and, on the other hand, where the element sizes jump due to

the anisotropic refinement. We can also observe, that in both cases the distortion is limited to
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(a) Lv. 4. (b) Lv. 5. (c) Lv. 6. (d) Lv. 10 (lv. 5 visualised).

Figure 3.18: Computed pressure solution for four different refinement levels.

the adjacent element layers, such that with increasing refinement level the effect weakens. For

the level 10 solution (Figure 3.18d), no artifacts are visible anymore, which is, of course, also

due to the fact that the computed solution is interpolated on a coarser grid for visualisation. A

representation on the level 10 grid would reveal correspondingly tiny irregularities in the pres-

sure solution, too. Hence, the inconsistency error decreases with further grid refinement but

will never vanish completely, which is exactly what has to be expected for inconsistent penalty

methods.

We now want to illustrate that the negative effects of inconsistency are further influenced by the

displacement solution. This is, of course, not surprising: The second derivative displacement

terms (see equation (3.105) on page 155) are omitted in the stabilisation residual. Hence, one

has to expect that the ‘larger’ these terms are (compared to the pressure), the larger the resulting

error will be. We confirm this with a simple test: In the analytic reference solution (3.121) we

scale the displacement function uuu with the factors 0.25 and 4, respectively, while the pressure

function p remains unchanged. Figures 3.19a and 3.19c show the computed pressure solutions

for these two cases, while Figure 3.19b shows the pressure solution for the case of the unscaled

displacement function. One can clearly see that the irregularities of the computed pressure

solution aggravate while the scaling factor of the analytical displacement function increases.

The illustrated inaccuracy of the pressure solution resulting from the inconsistency of the sta-

bilisation methods does not influence the displacement solution itself, which exhibits perfectly

smooth contour lines in the examples above (see Figures 3.19d, 3.19e and 3.19f). Hence,

one could argue that this problem is irrelevant for real computations since the pressure only

serves as auxiliary variable to solve the deformation problem efficiently. However, the material

stresses resulting from the elastic deformation – usually the quantities of major interest in solid

mechanical applications – directly depend on the pressure solution and will thus be affected, as

well, by these irregularities.

Especially, when performing simulations on rather coarse meshes, one has to be aware that the

computed results near boundaries or in regions with strongly varying element sizes might not

be as accurate as in other regions of the mesh. This has to be seen as major disadvantage of
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(a) p, scaling factor 0.25. (b) p, scaling factor 1. (c) p, scaling factor 4.

(d) u2, scaling factor 0.25. (e) u2, scaling factor 1. (f) u2, scaling factor 4.

Figure 3.19: Computed level 5 solution for pressure (top row) and x2-displacement (bottom row); analytical

displacement function scaled with factors 0.25 (left), 1 (centre) and 4 (right).

the stabilised Q1/Q1 formulation, which can only be alleviated by using finer mesh resolutions

and/or by avoiding too large jumps in neighbouring element shapes.

3.3.5.4 Comparison of Stabilisation Methods for Finite Deformation

In Section 3.3.5.1 we claimed that the stabilisation methods PPPLC and PROJ are the only effi-

cient ones for large scale computations. We now want to compare the finite deformation variants

of these two methods developed in Section 3.3.4, i. e., we consider the four methods PPPLC-R,

PPPLC-C, PROJ-R and PROJ-C. We use the real loading configuration of the BLOCKWITH-

HOLES (see Figures 3.14d and 3.14e) and apply a vertical line load of F = −20 MPa. Addi-

tionally, we use a variant of the block without holes, consisting of 8 subdomains (see Figure 4.1

on page 200), for which we increase the load to F =−50 MPa to obtain stronger deformations.

This configuration is simply denoted by BLOCK. For both we use a nearly incompressible rub-

ber material with ν = 0.49999 and µ = 8.2 MPa, and we apply the Neo-Hooke constitutive

law (see equation (3.36) on page 126). The deformed bodies are depicted in Figure 3.20. The

nonlinear iteration is stopped when the norm of the nonlinear residual is reduced by the factor

10−10. See Section 4.3 for details on the nonlinear solving method. Lacking a better reference

solution, we use the finite element pressure solution on level 10 exhibiting 31.5 M DOF in case
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(a) BLOCKWITHHOLES, load F =−20. (b) BLOCK, load F =−50.

Figure 3.20: Computed deformation and pressure solution for the two block configurations.

of the BLOCKWITHHOLES and 25.2 M DOF in case of the BLOCK configuration. This refer-

ence solution is evaluated in the point AAA = (0.1,0.05) and compared to the pressure solutions

obtained with the four stabilisation methods on lower levels. Figure 3.21 shows the relative

error (in percent). We can make the following observations:
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Figure 3.21: Relative error (in percent) between the computed pressure solutions and the level 10 reference

solution in the reference point AAA = (0.1,0.05).

• All four stabilisation methods are successful in the sense that the nonlinear problems are

solved without instabilities and they converge towards the same solution.

• Since the deformations are relatively large, the stabilisation terms of the two variants bas-

ing on the reference (‘R’) and the current configuration (‘C’) differ significantly. These

differences, however, do not crucially affect the finite element solution: Only on the

coarser grid levels, one can observe a slight advantage of the stabilisation methods based

on the current configuration. On the finer grid levels, the differences vanish since the

stabilisation terms tend to zero with the decreasing element sizes.

• The projection method PROJ yields slightly better results than the PPPLC method.

In summary, the computed examples indicate that it does not play an important role whether to

use the stabilisation variant based on the reference configuration (‘R’) or that based on the cur-
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rent configuration (‘C’). This remains true when considering iterative solver behaviour (results

are not presented here): We observe no significant differences in nonlinear and linear solver

convergence. Hence, we state that both variants seem to be feasible. The variant based on the

current configuration has the advantage that it corresponds to the actual physical state of the

body and can thus be motivated more intuitively. It also seems to yield slightly better results

on coarser grids. The variant based on the reference configuration, however, is rather naive and

lacks a physical interpretation, but it is easier to implement.

The two stabilisation methods PPPLC and PROJ show qualitatively the same convergence be-

haviour, while PROJ yields slightly smaller errors. There are also no qualitative differences in

terms of linear and nonlinear solver behaviour (results are not presented here). So, we state that

both methods seem to be suitable to be employed for finite deformation elasticity problems.

We want to emphasise, that it is difficult to derive general statements from a few numerical

example computations when dealing with nonlinear problems. The efficiency and the success

of a numerical method often depends on the specific configuration at hand. Hence, we want the

results presented above to be understood only as starting point for further examinations. For

a more reliable assessment of the stabilisation methods more extensive studies are necessary.

These, however, are not performed within this thesis but are part of future work.

3.4 Discretisation in Time

3.4.1 The Newmark Scheme

The time discretisation of transient problems is exemplarily explained by means of the mixed

uuu/p formulation in the linear small deformation case (see equation (3.64) on page 135 and

equation (3.107) on page 156). The remaining cases (pure displacement formulation and/or fi-

nite deformation; see equation (3.62) on page 135 and equations (3.47) and (3.49) on page 130)

can be derived analogously. In a first step (ignoring stabilisation terms for the time being),

the equation is discretised in space for a point in time, t ∈ I = [0,T ], resulting in the semi-

discretisation
ρMü(t)+Au(t)+Bp(t) = f(t)

BTu(t)+Ccp(t) = 0,
(3.123)

where M is the displacement mass matrix and the time-dependent coefficient vector u(t) =(
u1(t),u2(t)

)
defines the finite element function

uh
j(t,xxx) =

n

∑
i=1

(u j)i(t)φi(xxx), j = 1,2.

p(t) and f(t) are defined analogously. In a second step, the semi-discrete equation (3.123),

which represents a system of ordinary differential equations, is discretised in time. We use an

implicit time integration scheme, which is very popular in CSM, the Newmark scheme [116].
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Therefore, we partition the time interval I into K subintervals Ik = [tk−1, tk], k = 1, . . . ,K, of

equal length τ := tk− tk−1 with 0 = t0 < t1 < .. . < tK = T and define u(k) := u(tk). When the

state of the system at time tk is known, the Newmark scheme approximates displacement and

velocity at time tk+1 by

u(k+1) = u(k)+ τu̇(k)+ τ2
((

1
2
−β
)
ü(k)+βü(k+1)

)
(3.124a)

u̇(k+1) = u̇(k)+ τ
(
(1− γ)ü(k)+ γü(k+1)

)
, (3.124b)

where β and γ are algorithmic parameters (see below). Solving equation (3.124a) for ü(k+1)

(see equation (3.126a)) and insertion into equation (3.123) yields the dynamic equilibrium at

time tk+1: (
ρ

τ2β
M+A B

BT Cc

)(
u(k+1)

p(k+1)

)

=

(
f(k+1)+ ρ

τ2β
M
(

u(k)+ τu̇(k)+ τ2
(

1
2
−β
)
ü(k)
)

0

)
.

(3.125)

After solving this linear system the following updates have to be performed:

ü(k+1) = 1
τ2β

(
u(k+1)−u(k)− τu̇(k)− τ2

(
1
2
−β
)
ü(k)
)
, (3.126a)

u̇(k+1) = u̇(k)+ τ
(
(1− γ)ü(k)+ γü(k+1)

)
. (3.126b)

In the case of linearised elasticity, the Newmark scheme is unconditionally stable for γ > 1
2

and

β > 1
4
(γ+ 1

2
)2 and it conserves energy for γ = 1

2
(see, e. g., Bathe [15]). Usually the parameters

are chosen to be γ = 1
2

and β = 1
4
.

It is known, that the stability and conservation properties of the Newmark scheme do not nec-

essarily hold in the case of finite elasticity. However, since time integration schemes are not in

the focus of this thesis, we neglect this fact and, for the sake of simplicity, use the Newmark

scheme to solve transient finite deformation problems. For more sophisticated approaches in

this regard see, e. g., Gonzalez [76].

3.4.2 Stabilisation in the Small Time Step Limit

For the case of the Stokes equation, Bochev et al. [28] make the crucial observation that, when

using equal-order element pairs stabilised by residual-based Galerkin/Least-Squares or penalty

pressure-Poisson methods, the pressure approximation becomes unstable when the time step

gets too small. We will briefly sketch the authors’ line of arguments and adapt it for the mixed

uuu/p formulation in linearised elasticity.

In order to maintain the consistency property, the residual based stabilisation methods GLS (see

equation (3.102) on page 153) and SGLS (see equation (3.104) on page 155) have to incorporate
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the accelerations üuuh into the residual stabilisation terms. Reduction to the inconsistent PPP

method (see equation (3.106) on page 155) then results in the following stabilisation terms:

cPPP(üuu
h, ph;q) =− α

2µ
∑
e

h2
e

(
üuuh +∇∇∇ph,∇∇∇q

)
e
. (3.127)

The semi-discrete matrix equation (3.123) expands correspondingly,

ρMü(t)+Au(t)+Bp(t) = f(t)

−B̃Tü(t)+BTu(t)+(Cc +Cs)p(t) = 0,
(3.128)

where the matrix B̃T results from the time-dependent stabilisation terms in equation (3.127).

For simplicity, the material is assumed to be incompressible (Cc = 0), the grid to be regular

with he = h. In this case, we have B̃T = δBT and Cs = −δL, where δ := αh2

2µ
and L is the

discrete Laplacian. Inserting these quantities into equation (3.128) and additionally assuming

ρ = 1 leads to the simplified system

Mü(t)+Au(t)+Bp(t) = f(t)

−BTü(t)+ 1
δ BTu(t)−Lp(t) = 0,

(3.129)

Eliminating ü(t) then yields the semi-discrete pressure equation

(
BTM−1B−L

)
p(t) = BTM−1f(t)−

(
1
δ BT+BTM−1A

)
u(t). (3.130)

Therein, the operator BTM−1B can be interpreted as the discretised mixed formulation of the

Laplacian. Bochev et al. show that the operator BTM−1B−L is unstable in the sense that it is

not uniformly (with respect to h) invertible.

Applying the Newmark time discretisation (cf. equation (3.125)) to the simplified semi-discrete

system (3.129) leads to the fully discrete problem

(
1

τ2β
M+A B(

1
δ − 1

τ2β

)
BT −L

)(
u(k+1)

p(k+1)

)
= rhs, (3.131)

where we omit the detailed representation of the right hand side terms. Solving this system

includes the solution of the following fully discrete pressure Schur complement equation:

((
1− τ2β

δ

)
BT(M+ τ2βA)−1B−L

)
p(k+1) = rhs. (3.132)

Bochev et al. then show that this pressure operator is stable if
τ2β
δ > ε for some ε > 0, inde-

pendent of h and τ. If, however,
τ2β
δ → 0 as τ→ 0, then the operator (3.132) tends to the

semi-discrete pressure operator in equation (3.130) and thus becomes unstable. We refer to

the original paper [28] for numerical examples that illustrate how the quality of the pressure
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solution can actually deteriorate with decreasing time step sizes. In order to guarantee a stable

formulation, the mesh size h and time step size τ have to fulfil the relation

τ > ch, with c :=
√

αε
2µβ , ε > 0. (3.133)

This constitutes a severe restriction on the choice of time step and/or mesh sizes: If the com-

putational grid is fixed or is not allowed to be further refined (e. g., due to storage or compute

time constraints), then the time step must not be chosen too small. To put it differently: If the

time step has to be reduced below the critical bound, then this is only possible when the mesh

is refined accordingly, which automatically leads to a significant rise of computational work.35

Highly dynamic CSM simulations that span a very short time interval only (like simulations of

metal-forming processes or impact tests) and thus automatically require very short time steps,

are extremely expensive or might not be practicable at all. This has to be seen as a critical

drawback of the stabilised Q1/Q1 discretisation. Stable finite element pairs like Q2/P1 do not

exhibit such deficiencies.

35The problem is more critical for the elastodynamic equation than for the time-dependent Stokes (or Navier-

Stokes) equation: For the latter, the relation between time-step and mesh size is given by τ > ch2, i. e., compared

to constraint (3.133), the time step can be chosen much smaller before instabilities have to be expected.



4 Multilevel Solvers for Compressible

Elasticity Problems

In this chapter we describe our strategy to solve solid mechanical problems. The guiding idea

is to adapt the solution process in such a way that the powerful concepts of FEAST can be

efficiently exploited and transferred to multivariate linear and nonlinear elasticity problems.

In Section 4.1 we motivate our solution approach. In Section 4.2 the fundamental problem

of linearised elasticity for compressible materials under small loads is utilised to explain the

strategy and its practical realisation in detail. The technique is then applied to nonlinear finite

elasticity problems in Section 4.3. We assess our solution approaches with the help of extensive

numerical experiments. These are performed by the application FEASTsolid, which is built on

top of the basic FEAST library and represents the practical implementation of the described

concepts.

4.1 The Basic Strategy: Reduction to Scalar Components

In Chapter 2 we examined FEAST’s ScaRC solvers on the basis of the prototypical scalar

Poisson equation. Another important example of a scalar equation is the heat equation, in

which the unknown quantity is the temperature. Most physical problems, however, can not be

expressed in terms of a single scalar equation:

• A d-dimensional elasticity problem (usually, d = 2,3), for example, has to be solved for

d unknown scalar quantities, namely the displacements in the d spatial directions.

• Employing the mixed u/p formulation, the pressure enters the equation as additional

unknown scalar quantity.

• The resulting equation system resembles that stemming from the standard formulation of

the Stokes and Navier-Stokes equations in computational fluid dynamics (CFD), where

the d displacements of a solid material point are replaced by the d components of the

fluid’s velocity in a point of the domain.

• The latter two physical equations can be coupled, leading to the important fluid structure

interaction (FSI) problem, exhibiting 2d +1 unknown scalar quantities.
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• Each of the above examples can be additionally coupled with a thermal component.

When, for instance, an elastic body is deformed, this process produces heat (thermoe-

lasticity).

• When using the Lattice Boltzmann method (LBM) to solve CFD problems, one has to

deal, for instance in case of the ‘D2Q9’ model in two dimensions, with nine scalar trans-

port equations.

• In computational electromagnetics (CEM), the quantities of interest are magnetic and

electric fields in one or more spatial directions, depending on the specific model used.

These are only few out of many examples to illustrate that most physical problems are expressed

in terms of multivariate systems of equations. FEAST’s data structures and concepts, however,

are laid out and optimised for scalar equations (see Section 2.1.1 for details in this regard) and

can thus not be applied directly. So, the fundamental question arises how to treat multivariate

problems with FEAST.

It is obvious that the discretisation of these various multivariate equations results in differently

structured matrices – even if the underlying discrete mesh is the same. This is due to the fact that

the diverse physical quantities within the multivariate equation couple in different ways. The

tensor product property of the local submeshes (see Section 2.1.1) still creates some special,

a priori known structure in parts of the matrix, but the structure of the entire matrix heavily

depends on the physical problem we are dealing with, especially when the degrees of freedom

are not sorted component-wise but per mesh node (see Section 4.2.1 and equation (4.3)).

Hence, when FEAST’s basic data structures were to be adapted and extended to directly support

multivariate systems as a whole, this would have to be redone for each and every physical prob-

lem that is to be solved with FEAST. In practice, that would mean that an application program-

mer who, for example, wants to couple the elasticity problem with heat transfer, would have to

modify some of the most basic kernel modules in order to provide efficient implementations of

such core routines as matrix vector multiplication or Gauß-Seidel like preconditioners. Under

the typical scientific or economic circumstances, the necessary implementational effort is often

too great an obstacle, especially in large and well-established software packages. The situa-

tion aggravates significantly when taking into account different hardware technologies, e. g.,

specialised co-processors like GPUs. The efficient programming of such devices demands spe-

cial knowledge that is usually not shared by all programmers in a company or in a scientific

group.

Our goal is to hide such technical details from the application programmer, but – at the same

time – to provide him with the full spectrum of FEAST’s advanced and specialised discretisation

and solution techniques, including processor-efficient numerical linear algebra, full parallelism

and support of special hardware technologies. Since FEAST is meant to be a general-purpose

finite element and solution toolkit, this requires that we provide solving techniques that have

the potential to run ‘out of the box’ (or, at least, with only slight modifications) for different

physical applications.
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The key to achieve this is to reduce the solution of multivariate systems to the solution of a

series of scalar systems, and – more general – to realise multivariate operators (operations)

as a set (series) of scalar operators (operations). Section 4.2 explains in detail how this is

realised with the example of the linearised elasticity equation. The concept has two important

advantages:

• It facilitates a strict separation of low-level kernel functionalities and high-level applica-

tion code. The application programmer, simply spoken, builds a multivariate equation

system (sticking to a equation-wise ordering scheme, see Section 4.2.1) and merely calls

kernel functions to operate on the system. He does not have to care for matrix struc-

tures or processor architectures. He automatically profits from ongoing enhancements of

low-level kernel functionalities without modifying the high-level application.

• The kernel programmer can concentrate on the scalar equation case and does not have to

care for several different physical applications. All improvements, extensions and adap-

tions of the low-level kernel libraries are readily available to all applications that stick to

the proposed concept. Such enhancements can be the adaption or development of basic

routines for different or new processor technologies (e. g., the necessary modification of

ADITriGS to vector architectures [16] or the use of GPUs as co-processors [70]), or the

introduction of a new finite element and the corresponding necessary adaptions to the

resulting matrix fill-in pattern.

In Göddeke et al. [74, 75] we demonstrate how FEASTsolid and FEASTflow1 are acceler-

ated – without any change to the application code – by outsourcing scalar solves to GPU co-

processors. In Buijssen et al. [43], we show the good performance of the two applications on

a NEC SX-8 supercomputer using vector processors.2 In the following sections we show in

detail using the example of linearised elasticity how the proposed concept can be successfully

realised. We do not claim that the strategy is the most efficient one for each and every physi-

cal problem; specialised approaches that exploit particular features of the underlying physical

equation are usually superior in terms of numerical efficiency. However, such specialised ap-

proaches are expensive to develop and maintain (in terms of programming time) and do not

automatically profit from low-level code improvements.

1FEASTflow is an application built on top of the FEAST library for solving CFD problems. It is developed by

Buijssen [44].
2http://www.hlrs.de/systems/platforms/nec-sx8/

http://www.hlrs.de/systems/platforms/nec-sx8/
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4.2 Pure Displacement Formulation for Linearised Elasticity

4.2.1 Operator Splitting

To understand how the scalar ScaRC solvers described in Chapter 2 can be exploited to solve

multivariate elasticity problems, we rewrite the left hand side of the Lamé equation (3.51a) on

page 133 for the two-dimensional case d = 2,

−2µ div(εεε)−λ∇∇∇div(uuu) =

(
(2µ+λ)∂11 +µ∂22 µ∂21 +λ∂12

µ∂12 +λ∂21 µ∂11 +(2µ+λ)∂22

)(
u1

u2

)
,

where ∂ jkui =
∂2ui

∂x j∂xk
. The left hand side of the variational formulation (3.54) on page 133 can

be split correspondingly (using ∂ jui := ∂ui

∂x j
):

k(uuu,vvv)

= 2µ
(
εεε(uuu),εεε(vvv)

)
Ω
+λ
(
div(uuu),div(vvv)

)
Ω

=
∫

Ω
2µεεε(uuu) : εεε(vvv)+λdiv(uuu)div(vvv) dx

=
∫

Ω
(2µ+λ)∂1u1∂1v1 +µ∂2u1∂2v1 dx +

∫
Ω

µ∂1u2∂2v1 +λ∂2u2∂1v1 dx

+
∫

Ω
µ∂2u1∂1v2 +λ∂1u1∂2v2 dx +

∫
Ω

µ∂1u2∂1v2 +(2µ+λ)∂2u2∂2v2 dx

=
∫

Ω

[(
2µ+λ 0

0 µ

)
∇∇∇u1

]
·∇∇∇v1 dx

︸ ︷︷ ︸
=:k11(u1,v1)

+
∫

Ω
µ∂1u2∂2v1 +λ∂2u2∂1v1 dx

︸ ︷︷ ︸
=:k12(u2,v1)

+
∫

Ω
µ∂2u1∂1v2 +λ∂1u1∂2v2 dx

︸ ︷︷ ︸
=:k21(u1,v2)

+
∫

Ω

[( µ 0

0 2µ+λ

)
∇∇∇u2

]
·∇∇∇v2 dx

︸ ︷︷ ︸
=:k22(u2,v2)

. (4.1)

Separating the integrals in this manner reveals the bilinear forms k11 and k22 to be weak forms

of anisotropic, elliptic equations which are scalar in u1 and u2, respectively. This separation of

variables can be transferred to the discrete operators by ordering the degrees of freedom (DOF)

equation wise, i. e., corresponding to the displacements in x1- and x2-direction (also called

displacement decomposition [22], separate displacement ordering [7] or component decompo-

sition [113]). Doing so, the linear system Ku = f (see equation (3.70) on page 138) exhibits the

following block structure: (
K11 K12

K21 K22

)(
u1

u2

)
=

(
f1

f2

)
. (4.2)

The single matrix blocks Krs ∈ R
n×n are given by

(Krs)i j = krs(φ j,φi), i, j = 1, . . . ,n, r,s = 1,2,
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the (unknown) coefficient vector u = (u1,u2)
T ∈ R

2n defines the finite element solution uuuh =(
uh

1,u
h
2

)
∈VVV h via

uh
s (xxx) =

n

∑
i=1

(us)iφi(xxx), s = 1,2

(see equation (3.69) on page 138), and the vector of external loads f = (f1, f2)
T ∈ R

2n is given

by

(fr)i = Lr(φi) i = 1, . . . ,n, , r = 1,2

(see equation (3.86) on page 148), with φi denoting the Q1 nodal basis functions (see equa-

tion (3.67) on page 138). We stress the usage of this ordering scheme for two reasons. First, it

is the fundamental key to realise our strategy of reducing solving processes to the treatment of

scalar systems (see Section 4.1). Second, in finite element software it is often more common to

order the unknowns per node, i. e., the coefficient vector û ∈ R
2n, for instance, is given by

ûi =

{
(u1)(i+1)/2, i odd,

(u2)i/2, i even.
(4.3)

In the CSM community, where concepts and algorithms are often developed and explained on

the basis of a single element, this ordering scheme may be considered to be the more ‘natural’

one since the local data (per node) is clustered within the global array structures. The well

known program FEAP (see Zienkiewicz and Taylor [178, 179]), for instance, uses this scheme.3

But also in the CFD literature, this kind of ordering is sometimes considered the ‘common’

one [163]. See Bank et al. [10] for a comparison of the two ordering schemes.

4.2.2 Modular Solution Strategy

The task is now to efficiently and robustly solve the block structured linear equation sys-

tem (4.2). Since it usually is too large to be treated by a direct solver, iterative solution meth-

ods are mandatory. The basic iteration to solve the system is a preconditioned Richardson

method

uk+1 = uk + K̃−1
B (f−Kuk), (4.4)

where K̃B denotes the preconditioner. (See Section 2.2 for general comments on precondi-

tioning.) Although this iteration scheme is very simple, it suffices to explain the basics of our

solution strategy.

We follow a modular concept which mainly consists of two building blocks: On the one hand,

there is an outer solver which acts on the whole system, e. g., the Richardson iteration (4.4).

It does not mind the block structure of the system (4.2) and shall therefore be called block

independent. On the other hand, there is the preconditioner or smoother K̃B, which crucially

relies on the block structure of the system (indicated by the index ‘B’). Operators of this type

3http://www.ce.berkeley.edu/projects/feap/

http://www.ce.berkeley.edu/projects/feap/
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shall therefore be called block dependent, block preconditioner or block smoother. The term

K̃B does usually not define an explicit matrix, but stands for performing certain operations with

(parts of) the matrix K. These operations involve the solution of subsystems, such that it is also

justified to regard the operator as inner solver. This combination of outer and inner solver can

be described as a two-stage solving procedure.

4.2.3 The Block Independent Outer Solver

The outer iterative solving scheme needs to perform standard operations like matrix vector mul-

tiplications, vector additions, scalar products and norm calculations. Although the outer solver

is independent of the block structure, such operations are, in fact, performed blockwise. We

want to illustrate this exemplarily by means of the defect calculation within the basic itera-

tion (4.4):

f−Kuk =

(
f1−K11uk

1−K12uk
2

f2−K21uk
1−K22uk

2

)
. (4.5)

Listing 4.1 shows the blockwise defect calculation in algorithmic form. One can see that the

1 subroutine defectCalc(K, f,u,q,d)
2 !Input: (q×q) block structured matrix K,

3 ! block structured vectors f and u,

4 ! number of block components q

5 !Output: defect vector d = f−Ku

6

7 do r = 1, . . . ,q
8 dr← fr

9 do s = 1, . . . ,q
10 dr← dr−Krsus

11 enddo

12 enddo

13 end subroutine defectCalc

Listing 4.1: Defect calculation for block structured matrix and vectors.

defect calculation (4.5) for the multivariate system is reduced to four corresponding operations

for scalar systems (line 10 in Listing 4.1 for q = 2). For these operations highly tuned sub-

routines exist in FEAST’s SparseBandedBLAS library, such that the multivariate routines can

directly benefit from them. The special treatment of the block structure is completely hidden

from the outer solving scheme and thus from the application programmer who does not want

to deal with submatrices and subvectors.

Another crucial advantage is that FEAST’s built-in parallel data structures for scalar compo-

nents / operations is directly inherited without any further complication. The initial macro do-

main decomposition of the computational domain leads to local representations of vectors and

matrices, the corresponding global entities exist only virtually (see Section 2.3). This means,

that the block structured system matrix (4.2) consists of four such global virtual matrices Krs,
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each of them represented by M local matrices (Krs)i, i = 1, . . . ,M, where M is the number of

subdomains.4

So, we have two kinds of blocking here which we have to distinguish strictly: On the one hand

the component blocking that corresponds to the separate displacement ordering, i. e., the split-

ting of the multivariate operators into two scalar components; on the other hand the geometric

blocking corresponding to the domain decomposition. In both cases, the matrix blocks result

from restricting the total set of degrees of freedom with size 2n to subsets of size n for the

case of component blocking and of size O( n
M
) for the case of geometric blocking. In the latter

case, the subsets are associated with subsets of grid vertices. An important difference is that

component blocking leads to truly disjunct subsets of unknowns, while geometric blocking (as

performed in FEAST) does not, due to the common vertices on subdomain boundaries resulting

from the concept of minimal overlap (see Section 2.4).

We briefly want to assume that the two blockings are performed one after the other.5 Then

there are two possibilities:

1. First perform the geometric blocking (i. e., domain decomposition), then the component

blocking (i. e., operator splitting):

K (4.6a)

→ Ki, i = 1, . . . ,M (4.6b)

→
(
(K11)i (K12)i

(K21)i (K22)i

)
, i = 1, . . . ,M (4.6c)

2. First perform the component blocking (i. e., operator splitting), then the geometric block-

ing (i. e., domain decomposition):

K (4.7a)

→
(

K11 K12

K21 K22

)
(4.7b)

→
(
(K11)i (K12)i

(K21)i (K22)i

)
, i = 1, . . . ,M (4.7c)

The initial and final states are in both cases the same, only the intermediate states differ. It is

important to know that in our solution concept we only use the second variant. This means,

on a local subdomain we never consider the whole multivariate system (as in equation (4.6b));

before restricting the total set of DOF geometrically, it must be divided corresponding to its

scalar components (as in equation (4.7b)). We will get back to this issue in Section 4.2.4.

4We want to point out not to confuse the two similar notations (Krs)i and (Krs)i j. The former refers to the M local

matrices the (virtual) global matrix Krs consists of, while the latter refers to the n×n entries of Krs.
5Actually, there is no order in this sense. The only existing matrix realisation (in terms of data structures) is the

final one (see equation (4.6c) or (4.7c)).



190 4 Multilevel Solvers for Compressible Elasticity Problems

To accelerate the basic iteration (4.4) for solving the block structured system (4.2), we use

Krylov space methods. In order to preserve the flexibility of our modular solver concept it

must be possible to apply unsymmetric and/or variable preconditioners (see Section 4.2.4),

hence, the basic CG method is not an option as outer solver. Corresponding to the scalar case

described in Section 2.6.3.4 we use BiCGstab instead. The main drawback of (not properly

preconditioned) BiCGstab (and every other Krylov space method), however, is the dependence

of the convergence rate on the grid size parameter h; halving h roughly doubles the number

of iterations. Such behaviour clearly renders the simple Krylov methods unsuitable for large

scale problems. Therefore, we also consider multigrid (MG) methods to solve the block struc-

tured system (4.2). Since these methods will employ FEAST’s ScaRC solvers to treat scalar

subsystems (see Section 4.2.4) and thus automatically make use of the underlying minimally

overlapping grid partitioning, they can also be considered as multilevel domain decomposition

(MLDD) methods.

However, in Section 4.2.4 we also show that Krylov methods for multivariate systems can show

level independent behaviour if they are properly preconditioned by scalar multilevel methods.

Consequently, the questions arise: Do we really need a multilevel solver for the multivariate

system? If so, are the (scalar) ScaRC solvers – involving multilevel schemes themselves – still

necessary? Or can they be replaced by simpler smoothers? In Section 4.2.7 it will be shown

that there actually are situations where robust solving behaviour can only be achieved if we use

both stages of multilevel methods.

The basic principles of multigrid and multilevel domain decomposition methods have already

been described in Chapter 2, so we only make some additional comments for the multivariate

case here:

• Restriction and prolongation routines can be directly taken from the FEAST library, due

to the separate displacement ordering. A defect vector d = (d1,d2)
T

, for instance, is

restricted to the coarser level by simply restricting its component vectors d1 and d2 –

both corresponding to scalar equations – one after the other. Hidden in a proper routine,

the block independent multigrid algorithm only deals with the global vector d and never

‘sees’ the single blocks di.

• Also the direct coarse grid solver can be realised with only small effort. Due to the

separate displacement ordering, the four coarse grid (level 1) matrix blocks K
(1)
rs (cor-

responding to scalar operators, see equation (4.2)) can be assembled using the standard

FEAST routines which collect and prepare the necessary data from all subdomains and all

processors. So, the only task is to assemble these four blocks according to the UMFPACK

data structures [55].

• The smoothing operation algorithmically resembles the procedure of preconditioning a

Krylov method, i. e., we can in principle use the same block dependent inner solvers

K̃B for smoothing (see Section 4.2.4). In Section 4.2.7 we examine if this approach is

efficient.
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We described the combination of outer and inner solvers as a two-stage solution process. Ac-

tually, our modular strategy goes one step further: The outer solver can itself act as precondi-

tioner/smoother within another iteration scheme.6 In Section 2.6.3 we explained the possible

advantages of combining multigrid and Krylov methods. Also for multivariate system solvers,

the user can define a three-stage procedure like

‘Use BiCGstab as solver, precondition it by performing one multigrid V-cycle

which is smoothed by K̃B’,

or a four-stage procedure like

‘Use BiCGstab as solver, precondition it by performing one multigrid F-cycle

which is smoothed by one iteration of FGMRes preconditioned by K̃B’.

Our implementation allows for an arbitrary nesting of iterative schemes (‘modules’). This facil-

itates the development of robust solution strategies, that can be flexibly adjusted to the specific

problem at hand. In our tests, however, we will only use BiCGstab as outer and inner Krylov

solver/smoother, respectively; comparative tests with FGMRes as inner Krylov smoother are

not performed.

4.2.4 The Block Dependent Preconditioner/Smoother

Our aim is to find efficient preconditioners K̃B that make use of FEAST’s ScaRC solvers. The

basic problem is that all data structures and solution concepts in FEAST are laid out for scalar

equations. Only then, the resulting matrices have the specific 9-band structure the SparseBand-

edBLAS library depends on (see Section 2.1.1). The matrix K stemming from the 2D elasticity

problem clearly lacks this structure, preventing a direct application of the ScaRC solvers. That

is why the separate displacement ordering (4.1) has to be applied: The matrices K11 and K22

of the resulting block structured system (4.2) correspond to scalar elliptic anisotropic equations

and are thus perfectly suited to be treated by the ScaRC solvers. In order to exploit this, we

introduce the splitting K = D+L+U, where

D :=

(
K11 0

0 K22

)
, L :=

(
0 0

K21 0

)
, U :=

(
0 K12

0 0

)
, (4.8)

and define the block Jacobi preconditioner

K̃BJac := D =

(
K11 0

0 K22

)
. (4.9)

Applying this preconditioner, which was first described already 30 years ago by Axelsson and

Gustafsson [8], means to solve the two separated equation systems

K11c1 = r1 and K22c2 = r2, (4.10)

6Consequently, the solver can be considered as inner and outer solver at the same time – depending on the point

of view.
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where (r1,r2)
T = r = f−Kuk denotes the current residual and c = (c1,c2)

T
the correction

vector for updating the iterate uk+1 = uk + c (see basic iteration (4.4)).

Blaheta [22] shows that K and the block diagonal part K̃BJac are spectrally equivalent and that

the condition number of the preconditioned system matrix can be bounded from above via

κ(K̃−1
BJacK)6

1

cK

(
1+

1

1−2ν

)
=

1

cK

(2µ+λ

µ

)
, (4.11)

where cK = cK(Ω,ΓD) is the Korn constant (see equation (3.73) on page 140) and ν is the

Poisson ratio (see equation (3.27) on page 122). We want to draw three conclusions from this

estimate:

• The condition number κ does not depend on the mesh size parameter h.

Consequently, the convergence of the preconditioned solver is independent of the mesh

refinement level. When, additionally, the scalar systems (4.10) can be solved with a

convergence rate that is independent of h, this property is valid for the overall solution

algorithm, which is one of the key requirements for solving large scale problems.

• The condition number depends on Korn’s constant.

Consequently, the number of iterations of the outer solver is influenced by the domain

shape and the boundary conditions. This is especially true for structures that are thin in

one direction and fixed only on a small portion of the boundary. Ovtchinnikov and Xan-

this [121] introduce variations of Korn’s inequality for thin domains to overcome this

problem. The theoretical insight is used to modify an iterative solution scheme which

is then shown to robustly deal with thin structures. However, these modifications are

very specialised and, thus, unsuitable within our desired ‘black box’ solver concept. It

may be a topic for future work to adapt these ideas, but for the time being, we tackle the

problem solely by applying a robust combination of our standard solution modules. In

Section 4.2.7.3 we show that the influence of Korn’s constant can be, at least, consider-

ably weakened this way.

• The condition number depends on the Poisson ratio ν.

When this constant tends to 0.5, i. e., when the material becomes less compressible, κ

tends to infinity, resulting in extremely ill-conditioned systems. In contrast to the previ-

ous point, this deficiency can not be mitigated by using more efficient solving methods,

but only by using a more sophisticated discretisation technique (see Sections 3.2.2.2 and

3.2.3).

We will thoroughly illustrate these conclusions in Section 4.2.7.

Instead of the block Jacobi preconditioner (4.9), a Gauß-Seidel variant

K̃BGS := D+L =

(
K11 0

K21 K22

)
(4.12)
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can be used, as well. With r = (r1,r2)
T

denoting the current residual, the application of this

preconditioner means to subsequently solve the two systems

K11c1 = r1 and K22c2 = r2−K21c1. (4.13)

So, the only difference compared to the application of the block Jacobi preconditioner (4.10)

is that the right hand side for the second system solve is updated with the solution of the first

one. To our knowledge an estimate corresponding to equation (4.11) is not available, but nu-

merical examinations show that the block Gauß-Seidel version usually results in fewer outer

iterations [113]. We confirm this in Section 4.2.7. However, the application of the block Gauß-

Seidel preconditioner is also more expensive due to the additional matrix vector multiplication.

So, we have to examine if it is still superior when total efficiency is measured. A disadvantage

of the block Gauß-Seidel preconditioner is that it is unsymmetric; iterative methods like CG,

for instance, are not applicable anymore as outer solver (see Section 4.2.3). Of course, one

can resolve this by defining a symmetrised variant of block Gauß-Seidel, but this increases the

arithmetic costs significantly. Furthermore, the preconditioner is still unsymmetric if one of the

solvers for the scalar subsystems (4.10) is unsymmetric. For these reasons, we do not consider

a symmetrised variant.

Another important issue is that for the block Jacobi preconditioner the two systems (4.10) could

be solved in parallel which is not possible for the block Gauß-Seidel preconditioner (4.13).

FEAST’s parallelisation concept, however, is strictly based on domain decomposition. Enabling

such an additional ‘parallelisation layer’ would require non-trivial extensions of FEAST’s core

communication routines, which is clearly possible, though, but is not part of this thesis.

In special situations the application of the block Gauß-Seidel preconditioner is problematic:

Let us assume that a material body is only loaded in vertical direction, i. e., f1 = 0 (which is

a typical loading situation). Let us further assume that we use a standard implementation of

BiCGstab (see Barrett et al. [13] and Listing 4.2) with zero start vector u = 0 and block Gauß-

Seidel preconditioning where the scalar blocks are solved exactly. Then the following happens:

In the first iteration, we have

r = r̃ = p = (0, f2)
T, ρ = ‖f2‖2

(Listing 4.2, lines 1, 2, 4 and 7) such that the application of the block Gauß-Seidel precondi-

tioner (line 13) yields

c = (0,K−1
22 f2)

T
,

leading to

v = (K12K−1
22 f2, f2)

T
, α = ρ/‖f2‖2 = 1

(lines 14 and 15). The updated residual vector (line 17) is then given by

r = (−v1,0)
T.

The second preconditioning step (line 19) yields

c1 = K−1
11 r1, c2 =−K−1

22 K21c1,
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leading to

t = (⋆,K21c1−K22K−1
22 K21c1)

T
= (⋆,0)T (4.14)

(line 20) with t1 = ⋆ denoting some nonzero value. Consequently, also the second component

of the final residual vector (line 23) is zero, r = (⋆,0)T. So, we have ρ = 0 in the second

iteration (line 5) causing the algorithm to fail.

1 r← f−Ku, δ←‖r‖ ! initial residual and its norm for some start vector u

2 r̃← r

3 do i = 1,2,3, . . . ! begin iteration

4 ρ← r̃Tr

5 if (ρ .eq. 0) method fails

6 if (i .eq. 1) then

7 p← r

8 else

9 β← ρα/(ρprevω)
10 p← r+β(p−ωv)
11 endif

12 ρprev = ρ

13 solve K̃c = p ! first preconditioning step

14 v←Kc

15 α← ρ/r̃Tv

16 u← u+αc ! update solution

17 r← r−αv ! update residual

18 if (‖r‖6 δε) exit ! ’early exit’

19 solve K̃c = r ! second preconditioning step

20 t←Kc

21 ω← tTr/tTt

22 u← u+ωc ! update solution

23 r← r−ωt ! update residual

24 if (‖r‖6 δε) then

25 exit

26 endif

27 enddo

Listing 4.2: Preconditioned BiCGstab iteration to solve the system Ku = f with preconditioner matrix K̃

In practice, the value will not be accurately zero, but the more exactly the scalar systems are

solved in the block Gauß-Seidel preconditioner the closer to zero the value will be. This can

lead to instabilities and to stagnation of the convergence process. This problem could, for

example, be avoided by using a nonzero start vector u. However, the BiCGstab algorithm is

often used in the context of an outer defect correction, where the zero start vector is usually the

best choice. Another possibility would be to choose the vector r̃ differently. We tried this, but

found that the problem still occurred in some situations. A third possibility would be to apply

at least two block Gauß-Seidel iterations for preconditioning. This, however, would increase

the computational costs significantly.
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We solve the problem by using block SOR (successive overrelaxation) instead of block Gauß-

Seidel. The block SOR preconditioner is given by

K̃BSOR :=
1

δ
(D+δL) =

1

δ

(
K11 0

δK21 K22

)
, (4.15)

where δ is the relaxation parameter. With δ = 1 block SOR reduces to block Gauß-Seidel. The

block SOR preconditioner is applied by solving the two systems

K11c1 = r1 and K22c2 = r2−δK21c1 (4.16)

and finally scale the correction vector, c← δc. This final scaling can be omitted when the solver

is scale invariant (which is the case for BiCGstab; cf. lines 14–16). When applying block SOR

in the example above, equation (4.14) is replaced by

t = (⋆,K21c1−δK21c1)
T,

i. e., with δ 6= 1 the second component of t is guaranteed to be nonzero, avoiding the breakdown

of the algorithm in the second iteration.

In all the following numerical tests, we use the relaxation parameter δ = 1.1. On the one

hand, this solves the special problem with BiCGstab described above, and on the other hand it

generally leads to – partially significant – improvements of the convergence. Only in very rare

cases, the convergence is marginally worse than for δ = 1.0.

Axelsson [7] discusses the problem that the solver which is used to treat the scalar systems (see

equation (4.10)) may suffer from the anisotropy in the operators kii, i = 1,2, (see equation (4.1)

on page 186). This operator anisotropy depends on the value of ν (respectively, λ) and is given

by

aop :=
2µ+λ

µ
= 1+

1

1−2ν
. (4.17)

Hence, the operator anisotropy aop ∈ (2,∞) increases with the material becoming more incom-

pressible (ν→ 0.5). Table 4.1 lists the corresponding values for the example materials from

Table 3.1 on page 127. Axelsson suggests to circumvent the operator anisotropy by replacing

Steel/Iron Aluminium Lead Rubber-like

ν 0.29 0.35 0.44 0.49 0.499 0.49999 0.5

aop 3.4 4.3 9.3 51 501 50001 ∞

Table 4.1: Operator anisotropies for the materials listed in Table 3.1 on page 127.

the anisotropic weak forms kii by those corresponding to the isotropic Laplace operator (also

see Axelsson and Gustafsson [8] and Blaheta [22]),

k̂ii(ui,vi) = (∇∇∇ui,∇∇∇vi)Ω.
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The solution of the corresponding subsystems is significantly easier then, i. e., one step of

the isotropic Laplace preconditioner is usually less expensive than one step of the anisotropic

preconditioner that is based on the anisotropic forms kii. However, it also exhibits worse pre-

conditioning abilities, especially for values of ν closer to 0.5 for which the forms kii and k̂ii

differ more clearly. The estimate of the condition number of the isotropically preconditioned

system is similar to the estimate (4.11), though, but numerical experiments indeed show that

the isotropic preconditioner leads to larger outer iteration numbers [22]. Another disadvantage

is that the two corresponding Laplace matrices would additionally have to be kept in memory,

resulting in a significant increase of storage requirements. In addition to operator anisotropies,

the problem of mesh anisotropies arises in a simulation. This problem, however, is a funda-

mental one which also affects the isotropic Laplace preconditioner.

We want to emphasise that FEAST’s scalar solvers are perfectly suited to evade exactly these is-

sues: They are capable to robustly deal with both operator and mesh anisotropies (see Chapter 2

and Section 4.2.7).7 Consequently, it is not necessary to switch to the Laplace preconditioner

which would result in additional storage requirements and loss of numerical efficiency. Instead,

by using the powerful ScaRC solvers, we can safely and efficiently exploit the capabilities of

the anisotropic block preconditioner.

4.2.5 Extending the 2-layer-ScaRC Concept

When applying the block Jacobi or block Gauß-Seidel preconditioner the basic question arises

how accurately to solve the scalar systems (4.10) and (4.13). Solving them exactly usually

results in the best possible convergence rate of the outer method, though, but in practice, this

is much too expensive in terms of arithmetic work. Instead, a quite rough inner solution (e. g.,

gaining only one digit) is often a good compromise between amount of inner work and number

of outer iterations. We will examine this issue in Section 4.2.7.

In Chapter 2 we distinguished 1-layer-ScaRC and 2-layer-ScaRC solvers. The term ‘layer’ is

motivated geometrically: A solver can be defined on the whole domain (global layer), or on

a subdomain (local layer). A 2-layer-ScaRC solver consists of (at least) two nested solvers

(usually multigrid), one acting on the global layer and one on the local layer. We emphasised

the importance of keeping the number of global iterations as small as possible in order to min-

imise the amount of communication on parallel computers. The 2-layer-ScaRC concept tries to

achieve this goal by ‘shifting’ global work to local subdomain solves. This, however, does not

apply to the case, when balancing the number of outer iterations of a multivariate method to

solve the block structured system (4.2) and the accuracy of the scalar inner solves (4.10). The

reason is that also the scalar solves act on the global layer and have to communicate. Hence,

‘shifting’ as much work as possible to the scalar solves does usually not decrease the amount

of communication.

7This does not eliminate the underlying deficiencies of the overall iterative method for nearly incompressible

material. Its convergence will clearly deteriorate with increasing values of λ, even if the blocks on the diagonal

are efficiently treated by ScaRC.
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For this reason we want to introduce a variant of the block preconditioners that can be viewed as

extension of the scalar 2-layer-ScaRC concept to the multivariate case. Instead of the matrices

K11 and K22 in the block Jacobi preconditioner (4.9), we use additive Schwarz preconditioners

as defined in equation (2.9) on page 31, i. e., with M denoting the number of subdomains:

(K̃AS
rr )−1 := ∑̃

M

i=1
Pi

(
(Krr)i

)−1
Ri, r = 1,2.

(For an explanation of the restriction and prolongation operators Ri and Pi and of the special

sum symbol, see Sections 2.4 and 2.5.2.) Hence, the two global scalar system solves (4.10) are

replaced by two sweeps of M local scalar system solves:

solve (K11)ixi = Rir1 for i = 1, . . . ,M, c1← ∑̃
M

i=1
Pixi,

solve (K22)ixi = Rir2 for i = 1, . . . ,M, c2← ∑̃
M

i=1
Pixi.

(4.18)

The auxiliary vectors xi have only been introduced for sake of clarity and can actually be

identified with Ric1 and Ric2, respectively. The resulting block Jacobi additive Schwarz

preconditioner can be represented in matrix form as

K̃BJacAS :=

(
K̃AS

11 0

0 K̃AS
22

)
. (4.19)

When the outer multivariate solver is a multigrid method and also the scalar local systems (4.18)

are solved by multigrid, then the resulting solution scheme can indeed be regarded as extension

of the scalar 2-layer-ScaRC solver: The only difference is that the outer multigrid scheme acts

on the multivariate system and that two local solves per subdomain are performed.

Correspondingly, we can define the block Gauß-Seidel additive Schwarz preconditioner

K̃BGSAS :=

(
K̃AS

11 0

K21 K̃AS
22

)
. (4.20)

This preconditioner is applied as follows:

solve (K11)ixi = Rir1 for i = 1, . . . ,M, c1← ∑̃
M

i=1
Pixi,

solve (K22)ixi = Ri(r2−K21c1) for i = 1, . . . ,M, c2← ∑̃
M

i=1
Pixi.

(4.21)

It differs from the block Jacobi additive Schwarz preconditioner (4.18) only in the second step.

Additionally, we use a block SOR additive Schwarz preconditioner, which is defined analo-

gously to the block Gauß-Seidel additive Schwarz preconditioner (4.20).

The advantage of the block additive Schwarz preconditioners K̃BJacAS, K̃BGSAS, and K̃BSorAS is

clearly the comparatively small amount of communication. On the other hand, it is also obvious

that such a preconditioning step is only a very rough approximation to the actual solution of the

corresponding scalar system. Hence, the preconditioning qualities are worse than those of the

standard block preconditioners K̃BJac and K̃BGS. We will examine this issue in Section 4.2.7.
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4.2.6 Solver Variants

The various ways to combine individual solver components (global / local, multivariate / scalar)

result in several different, possibly quite complex solution algorithms. We now describe those

variants which are used and compared in Section 4.2.7. We introduce a short notation that

extends that of Section 2.5.5.2.

We only consider global8 multivariate solvers: As explained in Section 4.2.3 we never treat the

entire multivariate system restricted to one subdomain (as in equation (4.6b) on page 189). In

other words, before restricting the set of unknowns to a subdomain, it first has to be restricted

to one scalar component (as in equation (4.7)). A prerequisite for the solvers in the following

enumeration is to contain at least one multigrid scheme (local, global, scalar or multivariate).

Only then the solver has the chance to show convergence rates that are independent of the grid

refinement level.

1. Multivariate solver: block preconditioned singlegrid Krylov method

Scalar solver: global 1-layer-ScaRC or 2-layer-ScaRC

In this variant the multivariate system is treated with a singlegrid Krylov solver, while

the scalar systems within the preconditioner are solved by a global multigrid scheme

(1-layer-ScaRC or 2-layer-ScaRC). The short notation of an exemplary solver from this

category is

BICG-BJac[MG__MG-ADI].

A BiCGstab solver is preconditioned by block Jacobi, and the scalar systems are solved

by a 2-layer-ScaRC solver with ADITriGS as elementary smoother. The solver for the

scalar systems is written in square brackets directly after the notation of the block pre-

conditioner. More details about the solver components can again be added in parentheses

(see Section 2.5.5.2), e. g.,

BICG(128,1e-6)-BJac[MG(1,V11)__MG(1e-1,V22)-ADI].

2. Multivariate solver: block preconditioned singlegrid Krylov method

Scalar solver: additive Schwarz preconditioner with local multigrid

This variant differs from the previous variant in that it uses a block Jacobi or Gauß-Seidel

Schwarz preconditioner. In short notation, such a solver is exemplarily written as

BICG-BJacAS[MG-ADI].

The scalar solver in square brackets must be a local solver. In the example it is a multigrid

method with ADITriGS as smoother.

3. Multivariate solver: block smoothed multigrid method

Scalar solver: global 1-layer-ScaRC or 2-layer-ScaRC

8To avoid confusion we want to note that the term ‘global’ is strictly used in the geometric sense, and not to

distinguish multivariate from scalar solvers. Both multivariate and scalar solvers can be global, i. e., act on the

whole domain.
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In this variant the multivariate system is treated by a multigrid solver. This means that

the block preconditioner is called on each level. Examples of such solvers are

MG-BJac[MG__ADI],

MG-BJac[MG__MG-ADI].

In the first case, the scalar solver is a 1-layer-ScaRC scheme, which means that the

overall solver consists of two nested global multigrid schemes. In the second case, the

scalar solver is a 2-layer-ScaRC scheme, i. e., the overall solver comprises three multigrid

schemes, two global ones and a local one.

4. Multivariate solver: block smoothed multigrid method

Scalar solver: additive Schwarz preconditioner with local multigrid

This variant is the natural extension of the 2-layer-ScaRC concept to multivariate systems

as described in Section 4.2.5. Such a solver is exemplarily given by

MG-BJacAS[MG-ADI].

The global multivariate multigrid uses a block Jacobi additive Schwarz smoother, which

treats the local systems with a multigrid method using ADITriGS as elementary smoother.

5. Multivariate solver: block smoothed multigrid method

Scalar solver: local elementary smoother

The difference of this variant to the previous one is that the local systems within the

block additive Schwarz smoother are not solved by a local multigrid. Instead, a simple

elementary smoother is applied, as for example ADITriGS:

MG-BJacAS[ADI].

This solver can be viewed as the multivariate extension of a 1-layer-ScaRC solver.

6. Multivariate solver: multigrid method with pointwise Jacobi smoother

Scalar solver: -

For sake of comparison we also consider a multivariate multigrid with a standard point-

wise Jacobi smoother,

MG-Jac,

for which no scalar solves are performed. This solver completely ignores the block struc-

ture of the multivariate system. It can be regarded as default multigrid solver as it is used

by other software packages.

The specific solver examples in the list are just representatives for the respective category.

In practice they will partially be enhanced by adding Krylov schemes as outer solver or as

smoother (cf. Section 2.6.3). The file format for multivariate solvers is similar to that of the
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scalar ScaRC solvers (see Section 2.5.5.1), so we omit a detailed explanation here.9 We will

use the short notation introduced above to define and distinguish different solvers.

4.2.7 Numerical Tests

In this section we thoroughly investigate the block preconditioning technique with respect to

various aspects. We examine and compare the different solver approaches described in Sec-

tion 4.2.6. At first, we concentrate on the block preconditioning concept itself (Sections 4.2.7.1,

4.2.7.2 and 4.2.7.3), i. e., we solve all (local and global) scalar subsystems exactly in order to

suppress the influence of approximate system solves. In these tests we are only interested in

outer iteration numbers. Then, in Section 4.2.7.4 we examine inexact subsystem solves and

measure the total arithmetic efficiency and the total runtime efficiency of the various solution

strategies. In Section 4.2.7.5 we compare 1-layer-ScaRC and 2-layer-ScaRC solvers and in-

vestigate whether the possible superiority of the latter class, that we found for scalar systems,

can be transferred to multivariate elasticity systems. Finally, we demonstrate the good parallel

efficiency of the overall solution scheme by means of some large scale multiprocessor simula-

tions. All tests are performed for several refinement levels, such that also the question whether

the convergence rates are independent of the grid refinement can be examined.

4.2.7.1 Dependence on Compressibility

In this section we examine how the solvers react to an increasing degree of incompressibility.

We consider the BLOCK configuration depicted in Figure 4.1 (taken from Reese et al. [133]),

using materials with shear modulus µ = 8.2 MPa and Poisson ratios ranging between ν = 0.4
and ν = 0.499. The block is vertically loaded by a line force of −10 MPa. Since the various

Figure 4.1: BLOCK configuration consisting of 8 subdomains, level 1 depicted. The bottom side is fixed in vertical

direction, the top side is fixed in horizontal direction.

9Currently, scalar and multivariate solvers are strictly separated in the FEAST code; there are, for instance, two

separated implementations of BiCGstab. This has to be seen as intermediate stage in the code development: In

future versions of FEAST the two modules will be combined, and scalar solvers will simply be considered as

1×1 block systems. Consequently, scalar and multivariate solvers are currently defined by two different solver

files.
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solvers do different amounts of work per iteration, it does not make sense to compare iteration

numbers. Instead, we count how often the block preconditioner/smoother is called. A BiCGstab

solver, for example, performs two preconditioning steps per iteration while a multigrid scheme

with two pre- and two postsmoothing steps calls the block smoother four times per iteration.

When the solver does not achieve the relative tolerance of ε = 10−6 within 256 block precon-

ditioner/smoother calls, the corresponding bar is labelled by ‘>>’ in the following bar charts;

when the solver diverges, the bar is omitted completely.

We now list the solvers to be compared in the following tests. When the damping parameter

is 1.0, it is omitted in the notation. If two solvers are nested (e. g., BiCG-MG), the inner solver

always performs exactly one iteration, which is also omitted in the short notation. All solvers

use either block Jacobi or block SOR (additive Schwarz) preconditioning/smoothing.

• BiCG-BJac, BiCG-BSor

BiCGstab solver with block preconditioner (2 preconditioner calls per iteration (PCPI))

• BiCG-BJacAS, BiCG-BSorAS

BiCGstab solver with block additive Schwarz preconditioner (2 PCPI)

• MG(V22)-BJac, MG(V22)-BSor

V-cycle multigrid solver with block smoother (4 PCPI)

• MG(V22,0.8)-BJacAS, MG(V22,0.8)-BSorAS

V-cycle multigrid solver with block additive Schwarz smoother, damping parameter ω =
0.8 (4 PCPI)

• MG(V22)-BJacAS, MG(V22)-BSorAS

V-cycle multigrid solver with block additive Schwarz smoother (4 PCPI)

• MG(V11)-BiCG-BJac, MG(V11)-BiCG-BSor

V-cycle multigrid solver, smoothed by 1 BiCGstab iteration with block preconditioner

(4 PCPI)

• MG(V11)-BiCG-BJacAS, MG(V11)-BiCG-BSorAS

V-cycle multigrid solver, smoothed by 1 BiCGstab iteration with block additive Schwarz

preconditioner (4 PCPI)

• BiCG-MG(V11)-BJac, BiCG-MG(V11)-BSor

BiCGstab solver, preconditioned by 1 V-cycle multigrid iteration with block smoother

(4 PCPI)

• BiCG-MG(V11)-BiCG-BJac, BiCG-MG(V11)-BiCG-BSor

BiCGstab solver, preconditioned by 1 V-cycle multigrid iteration, smoothed by 1 BiCG-

stab iteration with block preconditioner (8 PCPI)

• BiCG-MG(V11)-BiCG-BJacAS, BiCG-MG(V11)-BiCG-BSorAS

BiCGstab solver, preconditioned by 1 V-cycle multigrid iteration, smoothed by 1 BiCG-

stab iteration with block additive Schwarz preconditioner (8 PCPI)
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We begin with excluding those solvers of the list, that are already inefficient for the com-

pressible case ν = 0.4, µ = 8.2 MPa. Figure 4.2 shows that the convergence rate of BiCGstab

with block additive Schwarz preconditioning (BiCG-BJacAS, BiCG-BSorAS) clearly deterio-

rates with increasing multigrid level. Hence, estimate (4.11), which guarantees the level inde-
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Figure 4.2: Results on the BLOCK configuration (Figure 4.1), ν = 0.4, µ = 8.2 MPa.

pendency for the block Jacobi preconditioner, does obviously not hold anymore when only

using block additive Schwarz preconditioners. Furthermore, when block additive Schwarz

preconditioners are applied as multigrid smoothers, damping is clearly necessary: Without

damping (ω = 1.0), the multigrid solver diverges (MG(V22)-BJacAS) or shows strong level

dependency (MG(V22)-BSorAS), while it behaves well with damping ω = 0.8. For other con-

figurations, however, this damping value may be too large and lead to divergence again. In

summary, we see that block additive Schwarz preconditioners neither can be efficiently used

for plain BiCGstab preconditioning, nor for plain multigrid smoothing. Consequently, the only

remaining possibility is to employ them within a nested multigrid-Krylov solver, i. e., MG(V11)-

BiCG-BJacAS, BiCG-MG(V11)-BiCG-BJacAS and the two corresponding BSorAS variants.

Figure 4.3 shows the results for all solvers except for those listed in Figure 4.2. The four rows of

plots show the results for the four Poisson ratios ν ∈ {0.4,0.48,0.49,0.499}. The left column

of plots shows the solvers with block Jacobi (additive Schwarz) preconditioning/smoothing,

the right column all those with block SOR (additive Schwarz). We can make several observa-

tions:

• In principle, all solver variants show level independent iteration counts, which confirms

the h independency of the estimate (4.11). Of course, there are some more or less distinct

oscillations, but definitely no general deterioration with increasing multigrid level.

• All solver variants suffer from increasing incompressibility, which confirms the depen-

dency of the estimate (4.11) on the Poisson ratio ν.

• The dependence on the degree of incompressibility differs – some solvers are able to, at

least, weaken its influence, others diverge when the material becomes too incompressible.

Solvers that suffer strongest are

– those that have no Krylov scheme involved at all (MG-BJac/BSor),



4.2 Pure Displacement Formulation for Linearised Elasticity 203

 0

 5

 10

 15

 20

 25

 30

 35

 40

4.3 k 16.8 k 66.3 k 263.7 k 1051.7 k

#
 b

lo
c
k
 p

re
c
o
n
d
. 
c
a
lls

<
--

--
 s

m
a
lle

r 
is

 b
e
tt
e
r 

<
--

--

#DOF

BiCG-BJac
MG(V22)-BJac

MG(V11)-BiCG-BJac
MG(V11)-BiCG-BJacAS

BiCG-MG(V11)-BJac
BiCG-MG(V11)-BiCG-BJac

BiCG-MG(V11)-BiCG-BJacAS
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(c) ν = 0.48, BJac(AS).
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(d) ν = 0.48, BSor(AS).
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(e) ν = 0.49, BJac(AS).
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(f) ν = 0.49, BSor(AS).
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(g) ν = 0.499, BJac(AS).
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(h) ν = 0.499, BSor(AS).

Figure 4.3: Results on the BLOCK configuration (Figure 4.1), µ = 8.2 MPa, varying ν. All plots on the left (right)

side share the colour key of Figure 4.3a (Figure 4.3b).
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– those that use block additive Schwarz preconditioners/smoothers

(MG(V11)-BiCG-BJacAS/BSorAS, BiCG-MG(V11)-BiCG-BJacAS/BSorAS), and

– BiCG-BJac.

The solver BiCG-MG(V11)-BSor performs best in the majority of all cases, though, but

the comparatively good performance of BiCG-BSor shows that for alleviating the effect

of incompressibility it is not mandatory to include multivariate multigrid solvers.

• The block SOR preconditioner/smoother is indeed able to lower the number of iterations

considerably compared to the block Jacobi preconditioner/smoother. This is especially

the case for the plain BiCGstab solver BiCG-BSor, while the difference is not so drastic

when a multivariate multigrid is involved.

• The two block additive Schwarz preconditioners/smoothers BJacAS and BSorAS differ

only slightly. The additional matrix vector multiplication for BSorAS sometimes lowers

the number of iterations (see ν = 0.4 and ν = 0.48), but sometimes it does the opposite

(see ν = 0.49 and ν = 0.499).

• The block Jacobi additive Schwarz preconditioner/smoother BJacAS is competitive with

the block Jacobi preconditioner/smoother BJac in some cases (compare, for example,

MG(V11)-BiCG-BJacAS with BiCG-BJac and MG(V22)-BJac in Figure 4.3c), but the

direct comparison, i. e., when in a given solver BJac is replaced by BJacAS, the latter

clearly loses (compare MG(V11)-BiCG-BJac with MG(V11)-BiCG-BJacAS and BiCG-

MG(V11)-BiCG-BJac with BiCG-MG(V11)-BiCG-BJacAS for all values of ν). The dif-

ference between BSor and BSorAS is even more distinct, which simply follows from the

fact, that BSor is often clearly better than BJac, while BSorAS is only slightly better or

sometimes even worse than BJacAS. Furthermore, the block additive Schwarz precondi-

tioners/smoothers show the most irregular behaviour with respect to the refinement level,

and they are the only ones that actually diverge in case of ν= 0.499; the other solvers par-

tially converge very slowly (especially not within 256 preconditioner calls), though, but

at least they do not diverge. The worse performance of the block additive Schwarz pre-

conditioners/smoothers has its origin in the level dependency that showed up when used

as preconditioners for plain BiCGstab, and in the need for damping when used as smoo-

ther for plain multigrid (see Figure 4.2). Hence, embedding these block additive Schwarz

preconditioners in strong Krylov-multigrid solvers clearly alleviates these problems, but

cannot completely hide them.

• Comparing the MG(V22) solvers with the corresponding BiCG-MG(V11) solvers shows

the positive effect of using multigrid as preconditioner of an outer Krylov iteration.

In general, one can say: The more ‘complicated’ the situation (e. g., a higher degree

of incompressibility), the stronger the benefit from such an outer Krylov scheme is.

This statement will also be confirmed in the following sections. When employing the

Krylov scheme as smoother for an outer multigrid (MG(V11)-BiCG), this also leads to

a clear improvement compared to the plain multigrid solver. But since BJac and BSor

do not require damping when employed as smoothers (what such a Krylov smoother
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would usually be employed for), the multigrid-Krylov solvers MG(V11)-BiCG do not

perform as well as the corresponding Krylov-multigrid variants BiCG-MG(V11). Using

two stages of BiCGstab (BiCG-MG(V11)-BiCG) does usually not improve the overall per-

formance. When the innermost preconditioner is not robust enough, the usage of two

nested BiCGstab schemes can even be harmful (compare, for example, MG(V11)-BiCG-

BSorAS with BiCG-MG(V11)-BiCG-BSorAS in Figure 4.3f, or MG(V11)-BiCG-BJacAS

with BiCG-MG(V11)-BiCG-BJacAS in Figure 4.3g).

In summary, it is apparent already now – although we did not investigate total arithmetic effi-

ciencies yet (see Section 4.2.7.4) – that the additional matrix vector multiplication needed for

block SOR clearly pays off in most situations. Hence, block SOR is to be preferred over block

Jacobi preconditioning. At the same time it seems to be questionable already now, whether the

smaller communication requirements of the block additive Schwarz preconditioners (BJacAS

and BSorAS) can sufficiently balance their numerical disadvantages and render them compet-

itive again in parallel computations. This question will be answered in Section 4.2.7.6. The

favourite solver from the tests above is clearly BiCG-MG(V11)-BSor.

We want to stress that the purpose of these tests is to show the degradation of the solver per-

formance with increasing incompressibility. In practice, the pure displacement formulation is

not used for Poisson ratios close to ν = 0.5, especially due to the known loss of accuracy in the

finite element approximation (see Section 3.2.2.2 and Figure 3.6 on page 144). In Chapter 5 on

page 251 we show that solvers based on the mixed formulation converge robustly with respect

to the Poisson ratio; for a direct comparison between pure displacement and mixed formulation

in terms of solver behaviour, see Section 5.2.1.7. For the remainder of Section 4.2.7, we only

deal with compressible material.

4.2.7.2 Dependence on Mesh Anisotropies

In this section we examine the solvers’ dependence on mesh anisotropies. Additionally, we

vary the number of subdomains. Again, we use the BLOCK configuration depicted in Fig-

ure 4.1, but employ different refinements and macro decompositions (see Figure 4.4). First,

the block is decomposed into 4× 2 subdomains, each refined isotropically (Figure 4.4a) or

anisotropically with anisotropy factors (cf. equation (2.4) on page 27) aF = 0.5,aL = aI = 1.0
(BLOCK-4X2-ANISO1, Figure 4.4b), factors aF = 0.125,aL = aI = 1.0 (BLOCK-4X2-ANISO2,

Figure 4.4c) and factors aF = 0.03125,aL = aI = 1.0 (BLOCK-4X2-ANISO3, not displayed).

The same meshes are then created using 8× 4 subdomains (Figures 4.4d–4.4f), where the an-

isotropies are already introduced in the macro decomposition and not via anisotropic refine-

ment. The level n finite element mesh of a 4× 2 block exactly equals the level n− 1 mesh of

the corresponding 8×4 block. The maximal element aspect ratios are σ = 3 (ANISO1), σ = 15

(ANISO2) and σ = 63 (ANISO3), respectively. As material we use aluminium (see Table 3.1

on page 127) with ν = 0.35 and µ = 2.6 · 104 MPa, and the vertical force is −104 MPa. The

selected refinement is somehow artificial for this configuration. However, if, e. g., the block
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(a) BLOCK-4X2-ISO. (b) BLOCK-4X2-ANISO1. (c) BLOCK-4X2-ANISO2.

(d) BLOCK-8X4-ISO. (e) BLOCK-8X4-ANISO1. (f) BLOCK-8X4-ANISO2.

Figure 4.4: Different refinements/decompositions of the BLOCK configuration, level 1 depicted.

consisted of different materials such that there is a jump of material coefficients at the horizon-

tal and vertical centre axis of the block, then large stresses would have to be expected in these

regions and the refinement would make sense. In this thesis, however, the problem of jumping

coefficients is not taken into account.

In Figure 4.5 we show the results for selected solvers. This time, we display in one plot the

number of preconditioning calls of one solver for all eight BLOCK configurations. We can make

the following observations:

• All solvers using the block preconditioners/smoothers BJac and BSor converge indepen-

dently of the number of subdomains, i. e., there is no difference whether the domain is

decomposed into 4× 2 or 8× 4 blocks. This is not surprising: In Section 4.2.3 we ex-

plained, that the multivariate solvers do not ‘see’ the decomposition of the domain. The

only part of the entire solver for which the decomposition plays a role is within the scalar

solves of the block preconditioner. This means, the robustness with respect to number of

subdomains is exclusively determined by the scalar solvers.

• All solvers using the block preconditioners/smoothers BJac and BSor converge indepen-

dently of the anisotropy in the mesh. Again, the scalar solves within the block precon-

ditioner completely ‘absorb’ the possible difficulties arising from high element aspect

ratios. This, however, is not self-evident: Since the offdiagonal matrix blocks K12 and

K21 are also affected by mesh anisotropies, one could expect a negative influence on the

convergence of the multivariate solver. The numerical experiments, however, show that

this is not the case.

• For the block additive Schwarz preconditioners BJacAS and BSorAS the two previous

statements do not apply. We can clearly observe a strong sensitivity with respect to

mesh anisotropies. In the case of stronger anisotropies we additionally see a dependence

on the number of subdomains, which is typical for the additive Schwarz approach (cf.

Section 2.5.4). Of course, the comparison to the block preconditioners BJac and BSor

is not quite fair: The latter actually suffer from the additive Schwarz approach, namely
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(a) BiCG-BJac.
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(b) BiCG-BSor.
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(c) MG(V22)-BJac.
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(d) MG(V22)-BSor.
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(e) BiCG-MG(V11)-BJac.
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(f) BiCG-MG(V11)-BSor.
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(g) MG(V11)-BiCG-BJacAS.
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(h) MG(V11)-BiCG-BSorAS.

Figure 4.5: Results on the different BLOCK configurations (Figure 4.4) for selected solvers. All plots share the

colour key of Figure 4.5b.
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in terms of the scalar solvers. In the tests above, however, we neglect the behaviour

and the costs of the scalar solves completely. So, we have to reevaluate the situation in

Section 4.2.7.4, where we examine total costs.

• Using BSor instead of BJac reduces the number of preconditioning calls considerably in

most cases.

We briefly comment on the solvers omitted in Figure 4.5. The MG(V11)-BiCG-BJac/BSor

solvers yield the same results as the corresponding MG(V22) solvers in Figures 4.5c and 4.5d,

i. e., Krylov smoothing does not yield any improvement here. Equipping the BiCG-MG(V11)-

BJac/BSor solvers in Figures 4.5e and 4.5f with an additional Krylov smoother even slightly

increases the number of preconditioner calls in some cases, but in general shows the same con-

vergence behaviour. This is different for block additive Schwarz smoothers: On those config-

urations where the solvers MG(V11)-BiCG-BJacAS/BSorAS already exhibit irregularities and

bad convergence, the situation even deteriorates when an additional outer BiCGstab solver is

employed, i. e., the number of preconditioner calls is higher, the general behaviour more irreg-

ular and the solver sometimes even diverges.

4.2.7.3 Dependence on Geometry

The condition number of the block preconditioned system depends on Korn’s constant (see

equation (4.11) on page 192 in Section 4.2.4). In Section 3.2.2.1 it was shown that Korn’s

constant grows with the anisotropy of the cantilever beam configuration. So, we use three vari-

ants of this configuration with global anisotropies of L
H
= 4,16,64 to illustrate how the solver

performance is affected. We furthermore use two different macro decompositions: On the one

Figure 4.6: BEAM configurations, level 1 depicted. The left side is fixed (only depicted for BEAM-4X1-ANISO04),

the other sides can move freely.

hand, the three beams consist of one layer of 4, 16 and 64 isotropic subdomains, respectively,

and on the other hand they consist of only one anisotropic subdomain. The six resulting vari-

ants are depicted in Figure 4.6.10 As material we use aluminium (see Table 3.1 on page 127)

10Actually, the beam is rounded on its left side, which is not displayed in the coarse grids in Figure 4.6. Instead,

see Figure 3.1 on page 140 and Figure 3.4 on page 143.
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with ν = 0.35 and µ = 2.6 · 104 MPa. The three beams are loaded by vertical body forces of

−1.6 ·104 N
m3 , −4 ·103 N

m3 and −103 N
m3 , respectively.

Figure 4.7 shows the number of preconditioning calls for the different solvers on the BEAM

configurations consisting of isotropic subdomains, while Figure 4.8 shows those on the BEAM

configurations consisting of one anisotropic subdomain. The plots on the left side show the
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(c) BEAM-16X1-ANISO16, BJac(AS).
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(d) BEAM-16X1-ANISO16, BSor(AS).
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(e) BEAM-64X1-ANISO64, BJac(AS).
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(f) BEAM-64X1-ANISO64, BSor(AS).

Figure 4.7: Results on the BEAM configurations consisting of isotropic subdomains (see Figure 4.6). Plots on the

left share the colour key of Figure 4.7a, plots on the right that of Figure 4.7b.
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(c) BEAM-1X1-ANISO16, BJac(AS).
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(d) BEAM-1X1-ANISO16, BSor(AS).
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(e) BEAM-1X1-ANISO64, BJac(AS).
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(f) BEAM-1X1-ANISO64, BSor(AS).

Figure 4.8: Results on the BEAM configurations consisting of one anisotropic subdomain (see Figure 4.6). Plots on

the left share the colour key of Figure 4.8a, plots on the right that of Figure 4.8b.

solvers using block Jacobi (additive Schwarz) preconditioners, while those on the right side

show the solvers using block SOR (additive Schwarz) preconditioners. In Figure 4.9 we explic-

itly again compare the two solvers BiCG-BSor and BiCG-MG-BSor. We can make the following

observations:
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Figure 4.9: BiCG-BSor vs. BiCG-MG(V11)-BSor on the BEAM configurations consisting of isotropic subdomains

(Figure 4.9a) and of one anisotropic subdomain (Figure 4.9b).

• The solver BiCG-BJac is only able to solve the ANISO04 configuration (Figures 4.7a

and 4.8a), on the other configurations it diverges for all refinement levels. This shows

the strong influence of Korn’s constant. Using BiCG-BSor instead improves the situation

drastically. There is a clear dependence on the anisotropy of the beam, though, but the

solver converges for all configurations.

• Using BiCGstab as outer solver is mandatory for the anisotropic configurations. On both

ANISO64 beams and on the 1X1-ANISO16 beam, the solvers MG(V22) and MG(V11)-

BiCG do not converge within 256 preconditioning calls or even diverge, no matter which

block preconditioner is used.

• Using BiCGstab not only as outer solver (BiCG-MG), but additionally as Krylov smoo-

ther (BiCG-MG-BiCG) does never yield improvements for the case of BJac or BSor as

block preconditioner. Sometimes it even leads to divergence, where the solver BiCG-MG

converges (see Figures 4.8c, 4.8e and 4.8f). In case of BJacAS or BSorAS as block pre-

conditioner it is sometimes beneficial to use two stages of BiCGstab (e. g., Figures 4.7f

and 4.7f), sometimes it is not (e. g., Figure 4.8c).

• In most cases, the best solver variants using the block additive Schwarz preconditioners

BJacAS/BSorAS perform clearly worse than the best variants using block preconditioners

BJac/BSor.

• The 1X1-ANISO64 configuration is so badly conditioned, that finally only three schemes

remain that are able to solve it reliably: BiCG-MG(V11)-BJac, BiCG-BSor and BiCG-

MG(V11)-BSor. Taking a closer look at the latter two in Figure 4.9, reveals the fol-

lowing: On the BEAM configurations consisting of isotropic subdomains (Figure 4.9a),

BiCG-BSor shows the (expected) strong dependency on the degree of anisotropy, while

BiCG-MG(V11)-BSor is able to weaken this dependency significantly. Hence, for such

configurations it is very advantageous to apply an additional multigrid scheme to solve

the multivariate system – the scalar multigrid solvers used for block preconditioning are



212 4 Multilevel Solvers for Compressible Elasticity Problems

not sufficient to resolve the numerical difficulties that arise in case of the BEAM configu-

ration. This statement is also supported by the fact, that BiCG-MG is the only solver that

works robustly with the block Jacobi preconditioner as Figure 4.8e shows. Figure 4.9b,

however, reveals that on the BEAM configurations consisting of one anisotropic subdo-

main, also the BiCG-MG-BSor solver begins to show stronger sensitivities with respect to

the length of the beam. But also there it still performs clearly better than BiCG-BSor.

In summary, we can again state that the solver BiCG-MG(V11)-BSor performs best. Especially

its ability to weaken the negative influence of the beam’s increasing anisotropy is remarkable.

In some cases the use of BSor instead of BJac does not only lower the iteration number, but

it renders the solver convergent in the first place. Again, the block additive Schwarz precon-

ditioners BJacAS/BSorAS are clearly less efficient and robust than the block preconditioners

BJac/BSor.

4.2.7.4 Approximate Subsystem Solves

In the previous sections we solved all (local and global) subsystems exactly in order to inves-

tigate the block preconditioners themselves. In practice, this is much too expensive, usually

the systems can be solved only approximately without sacrificing too much preconditioning

capability. In this section we want to examine how the convergence behaviour of the outer-

most solver is influenced by approximate system solves, and we try to find a good balance

between arithmetic costs for inner iterations on the one hand and number of outer iterations on

the other hand. Furthermore, we investigate whether the numerical advantage of block SOR

over block Jacobi does translate into smaller total runtimes, as well. Finally, we answer the

question whether the block additive Schwarz preconditioner, which clearly showed worse nu-

merical efficiency in the tests of the previous Sections, performs better in comparison to the

other preconditioners when arithmetic costs are considered.

First we examine how accurately the subsystems have to be solved. We vary the inner tolerance

between ε = 10−8 and ε = 0.5. In order to achieve these tolerances as sharply as possible,

we use a simple CG solver to treat the scalar (global or local) subsystems; a more efficient

multigrid solver (which will be used in later tests) often gains one digit or more already in the

first iteration, such that it would be impossible to reliably assess the coarser inner tolerances.

Due to the inefficiency and level dependency of the simple CG solver, we do not evaluate

arithmetic costs yet, but are only interested in the convergence behaviour of the outer solver.

To limit the amount of data, we only show results for the solvers

BiCG-BSor[CG(1e-8)], . . ., BiCG-BSor[CG(5e-1)],

BiCG-MG-BSor[CG(1e-8)], . . ., BiCG-MG-BSor[CG(5e-1)],

MG-BiCG-BSorAS[CG(1e-8)], . . ., MG-BiCG-BSorAS[CG(5e-1)].

Using a different outer solver or block Jacobi instead of block SOR does not affect the following

observations.
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Figure 4.10 depicts the number of preconditioning calls for these three solvers on five different

refinement levels of four different configurations with varying inner tolerance. We can observe,

that for all solvers the inner tolerance of ε = 0.5 is clearly insufficient. For the solver BiCG-

BSor it leads to divergence in most cases, while for BiCG-MG-BSor the outer iteration number

abruptly rises from ε = 0.1 to ε = 0.5. For the block additive Schwarz preconditioner there

are configurations where the iteration numbers for ε = 0.5 are about the same as for ε = 0.1
(Figures 4.10c and 4.10l), but on the other configurations a clear deterioration can be observed

(Figures 4.10f and 4.10i). The solver BiCG-BSor on the BEAM configuration (Figure 4.10j)

is the only combination where we can observe a clear difference between ε = 10−8, ε = 10−4

and ε = 0.01, for the latter the solver even diverges. This confirms the problems this solver

has for the BEAM configuration (cf. Section 4.2.7.3). For all other solvers, there are practically

no or only slight differences in outer convergence when the inner tolerance is varied between

ε = 10−8 and ε = 0.01. Also the step from ε = 0.01 to ε = 0.1 lets the outer iteration count

only increase slightly or not at all in some configurations, in other configurations, however, a

deterioration is clearly visible (e. g., Figures 4.10d and 4.10k).

In summary, the solver BiCG-BSor is most sensitive with respect to the inner tolerance, the

solver MG-BiCG-BSorAS the least sensitive one (which is not surprising), while BiCG-MG-BSor

lies in between. It is impossible to identify a value for the inner tolerance that is the best for

every solver and every configuration. However, the tests show that ε = 0.01 and ε = 0.1 are the

most promising candidates: They lead to reliable convergence behaviour (ignoring BiCG-BSor

on the BEAM configuration) and are, of course, much cheaper than setting ε = 10−4. A more

detailed comparison of ε= 0.01 and ε= 0.1 (which we do not present here) using more efficient

scalar solvers than CG reveals that in the vast majority of all cases, clearly less arithmetic work

is performed when setting ε = 0.1 instead of ε = 0.01. Consequently, for all subsequent tests

we will use the inner tolerance ε = 0.1, representing a good compromise between reliability

and arithmetic costs. In some cases, the setting ε = 0.5 yields less arithmetic costs, though, but

due to its unreliability (cf. Figure 4.10) it is not an option in view of our general goal to create

robust solution schemes.

Now, that we identified a suitable value for the inner tolerance we compare the different mul-

tivariate solver and preconditioning schemes with respect to their total efficiency. For the so-

lution of the global scalar systems we use the 1-layer-ScaRC solver defined in Listing 2.26 on

page 94, a global V-cycle multigrid performing two ADITriGS pre- and postsmoothing steps and

gaining one digit, such that the complete solver schemes read

BiCG-BJac[MG(1e-1)__ADI],

BiCG-BSor[MG(1e-1)__ADI],

BiCG-MG(V11)-BJac[MG(1e-1)__ADI],

BiCG-MG(V11)-BSor[MG(1e-1)__ADI].

For the solution of the local scalar systems in case of the block additive Schwarz precondition-

ers, we use exactly the same solver scheme, only working on the local layer: a local V-cycle

multigrid with two ADITriGS pre- and postsmoothing steps. The two corresponding solvers we

use for our tests are
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(a) BiCG-BSor, BLOCK-ISO, ν = 0.4,

µ = 8.2 MPa.
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(b) BiCG-MG-BSor, BLOCK-ISO, ν = 0.4,

µ = 8.2 MPa.
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(c) MG-BiCG-BSorAS, BLOCK-ISO,

ν = 0.4, µ = 8.2 MPa.
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(d) BiCG-BSor, BLOCK-ISO, ν = 0.48,

µ = 8.2 MPa.
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(e) BiCG-MG-BSor, BLOCK-ISO, ν = 0.48,

µ = 8.2 MPa.
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(f) MG-BiCG-BSorAS, BLOCK-ISO,

ν = 0.48, µ = 8.2 MPa.
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(g) BiCG-BSor, BLOCK-4X2- ANISO2,

ν = 0.35, µ = 2.6 ·104 MPa.
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(h) BiCG-MG-BSor, BLOCK-4X2-

ANISO2, ν = 0.35, µ = 2.6 ·104 MPa.
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(i) MG-BiCG-BSorAS, BLOCK-4X2-

ANISO2, ν = 0.35, µ = 2.6 ·104 MPa.
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(j) BiCG-BSor, BEAM-16X1- ANISO16,

ν = 0.35, µ = 2.6 ·104 MPa.
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(k) BiCG-MG-BSor, BEAM-16X1-

ANISO16, ν = 0.35, µ = 2.6 ·104 MPa.
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Figure 4.10: Number of block preconditioning calls for varying inner tolerance. The three columns show three

different solvers, the four rows show four different configuration. All plots share the colour key of Figure 4.10a.
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MG-BiCG-BJacAS[MG(1e-1)-ADI],

MG-BiCG-BSorAS[MG(1e-1)-ADI].

Hence, for the block preconditioners BJac and BSor, the scalar solver within the brackets al-

ways acts on the global layer, while for the block additive Schwarz preconditioners BJacAS and

BSorAS it always acts on the local layer.

For these six solver schemes we now compare the MFLOP/s rate, the ratio the solution schemes

spend in scalar ScaRC solves (measured in percent of the total solution time), the total arith-

metic efficiency (TAE; see definition (2.15) on page 58), and the total runtime efficiency

(TRE), which is defined by

total runtime efficiency =− T [µsec]

#DOF×#iter× log10(c)
. (4.22)

It represents the runtime T in microseconds scaled with the number of DOF and with the digits

the iteration actually gained (cf. equation (2.12) on page 48), i. e., the total runtime efficiency

tells how many microseconds are needed per DOF to gain one digit and, hence, represents a

suitable measure to compare the runtimes of different solution algorithms. We only perform

serial computations, the parallel efficiency of the solvers will be investigated in Section 4.2.7.6.

The compute server is an AMD Opteron DP 844 with 1.8 GHz.

We begin with the simple BLOCK-ISO configuration with Poisson ratio ν = 0.4 and shear mod-

ulus µ = 8.2 MPa, this time for the higher refinement levels 7, 8 and 9 (see Figure 4.11). We

can make some interesting observations:

• While the tests in the previous sections already showed that block SOR reduces the num-

ber of iterations compared to block Jacobi, we now see that – despite of the additional

matrix vector multiplication per preconditioning call – this also leads to significantly

reduced total arithmetic costs and runtimes (compare the respective solver variants in

Figures 4.11a and 4.11b). The differences are most distinct in case of the simple outer

BiCGstab solver (compare BiCG-BJac and BiCG-BSor). MFLOP/s rates and ScaRC ra-

tios are nearly equal for block Jacobi and block SOR (see Figures 4.11c and 4.11d).

These findings are confirmed for all the other configurations, although the performance

difference between block Jacobi and block SOR are not always that clear. Nevertheless,

block SOR is superior in the vast majority of all cases. Consequently, we will neglect

block Jacobi from now on and will exclusively use block SOR (additive Schwarz) precon-

ditioning in the subsequent tests.

• While the solvers BiCG-BSor and BiCG-MG-BSor exhibit nearly the same efficiency (see

Figures 4.11a and 4.11b; 47 s runtime on the finest level), the worse performance of the

block SOR additive Schwarz preconditioner (115 s runtime on the finest level), that was

already stated in the previous sections, is confirmed here.

• The MFLOP/s rate of BiCG-BSor is slightly higher than that of BiCG-MG-BSor. This can

be explained by the fact that more work is spent on coarser grid levels where the ratio be-

tween algorithmic overhead due to function calls and data organisation (which costs time
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Figure 4.11: Total arithmetic efficiency (TAE), total runtime efficiency (TRE), MFLOP/s rate and ratio of ScaRC

solves for six solvers on the configuration BLOCK-ISO, ν = 0.4, µ = 8.2 MPa. All plots share the colour key of

Figure 4.11a.

but is not counted for the calculation of the MFLOP/s rate) and pure arithmetic work gets

more and more unfavourable. The MFLOP/s rate of the block SOR additive Schwarz pre-

conditioner is clearly the best. The reason is that large parts of the arithmetic work (i. e.,

the local multigrid solves) can be performed locally on the subdomains without being

interrupted by data exchange/alignment along subdomain boundaries (cf. Section 2.1.1).

However, we can also observe that the MFLOP/s rate slightly deteriorates with increasing

multigrid level. This is due to the fact, that not all the necessary data fits into the cache

and more (expensive!) memory access has to be performed. The last argument is, of

course, also true for the first two solvers. There, however, the effect is superimposed

by the higher number of inter-subdomain data exchanges. We want to mention that the

obtained MFLOP/s rates are very close to the optimal value, which is imposed by the

available bandwidth, and not by the processor’s peak performance.

• An advantage of BiCG-BSor is that 80% of the solution time is spent in scalar ScaRC

solves (see Figure 4.11d), while for BiCG-MG-BSor it is less than 70% (MG-BiCG-BSorAS

lies in between). This value is especially important for our solver strategy: The basic idea

is to reduce the solution of the multivariate system to the solution of scalar systems by
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highly efficient ScaRC solvers (see Sections 4.1 and 4.2.4). Hence, the more time a

solver actually spends in solving scalar systems (relative to the total solution time), the

more it profits from this efficiency. Future numerical improvements or hardware-oriented

adaptations of the scalar ScaRC solvers correspondingly translate into performance gains

of the multivariate solvers. As a concrete example we want to mention the possibility to

accelerate the scalar ScaRC solvers by using GPUs [73]. Currently, there is no way to

also accelerate the 20%–30% of the multivariate solvers that are spent outside the scalar

solves. Hence, the smaller this ratio is, the more the multivariate solver can benefit from

GPU acceleration [72, 75].

We now examine the efficiency of the three solvers in more complicated situations, i. e., on

the BLOCK-ISO configuration with less compressible material (ν = 0.48, µ = 8.2 MPa), on the

BLOCK-4X2-ANISO2 configuration with mesh anisotropies, and on the BEAM-16X1-ANISO16

configuration exhibiting a long and thin geometry. Figure 4.12 shows the TAE, the TRE and

ScaRC ratios. (The MFLOP/s rates are qualitatively the same as in Figure 4.11, so we omit

their representation.) We can make the following observations:

• While BiCG-MG-BSor is slightly less efficient than BiCG-BSor on the BLOCK-4X2-

ANISO2 configuration (see Figures 4.12d and 4.12e), it is significantly more efficient

on the other two configurations (see Figures 4.12a, 4.12b, 4.12g and 4.12h), being up to

twice as fast (e. g., 44 s vs. 100 s runtime on the finest level of the beam configuration).

• Again, MG-BiCG-BSorAS shows the worst performance on all configurations.

• In case of the beam configuration and the BLOCK-4X2-ISO configuration with ν = 0.48,

the ScaRC ratios (Figures 4.12i and 4.12c) are comparable to those on the BLOCK-

4X2-ISO configuration with ν = 0.4 (Figure 4.11d). On the configuration BLOCK-4X2-

ANISO2, however, the two solvers using the BSor preconditioner exhibit a clearly higher

ratio of ScaRC solving time (about 90%), while the solver MG-BiCG-BSorAS exhibits the

same ratios as on the other configurations. This shows that the difficulties of the BLOCK-

4X2-ANISO configurations do not lie on the local, but on the global layer: Locally on

each subdomain, the ADITriGS smoother is able to robustly deal with the occurring mesh

anisotropies, as the ScaRC ratio of MG-BiCG-BSorAS shows. The actual difficulty is

the smaller overlap region due to the anisotropic refinement towards the inner bound-

aries, which negatively influences the convergence of the global domain decomposition

method. Hence, only the global ScaRC solvers within the BSor preconditioner suffer, but

not the local one within the BSorAS preconditioner. In detail, the global ScaRC solver

MG(1e-1)__ADI needs 2.5–3 iterations on average to gain the desired digit, while the lo-

cal ScaRC solver MG(1e-1)-ADI always needs only one iteration. (On the BLOCK-4X2-

ISO configuration with ν= 0.4, for example, also the global ScaRC solvers need only one

iteration on average.) While in case of the BSor preconditioner already the global scalar

ScaRC solver copes with the occurring difficulties and thus hides them from the outer

multivariate solver, this is not the case for the BSorAS preconditioner, where the multi-

variate solver itself has to deal with these difficulties and exhibits correspondingly worse

convergence rates. The general comparison between BSor and BSorAS, however, shows
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(c) ScaRC ratio, BLOCK-ISO,

ν = 0.48, µ = 8.2 MPa.
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(d) TAE, BLOCK-4X2-ANISO2,

ν = 0.35, µ = 2.6 ·104 MPa.
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(e) TRE, BLOCK-4X2-ANISO2,

ν = 0.35, µ = 2.6 ·104 MPa.
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(f) ScaRC ratio, BLOCK-4X2-AN-

ISO2, ν = 0.35, µ = 2.6 ·104 MPa.
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(g) TAE, BEAM-16X1-ANISO16,

ν = 0.35, µ = 2.6 ·104 MPa.
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(h) TRE, BEAM-16X1-ANISO16,
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(i) ScaRC ratio, BEAM-16X1-AN-

ISO16, ν = 0.35, µ = 2.6 ·104 MPa.

Figure 4.12: Total arithmetic efficiency (TAE), total runtime efficiency (TRE) and ScaRC ratios for the three

solvers using block (additive Schwarz) SOR preconditioning on three different configurations. All plots share the

colour key of Figure 4.12b.

that it is clearly the better strategy to hide the arising irregularities from the multivariate

solver by using global ScaRC solvers, i. e., BSor.

• Overall, the solver BiCG-MG-BSor again turns out to be the most efficient one, i. e., its

advantages that we already stated in the previous sections directly translate into (partially

significantly) smaller total runtimes.

In Section 2.6 we identified the ScaRC solver BICG-MG__ADI__D (see Listing 2.27 on page 94)

to be the most efficient one. We also computed the tests above with this solver, but found that

it led to higher values for TAE and TRE in most cases. The reason is that the simpler solver
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MG__ADI__D is absolutely sufficient for the configurations above; the outer BiCGstab does not

significantly improve the numerical efficiency, but increases the arithmetic costs. However,

in Section 2.6 we used the ACCORDION configuration (see Figure 2.47 on page 98) to show

that BICG-MG__ADI__D indeed can be clearly superior over MG__ADI__D (cf. Figure 2.46d on

page 97). We now want to test whether this result can be transferred to the multivariate elastic-

ity solvers. Therefore, we take the ACCORDION domain, use aluminium as material (ν = 0.35,

µ = 2.6 · 104 MPa) and apply boundary conditions as depicted in Figure 4.13a. We use the

(a) Macro decomposition (level 0) consisting of 20 subdomains and applied boundary conditions. The left and

right side and the holes are fixed (denoted by ‘D’), and the horizontal boundary segments are loaded by vertical

surface forces of −103 MPa.

(b) Deformed body (displacements’ magnitude displayed).

Figure 4.13: ACCORDION configuration.

two refinements ACCORDION-ISO and ACCORDION-ANISO1 (see page 85 and the description

of Figure 2.47 on page 98) and solve the resulting system with BiCG-MG-BSor as multivariate

solver and MG__ADI__D or BICG-MG__ADI__D as scalar solver. Figure 4.14 shows the resulting

total arithmetic efficiency for the four combinations. One can see that on the ACCORDION-ISO
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Figure 4.14: Total arithmetic efficiency of the solver BiCG-MG-BSor using two different scalar solvers MG__ADI

and BiCG-MG__ADI on the two configurations ACCORDION-ISO and ACCORDION-ANISO1.
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configuration it does not make a big difference whether MG__ADI or BiCG-MG__ADI is used

to solve the scalar systems; with the latter the overall solver is even slightly more expensive

(850 vs. 950). On the ACCORDION-ANISO1 configuration, however, the difference is signif-

icant: While for MG__ADI as scalar solver the TAE rises to more than 10000, it only rises to

roughly 2500 for BiCG-MG__ADI, i. e., the former is about four times more expensive on the

ACCORDION-ANISO1 configuration.11 Hence, we can state that the benefit of using BiCG-

MG__ADI instead of MG__ADI does clearly transfer to the case of multivariate elasticity solvers.

We can make another interesting observation when comparing the results for BiCG-MG__ADI

in Figure 4.14 with those in Figure 2.46d on page 97: The solution of the elasticity problem in

the special case of the ACCORDION-ANISO1 grid with the given boundary conditions is about

twice as costly as the solution of the Poisson problem on the same grid.12

4.2.7.5 1-layer-ScaRC vs. 2-layer-ScaRC

In Section 2.6.4 we showed that for the solution of the scalar Poisson problem, 2-layer-ScaRC

solvers can be superior to 1-layer-ScaRC solvers. We now want to test if this result can be

transferred to the elasticity case where the ScaRC solvers are only used for preconditioning.

In doing so, we confine ourselves to Jacobi as elementary smoother (cf. the discussion in Sec-

tion 2.6.4.3). We use the configurations ISO/ISO, ANISO/ISO and ANISO/ANISO described in

Section 2.6.4.1 (see Figure 2.31 on page 77), but solve an elasticity problem with boundary

conditions as depicted in Figure 4.15a, material aluminium (ν = 0.35, µ = 2.6 ·104 MPa), and

a horizontal surface force of −5 ·103 MPa. We compare four different solvers, which differ in

how they nest various layers of multigrid schemes:

1. BiCG-MG(1,V11)-BSor[MG(1e-1)-FGMRES4__JAC__D]:

This solver (denoted as ‘1-layer’ in Figure 4.16) comprises two nested multigrid schemes

– a global multivariate one and a global scalar one. The scalar 1-layer-ScaRC solver is

defined in Listing 2.24 on page 89.

2. BiCG-MG(1,V11)-BSor[MG(1e-1)-FGMRES4__MG-BICG-JAC-D__D]:

This solver (denoted as ‘2-layer’) comprises three nested multigrid schemes – a global

multivariate one, a global scalar one and a local scalar one. The scalar 2-layer-ScaRC

solver is defined in Listing 2.15 on page 74 and the local multigrid solver is truncated on

level 7 (16641 DOF).

3. MG(V11)-BiCG(1)-BSorAS[MG(5e-1)-BiCG(2)-Jac]:

This solver (denoted as ‘BSorAS’) comprises two nested multigrid schemes – a global

multivariate one and a local scalar one.

11The reason for the general increase compared to the ISO configuration is the anisotropic refinement towards

inner boundaries (cf. explanation in the list of observations for Figure 4.12). The additional work is completely

performed within the scalar ScaRC solves, the outer multivariate solver performs 2.5 iterations in all four cases.
12Note that the total arithmetic efficiency is a well suited measurement to even compare the linear solving costs for

two different physical equations.
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(a) Macro decomposition (level 0) consisting of four

subdomains with applied boundary conditions. The

bottom side is fixed, and the upper side is loaded by a

horizontal surface force of −5 ·103 MPa.

(b) Deformed body (von Mises stress displayed).

Figure 4.15: Configuration from Figure 2.31 modified for elasticity.

4. MG(F11)-BiCG(2)-Jac:

This solver (denoted as ‘standard’) comprises only one multigrid scheme – a global mul-

tivariate one. Instead of a block smoother, it uses standard point Jacobi for smoothing,

i. e., no scalar systems are solved, everything happens on the multivariate layer. This

solver can be regarded as a ‘standard’ multigrid scheme which treats the linear system as

a whole and neglects its block-structure.

Figure 4.16 compares the number of (block) preconditioning calls and the total arithmetic effi-

ciency for the four solvers on the three configurations ISO/ISO, ANISO/ISO and ANISO/ANISO.

Due to the large variations we use a logarithmic scale for the y-axes. The upper row shows that

only for the first two solvers – those using global scalar ScaRC solvers – the numbers of precon-

ditioning calls are (nearly) independent of the configuration, namely 10 for the 2-layer-ScaRC

solver in all cases and 10–14 for the 1-layer-ScaRC solver. The number of preconditioning

calls for the third solver (using the block additive Schwarz preconditioner) is clearly higher

on the two ANISO configurations than on the ISO/ISO configuration. For the fourth solver (the

standard multigrid), the increase is much more drastic; on the ANISO/ANISO configuration it

needs more than 6000 preconditioning calls.

Of course, the arithmetic costs per preconditioning call differ significantly for the four solver

schemes, which can be seen in the lower row of Figure 4.16. On the ISO/ISO configuration

(Figure 4.16d), for example, the first two solvers perform the same number of preconditioning

calls, but the 2-layer-ScaRC variant is roughly ten times more expensive. On the ANISO/ISO

configuration (Figure 4.16e), the two solvers perform roughly the same work, while on the

ANISO/ANISO configuration (Figure 4.16f) the 2-layer-ScaRC variant is clearly superior. Fur-

thermore, the 2-layer-ScaRC solver needs on all configurations 1 iteration on average to gain

the desired digit (i. e., all irregularities are hidden within the local multigrid solves), while the

1-layer-ScaRC solver needs 6 iterations on the ANISO/ISO configuration and 70 iterations on
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(e) TAE, ANISO/ISO.

 1000

 10000

 100000

 1e+06

526.3k 2101.3k 8396.8k

to
ta

l 
a

ri
th

m
e

ti
c
 e

ff
ic

ie
n

c
y

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

#DOF

(f) TAE, ANISO/ANISO.

Figure 4.16: Number of preconditioning calls (upper row) and total arithmetic efficiency (lower row) for four

different solvers on the three configurations ISO/ISO, ANISO/ISO and ANISO/ANISO. All plots share the colour key

of Figure 4.16a. Note the logarithmic scale.

the ANISO/ANISO configuration on average. So, we can state that the superiority of the 2-layer-

ScaRC solver that we observed in Section 2.6.4 for the scalar Poisson equation clearly applies

to the elasticity case, as well.13

It is interesting to see, that the third solver (using the extended 2-layer-ScaRC concept in form

of the BSorAS preconditioner; cf. Section 4.2.5) is comparatively successful on the configu-

rations at hand. In all cases it performs less arithmetic work than the second solver (using

the classical scalar 2-layer-ScaRC solver). However, it also needs much more preconditioning

calls and thus much more communication effort. That is why the second solver is still to be

preferred. But the third solver is, at least, superior to the first solver (using 1-layer-ScaRC).

The latter needs much less (multivariate) preconditioning calls, though, but its scalar 1-layer-

ScaRC solver, working on the global layer, performs up to 70 iterations per call, and exhibits

correspondingly high communication requirements.

The standard multigrid solver using pointwise Jacobi is only competitive on the ISO/ISO config-

uration and – at least in terms of the TAE – on the ANISO/ISO configuration. On the ANISO/AN-

ISO configuration, however, it exhibits the worst performance, especially in terms of number

13We want to emphasise, that the performed tests only serve the purpose to principally demonstrate the possible su-

periority of the 2-layer-ScaRC concept (see Section 2.6.4 for a discussion in this regard). If stronger elementary

smoothers are available (e. g., ADITriGS), the three configurations can actually be solved with a total arithmetic

efficiency of less than 1000.
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of preconditioning calls. This result is important since it shows that the block precondition-

ing concept does not only serve the purpose to facilitate the application of highly specialised

concepts, which are often only available for scalar systems (like ADITriGS smoothing), to mul-

tivariate systems; it can also significantly improve the performance of the elementary Jacobi

smoother (for which the block structure is actually not mandatory).14

4.2.7.6 Parallel Efficiency

In this section we want to examine whether the good parallel efficiency of the scalar ScaRC

solvers [16, 71, 94] transfers to the multivariate elasticity solvers. In detail, we investigate weak

scalability of the solution algorithms, i. e., how the runtime changes when the problem size and

the number of processors are increased by the same factor. An algorithm that exhibits perfect

weak scalability yields equal runtimes, i. e., the ratio between communication and computation

times remains constant. We use the BLOCK-ISO configuration and material with Poisson ratio

ν = 0.4 and shear modulus µ = 8.2 MPa. We partition the domain with an increasing number

of subdomains and vary the geometry to obtain square shaped subdomains in all cases. We

(a) 4×1 subdomains, 4.2 M

vertices, 4 processors.

(b) 4×2 subdomains, 8.4 M

vertices, 8 processors.

(c) 8×2 subdomains, 16.8 M

vertices, 16 processors.

(d) 8×4 subdomains, 33.6 M

vertices, 32 processors.

(e) 16×4 subdomains, 67.1 M

vertices, 64 processors.

(f) 16×8 subdomains, 134.2 M

vertices, 128 processors.

Figure 4.17: Different macro decompositions of two versions of the BLOCK configuration.

schedule one subdomain per processor and vary the number of processors between 4 and 128

(see Figure 4.17). The grid is refined 10 times such that we obtain a problem size of 2.1 million

DOF per subdomain, i. e., the total number of DOF varies between 8.4 and 268.5 million. For

14While the Jacobi smoother can be applied to multivariate systems very easily (without respecting any block struc-

ture), this is not the case for ADITriGS and similar more sophisticated elementary smoothers. The development

of a multivariate ADITriGS smoother, i. e., which does not work blockwise on scalar systems but on the whole

multivariate system, is theoretically possible, though, but requires extensions and/or reimplementations of major

parts of the SparseBandedBLAS library (see Section 2.1.1).
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the calculations we use up to 65 compute nodes of the LiDO cluster of the TU Dortmund. Each

node contains two AMD Opteron DP 250 CPUs with 2.4 GHz, the nodes are connected by an

InfiniBand switch.15

We consider the three solvers we already compared in Figure 4.12 on page 218 (using ADITriGS

as elementary smoother again). As explained in Section 4.2.3, all operations are performed

blockwise on scalar operators such that FEAST’s underlying parallelisation concept is em-

ployed automatically without further complication. The only noteworthy additional task is

the assembly and communication of the data needed for direct coarse grid solving (see Sec-

tion 4.2.3). As in the case of scalar ScaRC solvers, the global multivariate coarse grid prob-

lems are solved on a separate master process (which ‘knows’ the complete global coarse grid),

while all other operations are performed in parallel on several slave processes assigned to dif-

ferent subdomains (see Kilian [94] and Becker [16] for details on the parallel implementation

of FEAST).

Figure 4.18 shows the results for the three solvers. Those plots that contain time measurements

use graphs instead of bar charts to better assess the deviation from the case of perfect weak

scalability which would be a straight horizontal line. Due to the slight variations in iteration

counts, we display the total linear solving time in Figure 4.18c and the linear solving time per

iteration in Figure 4.18d. The total runtime efficiency (Figure 4.18f) is multiplied with the

number of processors, such that also here a straight horizontal line represents the optimal case

of perfect weak scalability.

We can make the following observations:

• Figure 4.18a shows that the solver BiCG-MG-BSor needs exactly 2 iterations (8 precon-

ditioning calls) in all six computations. For the other two solvers BiCG-BSor and MG-

BiCG-BSorAS the number of iterations varies slightly between 6.5 and 7 iterations (13–

14 preconditioning calls) and between 5 and 4 iterations (20–16 preconditioning calls),

respectively.

• The total arithmetic efficiency (see Figure 4.18b) is constant for the solver BiCG-BSor,

while it slightly varies for the solver BiCG-MG-BSor. For the solver MG-BiCG-BSorAS a

slight decrease can be observed.

• Overall, the solver MG-BiCG-BSorAS shows a slightly irregular behaviour, while the other

two solvers behave quite smoothly.

• In total solution time (Figure 4.18c), the solver BiCG-MG-BSor is clearly the best, closely

followed by BiCG-BSor. However, the runtime of the solver MG-BiCG-BSorAS is roughly

twice as long.

• The solver MG-BiCG-BSorAS showed the worst performance in most of the tests in pre-

vious sections. The last remaining question is whether it will do better (compared to

15For further details, see http://www.itmc.tu-dortmund.de/en/hochleistungsrechnen/lido/index.

html.

http://www.itmc.tu-dortmund.de/en/hochleistungsrechnen/lido/index.html
http://www.itmc.tu-dortmund.de/en/hochleistungsrechnen/lido/index.html
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(a) Number of preconditioning calls.
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(b) Total arithmetic efficiency.
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(c) Linear solving time.
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(d) Linear solving time per iteration.
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(e) MFLOP/s rate per processor.
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(f) TRE multiplied with the number of processors.

Figure 4.18: Parallel performance of three different solvers on the six BLOCK configurations displayed in

Figure 4.17.

the other two solvers) with increasing number of processors. Figures 4.18d and 4.18e

show that this is clearly not the case. With increasing number of processors, the time

per iteration slightly increases for all three solvers, though, but the solver BiCG-BSor

clearly shows the smallest increase. The loss of efficiency of MG-BiCG-BSorAS is clearly

greater, and it is comparable to that of BiCG-MG-BSor (ignoring the irregularities of MG-

BiCG-BSorAS). These trends are confirmed by the MFLOP/s rate per processor, which



226 4 Multilevel Solvers for Compressible Elasticity Problems

decreases most slowly for the BiCG-BSor solver. The reason is that on the multivariate

layer the BiCG-BSor solver does only work on the finest grid, while the other two solvers

(using multivariate multigrid schemes) work on on all grids (suffering from the deterio-

rating ratio between arithmetic work and communication effort), especially including the

application of a multivariate direct coarse grid solver running on the master process only.

The BiCG-BSor solver has to deal with these disadvantages on the scalar layer only.

• The total runtime efficiency (Figure 4.18f) does not only assess mere runtimes, but puts

them into relation to the actual reduction of the residual, and can thus be seen as the most

meaningful and most important measure. Here, we can see that the solver BiCG-MG-BSor

is superior again: It shows the smallest variations and also the smallest increase.

Altogether, all three solvers show good weak scalability, the differences are rather small. Since

we cannot perform simulations with more processors on LiDO, we can only extrapolate the

results: Due to the trends observable in the various plots, we expect, especially when taking

the total runtime efficiency into account, that also for a larger number of processors BiCG-BSor

will not be superior to BiCG-MG-BSor. Hence, also in terms of parallel efficiency, we regard

BiCG-MG-BSor as our favourite solver. In Göddeke et al. [75] we present further examples of

large-scale cluster computations showing the good parallel efficiency of our elasticity solvers

and their successful acceleration by using graphics cards.

4.2.8 Summary

We compared the different solver strategies described in Section 4.2.6 for the case of the pure

displacement formulation for linearised elasticity. The main results are:

• The block (additive Schwarz) SOR preconditioner is clearly superior to the block (addi-

tive Schwarz) Jacobi preconditioner.

• Using the block additive Schwarz preconditioner/smoother within a standard BiCGstab

or multigrid solver is not robust; BiCG-BSorAS shows a clear dependency on the refine-

ment level and MG-BSorAS requires manual setting of the damping parameter. The only

possibility to use BSorAS is within a MG-BiCG solver which adjusts the damping parame-

ter automatically.

• Using two layers of multivariate BiCGstab, i. e., BiCG-MG-BiCG, is in most cases not

more efficient than MG-BiCG or BiCG-MG; in some cases it is even harmful and can lead

to a significant loss of robustness and/or efficiency.

• Using BiCG-MG-BSor instead of MG-BSor improves the efficiency and robustness sig-

nificantly in most cases. In some cases, it is even mandatory (see, e. g., Figure 4.7f on

page 209).
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• On ‘easy’ configurations, BiCG-BSor and BiCG-MG-BSor exhibit similar efficiency. On

more complicated ones (like the BEAM configuration), however, BiCG-MG-BSor is clearly

superior.

• The block additive Schwarz preconditioner BSorAS disappoints in all aspects. In most

cases, it is by far less efficient than the standard block preconditioner BSor. On more

complicated configurations it even diverges, while BSor does not. Furthermore, the fact

that the amount of communication required for one BSorAS step is small compared to

one step of BSor, cannot outweigh the bad numerical behaviour, such that finally BSorAS

does not excel in terms of parallel efficiency either.

• For solving scalar subsystems within block preconditioning, the best compromise be-

tween inner arithmetic costs and outer convergence rate is to gain one digit.

• The superiority of scalar 2-layer-ScaRC over 1-layer-ScaRC solvers in certain situa-

tions can also be observed when they are applied as block preconditioners in multivariate

solvers, i. e., the 2-layer-ScaRC concept is justified also in the context of elasticity.

• The good parallel efficiency of the scalar ScaRC solvers fully transfers to the multivariate

elasticity solvers.

In summary, we can state that the strategy of reducing the solution of multivariate systems to

solving scalar systems is successful. The multivariate solver BiCG-MG-BSor clearly performs

best in all the numerical tests and is therefore our favourite solver. For the solution of the scalar

systems a standard MG__ADI solver is usually sufficient. Since we want to concentrate on other

aspects in the next sections, we will confine ourselves to this combination of multivariate and

scalar solver from now on. We will show that it is also able to efficiently and robustly deal with

more complicated situations.

4.3 Pure Displacement Formulation for Finite Deformation

Elasticity

In this section we are concerned with the solution of the nonlinear equation

r(u) = 0, (4.23)

where r(u) = fin(u)− fex is the residual vector (depending on the current discrete solution vec-

tor u) measuring the imbalance of external and internal forces (see equation (3.87) on page 148

and its derivation). The equation is the algebraic expression of the nonlinear boundary value

problem (3.40) on page 129. We confine ourselves to the Neo-Hooke constitutive law (see

equation (3.32) on page 125 and equation (3.42) on page 129), only in one validation test (Fig-

ures 4.22 and 4.23 and Table 4.2c) we use the St. Venant-Kirchhoff model (see equation (3.31)

on page 124 and equation (3.41) on page 129). In the following subsections we describe the
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basic solution technique (Section 4.3.1), present a strategy to significantly improve its robust-

ness, validate the correctness of the computed solutions and present comparative tests (Sec-

tion 4.3.2). Then, we investigate the effect of solving the linear subsystems iteratively and only

approximately (Section 4.3.3). After that, we examine the use of numerically calculated tan-

gents (Section 4.3.4). Finally, we summarise the results and briefly describe further possible

improvements (Section 4.3.6).

4.3.1 The Newton-Raphson Method

We solve equation (4.23) by means of the Newton-Raphson method, one of the most com-

monly used methods to solve nonlinear equations, especially in CSM. Listing 4.3 represents the

method in algorithmic form. One can see that the solution of the nonlinear equation system is

1 subroutine newtonRaphson(fin, fex,u,εNLrel,ε
NL
abs)

2 ! Input: internal forces fin (as a function of u),

3 ! external force vector fex,

4 ! start vector u,

5 ! rel. and abs. tolerance εNLrel,ε
NL
abs

6 ! Output: solution u of the equation fin(u)− fex = 0

7

8 r(u)← fin(u)− fex ! initial residual

9 ε←max{‖r(u)‖εNLrel,εNLabs} ! termination criterion

10 do while (‖r(u)‖> ε)

11 K̃← ∂r(u)
∂u

! calculate tangent matrix

12 solve K̃û =−r(u) ! solve linear system

13 u← u+ û ! update solution

14 r(u)← fin(u)− fex ! compute new residual

15 enddo

16 end subroutine newtonRaphson

Listing 4.3: The Newton-Raphson method for solving the nonlinear equation r(u) = 0.

basically reduced to the solution of a series of linear equation systems (line 12), that exhibit

the same 2×2 block structure as in the case of linearised elasticity. Hence, we can efficiently

use the multivariate solvers introduced in Section 4.2. Exploiting the block preconditioners ex-

plained in that section, means that finally even the solution of a nonlinear multivariate elasticity

problem is basically reduced to the solution of several scalar linear problems that can be treated

by the parallel ScaRC solvers. All the other basic operations in the Newton-Raphson method

work inherently in parallel due to FEAST’s domain decomposition approach, such that, finally,

the whole nonlinear solution method automatically runs in parallel.

The second time-consuming operation – besides linear solving – within the Newton-Raphson

method is the reassembly of the tangent matrix (line 11 in Listing 4.3) in each iteration. If these

two operations (assembling and linear solving) are performed exactly, the Newton-Raphson

method yields the typical quadratic convergence rate in the vicinity of the solution [92]. For
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the analytic computation of the tangent matrix see, for example, Wriggers [176]. If a numeric

approximation of the tangent is used (see Section 4.3.4) or if the linear systems are only solved

approximately (see Section 4.3.3), the quadratic convergence is not guaranteed. For theoreti-

cal results on the Newton-Raphson method see Kelley [92]. The termination criterion for the

nonlinear (NL) iteration is given by a combination of relative and absolute tolerance (line 9).

4.3.2 The Global Newton-Raphson Method

It is well known that the standard Newton-Raphson method as defined in Listing 4.3 might fail

if the start solution is too far from the real solution of the problem (see, e. g., Kelley [92]). One

possibility to overcome this problem is to use incremental loading: Instead of applying the

full external load fex at once, it is slowly incremented. The standard Newton-Raphson scheme

is embedded into an outer loop of L loading steps (see Listing 4.4). The rationale is, simply

1 subroutine newtonRaphsonLoadIncr(fin, fex,u,εNLrel,ε
NL
abs,L)

2 ! Input: internal forces fin (as a function of u),

3 ! external force vector fex,

4 ! start vector u,

5 ! rel. and abs. tolerance εNLrel,ε
NL
abs,

6 ! number of load increments L

7 ! Output: solution of the equation fin(u)− fex = 0

8

9 do k = 1,2, . . . ,L
10 ! call the Newton-Raphson algorithm with the current u as start vector

11 u← newtonRaphson(fin, k
L fex,u,εNLrel,ε

NL
abs)

12 enddo

13 end subroutine newtonRaphsonLoadIncr

Listing 4.4: The Newton-Raphson method with incremental loading, exploiting the standard Newton-Raphson

method in Listing 4.3.

spoken, that for sufficiently large L, the elastic deformation caused by the load increment 1
L

fex

is so small that the solution of the previous iteration is close enough to the real solution and

the Newton-Raphson scheme is guaranteed to converge. The disadvantages of this concept

obviously are that the arithmetic costs significantly increase with larger number of loading

steps and that this number has to be chosen a priori by the user. Setting L too small may lead to

failure of the overall method, setting L too large will result in unnecessarily high computation

times.

A more sophisticated way to increase the robustness of the Newton-Raphson method is the so

called line search: The update û computed by the standard Newton-Raphson scheme (line 12 in

Listing 4.3) is only used as search direction. Instead of applying it fully, one searches along the

line {u+ sû | s ∈ (0,1]} for a better suited value. The resulting method is also called damped

Newton-Raphson. The question is how to determine the damping parameter s. Therefore,

let f (u) ∈ R be some measure tending to zero in the course of the Newton-Raphson iteration.
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Clearly, the update should lead to | f (u+ sû)| < | f (u)|, but in order to avoid stagnation it has

to be ensured that the decrease is not too small. This can be done by fulfilling a sufficient

decrease condition, the so called Armijo rule:

| f (u+ sû)|< (1−θs)| f (u)|.

Here, θ < 1 is a small positive constant; following Eisenstat and Walker [60] and Kelley [92]

we choose θ = 10−4. For the measure f we use the norm of the current residual16, i. e.,

f (u) := ‖r(u)‖.

A simple line search algorithm using the Armijo rule is presented in Listing 4.5.

1 subroutine lineSearch(u, û,θ)
2 ! Input: previous iterate u,

3 ! search direction û,

4 ! sufficient decrease parameter θ
5 ! Output: new iterate u

6

7 s← 1 ! set initial step size

8 utr← u+ sû ! compute trial point

9 do while (‖r(utr)‖> (1−θs)‖r(u)‖)
10 s← s/2 ! current point rejected, decrease step

11 utr← u+ sû ! compute new trial point

12 enddo

13 u← utr ! accept trial point as new iterate

Listing 4.5: Simple line search.

Starting with the full update, the step size s is halved (line 10) until the sufficient decrease

condition is fulfilled (line 9). This ‘trial and error’ procedure stepping back along the search

line is sometimes also referred to as backtracking.

The reduction factor 2 in line 10 could be replaced by any other positive factor greater than

1. Unfortunately, it depends on the given problem which value is well suited, it can hardly be

determined a priori. Hence, instead of simply reducing the step size by a constant factor, we

consider a more sophisticated approach to calculate a new trial step size. The strategy is to find

an ‘optimal’ value based on the information about f (u) = ‖r(u)‖ that is already available. In

detail, when scur denotes the current step size (i. e., scur = 1 in the first iteration), then we want

to determine an optimal value

s∗ ∈ [σlscur,σrscur], (4.24)

where 0 < σl < σr < 1 are so called safeguards that guarantee sufficient progress within the

iterative process [92]. On the one hand, σl avoids taking too small step sizes which could lead to

16Another possibility is, for instance, f (u) := |ûTr(u)|.
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stagnation of the (outer) Newton-Raphson iteration. On the other hand, σr enforces a minimum

reduction rate of the trial step size to avoid stagnation of the (inner) line search iteration. In our

implementation we set σl = 0.1 and σr = 0.95. To determine s∗ we consider the function

g(s) := f (u+ sû) = ‖r(u+ sû)‖

and its derivative

g′(s) =
d

ds

√
r(u+ sû)Tr(u+ sû)

=
1

2‖r(u+ sû)‖2r(u+ sû)T
∂r(u+ sû)

∂u
û

=
1

g(s)
r(u+ sû)T

∂r(u+ sû)

∂u
û.

The aim is now to approximate this function by a quadratic polynomial p(s) = a2s2 +a1s+a0

whose minimiser should represent a good approximation of the optimal step size. We can

uniquely determine the polynomial with the help of the three values

p(0) = g(0) = ‖r(u)‖,
p(scur) = g(scur) = ‖r(u+ scurû)‖,

p′(0) = g′(0) =
1

g(0)
r(u)T

∂r(u)

∂u
û.

The derivative value can be further simplified by using the relation

∂r(u)

∂u
û = K̃û =−r(u),

assuming that the linear system within the Newton-Raphson iteration (see line 12 in Listing 4.3)

has been solved exactly; if not, it is still a good approximation.17 Hence, we obtain

p′(0) =− 1

g(0)
r(u)Tr(u) =−g(0) =−‖r(u)‖.

All three values g(0), g(scur) and g′(0) are readily available since they have already been com-

puted for the sufficient decrease test (line 9 in Listing 4.5). The coefficients of the polynomial

are then given by

a2 =
g(scur)−g′(0)scur−g(0)

s2
cur

, a1 = g′(0), a0 = g(0),

17When the linear system within the Newton-Raphson method is solved iteratively, one could also exploit the last

defect vector of the iterative solver, say dn, to obtain the correct value of K̃û, i. e., dn =−r(u)− K̃ûn⇒ K̃ûn =
−r(u)− dn. Alternatively, one could perform the matrix vector multiplication directly, which is, of course,

comparatively expensive.
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which in the special case of g(s) = ‖r(u+ sû)‖ amounts to

a2 =
‖r(u+ scurû)‖− (1− scur)‖r(u)‖

s2
cur

, a1 =−‖r(u)‖, a0 = ‖r(u)‖.

Since g is nonnegative, it is justified to simply determine the global minimiser of p within the

interval [0,scur]. Therefore, we determine the zero of p′, i. e.,

p′(s∗) = 0⇔ s∗ =−
a1

2a2

=
s2

cur‖r(u)‖
2(‖r(u+ scurû)‖− (1− scur)‖r(u)‖)

. (4.25)

Due to the currently violated sufficient decrease condition (line 9 in Listing 4.5) we have a2 > 0

and thus s∗ > 0. We then apply the safeguards (4.24)

s∗←





σlscur if s∗ < σlscur

σrscur if s∗ > σrscur

s∗ else.

(4.26)

This especially catches the case that the zero of p′ lies outside the interval (0,scur).
18

We apply a further heuristic precaution for determining the step size, based on the following

observation: The damped Newton-Raphson scheme tends to take small step sizes when still far

away from the solution. These regions should be traversed carefully in order not to take too

large steps in a unsuitable direction, thus avoiding divergence of the entire scheme. This can

be achieved by bounding the step size with respect to the step size sprev taken in the previous

Newton-Raphson iteration. In detail, we apply

s∗←min{s∗,2sprev}, (4.27)

i. e., the new step size s∗ must not be larger than twice the previous step size sprev. Hence, when

the step size is small (say, sprev = 0.05), the subsequent step size is small, too (s∗ = 0.1). For

larger step sizes (sprev > 0.5) the heuristic has no effect since the full step of s∗ = 1.0 is the

natural upper bound, anyway. Note, that this heuristic possibly overwrites the value computed

with help of the quadratic polynomial. Of course, this procedure might unnecessarily slow

down the progress of the Newton-Raphson scheme in some cases; in other cases, however, it

prevents divergence. Hence, we deliberately sacrifice some efficiency to increase the robustness

of the entire solution algorithm. Listing 4.6 summarises the complete line search method.

The presented strategy to determine an ‘optimal’ value for the step size can be varied. Instead

of using the three data points g(0), g(scur) and g′(0) to determine the quadratic polynomial,

one could also use g(0), g(scur) and g(sprev). Furthermore, taking all four data points one could

18Note, that the function g is nonnegative, though, but that this does not have to be true for the interpolating

polynomial p, i. e., it can happen that p(s∗)< 0 for s∗ ∈ (0,scur). Nevertheless, we will use this minimiser as an

approximation of the minimiser of g.
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1 subroutine lineSearchQuadr(u, û,θ,σl ,σr,sprev)
2 ! Input: previous iterate u,

3 ! search direction û,

4 ! sufficient decrease parameter θ,
5 ! safeguards σl ,σr,

6 ! step size of the previous Newton iteration sprev
7 ! Output: new iterate u

8

9 s← 1 ! set initial step size

10 utr← u+ sû ! compute trial point

11 do while (‖r(utr)‖> (1−θs)‖r(u)‖)
12 s∗← s2‖r(u)‖

2(‖r(utr)‖−(1−s)‖r(u)‖) ! new trial step size (see eq. (4.25))

13 if (s∗ < σls) s = σls ! apply safeguards (see eq. (4.26))

14 else if (s∗ > σrs) s = σrs

15 else s = s∗
16 utr← u+ sû ! compute new trial point

17 enddo

18 if (s > 2sprev) s = 2sprev ! apply additional heuristic

19 u← utr ! accept trial point as new iterate

Listing 4.6: Line search using quadratic polynomials.

calculate the interpolating cubic polynomial. As these are all only heuristics to approximate

the optimal value for the step size, one cannot identify the best approach. We implemented and

tested all three variants and found there are always examples where method A is better than

method B and other examples where it is the other way around. So, it is advisable to provide

different line search variants the user can select from. For the tests in this thesis, however, we

confine ourselves to the described quadratic model.

Generally, the global Newton-Raphson scheme using the line search method and the heuristics

described above is much more robust than the standard Newton-Raphson scheme described

in Section 4.3.1 (see the numerical results at the end of this section). Nevertheless, there are

still situations where the method can fail, e. g., in the presence of bifurcation points (see Sec-

tion 3.1.5.5) or when the solution tends to a local minimum u with ‖r(u)‖ 6= 0. In such cases,

one has to apply more sophisticated methods as for example arc-length continuation [105].

We now perform a number of numerical tests to validate the correctness of the computed so-

lutions, on the one hand, and to assess the globalisation technique, on the other hand. We use

two benchmark configurations of Reese et al. [133], the rectangular block under compression

we already considered before (see Figure 4.1 on page 200) and the well known Cook’s plane

example. For the latter we consider two different macro decompositions, a regular one and an

irregular one (notation COOK-REG and COOK-IRREG; see Figure 4.19). We apply the same

material parameters as in Reese et al. [133], i. e., µ = 80.194 MPa and ν = 0.3. The block is

loaded by vertical surface forces varying between f = −100 MPa and f = −600 MPa (nota-

tion BLOCK-100, BLOCK-200 etc.), while Cook’s plane is loaded by a vertical surface force of

f = 15.625 MPa applied to the right side.
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Figure 4.19: Cook’s plane consisting of 16 regularly (left, COOK-REG) or irregularly (right, COOK-IRREG) shaped

subdomains, level 1 depicted. The left side is fixed, the right side is loaded by a vertical force.

As a third validation test we perform the benchmark ‘CSM1’ defined in Turek and Hron [159].

It is the configuration already described in Section 3.2.2.1 (see Figure 3.1 on page 140 and

Figure 3.4 on page 143), an elastic beam under load attached to a cylinder. The beam has

dimensions 0.35 m× 0.02 m, it is loaded by a vertical volumetric gravity force of g = −2 m
s2 ,

and the material parameters are Poisson ratio ν = 0.4, shear modulus µ = 0.5 MPa and density

ρ = 1000
kg

m3 . Only for this test, we use the St. Venant-Kirchhoff constitutive law, in all the other

Figure 4.20: Deformed BLOCK-100 (top) and BLOCK-600

(bottom) configuration; von Mises stresses displayed.

Figure 4.21: Deformed COOK configuration; von

Mises stresses displayed.

tests we use Neo-Hooke material. Some of the deformed states can be seen in Figures 4.20,

4.21 and 4.22. Table 4.2 shows the vertical displacements of the point A = (0.1 m,0.1 m)
in case of the BLOCK configuration (centre point on the upper side), those of the point A =
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Figure 4.22: Deformed BEAM configuration; von Mises stresses displayed.

(0.048 m,0.06 m) in case of the COOK configuration (upper right corner) and those of the

point A = (0.35 m,0.0 m) in the case of the BEAM configuration (centre point on the right

side). The results of the BLOCK configurations and the COOK-REG configuration correspond

# DOF -100 -200 -300 -400 -500 -600

90 -3.3849743 -5.7094311 -7.1628177 -8.0441581 -8.5849390 -8.9300347

306 -3.3913185 -5.7189914 -7.1570128 -8.0150733 -8.5358723 -8.8662617

1.1K -3.3914044 -5.7170012 -7.1471481 -7.9935835 -8.5021170 -8.8217846

4.3K -3.3914167 -5.7163328 -7.1440057 -7.9868053 -8.4917313 -8.8086158

16.8K -3.3914280 -5.7161650 -7.1431730 -7.9849962 -8.4889825 -8.8051980

66.3K -3.3914331 -5.7161256 -7.1429624 -7.9845342 -8.4882917 -8.8043767

(a) BLOCK configuration.

# DOF reg. irreg.

162 1.5394614 1.5121809

578 1.5846614 1.5785159

2.2K 1.5972458 1.5959375

8.4K 1.6006008 1.6003027

33.K 1.6014680 1.6014024

132.1K 1.6016934 1.6017096

(b) COOK configuration.

# DOF

2.3K −6.49098

8.7K −6.57872

33.9K −6.60188

133.3K −6.60801

528.6K −6.60967

2105.9K −6.61013

(c) BEAM configuration.

Table 4.2: Vertical displacements (in centimetres) of the BLOCK , the COOK and the BEAM configuration (in the

points A = (0.1 m,0.1 m),A = (0.048 m,0.06 m), and A = (0.35 m,0.0 m), respectively) for different refinement

levels.

to those of Reese et al. [133]19, and the results for the BEAM coincide with those obtained in

Turek and Hron [159], who provide the reference value 0.0661 m for the vertical displacement.

These examples validate the correctness of our computed solutions. The additional results for

the COOK-IRREG configuration indicate that the solutions are qualitatively independent of the

grid.

We would like to use the beam benchmark and the results found in Turek and Hron [159] to

illustrate the shear locking problem described in Section 3.2.2.1. In Figure 4.23 we see the er-

ror (in percent) between the computed finite element solution and the given reference value on

different refinement levels and for three different discretisations: the pure displacement formu-

lation with the Q1 element (six refinement levels from 2.3 k to 2.1 M DOF), the stabilised mixed

uuu/p formulation with Q1/Q1 elements (six refinement levels from 3.5 k to 3.2 M DOF) and the

19Unfortunately, Reese et al. [133] present the results only in a graph such that the exact values are not known.
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stable mixed formulation with Q2/P1 elements (four refinement levels from 6.5 k to 392.2 k

DOF).20 The results of the first two formulations were obtained by our program FEASTsolid,
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Figure 4.23: Error (in percent) of the vertical displacement in the reference point AAA = (0.35 m,0.0 m) for three

different discretisations.

while the results of the latter formulation are taken from Turek and Hron [159].21 We can see

that about five times more DOF are needed in the case of the Q1 discretisation to achieve the

same error as Q2/P1, while the stabilised Q1/Q1 discretisation still needs roughly two times

more DOF than Q2/P1. This confirms that the simple Q1 formulation suffers most from the

shear locking phenomenon. Applying a mixed formulations as well as using a higher order

element greatly helps to alleviate the problem; simply spoken, both techniques provide ‘addi-

tional DOF’ to better adopt the bending deformation. Combining both techniques consequently

yields the best results as the superiority of Q2/P1 illustrates. For the remainder of this chapter,

we only consider the BLOCK and COOK configuration.

Now we compare the standard and the damped Newton-Raphson method with respect to the

number of nonlinear iterations. We set εNL
rel = 10−10 and εNL

abs = 10−14 as stopping criterion

and solve all linear systems with the direct solver UMFPACK. In case of the standard Newton-

Raphson method we apply incremental loading if necessary. We present the results for the

minimal number of loading steps for which the iteration converges reliably; for fewer steps the

method fails or, at least, behaves very irregularly. Figure 4.24 shows the relative residual norm

‖r(ui)‖/‖r(u0)‖ in the course of the iteration. The jumps in the graphs indicate the beginning

of a new loading step. The graphs for the damped Newton-Raphson method are additionally

labelled by the step size the line search procedure calculated. We only present the results on

four of the eight configurations, i. e., the configurations BLOCK-200, BLOCK-400, BLOCK-600

and COOK-REG. The results for the three missing BLOCK configurations are in line with the

three presented ones, and the results for the COOK-IRREG configuration are qualitatively the

same as for the regular one. We can make the following observations in Figure 4.24:

20Results for the pure displacement formulation with Q2 elements are unfortunately not available.
21Note that due to the compressibility of the material (ν = 0.4), the mixed formulation is actually not necessary.

However, Turek and Hron [159] also consider incompressible problems, so they use the mixed formulation for

all tests.
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(b) BLOCK-400.
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(c) BLOCK-600.
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Figure 4.24: Relative residual norm of the standard and the damped Newton-Raphson method for four different

configurations. The number of load increments for the standard method is given in the key.

• For the BLOCK configuration the increasing loads result in stronger nonlinearities. The

problem is correspondingly harder to solve, which can be seen in the increasing number

of Newton iterations and load increments.

• In all cases, the line search algorithm performs exactly one iteration, resulting in a step

size less than 1.0, or no iteration, i. e., allowing the full step s = 1.0.

• The damping value s = 0.1 occurs very often. This indicates that the heuristic for finding

an optimal step size actually returned a smaller value, which was then adapted due to

the safeguard σl = 0.1 (see equation (4.26) on page 232). The subsequent values of 0.2,

0.4 and 0.8 indicate that the heuristic actually returned a larger value, which was then

adapted due to the additional safeguard that bounds the increase of the step size (see

equation (4.27)).

• The damped Newton-Raphson method shows typical behaviour: In the initial phase, it

proceeds ‘carefully’ which is indicated by small step sizes. Then, when approaching the

solution, it takes ever larger steps, ending with some full steps until the desired termina-

tion criterion is fulfilled.

• Both the standard and the damped Newton-Raphson method exhibit the typical quadratic

convergence in the vicinity of the solution. For the damped variant this phase is accom-

panied by taking full steps.
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• For the standard Newton-Raphson method the number of load increments has to be

adapted for each configuration. The damped Newton-Raphson method, however, ro-

bustly solves all test configurations with the given set of parameters. Furthermore, it

needs clearly less nonlinear iterations in most cases. Only on the COOK-REG configura-

tion it proceeds very ‘carefully’ in the initial phase, such that it needs the same number

of iterations as the standard method with three load increments.

• In case of the damped Newton-Raphson iteration the relative residual norm is always

smaller than 1.0. For the standard method this is not the case as the COOK-REG config-

uration shows: The first iteration of each load increment actually increases the residual

norm (in the first load increment by more than a factor of 10) resulting in a higher number

of iterations. It needs even more load increments to avoid such unfavourable steps in the

initial phase.

Summary

The results show that the damped Newton-Raphson method is clearly superior to the standard

method, both in terms of robustness and efficiency. Especially the fact that the method works

without being forced to adapt the number of load increments to the current configuration is very

beneficial. On the other hand, some additional parameters have to be selected for the line search

algorithm, but the employed set of established standard values [60, 92], seems to be well suited

for the finite deformation elasticity problem, as well. Of course, for each configuration there

is an optimal combination of parameters that yields better results than the standard values. But

determining this combination a priori is usually not possible, and performing several parameter

studies is usually more expensive than simply performing the simulation with the standard set

of parameters. Only if the computation fails, one has to try different parameters in order to

achieve convergence. In hard cases, it can be advantageous to combine incremental loading

with line damping techniques.

4.3.3 Inexact Newton-Raphson Method

For large-scale problems the employment of direct solvers to treat the linear subproblems within

the Newton-Raphson iteration becomes prohibitively expensive in terms of memory require-

ments and solving times. Hence, iterative methods have to be used which solve these sub-

problems only approximately. The nonlinear solution scheme is then referred to as inexact

Newton-Raphson method. Hence, after the solution of the linear subproblem (see line 12 in

Listing 4.3 on page 228) in the i-th nonlinear iteration we do not have

û =−K̃(ui)
−1r(ui),

but only

‖K̃(ui)û+ r(ui)‖6 ηi‖r(ui)‖,
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where ηi is the relative termination criterion of the iterative linear solver, which is also called

forcing term in the context of inexact Newton-Raphson methods. In previous sections this

value was simply denoted by εrel. The only condition the forcing term has to satisfy in order to

guarantee linear convergence of the Newton-Raphson iteration (provided that the start vector is

sufficiently close to the solution) is that it must be bounded away from 1. In order to achieve

superlinear convergence it must fulfil ηi→ 0, and for quadratic convergence ηi = O(‖r(ui)‖)
(see Kelley [92] for the definitions of the different types of convergence).

So, the question is how to choose the forcing term in practice. Setting it to a constant value

ηi = η < 1 for the entire Newton-Raphson iteration is always feasible. However, if it chosen

very small (say, η = 10−8), it may lead to oversolving at the beginning of the Newton-Raphson

iteration, which means that the linear systems are solved much more accurately than it is actu-

ally necessary to determine a sufficiently exact Newton-Raphson direction. On the other hand,

if it is chosen very large (say, η = 0.5), the Newton-Raphson iteration will exhibit correspond-

ingly slow convergence.

There are many heuristics to choose the forcing term adaptively in the course of the Newton-

Raphson iteration (see, e. g., Brown and Saad [42], Dembo and Steihaug [57] and Eisenstat and

Walker [60]). Their common goal is to minimise the total arithmetic work by providing a good

balance between the number of inner (linear) iterations and the number of outer (nonlinear)

iterations. We use the two heuristics of Eisenstat and Walker [60]. To describe them we assume

that ui = ui−1 + sû is the current iterate, obtained with the help of the previous iterate and a

(possibly damped) Newton-Raphson direction (see Listings 4.3 and 4.6). In the first heuristic,

the forcing term is computed by

ηi =

∣∣‖r(ui)‖−‖r(ui−1)+ sK̃(ui−1)û‖
∣∣

‖r(ui−1)‖
. (ADAP1)

It reflects how well the nonlinear function r(ui−1 + sû) and its linear approximation r(ui−1)+
sK̃(ui−1)û agree. It guarantees two-step local quadratic convergence, i. e., in the vicinity of the

solution the error norm e is reduced to e2 within two iterations. In the second heuristic, the

forcing term is computed by

ηi = γ

( ‖r(ui)‖
‖r(ui−1)‖

)2

, (ADAP2)

with γ ∈ [0,1]. It guarantees local quadratic convergence and incorporates the current reduction

rate of the nonlinear residual ‖r(u)‖. In accordance with Eisenstat and Walker [60] we choose

γ = 0.9. For both heuristics the forcing term in the first nonlinear iteration is set to η1 = 0.5.

The rationale of both heuristics is that the forcing terms will likely be large when still far away

from solution, and will decrease ever faster when approaching the solution. However, also

far away from the solution it might happen that the nonlinear residual function coincidentally

agrees very well with its linear approximation (ADAP1) or that the nonlinear residual decreases
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unexpectedly fast in one step (ADAP2). This would result in too small forcing terms and over-

solving. To prevent this, Eisenstat and Walker [60] suggest to apply a safeguard of the form

η
(1)
i ←

{
max{ηi,s(ηi)} if s(ηi)> 0.1,

ηi else,

where for the first variant the value s is given by

s(ηi) = η
(1+
√

5)/2

i−1 (ADAP1)

and for the second variant by

s(ηi) = γη2
i−1. (ADAP2)

The threshold 0.1 is responsible to heuristically decide whether we are already ‘close enough

to the solution’. In this case, we trust the computed forcing term and apply no safeguard.

It can also happen that the computed forcing term is greater than 1, so there has to be a second

safeguard applying a general upper bound,

η
(2)
i ←min{ηmax,η

(1)
i },

where we use ηmax = 0.9.

Small forcing terms in the vicinity of the solution facilitate the quadratic convergence of the

inexact Newton-Raphson iteration, though, but setting them too small might also be harmful: It

can be difficult for the linear solver to fulfil such small relative termination criterions, especially

when the initial residual is already very small. Additionally, the current nonlinear residual norm

might already be quite close to the desired tolerance, such that it does not make sense to solve

the linear system too accurately. So, we apply a third safeguard to prevent too small forcing

terms. We follow Kelley [92] and set

ηi←max{η(2)
i ,0.5ε/‖r(ui)‖},

i. e., the forcing term is bounded from below by a constant multiple (here 0.5) of the ratio of

the termination threshold for the nonlinear iteration, ε = max{εNL
rel ‖r(u0)‖,εNL

abs} (see line 9 in

Listing 4.3 on page 228), and the norm of the current nonlinear residual. The rationale is:

When the current nonlinear residual norm is, say, ‖r(ui)‖ = 10−5 and for termination a norm

of ε = 10−6 is required, then it is most probably unnecessary to use a forcing term of magnitude

ηi = 10−5 to solve the linear system. This size would be necessary, though, to guarantee the

quadratic convergence of the Newton-Raphson iteration, but to achieve the desired nonlinear

residual norm of ε = 10−6, a forcing term of only ηi = 0.05 is probably sufficient. This means,

we deliberately sacrifice the quadratic convergence of the Newton-Raphson iteration in order

to avoid oversolving of the linear system in the final phase and thus save a significant amount

of arithmetic work.
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4.3.3.1 Numerical Comparison of Different Forcing Terms

We now perform numerical tests on the four configurations we already used in Figure 4.24,

applying constant forcing terms between η = 0.5 and η = 10−6 on the one hand and the adap-

tively computed forcing term on the other hand. We use the linear solver BiCG-MG-BSor with

the 1-layer-ScaRC solver MG__ADI to solve the scalar subsystems (cf. Section 4.2) and we

apply line damping (see Section 4.3.2).22 We compare the number of Newton-Raphson itera-

tions (Figure 4.25a) and the total number of linear iterations (Figure 4.25b). Since the tangent

matrix is reassembled in each nonlinear iteration, we also consider total computation times

(Figure 4.26). For the BLOCK configuration we only consider refinement level 8 (1052K DOF)

and for the COOK-REG configuration level 7 (526K DOF)
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Figure 4.25: Comparing constant and adaptive forcing terms on four different configurations.

As expected, the number of nonlinear iterations rises for larger (constant) forcing terms (Fig-

ure 4.25a). It is, however, interesting to observe that there is practically no difference between

η = 10−6 and η = 10−4. Also the increase from η = 10−4 to η = 0.01 is relatively small com-

pared to the two subsequent jumps from η = 0.01 to η = 0.1 and from η = 0.1 to η = 0.5.

Since smaller forcing terms result in more arithmetic work per nonlinear iteration, it is clear

already now that values of η = 10−4 or smaller render the overall solution method unnecessar-

ily expensive. This is confirmed when considering Figure 4.25b: The accumulated number of

linear iterations for the forcing terms η = 10−6 and η = 10−4 is 1.5 to 3 times higher than for

η = 0.01. These large differences cannot be compensated by slightly shorter assembly times.

Hence, the question is now which of the remaining five forcing terms (0.01,0.1,0.5, ADAP1 or

ADAP2) is most efficient. The choice η = 0.5 results in the smallest number of linear iterations,

22Note, that the use of approximate iterative linear solvers can negatively influence the robustness of the line search

algorithms in some cases. Depending on the eigenvalues and the condition of the system matrix, the method

can behave counterintuitively in the sense that a more accurate linear solution may degrade the robustness of

the backtracking procedure, eventually leading to failure of the method. See, e. g., Cai and Keyes [46], Hwang

[84], Tuminaro et al. [157] for details in this regard and for alternative approaches. However, for the numerical

examples in this section such problems do not occur.
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though, but also in the – by far – largest number of nonlinear iterations. The other four are

closer together, such that we have to look at the total timings in Figure 4.26 to better assess

the situation. The figure shows the total runtimes of serial computations (performed on an
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Figure 4.26: Runtimes on four configurations for five different forcing terms.

AMD Opteron DP 844 CPU with 1.8 GHz), consisting of linear solving times, assembly times

for residual vectors and tangent matrices, and times for the remaining operations within the

Newton-Raphson iteration (linear solver initialisations, norm calculations, adaptive tolerance

heuristic, line damping, etc.). In most cases, the choice η = 0.5 indeed yields the shortest linear

solving times, but also the longest assembly times, such that, in summary, it is clearly the worst

choice for all three BLOCK configurations. For the COOK-REG configuration, however, the

differences of nonlinear iteration numbers for the different forcing terms are not as significant

as for the BLOCK configurations (see Figure 4.25a), such that the additional assembly times for

the choice η = 0.5 do not have such an impact, and η = 0.5 turns out to be the third best choice.

The forcing term η = 0.01 leads to higher total computation times than η = 0.1 in all cases

which is due to the higher linear solving costs. Comparing η= 0.1 and the first adaptive forcing

term ADAP1 shows that it depends on the configuration which of the two is superior: For the

BLOCK-200 and the COOK-REG configuration the adaptive forcing term yields slightly better

results, for BLOCK-400 the runtimes are equal and only for BLOCK-600 the constant choice

η = 0.1 actually beats the adaptive forcing term ADAP1. For the second adaptive forcing term

ADAP2, the results are clearer: It performs best in all four tests. Looking back at Figure 4.25,

the reason becomes apparent: It yields the smallest number of nonlinear and linear iterations

in nearly every case. It is indeed able to combine the advantage of small forcing terms (fast

convergence of the outer Newton-Raphson iteration) with the advantage of large forcing terms

(low arithmetic costs of the inner linear iterations).

We can summarise that heuristics to adaptively determine the forcing term can be beneficial,

but for the kind of nonlinear problems we are dealing with they seem not to be mandatory.

Simply choosing the constant forcing term η = 0.1 seems to be a reasonable choice and has

the additional advantage that no extra parameters (safeguards etc.) have to be provided. So,
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while line damping is a mandatory technique to significantly increase the robustness of the

Newton-Raphson method, forcing term heuristics do usually not decide over success or failure

of the method, but merely aim at increasing its efficiency. Whether they are successful in this

regard, can depend on the special configuration as the results for ADAP1 illustrate. The second

variant ADAP2 behaves clearly better in our tests, which, of course, does not mean that this

must always be the case. A finite element software package should offer such heuristics for the

solution of nonlinear equations, but the decision when to apply them certainly requires some

user experience.

4.3.3.2 Linear Solver Efficiency

Finally, we want to briefly examine how the linear solver efficiency is affected by increasing

nonlinearities. Therefore, we consider the BLOCK configuration and take a closer look at the

linear solves within the damped Newton-Raphson iteration using the constant forcing term of

η = 10−6. This was the most expensive configuration in the tests above, though, but is best

suited to assess the linear solver behaviour. Figure 4.27 shows the convergence rates of the

inner linear solves for each outer nonlinear iteration. In Figure 4.27a we compare the level 8
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Figure 4.27: Convergence rates of the linear solver in the course of the Newton-Raphson iteration for the BLOCK

configuration.

(1052K DOF) results for the BLOCK under three different loadings. One can clearly see that the

performance of the linear solver deteriorates – as expected – due to the increasing nonlinearities.

Figure 4.27b, however, indicates that the solver behaviour is – aside from some irregularities

– in principle level independent. We also performed these tests with other linear solvers from

Section 4.2.6 (results not presented here), and found that the degradation due to increasing

nonlinearities is qualitatively the same, sometimes even worse than for the solver used above.

Hence, our choice of BiCG-MG-BSor as favourite solver (see Section 4.2.8) is also justified for

the nonlinear elasticity problems considered here.
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4.3.3.3 2-layer-ScaRC Solvers and Nonlinearities

We want to briefly comment on a further test we performed, but which we do not present here

in detail. In Section 4.2.7.5 we compared 1-layer-ScaRC and 2-layer-ScaRC solvers in their

role as preconditioners for elasticity solvers and found that for certain configurations exhibiting

high element aspect ratios 2-layer-ScaRC can be superior to 1-layer-ScaRC. An interesting

question is whether 2-layer-ScaRC can be advantageous with respect to nonlinearities. So, we

repeated the tests above (BLOCK-200, BLOCK-400, BLOCK-600 and COOK-REG) using the

1-layer-ScaRC solver MG(1e-1)-FGMRES4__JAC__D and the 2-layer-ScaRC solver MG(1e-1)-

FGMRES4__MG-BICG-JAC-D__D from Section 4.2.7.5 for the scalar solves within the block SOR

preconditioner. The result was disappointing: For all four configurations, the 2-layer-ScaRC

solver was about 10 times more expensive than the 1-layer-ScaRC solver in terms of arithmetic

work. For the COOK-REG configuration, the 2-layer-ScaRC solver performed about 20% less

iterations than 1-layer-ScaRC (which means a corresponding reduction of communication in

a parallel computation), for the BLOCK-600 configuration about 15% less iterations, while on

the two remaining BLOCK configurations the iteration numbers were equal. These reductions

are clearly not sufficient to compensate for the significantly higher arithmetic costs, not even

in a massively parallel computing environment. Of course, this does not mean that the 2-

layer-ScaRC concept is useless for nonlinear simulations; as soon as mesh anisotropies come

into play it will tap its potential again. However, there seems to be no indication that 2-layer-

ScaRC can handle the nonlinearities themselves significantly better than 1-layer-ScaRC. A final

assessment, however, requires more thorough studies, which has to be part of future work.

4.3.4 Numerical Tangents

In Section 3.2.4.3 we explained how the tangent matrix can be computed with the help of

finite differences (see equation (3.98) on page 151). The question arises how to choose the

perturbation parameter γ. Miehe [112] suggests to set it to the square root of the machine

precision εprec as to perturb ‘half of the digits’, i. e., γ =
√

εprec = 10−8 in double precision

arithmetic (also see Kelley [92]). We test this suggestion with the help of some numerical

examples, where we vary the perturbation parameter between γ = 10−2 and γ = 10−12. We use

the results obtained with the analytically computed tangent matrix as reference. We apply line

damping, and the linear systems are solved iteratively gaining 6 digits.

In Figure 4.28 we compare the number of nonlinear iterations and the average number of linear

iterations per nonlinear step on three of the configurations used in the previous sections. Setting

the perturbation parameter to γ = 10−2 or γ = 10−4 the Newton-Raphson method fails in all

tests, so these values do not appear in the plots. Also a value of γ = 10−6 is not very robust:

For the BLOCK-600 configuration the solver fails on all levels (Figure 4.28c), while for the

other two configuration it only converges on smaller grid levels (Figures 4.28a and 4.28e.)

The perturbation parameters γ = 10−8 and γ = 10−10 yield equal nonlinear iteration counts,

which exactly coincide with those of the analytical tangent. For γ= 10−12 the Newton-Raphson
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(b) BLOCK-200, linear iterations (averaged).
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(c) BLOCK-600, nonlinear iterations.
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(d) BLOCK-600, linear iterations (averaged).
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(e) COOK-REG, nonlinear iterations.
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(f) COOK-REG, linear iterations (averaged).

Figure 4.28: Number of nonlinear iterations (left) and average number of linear iterations per nonlinear step (right)

for different perturbation parameters γ on three configurations; reference iteration counts for the analytically

computed tangent matrix. All plots share the colour key of plot 4.28a.

convergence deteriorates on higher refinement levels, which indicates that this value is too

small. Hence, we can confirm the suggestion of Miehe [112] to set the perturbation parameter

to the square root of the machine precision; slightly smaller values (γ ∈ [10−10,10−8]) seem to

be feasible, as well.
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Considering the right hand side plots 4.28b, 4.28d and 4.28f, these findings are confirmed:

The average number of linear iterations per nonlinear step for the two perturbation parameters

γ = 10−8 and γ = 10−10 agree very well with those for the analytical tangent, there are only

slight deviations. This means that – at least for the examples considered here – the linear solver

performance is not negatively affected when using numerically computed tangent matrices and

when the perturbation parameter is chosen correctly. Unsuited values like γ = 10−12, however,

clearly impair the linear solver performance as the higher linear iteration counts show.

4.3.5 Parallel Efficiency

We now present one numerical example that demonstrates the good parallel efficiency of the

overall nonlinear solver. We consider the six macro decompositions of the BLOCK configuration

which we already used for the linear parallel computations in Section 4.2.7.6 (see Figure 4.17

on page 223). We refine the subdomains ten times and apply a surface load of f =−400. The

nonlinear problem is solved with the damped Newton-Raphson method (see Section 4.3.2),

using a stopping criterion of εrel = 10−6,εabs = 10−12. The linear problems are solved by

BiCG-MG-BSor gaining one digit and using the 1-layer-ScaRC solver MG__ADI for the scalar

subsystems (cf. Section 4.2). The computations are performed on the compute cluster LiDO

(see Section 4.2.7.6 for details).

Note that the scalar multigrid solver applies a block wise working smoother, such that the

varying number of subdomains of the six BLOCK configurations leads to slight variations in

the linear solver behaviour. The nonlinear damped Newton-Raphson method is quite sensitive

to such perturbations. Furthermore, the flat block (4, 16 and 64 subdomains) evolves different

deformations and nonlinearities than the higher block (8, 32 and 128 subdomains). Hence,

there are slight variations in the number of linear and nonlinear iteration counts. Table 4.3

lists the number of nonlinear iterations, the total number of linear iterations and the average

number of linear iterations per nonlinear iteration. One can see that the iteration counts slightly

# proc # DOF nonlinear linear linear av.

4 8.4M 13 10 0.77

8 16.8M 13 10 0.77

16 33.6M 13 10 0.77

32 67.1M 13 10 0.77

64 134.3M 14 10.5 0.75

128 268.5M 14 11 0.79

Table 4.3: Number of nonlinear iterations and the total and average number of linear iterations for the solution of

the BLOCK-400 configuration. (Note that an early exit in the first iteration of the linear BiCGstab solver is counted

as 0.5 iterations.)

increase for the two largest configurations. This is why we present the timing results in two

plots: Figure 4.29a shows the total runtime in stacked form, composed of linear solving time,

assembly time and time for remaining operations. Figure 4.29b shows the distinct runtimes (not
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Figure 4.29: Parallel runtimes for the solution of the BLOCK-400 configuration with different grid partitions.

stacked), scaled with the number of nonlinear iterations in order to better assess the scalability

of the method. Our main focus are the linear solving times. One can see in Figure 4.29b that

the increase of the linear solving time from 4 to 128 processors corresponds to the increase we

observed for the linearised elasticity case in Figure 4.18c on page 225. Only the slope from

64 to 128 processors is a little bit steeper, which, however, can be explained by the fact that

the linear solver performs a half iteration more on the 128 processor configuration, while the

number of nonlinear iterations is equal (see Table 4.3). The slope would correspond to that of

the remaining curve, if the linear solving times were scaled with the number of linear iterations.

Hence, we can state that the good weak scalability of our linear elasticity solvers transfers to

the nonlinear case.23

4.3.6 Summary and Further Possible Improvements

In this section we demonstrated that FEASTsolid is able to efficiently solve nonlinear finite

elasticity problems in the pure displacement formulation. Our basic concept of reducing multi-

variate operators and operations to scalar ones, fully applies to nonlinear solution methods like

Newton-Raphson, as well. We confirmed that two popular techniques for improving Newton-

Raphson methods are also successful in the context of solid mechanical problems: Line damp-

ing significantly increases the robustness of the Newton-Raphson method, while heuristics to

adaptively choose the forcing terms in inexact Newton-Raphson methods help to lower the

23The increase of the assembly times, however, is unexpected and can not be explained currently. While the linear

solver has to communicate very often in the course of the iteration, this is not the case for the assembly routine:

It works element-wise and thus performs purely local calculations; only after the assembly process is finished,

there has to be one data exchange between neighbouring subdomains. Hence, the ratio between arithmetic work

and amount of communication is much more favourable than for the case of linear solving, and we actually

expect better scalability properties. However, since the focus of this thesis is on linear solvers and we have not

thoroughly examined the assembly process for performance bottlenecks and possible improvements by now, we

ignore this issue here.
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arithmetic costs. The iterative solvers introduced in Section 4.2 are able to solve the linearised

systems arising in the course of the nonlinear iteration, even for heavily deformed configura-

tions. However, a dependence on the strength of the nonlinearities is observable. The numerical

examples we considered do not indicate that 2-layer-ScaRC solvers are better qualified than 1-

layer-ScaRC solvers to deal with the occurring nonlinearities. The good parallel efficiency of

our linear elasticity solvers is confirmed in the nonlinear setting.

We want to mention two further important techniques to improve the robustness and the ef-

ficiency of the Newton-Raphson method, which are not covered in detail in this thesis. The

first technique, the so-called multilevel Newton-Raphson method, is concerned with finding a

suitable start solution which can be essential for the succes of the overall method. The idea is to

first solve the problem on a coarser grid level and to use the obtained solution as start solution

for the nonlinear problem on the finest grid level. Doing so recursively over all grid levels leads

to the algorithm outlined in Listing 4.7. The goal of this multilevel approach is to save some

1 subroutine newtonRaphsonMultilevel(fin, fex,u,εNLrel,ε
NL
abs)

2 ! Input: internal forces fin (as a function of u),

3 ! external force vector fex,

4 ! start vector u,

5 ! rel. and abs. tolerance εNLrel,ε
NL
abs,

6 ! Output: solution of the equation fin(u)− fex = 0

7

8 ! loop over all levels

9 do l = 1,2, . . . ,L
10 if (l .eq. 1) then

11 ! on coarsest level, use zero start solution

12 u(l) = 0

13 else

14 ! on finer levels, use the prolongated coarser grid solution

15 ! as start solution

16 u(l)← P(l)u(l−1)

17 endif

18 ! call the Newton-Raphson algorithm to solve the level l problem

19 ! with the current u(l) as start vector

20 u(l)← newtonRaphson((fin)(l),(fex)(l),u(l),εNLrel,ε
NL
abs)

21 enddo

22 end subroutine newtonRaphsonMultilevel

Listing 4.7: Multilevel Newton-Raphson method.

expensive Newton-Raphson iterations on the finest level by performing much cheaper iterations

on the coarser grid levels, such that the total arithmetic costs are finally lower than those of the

standard one-level Newton-Raphson method. The costs can be further decreased since the aux-

iliary problems on the coarser levels usually do not have to be solved as accurately as the actual

problem on the finest level. Furthermore, the multilevel technique can help to solve very hard

nonlinear problems for which the damped inexact Newton-Raphson method fails: On the one

hand, the linear problems on coarser grid levels can be solved with a direct solver which elimi-
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nates the possibility of failure of iterative solvers. On the other hand, one can apply additional

strategies on the coarser grid levels to ensure convergence that would be very expensive on the

finest level, e. g., load incrementing or arc-length continuation methods. If the problem on the

coarser level is solved successfully, its solution might be good enough a start solution for the

finest level problem, so that the latter can be solved with standard techniques again.

The second technique for increasing the efficiency of Newton-Raphson is the so-called Shaman-

skii method (see, e. g., Kelley [92]). It aims at the reduction of matrix assembly times. Instead

of recomputing the tangent matrix in each Newton-Raphson step, it is used for m steps. For

m = 1 this approach coincides with the standard Newton-Raphson method; for ‘m = ∞’, the

algorithm is also called the chord method, in which the entire nonlinear iteration is performed

with the help of the initially computed tangent matrix. The rationale of the Shamanskii method

is that with a suitably chosen m the nonlinear convergence is only mildly affected, while assem-

bly times can be reduced significantly. However, the optimal choice of the parameter m clearly

depends on different factors, as for example the ratio between assembly and linear solving

times. Hence, the optimal value is usually not known and is hard to estimate a priori (especially

when an adaptive forcing term heuristic is applied) such that user experience or some adaptive

mechanism is necessary to find appropriate values.





5 Multilevel Saddle Point Solvers for (Nearly)

Incompressible Elasticity Problems

In this chapter we extend the solution technique described in Chapter 4 to the important class

of elasticity problems with (nearly) incompressible material, discretised by the mixed displace-

ment/pressure formulation.

In Section 5.1 we introduce different kinds of saddle point solvers and explain how FEAST’s

ScaRC solvers are incorporated. In Section 5.2 we thoroughly compare the presented solvers

in terms of numerical examples. For these solver studies we confine ourselves to the case

of linearised elasticity and only briefly comment on the nonlinear finite deformation case in

Section 5.3, where we also summarise our results.

5.1 Solvers and Preconditioners for Saddle Point Problems -

A Brief Overview

The need to solve linear systems in saddle point form arises in many technical and scientific

applications, where the mixed finite element method in solid and, especially, fluid mechanics

is probably one of the most prominent. There is a great variety of solution and preconditioning

methods for saddle point systems and the amount of literature on the topic is vast. Hence, an

exhaustive survey is out of the scope of this thesis. We refer to the article of Benzi et al. [21]

for an overview of applications and solution methods and for pointers to the literature on this

topic. We confine ourselves to a brief description of some of the most prominent methods to

solve saddle point systems arising from the mixed finite element discretisation of solid or fluid

mechanical equations. For more detailed presentations in this regard see, e. g., the monographs

of Brezzi and Fortin [39] and Elman et al. [65].

We want to recall the linear saddle point system which is to be solved (cf. equation (3.80) on

page 146 and equation (3.107) on page 156 and their derivations). With the notations

A :=

(
A B

BT C

)
, x :=

(
u

p

)
, b :=

(
f

0

)
,

the system can be simply denoted as

Ax = b. (5.1)
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The lower right matrix block C is the sum of two matrices,

C = Cc +Cs,

where Cc contains the compressibility terms and Cs is the stabilisation matrix. In the case

of the incompressible limit, we have Cc = 0, and in the case stable finite element pairs are

used, we have Cs = 0. When both hold, then we obtain the standard saddle point form with a

zero block C = 0. Cc is a (scaled) negative pressure mass matrix and is thus symmetric neg-

ative definite. For the PPP-type stabilisations, Cs represents an approximation of the (scaled)

negative Laplacian matrix for pure Neumann boundary conditions and is thus also symmetric

negative semidefinite. The latter property also holds in the case of the PROJ stabilisation [27].

Hence, the matrix C is symmetric negative semidefinite.1 The matrix A is symmetric positive

definite.

We want to describe some of the most popular solution methods for saddle point problems,

where we distinguish between two main categories: segregated (or decoupled) methods (Sec-

tion 5.1.1) and coupled methods (Section 5.1.3).

Beside the solvers and preconditioners we describe in the following sections, there are many

further techniques for treating saddle point problems, e. g., pressure convection-diffusion (PCD)

preconditioners [91, 144], least-squares commutator (LSC; also called BFBt) precondition-

ers [66, 67], an improved version of the BFBt preconditioner [119], preconditioning by regular-

isation [6], primal-based penalty preconditioners [58], augmented Lagrangian approaches [20],

saddle point ILU-type preconditioners [163] and hierarchical matrix preconditioners [104]. It

is out of the scope of this thesis to describe and compare all these approaches. For general

surveys and/or comparisons, see, e. g., Benzi et al. [21], de Niet and Wubs [56], Elman et al.

[65], ur Rehman et al. [163].

5.1.1 Segregated Methods

5.1.1.1 Uzawa and Pressure Schur Complement Methods

Segregated solution methods decouple the two unknown vectors u and p and reduce the solution

of the overall system (5.1) to the solution of smaller subsystems. Formally, this strategy is based

on the block LU decomposition

A =

(
I 0

BTA−1 I

)(
A B

0 −S

)
,

where the matrix

S := BTA−1B−C (5.2)

1It is also possible, to scale the continuity equation by −1. Then, the whole saddle point system is positive

semidefinite, but not symmetric anymore.
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is the negative (pressure) Schur complement of the matrix A . The saddle point system (5.1)

can then be rewritten as (
A B

0 S

)(
u

p

)
=

(
f

BTA−1f

)
. (5.3)

A simple ‘two-step algorithm’ for solving system (5.3) would be to successively solve the two

reduced systems

Sp = BTA−1f, (5.4a)

Au = f−Bp. (5.4b)

This strategy, however, is not practicable since the inverse of the Schur complement matrix S

is hard to compute: Usually, S is available only implicitly and is furthermore (due to the factor

A−1) not a sparse matrix. Hence, to avoid the direct inversion of S, the algorithm is performed

in an iterative way,

uk+1 = A−1(f−Bpk), (5.5a)

pk+1 = pk + γ(BTuk+1 +Cpk), (5.5b)

where γ is a positive parameter. This iteration is the classical Uzawa algorithm [3] (also see

Listing 5.1). One can formally remove the variable uk+1 from the iterative scheme,

pk+1 = pk + γ(BTA−1f− (BTA−1B−C)pk), (5.6)

which shows that the Uzawa algorithm is a Richardson method for iteratively solving equa-

tion (5.4a). In this form, the algorithm is also called pressure Schur complement (PSC)

1 subroutine uzawa(A ,b,x,ε)

2 !Input: saddle point matrix A, RHS vector b = (f,0)T,

3 ! start vector x = x0 = (u0,p0)
T
, rel. stopping parameter ε

4 !Output: solution vector x = (u,p)T

5 δ = ‖r0‖= ‖b−Ax0‖ ! initial residual norm

6 do k = 0,1, . . .
7 uk+1 = A−1(f−Bpk)

8 pk+1 = pk + γ(BTuk+1 +Cpk)
9 rk+1 = b−Axk+1

10 if (‖rk+1‖6 εδ)
11 exit

12 endif

13 enddo

14 end subroutine uzawa

Listing 5.1: Classical Uzawa algorithm for solving the saddle point system (5.1).

method [158]; also see Listing 5.2, where the auxiliary vector z is merely introduced to em-

phasise that the iteration is indeed independent of the vector u. Although the Uzawa and the

PSC method are formally equivalent, their practical application slightly differs: The Uzawa al-

gorithm uses the residual of the whole system (5.1) for determining the stopping criterion, while
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1 subroutine psc(A ,b,x,ε)

2 !Input: saddle point matrix A, RHS vector b = (f,0)T,

3 ! start vector x = x0 = (u0,p0)
T
, rel. stopping parameter ε

4 !Output: solution vector x = (u,p)T

5 z = A−1(f−Bp0)

6 δ = ‖r0‖= ‖BTz+Cp0‖ !initial residual norm

7 do k = 0,1, . . .
8 pk+1 = pk + γrk

9 z = A−1(f−Bpk+1)

10 rk+1 = BTz+Cpk+1

11 if (‖rk+1‖6 εδ)
12 exit

13 endif

14 enddo

15 u = z

16 end subroutine psc

Listing 5.2: Pressure Schur complement method for solving the saddle point system (5.1).

the PSC algorithm uses that of the (scalar) Schur complement system (5.4a). Hence, when the

user applies a stopping criterion like ‘gain six digits’, the solutions of the two methods can

actually differ.

The main disadvantage of the classical Uzawa algorithm is that it requires the exact (or, at

least, very accurate) computation of the inverse of the matrix A in each iteration2, which is

prohibitively expensive for large-scale simulations. Fortunately, this is easy to repair by trans-

forming system (5.5a) into a preconditioned defect correction, where the preconditioner for the

matrix A is denoted by Ã. Usually, Ã represents an approximate solve by some inner iterative

method. Introducing at the same time a preconditioner S̃ for the Schur complement matrix S,

leads to the well-known inexact Uzawa algorithm [37]:

uk+1 = uk + Ã−1(f−Auk−Bpk), (5.7a)

pk+1 = pk + S̃−1(BTuk+1 +Cpk). (5.7b)

Obviously, the algorithm coincides with the classical Uzawa algorithm if Ã−1 =A−1 and S̃−1 =
γI (cf. Listing 5.3).3 Due to the exact defect computation with the matrix A in equation (5.7a),

the algorithm is guaranteed to converge (if it converges at all) to the correct solution, regardless

of how well Ã−1 approximates the inverse A−1. Of course, the choice of Ã−1 decides over the

convergence speed and whether the algorithm converges at all. When the preconditioner Ã−1 is

realised in terms of a nonlinear iterative solver (e. g., a Krylov method), then the overall scheme

2This can be seen very easily, when replacing A−1 by Ã−1, representing an approximate solution of the corre-

sponding systems. In this case, the algorithm does simply not ‘know’ the actual matrix A and is, hence, not

able to compute a correct solution. In other words, the matrix vector multiplication with the Schur complement

matrix S can not be performed exactly.
3Sometimes, the version (5.7) is called the preconditioned inexact Uzawa algorithm, and only the version with

S̃−1 = γI is referred to as inexact Uzawa algorithm [62].



5.1 Solvers and Preconditioners for Saddle Point Problems 255

1 subroutine uzawaInexact(A ,b,x,ε)

2 !Input: saddle point matrix A, RHS vector b = (f,0)T,

3 ! start vector x = x0 = (u0,p0)
T
, rel. stopping parameter ε

4 !Output: solution vector x = (u,p)T

5

6 δ = ‖r0‖= ‖b−Ax0‖ ! initial residual norm

7 do k = 0,1, . . .

8 uk+1 = uk + Ã−1(f−Auk−Bpk)

9 pk+1 = pk + S̃−1(BTuk+1 +Cpk)
10 rk+1 = b−Axk+1

11 if (‖rk+1‖6 εδ)
12 exit

13 endif

14 enddo

15 end subroutine uzawaInexact

Listing 5.3: Inexact Uzawa algorithm for solving the saddle point system (5.1).

is referred to as nonlinear inexact Uzawa method. Corresponding to algorithm (5.7), one can

also define an inexact version of the pressure Schur complement method (see Listing 5.4). The

1 subroutine pscInexact(A ,b,x,ε)

2 !Input: saddle point matrix A, RHS vector b = (f,0)T,

3 ! start vector x = x0 = (u0,p0)
T
, rel. stopping parameter ε

4 !Output: solution vector x = (u,p)T

5 u1 = u0 + Ã−1(f−Au0−Bp0)

6 δ = ‖r0‖= ‖BTu1 +Cp0‖ !initial residual norm

7 do k = 0,1, . . .

8 pk+1 = pk + S̃−1rk

9 uk+2 = uk+1 + Ã−1(f−Auk+1−Bpk+1)

10 rk+1 = BTuk+2 +Cpk+1

11 if (‖rk+1‖6 εδ)
12 exit

13 endif

14 enddo

15 end subroutine pscInexact

Listing 5.4: Inexact pressure Schur complement method for solving the saddle point system (5.1).

preconditioned version of the exact PSC iteration (5.6) is given by

pk+1 = pk + S̃−1(BTA−1f− (BTA−1B−C)pk), (5.8)

where S̃ again denotes the preconditioner for the Schur complement matrix S. In Section 5.1.2

we describe practical choices for the preconditioners Ã and S̃.

The inexact Uzawa algorithm (5.7) can be equivalently formulated as follows,

(
uk+1

pk+1

)
=

(
uk

pk

)
+

(
Ã 0

BT −S̃

)−1(
f−Auk−Bpk

0−BTuk−Cpk

)
, (5.9)
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i. e., as a Richardson iteration applied to the whole system and preconditioned by the lower

block-triangular preconditioner

P̃L :=

(
Ã 0

BT −S̃

)
. (5.10)

Denoting this Richardson iteration in compact form,

xk+1 = xk + P̃−1
L (b−Axk),

one could also interpret it as coupled method since the outer method does not take the block

structure of the saddle point system into account. In this sense, the lines between segregated and

coupled methods become blurred. However, since the block triangular preconditioner, which

is essential for the convergence of the outer iterative scheme, clearly segregates the u- and

p-component, we still account the overall method decoupled.

5.1.1.2 Accelerating the Basic Iteration

The variants of the Uzawa method introduced above can all be regarded as (preconditioned)

Richardson methods. Naturally, the next step is to accelerate these basic iterations in terms of

Krylov space or multigrid methods (also compare Sections 2.6.3 and 4.2.3).

Acceleration by Krylov Space Methods

We always apply right-preconditioned Krylov methods to accelerate the inexact Uzawa method.

In this case, one actually does not use the lower, but the upper block-triangular precondi-

tioner

P̃U :=

(
Ã B

0 −S̃

)
. (5.11)

This reason for this is given in Section 5.1.2. We want to denote this preconditioner by SCBTria,

where ‘SC’ indicates that the Schur complement matrix is involved. Its practical application is

based on the factorisation

(
Ã B

0 −S̃

)−1

=

(
Ã−1 Ã−1BS̃−1

0 −S̃−1

)
=

(
Ã−1 0

0 I

)(
I −B

0 I

)(
I 0

0 −S̃−1

)
.

This means, to solve the system P̃U c = d for some right hand side vector d = (du,dp)T, one

successively computes the two components of the vector c = (cu,cp)T as

cp =−S̃−1d
p
k

cu = Ã−1(du
k−Bcp).

Here, two clear differences between the Uzawa method and the PSC method (which are for-

mally equivalent in the unaccelerated Richardson context) become evident:
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• Since the Schur complement matrix S = BTA−1B−C is symmetric positive definite

(see, e. g., Verfürth [169]), the PSC iteration (5.6) for solving equation (5.4a) can be

accelerated in terms of a CG method, denoted by PSCCG. This is also possible for the

preconditioned version (5.8) when the preconditioner S̃ is symmetric. For the (exact or

inexact) Uzawa iteration, however, simple CG is not an option since the block triangular

preconditioners (5.10) and (5.11) are not symmetric and the saddle point system (5.1) is

indefinite. Hence, we have to use a Krylov method that is able to deal with unsymmetric,

indefinite systems, e. g., BiCGstab or GMRes. Another possibility is the approach of

Bank et al. [11] who symmetrise the block preconditioner which requires an additional

solution of the Ã systems. This has to be seen as advantage of the PSC-Krylov type

solvers over the Uzawa-Krylov type solvers.

However, since we want to keep the flexibility to use unsymmetric smoothers/precon-

ditioners for solving the inner A-systems (cf. the discussion in Section 4.2.3), the CG

method is not suited as accelerator anyway.

• The requirement of the PSC method to solve the A-systems exactly could easily be re-

laxed leading to the inexact PSC method (see Listing 5.4). Unfortunately, this is not

realisable so easily in terms of the PSCCG method. The reason is that additional matrix

vector products with the Schur complement matrix S are necessary to determine the opti-

mal step length for the updates of the residual and the solution vector; the simple trick of

transforming iteration (5.5) into iteration (5.7) is not applicable. Hence, when applying

an inexact PSCCG method, the error of the final solution depends on how accurately the

inner A-systems are solved. The inexact PSCCG method is analysed by Verfürth [169].

When accelerating the inexact Uzawa algorithm by Krylov techniques, the error of the

final solution does not depend on the inner solution of the A-systems. The reason is

that the approximations of the inverse of A are only needed in terms of preconditioning

(see equation (5.10)), while the correctness of the solution is guaranteed by the outer

BiCGstab or GMRes iteration. Hence, solving the A-systems only approximately in-

fluences the efficiency of the preconditioner and, thus, the convergence speed, but the

outer iterative process still converges to the correct solution. This has to be seen as clear

advantage of the Uzawa-Krylov type solvers over the PSC-Krylov type solvers.

Exemplarily using BiCGstab as accelerator, we denote the accelerated inexact Uzawa and PSC

method by BiCGstab-SCBTria and PSCBiCGstab, respectively. Correspondingly, we denote

the unaccelerated versions by Rich-SCBTria and PSC, respectively.

We want to present two possibilities to circumvent the accuracy problems of the PSC-Krylov

type solvers – relaxation strategies and using PSC-Krylov solvers as preconditioner:

Relaxation strategy: With help of a so called relaxation strategy [166], the correct solution

can be obtained without computing the A-systems exactly in each outer iteration step.

The idea is to perform very accurate computations at the beginning of the outer iteration

and then to successively relax the accuracy requirements. The resulting solver belongs

to the class of inexact Krylov space methods [148], where the term ‘inexact’ reflects that
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the matrix vector multiplication with the Schur complement matrix S is not performed

exactly.

More precisely, the relaxation works as follows: Let us denote the Schur complement

system (5.4a) to be solved by Sp= h, remembering that both the matrix and the right hand

side contain the factor A−1. Furthermore, we assume that a relative stopping criterion

εrel is used for the outer solver, i. e., the iteration is exited when ‖rk‖ 6 εrel‖r0‖, where

rk := h−Spk is the residual vector in the k-th iteration. Let ηk denote the accuracy of

the matrix vector multiplication Spk in the k-th iteration. In our case, this means that the

A-systems are solved with an accuracy of ηk. Now, following van den Eshof et al. [166],

this inner criterion is set to

ηk := εrel
‖r0‖
‖rk−1‖

, (5.12)

i. e., it is based on the norm of the current residual of the outer iteration. Obviously, this

results in very high accuracy requirements in the beginning (η1 = εrel), which are relaxed

as the residual norm decreases (ηkր 1 for ‖rk−1‖ց εrel‖r0‖).

Simoncini and Szyld [148] analyse the technique and especially explain why the some-

how counterintuitive strategy of relaxing the accuracy works: Simply spoken, the error

between the computed and the actual residual is determined by a product of two factors,

one of them being the error caused by the approximate matrix vector multiplication; since

the other factor is guaranteed to decrease in the course of the iteration, it is feasible to

relax the accuracy of the matrix vector multiplication. Simoncini and Szyld show that

the convergence speed of the outer Krylov space method might suffer from the inexact

matrix vector multiplication. Furthermore, they introduce an improved version of the

relaxation strategy (5.12), which, however, requires additional knowledge of the system

matrix and Krylov spaces which is not readily available. We confine ourselves to the

simple strategy (5.12).

PSC-Krylov preconditioner: Instead of using the PSC-Krylov method as outer solver, one can

apply it as preconditioner for another solution method. This outer method is applied to

the whole saddle point system and calls the PSC-Krylov method as inner solver, e. g.,

performing a fixed number of iterations. Thus, the ‘incorrectness’ of the PSC-Krylov

method merely affects its quality as preconditioner, while the outer method guarantees

the correctness of the computed solution.

If the inner PSC preconditioner is not a Krylov method, but a simple Richardson iteration

performing exactly one step, then it coincides with the inexact Uzawa algorithm in block

triangular preconditioner formulation (5.10). Hence, the strategy of applying PSC meth-

ods as preconditioner can be interpreted as an extension of the inexact Uzawa algorithm:

On the one hand, one can apply more than one preconditioning iteration, and on the other

hand, one can replace the simple Richardson procedure by a Krylov scheme.
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However, since the outer solution scheme is usually a Krylov method as well, it is not

clear whether this additional (inner) Krylov method for preconditioning does really im-

prove the overall efficiency of the method.

Exemplarily using BiCGstab as accelerator, we denote the relaxed PSC-Krylov methods by

PSCrelax-BiCGstab, and the methods using PSC-Krylov preconditioners by BiCGstab-PSC-

BiCGstab. Correspondingly, the unaccelerated version of the latter method is denoted by Rich-

PSC.

Acceleration by Multigrid Methods

Multigrid accelerators are usually employed to achieve convergence rates that are independent

of the grid size. However, since the methods described above already exhibit grid independent

convergence when the preconditioner Ã is suitably chosen (see Section 5.1.2), it is question-

able whether an outer multigrid acceleration is advantageous; we will examine this point in

Section 5.2.

For the inexact Uzawa method the multigrid acceleration is straightforward: The basic itera-

tion (5.9) is simply used as smoothing operation on each refinement level. However, as in the

case of acceleration by Krylov solvers, we use the upper block triangular preconditioner (5.11)

as smoother. We apply standard grid transfer operations to the three-component vectors, as

usual performed in terms of three corresponding scalar operations. Also the coarse grid solver

can simply be realised by a direct UMFPACK method applied to the whole 3× 3 saddle point

system. In Section 5.2 we will examine the efficiency of this multigrid solver.

The multigrid acceleration of PSC methods is more intricate. In principle, the procedure is the

same as for the Uzawa methods: The preconditioned basic iteration (5.8) is used as smoothing

operation on each refinement level and standard transfer operations are employed, which – in

contrast to the multigrid-accelerated Uzawa methods – work on scalar components only. How-

ever, two difficulties occur: First, since the Schur complement matrix is often only implicitly

available, UMFPACK can not be applied directly as coarse grid solver. Instead, one has to apply

an iterative (one-level) PSC method (like PSCBiCGstab) to solve the coarse grid system. Sec-

ond, the accuracy problem of the PSC approach is present again, i. e., the A-systems have to be

solved exactly to obtain the correct solution. We tried to apply the relaxation strategy (5.12),

but were not successful in this regard. Hence, the method can only be efficient when it is used

as preconditioner of an outer Krylov method, where the A-systems can then be solved again

with lower accuracy.

We denote the multigrid accelerated Uzawa and PSC methods by MG-SCBTria and PSCMG,

respectively. When they are used as preconditioners, the resulting methods are denoted, for

example, by BiCGstab-MG-SCBTria and BiCGstab-PSCMG.

In Section 5.2.1 we will compare the different variants of (accelerated) Uzawa and PSC meth-

ods in terms of convergence rates and total arithmetic efficiency.
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5.1.1.3 Some Literature on Uzawa-type Methods

The classical Uzawa algorithm [3] is already more than fifty years old, but especially in the last

two decades Uzawa-type methods attracted quite some attention. The reason is that they are

relatively easy to implement, requiring only standard operations which are available in every

solver toolkit. They have thus become a viable alternative for solving large-scale saddle point

problems.

Two early articles providing analysis of inexact Uzawa methods are those by Queck [130] and

Elman and Golub [62], where the latter treat stabilised saddle point systems. The results are

improved by Bramble et al. [37] for the unstabilised case. Bank et al. [11] present and analyse

a symmetrised version of the inexact Uzawa algorithm for unstabilised systems, and Zulehner

[180] unifies and improves the results of Bramble et al. [37] and Bank et al. [11]. Cao [47]

extends the results of Bramble et al. [37] to stabilised systems, while Cao et al. [48] apply the

unified approach of Zulehner [180] to stabilised systems. Verfürth [169] analyses the inexact

PSCCG method, and Cheng and Zou [50] present an extension of the method by Bank et al. [11]

which exhibits slightly improved convergence properties but is not symmetric anymore. Elman

[61] numerically compares the inexact Uzawa method with three other solvers for saddle point

problems in terms of the Stokes equation.

Analyses of Krylov space methods using the block triangular preconditioner (5.10) can often

be found in the literature (e. g., [63, 97, 106, 147]; also see the references in Benzi et al. [21]).

Elman and Silvester [63] are concerned with the solution of the steady-state Navier-Stokes

equation (where the matrix A is replaced by νA+N, ν being the fluid’s viscosity and N rep-

resenting the convection), considering stable finite elements (i. e., C = 0). Klawonn [97] treats

the mixed uuu/p formulation of linear elasticity with nearly incompressible material using sta-

ble elements (i. e., Cc 6= 0,Cs = 0). Loghin and Wathen [106] and Simoncini [147] provide

more general analyses for the cases C = 0 and C 6= 0, respectively. Simoncini [147] especially

improves the results of Klawonn [97].

Multigrid PSC methods (PSCMG) are described and extensively tested by Turek [158] in

the context of the (Navier-)Stokes equation. Multigrid-accelerated Uzawa-type methods, i. e.,

multigrid solvers applied directly to the saddle point system (5.1), have also been considered

in the literature, e. g., the SIMPLE smoother [126, 127] or the Braess-Sarazin smoother [35].

They are related to the symmetrised preconditioner of Bank et al. [11]. In our tests, however, we

only use the (unsymmetric) upper block triangular preconditioner (5.11) for smoothing (MG-

SCBTria).

5.1.2 Preconditioners for Saddle Point Systems

The efficiency of the (accelerated) Uzawa-type methods decisively depends on the choice of

the preconditioners Ã and S̃. These preconditioners have to approximate the original operators

A and S in some sense and – remembering that they are applied in each outer iteration – they
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must be inexpensive compared to the computation of the inverses A−1 and S−1. However, we

briefly consider the special choices Ã = A and S̃ = S, i. e.,

PU :=

(
A B

0 −S

)
. (5.13)

Murphy et al. [115] analyse this exact preconditioner for the case C = 0. The authors’ basic

observation also applies to the case C 6= 0: For the right-preconditioned system matrix N :=
AP−1

U we have

N 0 =

(
I 0

0 I

)
,

N 1 =

(
A B

BT C

)(
A−1 A−1BS−1

0 −S−1

)
=

(
I 0

BTA−1 I

)
,

N 2 =

(
I 0

BTA−1 I

)2

=

(
I 0

2BTA−1 I

)
= 2N 1−N 0,

i. e., N 2 is a linear combination of N 0 and N 1. Hence, the Krylov space

span{N 0r0,N
1r0,N

2r0,N
3r0, . . .}

actually is of dimension two, which means that a suitable Krylov method would only need two

iterations to converge. This is, of course, only of theoretical relevance since applying the exact

preconditioner PU is much too expensive in large-scale computations or not possible at all.

However, having a ‘good’ approximation P̃U to the exact preconditioner PU , one can expect

that the number of outer iterations will be small, too.

At first, we want to describe the preconditioner Ã. A critical property of the outer saddle

point solver is to exhibit a convergence behaviour that is independent of the problem size. One

requirement to achieve this is that the preconditioner Ã is spectrally equivalent to the matrix A.

This means there have to be positive constants α0,α1 which are independent of the refinement

level such that

α0uTÃu 6 uTAu 6 α1uTÃu. (5.14)

In this case the eigenvalues of the preconditioned matrix Ã−1A are contained in intervals that

are independent of the grid size parameter h [147]. Hence, thus preconditioned solvers will ex-

hibit iteration counts that are independent of the refinement level. An efficient preconditioning

technique that fulfils condition (5.14) is using a multigrid solver, for which it is actually often

sufficient to perform only one or few V-cycles [11, 37, 96, 97, 143, 147, 180].

5.1.2.1 The Schur Complement Preconditioner S̃ in the Stationary Case

Similar to condition (5.14), we need to find a preconditioner S̃ that is spectrally equivalent to

the Schur complement matrix S, i. e.,

β0pTS̃p 6 pTSp 6 β1pTS̃p (5.15)
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with positive constants β0,β1 that are independent of the problem size. For the stationary

case, where S = BTA−1B−C, the pressure mass matrix 1
2µ

Mp fulfils condition (5.15) (see,

e. g., Verfürth [169], Elman et al. [65] and Klawonn [97]) and is thus a suitable preconditioner.

The scaling factor results from the factor 2µ contained in the matrix A (see equation (3.57) on

page 134). To better account for the contribution of the matrix Cc =− 1
λ Mp (see equation (3.58)

on page 134), which increases with the material becoming more compressible, we subtract it

from the preconditioner, 1
2µ

Mp−Cc. This simply leads to a corresponding scaling in the case

of compressible material, such that the preconditioner is finally given by

S̃ =

{
( 1

2µ
+ 1

λ)Mp if ν < 0.5

1
2µ

Mp if ν = 0.5.
(5.16)

The application of the preconditioner means to approximately solve the corresponding system

with the pressure mass matrix.

Although the (approximate) inversion of the pressure mass matrix in each iteration is much

cheaper than the (approximate) inversion of the Schur complement matrix S, it is still relatively

expensive since it requires the application of an inner iterative solution method. To decrease

the costs, one can exploit the fact that Mp is spectrally equivalent to the lumped mass matrix

Ml
p [65]. Using this diagonal matrix leads to the Schur complement preconditioner

S̃l =

{
( 1

2µ
+ 1

λ)M
l
p if ν < 0.5

1
2µ

Ml
p if ν = 0.5.

(5.17)

Its application only requires one vector-vector operation, i. e., the scaling of the current right

hand side vector with the inverse of the diagonal. On the other hand, one can expect an influence

on the outer convergence. In Section 5.2.1.8 we compare the costs of the two preconditioners

S̃ and S̃l with the help of some numerical examples.

One could also add the complete matrix C to the preconditioner, S̃ = 1
2µ

Mp +C, including the

stabilisation matrix Cs. However, since the entries of this matrix are of order O(h2), they can

be neglected within the preconditioner. Furthermore, adding Cs would prevent the lumping

technique.

The efficiency of the described preconditioners Ã and S̃ fulfilling conditions (5.14) and (5.15),

respectively, has been proven and numerically demonstrated by many authors in different con-

texts. For the type of saddle point system we are concerned with, i. e., having a nonzero negative

semidefinite block C, see, e. g., the analyses of Cao [47], Cao et al. [48], Elman [61], Klawonn

[97], Silvester and Wathen [143], and Simoncini [147].
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5.1.2.2 The Schur Complement Preconditioner S̃ in the Transient Case

In the case of time-dependent computations, Schur complement preconditioning is more in-

volved. We briefly recall the system matrix that has to be inverted (approximately) in each

iteration of the time stepping scheme,

(
ρ

τ2β
M+A B

BT C

)
,

with M being the displacement mass matrix, ρ the material’s density, β an algorithmic parame-

ter of the Newmark scheme (usually, β = 0.25), and τ the time step size (see the derivations in

Sections 3.1.4 and 3.4.1). We use the short notation δ := ρ
τ2β

, where

δ→
{

0 if τ→ ∞

∞ if τ→ 0

and the limit δ = 0 coincides with the stationary case.

Before discussing the Schur complement preconditioner S̃, we briefly mention that the pre-

conditioner Ã for the upper left block of the saddle point system does not have to be changed

compared to the stationary case; the addition of the displacement mass matrix improves the

spectral properties of the system.

The time step size τ is an algorithmic parameter that is either fixed by the user or that is varying

in the course of the simulation due to an adaptive time stepping scheme [164, 165]. Hence, a

preconditioner for the Schur complement has to be robust with respect to the size of the time

step, i. e., it has to exhibit convergence rates that are independent of the size of δ. For large

time step sizes the system tends to that of the stationary case, being spectrally equivalent to

the (pressure) mass matrix, while for small step sizes it tends to a mixed formulation of the

discrete (pressure) Laplace operator. It is exactly this fact which aggravates preconditioning of

the Schur complement operator

S(δ) := BT(δM+A)−1B−C; (5.18)

the spectral properties of the matrix S(δ) differ significantly for the two extreme cases δ≪ 1

and δ≫ 1. Cahouet and Chabard [45] take into account these two extreme cases to construct a

suitable preconditioner. For its description we neglect the matrix C for the time being and will

later comment on modifications that incorporate this matrix. For δ≪ 1, i. e.,

S(δ)≈ BTA−1B,

we already know that the scaled pressure mass matrix 1
2µ

Mp (or, its lumped version) is a suitable

preconditioner (see previous section). It is referred to as diffusive preconditioner [158]. For

δ≫ 1 we have

S(δ)≈ BT(δM)−1B,
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i. e., the Schur complement matrix corresponds to a discrete mixed formulation of the Lapla-

cian. Hence, the scaled pressure Laplace operator 1
δ Lp with natural (i. e., zero Neumann)

boundary conditions is a suitable preconditioner, called the reactive preconditioner [158].4

The desired preconditioner for the complete Schur complement operator (5.18) has to be ef-

ficient for the whole range of time step sizes. To achieve this it is constructed by linearly

combining the (properly scaled) preconditioners for the two extreme cases described above.

We define the resulting transient preconditioner T̃ in terms of its action on a given (defect)

vector d:

T̃−1d = 2µM−1
p d+δL−1

p d. (5.19)

This preconditioning technique has been first proposed by Cahouet and Chabard [45], who

demonstrate its efficiency by means of some numerical examples with the generalised Stokes

problem. Bramble and Pasciak [36], Kobelkov and Olshanskii [98] and Mardal and Winther

[110] analyse the preconditioner for the generalised Stokes equation. They show that the con-

vergence rates of correspondingly preconditioned iterative schemes are independent of the grid

size parameter h and of the time step size τ. Turek [158] examines the preconditioner in terms

of the nonstationary Navier-Stokes equation.

Now, we describe how the matrix C can be taken into account. To our knowledge, this setting

has not been analysed in the literature yet, neither for stabilised systems, nor for elasticity

systems with nearly incompressible material. The matrix stemming from the compressibility

terms, Cc, is included in the diffusive preconditioner by properly scaling the pressure mass

matrix as it is done in the stationary case (see equation (5.16)). Precisely, the factor 2µ in

equation (5.19) is replaced by the factor
(

1
2µ
+ 1

λ

)−1
, which results in

T̃−1d =

{
2µλ

λ+2µ
M−1

p d+δL−1
p d if ν < 0.5

2µM−1
p d+δL−1

p d if ν = 0.5.
(5.20)

The stabilisation matrix Cs is simply neglected in the stationary case since its entries are of

order O(h2). The question is if this is feasible for the transient case, as well. It certainly is

feasible if the time step is large, i. e., when we are ‘closer’ to the stationary case. Hence, for the

following considerations we assume the time step to be small and neglect the diffusive part of

the preconditioner. Adding the stabilisation matrix to the reactive preconditioner then results

in

T̃ = 1
δ Lp−Cs.

Recalling that 1
δ is of order O(τ2) and the entries of Cs of order O(h2), we can make the fol-

lowing observation: When τ≫ h, then the stabilisation matrix can still be neglected without

crucially degrading the convergence rate of the solver. When τ≪ h, then the stabilisation part

actually represents the main contribution of the complete Schur complement operator (assum-

ing the material is nearly incompressible). The fact that these auxiliary, purely algorithmic and

4It is also possible to approximate the action of the operator BT(δM)−1B directly in terms of an iterative solution

method. For certain finite elements the operator can also be constructed exactly. See Turek [158] for details in

this regard.
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‘non-physical’ stabilisation terms outweigh the actual ‘physical’ contributions, indicates that

the problem can not be well-posed in this case. This observation is in line with the theoretical

findings of Bochev et al. [28] about stabilisation in the small time step limit (see Section 3.4.2).

The main result of this study is that the time step τ must be at least of size O(h) in order to

guarantee a stable formulation and reliable discrete solutions. Our observation about the usage

of the stabilisation matrix in transient preconditioning underlines this result from a different

point of view.

As a consequence, we suppose that the only range where the addition of the stabilisation ma-

trix would make sense, is the range where the stabilised formulation is not reliable. Hence,

when avoiding this range right from the beginning one can neglect the stabilisation terms in the

transient preconditioner, as well. So, our final preconditioner is that defined in equation (5.20).

Again, we can replace the pressure mass matrix by its lumped version Ml
p, the resulting pre-

conditioner is then denoted by T̃l .

Applying this preconditioner means to successively solve two scalar systems. For diffusive pre-

conditioning, the (eventually lumped) pressure mass matrix has to be approximately inverted,

which works exactly as in the stationary case. For reactive preconditioning, we have to solve

a pressure Poisson problem which can be efficiently done with the help of our scalar ScaRC

solvers (see Chapter 2). The difficulty here is the fact that a pure Neumann problem with a

singular system matrix has to be solved. To obtain a unique solution we force the mean integral

of the iteration vector to be zero by shifting its entries correspondingly. A clear disadvantage is

that this is only possible in iterative solution methods, hence, we can not apply a direct solver

for the coarse grid problem within the ScaRC multigrid scheme. Instead, we have to apply a

Krylov method which is possibly sensitive to mesh anisotropies. In the case of complicated

geometries that already require a large number of coarse grid elements, this might lead to a per-

formance bottleneck. Furthermore, it is unclear how efficient the simple ‘shifting’-technique

is on irregular meshes. For a more sophisticated method to solve pure Neumann problems,

see Bochev and Lehoucq [26].

The described Schur complement preconditioner (5.20) for transient saddle point problems

works indeed well when the time step is large enough; for an example, see Section 5.3. How-

ever, we encounter severe convergence difficulties when the time step becomes too small. We

suppose that this is due to the fundamental ‘small time step problem’ for stabilised formulations

described in Section 3.4.2. Unfortunately, it is impossible for a given (realistic) configuration

to determine this critical time step limit a priori. It depends on several factors like the geom-

etry, boundary conditions or material parameters. We performed several tests and found that

in many cases only slight changes of the configuration, of parts of the solver or of the time

step size could lead to strongly varying convergence behaviour. Currently, we do not fully

understand all these interdependencies. Hence, we refrain from presenting detailed numerical

convergence studies in this thesis. Instead, we only present in Section 5.3 one transient sim-

ulation with an oscillating beam using finite deformation elasticity to basically validate that

our approach can be successful. In this simulation, for example, the time steps τ = 0.02 and

τ = 0.01 s were unproblematic, but for τ = 0.005 s our solvers already showed very irregular
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convergence behaviour or even diverged. Taking additionally into account, that the oscillation

frequency of the beam is roughly 1 s, time steps of τ > 0.5 s do not make much sense. Hence,

the interval of applicable time steps is quite limited, on the one hand by the ‘physics’ of the

given configuration, on the other hand by numerical instabilities. In future work, the described

problem has to be examined and understood in more detail.

5.1.3 Coupled Multigrid with Vanka-type Smoothing

In this section, we want to present a class of multigrid smoothers which has been originally

introduced by Vanka [168] for solving the Navier-Stokes equations discretised by Finite Differ-

ences. Basically, the technique belongs to the category of multiplicative domain decomposition

(block Gauß-Seidel) methods, locally coupling all field variables occurring in the formulation.

The smoother is sometimes denoted as symmetrically coupled Gauß-Seidel (SCGS) [168] or

box iteration/relaxation [172]. The Vanka technique has especially been developed to deal

with saddle point systems exhibiting a zero block appearing on the diagonal of the system ma-

trix, where standard (point-wise) Jacobi or Gauß-Seidel smoothers fail. Stokes and linearised

Navier-Stokes systems belong to this category which is the main reason for the strong influence

the method had (and still has) in the field of computational fluid dynamics (CFD). Other rea-

sons are that it can be implemented with the help of elementary techniques available in all finite

element packages and that it is efficient and robust for a wide class of problem configurations.

Multigrid-Vanka solvers have to be seen in contrast to the class of segregated solvers that are

described in Section 5.1.1. The main idea of the Vanka approach is to directly couple all field

variables, i. e., the displacements and pressure in our case, on a local level, resulting in small

coupled systems that have to be solved successively (see below). Segregated methods treat the

system in a global and decoupled manner, leading to reduced systems for displacements on the

one hand and for the pressure on the other hand. In Section 5.1.1 we mentioned solvers that

also apply multigrid to the whole saddle point system [35, 126, 127]. They, however, perform a

segregation of variables within the smoothing process, so they belong to the class of decoupled

saddle point solvers.

5.1.3.1 Some Literature on Vanka-type Smoothers

While there seem to be only few papers dealing with theoretical aspects of Vanka-type smooth-

ing [109, 114, 141], much literature can be found presenting numerical studies in the context of

the discretised Navier-Stokes equations in CFD. John [86] and John and Tobiska [89] apply it

to the nonconforming Crouzeix/Raviart element P1/P0, Turek [158] to the corresponding non-

conforming rotated bilinear Rannacher/Turek element Q̃1/P0 and Becker [17] to the stabilised

Q1/Q1 element. In all cases, the smoother is extensively tested on the benchmark configura-

tion ‘flow around a cylinder’ [160] for the steady and unsteady state. Ouazzi and Turek [120]

transfer the Vanka idea to edge-oriented storage- and stabilisation techniques for the Navier-

Stokes equations. Zeng and Wesseling [177] compare Vanka-type smoothers to ILU methods



5.1 Solvers and Preconditioners for Saddle Point Problems 267

for the case of Navier-Stokes in general coordinates. To treat anisotropic grids more robustly,

several extensions have been introduced. Thompson and Ferziger [155] define symmetrically

coupled alternating line (SCAL) versions for Finite Difference discretisations, Becker [17] uses

a string-wise version for the stabilised Q1/Q1 discretisation, and Schmachtel [139] develops an

adaptive blocking strategy. John and Matthies [88] and John [87] successfully apply Vanka

smoothers to higher order finite element methods. Comparative solver studies including Vanka

smoothers can be found in the articles of John [86], John and Tobiska [89], Turek [158], Benzi

and Olshanskii [20] and Larin and Reusken [103]. For further references, see the overview

paper of Wesseling and Oosterlee [172].

There are only few papers describing the use of Vanka-type smoothers in the context of CSM.

For many kinds of solid mechanical problems there is obviously no need to refrain from stan-

dard (point-wise) multigrid smoothers. But for the mixed uuu/p formulation, which is used to

treat (nearly) incompressible material effects, similar equation systems as for Navier-Stokes

arise (see Section 3.2.3) such that in this case the use of Vanka-type smoothers is reasonable.

Suttmeier [153] applies the variant developed by Becker [17] to elastoplastic materials and com-

pares it to standard Gauß-Seidel smoothing. Gaspar et al. [69] compare Vanka-type smoothers

to decoupled smoothers in the context of incompressible poroelasticity equations. Hron and

Turek [80] employ Vanka smoothers to solve coupled systems arising from the Q2/P1 discreti-

sation of fluid structure interaction problems.

To further close this gap, we performed extensive numerical studies of Vanka-type smooth-

ers applied to typical CSM problems (see Wobker and Turek [175]). Some of the results are

presented in this thesis, for further details we refer to our paper.

5.1.3.2 Basic Strategy of Vanka-type Smoothers

The basic common idea of Vanka-type smoothers is to decompose the mesh into small subre-

gions (usually, consisting of one or few elements/vertices) and treat these subregions separately.

In more detail, one smoothing step consists of a loop over all these subregions where in each

iteration the following steps are performed:

1. Extract the entries of the global matrix corresponding to the degrees of freedom (DOF)

of the current subregions and assemble them into a small local matrix.

2. Build the corresponding local residual.

This is done in a Gauß-Seidel manner, i. e., information, which has been updated in

previously treated subregions, is immediately incorporated into the assembly process of

the current local residual.

3. Solve the resulting system with the local residual as right hand side.

Note that the resulting local matrices are always invertible: When the subregion lies in

the interior of the mesh the local matrix contains the ‘full’ entries of the global matrix

and can therefore be interpreted as arising from a mesh consisting of the subregion itself
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enclosed by a further element layer with zero Dirichlet boundary conditions. When the

subregion lies at the boundary, the local system ‘inherits’ the boundary information of

the global matrix, i. e., unit rows/columns in case of Dirichlet boundary and ‘half’ entries

in case of Neumann boundary, respectively. We employ a direct solver to invert the local

systems.

4. Update the corresponding parts of the global solution with this local correction.

This is a general description of the Vanka process. In the case of the FEAST environment, how-

ever, it has to be interpreted in a special way. First, in order to avoid confusion, we emphasise

that these ‘subregions’ do not coincide with the M tensor product subdomains Ωi, i = 1, . . . ,M,
that result from FEAST’s initial macro decomposition of the domain Ω̄ (see Section 2.3). In-

stead, the 4-step process described above is independently applied to each subdomain Ωi, where

the small subregions within a subdomain are traversed corresponding to the rowwise number-

ing from the ‘lower left’ to the ‘upper right’ corner of each subdomain. This means, what is

called global matrix in the 4-step Vanka process, actually refers to each of FEAST’s local matri-

ces. Hence, in FEAST, Vanka smoothing is never applied to the (only virtually existing) global

matrix corresponding to the whole domain. Instead, we are using a block-smoothed multigrid

scheme (see Section 2.1.2), i. e., the contributions of the M local corrections are assembled

after each smoothing step in an additive (block Jacobi) way (exactly, as it is done in the case

of the scalar FEAST smoothers like ADITriGS). This means, data exchange across subdomain

boundaries is performed only after all subdomains have been treated. This strategy of applying

Vanka smoothers per subdomain is mandatory for enabling an efficient parallel execution. On

the other hand, the smoothers suffer from the usual disadvantages that are inherent to the block

Jacobi approach (see Chapter 2). The numerical results in Section 5.2.2 illustrate this.

We now present four Vanka variants that differ in the choice of the subregions and how the local

systems are built.

1. The Cell-based Vanka Smoother

The first variant we describe is the cell-based Vanka smoother. Here, each subregion consists

of exactly one element and the local system matrix contains the DOF of the four element nodes

(see Figure 5.1a). The smoother can be seen as a multiplicative domain decomposition method

with minimal overlap, i. e., the subregions (=elements) only intersect at their (element) bound-

aries which minimises computational overhead.

Let e be the current element in the smoothing procedure, let the restriction of a vector or a

matrix to this element be denoted with the index e, and let ω be a relaxation parameter. Then

the necessary calculations can be formulated as follows:

rloc = fe− (Ax)e (local residual),

xloc = A−1
e rloc (local correction),

xe = xe +ωxe (update of global solution).

(5.21)
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The advantage of this smoother variant is that it is not restricted to 3×3 saddle point systems

arising from the mixed formulation, but it can also be applied to 2×2-systems stemming from

the pure displacement formulation. In the case of the mixed formulation, displacements and

pressure are treated equally (see Figure 5.1a). This makes the smoother very attractive from

an implementational point of view as it can be applied to arbitrarily coupled equation systems

without deeper knowledge about the underlying problem. It clearly distinguishes this Q1/Q1

variant of the Vanka smoother from the original version [168] where the pressure is represented

in the local system with only one DOF.

The (local) relaxation with the parameter ω is different from (global) damping in the multigrid

method: The local residuals corresponding to the subsequently treated elements are immedi-

ately affected by the relaxation, whereas the damping in the multigrid method scales the global

correction vector after completion of the smoothing procedure. We emphasise this in view of

the strategy to improve multigrid by enclosing the smoother by some Krylov space method

(see Sections 2.6.3 and 4.2.3). The benefit of doing so is the ‘automatic choice’ of the correct

damping parameter which can considerably increase the robustness of multigrid. The (locally

acting) relaxation parameter, however, can not be ‘adjusted’ this way, it has to be set manually

by the user.

The vector (Ax)e can be constructed in O(1) time due to the sparse structure of A . In the

case of a 3× 3 saddle point system for the mixed uuu/p formulation with Q1/Q1 in 2D on a

tensor-product mesh, there are at most 27 non-zero elements per matrix row.

2. The Patch-based Vanka Smoother

Becker [17] adapts the standard Vanka smoother for the stabilised Q1/Q1-discretisation and

applies it to solve the incompressible Navier-Stokes equations. Due to the similar structure of

the linear equation systems arising in this context, the adapted smoother can be applied to the

mixed formulation in CSM, as well. This is done, for instance, by Suttmeier [153] for the case

of elastoplastic material.

(a) Cell-based. (b) Patch-based. (c) Vertex-based.

Figure 5.1: Subregions for the cell-, patch- and vertex-based Vanka smoother and the corresponding DOF

(• displacement DOF, � pressure DOF).

Instead of looping over all elements in the mesh we iterate over all pressure DOF, i. e., over

all nodes of the mesh. For each of them the displacements coupling with the node are taken
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into account such that in case of a tensor product mesh a patch consisting of the four adjacent

elements has to be considered (see Figure 5.1b). The corresponding local systems to be solved

have the following form:




a11 . . . a1n b1

...
. . .

...
...

an1 . . . ann bn

d1 . . . dn c







x1

...

xn

y


=




f1

...

fn

f


 .

In case of Q1/Q1 in 2D and the patch centre being an inner mesh node we have n = 18. For

linearised elasticity, the matrix is symmetric, i. e., di = bi, i = 1, . . . ,n.

The motivation behind this approach is that in the case of the Q1-discretisation the incompress-

ibility constraint divuuu= 0 can, in general, not be met locally in one element. It is possible, how-

ever, to fulfil this condition locally by increasing the number of involved displacement DOF,

e. g., by considering the whole patch around one node. Moreover, the ratio between number

of displacement and pressure DOF better reflects the fact that in the underlying equation (3.56)

on page 134, the order of displacement derivatives is higher than the order of pressure deriva-

tives, i. e., displacements should be approximated ‘more accurately’. So, the patch-based Vanka

smoother is better suited for (nearly) incompressible material behaviour.

Compared to the cell-based Vanka smoother described in the previous section, the patch-based

variant has some (minor) disadvantages:

• The resulting local systems are larger such that more time for the LU decomposition is

needed.

• The patches overlap each other by one element layer which results in some computational

overhead.

• With its special form (taking the third DOF only in the patch centre) the patch-based

variant is only applicable to the mixed uuu/p formulation, but not to the pure displace-

ment case. (The idea of overlapping patches, however, could be transferred to the pure

displacement case, of course. But this is not done here.)

• Assembling the local systems is slightly more involved since a larger neighbourhood has

to be considered and one has to distinguish between the cases whether the pressure node

lies in the interior of a tensor product subdomain Ωi, on its boundary, or in a corner. In the

latter two cases, we only have twelve or eight displacement DOF, respectively, instead of

eighteen.
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3. The Patch-based Diagonal Vanka Smoother

Becker [17] and Suttmeier [153] apply a simplified variant of the patch-based Vanka smoother.

The idea is to couple each displacement DOF only with itself such that the upper left n×n-part

of the local matrix is a diagonal matrix:




a11 0 . . . 0 b1

0 a22
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 ann bn

d1 . . . . . . dn c







x1

...

...

xn

y




=




f1

...

...

fn

f



.

Denoting this system with (
D b

dT c

)(
x

y

)
=

(
f

f

)
,

it can be solved very easily by eliminating x:

y =
dTD−1f− f

dTD−1b− c
, x = D−1(f− yb).

Basically, this can be performed with two scalar products and two vector-vector multipli-

cations/additions which is much cheaper than applying an LU decomposition to the whole

(n+ 1)× (n+ 1)-system as in the full patch-based approach. It has been observed that diag-

onal variants of the Vanka smoother are less robust with respect to mesh anisotropies in the

context of incompressible Navier-Stokes equations (see, e. g., Schieweck [138]). In a previous

publication [175], we confirm this for the elasticity case.

4. The Vertex-based Diagonal ‘Vanka Smoother’

For sake of completeness we present an even simpler smoother variant where the ‘subregion’

consists of only one vertex (see Figure 5.1c). Now we let each DOF only couple with itself,

such that the system to be ‘solved’ looks, in case of the 2D mixed formulation, as following:




a11 0 0

0 a22 0

0 0 c






x1

x2

y


=




f1

f2

f


 .

Actually, this describes the standard Gauß-Seidel smoother. But, according to the above con-

structions it could also be interpreted as vertex-based diagonal Vanka smoother.

Evaluation of the Four Vanka-type Smoothers

The presented Vanka smoothers build a hierarchy that is determined by the size of the subre-

gions:

vertex → cell → patch.
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They are numerically studied in detail in a previous publication [175], covering the pure dis-

placement and the mixed formulation, compressible and (nearly) incompressible material. We

only want to summarise the main conclusions here:

• All smoothers show a certain degree of sensitivity with respect to the relaxation parame-

ter ω. A value that is optimal for one configuration may lead to divergence in a different

configuration. Consequently, a proper choice of this parameter cannot be done automati-

cally and requires some experience by the user. This has to be seen as general drawback

of all considered smoothers.

• For compressible material and fairly isotropic meshes the standard Gauß-Seidel smoother

provides good results and is often the most efficient one. But as soon as mesh anisotropies

and/or incompressibility are involved it is advantageous or even necessary to switch to

one of the more sophisticated Vanka smoothers.

• The observation already made by other authors that the diagonal patch-based Vanka

smoother shows deficiencies on anisotropic meshes is clearly confirmed. But: When

the multigrid scheme is enclosed by an outer Krylov method, this effect is significantly

weakened. However, none of the presented smoothers is robust with respect to higher

aspect ratios.

• For incompressible material it is mandatory to use one of the patch-based Vanka smooth-

ers. The standard Gauß-Seidel and the cell-based Vanka smoother have to be strongly

underrelaxed and solve only very simple, isotropic configurations in reasonable time.

In this thesis we are especially interested in the performance of Vanka smoothers applied to

saddle point systems stemming from the mixed formulation in the case of nearly incompressible

material. As demonstrated in a previous publication [175], only the two patch-based variants

are efficient in this case, so we will confine our numerical tests in Section 5.2.2 to them.

5.1.4 Segregated vs. Coupled Saddle Point Solvers

We want to emphasise three major differences between segregated and coupled methods that

are important in the context of this thesis.

The first difference refers to our basic strategy of reducing the solution of multivariate systems

to the solution of a series of scalar systems (see Section 4.1). This strategy is perfectly pursued

within segregated solvers. The A block of the saddle point system is treated similarly to the

pure displacement case (see Section 4.2). For Schur complement preconditioning, additionally

the pressure mass matrix and/or the pressure Laplace matrix have to be inverted in each outer

iteration. Especially, the additional Laplace systems in case of transient computations require

a significant part of the overall work. However, this is the key capability of FEAST’s ScaRC

solvers which can tap their full potential there. Hence, the segregated saddle point solvers ben-

efit greatly from the strategy described in Section 4.1. On the other hand, the strategy cannot

be employed at all within coupled multigrid Vanka solvers which reduce the solution process
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to the successive treatment of many tiny linear systems. All the efficient solver structures of

FEAST can not be exploited at all. The tensor product property helps to efficiently build the

small systems, though, but line-wise processing of (global) matrix bands – which is decisive for

FEAST’s processor efficiency – is not possible. From this point of view, we regard multigrid

Vanka solvers as the essential (and popular) alternative to our basic strategy. Hence, a compar-

ison between the two approaches is particularly well suited to demonstrate the superiority of

our strategy.

The second difference between segregated and coupled methods is the following: The effi-

ciency of the segregated methods described in Section 5.1.1 decisively depends on the exis-

tence of suitable Schur complement preconditioners. To construct such preconditioners, it is

mandatory to exploit special properties of the underlying equation like the spectral properties

of the Schur complement operator (see Section 5.1.2). Coupled multigrid Vanka solvers, on

the other hand, do not require such deeper knowledge. Simply spoken, they ‘blindly’ solve

the local representations of the given global problem, without taking heed of the physical or

numerical properties of the equation. In the case of the Stokes-like saddle point system we

are concerned with, this is not necessarily an advantage since we actually have efficient Schur

complement preconditioners. In more complicated situations, however, like the nonsymmetric

Oseen equation (stemming from the linearisation of the Navier-Stokes equation) or finite de-

formation elasticity, efficient Schur complement preconditioners may not always be available.

Then, the coupled multigrid Vanka smoothers can indeed be superior. For a detailed discussion

of this topic in the context of the Navier-Stokes equation, see Turek [158].

The third difference between segregated and coupled methods has to be seen in the treatment

of mesh anisotropies. In the case of segregated methods, these anisotropies are exclusively

handled within the scalar ScaRC solvers that are used for preconditioning, usually by choosing

ADITriGS as scalar multigrid smoother (see Section 2.5.3.1). Hence, the outer saddle point

solver does not have to be modified. Coupled multigrid Vanka solvers, on the other hand,

are known to be inefficient for anisotropic meshes. Here, special modifications and nontrivial

enhancements are necessary to render the method more robust [17, 139, 155]. These extensions,

however, are out of the scope of this thesis.

In Section 5.2.2 we compare the two solver approaches in terms of their numerical and parallel

efficiency.

5.2 Numerical Tests

5.2.1 Comparison of Segregated Saddle Point Solvers

In this section we compare the various segregated saddle point solvers introduced in Sec-

tions 5.1.1 and 5.1.2. We are especially interested in the question whether one solution method

is clearly superior to the others. First, we specify the solvers in more detail (Section 5.2.1.1).

Then, we perform numerical tests with known analytical solutions on the simple unitsquare
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(Section 5.2.1.2). The tests are then extended to more complex real configurations (Sec-

tions 5.2.1.3, 5.2.1.5 and 5.2.1.6). For all tests in this section we use PPPLC stabilisation

(see Section 3.3.2). Furthermore, we employ the non-lumped mass matrix for Schur com-

plement preconditioning in all tests; a comparison with the lumped version is performed in

Section 5.2.1.8.

5.2.1.1 Solver Variants

To specify saddle point solvers, one has to account for different stages within the nested algo-

rithm. We distinguish between the following building blocks:

1. the basic saddle point solver for the whole 3×3 block matrix A ,

2. the solver for the 2×2 block matrix A,

3. the scalar ScaRC solver for the blocks A11 and A22,

4. the scalar ScaRC solver for diffusive and reactive preconditioning,

5. the coarse grid solvers within multigrid schemes.

It depends on the specific saddle point solver, which of these building blocks are actually

needed. For each of the five building blocks, we now list the individual solver variants that

we use for our numerical tests. Some important solver parameters are appended in parentheses

(cf. Sections 2.5.5.2 and 4.2.6):

1. We compare the following saddle point solvers:

a) PSCBiCG:

An exact pressure Schur complement solver (see equation (5.6) on page 253 and

Listing 5.2 on page 254), accelerated by replacing the basic iteration by a BiCGstab

method. When performing matrix vector multiplications with the Schur comple-

ment matrix S, the A-systems have to be solved exactly (i. e., with the same accu-

racy as the whole system) in order to obtain an accurate solution.

b) PSCRelaxBiCG:

The same solver as the previous one, using the relaxation technique (5.12) described

in Section 5.1.1.2.

c) BiCG-PSC(1):

The basic pressure Schur complement solver used as preconditioner for an outer

BiCGstab solver which is applied to the whole saddle point system. The PSC pre-

conditioner performs exactly one iteration, where it suffices to solve the A-systems

in matrix vector multiplications with the Schur complement matrix S only approx-

imately.
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d) BiCG-MG(1,V11)-PSC(1):

An extension of the previous solver, where the outer BiCGstab solver uses one

V -cycle multigrid iteration (applied to the whole saddle point system) as precondi-

tioner which is then smoothed by one step of the basic pressure Schur complement

solver.

e) BiCG-PSCMG(1,V11):

Another extension of the solver under point 1c, where the basic pressure Schur

complement solver for preconditioning is replaced by one V -cycle of a pressure

Schur complement multigrid solver (see Section 5.1.1.2) performing one pre- and

one postsmoothing step. The A-systems in the matrix vector multiplications with S

have to be solved only approximately.

f) BiCG-SCBTria:

A BiCGstab solver applied to the whole saddle point system using the block trian-

gular preconditioner SCBTria (see equation (5.10) on page 256).

g) BiCG-MG(1,V11)-SCBTria:

An extension of the previous solver, where the outer BiCGstab solver uses one

multigrid iteration (applied to the whole saddle point system) as preconditioner

which is then smoothed by the block preconditioner SCBTria.

To facilitate a fair comparison, we confine ourselves to solvers with an outer BiCGstab

scheme. This is, of course, not always necessary, especially on ‘simple’ configurations.

But from the tests in Section 4.2.7.3 we already know that in certain situations an outer

Krylov scheme is mandatory. Hence, we will perform all tests with such solvers, ac-

cepting that for ‘simple’ configurations the costs could eventually be slightly reduced

by using less complex solver schemes (e. g., MG-SCBTria instead of BiCG-MG(1,V11)-

SCBTria).

We want to emphasise again that the strategy to perform exactly one (unaccelerated) PSC

iteration for preconditioning/smoothing is actually very similar to the SCBTria approach,

such that the boundary between these two concepts blurs. The PSC approach is more

flexible than SCBTria in the following sense: Considering the (similar) solvers BiCG-

SCBTria and BiCG-PSC(1), the latter can be ‘enhanced’ by performing more precondi-

tioning iterations, e. g., BiCG-PSC(2), by using a PSC-Krlyov method as preconditioner,

e. g., BiCG-PSCBiCG(1), or by gaining digits instead of performing a fixed number of

iterations, e. g., BiCG-PSCBiCG(1e-1). In our experience, however, the total solver effi-

ciency does usually not benefit from these ‘enhancements’. On the contrary, nesting two

Krylov methods (BiCG-PSCBiCG) sometimes even results in unstable solver behaviour

(cf. Section 2.6.3). For these reasons, we consider the PSC variants listed above as the

only reasonable ones.

2. All of the described saddle point solvers need to solve subsystems with the matrix A,

either for performing the (exact or inexact) matrix vector multiplication with the Schur

complement matrix (PSC), or for preconditioning/smoothing (SCBTria). Such solvers
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are described and tested in detail in Chapter 4. In the current chapter, we mainly focus

on the outer saddle point solver, hence we do not perform as detailed comparisons of the

inner solvers for the A-systems as in Section 4.2.6. We confine ourselves to the following

solvers:

a) MG(1,V22)-Jac:

One step of a standard V -cycle multigrid solver applied to the whole A-system with

a pointwise Jacobi smoother, performing two pre- and postsmoothing steps. No

scalar subsystems have to be solved, i. e., the definition of a scalar ScaRC solver

is not necessary. The coarse grid problem is treated by a direct solver. Due to the

pointwise Jacobi smoother, the solver is only suited for isotropic grids.

b) BSor:

One application of a block SOR preconditioner. This means, that actually only

three blocks of the 2×2-block matrix A are involved, i. e., the two diagonal blocks

A11 and A22 and the lower left block A21. For the solution of the scalar subsystems

with the two diagonal matrix blocks a scalar ScaRC solver has to be defined.

c) MG(1,V11)-BSor:

One step of a V -cycle multigrid solver smoothed by the block preconditioner BSor.

In contrast to the previous scheme, the entire matrix A is treated. In contrast to

the multigrid solver under point 2a, we need scalar ScaRC solvers to treat the two

diagonal blocks A11 and A22. The coarse grid problem is solved by a direct method.

In Chapter 4 we identified the solver BiCG-MG-BSor as the most efficient one. This, how-

ever, does not mean that it is automatically best suited as subsolver within a saddle point

solver. Actually, we found that using a BiCGstab scheme for the inner A-solvers (e. g.,

BiCG-BJac/BSor and BiCG-MG(1)-BJac/BSor) rendered the outer solver unstable in

certain situations. For instance, it converged efficiently for the grid levels 3 and 5, but di-

verged on level 4. However, also for those test configurations, where the inner BiCGstab

scheme did not lead to instabilities, it did not (or only very slightly) improve the effi-

ciency of the overall solver. For these reasons, we do not use BiCGstab for the solution

of the A-systems. We want to note that similar problems occurred when using FGMRes

instead of BiCGstab, hence, this is not an option either.5 Instead of the block precondi-

tioner BSor, we also performed all tests with the block Jacobi preconditioner. The results

were similar to those for the pure displacement formulation presented in Section 4.2.7:

In the majority of all cases, BSor results in a better total arithmetic efficiency, and in the

case of some more complicated configurations (see Section 5.2.1.6), BJac even leads to

divergence while BSor is successful. Hence, we completely omit the results for BJac and

once again suggest to always use BSor instead.

5The possibly negative effect of nested Krylov solvers we already observed in the case of the scalar ScaRC solvers

in Section 2.6.3.
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3. The solvers employing BSOR preconditioners need to solve scalar subsystems. Again,

since we focus on the outer saddle point solvers here, we do not perform as detailed com-

parisons as in Chapter 2. We confine ourselves to the following 1-layer-ScaRC solvers:

a) MG(1,V22)__JAC:

In the case of isotropic grids, we use one V -cycle of a standard multigrid solver

with Jacobi smoothing and damping parameter 0.7.

b) MG(1,V22)__ADI:

In the case of anisotropic grids, we use ADITriGS smoothing and the damping para-

meter 1.0.

4. For diffusive and reactive Schur complement preconditioning, we use the same ScaRC

solvers as described under point 3.6

5. The solver algorithms described above employ multigrid schemes on different layers. We

use the following coarse grid solvers:

a) PSCBiCG(1e-1):

In the case of the saddle point solver BiCG-PSCMG, the coarse grid problem can not

be solved by a direct solver since the Schur complement matrix is only implicitly

available. Instead, we use PSCBiCG(1e-1) as iterative coarse grid solver, in which

the A-systems are solved by a direct solver. Gaining more than one digit did not

influence the outer solver behaviour in the tests we performed.

b) CG(1e-1)-JAC:

In the case of transient problems, a scalar Poisson problem with pure Neumann

boundary conditions has to be solved for reactive preconditioning. The resulting

singular system matrix can not be treated by a direct coarse grid solver. Instead,

we gain one digit with a Jacobi preconditioned CG solver, that uses the ‘shifting

technique’ described in Section 5.1.2.2 to obtain a unique solution.

c) UMFPACK:

For all the other multigrid schemes, we use a direct UMFPACK solver for treating

the coarse grid problems, either applied to the complete 3×3 system A (BiCG-MG-

SCBTria, BiCG-MG-PSC), or to the 2×2 system A (MG-Jac, MG-BSor), or to scalar

systems (all ScaRC solvers).

All multigrid solvers perform V -cycles with either one or two pre- and postsmoothing steps as

described in the list. Since this setting is constant for all tests, it is not denoted anymore from

now on. Furthermore, in most tests all the subsolvers perform exactly one iteration instead

of gaining digits. Hence, to keep the notations short, we omit the parameter ’(1)‘ in these

cases. Instead, when we gain digits, this is emphasised by the notation of, e. g., ‘(1e-1)’.

6For the non-lumped mass matrix for diffusive preconditioning, a (single-grid) Krylov solver shows level-

independent behaviour, as well, and would actually be sufficient. However, in our tests the multigrid solver

was more efficient.
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Subsolvers are denoted in square brackets. For instance, BiCG-MG-SCBTria[MG-Jac] is a

BiCGstab solver, preconditioned by one iteration of a V -cycle multigrid solver that performs

one pre- and postsmoothing step with the SCBTria smoother, which uses one iteration of a V -

cycle multigrid solver with two Jacobi pre- and postsmoothing steps for treating the A-systems.

PSCBiCG[MG(1e-8)-Jac], for instance, is a BiCGstab accelerated PSC solver for which the

A-systems are treated by a V -cycle multigrid solver with two Jacobi pre- and postsmoothing

steps that gains eight digits.

We want to emphasise that the different solver combinations contain up to three nested multi-

grid schemes: For the two saddle point solvers BiCG-MG-PSC and BiCG-MG-SCBTria a multi-

grid scheme acts on the whole 3× 3 block saddle point system, while for the solver BiCG-

PSCMG it acts on the Schur complement system, which implicitly involves all nine blocks, too.

In the next stage, the A-solvers MG-Jac and MG-BSor contain a multigrid scheme acting on the

2× 2 block system A. Then, on the third stage, the block preconditioner BSor applies scalar

ScaRC multigrid solvers to treat the two diagonal blocks. This means, that the solver BiCG-

SCBTria[BSor], for instance, applies only one multigrid scheme (to scalar subsystems), while

the solver BiCG-MG-PSC[MG-BSor], for instance, contains three nested multigrid schemes.

5.2.1.2 Tests on the Unitsquare with Analytical Solutions

We begin the numerical test series with a basic configuration, i. e., the unitsquare with a known

analytical solution. The right side of the unitsquare is set to Neumann, the other three sides to

Dirichlet boundary conditions. We use incompressible material with µ = ν = 0.5. The right

hand side is set according to the analytical functions

uuu(x1,x2) =

(
x2

1(1− x1)
22πsin(πx2)cos(πx2)

−(2x1(1− x1)
2−2x2

1(1− x1))sin2(πx2)

)
,

p(x1,x2) = sin(x1)cos(x2)+(cos(1)−1)sin(1),

(5.22)

which are also used by Bochev et al. [28]. The displacement solution is divergence free and zero

on the boundary of the unitsquare. For the solution of the A-systems we use the standard MG-

Jac solver (point 2a in Section 5.2.1.1), i. e., we do not have to employ scalar ScaRC solvers.

The outer iterations are stopped when the initial residual norm is reduced by a factor of 10−8.

At first, we want to examine the accuracy problems related to PSC-Krylov methods (cf. Sec-

tion 5.1.1.2). Figure 5.2 shows the L2 error between the exact and the computed displacement

solution for four solvers variants on different refinement levels. One can observe that the ac-

curacy of the BiCGstab-accelerated pressure Schur complement method indeed depends on the

accuracy the A-systems are solved with: When only one digit is gained (PSCBiCG[MG(1e-1)-

Jac]), the L2 error stagnates; when eight digits are gained (PSCBiCG[MG(1e-8)-Jac]), we see

the expected error reduction. Furthermore, the plot demonstrates the success of the two strate-

gies to overcome the accuracy problems (see Section 5.1.1.2): Both the relaxation technique

(PSCRelaxBiCG[MG(var)-Jac]) and using PSC as preconditioner for an outer Krylov method
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Figure 5.2: Displacement L2 error for four different PSC solvers on the analytical test configuration.

(BiCG-PSC[MG(1)-Jac]7) lead to correct solutions, despite of the (adaptively) reduced accu-

racy of the inner solves. All the other solvers that are compared in the following, obtained the

same accuracy as PSCRelaxBiCG[MG(var)-Jac], so we omit these results in Figure 5.2 for

the sake of a clearer representation. The solver PSCBiCG[MG(1e-1)-Jac] is not considered

anymore in the subsequent tests due to its inaccuracy.

In Figure 5.3 we compare the three remaining solvers from Figure 5.2 with respect to itera-

tion counts and total arithmetic efficiency (see definition (2.15) on page 58). Note that the two
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Figure 5.3: Results of the analytical tests on the unitsquare for three variants of PSC solvers. Both plots share the

colour key of Figure 5.3a.

solvers PSCBiCG[MG(1e-8)-Jac] and PSCRelaxBiCG[MG(var)-Jac] use a relative stopping

criterion for solving the A-systems, while the third solver BiCG-PSC[MG(1)-Jac] performs

exactly one iteration. One can observe in Figure 5.3a that the solvers’ behaviour is, in princi-

ple, level independent: The iteration numbers of PSCBiCG and BiCG-PSC only slightly increase,

while those of PSCRelaxBiCG exhibits slight oscillations. This is due to the fact that the relax-

ation strategy ensures the correctness of the result, though, but still can influence the conver-

gence behaviour of the outer scheme [148]. More interesting is the comparison of the actual

7The number of inner multigrid iterations (MG(1)) is denoted here only for the sake of a clear distinction. In further

tests, this notation is omitted again since it is the standard setting.
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solver costs displayed in Figure 5.3b. As expected, the solver PSCBiCG[MG(1e-8)-Jac] is the

most expensive one due to the accurate solutions of the inner A-systems for each matrix vector

multiplication with the Schur complement matrix S. The relaxation strategy reduces the costs

roughly by of factor of two, which is in line with the findings of van den Eshof et al. [166]. The

second strategy, i. e., applying a PSC method as preconditioner for an outer Krylov method,

however, achieves a cost reduction by a factor of six. We want to note that we confirmed these

cost relations between the three solvers in further numerical tests, which we do not present here.

Hence, we state that the second strategy is clearly more efficient than the relaxation strategy.

For this reason we omit the solvers PSCBiCG and PSCRelaxBiCG in all subsequent tests and

only use BiCG-PSC for further comparisons.

We now extend the tests with the analytical solutions to the other types of saddle point solvers

listed in Section 5.2.1.1, which provides a first impression how the solvers perform in com-

parison. All solvers apply exactly one iteration of the standard multigrid scheme MG-Jac to

solve the A-systems, so we omit its notation. Figure 5.4 shows the number of iterations and

the total arithmetic efficiency. As we mentioned in the beginning of Section 5.2.1, we only
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Figure 5.4: Results of the analytical tests on the unitsquare. Both plots share the colour key of Figure 5.4a.

consider the non-lumped mass matrix for Schur complement preconditioning. The correspond-

ing scalar systems are treated by one iteration of the standard 1-layer-ScaRC solver MG__JAC

described under point 3 in Section 5.2.1.1. Results for the lumped mass matrix are briefly dis-

cussed in Section 5.2.1.8. Figure 5.4a shows that the iteration numbers of the three solvers

containing multigrid schemes applied to the whole system (BiCG-MG-PSC, BiCG-PSCMG, BiCG-

MG-SCBTria) show perfectly level independent behaviour. The other two solvers that apply

multigrid schemes merely for solving subsystems (BiCG-PSC, BiCG-SCBTria) perform more

iterations and show a slight increase of iteration numbers. Nevertheless, they can still be re-

garded as generally level independent. Obviously, the amount of arithmetic work per outer it-

eration differs significantly for the various solvers, so we have to look at the actual solver costs

in Figure 5.4b. The solvers BiCG-PSC and BiCG-PSCMG are clearly the most expensive ones.

The three solvers BiCG-MG-PSC, BiCG-SCBTria and BiCG-MG-SCBTria perform best, where a

clear favourite can not be determined due to slight variations over the different refinement lev-
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els. It is interesting to observe that, when comparing BiCG-SCBTria and BiCG-MG-SCBTria,

the ‘inserted’ multigrid scheme does stabilise the iteration counts, but it does not significantly

decrease the arithmetic costs. The additional multigrid scheme within the solver BiCG-MG-PSC,

however, clearly lowers the costs compared to the solver BiCG-PSC. A comparison of BiCG-

MG-PSC and BiCG-PSCMG shows, that it seems to be more efficient to apply a multigrid solver

to the whole 3×3 saddle point system instead of to the Schur complement system.

5.2.1.3 Tests for an Isotropic Real Configuration

We now consider the more realistic BLOCK-4X2-ISO configuration with an isotropic grid (see

Figure 4.1 on page 200) using a nearly incompressible rubber material with shear modulus

µ = 8.2 MPa and Poisson ratio ν = 0.49999. We apply a vertical line force of −10 MPa.

We employ the same solvers as for the previous test in Figure 5.4. Again, we only examine

the case of the non-lumped Schur complement preconditioner, the other case is briefly treated

in Section 5.2.1.8. Comparing the iteration number for the BLOCK configuration (Figure 5.5a)
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Figure 5.5: Test results for the BLOCK-4X2-ISO configuration. Both plots share the colour key of Figure 5.5a.

with the analytical tests (Figure 5.4a), one can see that the results are qualitatively the same. The

only remarkable difference is that the solver BiCG-PSC shows clearly lower and less varying

iteration counts on the BLOCK configuration. Consequently, the solver BiCG-PSC now belongs

to the most efficient ones (see Figure 5.5b), while the efficiency of the other solvers does not

vary significantly.

5.2.1.4 Comparing Different A-Solvers

In this section we want to examine how the choice of the inner solver for the A-systems influ-

ences the behaviour of the outer schemes. We use three different configurations: the BLOCK-

4X2-ISO configuration, already employed in the previous section, the BLOCKWITHHOLES

configuration (see Figure 3.14a on page 172) with the same vertical line force of−10 MPa, and
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the RUBBERBUSHING6 configuration (see Figure 3.14d on page 172), moving the inner circle

by uuu = (−0.003 m,−0.003 m)T. For all three, we apply the same material parameters as in the

previous section.

We consider the same five saddle point solvers as in the previous section, and vary between

the three different inner A-solvers described under point 2 in Section 5.2.1.1. For the regular

BLOCK-4X2-ISO grid we use the ScaRC solver MG__JAC to solve all scalar systems, on the two

irregular grids we use MG__ADI. In order to keep the amount of data for the resulting 15 solver

combinations manageable, we present in Figure 5.6 the iteration counts and total arithmetic

efficiency for grid level 9 only, resulting in 6.30 M unknowns for BLOCK-4X2-ISO and RUB-

BERBUSHING6, and in 7.88 M unknowns for BLOCKWITHHOLES. On the two irregular grids

BLOCKWITHHOLES and RUBBERBUSHING6 (Figures 5.6c–5.6f), the A-solver MG-Jac, i. e.,

multigrid with standard Jacobi smoothing, is not efficient: The standard damping parameter of

0.7 leads to divergence, such that it has to be reduced significantly, while, at the same time, the

number of inner iterations has to be increased in order to achieve a sufficient preconditioning/-

solving effect, in summary leading to a strong increase of arithmetic work. Hence, we consider

the inner solver MG-Jac unsuitable for these irregular grids and consequently disregard it.

We can make the following observations in Figure 5.6:

• On the BLOCK-4X2-ISO configuration (Figures 5.6a and 5.6b), there is no big difference

whether to apply a multigrid solver to the whole 2× 2 block matrix A (MG-Jac), or to

the scalar subsystems A11 and A22 only (BSor) – both the number of iterations and the

total arithmetic efficiency are very close to each other, with a slight advantage for BSor.

Using both layers of multigrid (MG-BSor), decreases the number of iterations for most

saddle point solvers, though, but it leads to higher arithmetic costs in all cases but one.

Hence, we can state that the simple BSor block preconditioner is sufficient for treating

the A-systems on this isotropic configuration.

• On the RUBBERBUSHING6 configuration (Figures 5.6e and 5.6f), the situation is similar:

MG-BSor is able to decrease the iteration counts of all saddle point solvers, though, but

the simple BSor block preconditioner is still more efficient in terms of arithmetic work.

• On the BLOCKWITHHOLES configuration the situation is not so clear: Here, the MG-BSor

solver is able to lower the iteration counts even more. For the solver BiCG-BSCTria, for

instance, the number of iterations is reduced by a factor of three, while it is reduced by not

more than a factor of 1.5 on the other two grids. As a consequence, for all saddle point

solvers but one, the A-solver MG-BSor is now superior in terms of the total arithmetic

efficiency.

• From the tests in Figure 5.6, it is hardly possible to identify a favourite saddle point

solver. There seem to be certain, not fully predictable interdependencies between outer

solver, inner solver and shape/quality of the grid. For example, while the solver BiCG-

PSCMG[BSor] is by far the most expensive one on the BLOCKWITHHOLES configuration,

BiCG-PSC[MG-BSor] is the most expensive one on the RUBBERBUSHING6 configura-

tion.



5.2 Numerical Tests 283

 0

 5

 10

 15

 20

 25

BiCG-
PSC

BiCG-MG-
PSC

BiCG-
PSCMG

BiCG-
SCBTria

BiCG-MG-
SCBTria

#
 i
te

ra
ti
o

n
s

<
--

--
 s

m
a

lle
r 

is
 b

e
tt

e
r 

<
--

--

MG-Jac
BSor

MG-BSor

(a) BLOCK-4X2-ISO; number of iterations.
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(b) BLOCK-4X2-ISO; total arithmetic eff.
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(c) BLOCKWITHHOLES; number of iterations.
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(d) BLOCKWITHHOLES; total arithmetic eff.
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(e) RUBBERBUSHING6; number of iterations.
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(f) RUBBERBUSHING6; total arithmetic eff.

Figure 5.6: Comparison of three A-solvers, used in five saddle point solvers on three different grids; number of

iterations (left) and total arithmetic efficiency (right).

• The two solvers BiCG-MG-PSC and BiCG-MG-SCBTria seem to exhibit the smallest os-

cillations in terms of iteration counts and total arithmetic efficiency, but they are not

necessarily the cheapest ones. In order to obtain iteration numbers that are more or less

independent of the domain shape and the grid quality, it seems to be necessary to apply

multigrid either to the 2×2 block system A, or to the whole 3× 3 block saddle point sys-
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tem; the solvers BiCG-PSC[BSor], BiCG-SCBTria[BSor] and even BiCG-PSCMG[BSor]

show quite strong oscillations in terms of iteration counts and/or arithmetic costs.

5.2.1.5 Dependence on Mesh Anisotropies

Continuing our search for a superior saddle point solver, we increase the degree of difficulty by

introducing mesh anisotropies. We use the same material parameters as in the previous tests and

the grids BLOCK-4X2-ANISO[1,2,3] from the corresponding pure displacement tests in Sec-

tion 4.2.7.2 (see Figure 4.4 on page 206). Additionally, we use the grid BLOCK-4X2-ANISO4

which is created correspondingly, using the anisotropy factors aF = 0.0078125,aL = aI = 1.0.

The maximal element aspect ratios of the four grids are σ = 3,15,63 and 255, respectively.

We consider the same solver combinations as before, neglecting the A-solver MG-Jac which is

not applicable to anisotropic grids. All scalar systems are solved by the 1-layer-ScaRC solver

MG__ADI; those within the block preconditioner BSor with varying accuracy (see below), those

for Schur complement preconditioning always with exactly one iteration (MG__ADI). In the fol-

lowing figures the colour codes correspond to the four different grids in order to better focus

on the dependency on mesh anisotropies. The five saddle point solvers are grouped together in

one figure.

As a first test, we solve the scalar systems within the block preconditioner BSor exactly as it is

done in Section 4.2.7.2, i. e., we gain eight digits (MG(1e-8)__ADI). The resulting number of

iterations and the total arithmetic efficiency for the A-solver BSor are depicted in Figures 5.7a

and 5.7b. On the one hand, one can see that the iteration numbers of all five saddle point

solvers are independent of the degree of anisotropy (see Figure 5.7a). This means that the

difficulties resulting from such anisotropies can be – as in the case of the pure displacement

solvers in Section 4.2.7.2 – completely ‘absorbed’ by the scalar solvers. On the other hand,

the total arithmetic efficiency in Figure 5.7b shows that this approach is much too expensive

and thus not practicable. The plot also shows a dependency on the degree of anisotropy, which

exclusively results from the additive Schwarz character of the scalar solvers (for an explanation,

see the interpretation of Figure 4.12 on page 218 in Section 4.2.7.4). The decisive influence

of the scalar ScaRC solvers is confirmed in the next test, where they only gain one instead of

eight digits. One can see in Figure 5.7c, that now the numbers of iterations of the outer saddle

point solvers slightly increase with the degree of anisotropy. This is due to the fact that the

effects of the anisotropies are not completely caught by the scalar ScaRC solvers. Despite of

this increase of iteration numbers, the arithmetic costs are by far smaller than in the previous

test (compare Figure 5.7d with Figure 5.7b).

However, the arithmetic costs can be decreased even more when the scalar solver performs

exactly one iteration instead of gaining digits. Figure 5.8a shows that the number of iterations

in this case much stronger increases with the degree of anisotropy (note the logarithmic scale),

though, but the arithmetic costs are – at least for the higher degrees of anisotropy – clearly

smaller (compare Figure 5.8b with Figure 5.7d). We want to emphasise this difference between

saddle point solvers and pure displacement solvers: In Section 4.2.7.4 we found out that the
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(a) Scalar solver MG(1e-8)__ADI; number of

iterations.
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(b) Scalar solver MG(1e-8)__ADI; total

arithmetic efficiency.
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(c) Scalar solver MG(1e-1)__ADI; number of

iterations.
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(d) Scalar solver MG(1e-1)__ADI; total

arithmetic efficiency.

Figure 5.7: Dependence on mesh anisotropies; number of iterations (left) and total arithmetic efficiency (right) for

five different saddle point solvers and A-solver BSor. Note the logarithmic y-scale of the right plots.

pure displacement solvers usually perform best when the scalar solvers gain one digit. In case

of the saddle point solvers, however, we get the best results when the scalar solver performs

exactly one iteration. This holds for all tests we performed.

Comparing the five different saddle point solvers, one can see in Figure 5.8b that the solver

BiCG-PSCMG is the most expensive one. The other four solvers are close to each other, with

BiCG-SCBTria being slightly cheaper. Hence, for these configurations the additional multigrid

scheme applied to the whole 3×3 system is not necessary (compare BiCG-PSC with BiCG-MG-

PSC and BiCG-SCBTria with BiCG-MG-SCBTria).

Replacing the A-solver BSor by MG-BSor lowers the number of iterations, though, but the arith-

metic costs are still higher in most cases (compare Figure 5.8c with Figure 5.8a and Figure 5.8d

with Figure 5.8b). Hence, we can state that also for the A-solver the additional multigrid

scheme is unnecessary.

We finally want to confirm that the strong dependency of the arithmetic costs on the degree of

anisotropy is indeed due to the anisotropic refinement towards the inner subdomain boundaries.
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(a) A-solver BSor; number of iterations.
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(b) A-solver BSor; total arithmetic eff.
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(c) A-solver MG-BSor; number of iterations.
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(d) A-solver MG-BSor; total arithmetic eff.

Figure 5.8: Dependence on mesh anisotropies; number of iterations (left), total arithmetic efficiency (right) for five

different saddle point solvers and two different A-solvers; scalar solver MG(1)__ADI. Note the logarithmic y-scale.

To this end, we perform the same tests again, but the grid is now refined towards the top right

corner of the domain, denoted with BLOCK-4X2-ANISO1-TR etc. Two of the four grids are

depicted in Figure 5.9. We apply the same anisotropy factors as before, resulting in the same

(a) BLOCK-4X2-ANISO1-TR. (b) BLOCK-4X2-ANISO2-TR.

Figure 5.9: Two BLOCK configurations with anisotropic refinement towards the top right corner; level 1 depicted.

maximal element aspect ratios. Figure 5.10 shows the corresponding numbers of iterations and

the total arithmetic efficiency. Again, the costs for the A-solver MG-BSor are higher in all cases,

so we only present the results for the A-solver BSor. Comparing Figure 5.10a with Figure 5.8a,
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(a) Number of iterations.
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(b) Total arithmetic efficiency.

Figure 5.10: Dependence on mesh anisotropies towards the top right corner; number of iterations (left) and total

arithmetic efficiency (right) for five different saddle point solvers; A-solver BSor; scalar solver MG(1)__ADI.

one can see that the dependence on the degree of anisotropy is much weaker now: In the worst

case the iteration number roughly doubles, while it increased by a factor of up to seven in

case of the refinement towards the centre. The same is true for the arithmetic costs (compare

Figure 5.10b with Figure 5.8b). In general, we can observe again that the solver BiCG-PSCMG

is the most expensive one, and that the others are quite close to each other. However, we can

make one further interesting observation now: While for the first two degrees of anisotropy

the solver BiCG-SCBTria (BiCG-PSC) is slightly cheaper than the solver BiCG-MG-SCBTria

(BiCG-MG-PSC), it is the other way around for the two configurations BLOCK-4X2-ANISO3-TR

and BLOCK-4X2-ANISO4-TR. The reason is that the additional multigrid scheme sufficiently

weakens the dependency on the degree of anisotropy (e. g., on BLOCK-4X2-ANISO4-TR an

increase from 9.5 to 20 iterations for BiCG-SCBTria, but from 4 to only 5 iterations for BiCG-

MG-SCBTria). One can expect that the solver BiCG-MG-SCBTria is even more superior for

higher aspect ratios. In this sense, we can state a minor advantage for the solver using the

additional multigrid scheme.

5.2.1.6 Dependence on Geometry

In this section we compare how the five saddle point solvers’ convergence behaviour depends

on the global domain anisotropy (cf. Sections 3.2.2.1 and 4.2.4). We use the same BEAM

configurations as in the case of the pure displacement solvers in Section 4.2.7.3 (see Fig-

ure 4.6 on page 208). We increase the degree of difficulty by considering not only the three

beams with global anisotropies of L
H
= 4,16,64, but additionally the corresponding beams

with global anisotropies of L
H
= 128,256,512. We consider the isotropic refinement variants

(BEAM-4X1-ANISO4, . . ., BEAM-512X1-ANISO512) for which the number of (square-shaped)

subdomains grows with the increasing global anisotropy, and the anisotropic refinement vari-

ants (BEAM-1X1-ANISO4, . . ., BEAM-1X1-ANISO512), for which the grid always consists of

exactly one subdomain with increasing element aspect ratios. We use the same material param-
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eters as in the previous sections. The six different beams are loaded by vertical body forces of

−512,−16,−1,−0.1,−0.01 and −0.001 N
m3 , respectively. We compare the same solver vari-

ants as in the previous sections, and the outer solver gains six digits. Again we consider only

one multigrid level, i. e., level 9 for all anisotropically refined grids, resulting in 789.5 k DOF,

and varying levels for the isotropically refined grids which are listed in Table 5.1.

configuration level # DOF

BEAM-4X1-ANISO4 8 790.3 k

BEAM-16X1-ANISO16 7 793.0 k

BEAM-64X1-ANISO64 6 798.9 k

BEAM-128X1-ANISO128 6 1597.6 k

BEAM-256X1-ANISO256 5 811.1 k

BEAM-512X1-ANISO512 5 1622.1 k

Table 5.1: Grid level and number of DOF for the six isotropically refined beams used in the numerical tests.

We first examine the easier case of the isotropically refined beams in Figure 5.11. Due to the

isotropic elements, we can employ the simple ScaRC solver MG__JAC for all scalar systems,

and in addition to the two A-solvers BSor and MG-BSor used in Section 5.2.1.5, we can also

apply a standard multigrid solver with point Jacobi smoothing (MG-Jac). We can make the

following observations:

• Considering the A-solver MG-Jac first, we see that all saddle point solvers show a cer-

tain degree of dependency on the global anisotropy of the beam (see Figure 5.11a). The

solver BiCG-PSCMG exhibits the slightest variations, but nevertheless, it is the most ex-

pensive one (see Figure 5.11b). Comparing the solver BiCG-PSC with BiCG-MG-PSC and

BiCG-SCBTriawith BiCG-MG-SCBTria, one can see that the additional multigrid scheme

applied to the 3×3 system reduces the number of iterations, but increases the arithmetic

costs at the same time. It is especially interesting that the additional multigrid scheme

seems to render the overall solver costs more sensitive to the degree of anisotropy. While

the costs for the solver BiCG-PSC, for instance, increase from 1600 to 2229 (factor 1.4),

those for the solver BiCG-MG-PSC increase from 1455 to 4244 (factor 2.9). In summary,

the solver BiCG-SCBTria is the cheapest one.

• Considering now the A-solver MG-BSor (see Figures 5.11c and 5.11d), the findings for

the A-solver MG-Jac are in general confirmed. The iteration numbers of all five saddle

point solvers are smaller than for the A-solver MG-Jac, but on the other hand the costs

are clearly higher. We can state that the additional multigrid scheme on the scalar layer

in terms of the block preconditioner BSor is not necessary for these configurations.

• The most interesting observations can be made for the A-solver BSor (see Figures 5.11e

and 5.11f), i. e., the only one that does not use a multigrid scheme applied to the A-

system. The missing bars mean that the corresponding solvers did not converge within

512 iterations or even diverged. We can see that the two solvers BiCG-PSC and BiCG-

SCBTria are not able to solve the two longest beams, while the solver BiCG-PSCMG is
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(a) A-solver MG-Jac; number of iterations.
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(b) A-solver MG-Jac; total arithmetic eff.
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(c) A-solver MG-BSor; number of iterations.
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(d) A-solver MG-BSor; total arithmetic eff.
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(e) A-solver BSor; number of iterations.
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(f) A-solver BSor; total arithmetic eff.

Figure 5.11: Dependence on domain geometry for the isotropically refined beams; number of iterations (left) and

total arithmetic efficiency (right) for five different saddle point solvers and three different A-solvers; scalar solver

MG__JAC. Note the logarithmic scale of the two lower plots. All plots share the colour key of Figure 5.11b.

not able to solve the longest beam. Furthermore, the costs of these three solvers for

solving the other beam configurations are extremely high (note the logarithmic scale).

However, the two solvers containing a multigrid scheme applied to the 3×3 system can

quite robustly deal with all six beam configurations. This means, that it is mandatory to

either apply multigrid to the whole 3× 3 system, or, at least, to the A-system (see the



290 5 Multilevel Saddle Point Solvers for (Nearly) Incompressible Elasticity Problems

results for MG-BSor and MG-Jac). On the other hand, applying a multigrid scheme only

to the scalar subsystems is clearly not sufficient. A surprising result is that also the solver

BiCG-PSCMG[BSor], which applies a multigrid scheme to the Schur complement system,

fails for the longer beams.

We want to compare the arithmetic costs of the five best solver combinations directly in one

plot. Figure 5.12 shows that the solver BiCG-SCBTria[MG-Jac] is the cheapest for all six beam
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Figure 5.12: Total arithmetic efficiency of the five best solver combinations for the isotropically refined beams.

configurations. The performance of the first two solvers illustrates that the standard multigrid

solver with point Jacobi smoothing (MG-Jac) is sufficient for solving the A-systems on these

isotropically refined beam configurations. In summary, despite the slight performance differ-

ences that are visible in the figure, all five solver combinations can be regarded as efficient.

We now consider the six anisotropically refined beams, i. e., we additionally have to deal with

high element aspect ratios. For these grids, the standard multigrid solver MG-Jac is not able

to treat the A-systems, such that we only consider the A-solvers BSor and MG-BSor. For the

solution of all scalar systems we use the ScaRC solver MG__ADI. Again, the missing bars in

Figure 5.13 mean that the corresponding solver did not converge within 512 iterations or – as

in most cases – even diverged.

The most important result is that the A-solver BSor is not sufficient: Figures 5.13a and 5.13b

show that no saddle point solver is able to successfully treat the longest beam configuration, and

only two solvers can solve the second longest beam. Switching from BSor to the A-solver MG-

BSor, the number of outer iterations decreases for all cases, while the arithmetic costs increase

in some cases and decrease in other cases (see Figures 5.13c and 5.13d). The solvers BiCG-

PSCMG and BiCG-SCBTria still fail for the two longest beams, while the saddle point solver

BiCG-PSC is now able to solve at least the BEAM-1X1-ANISO256 configuration. The solvers

BiCG-MG-SCBTria is the only one that converges for all six beam configurations. Of course,

the arithmetic costs are very high, but nevertheless this result is interesting: It shows that for

this kind of geometry and mesh refinement it is actually necessary to combine three layers of

multigrid solvers. For all the previous tests, it was sufficient to use only two or even only

one multigrid solver. However, the failure of BiCG-MG-PSC for the longest beam shows that
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(d) A-solver MG-BSor; total arithmetic eff.

Figure 5.13: Dependence on domain geometry for the anisotropically refined beams; number of iterations (left)

and total arithmetic efficiency (right) for five different saddle point solvers and two different A-solvers. Note the

logarithmic scale of the plots. All plots share the colour key of Figure 5.13c.

combining three multigrid solvers might be necessary, though, but still it does not guarantee

convergence. 8

5.2.1.7 Dependence on Compressibility

In this section we briefly want to illustrate the robustness of the saddle point solvers with respect

to the degree of compressibility, and their superiority over the pure displacement solvers. We

use the BLOCK-4X2-ISO configuration on level 9 (i. e., 4.2 M DOF for the pure displacement

and 6.3 M DOF for the mixed formulation) with standard loading (see Section 5.2.1.3), shear

modulus of µ = 8.2 MPa and Poisson ratio ν varying between 0.4 and 0.5. We exemplarily

employ the pure displacement solver BiCG-MG-BSor and the saddle point solver BiCG-SCBTria

which performed best within their respective solver class on this configuration. Both solvers

8Some further tests with the solver BiCG-MG-PSC[MG-BSor], which are not presented here, showed that it con-

verges for the longest beam configuration, when the outer multigrid solver performs two smoothing steps instead

of only one. The costs, however, were nearly three times as high as for the solver BiCG-MG-SCBTria[MG-BSor].
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stop the iteration when the initial residual norm is reduced by the factor ε = 10−8. The pure

displacement solver uses the ScaRC solver MG(e-1)__ADI, while the saddle point solver uses

MG__JAC for solving the occurring scalar systems. Remember that the ADITriGS smoother

within the pure displacement solver is necessary due to the operator anisotropy induced by the

incompressibility (cf. Table 4.1 on page 195).

Figure 5.14 shows that the pure displacement solver is superior to the saddle point solver only

in the compressible case ν = 0.4. For ν = 0.48 and ν = 0.49 it performs less iterations, though
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Figure 5.14: Number of iterations (left) and total arithmetic efficiency (right) for varying values of ν; pure

displacement formulation and mixed formulation. Note the logarithmic y-scale.

(see Figure 5.14a), but it is already more expensive in terms of total arithmetic efficiency (see

Figure 5.14b). While the saddle point solver’s behaviour is nearly independent of the degree

of compressibility, the pure displacement solver’s performance degrades dramatically with ν

approaching the incompressible limit. The value of ν = 0.5 is not valid for the pure displace-

ment formulation (‘λ = ∞’), but it already fails to converge for ν = 0.49999. In order to further

emphasise the strong difference, we note that for the case ν = 0.4999 the pure displacement

solver needs 823 seconds on a four processor machine, while the saddle point solver needs 33

seconds. Absolutely, it is 25 times faster although the linear system is 1.5 times larger.

5.2.1.8 Lumped vs. Non-Lumped Mass Matrix for Diffusive Preconditioning

In all the tests above we used the non-lumped mass matrix as diffusive preconditioner. In this

section we want to compare it to the lumped mass matrix. On the one hand the lumped matrix

is a diagonal matrix and thus much cheaper to invert, on the other the general expectation is

that the preconditioning quality suffers and the number of outer iterations increases. With the

help of some selected examples we want to show that the latter is surprisingly not always the

case. Furthermore, we want to show that it depends on different factors whether the usage of

the lumped mass matrix actually lowers the total arithmetic costs.
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In Table 5.2 we present the iteration numbers and total arithmetic efficiency for selected con-

figurations and solver combinations. Better, i. e., smaller values are printed in bold face. There

#iter TAE

Configuration Solver lump. non-lump. lump. non-lump. row

BLOCK-4X2-ISO BiCG-SCBTria[MG-Jac] 11 9.5 777 847 1

BiCG-SCBTria[MG-BSor] 8 5 998 746 2

BiCG-PSC[MG-Jac] 8 6 1077 877 3

BLOCKWITHHOLES BiCG-SCBTria[BSor] 22.5 24.5 1588 2229 4

BiCG-MG-SCBTria[BSor] 7 6.5 1534 1807 5

BiCG-PSC[MG-BSor] 7 5.5 2218 1872 6

RUBBERBUSHING6 BiCG-SCBTria[BSor] 19.5 21.5 1300 1891 7

BiCG-MG-SCBTria[BSor] 5.5 4 1160 1035 8

BiCG-PSC[BSor] 19 22.5 2511 3159 9

BiCG-PSC[MG-BSor] 14 14 4366 4790 10

BEAM-1X1-ANISO4 BiCG-SCBTria[BSor] 16.5 15 1519 1741 11

BiCG-MG-PSC[BSor] 6 4.5 2887 2432 12

Table 5.2: Lumped vs. non-lumped diffusive preconditioner for selected configurations and solvers.

are basically three constellations:

1. The non-lumped mass matrix yields a smaller number of iterations and a better total

arithmetic efficiency (rows 2, 3, 6, 8, 12).

2. The non-lumped mass matrix yields a smaller number of iterations, but the total arith-

metic efficiency is worse (rows 1, 5, 11).

3. The lumped mass matrix yields a smaller (or equal) number of iterations and a better

total arithmetic efficiency (rows 4, 7, 9, 10).

We consider the first two constellations first. Since the application of the non-lumped mass

matrix is more expensive, it can only be advantageous when the iteration number is sufficiently

decreased. The lower the costs of one iteration are, the more iterations must be saved. In row 1

of Table 5.2, for instance, the decrease by 1.5 iterations is not sufficient – the lumped matrix still

results in a better total arithmetic efficiency. The decrease by 3 iterations in row 2 is sufficient.

However, also choosing another outer solver can change the situation, as a comparison of row 1

and row 3 shows. Comparing row 5 to row 6 and row 11 to row 12 shows, that such situations

also occur for other outer and inner solver combinations and other grids.

The third constellation, which occurs four times in the table, shows that one can not generally

expect that using the non-lumped mass matrix leads to a better convergence of the outer solver.9

Of course, when we obtain smaller iteration counts with the lumped mass matrix, then the

arithmetic costs of the overall solving process are smaller, as well.

9We want to note that this is not due to the fact that we only perform one iteration to ‘invert’ the non-lumped mass

matrix; inverting it more accurately (e. g., gaining eight digits) did not lower the outer iteration counts in our

tests.
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The different results in Table 5.2 show that it is hardly possible to predict whether the lumped

or the non-lumped mass matrix is more efficient for a given configuration. It depends on the

grid, on the choice of the outer and of the inner solver. An advantage of the lumped mass

matrix clearly is that it needs less storage and that no (additional) scalar solver has to be set

up. However, in the tests we performed, the convergence behaviour over several multigrid

levels was often a little bit more consistent when using the non-lumped mass matrix (results

are not presented here). Furthermore, due to our efficient ScaRC solvers, the usage of the

non-lumped mass matrix does not have a large impact on the overall solver costs. When less

robust scalar solvers were used, the lumped mass matrix might turn out to be the more efficient

preconditioner for the majority of all cases.

5.2.2 Parallel Efficiency of Segregated and Coupled Methods

In this section we want to combine the comparison of segregated and coupled Vanka-type sad-

dle point solvers with the examination of the methods’ parallel efficiency. The Vanka methods

described in Section 5.1.3 are only efficient for isotropic or mildly anisotropic meshes [175].

Hence, we confine ourselves to the BLOCK configurations which we already used to study the

parallel efficiency of the pure displacement solvers (see Figure 4.17 on page 223). In order

to examine the weak scalability of our saddle point solvers, we simultaneously increase the

number of unknowns (by increasing the number of square-shaped coarse grid elements, respec-

tively, subdomains) and the number of processors. All grids are refined ten times, such that

the six configurations range from 12.6 M DOF (4 subdomains distributed to 4 processors) to

402.7 M DOF (128 subdomains distributed to 128 processors). We use the same settings as

in the previous sections, i. e., a vertical surface load of −10 MPa and a nearly incompressible

rubber material with shear modulus µ = 8.2 MPa and Poisson ratio ν = 0.49999. For the calcu-

lations we use up to 65 dual-processor compute nodes of the LiDO cluster of the TU Dortmund

(for details, see Section 4.2.7.6).

As representatives for the segregated saddle point methods we consider four variants using

the upper block triangular Schur complement preconditioner (see equation (5.11)). We use

the non-lumped mass matrix, and all scalar systems are solved by the ScaRC solver MG__-

JAC (see point 3 in Section 5.2.1.1). On the other hand, as representatives for coupled meth-

ods we only consider the full patch-based and the diagonal patch-based Vanka smoothers (see

Section 5.1.3.2) since they are the only ones being efficient for nearly incompressible mate-

rial [175]. In detail, we compare the following solvers:

• BiCG-SCBTria[BSor]:

A BiCGstab solver, preconditioned by the upper block triangular Schur complement pre-

conditioner. The A-systems are treated by one application of the block SOR precondi-

tioner. Hence, there is one multigrid scheme involved, which is applied to scalar systems.

• BiCG-SCBTria[MG-BSor]:

The same outer solver as the previous one, but the A-systems are treated by one iteration
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of a multigrid solver smoothed by block SOR. Hence, there are two nested multigrid

schemes, one for the A-systems, and one for the scalar systems.

• BiCG-MG-SCBTria[BSor]:

A BiCGstab solver, preconditioned by one multigrid iteration, which is smoothed by

SCBTria. The A-systems are treated by one application of the block SOR preconditioner.

Hence, there are two nested multigrid schemes, one applied to the whole 3× 3-system,

and one to the scalar systems.

• BiCG-MG-SCBTria[MG-BSor]:

The same outer solver as the previous one, but the A-systems are treated by one iteration

of a multigrid solver smoothed by block SOR. Hence, there are three nested multigrid

schemes, one applied to the whole 3× 3 system, one to the 2× 2 A-systems one to the

scalar systems.

• BiCG-MG-VankaPD, BiCG-MG-VankaP:

A BiCGstab solver preconditioned by one multigrid iteration smoothed by the patch-

based diagonal (VankaPD) and the patch-based full Vanka-smoother (VankaP), respec-

tively. The relaxation parameter of the diagonal Vanka smoother is set to ω = 0.6 and

that of the full Vanka smoother to ω = 0.5. These values are optimal for the present con-

figurations, which had to be determined manually by performing some test computations.

All multigrid solvers applied to 2×2 or 3×3 systems perform one V -cycle with one pre- and

one postsmoothing step. The scalar ScaRC solvers apply one V -cycle with two pre- and two

postsmoothing steps. All solvers stop the iteration when the initial residual norm is reduced by

the factor ε = 10−6.

Figures 5.15 and 5.16 show various aspects of the parallel performance of the six solvers (cf.

Sections 4.2.7.4 and 4.2.7.6). For some metrics the values of the segregated and the coupled

methods differ so strongly that we have to separate the plots. The alternative, a logarithmic

representation, would obscure some important details. Figure 5.15b displays the deterioration

of the solver performance from 4 to 128 processors in some of these metrics, i. e., by how many

percent the value for 128 processors increased or decreased compared to the value for 4 pro-

cessors. For the metric ‘MFLOP/s/#proc’, deterioration corresponds to a decrease of the value,

for the other metrics it corresponds to an increase. We can make the following observations:

• The iteration numbers of the four block-preconditioned variants (SCBTria) are indepen-

dent of the number of sudomains, only the solver BiCG-SCBTria[MG-BSor] performs 4

instead of 4.5 iterations on the 4-processor grid (see Figure 5.15a). The total arithmetic

efficiency only slightly varies (less than 10%) for the four solvers (see Figures 5.15c

and 5.15b).10

10The total arithmetic efficiency of the two solvers BiCG-SCBTria[MG-BSor] and BiCG-MG-SCBTria[BSor] even

slightly improves which is not shown in Figure 5.15b.
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Figure 5.15: Parallel performance of six different solvers on the six BLOCK configurations displayed in

Figure 4.17 on page 223.

• The iteration numbers of the two Vanka solvers, however, increase from 5 to 6.5 (see

Figure 5.15a), and the total arithmetic efficiency deteriorates by 25% and nearly 40%

for VankaPD and VankaP, respectively (see Figures 5.15c and 5.15b). This dependence

on the number of subdomains can be explained as follows: The strength of the Vanka

smoothers comes from the multiplicative approach (block Gauß-Seidel) within each ten-

sor product subdomain, i. e., the successive processing of the four-element patches and
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Figure 5.16: Parallel performance of six different solvers on the six BLOCK configurations displayed in

Figure 4.17 on page 223.

the resulting immediate transport of information through the grid. This information

stream, however, is ‘interrupted’ at the subdomain boundaries (see the explanation in

Section 5.1.3.2). Consequently, the more subdomains the grid consists of, the more lo-

calised the information stream becomes.

• Among the segregated methods, the simplest one, BiCG-SCBTria[BSor], is most effi-

cient, followed by BiCG-MG-SCBTria[BSor] and BiCG-SCBTria[MG-BSor], which are
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quite close to each other. The most expensive one is BiCG-MG-SCBTria[MG-BSor].

This order was expected: In the previous sections we already found out that the addi-

tional multigrid schemes are only beneficial for more complicated configurations. The

isotropic block configuration, however, is a very simple one.

• For the same reason, the full Vanka smoother is clearly more expensive than the diagonal

one: The two solvers perform roughly the same number of iterations, while one itera-

tion of the full Vanka smoother is of course much more expensive (see Section 5.1.3.2).

Only on anisotropic meshes, for instance, the full Vanka smoother can be superior to the

diagonal one [175].

It is, however, interesting that the total arithmetic efficiencies of the two solvers differ by

a factor of roughly 5, while the timings differ by a factor of 1.4 only (see Figures 5.15d

and 5.16b). The reason for this can be found in Figure 5.16c: The MFLOP/s rate per

processor of the diagonal Vanka solver is about three times worse than that of the full

Vanka solver. The essential disadvantage of the Vanka smoothers is that the amount of

actual arithmetic work, i. e., solving one small system per patch, is relatively small com-

pared to the data organisation which is necessary to prepare this system, but which is not

included in our FLOP statistics: The local matrix and the local residuum corresponding

to the current patch have to be extracted from the global matrix and the global residuum,

respectively. The contributions of the previously processed patches has to be included in

the local residuum (Gauß-Seidel principle). After solving the system, the local correction

vector has to be distributed to the corresponding entries of the global solution vector. The

data organisation is the same for both Vanka variants. In case of the full Vanka smoother,

however, we have to solve a dense 19× 19 system with a direct solver, while for the

diagonal Vanka smoother we only have to perform a few vector-vector operations (see

the description in Section 5.1.3.2). Hence, the ratio of actual arithmetic work is larger for

the full Vanka smoother which thus obtains a clearly higher MFLOP/s rate.

Our implementation of the Vanka smoothers can be improved11, but even when optimally

implemented, one can not expect that they are able to obtain the MFLOP/s rates of the seg-

regated methods: Figure 5.16c shows that the MFLOP/s rate of BiCG-SCBTria[BSor] is

roughly two times as high as that of BiCG-MG-VankaP and nearly six times as high as that

of BiCG-MG-VankaPD. While the segregated methods apply FEAST’s cache-optimised

techniques (see Section 2.1.1), the inherently recursive process of the Vanka smooth-

ers, that leads to that disadvantageous ratio between data movement and data process-

ing described above, prevents the achievement of a satisfying processor efficiency. The

recursive process could be relaxed by colouring techniques, though, but even then we

11In our current Vanka implementation, the relation between global and local indices (i. e., those of the global

matrix/residuum and those of the patch-wise created local matrices/residua) is computed on the fly for each

subdomain and in each smoothing step. Although this process is already quite efficient due to the tensor product

property of the subdomain meshes, it could be even more efficient, when the necessary local/global mappings

were computed once in a preprocessing step and then stored in a corresponding data structure which could then

be accessed more efficiently in all subsequent smoothing steps. This approach would, of course, significantly

increase the storage requirements of the solver.
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do not expect the Vanka techniques to achieve the processor efficiency of the segregated

methods. Furthermore, the numerical efficiency usually suffers from such colouring tech-

niques.

• In summary, when considering the arithmetic work (Figure 5.15c) and the absolute solv-

ing times (Figure 5.15d), the segregated methods are clearly superior to the coupled

Vanka methods. The total arithmetic efficiency of the best segregated method BiCG-

SCBTria[BSor] is up to 20 times better than that of BiCG-MG-VankaP and still up to five

times better than that of BiCG-MG-VankaPD. The absolute timing differences are even

more drastic: BiCG-SCBTria[BSor] is roughly 40 times faster than BiCG-MG-VankaP

and still roughly 30 times faster than BiCG-MG-VankaPD.

• The most interesting result when comparing the four segregated methods to each other

is that their parallel efficiencies differ significantly. The solving times per iteration

in Figure 5.16b show this: While the solving time of BiCG-SCBTria[BSor] rises by

only roughly 8% from 4.3 to 4.6 seconds (also see Figure 5.15b), that of BiCG-MG-

SCBTria[MG-BSor] increases by 57% from 28.3 to 44.5 seconds. The other two solvers

lie in between. These relations are confirmed by the total runtime efficiency (multiplied

by the number of processors) displayed in Figure 5.16a.

The reason for these differences is the number of nested multigrid schemes: While

BiCG-SCBTria[BSor] applies only one multigrid scheme, BiCG-SCBTria[MG-BSor]

and BiCG-MG-SCBTria[BSor] apply two, and BiCG-MG-SCBTria[MG-BSor] even three

nested multigrid schemes. Nesting more multigrid schemes automatically means per-

forming more work on the coarser grid levels and especially performing more direct

coarse grid solves on the master process only. This results in a less favourable ratio be-

tween computation and communication (see Section 2.5.4 and also Section 4.2.7.6). As

a consequence, the MFLOP/s rates drop correspondingly (see Figures 5.16c and 5.15b):

While the MFLOP/s rate of BiCG-SCBTria[BSor] decreases by less than 8% (from 448

to 414), that of BiCG-MG-SCBTria[MG-BSor] loses 36% (from 406 to 258). The remain-

ing two segregated solvers lie in between (decrease of 19%).

This means, on more complicated configurations, where we have to combine two or even

three multigrid schemes in order to obtain a satisfying numerical efficiency (see the tests

in the previous sections), we have to accept a certain loss of parallel efficiency. For

massively parallel computations, on the other hand, this could actually even mean that

a numerically less efficient solver (e. g., involving only one multigrid scheme) is faster

(in total runtime) than a numerically more efficient solver (e. g., involving two multigrid

schemes).

• Compared to the segregated solvers, the Vanka solvers show a remarkably good ratio

between computation and communication. Both the linear solving time per iteration and

the MFLOP/s rate deteriorate by only 4 percent for Vanka-PD and by only 1 percent for

Vanka-P (see Figures 5.16b, 5.16c and 5.15b). However, this good parallel efficiency

is ‘paid’ with a loss of numerical efficiency as the increasing numbers of iterations in
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Figure 5.15a show (for an explanation, see above). Furthermore, we suppose that on the

processor numbers we tested the negative effect of increasing communication is simply

superimposed by the overall bad performance of the Vanka solvers, and that the parallel

efficiency will eventually deteriorate for a higher number of processors. The slight dete-

rioration of the time per iteration (Figure 5.16b) and of the MFLOP/s rate (Figure 5.16c)

from 64 to 128 processors might be an indicator for that. However, lacking a larger

compute cluster we are not able to verify this assumption.

• Figure 5.16d shows that the ratio the solution schemes spent in scalar ScaRC solves

ranges between 48% and 66% of the total solution time. For the relevance of this mea-

sure, see Section 4.2.7.4, page 216. The solver BiCG-SCBTria[BSor] shows a fairly

constant ScaRC ratio of about 60% for all numbers of processors. For the other solvers

the value increases more clearly (also see Figure 5.15b). This is due to the fact that these

solvers call ScaRC more often and especially on coarser grid levels, such that ScaRC

suffers disproportionately from the deteriorating ratio between communication and arith-

metic work with increasing processor numbers.

Comparing the ScaRC ratios for 4 processors with those obtained for the pure displace-

ment solvers (see Figure 4.11 on page 216 and Figure 4.12 on page 218)12, one can see

that the ratios of the latter are clearly higher (over 80% for BiCG-BSor and still nearly

70% for BiCG-MG-BSor). This is mainly due to the fact that in the case of the pure

displacement solvers we let the scalar ScaRC solvers gain one digit, while in the case

of the saddle point solvers they perform exactly one iteration. Hence, we can conclude

that saddle point solvers (as we specified them for our numerical tests) do not profit as

much from enhancements of FEAST’s scalar solver library as it is the case for the pure

displacement solvers. If we, for instance, let the scalar ScaRC solvers within the saddle

point methods also gain one digit instead of performing exactly one step, the ScaRC ra-

tio will probably improve. However, in most cases, also the amount of total arithmetic

work will increase, hence, it is questionable whether this strategy is advantageous. It is,

especially, hardly possible to decide this a priori. In the case of transient computations,

an additional scalar Laplace problem has to be solved for preconditioning the reactive

part of the Schur complement (see Section 5.1.2.2). Hence, the ScaRC ratio will clearly

improve in transient computations.

5.3 Summary and Future Work

In this chapter we described and compared various strategies to solve saddle point systems

stemming from the mixed uuu/p discretisation of linearised elasticity problems with (nearly) in-

compressible materials. Saddle point solvers can be divided into segregated and coupled meth-

ods. The segregated methods can further be divided into pressure Schur complement solvers

12In the case of the pure displacements solvers, we performed serial computations. So, a comparison with the case

of 4 processors is most appropriate.
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(PSC) and methods applying block-triangular preconditioners (SCBTria). For the simple un-

accelerated versions, the two classes in principle coincide, but there are important differences

when the methods are accelerated by means of Krylov or multigrid schemes. As representa-

tives of coupled saddle point solvers, we considered Vanka-type multigrid methods specially

adapted for the stabilised Q1/Q1 element pair.

We emphasised three crucial differences between segregated and coupled methods: While only

the former are able to exploit FEAST’s ScaRC solving techniques and do not require special

treatment of mesh anisotropies, the latter have the advantage that no Schur complement pre-

conditioners are needed, but they require non-trivial enhancements to robustly handle mesh

anisotropies.

Schur complement preconditioners for segregated methods were described for the stationary

and the transient case, taking into account the compressibility and stabilisation terms leading

to a nonzero block C in the saddle point system. We discussed the deficiency of the transient

preconditioner for small time steps, which probably results from the Q1/Q1 stabilisation.

Extensive numerical studies were performed to evaluate and compare the described techniques

to solve saddle point problems. The results can be summarised as follows:

• Of the two possibilities to overcome the accuracy problem of accelerated PSC methods,

our strategy to use such methods as preconditioner within an outer solver is superior to

the relaxation strategy.

• Among the segregated solvers, it is hardly possible to identify the best method. It depends

on the given configuration, which solver performs best. As a general rule, one can say

that for ‘simple’ configurations ‘simple’ solvers are sufficient, while more complicated

configurations require more sophisticated solvers. For example, a saddle point solver us-

ing multigrid only on the layer of scalar subsolves is efficient on ‘isotropic’ domains like

the BLOCK configuration, even for high element aspect ratios. But on strongly anisotro-

pic domains like the BEAM configuration it is mandatory to apply multigrid schemes to

the 2×2 system A or to the whole 3×3 saddle point system.

• Interestingly, the multigrid-accelerated PSC method (BiCG-PSCMG) is not efficient on

the anisotropic BEAM domains, although it also treats the whole saddle point system –

implicitly in terms of the Schur complement matrix – on all levels. Actually, the method

performs worse than BiCG-MG-PSC in all our tests. This indicates that it seems to be

more efficient to only let the smoother perform the implicit reduction to the scalar Schur

complement system and let the other components (grid transfer, coarse grid solution) act

on the 3× 3 system (BiCG-MG-PSC), than to perform the whole multigrid algorithm on

the basis of the scalar Schur complement system (BiCG-PSCMG).

• On the anisotropically refined beams (consisting of only one stretched subdomain) it even

seems to be necessary to combine all three layers of multigrid solvers (scalar system,

2× 2 system and 3× 3 system). The solver BiCG-MG-SCBTria[MG-BSor] is the only

one among the tested solvers that is able to solve all BEAM configurations. Of course,
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it is not reasonable to apply such a complex, multiply nested multigrid solver to simple

configurations. This is confirmed in the parallel tests performed on the isotropic BLOCK

configuration. The solver not only needs much more total arithmetic work compared to

simpler solver configurations, but due to the three nested multigrid schemes a relatively

large part of this work is performed on coarser grid levels. Hence, the solver especially

suffers from a bad ratio between computation and communication.

In summary, the numerical efficiency does not necessarily improve when nesting two or

more multigrid schemes, but the parallel efficiency certainly deteriorates. Hence, one

should try to use multiply nested multigrid schemes only if this is actually necessary

from a numerical point of view (e. g., on the long BEAM configurations). Of course, for

a given configuration it is usually not clear a priori which degree of solver complexity

is actually necessary (especially, when nonlinearities come into play). So, it might be

necessary to perform some initial trial tests before starting the actual simulation. If this

is not possible, one should keep in mind that a certain loss of parallel efficiency is not as

bad as a diverging solver.

• Comparing pressure Schur complement methods (PSC) and those using block-triangular

preconditioners (SCBTria), our tests seem to indicate that SCBTria methods are numeri-

cally slightly superior. Additionally, this class of methods is much simpler to incorporate

into existing solver implementations: It just has to be defined as a standalone precon-

ditioning routine that receives the 3× 3 saddle point system and a corresponding right

hand side vector. Inside the routine, all necessary subsolves etc. are performed indepen-

dently of the calling solver method. This means the outer solver does not have to take

special care of the saddle point structure, i. e. one can employ exactly the same Krylov-

or multigrid implementations as for solving the pure displacement problems described

in Chapter 4. The outer solver simply acts on a 3× 3 instead of a 2× 2 system and

calls the SCBTria preconditioner/smoother instead of, e. g., BJac or BSOR as in the pure

displacement case.

This is different for the PSC methods. They have to implicitly transform the 3×3 saddle

point system into the scalar Schur complement system. This means that, e. g., all residual

vectors, norms and matrix vector multiplications (with the only implicitly available Schur

complement matrix) have to be calculated in a special way. Hence, all the accelerated

versions PSCCG, PSCBiCGstab, PSCMG etc. have to be fully reimplemented; it is not

possible to use the existing CG, BiCGstab, MG implementations and merely exchange

the preconditioner/smoother as it is done in the case of the SCBTria approach. Roughly

speaking, the amount of code doubles such that maintenance and future extensions of the

linear solver library are correspondingly more complex, error-prone and time-consuming.

Taking additionally the accuracy problem of the accelerated PSC methods into account

which needs special care, we clearly favour the SCBTria approach.

• The question which is the best suited subsolver for the 2×2 A systems or for the scalar

systems can not be answered in general. On isotropic meshes, for example, it suffices
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to use a standard multigrid solver with point-Jacobi smoother (MG-Jac) to treat the A

systems. This solver does not need to apply scalar ScaRC schemes. Alternatively, one

can use one step of a BSOR preconditioner which applies the ScaRC solver MG__JAC

to the two blocks A11 and A22. However, as soon as mesh anisotropies are present, we

need to apply the ScaRC solver MG__ADI which has the ability to completely hide these

irregularities from the outer solvers. The standard multigrid solver with point-Jacobi

smoother can not be used to solve the A systems. Generally, we can state that – as in

the case of the pure displacement formulation – the block preconditioner BSOR is more

efficient than BJac.

For anisotropic domains like the BEAM configuration it is necessary to apply a multigrid

scheme to the A systems if there is no multigrid scheme applied to the 3× 3 saddle

point system. For example, one can either use BiCG-SCBTria[MG-BSor] or BiCG-MG-

SCBTria[BSor]. If additionally highly stretched elements are present, then even both

layers of multigrid might be necessary. Applying multigrid only to the scalar layer (e. g.,

BiCG-SCBTria[BSor]) is not sufficient.

In general, we found that it is more efficient to let the scalar solvers only perform exactly

one iteration. This is different from the pure displacement solvers in Chapter 4, where

the scalar solvers gain one digit. As a consequence, the ratio of ScaRC solving times

is smaller than in the case of pure displacement solvers. Furthermore, the solver that

was identified as most efficient for the pure displacement case (BiCG-MG-BSor) is not

well suited for solving the A systems within saddle point solvers: The total costs are in

most cases higher than for the simple MG-BSor solver, and the additional inner BiCGstab

scheme can even lead to instabilities of the outer solver in some situations.

• It depends on various factors whether the lumped or the non-lumped mass matrix for

diffusive preconditioning performs better. One cannot say that one is generally superior

to the other.

• Solvers basing on the mixed uuu/p formulation are significantly more robust than pure

displacement solvers with respect to the incompressibility of the material. Already for

values of ν > 0.48 the mixed formulation is more efficient.

• Segregated solution methods are in most aspects clearly superior to coupled Vanka-type

multigrid solvers. While the convergence rates of the latter deteriorate when the num-

ber of subdomains is increased, the numerical efficiency of the former is unaffected.

The processor efficiency of the Vanka solvers is by far worse than that of the segregated

methods: While the latter can exploit all the cache-aware implementations of the under-

lying SparseBandedBLAS library, the former suffers from the requirement to solve many

small linear systems resulting in a large overhead of data organisation. Furthermore, the

success of the Vanka-smoother highly depends on the correct choice of the relaxation

parameter, which is very sensitive with respect to various aspects as the geometry of the
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domain, mesh irregularities or operator anisotropies. The parameter has to be set manu-

ally by the user which has to be seen as a major disadvantage. The segregated solution

methods, although being quite complex, do not contain such a critical parameter.

Only the parallel efficiency (i. e., the ratio of communication and computation) of the

Vanka solvers seems to be better: While for the segregated methods the time per iteration

slightly increases with increasing number of processors, that of the Vanka solvers stays

nearly constant. However, we believe that the general bad performance of the Vanka

solvers superimposes the negative effects of the increasing communication amount, and

that with a higher number of processors these effects will be visible. Furthermore, this

seemingly good parallel performance can not outweigh the bad numerical efficiency, i. e.,

the increasing number of iterations resulting from the increasing number of subdomains.

While the total runtime of the segregated solver BiCG-SCBTria deteriorates by less than

10% from 4 to 128 processors, the total runtimes of the Vanka solvers deteriorate by

more than 30%.

Future work should concentrate on the examination of the presented solving methods in the

context of stationary nonlinear finite deformation problems on the one hand, and (linear and

nonlinear) transient simulations on the other hand. For all these problem classes the main

question is: Are the presented Schur complement preconditioners efficient, or do they need

substantial modifications?

For the transient Schur complement preconditioner, we already identified severe difficulties for

the case of small time steps, most probably a consequence of the Q1/Q1 stabilisation. It has to

be examined if this is an unavoidable problem and one has to use sufficiently large time step

sizes, or if there is a way to circumvent the occurring instabilities.

In the case of stationary linearised elasticity, it is known that the pressure mass matrix Mp

is spectrally equivalent to the Schur complement S = BTA−1B−C and is thus a good pre-

conditioner. It is, however, unclear how it performs in the nonlinear case where the spectral

equivalence is not guaranteed anymore. The choice of the constitutive law may have some

influence on the efficiency of Mp. Using the Neo-Hooke law, for example, results in a non-

symmetric saddle point system with a lower left block D 6= BT. Another typical example in

the field of solid mechanics is to use non-isotropic materials, e. g., fibre materials which react

differently across the fibres than along the fibres. For the 2D saddle point system, this means

that, e. g., the two blocks A11 and A22 have completely different properties. In such a case, it is

questionable if the use of the mass matrix as preconditioner is reasonable at all.

For the described situations it might be necessary to use completely different Schur complement

preconditioning techniques. One can draw a parallel to the field of fluid dynamics: It is well

known, that the simple diffusive Schur complement preconditioner is efficient for the (linear)

Stokes system, but not necessarily for the (nonlinear and nonsymmetric) Navier-Stokes system,

especially when the Reynolds number is large, i. e., when the convective terms dominate. This

motivated many researchers to develop alternative Schur complement preconditioning strate-

gies (see the brief overview at the beginning of Section 5.1). We want to mention one approach,
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the so called BFBt preconditioner based on the commutation of operators, which might also be

successful in the context of finite deformation elasticity. Elman et al. [66] suggest the following

Schur complement preconditioner for the case of stable systems with a zero matrix block C:

S−1 = L−1
p BT(Ml)−1A(Ml)−1BL−1

p .

The matrix Lp is the discrete pressure Laplacian and Ml is the displacement mass matrix in

lumped form. The application of this operator on a given vector means two solves of scalar

Laplace problems, two vector scalings with the inverse of the diagonal displacement mass ma-

trix and three matrix vector multiplications with B, BT and A. Elman et al. [67] provide a

version of this preconditioner for stabilised systems, which, however, is more intricate to re-

alise. The BFBt preconditioner is discussed in detail by Olshanskii and Vassilevski [119]. In

the same article, the following improved variant is introduced:

S−1 = (Ml
p)
−1BTL−1AL−1B(Ml

p)
−1.

In contrast to the first version, one now has to invert two scalar lumped pressure mass matrices

Ml
p and two displacement Laplacians L. The two preconditioning variants are analysed and

compared in detail by Olshanskii and Vassilevski [119]. For the second variant, a modification

for unstable finite elements is provided, which is easier to realise than that of Elman et al. [67].

It is given by

S−1 = (Ml
p)
−1(BTL−1AL−1B−C)(Ml

p)
−1.

One advantage of all three preconditioners is that they are composed of standard matrices that

are readily available. Hence, they are relatively easy to incorporate into existing solver libraries.

The decisive advantage, however, is that they contain the original matrix A. Thus, all proper-

ties of this matrix are ‘automatically incorporated’ into the preconditioner, which makes this

technique very attractive for nonlinear elasticity problems.

However, the preconditioners have been developed and tested with focus on the Navier-Stokes

equation. Whether they are actually efficient for elasticity problems, as well, has to be exam-

ined. To our knowledge, this has not been done yet in the literature.

The possible difficulties to construct efficient Schur complement preconditioners for segregated

solution methods in the context of nonlinear and transient elasticity problems let the coupled

Vanka methods appear more attractive again. For these methods, no Schur complement pre-

conditioners are required such that the described problems simply do not arise. Hence, despite

the deficiencies of the Vanka solvers, they might be competitive again in certain situations.

However, it it has to be examined how efficient they actually are for nonlinear and transient

problems. First experiments in the context of finite deformation elasticity presented in a previ-

ous publication [175] are promising, but more detailed studies and comparisons to segregated

solution methods are necessary.

When performing such numerical tests, it is generally difficult to decide if certain (unexpected)

effects are actually due to deficiencies of the solver/preconditioner, or if they are due to the

Q1/Q1 stabilisation. In our opinion, it is advisable to first perform such tests with a stable
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finite element pair in order to exclude these uncertainties. Then, when one knows what can be

expected, one should perform the same tests with the stabilised Q1/Q1 pair. In future work, the

solver tests we performed in this chapter also have to be repeated for a stable formulation.

To validate that FEASTsolid is in principle able to successfully treat transient, non-linear sad-

dle point problems, we present results for the benchmark test ‘CSM3’ from Turek and Hron

[159]. It is the transient version of the static ‘CSM1’ benchmark described in Section 4.3.2

(see Figure 4.22 on page 235 and Table 4.2c). The geometry of the beam, the material (ν =
0.4,µ = 0.5 MPa,ρ = 1000

kg

m3 , St. Venant-Kirchhoff constitutive law with finite deformation)

and the loading situation (vertical gravity force of g = −2 m
s2 ) are the same. We apply the

Newmark time-discretisation (see Section 3.4.1). In each time step, the resulting nonlinear

equation system is solved by a Newton-Raphson method (without line damping) that reduces

the initial residual norm by the factor 10−6. The linear systems within the Newton iteration are

solved by the block-preconditioned saddle point solver BiCG-MG-SCBTria gaining two digits.

All computations are performed on grid refinement level 7 with 793 k DOF. The time interval

is I = [0.0,10.0]; all times are given in seconds. In Figure 5.17 we display the vertical dis-

placement of the reference point AAA = (0.35 m,0.0 m) for two different time steps. Figure 5.17c
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Figure 5.17: Displacements of the point AAA = (0.35 m,0.0 m) in the course of the transient simulation.
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shows the subinterval [8.0,10.0] in more detail. The curves are qualitatively the same as those

in Turek and Hron [159]. We obtain a mean value and an amplitude of

τ = 0.02 : −0.063821±0.065788

τ = 0.01 : −0.063956±0.065809.

These values are in the range of the values calculated with the stable Q2/P1 element and 98.8 k

DOF [159]:

τ = 0.02 : −0.064371±0.064695,

τ = 0.01 : −0.064766±0.064948,

τ = 0.005 : −0.063607±0.065160.

The deformation states of the beam are exemplarily depicted for the time interval [6.1,6.8] in

Figure 5.18.
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(a) t = 6.1. (b) t = 6.2.

(c) t = 6.3. (d) t = 6.4.

(e) t = 6.5. (f) t = 6.6.

(g) t = 6.7. (h) t = 6.8.

Figure 5.18: Deformation of the BEAM configuration in the time interval [6.1,6.8]; von Mises stresses displayed.
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