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Abstract

Electromagnetic sheet metal forming (EMF) is an example of a high-speed forming process
driven by the dynamics of a coupled electromagnetic-mechanical system. Basic physical pro-
cesses involved in EMF, such as e.g. inelastic and hardening behavior or inertia, have been
considered in previous works [1, 2]. The purpose of the current work is the investigation of
temperature development during EMF and a possible reduction in the yield stress due to elec-
tric currents. While thermoelastic and viscoplastic effects are well-understood in this context
[3], the possible influence of electric currents on dislocation motion, generally referred to as the
electro-plastic effect [4, 5], is still an unresolved issue. In agreement with previous works [e.g.,
6], it is concluded here that such an effect is at most of second-order and can most likely be
safely neglected in the modeling and simulation of industrial EMF.
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1 Introduction

In electromagnetic metal forming (EMF) a strong pulsed magnetic field generated in the tool
coil adjacent to an electrically-conducting workpiece induces eddy currents in the workpiece,
which interact with the magnetic field, inducing, in turn, a Lorentz (body) force (density) in the
work-piece which drives the forming process. The entire forming process takes approximately
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100-300 ps and achieves strain-rates of up to 10* s—1. Compared to other forming methods, it
offers increased formability for certain kinds of materials, reduction in wrinkling, the possibility
of combining forming and assembly operations, reduced tool-making costs etc.. An example
of the basic experimental setup for the case of sheet metal forming is shown in Figure 1. The
time-dependent current in the tool coil shown on the right in this figure depicts the pulsed nature
of this current and, thus, of the resulting magnetic field.
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Figure 1: Electromagnetic sheet metal forming setup

The further development of EMF as an industrial forming process depends in particular on the
availability and use of reliable simulation tools for the corresponding coupled multifield prob-
lem. In particular, these must be able to deal with high strain rates ¢ > 10* s~1, large current
densities |j| > 10* A/mm?, and strong magnetic fields |b| > 10° T. In this context, we examine
possible effects in the material such as a reduction in yield stress due to temperature and/or
strong electrical currents. In the literature, the electroplastic (EP) effect has been postulated to
contribute to the behavior of metals under combined mechanical and electromagnetic loading
[7, 8]. Here, the idea is that an interaction between the electric current and dislocations may
affect the hardening behavior and, in particular, the yield stress. There has been a consid-
erable debate regarding the significance of such an effect in polycrystal metals [9]. Figure 2
shows the current density and tensile test response of an experiment performed by Okazaki et
al. [10]. In their experiment, a titanium bar with diameter d = 0.511 mm was loaded in simple
tension. As shown in Figure 2, the discharge of a capacitor bank at given times during this
loading resulted in a sudden increase in the current density and the time-correlated drop in the
yield stress. Okazaki et al. [10] showed that each of these current-density “jumps” resulted in
a temperature rise of about 12.2 K to 99.9 K, depending on the imposed current density. Since
a temperature rise of this order of magnitude implies a drop of the yield stress of about 0.4%
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and 5.0%, authors favoring the electroplastic effect concluded that the observed drops are due
to an interaction of electron movements and the moving dislocations.
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Figure 2: Experimental results of Okazaki et al. [10]. During tensile testing of a circular bar an
imposed current density results in stress drops. The current density achieved maximum values
of 4060 to 7680 A/mm? and lasted for about 60 ;s. For pulse no. the 2 tensile stress decreased
to about 70% of its original value.

Recently, Bilyk et al. [6] showed that the introduction of an EP effect is not necessary to explain
the stress drops shown in Figure 2. Bilyk et al. [6] concluded that the stress drops can be mod-
eled by an accurate modeling of viscoplastic rate effects during pulsing. The work presented
here confirms the view that the stress drops can be explained with the help of conventional
effects like Joule heating, thermal expansion, and viscoplasticity. In particular, we focus here
on thermal expansion.

2 Thermoelastic, viscoplastic model including Joule heating

The multifield material model used in the current work represents a special case of the gen-
eral continuum thermodynamic formulation of such models from Svendsen & Chanda [1] to the
formulation of models for electromagnetic thermoelastic, viscoplastic solids. In particular, this
work provides a framework for the treatment of EMF processes also accounting for the inter-
action between the electromagnetic and thermomechanical effects at large deformation. The
case of the simple tension tests mentioned above is somewhat simpler than the one of sheet
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metal forming shown in Figure 1 in the sense that the total strain is significantly smaller (=~ 5%).
According to Svendsen & Chanda [1], the magnetic field can be modeled as diffusive over the
length- and timescales of interest. In this case, Maxwell’s equations and Ohm’s law yield the
diffusive field relation

0=0b — kg, Vb 1)

for the spatial magnetic flux density b. Here, x., = oo ek represents the magnetic diffusivity,

uey the magnetic permeability, and o, the electric permittivity. (Note that all material and
modeling data can be found in Tables 2 and 3 as well as in §2). In particular, on a timescale
T, Kgy IMplies a skin depth (i.e.penetration depth of the magnetic field into the material) of 7,
= /Few7- As indicated in Table 1, for the case of titanium the skin depth is significantly larger
than the radius of the “bar” (i.e., a wire here). Consequently, the current density is in the wire.
For a long wire (i.e., [/ro > 1), (1) can be solved to obtain

Oend™

(by, by, b.)(r) = (O, 0) )

2 )
ZWTO

in cylindrical coordinates (r, ¢, z) [11]. Here I represents the imposed current, and rg the radius
of the wire. In turn, this implies a constant current density

(ys Jips () = (0,0, I /713) 3)

within the cross-section of the wire.

Next, consider the energy balance and temperature evolution in the bar. Here, the chacteristic
lengthscale is determined as usual by the thermal diffusivity ., = k,./o,c,, where k_represents
the thermal conductivity, ¢, the specific heat capacity, and p, the mass density at reference
temperature 6,. As usual, on a timescale 7 significant thermal conduction will take place on the
lengthscale /;,, = /K, 7. Since this lengthscale is much smaller than the width of the wire (see
Table 1), we are justified in assuming adiabatic conditions over the timescale of the pulses (<
100 us). Over longer timescales, of course, this is not the case. Finally, in contrast to EMF
we neglect the radially acting Lorentz force for two reasons: firstly, its magnitude is significantly
smaller than the applied mechanical loads [6] and, secondly, due to the geometric conditions
the structural response is minimal.

Lew/T0 lrw/T0
Al 5.8 x 109 4.0x 107t
Ti 2.2 x 10t 1.2 x 1071
. Uniform Adiabatic
Assumption . . .
current density | during pulsing

Table 1: Scaling relations for electromagnetic diffusion and thermal diffusion

With these simplifications the temperature is homogeneous and treated as an internal variable
(see (10); below). Consequently, the deformation £ is the only thermomechanical field, given
as usual by the weak form

/}39T5-5*+K-vs*:o @)
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for pure kinematic boundary conditions with respect to the reference configuration B, for all
corresponding test fields &,. Here, K represents the Kirchhoff stress. As usual, this latter
variable, along with the internal variables, is given by a material model. For simplicity, attention
is resticted here to the case of (isotropic) thermoelastoviscoplasticity with isotropic hardening.
Further, in the case of metals, we have small elastic strain. The relevant internal variables are
then the elastic left logarithmic stretch InV; and the accumulated inelastic strain .. On this
basis, the thermodynamic formulation being pursued here is based on specific model relations
for the referential free energy density ¢ as well as on the evolution relations for the internal vari-
ables. In particular, assuming for simplicity that the elastic behavior is not affected by inelastic
processes such as damage, the split

0,1V, &) = (0, InVe) + 4(0, 6) ®)

of the free energy into thermoelastic and inelastic parts is justified [e.g., 12]. Assuming for
simplicity that the specific heat capacity c, is constant [13] and exploiting the condition of small
elastic strain, one obtains the thermoelastic neo-Hooke form

%(9» In‘/;) = % >‘r (I : In‘/E)2 - (3)‘7" + 2:“7’) ar(e - 07“) (I : In‘/E) + %Hr(ln‘/E ’ ln‘/E)

(6)
T o [0 - 07" -0 In(e/er)]

for ¢, where \. and p, represent Lamé’s constants and «, the thermal heat expansion co-
efficient. The inelastic part ¢, is determined empirically with the help of experimental data,
as discussed in the next section. Next, consider the evolution of the internal variables and
the inelastic behavior. In the metallic polycrystalline materials of interest at low-to-moderate
homologous temperature, inelastic deformation processes are controlled predominantly by the
activation of dislocation glide on glide systems (e.g., [14]), even at higher strain-rates. As such,
higher homologous temperatures are required for other mechanisms such as dislocation climb
or even dynamic recrystallization to activate. Resistance to dislocation glide arises due to ex-
tended obstacles generating longer-range stress fields related in the phenomenological context
to hardening behavior. In addition, such resistance is caused by short-range local obstacles
which can be overcome by thermal fluctuation under the action of local effective stress, repre-
sented in the current phenomenological context by |dev(K)| + ¢, — 0.4(#), where

_§P = 17/)7 € (7)
represents the static contribution to the flow stress (in shear). On this basis,
dev(K)| +¢
Op

represents an activation function or non-dimensional overstress in the current rate-dependent
context. Here, o, represents the dynamic drag contribution to the effective flow stress in the
system. On this basis, a power-law approximation of the more exact transition-state-based
micromechanical relations for the kinetics of dislocation glide leads to the power-law form

_ k0 mp+l
6= 2R ©
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upon which the evolution of the internal variables is based. Here, ~, represents a characteristic
strain-rate, (z) = % (x +|z|) the MaCauley bracket, and m,, the strain-rate exponent. In general,
these will be functions of temperature and rate of deformation; here, we treat them for simplicity
as constants. This potential determines as usual the forms

NV, = -6 —sgn(dev(K)) &, (K 70),
¢ e <fp>mp (fP > O) s (10)

0 = o7t Hw, + o5 det(F) 5 - 5} :

€ 6

for the evolution of the internal variables. Here, w, represents the rate of mechanical heating
and o517 - j the electromotive power.

Now, for the case of incompressible material behavior, we assume that the isotropic forms of
the viscoplastic parameters ~,, o,, and m, are independent of the trace I - D of the rate of
deformation. In this case, the thermoelastic form

K = 11[), InVg = {)\T (I ’ In‘/E) - (3>‘r + 2#7") ar(e - 97‘)}1 + ,u,,anE (11)
for the Kirchhoff stress holds from (6). In addition,
Wy = % 0 (o) — (B, + 241,) , 6 Indet(F) (12)

then follows for the referential form of the mechanical heating rate.

This completes the basic model formulation. The detailed algorithmic formulation and numer-
ical implementation of the finite-element-model has been presented in Stiemer et al. [2]. In
particular, note that the time-step size for tensile test simulation has to be chosen according
to the particular time scale where changes of internal variables are to be expected. During
current pulses the time-step size was chosen to be 1078 s. Otherwise, much larger step sizes
on the order of 10° s were chosen. The time integration of the velocity and acceleration fields
was carried out using Newmark’s method. Numerical damping was applied during pulsing and
afterwards in order to avoid unphysical oscillations.

3 Application to metal bars subject to pulsed currents and simple
tension

In this section, the current model is applied to the tensile tests with pulsed electric currents. To
this end, we specify the semi-analytical form

€ n
—Sp = w, e ~ 0 (1 + E_P) ) (13)
0

for the strain hardening due to energy storage, with
Oro = 0rgp (1 — wim(® — 6,)) (14)

of the initial static flow stress, o, being the initial flow stress at reference temperature 6,.
The parameter wr, mediates the reduction of the initial flow stress due to an increase of the
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temperature. Table 2 summarizes the material parameters characterizing the inelastic material
behavior. For titanium, the parameters in (13) were obtained from Bilyk et al. [6]. In particular,
wrwms Yer Op, @Nd m,, were fitted to the model data also provided in Bilyk et al. [6]. For aluminum,
the tensile test data were used for the strain hardening fit. Table 3 lists the remaining material
parameter values needed.

Ocor € n Wrm Yo Op mp
MPa - - K-t st MPa -
Al [ 35%x101 [ 20x103|19%x101|14%x103|10x10%|5.0x10° | 4.0 x 10°

Ti|17%x10%2 | 20x103|15%x101|87x%x10%|10x10%|4.0x10° | 4.0 x 10°

Table 2: Inelastic parameters

Ar Iy o, o, Cr k,
MPa MPa K1 kgm=2 |ms 2K |JsIm1lK?
Al | 50x10% | 26x10% | 23x107° | 2.7x10% | 9.2 x 108 2.4 x 10?
Ti | 85x10% | 44 x10% | 86 x10°%|45x10% | 5.2 x 108 2.2 x 10t

Table 3: Thermoelastic parameters
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Figure 3: Current pulse applied to a titanium bar undergoing simple tension. Left: Development
of the zz-component of the Cauchy stress simulated with a thermoelastic, viscoplastic model
(rate-dependent: solid line) and a thermoelastic, elastoplastic model (rate-independent: dashed
line). Right: Temperature rise from Joule heating during the current pulse starting at ¢ = 200s

Next, consider the results in Figure 3 for the case of a current pulse applied to a titanium bar
undergoing simple tension in the z-direction. At the time of the pulse (¢ = 200 s), Joule heating
results in a temperature rise from 301 K to 363 K in 60 us. The slight temperature rise of 3
K before the pulse is due to mechanical dissipation. In the left part of Figure 3, the change
in the zz-component of the Cauchy stress T = J 1K as a function of time is shown. As can
be seen, the current pulse results in a reduction of this component. In addition, both the rate-
dependent and rate-independent cases show this change. In contrast to the work of Bilyk et
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al. [6], we claim that not the rate effect, but rather the thermal expansion effect is crucial to
correctly model the observed stress drop.
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Figure 4. Rate of change of the accumulated inelastic strain as a function of time during
pulsing. Left: The current pulse at 200 s forces the stress state below the activation threshold,
resulting in ¢, = 0. Right: Variation in time of ¢, starting at ¢ = 200 s (note the difference in

timescale)

To delve into this in more detail, consider the results in Figure 4 for the rate of the accumulated
inelastic strain ¢, as well as the rate of ¢. = |dev(InV;)|, representing the norm of the deviatoric
part of the left logarithmic stretch tensor. As soon as the temperature rises, the spherical part
sph(InV;) of InV; increases (see (11)). Conversely, the deviatoric part and, hence, ¢. decreases.
Accordingly, since |dev(K)| = 2u¢., the activation stress (9) decreases and elastic unloading
can be observed. The drop of ¢, to zero takes place within 60 us (see Figure 4 right). Af-
terwards, the tensile testing machine continues to load the specimen in the elastic domain for
several seconds until the inelastic flow is reactivated. As shown, in this range, ¢, = 0.
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Figure 5: Simulated stress drop in aluminum due to Joule heating during simple tension. Left:
Change of T,, with time. Right: Blow-up of the stress drop region in time
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Such testing has also been carried out for technically pure aluminum (e.g.Al99,5 or AA1000
series). As all experimental conditions are the same as for the tests with titanium, the particular
material characteristics of aluminum are the reason for a smaller stress drop. In particular, for
the same geometry and imposed current I, j as given by (3) is the same for both materials.
Since the contribution to  from Joule heating is given by det(F) j - j/(o,¢,0,) from (10)3 any
difference between the two materials is due to the magnitude of g, c,0,,. The parameter values
in Table 3 imply that the heat capacity per unit volume g, ¢, is comparable in aluminum and
titanium. On the other hand, ¢/} = 3.8 x 107 Ohm~! m~! and ¢! = 2.6 x 108 Ohm~—1 m1.
Consequently, ¢! > ¢!, and it is clear why the temperature rise in aluminum (6 K) is much
smaller than that in titanium (50 K). Via the thermoelastic coupling in (11), then, this difference
in temperature increase is reflected in the respective stress drops, i.e.60 MPa for titanium and
6 MPa for aluminum (Figure 5).

4 Conclusions

For the typical timescales, imposed current densities and materials generally relevant for EMF
processes load drops during tensile testing are observed. For titanium and aluminum it was
shown that the magnitude of the load drops can be modeled without postulating a direct in-
teraction between electron and dislocation movement. The modeling of experimental results
indicate that conventional effects such as Joule heating and thermal expansion are able to ex-
plain the experimental observations quite well. Such an interation, if it exists, can be considered
to be of second order.
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