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Abstract 

A new electromagnetism module is being developed in LS-DYNA for coupled 
mechanical/thermal/electromagnetic simulations. One of the main applications of this 
module is Electromagnetic Metal Forming. The electromagnetic fields are solved using a 
Finite Element Method for the conductors coupled with a Boundary Element Method for 
the surrounding air/insulators. Both methods use elements based on discrete differential 
forms for improved accuracy. The physics, numerical methods and capabilities of this new 
module are presented in detail as well as its coupling with the mechanical and thermal 
solvers of LS-DYNA. This module is then illustrated on an Electromagnetic Metal Forming 
case. 
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1 Introduction 

LS-DYNA is a highly advanced general-purpose nonlinear finite element program that is 
capable of simulating complex real world problems. The distributed memory solver 
provides very short turn-around times on Unix, Linux and Windows clusters. The major 
development goal of Livermore Software Technology Corporation (LSTC) is to provide 
within LS-DYNA capabilities to seamlessly solve problems that require multi-physics, 
multiple-stages, and multi-processing. LS-DYNA is suitable to investigate phenomena that 
involve large deformations, sophisticated material models and complex contact conditions 
[1]. LS-DYNA allows running an analysis explicitly or implicitly and combining different 
disciplines such as coupled thermal analysis, fluid dynamics, fluid-structure interaction, 
SPH (smooth Particle Hydrodynamics), EFG (Element Free Galerkin). The analysis 
capabilities also include nonlinear dynamics, rigid body dynamics, quasi-static 
simulations, normal modes, eigenvalue analysis, Eulerian capabilities, ALE (Arbitrary 
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Lagrangian Eulerian), failure analysis, implicit spring back, adaptive re-meshing, 2D and 
3D formulations. LSTC provides additional software packages for pre- and post- 
processing as well as for optimization. Metal forming is one of LS-DYNA’s main 
applications, with capabilities that allow one to simulate rolling, extrusion, forging, casting, 
spinning, ironing, super-plastic forming, sheet metal stamping, profile rolling, deep 
drawing, hydro-forming, multi-stage processing, spring back, hemming.  

An electromagnetism (EM) module is under development in LS-DYNA in order to 
perform coupled mechanical/thermal/electromagnetic simulations [2]. Electromagnetic 
Metal Forming (EMF) is the main application of this development, but other processes 
could be simulated, where magnetic pressure induces mechanical stress and 
deformations and/or the Joule effect induces a heating process: magnetic metal cutting, 
magnetic metal welding, very high magnetic pressure generation, rail-gun type apparatus, 
computation of the stresses and deformations in various coils, magnetic flux compression, 
induced heating and so forth. This module allows us to introduce some source electrical 
currents into solid conductors, and to compute the associated magnetic field, electric field, 
as well as induced currents. These fields are computed by solving the Maxwell equations 
in the eddy-current approximation. The Maxwell equations are solved using a Finite 
Element Method (FEM) [3] for the solid conductors coupled with a Boundary Element 
Method (BEM) [4] for the surrounding air (or insulators). Both the FEM and the BEM are 
based on discrete differential forms (Nedelec-like elements [5]). 

In the first part, the EM module will be presented, the FEM part, the BEM part, and 
the coupling with external circuits. In a second part, the coupling of the EM module with 
the rest of LS-DYNA, and in particular with the mechanical and thermal modules will be 
presented. In the third part, one EMF example is presented. 

2 Presentation of the Electromagnetism module 

2.1 Scalar Potential and Modified Vector Potential Formulation 

Let Ω be a set of multiply connected conducting regions. The surrounding insulator 

exterior regions will be called Ωe. The boundary between Ω and Ωe is called Γ, and the 

(artificial) boundary on Ω at the end of the meshing region (hence where the conductors 

are connected to an external circuit) is called Γc. In the following, we will denote n
r

 as the 

outward normal to surfaces Γ or Γc. The electrical conductivity, permeability and 

permittivity are called σ, μ and ε respectively. In Ωe, we have σ = 0 and μ = μ0.  
The Maxwell equations read: 
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Sj E jσ= +
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WhereE
r

 is the electric field, B
r

 the magnetic flux density, j
r

the total current density, 

and j
S

r
 is a source current density. 

We consider good enough conductors with low frequency varying fields such that the 

condition
E

E
t

ε σ∂
∂

r
r

pp  is satisfied. This is called the low frequency or eddy-current 

approximation, and is very well satisfied in EMF experiments. We thus neglect the second 

term of the right hand side of equation (2). The divergence condition (3) allows writing B
r

 

as B A= ∇ ×
r rr

 where we introduced the magnetic vector potential A
r

 [6]. Equation (1) then 

implies that the electric field is given by 
A

E
t

φ ∂
= −∇ −

∂

r
r r

 where φ  is the electric scalar 

potential. We use the Gauge condition 0Aσ∇ • =
r

 which allows a separation of the vector 
potential from the scalar potential in the equations. The Maxwell equations in terms of the 
2 potentials then read: 
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With the boundary conditions: 
 

0n φ• ∇ =
rr

 on Γ  (9) 

cφ φ=  on Γc  (10) 

 
And 

 

en A A× ∇ × =
r rrr

 on Γ  (11) 

cn A A× =
rr

 on Γ  (12) 

 
Equation (10) allows the connection of the conductors to a voltage source and 

equation (12) to a current source, although we will show in the following that the 
connection with a current source can also be done through the BEM part of the system, 
allowing more flexibility when using conductors with non trivial topologies. 
Once the potentials are computed, the electromagnetic fields are given by: 

 

A
E

t
φ ∂

= −∇ −
∂

r
r r

 (13) 

B A= ∇ ×
r rr

  (14) 
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Sj E jσ= +
r r r

  (15) 

2.2 Finite Element Method 

Equations (7) and (8) are solved in the conductors with a Finite Element Method using a 
library called “FEMSTER” developed at the Lawrence Livermore National Laboratories [7]. 
FEMSTER provides discrete numerical implementations of the concepts from differential 
forms (often referred as Nedelec elements)[8][9]. These include in particular the exterior 
derivatives gradient, curl and divergence, and also the div-grad, curl-curl and grad-div 
operators. FEMSTER provides four forms of basis functions, called 0-forms, 1-forms, 2-
forms and 3-forms, defined on hexahedra, tetrahedra and prisms. At this time, only 
hexahedral elements are available in the EM module of LS-DYNA. The two other types 
will soon be available. 

0-forms are continuous scalar basis functions that have a well defined gradient, the 
gradient of a 0-form being a 1-form. At first order, the degrees of freedom associated with 
a 0-form are the values of the scalar field at the nodes of the mesh. In our particular case, 

the 0-forms are used for the discretization of the scalar potential φ. 
1-forms are vector basis functions with continuous tangential components but 

discontinuous normal components. They have a well defined curl, the curl of a 1-form 
being a 2-form. At first order, the degrees of freedom of a 1-form are its line integrals 

along the edges of the mesh. They are used for the discretization of the electric field E
r

, 

the magnetic field H
r

and the vector potential A
r

. 
2-forms are vector basis functions with continuous normal components across 

elements but discontinuous tangential components. They have a well defined divergence, 
the divergence of a 2-form being a 3-form. At first order, the degrees of freedom of a 2-
form are its fluxes across all the facets of the mesh. They are used for the discretization of 

the magnetic flux densityB
r

, and the current density j
r

. 

Finally, the 3-forms are discontinuous scalar basis functions which can’t be 
differentiated. Their degrees of freedom at first order are their integrals over the elements 
of the mesh. 

These basis functions define spaces with an exact representation in the De-Rham 
sequence [7]. They also exactly satisfy numerically relations such as curl (grad)=0 or 
div(curl)=0, which are very important for conservation laws when solving the systems [10]. 
At first order, they allow one to solve partial differential equation at an integrated “Stokes 
theorem” level which proves to be very efficient and accurate, even on low density 
meshes, compared to using vector basis functions [10].  

We will denote 0W , 1W
r

, 2W
r

, and 3W  as the basis functions associated respectively 
with the 0, 1, 2, and 3-forms. Equation (7) is projected against 0-forms basis functions and 
equation (8) against 1-forms to give, after using the appropriate Greens vector identities 
and the boundary conditions (9) - (12) [10]. 
 

0 0W dσ φ
Ω
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r r
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Or equivalently after decomposing A
r

 and φ  respectively on the 0-form and 1-form 

basis functions: 
 

0( ) 0S σ ϕ =   (18) 

1 1 011
( ) ( ) ( )

da
M S a D Sa

dt
σ σ ϕ

μ
+ = − +   (19) 

 

Where we introduced the 0-form stiffness matrix 0S , the 1-form mass matrix 1M , the 

1-form stiffness matrix 1S  and the 0-1 form derivative matrix 01D [10]. The last term of 
equation (19) which involves the “outside matrix stiffness” S is computed using a 
Boundary Element Method.  

2.3 Boundary Element Method 

In order to compute Sa , an intermediate variable “surface current” k
r

is introduced. This 

surface current, defined on the boundary Γ is such that it produces the same vector 

potential (and thusB
r

field) in the exterior regions Ωe as the actual volume current flowing 
through the conductors [11]: 
 

0 1
( ) ( )

4 | |
A x k y dy

x y

μ
π Γ

= ∫
−

r r
 for all ex ∈ Ω  (and in particular for all x ∈ Γ )  (20) 

 
One then has: 
 

3

10 0[ ( )]( ) ( ) [( ) ( )]
2 4 | |

n A x k x n x y k y dy
x y

μ μ

π Γ
× ∇ × = − × − ×∫

−

r r rrr r r r
 for 0x x→ ∈ Γ   (21) 

 

When projecting these equations on the 1-forms basis functions for A
r

 and the 

“twisted” 1-forms 1 1( ) ( )V x n W x= ×
r rr

 for k
r

one gets the following matrix equations: 

 
Pk Da=   (22) 

S DSa Qk Q k Q k= ≡ +   (23) 

 
Where we introduced the BEM matrices 
 

1 1
,

10 ( ) ( )
4 | |x y

i j i j x yP V x V y d d
x y

μ

π Γ Γ
= • Γ Γ∫∫

−

r r
, 1 1

, ( ) ( )
x

i j i j xD V x W x d
Γ

= • Γ∫
r r

  (24) 

1 1
,

1
( ) ( )

2 x

Si j i j xQ W x V x d
Γ
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r r
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1 1
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1 1
( ) { [( ) ( )]}

4 | |x y

Di j i x j x yQ W x n x y V y d d
x yπ Γ Γ

= − • × − × Γ Γ∫∫
−

r rr r r
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The BEM method is very appealing since it does not need a mesh in the air 

surrounding the conductors. It thus avoids the meshing problems associated with the air, 
which can be significant for complicated conductor geometries. Also, for very small gaps 
between conductors, an air mesh could include a large number of very small and distorted 
elements. Even more importantly, the BEM avoid remeshing problems which arise when 
using an air mesh around moving conductors. Another advantage of the BEM is that it 
does not need the introduction of somewhat artificial infinite boundary conditions. 

The main disadvantage of the BEM is that it generates full dense matrices like P  

and DQ  (24,25) in place of the sparse FEM matrices. This causes a-priori high memory 

requirement as well as longer CPU time to assemble the matrices and solve the linear 
systems. In order to limit the memory requirement, a domain decomposition is done on 
the BEM mesh, which splits the BEM matrices into sub-blocks. On the non-diagonal sub-
blocks, a low rank approximation based on a rank revealing QR decomposition is 
performed. For sub-blocks corresponding to far away domains, the rank can be 
significantly smaller than the size of the sub-block, thus reducing the storage of the sub-
block. We typically see reductions of by factors around 20 between the full dense matrix 
and the block matrix with low rank approximations. This low rank approximation also 
speeds up the matrix * vector operation used intensively in the iterative method to solve 
the BEM system (22). This method still needs the assembly of the full sub-blocks before 
doing the low rank approximation, generating a time consuming assembly process. We 
currently are working on methods generating directly the low rank approximations of the 
sub-blocks.  

The matrices P  and DQ  (24-25b) become singular or nearly singular as x y→ , i.e. 

for self face integrals or integrals over neighbour faces with a common edge or a common 
node. Special methods have been included such as the ones described in [12] and [13]. 
These methods also allow more accurate integration on inhomogeneous faces, i.e. faces 
with large aspect ratio. 

2.4 Divergence free surface current, connection with external circuits 

The surface current k
r

is an equivalent boundary current to the actual volume current 
through the volume of the conductor and needs to be divergence free [11]. However, the 

twisted 1-forms basis functions 1V
r

do not satisfy this divergence free constraint. We first 
added it as an external constraint to the BEM system (22). More recently, we introduced 
the so called “loop-star” solenoidal-irrotational decomposition into the divergence free 
“loop” basis functions and the rest [14] [15]. At first order, a twisted 1-form associated with 
a surface edge represents a surface current flowing across the edge, i.e. with a unit 
surface flux across the edge and a zero surface flux across all the other surface edges. A 
loop basis function associated with a node can be seen as a linear combination with 
coefficients +1 or -1 of 1-forms associated with all the edges originating from the node, so 
that it represents a (divergence-free) current flowing around the node. One can show that 
when using first order basis functions, the loop basis function associated with all the 
nodes of the surface mesh (except one) form a complete basis of the divergence free 
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currents for topologically simple conductors [14]. For non simple conductors, i.e. 
containing holes or “handles”, a few extra non-local basis functions that we call “global 
currents” need to be added. For example in the case of a torus, two extra global currents 
need to be added, one corresponding to a current flowing in the toroidal direction, and one 
corresponding to a current flowing in the poloidal direction.  

An algorithm based on the construction of a spanning tree on the surface mesh has 
been developed to automatically count the number of connected part, get their topologies 
by computing the “Betti numbers” [16], and in particular the number of global currents and 
then set the global current basis functions as linear combinations of the 1-form basis 
functions. The degrees of freedom associated with the global currents are used to impose 
current vs time constraints as a simple dirichlet constraint in the BEM system (one 
dirichlet constraint per imposed current). This method allows imposing currents in 
geometries where more traditional methods using dirichlet conditions on the FEM system 
(12) would require the introduction of cuts and/or multi-valued degrees of freedom. The 
above mentioned toroidal current in a torus is such an example. The use of loop and 
global current basis functions also gives an easy way to compute the self and mutual 
inductances, by solving BEM systems (22) with simple dirichlet constraints. In this 
manner, the conductors can be connected to a current source, a voltage source, or an 
R,L,C circuit. 

2.5 Global integration scheme 

The time integration of the FEM system (19) is done using an implicit backward euler 
method [10]: 
 

1 1 1 1 01 1 11
[ ( ) ( )] ( ) ( )t t t tM dtS a M a dtD dtSaσ σ σ ϕ

μ
+ + ++ = − +   (26) 

 

The BEM part of the right hand side 1tdtSa +  also is implicit which proved to 
substantially improve the stability, thus allowing larger time steps. It is computed by 
solving the BEM system (22) (23) coupled with the FEM system (19) in an iterative way: 
 

1 1
1

t t
n nPk Da+ +

+ =   (27) 

1 1 1 1 01 1 1
1 1

1
[ ( ) ( )] ( ) ( )t t t t

n nM dtS a M a dtD dtQkσ σ σ ϕ
μ

+ + +
+ ++ = − +   (28) 

 

Until convergence on both 1t
nk +  and 1t

na + . 

The FEM System (28) is solved using a direct solver. The BEM system (27) is 
solved using a pre-conditioned gradient method. The diagonal of the matrix has been 
used as a pre-conditioner. More recently, the diagonal block has been used instead [17], 
with significant reduction in the number of required iterations (typically by a factor between 
1.5 and 3).  

91



3rd International Conference on High Speed Forming – 2008 
 
 

  

3 Coupling of the EM module with LS-DYNA 

3.1 Mechanical solver 

Once the EM fields have been computed, the Lorentz force F j B= ×
r r v

 is evaluated at the 

nodes and added to the mechanical solver. The mechanical and electromagnetic solvers 
each have their own time step. For a typical EMF simulation, the mechanical time step is 
about 10 times smaller than the electromagnetic one. At this time, the explicit mechanical 
solver of LS-DYNA is used when coupled with electromagnetism. The mechanical module 
computes the deformation of the conductors and the new geometry is used to compute 
the EM fields in a Lagrangian way. 

Since the EM module is fully integrated in LS-DYNA, all the material models are 
available. LS-DYNA provides more than 130 metallic and non-metallic material models, 
many of them equipped with failure criteria, such as metals, plastics, visco-elastic, elasto-
viscoplastic, glass, foam, elastomers and rubbers. Included also are strain rate and 
temperature dependant plasticity models such as Johnson-Cook [18], Zerilli-Armstrong 
[19] or Steinberg [20] models, which are particularly suitable for high speed forming 
simulations. Numerous equations of state are also available. These models can be used 
on an extensive element library with both under-integrated and fully-integrated element 
formulations. It includes different solid elements, thick shells, different 3- and 4-node 
shells and beams. At this time, the EM module is only available on solid elements. It 
should soon be extended to shells with appropriate treatment of the diffusion of the EM 
fields. 

Finally, efficient contact algorithms have been developed for the mechanical solver, 
and over 25 different contact options are available. At this time, the contact purely is 
mechanical and thermal, not electromagnetic, i.e. a current can not flow from one 
conductor to another if they come in contact during the simulation. This will be added as 
well as an electromagnetic sliding contact capability, necessary for rail-gun applications. 

3.2 Thermal solver 

The Joule heating term 
2j

σρ
 is added to the thermal solver allowing to update the 

temperature. Several thermal models are available, isotropic, orthotropic, isotropic with 
phase change and so forth. The temperature can be used in turn in an electromagnetic 

equation of state to update the electromagnetic parameters, mainly the conductivity σ. At 
this time, a Burgess model [21] has been introduced. 

3.3 Input-output 

Electromagnetic cards have been added to the standard LS-DYNA card list used to create 
the input deck. The LS-PREPOST software can be used to visualize the electromagnetic 
fields - current density, electric field, magnetic flux density, Lorentz force, joule heating, 
conductivity, surface current - in the same environment as the mechanical and thermal 
fields. These include fringe component, iso-contour, vector plots at a given time, and also 
time histories on chosen elements. 
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4 Presentation of a typical EMF case 

We now present the electromagnetic forming of a 1 mm thick aluminum sheet on a conical 

die, with a 4.7 cm height and a 12 cm diameter. This experiment was performed at the 
Department of Mechanical Engineering, University Of Waterloo, Ontario, Canada [22]. 
The brass coil has a 10 cm diameter spiral shape with 7 turns, and a rectangular cross 
section 1 cm by 0.4 cm. A hexahedral 3D mesh was built for the coil and the workpiece, 
and shell elements were used for the die. The mesh is composed of 20736 elements for 
the coil, 32320 for the aluminium sheet, with 4 elements through the thickness, and 17220 
shells for the die. This mesh generated 23056 BEM faces, and 23163 BEM nodes (and 
hence 23163 degrees of freedom in the BEM system). Figure 1 shows the mesh at initial 

time. The experimental current, rising to around 100 kA in 50 μs was injected in the coil. 
Figure 2 shows the evolution of the shape of the plate as well as the current density in a 
cross section of the sheet. Figure 3 shows details of the rebounding of the sheet from the 
die. Figure 4 shows a comparison between the numerical and experimental final shape of 
the sheet. The final shape shows a good agreement. One can notice that the shape does 
not match the shape of the die, due to rebounding of the plate from the die and a non-
uniform magnetic pressure on the sheet, with a significantly lower pressure at the centre. 
This low pressure area is reflected in the current density plots, and is due to the shape of 
the coil.  

 

 

Figure 1: mesh of the EMF case. Only ½ of the sheet and die are represented. 
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Figure 2: 3D shape of the sheet (left, only ½ of the sheet is represented), and current 

density in a cross section of the sheet (right) at 45μs (top), 70μs (middle) and 100μs 
(bottom). The scale in the z-direction has been increased in the cross sections for better 
visibility. 

 

Figure 3: Detail of the rebounding of the sheet from the die: cross section of the sheet 

and die at 70μs (left), 100μs (middle) and 130μs (right). Fringes are of plastic strain. 

 

Figure 4: numerical (left) and experimental (right) final shape of the sheet.  
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5 Conclusion 

The newly introduced Electromagnetism module of LS-DYNA was presented. The 
electromagnetic fields are computed by solving the Maxwell equations in the eddy-current 
approximation, using a Finite Element Method for the conductors coupled with a Boundary 
Element Method for the surrounding air and insulators. Loop basis functions are used to 
represent the BEM surface current, allowing to handle the divergence free constraint as 
well as easy connection with external circuits. A 2-dimensional ax symmetric version of 
the EM module is also available.    

This module is integrated in the “ls980” version which should be released in late 
2008. In the mean time, it is available as a “beta version”. The near-term future 
developments for the EM module include new BEM assembly methods, introduction of 
tetrahedral and wedge elements, development of an Massively Parallel Processor (MPP) 
version (the rest of LS-DYNA is currently available in MPP, but the EM module only is 
serial). The planned mid-term developments include the introduction of sliding contact 
capabilities for the electromagnetism, remeshing capabilities, extension to other solvers 
(magnetostatics and so forth). Longer-term developments could include the introduction of 
magnetic materials. 
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