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Chapter 1

Introduction

1.1 Motivation

During recent years we have witnessed an explosion of information, emanating to a
great extent from electronic mass media and the Internet. Figure 1.1 visualizes the
growth of two prototypical sources of information: the number of articles publicly
available through Wikipedia1 has grown over a ten thousand times since 2001; simi-
larly, the number of scientific articles in the biomedical domain as available through
PubMed2 is also rapidly growing.

Efficient processing of the masses of information available is crucial in order to gain
benefit from the growing amount of knowledge. This includes techniques to filter the
relevant from the irrelevant and to extract desired information from unstructured
text. Natural Language Processing (NLP) aims at providing these techniques using
computerized linguistic analysis of natural language text.

Many NLP tasks can be described as classification problems, such as the catego-
rization of articles by their genre or the identification of persons’ names within
a textual document. NLP tasks are often successfully tackled by machine learning
(ML) methods that can automatically categorize new data. Therefore, training data
needs to be provided, from which the predictive classification model is learned. A
drawback of ML methods is the need for large amounts of training data in order to
learn accurate models. Such training data are textual examples to which the true
categories of interest, according to the specific task under scrutiny, are added.

The process of creating training data, i.e., adding the task-specific meta-data to the
raw examples, is known as annotation. Annotation involves human labor and is
thus a costly procedure. A human annotator needs to carefully read through the

1http://www.wikipedia.org/
2PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) is one of the major bibliographic databases

for biomedical articles and comprises more than 19 million citations (as of December 2009).

1

http://www.wikipedia.org/
http://www.ncbi.nlm.nih.gov/pubmed/
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Figure 1.1: Number of articles in Wikipedia and PubMed.

collection of raw text examples and add the meta-data, also called labels, where
necessary.

Annotation work is monotonous and arduous. Large numbers of examples have to
be worked through. Additionally, it is hard to maintain concentration when docu-
ments are only sparsely populated with relevant information, which must, however,
not be missed. Moreover, annotators often need to be domain experts in order
to fully understand the texts themselves and make informed annotation decisions.
This is especially the case in the biomedical domain, one of the major application
areas for NLP due to the large number of scientific articles published every day (cf.
Figure 1.1). The quality of training data, in terms of correctness and completeness
of the added labels, has a major impact on the overall performance of the desired
information processing solution.

As human language technology (HLT) systems based on NLP techniques are increas-
ingly used in both the scientific and industrial contexts, one can foresee a rapidly
growing demand for training data. The burden of annotation is already the major
bottleneck in the application of established NLP techniques to a variety of concrete
scenarios where information needs to be dealt with efficiently.

1.2 Resource-Aware Annotation

For a long time cost awareness has not been the focus of large-scale annotation en-
deavors. However, with an increasing number of small and medium-sized annotation
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projects with limited resources, cost awareness is increasingly being recognized as
an important issue. To speed up the creation of training data, several aspects need
to be considered, including human-computer interaction through proper user inter-
faces, rapid development of annotation guidelines, and efficient training of human
annotators. Most importantly, however, the costs of creating training data depends
on the human interaction needed to annotate the text examples.

In the “traditional” annotation setting, a collection of raw text examples is randomly
drawn from a larger pool of available documents. Annotators then work through
this collection example by example. The annotated collection may contain lots of
redundant information that is not very helpful for learning the model. On the other
hand, documents which would very efficiently increase the quality of a model may
be missed by random selection.

The annotation effort can be considerably reduced when the examples to be anno-
tated are carefully chosen. In this thesis, a selective sampling method known as
Active Learning (AL) is comprehensively studied and enhanced to meet the partic-
ular requirements of linguistic annotation. From a pool of raw text examples, AL
selects exactly those examples that it expects to be most useful for model learning.
As a result, the same level of performance can be achieved with much fewer examples
than in the standard annotation setting.

AL as an explicit strategy to reduce annotation effort is attracting increasing interest
in the NLP community. This is evidenced by the recent workshop on Active Learning
for Natural Language Processing3 and by a growing number of papers on AL4 as
shown in Figure 1.2.

This thesis especially focuses on the appropriateness of AL as a resource-aware strat-
egy for annotation of textual documents. From the human resource constraint, the
following requirements for AL as an annotation strategy to be practically applicable
to real-world annotation endeavours emerge.

Requirement 1 (Relevant Savings) The reduction of annotation effort has to
be relevant.

3This workshop was held in conjunction with the 2009 conference of the North American Chapter
of the Association for Computational Linguistics and Human Language Technologies.

4The plot shows the number of papers on AL as archived in the ACL Anthology (http://aclweb.
org/anthology-new/), a digital archive of research papers in computational linguistics where
most of the top conferences in this field host their proceedings. This plot was taken from the
slides of a talk held by Burr Settles at the above mentioned workshop (Settles, 2009a).

3
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Figure 1.2: Number of papers on AL as archived in the ACL Anthology.

Obviously, only approaches that lead to a practically relevant saving of annotation
effort, compared to the standard scenario of random selection of raw examples for
annotation, will be considered in a resource-aware annotation strategy.

Requirement 2 (Rapid Selection) Selection of raw examples to be annotated
needs to be rapid.

AL-based annotation is an iterative and interactive process. In every iteration,
a small number of raw examples are selected and handed to the human decision
maker for annotation. During selection, the annotator is idle. In consequence,
approaches to AL which have a near-optimal selection efficiency at the cost of high
computational complexity are not desirable.

Requirement 3 (Generic Approach) An AL approach is to be generic and flex-
ible so that application to a broad range of annotation scenarios is possible without
major modifications.

Approaches to AL may be subject to several configuration parameters which have to
be set according to the specific learning problem at hand. When AL is applied to a
new annotation scenario, such parameters cannot be optimized because in practise,
there is no simulation data available. In consequence, the number of configuration
parameters required for efficient selection has to be kept low. Moreover, approaches
that are extremely variant to such parameters (i.e., where suboptimal parameter
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settings easily lead to performance equal to or worse than random selection) are
inappropriate.

Requirement 4 (Monitoring and Stopping) Means to monitor the AL-driven
annotation process and support for the decision on when to stop the process are
essential in order to benefit from selective sampling.

Without such monitoring facilities, one may miss the point where annotation costs
and model performance exhibit the best trade-off. Thus, to cash in the savings
achieved by selective sampling, it is necessary to stop early.

Requirement 5 (Sample Reusability) The selected examples must not be overly
specific to the model used during annotation, so that the data obtained can also be
used to train other models.

AL selects the examples for manual annotation dependent on the model being used.
During annotation time, however, the best model might not be known – model
selection can only be performed once training data is available. Hence, the resulting
collection of training examples has to be reusable with different models. Otherwise,
for each new model to be applied, new training material would be required which is
incompatible with the human resource constraints in the annotation scenario.

Requirement 6 (Multiple Tasks) Methods are needed to select data appropriate
to multiple tasks.

Standard AL is designed to select examples for one task only. A task here refers to
a specific classification problem for which a model should be learned. Practical HLT
systems usually comprise more than one NLP task, so training data for multiple
tasks is required. Ideally, annotation for multiple tasks is done in parallel so as to
benefit from annotation synergy effects between related tasks. It should thus be
possible to select examples efficiently with respect to the multitude of tasks in order
to reduce annotation effort further.

Requirement 7 (Class Imbalance) Many data sets exhibit a skewed distribution
the classes of interest. This needs to be analyzed and, if necessary, taken into account
in the selection of examples during costly data acquisition.

5
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Standard AL assumes that all classification operations have the same impact on the
overall model performance. This constitutes an unrealistic assumption in practise
as there are often classes that are less frequent than others, while at the same time
their correct recognition may be more valuable. Learning under class imbalance has
been intensively studied by the ML community – all solutions, however, assume that
labeled data is readily available. In the AL scenario, this is not the case, so that
re-balancing of this class imbalance should be done already during AL-based data
acquisition.

Requirement 8 (Incorporation of True Annotation Effort) In addition to
the usefulness of an example, the human labor needed to annotate a given example
also has to be considered during the selection process.

The overall goal of reducing annotation costs will usually be achieved by minimizing
the amount of human labor in the process. Requirements defined above all aimed
at reducing the number of examples needed to reach a given level of performance.
However, in practise, different examples will vary as to the amount of time required
for their annotation. This fact has to be incorporated in the selection process to
avoid the selection of useful but overly expensive examples. Additionally, methods
must be established to estimate the annotation time needed for a given example.

This thesis analyzes the above mentioned requirements in detail and presents ap-
propriate approaches and modifications to the standard AL framework. Their ef-
fectiveness is empirically evaluated in the practically relevant NLP task of Named
Entity Recognition (NER) which is crucial to most HLT systems. The main objec-
tive of this thesis is to provide a comprehensive and widely applicable framework for
resource-aware linguistic annotation meeting the above mentioned requirements.

1.3 Outline

This thesis is structured as follows. Part I presents relevant background information
necessary to fully understand the thesis. In Chapter 2, we formalize and describe the
problem of classification learning in the context of supervised ML. This chapter gives
a detailed overview of the models used throughout the thesis and briefly discusses
methods to assess the performance of a learned model. Chapter 3 gives a formal
definition of AL, followed by a description of several approaches to AL as well as
utility functions. After a brief discussion of theoretical sampling complexity bounds
of AL, an overview of common fields of AL application is provided.
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In Part II, a framework for resource-aware linguistic annotation is presented. In
Chapter 4, we begin with a description of the NER task that is used in this thesis
as a sample scenario to test the proposed approaches to AL. Addressing Require-
ments 1, 2, and 3, this chapter describes the basic framework of AL for linguistic
annotation using the example of NER. This description is followed by a comprehen-
sive evaluation of its sampling complexity and efficiency. Chapter 5 addresses the
question of how the progress of AL can be monitored with the ultimate goal of finding
a good stopping point for AL-driven annotation, according to individual cost-benefit
trade-offs (Requirement 4). We present a method for approximating the progression
of the learning curve and an intrinsic stopping criterion which does not require any
parameters to be specified. A novel approach to semi-supervised AL is presented
in Chapter 6, addressing Requirement 1. It reduces the actual human annotation
effort still further by precisely pointing the annotators towards annotation-relevant
regions within the raw text examples. Chapter 7 discusses how samples obtained
by AL for a specific model can be reused by other models (Requirement 5). Sample
reusability is empirically studied in the context of several classification problems,
with the aim of identifying factors that positively or negatively influence reusability.
Finally, this chapter presents a novel method for increasing sample reusability for a
setting where the final model is not known at selection time.

Part III begins with a formalization of multi-criteria AL given in Chapter 8, an
extension of the standard AL framework allowing the incorporation of several cri-
teria into the selection process. Additionally, several approaches are proposed for
addressing selection with respect to multiple criteria. The subsequent three chapters
describe concrete instantiations of multi-criteria AL applying the proposed methods.
Chapter 9 presents an application of multi-criteria AL to the problem of selecting
examples appropriate to learning several tasks simultaneously as specified by Re-
quirement 6. The approaches are proposed and evaluated for the combination of
NER and syntactic parsing. With respect to Requirement 7, approaches to tackling
class imbalance upfront during AL-based data acquisition are presented and eval-
uated in Chapter 10. Incorporation of true annotation effort in the AL selection
process (Requirement 8) is considered in Chapter 11. We first evaluate our cost-
insensitive approaches to AL considering true annotation time, and then present
and compare methods for incorporating annotation time as a secondary criterion in
the AL selection process.

Finally, in Part IV we report on the practical application of AL for the annotation
of linguistic data. Chapter 12 describes our implementation of an integrated anno-
tation environment allowing for AL-driven annotation. This environment has been
comprehensively used to create training data for NER in biomedical and scientific
documents. Secondly, Chapter 13 reports on a survey conducted to discover the
actual usage of AL as an annotation strategy within the NLP community. The sur-
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vey outlines critical issues that need to be addressed in order to establish AL as a
widely-used annotation strategy.

Lastly, Chapter 14 summarizes the key contributions and achievements of this work
with respect to the above-mentioned requirements. The thesis ends with a discussion
of problems that are still outstanding and future work necessary to consolidate AL
as a resource-aware annotation strategy.
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Background
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Chapter 2

Supervised Machine Learning

This chapter first sketches basic principles and concepts of supervised machine learn-
ing with a focus on classification learning. This is followed by a description of com-
mon approaches to classification learning which were applied in this thesis. Finally,
methods to evaluate the performance of the learning results are presented.

2.1 Basic Concepts

The goal of machine learning (ML) is to find a function g : X → Y which maps an
observation x ∈ X to its target value y ∈ Y.

Definition 1 (Observation, Target) An observation x is an object or event ob-
served in the data. X is the set of all possible observations. The target y ∈ Y is the
outcome of a mapping and Y is the set of all possible target values.

Two types of learning problems can be distinguished depending on the target space
Y: regression learning assumes a continuous target space Y = R, classification
learning, in contrast, constitutes a mapping into a discrete and finite target set
Y = {y1, . . . , yc}. The focus of this thesis is on classification learning, only. The
target values y ∈ Y in classification learning are called classes. Binary classification
means that |Y| = 2, the classes are known as positive and negative class, and the
target set is then given by Y = {−1,+1}. In multi-class classification, |Y| > 2.

When applied to NLP tasks, the classes of interest are, for example, semantic
types. In a document classification scenario, a text document constitutes an ob-
servation x. The classes could be the language a document is written in so that
Y = {en,de, es, fr}.
Depending on the respective ML approach used, different representations of the
target function g are chosen. The actual representation of g models the particular
learning problem at hand.
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Definition 2 (Model) A model is a mathematical equation describing the relation-
ship between a dependent variable y and one or more independent variables x given
a specific target function representation and a set of free parameters θ.

A very simple model describing a linear relationship between observation x and
target value y is given by y = λx where the free parameter λ has to be fitted
according to the training data. An important step in designing a ML approach for a
specific problem is the choice of an appropriate model (Mitchell, 1997). In the next
section, several models commonly applied to problems of NLP are discussed.

While “model” refers to a class of target function representations, the term “model”
is in literature often used to refer to the fitted model, i.e., the combination of the
target function representation and the specific parameter set θ̂. We use the term
“model” in the same manner when the meaning is clear and unambiguous.

Definition 3 (Learning Algorithm) A learning algorithm T (L) is applied to es-
timate the model parameters θ = (λ1, . . . , λk) from the training data L. Parameter
estimation constitutes the actual learning step.

There are several learning paradigms including supervised learning as one of the
most important ones. Under the supervised learning paradigm, the parameters θ
are estimated with respect to the training set L containing so-called labeled exam-
ples, i.e., tuples (x, y), so that L = {(xi, yi)}mi=1. Learning here means searching
through the parameter space Θ ⊂ Rk to find the parameter set θ∗ which best fits
the knowledge given by L. Learning algorithms often make use of optimization tech-
niques such as iterative-scaling methods (Darroch and Ratcliff, 1972) to solve the
search problem efficiently.

The terms “classifier” and “model” are often used synonymously. However, a clas-
sifier is constructed from a model and makes the final classification decision. Prob-
abilistic models, for example, model a probability distribution P (x|y) and the clas-
sifier decides which probability value leads to which final target class y ∈ Y.

Definition 4 (Classifier) A classifier combines a model θ with a decision rule and
is given by a function gθ(x) = ŷ which returns the predicted target class ŷ for a new
observation x.

For the sake of simplicity we have so far assumed that the model operates on the
observation x directly. Instead, an observation is usually characterized by a vector
of features.
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Definition 5 (Feature Representation) An observation x is characterized by a
feature vector ~x ∈ Rk which constitutes an attribute-value representation of x and is
generated by a feature generating function F : X → Rk. F is composed by a set of
feature functions f : X → R so that ~x =

(
f1(x), . . . , fk(x)

)
.

Models are usually formulated based on the feature vector representation ~x of an
observation x and for each element of ~x, a parameter λk is used in the model. In the
following, we use the term “feature” to refer to a particular feature function fj .

As an example, in the document classification scenario the feature fj(x)

fj(x) =

{
1 if x contains word ”bonjour”
0 otherwise

(2.1)

indicates whether the word “bonjour” is contained in the observed document x.

Many NLP tasks can be formulated as learning problems and solved successfully
by classification learning. This includes, as a pioneer task, document classification
but also much more complex tasks. In many situations, separate classification of
isolated observations x ∈ X constitutes problematic assumptions on the (statistical)
independence amongst the individual observations. This is, for example, the case
for words in a sentence where each word should be mapped to its associated part of
speech it has in the respective sentence.1 Words in natural language texts are not
an arbitrary accumulation. Instead, grammatical and semantic constraints hold and
imply dependencies between the words.

Data subject to such dependencies is called relational. The goal of relational learning
is to appropriately handle such data by explicitly modeling dependencies between
the data points (Getoor and Taskar, 2007). We here consider relational learning as
a variant of classification learning where the observation and the target space are
of a higher dimension. Relation learning is about learning a function g : X n → Yn
which maps a vector of observations ~x ∈ X n to a vector of target values ~y ∈ Yn.
The elements in ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) are subject to a specific order
or structure. We here consider only the case of linear sequences. When applied to
NLP tasks, such a sequence may be the words in their original order in a piece of
natural language text, such as a phrase or a sentence.

Analogously to Definition 5, a single element xi of an observation ~x is characterized
by a feature vector ~xi obtained by the feature generating function F (xi) which
is composed of several feature functions fj(~x, i) = xi with xi ∈ R so that ~xi =

1The part of speech of a word describes how a word is used in, e.g., a sentence. Common parts of
speech are “nouns”, “adjectives”, or “verbs”, amongst others.
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(
f1(~x, i), . . . , fk(~x, i)

)
and ~x =

(
F (x1), . . . , F (xn)

)
. In a specific feature function

fj(~x, i), 1 ≤ i ≤ n specifies the position in the observation sequence ~x.

As an example, a feature function on observation ~x = (We,walk,home) could be

fj(~x, i) =

{
1 if xi = ”walk” and (xi−1 = ”we” or xi−1 = ”I”)
0 otherwise .

(2.2)

2.2 Approaches to Classification Learning

As briefly stated in the previous section, depending on the specific approach to
classification learning, the problem to be learned may be modelled in different forms.
Amongst the various models described in the literature on ML, the most common
approaches used for NLP tasks include the representation of the target function by
probabilistic models, maximum margin models, and decision trees. In the following,
several models which fall into these three classes are described. Besides the model
itself, the standard approaches to find good parameter estimates are described.

Since Conditional Random Fields are used as the main model of choice throughout
the complete thesis, a more detailed description is given. In addition, Maximum
Entropy models, on which Conditional Random Fields fundamentally build, are
also described in greater detail. As for the other models, only a short introduction
describing the approach in very general.

2.2.1 Probabilistic Models

A probabilistic model describes the data by a conditional probability distribu-
tion P (y|x). The parametric form of Pθ(y|x) depends on the respective modelling
paradigm chosen; the parameters θ = (λi, . . . , λk) of the probability distribution are
estimated by statistical inference. We assume all classifiers gθ(x) based on proba-
bilistic models to apply the Bayesian classification rule so that

gθ(x) = argmax
y′∈Y

Pθ(y′|x) (2.3)

which means that the target class y∗ = gθ(x) is the class with the highest probability
given a specific observation x. The following description of probabilistic models is
largely based on a technical report by Klinger and Tomanek (2007). Details omitted
in this section can be found in this report.
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2.2.1.1 Näıve Bayes Model

According to Bayes’ Law, the probability distribution P (y|x) can be written as

P (y|x) =
P (y)P (x|y)

P (x)
. (2.4)

In a classifier based on the Bayesian classification rule (Equation 2.3), the denom-
inator P (x) is a constant and so not needed for classification. The numerator can
be written as a joint probability

P (y)P (x|y) = P (y, x) . (2.5)

When the above probabilities are formulated on the feature representation ~x of x,
direct computation of P (y)P (~x|y) = P (y,~x) is complex, especially when the number
of elements in ~x is high. Through the application of the chain rule

P (~x) = P (x1, . . . , xk)

=
k∏
j=2

P (xj |xj−1, . . . , x1) (2.6)

a general decomposition of the joint probability can be formulated as

P (y,~x) = P (y)
k∏
j=2

P (xj |xj−1, . . . , x1) . (2.7)

Under the assumption of conditional independence of all features, which is usually
done for feasibility, P (xj |y, xi) = P (xj |y) holds for all i 6= j. Based on this sim-
plification known as the Näıve Bayes assumption, the Näıve Bayes (NB) model is
formulated as2

P (y|~x) ∝ P (y,~x) = P (y)
k∏
j=1

P (xj |y) . (2.8)

This probability distribution is less complex than the one formulated in Equation 2.7.
Dependencies between the features are explicitly ignored often leading to an imper-
fect representation of the data. Nevertheless, the NB model performs surprisingly
well in many real-world applications.

2A ∝ B indicates that A is proportional to B. Here, proportionality is given because of the omission
of the denominator.
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2.2.1.2 Hidden Markov Models

To predict a sequence of class variables ~y = (y1, . . . , yn) for an observation sequence
~x = (x1, . . . , xn), a simple sequence model can be formulated as a product over
individual NB models where each individual model describes the “local” relationship
between the i-th element of ~x and the i-th element of ~y:

P (~y, ~x) =
n∏
i=1

P (yi) · P (xi|yi) . (2.9)

In this simple model, dependencies between individual sequence positions are not
taken into account and each observation xi depends only on the class variable yi at
the respective sequence position. No transition probabilities are taken into account.
To more appropriately model sequences of observations, state transition probabilities
are added to the model so that we obtain the following joint probability

P (~y, ~x) =
n∏
i=1

P (yi|yi−1)P (xi|yi) . (2.10)

which leads to the well-known Hidden Markov Model (HMM).

In this model, each target state yi is assumed to depend only on its immediate pre-
decessor and each observation xi only on the target state yi. While this claim is
made for feasibility reasons, a shortcoming is the assumption of conditional inde-
pendence between the elements in ~x. Conditional Random Fields address exactly
this problem.

The three basic problems in the context of HMMs are (a) to estimate the proba-
bility for a predicted label sequence ~x, (b) inference, and (c) finding the best label
sequence. The Viterbi and the Forward-Backward algorithm (Rabiner, 1989) have
been proposed to solve these problems efficiently. We refrain from a detailed de-
scription at this point but will come back to these algorithms in the context of
Conditional Random Fields below.

2.2.1.3 Multinomial Logit Model

The multinomial logit model, known as Maximum Entropy (MaxEnt) model in the
NLP community, is a generalization of logistic regression to allow an arbitrary num-
ber of classes. We describe this class of models in greater detail because Conditional
Random Fields fundamentally build on them. The following explanations are based
on the MaxEnt tutorial of Berger et al. (1996).
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Parameter estimation of the MaxEnt model is based on the Principle of Maximum
Entropy which states that if incomplete information about a probability distribution
is available, the only unbiased assumption that can be made is a distribution which is
as uniform as possible given the available information (Jaynes, 1957). Thus, the best
probability distribution is the one which maximizes the entropy given the constraints
from the training material.3 For Pθ(y|x), the conditional entropy

Hθ(y|x) = −
∑

(x′,y′)∈X×Y

Pθ(y′, x′) logPθ(y′|x′) (2.11)

is applied. The goal is now to find a conditional probability distribution Pθ(y|x)
which maximizes H(y|x) and is consistent with the training set L. This leads to the
following target function, later referred to as primal problem

Pθ(y|x) = argmax
P∈W

Hθ(y|x) (2.12)

whereW denotes the set of all conditional probability distributions P (x|y) consistent
with the training set L. What is meant by “consistent” is explained in detail below.

The binary-valued feature functions fj(x, y) are here defined to depend on both the
observation x and the class variable y. An example for such a function in context
of the document classification scenario is

fj(x, y) =

{
1 if y = verb and x = walk
0 otherwise

(2.13)

The empirical expectation of each feature function fj(x, y) can be obtained by simply
counting the occurrences of fj(x, y) in L:

Ẽ(fj) =
1
|L|

∑
(x′,y′)∈L

fj(x′, y′) . (2.14)

Analogously, the expected value of a feature given the model distribution is

E(fj) =
1
|L|

∑
x′∈L

∑
y′∈Y

Pθ(y′|x′)fj(x′, y′) . (2.15)

Only observations in the training data x ∈ L are considered while all possible target
values y ∈ Y are taken into account. In many applications the set Y contains only a
small number of elements so that the summation over all y ∈ Y does not constitute
a computational problem and E(fj) can be calculated efficiently.

3The entropy of a random variable X = {x1, . . . , xn} is given by H(X) = −
Pn
i=1 P (xi) logP (xi).

17



Chapter 2 Supervised Machine Learning

Equation 2.12 postulates that the distribution Pθ(y|x) be consistent with the evi-
dence found in the training material. That means, for each fj its expected value
on the empirical distribution must be equal to its expected value on the particular
model distribution leading to the following k constraints

Ẽ(fj) = E(fj) . (2.16)

As an additional constraint, a proper conditional probability is required so that

Pθ(y|x) ≥ 0 for all x, y
∑
y′∈Y

Pθ(y′|x) = 1 for all x. (2.17)

Finding a probability distribution Pθ(y|x) which conforms to these constraints can be
formulated as a constrained optimization problem. For each constraint a Lagrange
multiplier is introduced. This leads to the following function with θ′ = (θ, λk+1):

`(L, θ′) = Hθ(y|x)︸ ︷︷ ︸
primal problem

equation 2.12

+
k∑
j=1

λj

(
E(fj)− Ẽ(fj)

)
︸ ︷︷ ︸

!
= 0

constraints from

equation 2.16

+λk+1

∑
y′∈Y

Pθ(y′|x)− 1


︸ ︷︷ ︸

!
= 0

constraint from

equation 2.17

(2.18)

Maximizing this equation we obtain the general formulation of a MaxEnt model

Pθ(y|x) =
1

Zθ(x)
exp

 k∑
j=1

λjfj(x, y)

 (2.19)

with the normalization factor

Zθ(x) =
∑
y′∈Y

exp

 k∑
j=1

λjfj(x, y′)

 (2.20)

which guarantees the constraint from Equation 2.17. Parameters for a MaxEnt
model are optimized by means of maximization of the log-likelihood. Details are
skipped here because the log-likelihood maximization is described below in more
detail for Conditional Random Fields.
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2.2.1.4 Conditional Random Fields

Conditional Random Fields (Lafferty et al., 2001) are probabilistic models for re-
lational data ~x ∈ X n and ~y ∈ Yn. A general formulation of Conditional Random
Fields (CRFs) is that of an undirected graphical model. A probabilistic graphi-
cal model is the diagrammatic representation of the probability distribution where
nodes represent random variables and edges define dependencies between these. An
advantage of graphical modeling is that it allows for a decomposition, or factoriza-
tion, of a probability distribution making complex computations, such as inference,
much more efficient (Bishop, 2006).

A general CRF is defined as

Pθ(~y|~x) =
1

Zθ(~x)

∏
C′∈C

ΨC′(~xC′ , ~yC′) (2.21)

Zθ(~x) =
∑
~y ′∈Y

∏
C′∈C

ΨC′(~xC′ , ~y ′) (2.22)

where ΨC ≥ 0 are individual, conditionally independent factors of the model, also
so-called potential-functions. Factorization is performed in such a way that condi-
tionally independent nodes do not appear within the same factor, i.e., they belong
to different cliques C ′ ∈ C.

In general, CRFs can model arbitrary underlying graph structures. In this thesis, we
consider only a special form of CRFs known as first-order linear-chain CRFs which
are structured as a linear chain where the target variables are modeled as a sequence
~y = (y1, . . . , yn). In accordance with the general notation of graphical models, such
a model is given by

Pθ(~y|~x) =
1

Zθ(~x)

n∏
i=1

Ψi(~x, ~y) , (2.23)

with factors Ψi(~x, ~y) = exp
(∑k

j=1 λjfj(yi−1, yi, ~x, i)
)

and n as the length of the
observation and the target sequence. The first-order characteristic is given by the
definition of Ψi on yi−1 and yi. Figure 2.1 shows a graphical representation of this
model. We can now write a linear-chain CRF as

Pθ(~y|~x) =
1

Zθ(~x)
·
n∏
i=1

exp

 k∑
j=1

λjfj

(
yi−1, yi, ~x, i

) . (2.24)
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~x

yt yt+1 yt+2 yt+3

Figure 2.1: Graphical representation of a first-order linear-chain CRF by an independency
graph. Any two nodes yt and yv with 1 ≤ t ≤ v− 2 ≤ n are conditionally independent.

This formulation shows the close relationship of CRFs to the MaxEnt model given
in Equation 2.19. The normalization coefficient is given by

Zθ(~x) =
∑
~y ′∈Y

exp

 n∑
i=1

k∑
j=1

λjfj

(
y′i−1, y

′
i, ~x, i

) . (2.25)

Training As in the MaxEnt model, parameters θ = (λ1, . . . , λk) are set to maximize
the log-likelihood function on the training data L = {(~xi, ~yi)}mi=1:

`(L, θ) =
∑

(~x ′,~y ′)∈L

logPθ(~y ′|~x ′)−
k∑
j=1

λ2
j

2σ2
(2.26)

Penalization by the term
∑k

j=1

λ2
j

2σ2 is done to avoid overfitting: σ2 models the trade-
off between fitting exactly the observed feature frequencies and the squared norm of
the weight vector. The smaller the values, the smaller the weights are forced to be,
so that the chance that few high weights dominate is reduced.

After reformulation, the partial derivations of `(L, θ) are given by4

∂ `(L, θ)
∂λj

= Ẽ(fj)− E(fj)− λj
σ2

(2.27)

where Ẽ(fj) is the empirical expectation of feature fj . E(fj) is the model expecta-
tion of fj and can be written as

E(fj) =
∑
~x ′∈L

∑
~y ′′∈Yn

Pθ(~y ′′|~x ′) ·
n∑
i=1

fj(y′′i−1, y
′′
i , ~x

′, i) (2.28)

4We elaborate in detail on the steps omitted here in Klinger and Tomanek (2007).
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2.2 Approaches to Classification Learning

This is in close relation to the definition of these expectations for the MaxEnt model
(Equations 2.14 and 2.15). While Ẽ(fj) can easily be calculated by just counting
the occurrences of fj in L, direct computation of E(fj) is infeasible due to the sum
over all possible label sequences ~y ′′ ∈ Yn. This is a major difference compared to
MaxEnt models which exhibit a considerably lower training complexity as there the
sum is over individual labels instead of label sequences.

A dynamic programming approach known as the Forward-Backward algorithm (Ra-
biner, 1989) can be applied to solve this problem efficiently for linear-chain CRFs.
The Forward-Backward algorithm has a run-time of O(|Y|2n), so it is linear in the
length of the sequence and quadratic in the number of labels. Forward (α) and
backward (β) scores are defined by

αi(y|~x) =
∑

y′∈T−1
i (y)

αi−1(y′|~x) ·Ψi(~x, y′, y)

βi(y|~x) =
∑

y′∈Ti(y)

βi+1(y′|~x) ·Ψi(~x, y, y′)

where Ψi(~x, a, b) = exp
(∑k

j=1 λjfj(a, b, ~x, i)
)

, Ti(y) is the set of all successors of

a state y at a specified position i, and T−1
i (y) is the set of predecessors. Nor-

malized forward and backward scores are inserted into Equation 2.28 replacing∑
~y ′′∈Yn Pθ(~y

′′|~x ′). After this conversion, `(L, θ) can be efficiently estimated by al-
gorithms such as iterative-scaling (Darroch and Ratcliff, 1972; Huang et al., 2009).

Inference and Probabilities For a specific observation sequence ~x, we define the
best label sequence ~y ∗ to be the one which maximizes the a-posteriori probability.
For this optimization, the denominator of Equation 2.24 can be skipped as it is a
constant, so that the CRF sequence classifier is given by

gθ(~x) = argmax
~y ′∈Yn

exp
( n∑
i=1

k∑
j=1

λjfj(y′i−1, y
′
i, ~x, i)

)
. (2.29)

The Viterbi algorithm (Rabiner, 1989) is an efficient solution to the problem of
finding the best sequence ~y ∗ = g(~x), called Viterbi sequence henceforth.

As will be discussed in the next chapter, many approaches to active learning are
based on the model’s confidence in its predicted target value, i.e., the a-posteriori
probability Pθ(y|x). To calculate the conditional probability Pθ(~y|~x) for a CRF, the
normalization factor needs to be calculated. Once again, näıve calculation of Zθ
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is infeasible because of the summation over all possible label sequences (cf. Equa-
tion 2.25). Applying the Forward-Backward algorithm on ~x we retrieve the respec-
tive forward and backward scores and the normalization factor can be efficiently
calculated as the sum over all recursively defined forward scores

Zθ(~x) =
∑
y′∈Y

αn(y|~x) . (2.30)

so that we can efficiently calculate a normalized probability score for a label sequence
as defined in Equation 2.24.

Instead of a probability for the complete sequence, one can also obtain different
forms of marginal probabilities such as, e.g., the marginal probability of label y′ ∈ Y
at position i given an input sequence ~x. This is done using forward and backward
scores so that

Pθ(yi = y′|~x) =
αi(y′|~x) · βi(y′|~x)

Zθ(~x)
. (2.31)

The three basic problems in the context of linear-chain CRFs, being (a) estimation
of model parameters θ = (λ1, . . . , λk), (b) finding the best label sequence ~y ∗, and
(c) estimating the probability of a label sequence, can be solved by the algorithms
developed for HMMs after slight modification of forward and backward scores. In the
case of a non-linear structure, training and inference on CRFs is much more complex.
In this thesis, only CRFs with a linear-sequence structure are considered.

2.2.1.5 From Näıve Bayes to Conditional Random Fields

The four models discussed in this section make different independence assumptions
over the features of an observation. While simplifying independence assumptions
are made for the sake of feasibility for NB models and HMMs, MaxEnt and CRFs
refrain from making assumptions on the dependency of the elements of ~x.

The relationship between the four probabilistic models discussed in this section is
based on the type of probability distribution they model and whether they are based
in relational, or sequence, data or not (see Figure 2.2). A HMM can be understood as
the sequence version of a NB model: Instead of single independent decisions, a HMM
models a linear sequence of decisions. Accordingly, CRFs can be understood as the
sequence version of MaxEnt models. NB and HMM are generative models because
they model the distribution of observations and targets. In contrast, MaxEnt models
and CRFs are discriminative models which only model the conditional distribution
P (y|x) and refrain from modelling P (x). MaxEnt models and CRFs can handle large
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NB MaxEnt

HMM CRFs

single class single class

sequence sequence

joint conditional

joint conditional

Figure 2.2: Relationship between probabilistic models discussed in this section. Depicted
aspects are joint versus conditional probability, single class prediction versus sequence
classification.

sets of, presumably, overlapping features. Due to the independence assumptions
made by NB models, such feature sets would lead to poor classifier accuracy.

2.2.2 Maximum Margin Classification

In contrast to probabilistic methods, approaches to maximum margin classification
are based on models which are essentially specified by a separating hyperplane in
the multi-dimensional input space Rk given by the feature representation ~x of the
observation x. The best separating hyperplane is the one which has the maximum
distance – called margin – to all points (x, y) ∈ L. In the following, we will focus on
Support Vector Machines (SVMs), which are probably the most prominent approach
to maximum margin classification.

For SVMs, the target space consists of two classes with Y = {−1,+1}. A hyperplane
can completely be described by a vector ~w in Rk defining the orientation of the
hyperplane in the input space and an offset b ∈ R. The hyperplane is defined as

〈~w,~x〉+ b = 0 . (2.32)

The vector ~w is a weight vector and is perpendicular to the hyperplane. Given the
data is linearly separable, such a hyperplane must exist. The margin is defined as
the perpendicular distance of the closest point(s) to the hyperplane. These points
are called support vectors. Figure 2.3 shows such a separating hyperplane, some
data points, and illustrates the meaning of ~w and b.

The distance of an observation x, represented by a feature value vector ~x, to the
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〈~w,~x〉+ b = 0

margin

~w

Figure 2.3: SVM for a simple classification scenario: The solid line represents the separating
hyperplane. Points on the dashed lines are the support vectors.

hyperplane is given by

d(~x) = 〈~w,~x〉+ b

=
∑

(xi,yi)∈L

λiyi〈~xi,~x〉+ b . (2.33)

Only for the support vectors λi 6= 0. The SVM classifier is given by

g~w,b(x) = sgn(〈~w,~x〉+ b) (2.34)

so that points x for which 〈~w,~x〉 + b > 0 are classified as positive instances, or
negative otherwise. This classification approach is one reason why the target classes
are constraint to −1 and +1.

The distance d(~x) can be interpreted as a measure of confidence of the SVM model
in its target prediction. The confidence depends on the distance, the farther points
are away from the margin, the more confident is the SVM classifier.

During training, ~w and b are set so that the resulting hyperplane separates the
data as well as possible and achieves the highest margin. The correct separation
of all training examples is given if yi(〈~w,~xi〉 + b) ≥ 0 for all (xi, yi) ∈ L. When
~w and b are normalized so that the support vectors satisfy |〈w,~xi〉 + b = 1|, then
yi(〈~w,~xi〉+ b) ≥ 1 for all (xi, yi) ∈ L in case of perfect separation.

To find the best margin, the following constrained optimization problem

`(~w, b, θ) =
1
2
||~w||2 −

n∑
i=1

λi(yi(〈~w,~xi〉+ b)− 1) (2.35)
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2.2 Approaches to Classification Learning

has to be solved. This can be done using standard quadratic programming tech-
niques. For more details see Schölkopf and Smola (2002).

Although SVMs are linear models, they can deal with non-linearly separable data
by mapping the feature representation ~x of observations x by a non-linear mapping
function into a higher-dimensional feature space H given a function Φ : Rk → H.
This is done using kernels functions K(~xi,~x) = 〈φ(~xi), φ(~x)〉 leading to a reformula-
tion of the SVM classifier into

g(x) = sgn
( n∑
i=1

αiyiK(~xi,~x) + b
)
. (2.36)

The standard linear kernel assumed throughout this section is just the dot product
so that K(~xi,~xj) = 〈~xi,~xj〉. Other well-known kernels include the polynomial kernel,
radial basis functions (RBF), or sigmoid kernels.

While SVMs are formulated for binary classification problems, there are approaches
how multi-class classification can be dealt with by SVMs. One approach is known
as the one-vs-rest mechanism which means that for each of the |Y| classes a binary
classifier is learned distinguishing the class y′ ∈ Y against all others. According
to the winner-takes-all paradigm, the class for which dy′(~x) achieves the highest
distance wins (Schölkopf and Smola, 2002).

2.2.3 Decision Tree Induction

Another approach to model a ML problem is one where the target function repre-
sentation is learned by tree induction so that the model is a decision tree. In such a
tree, each node corresponds to a test on a specific feature fj , the branches starting
from that node refer to possible values of the feature. Figure 2.4 shows a decision
tree for a simple toy problem. Classification is done by descending the tree from
top to bottom according to tests at the current node on the specific feature of an
observation. Once a leaf is reached, the classification is done. Each path from the
root to a leaf constitutes a conjunction of constraints on the features. Overall, a
decision tree represents a disjunction of such conjunctions.

Decision trees are one of the most intensively studied approaches to classification
learning. Although on complex problems decision trees often produce performance
values considerably inferior to the other models discussed in this chapter, they are
still often applied because of the intuitive interpretation of the learned model, i.e.,
the decision tree. In contrast to the other learning approaches described in this
chapter, decision trees are capable of learning non-linear functions.
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Figure 2.4: Decision tree for the concept PlayTennis with the target classes Y = {Yes,No}.
Figure taken from (Mitchell, 1997, p. 53). A new observation x is classified by sorting
it through the tree to the particular leaf node.

Decision trees are typically constructed top-down so that the most effective features
are tested in upper nodes. The effectiveness of a feature as possible test for a new
branching is assessed by the information gain. The information gain Gain(S, vj) is
the expected reduction of entropy given the feature fj(x).

Gain(S, vj) = H(S)−
∑

t∈values(fj(x))

|St|
|S|H(St) (2.37)

where S ∈ L is the set of all available training examples which fall in this part of the
tree, the set of all possible feature values of fj is specified by values

(
fj(x)

)
, and St is

the set of all training examples (x, y) where fj(x) = t. H(S) =
∑

y′∈Y −py′ log(py′)
is the entropy over the class distribution where py′ is the proportion of S belonging
to class y′. Instead of entropy, other measures for impurity, including the Gini index
or classification error, can be applied.

There are various algorithms for the exact process of learning the tree including ID3
and C4.5 as the most prominent ones (Quinlan, 1993). For more details on decision
tree learning see (Mitchell, 1997).

2.3 Evaluating Models

This section describes measures and methods to evaluate a fitted model. Evaluation
is usually applied to assess the absolute performance of a model or to select the best
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true class
predicted class +1 -1

+1 tp fp
-1 fn tn

Table 2.1: Contingency table for binary classification scenario.

performing model θ∗ out of the set of possible models. Most evaluation measures
compare the true target value y with the target value ŷ predicted by the classifier.
Such a comparison is done on a test set of examples (x, y) ∈ T . When these
examples were used during training so that T ⊆ L this is known as resubstitution.
Resubstitution typically severely underestimates the classifier’s generalization error.
For a better estimate of the true performance, one should calculate the performance
on a separate, held-out test set T where L ∩ T = ∅.

Definition 6 (Performance on a Held-out Test Set) The performance reached
by a model θ on a held-out test set T is defined as perf(θ, T ). Performance estima-
tion is based on a comparison of predicted target values ŷ and true target values y.

To accurately estimate the true performance on future data, the data distribution
of the test set T needs to correspond to that of future data. Often, the amount of
labeled examples is too limited to guarantee a representative partitioning of the data
into training and test set leading to overfitting or erroneous performance estimation.
A method known as k-fold cross-validation addresses this problem by splitting the
data into k partitions. In each fold, another k−1 partitions are used for training, and
the remaining one for evaluation. Finally, an average over the fold-specific evaluation
measures is reported as overall performance. A common setting is k = 10.

Comparing the predicted target value ŷ and the true target value y of an observation
x, four different outcomes are possible: true positives (tp), false positives (fp), false
negatives (fn), true negatives (tn). Table 2.1 shows a contingency table illustrating
the outcomes for a binary classification problem where one class is known as pos-
itive and the other as negative. In a non-binary classification problem, a separate
contingency table is build for each target class.

Given the numbers from the contingency table, several performance measures can
be calculated. The accuracy of a model is defined by

ACC =
tp+ tn

tp+ tn+ fp+ fn
(2.38)
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and accordingly, the error rate is given by

ERR = 1−ACC (2.39)

Accuracy and error rate are problematic because these scores do not report on
the type of errors made. Other measures have been introduced to circumvent this
shortcoming including Precision

P =
tp

tp+ fp
(2.40)

as a measure for the proportion of correct predictions and Recall

R =
tp

tp+ fp
(2.41)

to quantify the number of actual positives identified as such. To combine both mea-
sures into a single measure of overall performance, the F-score has been introduced
(van Rijsbergen, 1979) and is given by

Fα =
1

α 1
P + (1− α) 1

R

(2.42)

where α defines the weighting of precision and recall and is often set to α = 0.5.
This is known as F1 which simplifies to F1 = 2RP

R+P .

When |Y| > 2 two variants of the F-score are usually distinguished. The micro
F-score is an average over the class-specific F-scores Fy which are each weighted
proportionally to the number of examples for this class in the test set

Fmicro =
∑
y′∈Y

1
|Ty′ |Fy

′ (2.43)

where Ty′ ⊂ T comprises all examples (x, y) in T for which y = y′. The macro
F-score, is the unweighted average over the class-specific F-scores:

Fmacro =
1
|Y|

∑
y′∈Y

Fy′ . (2.44)
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Active Learning

In the previous chapter, it was implicitly assumed that at the time of learning,
labeled training material would be readily available. In contrast to this passive
learning scenario, active learning is characterized by an interactive and sequential
learning scenario where the learner is in control of the data to be made available
for training and the learning process is run in iterations of increasingly more data.
The objective of active learning (AL) is to select only examples which are useful
for training so learning is accelerated and the amount of labeled training material
needed to obtain a classifier of a certain performance is reduced.

3.1 Selective Sampling

Early approaches to AL focus on scenarios were unlabeled data is unavailable and
are based on query construction where examples of high utility are synthesized.1

Also known as membership queries, this approach is impractical for most real-world
applications because human annotators have difficulties labeling synthetically con-
structed queries. Another shortcoming of query construction is that the synthesized
data points are not taken from the underlying data distribution D and may thus be
of limited value in terms of model generalization.

In contrast, selective sampling is another, much more widely applied branch of AL
where large amounts of unlabeled examples are assumed to be available. Instead
of generating examples, examples of high expected utility are selected. Utility here
refers to the usefulness of an example for model learning. In the stream-based set-
ting, only one example at a time can be accessed and is either rejected or accepted.
Stream-based sampling leads to an implicit modeling of the underlying data dis-
tribution D naturally limiting the risk of extensive selection of unrepresentative

1See (Angluin, 1988) for a theoretically study on query construction and (Ling and Du, 2008) for
a recently published approach.
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examples such as outliers. In the pool-based setting, a large pool of unlabeled exam-
ples is readily available allowing to base the selection on the direct comparison of
all unlabeled examples. Without an explicit consideration of the data distribution
D during sampling, unrepresentative examples may be selected extensively.

This thesis concentrates on selective sampling as the more realistic scenario for lin-
guistic annotation. Specifically, the pool-based setting is considered which applies
well to the scenario of information explosion sketched in Chapter 1 where the number
of unlabeled examples, e.g., scientific articles in the biomedical domain, is virtually
unlimited. When not explicitly mentioned otherwise, AL refers to pool-based selec-
tive sampling henceforth.

Definition 7 (Pool, Training Set) A pool P ⊂ X is the set of unlabeled examples
p = (x) from which pool-based AL selects. The training set L ⊂ X × Y is a set of
labeled examples l = (x, y).

It should be noted that AL does not create subsamples of identically and indepen-
dently distributed (i.i.d.) examples. The selected examples are not independently
distributed because they are selected with respect to the history of previously se-
lected examples. AL deliberately induces a heavy sampling bias with the distribution
of the samples DL being very different from the underlying data distribution DP .

AL, as well as sampling approaches in general, aim at reducing the sample size
without loss of model performance. AL can thus be considered an optimization
problem with the objective to minimize the size of the subsample L ⊂ P under the
constraint of a given target performance.2

Definition 8 (Optimal Active Learning Strategy) Given a held-out test set
of labeled examples T , a model θL learned on a set of labeled examples L, and an
aspired target performance perf ∗, an AL strategy is optimal if perf (θ, T ) ≥ perf ∗

can be reached with minimal sample complexity |L|.

Instead of searching the globally optimal set L in one step, iterative greedy strategies
are usually applied selecting one (or multiple) example(s) after another. In each
such sampling step a locally optimal selection depending on the history of previous
selections is performed with the hope that it will lead to a good global solution.
This form of myopia is a standard assumption in active learning.

2In practise, the ultimate objective is the reduction of real annotation cost needed, instead of the
number of examples, to yield the target performance. This issue is addressed in Chapter 11.
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The core of any AL approach is a function u(p) used to assess the utility of an
example p ∈ P for model induction. AL selection is based on this utility score.
According to Definition 8, the optimality of an AL approach is described with respect
to a test set T representing the target population and its distribution DT . The utility
function thus ideally consists of the following two components:

• The informativeness I(p, θ) which quantifies the contribution of an example p
in terms of model improvement when added to the training set L, and

• the representativeness R(p, θ) which quantifies how representative an example
p given the data distribution DT is.

While informativeness rewards an example’s ability to improve the model θ trained
on all training data L available at that point, representativeness attempts to avoid
the selection of outliers irrelevant in the target distribution DT to which the final
model should be applied.

Definition 9 (Utility function) A utility function u(p, θ) = φ
(
I(p, θ), R(p, θ)

)
estimates the utility of an example p ∈ P by a function on the informativeness and
the representativeness of p.3

In each iteration, greedy AL then selects the example

p∗ = argmax
p′∈P

u(p′, θ) . (3.1)

Such a selected example for which the true label y is required is called a query. The
label is queried from an omniscient oracle or teacher which in practise is a human
annotator. After labeling, l∗ = (x, y) is added to the training set and the next AL
starts. Algorithm 1 formally describes this general framework for greedy AL.

3.2 Approaches to Greedy Active Learning

Approaches to greedy AL can be distinguished by the definition of the utility func-
tion, the mode of data access (pool-based, stream-based, or even query generation),
the use of a single or multiple classifiers for selection, the dependency of the approach

3We here consider only combinations of informativeness and representativeness on a low-level com-
bination manner and not as two separate criteria. This issue is discussed in detail in Chapter 8
which explicitly deals with AL for multiple criteria.
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Algorithm 1 General Framework for Greedy Active Learning
Given:
L: set of labeled examples l = (x, y) ∈ X × Y
P: set of unlabeled examples p = (x) ∈ X
T (L): a learning algorithm
u(p, θ): utility function

Algorithm:
loop until stopping criterion is met

1. learn model: θ ← T (L)
2. select p∗ ← argmaxp′∈P u(p′, θ)
3. query label y for p∗: l∗ ← (x, y)
4. L ← L ∪ {l∗}, P ← P \ {p∗}

return L∗ ← L and θ∗ ← T (L∗)

to a specific learning algorithm, and the learning task applied to (classification, re-
gression, and confidence estimation or ranking). This section describes and catego-
rizes well-known approaches to greedy AL by their definition of the utility function.4

Remarkably, most approaches define the utility function just as a function of the
informativeness completely ignoring representativeness.

3.2.1 Statistically Optimal Active Learning

Statistically optimal approaches to AL employ a utility function which is based on
the objective function to which the model is fitted and by which the learning is
eventually evaluated. This is typically the estimated generalization error according
to the particular loss function. As a result, the utility of an example x is then
proportional to the reduction of loss expected when this example is added to L.
Statistically optimal approaches to AL explicitly attempt to quantify the difference
of the performance between the ideal and the current classifier.

3.2.1.1 Reduction of Expected Generalization Error

Explicit reduction of the expected generalization error as an approach to AL was
first described by Roy and McCallum (2001). In an AL iteration, for each unlabeled
example p = (x), all tuples (x, y′), with y′ ∈ Y, are consecutively added to the
training set and the label-specific expected error ẼL∪{(x,y′)} given this new training

4With slightly different foci, Olsson (2009) and Settles (2009b) have recently also published reviews
of approaches to AL.
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set is estimated. Depending on the particular loss function, the error is calculated
in different ways. Roy and McCallum (2001) formulate the errors for the 0/1- and
the log-loss. The overall expected error ẼL∪{x} for an unlabeled example p = (x)
is then the average over the label-specific errors weighted by their posteriors in L.
The corresponding utility function is defined as

uGE(p, θ) =
1
|Y|

∑
y′∈Y

ẼL∪{(x,y′)} · PL(y′|x) . (3.2)

For HMMs, Anderson and Moore (2005) proposed several objective functions for the
HMM problems “state learning”, “path learning”, “model learning”, and “classifica-
tion”. Similarly to (Roy and McCallum, 2001), the utility function is defined as the
value of information, i.e., the expected reduction of loss when an example p = (x)
would be added to L.

3.2.1.2 Minimization of Expected Variance

Earlier approaches towards statistically optimal AL did not directly optimize the
generalization error but the classifier’s variance, instead. The mean squared error
(MSE) of a model can be decomposed into bias and variance so that MSE = Bias2 +
Variance. According to the Bias-Variance Dilemma (Geman et al., 1992), a model
with a low bias has a large variance and vice versa.5 Assuming an approximately
unbiased learner, minimizing the error equals minimizing the learner’s variance.
According to this intuition, Cohn et al. (1996) proposed an approach to AL based
on the attempt to minimize the learner’s variance. Similarly, as described above for
the expected error reduction, the estimated variance Ṽ for an example p = (x) is the
weighted average over the label-specific variance estimates. Accordingly, the utility
function is defined as

uVAR(p, θ) =
1
|V|

∑
y′∈Y

ṼL∪{(x,y′)} · Pθ(y′|x) . (3.3)

Modeling of the expected variance over the input space requires knowledge of the
example distribution and the possibility to calculate the classifier’s variance in a
closed form. Cohn et al. (1996) applied this approach to AL for neural networks,
Gaussian mixture models, and locally-weighted linear regression where closed-form
calculation can be done as they show.6 For arbitrary learning algorithms, such a
closed-form is, however, not possible rendering this approach impractical for many
applications.

5When other loss functions hold, another decomposition may hold (Hansen and Heskes, 2000).
6Note that Cohn et al. (1996) apply their approach to a query construction scenario.
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Instead of modeling the global variance, Saar-Tsechansky and Provost (2004) es-
timate the local variance for each example p ∈ P separately, allowing the use of
arbitrary learning algorithms. The local variance is found empirically as the mean
observed variance on a set of classifiers C = {θ1, . . . , θe} learned from subsamples of
L. Experiments were performed for the task of class-probability estimation.

Another approach related to variance reduction is based on the maximization of
the Fisher information (Zhang and Oles, 2000). The Fisher information measures
the amount of information, an observation x carries about an unknown parameter
λj , i.e., the impact x has on the efficiency of parameter estimation. For a MaxEnt
model, the Fisher information I(λj) is defined as the sum over all possible labels
y′ ∈ Y over the partial derivations of the maximum likelihood estimate by λj :

Ix(λj) =
∑
y′∈Y

P (y′|x)
∂2

∂λ2
j

log
(
P (y′|x)

)
. (3.4)

For θ = (λ1, . . . , λk), the Fisher information has the form of a k × k matrix I(θ),
where the values of the diagonal correspond to the Fisher information values defined
in Equation 3.4 for the parameters λj . The asymptotic information value of a
particular unlabeled example p = (x) ∈ P is calculated by the Fisher information
ratio

Fx,P(θ) = tr
(Ix(θ)−1IP(θ)

)
=

k∑
j=1

∑
x′∈P P (x′)Ix′(λj)
P (x)Ix(λj)

(3.5)

where Ix(θ) is the Fisher information matrix for example p = (x), IP(θ) is the re-
spective matrix for all examples in the pool P, and the trace tr is the sum of the
elements along the principal diagonal of the resulting matrix. The Fisher informa-
tion value can be interpreted as the asymptotic reduction of model uncertainty by
querying example p. Accordingly, the utility function is defined as

uFIR(p,θ) = −Fx,P(θ) (3.6)

so that examples with lower Fisher information ratio are preferentially selected. The
Fisher information ratio has been applied as a utility function for AL by Hoi et al.
(2006) and Settles and Craven (2008).

Statistically optimal approaches share high computational costs as a common disad-
vantage. In practise, only when the labeling costs of single examples are extremely
high, application of these approaches is justifiable. Näıve implementations of error
reduction approaches are often extremely inefficient because for all examples p ∈ P
a model needs to be trained to estimate the new loss. Roy and McCallum (2001)
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proposed several optimizations and approximations to speed up selection: (a) test-
ing only a subsampling the examples P ′ ⊂ P, (b) subsampling from L to calculate
the expected error only on a subsample of P, (c) incremental model training, and
(d) re-classification . However, the statistical optimality might be lost when these
tricks and simplifications are applied.

3.2.2 Expected Model Change

Examples that when incorporated into the training data would lead to a major model
change, may be considered as highly influential. Another strand of AL approaches
focuses on the expected model change as a measure for utility. Maximizing expected
model change is an approach to minimize future generalization error.

In context of maximum margin classification, and especially SVMs, an elegant ap-
proach to AL has been developed by Schohn and Cohn (2000) and Tong and Koller
(2000). The utility of an example p = (x) is measured by its proximity to the
hyperplane d(~x) given the model parameters ~w and b (cf. Equation 2.33):

uSVM(p, ~w, b) = −|d(~x)| (3.7)

An example that lies within the margin, i.e., for which |d(~x)| < 1 holds, effects the
selection of support vectors and by this the decision function learned. The calcula-
tion of the distance of an example to the hyperplane is computationally inexpensive
because it is only a dot product computation.

Gradient-based strategies are often applied to determine model parameters by op-
timizing the respective objective functions. This is, for example, the case for the
MaxEnt model and CRFs as discussed in Chapter 2 where the objective function
is based on the log-likelihood `(L, θ) of a probability distribution. When adding a
new example (x, y) to the training set L, the change in the gradient can be taken as
an approximation to the change in the model. Let ∇`(L, θ) be the current gradient
and ∇`(L∪{(x, y)}, θ) the gradient obtained when adding the new example. Settles
et al. (2007) propose the expected gradient length (EGL) as utility function

uEGL(p, θ) =
∑
y′∈Y

Pθ(y′|x)∇`(L ∪ {(x, y)}, θ) (3.8)

which sums over all possible labels because the true label for an example is unknown
at query time. According to this utility function, the example which imparts the
greatest model change would be selected.
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3.2.3 Uncertainty Sampling

Uncertainty sampling (US) is a relatively simple approach to AL where the utility
of an example is based on the uncertainty, as the inverse of the confidence, of the
current classifier in its prediction (Lewis and Gale, 1994). US is model-independent
and can be combined with any passive learner that returns confidence or probability
estimates for its predictions.

Several measures to quantify uncertainty have been proposed. The least-confidence
(LC) utility function is based on the a-posteriori of the most likely label y′ for an
example p = (x) and is defined as

uLC(p, θ) = 1−max
y′∈Y

Pθ(y′|x) . (3.9)

In the case of binary classification, this metric comprises all available information on
the distribution of the a-posteriori probabilities. However, in a multi-class scenario,
information about the posteriors of the other labels is lost. Scheffer and Wrobel
(2001) argued that the confidence distribution over the labels should be incorporated
to get a better uncertainty estimate. A simple approach to this is to consider the
margin between the best and the second best label. A small margin means that the
decision between the best and second best label is hard. The margin (MA) utility
function is defined as

uMA(p, θ) = −(max
y′∈Y

Pθ(y′|x)− max
y′′∈Y
y′ 6=y′′

Pθ(y′′|x)
)
. (3.10)

A third variant considers the posterior distribution of all possible labels. The entropy
(ENT) utility function is defined as

uENT(p, θ) =
∑
y′∈Y

Pθ(y′|x) · log
(
Pθ(y′|x)

)
. (3.11)

Variants of these utility functions exist for specific tasks and learning scenarios, such
as the tree entropy for syntactic parsing (Hwa, 2000), and variants for sequence
classification (see Section 4.2.3).

US is prone to selecting outliers or unrepresentative examples as these tend to exhibit
a high uncertainty. But when added to the training material, these examples do not
improve the classifier’s performance (Roy and McCallum, 2001). An important ad-
vantage of US is its low computational complexity compared to statistically optimal
approaches. Despite these shortcomings, empirical studies found good performance
for US in practical use (Laws and Schütze, 2008; Settles and Craven, 2008).
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3.2.4 Query-by-Committee

Seung et al. (1992) describe the Query-by-Committee (QbC) framework where the
utility score of an example is derived from the disagreement within a committee of
classifiers C = {θ1, . . . , θe}. The original QbC framework has a committee of |C| = 2
and is defined for a stream-based setting. An example on which the predictions of
the two committee members diverge is to be selected. QbC – at least in theory –
exhibits faster convergence of the base learner’s performance compared to US. This
is so because QbC selects controversial examples and is thus less likely to spend
much effort exploring outliers (Freund et al., 1997).

Several variations of this original QbC approach have been proposed with the main
difference in the mechanism to sample the committee of classifiers and measures
for divergence. Moreover, variants of QbC are often applied to pool-based settings
where the degree of divergence is interpreted as an utility score. In the following,
common approaches to committee sampling and divergence metrics are discussed.

3.2.4.1 Sampling the Committee

The original QbC framework has a strong foundation in computational learning
theory and is based on the intuition of version space reduction. The version space V
is the subset of all hypotheses hi from the hypothesis space H which are consistent
with the training set L, i.e., hypotheses that correctly classify all examples in L
so that h(x) = y, where y is the correct label for x (Mitchell, 1997). Each unseen
example added to L potentially reduces the number of hypotheses consistent with L.
QbC aims at choosing the example that reduces the version space the most. Under
ideal conditions, QbC even halves the version space (see Section 3.4). Seung et al.
(1992) constructed the committee by randomly sampling two hypotheses from the
version space.

Depending on the actual learning problem, data, and the dimension of the feature
space, the version space may be huge. In many real-world machine learning prob-
lems, the feature space is extremely high-dimensional, so that sampling the version
space is practically impossible. Several hundreds of thousands of features are com-
mon in language and speech processing. To make QbC applicable to real-world
problems, Gilad-Bachrach et al. (2006) projected the version space to a lower di-
mensional space by intersecting the version space on L with the version space on
the unlabeled example p = (x). With respect to p it is sufficient to sample from this
smaller version space V ′.
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In general, the notion of consistent hypotheses does not apply to probabilistic clas-
sifiers where model parameters need to be estimated so that they statistically best
fit the training data L. Instead of sampling hypotheses, Dagan and Engelson (1995)
proposed to construct the committee by randomly sampling committee members
θi. Under the assumption that the model parameters θ = (λ1, . . . , λk) are mutually
independent, committee members θi can be constructed by sampling each model pa-
rameter λj from the posterior distribution P (λj |L) separately. This requires the dis-
tribution P (λj |L) which Dagan and Engelson approximated by a truncated normal
distribution. Similarly, McCallum and Nigam (1998) sampled the model parameters
for a NB learner from a Dirichlet distribution instead of the normal distribution.

Several heuristics and practical implementations to sample committees in a compu-
tationally less expensive manner have been proposed. Abe and Mamitsuka (1998)
proposed Query-by-Bagging (QbB), where each committee member is trained on
a random subsample of L, and Query-by-Boosting which is based on AdaBoost to
create the committee members more intelligently. AdaBoost (Freund and Schapire,
1996) iteratively adds examples which previously were misclassified to some initial
training set to learn a new committee member. Interestingly, the more complex
Query-by-Boosting does not consistently outperform Query-by-Bagging. AL with
multiple views, known as Co-Testing, was proposed by Muslea et al. (2000). All
committee members represent redundant views on L, i.e., disjoint feature vectors,
which could independently be used for classification. Finding proper feature vector
splits in practical applications is one of the major problems of this approach.

QbC also has its roots in ensemble learning, which is about combining the out-
puts of multiple classifiers to obtain improved performance. In ensemble learning,
a certain level of diversity among the committee members is a key property for
good committees (Krogh and Vedelsby, 1995). According to this intuition, Melville
and Mooney (2003) proposed Decorate, an approach to produce highly diverse
committees by adding artificially constructed examples to the training set. As an
extension, Active-Decorate successfully employs such diverse committees in an
AL scenario (Melville and Mooney, 2004).

Besides reduced complexity in committee sampling, another advantage of the above
mentioned heuristics is that they can be thought of as wrapper mechanisms around
an underlying passive learning algorithm which is treated as a black box. In this
way, heuristics to QbC can easily be applied with arbitrary learning algorithms.

3.2.4.2 Divergence Measures

Engelson and Dagan (1996) proposed the Vote Entropy (VE) as a measure of dis-
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agreement based on the entropy of the distribution of the predicted labels of the
committee members θi ∈ C.

uVE(p, C) = −
∑
y′∈Y

V (y′, x)
|C| log

V (y′, x)
|C| (3.12)

where V (y′, x) denotes the number of committee members θi according to which
gθi(x) = y′ on example p = (x). To directly focus on examples which tend to improve
upon the F-score, Ngai and Yarowsky (2000) proposed the F-complement (FC) where
the relative, pairwise F-scores between all members θi ∈ C of the committee are
compared so that

uFC(p, C) =
1
2

∑
θi∈C

∑
θj∈C
i6=j

(
1− F (gθi(x), gθj (x)

))
(3.13)

where F
(
gθi(x), gθj (x)

)
is the F-score of the prediction of gθj relative to the predic-

tion of gθi for example p = (x).

When class membership probabilities are also available as a result of classification,
they may be incorporated into the divergence score. In the most straight-forward
manner, the utility function already discussed in the context of US (Equations 3.9,
3.10, and 3.11) can also be applied here (Körner and Wrobel, 2006). A prerequisite
is the availability of a combined distribution over the probability estimates for the
committee. A simple approach to this is the mean over the conditional distributions
of all committee members Pθi(y|x) so that committee’s distribution is

Pavg(y|x) =
1
|C|
∑
θi∈C

Pθi(y|x) . (3.14)

Now, the least-confidence, the margin, and the entropy metric from the previous
section can be applied by inserting the committee’s distribution Pavg(y|x). This
application of the originally US-based utility functions in the QbC scenario does not
well fit the idea of divergence but is instead based on group consensus.

Another way to incorporate knowledge about the committee member’s class distri-
butions is based on the Kullback-Leibler (KL) divergence D (Kullback and Leibler,
1951) which quantifies the difference of two probability distributions Pθ1 and Pθ2 :

D(Pθ1(y)||Pθ2(y)) =
∑
y′∈Y

Pθ1(y′)log
Pθ1(y′)
Pθ2(y′)

.

The KL divergence to the mean (KLM) is the average KL divergence between each
distribution Pθi∈C(y|x) and Pavg(y|x). The KLM divergence is a special form of the
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B
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Figure 3.1: Most informative example (A) is globally less useful compared to the highly rep-
resentative, but less informative example (B). Dashed line represents current decision
boundary. Small circles are unlabeled examples, big circles labeled ones.

Jensen–Shannon divergence (Lin, 1991) where the single distributions are associated
with importance weights. A high KLM score indicates that the distributions diverge
considerably. A utility function based on the KLM divergence is defined as

uKLM(p, C) =
1
|C|

∑
θi∈C

D
(
Pθi(y|x)||Pavg(y|x)

)
. (3.15)

KLM has been successfully applied in context of AL by McCallum and Nigam (1998)
and Melville and Mooney (2004).

3.2.5 Representativeness-aware Approaches

As AL is about learning a good classifier with minimal label complexity, considering
informative examples is reasonable. However, selection based on informativeness
only can lead to the selection of examples which are unrepresentative, i.e., located
in regions of low density, or are even outliers. Both can result in degraded classifier
performance when evaluated on a test set T . Figure 3.1 intuitively illustrates this
problem (adopted from Guo and Greiner (2007)). According to an informativeness
criterion, example A would be selected (it is extremely close to the current decision
boundary). Example B would be a much better choice as it is surrounded by a
number of other examples so that the model would learn more knowing B.

As evidenced by the previous sections, most approaches to AL do not consider
representativeness in the utility function. Note, however, that density-weighted or
distribution-sensitive sampling is only necessary in pool-based sampling. Stream-
based sampling, in contrast, naturally keeps the underlying data distribution.
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Guo and Greiner (2007) proposed an approach to representativeness-aware AL. The
underlying idea is to select the example p = (x) which – when added to the training
data L – provides maximum mutual information about labels of the remaining un-
labeled examples of P. Since the true label for p is unknown at sampling time, the
target y′ which helps maximizing the mutual information most is assumed the best
label for p = (x). The utility function is thus given by

u(p,L) = −min
y′∈Y

∑
x′′∈P

HθL∪{(x,y′)}(ŷ|x′′) (3.16)

where θL∪{(y′,x)} = T
(L ∪ {(x, y′)}) is the model learned when adding x with the

“best” label y′ to L. Furthermore, Hθ(ŷ|x) = −∑y′∈Y Pθ(y
′|x) logPθ(y′, x) rep-

resents the conditional entropy of the unknown label ŷ with respect to x and the
model θ.

This approach is highly related to the approaches discussed in Section 3.2.1 – with
the difference that the density in P is considered here to incorporate representa-
tiveness. Here, representativeness and informativeness are interwoven on a low level
and thus define a monolithic utility function. Often, however, representativeness
and informativeness are considered as two different criteria and so do not fall under
the definition of a utility function as given in this chapter. Instead, those approaches
should rather be considered a multi-criteria AL scenario which is defined and dis-
cussed in detail in Chapter 8.

3.3 Adaptations for Feasibility

In the general formulation of greedy AL (Algorithm 1), one example is selected in
each AL iteration. Each such selection step, requires expensive parameter estima-
tion because the utility functions are based on the prediction or confidence scores
provided by a trained classifier. As a result, approaches to AL where only a single
example per iteration is selected are hardly feasible in practise due to long selection
times resulting from model retraining and utility assessment per example. The se-
lection of a so-called batch set B of examples with |B| > 1 per AL iteration has been
proposed and applied in many studies as a remedy. Batch-mode AL selects a certain
number of examples with the highest utility scores instead of one example, only.

However, batch-mode AL gives rise to a new issue, namely the diversity among the
selected examples. When not explicitly controlled, the batch might consist of highly
similar examples which get similar utility scores. In this case, the overall utility of
the complete batch is presumably much lower than the sum of the single examples’
utility scores so that repetitive selection and, by this, annotation of identical or
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highly similar examples is not beneficial for learning. Several approaches to control
the diversity of the batch have been proposed (Brinker, 2003; Shen et al., 2004) and
are discussed in the context of multi-criteria AL in Chapter 8.

Heuristic approaches to AL, namely QbC and US, are usually computationally less
complex than the statistically optimal approaches which often require repetitive
estimation of model parameters θ for each example to be tested. However, also for
QbC and US a model needs to be trained in each AL iteration. To further speed up
this process, Lewis and Catlett (1994) proposed heterogeneous US where the learning
algorithm used during AL differs from the target learning algorithm which is used to
learn the final model from all data L∗ made available through AL. In their specific
experiment, they applied a probabilistic classifier during selection time which trained
much faster than the decision tree learner applied to obtain the final model. While
they reported positive findings, this approach has hardly been readopted by others.
Chapter 7 studies applicability and limitations of heterogeneous AL scenarios.

3.4 Sampling Complexity Bounds

Several works in computational learning theory have analyzed theoretical labeling
complexity bounds for AL in general and specific approaches to it (Cohn et al.,
1994; Freund et al., 1997; Dasgupta, 2004, 2006; Kääriäinen, 2006). The estimation
of sampling complexity bounds is typically formulated dependent on an error rate
ε. Given an example x randomly drawn from the underlying data distribution D
and a hypothesis h, the error of this hypothesis is defined as the probability that
ŷ = h(x) disagrees with the true label y:

errorD
(
h(x), y

)
= p
(
h(x) 6= y

)
(3.17)

Computational learning theory teaches that errorD
(
h(x), y

) ≤ ε can be achieved
with m = O(1

ε ) randomly drawn examples (Mitchell, 1997). This holds only if the
data is separable by the hypothesis h.

In specific settings, an AL strategy can exponentially reduce the sampling complexity
to an upper bound of m = O(log(1

ε )). This has been nicely illustrated by Dasgupta
(2004) on a binary toy example of finding a linear separator in R where the data
lies on a real line and there is a point w ∈ R which separates the positive from the
negative class. See Figure 3.2 for a visualization. Binary search reduces the sampling
complexity to m = O(log(1

ε )) compared to m = O(1
ε ) obtained by random sampling.

An exponential reduction of the sampling complexity for binary classification has
also been shown for the original QbC framework by Freund et al. (1997) where every
new example added to L is assumed to halve the version space (cf. Section 3.2.4).
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Figure 3.2: Toy example for finding a linear separator in R.

Such great savings, however, are only achievable under the realizability assumption
which means that for a given target function correct classification of all training
and test examples is possible. Moreover, the absence of labeling noise is assumed.
Generalization of the reported complexity bound is highly problematic so that the
actual benefit of AL depends upon the particular hypothesis class and the pool of
unlabeled examples. Finally, the lower bound of sample complexity for AL is given
by Ω

(
1
ε

)
while the upper bound is given by O( log(1

ε )
)

(Dasgupta, 2004, 2006). Note,
however, that in general AL can also perform significantly worse than random sam-
pling. This holds especially in the case of non-realizability. As for noise, bounded
rate class noise with a noise rate α < 1

2 still allows exponential savings of sampling
complexity when simple noise-cancelling methods based on repeated queries are ap-
plied (Kääriäinen, 2006). However, this does not hold for systematic noise persistent
over repeated queries which presumably is a much more realistic scenario. Although
exponential savings are unrealistic in practise, AL can still exhibit lower sampling
complexity than passive learning.

3.5 Related Fields of Research

AL in general as well as particular approaches to it are related to several other fields
of research, the most important ones of which this section briefly reviews. From
a learning perspective, AL is related to semi-supervised learning (Chapelle et al.,
2006). Both approaches aim at reducing the number of manually labeled examples:
AL by selectively sampling and semi-supervised learning by making use of unlabeled
data which are assumed to be available at no costs.

AL, at least the selective sampling strand of if, can be also considered a subsampling
strategy.7 Sampling strategies are usually motivated by the reduction of computa-
tional complexity in context of inductive learning due to poor scalability character-
istics of many learning algorithms as well as slow access times to data stored in data
bases. AL, in contrast, focuses on the reduction of sampling complexity, mainly to
alleviate the burden of human annotation. Despite contrary motivation, AL shares
many characteristics and methods such as approaches to sequential sampling. As

7The interested reader should refer to Scholz (2007) for a good overview of sampling strategies.
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such, AL is highly related to progressive sampling where increasingly larger samples
are used for training as long as model performance increases (Provost et al., 1999).

From a statistician’s point of view, AL may be described as a form of experimental
design which is about the acquisition of data through experiments (Atkinson and
Donev, 1992). In particular, optimal experimental design aims at generating small
samples still sufficient to estimate parameters with the same precision as would be
achieved by a näıve, non-optimal experimental design with much larger samples. The
main motivation for optimal experimental design is to reduce the financial costs of
experiments. Some approaches to AL are formulated in this spirit (Schein, 2005).

A decision theorist might consider AL as the problem of finding an optimal decision
given several alternatives and a utility function to assess them. Finding an optimal
decision is then an optimization problem. Due to feasibility, AL is usually solved by
greedy optimization algorithms finding a locally optimal decision at each step.

3.6 Applications of Active Learning

AL has found application to a range of problems addressed by learning-based sys-
tems. Especially for scenarios where large amounts of unlabeled data is available
at no or relatively low costs but creation of labeled training data is a costly proce-
dure, AL is a promising solution to cost reduction. As such, it found application
to several problems of robotics including path planning (Zhang and Kim, 1997),
vision capabilities (Salganicoff et al., 1996), and object grasp control (Morales et al.,
2004). Another lively field of application are multimedia retrieval systems (Tong
and Chang, 2001; Huang et al., 2008; Wang et al., 2009). Moreover, AL was found
useful in bioinformatics where Liu (2004) applied it to gene expression data for can-
cer classification and Danziger et al. (2007) made use of AL to optimize experimental
data choices for more rapid discovery of biological function through experiments.

AL has also attracted lots of attention in the field of NLP. This is evidenced by
the workshop on “Active Learning for Natural Language Processing” held in con-
junction with the 2009 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics. AL has been successfully applied to a range
of tasks including text classification (Lewis and Gale, 1994; McCallum and Nigam,
1998), part-of-speech tagging and chunking (Engelson and Dagan, 1996; Ngai and
Yarowsky, 2000; Ringger et al., 2007), statistical parsing (Hwa, 2000), Named En-
tity Recognition (Shen et al., 2004; Tomanek et al., 2007a), and lately even statistical
machine translation (Haffari et al., 2009). Riccardi and Hakkani-Tür (2005) demon-
strate how AL helps speed up training classifiers for speech and audio processing.
For a more detailed review, refer to (Olsson, 2009) and Chapter 4.
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3.7 Summary

This chapter has introduced and discussed AL as a selective sampling strategy with
the primary motivation of AL to reduce the sampling complexity to achieve a partic-
ular classifier performance. A special focus has been set to pool-based AL because
this settings corresponds well to the prevalent situation faced nowadays in most
annotation campaigns: large amounts of unlabeled texts are readily available at
extremely low costs. The annotation, however, is a costly process.

In this chapter, sampling complexity is measured by the number of labeled examples.
As we will see in Chapters 4 and 11, this notion of sampling complexity has to be
adapted when AL is applied to real-world annotation problems. Moreover, while
this chapter provided a general and task-independent introduction to AL, the next
chapter elaborates in detail on the specific approach to AL used throughout the rest
of this thesis for economizing on labeling costs for linguistic annotation.
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Chapter 4

Active Learning for Named Entity
Recognition

This chapter briefly introduces the NLP task of Named Entity Recognition (NER)
and describes our approach to it. Subsequently, we specify our AL framework in
the context of this task and discuss task-specific design decisions in detail. More-
over, several utility functions for AL, which will be used throughout this thesis, are
adapted to the NER scenario. The second half of this chapter serves to evaluate our
NER approach both in a passive and an active learning setting. Passive learning
results serve as the upper bound of performance that is attainable on the given data
by a particular learner. Performance of AL is studied in greater detail, including
a comparison of the utility functions and an analysis of the characteristics of the
resulting samples.

The NER task should be understood as a sample application scenario from the
greater domain of NLP. This task is employed throughout the rest of the thesis as
a test bed to evaluate the different approaches and modifications to AL. We chose
the NER task for two reasons: firstly, the research in for this thesis was initially
motivated by a research project1 where large amounts of named entity annotations
were needed. Secondly, NER is a task that is subject to major entity type changes
whenever it comes to its application in new domains, fields, or genres. As a result,
recurring annotation endeavours are a common scenario, so that the availability
of strategies to make annotation less resource-intensive implies high practical gains.
Thirdly, NER is a crucial component in IE systems where recognized entity mentions
are typically the input to relation or fact extraction methods. IE systems experience
increasing application to real-world problems so that practical NER applied to new
problems (and so the creation of new training material) will be a real need in the
near future. This shows the relevance of the experiments of this thesis.

1The StemNet project aimed at designing and constructing a knowledge management system
for the field of stem cell biology. More information on the particular annotation endeavours
undertaken as part of this project is given in Section 12.2.
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In [Colorado], [Mark Thompson] threw an eight-hitter for his third
complete game and [Ellis Burks] homered and drove in three runs
as the [Colorado Rockies] beat the [Pittsburgh Pirates] 9-3.

Figure 4.1: A sample sentence taken from the CoNLL corpus with NE annotations. Colors:
[location], [organization], [person].

4.1 Named Entity Recognition

The Message Understanding Conferences, as well as other competitions in the field of
NLP, were originally founded with the goal of promoting and evaluating research in
language processing. NER was defined as a separate analysis step in NLP during the
preparation of the sixth Message Understanding Conference (MUC-6) in 1995. In
contrast, earlier Message Understanding Conferences had considered IE as a single
monolithic task subsuming NER (Grishman and Sundheim, 1996).

Today, NER is an integral part of most IE systems. It comprises the identification
and classification of textual expressions that refer to Named Entities (NEs). These
entities are named instances of a specific type, such as textual mentions of city or
country names which may be classified by the type location. It should be noted that
the term “Named Entity” has no precise linguistic definition, but was by-and-large
coined from an application point of view, viz. NLP (Nadeau and Sekine, 2007).
This lack of a precise definition may be one reason why reaching agreement on what
constitutes an NE in a particular scenario is usually a very time-consuming and
challenging undertaking.

For the analysis of newspaper language, common NE types include persons, loca-
tions, and organizations. Figure 4.1 shows a text snippet where NEs of these types
are highlighted. When applied to other genres or domains, other entities are of
interest, such as genes and proteins, cell types, or organisms in scientific articles of
the biomedical domain.

4.1.1 Previous Work

NER has been intensively studied during the last decade. This was partly initiated
by a series of shared tasks and competitions, such as MUC (Marsh and Perzanowski,
1998), CoNLL (Tjong Kim Sang and De Meulder, 2003), BioCreative (Hirschman
et al., 2005), and JNLPBA (Kim et al., 2004) which were performed for different
languages, domains, and text genres. Due to the overwhelming amount of literature
in this field, we only report on a few early and trend-setting works. Early works on
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NER tended to focus on rule-based systems (Black et al., 1998; Fukuda et al., 1998),
whereas current, state-of-the-art systems are mostly based on machine learning (or
hybrid) approaches. For a comprehensive overview of NER from 1991 to the present
day see Nadeau and Sekine (2007).

Most of the models described in Chapter 2 have been applied to NER. Bikel et al.
(1997) employed a slightly modified HMM, Borthwick et al. (1998) presented one
of the first applications of the MaxEnt model to NER, Isozaki and Kazawa (2002)
described a NER system based on SVMs. More recently, CRFs have found their
way into and are now a de-facto standard for NER (McCallum and Li, 2003).

There is still a lot of ongoing research on approaches to NER, mostly focusing on
the application of NER systems developed and tested on the general newspaper
domain in English to other languages (Wu et al., 2003; Vijayakrishna and Sobha,
2008; Benajiba et al., 2008) or domains (Klinger et al., 2008; Iria, 2009; Zhao and
Liu, 2008) and studying ways to reduce the burden of creating large amounts of
training material. These undertakings demonstrate that NER is a relevant task,
making it an important and realistic application scenario for our studies on AL.

4.1.2 Sequence Labeling Problem

The words in a natural language text are not an arbitrary accumulation – but their
order and composition is important and grammatical constraints hold. In this thesis,
we use the term “token” to refer to a word which is recognized as such in a sentence.
Some NLP tasks, including part-of-speech (POS) tagging, chunking, and NER, can
be considered as segmentation tasks, which means that text must be divided into
meaningful segments that constitute subsequences of words from the original text.
Moreover, these segments are often categorized by, for example, different entity or
POS types. Consequently, we treat NER as a sequence labeling problem and employ
a (first-order linear-chain) CRF as our approach to NER.

We employ a rich set of standard token-level features for NER.2 These include the
word itself, various orthographic features such as capitalization, the occurrence of
special characters such as hyphens, suffixes and prefixes, and context information
in terms of features of neighboring tokens to the left and right of the current token.
Table 4.1 provides an overview of the features used. These features are very suitable
and general enough to be used in most (sub)domains for entity recognition. More-
over, there has been discussion that CRFs are able to handle such large amounts of
presumably highly correlated features.

2See Nadeau and Sekine (2007) for a detailed description of features typically used for NER.
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feature class description

orthographic based on regular expressions (HasDash, IsUpperCase, ...)
and a transformation rule: capital letters replaced by
“A”, lowercase letters by “a”, digits by “0” (example:
IL2 → AA0, have → aaaa)

lexical prefix and suffix of length 3, stemmed form of each token

contextual features of neighboring tokens (one to the left, one to the
right) to model local context

Table 4.1: Standard feature set used for CRF-based NER.

Many works on NER, especially in the biomedical domain, have shown that the per-
formance of a CRF model can be immensely increased when this standard feature
set is optimized and extended in an appropriate way (Klinger et al., 2008). However,
throughout this thesis we employ the same standard feature set for comparability of
all experiments. That is because the focus of this thesis is not on feature selection
and outperforming state-of-the-art performance of NER when given huge amounts
of training data, but on cost-efficient ways to provide highly useful training mate-
rial. Our standard feature set does, though, yield respectable performance values as
shown below in Section 4.4.1.

Another reason why we refrain from a fine-tuned feature set in our experiments is
that feature selection assumes the availability of labeled training material which, in
practise, is rarely the case. Its creation would be inconsistent with the goal of AL to
decrease annotation effort. Thus, a more authentic scenario is to run AL with a core
feature set such as ours and then fine-tune it once data is available. In this spirit,
we intentionally avoid using features such as semantic triggers words (Zhou et al.,
2005), references to external dictionaries (Klinger et al., 2007), or POS tags because
they are highly dependent on the specific subdomain and entity types used.

4.2 Active Learning

Based upon the formulation of a general framework for greedy AL in the previous
chapter, we specify here an AL framework for the specific scenario of NER.
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4.2.1 Related Work

This section lists other approaches to AL for segmentation tasks. Remarkably, none
of the papers listed below have applied any of the statistically optimal AL ap-
proaches. Instead, so-called heuristic approaches, viz. approximations to QbC and
US, or expected model change were applied. As discussed in the previous chapter,
statistically optimal approaches are often not appropriate in practise due to their
computational complexity and dependency on specific learning algorithms.

As for QbC, the most common divergence metrics used are the Vote Entropy, the
KL divergence, and the F-complement. Committees were mostly built by the simple
bagging mechanism. QbC has been applied to POS tagging (Engelson and Da-
gan, 1996; Ringger et al., 2007), Chunking (Ngai and Yarowsky, 2000), and NER
(Tomanek et al., 2007a; Olsson, 2008; Settles and Craven, 2008). As for US-based
AL, different forms of confidence scores and distributions have been used in utility
functions, including token- and sequence-level confidence scores as well as complete
and k-best confidence distributions.3 US has been applied to POS tagging (Ringger
et al., 2007) and NER (Kristjansson et al., 2004; Laws and Schütze, 2008; Settles
and Craven, 2008). In the above-mentioned works the models applied were mostly
variants of MaxEnt models and CRFs. As for approaches based on model change,
Shen et al. (2004) applies AL for Support Vector Machines based on the proximity to
the hyperplane, and Settles and Craven (2008) apply the Expected Gradient Length
utility function. In both cases, experiments were performed for the NER task.

This short overview reveals that, despite the differences, these works share many
principle design decisions. An approach that is different in spirit is the BootMark
method presented by Olsson (2008). BootMark selects complete documents instead
of much smaller granularities because its main focus is on the creation of completely
annotated documents instead of non-consecutive training material.

For a more comprehensive description of approaches to AL for NLP, please refer to
the literature review by Olsson (2009).

4.2.2 NER-specific AL Framework

This section describes the framework we use for application of AL to the NER
task. This framework is a customization of the general framework of greedy AL, as
described in Algorithm 1 on page 32. In the following description, the task-specific
design decisions of the customized framework are discussed.

3K-best confidence distributions are applied when the number of possible labels or label sequences
is large so that the complete distribution of confidence scores would be too expensive to compute.
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If not mentioned otherwise, the CRF with the features described previously in this
chapter is applied as default model, and our approaches to AL are all implemented as
a wrapper treating the model as a black box subroutine. Batch-mode selection con-
siderably reduces computational complexity of AL-based selection and, as a result,
human idle time when waiting for the next examples for annotation. In accordance
with Requirement 2, batch-model AL is applied throughout the rest of this thesis if
not mentioned otherwise.

In the general framework of greedy AL, an example p = (x) is an atomic “unit” –
self-sufficient and independent from other examples – subject to classification. In the
NER scenario, as well as for other segmentation tasks, such a unit is not naturally
available. We have already argued that NER is best addressed as a sequence labeling
problem due to the interdependence of single tokens. So, what is then an appropriate
sequence size for AL selection?

From a linguistic and a human annotation perspective, one may argue than an
appropriate sequence should be a self-contained phrase (in accordance with the task
at hand) such as a noun phrase, a sentence, or even a paragraph.4 An overly short
phrase may not cover the complete entity (or other kinds of relevant segments) and
thus complicate human annotation decisions. Moreover, due to the overly limited
context available in short phrases, annotation of selected phrases requires intensive
access to context words. This presumably largely increases annotation time. From
an ML perspective, we would like a sequence of reasonable length, i.e., not too small
as it would lack sequence characteristics. In contrast, from a selective sampling
perspective, shorter sequences may lead to more precise utility scores and do thus
allow for more focused selection.

Several selection granularities have been proposed in the literature on AL for seg-
mentation tasks. Laws and Schütze (2008) select single tokens, Olsson (2008), in
strong contrast, sets the selection granularity to the document level, and most ap-
proaches to AL for segmentation tasks have focused on a sentence-level selection
granularity (Engelson and Dagan, 1996; Ringger et al., 2007; Tomanek et al., 2007a).
While the token-level selection granularity exhibits the steepest and most rapidly
converging learning curves, from the annotation perspective it is highly question-
able whether the annotation of isolated tokens is feasible for human annotators. On
the other hand, from a selective sampling perspective, it is questionable whether
the document-level is an appropriate selection granularity, as the human annotator
may waste time on labeling useless subsequences. As shown by Olsson (2008), it is
difficult to improve upon random selection with document-level selection.

4A noun phrase is a phrase whose head is either a noun or a pronoun (Jurafsky and Martin, 2000).

54



4.2 Active Learning

Algorithm 2 NER-specific Active Learning Framework
Given:
b: number of examples to be selected in each iteration
L: set of labeled examples l = (~x, ~y) ∈ Xn × Yn

P: set of unlabeled examples p = (~x) ∈ Xn

T (L): a learning algorithm
u(p, θ): utility function

Algorithm:
loop until stopping criterion is met

1. learn model: θ ← T (L)
2. sort p ∈ P: let S ← (p1, . . . , pm) : u(pi, θ) ≥ u(pi+1, θ), i ∈ [1,m], p ∈ P
3. select b examples pi with highest utility from S: B ← {p1, . . . , pb}, b ≤ m, pi ∈ S
4. query labels for all p ∈ B: B′ ← {l1, . . . , lb}
5. L ← L ∪ B′, P ← P \ B

return L∗ ← L and θ∗ ← T (L∗)

In this thesis, we focus on a sentence-level selection granularity which is a reasonable
unit from a linguistic perspective, contains enough context for many segmentation
tasks, and allows for acceptably focused selection. In the context of AL for NER,
we define an example to be a sequence ~x = (x1, . . . , xn) of n tokens. An unlabeled
example is given by p = (~x) and a labeled one by l = (~x, ~y).

Algorithm 2 formalizes the NER-specific AL framework for an arbitrary utility func-
tion u(p, θ). This AL framework differs from the general framework of greedy AL
(Algorithm 1) only by the fact that now in each iteration multiple examples are
selected and that these examples are sequences.

Although specified for a scenario where a single model is employed in the utility
function, adaptation to a committee of models is straightforward and affects only
Steps 1 and 2 in the loop of Algorithm 2. As specified here, the algorithm returns
both the selected and annotated sample L∗ as well as the model θ∗. Often, as a
result of AL, we are more interested in L∗ from which we intend to learn a final
model. We thus distinguish the models employed during AL for selection purposes
and those induced later from the created data L∗.

Definition 10 (Selector) A model θ employed during AL is called selector. QbC-
based AL employs a committee C with several selectors C = {θ1, . . . , θe}.

Definition 11 (Consumer) The model θ∗ induced from the sample L∗ obtained
by the AL process is called consumer.
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4.2.3 Utility Functions

In this thesis, QbC and US-based approaches to AL are applied. We deliberately
decided against the use of statistically optimal approaches to AL due to their high
computational complexity, which is not compatible with Requirement 2 postulating
low selection time. This holds especially when AL is to be applied to NLP tasks
which are characterized by extremely high-dimensional feature spaces and therefore
complex learning problems. As an example, for NER on the 15,875 sentences of the
CoNLL corpus (see below), the feature space has over 100,000 dimensions.

An advantage of QbC over US is its strong foundation in computational learning
theory and the fact that under certain conditions (cf. Section 3.4) sampling com-
plexity can be exponentially reduced. This property, however, was shown for the
original version of QbC which is based on hypothesis sampling (Seung et al., 1992).
For heuristics to QbC, including Query-by-Bagging used in this thesis, there are no
such estimates. US is appealing due to its lower computational complexity compared
to QbC, as with US, only one model instead of a committee of models needs to be
trained in each iteration of AL.

The NER-specific AL framework with a sentence-level selection granularity requires
adaptations of the utility functions, which in the previous chapter were formulated
for examples consisting of a single element to be classified. We group the utility func-
tions used throughout this thesis in three categories. Divergence-based functions in-
clude utility functions formulated for variants of QbC and based on explicit measure-
ment of the divergence amongst the committee members. Sequence confidence-based
and token confidence-based utility functions refer to those formulated in the context
of the US approach, where the confidence scores or the distribution over confidence
scores is calculated either on the sentence or the token level, respectively.

The utility functions formulated in Chapter 3 do not handle sequence information
directly but instead are calculated on the token level and then aggregated over the
sentence. Several methods of aggregation have been discussed in literature, including
the mean average, the minimum/maximum, and the standard deviation over token-
level utility scores (Olsson, 2008). Experiments have shown that aggregation by the
mean average performs best (Lichtenwald, 2009). This aggregation is given by

us̄(p, θ) =
1
n

n∑
i=1

u(xi)

where p = (~x) and xi is the token at position i in a sentence ~x of length n.

Note, that utility functions us̄name refer to aggregates over token-level scores, while
utility functions usname refer to scores calculated on the complete sequence directly.
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Divergence-based Utility Functions The Vote Entropy (Equation 3.12) and the
F-complement (Equation 3.13) utility functions are here based on the predicted
Viterbi sequence ~y ∗ = gθ(~x) so that the adapted versions for our NER-specific AL
framework are defined as

us̄VE(p, C) = − 1
n

n∑
i=1

∑
y′∈Y

V (y′, i)
|C| log

(V (y′, i)
|C|

)
(4.1)

usFC(p, C) =
1
2

∑
θi∈C

∑
θj∈C
i 6=j

(
1− F (gθj (~x), gθi(~x)

))
(4.2)

where V (y′, i) is the number of committee members which predicted the label y′ for
position i in ~x. In usFC, F

(
gθj (~x), gθi(~x)

)
indicates the F-score between the predicted

sequences of both committee members θi and θj . The KL divergence to the mean
(Equation 3.15) is also based on the entropy over the token-level confidence distri-
bution Pθj (yi|x) of each committee member θj and the respective utility function
are defined as

us̄KLM(p, C) =
1
n

n∑
i=1

1
|C|
∑
θj∈C

D
(
Pθj (yi|x)||Pavg(yi|x)

)
. (4.3)

Token Confidence-based Utility Functions We here calculate the utility score on
each position i in the observation sequence ~x by the marginal probability (Equa-
tion 2.31) of the respective label y′ from the Viterbi sequence ~y ∗. These token-level
utility scores are then aggregated to obtain the respective adaptations of the least
confidence (LC, Equation 3.9), the margin (MA, Equation 3.10), and the entropy
(ENT, Equation 3.11) utility function:

us̄LC(p, θ) = 1− 1
n

n∑
i=1

max
y′inY

Pθ(yi = y′|x) (4.4)

us̄MA(p, θ) = − 1
n

n∑
i=1

(
max
y′inY

Pθ(yi = y′|x)− max
y′′inY
y′ 6=y′′

Pθ(yi = y′′|x)
)

(4.5)

us̄ENT(p, θ) =
1
n

n∑
i=1

∑
y′∈Y

Pθ(yi = y′|x) · log
(
Pθ(yi = y′|x)

)
(4.6)

Sequence Confidence-based Utility Functions With sequence-level confidence es-
timates based on the conditional probability of the Viterbi sequence given the ob-
servation sequence (Equation 2.24), the sequence confidence-based utility functions
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based on LC and MA are given by

usLC(p, θ) = 1− Pθ(~y ∗|~x) (4.7)
usMA(p, θ) = −(Pθ(~y ∗|~x)− Pθ(~y ∗∗|~x)

)
(4.8)

where ~y ∗ and ~y ∗∗ are the first- and second-best Viterbi sequences, respectively.
The entropy utility function is omitted due to the huge number of possible label
sequences. In the next section, the sampling complexity and efficiency as well as
sample characteristics of the these eight utility functions are analysed.

4.3 General Experimental Settings

We here evaluate the utility functions described above in the NER-specific AL frame-
work. We performed such a comparative evaluation of utility functions because of a
lack of comprehensive studies providing generalizable results on which utility func-
tion performs best. Although two other comparative studies of approaches to AL
have been published recently (Olsson, 2008; Settles and Craven, 2008), it is ques-
tionable whether their findings generalize to our particular scenario.5

In all experiments, the learner is based on CRFs with the same feature set as de-
scribed above. This holds both for the selector and the consumer. We apply an
implementation of CRFs as found in the machine learning toolkit Mallet (McCal-
lum, 2002). For committee-based AL, Query-by-Bagging (QbB) is applied through-
out this thesis. For QbB, the single committee members are trained on a random
sample of |C|−1

|C| sentences drawn without replacement from L. If not mentioned
otherwise, |C| = 3 in order to keep the computational cost at a minimum. The
experimental settings described above are reused throughout the rest of the thesis
if not mentioned otherwise.

4.3.1 Evaluation Measures

AL approaches are usually evaluated by the sampling complexity, i.e., the number
of examples needed to yield a specific model performance. Typical performance

5Olsson (2008) comprehensively compares different approaches to QbC and US in the context of
the BootMark method where complete documents are selected. It is unclear in how much the
specific selection granularity affected the results. With a focus on sequence labeling and NER,
Settles and Craven (2008) compare several approaches to AL; however, generalizing their results
to our setting is problematic due to another cost measure being applied: While we consider the
number of tokens being annotated, Settles and Graven consider the number of sentences instead.
As sentences are subject to a high variability in length (cf. Figure 11.1), costs based on tokens
cannot be directly compared with costs based on sentences.
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measures are the accuracy or the F-score yielded. We consider the F-score as our
ultimate performance measure. If not mentioned otherwise, the term “F-score”
henceforth refers to the micro F1-score as described in Section 2.3. When applied
to segmentation tasks, Recall and Precision are calculated by

R =
# of correct segments found

# of all segments in text
(4.9)

P =
# of correct segments found

# of segments found
(4.10)

so that the segment F-score is calculated as in Equation 2.42 (assuming α = 0.5)
but based on the above formulations of recall and precision (Jurafsky and Martin,
2000). In the NER scenario, a segment corresponds to an entity mention. Tokens
labeled as the non-entity class do not count during this evaluation.

Annotation Cost Measure The label complexity, also called annotation effort, is
quantified by some kind of cost measure. Traditionally, studies on AL assume a
unit cost per selected example. However, when selecting complete sentences, the
unit cost assumption is overly simplistic as sentences tend to vary enormously in
their length (cf. Table 4.2). Moreover, it has been shown that the actual choice of
the cost measure strongly influences the quantification of the success of a particular
AL approach (Claire et al., 2005; Haertel et al., 2008a; Settles et al., 2008). Our
cost measure is based on the number of annotated tokens making up the sentences
contained in L. We assume uniform costs c = 1 for all tokens so that

cost(L) =
∑

(~x,~y)∈L

n∑
i=1

c (4.11)

where n is the length of the sequence. We believe this to be a reasonable approxima-
tion of annotation effort in the absence of an empirically more adequate task-specific
model for annotation cost.

Learning Curves The relation of label complexity and model performance can be
visualized by a learning curve showing the performance as a function of annotation
effort (see Figure 4.2). For the learning curve, the performance of the model θLj
induced from Lj is calculated for increasingly larger subsets Lj ⊆ L. Sampling-
based evaluation techniques such as cross-validation cannot be applied here because
the examples l ∈ L are subject to a heavy sampling bias.
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Figure 4.2: Sampling complexity for a target performance of F=0.7: CFP0.7(AL) = 7, 700 to-
kens and CFP0.7(Rd) = 36, 000 tokens. Sampling efficiency in interval [10, 000; 25; 000]
is calculated by RAI measure as B

A − 1.

Sampling Complexity and Sampling Efficiency To evaluate the performance of
sampling strategies, we consider sampling complexity as well as sampling efficiency.
Sampling complexity describes the number of examples needed to yield a particular
target performance perf (θL, T ) on the held-out test set T where θL specifies the
model induced from the actively obtained sample L. We propose the Cost for Target
Performance (CFP) measure as an operationalization of sampling complexity. CFP
quantifies the cost, according to an arbitrary cost measure, needed to obtain a target
performance F ∗ given a sampling strategy S:

CFPF ∗(S) = argmin
cost(Lj)

perf
(
θLj , T

) ≥ F ∗ . (4.12)

Figure 4.2 visualizes the CFP measure for two sampling strategies.

Sampling efficiency describes how well a model performs on a particular sample. We
calculate sampling efficiency on several sample size positions to level out outliers.
The Area Under the Learning Curve (AUC) in the interval [a, b] is given by

AUC(S, a, b) =
∫ b

j=a
perf (θLj , T )dj (4.13)

where the integral is approximated by adding the performance at step-wise increased
values of j. The efficiency of a particular sampling strategy depends to a great extent
on the performance of the baseline approach. We define the Relative Area Increase
(RAI) of the AUC of the selective sampling approach over the baseline’s AUC by:
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RAI(SAL, Sbase, a, b) =
( AUC(SAL, a, b)

AUC(Sbase, a, b)
− 1
)
· 100 . (4.14)

The RAI measure assesses the relative increase of sampling efficiency over a base-
line sampling strategy. Our RAI measure is similar to the cost reduction measure
presented by Haertel et al. (2008a) with the difference that Haertel et al. consid-
ered cost reduction on single positions while we chose an interval to level out local
variations. Figure 4.2 visualizes the RAI measure.

Throughout the rest of this thesis, CFP and RAI are used as operationalizations of
sampling complexity and sampling efficiency. It should be noted, that CFP and RAI
might suggest inconsistent conclusions as to which utility function performs better.
Moreover, RAI and CFP depend greatly on the evaluation granularity applied, i.e.,
the number of tokens by which Lj increases. In this chapter, Lj is increased so that
additional 500 tokens are contained in each evaluation step.

4.3.2 Corpora

We tested all our approaches on four common entity-annotated corpora to see
whether the same tendencies can be observed in different scenarios. Two corpora
are from the newswire and two other corpora are from the biomedical domain. Both
from the newswire and from the biomedical domain there is a corpus with three
entity classes and one with considerably more classes.

From the general-language newspaper domain, we took the Muc7 corpus (Linguistic
Data Consortium, 2001) as well as the English data set of the CoNLL-2003 shared
task (Tjong Kim Sang and De Meulder, 2003). Muc7 consists of three independent
parts and for our experiments we took the training part only. These documents are
New York Times articles from 1996 about airplane crashes. Muc7 has annotations of
seven different entity types: persons, organizations, locations, times, dates, monetary
expressions, and percentages. The CoNLL corpus consists of a collection of Reuters
newswire articles on international politics, sports, and finance, and is annotated with
three entity types: persons, locations, organizations, and misc. From the original
CoNLL corpus, we removed the misc annotations as they appeared inconsistent.

From the sublanguage biology domain we used the oncology part of the PennBioIE
corpus (Kulick et al., 2004), which consists of some 1150 PubMed abstracts. Origi-
nally, this corpus contains gene, variation event, and malignancy entity annotations.
For our simulations, we built two sub-corpora by filtering out entity annotations.
The gene sub-corpus (PBgene) contains annotation of the three gene entity types
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CoNLL Muc7 PBgene PBvar

number of tokens 241,952 78,329 267,320 267,320
class distribution over tokens 0.36 0.18 0.16 0.07

number of sentences 15,785 3,022 10,570 10,570
avg. sentence length 15.3 25.9 25.3 25.3
sentence length interval [3,49] [3,71] [3,64] [3,64]

number of entity types 3 7 3 6
number of entity mentions 23,365 5,144 12,958 6,261
avg. entity length 1.48 1.61 1.34 1.48
avg. no. of entity mentions per sent. 1.48 1.70 1.23 0.59

entity tokens 34,622 8,283 17,379 9,247
avg. no. of entity tokens per sent. 2.2 2.74 1.6 0.9

Table 4.2: Characteristics of the simulation corpora

generic, protein, and rna, while the variation event sub-corpus (PBvar) is built
from the annotations of the variation entity types type, event, location, state-altered,
state-generic, and state-original. Thus, PBgene and PBvar are based on the same
sentences but contain different entity annotations.

Table 4.2 provides descriptive corpus statistics. It shows the size of the corpora
in terms of tokens and sentences.6 The class distribution is the entropy over the
token class a-priori probabilities. The classes include the entity classes as well as
a class called Outside in NER which indicates that a token is not part of an
entity mention. The entropy is normalized to [0,1]. PBvar has the most biased
distribution and CoNLL the least. The table also informs about the overall number
of entity mentions, the number of entity mentions per sentence, and the average
entity length measured by the number of tokens in the entity mentions. While the
average entity length is quite similar in all corpora, the number of entity mentions
and entity tokens per sentence deviates considerably in the PBvar corpus: sentences
are more sparsely populated with entities than in the other corpora.

6We removed sentences of considerable over and under length (beyond +/- 3 standard deviations
around the average sentence length as well as all sentences shorter than 3 tokens) from all four
corpora, so that the numbers reported here may differ from those cited in the original sources.
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4.3.3 Randomizations

For all our experiments, we repeat the runs to obtain a statistically meaningful result.
AL runs are always started from a random seed set. If not mentioned otherwise, we
always took the same seed sets in all our experiments. These seed sets consist of 20
randomly sampled sentences. All results reported are averages over the single runs.
If not mentioned otherwise, 20 independent runs are performed.

For the single runs we split our corpora into a pool P ⊂ X n to select from, and a
test T ⊂ X n × Yn to generate learning curves. It is important to mention, that all
splits were made just once. So all experiments are based on the same collection of
splits and seed sets for comparability. The original CoNLL corpus has an explicit
evaluation and training set. These sets were used in the competition, so we also use
these sets as a pool and test set for comparability of results. Thus, for CoNLL we
have just one split, in all our individual runs so that only the seed sets are varied.
On Muc7, PBvar, and PBgene, we split the complete corpus in pools (90% of the
sentences) and complementary test sets (remaining 10%).

4.4 Results

4.4.1 Passive Learning

The passive learning performance of our CRF-based approach to NER is compared
to that of other relevant NER systems on the same corpora to assess whether it
achieves reasonable results. Furthermore, the passive learning performance theoret-
ically constitutes an upper bound for the performance achievable with AL. While
previous work, especially on AL for SVMs, has reported that classifier performance
yielded on samples obtained by AL is sometimes higher than the performance of
a classifier trained on the whole data set (Schohn and Cohn, 2000; Ertekin et al.,
2007), we could not observe this behavior in our experiments.

To obtain performance values comparable to the ones yielded by our experiments on
AL, we performed passive learning runs on the same splits used in AL and averaged
over the single runs. While on Muc7, PBgene, and PBvar this means that 20
independent passive learning runs were performed and averaged, on CoNLL the
passive learning performance is based on one run only.

Table 4.3 lists the average F-scores. The performance values of the single runs de-
viate slightly, the highest standard deviation can be observed on the PBvar corpus
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CoNLL Muc7 PBgene PBvar

F-score 0.83 0.88 ± 0.014 0.83 ± 0.008 0.78 ± 0.023

Table 4.3: Performance (F-score and standard deviation) of passive learning obtain by 10-fold
cross-validation. On the CoNLL corpus, no cross-validation was performed because
there is a designated training and evaluation set.

– presumably because of the high variance of entity mentions contained per sen-
tence. With an F-score of about 83%, our approach to NER ranges in the midfield
of the systems that took part in the CoNLL-2003 competition (English); the best
two system there achieved F-scores of around 88% (Tjong Kim Sang and De Meul-
der, 2003). On the Muc7 corpus, we achieved an F-score of about 88%; the best
performing systems of the Muc7 competition yielded F-scores in the low 90s (Marsh
and Perzanowski, 1998). Direct comparison of the results is especially problematic
here because the evaluation scenario was very dissimilar.7 On PBgene, we achieve a
passive learning F-score of 83%, a CRF with a specialized feature set, feature induc-
tion, and lots of domain knowledge was reported to yield about 86% F (McDonald
and Pereira, 2005). Similarly, on PBvar a specialized NER system was reported to
achieve an F-score of about 82% (McDonald et al., 2004), while our unspecialized,
task-independent approach to NER yields an F-score of about 78%.

One should be careful in directly comparing the results reported for other systems
with ours for two reasons: firstly, we do not use exactly the same corpora or eval-
uation scenario (different forms of cross-validation or train/test splits, removal of
sentences with over-/underlength in our scenario), and secondly, we applied an un-
tuned approach to NER, i.e., in its default configuration with a standard feature
set, whereas for the systems reported on a lot of engineering and fine-tuning was
carried out to obtain the performance scores published. However, this juxtaposition
of results shows that our CRF-based approach to NER achieves respectable results
on all corpora in its default configuration.

4.4.2 Active Learning

This section empirically evaluates different utility functions in our NER-specific AL
scenario (cf. Section 4.2.3) in terms of sampling complexity and sampling efficiency.
Based on this comparative study, three utility functions – one from each of the

7Groups participating in Muc7 evaluated their systems against an official test set, while in our
experiments we employed the Muc7 training set in a cross-validation manner.
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utility function utility Muc7 CoNLL PBgene PBvar
category function F = 0.85 F = 0.78 F = 0.78 F = 0.77

divergence-based
us̄

VE 18,519 25,014 34,514 23,518
us

FC 26,014 38,010 42,513 45,519
us̄

KLM 23,016 32,506 45,016 28,019

sequence confidence-based us
LC 18,516 44,011 32,011 26,014
us

MA 19,020 33,013 33,013 28,512

token confidence-based
us̄

LC 17,516 24,011 30,013 22,517
us̄

MA 19,014 24,509 31,018 22,511
us̄

ENT 17,518 25,013 30,015 27,011

random sampling Rd 37,518 47,009 83,011 123,390

Table 4.4: Sampling complexity for different utility functions given by CFP scores according
to a corpus-specific target performance (F). The best-performing utility function per
category is highlighted (see Section 4.2.3 for the definition of the utility functions).

utility function categories “divergence-based”, “token confidence-based”, and “se-
quence confidence-based” – are selected for further use in this thesis. Additionally,
characteristics of the resulting samples are analyzed to understand better why some
utility function perform better than others and which are appropriate scenarios for
the application of selective sampling. Finally, we briefly discuss the appropriateness
of the chosen selection granularity.

4.4.2.1 Evaluation of Utility Functions

Instead of plotting learning curves for all utility functions, we report on sampling
complexity in terms of CFP scores and on sampling efficiency in terms of RAI
scores. For the CFP scores, a corpus-specific target performance F ∗ is chosen so as
to be as large as possible, with the constraints that (a) it should occur before the
convergence phase and (b) so that all metrics reach this score within a maximum
of 50,000 tokens.8 Random sampling (Rd) is taken as a baseline scenario for the
RAI score which we calculate on the interval of [10000, 30000] tokens. This interval
efficiently excludes the very first start-up phase as well as the convergence phase.

Tables 4.4 and 4.5 show the respective CFP and RAI scores. With the exception of
the RAI score of usLC on CoNLL, all metrics clearly outperform random sampling.

8Due to variations in the learning curves, we define that the specified target performance must
have been reached in at least 3 successive evaluation positions to avoid erroneous performance
assessment due to singular positive outliers.
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utility function utility
category function Muc7 CoNLL PBgene PBvar

divergence-based
us̄

VE 6.07 5.51 8.15 20.40
us

FC 2.63 0.79 6.32 16.60
us̄

KLM 4.24 3.26 4.71 18.90

sequence confidence-based us
LC 6.26 -2.91 8.65 19.40
us

MA 6.00 1.13 8.31 19.50

token confidence-based
us̄

LC 6.50 6.01 9.62 20.80
us̄

MA 6.32 6.05 8.92 20.70
us̄

ENT 6.39 5.98 9.77 20.00

Table 4.5: Sampling efficiency of different utility functions given by RAI scores over random
selection in the interval of [10000, 30000] tokens. The best-performing utility function
per category is highlighted (see Section 4.2.3 for the definition of the utility functions).

Amongst the divergence-based utility functions, us̄VE performs best on all corpora,
both in terms of CFP and RAI scores, and overall usFC is the worst-performing
utility function. Interestingly, us̄KLM performs considerably worse than all other
utility functions (except usFC). This is especially surprising when compared to us̄VE,
for example, which calculates utility scores based only on the predicted labels while
us̄KLM takes the distributions of confidence scores into account and may thus be
assumed to perform much better.

As for US-based utility functions, performance differences are less clear. Amongst
the sequence confidence-based utility functions, usLC and usMA perform similarly and
amongst the token confidence-based utility scores there is also no clear winner. These
performance characteristics hold for both the CFP and the RAI scores on all of our
four corpora, so that they may be generalized for a wider range of NER-scenarios.

We chose the following three utility functions for further application in this thesis:
us̄VE as a representative for the divergence-based utility functions, usLC for the se-
quence confidence-based utility functions, and us̄MA for the token confidence-based
utility functions. The choice of us̄VE was motivated simply by its considerably better
sampling complexity and sampling efficiency compared to usFC and us̄KLM. We chose
usLC because of its lower computational complexity compared to usMA (only the best
Viterbi sequence needs to be determined). Finally, we preferred us̄MA over us̄ENT

because of slightly lower computational complexity and over us̄LC because us̄MA has a
better theoretical motivation (cf. Section 3.2.3 and (Scheffer and Wrobel, 2001)).

Figure 4.3 shows the learning curves for AL with these three utility functions. In
direct comparison, us̄MA performs best but is closely followed by us̄VE and usLC, which
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Figure 4.3: Learning curves for selected utility functions and random selection.

do only slightly worse.9 The percentage decrease of annotation effort

∆CFPF ∗(us̄MA,Rd) = 1− CFPF ∗(us̄MA)
CFPF ∗(Rd)

(4.15)

of us̄MA compared to Rd is shown in Table 4.6 which emphasizes the immense po-
tential of AL for reducing annotation effort.

9Once again, note the exception on the CoNLL corpus where usLC performs even worse than
random selection while the other two metrics do well on this corpus. This behaviour is explained
by some sample characteristics which are problematic on CoNLL (discussed in detail below).
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Muc7 CoNLL PBgene PBvar

∆CFPF∗(us̄
MA,Rd) 49.3% 47.8% 61.7% 81.8%

Table 4.6: Percentage reduction of sampling complexity through AL based on the us̄
MA utility

function over random selection. Table 4.4 on page 65 shows the respective CFP scores.

4.4.2.2 Characteristics of Selected Samples

This section analyzes characteristics of the samples obtained by AL with different
utility functions. The samples analyzed amount to 20, 000 tokens.10 Besides Rd,
two additional baselines were used. Lng selects sentences by their sentence length
so that longer sentences are preferred; Srt works inversely and prefers shorter sen-
tences. Both Srt and Lng are inferior to any of the AL approaches both in terms
of sampling complexity and sampling efficiency.11 Samples obtained by Rd are con-
sidered to mirror the true distribution of data and the unbiased characteristics of
the respective corpus to which then all other metrics are compared. Table 4.7 shows
sample characteristics on all four corpora.

Sentence Length (SL) The average sentence length in terms of tokens.

The longest sentences are selected by utility functions based on sequence con-
fidence including usLC and usMA. Due to the way sequence confidence is calcu-
lated (cf. Equation 2.24 on page 19), there is an inherent tendency for longer
sentences to obtain higher utility scores and thus to be selected preferentially.
This is evidenced by the SL scores. In a similar manner, usFC also selects longer
sentences than Rd.

The opposite is the case for utility functions where the mean average aggrega-
tion is applied: Shorter sentences are more likely to obtain a high utility score
because local peaks, i.e., high utility scores on single tokens, have greater effect
on the averaged utility score.

While the sentence length characteristic described can be observed on all cor-
pora, it is most pronounced on CoNLL where usLC exhibits SL scores almost
twice as high as Rd. This is due to CoNLL’s specific distribution of sentence

10The same tendencies can also be found in a less extreme version after 50,000 tokens. The effects
are less extreme because in later AL iterations, the selection is much more restricted due to a
diminishing pool. Thus, to study selection characteristics of AL it makes sense to consider fairly
iterations of the AL process. We could observe the same tendencies over all corpora.

11For example, the sampling complexity on Muc7 for the target performance of F=0.85 is 37,518
tokens for Rd, 36,013 tokens for Lng and 35,512 tokens for Srt. AL with the worst performing
utility function needed only 26,014 tokens.
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lengths. Moreover, the poor performance of usLC results largely from the poor
relation between costs and true benefit in model induction from long sentences.

Entities per Sentence (EPS) The average number of entity mentions per sentence.

Statistically, the chance of finding many entity mentions is higher in long
sentences compared to short sentences. Accordingly, the highest EPS scores
are yielded by usLC and usMA. Yet, the EPS scores of the other utility functions
are higher compared to Rd. Slg also exhibits a high EPS scores. However,
the selection of sentences with many entity mentions alone cannot explain
the good performance of the AL approaches which is emphasized by the poor
performance of Slg.

Entity Length (EL) The average entity length in terms of tokens.

There is an overall tendency for AL to select longer entity mentions.

Percentage Entity Tokens (PET) The percentage of tokens that is part of an entity
mention – higher scores mean higher density of entity mentions per sentence.

To start with, Rd shows that the number of entity tokens is very low in
all corpora (between 3 % and 14 %). All utility functions, except usFC, yield
considerably higher PET scores. The behaviour of usFC might be explained
by the following hypothesis: the more short entity mentions contained in a
selected sentence, the higher are the chances that the mutual F-scores will
differ more. This assumption is supported by the fact that the EL score for
usFC is also a bit lower compared to the other utility metrics.

In summary, when the number of tokens that are part of entity mentions is
considered to be the interesting part of a sentence, we may assert that the use
of AL considerably increases the information density.

Percentage Entity Sentences (PES) The percentage of sentences containing entity
mentions — higher scores mean that more sentences contained entity mentions.

As with PET, the number of sentences containing entity mentions is consid-
erably increased by selective sampling. The sequence confidence-based utility
functions exhibit the highest PES scores again because long sentences are sta-
tistically more likely to contain entity mentions.

The biggest reduction of annotation effort (cf. Table 4.6 on page 68) was
achieved on the PBvar corpus can be explained by the low PET score of 0.23
on this corpus – statistically, less than one out of four sentences contains an
entity mention. This can be further intensified by the fact that entity mentions
often co-occur.

The above analysis demonstrates that different utility functions lead to specific sam-
ple characteristics. Most notably, sentences selected by any of the utility functions
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except usFC exhibit a higher information density, which we loosely defined as per-
centage of tokens covered by an entity mention (PET). Moreover, AL tends to select
either overly long or short sentences, based on the specific utility function used.
However, sentence length alone cannot explain the good performance of AL, as Lng
and Srt perform rather poor in comparison. Overall it can be presumed that AL
is an efficient sampling approach especially when the pool of unlabeled examples
is sparsely populated with entity mentions so that a sampling bias towards those
sentences containing many entity mentions is very beneficial.

4.4.2.3 Evaluation of the Selection Granularity

In Tomanek et al. (2009), we showed that the sentence-level selection granularity
increases the robustness of AL compared to the more fine-grained token-level selec-
tion. The sampling bias induced by AL may lead to an incomplete coverage of the
input space which has been described as the missed cluster effect by Schütze et al.
(2006): Larger parts, or clusters, of the input space are completely missed during
the AL selection process. AL is an exploitative sampling process. Starting from a
seed set that is limited to a certain subspace of the input space, AL may not be able
to explore other regions of the input space. Explorative approaches to sampling,
such as random sampling, tend to cover the complete input space more uniformly.

By using the sentence-level selection granularity, non-targeted parts of the input
space may be also covered by a sentence that was selected because another part
of the same sentence appeared highly useful for classifier training. In consequence,
AL based on sentence selection recovers better from unfavourable seed sets. We
have described this behavior as the co-selection effect (Tomanek et al., 2009). Alto-
gether, this also means that AL with a sentence-level granularity also constitutes a
combination of exploitative and explorative sampling processes.

4.5 Summary and Conclusions

In summary, this chapter discusses the NLP task of NER and presents and evaluates
our NER-specific AL framework. This framework is an instantiation and adaptation
of the general framework of greedy AL defined, in a task-independent manner in the
previous chapter. This framework is used for all experiments in this thesis.

We first described our approach to NER based CRFs and a rich set of domain-
independent features. The evaluation on four standard corpora annotated with NEs
showed that – although not specialized to any of the specific NE tasks tested on
– this approach yields performance values not much below those of highly tuned
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Muc7 corpus

strat. SL EPS EL PET PES

Rd 25.8 1.7 1.6 0.1 0.7
Srt 15.4 0.9 1.5 0.1 0.6
Lng 48.5 3.3 1.6 0.1 0.9

us̄
VE 24.5 2.6 1.8 0.2 0.9
us

FC 25.1 1.6 1.7 0.1 0.9
us̄

KLM 25.4 2.8 1.8 0.2 0.9

us
LC 33.8 3.4 1.7 0.2 0.9
us

MA 32.2 3.1 1.7 0.2 0.9

us̄
LC 25.2 2.7 1.7 0.2 0.9
us̄

ENT 24.8 2.7 1.7 0.2 0.9
us̄

MA 25.3 2.7 1.7 0.2 0.9

CoNLL corpus

strat. SL EPS EL PET PES

Rd 15.7 1.5 1.5 0.2 0.7
Srt 5.3 1.0 1.4 0.3 0.7
Lng 41.6 2.8 1.6 0.1 0.9

us̄
VE 9.8 1.6 1.6 0.3 0.8
us

FC 16.6 1.3 1.4 0.1 0.8
us̄

KLM 10.6 1.8 1.7 0.3 0.9

us
LC 28.5 3.7 1.6 0.2 1.0
us

MA 24.8 3.0 1.5 0.2 0.9

us̄
LC 10.5 1.8 1.6 0.3 0.9
us̄

ENT 10.2 1.9 1.6 0.3 0.8
us̄

MA 10.4 1.8 1.6 0.3 0.9

PBgene corpus

strat. SL EPS EL PET PES

Rd 25.3 1.2 1.3 0.1 0.7
Srt 12.1 0.7 1.2 0.1 0.5
Lng 52.8 2.4 1.4 0.1 0.8

us̄
VE 22.6 2.3 1.8 0.2 0.9
us

FC 26.9 1.6 1.7 0.1 0.9
us̄

KLM 23.7 2.3 1.9 0.2 0.9

us
LC 37.8 3.6 1.5 0.1 0.9
us

MA 33.6 3.0 1.5 0.1 0.9

us̄
LC 23.6 2.4 1.8 0.2 0.9
us̄

ENT 24.0 2.5 1.7 0.2 0.9
us̄

MA 23.6 2.4 1.8 0.2 0.9

PBvar corpus

strat. SL EPS EL PET PES

Rd 25.3 0.6 1.5 0.03 0.2
Srt 12.0 0.2 1.5 0.03 0.1
Lng 52.7 1.5 1.4 0.04 0.4

us̄
VE 22.8 2.3 1.5 0.2 0.7
us

FC 28.7 1.6 1.4 0.1 0.6
us̄

KLM 23.9 2.5 1.5 0.2 0.7

us
LC 36.4 3.5 1.4 0.1 0.7
us

MA 32.9 2.8 1.4 0.1 0.7

us̄
LC 24.0 2.5 1.5 0.2 0.7
us̄

ENT 24.8 2.6 1.5 0.2 0.7
us̄

MA 23.8 2.4 1.5 0.2 0.7

Table 4.7: Characteristics of samples obtained by different sampling strategies including
random sampling (Rd), shortest sentence selection (Srt), longest sentences selection
(Lng), and AL based on different utility functions (uNAME). Characteristics were
calculated as soon as the samples yielded a size of of 20,000 tokens.
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systems. This positive results justify CRFs as selector and consumer in all of the
following AL experiments in the context of NER.

A subset of the general AL utility functions described in Chapter 3 was adapted
to work in the NER-specific AL framework. The performance of all of these utility
functions was comprehensively evaluated and we identified three utility functions
that outperformed the others and will thus be used in the following chapters of this
thesis. Note that while for the QbC-based utility functions we found big differences
in the sampling performances, this was not the case for the US-based ones where
there was minor variance in performance. Furthermore, we could not find a funda-
mental difference in sampling complexity or sampling efficiency between the QbC or
the US-based approaches in general.

However, taking into account the slight performance differences, us̄MA showed the
best performance values. Compared to random sampling, we recorded a reduction
of annotation effort through AL with the us̄MA utility function of between 47.8 and
81.8 % (cf. Table 4.6 on page 68). These savings still differ from the exponential
savings AL can yield in theory and under optimal conditions (cf. Section 3.4).
However, in practise those savings are motivating for AL to be considered an efficient
strategy for considerably reducing the burden of annotation.

AL always performed better than random sampling – with one exception: On the
CoNLL corpus, usLC showed extremely poor performance in terms of sampling ef-
ficiency measured by the RAI score. Our analysis of the sample characteristics
of the different utility functions could provide an explanation for that. Sequence
confidence-based utility functions tend to select overly long sentences, utility func-
tions based on an aggregation of token-level utility scores rather select shorter sen-
tences. On the CoNLL corpus, sentence length is subject to high standard deviation
and long sentences exhibit linguistic structures that are not found in shorter sentence
and that do not help much in model learning. In consequence, preferential selection
of long sentences is extremely disadvantageous on this corpus. On the other corpora,
however, selection of extremely long sentences did not constitute a problem.

Another sample characteristic common to all utility functions is the high information
density, i.e., an increased number of tokens part of entity mentions in the selected
sentences. From this, we conclude that AL is especially beneficial in scenarios where
this information density is naturally rather low – as is the case in NER.

Finally, our NER-specific AL framework combined with the three selected utility
functions, us̄VE, usLC, and us̄MA, satisfactorily meets the criteria of Requirements 1, 2,
and 3: the selection of the next batch of sentences to be annotated exhibits a
relatively low complexity, the framework can be used flexibly for different NER
scenarios, and lastly, relevant savings can indeed be achieved.
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Chapter 5

Monitoring the Active Learning Sampling
Process

When AL is applied to real-world annotation endeavours, a crucial question is when
to actually stop the annotation process and cash in the savings in annotation effort
(Requirement 4). This question may be asked both in annotation projects based on
AL and in those where traditional strategies, such as random sampling, are applied
to sample the raw corpus data. However, this question naturally comes up in the
context of resource- and cost-aware annotation strategies of which AL is one.

Performance gains in classifier training are usually sub-linear, i.e., gains rapidly slow
down with each new training example available.1 A learning curve can be subdivided
into three stages – a short skyrocket stage at the beginning with an extremely steep
slope, a transition stage with mediate slope, and a long saturation or convergence
stage. These stages are shown on a prototypical learning curve in Figure 5.1. This
plot also visualizes why it is important to find a proper stopping point. Stopping
too early means that precious gains in classifier performance at low cost are forfeited
(S1); stopping too late leads to human annotation effort being wasted (S4). The
optimal stopping point is probably between both extremes, in the transition or at
the beginning of the saturation stage (S2 and S3).

What is the optimal stopping point, though? Stopping once a user-defined target
performance has been reached may be a questionable stopping condition because
it cannot be guaranteed that the target performance can be reached at all, leading
to an infinite annotation process in the worst case. Annotation should be stopped
at the latest when the best-performing classifier for a particular problem has been
yielded on the data at hand, so that further annotation will no longer improve the
model. In most real-world annotation scenarios, however, a well-defined stopping
point based on the convergence of classifier performance does not exist. Instead,

1The relationship between number of training data and classifier performance obtained hereon is
a polynomial one known as the power law (John and Langley, 1996).
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Figure 5.1: Prototypical learning curve subdivided into three stages: the start-up stage (A),
the transition stage (B), and the saturation stage (C). S1 − S4 are possible stopping
points within these stages.

additional data still result in slight improvements of the classifier’s performance.
Accordingly, one might rather consider the trade-off between further annotation
efforts and gains in classifier performance to decide whether additional annotations
are worth the effort for the targeted application. In consequence, we consider the
optimal stopping point to be subjective.

Given a user-defined trade-off, the stopping point can be read from the learning
curve. Unfortunately, a learning curve is rarely available in practise. Classifier
performance cannot be reliably estimated by means of re-sampling methods, such
as cross-validation or bootstrapping, because these methods require i.i.d. examples
(cf. Section 2.3). Samples drawn with AL are, however, intentionally biased so that
an annotated validation set with i.i.d. examples is needed for reliable performance
estimation. Yet this solution comes with expensive extra annotation work, which is
not consistent with the goal of AL of keeping annotation effort to a minimum. Also,
if there were a sufficiently large validation set, AL would not be needed.

In this chapter we propose an unsupervised method for approximating the learning
curve without the need for an annotated validation set. The approximation shows the
general progression of the learning curve and makes it possible to identify the current
stage of the learning curve. Our method is basically a means of monitoring the
annotation progress. Given our observation that the actual stopping point depends
on a subjective trade-off definition, the approximation of the learning curve is an
important aid to decision making. As an extension to the monitoring approach,
we also propose an intrinsic stopping criterion for finding a reasonable stopping
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point close to the best-performing model. This stopping condition may be used in
scenarios where the definition of a trade-off is not possible and stopping should thus
be done in a conservative way.

Most of the work presented in this chapter has been published in Tomanek et al.
(2007a), Tomanek and Hahn (2008), and Olsson and Tomanek (2009).

5.1 Related Work

Early stopping is a general issue in the machine learning literature. However, the
setting in which it is defined differs considerably from ours. A challenging problem
of data mining is the enormous amount of data collected. Sampling techniques are
applied to reduce computational complexity in classifier training – be it for main
memory restrictions or reduction in training time. Determining the stopping point is
about finding an appropriate trade-off between computational complexity in model
induction and reduction of model performance (Scholz, 2007, Ch. 3).

In this context, extrapolation of the learning curve from the history of performance
measurements on small to medium sized samples has been explored. John and Lan-
gley (1996) employed a power law function to fit learning curve data and predict
classifier performance for future sample sizes.2 It should, however, be noted that
the AL scenario is different in that a history of performance measurements is not
available in practise (see discussion in previous section). The approach we propose
for monitoring and stopping is, however, related to this work as it aims to approxi-
mate a learning curve, though not from performance measurements but rather from
utility scored from the AL process.

Schohn and Cohn (2000) proposed a stopping criterion for SVM-based AL where
the annotation process is stopped when none of the unlabeled examples are closer
to the hyperplane than any of the support vectors. At this point, the margin has
been exhausted and the model will no longer change. This approach assumes that
the best stopping point is that of model convergence. In this way, it is a rather
conservative stopping condition and it is questionable whether it can be reached in
a practical scenario with pools of virtually unlimited size.

Several stopping criteria for US-based AL have been proposed by Zhu and colleagues
(Zhu and Hovy, 2007; Zhu et al., 2008a,b). The max-confidence method stops AL

2 Based on theoretical work in both machine and human learning it has been shown that the power
law is a good fit to the respective learning curves (Ninio, 2006). The power law function is given
by âcc ≈ a − b · nα where a, b, and α are estimated from previous performance measurements
and n denotes the size of the sample.
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when the utility score on any of the selected examples falls below a certain threshold.
Similarly, the overall-confidence method stops AL when the average utility score on
the unlabeled examples in the pool falls below a threshold. Using the min-error
strategy, AL is stopped when the difference between the classifier’s predictions and
the labels given by the human annotator for the selected examples falls below a
threshold. The minimum expected error method estimates the classification error
on the remaining pool of unlabeled examples. Once again, when this error falls
below a threshold, AL is stopped. Finally, the classification-change method stops
AL when, during two consecutive AL iterations, the predicted labels on unlabeled
examples in the pool do not differ. Altogether, all methods proposed by Zhu and
colleagues are based on the AL pool alone. We will discuss below why this is highly
problematic. Moreover, all of the methods require a threshold to be set.

Vlachos (2008) presented a stopping criterion for US-based AL based on the confi-
dence of the model learned in the current AL iteration. This confidence is estimated
as the average utility score (here, least confidence) of the model on a held-out test
set. Vlachos argued that the optimal stopping point is the point when there are no
more useful examples left in the pool. Thus, as soon as the confidence values stop
increasing, this point is reached. Vlachos reported that such a confidence curve fol-
lows a rise-peak-drop pattern: It rises at the beginning, then reaches its maximum
values after which it then constantly drops.

Vlachos’ approach was re-evaluated by Laws and Schütze (2008), but they could
not find the peak-pattern of the confidence curve in their setting. Laws and Schütze
(2008) proposed a related stopping criterion also based on the convergence of the
utility score in a US scenario. They observed the gradient of the utility score of the
last selected example, i.e., the most useful example. Since utility scores are often
noisy and subject to sharp drops, the gradient is calculated from a moving median
over the utility scores. When the gradient approaches a value of 0, the AL process
is stopped due to the intuition is that at this point the pool of available data no
longer contributes to the classifier’s performance.

Most recently, Bloodgood and Shanker (2009a) proposed a stopping criterion based
on stabilizing predictions. Predictions on a so-called stop set of the models learned
in n subsequent AL iterations are compared using Cohen’s Kappa statistic κ (Cohen,
1960). When κ is above a threshold, the predictions, as well as the underlying model,
are assumed to be stable justifying to stop annotation. Bloodgood and Shanker argue
that their criterion is robust and widely applicable because the Kappa statistic is
more robust than simple percent agreement calculation. Kappa takes into account
the agreement occurring by chance. In their experiments on text classification and
NER, Bloodgood and Shanker successfully applied the same threshold of κ = 0.9.
Moreover, the authors argued that their stopping criterion is aggressive as it avoids
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unnecessary annotations. They empirically compared previous stopping criteria and
find that their own criterion was the most aggressive and stable one, leading mostly
to the best stopping decision.

Acknowledging that the best stopping point depends on a subjective trade-off be-
tween annotation effort and performance improvement – an issue not picked up by
the other studies on stopping – Bloodgood and Shanker argued that the aggressive-
ness of their stopping criterion can be controlled by the Kappa threshold. However,
the Kappa threshold is not directly linked to a particular trade-off scenario, so that
it is questionable whether this adjustability is of practical advantage.

5.2 Monitoring and Stopping Committee-based AL

Our approach to monitoring and stopping the AL process was developed and pub-
lished at a time when other groups were also working on the same issue. While our
approach to stopping was independently developed, there are still overlaps with other
works. In the following section, our approach is described in detail and differences
as well as similarities to other approaches are underlined.

Put briefly, the most important differences of our approach are that it is developed
for committee-based AL (all other approaches were formulated for US-based AL) and
that the use of a separate held-out test set is an integral part (most other approaches
rely instead on the pool). A commonality of all sophisticated approaches to stopping,
including ours, is that they are based on the utility scores being the fundament of
any AL approach.

5.2.1 Approximating Learning Curves

When a learning curve is available, stopping points can easily be identified by means
of a particular trade-off between annotation costs and performance gains. Due to
the absence of learning curves in real-world annotation scenarios, other means for
monitoring and stopping the AL process are needed. However, based on the insight
that the optimal stopping point is but a subjective one determined by user- or
application-specific trade-off definitions between costs and gains, we tried to find a
way to approximate the learning curve, to which the trade-off could be applied.

Based on the insight that learning curves are subject to an asymptotically converging
shape our approach aims at approximating this shape without the need for actual
performance measurements. When we plotted both the learning curve of an AL pro-
cess and AL-specific utility scores over time, we observed that classifier performance
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increased and utility scores decreased in approximately the same manner. Based on
this observation, we hypothesized that the progression of the learning curve could be
approximated by the progression of the utility scores. We developed our approach
in the context of committee-based AL and the Vote Entropy utility function. us̄VE

is based on divergent predictions by the committee members. When the commit-
tee members no longer disagree, classifier performance will probably have stopped
increasing. Also, at the time when the committee exhibits high us̄VE scores, the gen-
eralization performance of each single committee member is not yet good, so that
further data can be expected to cause high performance gains.

However, on which data should we calculate the us̄VE scores used to approximate
the learning curve? During the AL process itself, us̄VE scores are calculated on
all unlabeled examples anyway. In the most straightforward approach, one might
simply calculate the average of the us̄VE scores over the batch B of selected examples
which we call the selection agreement (SA):

SA = 1− 1
|B|
∑
p∈B

us̄VE(p) (5.1)

The intuition is that the committee will agree increasingly on the hard examples
selected from the diminishing pool as the AL process proceeds. When the members
of the committee are in complete agreement, SA ≈ 0, and this is the latest point
where AL should be aborted since it will no longer contribute to the overall learning
process – in this case, AL is but a computationally expensive counterpart of random
sampling.

The SA, however, is affected by the diminishing size of the pool of unlabeled exam-
ples. In simulation settings, the pool is of a very limited size – normally only a few
thousands of examples. As a consequence, the total number of positive and hard ex-
amples, which are preferentially selected by AL, is rather limited. Our experiments
in the NER scenario showed that sentences containing many and complex entity
mentions are selected in early AL iterations, so that in late AL iterations hardly any
useful examples are left in the pool. As a consequence, it is only in early iterations
that AL really has the choice to select useful examples and the SA naturally mounts
to values close to 1 in later iterations.

The SA curve profits from this simulation artifact. At the time when no more
interesting examples are left in the pool, it hits the 100% agreement line. At the
latest at this point AL should be stopped and this is the position where the learning
curve (in simulations!) does not rise any more. In real-world annotation scenarios
where the pool is of virtually unlimited size and much more diverse, there will
always be useful (and thus difficult) examples that AL may find, thus keeping the
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selection agreement constantly high. In consequence, it cannot be used as a reliable
approximation of the learning curve for real-world settings and its functionality is a
essentially an artifact of the simulation scenario.

In fact, we claim that all monitoring and stopping approaches based on utility scores
measured on the diminishing pool are subject to this simulation artifact which ren-
ders them questionable in real-world settings. The simulation artifact may be specif-
ically problematic for the min-error strategy proposed by Zhu et al. (2008b). The
reason why min-error works very well in simulations is presumably that after some
AL iterations all hard examples are already annotated, so naturally the accuracy
goes up as predictions are made on simple examples, only. Given an extremely
large and diverse pool, AL will always find critical examples, so that min-error will
presumably not work as a stopping criterion.

As a solution to the simulation artifact, we propose to calculate the average agree-
ment for each AL iteration on a separate, held-out validation set V. The validation
set agreement (VSA) score is thus defined by

VSA = 1− 1
|V|
∑
p∈V

us̄VE(p) . (5.2)

V should reflect the real data distribution and must not be used in the annotation
process itself. For most NLP tasks, unlabeled data is virtually unlimited. The vali-
dation set comes at no extra costs as no annotations are required on it. Calculating
VSA scores poses minimal extra computational complexity; the committee, trained
during each AL iteration anyways, only has to be applied to V.

Plotted over time we get the VSA curve. Since the validation set stays the same
throughout the entire AL process, VSA values of consecutive AL iterations are
comparable. Moreover, since the examples of the validation set are not used in the
annotation process, the VSA is only affected by the performance of the committee,
which, in turn, is grounded in the information contained in the most useful examples
selected from the pool of unlabeled data.

Now, from a VSA curve that ascends only slightly between selected measurement
points we can infer that the respective learning curve has only a low slope at these
positions, too. Although it is not possible to interpret the actual agreement values
of the VSA curve, its progression behavior can be used to estimate whether further
annotation is worth the human labeling effort. Below, we provide empirical evidence
that the VSA curve is indeed an adequate approximation of the learning curve
progression and that the SA curve fails in the real-world annotation scenario where
examples are selected from a much larger pool.
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This approximation of the learning curve is new and unique in the following ways:
based on the acknowledgement that stopping points are subject to user-specific pref-
erence structures, we have created a means to apply personal trade-off definitions
to an approximated learning curve. While the approximation does not allow exact
trade-offs to be applied, one can still identify at which stage (start-up, transition, or
saturation) the learning process is. In doing this, the only parameter a user has to
provide is a trade-off. If no such trade-off is available, one could also just monitor
the VSA curve and, based on its progression, decide whether to continue annotation.
When the VSA curve exhibits an extremely low slope, this is a hint that the learning
curve will also not increase much more, so that annotation may be stopped.

This approach, published in Tomanek and Hahn (2008), is very similar to the one
recently suggested by Bloodgood and Shanker (2009a). Both approaches work on a
separate validation set and are based on some kind of stabilizing predictions. In the
case of Bloodgood and Shanker’s approach, stabilization of predictions is directly
observed, while in our approach it is indirectly observed through the us̄VE utility
score. The main difference of our approach is that we leave the final stopping decision
to the user but offer decision support by means of a monitoring tool. Bloodgood and
Shanker, in contrast, require the user to specify a threshold for stopping. Setting
this threshold to a reasonable value is difficult because there is no general relation
between the actual threshold value and classifier performance or trade-off between
model performance gains and annotation costs.

5.2.2 Objectivizing Stopping

While we claim that the VSA curve can be used to approximate the progression of
the learning curve, to which a user-defined trade-off can be applied to find a stopping
point, we propose an extension to this approach, where an objective stopping point
is defined. Such a stopping point may be valuable when the user has no concrete
conception of a proper trade-off. The proposed stopping point is an alternative which
stops at a reasonable point based on learning and distributional aspects. Since this
stopping criterion does not require any external parameters to be specified and relies
on characteristics of the data and the learning algorithms only, we call it intrinsic.
This approach has been published in Olsson and Tomanek (2009).

In early AL iterations, the SA is usually lower than the VSA. The intrinsic stopping
criterion (ISC) is defined as the point where the SA curve and the VSA curve cross
with the result that in the current AL iteration

SA > VSA . (5.3)
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This crossing marks the point when the pool of unlabeled examples has been ex-
hausted to a certain extent so that SA is low and the performance of the model
learned is close to the maximal performance that can be yielded on the given pool.
When the SA exceeds the VSA, this means that the committee is more in agreement
concerning the most useful examples in the (diminishing) pool than it is concerning
the held-out validation set. From this we can infer that the committee would learn
more from a random sample from the validation set (or from a data source exhibiting
the same distribution of examples), than it would from the unlabeled data pool.

This tells us that the pool has been considerably harvested so that its informative
content has shrunk. In consequence, low gains in classifier performance by additional
annotation can be expected, so this marks a reasonable point to stop if no other
information about the user’s stopping preferences is available. In this way, the ISC
is rather conservative, which may, however, be a good alternative in the absence of
a user-defined trade-off.

A major advantage of the ISC is that it relies only on the characteristics of the
selector and the data at hand and so does not require the user to set any external
parameters prior to initiating the AL process. Furthermore, the ISC is designed
for QbC-based AL and as such it is independent of how disagreement between the
committee members is quantified.

5.3 Experiments

5.3.1 Experimental Settings

We ran several experiments on the simulation corpora in the same settings as in
Chapter 4. us̄VE was applied as utility function in the committee-based AL setting.
As a held-out set to calculate the VSA values we employed the test sets of the
respective corpus which is also used to generate the learning curve. For calculation
of the VSA values, the label information contained in the test set was ignored.
Reported results are averages over five independent runs. The single runs were long-
term runs, i.e., they were continued until the complete corpus or 150,000 tokens had
been selected so that convergence of the learning curve could be recorded.

To test the robustness of our approach to monitoring and stopping AL, we also
applied it in two real-world AL annotation initiatives performed in the context of
a biomedical research project. This included, (a) the CytoRec project, where
entity mentions of cytokine and growth factor receptors had to be annotated, and
(b) the CDantigen project, which focused on the annotation of entity mentions of
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immunologically relevant antigens.3 For both annotation projects, the pool consisted
of approximately two million sentences taken from PubMed abstracts. A test set
of 2,165 sentences was annotated for the purpose of evaluating AL in terms of a
learning curve. Moreover, the VSA curve was also calculated from this set, ignoring
the labels. AL was started from non-random seed sets which were generated so as
to contain many relevant entity mentions from the outset.4

5.3.2 Results

Monitoring the Learning Progress Figures 5.2 and 5.3 display the learning and
agreement curves on the four simulation corpora. Learning curves are shown so that
the approximated progression of the learning curve, obtained from the agreement
curves, can be compared to its true progression. As for the agreement curves, exact
agreement values (dots) and a curve obtained by local polynomial regression fitting
(solid line) are shown.5

On all corpora, the SA curve reaches a point of convergence. When this point is
reached, the learning curve too has stagnated. However, the VSA curve describes
the progression of the learning curve better, especially in the transition stage. Con-
sider, for instance, the CoNLL corpus where the SA curve has a relatively steep,
but almost constant slope between about 35,000 and the convergence point (about
115,000 tokens). This can also be observed on the PBgene corpus and in a less pro-
nounced manner also on the Muc7 corpus. On the VSA curve, in contrast, the slope
changes and becomes increasingly smaller until it (almost) converges. Moreover, this
(quasi-) convergence stage is reached earlier than on the SA curve.

Figure 5.4 displays the learning and agreement curves for the real-world annota-
tion projects.6 The learning and agreement curves start at 10,000 (CytoRec) and
40,000 (CDantigen), in order not to evaluate a learning curve on the fairly large,
non-random seed sets. On the CDantigen corpus, after 80, 000 tokens have been
annotated the learning curve has not completely converged. The AL-based anno-
tation process was stopped here because additional annotations would not pay off
very much. The VSA curve mirrors this behavior and continues to ascend with a

3For more details see Chapter 12.
4The heuristic to generate the seeds is described in detail in Tomanek et al. (2007b).
5Local polynomial regression fitting as implemented in the loess function provided by R is applied

with default parameters (Team, 2008).
6During the actual AL-based annotation process, no VSA scores were calculated. Instead, these

were calculated in an ex-post setting for this evaluation. Due to the randomness when sampling
the committee, we averaged over three runs where we calculated the agreement curves and took
the agreement scores after every fifth AL iteration.
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Figure 5.3: Learning and agreement curves for simulation corpora.84
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very low slope. The SA curve, in contrast, remains quite obscure and is subject to
extreme deviations.

A similar behavior can be observed for the CytoRec corpus. The learning curve is
only slightly ascending after about 65,000 tokens have been annotated. Once again,
this is mirrored by the VSA curve and the SA curve is hard to interpret. Though
its slope decreases somewhat after roughly 40,000 tokens, it continues ascending
thereafter. Moreover, both SA curves exhibit an oscillating behavior that contains
hardly any clues about the learning curve.

Our experiments showed that in the simulation scenario the two agreement curves
(SA and VSA) in principle share a similar curve progression which is mainly due
to the simulation effect. However, while the point of absolute convergence can be
read quite reliably from the SA curve, the VSA curve more comprehensively models
the overall behavior of the learning curve especially in the transition stage. In the
real-world annotation scenarios, SA curves do not properly model the progression of
the learning curve while the VSA curves nicely approximate the learning curves.

Stopping the Annotation Process The progression of the VSA curve is a proper
means of monitoring the learning progress. By itself it does not finalize any stopping
decisions but it can be employed as a guide to do so. As discussed above, the over-
all assessment for balancing the trade-off between annotation costs and expectable
quality gains for the learner is left to the annotation supervisor.

We tested two prototypical trade-off scenarios which we then used to find a stopping
point by the help of the VSA curve. In the first trade-off scenario (VSA1) we assumed
that the focus was on achieving an acceptable performance with low annotation
costs, i.e., annotation will be stopped as soon as the learning rate considerably
drops. In the second trade-off scenario (VSA2), we assumed the need for a very
high-performing classifier even at the cost of extra annotation effort. These two
trade-off scenarios can be translated into stopping points, given the approximated
learning curves. VSA1 leads to a rather aggressive stopping criterion and VSA2
to a rather conservative one. There are situations where a trade-off cannot be
defined, for example, because an informed annotation supervisor is indispensable.
In this situation, the intrinsic stopping criterion (ISC) can be applied as a reasonable
stopping point when no information about cost and benefit preferences is available.

We compare the VSA1, VSA2 and the ISC with the stabilizing predictions (SP)
stopping criterion proposed by Bloodgood and Shanker. Additionally, all these
stopping criteria are contrasted with the point where the maximum AL performance
(MAX) is yielded on the respective corpus. Table 5.1 gives an overview of the yielded
stopping points. In direct comparison of these points to MAX, one can identify the
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Figure 5.4: Learning and agreement curves for the real-world annotation scenarios.86
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stopping evaluation corpora
approach criterion Muc7 CoNLL PBgene PBvar

VSA1 tokens 20,000 50,000 65,000 25,000
F-score 0.86 0.82 0.82 0.77

VSA2 tokens 30,000 100,000 120,000 60,000
F-score 0.88 0.84 0.83 0.79

ISC tokens 39,250 109,367 192,562 80,785
F-score 0.89 0.84 0.83 0.79

SP tokens 28,065 111,392 65,298 36,726
F-score 0.88 0.84 0.82 0.79

MAX tokens 65,016 103,008 115,015 118,013
F-score 0.89 0.84 0.83 0.80

Table 5.1: Stopping points according to different stopping criteria including “manually”
applied trade-offs VSA1 and VSA2, our ISC criterion, Bloodgood and Shanker’s SP
criterion, and the point where maximum performance is reached. The stopping points
are evaluated in terms of sampling complexity (number of tokens needed) and sampling
efficiency (F-score reached) after stopping.

loss of classifier gain as well as the saved annotation effort. Figure 5.5 visualizes our
stopping points on both the VSA and the learning curves of Muc7 and PBgene.

On the Muc7 corpus, for instance, only minor improvements of classifier perfor-
mance can be assumed after 30,000 tokens according to the VSA curve. Given VSA2,
30,000 tokens are a good point to stop. Here, the classifier exhibits a performance
of F=0.88. More aggressive stopping according to VSA1 and impatience may result
in stopping at 20,000 tokens with a performance of F=0.86. Compared to MAX,
VSA1 reduces the annotation effort to 67 % at a loss of 2 percentage points (pp) of
classifier performance. VSA2 still reduces annotation effort by 50 % with a loss of
only 1 pp. ISC is even more conservative and in consequence results in (almost) no
performance loss, but on the flipside saves only 35 % annotation effort.

We may summarize the following observations: VSA1 and VSA2 are both highly
subjective and were placed manually by inspecting the VSA curve in these exper-
iments. They, however, show that the VSA curve is a good approximation to the
learning curve in that it allows identification of the start-up and the transition stage.
Moreover, given a user has preference information, a stopping point can be identi-
fied manually using the VSA as decision help. ISC is a conservative stopping point
with the advantage of low losses of classifier performance. In contrast, SP is more
aggressive, leading to lower annotation effort than ISC, though accommodated by
higher losses of classifier performance. However, SP is less aggressive than VSA1.
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curves.
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AL on Streamed Data The ISC determines the point when the most useful exam-
ples remaining in the pool of unlabeled data are less useful for training a classifier
than the examples in the held-out validation set are on average. This means that the
classifier would learn more from a sufficiently large sample taken from the validation
set than it would if the AL process continued on the remaining unlabeled pool.

Besides the application as a conservative stopping criterion in the pool-based AL
scenario, another practical scenario of the ISC is its application in a setting with
dynamic pools, i.e., pool that change over time. As an example, assume that we
are collecting data from a stream, for items from a news feed. Thus, the data is
not available in the form of a closed set, but rather an open one which grows over
time. To make the most of the human annotators in this scenario, we want them
to operate on partitions of data instead of annotating individual news items as they
are published. To do so, we wait until a given number of sentences have appeared
on the stream, and then collect those sentences.

The problem is, how do we know when the AL-based annotation process for each
such partition should be terminated? We clearly do not want the annotators to
annotate all sentences, and we cannot have the annotators define trade-offs or set
thresholds pertaining to the absolute classifier performance of each new partition of
data available. By using the ISC, we are able to automatically issue a halting of the
AL process and proceed to the next partition of data without loosing too much in
performance, and without having the annotators mark up too much of the available
data. To this end, the ISC appears to be a reasonable decision help to find when
more useful information can be gathered by switching to a new pool.

To carry out this experiment, we took a subsample of 10% (about 1,400 sentences)
from a original AL pool of the CoNLL corpus as a validation set.7 The rest of this
pool was split into partitions of about 500 consecutive sentences. Committee-based
AL with us̄VE was now run taking the first partition as a pool to select from. At
the point where the SA and VSA curve crossed, we continued AL selection from
the next partition and so forth. Figure 5.6 shows the resulting learning curve. The
intersection between the SA and VSA curves for each partition corresponds to the
respective “steps” in the stair-like learning curve. Each intersection marks the point
where we turned to the next partition.

The application of ISC in stream-based AL as an indicator for switching to new
stream data is described in more detail in Olsson and Tomanek (2009).

7Note that the original CoNLL test set was not used in this experiment, thus the F-score reported
in Figure 5.6 cannot be compared to those reported before for the CoNLL corpus.
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Figure 5.6: Learning curves for stream-based AL. Ci denotes the point at which AL is
terminated for partition i and a new partition is employed instead. The red lines show
how the learning curve on the old partition would have proceeded.

5.4 Summary

Due to our observation that the optimal stopping point is highly subjective and
depends on application-specific preference structures between costs and benefits,
we have proposed approximating the learning curve in an unsupervised manner, to
which the subjective trade-offs can then be applied.

Our experiments primarily suggest that monitoring activities of AL processes should
be done on a separate, held-out validation set that is not changed during the AL-
based annotation set to avoid simulation artifacts. Based on such a validation set,
the learning curve is approximated by calculating the us̄VE utility scores on this set
and plotting these scores over time.

While we found that the general progression of the learning curve can be approx-
imated well by this approach, this does not include the actual slope or intercept.
From such an approximation one can, however, tell whether AL is in the start-up,
the transition, or the convergence stage. Absolute values of classifier performance
can, however, not be read from it. Additionally, we proposed an explicit stopping
criterion which is meant to be a conservative stopping point and does not require
any user-defined thresholds or parameters.

Our comparative evaluation of stopping points derived from both manually applying
subjective preference information and the ISC and SP stopping criteria empirically
showed that the ISC is indeed a very conservative stopping point. This stopping
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point is most often very close to the point where (almost) no further increase in
performance can be reached. However, the ISC exhibits good savings of annotation
effort compared to the position of the maximum performance, making ISC an ap-
propriate stopping points in a preference-agnostic situation. Finally, this chapter
discussed how the ISC can be applied in an AL setting with streamed data to find
the point at which to switch from one data partition to the next. Each partition is
assumed to be an accumulated portion of data from the stream.
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Chapter 6

Semi-Supervised Active Learning

Approaches to AL, as discussed so far, considered unlabeled examples as atomic
units for which, when selected, a complete annotation is required. Standard AL
does not consider the internal structure of the selected examples. This may be a
shortcoming especially when the AL selection granularity is coarse-grained, as in our
NER scenario where complete sequences of words (here sentences) are selected.

Although a high overall utility may be attributed to a sequence as a whole, such
a sequence may still exhibit subsequences that do not add up to the overall utility
score. Regions of local model confidence may not require human labeling – the model
can assign highly accurate labels itself. Figure 6.1 shows a sample sentence. The
model of the current AL iteration is highly confident in its predictions on all tokens
except “Shanghai”. Why should an annotator go through the complete sentence if
there is only a single token on which the model requires human labeling support?

In sequence labeling scenarios of segmentation tasks, a common characteristic is
that there are a few high-frequency, easy-to-learn classes combined with several low-
frequency, hard-to-learn classes. This is, for example, the case in part-of-speech
tagging, where determiners constitute such an easy, high-frequency-class. Similarly,
this applies to the NER task, where larger stretches of a sentence or complete clauses
do not contain any entity mention at all, or merely trivial instances of an entity class
easily predictable by the current model.

This essentially leads to the assumption that the utility scores on subsequences are
subject to a highly-skewed distribution and that such a characteristic of the data can
be further exploited to reduce the human annotation effort per selected sequence.

Mystery has recently surrounded the Shanghai stockpile . . .
0.01 0.001 0.0 0.00 0.02 0.495 0.003 . . .

Figure 6.1: Sample sentence for which a high overall utility score was obtained. The numbers
below the words indicate the model’s confidence in its prediction.
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This chapter presents an approach to semi-supervised AL for sequence labeling where
selected sequences only need to be partially labeled by a human. The remaining,
manually non-labeled parts are tackled in a semi-supervised learning manner.

After a short review of previous work on semi-supervised learning and previous
approaches to combining AL and semi-supervised learning, we elaborate on the idea
of semi-supervised AL for sequence learning and present a highly effective approach
to it. A subsequent evaluation shows that extra annotation effort can be saved and
explores the limitations of our approach.

Most of this work has been previously published in Tomanek and Hahn (2009b).

6.1 Related Work

Besides AL, semi-supervised learning is another approach to reducing the number
of labeled training data. The core idea is to make use of unlabeled data which
are assumed to be available at no cost. Semi-supervised learning is a lively field of
research with a lot of study directions actively investigating in it (Chapelle et al.,
2006). Bootstrapping is a widely known and general technique of iteratively increas-
ing upon a given seed set of labeled data. In every step, additional labeled data
is created based on the knowledge already available from previous steps and then
added to the data set. Although bootstrapping may yield positive results under
special conditions, it often fails. This is mostly due to the general problem that
errors from automatic tagging propagate and damage the quality of the data set.

Self-training (Yarowsky, 1995) is an approach to semi-supervised learning based on
bootstrapping. From a seed set of labeled examples a weak model is learned, which
is subsequently incrementally refined. In each step, unlabeled examples on which
the current model is highly confident are labeled with their predictions, added to
the training set, and a new model is learned. Similar to self-training, co-training
augments the training set with automatically labeled examples (Blum and Mitchell,
1998). Co-training is based on multiple learners having independent views on the
data and mutually producing labeled examples for each other.

A combination of active and semi-supervised learning was first proposed by Mc-
Callum and Nigam (1998) for text classification and QbC-based AL. In each AL
iteration, the committee members are at first trained on the labeled examples and
then augmented by means of expectation maximization (EM) on unlabeled examples
(Dempster et al., 1977). The idea is to avoid manual labeling of examples which may
improve the model without having a label using EM. Similarly, co-testing (Muslea
et al., 2002), another multi-view AL algorithm, selects examples for the multi-view,
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semi-supervised Co-EM algorithm. In both works, semi-supervision is based on vari-
ants of the EM algorithm in combination with all unlabeled examples from the pool.
Our approach to semi-supervised AL is different: we augment the training data us-
ing a self-tagging mechanism, while McCallum and Nigam (1998) and Muslea et al.
(2002) used semi-supervision to augment the models based on the EM algorithm.

Tür et al. (2005) also presented a combination of AL and self-training. A general
difference to our work is that in their approach examples were either fully labeled
(when selected by AL) or completely automatically labeled in a self-training fashion
(when subject to high confidence values). In our approach, sequence-based examples
can be labeled both partially manually and automatically.

All semi-supervised AL approaches mentioned above have in common that they are
based on a classification task. Our scenario is different in that it is about relational
learning where the selection granularity is a sequence. This may give rise to local
regions of higher or lower uncertainty so that partial manual labeling of selected
sequences is reasonable. Along these lines, another work more closely related to
ours is that of Kristjansson et al. (2004). In an IE application, the confidence per
extracted field is calculated by a constrained variant of the Forward-Backward algo-
rithm. Unreliable fields are highlighted so that the automatically annotated corpus
can be manually corrected. In contrast, AL selection of examples together with par-
tial manual labeling of the selected examples are the main foci of our approach.

6.2 Combination of Active Learning and Bootstrapping

Our approach to semi-supervised AL for sequence classification is based on boot-
strapping as one form of semi-supervised learning. Bootstrapping approaches alone
often fail to produce good results due to their inherent tendency to reduce the qual-
ity of augmented data by lots of tagging errors. This is especially the case in NLP
tasks where large amounts of training material are required to achieve acceptable
performance levels. Starting from a small seed, many iterations have to be run until
a sufficient amount of training material is available. In the meantime, tagging errors
cumulate and reinforce themselves.

Pierce and Cardie (2001) showed that the quality of the automatically labeled train-
ing data is crucial for co-training to perform well. In contrast, given too many
tagging errors, one cannot learn a high-performing model. Also, the size of the seed
set is an important parameter. When too small a seed set is chosen, data quality
deteriorates quickly, when it is too large, no improvement over the initial model can
be expected. To address the problem of data pollution by tagging errors, Pierce
and Cardie (2001) proposed corrected co-training. In this mode, a human is put
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into the co-training loop to review and, if necessary, to correct the machine-labeled
examples. Although this effectively evades the negative side effects of deteriorated
data quality, one may find the correction of labeled data to be as time-consuming as
annotations from the scratch. The human annotator should not become biased by
the proposed labels. Instead, she should independently examine an already labeled
example so that correction eventually becomes annotation.

Our approach to semi-supervised AL cautiously incorporates bootstrapping by ex-
plicitly pointing human annotators to classification-critical regions of the selectively
sampled examples. Such regions then require manual annotation, while regions of
high confidence are automatically labeled and do not require any manual inspec-
tion. Under this directive, our approach to semi-supervised AL avoids deterioration
of data quality while still selecting highly useful examples. Overall, we assume this
procedure to achieve an extra reduction of human annotation effort compared to
standard, fully-supervised AL, where selected sequences require full annotation.

6.2.1 Example Selection

In this chapter we assume an example to always be a sequence, such as a sentence
for the NER scenario. For our approach to semi-supervised AL, the actual selection
of examples is performed by standard AL, as described in Algorithm 2 on page 55,
with the goal of finding examples with an overall high utility score as we expect to
learn most from these examples.

Comparing this selection principle to the one underlying bootstrapping methods,
such as self-training or co-training, it shows that bootstrapping would select se-
quences of high confidence to keep tagging errors as low as possible. This is es-
sentially the opposite of AL-based selection. However, focusing on high-confidence
examples, this approach will probably miss the really useful, unlabeled examples
but still catch some tagging errors. In case of co-training, Pierce and Cardie (2001)
require humans to review examples of limited learning utility.

Any of the utility functions presented in Section 4.2.3 may be applied to AL-based
example selection here. However, we prefer utility functions based on the sequence-
confidence, such as usLC over those based on the aggregation of token-confidence
because sequence-confidence based utility functions have an inherent tendency to
select longer sequences as shown in Section 4.4.2.2. While longer sequences are
expensive when the complete sequence needs to be labeled, they become rather
inexpensive when the annotator is pointed to the few relevant subsequences. Thus,
complete clauses on which the model is highly confident in its prediction can be
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omitted. Short sequences of high utility are less likely to exhibit easy passages
which do not need human judgement.

6.2.2 Identification of Critical Subsequences

After selection of a useful example p = (~x) with ~x = (x1, . . . , xn), the subsequences
~x′ = (xa, . . . , xb), 1 ≤ a ≤ b ≤ n, of low local utility need to be identified. When no
information is given on segmentation of a complete sequence into reasonable units,
such as, for example, linguistically motivated phrases, we fall back onto subsequences
of length 1 so that ~x′ = (xi) with 1 ≤ i ≤ n. In application to NLP tasks, such a one-
element subsequence is usually a single token. For the rest of this chapter, we assume
such a token-level scenario. Extensions to longer subsequences are straightforward.

For a token xi from a selected sequence ~x we estimate the model’s confidence Cθ(y∗i )
in label y∗i . For a CRF, token-level confidence is given by the marginal probability
(cf. Equation 2.31 on page 22) so that

Cθ(y∗i ) = Pθ(yi = y∗i |~x) (6.1)

where y∗i specifies the label at the respective position of the most likely label sequence
~y ∗ obtained by the Viterbi algorithm (cf. Equation 2.29 on page 21). If Cθ(y∗i )
exceeds a certain confidence threshold t, y∗i is assigned as the putatively correct
label to xi. Otherwise, manual annotation of this token is required.

In practise, sequences of consecutive tokens xi with Cθ(y∗i ) ≤ t should be presented
to the annotator instead of individual tokens. For NLP tasks, one might consider
linguistically motivated subsequences, such as noun phrases, which a human has to
annotate when their confidence score falls below a threshold. Besides the one-element
sequence, which is taken as our standard scenario here, we also evaluate our approach
to semi-supervised learning on such linguistically motivated subsequences.

6.2.3 Parameters

Two parameters can be specified for our approach: firstly, the confidence threshold
t which directly influences the portion of tokens to be manually labeled. Using
lower thresholds, the self-tagging component has higher impact – presumably leading
to higher numbers of tagging errors. Secondly, a delay rate d can be specified
which channels the amount of manually labeled tokens obtained by standard, fully-
supervised AL before semi-supervised AL is to start. Only with d = 0 will semi-
supervised AL already affect the first AL iteration. Otherwise, several iterations of
standard AL are run until a switch to semi-supervised AL occurs.
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It is well known that the performance of bootstrapping approaches crucially depends
on the size of the seed set, i.e., the number of labeled examples available to train the
initial model. If class boundaries are poorly defined because too small a seed set is
chosen, a bootstrapping system cannot learn anything reasonable due to high error
rates. If, on the other hand, class boundaries are already too well defined due to an
overly large seed set, nothing more can be learned. Together with low thresholds, we
assume a delay rate of d > 0 to be crucial to obtain models of high performance.

6.3 Experiments and Results

Our approach to semi-supervised AL is evaluated for NER . By the nature of this
task, the sentences are only sparsely populated with entity mentions and most of
the tokens belong to the Outside class so that partial labeling is very beneficial.

The experiments compare our approach to semi-supervised AL (Sesal) to its fully-
supervised counterpart (Fusal) as well as random sampling where examples are
completely labeled (Rd). Sesal is first applied in a default configuration with a
very strict confidence threshold of t = 0.99 and without any delay so that d = 0. In
further experiments, these parameters are varied to study their impact on Sesal’s
performance. All experiments start from the default seed sets of 20 randomly se-
lected examples. In each iteration, 50 new examples are selected by the usLC utility
function. The experiments were run on the Muc7 and the PBgene corpus. For
evaluation, the number of manually labeled tokens is taken as cost measure here.

6.3.1 Distribution of Confidence Scores

The basic assumption about non-uniform, highly skewed distribution of the token
confidence scores means that only a small proportion of tokens within the selected
sentences constitute really hard decision problems, while the majority of tokens are
easily accounted for by the current model. To test this stipulation, we investigate the
distribution of the model’s confidence values Cθ(y∗i ) over all tokens of the sentences
selected within one iteration of Fusal. Figure 6.2, as an example, depicts the
histogram for an early AL iteration round on the Muc7 corpus. The vast majority
of tokens has a confidence score close to 1 and the median lies at 0.9966. Histograms
of subsequent AL iterations are very similar, with an even higher median. This is so
because the model becomes continuously more confident when trained on additional
data and fewer hard cases remain in the shrinking pool.
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Figure 6.2: Distribution of token-level confidence scores in an early AL iteration.

Muc7 PBgene
F = 0.88 F = 0.83

∆CFPF∗(Sesal,Fusal) 69.5 % 67.2 %
∆CFPF∗(Sesal,Rd) 82.5 % 85.9 %

Table 6.1: Percentage reduction of annotation effort in terms of manually labeled tokens to
yield that target performance of F=0.88 on Muc7 and F=0.83 on the PBgene corpus.

6.3.2 Fully-Supervised vs. Semi-Supervised AL

Figure 6.3 compares the performance of Fusal and Sesal on the two corpora.
Sesal is run with a delay rate of d = 0 and a very high confidence threshold of
t = 0.99 so that only those tokens on which the current model is almost certain are
automatically labeled . This figure clearly shows that Sesal is much more efficient
than its fully-supervised counterpart. Table 6.1 depicts how much annotation effort
is reduced by Sesal to reach the maximal F-score on both corpora.1 While Fusal
itself saves about 50 % compared to Rd, Sesal saves up to 69.5 % compared to
Fusal which constitutes an overall saving over Rd of over 82 %.

Figure 6.3 reveals that the learning curves of Sesal stop early: after 12, 800 tokens
on the Muc7 tokens corpus and after 27, 600 tokens on the PBgene corpus. This
early termination is because at that point the whole corpus has been exhaustively
labeled – either manually, or automatically. So, using Sesal, we can come up with

1For an overview of the maximal, passive learning F-scores on all corpora see Table 4.3.
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Figure 6.3: Learning curves for semi-supervised AL (Sesal), fully-supervised AL (Fusal),
and random selection (Rd).

a fully-labeled corpus of which only a small fraction actually needs to be manually
labeled (about 18 % on Muc7 and 13 % on PBgene).

6.3.3 Annotated Noun Phrases

The savings by Sesal mentioned so far were calculated relative to the number of
tokens that have to be manually labeled. However, imagine the following situation.
Assume that, using Sesal, every second token in a sequence would have to be
labeled. Although this comes to a formal saving of 50 %, the actual annotation
effort in terms of the time needed would hardly decline. It appears that only when
Sesal splits a sentence into larger, chunk-like subsequences can annotation time
really be saved.

To demonstrate that Sesal comes close to this, we counted the number of noun
phrases containing one or more tokens to be manually labeled. Table 6.2 shows the
results for this experiment. On both corpora, Sesal saves about 45 % in terms of

Muc7 PBgene
F = 0.87 F = 0.81

∆CFPF∗(Sesal,Fusal) 44.5 % 45.8 %

Table 6.2: Percentage reduction of annotation effort in terms of annotated noun phrases to
yield that target performance of F=0.87 on Muc7 and F=0.81 on the PBgene corpus.
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manually
labeled

automatically
labeled

AR number
of errors

ACC

1,000 253 79.82 6 0.995
5,000 6,207 44.61 82 0.993

10,000 25,506 28.16 174 0.995

Table 6.3: Characteristics of Sesal on the Muc7 corpus for a specific amount of manually
annotated tokens. Annotation rate (AR) is the proportion of manually labeled tokens
in the total amount of labeled. ACC refers to the accuracy of the labels in the corpus.

manually number error types (%)
labeled of errors E2O O2E E2E

10,000 75 100 – –
70,000 259 96 1.3 2.7

Table 6.4: Distribution of self-tagging errors in percent on the Muc7 corpus. Error types:
Outside class assigned though an entity class is correct (E2O), entity class assigned
but Outside is correct (O2E), wrong entity class assigned (E2E).

the number of noun phrases touched, i.e., containing tokens with confidence below
the confidence threshold t.

6.3.4 Selection Characteristics of Sesal

Table 6.3 shows of characteristics the corpus created by Sesal. In very early AL
rounds, a large proportion of tokens has to be manually labeled (70-80 %). This
number decreases as the classifier improves and the pool contains fewer informative
sentences. The number of tagging errors is quite low, resulting in a high level of
accuracy of the created corpus of consistently above 99 %.

The majority of the automatically labeled tokens (97-98 %) belong to the Outside
class. This coincides with the assumption that Sesal works especially well for
labeling tasks where some classes occur predominantly and can, in most cases, be
discriminated easily from the other classes, as is the case in the NER scenario. An
analysis of the errors induced by the self-tagging component reveals that most of the
errors (90-100 %) are due to missed entity classes – while the correct class label for a
token is one of the entity classes, the Outside class was assigned. This effect is more
severe in early than in later AL iterations. Table 6.4 provides exact numbers.
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Figure 6.4: Learning and error curves for Sesal with different confidence thresholds on the
Muc7 corpus.

threshold F-score Recall Precision ACC

0.99 0.88 0.86 0.90 0.996
0.95 0.85 0.82 0.89 0.998
0.90 0.84 0.81 0.88 0.984
0.70 0.70 0.62 0.81 0.965

Table 6.5: Maximal model performance when the complete Muc7 corpus has been labeled
with Sesal and different confidence thresholds.

6.3.5 Impact of the Confidence Threshold

As another experiment, Sesal was run with different confidence thresholds t (0.99,
0.95, 0.90, and 0.70) and the results were analyzed with respect to tagging errors
and the model performance. The motivating assumption for this experiment was
that by using lower thresholds fewer tokens actually need to be manually annotated.
Applying such less restrictive thresholds, Sesal becomes more similar to self-training
resulting in higher numbers of tagging errors.

Figure 6.4 shows the learning and error curves of Sesal for different thresholds.
On Muc7, the maximal F-score of 87.7 % is only reached by the highest and most
restrictive threshold of t = 0.99. With all other thresholds, Sesal stops at much
lower F-scores and produces labeled training data of lower accuracy (the same holds
for PBgene). Table 6.5 gives exact numbers.

Interestingly, the poor model performance of Sesal with less restrictive thresholds
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is mainly due to falling recall values. This is because tagging errors are mainly
those where the Outside class is assigned, although an entity class was correct
(cf. Table 6.4). In consequence, in the corpus resulting from Sesal, several entity
mentions are not annotated as such so that the model trained on this corpus is
ignorant about such entity mentions as well.

6.3.6 Impact of the Delay Rate

We also measured the impact of delay rates on Sesal’s efficiency considering three
delay rates (1, 000, 5, 000, and 10, 000 tokens) in combination with three confidence
thresholds (0.99, 0.9, and 0.7). Figure 6.5 depicts the respective learning curves.
On both corpora, for Sesal with t = 0.99, the delay has no particularly beneficial
effect. However, in combination with lower thresholds, the delay rates show positive
effects as Sesal yields F-scores closer to the respective maximal F-score.

6.3.7 Discussion

Our experiments in the context of the NER scenario provide empirical evidence
that our proposed approach to semi-supervised AL for sequence labeling does in-
deed considerably reduce the amount of tokens to be manually annotated — in
terms of numbers, almost 70% compared to its fully-supervised counterpart, and
over 80% compared to a totally passive learning scheme based on random selec-
tion. Thus, semi-supervised AL successfully joins the standard, fully-supervised AL
schema with a bootstrapping mode, namely self-training, to combine the strengths
of both approaches.

Moreover, a model trained on a corpus created with semi-supervised AL can have
the same performance compared to a model trained on the fully manually-labeled
counterpart. Thus, semi-supervised AL effectively overcomes the problem of dete-
riorated data quality which is a major problem of many bootstrapping approaches.
For semi-supervised AL to work well, a high and, as a result, restrictive threshold
has been shown to be crucial. Otherwise, large numbers of tagging errors lead to a
poorer overall model performance. The delay rate is important for scenarios with
low confidence thresholds because early tagging errors can be avoided which oth-
erwise reinforce each other. Finding the right balance between the delay rate and
low thresholds requires experimental calibration. However, for the most restrictive
threshold (t = 0.99), such a delay is superfluous so that it can be set to d = 0,
circumventing this calibration step.
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In summary, the self-tagging component of SeSAL gets more influential when the
confidence threshold and the delay rate are set to lower values. At the same time
though, under these conditions negative side-effects such as deteriorated data quality
and, in consequence, inferior models emerge. Our experiments indicate that as
long as self-training is cautiously applied (as is done for SeSAL with restrictive
parameters), it can definitely outperform an entirely supervised approach. With the
confidence threshold, the SeSAL approach has a means to execute control over the
influence of self-training.

6.4 Summary and Conclusions

We have presented an approach to semi-supervised learning which is based on the
idea that only regions of high uncertainty within a selected sequence are manually
selected – the rest is automatically tagged. According to our evaluation, this pro-
cedure constitutes an extra reduction of annotation effort over standard AL where
the complete sequence is manually labeled: above 67 % in terms of tokens manually
labeled and about 45 % in terms of noun phrases manually labeled.

From an annotation point of view, our approach to semi-supervised AL efficiently
guides the annotator to regions within the selected sentence which are very useful
for the learning task. In our experiments on the NER scenario, those regions were
mentions of entity names or linguistic units which had a surface appearance similar
to entity mentions but could not yet be correctly distinguished by the model. We
hypothesize that human annotators work much more efficiently when pointed to the
regions of immediate interest instead of skimming in a self-paced way through larger
passages of probably semantically irrelevant but syntactically complex utterances –
a tiring and error-prone task.

At this point, an open question is whether the reported savings translate to the
actual annotation time needed. A detailed evaluation of semi-supervised AL in
terms of true annotation time is given in Chapter 11 on cost-sensitive AL.

104



6.4 Summary and Conclusions

0 5000 10000 15000 20000

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

threshold t=0.99

manually labeled tokens

F
−

sc
or

e

SeSAL, d=0
SeSAL, d=1000
SeSAL, d=5000
SeSAL, d=10000
FuSAL

F=0.877

0 5000 10000 15000 20000

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

threshold t=0.9

manually labeled tokens

F
−

sc
or

e

SeSAL, d=0
SeSAL, d=1000
SeSAL, d=5000
SeSAL, d=10000
FuSAL

F=0.843

F=0.877

0 2000 4000 6000 8000 12000

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

threshold t=0.7

manually labeled tokens

F
−

sc
or

e

FuSAL
SeSAL, d=0
SeSAL, d=1000
SeSAL, d=5000
SeSAL, d=10000

F=0.699

F=0.877

Figure 6.5: Sesal with different delay rates and thresholds on Muc7. Horizontal lines mark
the supervised F-score (upper line) and the maximal F-score achieved by Sesal with
the respective threshold and d = 0 (lower line).
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Chapter 7

Sample Efficiency in Scenarios of
Disparate Selector-Consumer Pairings

Previous chapters have shown that AL does indeed have a high potential for reducing
the burden of annotation. While the reported savings in annotation effort certainly
encourage the use of AL as a novel, resource-aware annotation strategy, skeptics
warn about the sampling bias induced by AL.

By definition of AL, the data distribution of the sample obtained by AL is intended
to diverge from the “true” underlying data distribution – as a selective sampling
method, AL is based on a bias towards useful examples instead of less useful ones.
While a sampling bias towards useful examples is desirable, one must keep in mind
that the utility is defined with respect to the selector applied during AL selection
and that the resulting data is additionally biased towards a particular learner.

Experiments performed so far for this thesis have in common that selector and con-
sumer are based on the same model. This correspondence of selector and consumer
is tacitly assumed in almost all studies of AL. However, there are scenarios where
selector and consumer diverge.

• One might apply a less complex model as selector while the final consumer re-
mains the high-accuracy, more complex one. This is motivated by the fact that
AL selection time depends to a great extent on the computational complexity
of training the selector in each AL iteration. Accelerated AL selection, as de-
manded by Requirement 2, can be yielded by the utilization of less complex
to train models during selection.

• At the time of data acquisition the consumer to be finally used is often un-
known. This is the case when training data for new learning problems has
to be created. In consequence, the learning algorithms used during selection
will most likely be different from the final consumer. The difference may be in
terms of the model chosen, but also with respect to the particular feature set
employed.
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In the first scenario, selector and consumer deliberately diverge to reduce the compu-
tational complexity of sampling. The second scenario is characterized by incomplete
knowledge about the final consumer so sample flexibility needs to be increased. Both
scenarios describe a setting where a sample is biased towards a particular model.

With respect to Requirement 5, this chapter investigates how sampling efficiency
of AL is affected by scenarios where selectors and consumers are based on different
models classes. We say that an AL sample is reusable by a particular consumer, if
the consumer yields a higher classification accuracy on this sample than it would on
a random sample.

The rest of this chapter is structured as follows: firstly, we review the general problem
of learning from biased samples, then we define sample reuse and sample reusability
in the context of AL, and study previous work on this issue. Section 7.3 empirically
investigates how sampling efficiency of AL is affected by disparate selector-consumer
pairings. This section also aims at identifying factors that positively or negatively
affect AL sample reusability. Section 7.4 describes an approach to reduce negative
effects of sample reuse and in this way to increase AL sample reusability. Finally, the
last section summarizes our findings and identifies future directions of research.

7.1 Learning Under Sample Selection Bias

ML algorithms operate under the assumption that both training and test data obey
to the same distribution. In practise, however, training data is often governed by a
distribution dissimilar to that of the data to which the learned model will finally be
applied. When training and test distributions differ this is generally referred to as
sample selection bias.1 Learning under sample selection bias is problematic because
the model parameters optimized on the training data may be suboptimal when the
model is applied to test data with a dissimilar distribution.

Zadrozny (2004) introduced a categorization of different types of sample selection
bias including class bias (selection process dependent on class labels y, only), feature
bias (selection process dependent on features fj , only), and finally complete bias
(selection process dependent on y and x). Feature bias, also known as covariate
shift, is one of the most common types of biases.2 It is defined as a scenario where
the marginal distributions of training and test data diverge, PL(~x) 6= PT (~x), but

1 Sample selection bias has originally received lots of attention in econometrics where data is often
collected through surveys and thus is naturally subject to the self-selection bias. Self-selection
biased occurs when people can decide whether to take part in a survey or not. In this context,
Heckman (1979) proposed an approach to correct the bias.

2It should be noted that “covariate shift” is usually used in the context of regression learning.
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structural relations remain the same so that the conditional distribution of target
labels is unchanged and PL(y|~x) = PT (y|~x) (Shimodaira, 2000).

Computational learning under sample selection bias has recently received great at-
tention.3 Most approaches to cope with sample selection bias are based on the idea
of re-weighting training examples according to their importance in the test data
(Cortes et al., 2008). The weighting factor is often estimated as a density ratio fac-
tor w(x) = PT (~x)

PL(~x) and the particular approaches to correct bias basically differ in the
way w(x) is estimated (Shimodaira, 2000; Bickel et al., 2007; Tsuboi et al., 2009).

Though most work on sample selection bias has focused on approaches to correct
the bias, another crucial question is how sensitive learners are to the bias. Zadrozny
(2004) and Fan et al. (2005) studied well-known models – including C4.5, SVM, NB,
and MaxEnt – according to their sensitivity to sample selection bias. An inductive
learner is called local if it is invariant to bias, and global otherwise. While Zadrozny
(2004) categorized the considered learning algorithms independent of the actual
classification problem, Fan et al. (2005) relaxed this strict categorization and showed
analytically and empirically that the considered learners can be both local and global
depending on the combination of the data set, modeling assumptions of the learner
and their appropriateness to model the particular data set.

An important issue in this context is whether a learning algorithm can find a model
θ∗ in the model space Θ so that the estimated probability Pθ∗(y|x) is equivalent to
the true model P (y|x). A learner is called consistent if such a θ∗ exists. It has been
argued that covariate shift does not affect learning asymptotically, given a consistent
learner (Shimodaira, 2000; Fan et al., 2005). In practise, and for complex problems
such as most NLP tasks, it is, however, very unlikely that there is a consistent
learner so that sample selection bias does indeed affect learning.

Sample selection bias is an ubiquitous problem in many applications (Tsuboi et al.,
2009). Most NLP problems are naturally subject to sample selection bias because
lexical information is amongst the most relevant features and the lexical distribution
of the training data generally differs from that of the test data (Son et al., 2009).

7.2 Sample Reuse as a Case of Sample Selection Bias

Sample selection bias is also a natural companion of selective sampling strategies
such as AL. In the previous section we implicitly assumed that sample selection
bias does affect learning in a negative way. In contrast, the core idea of AL is the

3This is for example evidenced by the NIPS 2006 Workshop on “Learning when test and training
inputs have different distributions” (Airoldi et al., 2006).
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induction of a favorable bias so that a particular learner can derive a good model
with fewer training data.

7.2.1 Sample Reuse and Reusability

In the context of AL, the question of interest is whether the bias induced by AL with
a particular selector positively or negatively affects learning given another learner
for the final model.

Definition 12 (Sample Reuse) AL sample reuse describes a scenario where a
sample S obtained by AL using learner T1 during selection is exploited to induce a
particular model type with learner T2 with T2 6= T1.

In the standard AL scenario we assume selector and consumer to be induced by the
same learner, i.e., be based on the same model type. In previous experiments in this
thesis, for example, a CRF-based model was used both as selector and consumer.
We call this scenario AL self-selection. In contrast, AL foreign-selection specifies a
scenario of sample reuse.

In the AL setting, the appropriateness of a sample is quantified by the classification
accuracy of the consumer induced from this sample. As sampling efficiency of AL
is typically compared to random sampling, the performance obtained on a random
sample constitutes a lower bound for sampling efficiency which selective sampling
needs to exceed to be considered efficient. However, one would expect that a sample
that is optimal for one learner does not necessarily outperform a random sample
when used by another learner.

Definition 13 (Sample Reusability) Given a random sample SRD, a sample ST1

obtained with AL and a selector based on learner T1, and a learner T2 with T2 6= T1.
We say that ST1 is reusable by learner T2 if a model θ′ learned by T2 from this
sample, i.e., T2(ST1), exhibits a better performance on a held-out test set T than a
model θ′′ induced by T2(SRD), i.e., perf

(
θ′, T ) > perf

(
θ′′, T ).

While sample selection bias induced by AL self-selection is normally beneficial for
learning, the bias induced by AL foreign-selection is expected to constitute a bias
inferior to the self-selection bias. Whether the AL foreign-selection bias affects
learning so negatively that performance drops below the random selection baseline
is one of the central research questions in this chapter.

Figure 7.1 illustrates sample reuse and reusability. The learning curves refer to
samples obtained by AL with selectors based on different learners Ti or random
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Figure 7.1: Sample reuse scenario where a learner T1 is used as a consumer to obtain the
learning curves. Selectors used during AL are based on learners T1, T2, and T3 . ST1

constitutes an AL self-selection scenario, ST2 and ST3 are AL foreign-selection scenarios.
Sample ST2 is reusable by T1, ST3 is not (below random sampling).

sampling (RD). All samples are evaluated with a consumer based on learner T1. The
dotted line corresponds to the performance of a model induced by T1(SRD). The
solid curve shows an AL self-selection scenario where both selector and consumer
are based on learner T1. The two dashed lines correspond to AL foreign-selection
scenarios with selectors based on learners T2 and T3, respectively. While ST2 is
reusable by T1 (above the random selection baseline), the bias contained in ST3 is too
adversarial for T1, so that ST3 is not reusable by T1 (below the random baseline).

Sample reuse in the context of AL is of high practical relevance. Given sample
reusability, a fast learner may be used during selection to produce training material
well-suited to a more complex learner. Reduction of the computational complexity
of sampling is especially attractive when AL is applied to NLP problems. For in-
stance, CRFs generally perform very well on the NER task but exhibit an excessively
high training times.4 On the other hand, reusability enables sample flexibility for
scenarios where the best model is not know prior to the annotation process.

Sample reusability, on the other hand, is not necessarily given. We have learned
in the previous section that sample selection bias in combination with inconsistent
models may be adversarial. Transferred to the AL sample reuse scenario, adversarial

4On a 3.00Ghz Intel dual-core processor, 10 fold training of a CRF on the PBgene corpus took
about 66 minutes. In comparison, the MaxEnt learner took 15 and NB only 2 minutes. (Note
that these times include generation of feature from plain training data.)
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sample selection bias is defined as a scenario where a sample obtained by AL is less
useful for classifier learning that a randomly drawn sample of the same size.

In this chapter, reusability for several learners and data sets is empirically studied.
What is most important is the sensitivity of learner towards AL foreign-selection
sample selection bias and the resulting presence or absence of reusability.

7.2.2 Previous Work

There has been only little work done on AL sample reuse and the issue of reusability.
A scenario of sample reuse motivated by reduction of computational complexity of
sampling was first described by Lewis and Catlett (1994). For text classification,
they applied a decision tree to learn the consumer. During AL selection a logistic
regression model is used. Lewis and Catlett reported positive findings about sample
reusability. Additionally, they propose a method to correct the bias obtained by AL
foreign-selection: A specific loss ratio is introduced to counterbalance bias towards
the low frequency class which would otherwise harm a decision tree.

In the context of AL for SVMs, Vlachos (2004) reports on experiments of sample
reuse with different SVM kernels (linear and RBF). Both kernels are used once each
as the selector and the consumer with the result that better reusability is achieved
when the stronger RBF kernel is used during selection. Vlachos’ experiments might
suggest that during AL selection the best performing learner should be employed
in order to keep reusability high. Our experiments (see below) disagree with this
observation as a general pattern.

For the NLP task of statistical parsing, controversial findings on reusability have
been published. Hwa (2001) reported positive results and showed that a sample
obtained by AL with a model of the Collins parser as selector, is reusable for a con-
sumer based on another parser.5 In contrast, Baldridge and Osborne (2004) showed
scenarios where the AL foreign-selection bias impairs reusability. They experimented
with different parser models based on exchanged feature sets and models. In conclu-
sion, they argued that AL should be used as a method to create labeled data only
when the selector and the consumer are likely not to be substantially different as
otherwise reusability of the created data can not be guaranteed.

Baldridge and Osborne (2004) hypothesized that the utility of the data selected by
one learner for another learner depends on the degree of relatedness of the learned
models under consideration. To empirically test this hypothesis they compare the

5The Collins Parser is a well-known statistical natural language parser (Collins, 2003). The second
parser is based on Probabilistic Lexicalized Tree-Insertion Grammars (Hwa, 2001).
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(a) Target function and input density (b) Error for different density functions

Figure 7.2: Effect on mean error of different model parameters λ in combination with different
different input densities. Plots taken from (Rubens and Sugiyama, 2006).

utility ranks assigned to the unlabeled examples by different models used as selec-
tors with Spearman’s rank correlation coefficient.6 Similar rankings lead to high
correlation scores and are interpreted as high relatedness of the models. In their
experiments, they found that high reusability is obtained when the selector and the
consumer models are highly related according to this rank correlation score.

In line with the findings of Baldridge and Osborne (2004), one would intuitively
expect that examples that constitute an optimal training set for one learner may be
poor for another learner. Rubens and Sugiyama (2006) demonstrated this assump-
tion in a toy example on regression learning. The one-dimensional training data
is normally distributed (µ = c, σ = 0.4c) as shown in Figure 7.2(a). Rubens and
Sugiyama applied a special form of a least squares approach for regression learning
in which a model parameter λ needs to be specified. Figure 7.2(b) nicely illustrates
that the chosen model parameter λ crucially depends on the training input density.
While for c ≤ 0.9 models with different λ parameters exhibit approximately the
same generalization error, for c = 1.4 a model with λ = 0 leads to a much higher
error than a model with λ = 1. This emphasizes that training set density resulting
from a selective sampling process has different effects on different models (obtained
by different values of λ in this example).

These few papers available provide evidence for scenarios of presence and absence of
AL sample reusability in the context of different learning problems. To date, there
is no comprehensive study investigating the true nature of reusability, requirements

6Appendix D.1 shortly discusses how Spearman’s rank correlation coefficient is calculated.
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for the presence of reusability, or prohibitive factors. While this chapter does not
intend to fill this gap completely, it at least provides a starting point for further
investigations and places reusability in the context of learning under sample bias.

7.3 Empirical Investigation of Sample Reusability

Our investigation on AL sample reusability is driven by the following hypotheses:

H1: Limited Sample Reusability Given the work of Rubens and Sugiyama (2006),
we have good reason to assume that sample selection bias through AL foreign-
selection can be very adversarial. In combination with the work of Baldridge
and Osborne (2004), which shows that AL foreign-selection can lead to non-
reusable samples and the assertion that, in practise, learners are hardly con-
sistent for a specific problem (Tsuboi et al., 2009), it leads us to assume that
sample reusability is but a rare lucky chance and cannot be assumed in the
general AL setting.

H2: Self-selection as Upper Bound AL self-selection constitutes a relevant but pre-
sumably positive sample selection bias. We assume AL self-selection to con-
stitute the upper bound of sampling efficiency for all AL foreign-selection sce-
narios and AL foreign-selection to perform at its best as well as self-selection.

H3: Selector-Consumer Pairings exhibit General Reusability Characteristics Any
combination of learners when used as selector-consumer pair in an AL foreign-
selection setting might exhibit a particular reusability characteristic. We as-
sume such reusability characteristics to be general for the specific selector-
consumer pair so that they hold for all data sets and learning problems.

One such characteristic could be that AL with learner T1 leads to a con-
siderably different AL sample bias than learner T2, so that in consequence
perf

(
θ′, T ) � perf

(
θ′′, T ), where θ′ is a model induced by T2(ST1) and θ′′ is

induced by T2(ST2). The other way round, two learners T1 and T2 might lead
to the same sample bias so that they can be used interchangeably as selector
or consumer for each other.

In the following section, a large-scale AL sample reuse experiment is performed to
generate the empirical foundation to analyse the hypotheses. After testing hypothe-
ses H1-H3, we turn to four follow-up hypotheses.
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data set examples features classes missing values feature types

car 1,728 6 4 no categorial
mushroom 8,124 22 2 yes categorial
nursery 12,960 8 5 no categorial
segment 2,310 19 7 no real
sick 3,772 30 2 yes mixed

Table 7.1: Overview of selected data sets from the UCI repository.

7.3.1 Large-Scale Experiment on Sample Reuse

For the experiments on sample reuse we applied several models used in all com-
binations of selector-consumer pairs. To not constrain the experiments to a single
learning problem, we performed experiments both on the specific task of NER and
on several well-known, non-linguistic classification problems taken from the UCI
Machine Learning Repository (Asuncion and Newman, 2007).

7.3.1.1 Experimental Settings

Data Sets For the NER scenario, sample reuse experiments were performed on
the Muc7 and the PBgene corpus so that our experiments cover one scenario with
many and one with few entity classes (7 classes on Muc7 vs. 3 classes on PBgene)
and two different domains (newspaper vs. biomedical).7 From the UCI repository,
which currently hosts about 120 data sets on classification problems, we picked five
sets according to the following criteria: firstly, for AL experiments the data sets
should have a reasonably large number of examples, so only data sets with more
than 1,000 examples were considered; secondly, we wanted to have data sets with
different characteristics according to the learning problem, the number of features,
and the target classes. Table 7.1 gives an overview of the UCI data sets selected.

Learning Algorithms and Utility Functions Besides the linear-chain CRF, the fol-
lowing additional learners found application in the NER scenario: From the Mallet
ML toolkit (McCallum, 2002), the NB and the MaxEnt learners were applied with
exactly the same feature sets as the CRF. The linear kernel SVM from the Liblin-
ear implementation (Fan et al., 2008) was also applied with the same feature set.
Finally, Lingpipe’s implementation of a HMM (Alias-i, 2008) with its own feature

7Preliminary experiments were also run on other NER corpora not reported on here with generally
comparable results.
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set was applied. The token-level confidence margin utility function us̄MA (cf. Sec-
tion 4.2.3) was used as the utility function for the CRF, the NB, and the MaxEnt
learners.

For the SVM, the token-level margin-based utility function was calculated differently.
Liblinear follows a one-versus-rest approach for multi-class classification (cf. Sec-
tion 2.2.2). For maximum margin classification, larger decision values d(~x) indicate
that the example x is farther away from the hyperplane. Following Schölkopf and
Smola (2002), larger distances can be interpreted as higher confidence of the classi-
fier in its classification. For the multi-class SVM scenario, we applied the following
margin-based utility function for US-based AL:

uSVM(p, ~w, b) = −(dy∗(~x)− dy∗∗(~x)
)

y∗ = argmax
y′∈Y

dy′(~x)

y∗∗ = argmax
y′′∈Y
y′ 6=y′′

dy′′(~x) (7.1)

A NB-, a MaxEnt-, a Decision Tree-, and a linear kernel SVM-based learner are
applied on the UCI data sets. We resort to the Weka implementation (Witten
and Frank, 2005) of all these classifiers and apply them in their default parameter
settings.8 Weka’s implementation of the C4.5 algorithm, called J48, is used for
the Decision Tree learner. It is well known that decision trees are subject to the
tree instability problem which means that small changes in the training set may
cause dramatically large changes in the learned tree classifier. To circumvent this
problem, a J48-based consumer is trained using bagging (Breiman, 1996).9 For all
experiments on the UCI data set, features as specified in the data sets were used.

As for the AL experiments on the UCI data, the general AL framework as presented
in Chapter 3 is used. The selection granularity here is a single example, in each
iteration exactly the example with the highest utility score is selected.10 For the
NB and the MaxEnt learners, the uMA utility function is applied; AL with the SVM
learner applies uSVM defined in Equation 7.1. Due to the instability of decision trees,
US-based AL cannot be applied efficiently for J48 (Dwyer and Holte, 2007). Instead,
we employ QbC-based AL with the Vote Entropy utility function for J48.

AL experiments in the NER scenario are stopped after 50,000 tokens. On the UCI
data sets, convergence occurs very early so that we stopped AL after 150 examples.
The results reported in the following are averages over 20 independent runs.

8See Appendix D.2 for on overview of the parameter settings used.
9Weka’s implementation of Breiman’s bagging approach was used with default parameters.

10Selection of the best example is feasible because the UCI learning problems are computationally
less complex than experiments on the NER task due to the much lower number of features.
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Figure 7.3: Quantification of sample reusability through the REU score which is here calcu-
lated by A

A+B − 1. In this example, REU = −0.17 indicates good reusability.

Quantification of Sample Reusability Previously, we considered reusability as a
binary measure – reusability is either in evidence for a particular consumer or not.
To quantify sample reusability on a continuous scale we introduce a novel measure.
Similarly to the RAI measure (cf. Equation 4.14 on page 61) this measure is also
defined on an interval [a, b]. Given a baseline sampling scenario Sbase, typically
random selection, the learning curve of AL self-selection Sself, and the learning curve
of AL foreign-selection Sfrgn, the REU score is defined as

REU(Sfrgn, Sself, Sbase, a, b) =
AUC(Sfrgn, a, b)−AUC(Sbase, a, b)
AUC(Sself, a, b)−AUC(Sbase, a, b)

− 1 . (7.2)

Figure 7.3 visualizes the calculation of the REU score. The REU score indicates the
percentage decrease of AL self-selection sampling efficiency by AL foreign-selection
relative to the baseline sampling scenario. If REU = 0, foreign- and self-selection are
equally efficient and in the case of REU > 0, foreign-selection would be even better
than self-selection. We deliberately defined the REU score so as to indicate reduction
of sampling efficiency because we assumed that self-selection would constitute the
upper efficiency bound for foreign-selection (cf. hypothesis H2 in Section 7.3.2.1).

A negative score with −1 � REU < 0 indicates that reusability is in evidence but
comes with loss of sampling efficiency. We say that reusability is “high” for negative
REU scores close to 0, and “low” for negative REU scores just slightly above −1. A
REU score as low or even below −1 indicates that reusability cannot be evidenced.
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Figure 7.4: MaxEnt consumer with different selectors (as shown in legend) on UCI data sets.

7.3.1.2 Results

Sample Reuse on UCI Results of the experiments on sample reuse on the UCI
data sets are shown in terms of REU and RAI scores in Table 7.2. These scores
were calculated in the interval of [50; 150] examples to exclude the start-up phase
and the convergence phase. While REU scores are indicators for reusability, RAI
scores indicate the efficiency of AL self-selection. The RAI scores indicate that AL
always exhibits a sampling efficiency above random sampling. However, sampling
efficiency on the UCI data is on average relatively low, which holds especially for the
segment and the sick data sets and for the J48 learner. For visualization, learning
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car data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 −0.30 −0.47 −0.42 3.49
MaxEnt −0.84 0.00 −1.04 −0.27 7.74
NB −0.84 −0.11 0.00 −0.28 5.51
SVM −0.90 0.26 −0.86 0.00 8.66

mushroom data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 −0.59 −0.69 −0.19 1.42
MaxEnt −0.05 0.00 −0.47 0.12 3.34
NB 0.00 −0.07 0.00 −0.02 8.14
SVM −0.91 −0.43 −1.17 0.00 2.00

nursery data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 −1.13 −2.13 −0.93 1.92
MaxEnt −0.33 0.00 −1.46 −0.07 6.13
NB 0.48 −0.09 0.00 0.14 4.30
SVM −0.36 −0.35 −1.19 0.00 2.91

segment data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 −0.72 −0.47 −0.95 2.49
MaxEnt −0.95 0.00 −1.24 −3.07 1.16
NB −2.56 −2.04 0.00 −1.77 4.26
SVM −4.35 −3.53 −2.39 0.00 1.38

sick data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 −0.83 −0.54 −0.90 1.49
MaxEnt 0.26 0.00 −0.43 −0.77 5.20
NB 0.31 −0.90 0.00 −2.18 2.20
SVM 0.34 −0.18 −0.25 0.00 3.49

Table 7.2: REU and RAI scores on UCI data sets. Colors: REU ≥ 0 and REU ≤ −1
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Muc7 corpus

REU score according to consumers
selector NB HMM MaxEnt SVM CRF RAI score

NB 0.00 0.07 −0.19 0.13 −0.15 18.79
HMM −0.48 0.00 −0.40 −0.29 −0.39 6.88
MaxEnt −0.39 −0.05 0.00 0.12 −0.12 10.67
SVM −0.40 −0.07 −0.20 0.00 −0.24 6.53
CRF −0.38 0.01 0.02 0.05 0.00 6.73

PBgene corpus

REU score according to consumers
selector NB HMM MaxEnt SVM CRF RAI score

NB 0.00 −0.02 −0.01 −0.17 −0.13 5.03
HMM −1.51 0.00 −0.29 −0.38 −0.35 6.65
MaxEnt −3.47 −0.57 0.00 −0.08 −0.09 7.58
SVM −2.22 −0.24 −0.22 0.00 −0.25 5.55
CRF −3.58 −0.58 −0.06 −0.36 0.00 9.15

Table 7.3: REU and RAI scores on the NER scenarios. Colors: REU ≥ 0 and REU ≤ −1

curves for the MaxEnt consumer are shown in Figure 7.4.

On the UCI data sets there are many cases of good reusability. But, on the other
hand, frequently a sample is not reusable in AL foreign-selection scenarios and REU
scores drop considerably below the random selection baseline. Moreover, there are
cases where only tiny amounts of sampling efficiency are sacrificed by AL foreign-
selection (e.g., NB selector for a SVM consumer on the mushroom data set).

Sample Reuse on NER Results on the NER data sets are shown in Table 7.3.
The interval of interest for the computation of the REU and RAI scores is set to
[10000; 30000] to be consistent with Chapter 4. RAI scores show that sampling
efficiency of AL self-selection for any of the learners is on average higher than on
the UCI data sets. Reusability for NER is given in all AL foreign-selection scenarios
except for the NB-based consumer on the PBgene corpus. Additionally, REU
scores indicate that on a continuous scale, reusability is in most cases very high and
less than 50 % sampling efficiency are forfeited. Overall, REU scores on the Muc7
corpus are generally higher than on the PBgene corpus. For visualization, learning
curves for the Muc7 corpus are shown in Figure 7.5.

In previous experiments on sample reuse, we found comparable results with QbC-
based AL, while the current experiments are based on US (Tomanek et al., 2007a).
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Figure 7.5: Sample reuse with different consumers and selectors in the NER scenario on
Muc7 (selectors shown in legend).

Differences between the experiments on the UCI and the NER data sets lie in the
way NER is evaluated (F-score vs. ACC) and the selection granularity (sentences
vs. single examples). We performed additional experiments to test whether these
differences explain the generally higher REU scores in the NER scenario.

Accordingly, we additionally evaluated the experiments on the NER data sets in
terms of accuracy. However, we could not find a change of the overall picture of
reusability. As an example, Figure 7.6 contrast F-score and accuracy evaluation
of the MaxEnt consumer on the Muc7 corpus. As for selection granularity, the
co-selection effect (cf. Chapter 4) might have a positive influence on reusability in
the NER scenario. Experiments with a token-level selection granularity in the NER
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Figure 7.6: Evaluation of AL for NER with F-score and ACC.

setting disprove this suspicion and the same trends with respect to reusability can
be observed. Figure 7.7 shows the foreign-selection learning curves for NER with
token selection and the MaxEnt consumer. The same findings hold on the PBgene
corpus and the other consumers we tested.11

7.3.2 Discussion of Hypotheses

7.3.2.1 Basic Hypotheses

H1: Limited Sample Reusability On the UCI data sets, one third of all AL foreign-
selection scenarios exhibit REU scores ≤ −1.12 In these foreign-selection scenarios,
sample efficiency considerably drops below that of random selection, often leading to
extremely poor consumer performance as in the case of AL with a NB-based selector
and an SVM-based consumer on the sick data set.

As for NER, reusability can be recorded for all AL foreign-selection scenarios and
REU scores rarely fall below −0.5, indicating a high degree of reusability for this

11According to these curves, NER with token selection has a better sampling complexity. However,
annotation of isolated tokens is an unrealistic setting in practise (cf. Chapter 4). For the purpose
of this experiment, token-level selection was enabled by simply splitting each sentence into the
single tokens and running the same AL framework on these artificially down-scaled sentences.

12These are 15 out of the 60 cases of foreign-selection (highlighted in dark gray in Table 7.2).
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Figure 7.7: AL for NER in a token-selection scenario.

special learning problem. The only exception is that of foreign-selection for a NB-
based consumer on the PBgene corpus.13

While we did not find sample reusability to be generally given, we could still observe
reusability in several cases. This includes for example the mushroom data set and
the NER scenario where reusability is extremely likely. According to these findings,
we reject the strictly formulated hypothesis on generally limited sample reusability.
At the same time, however, it has to be reported that reusability is consistently
problematic for certain learning problems and data sets.

H2: Self-Selection as Upper Bound According to Tables 7.2 and 7.3, self-selection
sampling efficiency is occasionally outperformed in foreign-selection scenarios. As
for NER, this is the case in 6 out of the 40 foreign-selection scenarios; on the UCI
data sets, 8 out of the 60 foreign-selection scenarios exceed the assumed upper
bound.14 As an example, consider the combination of an SVM selector and a MaxEnt
consumer on the car data set.

The observation that self-selection does not necessarily constitute the upper bound
for sampling efficiency is remarkable: while self-selection aims to find the “optimal”

13For real-world applications one would avoid the application of a NB learner to the NER tasks:
the NB assumption on feature independence is likely to be violated by the extremely rich set of
features. For the experiments on sample reuse, we deliberately applied the NB learner to test
limits of reusability in an extreme setting.

14Cases where REU > 0 are highlighted in light gray.
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examples for a given learner T1, there are apparently scenarios where a learner T2

estimates the utility of an example for learner T1 more appropriately than T1 itself.

In future work it should be tested whether self-selection constitutes the upper bound
when approaches to statistically optimal AL instead of heuristics are applied.

H3: Selector-Consumer Pairings exhibit General Reusability Characteristics REU
scores in Tables 7.2 and 7.3 contradict the assumption that there are pairings of
learning algorithms for which general reusability characteristics hold. This holds
especially for the UCI data sets where inconsistent reusability characteristics for the
selector-consumer pairings have to be ascertained over the five data sets. Figure 7.4
on page 118 shows learning curves for the MaxEnt consumer and different selectors.
Each plot constitutes its own reuse scenario and no characteristics hold on all plots.
NB, for example, is a good selector for the MaxEnt consumer on the mushroom
data set, but performs poorly on the sick data set for the MaxEnt consumer.

The situation is slightly different for the NER scenario and it appears that there
indeed are tuples of learners which for this learning problem constitute pairings of
consistent quality, such as a MaxEnt selector together with a CRF-based consumer.
As another example, consider the combination of NB selector and MaxEnt consumer.
Reusability is given for this combination on NER, but no consistent reusability
characteristic can be observed on the UCI data set.

The only general pattern we found is that, in the NER scenario, in most foreign-
selection scenarios with a NB-based consumer REU scores are low and REU > 0
could not be evidenced. In contrary, the NB learner is commonly a good selector
in foreign-selection scenarios. In conclusion, foreign-selection for a NB consumer
should preferably be avoided.

In contrast to our original assumption, we conclude that reusability depends highly
on the particular data set and it is not possible to generalize which combinations of
learners generally work well together. Our findings also disagree with the assumption
formulated by Vlachos (2004) that the stronger learner should be used as selector to
increase reusability. The opposite is often the case as evidenced by the combination
of NB and CRF learners on the NER data sets.

Given the findings that reusability is not generally limited and that no selector-
consumer pairings with general reusability characteristics could be found, we turn
here to a set of more specific follow-up assumptions on explanatory factors for
reusability.
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7.3.2.2 Follow-Up Hypotheses

H4: Relatedness of Models Explains Reusability In line with Baldridge and Os-
borne (2004), we assume that sample reusability depends on the degree of relatedness
between selector and consumer. It should be noted, that by selector and consumer
we here explicitly refer to the models induced by the respective learners given a
learning problem and data set.

Approaches to quantifying the relatedness of models have been studied intensively in
context of ensemble learning and multi-classifier systems (Ho et al., 1994; Kuncheva
and Whitaker, 2003). Relatedness is usually measured by the degree of correlation
between the predictions of models. In the context of AL, we say that two models
are related when they lead to a highly correlated utility ranking of unlabeled exam-
ples. To quantify relatedness, we follow Baldridge and Osborne (2004) and apply
Spearman’s rank correlation coefficient ρ to the utility rankings of both models.

The assumption is that high relatedness scores for combinations of two models come
with high REU scores, while low relatedness scores imply low REU scores. We
test this assumption on the NER data. All NER learners are trained on a random
subsample of 10,000 tokens.15 Utility rankings of the examples in the test set are
then compared for all tuples of models. Table 7.4 shows the relatedness scores
obtained by Spearman’s rank correlation on the Muc7 and the PBgene corpus.

By definition, relatedness scores are symmetrical. However, reusability, according
to Tables 7.2 and 7.3, is not. When the learners of selector and consumer are
exchanged, reuse scores differ. This is, for instance, evidenced by the tuple of SVM
and MaxEnt learner for which we obtained a high relatedness score of 0.81 on the
Muc7 corpus. An AL sample obtained by a MaxEnt-based selector is perfectly
reusable by an SVM-based consumer with sampling efficiency above that of SVM
self-selection with REU = 0.12. However, when SVM is used to select for a MaxEnt
consumer, reusability drops to REU = −0.20. More extremely, this is also the case
for a tuple of NB and CRF on the PBgene corpus. Though strongly related (0.69),
CRF as a selector for NB fails miserably with REU = −3.58. The other way round,
however, high reusability with REU = −0.13 is obtained. Thus, a high relatedness
score does not necessarily imply high reusability.

The very good reusability of a sample obtained by AL with a NB selector for a
HMM consumer is in contrast to the rather low relatedness score for HMM and
NB of 0.47 on the Muc7 corpus. A low relatedness score does thus not necessarily
imply a low level of reusability. While a high rank correlation coefficient often
accompanies reusability (as for the MaxEnt-CRF tuple), one cannot conclude the

15We also tested random samples of different sizes but did not obtain essentially different results.
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Muc7 corpus

NB HMM MaxEnt SVM CRF

NB 1 0.47 0.68 0.54 0.68
HMM 0.47 1 0.59 0.46 0.60

MaxEnt 0.68 0.59 1 0.81 0.94
SVM 0.54 0.45 0.81 1 0.74
CRF 0.68 0.60 0.94 0.74 1

PBgene corpus

NB HMM MaxEnt SVM CRF

NB 1 0.47 0.69 0.43 0.69
HMM 0.47 1 0.57 0.35 0.57

MaxEnt 0.69 0.57 1 0.69 0.92
SVM 0.43 0.35 0.69 1 0.59
CRF 0.69 0.57 0.92 0.59 1

Table 7.4: Relatedness scores based on Spearman’s rank correlation coefficient on unlabeled
examples for any combination of two learners.

opposite from low correlation coefficients. This emphasizes that different samples
can also lead to similar model performances and anticipates an issue that we will
address in the following sections: a sample that is highly divergent from the self-
selection sample is not necessarily inferior in terms of classifier performance achieved
by the consumer.

H5: Similarity of Samples explains Reusability Although the analysis of H4 al-
ready gave hints for the opposite being true, an obvious assumption would be that
similarity of samples obtained in self- and foreign-selection mode is a relevant factor
for reusability. This assumption is based on the intuition that different selectors
may select from other parts of the instance space and the more the covered space of
a foreign-selector diverges from that of the self-selector, the lower the REU scores
would be. Under this assumption, a situation with REU ≤ −1 could be interpreted
as a scenario where the AL sample does not cover the relevant areas for the consum-
ing learner to build appropriate hypotheses. For another learner, however, according
to different model assumptions, the same sample may still be adequate for finding
a good model.

Instead of comparing the samples on the example level, we compare how samples
distribute over the input space. Therefore, the input space, represented by the set
of all unlabeled examples in the pool P, is clustered. Here we apply agglomerative
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Figure 7.8: Distribution of samples S1 (left) and S2 (right) over common clustering.

hierarchical clustering. The distance between two clusters is calculated according to
the average linkage method based on the Euclidean distance (Everitt et al., 2001).
The hierarchical clustering is flattened down to k = 20 clusters. The examples in a
sample S are then assigned to this clustering according to each example’s proximity
to the cluster centroid (Everitt et al., 2001).

DS represents the distributions of the examples of sample S over the clustered
input space. This distribution gives the percentage of a sample’s examples falling
in each cluster. Figure 7.8 visualizes this for two samples S1 and S2 obtained by
two different selectors. S1 covers the lower clusters more densely, while examples
of S2 are almost equally distributed over all clusters. The similarity of the two
samples S1 and S2 is estimated based on the divergence of their distributions DS1

and DS2 by means of the KLM metric (Equation 3.15 on page 40). The KLM score
ranges in the interval of [0, 1] and the lower the KLM scores, the more similar two
samples are with respect to their distribution in the clustered space. We calculate
this similarity by SIM(S1, S2) = 1 − KLM(DS1 , DS2). In the above example, a
similarity of SIM(S1, S2) = 0.48 is obtained.

Our hypothesis that distributional similarity of samples is a relevant factor for
reusability is operationalized by the assumption that similarity (SIM) correlates
with reusability (REU). The intuition is that high sampling efficiency of foreign-
selection comes with high similarity of the samples. We tested this hypothesis only
on the UCI data sets.16 SIM and REU scores were calculated for samples of 100
examples.17 Correlation between REU and SIM scores was calculated for each data
set separately omitting REU and SIM scores of the self-selection scenarios.

Table 7.5 shows correlation coefficients between the REU and SIM scores. Pearson’s
correlation coefficients range between 0.03 and 0.37, which indicates a comparatively
low (linear) relationship. Spearman’s correlation coefficients are also very low on

16Due to high computational complexity of clustering as a result of large feature spaces, we refrained
from testing the clustering on the NER corpora.

17Since REU scores are defined over a range of examples, we here chose the interval [99, 101].
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car mushroom nursery segment sick

Pearson’s ρ 0.30 0.24 0.03 0.37 0.23
Spearman’s ρ 0.29 0.19 0.08 0.40 0.14

Table 7.5: Pearson’s and Spearman’s correlation coefficients on REU and SIM scores.

average ranging from 0.08 to 0.4. This shows that SIM scores are also not suitable
for ranking the foreign-selection scenarios according to their REU scores.

To illustrate this finding with examples, Tables 7.6 shows the SIM scores on the
mushroom data set. According to these scores, all samples obtained by AL selection
diverge from the unbiased distribution of this data set. The unbiased distribution
is the distribution of the complete pool P. Samples obtained with AL and a NB- or
SVM-based selector exhibit a lower similarity to the unbiased distribution than do
those based on a J48 or a MaxEnt selector.

Table 7.7 shows REU scores on the mushroom data set. Once again, SIM scores are
symmetrical. While SIM(SSVM, SNB) = 0.85 signals that the samples obtained from
AL with a SVM selector and with a NB selector diverge, a sample SNB exhibits a high
sampling efficiency for the SVM consumer (REU = 0.05). In the reverse situation, a
sample SSVM is not appropriate for the NB consumer (REU = −1.24). Furthermore,
consider a sample SSVM for a MaxEnt or a NB consumer. Distributional similar-
ity is very similar, SIM(SSVM, SMaxEnt) = 0.86 vs. SIM(SSVM, SNB) = 0.85, but
reusability of SSVM for a MaxEnt consumer is much better than for a NB consumer
(REU = −0.53 vs. REU = −1.24). REU and SIM scores of all UCI data sets are
shown in Tables D.1 and D.2 (Appendix, pages 229 and 230).

These experiments show that the distributional similarity of samples is also unable
sufficiently to explain reusability. Once again, SIM scores are symmetrical which
is problematic as discussed in the context of H4. Another problem with measuring
distributional similarity based on clustering is that, for clustering, all dimensions of
the input space are considered equally important. Thus, two sample distributions
that differ highly in many unimportant dimensions but are very similar in the few
really important dimensions, would still get a low SIM score. This, however, does
not reflect the situation of a learner that actually weights the dimensions.

H6: Influence of Sample Bias on Classifier Training As a follow-up to H5 we
hypothesize that sensitivity to sample bias is a relevant factor for reusability charac-
teristics. This sensitivity, we assume, is expressed by the fact that a model learned on
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mushroom data set
selector unbiased

selector J48 MaxEnt NB SVM sample

J48 1.00 0.88 0.80 0.80 0.90
MaxEnt 0.88 1.00 0.89 0.86 0.80
NB 0.80 0.89 1.00 0.85 0.67
SVM 0.80 0.86 0.85 1.00 0.71

Table 7.6: Mutual distributional similarity (SIM score) between the samples of
100 examples selected with AL using different selectors and distributional
similarity between these samples and an unbiased sample as represented by
the complete pool P.

mushroom data set

consumer
selector J48 MaxEnt NB SVM

J48 0.00 −0.48 −0.73 −0.17
MaxEnt 0.06 0.00 −0.49 0.16
NB 0.07 −0.02 0.00 0.05
SVM −1.14 −0.53 −1.24 0.00

Table 7.7: REU scores on samples of 100 examples.

an adversarial sample exhibits highly different model parameters or feature weights
compared to one learned on a self-selected sample.

To quantify the influence training data has on model learning, we determine the
resulting feature rankings after training models on different samples. Feature rank-
ings are obtained by a wrapper approach based on simple hill climbing (Kohavi and
John, 1997). Subsequently, tuples of feature rankings are compared. A tuple always
consists of the feature ranking obtained from a model learned on a foreign-selection
sample and the feature ranking of the model learned on the self-selected sample.

Comparison of feature rankings is based on a weighted version of Spearman’s rank
correlation coefficient.18 Accordingly, the feature ranking score FR(ST1 , ST2) shows
the correlation of the feature rankings of a model induced by learner T2 on a foreign-
selection sample from AL with a selector based on T1 and a self-selection sample the
selector was based on T2.

Hypothesis H6 is thus operationalized by the assumption that the FR scores cor-
relate highly with the REU scores in the foreign-selection scenarios. However, our

18Refer to Appendix D.1 for details on the weighted rank correlation.
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car mushroom nursery segment sick

Pearson’s ρ 0.16 -0.35 0.46 -0.38 -0.06
Spearman’s ρ 0.04 -0.49 0.45 -0.42 -0.21

Table 7.8: Pearson’s and Spearman’s correlation coefficients on REU and FR scores.

mushroom data set
consumer

selector J48 MaxEnt NB SVM

J48 1.00 0.32 0.34 0.41
MaxEnt 0.79 1.00 0.11 0.51

NB 0.70 0.40 1.00 0.47
SVM 0.77 0.38 0.14 1.00

Table 7.9: Similarity of feature ranking (FR score): feature rankings of a consumer trained
on a self-selected sample and a foreign-selected sample are compared. Samples have 100
examples. As an example, FR(J48,MaxEnt)=0.32 means that the feature ranking of a
MaxEnt consumer trained on a sample selected by a MaxEnt selector has a weighted
Spearman’s rank correlation coefficient to the feature ranking of a MaxEnt consumer
trained on a sample selected by a J48 of 0.32.

experiments disprove this assumption. Table 7.8 shows the correlation coefficients
for REU and FR scores on the UCI data sets. With the exception of the nursery
data set, correlation coefficients are low or even negative.

As an example, compare the REU scores of Tables 7.7 with the FR scores of Table 7.9
for the mushroom data set. While a J48 consumer has FR scores between 0.7
and 0.79 for the different selectors, REU scores are more diverse. While SVM is
a miserable selector for J48 (REU = −1.14), MaxEnt and NB exhibit a higher
sampling efficiency for J48 than does J48 self-selection (REU = 0.06 and 0.07).
While correlation coefficients on the nursery data set are a bit higher (Pearson’s
ρ = 0.45), examination of the REU and FR scores reveals problematic cases. For
the J48 consumer, REU scores vary between −0.21 and 0.66. But FR scores, in
contrast, are all nearly identical (around 0.5) for the different selectors (REU and
FR scores for all data sets can be found in the Appendix in Tables D.1 and D.3 on
pages 229 and 231).

Overall, the FR score is inadequate either for predicting the REU score and for
ranking the selectors according to their appropriateness for a particular consumer.
A twisted feature ranking may still lead to a model with similar accuracy compared
to a model which is induced from a self-selected sample. This is, for example, the case
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on the sick data set for the MaxEnt consumer. An SVM-selected sample exhibits
a low FR score of 0.22, but the REU score of −0.12 is high, in comparison.

Reusability cannot be explained by the fact that models learned on different samples
exhibit similar feature rankings. In consequence, a foreign-selection sample from
which a learner induces a model θ, that is highly disparate from a model θ′ induced
by the same learner but from a self-selection sample, may still perform similarly well
or even better than θ′.

H7: Class Distribution affects Reusability In all previous experiments, we could
not find factors that generally explained reusability independent of the learning
problem and data set. The only distinct pattern found is that reusability is com-
paratively high on the NER task and REU scores ≤ −1 are evidenced only in the
unrealistic setting with a NB consumer. What is more, the NER task also appears
highly appropriate for AL itself, as evidenced by comparatively high RAI scores.
Accordingly, a question of high relevance concerns the special characteristics of the
NER task as a learning problem, as distinct from the classifications problems found
in the UCI data sets.

An outstanding characteristic is clearly the class distribution. The NER task is
subject to a considerable class imbalance (cf. Table 4.2) with the Outside class
covering about 89 % of all tokens in the Muc7 corpus and 93.5 % in the PBgene
corpus. In the following, we test whether such a distinctive class imbalance is a
relevant characteristic for reusability. Our hypothesis thus is that high REU scores
are obtained when such a class imbalance is given and REU scores are low for uniform
class distribution.

For the experiments, UCI data sets were re-sampled so that their class distributions
resemble those of the NER task: one class is the majority class and the other classes
are approximately equally distributed.19 The class distribution of the original and
the re-sampled data sets is shown in Table D.4 (Appendix, page 232).

Figure 7.9 exemplarily contrasts the learning curves on the original and the re-
sampled data sets for the MaxEnt consumer. On the segment data set, AL sam-
pling efficiency and reusability are improved by re-sampling. On the car data set,
reusability is improved for the NB selector, but, the J48 selector now drops down
to random selection sampling efficiency. On the nursery data set, however, re-
sampling causes NB and SVM selectors to fail miserably in selecting for the MaxEnt

19Such re-sampling was only possible for the three largest UCI data sets: car, nursery, and
segment data sets. The other UCI data sets had a prohibitively small number of examples.
More details on re-sampling procedure is given in Appendix D.3.
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Figure 7.9: MaxEnt consumer on re-sampled and original UCI sets (legend shows selectors).132



7.3 Empirical Investigation of Sample Reusability

consumer. Detailed REU and RAI scores can be found in Table D.5 (Appendix,
page 232).

Our experiments show that re-sampling helped especially on the segment data set
which, in its original version, has seven uniformly distributed classes. However,
uniformly distributed classes are not necessarily an impediment to sample reuse:
On the mushroom data sets, the two classes are also uniformly distributed (52 %
vs. 48 %), but reusability is still mostly in evidence. Moreover, preliminary AL
experiments on re-sampled NER data showed that, even when all classes are equally
frequent, AL sampling efficiency and reusability are still good.

7.3.3 Conclusions

In this section we have empirically studied the case of sample reuse and reusability on
general classification problems as found in the UCI repository and on the NER task,
a special class of learning problems of its own. Our investigation into characteristics
of and explanatory factors for reusability was driven by three initial hypotheses and
four follow-up hypotheses.

To start with (H1), we assumed that sample reusability would be a very unlikely
scenario and thus empirically one would find only few cases where REU � −1.
While we indeed did find many cases where REU ≤ −1, in more than 50 % of all
cases sample reuse resulted in a sampling efficiency better than that of random
selection.

The hypothesis that self-selection would pose the upper bound for sampling efficiency
in sample reuse scenarios (H2) was rejected. In contrast, we observed cases where
AL foreign-selection clearly outperformed self-selection sampling efficiency.

The next hypothesis (H3) stated that selector-consumer pairings would always be
subject to the same reusability characteristics. On the contrary, we could not identify
such a pattern but found that the appropriateness of such pairings for sample reuse
depends highly on the specific data set.

Given this finding, in a follow-up hypothesis (H4) we assumed that the relatedness of
models induced by different learners is an explanatory factor for reusability. Again,
experiments disproved this hypothesis – for highly unrelated selector-consumer pair-
ings we also found good reusability. Similarly, another follow-up hypothesis (H5),
stating that distributional similarity of resulting samples explains reusability, was
disproved. Instead, we found that distributionally dissimilar samples can lead to
models of comparable performance.
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As another follow-up (H6), we studied the influence of sampling bias induced by
sample reuse on the learned models. This was operationalized by the feature ranking
a model would produce on different samples. We assumed similar feature rankings
to be an indicator for the presence of reusability and disparate rankings to be an
explanation for situations where REU ≤ −1. We found that even models of disparate
feature rankings may exhibit comparable performance.

Finally, since all hypotheses previously were disproved, we asked about the im-
portant characteristics of the NER scenario resulting in generally good reusability
characteristics. We assumed class distribution (H7) to be such a characteristic and a
supporting factor of reusability. While this was partly confirmed by our experiments,
we also here found cases of reusability that are in contrast to H7.

Overall, we discovered that sample reuse on the NER tasks in all realistic settings
works very well. This, however, does not hold in general for arbitrary learning
problems. Our approaches to find general factors causing or preventing reusability
failed. We thus conclude that reusability crucially depends on the data set at hand
and the characteristics of the specific learning problem. This brings us back to an
issue addressed before in the context of learning under sample selection bias and
covariate shift. This is that the sensitivity of learners on sample bias depends on
the combination of learning algorithm, data set, and learning problem (Fan et al.,
2005). Future work should study methods to quantify the effect of sample selection
bias, given a learner and an arbitrary data set.

Focusing on the special problem of reusability in the context of AL, this constitutes
a difficult and specific aspect of the issue of quantifying sensitivity to sample bias
because (a) the question here is whether sensitivity affects reusability, and (b) in
the AL scenario we only have access to unlabeled data.

7.4 Boosting Sample Reusability in the Agnostic Setting

In the previous section of this chapter we found that reusability should not be
blindly assumed for an arbitrary learning task but that it is likely in the NER sce-
nario. However with reference to the NER scenario, foreign-selection often exhibits
considerably lower sample efficiency than self-selection. As an example, consider the
case of an HMM-based selector in combination with a CRF-based consumer on the
Muc7 corpus (REU = −0.39, cf. Table 7.3 on page 120).

According to our findings on the Muc7 and the PBgene corpus, in a scenario for
which it is decided that the final consumer is to be CRF-based, one would thus
rather choose a MaxEnt-based selector than a HMM-based one. However, as argued
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at the beginning of this chapter, for many real-life annotation scenarios, the final
consumer for which labeled training data has to be generated is not known before
or during the data acquisition time. In consequence, it is unclear which learner to
apply during selection in order to sacrifice as little sampling efficiency as possible.

We propose here an approach to AL which aims to generate a sample likely to
be highly reusable for typical learners for a specific learning problem. This means
that we aim to find examples that are good on average – although presumably not
perfect – for possible consumers. A core assumption for this approach is that there
are indeed examples which are useful to some extent for all learners. If this is not
the case, reusability can only be assumed in a self-selection scenario.

7.4.1 Heterogeneous Committees

QbC-based AL is founded on the disagreement regarding different hypotheses. In
the case of QbB, the disagreement with a committee of models trained on different
subsets of the labeled training data L is considered. It has been shown by Melville
and Mooney (2004) that a more diverse committee is better suited to measuring the
utility of an example appropriately for AL. However, approaches to building diverse
committees are generally based on a single learning algorithm.

Our approach to generating a sample that is likely to be highly reusable by different
learners is based on the idea of a heterogeneous committee built from models induced
by different learners. As in the QbB setting, each model is trained on a random
subsample of L, but each model is based on another learner.

The assumption is that such a heterogeneous committee (HEC) rates as generally
useful such examples that are on average well-suited for most committee members.
For a special learning problem that is already well-understood, there may be only
a small number of learners that lead to completely different models. When all such
approaches are melded together in a HEC, chances are high that a final consumer
will have similarities to the committee, so that foreign-selection based on a HEC on
average results in better reusability than the worst-case foreign-selection scenario.

7.4.2 Experiments and Results

We tested the HEC to improve reusability for an unknown consumer on the NER
problem. The NER problem is indeed well-studied; most approaches to NER exhibit
overlapping feature sets. For a realistic scenario we generated a HEC that did not
contain the final consumer. The HEC was populated with the following five freely
available tools for ML-based NER:
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Stanford CRF consumer
selector Muc7 PBgene

Mallet CRF -0.08 -0.13
Mallet MaxEnt -0.24 -0.21
Liblinear SVM -0.21 -0.35
OpenNLP MaxEnt -0.22 -0.32
Lingpipe HMM -0.39 -0.38

heterogeneous committee -0.18 -0.14

Table 7.10: REU scores for Stanford CRF consumer trained on samples obtained by AL
foreign-selection with different selectors. The heterogeneous committee comprises all
of these selectors. Best and worst performing foreign selectors are highlighted.

• An NE tagger based on Mallet’s implementation of a CRF, as well as two
variants, one using a MaxEnt learner and the other a NB learner. These
approaches have been used before in this chapter.

• An SVM-based tagger, also used for previous experiments this chapter.

• Lingpipe’s HMM implementation, also used for previous experiments.

• The well-known OpenNLP MaxEnt tagger (OpenNLP, 2008).

While the taggers based on Mallet and the SVM-based tagger employ the same
features, Lingpipe’s HMM and OpenNLP’s MaxEnt tagger are based on their own
distinct feature sets. Another important difference between the members of the HEC
is that, when tested in a passive-learning scenario, the taggers yield quite different
performance values between 77-88 % F-score on the Muc7 corpus and 75-83 % F-
score on the PBgene corpus. We ran AL with each single tagger as described in
Section 7.3 as well as AL with a HEC. The Vote Entropy utility function was used for
AL with a HEC. AL runs were evaluated with the Stanford CRF-based NE tagger
(Finkel et al., 2005).20

Figure 7.10 compares self-selection for the Stanford CRF consumer with all foreign-
selection scenarios on the Muc7 and the PBgene corpus. The direct juxtaposition
of self- and foreign-selection performance shows that reusability is given for all sce-
narios. However, all five foreign-selectors fell behind self-selection sampling efficiency
with Mallet CRF and MaxEnt being the best and OpenNLP’s MaxEnt/Lingpipe’s
HMM the worst foreign-selection scenarios. The reduction of sampling efficiency in
terms of REU scores is shown in Table 7.10.

20Compared to our CRF-based NE tagger, the Stanford NE tagger performs about 2 percentage
points better on most data sets tested.
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Figure 7.10: Real-world sample reuse scenario with self- and foreign-selection, and selection
with a heterogeneous committee. Stanford CRF used as consumer, selectors indicated
by the legend in the plots (ONLP refers to OpenNLP).

In Figure 7.10 performance of HEC, best-case and worst-case foreign-selection is
contrasted with self-selection for Stanford CRF. HEC foreign-selection outperforms
the second-best foreign-selector (Mallet MaxEnt) on the Muc7 corpus and is even
on par with the best foreign-selector (Mallet CRF) on the PBgene corpus. On
both Muc7 and PBgene, the worst-case foreign-selection performance is clearly
exceeded. This shows that in a scenario where one does not know about the final
consumer to be used, the application of HEC foreign-selection considerably reduces
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the risk of choosing the wrong selector. In consequence, HEC foreign-selection con-
siderably increases sample flexibility.

7.5 Summary and Conclusions

Sample reuse and reusability are two issues hardly addressed in studies on AL. How-
ever, in real-world scenarios, sample reuse is of high practical relevance. To the best
of our knowledge, our work is the first to define clearly AL sample reuse. Moreover, it
is the first large-scale empirical study on AL sample reuse. Our experiments showed
that reusability is a challenging problem and that it is difficult to make general state-
ments. Most importantly, it showed that the question of whether a foreign-selection
sample is reusable by a particular learner, depends on the combination of learners,
data set and learning problem.

While this chapter could not completely describe the true nature of AL sample
reusability or find explanatory factors for successful sample reuse, it provides a
starting point for further investigations which may build on the empirical study
and the arrangement of reusability in the context of learning under sample selection
bias. Future work in this direction should focus on the quantification of a learner’s
sensitivity to sample selection bias given a specific learning problem.

For the NER task, our experiments provide encouraging results as they indicate
flexible sample reusability for this learning problem. Whatever selector is being
used, the sample is still much more valuable for learning any of the considered
consumers than is a random sample. Thus, in the NER scenario, Requirement 5
is met by our NER-specific AL framework. From a more practical point of view,
this chapter showed that for the NER task, foreign-selection with a MaxEnt-based
selector is well suited to acquiring labeled training data for a CRF-based consumer.
Chapter 10 builds on this finding to speed up the AL sampling process considerably
without sacrificing too much sampling efficiency.

Finally, an approach has been proposed to keep sampling efficiency high in a foreign-
selection scenario where the final consumer is unknown. Experiments on foreign-
selection with a heterogeneous committee provide first evidence that this approach
is well-suited for reducing the risk of low reusability by a badly chosen learner for a
foreign-selection scenario. Future work on this issue should extend our experiments
to other consumers besides the Stanford CRF tagger and also apply approaches
based on HECs to other learning problems.
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Active Learning with Multiple
Criteria

139





Chapter 8

Multi-Criteria Active Learning

In the previous part of this thesis, we implicitly assumed AL to be subject to a single
selection criterion, i.e., the utility of an example p quantified by function u(p, θ).
With utility we refer to the usefulness of an example for model training. Therefore,
the example with the highest utility was considered the optimal solution of one AL
iteration, as formalized in Equation 3.1 on page 31. In the case of batch-mode AL,
the |B| examples with the top ranking utility scores would be selected.

The utility function was defined as consisting of two components, namely informa-
tiveness and representativeness (Definition 9 on page 31) . Thus, we already tacitly
anticipated that utility may be a function of two dependent variables. However,
even with the possibility of incorporating representativeness, we consider the utility
as a monolithic function resulting in a single selection criterion. As a matter of fact,
the majority of approaches to AL employ a utility function based on informative-
ness alone. However, besides the mere utility of an example, real-world scenarios
may require additional criteria – possibly conflicting with utility – to be considered
during selection as well. Such criteria include, for instance, misclassification costs
or true annotation effort in terms of time or money.

In the third part of this thesis, the assumption of a single criterion is relaxed leading
to a generalization of our AL framework to one with multiple criteria for selection.
This chapter formalizes AL with multiple criteria as a decision problem and presents
two general methods that deal with multiple criteria in a selective sampling scenario.
Finally, a brief overview of previous work on AL with multiple criteria is given.

The remaining chapters of part three present concrete instantiations of AL in real-
world scenarios with multiple, mostly conflicting, selection criteria. While utility of
an example is always the primary criterion, different secondary criteria are consid-
ered. In Chapter 9, the selected examples should also be useful for deviant learning
problems, in Chapter 10, the secondary criteria aims at reducing class imbalance
within the set of labeled examples, and Chapter 11 strives to find such examples
both useful and economical in terms of annotation time.
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8.1 Decision-Theoretic Formulation of Active Learning

AL with multiple criteria (MCAL) can be formalized as a problem of multi-criteria
decision-making. Multi-criteria decision-making describes the process of selecting
the best decision from the decision space given multiple criteria and some preference
structure over these.

Multi-criteria decision-making is usually subdivided into multi-objective decision-
making which applies to problems with a continuous decision space and multi-
attribute decision-making for problems with discrete and finite decision spaces. Ac-
cording to this classification, multi-criteria AL falls into the second class because
the decision space is represented by the set of unlabeled examples.

Following Keeney and Raiffa (1976), we define a multi-attribute decision-making
(MADM) problem by a set of feasible alternatives d from the alternative space D.
An alternative is described by multiple attributes a. An attribute-value function
va(ad) evaluates the value of attribute a of an alternative d.

Moreover, it is assumed that there is an order relation � operating on all q attribute-
value functions va(ad) for d so that an alternative d is mapped to an ordered space
(Rq,�). An alternative d′ is said to dominate (or be superior to) an alternative d′′,
if ∀a = 1, . . . , q : va(ad′) ≥ va(ad′′) and ∃a for which va(ad′) > va(ad′′). MADM
problems usually have a set of non-dominated alternatives, where each one represents
a particular trade-off between the considered attributes.

Transferring this general definition to the MCAL scenario, an alternative d refers
to an unlabeled example p with the alternative space being the set P of unlabeled
examples from which AL selects. An example can have several attributes, which
we call criteria in the context of AL, such as the utility u(p, θ) or the annotation
time t(p). Each such criterion is mapped to a value in R by an attribute-value
function va(p) which can be arbitrarily complex. As a simple example, consider the
attribute-value function for annotation cost

vt

(
t(p)

)
=

t(p)−minp′∈P t(p′)
maxp′∈P t(p′)−minp′∈P t(p′)

which does nothing more than normalize t(p) to the interval [0, 1].

We define a vector ~v(p) = (vi(p), . . . , vq(p)) to hold all attribute-value functions for
an example p.

Considering the general AL framework (Algorithm 1 on page 32) and the NER-
specific, batch-mode AL framework (Algorithm 2 on page 55), MCAL leads to mod-
ifications of Step 2 in both algorithms, only. In Algorithm 1, the optimization
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changes to

p∗ = argmax
p∈P

~v(p)

where the maximization is written in bold letters because different interpretations
of max may be used. Accordingly, Step 2 in Algorithm 2 changes to

sort p ∈ P : build S = (p1, . . . , pm) : ~v(pi) � ~v(pi+1) for all i = 1, . . . ,m

where � may be instantiated by different order relations.

There is a large body of literature in applied mathematics, operations research,
and decision theory on approaches to solve multi-criteria decision problems (Keeney
and Raiffa, 1976; Ehrgott, 2000; Triantaphyllou, 2000). The following two sections
present two general approaches, namely hierarchical decision-making and the trans-
formation of multi-attribute into single-attribute decision problems by a combined
value function. In both cases, preference information on the individual criteria is
incorporated in decision-making with the result that a single solution is returned.

A third direction is known as multi-objective optimization, which does not require a
trade-off between the criteria, here called objectives, during optimization. Instead,
all objectives are simultaneously optimized. As a result, the subset of all of non-
dominated solutions is returned. This set is known as the Pareto optimal set and
sometimes also referred to as the Pareto-frontier in the space of all solutions. To
obtain a single solution, the user has to pick one solution according to her particular
preferences. In the AL scenario, there is, however, no such user in the loop that could
make such a decision in each AL iteration. The only user in the loop is the annotator,
who has generally no knowledge about the AL procedure and trade-offs between the
criteria. Instead, preference information (either static or a dynamically changing
over time) must be given to select the first- or |B|-best examples per iteration,
making multi-objective optimization inadequate for the AL scenario.

8.2 Hierarchical Decision-Making

In a straightforward approach to solve MADM problems, the attribute values of
the alternatives are compared lexicographically. The order relation �, which we
deliberately left unspecified before, is now given by the lexicographic order ≥lex:

~v(p′) ≥lex ~v(p′′) :⇔ vi(p′) ≥ vi(p′′) for all i = 1, . . . , q . (8.1)
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The result is a hierarchical sampling process where the examples are ranked by the
attribute-value functions, going through the single attributes in order of descending
importance until the ranking is unambiguous.

According to the general AL framework, Step 2 is then

p∗ = arglexmax
p∈P

~v(p)

and for batch-mode AL as in Algorithm 2, Step 2 changes to

sortP : (P,≥lex)

A prerequisite for this approach is a given ranking among the criteria. Whether
such a ranking exists in practise where there are conflicting criteria is, however,
questionable. Another problem arises because attribute values of different criteria
cannot compensate for each other. Assume criterion a1 is considered more important
than criterion a2. In consequence, even an extremely good value va2(p) cannot
compensate for a slightly worse value va1(p).

A special form of hierarchical decision-making (HDM) is the subset-retaining variant.
As in the general HDM scenario, examples are ranked by subsequent evaluation of
the criteria. For each hierarchy level, a subset of the examples is built after ranking
according to some threshold. Examples not in this subset are omitted from further
evaluation. Retained examples are evaluated anew by the next criterion.

8.3 Multi-Attribute-Value Functions

When trade-offs between all criteria are clearly defined, a common approach to
combine the attribute-value functions va(ad) is based on the definition of a multi-
attribute-value (MAV) function φ

(
~v(p)). Using a MAV, the multi-attribute decision

problem is eventually reduced to a single-attribute decision problem, optimizing the
MAV function value.

As in the HDM approach, the MAV approach also results in a single best solution
or a distinct ranking of all alternatives. Depending on the underlying specification
of the original MADM problem and the particular MAV function used, not all non-
dominated solutions of the Pareto-frontier may be found. This is the case when the
Pareto-frontier is non-convex or has non-convex areas (Ehrgott, 2000).

Aggregation of several attributes to one conjoint measure, as done by the MAV
functions, is a common technique applied in a wide range of fields. While method-
ologically often highly similar, different terminology is used for MAV functions, in-
cluding most prominently “scalarization” in the context of multivariate optimization
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(Ehrgott, 2000), “classifier decision combination” in the context of multi classifier
systems where predicted labels or confidence values from different classifiers need to
be combined into a single outcome (Ho et al., 1994), and “data fusion” or “multiple
evidence combination” in the context of information retrieval where results from
different query formulations or several ranking criteria need to be combined into a
single ordered list (Hsu and Taksa, 2005). In what follows, some MAVs that seem
suitable for use in the MCAL scenario are discussed.

Ordinal and Cardinal Value Functions It is often a challenging problem to define
a function va(ad). It may be that the value of an attribute can only be measured on
an ordinal scale. From an ordinal value function one can only derive an ordered set
of alternatives. Most MAVs require cardinal value functions. As a solution, some
MAVs originally defined for cardinal value functions can be applied on ranks, too.

Rank-specific Methods Borda count, originally developed in the context of elec-
toral systems, is a popular method used for classifier decision combination. In our
MADM scenario, the Borda count b

(
va(ap)

)
of an example p for criterion a is the

number of other examples p′ ∈ P, p 6= p′ ranked below p according to the attribute
value of this criterion. The MAV function based on Borda count is given by

φBorda

(
~v(p)

)
=

q∑
a=1

b
(
va(ap)

)
. (8.2)

Borda count only requires ordinal value functions making it attractive for scenarios
where a cardinal value function is hard or impossible to specify.

Maximum over Attribute Values The simple maximum method is defined as

φMAX

(
~v(p)

)
= max

a=1,...,q

(
va(ap)

)
(8.3)

This MAV may be reasonable in scenarios where the criteria do not conflict but
reinforce each other. While φMAX is defined on cardinal value functions, it can be
also used with ordinal value functions translating values into ranks.

Weighted Sum Method The weighted sum MAV is based on a linear combination
and given by

φWSM

(
~v(p)

)
=

q∑
a=1

γava(ap) (8.4)
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where
∑q

a=1 γa = 1 and γa are the weights of the individual criteria. For φWSM it is
important that the single value functions are well-defined. As for φMAX, application
on ordinal value functions is possible when values are transferred to ranks. It should
be noted that WSM cannot find alternatives that are within non-convex regions of
the Pareto-frontier.

Weighted Product Method A MAV based on a non-linear combination is given
by the weighted product method

φWPM

(
~v(p)

)
=

q∏
a=1

va(ap)γa (8.5)

where γa are the weights of the single criteria.

8.4 Previous Work on Multi-Criteria AL

This section aims to give a brief overview of the approaches applied. It should be
noted, that AL approaches where generally different criteria are fused in a low-level
manner into a monolithic criterion – as discussed in Chapter 3 for some approaches
to utility functions incorporating both informativeness and representativeness – are
not considered to be a case of MCAL. Instead, we consider a problem to be a case
of MCAL when separate criteria explicitly need to be considered during selection.

Preservation of representativeness of selected examples, as well as diversity in batch-
mode AL, gave rise to a number of MCAL approaches. The incorporation of diversity
in the selective sampling process was first proposed by Brinker (2003) for SVMs.
In this work, diversity is calculated by the angles between the hyperplane of the
previous AL iteration and the hyperplane resulting from the new training data.
Combination with the utility score is based on φWSM.

In Kim et al. (2006), an example’s diversity is estimated by its maximum similarity
to all other unlabeled examples. The entropy-based utility function is applied in an
US scenario. Finally, the φWSM is applied to obtain an overall attribute value per
example. It is here called maximal margin relevance as the similarity (the negated
divergence) is subtracted from the utility score similar to the net-benefit method.
The weights γa were found empirically and set so that the utility receives a very
high impact. Kim et al. (2006) tested their method on biomedical NER; they report
slightly improved sampling efficiency with their MCAL approach.

McCallum and Nigam (1998) combined utility (estimated by the Kullback-Leibler
divergence to the mean) and representativeness (estimated by density). They applied
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φWPM where both criteria obtained equal weights. In the same spirit, representa-
tiveness based on the density of an example was also proposed by Tang et al. (2001)
in the context of natural language parsing. The density is based on the average
distance of an example to all other unlabeled examples. Both criteria are combined
by φWPM. Moreover, Zhu et al. (2008c) and Settles and Craven (2008) proposed the
same procedure in the context of other application scenarios.

Symons et al. (2006) as well as Shen et al. (2004) consider informativeness, represen-
tativeness, and diversity in a MCAL scenario. In Symons et al. (2006), informative-
ness and representativeness, quantified by similarity to other unlabeled examples,
are combined by φWPM. Weights γc were again found empirically. Examples sorted
by the combined value are reviewed top-down and greedily added to the batch if
they respect constraints defined over the diversity of the batch. This method can
be considered to be a case of subset-retaining HDM, where the secondary criterion
comes with specific constraints. Their evaluation on an NER scenario showed a clear
improvement over multi-criteria AL based only on informativeness.

Similarly, Shen et al. (2004) incorporated the same three criteria. Two combination
strategies were presented: Firstly, they applied subset-retaining HDM where a subset
of examples was selected according to their informativeness score. This subset was
clustered and the centroids of the clusters were selected. The cluster centroids were
considered most representative and a selection from different clusters leads to a
diverse batch. Their second combination strategy is equivalent to the one proposed
by Symons et al. (2006). According to their experiments on NER the second strategy
performed better.

Few works have studied additional criteria for MCAL, other than representativeness
and diversity. For parsing, Becker and Osborne (2005) presented two different utility
criteria for AL which are combined using the MAX method. The first criterion is
defined as the US-based tree entropy criterion and the second one is based on a
parser-error score. For a sequence-selection scenario, Cheng et al. (2008) considered
as a secondary criterion the maximal annotation effort that can be spent per AL
iteration. This effort per example, which is a sentence as in our NER-specific AL
framework, is measured by its length in terms of tokens. Now, MCAL is formulated
as a constrained optimization problem with the effort as an inequality constraint and
a utility score as the single objective. This can be reformulated as a constraint-based
version of HDM. Incorporation of annotation effort in terms of real costs has also
inspired approaches to MCAL. This issue is addressed in detail in Chapter 11.

This short literature review provides empirical evidence that our enumeration and
classification of approaches to MCAL is valid and useful – the methods applied to
MCAL before can be satisfactorily placed in this categorization. To the best of our
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knowledge, all published approaches to MCAL are based on one or the other of the
two approaches described: HDM or MAVs.

8.5 Summary

This chapter is meant as an introduction to part three of the thesis which addresses
the issue of multi-criteria AL. Multi-criteria AL becomes relevant, when other cri-
teria besides the utility of an example should be considered during AL selection.
We formally defined the concept of multi-criteria AL as a multi-attribute decision-
making problem and described two general methods (HDM vs. MAVs) and specific
instantiations of these to solve such problems.

The following three chapters are examples of multi-criteria AL: in Chapter 9, we
consider a scenario where the training set should be constituted with respect to
several learning problems simultaneously. Chapter 10 covers the issue of how to
address and circumvent class imbalance during AL data acquisition time. And
finally, in Chapter 11, both utility and costs should be considered during sampling.

148



Chapter 9

Selective Sampling for Multiple Learning
Problems

Default AL selects samples for only one single learning problem. In consequence,
when training data for several learning problems is to be created based on AL, each
learning problem requires a separate and independent AL-based annotation cycle.
Modern HLT systems consist of several components run in a pipelined manner, each
solving its own NLP task on the same underlying data. For example, a system
populating a biomedical fact database (Buyko et al., 2009) first does some syntactic
analysis including, amongst others, statistical parsing, and then turns to the seman-
tics, including NER and relation or event extraction. Given training data is needed
for all of the q tasks included and that this material is sampled by standard AL, we
would end up with q corpora which cannot be merged as they consist of different
examples annotated with respect to different learning problems.

The central question of this chapter is how a combined corpus annotated with respect
to several learning problems can be created using AL to select the examples. This
is a totally new field of AL and has not been discussed or proposed before. There
are two reasons why a combined corpus annotated for various tasks, could be of
immediate benefit. Firstly, annotators working on similar annotation tasks – e.g.,
one task being annotation of named entities and another task the annotation of
relations between these entities – might exploit annotation data from one task for
the benefit of the other. If for each task a separate corpus is sampled by means of
AL, annotators will definitely lack synergy effects and, therefore, annotation will be
more laborious and is likely to suffer in terms of quality and accuracy.

Second, in many larger NLP applications classifiers are data-dependent on each
other. A classifier might require features as input which are based on the output
of preceding classifier. As a consequence, training such a classifier which takes into
account several annotation tasks will best be performed on a rich corpus annotated
with respect to all input-relevant tasks.
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In response to Requirement 6, we here introduce multi-task AL as a new field of AL-
related research and propose two straightforward approaches to it. Multi-task AL
can be considered as a case of MCAL with all tasks involved being the individual cri-
teria for which examples should be efficiently selected. We evaluate our approaches
to multi-task AL in the context of a scenario including NER and syntactic parsing
as two rather dissimilar learning problems.

We have recently published most of this work in Reichart et al. (2008).

9.1 Related Work

Multi-task AL has not been addressed as such in literature before. It is, however,
based on methods described in Chapter 8. Moreover, multi-task AL is also related
to AL sample reusability, discussed in Chapter 7, in the sense that in both scenarios
samples are not (directly) drawn with respect to the final consumer.

Recent work on joint inference (McCallum, 2009; Finkel and Manning, 2009) gives
evidence that single learning problems support each other. This motivates the need
for corpora annotated with respect to a multitude of learning problems.

Finally, multi-task AL should not be confused with multi-task learning.1

9.2 Problem Definition

We call a scenario where joint training material for multiple learning problems should
be provided a multi-task annotation scenario. As a primary characteristic, joint
training material contains annotations for all learning problems of the multi-task
annotation scenario. Multi-task AL is defined as a scenario where joint training
material has to be created for q learning problems Zj ∈ Z based on AL selection.

In contrast to multi-task AL, standard AL selecting samples with respect to a single
learning problem Zj , only. We thus also call it single-task AL. In accordance with
Chapter 7, in a multi-task annotation scenario, single-task AL constitutes a self-
selection scenario for the learning problem focused on during selection. For all
other learning problems not considered during selection, single-task AL constitutes
a foreign-selection scenario. The goal of multi-task AL is to achieve a sampling

1Multi-task learning is an approach to inductive transfer that improves generalization by using
the domain information contained in the training signals of related tasks as an inductive bias.
It does this by learning problems in parallel while using a shared representation; what is learned
for each task can help other tasks to be learned better (Caruana, 1997).
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efficiency better than that of random sampling and any foreign-selection for each
learning problem in a multi-task annotation scenario.

Multi-task AL can be considered to be a case of MCAL. The criteria to be considered
are the q different learning problems which all come together with their respective,
single-task AL approaches. Each such AL approach provides utility scores uZj (p) for
each unlabeled example p under the perspective of the particular learning problem
Zj . The objective of multi-task AL is to select a set B containing examples that
constitute the best compromise of learning problem-specific utility scores uZj (p).

For the multi-task AL scenario, we thus have a vector ~v(p) =
(
vZ1(p), . . . , vZq(p)

)
with attribute-value functions vZj (p). Each such function depends on the utility
function of the learning problem-specific AL approach. In the simplest scenario,
this is vZj (p) = uZj (p). This simple equation is, however, unlikely to be appropriate
because utility scores of specific learning problems are usually not compatible.

Multi-task AL can be difficult when the learning problems under scrutiny are highly
dissimilar. As with all MCAL problems, the challenge is to find those examples
which on average exhibit high utility values for all learning problems involved. When
the learning problems involved tend to produce opposite rankings of the examples
according to their utility scores, it is rather unlikely that examples will be found
which do serve the requirements for these learning problems well. In such cases,
random sampling is still presumably the best option.

9.3 Approaches to Multi-Task Active Learning

In the following sections, two straightforward approaches to multi-task AL are pro-
posed. The motivation for these approaches is to enable experimentation with simple
instantiations of multi-task AL and to test whether the overall sampling efficiency
in a multi-task annotation scenario can be improved by multi-task AL.

9.3.1 Alternating Task-Specific Selection

The alternating selection approach incorporates the utility assessment of several
learning problem-specific AL approaches by alternating the task to select for. Thus,
each AL iteration constitutes a foreign-selection scenario for q − 1 learning prob-
lems. According to the importance of a learning problem Zj , AL selection for this
specific problem is performed in a predefined number of consecutive rounds. This
enables weighting of the different learning problems by allowing them to guide the
AL selection in more or fewer AL iterations.
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This simple approach to multi-task AL is a straightforward compromise between the
different per-task AL approaches. It requires minimal modification of the general
framework for greedy AL (Algorithm 1 on page 32). Basically, Step 2 changes to

p∗ = argmax
p∈P

∑
Zj∈Z

1ZjvZj (p) (9.1)

where 1Zj = {0, 1} is an indicator function showing whether selection is done with
respect to learning problem Zj in this AL iteration. Only one of the q indicator
functions 1Zj can be activated per iteration, so that

∑q
j=1 1Zj = 1.

While the alternating selection approach constitutes a single-task AL scenario in
each single AL iteration, in the long run it does indeed constitute an approach to
multi-task AL. A drawback of this simple approach to multi-task AL is that it does
not aim to find examples that are a good compromise for all learning problems
involved. In settings where examples that are optimal for one learning problem are
not only useless but even adversarial for the learner of another problem, multi-task
AL based on alternating selection is thus likely to fail.

9.3.2 Rank Combination

The rank combination approach is more directly based on the idea of combining the
attribute-value functions vZj (p) of all learning problems Zj . This is done based on a
MAV function as proposed in Section 8.3 using the weighted sum method φWSM.

Due to incompatibility, the learning problem-specific utility scores uZj (p) are trans-
lated into ranks so that the single-attribute-value functions are given by vZj (p) =
r
(
u(p)

)
. The ranking function r : R → N assigns higher ranks for higher values of

u(p) so that u(pi) > u(pj)⇔ R(u(pi)) > R(u(pj)). Step 2 of Algorithm 1 on page 32
now changes to:

p∗ = argmax
p∈P

∑
Zj∈Z

αZjvZj (p) (9.2)

where αZj specifies the weight of the different learning problems. In the case of tied
ranks, we normalize all learning problem-specific ranks to the same range. Depend-
ing on the actual utility function applied, tied ranks may occur frequently. This is,
for example, the case for us̄VE in combination with small committee sizes.

The rank combination approach favors examples which on average are good for all
learning algorithms. Examples that are highly useful for one learning problem but
rather irrelevant for another problem will not be selected.
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corpus pool set test set entity types

Wsj 10,000 1,921 person, location, organization
Brown 10,000 2,424

Table 9.1: Overview of simulation corpora used in this chapter. Size of the pool and the test
set is given in number of sentences.

9.4 Empirical Assessment

For our experiments on multi-task AL, we considered a two-task scenario that in-
cludes NER and syntactic parsing. The tasks are highly dissimilar, thus increasing
the potential value of multi-task AL. Moreover, both tasks are subject to intensive
research by the NLP community.

9.4.1 Experimental Settings

Corpora For our experiments, we applied two corpora containing both entity and
constituent parse annotation.2 The Wsj corpus represents the newspaper genre
and is based on the Wall Street Journal part of the Penn Treebank (Marcus et al.,
1993); the first 10,000 sentences of section 2-21 were used as pool P, and the 1,921
sentences of section 00 as test set. The Brown corpus is a mixed-genre corpus and
is also based on the respective part of the Penn Treebank. We created a sample
consisting of 8 of any 10 consecutive sentences in the corpus. This was done as
Brown contains text from various English text genres, and we did it to create a
representative sample of the corpus domains. We finally selected the first 10,000
sentences from this sample as pool set. The 9th of every package 10 consecutive
sentences went into the evaluation set which consists of 2,424 sentences. Originally,
the Penn Treebank does not contain entity annotations. Thus, we enriched the Wsj
and the Brown corpus with entity annotations (person, location, and organization)
as obtained by our CRF-based NE tagger trained on the CoNLL corpus. Table 9.1
summarizes statistics on these corpora.

Active Learning The approaches to multi-task AL described in the previous section
are independent of the actual learning algorithm. This is because the approaches,
in the manner of MCAL, are a combination of the learning problem-specific utility
functions.

2In syntactic analysis, a constituent is a single or a sequence of words which function as an atomic
unit in a hierarchical structure such as a syntactic parse tree (Jurafsky and Martin, 2000).
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AL for the parsing task is in line with the QbC-based approach described in Reichart
and Rappoport (2007). In this work, a committee of 10 parsers was employed and the
parser applied is a variant of the Collins parser (Bickel, 2005). The utility function
is based on the F-complement uFC (cf. Equation 3.13 on page 39) which calculates
the mutual F-score between all committee members. For parsing, the F-score of a
sentence is calculated on the recall and precision values of the constituents in the
sentence. For consistency, AL for the NER task was also run with QbC-based AL.
The us̄VE utility function as described in Chapter 4 was applied since it performed
best amongst the utility functions for QbC-based AL.

As in previous experiments, complete sentences were selected. Sentence-level selec-
tion granularity is the de-facto standard for AL applied to syntactic parsing. In
contrast to the majority of the experiments performed in this thesis, the batch size
|B| was here much higher with 100 examples selected in each AL iteration. Since
parser training is extremely complex, AL with small batches would have prohibitively
slowed down our experiments. Moreover, AL is started from a random seed set of
200 sentences because parsers need a reasonable amount of information to be able
to learn anything useful. In contrast, if the seed set chosen was too small, early
AL iterations could exhibit sampling efficiency well below random sampling for the
parsing task. Within a corpus we used the same seed set for all experiments. As for
alternating selection, the selection leadership changes in each iteration. Similarly,
for rank combination equal weights αZj = 1

|Z| are assumed for all learning problems
Zj , for simplicity.

9.4.2 Foreign-Selection

The core assumption made in this chapter is that such AL foreign-selection performs
poorly in a multi-task AL scenario. This intuition is demonstrated in Figure 9.1
where random and AL foreign-selection sampling efficiency for both final consumers
on the Wsj corpus are shown. For both the Ner and the Parse consumer, the
respective AL foreign-selection does indeed exhibit poor sampling efficiency equiva-
lent to or even inferior to that of random sampling. Thus, examples that are useful
for single-task AL for NER are on average less useful for the Parse consumer than
random examples.

9.4.3 Explicit Selection for Multiple Learning Problems

This section compares the two approaches to multi-task AL, i.e., alternating selection
(Alter-al) and rank combination (Ranks-al), with random sampling (RD) and
single-task AL for both tasks (Ner-al and Parse-al). Figure 9.2 shows the learning
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Figure 9.1: Learning curves of foreign- and random selection for Ner and Parse consumer
on the Wsj corpus.

curves for these five sampling strategies evaluated both by the Ner and the Parse
consumer. For the Ner consumer, the F-score is reported as a function on the
number of tokens annotated. In contrast, for the Parse consumer, the number of
constituents is reported as a more appropriate cost function.

As expected, self-selection always performs best. As an example, consider the Parse
consumer on the Wsj corpus. Self-selection (Parse-al) clearly outperforms ran-
dom sampling while foreign-selection (Ner-al) is considerably inferior to random
sampling so that for the Parse consumer one should refrain from sampling data
with Ner-al.

Both multi-task AL approaches, however, clearly outperform random selection and
constitute a real improvement over foreign-selection for both consumers. For the
Parse consumer, both Alter-al and Ranks-al lead to sampling efficiency similar
to self-selection. For the Ner consumer, although the improvement is less pro-
nounced, the two approaches to multi-task AL still exhibit much better sampling
efficiency than foreign- or random selection.

Except for the Ner consumer on the Brown corpus, sampling efficiency of both
multi-task AL approaches is very similar. This is a rather unexpected outcome as we
assumed that the more sophisticated rank combination approach would outperform
the simpler alternating selection protocol. Although there is a slight tendency for
Ranks-al to be better than Alter-al, the incorporation of both single-task AL
approaches into a combined AL approach appears to be the most important factor.
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Figure 9.2: Learning curves for the Ner and the Parse consumer.
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Wsj corpus

consumer
selector Ner Parse

∑
Ner-al 8.12 −5.36 2.76
Parse-al 0.231 1.94 2.17

Ranks-al 5.79 1.38 7.17
Alter-al 4.27 −1.23 3.04

Brown corpus

consumer
selector Ner Parse

∑
Ner-al 8.69 −2.45 6.24
Parse-al 2.35 4.52 6.87

Ranks-al 9.75 2.99 12.74
Alter-al 5.65 1.53 7.18

Table 9.2: RAI scores for Ner and Parse consumer with different selectors and different
approaches to multi-task AL. Last column is the overall RAI score, i.e., the unweighted
sum over the RAI scores of the Ner and the Parse consumer.

9.4.4 Overall Evaluation

The overall evaluation of a multi-task annotation scenario is delicate and would re-
quire a commensurable cost metric for all learning problems involved. Moreover,
preference information about the improvement of sampling efficiency for the single
learning problems should be given. In our example, a 1 percentage point improve-
ment of the Parse consumer might count more than the same improvement of the
Ner consumer – or vice versa, depending on the particular application scenario.

To provide an overall evaluation of multi-task AL in the absence of both true an-
notation time as a commensurable cost metric and such preference information, the
following simplifying assumptions are made: the only commensurable cost metric
available for these experiments is the number of sentences selected, which is equal
to the AL iterations. Moreover, we assume that improvement by both consumers is
considered equally valuable.

Given these assumptions, Table 9.2 shows the overall RAI scores for the AL selec-
tion strategies after 10 AL iterations.3 RAI scores indicate poor foreign-selection
performance which is consistent to our observations in the previous section. How-
ever, Ranks-al performs better than Alter-al now that we evaluate against the
number of sentences annotated. Overall, both approaches to multi-task AL still
clearly outperform a foreign-selection scenario with Ranks-al achieving the high-
est improvements in sampling efficiency. On Wsj, for example, foreign-selection
with Ner-al results in a RAI-score of 2.76, which is more than doubled to 7.17 by
Ranks-al.

3RAI scores are calculated in the interval [300; 1300]. This equals the sentences selected in the first
10 AL iterations (starting from a seed set of 200 sentences, 100 sentences selected in each AL
iteration). It should be recalled that RAI scores are calculated relative to a random baseline; in
consequence, RAI scores for RD are omitted.
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9.5 Summary and Conclusions

This chapter has described and defined the problem of multi-task AL. In the multi-
task AL paradigm, examples are actively selected with respect to multiple learning
problems instead of a single one, as it is usually done in the context of AL. To the
best of our knowledge, multi-task AL has so far not been recognized or described as
a relevant problem in literature.4 We proposed two approaches to multi-task AL,
i.e., alternating selection and rank combination, and tested these approaches in a
two-task scenario that includes NER and syntactic parsing.

In a multi-task annotation scenario, foreign-selection is likely to result in poor overall
sampling efficiency. While highly useful for the learner of the problem involved
in AL selection, the same examples may on average be less useful than randomly
drawn ones. This chapter has gathered empirical evidence for this assumption in
our two-task scenario. Moreover, our experiments provide promising evidence that
the simultaneous consideration of all relevant learners during AL selection can be
a much better choice than foreign-selection in multi-task annotation scenario. This
proved true even for alternating selection, a rather simple approach to multi-task
AL.

Future investigations will have to focus on the question of whether the positive results
observed in our orthogonal (i.e., highly dissimilar) two-task scenario will also hold
for a more realistic (and maybe more complex) multi-task scenario where learning
problems are more similar and more than two learning problems are involved.

Our attempt to provide an overall evaluation showed that the quantification of sam-
pling efficiency in a multi-task AL scenario is not straightforward and requires ad-
ditional scenario-specific knowledge. Firstly, either exchange rates between the an-
notation cost metrics or, even better, commensurable costs, are needed. Secondly,
information is required on the application-specific benefits of performance improve-
ment per learning problem. Exchange rates on costs and preference information
usually are inherently tied to the specific task, domain, and application.

Future work in this context would require studies on how to quantify the efforts
needed for the annotation of a textual unit of choice (e.g., tokens, sentences, con-
stituents) with respect to different annotation. The next chapter, although it is not
in the context of a multi-task annotation scenario but rather standard, single-task
AL, discusses further issues of cost-sensitive evaluation and realization of AL.

4Our joint work on multi-task AL with Roi Reichart and Ari Rappoport from the Hebrew Uni-
versity is published in Reichart et al. (2008).
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Chapter 10

Reducing Class Imbalance during Active
Learning Sampling

In many NLP tasks, the classes to be dealt with often are heavily imbalanced in the
underlying data set. This holds for example, for NER, where imbalance between the
different entity classes occurs especially when semantically general classes (such as
person names) are split into more fine-grained and specific ones (actors, politicians,
sportsmen, etc.). Classifiers trained on such skewed data tend to exhibit poor per-
formance for low-frequency classes. Since rare information carries the potential to be
particularly useful and interesting, performance should to a certain extent be tuned
more in favor of minority classes, at the risk of penalizing the overall outcome.

Class imbalance and the resulting effects on learning classifiers from skewed data
have been intensively studied in recent years. Common ways to cope with skewed
data include different re-sampling strategies and cost-sensitive learning (Japkowicz,
2000; Chawla et al., 2002; Elkan, 2001). It has been shown that AL itself can also be
used to leverage class imbalance: The class imbalance ratio of data points close to
the decision boundaries is typically lower than the imbalance ratio in the complete
data set (Ertekin et al., 2007) so that AL automatically creates data with more
balanced classes.

The focus of this chapter is whether this natural characteristic of AL can be intensi-
fied to obtain even more balanced data sets (Requirement 7). Thus, instead of first
acquiring possibly skewed data in a possibly expensive acquisition process and then,
once the data is completely annotated and available, applying typical approaches to
overcome class imbalance, we consider the problem of reducing class imbalance right
upfront during the AL-driven data acquisition process. The ultimate goal of this
research is to find approaches to compiling more balanced data sets upfront during
annotation time when AL is used as a strategy to acquire training material.

The general idea is to guide AL, so as to focus more on the minority class. In
consequence, examples for the minority class with good learning utility might be
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preferred over examples for the majority with extremely high learning utility. Con-
sidering class imbalance during AL sampling can be realized as a multi-criteria AL
(MCAL) approach with the main criterion being learning utility of an example and
the second criterion the overall class imbalance ratio among the labeled data.

This chapter proposes and compares four approaches to reducing the class imbalance
upfront during AL-driven data acquisition. The first two approaches are not realized
by MCAL. However, the third and fourth are formulated as a MCAL problem. While
the third approach is based on a form of hierarchical decision making, the fourth one
is completely different from the MCAL approaches described in Chapter 8 because
it incorporates the second criterion in a low-level manner into the first criterion.

Most of this work has been previously published in Tomanek and Hahn (2009a).

10.1 Related Work

There is a vast body of literature on the class imbalance problem in the ML com-
munity. Common ways for coping with skewed data include re-sampling strategies
such as under-and over-sampling or generative approaches (Japkowicz, 2000; Chawla
et al., 2002), and cost-sensitive learning (Elkan, 2001). AL has already shown to be
capable of reducing class imbalance because it selects data points near the decision
boundaries where data points are more balanced (Ertekin et al., 2007). As a result,
AL provides the learner with a sub-sample of the available data. In this scenario,
AL does not have a human annotator in the loop as the data is already labeled.

Class imbalance is typically addressed in scenarios where (large) numbers of fully
labeled examples are readily available. Our scenario is different in that we start
from unlabeled data and use AL to select the examples to be labeled by a human
annotator. In our scenario, class imbalance should be avoided upfront during the
process of selecting and annotating training data.

There is little work on the combination of AL and remedies to class imbalance at
annotation time. Zhu and Hovy (2007) combined AL and re-sampling strategies,
including under- and over-sampling, for word sense disambiguation. In each AL
iteration, examples were selected on the basis of a default AL scheme. Accordingly,
either examples of the majority class were discarded, or examples of the minority
class were replicated. While the authors reported that under-sampling was inefficient
because some examples were directly discarded after they had been manually labeled
beforehand, positive evidence was found for over-sampling combined with AL. While
Zhu and Hovy only considered re-sampling techniques, we study different approaches
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to address class imbalance during the AL selection process and formulate it as a
problem of MCAL.

Recently, Bloodgood and Shanker (2009b) proposed a method to address class imbal-
ance by cost-weighted SVMs during the AL process. Their method is very similar
to our fourth approach where the utility function is modified as to additionally
incorporate information on the class imbalance. Bloodgood and Shanker derived
class-specific cost factors from the class imbalance ratio observed on a small random
data sample. A limitation of their approach is that it relies on a cost-sensitive learn-
ing algorithm. In contrast, our approach is independent of the respective learning
algorithm and can thus be applied more flexibly.

10.2 Approaches

For simplicity, our approaches to reducing class imbalance during AL were developed
and tested in the context of a two-class scenario. The less frequent class is called
minority class, the other one majority class. Transferred to the NER scenario,
we consider a scenario with two entity classes (the minority entity class and the
majority entity class), and an Outside class. Our interest lies in the distribution
of the entity classes in terms of class imbalance between these two classes, however,
not in the class imbalance including the Outside class. The Outside class is, of
course, still subject to annotation and classifier learning. The entity class ratio is
defined as the number of majority class entity mentions divided by the number of
minority class entity mentions.

In the NER-specific AL scenario, a sentence-level selection granularity is applied.
This selection granularity constitutes a more complex scenario because a sentence
consists of multiple units which require classification. Thus, unlike most class im-
balance studies where “pure” minority or majority class examples were considered,
sentences simultaneously contain instances of the minority and the majority class.

A first assumption as to how to address class imbalance during AL was that the
AL process might be positively affected by a seed set optimized so as to contain
a balanced ratio of minority and majority class instances. The basic idea of such
optimized seed sets is that the AL process would be permanently guided towards
the less frequent class by its early “announcement”. Such an announcement is not
given in the case of a randomly sampled seed set and because the seed set is likely
not to contain a single instance of the minority class.

As reported in Chapter 4 and (Tomanek et al., 2009), in another context we tested
how much AL is affected by different seed sets in the NER scenario. Due to the
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co-selection effect, unfavourable seed sets show little influence on the performance
of AL in the NER scenario with sentence-level selection granularity. Analogously,
in the NER-specific AL framework, balanced seed sets performed very well only in
very early iterations but then fell back to the performance of AL with randomly
drawn seed sets.

As the application of optimized seed sets alone is not a sustained method to reduce
class imbalance, four approaches are described which directly influence the sampling
process with the aim of focusing more on examples containing the minority class.

10.2.1 Modification of the Selector

To focus on specific classes during AL, the selector can be trained on labeled data
for these classes only. In consequence, the learning utility of an example is evalu-
ated only with respect to these classes. However, after selection, examples are still
annotated with respect to all classes. In our two-class scenario this means that only
the minority class is considered during selection itself, but the selected examples can
also be assigned a majority class label by the annotator.

We call this approach minority class-focused AL. While one would expect it to
produce good results for the minority class, high penalties are likely for the majority
class. In the NER scenario with sequence-selection, however, sentences containing
minority class entity mentions in many cases also contain majority class mentions
due to the co-selection effect. As a result, training material acquired by minority
class-focused AL may contain information on the majority class as well. Whether
such information is sufficient to learn a consumer with good performance on the
majority class is evaluated in the next section.

10.2.2 Post-Processing of the Selection

Re-sampling strategies, including over- and under-sampling, are common practise
to tackling the class imbalance problem when passively learning from skewed data
sets (Provost, 2000). Both methods can also be applied in a straightforward manner
as a post-processing step to AL selection. After the manual annotation step in
each AL iteration, either examples for the minority class are over-sampled (e.g., by
simple replication), or examples of the majority class are discarded to achieve a more
balanced entity class ratio among the current selection.

Under-sampling appears to be disadvantageous when AL is applied in order to ac-
quire labeled training data: After having expended human labeling effort on the
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selected examples, some of these would be immediately discarded in the post-
processing step. Over-sampling, in contrast, is more favourable. It does not render
previous annotation effort superfluous and comes with no extra costs. For word
sense disambiguation, Zhu and Hovy (2007) showed that AL combined with over-
sampling as a post-processing step applied in each AL iteration can considerably
increase performance.

Due to the sampling granularity in the NER scenario, we do the over-sampling on
the sentence level. All sentences selected within one AL iteration which contain
at least one instance of the minority class are duplicated. This approach is called
over-sampling during AL. We deliberately refrained from the specification of a fixed
over-sampling ratio for the NER scenario. When sentences are considered as atomic
units and can only be replicated as a whole, such a ratio between the minority and
the majority class is almost impossible to realize.

Additional instances of the minority class are bought at the price of increasing the
number of majority class instances. Experiments show, however, that the class ratio
is shifted in favor of the minority class when sentences containing information on
the minority class are duplicated.

10.2.3 Hierarchical Selection

The NER-specific AL approach by default selects a set of |B| sentences with the
highest utility scores. In the presence of a highly skewed class distribution, this
set presumably contains only few instances of the minority class, if any. This fact
directly results in class imbalance in the training set and may also have a misleading
effect on further AL iterations reinforcing the tendency to favor sentences with
instances of the majority class.

As a means of addressing this problem with MCAL, we propose the hierarchical
consideration of the individual criteria during selection. Here, the first and most
important criterion is the learning utility of an example, and as a second criterion,
class distribution is considered. The objective of an AL iteration is thus changed to
selecting a batch set of |B| examples which have a high estimated training utility
accompanied by a possibly balanced class distribution of the batch set. This is
achieved by altering Step 3 of the NER-specific AL framework (Algorithm 2 on
page 55).

From the set of unlabeled examples P, which is sorted in descending order based on
the learning utility u(p), a candidate set S of the top-ranging |B| · s examples from
P is selected. In a greedy fashion, |B| examples are moved from S to B so that the
entity class ratio in B is maintained close to 1.
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We call this approach balanced-batch AL. Apparently, a completely balanced batch
cannot be attained in every AL iteration. The maximum achievable level of balance
depends on the size of the candidate set S and on the number of minority and major-
ity instances contained therein. An overly large candidate set leads to devaluation
of the learning utility as first criterion. However, when chosen too small, the second
criterion hardly comes into play.

10.2.4 Combined Metric

A disadvantage of balanced-batch AL is that it does not take into account the
learning utility scores of the examples within the candidate set S: Any example
within this set which optimizes the class ratio may be selected, irrespective of its
actual utility score. To explicitly consider learning utility, we propose to combine
the two criteria learning utility and the effect on class distribution into a single score
and select according to it. This can be categorized as an approach to MCAL based
on MAV functions.

However, in contrast to the generic MAV functions described in Chapter 8, we inter-
weave its utility and effect on class distribution on a low level dependent on the actual
utility function chosen. The Vote Entropy-based utility function uVE is well-suited
for combination with a criterion of class distribution. It should be remembered, that
the VE is described for QbC-based AL (Equation 3.12 on page 39). It estimates
the utility as the disagreement of the committee. Therefore, the distribution of the
classes predicted by the single committee members is considered.

The new MAV function φ
(
uVE′(p, C,~b)

)
is given by a modification of the VE so that

it incorporates a vector with class-specific boosting factors ~b = (b1, . . . , b|Y|), with
bi ≥ 1:

uVE′(p, C,~b) = −
|Y|∑
i=1

bi · V (yi, x)
|C| log

V (yi, x)
|C| (10.1)

Note, that uVE′ is formulated independently of the NER-specific scenario. For appli-
cation for sentence-level selection granularity, uVE′ scores of all tokens of a sentences
are aggregated by the mean-average as discussed in Chapter 4.

The votes on a specific class yi are given more importance by setting the class boost-
ing factor bi > 1. A value of bi = 1 does not affect the disagreement, while a higher
value of b for the minority class accounts for our intuition that an example where at
least one committee member assumed the minority class should be considered more
useful and thus result in a higher combined score. Moreover, the less certain the

164



10.3 Experiments

committee is about a particular class label (i.e., fewer committee members voting
for this class), the more this boosting factor affects the overall score of the example.
If all committee members agree in their prediction, the overall combined score is 0,
irrespective of the chosen boosting factor.

As default boosting factor bmin for the minority class in the NER scenario, we
choose the entity class ratio divided by the average number of tokens per minority
class entity mention. The normalization by entity length is reasonable, since the
boosting factor applies to the token level, while the entity class ratio is calculated
with reference to the entity mention level.

10.3 Experiments

This section reports on the empirical evaluation of the AL approaches to reducing
class imbalance. Experiments are performed in the context of the NER task where
imbalance between the different entity classes especially occurs for fine-grained cat-
egorizations. The four approaches, viz., minority class-focused AL (Al-minor),
balanced-batch AL (Al-bab), AL with boosted disagreement with the default boost-
ing factor (Al-bood), and over-sampling during AL (Al-over), are compared to
random sampling (RD) and the unmodified AL approach using the us̄VE utility func-
tion (Al-def).

10.3.1 Experimental Settings

Corpora For these experiments, we chose corpora different from the standard cor-
pora applied throughout this thesis. The reason is that those corpora do not exhibit
a large enough class imbalance. For the NER scenario, we found a high imbalance
ratio especially in the biomedical domain where entity classes are often more fine-
grained and class imbalance between entities occurs in a more pronounced way than
in the newspaper material.

We focus on scenarios with two entity classes only, namely one majority and one
minority entity class. Our first data set (Mal) is based on the annotations of the
PennBioIE corpus (Kulick et al., 2004). From the rich set of entity classes consid-
ered in the original PennBioIE corpus, we kept only two malignancy entity classes
for our experiments. The majority class is based on PennBioIE’s malignancy-type
annotations, the minority class combines all classes describing malignancy stages.

Our second data set (Tf) is based on the GeneReg corpus which is annotated
with genes involved in the regulation of gene expression (Hahn et al., 2008). Here,
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Mal Tf

sentences 11,164 4,629
tokens 277,053 139,600

Outside tokens 257,173 136,266
majority class tokens 18,962 3,152
minority class tokens 918 182

majority class entities 9,321 2,776
minority class entities 604 179

entity class ratio 15.43 15.51

Table 10.1: Characteristics of the simulation corpora.

all entity mentions except those labeled as transcription factor (majority class) and
transcription cofactor (minority class) were removed. Table 10.1 summarizes the
characteristics of both data sets. While the Mal corpus is much larger than Tf,
both sets have approximately the same entity class imbalance ratio of 15.5.

Active Learning Recall that in the context of the AL scenario, our interest lies in
the distribution of the entity classes in terms of class imbalance between these two
classes, but not on the class imbalance including the Outside class. The Outside
class is of course annotated, learned, and predicted by the selectors and consumers.
However, the entity class ratio is defined as the number of majority class entity
mentions divided by the number of minority class entity mentions.

Committee-based AL using the us̄VE utility function is applied except for Al-bood.
In each AL iteration n = 25 sentences are selected and AL is started with a randomly
drawn seed set of 25 sentences. Reported results are averages over 30 independent
runs. For each run, we randomly split the data set into a pool from which AL
selects and a gold standard for evaluation. On Mal, 90% of the sentences are used
as the AL pool and 10% for evaluation. Due to the smaller size of the Tf data set,
30% of the sentences were used for evaluation to obtain a reasonable coverage of
minority class entity mentions in the gold standard. The findings from Chapter 7
on the reusability of samples obtained from AL with a MaxEnt-based selector by a
CRF-based consumer are exploited here to speed up the experiments.

For Al-bab, s = 5 so that the the size of the candidate set S is set to 25 · 5 = 125.
Experimental validation showed this to be a good trade-off between both criteria.
For Al-bood, both the Outside class and the majority entity class are not boosted
so that bmaj = boutside = 1 and for the minority entity class the default boosting
factor is used.

166



10.3 Experiments

Macro vs. Micro F-Score In previous chapters, sampling efficiency of AL ap-
proaches in the NER scenario was evaluated in terms of the micro F-score. The
micro F-score is an average where each single class F-score is weighted proportion-
ally to the number of examples for this class in the gold standard. Thus, the micro
F-score is dominated by the classification performance on the high-frequency classes
and implicitly assumes these classes to be of higher importance. The macro F-score,
in contrast, shows how well a classifier performs across all classes, as it is calculated
as the unweighted average over the single class F-scores (cf. Section 2.3).

The following experiments are evaluated with the macro F-score because we assume
the minority and the majority class to be equally important.

10.3.2 Results

10.3.2.1 Re-balancing during Data Acquisition

To determine whether, and if so, to what extent the approaches presented are suit-
able for guiding the AL process towards the minority class in our NER scenario, we
analyzed the effect of the protocols with respect to the entity class ratio, the number
of minority and majority class entities in the labeled data, and performance in terms
of different F-scores. While the primary goal is to increase the macro F-score, we
also show the F-scores for both classes separately as a more detailed picture of the
effects of the alternative protocols.

Figure 10.1 shows the entity class ratio yielded by each protocol at different token
positions. The ratio for random sampling roughly corresponds to the data sets’
overall entity class ratio of 15.5. As already shown before in a different context
(Ertekin et al., 2007), Al-def also shifts the ratio in favor of the minority class to
values of about 11 on both data sets. While Al-bood achieves a very low ratio in
early AL iterations, the ratio increases in later iteration rounds. Only Al-minor
and Al-over maintain a low ratio over many AL rounds.

Figure 10.1 also depicts the absolute numbers of entity mentions of the minority
and majority class. Using Al-minor or Al-bood on the Mal corpus, most entity
mentions of the minority class have been found and annotated after 30,000 tokens.
As only few sentences containing minority class entity mentions remain in the unla-
beled remainder of the corpus, only a minor performance increase on this class can
be expected from that point onwards. At the time when Al-bood cannot find many
more sentences with minority class entities, the number of majority class entity men-
tions selected increases. The same pattern, although much more pronounced due to
the smaller size of the corpus, holds for the Tf data set where for Al-bood most
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Mal corpus

F-scores
AL strategy min. maj. macro

Al-def 44.80 6.27 18.13
Al-bab 55.58 5.69 21.05
Al-minor 72.33 −1.25 21.60
Al-over 45.48 4.89 17.39
Al-bood 72.32 1.11 23.15

Tf corpus

F-scores
AL strategy min. maj. macro

Al-def 182.50 22.46 56.14
Al-bab 179.40 21.40 54.67

Al-minor 59.33 1.15 14.31
Al-over 209.30 21.76 60.71
Al-bood 229.50 20.71 63.42

Table 10.2: RAI scores for the different AL strategies. Scores are calculated for the three
F-scores: minority class, majority class, and macro F-score.

entity mentions from the minority class have been found after 15,000 tokens.1 On
Mal, Al-over exceeds the number of minority class entities selected by Al-bood
after 30,000 tokens as for Al-bood the pool is then exhausted with respect to the
minority class entity mentions. On Tf, this happens in very early AL iterations.
While Al-over considerably increases the number of minority class entity mentions
on both data sets, it does not affect the number of majority class entity mentions.
Al-minor results in high numbers on minority class entities on Mal, comparable
with those of Al-bood; on Tf, however, this protocol performs even worse than
Al-def. Overall, we see that the different protocols have an effect on the number
of minority class entity mentions and, as a result, on the entity class ratio.

Figure 10.2 shows learning curves for the minority class, the majority class, and the
macro F-score and Table 10.2 shows the respective RAI scores. RAI scores on Mal
were calculated in the interval of [10, 000; 30, 000] tokens, while for Tf we chose the
interval of [5, 000; 20; 000] tokens. We deliberately limited the range covered by RAI
scores to that part of the AL process where not all minority class entity mentions
were not yet found.

On the Mal data set, Al-over does not perform considerably different from Al-
def in terms of minority class or macro F-score but causes slight deterioration of the
majority class F-score. Al-bab slightly increases the minority and macro F-score,
with minor losses on the majority class F-score. While both Al-bood and Al-
minor result in a steep increase of the minority class F-score, Al-bood performs
better than Al-minor in terms of the macro F-score. This is because Al-minor
harms the majority class F-score considerably so that it is almost as low as RD.

On the Tf corpus, until about 15,000 tokens Al-bood outperforms Al-over in
terms of minority class (and also slightly macro) F-score. After that point Al-over

1After splitting Tf into the AL pool and the gold set, only about 100-110 entity mentions of the
minority class remain in the pool.
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Figure 10.2: Learning curves of minority class, majority class, and macro F-score.170
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takes over. This can be explained by the phenomenon we have already observed in
Figure 10.1: Almost all of the minority class entity mentions of the AL pool have
been found and selected by Al-bood. Obviously, Al-over can and does outperform
the other protocols as it is less restricted by the small overall number of minority
class entity mentions. Al-bab does not have any relevant effect on the Tf data set,
its RAI score is even slightly below that of Al-def. Al-minor performs very poorly
here – worse than Al-def, even on the minority class F-score. We observed that a
randomly compiled seed set is quite disadvantageous here as it hardly contains any
minority class entity mentions. Thus, in early AL iterations, the binary classifiers
employed in the committee for Al-minor mostly predict the Outside class and thus
hardly disagree, so that Al-minor rather resembles a random selection mechanism
in early AL iterations until – by chance – some more sentences with minority class
entity mentions are selected. Only Al-minor has a relevant (negative) effect on the
majority class; all other protocols did not affect the majority class F-score.

In all our experiments, we applied Al-bood with the default boosting factor for
the minority class determined by the heuristic described in Section 10.2.4 so that
bmin = 10.15 for Mal, and bmin = 15.25 for Tf. Performance of Al-bood with
different values for bmin is discussed below in Section 10.3.2.4.

The RAI scores in Table 10.2 once again underline that the gains in sampling effi-
ciency for the minority class are much higher than the losses for the majority class.
Depending on the actual trade-off between model performance on the minority and
majority class, the overall assessment of the evaluated approaches might change.

10.3.2.2 Re-balancing after Data Acquisition

Instead of addressing class imbalance during data acquisition, one could also apply
Al-def to select the data to be annotated and once the data is available apply re-
sampling techniques to address class imbalance. To study whether in our scenario
re-sampling within the AL loop is more appropriate than re-sampling applied as a
post-processing step, additional experiments were performed.

We ran the selection by Al-def, then over-sampled during evaluation time in the
same manner as we did in Al-over, that means all sentences containing the mi-
nority class were duplicated at each evaluation position. A direct comparison of
over-sampling during AL selection (Al-over) and delayed over-sampling after AL
selection (Al+Over) reveals that on both data sets Al-over performs worse than
AL + Over (see RAI scores in Table 10.3). We conclude, that Al-over does not
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Mal corpus

F-scores
AL strategy min. maj. macro

Al-over 45.48 4.891 17.39
Al+Over 52.72 5.988 20.44

Tf corpus

F-scores
AL strategy min. maj. macro

Al-over 209.3 21.76 60.71
Al+Over 211.6 22.65 62.12

Table 10.3: RAI scores for over-sampling during (Al-over) and after (Al+Over) the AL
process. Scores are calculated for the three F-scores: minority class, majority class,
and macro F-score.

enforce a special “guidance” effect on the AL selection process and thus – if over-
sampling is applied at all – it is better to do so once the labeled data is available
and not during annotation time.

10.3.2.3 Re-balancing during and after Data Acquisition

Our first experiments showed that Al-bood outperforms Al-over on the Mal
corpus (cf. Table 10.2). However, to profit from both Al-bood’s ability to se-
lect sentences containing many minority class entities and from the fact that over-
sampling can help out when the overall number of minority class entities in a corpus
is extremely limited or even exhausted, we combine both protocols (Al-bood +
Over).

RAI scores comparing Al-bood, Al+Over, and the combination Al-bood+Over
are given in Table 10.4. Figure 10.3 shows respective learning curves of the macro
F-score. On both corpora, Al-bood+Over outperforms “pure” Al+Over as well
as “pure” Al-bood. The beneficial effects of the combination on the Mal corpus
come into play only in later AL iterations (20,000 to 40,000 tokens), whereas on
the Tf corpus, the combination improves the performance particularly on early to
medium AL iterations (up to 20,000 tokens). In later AL rounds the performance
of Al + Over is not exceeded.

With Al-bood+Over, the macro F-score improved on both corpora compared to
Al-def. On Mal, the macro F-score after 40,000 tokens was increased from 63.74
(Al-def) to 66.3 (Al-bood+Over) and in order to reach Al-def’s macro F-score
of 63.74, we need only approximately 25,000 tokens using Al-bood+Over, which
comes to a saving of over 40%. Similarly, on Tf we obtain a macro F-score of
83.7 instead of 81.4 and also save about 40% annotation effort to yield Al-def’s
performance.
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Figure 10.3: Learning curves for the combination of Al-bood and over-sampling.

10.3.2.4 Different Boosting Factors

Previously, we applied Al-bood with the default boosting factor for the minority
class determined by the heuristic described in Section 10.2.4. To study the effect of
a particular value for bmin on Al-bood, further experiments with different values
for bmin were run. At the same time, boutside and bmaj were kept at a value of 1.
Table 10.5 shows RAI scores for very low (bmin = 2) to extremely high (bmin = 50)
boosting factors. On both data sets, the boosting factor determined by the heuristic
did not result in the best performance. Instead, a lower factor of bmin = 8 would
have performed slightly better in terms of macro F-score. Furthermore, the actual
choice of bmin (as long as a minimum of bmin ≥ 4 is given) is not very relevant in
terms of macro F-score. Considering the minority class F-score, however, another
factor value than the one obtained by the simple heuristic really pays off.

10.3.3 Discussion

While improvements on the minority class F-score clearly come at the cost of di-
minished performance on the majority class, our experiments showed overall gains
in terms of an improved macro F-score using Al-bood in a two-entity-class setting.
Al-bood only works reasonably well when a sufficient number of examples is avail-
able for the minority class . As for Tf, Al-bood improves upon the minority class
F-score in early iterations, only. In real-world annotation settings, however, large
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Mal corpus

F-scores
AL strategy min. maj. macro

Al-over 52.72 5.988 20.44
Al-bood 72.32 1.11 23.15
Al-bood+Over 76.21 0.837 24.23

Tf corpus

F-scores
AL strategy min. maj. macro

Al-over 211.60 22.65 62.12
Al-bood 229.50 20.71 63.42
Al-bood+Over 248.70 20.74 67.33

Table 10.4: RAI scores for the combination of Al-bood and over-sampling after AL (Al-
bood+Over). Scores are calculated for the three F-scores: minority class, majority
class, and macro F-score.

numbers of unlabeled examples are typically available so that it is quite unlikely
that the AL pool could be exhausted with respect to one entity class. While both
Al-minor and Al-over only performed well on one data set, Al-bood was always
amongst the best-performing protocols.

Our experiments indicate that our heuristic to determine the boosting factor for the
minority class was a good start. However, more sophisticated ways to determine such
a factor are necessary to yield optimal results. A good boosting factor depends on
several influencing factors, including corpus-specific characteristics (average sentence
length, number of entities per sentence, number of tokens per entity, difficulty of
learning each class, whether sentences contain, on average, exclusively one entity
class, etc.), as well as application-specific considerations (misclassification costs and
acceptable trade-off between gains on the minority class and losses on the majority
class). In real-world annotation projects, the value of the boosting factor might also
change over time. If a severe class imbalance is ascertained after several AL rounds,
one might adjust the boosting factors accordingly.

10.4 Summary and Conclusions

In this chapter, several approaches to reducing class imbalance upfront during AL-
driven data acquisition were proposed and compared. Our experiments revealed that
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Mal corpus

F-scores
bmin min. maj. macro

1 (=Al-def) 44.80 6.27 18.13
2 54.91 5.80 20.95
4 66.67 4.83 23.91
8 71.70 2.92 24.16
10.15∗ 72.32 1.11 23.15
16 74.28 1.25 23.90
50 72.89 0.48 22.96

Tf corpus

F-scores
bmin min. maj. macro

2 (=Al-def) 182.50 22.46 56.14
2 211.30 22.47 61.56
4 227.90 21.13 63.28
8 237.10 20.65 64.57
15.25∗ 229.50 20.71 63.42
16 231.70 20.51 63.46
50 228.20 20.41 62.77

Table 10.5: RAI scores for Al-bood with different boosting factor values for the minority
class. Al-bood with bmin = 1 accords to Al-def. Boosting factors marked with
asterisk (∗) are obtained by the heuristic. Best macro F-score is highlighted.

class imbalance can indeed effectively be reduced, accompanied by an increase in the
performance of classifiers with respect to minority class and the preservation of good
overall performance in terms of the macro F-score. One of our approaches based on
the low-level incorporation of a boosting factor into the us̄VE utility function (Al-
bood), combined with over-sampling after the data acquisition process turned out
to be the best of several alternatives tested. While Al-bood has been formulated in
the context of the us̄VE utility function, it could also be applied to a non-committee
based approach as well as with other utility functions.

Given the Zipfian nature of natural language, class imbalance is a ubiquitous problem
for NLP and by no means limited to task of NER in the biomedical application
domain which we have deliberately chosen as our experimental framework. Future
work might study the application of Al-bood to other NLP tasks such as relation
extraction, a task usually subject to immense and adversarial class imbalance.2

2Relation extraction is usually formulated as a binary classification problem. The negative class
is usually highly overrepresented.
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Chapter 11

Cost-Sensitive Active Learning

Although it has been shown that AL can yield impressive reductions in annotation
effort, AL has not yet become an accepted annotation strategy. One reason might be
because annotation practitioners are in doubt about the true efficiency of AL. In the
previous chapters of this thesis, as well as in most works on AL, annotation effort is
estimated by simple cost measures such as the number of tokens being annotated.

For annotation practitioners, however, it is not the sheer corpus size (in terms of
number of sentences or other units) but instead the time actually needed to annotate
such a corpus that is the ultimate question of interest (Requirement 8). This chapter
studies AL in the context of real annotation effort. Section 11.2 describes a resource
containing both NE annotations and information on the annotation time required,
which was constructed to enable such studies. In Section 11.3, the approaches to
AL presented in Chapter 4 and 6 are evaluated against true annotation time on
this new resource. Finally, Section 11.4 reports on novel approaches to making AL
cost-sensitive.

11.1 Previous Work

Cost-sensitive AL (CSAL) is a relatively new field of research into AL. Several ap-
proaches to and consideration on CSAL have been published recently, many of them
in the context the of the Workshop on Cost-Sensitive Learning1 and the Workshop
on Active Learning for Natural Language Processing.2 It should be noted that in
this thesis, CSAL focuses on data acquisition costs that result from human label-
ing effort. In contrast, some works have also focused on misclassification costs and
making AL sensitive to them (Margineantu, 2005; Sheng and Ling, 2007).

1Held in conjunction with the Neural Information Processing Systems Conference 2008.
2Held in conjunction with the 2009 Conference of the North American Chapter of the Association

for Computational Linguistics and Human Language Technologies.

177



Chapter 11 Cost-Sensitive Active Learning

An early work on appropriate cost metrics for AL was published by Becker and
Osborne (2005). The authors examined whether AL, while decreasing the sampling
size, possibly increased annotation effort. In context of a real-world AL annota-
tion project, it is demonstrated that the actual sampling efficiency measure for an
AL approach depends on the cost metric being applied. In a companion paper,
Hachey et al. (2005) studied how sentences selected by AL affected the annotators’
performances both in terms of time needed and annotation accuracy, and came to
the conclusion that selectively sampled examples are, on average, more difficult to
annotate than randomly sampled ones.

This observation questions the widespread assumption that all examples exhibit
the same annotation effort. In a study of annotation costs in four real-world text
and image annotation tasks, Settles et al. (2008) collected empirical evidence for
high variability of annotation costs. Such insights constitute the motivation for
approaches to CSAL.

Only a few studies have been published on CSAL. Haertel et al. (2008b) and Settles
et al. (2008) proposed to make a standard AL approach cost-sensitive by normalizing
the utility score by annotation time. Donmez and Carbonell (2008) proposed an
approach to CSAL that they formulated as a constraint-based optimization problem:
instead of sampling a fixed number of examples in each iteration, a budget based on
available annotation cost was defined as a constraint. The goal was then to maximize
the utility of the selected examples under the budget constraint. In the same spirit
as the two previously mentioned works, Donmez and Carbonell also divided the
utility by the monetary costs.

Similarly, our procedure to aggregate utility scores, which were calculated on the
token-level into an overall utility score for a sequence (Equation 4.1 on page 57), also
constitutes a normalization of the utility by cost. In this scenario, cost is, however,
assumed to be the number of tokens per sentence in order to simplify matters.
Normalization of utility by cost has already been applied by Melville et al. (2005) in
the context of AL-based feature-value acquisition.3 Moreover, one of our proposed
approaches to CSAL is also based on this idea but generalizes it to make it more
applicable to arbitrary utility functions (Section 11.4 below).

Approaches to CSAL based on the net-benefit, which is defined as cost subtracted
from utility, were proposed by Vijayanarasimhan and Grauman (2009) for object
recognition in images and by Kapoor et al. (2007) for voice message classification.
The benefit, or utility, of an example is estimated by its potential to reduce the
model’s generalization error, i.e., the reduction of risk given that this example was

3AL-based feature-acquisition aims at improving a model’s performance by filling missing values
of the features in the labeled training data.
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available in the training set. Risk is assumed to be expressed in monetary units (for
example by a monetary misclassification cost matrix) so that the difference between
risk reduction and labeling cost is essentially the net-benefit per example.

Liu et al. (2008) presented an approach to AL for land-cover classification where la-
beling an example involved physically traveling to a location to determine the ground
truth in terms of soil conditions. In contrast to the previously mentioned papers,
Liu et al. assume annotation cost to be dependent on previous labeling actions.
In their specific scenario of land-cover classification, such dependencies arose from
traveling activities. CSAL with dependent labeling costs was tackled by combining
US-based AL with approaches to solving the traveling salesman problem.

Few attempts have been made recently to build estimators for annotation costs.
Ringger et al. (2008) trained a simple linear regression model based on sentence
length and the expected number of false predictions for part-of-speech annotation. A
more sophisticated model based on a larger number of features for different text and
image annotation tasks was presented by Settles et al. (2008). Most recently, Arora
et al. (2009) proposed a cost model for movie review annotation. The moderate
performance of the three cost models demonstrates that the features used can only
explain a small portion of the annotation costs.

In the absence of highly accurate cost models, simulation of CSAL requires infor-
mation about the true annotation cost. As the involvement of human annotators
in all CSAL experiments is far too costly, corpora extended with annotation time
information are an essential resource. Up until now, most experiments with CSAL
have either been run with simplistic cost models (Kapoor et al., 2007), synthetic
costs (Donmez and Carbonell, 2008), or on home-grown corpora of limited size with
coarse-grained time annotation measurements (Settles et al., 2008). To date, no gen-
erally approved corpora with time information are available. The corpus proposed in
the next section, addresses this shortcoming and extends the existing Muc7 corpus
with respect to annotation time measurements.

11.2 The Muc7T Corpus

This section reports on the re-annotation of selected types of NEs from the Muc7
corpus. The focus of this annotation endeavour is on recording the time needed
for the linguistic process of NE annotation. Annotation times taken on two basic
annotation units – sentences vs. complex noun phrases – are measured. The resulting
corpus, Muc7T , couples common NE annotation meta-data with a time stamp
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reflecting the time measured for the underlying decision making.4 As a reference
baseline for cost-sensitive annotation strategies, as well as for learning accurate cost
models, our major requirements for such a time annotated corpus are its size and
coherence. The annotation level for which cost information is available is also crucial
– document- or sentence-level data might be too coarse for some applications.

To meet the requirement for size and coherence, we decided on the Muc7 base an-
notations. Time stamps are added to two levels of annotation granularity: sentences
and complex noun phrases. The resulting corpus is a valuable resource enabling em-
pirically grounded studies of selective sampling techniques in the context of linguistic
annotation processes, such as the experiments performed in this chapter.

More details on the Muc7T corpus are described in Tomanek and Hahn (2009c) and
Tomanek and Hahn (2010).

11.2.1 Annotation Procedure

Our annotation initiative constitutes an extension of the NE annotations (Enamex)
of the Muc7 corpus (cf. Section 4.3.2) covering three types of NEs, viz. persons,
locations, and organizations. We instructed two human annotators, both advanced
students of linguistics with good English language skills, to re-annotate the Muc7
corpus for the Enamex subtask. To be as consistent as possible with the existing
Muc7 annotations, the annotators had to follow the original guidelines of the Muc7
NER task. For ease of re-annotation, we intentionally ignored temporal and number
expressions (Timex and Numex).

Muc7 covers three distinct document sets for the NER task. We used one of these
sets to train the annotators and to develop the annotation design, and another one for
our actual annotation initiative, which consists of 100 articles reporting on airplane
crashes. We split lengthy documents (27 out of 100) into halves to make them fit
the annotation screen without the need for scrolling. Furthermore, we excluded two
documents due to excessive length as they would have required overly many splits.
Our final corpus contains 3,113 sentences (76,900 tokens).

Time-stamped Enamex annotation of this corpus constitutes Muc7T , our extension
of Muc7. Annotation time measurements were made on two syntactically different
annotation units: (a) complete sentences and (b) complex noun phrases. The anno-
tation task was defined in such a way as to assign an entity type label to each token
of an annotation unit. The use of complex noun phrases (CNPs) as an alternative

4Such time stamps should not be confounded with the annotation of temporal expressions in
Muc7 or more advanced meta-data using TimeML, as used for the creation of the TimeBank
(Pustejovsky et al., 2003).
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annotation unit is motivated by the fact that in Muc7 the syntactic encoding of NE
mentions basically occurs through nominal phrases. CNPs were derived from the
sentences’ constituency structure obtained from a syntactic parser (Ratnaparkhi,
1999) to determine top-level noun phrases. To avoid overly long phrases, CNPs
dominating special syntactic structures, such as co-ordinations, appositions, or rel-
ative clauses, were split up at discriminative functional elements (e.g., a relative
pronoun) and these dominated elements were eliminated. An evaluation of the CNP
extractor on Enamex annotations in Muc7 showed that 98.95% of all entities were
completely covered by automatically identified CNPs. For the remaining 1.05%,
parsing errors were the most common source of incomplete coverage.5

While the annotation task itself was “officially” declared to yield only annotations
of NE mentions within the different annotation units, we were primarily interested
in the time needed for these annotations. For precise time measurements, so-called
annotation examples were shown to the annotators one at a time. An annotation
example consists of the chosen Muc7 document with one annotation unit (sentence
or CNP) selected and highlighted. Only the highlighted part of the document could
be annotated and the annotators were asked to read only as much of the context
surrounding the annotation unit as was necessary to make a proper annotation
decision. To present the annotation examples to annotators and allow for annotation
without extra time overhead for the “mechanical” assignment of entity types, the
annotation GUI is controlled by keyboard shortcuts. This minimizes annotation time
compared to mouse-controlled annotation, such that the measured time reflects only
the amount of time needed for taking an annotation decision.

In order to avoid learning effects on the part of annotators on originally consecutive
syntactic subunits, we randomly shuffled all annotation examples so that subsequent
annotation examples were not drawn from the same document. Hence, annotation
times were not biased by the order of appearance of the annotation examples. An-
notators were given blocks of either 500 CNP- or 100 sentence-level annotation
examples. They were asked to annotate each block in a single run under noise-free
conditions, without breaks and disruptions. They were also instructed not to an-
notate for excessively long stretches of time in order to avoid effects of tiredness
making time measurements unreliable.

We compared the annotation results of annotator A and B on 5 blocks of sentence-
level annotation examples created during training. Annotation performance was
measured in terms of a) Cohen’s kappa coefficient κ on the token level and b) the
F-score against Muc7 annotations. The annotators A and B achieved κA = 0.95

5The CNP extractor was developed as part of the a master thesis which was supervised by the
author of this thesis (Lichtenwald, 2009). For a more detailed description and evaluation of the
CNP extractor, please refer to this master thesis and Tomanek and Hahn (2009c).
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number of sentences 3,113
number of tokens (in all sentences) 76,900

number of CNPs 15,203
number of tokens (in all CNPs) 45,097

number of entity mentions in all sentences 3,971
number of entity mentions in all CNPs 3,937

number of sentences with entity mentions 63%
number of CNPs with entity mentions 23%

Table 11.1: Characteristics of the Muc7T corpus.

and κB = 0.96, and FA = 0.92 and FB = 0.94, respectively. They exhibit an inter-
annotator agreement of κA,B = 0.94 and an averaged mutual F-score of FA,B = 0.90.
These numbers reveal that the task was well-defined and that the annotators had in-
ternalized the annotation guidelines sufficiently well to produce valid results. More-
over, an analysis of the annotation performance over time showed it to be stationary
– no general trend in annotation performance over time could be observed.

11.2.2 Corpus Statistics

Table 11.1 summarizes statistics on the time-stamped Muc7 corpus. About 60% of
all tokens are covered by CNPs (45,097 out of 76,900 tokens), showing that sentences
are to a large extent made up from CNPs. Still, removing the non-CNP tokens
markedly reduces the number of tokens to be considered for entity annotation. CNPs
cover slightly less entities (3,937) than complete sentences (3,971), a marginal loss
only. On average, sentences have a length of 24.7 tokens, while CNPs are rather
short with 3.0. However, CNPs vary tremendously in length, with the shortest ones
having only one token and the longest ones (mostly due to parsing errors) spanning
over 30 (and more) tokens. Extremely long CNPs are mostly due to parsing errors.

Figure 11.1 depicts the length distribution of sentences and CNPs showing that a
reasonable proportion of CNPs have less than five tokens, while the distribution of
sentence lengths almost follows a normal distribution (at least for lengths between 1
and 50 tokens). While 63% of all sentences contain at least one entity mention, only
23% of CNPs contain entity mentions. These statistics show that CNPs are generally
rather short and a large fraction of CNPs does not contain entity mentions at all.
We may hypothesize that this observation will be reflected by annotation times.
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Figure 11.1: Length distribution of sentences and CNPs.

11.2.3 Annotation Time Analysis

Figure 11.2 shows the average annotation time per block of CNPs and sentences.
Considering the CNP-level annotations, there is a learning effect for annotator B
during the first 9 blocks. After that, both annotators are approximately on a par
regarding annotation time. For sentence-level annotations, both annotators again
yield similar annotation times per block, without any learning effects. Similar to the
annotation performance, the analysis of annotation time shows that the annotation
behavior is largely stationary (excluding the first rounds of CNP-level annotation)
which allows single time measurements to be interpreted independently of previous
time measurements. Both time and performance plots show that there are blocks
that were generally more difficult or easier than other ones, because both annotators
operated in tandem.

As we have shown, inter-annotator variation of annotation performance is moderate.
Intra-block performance, in contrast, is subject to high variance. Figure 11.3 shows
the distribution over both annotators’ annotation times by boxplots. As for the
sentence-level annotations, the median of annotation time is 4.5 seconds (4.1s) for
annotator A (B), the shortest time is 0.8s (0.1s), and the longest time is 46s (51s).
As for CNPs, time investment is even more skewed with a median of 0.94s (0.91s), a
minimum time of 0.06s (0.03s), and a maximum of 118s (97s). To summarize, both
for the sentence- and the CNP-level annotations, a large proportion of the respective
units can be done with a low time investment but there are also numerous instances
where annotation becomes extremely costly. These numbers provide ample evidence
for the assumption that the time needed to annotate a particular unit varies greatly
(regardless of the individual annotators involved) and that the näıve assumption of
uniform costs is untenable. This has already been observed by Settles et al. (2008).
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Figure 11.2: Average annotation times per block.

An initial manual analysis revealed that CNPs with very low annotation times are
mostly short and consist of stop words and pronouns only, or are otherwise simple
noun phrases with a surface structure incompatible with entity mentions (e.g., all
tokens are lower-cased). Here, humans can quickly exclude the occurrence of entity
mentions which results in low annotation times. CNPs that took an excessively long
time (more than 6s) were outliers, indicating distraction or loss of concentration.
Times between 3s and 5s were basically caused by semantically complex CNPs.

11.3 Evaluation of Active Learning with Real Costs

With Muc7T , we can now evaluate sampling efficiency of AL with real annota-
tion costs. We do this for default, i.e., fully-supervised AL (FuSAL) and for semi-
supervised AL (SeSAL).

11.3.1 Default Active Learning

We re-ran the experiments of Chapter 4 with the best-performing utility functions
us̄VE, usLC, and us̄MA on the Muc7T corpus. As a new cost measure alongside the
token count measure (cf. Equation 4.11 on page 59), the time needed for the anno-
tation was considered. For the experiments, the “true” annotation costs as stored
in Muc7T were taken. The experimental settings were the same as in Chapter 4,
reported results are an average over 20 independent runs, 20 sentences were selected
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Figure 11.3: Distribution of annotation times over sentences (left) and CNPs (right).

in each AL iteration, and AL was started from a random seed of 20 sentences. Re-
sults on Muc7T cannot, however, be directly compared to our previous experiments
on the Muc7 corpus due to a lower corpus size (76,900 vs. 78.329 tokens) and a
lower number of entity classes (3 vs. 7) in Muc7T .

For this experiment we took the time stamps on the sentence level from the Muc7T
corpus. While the Muc7T corpus has time measurements for two annotators, for the
rest of this chapter we report the results of time measurements only for annotator
A. Scores for annotator B were very similar and showed exactly the same trends.
Figure 11.4 shows the learning curves for the AL experiments, with both the token
and the real annotation time cost measures. Additionally, Table 11.2 reports on the
resulting reduction of annotation effort for the three utility functions for a target
performance of F ∗ = 0.89.

AL still outperforms random sampling when the cost measure is the actual time
needed for annotation. The relative cost reduction for annotation time is generally
lower than for the token cost metric: While us̄MA saves 61.7% of the tokens to be
annotated to yield an F-score of 0.89, this translates into a saving of only 46.9% of
annotation time. This confirms the findings of Hachey et al. (2005) that selectively
sampled examples are on average harder to annotate than randomly sampled ones.

However, even given the real annotation time, AL clearly pays off. This finding is
in contrast to the findings of Settles et al. (2008) where US-based AL for relation
extraction and sentence classification did not perform better than random sampling
when evaluated against real costs. Our positive findings might be due to the NER
scenario, which already in previous chapters turned out to be very suitable for AL.
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Figure 11.4: Learning curves for evaluation of default AL evaluation against the number of
tokens and the true annotation time on Muc7T .

AL strategy tokens seconds

∆CFPF ∗(us̄VE,Rd) 58.2 % 44.2 %
∆CFPF ∗(usLC,Rd) 45.8 % 32.9 %
∆CFPF ∗(us̄MA,Rd) 61.7 % 46.9 %

Table 11.2: Percentage reduction of annotation effort over random sampling Rd for a target
performance of F ∗ = 0.89.

As an additional finding it should be noted that also for annotation time us̄MA per-
forms best, closely followed by us̄VE. Both utility functions outperform usLC, a se-
quence confidence-based utility function. As shown in Chapter 4, such utility func-
tions select longer sentences. While longer sentences take longer to annotate overall,
this does not pay off in terms of higher gains in classifier performance.

11.3.2 Semi-Supervised AL

One motivation to record annotation time on the CNP level in Muc7T was to allow
for an annotation time-based evaluation of our approach to SeSAL (cf. Chapter 6).
For this evaluation, SeSAL experiments were re-run on the Muc7T corpus.6

6As described in Chapter 6, SeSAL was run with a threshold t = 0.99 and a delay rate d = 0; the
usLC utility function is applied both for semi- and fully-supervised AL.

186



11.3 Evaluation of Active Learning with Real Costs

0 10000 20000 30000 40000 50000

0.
70

0.
75

0.
80

0.
85

0.
90

effort as annotated tokens

tokens

F
−

sc
or

e

SeSAL
FuSAL
RD

0 2000 4000 6000 8000 10000

0.
70

0.
75

0.
80

0.
85

0.
90

effort as annotation time

seconds

F
−

sc
or

e

SeSAL
FuSAL
RD

Figure 11.5: Learning curves for SeSAL and FuSAL with number of tokens annotated and
real annotation time.

Whenever a CNP contains at least one token classified as uncertain and to be manu-
ally annotated by SeSAL, this CNP’s annotation time is considered when calculating
the overall time of the respective sentence. The summation of all the annotation
times of CNPs that have been gone through by annotators is based on the pessimistic
assumption of no synergy effects being obtained by annotating multiple CNPs per
sentence: the time required to annotate a CNP within a sentence is considered in-
dependent of other CNPs already annotated in the same sentence. To avoid too
pessimistic estimates, the annotation time recorded per sentence in Muc7T is taken
as the maximum time even if the cumulated CNP-level times would exceed this.
However, the annotation time that we account for here per sentence still constitutes
an extremely conservative upper bound.

Figure 11.5 shows the evaluation of SeSAL both in terms of number of tokens and real
annotation time measured as described above. In terms of tokens SeSAL saves about
75 % on Muc7T compared to its fully-supervised counterpart. However, in terms of
annotation time, SeSAL only marginally reduces the annotation effort compared to
FuSAL: CFPF ∗(SeSAL) = 8, 641 vs. CFPF ∗(FuSAL) = 8, 728 with F ∗ = 0.89

These rather poor results need to be put into the perspective of the extremely
pessimistic estimation of annotation time. Furthermore, this also shows that the
evaluation of AL simulations with real annotation times constitute a challenging
endeavour as it may not be clear how to measure annotation time – especially, when
selected examples are only partially annotated and no human annotators should be
involved in the simulations.
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11.3.3 Conclusions

Overall, this section shows that the results of AL also depend greatly on the metric
used to account for the annotation costs. This has also been addressed by Becker
and Osborne (2005) and Haertel et al. (2008a). Evaluated against annotation time,
SeSAL did not perform better than its fully-supervised counterpart which, however,
yields high reductions in terms of real annotation time. The next section is devoted
to the question of how AL can be made intrinsically cost-sensitive.

11.4 Cost-Sensitive Active Learning

CSAL is a typical scenario of multi-criteria AL where two contradictory criteria –
utility and cost, here – have to be considered at the same time. In the following, three
simple approaches to CSAL are proposed and evaluated on the Muc7T corpus.

11.4.1 Approaches to Combining Utility and Cost

The following three approaches are based on adaptations of the MCAL methods
described in Chapter 8 to the two contradictory criteria utility and cost.

Cost-Constrained Sampling CSAL can be realized in its most straightforward
manner by simply constraining the sampling to a particular maximum cost cmax per
example. Examples are first ranked by their primary criterion, the utility, and in a
second step the |B| top-ranked examples from this ranked list with costs below cmax

are selected. Cost-constrained sampling (CCS) is a simple form of subset-retaining
HDM (cf. Section 8.2). In a more efficient manner, CCS can be implemented as a
pre-processing step where all examples p ∈ P for which cost(p) > cmax are removed
from P. The unmodified NER-specific AL framework can then be applied.

A shortcoming of CSS is that it does not allow any form of compensation between
utility and cost. Thus, an exceptionally useful example with a cost slightly above
cmax will be rejected. Another critical issue is how to set cmax. If set too low, the
pre-filtering of P constitutes a strong restriction of selection options when only few
examples remain in |P|. If set too high, the cost-constraint is ineffective.
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Linear Rank Combination A simple form of the weighed sum method φWSM,
known as net-benefit and often applied in decision theory, combines criteria of
benefit and cost. Given the attribute-value functions vbenefit(p) = u(p, θ) and
vcost(p) = −1 · cost(p), the net-benefit is defined as

φNB(p) =vbenefit(p) + vcost(p)
=u(p, θ)− cost(p) .

Net-benefit has been applied to CSAL in a scenario where both benefits and costs
were given as a monetary unit and could thus be directly compared (Kapoor et al.,
2007). If the same unit of measurement is not used, a transformation function
between benefit and cost must be found, which can be a difficult.

In our scenario, benefits measured by utility scores and costs measured in seconds
are incommensurable. For this scenario, it is currently unclear how to express utility
in monetary costs or vice-versa. Instead, we transform utility and cost information
into ranks to which φWSM can be applied.

The attribute-value function for the learning utility is thus given as vutility(p) =
r
(
u(p, θ)

)
. The ranking function r : R→ N assigns higher ranks for higher values of

u(p, θ) so that u(pi, θ) > u(pj , θ) ⇔ R(u(pi, θ)) > R(u(pj , θ)). For costs, vcost(p) =
R′
(
cost(p)

)
with R′ as the reversed ranking function so that higher cost values are

assigned lower rank numbers. The linear rank combination (LRK) is defined as

φLRK(~v(p)) = α · vutility(p) + (1− α) · vcost(p)

where α is a weighting term. In the CSAL scenario, where utility is the primary
criterion, α > 0.5 seems reasonable. Moreover, as costs and utility are contradictory,
allowing equal impact for both criteria with α = 0.5, it may be difficult to find
appropriate examples in a medium sized corpus. Thus, the choice of α depends on
size and diversity with respect to combinations of utility and costs within the P.

Benefit-Cost Ratio The third approach to CSAL is based on the benefit-cost ratio,
which has its roots in cost-benefit analysis frequently employed in decision theory
and welfare economics. Given equal units of measurement for benefits and costs, the
benefit-cost ratio (BCR) indicates whether a scenario is profitable (ratio > 1).

The BCR can be derived from the weighted product method φWPM applying op-
posing weights γbenefit = 1 and γcost = −1 to combine the two conflicting criteria
benefit (to be maximized) and cost (to be minimized). In contrast to the closely
related net-benefit, BCR can also be applied when units are incommensurable and
it is hard to find an appropriate transformation function. Although BCR applied to
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incommensurable units cannot be interpreted in terms of profitability, it can still be
applied to rank such examples.

This holds as long as benefit and costs can be placed in the same units by a linear
transformation function. If vbenefit(p) = a+ α · u(p, θ) and vcost(p) = b+ β · cost(p),
one can refrain from finding proper values for the above variables a, α, b, β, and
instead use vbenefit(p) = u(p, θ) and vcost(p) = cost(p). The BCR is defined as

φBCR(p) =vbenefit(p)γbenefit · vcost(p)γcost

=
vbenefit(p)
vcost(p)

.

For annotation costs, there is a linear relationship vcost(p) = b + β · cost(p). The
opposite, however, often holds for utility scores, especially when informativeness is
estimated based on confidence scores.7 In consequence, the attribute-value function
for benefit can often not be described as a linear function on utility.

On the assumption of a linear relationship between utility function and the respective
attribute-value function, BCR has already been proposed for CSAL by Settles et al.
(2008) and Haertel et al. (2008b). Our approach is an extension to their work as
we explicitly consider scenarios where such a linear relationship is not given and
propose a non-linear transformation function.8

In a direct comparison of LRK with BCR, LRK may be used when such a trans-
formation function would be needed but is unknown. Choosing LRK over BCR is
also motivated by findings in the context of data fusion in Information Retrieval,
where Hsu and Taksa (2005) stated that, given incommensurable units and scales,
one would do better to combine ranks rather than the actual scores or values.

CSAL based on LRK or BCR is realized by simply exchanging the utility function
u(p, θ) in the NER-specific AL framework by φLRK(p) or φBCR(p), respectively.

11.4.2 Evaluation

Experimental Settings We evaluated the three approaches to CSAL, namely CCS,
LRK, and BCR, on the Muc7T corpus using the same experimental settings as in the
previous section. As utility scores to estimate benefits we applied the us̄MA and the

7Although normalized to [0, 1], confidence estimates, especially for sequence classification, are often
not on a linear scale so that confidence values that are twice as high do not necessarily mean
that the utility u(p, θ), when directly derived from confidence, is also doubled.

8The fact that BCR may fail if utility estimates are poor and the need for a calibration of the
utility score were discussed in personal communication with Robbie Haertel from Brigham Young
University. Thanks a lot for your valuable comments and feedback!
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Figure 11.6: Different parameter settings for CCS and LRK.

usLC functions. us̄MA performed best in the cost-sensitive evaluation but presumably
has less room for improvement compared to usLC.

Plots show costs in terms of annotation time in seconds. Learning curves are
only shown for the start-up and the transition phase. Later on in the convergence
phase, due to the two conflicting criteria now considered simultaneously, selection
options are extremely limited so that CSAL in those regions naturally performs
sub-optimally. Again, only results for annotator A are shown.

Parametrization of CSAL Approaches Preliminary experiments were run to ana-
lyze how different parameters affect the respective CSAL approaches. For CCS and
LRK, experiments were run in combination with the usLC utility function.

For CCS, the cmax has to be specified. We tested three values, 7.5, 10, and 15 for
cmax . Firstly, we tested the supervised maximum performance attainable on Muc7T
(annotator A) when only examples below the particular cmax value were included.
For 7.5s a maximum of Fmax = 0.84 was yielded, for 10s Fmax = 0.86, and for
15s Fmax = 0.88. Figure 11.6 shows the learning curves of CSAL with CCS and
different cmax values. With cmax = 15, no difference can be observed compared to
cost-insensitive AL. As expected, CCS with lower values for cmax stagnates at the
maximum performance reported above, but improves upon cost-insensitive AL in
early AL iterations.

At some point all economical examples, i.e., those with costs below cmax but high
utility, have run out. In a corpus much larger than Muc7T this effect will occur
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with a temporal delay – with a restrictive value for cmax , the same exhaustion effect
will occur. It is currently unclear how to specify cmax appropriately in a real-life
annotation scenario where pretests for maximum performance for a particular cmax

are not possible. For further experiments, we chose cmax = 10 seconds.

For LRK, we experimented with three different weights α for the utility scores in-
cluding 0.5, 0.75, and 0.9. Figure 11.6 shows the effects of these weights on the
learning curve. Similar tendencies as for cmax for CCS can be observed. With
α = 0.9, CSAL does not fall below default AL, at least in the observed range. A
lower weight of α = 0.75 results in larger improvements in earlier AL iterations but
then falls back to default AL and in later AL iterations (not shown here) even below
default AL. If time, however, is given too much influence with α = 0.5, performance
falls to random selection-level. This is presumably also due to corpus exhaustion.
For further experiments we chose α = 0.75 because of its potential to improve upon
AL in early AL iterations.

For BCR, we specify the attribute-value function for us̄MA as

vMA
benefit(p) = n · us̄MA

where n is the length of the respective sentence. This essentially leads to a summa-
tion of all token-level confidence scores uMA. For usLC we suspect a linear relationship
between vbenefit(p) and usLC not to be appropriate; instead, a non-linear calibration
function would be needed here to transform usLC into a proper benefit estimator.
This is because usLC is based on Pθ(~y|~x) (cf. Equation 2.24 on page 19) for confi-
dence estimation of the complete label sequence ~y and a usLC score twice as high
presumably does not indicate doubled benefit for classifier training.

To determine such a non-linear calibration function, the true benefit of an example
p would be needed. In the absence of such information, we consider vMA

benefit(p) as
a good estimation of the true benefit of an example p. To identify the relationship
between usLC and vMA

benefit, we trained a model on a random subsample from P ′ ⊂ P,
then used this model to obtain the scores for usLC and vMA

benefit for each example from
the test set T .9 Figure 11.7 shows a scatter plot of these scores and evidences that
the relationship between usLC and benefit is indeed non-linear.10

As attribute-value function for usLC we thus propose

vLC
benefit(p) = eβ·u

s
LC(p) . (11.1)

9We experimented with different sizes for P ′ with almost identical results.
10Pearson’s correlation coefficient is relatively high (corr = 0.6495) because there are many exam-

ples with values for vMA
benefit(p) in [0, 1] and a corresponding usLC score in [0.8; 0.9].
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Figure 11.7: Scatter plot for us
LC versus vMA

benefit (left) and vLC
benefit versus vMA

benefit (right).

Experimentally, we determined β = 20 as a good value.11 Figure 11.7 proves that
eβ·u

s
LC(p) is a better estimator; the correlation coefficient is now corr = 0.8959.

In Figure 11.8, learning curves for BCR with vLC
benefit(p) and vbenefit(p) = usLC are

shown. BCR with benefit based on the uncalibrated utility function fails miserably.
This renders evident our hypothesis that while usLC may be appropriate for ranking
examples, it is inappropriate for estimating true benefit. BCR with vLC

benefit(p), in
contrast, outperforms cost-insensitive AL. For further experiments with BCR, the
two attribute-value functions vMA

benefit(p) and vLC
benefit(p) are applied.

Comparison of CSAL Approaches Finally, we compare all three approaches to
CSAL in the parametrization chosen above for the utility function us̄MA and usLC. Re-
sulting learning curves are shown in Figure 11.9. Improvements over cost-insensitive
AL are only achieved in early AL iterations up to 2,500s (for CSAL based on us̄MA) or
4,000s (for CSAL based on usLC) of annotation time, respectively. This exclusiveness
of early improvements can be explained as being a result of the corpus size and by
this the limited number of good selection options. Since AL selects with respect to
two conflicting criteria, the pool P should probably be much larger to increase the
repository of examples, that are favorable with respect to both criteria.

Improvements for CSAL based on usLC are generally higher than for us̄MA. Figure 11.4
already showed that in default AL with cost-sensitive evaluation, us̄MA clearly out-
performed usLC. Thus, usLC probably offers more room for improvement. Moreover,

11We determined β in a rather ad-hoc manner. Future work may concentrate on better fits.
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Figure 11.8: Different parameter settings for BCR.

cost-insensitive AL based on usLC does not exhibit any normalization where, in con-
trast, us̄MA is normalized at least to the number of tokens in an example. Now, in
CSAL, both usLC and us̄MA are normalized by costs (in different ways according to the
respective CSAL approaches), which amounts to a more substantial methodological
enhancement for usLC than for us̄MA.

For CSAL based on us̄MA it is hard to distinguish a clear winner among the different
approaches. However, all three CSAL approaches improve upon cost-insensitive AL.
For CSAL based on usLC, LRK performs best, while CCS and BCR perform similarly
well. Given this result, we might prefer LRK or CCS over BCR. A disadvantage of
these two approaches is that they require corpus-specific parameters. Appropriate
parametrization may be difficult for a new learning problem for which no data for
experimentation is available. Even though it does not exhibit the best performance,
BCR does not require further parametrization and appears more appropriate for real-
life annotation projects – as long as utility is an appropriate estimator for benefit.

Previously, CSAL with BCR had been applied by Settles et al. (2008). The authors
also applied a utility function based on sequence-confidence estimation, which pre-
sumably, as with our usLC utility function, is not a good estimator for benefit. The
fact that Settles et al. did not explicitly treat this issue might explain why CSAL
with BCR was often worse than cost-insensitive AL in their experiments.

CSAL applied to SeSAL Finally, we experimented with a cost-sensitive version of
SeSAL. SeSAL was changed slightly so as to incorporate cost based on the BCR
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Figure 11.9: Comparison of CSAL approaches for the utility functions us̄
MA and us

LC. Baseline
given by random selection (Rd) and standard AL with either us̄

MA or us
LC.

method, based on the vLC
benefit(p) attribute-value function. Figure 11.10 shows learn-

ing curves for cost-insensitive and cost-sensitive SeSAL and FuSAL and reveals that
cost-sensitive SeSAL considerably outperforms cost-sensitive FuSAL. Cost-sensitive
SeSAL attains a target performance of F=0.85 with only 2806s, cost-sensitive FuSAL
needs 3410s, and random selection consumes over 6060s. Thus, cost-sensitive SeSAL
here reduces true annotation time by about 54 % compared to random selection,
while cost-sensitive FuSAL reduces annotation time by only 44 %.

11.4.3 Conclusions

Overall, this section showed that improvement in terms of actual annotation time
upon standard AL can indeed be achieved by making AL cost-sensitive. As for
fully-supervised AL, its standard, cost-insensitive variant already exhibits an im-
provement over random selection in terms of annotation times. However, after cost-
sensitization by any of our three proposed approaches, it performed even better. The
cost-insensitive variant of SeSAL is no better than FuSAL when evaluated against
time. However, in its cost-sensitized variant, SeSAL outperforms FuSAL.

11.5 Summary

This chapter has studied several aspects of CSAL. With the Muc7T corpus a pre-
cious linguistic resource needed for simulations of AL in a cost-realistic environment
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Figure 11.10: Evaluation of the cost-sensitive version SeSAL. Cost-sensitivity is based on
the BCR method. us

LC is used as utility function for SeSAL and FuSAL.

has been created. With information on the time it takes to add certain linguistic
annotations, such as NER in our case, the Muc7T corpus introduces a new breed
of meta-information for a linguistic corpus. This resource is unique in its size and
its level of annotation- and time measurement-granularity (sentences and CNPs).

With Muc7T , we were able to evaluate our approaches to both fully- and semi-
supervised AL (cf. Chapters 4 and 6) in a more realistic scenario, with real anno-
tation costs. Moreover, based on these results, several approaches were proposed
to cost-sensitize the fully- and semi-supervised approaches to AL. Overall, our eval-
uation of cost-insensitive and cost-sensitive approaches to AL provide empirical
evidence that AL can indeed considerably reduce annotation effort in terms of time
needed for annotation. Moreover, approaches to AL are even more efficient in their
cost-sensitive variant. Such findings are good news for potential users of AL many
of whom are skeptical about the real monetary benefit of AL.

As an another outcome, our experiments also revealed that the pool size for CSAL
needs to be exceptionally large to provide a good repository of examples properly
covering the two conflicting criteria benefit and cost. As for Muc7T , we found its
size of 3,113 sentences to be not quite large enough. This renders the evaluation of
approaches to CSAL problematic and suggests interpretation of the results only for
early AL iterations. Muc7T may, however, still serve as an empirical foundation
for deriving annotation cost models allowing the prediction of annotation time for
unlabeled examples. Predictive cost models are essential for the realization of CSAL
in real-life annotation projects where information about annotation time has to be
predicted in advance of actual annotation.
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Chapter 12

Environment for Active Learning-Driven
Annotation

Due to the enormous need for Named Entity annotations caused by the StemNet
research project (see Section 12.2 for details), an environment for rapid Named En-
tity annotation has been developed as part of this thesis. As one of its core features,
the Jena ANnotation Environment (Jane), allows for AL-based annotation. Jane
supports the whole annotation life-cycle including the compilation of annotation
projects, annotation itself, monitoring, and the deployment of annotated material.
While originally developed for Named Entity annotation, Jane is based on a mod-
ular architecture so that it can be adapted to new annotation tasks.

This chapter presents Jane, motivates its functionalities from a practical point of
view, and discusses its system architecture. This work has been published before in
Tomanek et al. (2007b). Subsequently, the application of Jane within the StemNet
project is described.

12.1 System Architecture

Jane has a distributed system architecture. It consists of four components. The
annotation repository is the central component where all relevant data is stored
and internal states are hold. There are two clients, one for annotation and one
for administration. Finally, the AL component handles all AL-related processes.
All components communicate with the annotation repository through a network
socket. Figure 12.1 shows Jane’s system architecture; bold arrows symbolize direct
communication, dashed arrows indirect communication. Jane is largely platform-
independent because all components are implemented in Java.
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Figure 12.1: System architecture of Jane; bold arrows indicate direct communication,
dashed ones indirect communication.

An annotation project consists of a collection of documents, an associated annota-
tion schema – a specification of what has to be annotated in which way – a set of
configuration parameters, and an annotator assigned to it.

Two types of annotation projects are distinguished: A default project, contains a
predefined and fixed collection of documents. In such a project, all documents are
annotated independently of each other. In an AL project, the annotator has access
to a single document at a time. Having annotated this document, AL selection is run
and a new document is dynamically compiled from the actively selected sentences.

12.1.1 Administration Client

Administration of large-scale annotation endeavours is a challenging management
task. Figure 12.2 shows a snapshot of the user interface of the administration client.
The administration client supports many relevant subtasks:

User Management Create and manage accounts of annotators.

Creation of Projects The creation of an annotation project requires a considerable
number of documents and other files such as annotation schema definitions to
be uploaded to the annotation repository. Furthermore, several configuration
parameters can be specified including for example the number of sentences to
select in each AL iteration.

Editing a Project The administrator can reset a project, i.e., delete all actual an-
notations made to the project, but keep the general set-up of the project
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Figure 12.2: Graphical user interface of administration client.

unchanged. This is especially helpful in a pre-testing phase when annotation
guidelines change. Moreover projects can be copied (including all annotations
made) which is helpful when several annotators label the same documents to
check the applicability of the guidelines by inter-annotator agreement calcu-
lation. Modification of several project-specific parameters and files as well as
the complete deletion of the project is also possible.

Monitoring the Annotation Process The administrator can check which documents
of an annotation project have already been annotated, how long annotation
took on the average, etc. Furthermore, the progress of AL projects can be
visualized by learning and disagreement curves (cf. Chapter 5).

Inter-Annotator Agreement For related projects (projects sharing the same an-
notation schema) the degree to which several annotators mutually agree in
their annotations can be calculated. Such inter-annotator agreement (IAA) is
a common estimate of the quality and applicability of particular annotation
guidelines (Kim and Tsujii, 2006). Currently, several IAA metrics of different
strictness are available.

Deployment The annotation repository stores the annotations in a specific XML

201



Chapter 12 Environment for Active Learning-Driven Annotation

Figure 12.3: Graphical user interface of the annotation client.

format. Deployment allows to export the annotations in different output for-
mats. Both for IAA calculation as well as deployment, only documents marked
as completely annotated by the annotators are considered.

12.1.2 Annotation Client

As the annotators are domain experts – for example graduate students of biology in
the StemNet project – rather than computer specialists, we wanted to make life for
them as easy as possible. Especially we did not want them to deal with annotation
files manually. All actions necessary in context of annotation work can be done with
the annotation client. The annotation client is in charge of all the communication
with the annotation repository (see Figure 12.3). It provides access to an external
editor for the actual annotation process.

After log-in to the annotation client, the annotator sees a list of her annotation
projects along with a short description. Double clicking on a project, she receives
a list with all documents in this project. Documents have different flags (raw, in
progress, done) to indicate the current annotation state as set by the annotator.
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Figure 12.4: AL-enabled annotation in MMax2 editor. Gray shaded areas are context
information and cannot be annotated. Green indicates that this should be annotated.

Moreover, a comment can be added for each document. This facility proved useful
in larger annotation projects, where annotators frequently had problems with the
guidelines and could communicate this to the administrator through comments.

Annotation itself is done with MMax2, an external annotation editor developed by
Müller and Strube (2003).1 While there are several annotation editors available we
decided for MMax2 as it can be flexibly configured for the specific annotation task
and supports multi-level as well as chained annotations, which are important for
other annotation tasks in context of IE. The document to be annotated, the actual

1MMax2 is now an open-source project (http://mmax2.sourceforge.net/). We made several
modifications to it for better convenience such as, for example, optimized color highlighting of
annotations.
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annotations, and the configuration parameters are stored in MMax2-specific XML
files. The annotation repository reflects this data structure. The administration
client provides several export functionalities so that the MMax2-specific data is
converted into other, de-facto annotation formats.

Double clicking on a specific document from the annotation GUI directly opens an
MMax2 frame for annotation (see Figure 12.4). When working on an AL project,
the annotator can start the AL selection process (which then runs on a separate high-
performance machine) once having finished the annotation of the current document.
During the AL selection process, which may take up to several minutes according
to the particular configurations, the current project is blocked. However, meanwhile
the annotator can continue to work on other annotation projects.

For AL purposes, the sentences selected in one AL iteration, are compiled into a
single document. Besides the selected sentences, such a document also contains the
context surrounding each sentence. However, this context cannot be annotated and
is shown in italics in MMax2. Additionally, an identifier of the original source
document from which a sentence was taken is shown. This proved beneficial in
scenarios where ambiguity could not be resolved with the local context so that the
annotators had to refer to the full texts to be able to make an informed decision.
Figure 12.4 shows the selected sentences and the surrounding context.

12.1.3 Annotation Repository

The annotation repository is the heart of the annotation environment. All project,
user, and annotation relevant data is stored there. This central data management is
crucial for backup and deployment activities. Additionally, annotators do not have
to care about how to shift the annotated documents to the managerial staff. All state
information related to the entire annotation cycle is recorded in the repository.

The repository is implemented as a relational database.2 The components commu-
nicate with each other only through the annotation repository. In particular, there
is no direct communication between the annotation client and the AL component.
Each component can be run on a different machine as long as it has a network
connection to the annotation repository. This has two major advantages: Firstly,
annotators can work remotely (e.g., from home or from a physically dislocated lab
or from at home). Secondly, resource-intensive tasks such as the AL-based selection
of sentences can be run on separate, high-performant machines.

2We chose MySQL, a fast and reliable open source database with native Java driver support
through the JDBC network driver (http://java.sun.com/javase/technologies/database/).
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12.1.4 Active Learning Component

The AL component is currently based on the QbB-based AL and employs the Vote
Entropy utility function us̄VE. Complete sentences are selected. The selected sen-
tences are shown to the annotator in their surrounding context for convenience.
The composition of the QbB committee can be chosen in the administration client
allowing both for homogeneous and heterogeneous committees.

According to our findings on sample reusability on the NER tasks (cf. Chapter 7),
in our real-life annotation projects we often employ a MaxEnt learner during the
AL selection for a final CRF-based consumer to reduce computational complexity
and to cut down annotator idle time. In the same line, instead of actively selecting
from the complete pool of unlabeled data which in practise often subsumes several
millions of sentences, selection can be based on a random subsample of the pool.

12.2 Large-Scale Annotation of Biomedical Documents

Information extraction (IE) from biomedical documents is a lively field of research.
As other domains away from the standard, widely covered news-paper domain, IE in
the biomedical domain still has a shortcoming of annotated corpora. The creation
of new annotations is inevitable when porting (semi-) supervised methods to new
fields, domains, or genres. Moreover, annotation is necessary because different sets
of entity types are relevant in other domains. As shown throughout this thesis, AL
has the potential to reduce the effort needed to accomplish this enormous annotation
task. And given such a methodology, (sub)domain changes now seem more feasible
without committing to overly excessive annotation costs.

Jane was applied to serve the need for large-scale Named Entity annotations re-
quired by StemNet, a research project where IE methods were applied to docu-
ments from the field of hematopoietic stem cell transplantation.3 One major goal
of StemNet was to build a broad-coverage semantic search engine targeting at re-
searchers from the life sciences and especially the biomedical domain. This search
engine, called Semedico, provides deep semantic access to the contents of PubMed
abstracts.4 All semantic meta-data accessible through Semedico was automatically
extracted by means of NLP which basically involved recognition of a large amount
of different entity types.

3StemNet ran from 2006 to 2009 and was funded by the German Federal Ministry of Education
and Research (BMBF).

4http://www.semedico.org
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distinct tokens
entity category entity types annotated

cytokines and growth factors 7 276,570
cytokine and growth factor receptors 7 223,314

antigens (e.g. CD antigens) 6 196,063
minor histocompatibility antigens 6 187,496

organisms and organism attributes 18 173,943
T cells and natural killer cells 15 158,856

B cells and dendritic cells 14 164,790
hematopoietic progenitor cells 10 146,482

genomic variations 6 139,961∑
89 1,667,475

Table 12.1: Large-scale and entity-rich semantic annotations for the StemNet project.

As a preparatory step for the annotation phase, a large collection of scientific ab-
stracts for each entity category was selected from PubMed using keyword queries.
The sentences of these abstracts make up the pool of unlabeled examples from which
AL selects. Since the pools often consisted of over 1 million sentences, in every AL
iteration a random subsample of about 40,000 sentences was drawn from which AL
then selected.

Table 12.1 gives an overview of the semantic types and amount of entities being
annotated. We annotated 89 distinct entity types relevant for immunogenetics such
as various protein types (cytokines, growth factors and their receptors, major and
minor histocompatibilty antigens, transcription regulators), chemicals (ligands), var-
ious kinds of immune cells (various sorts of T-, B-, NK- and dendritic cells), blood
progenitor cells, and organisms. More details on the annotation endeavor, including
guidelines as well as inter-annotator statistics, are reported in Hahn et al. (2008).

12.3 Conclusions

The availability of an AL-enabled annotation environment is among the core require-
ments to allow NLP practitioners to benefit from the potential savings in annotation
effort through AL. This issue is also addressed in the next Chapter. While Jane is
currently not publicly available, it could serve as a first prototype when developing
such a publicly available annotation framework.
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Chapter 13

Survey on the Practical Usage of Active
Learning

In the previous chapters we have discussed various aspects of AL. AL has been suc-
cessfully tested on a range of NLP tasks including NER, as in this thesis. However,
despite impressive results in terms of reduced annotation effort reported by the var-
ious studies on AL for NLP, it seems that AL is still not applied as a standard
annotation technique for real-life annotation endeavors. This chapter presents the
results of a survey arranged to analyze the extent to which AL is used to support
the annotation of textual data in practice. Moreover, is also aims at addressing the
reasons to why or why not AL has been found applicable to a specific task.

At the time of writing, there were only a few works investigating into the real usage
of AL through surveys or user studies. Most of the studies were concerned with the
question of cost-aspects in context of AL (see Section 11.1 for a discussion of previous
work in that field). Other user studies include that of Palmer et al. (2009) on AL
for language documentation, and the work of Ngai and Yarowsky (2000) comparing
manual rule writing and AL-based annotation to construct a noun phrase chunker.

This survey serves as an indicator about the maturity of this field of research for
practical application, and gives hints for aspects considered relevant by practitioners,
insufficiently studied or completely overlooked so far. This work has been published
in (Tomanek and Olsson, 2009).

13.1 Survey Set-Up

The survey was realized in the form of a web-based questionnaire. The survey
targeted participants who were involved in the annotation of textual data intended
for machine learning for all kinds of NLP tasks. The call for participation in the
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survey was sent to a number of mailing list relevant in the field of NLP and ML.1

Utilizing these mailing lists, we expect to have reached a fairly large portion of the
researchers likely to be involved in annotation projects for NLP. The questionnaire
was open February 6–23, 2009.

After an introductory description and one initial question, the questionnaire was
divided into two branches. The first branch was answered by those who had used
AL to support their annotation, while the second branch was answered by those
who had not. Both branches shared a common first part about the general set-up
of the annotation project under scrutiny. The second part of the AL-branch focused
on experiences made with applied AL. The second part of the non AL-branch asked
questions about the reasons why AL had not been used. Finally, the questionnaire
was concluded by a series of questions targeting the background of the participant.

13.2 Questions and Answers

147 people participated in the survey. 54 completed the survey while 93 did not
which constitutes an overall completion rate was 37 %. Most of the people who did
not complete the questionnaire answered the first couple of questions but did not
continue. Their answers are not part of the discussion below. We refrain from a
statistical analysis of the data but rather report on the distribution of the answers
received.

Of the people that finished the survey, the majority (85 %) came from academia,
with the rest uniformly split between governmental organizations and industry. The
educational background of the participants were mainly computational linguistics
(46 %), general linguistics (22 %), and computer science (22 %).

Questions Common to both Branches Both the AL and the non-AL branch were
asked several questions about the set-up of the annotation project under scrutiny.
The questions concerned whether AL had been used to support the annotation
process, the NLP tasks addressed, the size of the project, the constitution of the
corpus annotated, and how it was decided when to stop the annotation process.

1Mailing lists include: the BioNLP mailing list (http://bionlp.org/), Corpora list (http://
gandalf.aksis.uib.no/corpora/), UAI list (http://www.urantia-uai.org/UAI_List.html),
ML-news (http://groups.google.com/group/ML-news), SIG-IRList (http://www.sigir.org/
sigirlist/), Linguist list (http://linguistlist.org/), and the member lists of SIGANN
(http://www.cs.vassar.edu/sigann/), SIGNLL (http://ifarm.nl/signll/), and ELRA
(http://www.elra.info/).
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13.2 Questions and Answers

1. Use of AL as annotation support The first question posed was whether peo-
ple had used AL as support in their annotation projects. 11 participants (20 %)
answered this question positively, while 43 (80 %) said that they had not used AL.
Depending on the answer to this question, the participant was then asked questions
from either the AL branch of the questionnaire, or from the non-AL branch.

2. Task addressed Most AL-based annotation projects concerned information ex-
traction (IE) (52 %), document classification (17.6 %), and (word sense) disambigua-
tion (17.6 %). Also in non AL-based projects, most participants had focused on IE
tasks (36.8 %). Here, syntactic tasks including part-of-speech tagging, shallow, and
deep parsing were also often considered (19.7 %). Textual phenomena, such as co-
references and discourse structure (9.6 %), and word sense disambiguation (5.5 %)
formed two other answer groups. Overall, the non AL-based annotation projects
covered a wider variety of NLP tasks than the AL-based ones. All AL-based anno-
tation projects concerned English texts. In contrast, 37.2 % of the non-AL projects
dealt with texts in other languages.

3. Size of the project The participants were also asked for the size of the annotation
project in terms of number of units annotated, number of annotators involved and
person months per annotator. The average number of person months spent on non
AL-projects was 21.2 and 8.7 for AL-projects. However, these numbers are subject
to a high variance and the difference is not statistically significant (p = 0.205 in a
Student’ t-test). Yet overall, we had the impression that non AL-based projects were
larger in terms of annotators involved, number of person months spent, complexity
of annotation task addressed, etc.

4. Constitution of the corpus Further, the participants were asked how the corpus
of unlabeled examples was selected. This examples are used as the pool to select
from when using AL, and as the corpus to be annotated in non AL-based annotation.
The answer options included (a) taking all available instances, (b) a random subset
of them, (c) a subset based on keywords, and (d) others. In the AL-branch, the
answers were uniformly distributed among the alternatives. In the non AL-branch,
the majority of participants had used alternatives (a) (39.5 %) and (b) (34.9 %).

5. Decision to stop the annotation process A last question regarding general
annotation project execution concerned the stopping of the annotation process. In
AL-based projects, evaluation on a held-out test set (36.5 %) and the exhaustion of
money or time (36.5 %) were the major stopping criteria. An AL-specific stopping
criterion were used only once, while in two cases the annotation was stopped because
the expected gains in model performance fell below a given threshold. In almost half
(47.7 %) of the non AL-based projects the annotation was stopped since the available
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money or time had been used up. Another major stopping criterion was the fact
that the complete corpus was annotated (36 %). Only in two cases annotation was
stopped based on an evaluation of the model achievable from the corpus. These
results are quite impressive as this shows that for both AL and non-AL projects,
the use of sophisticated stopping criteria is not established, yet.

Questions Specific to the AL-Branch The AL-specific branch of the questionnaire
was concerned with two aspects: the learning algorithms involved, and the experi-
ences of the participants regarding the use of AL as annotation support. Percentages
presented below are all related to the 11 persons who answered this branch.

1. Learning algorithms used As for the AL methods applied, there was no single
most preferred approach. 27.3 % had used uncertainty sampling, 18.2 % query-by-
committee, another 18.2% error reduction-based approaches, and 36.4 % had used
an “uncanonical” or totally different approach which was not covered by any of
these categories. As learning algorithms for the selectors, maximum-entropy based
approaches as well as SVMs were most frequently used (36.4 % each).

2. Experiences When asked about their experiences, the participants reported that
their expectations with respect to AL had been partially (54.4 %) or fully (36.3 %)
met, while one of the participants was disappointed. Unfortunately, the participants
from the AL-branch did not leave many experience reports in the free text field.
From the few received, it was evident that the computational complexity of AL and
the resulting delay or idle time of the annotators, as well as the interface design
are critical issues in the practical realization of AL as annotation support. Two
comments especially support these claims:

”We could not perform anything other than batch-mode labeling because
of the computational complexity of ALL incremental AL methods.”

”Never been able to build an AL interface which was easy to convince
annotators to use it.”

Question Specific to the Non-AL Branch The non AL-specific branch of the ques-
tionnaire was basically concerned with why people did not use AL as annotation
support and whether this situation could be changed. The percentages given below
are related to the 43 people who answered this particular part of the questionnaire.

1. Why was AL not used? Participants could give multiple answers to this question.
Many participants had either never heard of AL (11 %) or did not use AL due
to insufficient knowledge or expertise (26 %). The implementational overhead to
develop an AL-enabled annotation editor kept 17.8 % of the participants from using
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AL. Another 19.2 % of the participants stated that their project specific requirements
did not allow them to use AL. Given the comments given in the free text field, it
can be deduced that this was often the case when people wanted to create a corpus
that could be used for a multitude of purposes (such as building statistics, cross-
validation, learning about the annotation task per se, and so forth) and not just
for classifier training. In such scenarios, the sample selection bias introduced by
AL is certainly disadvantageous. Finally, about 20.5 % of the participants were
not convinced that AL would work well in their scenario or really reduce annotation
effort. Some participants stated in their free form comments that while they believed
AL would reduce the amount of examples to be annotated it would probably not
reduce the overall annotation time.

2. Would you consider using AL in future projects? According to the answers of
another question of the survey, 40 % would in general use AL, while 56 % were scep-
tical but stated that they would possibly use a technique such as AL. We interpret
this as a general openness of the annotation community to adapt new techniques
which is motivating for AL researchers.

13.3 Discussion and Conclusions

Although it cannot be claimed that the data collected in this survey is representative
for the NLP community as a whole and the number of participants was too low
to draw statistically firm conclusions, some interesting trends have indeed been
discovered within the data itself. The conclusions drawn in this section are related
to the answers provided in light of the questions posed in the survey.

The doubts towards AL as a potential aid in annotation in essence boil down to
the absence of a (publicly available) AL-enabled annotation editor, as well as the
difficulty in estimating the effective reduction in effort (such as time, money, labor)
that the use of AL implies. Put simply: Can AL for NLP really cut annotation
costs? How can AL for NLP be practically realized without too much overhead in
terms of implementation and education of the annotator?

Research addressing the first question is ongoing which as evidenced, e.g., by the
recent Workshop on Cost-Sensitive Learning held in conjunction with the Neural
Information Processing Systems Conference (NIPS) 2008. Moreover, our study of
cost-sensitive evaluation of AL and cost-sensitive AL in Chapter 11 has shown that
the question whether savings in terms of corpus size translate to annotation time or
cost is indeed crucial.
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As for the latter question, there is evidently a need of a general framework for AL in
which (specialized) annotation editors can be used. To date, there is no such software
publicly available. In the previous chapter, our AL-enabled annotation environment
has been discussed which might serve as a prototype for further development.

Also, hand-in-hand with the theoretical aspects of AL and their practical realiza-
tions in terms of available software packages, there clearly is a need for usage and
user studies concerning the effort required by human annotators operating under
AL-based data selection schemes in real annotation tasks. The first Workshop on
Active Learning for Natural Language Processing (2009) already attracted some
submissions on user studies in the field of AL. The sequel workshop, to be hold in
2010, has taken up this issue in its call for papers.2

Among the participants of the survey turn-around time and consequently the idle
time of the annotator has been said to be a critical issue. In the same spirit,
Requirement 2 has been formulated. Moreover, in this thesis AL approaches of
low sampling complexity have been preferred over more complex ones which are
presumably more efficient in reducing sampling complexity (cf. Chapter 4). Such
considerations are especially important in context of NLP learning problems which
tend to be complex due to their high-dimensional representation.

Interestingly, English was the only language addressed in AL-based annotation
projects. This is somewhat surprising given that AL seems to be a technique well
suited for bootstrapping language resources for so called “under-resourced” lan-
guages. The recently published work by Palmer et al. (2009) on AL for language
documentation of the Mayan language Uspanteko underlines this assumption. An-
notation in context of an endangered language as is Uspanteko is especially costly
due to the extremely limited number of speakers.

We were also surprised by the fact that both in AL and non-AL projects rather
unsophisticated stopping criteria were used. The need for proper monitoring and
stopping methods for AL has been discussed in this thesis in detail in Chapter 5.
While stopping criteria are especially relevant in AL-driven annotation projects to
finally cash in the savings in annotation effort, the principle intuition on stopping cri-
teria also holds for annotation scenarios where the corpus is assembled by a random
selection of documents.

Overall, the main result of our survey is that the general acceptance of AL as a widely
applied annotation method strongly depends on several end-user specific needs.

2The author of this thesis has been a co-organizer and co-founder of the 2009 workshop, and is
also a co-organizer of the 2010 workshop. The follow-up workshop will be held at the 2010
Conference of the North American Chapter of the Association for Computational Linguistics.
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Chapter 14

Summary and Perspectives

This thesis aimed at clarifying the theoretical background of and providing a frame-
work for resource-aware annotation for the rapid and economical creation of labeled
training data. The availability of sufficient quantities of high-quality training data
is essential in order to train statistical methods for NLP tasks. These are methods
that we wish to apply to address the challenges of the information era, i.e., manag-
ing the vast body of unstructured information with the goal of extracting valuable
knowledge from it. The precious resource in the generation of training data is hu-
man labor because the arduous task of annotation has to be performed manually by
human annotators.

Active learning (AL) is a general technique to reduce sampling complexity, i.e., the
number of examples necessary to yield a model with a particular target performance.
In contrast to the standard, passive learning scenario, this is achieved by giving the
learner control over the data, so that there is selective sampling of those examples
that are likely to be very useful for improving a model.

This thesis mainly focused on AL as a strategy for annotation of textual documents
in real-world scenarios. These scenarios pose several requirements for a resource-
aware annotation strategy to be practically applicable and considered efficient. Eight
such requirements were formulated in the introduction to this thesis. The following
section briefly summarizes each requirement and the respective contributions and
key achievements made.

14.1 Summary of Contributions and Achievements

Requirement 1 postulates that a resource-aware annotation strategy must yield prac-
tically relevant savings as compared to the standard annotation strategy, in which
the examples to be annotated are simply randomly selected. In Chapter 4 we pre-
sented an adaptation of the general AL framework to sequential learning problems
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as they are frequently found in NLP tasks. The NLP task of Named Entity Recog-
nition (NER) was used throughout the thesis as a sample scenario for linguistic
annotation. Our NER-specific AL framework was evaluated with different utility
functions on four corpora annotated with named entity mentions.

For attaining a particular target performance, we recorded possible savings of up to
80 % in annotation effort by AL compared to random sampling. Annotation effort
was here measured by the number of tokens to be annotated. In terms of true
annotation time, we could still record savings of up to 54 % (Chapter 11). These
impressive savings were achieved using our novel approach to semi-supervised AL
(Chapter 6), which requires only a few sub-sequences of the selected sentences to be
manually annotated – the remainder is automatically labeled without any human
intervention.

While such savings are not the exponential savings that AL can achieve in theory (cf.
Section 3.4), they are highly relevant and can considerably reduce overall costs of
training data creation. Most interestingly, such savings were achieved even though
our NER-specific AL framework is based on heuristics to AL (Uncertainty Sampling
and Query-by-Committee) instead of statistically optimal approaches, which might
have reduced annotation effort even further.

The design decision for the application of such heuristics was deliberately made in
accordance with Requirement 2 postulating rapid selection. In our experiments,
only one (in the case of Uncertainty Sampling) or three models (in the case of
Query-by-Committee) had to be trained for each AL iteration – much fewer that in
the statistically optimal approaches to AL. In Chapter 7, we showed that compu-
tational complexity of selection could be reduced even further when a less complex
model is used during AL selection. This additional reduction of selection time was
accompanied by only a slight reduction of sampling efficiency.

Our NER-specific AL framework does not require many settings to be made – the
only parameters that have to be set are the utility function, the batch size, and the
size of the seed set. We successfully applied our AL framework on NER to four dif-
ferent corpora with identical settings. Moreover, the framework can be used flexibly
with arbitrary models, which are treated in a black-box fashion. This satisfactorily
meets Requirement 3, postulating a possibly generic approach flexible enough to be
applied to a broad range of annotation scenarios without major modifications.

In the same spirit, in Chapter 5 we proposed a stopping criterion, which does not
require any user-defined parameters to be set but finds a reasonable stopping point
based only on characteristics of the data set at hand. Addressing Requirement 4,
which postulates means to monitor and eventually stop the AL-based annotation
process, this chapter also presented a novel approach to approximating the learning
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curve progression that makes it possible to identify the three stages of learning curves
(start-up, transition, and convergence stage). The learning curve is approximated in
an unsupervised manner, not requiring any additional annotation effort. We showed
that, based on this curve approximation, good stopping points can be found both
in simulations as well as in real-world annotation scenarios. Additional research
in this direction might focus on an extension of our approach so that the absolute
performance levels can be derived from the approximated curve. Given such an
approach, one could identify precisely the optimal stopping point for a user-defined
trade-off between cost and benefits of annotation.

Sample reusability, as postulated by Requirement 5, is an important issue as it allows
the created training data to be flexibly used to learn different types of models. This
may be desirable when the final model to be learned in advance of data acquisition,
which is usually the case in all real-world annotation endeavors. Moreover, this
allows us to employ models with lower training complexity, making AL selection
more rapid. In Chapter 7, the issue of sample reusability was defined as a problem
of learning under sample selection bias. This chapter also reported on our large-
scale evaluation of our AL framework with respect to sample reusability in scenarios
where different models are used during selection and as final consumers.

While in the NER scenario, reusability was given in all realistic scenarios, no general
pattern on reusability on arbitrary data sets could be found, leading us to the
conclusion that reusability is to a large extent dependent on the combination of
learning problem, data set, and model. Another interesting finding is that self-
selection did not always constitute the upper bound for sampling efficiency of foreign-
selection. While this thesis does not provide a general means of predicting the
presence or degree of reusability, this chapter should be understood as a starting
point for further investigation into the challenging issue of AL sample reusability.

A related issue is that of sampling data for multiple tasks, for which training data
should be created simultaneously. This means that examples must be useful for all
tasks involved. In Chapter 9, with reference to Requirement 6, we gave a definition
of this new field of research within AL, which we called multi-task AL in contrast to
the standard, single-task AL scenario. Furthermore, as a proof-of-concept, two ap-
proaches to multi-task AL were presented and evaluated in a scenario where training
data were to be provided for two highly dissimilar tasks. Results gave encouraging
evidence that the consideration of multiple tasks during AL-based selection of train-
ing data is possible and that it can indeed reduce annotation effort even further.

According to the Zipfian nature of natural language, class imbalance is a ubiqui-
tous problem in NLP. Fulfilling Requirement 7, in Chapter 10 we proposed several
novel approaches to re-balancing skewed data from the start during AL-driven data
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acquisition, instead of as a post-processing step, as is usually done in machine learn-
ing literature. Our evaluation showed that class imbalance can indeed be reduced
effectively as early as during data acquisition time and thus increase classifier per-
formance without additional annotation cost.

Finally, one of the most crucial aspects of a resource-aware annotation strategy is
that it actually reduces the true annotation effort, as postulated by Requirement 8.
This issue was studied in detail in Chapter 11. As a prerequisite for experiments on
cost-sensitive AL, we developed a corpus that is enhanced by annotation time as a
novel form of linguistic meta-data. This corpus allowed for the evaluation of AL in
terms of true annotation cost, instead of just the number of examples as an overly
simplifying approximation. Experiments showed that our approaches to AL still
considerably outperformed random sampling. Additionally, we presented three novel
approaches to incorporating annotation costs into AL selection, so that cost and
usefulness are considered simultaneously in order to make the best decision about
which examples to select. These methods were also applied to make our approach to
semi-supervised AL cost-sensitive. Our experiments showed that annotation effort
in terms of true annotation time is reduced still further by the cost-sensitive versions
of our approaches to AL.

The approaches to the Requirements 6, 7, and 8 were formulated and addressed as
cases of multi-criteria AL problems. In Chapter 8, we provided a novel decision-
theoretical formulation of AL with multiple selection criteria. The solutions to the
above-mentioned three requirements are essentially instantiations of multi-criteria
AL in combination with one of the methods of dealing with multiple criteria during
selection, as described in that chapter.

14.2 Perspectives

As already stated at the beginning of this thesis, we assume annotation to be the
major bottleneck in the application of established methods for NLP to practical
scenarios. However, given efficient resource-aware annotation strategies, such as our
AL framework for linguistic annotation, the annotation bottleneck might be largely
relieved, allowing for a much wider application of such NLP methods – possibly
also in areas where their application was previously unthinkable due to the immense
overhead resulting from annotation.

AL itself is not new and the potential of AL for reducing annotation effort was
claimed by other researchers some time ago (e.g., by Engelson and Dagan (1996)).
However, as our survey on practical usage of AL revealed, AL is hardly really applied
in practise (Chapter 13). The major reasons for this, as we identified through the
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survey, might be summarized by the following two questions: “How can AL for NLP
be practically realized without too much overhead in terms of implementation and
education of the annotator?” and “Can AL for NLP really cut annotation costs?”.

The first question concerns the public availability of an AL-enabled annotation envi-
ronment and information about best-practises, user studies and success (or failure)
stories – issues best addressed by a community working faced with the same prob-
lems. In this spirit, the first workshop on “Active Learning for Natural Language
Processing”, held in 2009, aimed at bringing together researchers and users to ex-
plore the challenges and opportunities of AL for NLP tasks. Due to the success of
this first workshop, a follow-up workshop will be held in 2010.1 The author of this
thesis is one of the co-organizers of both workshops.

The second question indicates that cost-sensitive AL may be the key direction of
further research on AL. We presume, that AL may only find broad acceptance as
a resource-aware annotation strategy when the reduction of true annotation time
can be attested. As part of such research – besides studies on better cost-sensitive
sampling strategies – the development of predictive cost models is essential for the
actual realization of cost-aware AL. In practise, annotation time is not known prior
to annotation and so has to be estimated.

However, we believe that the development of predictive cost models requires a shift
of research from machine learning and computational linguistics more towards the
field of psycholinguistics. Methods used in research on human-computer interaction,
such as tracking of observational data in terms of gaze durations and gaze movements
by eye-tracking devices, have already been used successfully in psycholinguistics to
understand human language processing (Rayner, 1998). Such methodology might
also be used to understand better the cognitive processes behind annotation, based
on which accurate models of annotation cost may be developed in the future.

1A follow-up workshop will be held in conjunction with the 2010 Conference of the North American
Chapter of the Association for Computational Linguistics.
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Appendix A

Notation

R : set of real numbers

X : observation space, set of all possible observations

x : a single observation in X
Y : target (label) space, set of all possible target values

y : a specific target in Y
l = (xi, yi) : a tuple of observation and its label, also called a labeled example

p = (xi) : an unlabeled example consisting of the observation xi only

L : set of all labeled examples l = (x, y), L ∈ X × Y
P : set of all unlabeled examples p = (x), P ∈ X
T : test set of examples (x, y)

F (x) : feature generating function

fj(x) : a feature/feature function

~x : feature representation of observation x, with ~x =
(
f1(x), . . . , fk(x)

)
.

θ : model parameters, with θ = (λ1, . . . , λk)

T : learning algorithm which induces a model θ from some training data L
` : objective function for parameter estimation (e.g., log-likelihood function)

gθ(x) : a classifier/decision function based on model θ

perf (θ, T ) : performance of model θ evaluated on test set T
u(p, θ) : utility scoring function for example p relative to model θ
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Abbreviations

AL Active Learning p. 29
AUC Area Under the learning Curve p. 60
BCR Benefit-Cost Ratio p. 189
CCS Cost-Constrained Sampling p. 188
CFP Cost For target Performance p. 60
CRF Conditional Random Field p. 19
CSAL Cost-Sensitive Active Learning p. 177
FC F-Complement p. 39
FuSAL Fully-Supervised Active Learning p. 98
HDM Hierarchical Decision-Making p. 144
HLT Human Language Technology p. 2
HMM Hidden Markov Model p. 16
IAA Inter-Annotator Agreement p. 201
IE Information Extraction p. 205
i.i.d. identically and independently distributed p. 30
ISC Intrinsic Stopping Criterion p. 80
KLM Kullback-Leibler divergence to the Mean p. 39
LC Least Confidence p. 36
LRK Linear Rank Combination p. 189
MADM Multi-Attribute Decision-Making p. 142
MAV Multi-Attribute Value (function) p. 144
MaxEnt Maximum Entropy (model) p. 16
MCAL Multi-Criteria Active Learning p. 142
ML Machine Learning p. 11
NB Näıve Bayes p. 15
NE Named Entity p. 50
NER Named Entity Recognition p. 49
NLP Natural Language Processing p. 1
POS Part-Of-Speech p. 51
QbB Query-by-Bagging p. 38
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QbC Query-by-Committee p. 37
RAI Relative Area Increase p. 60
RD Random Sampling p. 65
SA Selection Agreement p. 78
SeSAL Semi-Supervised Active Learning p. 98
SVM Support Vector Model p. 23
US Uncertainty Sampling p. 36
VE Vote Entropy p. 38
VSA Validation Set Agreement p. 79
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Joint Publications

Some of the publications that this thesis is based on were written in cooperation with
others then the supervisors of this thesis. The following list describes the respective
contributions.

Chapter 2

The introduction to probabilistic models constitutes a condensed version of a tech-
nical report published together with Roman Klinger (Klinger and Tomanek, 2007).
This publication is based on many discussions between Roman Klinger and the au-
thor of this thesis. The author of this thesis mainly focused on the description of
the concept of graphical models and the NB, HMM, and MaxEnt models. Roman
Klinger described CRFs in detail.

Chapter 4

The NER-specific AL framework is based on joint work with Joachim Wermter
(Tomanek et al., 2007a). Joachim Wermter contributed by writing large parts of
the introduction and served as a discussion partner during evaluation of the exper-
iments. The author of this thesis has implemented the AL framework, performed
the experiments, and written the main part of the paper.

Joint work with Florian Laws and Hinrich Schütze on the co-selection effect was
published in (Tomanek et al., 2009). This work was supervised by Udo Hahn and
Hinrich Schütze who served as discussion partners and helped during writing. The
implementation and experiments are joint work with equally weighted contributions
from the author of this thesis and Florian Laws. The author of this thesis imple-
mented sentence-selection AL and performed the respective experiments, whereas
Florian Laws focused on token-selection AL.
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Chapter 5

The intrinsic stopping criterion is based on joint work with Fredrik Olsson (Olsson
and Tomanek, 2009). Fredrik Olsson performed experiments on document-selection
AL, whereas the author of this thesis performed experiments on sentence-selection
AL and on stream-based AL. Much of the writing of this publication was done by
Fredrik Olsson.

Chapter 9

Multi-task AL is based on joint work with Roi Reichart and Ari Rappoport (Re-
ichart et al., 2008). The implementation and experiments are joint work with equally
weighted contributions from both the author of this thesis and Roi Reichart. The
author of this thesis performed the experiments on the NER task, Roi Reichart fo-
cused on the Parsing task. The approaches to multi-task AL were developed in joint
discussion. Udo Hahn and Ari Rappoport served as discussion partners and helped
during writing.

Chapter 12

The annotation environment for AL-driven annotation is based on joint work with
Joachim Wermter (Tomanek et al., 2007b). The annotation environment was devel-
oped and implemented by the author of this thesis. Joachim Wermter designed and
supervised the real-world annotation projects. Most of the writing of this publication
was done by the author of this thesis.

The various annotation endeavours performed between 2006 and 2008 at the com-
putational linguistics unit of the Friedrich-Schiller-University Jena are described in
(Hahn et al., 2008). The author of this thesis provided the annotation framework.

Chapter 13

The survey on practical use of AL is based on joint work with Fredrik Olsson
(Tomanek and Olsson, 2009). The survey was designed and set-up with equal con-
tributions. The author of this thesis did the analysis and evaluation of the survey
results.
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Additional Material for Chapter 7

D.1 Correlation Coefficients

Pearson’s correlation coefficient is given by:

ρ(x, y) =
cov(x, y)
σx · σy

The weighted correlation coefficient is given by

ρw(x, y) =
covw(x, y)√

covw(y, y) · covw(y, y)

with the weighted covariance defined as

covw(x, y) =
∑n

i=1wi(xi − x̄w)(xi − x̄w)
1−∑n

i=1w
2
i

where wi specifies an importance weight for each xi. The weighted mean x̄w is
defined as

x̄w =
n∑
i=1

wixi .

Spearman’s rank correlation coefficient is calculated by simply translating x and
y into ranks R(x) and R(y) and calculating the unweighted or weighted Pearson’s
correlation coefficient on R(x) and R(y) instead of x and y.
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D.2 Weka Parameter Settings

This section gives an overview of the parameter settings used for the Weka learners
used on the UCI data sets.

For J48 applied with Bagging, the class weka.classifiers.meta.Bagging was used
with these options:
-P 100 -S 1 -I 10 -W weka.classifiers.trees.J48 -- -C 0.25 -M 2

For the Näıve Bayes learner, the class weka.classifiers.bayes.NaiveBayes was
used only with the -D option.

For the SVM learner, the class weka.classifiers.functions.SMO was used with
these options:
-C 1.0 -E 1.0 -G 0.01 -A 250007 -L 0.0010

-P 1.0E-12 -N 0 -M -V -1 -W 1

For the MaxEnt learner, the class weka.classifiers.functions.Logistic was
used with these options:
-R 1.0E-8 -M -1

D.3 Information on Resampling

Resampling to obtain a NER-like class distribution was done by downsampling the
examples of all classes except one. This was only possible for three of the five data
sets: The sick and the mushroom data set did not contain a sufficient number of
examples to yield the target distribution. On the segment, nursery and car data
sets, resampling was done so that all examples of the class, which in the original
data set subsumed most examples, were kept and examples for the other classes were
removed until a class distribution similar to that of NER was achieved. On the car
data set, the class “unacc” is the new majority class (with 89 % of all examples), on
the nursery data set, “not recomm” is the new majority class (92 %), and on the
segment data set, the class “sky” was chosen as majority class (82 %).

D.4 Additional Data

This section provides results omitted in Chapter 7 for readability. This includes
basically detailed RAI and REU scores for the UCI data sets.
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car data set

consumer
selector J48 MaxEnt NB SVM

J48 0.00 −0.18 −0.43 −0.43
MaxEnt −0.97 0.00 −1.10 −0.32
NB −0.88 −0.19 0.00 −0.35
SVM −0.79 0.37 −0.79 0.00

mushroom data set

consumer
selector J48 MaxEnt NB SVM

J48 0.00 −0.48 −0.73 −0.17
MaxEnt 0.06 0.00 −0.49 0.16
NB 0.07 −0.02 0.00 0.05
SVM −1.14 −0.53 −1.24 0.00

nursery data set

consumer
selector J48 MaxEnt NB SVM

J48 0.00 −1.07 −2.40 −0.85
MaxEnt −0.21 0.00 −1.61 −0.13
NB 0.66 0.17 0.00 0.08
SVM −0.12 −0.79 −1.33 0.00

segment data set

consumer
selector J48 MaxEnt NB SVM

J48 0.00 −0.73 −0.40 −0.88
MaxEnt −0.78 0.00 −1.23 −3.13
NB −2.55 −1.41 0.00 −1.59
SVM −4.07 −1.96 −2.35 0.00

sick data set

consumer
selector J48 MaxEnt NB SVM

J48 0.00 −0.79 −0.47 −0.83
MaxEnt 0.32 0.00 −0.31 −0.84
NB 0.20 −0.79 0.00 −2.04
SVM 0.36 −0.12 −0.25 0.00

Table D.1: REU scores on UCI data sets for samples of 100 examples.

229



Appendix D Additional Material for Chapter 7

car data set
selector unbiased

selector J48 MaxEnt NB SVM sample

J48 1.00 0.93 0.92 0.93 0.93
MaxEnt 0.93 1.00 0.92 0.93 0.92
NB 0.92 0.92 1.00 0.92 0.91
SVM 0.93 0.93 0.92 1.00 0.91

mushroom data set
selector unbiased

selector J48 MaxEnt NB SVM sample

J48 1.00 0.88 0.80 0.80 0.90
MaxEnt 0.88 1.00 0.89 0.86 0.80
NB 0.80 0.89 1.00 0.85 0.67
SVM 0.80 0.86 0.85 1.00 0.71

nursery data set
selector unbiased

selector J48 MaxEnt NB SVM sample

J48 1.00 0.90 0.91 0.91 0.93
MaxEnt 0.90 1.00 0.92 0.92 0.96
NB 0.91 0.92 1.00 0.92 0.94
SVM 0.91 0.92 0.92 1.00 0.93

segment data set
selector unbiased

selector J48 MaxEnt NB SVM sample

J48 1.00 0.96 0.94 0.94 0.97
MaxEnt 0.96 1.00 0.93 0.93 0.97
NB 0.94 0.93 1.00 0.94 0.93
SVM 0.94 0.93 0.94 1.00 0.93

sick data set
selector unbiased

selector J48 MaxEnt NB SVM sample

J48 1.00 0.94 0.94 0.96 0.94
MaxEnt 0.94 1.00 0.92 0.96 0.96
NB 0.94 0.92 1.00 0.93 0.92
SVM 0.96 0.96 0.93 1.00 0.96

Table D.2: Mutual distributional similarity (SIM score) between the samples of 100 examples
selected with AL using different selectors and distributional similarity between these
samples and an unbiased sample as represented by the complete pool P.
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car data set
consumer

car J48 MaxEnt NB SVM

J48 1.00 0.37 0.22 0.20
MaxEnt 0.17 1.00 0.11 0.48

NB 0.28 0.33 1.00 0.31
SVM 0.08 0.58 0.37 1.00

mushroom data set
consumer

selector J48 MaxEnt NB SVM

J48 1.00 0.32 0.34 0.41
MaxEnt 0.79 1.00 0.11 0.51

NB 0.70 0.40 1.00 0.47
SVM 0.77 0.38 0.14 1.00

nursery data set
consumer

selector J48 MaxEnt NB SVM

J48 1.00 0.59 0.63 0.54
MaxEnt 0.55 1.00 0.61 0.66

NB 0.54 0.57 1.00 0.63
SVM 0.50 0.69 0.73 1.00

segment data set
consumer

selector J48 MaxEnt NB SVM

J48 1.00 0.40 0.54 0.38
MaxEnt 0.20 1.00 0.52 0.15

NB 0.10 0.32 1.00 0.36
SVM 0.18 0.32 0.49 1.00

sick data set
consumer

selector J48 MaxEnt NB SVM

J48 1.00 0.14 0.24 0.59
MaxEnt 0.28 1.00 0.28 0.64

NB 0.23 0.13 1.00 0.19
SVM 0.31 0.22 0.21 1.00

Table D.3: Similarity of feature ranking (FR score) of a consumer trained on a self-
selected sample and a foreign-selected sample. Example on mushroom data set:
FR(J48,MaxEnt)=0.32 means that the feature ranking of a MaxEnt consumer trained
on a sample selected by a MaxEnt selector has a weighted Spearman’s rank correlation
coefficient with the feature ranking of a MaxEnt consumer trained on a sample selected
by a J48 of 0.32.
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data set class distribution

segment original (0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14)
segment resampled (0.82, 0.06, 0.06, 0.06, 0.00, 0.00, 0.00)

nursery original (0.33, 0.33, 0.31, 0.03)
nursery resampled (0.92, 0.04, 0.04, 0.00)

car original (0.70, 0.22, 0.04, 0.04)
car resampled (0.89, 0.04, 0.04, 0.04)

Table D.4: Class distribution in original and resampled UCI data sets. Highlighted number
refers to percentage of examples of the majority class in the resampled data sets.

car resampled data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 −0.93 −0.89 −0.90 0.43
MaxEnt −0.47 0.00 −0.73 −0.25 6.51
NB −2.56 0.15 0.00 −0.00 3.74
SVM −4.31 0.15 −0.67 0.00 9.45

nursery resampled data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 −3.70 −0.86 −0.27 1.50
MaxEnt −0.06 0.00 −0.29 −0.11 1.37
NB 0.45 −3.38 0.00 0.13 3.02
SVM 0.23 −4.25 −0.79 0.00 2.09

segment resampled data set

REU score according to consumers
selector J48 MaxEnt NB SVM RAI score

J48 0.00 0.51 −0.09 0.07 3.74
MaxEnt −0.26 0.00 −0.56 −0.55 1.74
NB 0.01 0.59 0.00 0.06 1.34
SVM −0.11 0.36 −0.29 0.00 1.18

Table D.5: REU and RAI scores for resampled data sets.
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