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Abstract

Abelian pattern matching is a new class of pattern matching problems. In
abelian patterns, the order of the characters in the substrings does not mat-
ter, e.g. the strings abbc and babc represent the same abelian pattern a+2b+c.
Therefore, unlike classical pattern matching, we do not look for an exact
(ordered) occurrence of a substring, rather the aim here is to find any per-
mutation of a given combination of characters that represents the given
abelian pattern.

In this thesis, we study the problem of abelian pattern matching in strings
in a systematic manner, and present several algorithms for exact as well as
approximate abelian pattern matching. We also present different strategies
for indexing the input text to make the abelian pattern matching more effi-
cient.
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Ú

. . . . . . 173

B.2.2 Abelian Pattern Matching for m = 48 in T4
Ú
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Chapter 1

Introduction

In the past few years, the abundance of the completely sequenced genomes
has led to the idea of the comparison and the analysis of the whole genomes
at gene level [10, 38].

Gene clustering [19, 25, 29, 32, 35] is one approach for this type of comparison
and analysis. It is believed that the genes with similar functionality tend to
occur close to each other, therefore, gene clustering is a helpful tool for finding
the functionality of genes. In gene clustering, the aim is to find the genes
that are located in close proximity of each other in many genomes, and the
order of the occurrences of these genes is considered irrelevant.

Common intervals of permutations is another facet of the gene clusters [19],
and a wide range of algorithms has been proposed for finding the common
intervals of permutations in the recent years [3, 8, 18, 20, 33, 37]. A com-
mon interval of k-permutations (k ≥ 2) is a k-tuple of intervals of these
permutations that consists of the same set of elements.

Abelian patterns (also known as compomers [4], permutation patterns [12]
and parikh vectors [1, 31]) are a generalized form of the gene clusters and
the common intervals of permutations. In both the gene clusters as well as
the common intervals of permutations, the number of the occurrences of each
distinct gene (in a gene cluster) or each distinct element (of a common interval
of permutations) is restricted to one; whereas in the case of the abelian
patterns, the order of the characters in the patterns is irrelevant (just like in
the case of a permutation the order of the elements is irrelevant), however,
unlike the permutations, the same characters may appear multiple times in
the abelian patterns (e.g. accg and acgc represent the same abelian pattern
that comprises of two occurrence of the character c and one occurrence of
each of the characters a and g).
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The abelian patterns have already been studied in the context of pattern
discovery [12, 23, 24, 28]. In this thesis, we study the problem of abelian

pattern matching in strings, which has not been studied systematically
so far. We develop several algorithms for exact as well as approximate abelian
pattern matching in strings and suggest different indexing strategies to pre-
process the input text in order to make the abelian pattern matching more
efficient.

1.1 Overview of the Thesis

The thesis is organized as follows: In the rest of this chapter, we define the
problem of abelian pattern matching in strings in a formal manner and shed
light on several combinatorial properties of the abelian patterns that we use
later in the thesis.

In Chapter 2, we discuss several algorithms for abelian pattern matching
that do not require preprocessing of the text. We present two fundamental
approaches, the prefix based approach and the suffix based approach, to
solve the problem of online abelian pattern matching. Later in the chapter,
we present a parametrized suffix based algorithm for online abelian pattern
matching that is an improvement over the original suffix based algorithm for
abelian pattern matching in worst case situations. We also give a tight lower
bound for the problem of online abelian pattern matching in the chapter.

In Chapter 3, we consider the problem of abelian pattern matching for the
case when the input text is known beforehand; and we can pre-process the
input text to make the process of abelian pattern matching more efficient. We
discuss how an existing indexing scheme, the parikh index, can be adapted
for the problem of abelian pattern matching. We also present a new data-
structure , the abelian tree, for indexing the input text; and shed light on the
tradeoff between the storage requirement and the query processing time for an
abelian tree in contrast to different data-structures that are used for storing
the outgoing edges at the internal nodes of the tree. Finally, we present
an abelian tree with alternating levels to avoid the overhead of keeping the
unnecessary edges when the size of the alphabet is large.

In Chapter 4, we consider the problem of finding the approximate abelian
matches of a given abelian pattern. We define three error models, the substi-
tution error model, the insertion/deletion error model and the minimum op-
erations error model, to measure the degree of approximation in the matching
substrings of a given abelian pattern. The substitution error model focuses
on the approximate abelian matches of the fixed length m (where m is the
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length of the abelian pattern to be found), whereas the other two models al-
low for the matches of lengths other than m too. For all three error models,
we present algorithms for online approximate abelian pattern matching in
the chapter.

Finally, in Chapter 5, we discuss the contribution of our work, and con-
clude the thesis with pointers to further research possibilities.

1.2 Abelian Pattern Matching

The problem of Abelian Pattern Matching differs from Classical Pattern
Matching in the sense that in case of classical pattern matching we seek
for exact occurrences of a pattern substring in the given input string, and
the order of the characters in the pattern substring is preserved while look-
ing for a match. In case of abelian pattern matching, however, the order of
the characters in the pattern substring does not matter. Hence ‘abc’ and
‘bac’ are considered matching (abelian) substrings. Here we are not looking
for an exact (ordered) occurrence of a substring, rather we want to find any
permutation of a given combination of characters that forms our pattern
substring.

1.2.1 Formal Problem Definition

Formally, given an alphabet Σ, an abelian pattern is a function P : Σ → N

that assigns a multiplicity to each character in Σ. We set ΣP := {c ∈ Σ :
P (c) > 0}, the set of characters occurring in the pattern, and call |ΣP | the
size of the pattern. We write the pattern symbolically as P =

∑

c∈Σ mc c,
where mc = P (c) denotes the multiplicity of character c in the pattern.
We call m := |P | :=

∑

c∈ΣP
mc the length of the pattern. For example,

over the alphabet Σ = {a, b, c, d}, the strings abcb and bbca match the same
abelian pattern P = (1, 2, 1, 0) (function specification in lexicographic order)
or P = 1a + 2b + 1c + 0d = a + 2b + c (symbolic sum specification).

Given an abelian pattern P and a text T ∈ Σn, the abelian pattern match-
ing problem is to find all occurrences of P in T , i.e. all positions of sub-
strings S = Ti...Tj with j − i + 1 = |P | such that the frequency of each
character in S matches the specified frequency of that character in P . For
T = ababcccabaccbacdddba, the pattern P = 2a + b + 3c occurs at positions
3, 5 and 10.

3



1.2.2 Properties of Abelian Patterns

Abelian patterns are quite different from normal classical patterns. In this
section we shed light on properties of abelian patterns.� The number of the abelian patterns/strings of length m over an alpha-

bet Σ can be viewed as the number of integer solutions to the equation

x1 + · · ·+ x|Σ| = m

under the condition that xi ≥ 0 for all i = 1, . . . , |Σ|. This number
is
(

|Σ|+m−1
m

)

[22]. Note that, for large values of m, this number is
significantly smaller than the number of classical patterns of length m
over the alphabet Σ, which is |Σ|m. This is because of the fact that an
abelian pattern can be spelled by more than one strings.� Let SP be the set of all strings that match an abelian pattern P , then
we call SP the pattern set of P and |SP | the size of the pattern set of

P . For an abelian pattern P =
∑|Σ|

i=1 mci
ci of length m, the size of its

pattern set can be computed as the multinomial coefficient:

|SP | =

(

m

mc1, . . . , mc|Σ|

)

4



Chapter 2

Online Abelian Pattern
Matching

2.1 Introduction

In this chapter we discuss several algorithms for abelian pattern matching
that do not require preprocessing of the text. In these algorithms, as in many
other classical pattern matching algorithms [7, 21, 26], a sliding window of
length m is moved along the input text T and checked for a possible pattern
match.

The chapter is organized as follows: We begin with the description of the
problem and give several related definitions in Section 2.2. In Section 2.3,
we describe the general strategy and basic assumptions that we use in the
algorithms presented in the chapter. Section 2.4 is about a prefix based
algorithm for abelian pattern matching. In Section 2.5, we present a suffix
based, Horspool type algorithm for abelian pattern matching. Section 2.6
sheds light on several lower bounds for online abelian pattern matching.
In Section 2.8, we give a parameterized suffix based algorithm for abelian
pattern matching, to improves the time complexity of the original suffix
based algorithm in the worst case scenario. We conclude the chapter in
Section 2.10.

2.2 The Problem

We are given an abelian pattern P =
∑σ

i=1 mci
ci defined over an alphabet Σ

with σ := |Σ|, and the task is to find all the starting positions of the strings
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corresponding to P in an input text T ∈ Σn.

Some Related Definitions

Here we give several definitions that we use later in the chapter.

Definition 1. An abelian pattern P ′ =
∑σ

i=1 m′
ci

ci is an abelian sub-pattern
of another abelian pattern P =

∑σ
i=1 mci

ci if and only if m′
ci
≤ mci

for all
i = 1, 2, . . . , σ. Symmetrically, P is called an abelian super-pattern of P ′.

Definition 2. Given an abelian pattern P =
∑σ

i=1 mci
ci and its abelian sub-

pattern P ′ =
∑σ

i=1 m′
ci

ci, the abelian pattern D(P,P ′) :=
∑σ

i=1 (mci
−m′

ci
) ci

is called the difference pattern between P and P ′.

Definition 3. Given an abelian pattern P =
∑σ

i=1 mci
ci, the multiset {mci

| ci ∈
ΣP} denoted by MP is called the multiplicity set of P .

Observation 1. The length-j abelian sub-patterns of an abelian pattern P
of length m have a many-to-one relationship with the integer partitions [2]
of m − j. For each partition λ of m − j, there exists a distinct class Cλ

comprising of (zero or more) length-j abelian sub-patterns of P such that the
elements of MD(P,P ′)

have a one-to-one correspondence with the elements of
λ for each P ′ ∈ Cλ.

Example: Given an abelian pattern P = 3a+2b+2c with m = 7, following
are its length-4 abelian sub-patterns:

P ′
1 = 2a + b + c P ′

2 = 2a + 2b
P ′

3 = 2a + 2c P ′
4 = 3a + b

P ′
5 = a + b + 2c P ′

6 = 3a + c
P ′

7 = a + 2b + c P ′
8 = 2b + 2c

and following are the integer partitions of 3 = 7− 4 :

3 = 3 (call this partition λ1)
= 2 + 1 (call this partition λ2)
= 1 + 1 + 1 (call this partition λ3)

The length-4 abelian sub-patterns of P are classified as under:

Cλ1 = {P ′
8}, as

λ1 = 3 ; and
l

MD(P,P ′
8) = { 3 }

6



Figure 2.1: A window of length m is slid along the text

Cλ2 = {P ′
2, P

′
3, P

′
4, P

′
5, P

′
6, P

′
7}, as

λ2 = 2 + 1 ; and
l l

MD(P,P ′
i
)

= { 2 , 1 } for 2 ≤ i ≤ 7

Cλ3 = {P ′
1}, as

λ3 = 1 + 1 + 1 ; and
l l l

MD(P,P ′
1)

= { 1 , 1 , 1 }

Note that in case of length-3 abelian sub-patterns of P , if λ specifies the
partition 4 = 4, then Cλ is empty.

2.3 General Strategy

In the algorithms presented in this chapter, we slide a window of length m
along the input text T , and check the window for a possible pattern match
(Figure 2.1). We use three approaches for the procedure of checking for a
possible pattern match inside the window:

Prefix based approach. In this approach we read the characters in the
window one by one starting from the left end of the window. So at any
time we have information about a prefix of the window.

Suffix based approach. Here we read the characters in the window one by
one starting from the right end of the window. So at any time we have
information about a suffix of the window. This approach may allow to
skip some text characters from processing.

Parameterized suffix based approach. We use the suffix based approach
in a parameterized manner; and at any point in time, we have infor-
mation about at most two factors of the window.
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In all the algorithms presented in this chapter, we use a frequency vector
CFV (current frequency vector) which keeps the count of the characters read
in the current window, and another frequency vector PFV (pattern frequency
vector) which contains the count of the characters in the abelian pattern that
is to be found. Both CFV and PFV can be implemented using linked lists,
sorted arrays or directly accessible arrays. For a directly accessible array, the
cost of query and increment/decrement operations in these vectors is O(1) in
the RAM model, and the memory requirement depends on the perfect hash
function used for the direct accessibility feature; for a minimal perfect hash
function [5, 6, 9, 27], the memory requirement is O(σ). From now onwards we
assume that their exists a minimal perfect hash function ρ for the characters
in Σ, and both CFV and PFV are maintained as directly accessible arrays
of size σ. Note that for the alphabets of English language, ρ is quite simple;
it just subtracts a constant from the ASCII values of the characters.

2.4 Prefix Based Algorithm

In the prefix based algorithm, we set a window of size m at the beginning of
the input text T and process the characters in the window in a prefix based
manner. After we have processed the last character in the window, we check
the current window for a match with the given pattern P. After that, the
window is slid towards right by one position and checked again for the match.
This way the window is slid through the whole text. As the m − 1 length
suffix of the current window equals the m − 1 prefix of the next window,
we construct the next window from the immediately preceding window in
constant time. Pseudo code of this algorithm is presented in Algorithm 1.

In the first phase of this algorithm we initializeCFV with the first m char-
acters of T . We also initialize the mismatch for this CFV , where mismatch
counts the number of differences between CFV and PFV . If mismatch
is zero, this indicates that CFV is same as PFV and we output the first
position of the text as starting position of a matching abelian pattern.

In the next phase, we proceed incrementally. We slide the window towards
right by one position and update the contents of CFV with respect to the new
window. Note that the new current window is different from the preceding
window at two places. The first character of the previous window (call this
character x) is not present in the current window; and the last character of
the current window (call this character y) was not present in the previous
window (Figure 2.2). If x is the same character as y, then the old contents
of CFV also valid for the current window. However, if x is not the same
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Algorithm 1 Prefix based Abelian Pattern Matching

Input: A pattern P of length m, a text stream T = T [1] . . . T [n] and a hash
function ρ

Output: Positions where the abelian pattern P begins in T

⊲ Build current frequency vector (CFV ) for the first m characters
1: for i = 1 to σ do
2: CFV [i]← 0
3: for i = 1 to m do
4: CFV [ρ(T [i])]← CFV [ρ(T [i])] + 1

⊲ Calculate the number of mismatching characters between the current
window and the given pattern

5: mismatch← 0
6: for i = 1 to σ do
7: if CFV [i] 6= PFV [i] then
8: mismatch← mismatch + 1
9: if mismatch = 0 then

10: output 1
11: i←2
12: while i ≤ n−m + 1 do
13: if T [i− 1] 6= T [i + m− 1] then

14: Decrement CFV [ρ(T [i− 1])] by 1
15: if CFV [ρ(T [i− 1])] = PFV [ρ(T [i− 1])] then
16: mismatch← mismatch− 1
17: else if CFV [ρ(T [i− 1])] = PFV [ρ(T [i− 1])]− 1 then
18: mismatch← mismatch + 1

19: Increment CFV [ρ(T [i + m− 1])] by 1
20: if CFV [ρ(T [i + m− 1])] = PFV [ρ(T [i + m− 1])] then
21: mismatch← mismatch− 1
22: else if CFV [ρ(T [i+m−1])] = PFV [ρ(T [i+m−1])]+1 then
23: mismatch← mismatch + 1

24: if mismatch = 0 then
25: output i
26: i← i + 1

9



previous window

current window

y:

x: the character removed from the current window

new character included in the current window

�
�
�
�

��
��
��

��
��
��

Figure 2.2: The current window removes one character of the previous win-
dow and includes one character that was not present in the previous window.
The shaded area is the common part between the previous window and the
current window.

as y, then we have to update the contents of CFV with respect to the new
window.

As the current window does not contain the first character of the previous
window, we decrement the frequency of x by 1 in CFV (Line 14 ). Now we
see the effect of this change in the contents of CFV on the value of mismatch
(recall that mismatch contains the number of differences between CFV and
PFV ).

Let the difference in the frequency of x in CFV and the frequency of x
in PFV be dx after the decrement operation has been performed on x.� If dx = 0, then it indicates that, before the decrement operation, the

frequency of x in CFV was different from the frequency of x in PFV
and therefore, a difference had been reported due to the character x
during the computation of the existing value of mismatch. Now as the
frequency of x in CFV equals the frequency of x in PFV after the
decrement operation, we also decrement the value of mismatch by 1 in
line 16.� If dx = −1, then it indicates that, before the decrement operation, the
frequency of x in CFV was equal to the frequency of x in PFV and
therefore, no difference was reported due to the character x during the
computation of the existing value of mismatch. As, after the decre-
ment operation, the frequency of x in CFV becomes different from the
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frequency of x in PFV , the number of elements having a difference
between their respective frequencies in CFV and PFV is increased by
1. So we increment the value of mismatch by 1 in line 18.� In all the other situations, the decrement in the frequency of x in CFV
does not affect the value of mismatch. For example, if dx > 0 or
dx < −1, then it indicates that, before the decrement operation, the
frequency of x in CFV was already different from the frequency of x
in PFV and therefore, a difference has already been reported due to
the character x during the computation of the value of mismatch.

Similarly, as the current window includes a new character that was not
part of the previous window, we increment the frequency of this new character
y by 1 in CFV (Line 19 ). After that, we see the effect of the modification
in the contents of CFV on the value of mismatch.

Let the difference in the frequency of y in CFV and the frequency of y
in PFV be dy after the increment operation has been performed on y.� If dy = 0, then it indicates that, before the increment operation, the

frequency of y in CFV was different from the frequency of y in PFV
and therefore, a difference had been reported due to the character y
during the computation of the existing value of mismatch. Now as the
frequency of y in CFV equals the frequency of y in PFV after the
increment operation, we decrement the value of mismatch by 1 in line
21.� If dy = 1, then it indicates that, before the increment operation, the
frequency of y in CFV was equal to the frequency of y in PFV and
therefore, no difference was reported due to the character y during the
computation of the existing value of mismatch. As, after the incre-
ment operation, the frequency of y in CFV becomes different from the
frequency of y in PFV , the number of elements having a difference
between their respective frequencies in CFV and PFV is increased by
1. So we increment the value of mismatch by 1 in line 23.� In all the other situations, the increment in the frequency of y in CFV
does not affect the value of mismatch. For example, if dy > 1 or dy < 0,
then it indicates that, before the increment operation, the frequency of
y in CFV was already different from the frequency of y in PFV and
therefore, a difference has already been reported due to the character
y during the computation of the value of mismatch.
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If the updated value of mismatch is equal to zero, this means the sub-
string contained in the current window corresponds to the given abelian
pattern P ; so we output the starting position of the current window as the
beginning position of a matching abelian pattern in the input text (Line 25 ).

2.4.1 Time Complexity

The initialization of CFV in the for loop of line 1-2 and then in the for loop
of line 3-4 is done in O(σ + m) time. The value of mismatch is computed
in the for loop of line 6-8 in O(σ) time.

The while loop of line 12-26 has O(n) iterations, and one iteration of the
while loop requires O(1) time, so the total time complexity of the while loop
is O(n).

Hence the total time complexity of the algorithm is Θ(σ+m+n) = Θ(n).

2.4.2 Space Complexity

The algorithm uses two frequency vectors, CFV and PFV each requiring
Θ(σ) storage; and one integer variable mismatch. Hence the space complex-
ity of this algorithm is Θ(σ), in addition to the space required for the input
and the output.

2.5 Suffix Based Horspool Type Algorithm

This algorithm is an adaptation of Horspool [21] type algorithms. Instead of
reading the characters from the left towards the right, we read the characters
from the right towards the left in the search window. While reading the
characters from the right towards the left inside a window, as soon as an
overflow of frequency in CFV occurs (i.e. the frequency of a character in
CFV exceeds the specified frequency of the same character in PFV ), we
stop reading further in the window; as the current window cannot contain
the given pattern P .

Observation 2. Let S be the read suffix of a window after an overflow has
occurred (the overflow character is the first character of S), then no substring
of T that contains S, is a matching pattern.

In the light of Observation 2, we can safely shift the current window
towards the right such that the position of the second character of the read
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suffix becomes the starting position of the new window. Figure 2.3 illustrates
the phenomenon of shifting a window after an overflow has occurred. After a
window shift, we reset the contents of CFV (i.e. CFV [i] = 0 for all i, 1 ≤
i ≤ σ), and CFV corresponds to a new, blank window.

By using the technique of safely shifting the windows, we can skip sev-
eral characters from processing (the shaded area in the previous window in
Figure 2.3). However, there is also a danger of reading several characters
multiple times if the overflow occurs very late in a window. Figure 2.4 illus-
trates this situation. Hence, the suffix based algorithm for abelian pattern
matching is efficient only if the sparseness of matches holds (i.e. only a few
substrings of the input string match to a given abelian pattern), because
if this is not the case (i.e. the number of matches is significant) then the
overflows will not occur frequently and this algorithm will not benefit much.

As mentioned earlier, after shifting a window after an overflow, we reset
the content of CFV . A naive way to reset CFV after an overflow, is to
blindly set the value of each element of CFV to zero; however, as the size
of CFV is σ, this procedure requires O(σ) time. Note that the only non-
zero elements in CFV are those which correspond to the characters read
in the suffix of the previous window, and the number of these characters is
O(m). So, we maintain a list RCList (read characters list) that keeps all the
distinct characters that are read in a window; and when an overflow occurs,
we set the value of only those element of CFV to zero which are in RCList.
Note that under the suffix based approach, the number of elements in RCList
at any time is O(σP ) (where σP is the number of distinct characters in P ).
With the help of RCList, CFV is reset in time O(σP ) which is in O(m).

If we read all the character of a window without encountering an overflow,
then we call this window a safe window.

Definition 4. A safe window is a window of length m (where m is the length
of the abelian pattern P ), such that no overflow is occurred while reading the
characters of the window.

Lemma 1. A safe window contains contains the abelian pattern P .

Proof. Let S be a safe window and let CFVS be the frequency vector cor-
responding to S. Let PFV be the frequency vector of the abelian pattern
P .

We assume that S does not contain the abelian pattern P ; this implies, there
exists some j (1 ≤ j ≤ σ), such that CFVS[j] 6= PFV [j].
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Figure 2.3: An overflow occurred while reading the window, and the window
is shifted next to the position of the overflow character. The shaded area in
the previous window shows the characters skipped from being processed due
to the shifting of the window. Note that the current window is blank, i.e. it
does not contain any information about the characters read in the previous
window.
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Figure 2.4: An overflow occurs very late in window 1, and several character
that were read in window 1 had to be read again in window 2 before an
overflow occurred in window 2.

14



Now we have the following information:

σ
∑

i=1

PFV [i] = m [as the length of P is m] (2.1)

CFVS[i] ≤ PFV [i] for all i, 1 ≤ i ≤ σ [as S is a safe window] (2.2)

There exist some j (1 ≤ j ≤ σ), such that CFVS[j] 6= PFV [j] (2.3)

From (2.2) and (2.3), we can deduce:

There exist some j (1 ≤ j ≤ σ), such that CFVS[j] < PFV [j] (2.4)

And from (2.2) and (2.4), it comes that

σ
∑

i=1

CFVS[i] < m (2.5)

However, this is a contradiction, as, by definition, the length of S is m.
Hence, S contains the abelian pattern P .

Hence, whenever we encounter a safe window during the execution of the
algorithm, we output the starting position of that window as the beginning
location of a matching abelian pattern in T . Pseudo code of the suffix based
algorithm for abelian pattern matching is presented in Algorithm 2.

In the for loop of line 1-2, we initialize the vector CFV and in line 3, we
initialize the linked list RCList.

In the while loop of line 5-20, we move the sliding window along the input
text. In line 6 we reset the overflow flag and in line 7 we set the pointer j
to the last character of the current window.

In the while loop of line 8-14, we read characters in the current window, in a
right to left direction, starting from the last character of the current window.
After reading a character, we increment the frequency of the character by 1
in CFV (line 9 ), and if the current character is read first time in the current
window, then we also insert it in RCList (line 11 ). After that, we check
whether the current character is an overflow character line 15, and if there is
an overflow, then we set the overflow flag (line 13 ) to stop reading further
in the window.
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Algorithm 2 Suffix based Abelian Pattern Matching

Input: A pattern P of length m, a text stream T = T [1] . . . T [n] and a hash
function ρ

Output: Starting positions of the abelian pattern P in T

1: for i = 1 to σ do
2: CFV [i]← 0
3: RCList← ∅
4: i← 1
5: while i ≤ n−m + 1 do
6: overflow ← 0
7: j ← i + m− 1
8: while j ≥ i and overflow = 0 do
9: Increment CFV [ρ(T [j])] by 1

10: if CFV [ρ(T [j])] = 1 then
11: insert T [j] in RCList
12: if CFV [ρ(T [j])] > PFV [ρ(T [j])] then
13: overflow ← 1
14: j ← j − 1
15: if overflow = 0 then
16: output i
17: i← j + 2
18: for all c ∈ RCList do
19: CFV [ρ(c)]← 0
20: remove c from RCList
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After we have finished reading inside the current window, if the current
window is found to be a safe window (line 15 ), then we output the starting
position of the current window (line 16), because it contains a matching
abelian pattern (Lemma 1).

In the last, we slide the window towards right in line 17 :� If the window is a safe window, then we shift the window towards right
by one position (as j = i− 1 in this case, so i = j +2 means i = i +1).� And if an overflow has occurred in the while loop of line 11-17 then we
move the starting position of the window next to the overflow character
(j points to the character before the overflow character in this case).

After shifting the window, we remove all the characters read in the previous
window from CFV in the for loop of line 18-20.

This way, we slide the window along the whole text and report the occur-
rence of a matching abelian patterns whenever we encounter a safe window.

2.5.1 Time Complexity

The for loop of line 1-2 requires O(σ) time. The while loop of line 5-22 is
the main loop of the algorithm. The time complexity of one iteration of the
main while loop depends on the time complexity of the while loop of line
8-14.

The time complexity of the while loop of line 8-14 ranges between Ω(1)
(when an overflow occurs after reading a constant number of characters in
the current window) and O(m) (when an overflow occurs very late in the
window or it does not occur at all).

The time complexity of the for loop of line 18-20 in an iteration of the main
while loop is proportional to the complexity of the while loop of line 8-14
of that iteration, as the for loop removes the effect of only those characters
from CFV in an iteration of the main while loop, which are read earlier in
the while loop of line 8-14 of that iteration.

The number of iterations of the main while loop ranges between Ω(n/m)
(if the window is shifted towards right by O(m) positions (line 17 ) in each
iteration of the main while loop) and O(n) (if the window is shifted towards
right by O(1) positions (line 17 ) in each iteration of the main while loop)
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Best Case Time Complexity of the Algorithm

The best case occurs when, on average, we detect an overflow after reading a
constant number of characters in each window; thus giving a best case time
complexity of Ω(n/m).

Worst Case Time Complexity of the Algorithm

The worst case complexity of this algorithm is O(nm), as we may need to
read each character m times, i.e. the main while loop has O(n) iterations
and the time complexity of each iteration is O(m).

Average Time Complexity of the Algorithm

The average case analysis of this algorithm depends heavily on the abelian
pattern P . We begin with a lemma.

Lemma 2. If on average we read ǫm characters in each window, then the
time complexity of the suffix based abelian pattern matching is O( nǫ

1−ǫ
).

Proof. We read ǫm characters in the window and advance the window by
(1 − ǫ)m + 1 positions. This gives us an O( ǫ

1−ǫ
) cost for processing one

character, and for the whole text this cost becomes O( nǫ
1−ǫ

).

Theorem 1. Let us assume that P is fixed and that the characters of the
input text are independently and identically distributed, with probability 1/σ
for each character at each position. Then the average case time complexity
of the suffix based abelian pattern matching algorithm is

O

(

n
∑m−1

k=0 |ASP(P, k)|/σk

m−
∑m−1

k=0 |ASP(P, k)/σk|

)

where ASP(P, k) denotes the set of strings of length k that match abelian
sub-patterns of P .

Proof. If the overflow occurs after exactly k characters, we have read k char-
acters and advanced the window by m− k + 1 characters. Let J denote the
random variable that describes the number of characters read in a window.
Thus on average, in each iteration of the algorithm, the window is advanced
by m + 1− E[J ] characters while examining E[J ] characters.
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The probability that an overflow occurs after ≤ k characters equals the
probability that the rightmost k characters in the window are not an abelian
sub-pattern of P :

P(J ≤ k) = 1− |ASP(P, k)|/σk

and

E[J ] =

m
∑

k=0

k P(J = k)

=

m
∑

k=1

P(J ≥ k)

=

m
∑

k=1

[1− P(J ≤ k − 1)]

=

m−1
∑

k=0

|ASP(P, k)|/σk

As E[J ] = ǫm in Lemma 2, therefore,

ǫ =
1

m

m−1
∑

k=0

|ASP(P, k)|/σk

By substituting the value of ǫ in Lemma 2, the average case time com-
plexity of the suffix based algorithm for abelian pattern matching is:

O

(

n
m

∑m−1
k=0 |ASP(P, k)|/σk

1− 1
m

∑m−1
k=0 |ASP(P, k)/σk|

)

= O





n
m

∑m−1
k=0 |ASP(P, k)|/σk

m−
Pm−1

k=0 |ASP(P,k)/σk|

m





= O

(

n
∑m−1

k=0 |ASP(P, k)|/σk

m−
∑m−1

k=0 |ASP(P, k)/σk|

)

Now we show how |ASP(P, k)| can be computed by using the partitions
of k̄, where k̄ := m − k. Recall that the length-k abelian sub-patterns of
an abelian pattern P of length m have a many-to-one relationship with the
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integer partitions of k̄; and for each integer partition λ of k̄, there exists a
distinct class Cλ of length-k abelian sub-patterns of P (Observation 1).

We can generate the integer partitions of k̄ by using any algorithm for gen-
erating integer partitions [13, 14, 39, 40]. For a partition λ := 〈1α1 , 2α2, . . . , k̄αk̄〉 ⊢
k̄ (that is, k̄ = α11 +α22+ · · ·+αk̄k̄), we construct the abelian sub-patterns
belonging to Cλ, and compute |SP ′| for all P ′ ∈ Cλ. Recall that SP ′ is the
set of all strings corresponding to the abelian pattern P ′, and |SP ′| is com-
puted using the multinomial coefficient (Section 1.2.2). We sum SP ′ for all
P ′ ∈ Cλ. By iterating this procedure over all the partitions of k̄, we obtain
|ASP(P, k)|. That is,

|ASP(P, k)| =
∑

all λ ⊢ k̄

∑

P ′∈Cλ

|SP ′|

The procedure for computing the value of |ASP(P, k)| is outlined in Algo-
rithm 3.

In line 1 of the algorithm, we initialize the variable n that is to be used
for storing the value of |ASP(P, k)|. In each iteration of the for loop of line
2-5, we compute the number of strings corresponding to the abelian patterns
in Cλ and add it to the existing value of n. When the for loop of line 2-5 is
terminated, n contains the value of |ASP(P, k)|.

The main processing of Algorithm 3 is done in the Partition sub-routine. The
sub-routine computes the number of strings corresponding to the abelian pat-
terns in Cλ for a given integer partition λ := 〈1α1 , 2α2 , . . . , k̄αk̄〉 ⊢ k̄ (that
is, k̄ = α11 + α22 + · · ·+ αk̄k̄). In other words, we compute

∑

P ′∈Cλ
|SP ′| for

a given λ, in the Partition sub-routine.

In line 1 of the sub-routine, we select all those characters in P for which a
value of l can be deducted from their multiplicities. If the number of such
characters is less than αl, we cannot decrement the multiplicities of the char-
acters according to the given partition λ; hence cannot generate any length-k
abelian sub-patterns of P corresponding to λ (i.e. Cλ is empty). At line 4,
we initialize the variable num, which is used to store the number of strings
corresponding to the abelian pattern in Cλ. At line 5, we have an abelian
pattern of length m′ (m′ = m if this is the first call of the sub-routine), and
we fix exactly αl characters from the characters that were selected at line 1.
At line 6, we create a local copy of the abelian pattern received from the
calling program. In the for loop of line 7-8, we decrement the multiplicities
of the characters by l that were fixed at line 5. By doing so, we obtain an
abelian pattern of length m′ − αll.

After that, we recursively call the sub-routine, with the new abelian pattern
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Algorithm 3 Algorithm for computing |ASP(P, k)|

Main Algorithm

Input: k̄ := m− k; abelian pattern P =
∑σ

i=1 mci
ci of length m

Output: Number of strings in Σk that match abelian sub-patterns of P

1: n← 0
2: for each integer partition λ of k̄ do
3: C ← {c1, . . . , cσ}
4: M← {mc1, . . . , mcσ} (where mci

is the multiplicity of ci in P )
5: n← n+ Partition (k̄, λ,M, C)
6: return n

Partition (l, λ, C, M)

1: C ′ ← {ci ∈ C |mci
≥ l}

2: if |C ′| < αl then
3: return 0
4: num← 0
5: for each distinct Csub = {c1, c2, . . . , cαl

} ⊆ C ′ do
6: M ′ ← {m′

ci
; such that m′

ci
= mci

∈M for 1 ≤ i ≤ σ)
7: for each c ∈ Csub do
8: m′

c ← m′
c − l

9: if l = 1 then
10: num←

(

k
mc′1

,...,mc′σ

)

11: else
12: num← num+ Partition(l − 1, λ, C \ Csub, M

′)
13: return num

of length m′−αll (line 12 ). While recursively calling the sub-routine, we also
remove the character fixed at line 5 from the set of characters whose multi-
plicities can be modified in the subsequent recursive executions of Partition.
This means, in each path for the root to the leaf node of the recursion tree of
the sub-routine, the multiplicity of a character is decremented at most once.

If l = 1, we have obtained an abelian pattern of length m − k̄ = k, and in
line 10, we compute the number of strings that correspond to this length-k
abelian pattern.

After a brief description of the working of Partition, now we present a
panoramic view of the sub-routine.

Partition is a recursive sub-routine and it receives as argument:
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� an integer l,� an integer partition λ of k̄,� an abelian pattern P ′ of length m′, and� a set of characters C , such that the multiplicity of a character ch can
be modified in the sub-routine if and only if ch ∈ C .

In the sub-routine, we generate all the distinct abelian sub-patterns of
P ′ of length m′ − αll, by decrementing a value of l in the multiplicities of
exactly αl characters (this is done in the for loop beginning at line 5 of the
sub-routine).

The sub-routine then calls itself in a recursive manner, each time decreasing
the value of l by 1.

The recursion stops when the value of l becomes 1.

Observation 3. The depth of the recursion tree of the sub-routine Partition
is k̄. This is because of the fact that, in the first call of the sub-routine l = k̄,
in each subsequent call to the sub-routine the value of l is decremented by 1,
and the recursion stops when the value of l becomes 1.

Lemma 3. Let mi denotes the length of the abelian pattern received as ar-
gument at the beginning of the calls to the sub-routine at ith (i ≤ k̄) level of
the recursion tree; then

mi = m− (
k̄
∑

l=k̄−i+2

αll)

Proof. As explained before, Partition receives as argument an abelian pat-
tern P ′ of length m′, and it generates the abelian sub-patterns of P ′ of length
m− αll.

For the first call of Partition (which is made at line 5 of the main algorithm),
P is the abelian pattern received as argument, and m = |P |. Moreover, l = k̄
in the first call to Partition.
So we generate the abelian sub-patterns of P of length m − αk̄k̄ in the first
execution of Partition; and in the recursive calls to Partition (line 12 of
the sub-routine) that correspond to the second level of the recursion tree, we
pass abelian patterns of length m − αk̄k̄ as argument. Moreover, l = k̄ − 1
in these calls to Partition.

The value of l for the recursive call to Partition at the i − 1st level of the
recursion tree, is k̄ − (i− 1) + 1 = k̄− i + 2 (as the value of l is decremented
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by 1 in each subsequent recursive call to Partition, and l = k̄ in the first call
to Partition).
Therefore, in the recursive calls to Partition at ith level of the recursion tree,
we pass abelian patterns of length mi−1 − αk̄−i+2 k̄ − i + 2 as argument.

Now we have
mi = mi−1 − αk̄−i+2 k̄ − i + 2

By a similar argument

mi−1 = mi−2 − αk̄−i+3 k̄ − i + 3

...

m2 = m1 − αk̄k̄

m1 = m

By substitution, we get

mi = m− (
k̄
∑

l=k̄−i+2

αll)

Corollary 1. The length of the abelian sub-patterns generated by Partition,
when the sub-routine is called at the last (k̄th) level of the recursion tree, is

k. This is because of the fact that mk̄ = m− (
∑k̄

l=2 αll) (Lemma 3), and the
length of the abelian sub-pattern generated in the execution of the sub-routine
is mk̄ − α11 (as l = 1 at the k̄th level of the recursion tree).

In the final recursive calls (the calls corresponding to the k̄th level of the
recursion tree) to Partition, we generate length-k abelian sub-patterns of P
(Corollary 1); and then we compute the number of strings corresponding to
these abelian pattern using the multinomial coefficient (line 10 of the sub-
routine). This number is returned to the calling Partition sub-routine in
line 13.

We sum over all the values returned by Partition (line 12 ) and this gives us
the number of strings corresponding to the k-length abelian sub-patterns of P
that are member of Cλ. And finally this value is returned by the sub-routine,
that was invoked from the main algorithm (i.e. the call to Partition that
corresponds to the 1st level of the recursion tree), to the calling statement in
the main algorithm (line 5 of the main algorithm). Figure 2.5 illustrates the
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working of the Partition sub-routine.

We compute the value of |ASP(P, k)| by summing over all the values returned
by Partition to the main algorithm (line 5 of the main algorithms), for all
integer partitions of k̄; and finally, we return the value of |ASP(P, k)| in line
6 of the main algorithm.

A Simple Algorithm to Compute |ASP(P, k)|: After the design of
the above mentioned algorithm to compute |ASP(P, k)|, through an infor-
mal communication, we received a simpler idea to compute the value of
|ASP(P, k)|. In the following, we sketch that simple algorithm to compute
|ASP(P, k)| (note that this algorithm is not part of this PhD work; and to
the best of our knowledge, it has not been published elsewhere).

The Notion: An abelian pattern is a tuple P = (P1, . . . , Pn),
where P1, . . . , Pn represent the character multiplicities. n is the
size of the pattern and m :=

∑n
i=1 Pi is the length of the pattern.

A partial pattern is a subtuple of P , e.g. Pi,...,j := (Pi, . . . , Pj) is
a partial pattern of P .

Computation of Number of Abelian Sub-patterns: Let
c(P, j) denotes the number of abelian sub-patterns that have
length j, then c(P, j) can be computed recursively:

c(P, j) =

{

1 if n ≤ 1
∑min(j,P1)

i=max(0,j−m+P1) c(P2,...,n, j − i) otherwise

The idea is to compute the allowed range of multiplicities for P1

and iterate over this range. In each step, the multiplicity for P1 is
fixed to i and the number of (j − i)-length sub-patterns of P2,...,n

is computed recursively.

To compute the value of |ASP(P, k)|, we pass a local copy of the modified
multiplicities of the characters on each recursive call and at the end of the
recursion process (the case when n ≤ 1), instead of returning 1, we compute
the number of the strings corresponding to the abelian sub-pattern using the
multinomial coefficient based on the modified multiplicities of the characters,
and return this number.
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Figure 2.5: The recursion tree of the sub-routine, Partition. Each node
represents a call to Partition and the value in the square bracket in a node
represents the value of the argument l in that call to Partition. On the
right hand side of the figure, the length of the pattern that is received as
argument by Partition is mentioned, for the calls to Partition at different
levels of the recursion tree. The leaf nodes of the tree (the calls to Partition

at k̄th level) receive as argument abelian patterns of length m− (
∑k̄

l=2 αll) =
k+α11; and generated the sub-patterns of length k. After that, the number of
strings corresponding to each k-length abelian pattern using the multinomial
coefficient. These values are returned to the calling sub-routine, which sums
over all the values returned from its child nodes. And finally, at the root
node, the sum, of all the values computed at the lead nodes, is returned to
the main algorithm.
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2.5.2 Space Complexity

The algorithm uses two frequency vectors, CFV and PFV , a list RCList,
and a constant number of variables. Both CFV and PFV require Θ(σ)
storage, and RCList requires O(σP ) storage. Hence the space complexity of
this algorithm is Θ(σ), in addition to the space required for the input and
the output.

2.6 Lower Bounds

The following can be stated regarding the lower bounds for online abelian
pattern matching.

Theorem 2. A lower bound for best case time complexity of any oblivious
algorithm of abelian pattern matching in a given text of length n with pattern
size m is Ω(⌊n/m⌋).

A lower bound for worst case time complexity of any oblivious algorithm
of abelian pattern matching in a given text of length n with pattern size m is
Ω(n).

Proof. The best case bound is straight forward using a classical adversary
argument.

For the worst case bound, assume that there exists an abelian pattern
matching algorithm A that processes less than n/k characters of the input
text, where k is an arbitrary constant. Given an abelian pattern P , consider
an input text T such that there are at least n/km non-overlapping matching
substrings in T . Then there exists at least one matching substring S in T
such that not all of its characters are processed by A. As the algorithm is
claimed to be correct, it must have output the starting position of S. Now if
we replace any of the unread characters of S with an invalid character c (i.e.
c /∈ ΣP ) the output of A should remain unaffected; hence A is not a correct
algorithm.

2.7 Empirical Analysis of the Prefix Based

and the Suffix Based Algorithms

We have given an insight into the time complexity of the suffix based algo-
rithm for abelian pattern matching in Section 2.5.1. However, the complexity
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analysis given in the section is purely theoretical, and it assumes only a uni-
form distribution of the characters of Σ for the input text T .

In this section, we do an empirical analysis of the abelian pattern match-
ing algorithms presented so far. The analysis is based on the actual CPU
time taken by the executions of the algorithms. The experiments were per-
formed on a computer having two “Intel® Core�2 Duo CPU E6750 @ 2.66
GHz” processors and 3.8 GiB memory, running Ubuntu 9.04.

We generated random texts comprising of 10000000 characters, for σ = 4 and
σ = 8. For each Σ, two types of random texts were generated: one based
on a uniform distribution of the characters of Σ and the other based on an
arbitrary non-uniform distribution of the characters of Σ.

We also used real text to compare the performance of the algorithms. The
real text used for the experiments, comprised of a collection of the plays of
famous English writer William Shakespeare; these plays are available in text
form on the web site http://shakespeare.mit.edu/. The real text was
pre-processed and all the punctuation marks and white spaces were removed
form the text. We also changed the upper case letters into lower case, thus
making σ = 26. The post-processed text comprised of 3712565 characters.

For the comparison of the respective performances of the prefix based
and the suffix based algorithms on the randomly generated input texts, we
generated a variety of abelian patterns. Among these abelian patterns, there
were patterns having frequency distribution of the characters very similar to
the distribution of the characters in the input text, and there were patterns
having frequency distribution of the characters very different from the dis-
tribution of the characters in the input text

For each abelian pattern, we performed 1000 iterations of each of the prefix
based and the suffix based algorithms and took the mean values of the CPU
time taken by the algorithms in 1000 iterations.

Following are the findings of the experiments on the random input texts:� The prefix based algorithm outperformed the suffix based algorithm
for abelian patterns whose characters had a frequency distribution sim-
ilar to the frequency distribution of the characters in the input text,
whereas, the suffix based algorithm outperformed the prefix based al-
gorithm for abelian patterns whose characters had a frequency dis-
tribution significantly different from the frequency distribution of the
characters in the input text.� The suffix to prefix CPU time ratio (“CPU time taken by the suffix
based algorithm / CPU time taken by the prefix based algorithm”)
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ranged form 3.17 to 0.02, i.e. in the worst case, the suffix based algo-
rithm was 3.17 times slower than the prefix based algorithm, whereas,
in the best case, the suffix based algorithm was 50 times faster than
the prefix based algorithm.� The suffix to prefix CPU time ratio showed an interesting behavior.
Let r be the suffix to prefix CPU time ratio of an abelian pattern P ,
then:

– If, by increasing the pattern length m of P (without changing the
underlying frequency distribution of the characters in P ), r also
increased; then for an abelian pattern P̂ having suffix to prefix
CPU time ratio r̂ > r, when the pattern length of P̂ was increased,
r̂ also increased.

– If, by increasing the pattern length m of P (without changing
the underlying frequency distribution of the characters in P ), r
decreased; then for an abelian pattern P̂ having suffix to prefix
CPU time ratio r̂ < r, when the pattern length of P̂ was increased,
r̂ decreased.

For the comparison of the relative performances of the two algorithms on
the real text, we randomly selected substrings of various lengths from the
input text and converted these substrings into equivalent abelian patterns.
For each abelian pattern, we performed 1000 iterations of each of the prefix
based and the suffix based algorithms and took the mean values of the CPU
time taken by the algorithms in 1000 iterations.

Following are the findings of the experiments on the real input text:� The suffix based algorithm outperformed the prefix based algorithm
for all the abelian patterns selected for the experiments. The suffix to
prefix CPU time ratio ranged from 0.31 to 0.07, i.e. in the worst case,
the suffix based algorithm was 3.22 times faster than the prefix based
algorithm, whereas, in the best case, the suffix based algorithm was
14.28 times faster than the prefix based algorithm.� A general trend of decrease in the suffix to prefix CPU time ratio was
seen when the pattern lengths were increased. The lowest suffix to
prefix CPU time ratio for m = 5 was 0.23 which was 0.07 for m = 50.

We also compared the relative performances of the two algorithms on
the real text against the abelian patterns corresponding to commonly used
English words. The words were selected as follows:
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We picked the most frequent 1000 English words from the web site
http://www.duboislc.org/EducationWatch/First100Words.html

which are taken from [15]. We selected words of length ≥ 3 and
for each word we computed its count in the input text. After that,
from the words of the same length, we selected equal number of
the most frequently and the least frequently occurring words in
the text (we selected all of the words of length ≥ 9, as they
were very few in number). These word were then converted into
abelian patterns.

For each abelian pattern, we performed 1000 iterations of each of the prefix
based and the suffix based algorithms and took the mean values of the CPU
time taken by the algorithms in 1000 iterations.

Following are the findings of the experiments on the real input text for English
words:� The suffix based algorithm outperformed the prefix based algorithm

for all the abelian patterns that were selected for the experiments.
The suffix to prefix CPU time ratio ranged from 0.75 to 0.11, i.e. in
the worst case, the suffix based algorithm was 1.33 times faster than
the prefix based algorithm, whereas, in the best case, the suffix based
algorithm was 9.09 times faster than the prefix based algorithm.� A general trend of decrease in the suffix to prefix CPU time ratio was
seen with an increase in the pattern lengths. Moreover, the suffix based
algorithm performed better in case of the infrequent words than in case
of the frequent words.

The detailed (pattern wise) results of the experiments for empirical anal-
ysis of the prefix based and the suffix based algorithms are given in Ap-
pendix A.

2.8 Parameterized Suffix based Algorithm

The main disadvantage of the suffix based algorithm is that it has to reset
CFV after every overflow. In this section we present a parameterized suffix
based algorithm that resets CFV only if the number of the characters read
before an overflow does not exceed ǫm, where ǫ is a user defined parameter.
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x

text
shift

overflow character

Figure 2.6: The gray area shows the information in CFV transferred from
the previous window to the new window. Note that the character x is not
part of this information.

box1 box2

Figure 2.7: CFV contains collective information of a prefix and a suffix of
the current window.

2.8.1 The Algorithm

Like the suffix based algorithm, we slide a search window of length m from
the left towards the right along the input text T and process the characters
inside the window in a right to left manner. In case an overflow occurs in
this process, we stop further processing the current window and decrease
the frequency of the current character, call it x, by 1 in CFV , so that,
CFV again becomes compatible with PFV (i.e. CFV [i] ≤ PFV [i] for all
i, 1 ≤ i ≤ σ). We also shift the window to the right such that its new starting
position coincides with the character next to x. So far the processing of this
algorithm is same as that of the suffix based algorithm with the difference
that we have decremented the frequency of x (which caused the overflow) by
1 in CFV in this algorithm. Note that CFV contains the information of the
whole suffix (except x) that was read in the previous window, and this suffix
is now prefix of the current window (Figure 2.6).

In the parameterized suffix based algorithm, we do not reset CFV blindly
after an overflow has occurred. Instead, we consider the amount of informa-
tion contained in CFV and if this information is less than or equal to ǫm
(where ǫ is a user defined parameter) only then we reset CFV , otherwise
we keep the information in CFV and start reading characters from the end
position of the new current window. This latter case is illustrated in Fig-
ure 2.7: We have two information boxes in the window, box 1 contains the
information of a prefix of the window and box 2 contains the information of
a suffix of the window, whereas CFV contains the collective information of
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without an oveflow
Two boxes unite Current window is 

advanced towards right 
by one position

box 1 box 2 box 1 box 2 box 1

Figure 2.8: Box 2 unites with box 1 without an overflow. After reporting
the current window as a matching substring, the current window is moved
towards right by one position. The CFV contains information about an
m− 1 length prefix (representing box 1 ) of the new current window.

both boxes. Note that every time we read a new character in the window,
box 2 is extended towards the left.

If in this process both boxes unite without an overflow, then the current
window contains a matching abelian pattern, and we output the starting
position of the current window. We also decrement the frequency of the
first character of the current window by 1 in CFV and advance the current
window towards right by one position (Figure 2.8). However, if an overflow
occurs while reading characters in the window, then the current window does
not contain a matching substring and we search for the leftmost occurrence
of the overflown character in the current window. We start reading the char-
acters in the current window form its left end, and decrement the frequency
of each read character by 1 in CFV until we read the overflow character.
We shift the new starting position of the current window next to the latest
read character. Note that now CFV does not contain information about any
character outside the new current window.

Figure 2.9 illustrates three possible positions of the leftmost occurrence
of the overflow character in the current window. It also shows the resulting
window when the current window is shifted next to the leftmost occurrence
of the overflow character. The dark gray regions in the figure show those
characters whose count has been removed from CFV . Note that after this
step, box 2 is no longer a suffix of the resulting current window.

Here once again we have to decide whether or not to reset CFV . In case
the collective information contents of both boxes (box 1 possibly empty)
are less than or equal to ǫm then we reset CFV , otherwise we keep the
information in CFV . However, in the later case, if now we start reading
from the end position of the current window, then we could have to manage
three information boxes in those situations where box 2 is not a prefix of the
current window (Figure 2.9). To avoid this, we start reading characters from
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leftmost occurrence 
of the overflow character

leftmost occurrence of the overflow character

Figure 2.9: Three possible positions of the leftmost occurrence of the overflow
character and the resulting windows after shifting the current window next
to the overflow character.

start reading here

box 1 box 2

Figure 2.10: Filling the gap between two information boxes.

the last position of the gap between box 1 and box 2 in these situations, so
that CFV once again contains information about only a prefix of the current
window (Figure 2.10).

After the gap between box 1 and box 2 is filled, CFV contains information
about only a prefix of the current window and then we start reading from the
right end of the window creating box 2 to hold information for the right most
characters of the window (Figure 2.7). However, an overflow can occur before
the gap is filled and it can lead to a loop situation until the information in
CFV becomes less than ǫm or the gap is filled (Figure 2.11). Due to this
mechanism we never have more than two information boxes at hand at any
time.

In this way we keep on sliding the window along the input text until we
reach the end of the text. Figure 2.12 illustrates this whole phenomenon.
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Overflow occurred while filling
the gap between box 1 and box 2

Gap is filled
without an overflow

box1 box 2

leftmost occurrence of the overflow character

Figure 2.11: A loop situation while the gap between box 1 and box 2 is being
filled.

2.8.2 Examples

To get a better understanding of the working of the parameterized suffix
based algorithm, we present several examples and show how the algorithm
works for each example using the transition graph presented in Figure 2.12.

In the following examples, we show different paths taken by the param-
eterized suffix based algorithm in the transitions graph of Figure 2.12 for
certain input strings and abelian patterns.

Example 1 (1→ 2→ 3→ 2→ 3→ 4→ 6)

Consider an input string abcccacbb and an abelian pattern a + b + 3c. Fig-
ure 2.13 shows how the parameterized suffix based algorithm proceeds along
the transition graph presented in Figure 2.12 to find the matching abelian
patterns in the text.

Example 2 (1→ 5→ 6→ 7→ 8→ 9→ 10→ 11→ 9→ 6)

Now consider a different input string abcdeacabecabababcde and an abelian
pattern 2a+3b+3c+d+ e. Figure 2.14 shows the transitions between states
made by the parameterized suffix based algorithm in an attempt to find the
matching abelian patterns in the text.
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76

1

2

4

3
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(If sum total of the light gray regions ≤ ǫm)

(If the light gray region ≤ ǫm)

(If the light-
gray region ≤ ǫm)

(If sum total of the
light gray regions ≤ ǫm)

overflow occurred

overflow occurred

overflow

overflow

occurred

occurred

Figure 2.12: Complete transition graph of the parameterized suffix based
algorithm with labeled states. In the figure, the light gray regions in a
rectangle represent the characters read in the corresponding search window,
hence the frequencies of these characters are incremented in CFV . The white
regions in a rectangle represent the unread characters of the corresponding
window. And the dark gray region in a rectangle represents the characters
that occur before the leftmost occurrence of the overflown character in the
window, it also includes the overflown character; the frequencies of these
characters are decremented in CFV , and the current window is shifted next
to the leftmost occurrence of the overflown character.
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1 a+b+3c
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1 a+b+3c
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Input String
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=
=
=

Current Window

(window is shifted towards right by one position)

2 a+b+3c a+b+3ca b c cc

leftmost occurrence of the oveflow character

(window is shifted next to the leftmost

occurrence of the overflow character)

(window is shifted towards right by one position)

leftmost occurrence of the oveflow character

(window is shifted next to the leftmost

and reset)

occurrence of the overflow character

CFV is reset

abcccacbb

a+b+3c
ǫ

Figure 2.13: The path taken by the parameterized suffix based algorithm
in the transition graph of Figure 2.12 for an input string abcccacbb and an
abelian pattern a + b + 3c with ǫ = 0.4.
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occurrence of the overflow character)
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(window is shifted next to the leftmost 
occurrence of the overflow character)
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Input String

0.4
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Figure 2.14: The path taken by the parameterized suffix based algorithm in
the transition graph of Figure 2.12 for an input string abcdeacabecabababcde
and an abelian pattern 2a + 3b + 3c + d + e with ǫ = 0.4.

36



2.8.3 Complexity Analysis

The parameterized suffix based algorithm has the same best case complexity
as that of the suffix based algorithm which is Θ(n/m). However, its worst
case complexity is better than that of the suffix based algorithm.

Theorem 3. The upper bound for worst case time complexity of the param-
eterized suffix based algorithm for abelian pattern matching in a given text of
length n with pattern size m is O(n/(1− ǫ)).

Proof. If for a given input text, the parameterized suffix based algorithm
operates in such a manner that the search window moves along the whole
text without resetting the contents of CFV , then the time complexity of the
algorithm on that input would be similar to the time complexity of the prefix
based algorithm, which is O(n).

However, if during the execution of the algorithm, it resets a window after
an overflow, then we would have to process the reset characters again. In the
parameterized suffix based algorithm, two type of resets occur:

1. The resets corresponding to a transition from state 5 to state 1 (Fig-
ure 2.12), and

2. The resets corresponding to a transition from any of the states 4,8, or
11 to state 1 (Figure 2.12)

In the resets corresponding to the transition from state 5 to state 1, we read
at most ǫm characters and advance the window by at least (1−ǫ)m positions,
thus giving us a cost of O(ǫ/(1− ǫ)) per character.

In the resets corresponding to transitions from states 4,8, or 11 to state
1, the cost to process one character can be computed as follows:

We start with a search window with no entry in CFV . Now we read X
characters in the window and advance the window by m−X positions. Note
that X > ǫm, otherwise a reset corresponding to the transition from state 5
to state 1 would have taken place. We continue executing the algorithm and
let Y be the number of characters processed (in addition to X) before the
algorithm decides to reset the window. Let Z be the amount of information
contained in CFV at the time of reset (clearly Z ≤ ǫm). During this whole
process, the window is advanced by (m− X) + (X + Y − Z) = m + Y − Z
positions along the input text. So we read X + Y characters to advance the
window by m + Y − Z positions.
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This gives the following cost per character:

(X + Y )/(m + Y − Z)

≤ (m + Y )/(m + Y − Z) (since m ≥ X)

≤ (m + Y )/(m + Y − ǫm) (since Z ≤ ǫm)

≤ m/(m− ǫm) (since (m/m− ǫm) > 1 and Y > 0)

= 1/(1 − ǫ)

Hence the complexity of the parameterized suffix based algorithm is bounded
by O(n/(1 − ǫ)) in the worst case.

2.9 Empirical Analysis of the Parameterized

Suffix Based Algorithm for Different Val-

ues of Epsilon

In this section, we present an empirical analysis of the parameterized suffix
based algorithm for abelian pattern matching for different values of ǫ. We
used the same input texts and abelian patterns which we used for the empir-
ical analysis of the prefix based and the suffix based algorithms (Section 2.7).
The experiments were performed on a computer having two “Intel® Core�2
Duo CPU E6750 @ 2.66 GHz” processors and 3.8 GiB memory, running
Ubuntu 9.04.

We executed the parameterized suffix based algorithm for four different
values of ǫ, namely ǫ = 0.2, ǫ = 0.4, ǫ = 0.6 and ǫ = 0.8. As the actual
reset threshold for parameterized suffix based algorithm is obtained by ⌊ǫm⌋,
therefore, more than one values of ǫ can result into the same amount of actual
reset threshold. For example, for m = 12 and ǫ = 0.8, the reset threshold is 9
characters, which shows an actual value of ǫ = 0.75 in this case (i.e. ǫ = 0.8
is same as ǫ = 0.75 in this situation). We call ǫ = 0.8 as the given value of ǫ
and ǫ = 0.75 as the actual value of ǫ. In the following, when we talk about ǫ
then we mean the given value of ǫ.

We performed 1000 iterations of the parameterized suffix based algorithm
(for each of the four values of ǫ) and took the mean value of the CPU time
taken by the algorithm in 1000 iterations.

Following are the findings of the experiments on the random input texts:� Generally, the higher values of ǫ (ǫ = 0.6 and ǫ = 0.8) performed better
than the lower values (ǫ = 0.2 or ǫ = 0.4).
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� For many patterns, there was not a significant difference between the
CPU times taken by the parameterized suffix based algorithm for ǫ =
0.6 and ǫ = 0.8 (the best value for ǫ was either 0.8 or 0.6 in these
situations).� The value ǫ = 0.6 was better than ǫ = 0.8 in the sense that it also did
a nice job in the situations where lower values of ǫ were the best. In
these situations, ǫ = 0.8 was the slowest.� For many patterns, the CPU time taken by the parameterized suffix
based algorithm was almost the same for all values of ǫ. Mostly, this
situation occurred for the patterns whose frequency distribution was
very different from the distribution of the characters in the input text.
One explanation of this phenomenon could be that, for these patterns,
most of the overflows occurred before reading (⌊0.2m⌋) characters thus
giving almost similar time for all values of ǫ.

Following are the findings of the experiments on the real input text:� In the case of finding the abelian matches of the randomly selected sub-
strings of the input text, there was not a significant difference between
the CPU times taken by the parameterized suffix based algorithm for
different values of ǫ. However, with the increase in the pattern length,
the performance of the algorithm for ǫ = 0.2 deteriorated compared to
the performance of the algorithm for higher values of ǫ.� In the case of finding the abelian matches of the commonly used English
words, there was also not a significant difference between the CPU times
taken by the parameterized suffix based algorithm for different values
of ǫ. However, for some patterns, the algorithms used slightly more
time for ǫ = 0.2 than for other values of ǫ.

2.9.1 Relative Performance of the Parameterized Suf-

fix Based Algorithm with Respect to the Prefix

Based Algorithm and the Suffix Based Algorithm

The performance of the parameterized suffix based algorithm was in the
middle of the prefix based and the suffix based algorithm; i.e. for the patterns
for which the prefix based algorithm was the most efficient algorithm, the
parameterized suffix based algorithm performed better than the suffix based
algorithm, however, for the patterns for which the prefix based algorithm
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was the least efficient algorithm, the parameterized suffix based algorithm
performed slightly worse than the suffix based algorithm.

However, in many cases, there was not a significant difference between the
CPU times taken by the suffix based algorithm and the parameterized suffix
based algorithm.

The detailed (pattern wise) results of the experiments for empirical anal-
ysis of the parameterized suffix based algorithm are given in Appendix B.

2.10 Conclusion

In this chapter we have presented two fundamental approaches to solve the
problem of online abelian pattern matching. We have also given a tight lower
bound for the problem. Finally, we have presented a parametrized suffix
based algorithm for online abelian pattern matching that is an improvement
over the original suffix based algorithm for pattern matching in worst case
situations.

We have also outlined a procedure to compute the value of |ASP(P, k)|
(where ASP(P, k) denotes the set of strings of length k that match abelian
sub-patterns of P ). In the procedure, we generate all integer partitions of
m−k (m := |P |) to compute the value of |ASP(P, k)|. There exist, however,
other (unpublished) methods to compute the value of |ASP(P, k)|, which use
only those integer partitions of m− k that correspond to non-empty classes
of length-k abelian sub-patterns of P .

Finally, we presented an empirical analysis of the relative efficiency of the
algorithms presented in the chapter.
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Chapter 3

Offline Abelian Pattern
Matching

3.1 Introduction

In the previous chapter, we have presented several algorithms that solve the
problem of abelian patten matching when the input text is given online. We
were given an input text stream T ∈ Σn and an abelian pattern P of length
m; and we output the positions in T where the matches of P began.

In this chapter we consider the problem of abelian pattern matching for
the case when the text T is known beforehand and we can pre-process the
text to make the process of abelian pattern matching more efficient.

The chapter is organized as follows: In Section 3.2, we discuss an indexing
scheme parikh index that is already in use for the problem of abelian pattern
discovery. We show how we use a parikh index, which is built for a text T , for
solving the problem of abelian pattern matching in T . The abelian pattern
matching can be done in time logarithmic to n (n := |T |) if a parikh index for
T is available. In Section 3.3, we present a new data structure named abelian
tree to store the information generated from the pre-processing of the text.
With this data structure, the problem of abelian pattern matching is solved
in time independent of n. We also discuss the impact of using different data-
structures for constructing an abelian tree, on the tree construction time and
space requirements as well as on the performance of the query processing.
We conclude the chapter in Section 3.5.

We assume that m := |P | is known in advance. If this is not the case,
one can iterate over a range of different sizes to build multiple indices by
pre-processing the text. We also assume a pre-defined linear ordering of the
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alphabet Σ, such that c1 < c2 < c3 < · · · < cσ, where σ := |Σ|.

3.2 Parikh Index

The parikh index has already been used in the context of abelian pattern
discovery [12]. Here we show how a parikh index (which is built using the
parikh mapping technique [1]) can be used for abelian pattern matching.

In the parikh index, distinct abelian patterns of the same length are
assigned unique names, and the indexing of the text is done on the basis of
these names. For the sake of simplicity, it is assumed that σ is a power of
2, however, if this is not the case, σ is made a power of 2 by adding new
characters to Σ. The new value of σ would not be more than the double of
its original value.

In the following, we give definitions that we use to explain the procedure
of computing the name of an abelian pattern using the parikh mapping tech-
nique. Recall that we assume a pre-defined linear ordering of the alphabet
Σ, such that c1 < c2 < c3 < · · · < cσ, where σ := |Σ|.

Definition 5. Given an abelian pattern P(x,y) =
∑y

i=x mci
ci (1 ≤ x ≤ y ≤ σ),

its k-pRefix is defined to be the abelian pattern Rk, P(x,y)
=
∑x+k−1

i=x mci
ci for

all k, 0 < k ≤ y − x + 1.

Definition 6. Given an abelian pattern P(x,y) =
∑y

i=x mci
ci (1 ≤ x ≤ y ≤ σ),

its k-Suffix is defined to be the abelian pattern Sk, P(x,y)
=
∑y

i=y−k+1 mci
ci for

all k, 0 < k ≤ y − x + 1.

The names of the abelian patterns are computed recursively in the parikh
mapping technique. The name of an abelian pattern P(x,y) =

∑y
i=x mci

ci

is computed using the name-pair of the abelian patterns R y−x+1
2

, P(x,y)
and

S y−x+1
2

, P(x,y)
. The recursion goes on until the value of x equals y; and the

abelian pattern P(x,x) gets mcx as its name.

In the parikh index, natural numbers, in an increasing order, are assigned
as names to the abelian patterns. Let (a, b) (both a and b are natural num-
bers) be a name-pair that is encountered first time while building the parikh
index, and let c is the highest natural number that is assigned as a name to
any name-pair seen so far, then the pair (a, b) gets c + 1 as its name.

Example 1. Let Σ = {a, b, c, d}, with the ordering a < b < c < d, and let
the highest natural number that has been assigned so far as a name be 15.

Now, if we want to compute the parikh name of the abelian pattern P =
a+2b+d, then we need to compute the names of the abelian patterns 1a+2b
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and 0c + 1d. To compute the name of 1a + 2b, we compute the names of
the abelian patterns 1a and 2b. As 1a and 2b are single character abelian
patterns, so the recursion process stops here and 1a gets 1 as its name (1
is the multiplicity of a in the abelian pattern) and 2b gets 2 as its name (2
is the multiplicity of b in the abelian pattern). This means, the name of the
abelian pattern 1a + 2b is computed using the name-pair (1, 2). We assume
that the name pair (1, 2) is encountered first time during the process of parikh
naming the substrings of the input text, and therefore, this name-pair is given
16 as its name (recall that 15 was the highest natural number that has been
assigned as a name). So the parikh name of the abelian pattern 1a + 2b is
16.

Similarly, to compute the name of 0c + 1d, we compute the names of
the abelian patterns 0c and 1d; and 0c gets 0 as its name and 1d gets 1 as
its name. So, the name of the abelian pattern 0c + 1d is computed using
the name-pair (0, 1). We assume that the name pair (0, 1) has already been
encountered during the process of parikh naming the substrings of the input
text, and it got 11 as its name when it was seen the first time. So the parikh
name of the abelian pattern 0c + 1d is 11.

Finally, the name of the abelian pattern 1a + 2b + 0c + 1d is computed
using the name pair (16, 11). As the name pair (16, 11) is also first time
encountered during the process of parikh naming the substrings of the input
text (because the name 16 is given the first time), so it gets 17 as its name.

Hence the parikh name of the abelian pattern a + 2b + d is 17.

In order to compute the names of all the abelian patterns of size m in a
given text, a window of size m is moved along the text and the abelian pat-
tern contained in the window is given a name using the recursive procedure
mentioned above.

The names of the abelian patterns are stored in a directly accessible array,
and a list of pointers is appended to each entry of the array that corresponds
to the name of an abelian pattern of length m. This list of pointers contains
the starting positions of the m-length abelian pattern, that corresponds to
this name, in the input text.

This way, the whole text is indexed on the basis of the parikh names of
the abelian patterns of length m.
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3.2.1 Using Parikh Index for Abelian Pattern Match-

ing

When we receive a query for finding the locations of an abelian pattern P
of length m in a given text T , such that a parikh index for T for m-length
abelian patterns is already in place, then the only thing we need to do is to
compute the parikh name of P .

We compute the name of P using the same recursive procedure that was
used to build the parikh index on T . However, as we are doing the pattern
matching here and not the pattern discovery, therefore, if we encounter a
name-pair (a, b), in the process of name computation of P , such that no
name exists for the pair in the index, then we do not assign a new name to
(a, b), rather we assert that P has no occurrence in T .

If the name of P is computed successfully, then we output the list of
pointers associated with this name in the parikh index, as the pointers in
this list point to the starting positions of P in T .

3.2.2 Complexity Analysis:

A parikh index for an input text of length n is built in time O(n log σ log n)[12]
and the name of a given pattern P is computed in time O(σ log n).

As σ is a power of 2, so the name of an abelian pattern P =
∑σ

i=1 mci
ci is

computed using the names of Rσ/2, P and Sσ/2, P ; and the names of Rσ/2, P and
Sσ/2, P are also computed recursively. The recursion tree for the computation
of the name of P has O(log σ) levels. As this recursion tree is a complete
binary tree, we compute O(σ) names before we get the name of P .

The time complexity to compute one name using the information stored
in the parikh index is O(log n)[12], so the time complexity to compute the
name of P is O(σ log n).

Hence, given an input text T ∈ Σn and a parikh index built on T for the
abelian patterns of length m, we can assert in time O(σ log n) whether or
not P occurs in T . If P occurs in T , then the indices where P begins in T
are output in time proportional to the frequency of P in T .

3.2.3 Building Multiple Indices

The assumption that the length of the abelian pattern to be found in the
input text is known in advance is quite unrealistic. To tackle this issue, one
can build multiple indices each for the abelian patterns of different length.
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The time complexity to build parikh indices on T for a range of L different
lengths is O(Ln log σ log n). The time complexity to determine whether or
not an abelian pattern P (|P | ∈ L) occurs in T remains O(σ log n). Moreover,
if P occurs in T , then the positions where P begins in T are output in time
proportional to the frequency of P .

3.3 Abelian Tree Indexing

Although parikh index is a useful index for abelian pattern matching, the
primary intention for inventing the parikh index was to use it for abelian
pattern discovery. Therefore, the emphasis of a parikh index is on the efficient
construction of the index.

In this section, we present a new data-structure, named abelian tree, to
index the input text T ∈ Σn. As the primary objective of inventing the
abelian tree is to use it for abelian pattern matching, the emphasis here is on
efficient query processing. With the help of an abelian tree, we can assert in
time O(σ) whether or not a given abelian pattern P occurs in T , thus giving
a performance efficiency of log n factor, over the parikh index, for abelian
pattern matching.

The concept of an abelian tree is adapted from the concept of a trie (also
known as prefix tree) [34] for a set of strings. In the context of classical
pattern matching, a trie is a rooted directed tree, and each node of this
tree is associated with a string. Moreover, the decedents of a node N have
common prefix, which is the string associate with N . Figure 3.1 illustrates
a trie, for classical pattern matching, for the set of strings {abbc, abcb, abba}.

We begin with a definition of an abelian prefix and then outline our data-
structure.

Definition 7. Given an abelian pattern P =
∑σ

i=1 mci
ci and a pre-defined

linear ordering of the alphabet Σ, such that c1 < c2 < c3 < · · · < cσ, the
abelian pattern Pre =

∑k
i=1 mci

ci (1 ≤ k ≤ σ), is called an abelian prefix of
P .

Definition 8. Given a set of length-m abelian patterns S = {S1, . . . , Sn},
the abelian tree TS is the unique trie that contains all the patterns in S.
The internal nodes of the abelian tree represent the characters of Σ, and
the edges of the tree are labeled with the multiplicities of the characters. At
the leaf nodes are lists of pointers to the occurrences of the abelian pattern
corresponding to the path from the root to this leaf.
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b

b

b c

a c

Figure 3.1: The trie for the strings abbc, abcb and abba

Figure 3.2 illustrates an abelian tree for the abelian patterns a + 2b + c
and 2a + 2b.

Observation 4. An abelian tree for m-length abelian patterns, defined over
alphabet Σ, has σ + 1 levels and an outdegree not higher than m + 1.

3.3.1 Construction of The Abelian Tree

For an input text T ∈ Σn, the abelian tree corresponding to T for length-m
abelian patterns is constructed as follows:

A window of length m is moved along the input text and the abelian pattern
corresponding to the string contained in the window is located top-to-bottom
in the tree. If the leaf node corresponding to the abelian pattern contained
in the current window does not exist in the abelian tree, then we look for a
node N that corresponds to the longest abelian prefix of the current abelian
pattern. We create a new path in the tree starting from N to the leaf node
corresponding to the abelian pattern contained in the current window.

We append a pointer to the starting position of the current window in T to
the leaf node corresponding to the abelian pattern contained in the current
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a

b b

c c

1 2

2 2

01

for
list of pointers

a+2b+c 2a+2b

list of pointers
for

Figure 3.2: Abelian tree for the strings abbc, abcb and abba and the alphabet
order a < b < c. The internal nodes are labeled in the figure just to illustrate
that the nodes at the same level correspond to the same character of the
alphabet. These node labels are not stored internally in the abelian tree.

window. An abelian tree is shown in Figure 3.3 for the abelian patterns of
length 2 for the input text “abbbcabbabbcccca”, with the ordering of the
characters in Σ being a < b < c.

Query Processing: When we receive a query on the locations of an abelian
pattern P , we search the leaf node corresponding to P in the abelian tree.
If the leaf node corresponding to P does not exist in the tree, this implies P
has no occurrence in the text; otherwise, we output the list of pointers stored
at this leaf node.

3.3.2 Complexity Analysis

The time complexity for the construction of an abelian tree, and in turn for
doing the pattern matching, depends on the data-structure used to keep the
outgoing edges at an internal node.

In the following, we discuss different possibilities for the data-structures
to be used for storing the outgoing edges at the internal nodes of the tree. We
shed light on the the time and the space complexities of the abelian tree con-
struction using the specific data-structure; and explain the time complexity
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0 1
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c:

Figure 3.3: Abelian tree for m = 2 over input text “abbbcabbabbcccca” and
the alphabet order a < b < c. The character on the left of the figure show
the associated character of each level.

to answer a query for finding the matches of a given abelian pattern.

Although, the number of abelian patterns of length m over an alphabet
Σ (of size σ) is

(

σ+m−1
m

)

(Section 1.2.2), the number of length-m distinct
abelian patterns in an input text T of length n is O(n). In some situations,
it is possible that

(

σ+m−1
m

)

< n, however, we assume that in general n is

much smaller than
(

σ+m−1
m

)

, and in the rest of the chapter, we consider O(n)
a better upper bound for the number of distinct abelian patterns in the input
text.

Abelian Tree Construction Using Directly Accessible Arrays at In-
ternal Nodes

The outgoing edges of a node in an abelian tree are labeled with natural
numbers between 0 and m, so we can use a directly accessible array of m +1
elements to store these edges. Figure 3.4 illustrates an internal node that
uses directly accessible array to store its outgoing edges.

Observation 5. The time to create and initialize an internal node, that uses
a directly accessible array for storing its outgoing edges, is O(m).
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Figure 3.4: An internal node in the abelian tree for the the abelian patterns
of length 7. The node uses a directly accessible array for storing its outgo-
ing edges. A shaded element of the array indicates that no outgoing edge
corresponds to this element.

Lemma 4. The time complexity of inserting a leaf node in the abelian tree
is O(mσ).

Proof. Let X be a leaf node corresponding to an m-length abelian pattern
PX . Then the insertion of X in the abelian tree requires insertion of O(σ) new
internal nodes on the path from the root node to X. This is because of the
fact that, the tree has σ +1 levels (Observation 4), and in the worst case, the
node in the tree that corresponds to the longest prefix of PX is the root node.
As the time to insert an internal node in the tree is O(m) (Observation 5),
therefore, the aggregate time to insert X in the tree is O(mσ).

Lemma 5. The time complexity of the construction of an abelian tree, for
an input text T , that uses directly accessible arrays for storing the outgoing
edges at its internal nodes is O(mnσ).

Proof. As there are O(n) distinct abelian patterns of length m in the input
text T (where n := |T |), so the number of the leaf nodes in the abelian tree is
also O(n). The time complexity of inserting a leaf node in the tree is O(mσ)
(Lemma 4), so the total time for the construction of the abelian tree for T
is O(mnσ).

Lemma 6. The space requirement of an abelian tree that uses directly acces-
sible array for storing the outgoing edges at its internal nodes is O(mnσ).

Proof. The tree has σ +1 levels (Observation 4)) and O(n) leaf nodes, so we
have O(nσ) internal nodes. An internal node requires O(m) space when we
use a directly accessible array to store its outgoing edges, so the aggregate
space requirement for the internal nodes of the tree is O(mnσ).
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The leaf nodes of the tree contain the pointers to the locations, of the m-
length abelian patterns, in T . As there are O(n) distinct abelian patterns of
length m, the total number of the pointers stored at the leaf nodes is O(n).
Consequently, the aggregate space requirement for all the leaf nodes is O(n).

Hence the abelian tree requires O(mnσ) space.

Lemma 7. Given an abelian tree T , built on the input text T , that uses the
directly accessible arrays to store the outgoing edges at its internal nodes,
the time complexity to find a leaf node corresponding to a given pattern P is
O(σ).

Proof. Let P =
∑σ

i=1 mci
ci is the given abelian pattern. Then, the sequence

of the edges in the path, from the root node to the leaf node corresponding
to P , in T is

mc1 → mc2 → · · · → mcσ

As we use directly accessible arrays for storing the outgoing edges at the
internal nodes, each of the edges in this path is accessible in O(1) time, so
the time complexity to reach the leaf node corresponding to P is O(σ).

Thus, we can assert in time O(σ) whether or not P occurs in T , and we
can output the positions where P begins in T in time proportional to the
frequency of P in T .

Abelian Tree Construction Using the Sorted Linked Lists at In-
ternal Nodes

A sorted linked list can also be used to store the outgoing edges at an internal
node. Figure 3.5 illustrates the internal node shown in Figure 3.4 with the
difference that now a sorted linked list is used, instead of a directly accessible
array, to store the outgoing edges of the node.

Let T be an abelian tree and let PX be an abelian pattern of length m,
and we want to find/insert the leaf node X corresponding to PX in T . Let
e be an edge in the path from the root node to the leaf node X and let ê be
the edge preceding e in the path from the root node to X (we assume that
σ ≥ 2), then:
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Figure 3.5: An internal node in the abelian tree that uses a sorted linked list
for storing its outgoing edges.

Definition 9. e is an existing edge if e already exists in T as
an outgoing edge of an internal node N that lies in the path from
the root node to X.

Definition 10. e is a partially-existing edge if e did not exist in
T , however, ê is an existing edge of T .

Definition 11. e is a non-existing edge if neither e nor ê are
existing edges.

Observation 6. If e is a partially-existing edge, then an internal node N ,
that has e as an outgoing edge in the path from the root node to X, already
exists in the tree.

Observation 7. There can be at most 1 partially existing edge in the path
from the root node to the leaf node X.

Figure 3.6 illustrates all three types of edges defined above. We insert a new
leaf node corresponding to the abelian pattern 2a + b + c in the abelian tree
of Figure 3.2 and mark the edges, on the path from the root node to this
newly inserted leaf node, as existing, partially-existing and non-existing.

Lemma 8. The time complexity of inserting a leaf node in the abelian tree
is O(m + σ).

Proof. Recall that there are σ edges on the path from the root node to to a
leaf node X which corresponds to an m-length abelian pattern PX (Obser-
vation 4).

Let e be an edge in the path from the root node to X and let me be the
label of e, then there are three possibilities:

Case I- e is an existing edge: Let N be the node hosting e. We search
e in the linked list of the outgoing edges at N , and follow the path to
the leaf node X.
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Figure 3.6: The classification of the edges in the path of the newly inserted
leaf node corresponding to the abelian pattern 2a + b + c in the abelian tree
of Figure 3.2.

The time complexity to find e in the linked list of N is O(me), as in
the worst case, the linked list of N contains all the edges whose label
is less than me.

Case II- e is a partially-existing edge: This means an internal node N ,
that would have e as an outgoing edge in the path from the root node
to X, already exists in the tree (Observation 6). So we insert e in the
linked list of the outgoing edges of N and create a node, with empty
linked list, following e.

To insert e in the linked list at N , we first locate the position of e in
the list, which costs O(me) time, and then in O(1) time we insert e in
the list. The node following e has an empty linked list, so it is created
in O(1) time.

Thus the time complexity of the insertion of e and the node following
e in the tree is O(me).

Case III- e is a non-existing edge: This implies a node N , with empty
linked list, has already been created while inserting the edge preceding
e, so we insert e in the empty linked list of the outgoing edges of N
and create a node, with empty linked list, following e.
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We insert e in the liked list of N in O(1) time and as the node following
e has an empty linked list, so it is also created in O(1) time.

Thus the time complexity of the insertion of e and the node following
e in the tree is O(1).

The sum total of the labels of the edges on the path from the root node
to X is m and this path has σ edges; so the time complexity to insert/find
X in the abelian tree is O(m + σ).

Lemma 9. The time complexity to construct an abelian tree that uses linked
lists to store the outgoing edges at its internal nodes is O(n(m + σ)).

Proof. As the number of abelian patterns of length m in the input text T
is O(n), so the number of the leaf nodes in the abelian tree is also O(n).
Moreover, the time complexity to insert a leaf node in the tree is O(m + σ)
(Lemma 8), therefore, the time complexity of the abelian tree construction
is O(n(m + σ)).

Lemma 10. The space requirement of an abelian tree, that uses linked lists
at its internal nodes for storing the outgoing edges, is O(nσ).

Proof. The tree has two types of nodes: internal nodes and leaf nodes. At
internal node, we store the edges of the tree, and at leaf nodes we store the
pointers to the locations of the abelian patterns in T .

As the tree has O(n) leaf nodes, therefore, there are O(n) distinct paths
from the root node to the leaf nodes. Each path in the tree has σ edges, so
the number of edges in the tree is O(nσ). As it requires O(1) space to store
an edge in a linked list, therefore, the space requirement of the internal nodes
of the tree is O(nσ).

The leaf nodes contain lists of pointers to the locations of the abelian
patterns in T . As the number of abelian patterns is O(n), so is the number
of the pointers to their locations in T . A pointer requires O(1) space, so the
space requirement of the leaf nodes is O(n).

Hence, the overall space requirement of the abelian tree is O(nσ).

The time complexity to find a leaf node corresponding to a given abelian
pattern P is O(m+σ) (Lemma 8). Thus, we assert in time O(m+σ) whether
or not P occurs in T , and output the positions where P begins in T in time
proportional to the frequency of P .
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Figure 3.7: (a) An internal node having a directly accessible array to store
the outgoing edges. (b) The same node, with the directly accessible array
truncated from right. Now there are no shaded elements at the right end of
the array.

3.3.3 An Efficient and Compact Abelian Tree

If we use directly accessible arrays to store the outgoing edges at the internal
nodes of an abelian tree, then the query processing time is very efficient
(O(σ)), but the space requirement of the tree is O(mnσ).

In contrast, if we use linked lists to store the outgoing edges at the internal
nodes of an abelian tree, then the storage requirement is improved (O(nσ)),
however, the query processing time now becomes O(m + σ).

The efficiency in the query processing time comes from the feature of
the direct accessibility of the edges in case of a tree built using the directly
accessible arrays. The storage efficiency, in case of a tree built using the
linked lists, come from the fact that no space, other than the required, is
allocated for storing an edge.

In the following, we present an abelian tree whose space requirement is be-
tween O(mnσ) and Ω(nσ), but the query processing time is O(σ).

The key idea is that we delete several unused pointers of the directly
accessible arrays at an internal node, without affecting the direct accessibility
of the outgoing edges of that node. Let emax be the largest label among the
labels of all the outgoing edges of an internal node N . Then we truncate the
directly accessible array at N from right, such that now the size of the array
is emax +1 instead of m+1. Figure 3.7 shows the internal node of Figure 3.4
after truncating the directly accessible array of the node from the right.

Note that the outgoing edges at N still remain directly accessible as no
edge label at N is greater than emax. Hence we can assert in time O(σ)
whether or not a given abelian pattern P occurs in T , and we can output
the starting position of P in T in time linear to the frequency of P in T .

Lemma 11. The space requirement of the compact abelian tree is O(n(m +
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σ)).

Proof. For the sake of analysis, we assume that no path is shared by two or
more leaf nodes in the abelian tree that uses directly accessible arrays for
storing the outgoing edges at its internal nodes. If this is not the case, then
we replicate the shared paths to achieve this property. A path PathX from
the root node to a leaf node X has σ internal nodes. For an internal node
N lying on PathX , let eN be the label of the outgoing edge of N ; then we
need to keep the size of the array at N no more than eN +1. The sum of the
labels of all the edges lying on PathX is m, and the number of edges lying on
PathX is σ, so the total storage requirement of all the internal nodes lying
on PathX is O(m + σ).

As there are O(n) leaf nodes, so we have O(n) paths and the storage
requirement of the internal nodes is O(n(m + σ)).

The leaf nodes contain lists of pointers to the locations of the abelian
patterns in T . As the number of abelian patterns is O(n), so is the number
of the pointers to their locations in T . A pointer requires O(1) space, so the
space requirement of the leaf nodes is O(n).

Hence the space requirement of the compact abelian tree is O(n(m + σ)).

Efficient Construction of the Compact Tree

Although, by truncating the unnecessary parts of the directly accessible ar-
rays, we can construct a compact abelian tree from an abelian tree that uses
directly accessible arrays at internal nodes for storing the outgoing edges;
the cost of such construction is high, as the time complexity of constructing
the initial abelian tree is O(nmσ) (Lemma 5).

We can construct the same compact abelian tree from an abelian tree
that uses linked lists for storing the outgoing edges at its internal nodes. If
N is an internal node of the abelian tree and emax is the largest label among
the labels of all the outgoing edges of N ; then we create an array of size
emax +1 at N and copy the edges in the linked list at N to the newly created
array at appropriate locations. Figure 3.8 illustrates this phenomenon.

By replacing the linked lists with arrays at all the internal nodes of the
tree, we construct the compact but efficient abelian tree from an abelian tree
that had linked lists at its internal nodes.

Lemma 12. The time complexity to efficiently construct a compact and ef-
ficient abelian tree is O(n(m + σ)).
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Figure 3.8: (a) An internal node having a linked list to store the outgoing
edges. (b) The same node, with the linked list replaced by a directly ac-
cessible array for storing the outgoing edges. The shaded elements of the
array contain no edge; and this unused storage is the cost we pay to get the
efficiency of the direct accessibility.

Proof. The time complexity of the construction of an abelian tree that uses
linked lists at internal nodes for storing the outgoing edges, is O(n(m + σ))
(Lemma 9). We assume that the information about the largest label among
the labels of all the outgoing edges of an internal node is also stored in the
node and therefore, this information is available in O(1) time. As the sum
total of the sizes of all the arrays at the internal nodes of a compact and
efficient tree is O(n(m + σ)) (Lemma 11), so the time for creating these
arrays and writing once into them is O(n(m + σ)).

Hence the time complexity to construct a compact and efficient abelian
tree is O(n(m + σ)).

3.4 Abelian Tree without Zero-Edges

In case of abelian tree based indexing, the query processing time depends on
the length of the path from the root node to a leaf node, which is O(σ) for
the abelian trees presented in the previous section. That is why the term σ
appears in the asymptotic time complexity of the query processing time of
all these trees (e.g. the query processing time of an abelian tree with linked
lists at the internal nodes is O(m + σ) and the query processing time of a
compact and efficient abelian tree is O(σ)).

In this section, we present an alternative construction of the abelian trees,
to make the query processing time independent of σ. We begin with several
observations.

Observation 8. If e is a zero-edge (an edge with zero as edge label) on the
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path from the root node to a leaf node X and N is the node hosting e (i.e. e
is an outgoing edge of N), then the abelian pattern corresponding to X does
not contain the character associated with N .

Observation 9. If ΣP is the set of the characters that appear in an abelian
pattern P , and σP := |ΣP |; then there are σ−σP zero-edges in the path from
the root node to the leaf node corresponding to the abelian pattern P .

The basic reason, for the presence of the zero-edges in the abelian trees
presented so far, was to preserve the order of the characters corresponding
to different levels of the tree (recall that in the abelian tree of Figure 3.3,
the nodes at the same level of the tree correspond to the same character).
Moreover, the zero-edges also prevent non-determinism in finding the path
from the root node to a leaf node. Figure 3.9 illustrates two different abelian
trees for the same set of abelian patterns; one abelian tree has zero-edges, the
other is without zero-edges. Note that the nodes at the same level correspond
to different characters in the second tree. Moreover, there are more than one
outgoing edges with the same edge label at the root node of the tree without
zero-edges, which causes the non-determinism regarding which edge to follow
at the root node to reach a particular leaf node.

Although, the example illustrated in Figure 3.9 shows the significance
of the zero-edges in an abelian tree, the impact of zero-edges on the query
processing time becomes severe if σ is large.

In the following, we present a deterministic abelian tree without zero-edges.

3.4.1 Structure of an Abelian Tree without Zero-Edges

The abelian tree we present here has alternating levels. The nodes at the
odd levels of the tree correspond to the characters of the abelian patterns
and the nodes at the even levels of the tree correspond to the multiplicities
of the characters of the abelian patterns. The root node is at level 1 of the
tree.

We call the nodes at the odd levels, the character nodes, and the nodes
at the even levels, the multiplicity nodes. Similarly, the outgoing edges of
a character node are called character edges and the outgoing edges of a
multiplicity node are called multiplicity edges.

Observation 10. If x is the edge label of a character edge then x ∈ Σ.
Similarly, if y is the edge label of a multiplicity edge then y ∈ {1, 2, 3, . . . , m}.

Figure 3.10 illustrates an abelian tree with alternating levels for the
abelian patterns of length 2 for the input text “abbbcabbabbcccca”; with
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Figure 3.9: (a) An abelian tree for the abelian patterns a + b and a + c. The
nodes at the same level correspond to the same character and the path from
the root node to a leaf node is deterministic. (b) The same tree without zero-
edges. Now the nodes at the same level of the tree correspond to different
characters, and the node corresponding to character a has two outgoing edges
with same edge label 1.

the ordering of the characters in Σ being a < b < c. The same tree with
zero-edges has been illustrated in Figure 3.3. Note that the abelian tree with
alternating levels is a deterministic tree.

Observation 11. If P =
∑σP −k

j=1 mcij
cij (where k ≥ 1) is the abelian pattern

corresponding to an internal node N of the abelian tree with alternating levels,
then the labels of the outgoing edges of N are greater than ci

σ
P

− k
.

Lemma 13. The length of the path from the root node to the leaf node cor-
responding to an abelian pattern P , in an abelian tree with alternating levels,
is O(σP ); where σP is the number of distinct characters in P .

Proof. As there are no zero-edges in an abelian tree with alternating levels,
each character edge in the path from the root node to the leaf node corre-
sponding to P corresponds to a character of P and each multiplicity edge in
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Figure 3.10: Abelian tree for m = 2 over input text “abbbcabbabbcccca”
and the alphabet order a < b < c. The nodes and the edges shown in the
solid lines correspond to the characters and the nodes and the edges shown
in the dashed lines correspond to the frequencies of the characters.

this path corresponds to the multiplicity of a character of P . As the abelian
pattern P has σP distinct characters, the number of edges on the path from
the root node to the leaf node corresponding to P is 2σP .

Corollary 2. The height of an abelian tree with alternating levels is O(m).

3.4.2 An Abelian Tree with Alternating Levels Having
Linked Lists at Internal Nodes

The abelian tree uses sorted linked lists to store the outgoing edges at its
internal nodes.

Lemma 14. The time complexity to find the leaf node corresponding to an
abelian pattern P in the tree is O(σ + m).
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Proof. Let P =
∑σP

j=1 mcij
cij be the given abelian pattern, then the sequence

of edges from the root node to the leaf node corresponding to P , in the tree
is

ci1 → mci1
→ ci2 → mci2

→ · · · → ciσP
→ mciσP

The time complexity to find an edge e that has edge label mcik
, at an

internal node N that hosts e, is O(mcik
); as in the worst case, all the edges

having labels less than mcik
are also present as the outgoing edges of N .

As
∑σP

j=1 mcij
= m, the total time complexity of finding all the multiplicity

edges in the path from the root node to the leaf node corresponding to P is
m.

The time complexity to find the edge with edge label ci1 at the root node
is i1; as in the worst case, all the edges having labels less than ci1 are also
present as the outgoing edges of the root node.
The time complexity to find an edge e that has edge label cik , at an internal
node N that hosts e, is ik − ik−1. This is because of the fact that the edge
labels of the outgoing edges of N are greater than cik−1

(Observation 11) and
in the worst case all the edges that have label less than cik are present as the
outgoing edges of N .
So the total time complexity of finding all the character edges in the path
from the root node to the leaf node corresponding to P is iσP

. As in the
worst case, ciσP

= cσ, so the aggregate time complexity of finding all the
character edges at there hosting nodes is O(σ).

Hence the time complexity to find the leaf node, corresponding to the
abelian pattern P =

∑σP

j=1 mcij
cij , in the tree is O(σ + m).

Lemma 15. The time to insert a leaf node corresponding to an abelian pat-
tern P =

∑σP

j=1 mcij
cij , in an abelian tree with alternating levels that uses

linked lists to store outgoing edges at its internal nodes, is O(σ + m).

Proof. To insert a leaf node corresponding to the abelian pattern P =
∑σP

j=1 mcij
cij , we first find the node corresponding to the longest abelian

prefix of P . This we do in time O(m + σ) (Lemma 14).

Let the longest prefix of P that has a corresponding node in the abelian
tree be P ′ =

∑k
j=1 mcij

cij , where k ≤ σP , and let N be the node correspond-

ing to P ′ in the abelian tree.

If k = σP , then we simply append the pointer to the starting position of
P in the input text T at the end of the list of pointers maintained at node
N .
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As the time complexity to append a pointer at the end of the list of pointers
maintained at a leaf node is O(1), the time complexity to insert P in the
abelian tree is O(m + σ).

If 0 ≤ k < σP , then:
If the edge with the label cik+1

exists as an outgoing edge of N (if k = 0,
then N is the root node), then we follow this edge. Let this edge leads to
the node N ′ in the abelian tree. Then we insert new edges in the tree in the
following manner, with mcik+1

being inserted in the linked list of N ′.

mcik+1
→ cik+2

→ mcik+2
→ · · · → ciσP

→ mciσP

After inserting an edge in the tree, we create a new node with empty linked
list at the end of this newly inserted edge; and the next edge is inserted in
the empty linked list of this newly created node. We continue inserting the
edges in the tree until we have inserted the edge with the label mciσP

; after
which we create the leaf node corresponding to P at the end of this edge,
and add a pointer to the starting position of P in T to this newly inserted
leaf node of the tree.
If the edge with the label cik+1

does not exist as an outgoing edge of N , then
too we we follow the procedure mentioned above, with the difference that
now we also insert the edge with the label cik+1

in the tree; and this edge is
inserted in the linked list of N . So now, the edges are inserted in the tree in
the following order:

cik+1
→ mcik+1

→ cik+2
→ mcik+2

→ · · · → ciσP
→ mciσP

The time complexity to find the edge with the label cik+1
in the linked list of

node N is O(ik+1− ik) which is in O(σ). Moreover, if the edge with the label
cik+1

exists as an outgoing edge of N , then the time complexity to find the
edge with the label mcik+1

in the linked list of node N ′ is O(mcik+1
) which

is in O(m). The time complexity of creating a new node with empty linked
list is O(1) and the time complexity to insert an edge in the already empty
linked list of a node is also O(1). So the time complexity to create the new
nodes and inserting the new edges in the abelian tree is O(σP − k) = O(σP ).

Hence in time O(m + σ), we insert the leaf node corresponding to P in
the abelian tree.

Lemma 16. The time complexity of the construction of an abelian tree with
alternating levels, that uses sorted linked lists to store the outgoing edges at
its internal nodes, is O(n(m + σ))
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Proof. There are O(n) abelian patterns of length m in the input text T , so
we insert O(n) leaf nodes in the abelian tree. The time complexity to insert
a leaf node in the tree is O(m + σ) (Lemma 15), hence, the time complexity
to construct the tree is O(n(m + σ)).

Lemma 17. The space complexity of an abelian tree with alternating levels
that uses sorted linked lists to store the outgoing edges at its internal nodes
is O(mn).

Proof. There are O(n) distinct paths, from the root node to the leaf nodes,
in the tree. The length of the path form the root node to a leaf node, in an
abelian tree with alternating levels, is O(m) (Corollary 2). So we have O(mn)
edges in the tree. As we use linked lists at the internal nodes to store the
outgoing edges, an edge is stored in O(1) space. Hence the space requirement
of all the internal nodes is O(mn). The leaf nodes of the tree contain pointers
to the locations of the abelian patterns, and the number of these pointers is
O(n). A pointer requires O(1) space, so the space requirement of all the leaf
nodes is O(n).

Hence, the space complexity of an abelian tree with alternating levels,
that uses sorted linked lists to store the outgoing edges at its internal nodes,
is O(mn).

3.4.3 Replacing the Linked Lists with the Arrays

Once we have constructed an abelian tree with alternating levels that uses
sorted linked lists to store the outgoing edges at its internal nodes, we opti-
mize the structure of the internal nodes of the tree to make the process of
query processing efficient.

Replacing the Linked Lists at Multiplicity Nodes with Directly
Accessible Arrays

The labels of the edges at a multiplicity node of the abelian tree range be-
tween 1 and m. In the linked list structure, the time complexity to find an
edge with label e at a multiplicity node M is O(e), as in the worst case, all
the edges with labels less than e are present as outgoing edges of M . Let
emax be the highest edge label among the outgoing edges of a multiplicity
node M ; then we convert the linked list of the outgoing edges of M into a
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Figure 3.11: (a) A multiplicity node having a linked list to store the out-
going edges. (b) The same node, with the linked list replaced by a directly
accessible array for storing the outgoing edges. Note that the index of the
array begins at 1 instead of 0.

directly accessible array of emax elements, by using the method described in
Section 3.3.3. Figure 3.11 illustrates the conversion of the linked list into a
directly accessible array at a multiplicity node. Note that unlike Figure 3.8,
the array starts from index 1 in Figure 3.11, as the tree does not contain
any zero-edges. Now the time complexity to find an edge with label e at a
multiplicity node M becomes O(1).

Lemma 18. The space requirement of all the multiplicity nodes that use
directly accessible arrays for storing their outgoing edges is O(mn).

Proof. For the sake of analysis, we assume that no path is shared by two or
more leaf nodes in the abelian tree that uses the linked lists for storing the
outgoing edges at its internal nodes. If this is not the case, then we replicate
the shared paths to achieve this property. A path PathX from the root node
to a leaf node X has σP multiplicity nodes. For a multiplicity node M lying
on PathX, let eM be the label of the outgoing edge of N ; then we need to
keep the size of the array at M no more than eM . The sum of the labels of
all the edges lying on PathX is m, so the total storage requirement of all the
multiplicity nodes lying on PathX is O(m).

As there are O(n) leaf nodes, so we have O(n) paths and the storage
requirement of the multiplicity nodes is O(mn).

Corollary 3. After replacing the linked lists with the directly accessible ar-
rays at the multiplicity nodes, the space complexity of the abelian tree with
alternating levels remains O(mn) .

Lemma 19. The time complexity to covert the linked lists at the multiplicity
nodes into directly accessible arrays is O(mn).
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Proof. We assume that the information about the largest label among the
labels of all the outgoing edges of a multiplicity node is also stored in the
node and therefore, this information is available in O(1) time. As the sum
total of the sizes of all the arrays at the multiplicity nodes of the tree is
O(mn) (Lemma 18), so the time for creating these arrays and writing once
into them is O(mn).

Lemma 20. The time complexity to find the leaf node corresponding to an
abelian pattern P in the tree, after replacing the linked lists with the directly
accessible arrays at the multiplicity nodes, is O(σ).

Proof. Let P =
∑σP

j=1 mcij
cij be the given abelian pattern, then the sequence

of the edges from the root node to the leaf node corresponding to P , in the
tree is

ci1 → mci1
→ ci2 → mci2

→ · · · → ciσP
→ mciσP

The time complexity to find an edge e that has edge label mcik
, at an

internal node N that hosts e, is O(1) now; as the edge labels are stored in
directly accessible arrays at the multiplicity nodes.
So the total time complexity of finding all the multiplicity edges in the path
from the root node to the leaf node corresponding to P is σP .

The time complexity to find the edge with edge label ci1 at the root node
is i1; as in the worst case, all the edges having labels less than ci1 are also
present as the outgoing edges of the root node.
The time complexity to find an edge e that has edge label cik , at an internal
node N that hosts e, is ik − ik−1. This is because of the fact that the edge
labels of the outgoing edges of N are greater than cik−1

(Observation 11) and
in the worst case all the edges that have label less than cik are present as the
outgoing edges of N .
So the total time complexity of finding all the character edges in the path
from the root node to the leaf node corresponding to P is iσP

. As in the
worst case, ciσP

= cσ, so the aggregate time complexity of finding all the
character edges at there hosting nodes is O(σ).

Hence the time complexity to find the leaf node, corresponding to the
abelian pattern P =

∑σP

j=1 mcij
cij , in the tree is O(σ).
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Figure 3.12: (a) A character node having a linked list to store the outgoing
edges; with the edge labels being the English alphabets with the ordering
a < b < c < · · · < z. (b) The same node, with the linked list replaced by a
directly accessible array for storing the outgoing edges. The shaded elements
of the array contain no edge; and this unused storage is the cost we pay to
get the efficiency of the direct accessibility.

Replacing the Linked Lists at Character Nodes with Directly Ac-
cessible Arrays

We assume that there exists a minimal perfect hash function ρ for the char-
acters in Σ (i.e. ρ hashes Σ to consecutive numbers {0, . . . , σ−1}); moreover,
ρ(ci) < ρ(cj)⇔ ci < cj. Note that for the alphabets of English language, ρ is
quite simple; it just subtracts a constant from the ASCII values of the char-
acters. Now we can use the directly accessible arrays to store the outgoing
edges at the character nodes as well. Let emin and emax be the lowest and
the highest edge labels respectively, among the outgoing edges of a character
node C . Then we convert the linked list of the outgoing edges of the node
C into a directly accessible array of ρ(emax)− ρ(emin)+ 1 elements using the
method described in Section 3.3.3. Figure 3.12 illustrates the conversion of
the linked list into a directly accessible array at a character node.

Now the edge with label ci, at a character node C , is found at the ρ(ci)−
ρ(cmin) + 1th location of the directly accessible array of the outgoing edges
of C ; where cmin is the label of the edge at the first location of the array.
Thus, we find an edge at a character node in O(1) time.

Lemma 21. The space complexity of the tree, after replacing the linked lists
with the directly accessible arrays at both, the multiplicity nodes as well as
the character nodes, is O(n(m + σ)).

Proof. For the sake of analysis, we assume that no path is shared by two or
more leaf nodes in the abelian tree that uses the directly accessible arrays
for storing the outgoing edges at its character nodes. If this is not the case,
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we replicate the shared paths to achieve this property. A path PathX from
the root node to a leaf node X corresponding to an abelian pattern P =
∑σP

j=1 mcij
cij has σP character nodes and σP multiplicity nodes. The sequence

of the edges in PathX is as follows:

ci1 → mci1
→ ci2 → mci2

→ · · · → ciσP
→ mciσP

Let Mcij
denotes the node hosting the edge mcij

. Then the array at Mcij

comprises of mcij
elements (ranging from 1 to mcij

). As
∑σP

j=1 mcij
= m, the

total space requirement of all the multiplicity nodes in PathX is m.

Let Ccij
denotes the node hosting the edge cij . The array at Cci1

comprise
of only one element, which is the edge with label ci1.
The array at Ccij

comprises of ij − ij−1 elements, as the first element of this

array is greater than cij−1 (Observation 11) and the last element of this array
is cij (because the edge with label cij is the only outgoing edge of Ccij

).
So the total space requirement of all the character nodes on PathX is iσP

−i1.
As in the worst case, ci1 = c1 and ciσP

= cσ, so the space requirement of all
the character nodes on PathX is O(σ).

Hence, the space requirement of all the internal nodes (both character nodes
as well as multiplicity nodes) lying on PathX is O(m + σ).

As there are O(n) leaf nodes, so we have O(n) paths from the root node to
the leaf nodes; thus the storage requirement of all the internal nodes of the
abelian tree is O(n(m + σ)).

The leaf nodes contain lists of pointers to the locations of the abelian
patterns in T . As the number of abelian patterns is O(n), so is the number
of the pointers to their locations in T . A pointer requires O(1) space, so the
space requirement of the leaf nodes is O(n).

Hence the space requirement of an abelian tree with alternating levels,
that uses directly accessible arrays at its internal nodes to store the outgoing
edges, is O(n(m + σ)).

Lemma 22. The time complexity to construct an abelian tree with alternating
levels, that uses directly accessible arrays at it internal nodes for storing the
outgoing edges, is O(n(m + σ)).

Proof. The time complexity to construct an abelian tree with alternating
levels, that uses linked lists to store the outgoing edges at it internal nodes,
is O(n(m + σ)) (Lemma 16). We assume that the information about the
largest label among the labels of all the outgoing edges of a multiplicity node
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is also stored in the node and therefore, this information is available in O(1)
time. We also assume that the information about the smallest and the largest
labels among the labels of all the outgoing edges of a character node is also
stored in the node and therefore, this information is also available in O(1)
time. As the sum total of the sizes of all the arrays at the internal nodes of
the tree is O(n(m + σ)) (Lemma 21), so the time for creating these arrays
and writing once into them is O(n(m + σ)).

Lemma 23. The time complexity to find the leaf node corresponding to an
abelian pattern P in the tree, after replacing the linked lists with the directly
accessible arrays at both, the multiplicity nodes as well as the character nodes,
is O(σP ).

Proof. Let P =
∑σP

j=1 mcij
cij be the given abelian pattern, then the sequence

of the edges from the root node to the leaf node corresponding to P , in the
tree is

ci1 → mci1
→ ci2 → mci2

→ · · · → ciσP
→ mciσP

The time complexity to find an edge e that has edge label mcik
(or cik),

at the node hosting e, is O(1) for all 1 ≤ k ≤ σP . Hence the time complexity
to find the leaf node corresponding to the abelian pattern P is O(σP ).

Replacing the Linked Lists at Character Nodes with Binary Search-
able Arrays

It is important to note that it might not be possible to find a minimal perfect
hash function ρ for every character set Σ , such that ρ(ci) < ρ(cj)⇔ ci < cj

for each pair ci, cj ∈ Σ. In this case, we can convert the linked lists, of
the outgoing edges at the character nodes of an abelian tree, into binary
searchable arrays.

Observation 12. The time to convert the sorted linked lists at the character
nodes into binary searchable arrays is O(mn); as the tree has O(m) levels
(Corollary 2) and O(n) leaf nodes, which means the number of edges stored
at the linked lists of the character edges is O(mn).

Observation 13. The space complexity of an abelian tree with alternating
levels, after replacing the linked lists at the multiplicity nodes with the di-
rectly accessible arrays and the linked lists at the character nodes with binary
searchable arrays, is O(mn).

67



Lemma 24. The time complexity to find the leaf node corresponding to an
abelian pattern P in an abelian tree with alternating levels, that uses directly
accessible arrays at its multiplicity nodes and binary searchable arrays at its
character nodes, is O(σP log σ), where σP is the number of distinct characters
in P .

Proof. Let P =
∑σP

j=1 mcij
cij be the given abelian pattern, then the sequence

of edges from the root node to the leaf node corresponding to P , in the tree
is

ci1 → mci1
→ ci2 → mci2

→ · · · → ciσP
→ mciσP

The time complexity to find an edge e that has edge label mcik
, at an

internal node N that hosts e, is O(1); as the edge labels are stored in directly
accessible arrays at the multiplicity nodes.
So the total time complexity of finding all the multiplicity edges in the path
from the root node to the leaf node corresponding to P is σP .

The time complexity to find an edge e that has edge label cik , at an
internal node N that hosts e, is O(log σ); as the edge labels at the character
nodes are stored in binary searchable arrays, and there are O(σ) outgoing
edges at a character node. So the total time complexity of finding all the
character edges in the path from the root node to the leaf node corresponding
to P is O(σP log σ).

Hence the time complexity to find the leaf node, corresponding to the
abelian pattern P =

∑σP

j=1 mcij
cij , in the tree is O(σP log σ).

3.5 Conclusion

In this chapter we have focused on the indexing strategies for abelian pattern
matching. As the order of characters in the abelian patterns is not relevant,
we imposed an external ordering on the characters for indexing the input
text for abelian pattern matching.

We discussed how the parikh index can be used for the problem of abelian
pattern matching. Then we presented a new data-structure abelian tree for
indexing the input text. We also shed light on the tradeoff between the
storage requirement and the efficiency of query processing for an abelian tree
in contrast to the different data-structures used for storing the outgoing edges
at the internal nodes of the tree.

Finally, we presented an abelian tree with alternating levels to avoid the
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overhead of keeping the unnecessary edges when the size of the alphabet is
large.
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Chapter 4

Approximate Abelian Pattern
Matching

4.1 Introduction

The work presented so far has focused on the problem of finding exact abelian
matches of a given pattern P in a text stream T . Both P and T are defined
over the same alphabet Σ, and σ := |Σ|.

In this chapter, we consider the problem of finding approximate abelian
matches of P . The chapter is organized as follows:

In Section 4.2, we provide a formal definition of an approximate abelian
match of a pattern, and present three error models: the substitution error
model, the insertion/deletion error model and the minimum operations error
model. These models measure the degree of error in a substring S with
respect to the given pattern P . We also call this degree of error, the distance
between S and P or, the cost to transform S into P ; and we use all these
three terms interchangeably throughout the chapter.

In Section 4.3, we present an algorithm for approximate abelian pattern
matching under the substitution error model.

Section 4.4 begins with several observations about the approximate abelian
matches under the insertion/deletion error model. Then we describe the
desired output for the approximate matches. And finally, we present two
algorithms for approximate pattern matching under the insertion/deletion
error model.

In the last section of the chapter, we deal with the approximate abelian
pattern matching under the minimum operations error model.
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4.2 Approximate Abelian Pattern Matching

In approximate abelian pattern matching, we tolerate up to a specified num-
ber of errors in a matching substring S of the input text T , i.e. the frequencies
of one or more characters in S can be different from the specified frequencies
of those characters in P .

To quantify the degree of error in a substring S with respect to P , we
define three error models. Depending on the error model, S is of length
m := |P | or it is of an arbitrary length.

4.2.1 Error Models for Approximate Abelian Pattern

Matching

We use three error models to define the distance between the pattern to be
found P =

∑σ
i=1 mci

ci and another pattern P ′ =
∑σ

i=1 m′
ci
ci that corresponds

to an arbitrary substring of T .

Substitution Error Model: In this model, we only consider length-m sub-
strings of T . The substitution distance between P and P ′ is then defined
as 1

2
·
∑σ

i=1 |mci
−m′

ci
|. This is always an integer. The substitution error

model is further elaborated in Section 4.3.

Insertion/Deletion (InDel) Error Model: In this model, we consider
arbitrary length substrings of T . The InDel distance between P and
P ′ is then defined as

∑σ
i=1 |mci

−m′
ci
|. The details of this model are

presented in Section 4.4.

Minimum Operations (MinOp) Error Model: We again consider arbi-
trary length substrings of T . The MinOp distance between P and P ′

is defined as the minimum number of letter substitutions and inser-
tions/deletions to transform P ′ into P . Let m′ be the length of P ′,
then the MinOp distance between P and P ′ is computed by the for-
mula

1

2
·

{

|m−m′|+
σ
∑

i=1

|mci
−m′

ci
|

}

Section 4.5 sheds light on the minimum operations error model.
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4.2.2 Formal Problem Definition

Formally, given an abelian pattern P =
∑σ

i=1 mci
ci of length m, an error

threshold t, an error model and a text T ∈ Σn, the approximate abelian
pattern matching problem is to find all approximate occurrences of P in T
under the specific error model used; i.e. we want to find all positions i, such
that the distance between P and the abelian pattern corresponding to the
substring Ti · · ·Tj is at most t.

Now we give several definitions that we use later in the chapter. Let P ′ =
∑σ

i=1 m′
ci
ci be the abelian pattern corresponding to an arbitrary substring of

T , then:

Definition 12. A character is called a spare character if it has
higher frequency in P ′ than its specified frequency in P .

Definition 13. A character is called a deficit character if it has
lower frequency in P ′ than its specified frequency in P .

Definition 14. If ch is a spare character, then m′
ch−mch is called

the spareness of ch.

Definition 15. If ch is a deficit character, then mch − m′
ch is

called the deficiency of ch.

4.3 Approximate Abelian Pattern Matching

Under the Substitution Error Model

In approximate abelian pattern matching under the substitution error model,
we are interested only in the length-m substrings of T . For a given abelian
pattern P =

∑σ
i=1 mci

ci, the substitution distance between P and another
abelian pattern P ′ =

∑σ
i=1 m′

ci
ci is defined as the minimum number of char-

acter substitutions to transform P ′ into P . For example, let P = 2a+2b and
P ′ = a + 3b, then the substitution distance between P and P ′ is one, as by
substituting one b with an a in P ′, we transform P ′ into P .

Observation 14. In a substitution operation, a spare character is substituted
by a deficit character.
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Lemma 25. If |P ′| = m, then the sum total of the sparenesses of all the
spare characters of P ′ is equal to the sum total of the deficiencies of all the
deficit characters of P ′. That is,

∑

c∈ΣS

(m′
c −mc) =

∑

c∈ΣD

(mc −m′
c)

where ΣS denote the set of the spare characters of P ′ (recall that c is a spare
character of P ′ if m′

c > mc) and ΣD denotes the set of the deficit characters
of P ′ (recall that c is a deficit character of P ′ if m′

c < mc).

Proof. As |P ′| = m, therefore;

∑

c∈Σ

m′
c =

∑

c∈Σ

mc

As ΣS and ΣD are disjoint sets, therefore;

∑

c∈Σ

m′
c =

∑

c∈Σ\(ΣS∪ΣD)

m′
c +

∑

c∈ΣS

m′
c +

∑

c∈ΣD

m′
c

and
∑

c∈Σ

mc =
∑

c∈Σ\(ΣS∪ΣD)

mc +
∑

c∈ΣS

mc +
∑

c∈ΣD

mc

Hence,

∑

c∈Σ\(ΣS∪ΣD)

m′
c +

∑

c∈ΣS

m′
c +

∑

c∈ΣD

m′
c =

∑

c∈Σ\(ΣS∪ΣD)

mc +
∑

c∈ΣS

mc +
∑

c∈ΣD

mc

⇒
∑

c∈ΣS

m′
c +

∑

c∈ΣD

m′
c =

∑

c∈ΣS

mc +
∑

c∈ΣD

mc

⇒
∑

c∈ΣS

m′
c −

∑

c∈ΣS

mc =
∑

c∈ΣD

mc −
∑

c∈ΣD

m′
c

⇒
∑

c∈ΣS

(m′
c −mc) =

∑

c∈ΣD

(mc −m′
c)
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Corollary 4. From Observation 14 and Lemma 25, it follows that the sub-
stitution distance is always an integer.

Lemma 26. The substitution distance between an abelian P =
∑σ

i=1 mci
ci

and another abelian pattern P ′ =
∑σ

i=1 m′
ci
ci is

1

2
·

σ
∑

i=1

|mci
−m′

ci
|

Proof. One character substitution has two-fold effect; on one hand, it reduces
the frequency of a spare character and on the other hand, it increases the
frequency of a deficit character. Thus one substitution operation decreases
the sum of the absolute differences in the frequencies of the characters of P ′

and P by 2. Hence, the number of substitutions to transform P ′ into P is
1
2
·
∑σ

i=1 |mci
−m′

ci
|.

Now we present an algorithm for finding the approximate matches of a
given abelian pattern P of length m in an input text T of length n, under
the substitution error model.

4.3.1 Basic Idea of the Algorithm

We set a window of length m at the beginning of the input text T , and
compute the distance between P and the abelian pattern corresponding to
the substring contained in the window, using the substitution error model.
If the computed distance is less than t, then the current window contains an
approximate abelian match of P , and we output the starting position of the
current window.

After that, we advance the window towards right by one position and
check the new window for a match. This way, we move the window along
the whole text and report the starting positions of the windows that contain
approximate abelian matches of P .

4.3.2 The Algorithm

The pseudo code of the algorithm for approximate abelian pattern matching
under the substitution error model is presented in Algorithm 4.

We use an array DFV (difference frequency vector) of σ elements to store
the differences – in the frequencies of the characters – between P and the
substring contained in the current window.
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Algorithm 4 Approximate Abelian Pattern Matching under the Substitu-
tion Error Model
Input: A pattern P of length m, a text stream T = T [1] . . . T [n], a hash

function ρ and an error threshold t
Output: Starting positions of all approximate matches of P in T

⊲ Build difference frequency vector (DFV ) for the first m characters
1: for i = 1 to σ do
2: DFV [i]← 0− P [i]
3: for i = 1 to m do
4: Increment DFV [ρ(T [i])] by 1

⊲ Calculate the number of substitutions required to transform the substring
contained in the current window into P

5: subs← 0
6: for i = 1 to σ do
7: subs← subs + ABS(DFV [i])

⊲ ABS(x) returns the absolute value of x
8: subs← subs/2
9: if subs ≤ t then

10: output 1
11: i← 2
12: while i ≤ n−m + 1 do
13: if T [i− 1] 6= T [i + m− 1] then
14: Decrement DFV [ρ(T [i− 1])] by 1
15: Increment DFV [ρ(T [i + m− 1])] by 1
16: if (DFV [ρ(T [i− 1])] < 0) then
17: if (DFV [ρ(T [i + m− 1])] > 0) then
18: subs← subs + 1
19: else
20: if (DFV [ρ(T [i + m− 1])] ≤ 0) then
21: subs← subs− 1
22: if subs ≤ t then
23: output i
24: i← i + 1
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In the first phase of the algorithm (line 1-10 ), we initialize the array
DFV for the first m characters of T . This is done in the first four lines of
the algorithm.

After that we need to compute the substitution distance between the current
window and P . Let S denotes the substring contained in the current window,
then the number of the substitution operations required to transform S into
P is half of the sum of the absolute differences in the frequencies of the
characters of S and P (Lemma 26). We compute the number of substitution
operations for the current window in the variable subs (for loop of line 6-8 ).

If subs is less than or equal to the error threshold t, then we output the first
position of the text as starting position of an approximate match of P .

In the next phase of the algorithm (line 11-24 ), we move the sliding
window along the whole text, and report the starting positions of all those
windows for which the value of subs is less than or equal to t.

We proceed incrementally, and move the current window towards the right by
one position (line 11 and line 24 ). The new current window is different from
the previous window at two places: it does not contain the first character
of the previous window; and the last character of the current window was
not part of the previous window. Let x denotes the first character of the
previous window and y denotes the last character of the current window. If
x and y are the same character, then the current window is also the same as
the previous window and so are the values of its DFV and subs.

However, if x and y are not the same character, then we construct DFV
corresponding to the current window by decrementing the frequency of x by
1 (line 14 ) and incrementing the frequency of y by 1 (line 15 ) in the array
DFV . After constructing DFV for the current window, we need to update
the value of subs so that it corresponds to DFV of the current window.

There are four possibilities for x and y:

(i) DFV [ρ(x)] < 0 and DFV [ρ(y)] ≤ 0: This means that x has either be-
come a deficit character in the current window or if it was already a
deficit character in the previous window then its deficiency is increased
by one in the current window. Similarly, y was a deficit character in the
previous window and in the current window, its deficiency is decreased
by one.

The value of subs remains same, as one earlier substitution of a spare
character by y would be replaced by the substitution of the same char-
acter by x.

(ii) DFV [ρ(x)] < 0 and DFV [ρ(y)] > 0: This means that x has either be-
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come a deficit character in the current window or if it was already a
deficit character in the previous window then its deficiency is increased
by one in the current window. Moreover, y has either become a spare
character in the current window or if it was already a spare character
in the previous window then its spareness is increased by one in the
current window.

So we have to do an additional substitution (substitute y by x) to trans-
form the current window into P . Hence the value of subs is increased
by 1 in this case, and we update subs in line 18 of the algorithm.

(iii) DFV [ρ(x)] ≥ 0 and DFV [ρ(y)] > 0: This means that x was a spare
character in the previous window and in the current window its spare-
ness is decreased by one. Moreover, y has either become a spare char-
acter in the current window or if it was already a spare character in the
previous window then its spareness is increased by one in the current
window.

So, instead of substituting x by a deficit character, we substitute y
by that characters, and other things remain same. The value of subs
remains unaffected in this case.

(iv) DFV [ρ(x)] ≥ 0 and DFV [ρ(y)] ≤ 0: This means that x was a spare
character in the previous window and in the current window its spare-
ness is decreased by one. Similarly, y was a deficit character in the
previous window and in the current window, its deficiency is decreased
by one.

If the value of subs is 1, then in the previous window, the only sub-
stitution operation was the substitution of x by y, which is no more
required for the current window, making the current window an exact
match.

If the value of subs is greater than 1, then in the previous window,
we had to substitute x by a required character say y′ (y′ could also be
same as y). Similarly, in the previous window, another spare character
say x′ (x′ could also be same as x) was substituted by y. Now we can
do the work of these two substitution operations by one substitution,
namely, the substitution of x′ by y′.

Hence the value of subs goes down by 1 in this case, and we update
subs in line 21 of the algorithm.

If the new value of subs is less than or equal to t, then we output the starting
position of the current window (line 23 ). This way, we move the window
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along the whole text and report the starting positions of all those windows
for which the value of subs is less than or equal to t.

4.3.3 Complexity Analysis

The algorithm reads and processes every character in T exactly twice; for
the first time to add its count in DFV , and for the second time to remove its
count from DFV . Each time the window is slid towards right, we construct
the DFV and subs corresponding to the new window in constant time, so
the overall time complexity of this algorithm is Θ(n).

At any point in time, this algorithm keeps in memory only one frequency
vectors DFV , and one integer variable subs. As we assume that the hash
function ρ is a minimal perfect hash function, so the array DFV requires
O(σ) storage. Hence the space complexity of this algorithm is O(σ), in
addition to the space required for the input and the output.

4.4 Approximate Abelian Pattern Matching

under the Insertion/Deletion (InDel) Er-

ror Model

In the problem of approximate abelian pattern matching under the InDel
error model, a matching pattern needs not to be of the fixed length m. For
a given abelian pattern P =

∑σ
i=1 mci

ci, the InDel distance between P and
another abelian pattern P ′ =

∑σ
i=1 m′

ci
ci is defined as the minimum number

of insertions of new characters in P ′ and deletions of existing characters of P ′

to transform P ′ into P . For example, let P = 2a+2b+c and P ′ = 3a+3b, then
the InDel distance between P and P ′ is three, as we insert one c in P ′ and
delete one a and one b from P ′ to transform P ′ into P . While transforming P ′

into P , the deficit characters are inserted in P ′ and the spare characters are
deleted from P ′. Hence, the InDel distance between P and P ′ is determined
by the formula

∑σ
i=1 |mci

−m′
ci
|.

InDel Distance versus q-Gram Distance: The notion of q-gram dis-
tance between two strings was introduced in [36]. A q-gram is a string of
length q and the q-gram distance between two strings is based on counting
the number of the occurrences of different q-grams in the two strings. For the
special case of q = 1, the q-gram distance between two substrings x and y is

79



the same as the InDel distance between the abelian patterns corresponding
to x and y.

There are several observations regarding the approximate abelian matches
under the InDel error model.

Observation 15. Let S = Ti · · · Tj be a t-approximate match of P (|P | = m)
under the InDel error model, then

m− t ≤ j − i + 1 ≤ m + t

Observation 16. Let S = Ti · · ·Tj be an approximate match of P under the
InDel error model, then it is possible that another substring S ′ = Ti′ · · · Tj′

(such that i′ ≥ i, j′ ≤ j and j′− i′+1 ≥ m− t) is not an approximate match
of P under the InDel error model.

Example 2. Let P = 5a+5b and error threshold t = 3; then S = aaaaabbbcccbb
(with length 13) is an approximate match of P under the InDel error model,
whereas S ′ = aaaaabbbcccb (with length 12) is not an approximate match.

4.4.1 The Desired Output

Although we are interested in finding all variable length substrings of T
that approximately match P under the InDel error model, there could be
situations where several matching substrings start at the same position in T .

For example, for P = 2a+3b and T = aabcbcb with error threshold t = 2,
three substrings, that approximately match P , start at position 1 of T . The
ending positions of these matching substrings are 3, 5 and 7 respectively.
Here it is important to note that the substrings aabc (position 1-4 of T ) and
aabcbc (position 1-6 of T ) are not matching substrings. So the range of
the positions, starting at 3 and ending at 7, does not make an interval of
the ending positions of the approximate matches of P that start at position
1. However, all the matching substrings of P that start at position 1 are
contained in the match that starts at position 1 and ends at position 7.

To avoid redundant information, we define the notion of maximality of
an approximate abelian match of P and we report only the maximal approx-
imate matches of P .

Definition 16. A maximal approximate match of P is a substring S =
Ti · · ·Tj such that S is an approximate match of P and no substring S ′ =
Ti′ · · ·Tj′ with i′ ≤ i and j′ ≥ j is an approximate match of P .

Now in the above example we output only the match that starts at posi-
tion 1 and ends at position 7 of T .
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4.4.2 Basic Idea and Building Block of the Algorithm

We define a potential match and use it as a building block in our algorithm
for approximate abelian pattern matching under the InDel error model.

Definition 17. A potential match is a substring S = Ti · · ·Tj such that
a substring S ′ = Ti · · · Tj′ with j′ > j can be an approximate match of P .
For example, for P = 5a + 5b and error threshold t = 3, the substring
S = aaaaabbbcccb is a potential match because if the next character in the
text happens to be the character b, then the substring S ′ = aaaaabbbcccbb
would become an approximate match of P . A potential match can also be an
approximate match.

Observation 17. A potential match cannot be longer than m + t− 1.

Observation 18. Being a potential match is an anti-monotone property [17],
i.e. if S = Ti · · · Tj is not a potential match then no substring S ′ = Ti · · · Tj′

with j′ > j can be a potential match.

Lemma 27. A substring S is a potential match only if the number of dele-
tions required to transform S into P is less than or equal to the error threshold
t.

Proof. Let S = Ti · · ·Tj be a potential match, and we require x insertions
and y deletions to transform S into P . Assume that y > t. Now if we extend
S towards the right, the newly added characters can only decrease insertion
operations; which means the cost would remain at least y which is greater
than t, hence S is not a potential match.

Lemma 28. If the number of deletions required to transform a substring S
into P is less than or equal to the error threshold t, and the length of S is
less than m + t, then S is a potential match.

Proof. Let S = Ti · · ·Tj, and it requires x insertions and y deletions to
transform S into P , where y ≤ t.

This means j− i+1 = m−x+y, and S can be extended towards right up
to at most t+x−y positions (this is because of the fact that an approximate
abelian match under the InDel error model can be at most m + t characters
long). In this extension procedure, the newly added characters can replace
only insertion operations. So we need to show that t + x− y ≥ x, so that, in
the best case, every newly added character replaces one insertion operation,
and as x equals 0, this makes x + y ≤ t. Hence the new (extended) substring
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is an approximate abelian match of P , and by definition S is a potential
match.

Now, t + x − y ≥ x ⇔ t− y ≥ 0⇔ t ≥ y, which is in the premise of the
lemma.

Corollary 5. All approximate matches of length less than m + t are also
potential matches.

Basic Idea

We move a window of length m − t along the text T ; and if the substring
contained in the window is a potential match, then we extend this substring
towards the right until the extended substring is not a potential match.
In this process we may encounter one or more approximate matches. We
keep the longest (the latest encountered) approximate match, and if this
approximate match is also a maximal match, then we output the starting
position of the current window along with the ending position of the maximal
match.

We keep the length of the window m − t because of the fact that an
approximate match under the InDel error model is at least m− t characters
long (Observation 15). Hence we do not skip any approximate match if the
length of the sliding window is m− t.

As the window is slid from the left towards the right along the text T ,
so the starting positions of all the matches that has been output till a point
in time are monotonically increasing. Thus it suffices to keep the ending
position of the latest output approximate match for deciding the maximality
of a match. If a newly found match has its ending position greater than the
ending position of the latest output match then it is a maximal match and
we output it.

4.4.3 The Algorithm

The algorithm for approximate abelian pattern matching under the InDel
error model is outlined in Algorithm 5.

In the first four lines of the algorithm, we initialize the array DFV for
the first m− t characters of T . Then in the for loop of line 6, we compute
the number of insertion and deletion operations required to transform the
substring contained in the current window into P in the variables ins and
del respectively.
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The value of the variable MaximalMatch at any point in time shows the
ending position of the latest output (maximal) match; and its initial value is
set at 0 (line 11 ), indicating that no maximal match has yet been output.
If the current window contains a potential match (according to Lemma 28),
then we call the sub-routine CheckForMatch in line 13.

The sub-routine CheckForMatch takes seven arguments; the text stream
T (call by reference), DFV (also call by reference), number of insertion and
deletion operations ( ins and del) to transform the substring contained in the
current window into P , the error threshold t, the last position of the current
window k, and the hash function ρ for direct accessibility of the characters
of T in the array DFV .

The sub-routine CheckForMatch extends the current window towards the
right to the extent, where the substring contained in the extended window no
longer remains a potential match. In the process of extension of the current
window, one or more approximate matches of P may be encountered. In
this situation, the sub-routine returns the ending position of the longest of
the approximate matches that are encountered during the extension of the
window. The variables ins and del are local variables of the sub-routine;
however, as the array DFV is passed by reference to the sub-routine, there-
fore, once the extension of the window is stopped, the sub-routine undoes the
changes made in the DFV during the extension of the window. The pseudo
code of the sub-routine is presented in Algorithm 6.

In line 1 of the sub-routine, we initialize the variable match with 0, indicat-
ing that no match has yet been found. If the current window contains an
approximate match of P , then match takes the value of the last position of
the current window (line 3 ).

In the while loop of line 6-17, we extend the current window towards the
right until it contains a potential match. In line 13 of the loop, we check the
extended substring of the current iteration for a match; and if this substring
is an approximate match, then we update the value of match with this new
longer match (line 14 ). However, if the extended substring of the current
iteration is not an approximate match, then we test it for being a potential
match and set the flag PotentialMatch to false if it fails the test (line 17 ).

There is a special case when the while loop does an extra iteration. If the
extended substring of length m + t is an approximate match, we do not
test it for a potential match (thus do no change the flag PotentialMatch),
although the extended substring of the current iteration is not a potential
match (Corollary 5). However, in the very next iteration of the while loop,
the extended substring is recognized as not a potential match and the flag
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Algorithm 5 Approximate Abelian Pattern Matching under the InDel Error
Model
Input: A pattern P of length m, a text stream T = T [1] . . . T [n], a hash

function ρ and an error threshold t
Output: Starting and ending positions of all maximal approximate matches

of P in T

⊲ Build difference frequency vector (DFV ) for the first m− t characters
1: for i = 1 to σ do
2: DFV [i]← 0− P [i]
3: for i = 1 to m− t do
4: Increment DFV [ρ(T [i])] by 1

⊲ Calculate the number of insertion and deletion operations required to
transform the substring contained in the current window into P

5: ins← del← 0
6: for i = 1 to σ do
7: if DFV [i] > 0 then ⊲ spare characters to be deleted
8: del← del + DFV [i]
9: else if DFV [i] < 0 then ⊲ deficit characters to be inserted

10: ins← ins + ABS(DFV [i])
⊲ ABS(x) returns the absolute value of x

11: MaximalMatch← 0
12: if del ≤ t then ⊲ current window contains a potential match
13: match← CheckForMatch(T, DFV, ins, del, t,m− t, ρ)
14: if match > MaximalMatch then
15: output (1, match)
16: MaximalMatch← match
17: i← 2
18: while i ≤ n−m + t + 1 do
19: if T [i− 1] 6= T [i + m− t− 1] then
20: Decrement DFV [ρ(T [i− 1])] by 1
21: Increment DFV [ρ(T [i + m− t− 1])] by 1
22: if (DFV [ρ(T [i− 1])] < 0) then
23: if (DFV [ρ(T [i + m− t− 1])] > 0) then
24: ins← ins + 1
25: del← del + 1
26: else
27: if (DFV [ρ(T [i + m− t− 1])] ≤ 0) then
28: ins← ins− 1
29: del← del − 1
30: if del ≤ t then ⊲ current window contains a potential match
31: match← CheckForMatch(T, DFV, ins, del, t, i+ m− t− 1, ρ)
32: if match > MaximalMatch then
33: output (i, match)
34: MaximalMatch← match
35: i← i + 1



Algorithm 6 CheckForMatch (T, DFV, ins, del, t, k, ρ)

Input: A text stream T , a difference frequency vector DFV corresponding
to the current window of length m − t, number of insertions ins and
deletions del, error threshold t , the last position of the current window
k, and the hash function ρ

Output: An integer match that contains the ending position of the longest
match starting at the first position of the current window and 0 if such
a match does not exist

1: match← 0
2: if ins + del ≤ t then ⊲ current window contains a match
3: match← k
4: k′ ← k
5: PotentialMatch← True
6: while PotentialMatch = True do
7: k′ ← k′ + 1
8: Increment DFV [ρ(T [k′])] by 1
9: if DFV [ρ(T [k′])] ≤ 0 then ⊲ Deficiency of T [k′] is reduced by 1

10: ins← ins− 1
11: else ⊲ Spareness of T [k′] is increased by 1
12: del← del + 1
13: if ins + del ≤ t then
14: match← k′

15: else ⊲ check for potential match
16: if del > t then
17: PotentialMatch← False
18: while k′ > k do ⊲ undo the changes made in DFV
19: Decrement DFV [ρ(T [k′])] by 1
20: k′ ← k′ − 1
21: return match
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PotentialMatch is set to false.

The while loop terminates when it sees that the extended substring is not a
potential match. This is due to the anti-monotone property of a potential
match (Observation 18).

Once we are out of the while loop of line 6-17 of the sub-routine, we undo
the changes made in the array DFV during the iterations of the while loop.
And finally the sub-routine CheckForMatch returns the ending position of
the longest match it has encountered in the window extension process; or a
value of zero is returned if no match is found during the extension of the
window.

In line 14 of the main algorithm (Algorithm 5), we perform a maximal-
ity test on the value returned by the sub-routine CheckForMatch; and if
the value returned by the sub-routine is greater than the current value of
MaximalMatch, then we report the starting and ending positions of the
match (line 15 ) and update the value of MaximalMatch to the ending po-
sition of the new maximal match (line 16 ).

In the while loop at line 18 of the main algorithm, we slide the window along
the whole text and output all the maximal approximate matches of P in T .

We move the current window of length m−t towards the right by one position
(line 17 and line 35 ). The new current window is different from the previous
window at two places: it does not contain the first character of the previous
window; and the last character of the current window was not part of the
previous window. Let x denotes the first character of the previous window
and y denotes the last character of the current window. If x and y are the
same character, then the current window is also the same as the previous
window and so are the values of its DFV , and ins and del.

However, if x and y are not the same character, then we construct DFV
corresponding to the current window by decrementing the frequency of x
by 1 (line 20 ) and incrementing the frequency of y by 1 (line 21 ) in the
array DFV . After constructing DFV for the current window, we need to
update the values of ins and del, such that now the values of these variables
correspond to DFV of the current window.

There are four possibilities for x and y:

(i) DFV [ρ(x)] < 0 and DFV [ρ(y)] ≤ 0: This means that x has either be-
come a deficit character in the current window or if it was already a
deficit character in the previous window then its deficiency is increased
by one in the current window. Similarly, y was a deficit character in the
previous window and in the current window, its deficiency is decreased
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by one.

In this case, the value of ins remains unchanged, as one earlier insertion
of the deficit character y is replaced by the insertion of the deficit
character x. The value of del is not affected in this case.

(ii) DFV [ρ(x)] < 0 and DFV [ρ(y)] > 0: This means that x has either be-
come a deficit character in the current window or if it was already a
deficit character in the previous window then its deficiency is increased
by one in the current window. Moreover, y has either become a spare
character in the current window or if it was already a spare character
in the previous window then its spareness is increased by one in the
current window.

So we have to do an additional insertion of x and an additional deletion
of y, to transform the current window into P . Hence the values of both
ins and del are increased by 1 in this case, and we update these variables
in lines 24-25 of the algorithm.

(iii) DFV [ρ(x)] ≥ 0 and DFV [ρ(y)] > 0: This means that x was a spare
character in the previous window and in the current window its spare-
ness is decreased by one. Moreover, y has either become a spare char-
acter in the current window or if it was already a spare character in the
previous window then its spareness is increased by one in the current
window.

In this case, the value of del remains unchanged, as one earlier deletion
of the spare character x is replaced by the deletion of the spare character
y. The value of ins is not affected in this case.

(iv) DFV [ρ(x)] ≥ 0 and DFV [ρ(y)] ≤ 0: This means that x was a spare
character in the previous window and in the current window its spare-
ness is decreased by one. Similarly, y was a deficit character in the
previous window and in the current window, its deficiency is decreased
by one.

So as we do not have to do an earlier deletion of x and an earlier
insertion of y, to transform the current window into P . Hence the
values of both ins and del are decreased by 1 in this case, and we
update these variables in lines 28-29 of the algorithm.

After updating the values of ins and del, if the current window contains
a potential match (according to Lemma 28), then we call the sub-routine
CheckForMatch in line 31. In line 32 of the main algorithm, we perform a
maximality test on the value returned by the sub-routine CheckForMatch;
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and if the value returned by the sub-routine is greater than the current
value of MaximalMatch, then we report the starting and ending positions of
the match (line 33 ) and update the value of MaximalMatch to the ending
position of the new maximal match (line 34 ). After that we advance the
window towards the right by one position (line 35 ).

This way, we slide the window along the whole text and output all the max-
imal approximate matches of P in T .

4.4.4 Complexity Analysis

The worst case time complexity of the algorithm is O(n+Pt). Here P is the
number of the potential matches of length m− t in the text stream T (hence
we call the sub-routine CheckForMatch, P times during the execution of
the algorithm). The time complexity of the sub-routine CheckForMatch is
O(t), as the while loop at line 6 of the sub-routine may iterate up to 2t + 1
times. Hence the overall time complexity of the algorithm is O(n + Pt).

The algorithm keeps in memory an array of σ elements and a constant
number of variables, hence the space complexity of the algorithm is O(σ), in
addition to the space required for the input and the output.

Time and Space Complexity of the q-Gram Based Algorithm: The
problem of approximate abelian pattern matching under the InDel error
model can also be solved using an algorithm based on the concept of q-grams
(for the special case of q = 1) [36]. It requires O(mσ) time for pre-processing
the pattern and O(n log t) time for processing the input text. The working
space requirement of the algorithm is O(mσ) [36].

4.4.5 Using a Window of Flexible Length

In Algorithm 5, we keep the length of the window m − t, so that, we do
not miss any approximate match during the window sliding process (as the
minimum length of an approximate match under the InDel error model is
m− t (Observation 15)).

Here we present an algorithm, for approximate abelian pattern matching
under the InDel error model, that uses a sliding window of flexible length.
This means that now we also need to take care of the fact that, during the
window sliding process, no maximal approximate match of P is missed from
being reported. In the following, we introduce the notion of a safe window
and shed light on its properties.
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Definition 18. A safe window is a window that does not contain any unre-
ported maximal match that begins at the starting position of the window.

Lemma 29. If the number of the insertion operations, required to transform
the substring contained in a window to the abelian pattern P , is greater than
t, then the window is a safe window.

Proof. Let i and j be the respective starting and ending positions of the
window under consideration. Let x be the number of insertion operations
required to transform the substring S = Ti · · · Tj into P . Note that S is not
an approximate match, as the cost to transform S into P (under the InDel
error model) is at least x, which is greater than t.

If we move the right boundary of the window towards left, then the im-
provement (if any), in the cost of transforming the new (shorter) substring
into P , would be only in the deletions part; the number of insertions (which
is x > t) will remain intact. Hence no substring S ′ = Ti · · ·Tj′ is an approxi-
mate match of P for all j′ ≤ j.

As the window does not contain any approximate match of P that begins
at i (the starting position of the window), therefore, the window is a safe
window.

Corollary 6. The length of a non-safe window is at least m− t.

Corollary 7. If a window of length l (where l ≤ m) is not a potential match,
then it is a safe window.

Lemma 30. If the substring contained in the current window is not an ap-
proximate match of P , and the right boundary of the window is not greater
than the ending position of the latest reported maximal match in T , then the
window is a safe window.

Proof. Let i and j be the respective starting and ending positions of the
current window. Let M be the latest reported maximal match, and i′, j′ be
the starting and ending positions of M respectively. As we slide the window
from the left towards the right along the input text T , and the current window
is not an approximate match of P ; therefore, i′ < i. Now if there exists an
approximate match of P that starts at i and ends at a position ĵ in T (where
ĵ < j), that match is not maximal as i > i′ and ĵ < j′.

Hence, the current window is a safe window.
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The Algorithm

We use two indexes l and r to keep track of the left and right boundaries of
the current window in the text. The initial values of l and r are set at 1 and
m− t respectively.

We slide the window along the input text in the following manner:

1. If the current window contains a potential match, then we extend r
towards right until the current window does not contain a potential
match. In the process of extending the right boundary of the window,
if we find a maximal match, then we report it.

After the current window is no more a potential match

(a) We move l towards right by one position.

(b) If the new current window contains a potential match, then, once
again, we extend r towards right until the current window does
not contain a potential match; and if a maximal match is found
while extending the right boundary of the window, then we report
it.

(c) We move r towards left until the window becomes a safe window.

2. We slide the safe window along the text (by simultaneously increment-
ing the values of both l and r by one), and whenever the current win-
dow contains a potential match, we go to the step 1, and if the current
window, at any time, becomes non-safe then we go to the step 1c.

As the safeness of the current window is always preserved, so we can
slide a window of flexible length along the text without having the danger of
skipping a maximal match from being reported.

Pseudo code of this algorithm is outlined in Algorithm 7. In the first
three lines, we do the initialization of the array DFV and other variables.
In line 4, if the current window contains a potential match then we extend
it towards the right (line 5 ) and report a maximal match if one is found in
the process of extension of the window.

In line 9 of the algorithm, we move the left boundary of the current extended
window towards the right by one position, and in line 10, we update DFV
by decrementing the frequency of the first character of the previous window
by one.

Let x be the first character of the previous window. If the frequency of x in
the current window is less than its specified frequency in P (line 11 ) then it
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Algorithm 7 Approximate Abelian Pattern Matching under the InDel Error
Model using a Window of Flexible Length

1: Build DFV for T1 · · ·Tm−t

2: Calculate the number of insertion and deletion operations required to
transform T1 · · ·Tm−t into P in variables ins and del respectively

3: MaximalMatch← 0, match← 0, l ← 1, r ← m− t
4: if del ≤ t then ⊲ current window contains a potential match
5: ExtendWindow(T, DFV, match, ins, del, t, r, ρ)
6: if match > MaximalMatch then
7: MaximalMatch← match
8: output (l, match)
9: l ← l + 1

10: Decrement DFV [ρ(T [l− 1])] by 1
11: if (DFV [ρ(T [l− 1])] < 0) then
12: ins← ins + 1
13: else
14: del← del− 1
15: if del ≤ t then

16: Extend the right boundary of window and report a (maximal)
match if one is found in the process of extension

17: if ins ≤ t then ⊲ The window is not safe
18: MakeSafe(T, DFV, MaximalMatch, ins, del, t, l, r, ρ)
19: l← l + 1
20: r ← r + 1
21: while r ≤ n do
22: if T [l− 1] 6= T [r] then
23: Adjust DFV according to Tl · · · Tr and compute the values of

ins and del for the new window
24: if del ≤ t then ⊲ current window contains a potential match

25: Extend the right boundary of window and report a (maximal)
match if one is found in the process of extension

26: l← l + 1

27: Adjust DFV according to Tl · · · Tr and compute the values of
ins and del for the new window

28: if del ≤ t then

29: Extend the right boundary of window and report a (maxi-
mal) match if one is found in the process of extension

30: if ins ≤ t then ⊲ The window is not safe
31: MakeSafe(T, DFV, MaximalMatch, ins, del, t, l, r, ρ)
32: l ← l + 1
33: r ← r + 1
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Algorithm 8 ExtendWindow (T, DFV, match, ins, del, t, r, ρ)

Input: A text stream T , a difference frequency vector DFV corresponding
to the current window, a place holder match to store the position of
the longest match found during extensions of the window, number of
insertions ins and deletions del, error threshold t , the right boundary of
the current window r, and the hash function ρ. (all the parameters are
passed as reference)

Output: Extend the right boundary of the window until the window does
not contain a potential match; and store the position of the longest match
found (if any) during the extension process in the variable match

1: match← 0
2: if ins + del ≤ t then ⊲ current window contains a match
3: match← r
4: PotentialMatch← True
5: while PotentialMatch = True do
6: r ← r + 1
7: Increment DFV [ρ(T [r])] by 1
8: if DFV [ρ(T [r])] ≤ 0 then ⊲ Deficiency of T [r] is reduced by 1
9: ins← ins− 1

10: else ⊲ Spareness of T [r] is increased by 1
11: del← del + 1
12: if ins + del ≤ t then
13: match← r
14: else ⊲ check for potential match
15: if del > t then
16: PotentialMatch← False
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Algorithm 9 MakeSafe (T, DFV, MaximalMatch, ins, del, t, l, r, ρ)

Input: A text stream T , a difference frequency vector DFV corresponding
to the current window, position of the latest reported maximal match
MaximalMatch, number of insertions ins and deletions del, error thresh-
old t, the left boundary of the current window l, the right boundary of
the current window r, and the hash function ρ. (all the parameters are
passed as reference)

Output: Shrink the right boundary of the window towards left until it be-
comes safe. Report a maximal match if a new one is found in the process
of making the window safe.

1: while (ins ≤ t and r > MaximalMatch) do
2: Decrement DFV [ρ(T [r])] by 1
3: if (DFV [ρ(T [r])]≥ 0) then ⊲ Spareness of T [r] is reduced by 1
4: del← del− 1
5: else ⊲ Deficiency of T [r] is increased by 1
6: ins← ins + 1
7: r ← r − 1
8: if (ins + del ≤ t and r > MaximalMatch) then ⊲ a new maximal

match found
9: output (l, r) ⊲ report the newly found match

10: MaximalMatch← r
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means that either x has become a deficit character in the current window or,
if it was already a deficit character in the previous window then its deficiency
is increased by one. Therefore, we have to do an extra insertion (of x) to
transform the current window into P , hence we increment the value of ins by
one (line 12 ). However, if the frequency of x in the current window is greater
than or equal to its specified frequency in P (line 13 ) then it means that x
was a spare character in the previous window and in the current window its
spareness is decreased by one. So we save one deletion of x to transform the
current window into P , hence we decrement the value of del by one (line 14 ).

After moving the left boundary of the window towards the right by one
position, if the current window contains a potential match then we extend it
towards the right (line 15-16 ) and report a maximal match if one is found in
the process of extension of the window. In line 17-18, we make the extended
window safe, if it has not remained safe in the process of extension of the
window.

At line 19 of the algorithm, the current window is always a safe window.
This is because of the fact that, if the current window does not contain a
potential match at line 4, then the current window is always a safe win-
dow (Corollary 7); otherwise, if the current window has become unsafe in
the process of extension of the window, then we make it safe in line 18 of
the algorithm. We advance the current safe window towards the right by
simultaneously moving l and r towards right (line 19-20 ).

In the while loop of line 21-33, we slide the safe window along the whole text
in the same manner that is described above, and report a maximal match
whenever we encounter one in the process of extension of a window. As
the current window is always a safe window, therefore, no maximal match
remains unreported.

The sub-routine ExtendWindow (Algorithm 8), extends the right bound-
ary of a window, that contains a potential match, to the extent that the
extended window does not remain a potential match. Note that the length of
the extended window can be at most m + t + 1. In the process of extension
of the window, if one or more approximate matches of P are found, then the
sub-routine keeps the longest of these matches.

The sub-routine ExtendWindow is similar to the sub-routine CheckForMatch
(Algorithm 6). However, as we use a window of flexible length in the algo-
rithm, therefore, in the sub-routine ExtendWindow, we do not undo the
changes made in DFV during the process of extension of the window.

The sub-routine MakeSafe (Algorithm 9), shrinks the right boundary
of a non-safe window towards the left, until the window becomes safe. The
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minimum length, to which a window is shrunk by the sub-routine, is m− t
(Corollary 6 and Lemma 30).

Complexity Analysis

The worst case time complexity of this algorithm is also O(n + Pt), where
P is the number of potential matches of length m− t in the text stream T .
In the algorithm, whenever the current window corresponds to a potential
match, we extend it (up to at most O(t) characters); and later, when an
extended window becomes non-safe, then we shrink it (up to at most O(t)
characters). As the shortest potential match is of length m − t, therefore,
O(Pt) is the upper bound for this extra overhead of extension/shrinkage. The
O(n) complexity comes from the sliding of the window through the whole
text.

As we slide a safe window of flexible length in this algorithm, so if a
current window is not a potential match but the m− t characters long prefix
of the current window is a potential match, then we do not evaluate this
potential match.

The algorithm keeps in memory an array of σ elements and a constant
number of variables, hence the space complexity of the algorithm is O(σ), in
addition to the space required for the input and the output.

4.4.6 Empirical Analysis of the Two Algorithms for

Approximate Abelian Pattern Matching Under
the InDel Error Model

Now we present an empirical analysis of the two algorithms for approximate
abelian pattern matching under the InDel error model. We refer to the
first algorithm (that uses a search window of fixed length (Section 4.4.3))
as Algorithm A; and we refer to the second algorithm (that uses a search
window of flexible length (Section 4.4.5)) as Algorithm B.

For the experiments, we used the same input texts that were used for
the empirical analysis of the prefix based and the suffix based algorithms
(Section 2.7). We executed algorithms A & B to find approximate matches
of various randomly generated abelian patterns for different values of error
threshold t. For each abelian pattern, we performed 200 iterations of each
of the algorithms and took the mean values of the CPU time taken by the
algorithms in 200 iterations.
The experiments were performed on a computer having two “Intel® Core�2
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Duo CPU E6750 @ 2.66 GHz” processors and 3.8 GiB memory, running
Ubuntu 9.04.

Following are the findings of the experiments:� Algorithm B was generally more efficient than Algorithm A. It was up
to 4.16 times faster than Algorithm A.� The relative efficiency of Algorithm B (with respect to Algorithm A)
improved when the error threshold was increased.

The detailed (pattern wise) results of the experiments for empirical anal-
ysis of the two algorithms for approximate abelian pattern matching under
the InDel error model are given in Appendix C.

4.5 Approximate Abelian Pattern Matching

Under the Minimum Operation (MinOp)

Error Model

The problem of approximate abelian pattern matching under the minimum
operations error model also focuses on finding the arbitrary length approxi-
mate matches of P . For a given abelian pattern P =

∑σ
i=1 mci

ci of length m,
the MinOp distance between P and another abelian pattern P ′ =

∑σ
i=1 m′

ci
ci

of arbitrary length, is defined as the minimum number of operations (where
an operation can be either an insertion operation or a deletion operation or
it can also be a substitution operation) to transform P ′ into P . For example,
let P = 2a + 2b + c and P ′ = 3a + 3b, then the MinOp distance between P
and P ′ is two, as we substitute one spare b by a deficit c and we delete one
spare a (alternatively, we could also substitute one a by c and delete a b).
Note that the InDel distance between P and P ′ is three (Section 4.4).

Observation 19. One substitution operation is same as one deletion and
one insertion operations done together.

As we want to minimize the number of operations to transform P ′ into
P , therefore, in the MinOp error model, we always prefer the substitution
operations over the insertion and deletion operations; and we use insertion or
deletion operations only in the situations where the substitution operations
are not possible.
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Observation 20. If |P ′| > m, then we use only substitution and deletion
operations to transform P ′ into P . We do not use any insertion operation
in this case.

Moreover, the number of deletion operations is |P ′| −m in this case.

Observation 21. If |P ′| < m, then we use only substitution and insertion
operations to transform P ′ into P . We do not use any deletion operation in
this case.

Moreover, the number of insertion operations is m− |P ′| in this case.

Observation 22. If the MinOp distance between P and P ′ is x + y, where
x represent the number of substitution operations and y represents either the
number of insertion operations (if |P ′| < m) or it represents the number
of deletion operations (if |P ′| > m); then the InDel distance (Section 4.4)
between P and P ′ is 2x + y.

Lemma 31. The MinOp distance between a given abelian pattern P =
∑σ

i=1 mci
ci of length m, and another abelian pattern P ′ =

∑σ
i=1 m′

ci
ci of

arbitrary length, is

1

2

(

σ
∑

i=1

|mci
−m′

ci
|+ |m− |P ′||

)

Proof. There are only three possibilities for the length of the abelian pattern
P ′:

Case I (|P ′| < m): Let x+y denotes the MinOp distance between P and P ′,
where x is the number of substitution operations and y is the number of
insertion operations required to transform P ′ into P . Note that, under
the MinOp error model, we do not use any deletion operation in this
case (Observation 21). Then

2x + y =
σ
∑

i=1

|mci
−m′

ci
| (Observation 22)

⇒ x + y =
1

2

(

σ
∑

i=1

|mci
−m′

ci
|+ y

)

=
1

2

(

σ
∑

i=1

|mci
−m′

ci
|+ m− |P ′|

)

(Observation 21)

=
1

2

(

σ
∑

i=1

|mci
−m′

ci
|+ |m− |P ′||

)
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Case II (|P ′| > m): Let x + y denotes the MinOp distance between P and
P ′, where x is the number of substitution operations and y is the num-
ber of deletion operations required to transform P ′ into P . Note that,
under the MinOp error model, we do not use any insertion operation
in this case (Observation 20). Then

2x + y =
σ
∑

i=1

|mci
−m′

ci
| (Observation 22)

⇒ x + y =
1

2

(

σ
∑

i=1

|mci
−m′

ci
|+ y

)

=
1

2

(

σ
∑

i=1

|mci
−m′

ci
|+ |P ′| −m

)

(Observation 20)

=
1

2

(

σ
∑

i=1

|mci
−m′

ci
|+ |m− |P ′||

)

Case III (|P ′| = m): In this case, we use only substitution operations to
transform P ′ into P , and the MinOp distance between P and P ′ is
same as the substitution distance between P and P ′, which is
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ci
|

)

=
1

2

(

σ
∑
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|mci
−m′

ci
|+ |m− |P ′||

)

as m− |P ′| = 0 in this case.

Corollary 8. An approximate match under the MinOp error model has least
cost (the number of the operations, required to transform a substring into P ),
when the length of the match is m.

For example, let S = Ti · · ·Tj such that j−i+1 = m and the cost to transform
S into P is C. Similarly, let S1 = Ti · · ·Tj′ (j′ < j) and S2 = Ti · · · Tj̄ (j̄ > j)
have costs C1 and C2 respectively. Then C ≤ C1 as well as C ≤ C2.

Observation 23. If S1 = Ti · · · Tj and S2 = Ti · · ·Tk are both approximate
matches of P , then S3 = Ti · · ·Tl (for all l such that j < l < k) is also an
approximate match of P .

If minl is the ending position of the shortest (minimum length) approx-
imate abelian match of P starting at position i, and maxl is the ending
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position of the longest (maximum length) approximate abelian match of P
starting at position i, then the interval [minl, maxl] gives us (ending posi-
tions of) all the approximate matches of P that start at i (Observation 23).
Note that this interval [minl, maxl] is complete with respect to i, i.e. no
approximate match starting at i falls outside this interval.

The cost of the shortest match starting at i is highest (which is t) and then
it decreases monotonically for the next matches as the length of the matches
increases. This monotonic decrease in the cost of the approximate matches
goes on until we reach the approximate match of length m; after that, the
cost start increasing monotonically as the length of the matches increases.
In this course, each distinct cost appears exactly twice. The first time, a cost
appears against the match/length of length less than (or equal to) m; and
the second time, the same cost appears against the match/matches of length
greater than m (in some situations, the cost appearing against a length-m
match may appear only once). This trend of fall and rise in the cost gives
the concept of cost intervals.

Definition 19. A cost interval corresponding to a position x in T and a cost
C ≤ t, is an interval of positions [y, z] in T (with x ≤ y ≤ z), such that the
cost to transform any substrings starting at x and ending in the interval [y, z]
into P is less than or equal to C. If minl and maxl are respective ending
positions of the shortest and the longest approximate matches starting at i,
then the interval [minl, maxl] is a cost interval corresponding to i with an
associated cost t.

The left boundary of a cost interval is less than or equal to i + m − 1,
whereas the right boundary of a cost interval is greater than or equal to
i+m−1. Moreover, lower cost intervals are contained in higher cost intervals,
i.e. if [l1, r1] is a cost interval having an associated cost C1 and [l2, r2] is
another cost interval having an associated cost C2, and C1 < C2, then l2 < l1
and r2 > r1.

Observation 24. The least cost interval is the innermost interval. More-
over, the position i + m− 1 falls in the innermost interval (Corollary 8).

Observation 25. The minimum difference between the associated costs of
two different cost intervals is 1.

Observation 26. The left and right boundaries of the outermost interval
are the ending positions of the shortest and the longest matches starting at i
respectively.
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Lemma 32. The number of distinct cost intervals corresponding to the po-
sition i is t−Cmin + 1, where Cmin is the cost associated with the innermost
cost interval corresponding to i.

Proof. The innermost cost interval corresponding to i has associated cost
Cmin, and the outermost cost interval corresponding to i has associated cost
t. As the minimum difference between the associated costs of two different
cost intervals is one (Observation 25), therefore, the number of distinct cost
intervals corresponding to the position i is t−Cmin + 1.

Corollary 9. There can be at most t + 1 cost intervals corresponding to a
position in T .

4.5.1 The Desired Output

The desired output for the problem of approximate abelian pattern matching
under the minimum operations error model is as follows:

We report each position i in T , such that an approximate abelian match starts
at i, and we also report all the cost intervals (along with their associated
costs) corresponding to i. So we output triplets comprising of:

Position , Interval and Associated Cost

Example 3. We use an input text stream T = aaaaabbbbaaacc, and the task
is to find all approximate matches of abelian pattern P = 5a +5b in T under
the MinOp error model with error threshold t = 3.

The output for this problem is as follows:

Position Interval Associated Cost

1 [9-10] 1
1 [8-11] 2
1 [7-12] 3
2 [10-11] 1
2 [9-12] 2
2 [8-13] 3
3 [11-12] 1
3 [10-13] 2
3 [9-14] 3

Figure 4.1 illustrates the cost intervals corresponding to position 2 of the
input text T .
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b b ba a aa b aa a a c c

cost:3

cost:2

cost:1

starting position

2 3 5 7 8 9 11 12 13 141 4 6 10

Figure 4.1: The innermost interval has cost 1 and it contains position 11,
the mth position starting from position 2 (Observation 24). The outermost
cost interval is defined by the ending positions of shortest (position 8) and
the longest matches (position 13) starting at position 2. The number of the
cost intervals, corresponding to position 2, is 3− 1 + 1 = 3.

4.5.2 The Algorithm

We move a window of length m along the text T , and if the window contains
an approximate match, then we process the characters on both sides of the
right boundary of the window, to output the cost intervals corresponding to
the starting position of the window along with their associated costs. The
pseudo code for this problem is presented in Algorithm 10.

In the first four lines of the algorithm, we set the difference frequency
vector DFV for the first m characters of T . In the for loop of line 6-7
and then in line 8, we compute the minimum number of operations required
to transform the substring contained in the current window into P . Note
that for a window of length m, we use only substitution operations for this
transformation (because if we use insertions and deletions then the number
of operations would not remain the minimum), so the procedure to com-
pute the value of ops is same as outlined in the algorithm for approximate
abelian pattern matching under the substitution error model (Algorithm 4).
However, unlike the pattern matching under the substitution model, here we
also report the approximate matches of lengths other than m. So, for each
position i in T where an approximate match begins, we also report all the
cost intervals corresponding to i.

In the for loop of line 9-10, we initialize an array INT to hold the cost
intervals corresponding to the starting position of a window that contains
an approximate match. Since there can be up to a maximum of t + 1 cost
intervals (Corollary 9), and to record each interval we require two entries
(for the left and the right boundaries of the interval), we keep the size of the
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Algorithm 10 Approximate Abelian Pattern Matching Under the MinOp
Error Model
Input: A pattern P of length m, a text stream T = T [1] . . . T [n], a hash

function ρ and an error threshold t
Output: Cost intervals corresponding to the starting positions of the ap-

proximate matches of P in T

⊲ Build difference frequency vector (DFV ) for the first m characters
1: for i = 1 to |Σ| do
2: DFV [i]← 0− P [i]
3: for i = 1 to m do
4: Increment DFV [ρ(T [i])] by 1

⊲ Calculate the minimum number of operations required to transform the
substring contained in the current window into P

5: ops← 0
6: for i = 1 to |Σ| do
7: ops ← ops + ABS(DFV [i])
8: ops← ops/2
9: for i = 1 to 2× (t + 1) do ⊲ create an array of intervals

10: INT [i]← NULL
11: if ops ≤ t then ⊲ current window contains match
12: F indIntervals(T,DFV, INT, ops, t, m, ρ)
13: for k = ops to t do
14: output i, INT [2× k + 1], INT [2× k + 2], k
15: i←2
16: while i ≤ n−m + 1 do
17: if T [i− 1] 6= T [i + m− 1] then
18: Decrement DFV [ρ(T [i− 1])] by 1
19: Increment DFV [ρ(T [i + m− 1])] by 1
20: if (DFV [ρ(T [i− 1])] < 0) then
21: if (DFV [ρ(T [i + m− 1])] > 0) then
22: ops ← ops + 1
23: else
24: if (DFV [ρ(T [i + m− 1])] ≤ 0) then
25: ops ← ops − 1
26: if ops ≤ t then
27: F indIntervals(T, DFV, INT, ops, t, i + m− 1, ρ)
28: for k = ops to t do
29: output i, INT [2× k + 1], INT [2× k + 2], k
30: i← i + 1
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Algorithm 11 FindIntervals(T, DFV, INT, c, t, k, ρ)

Input: T : the text stream (call by reference), DFV : a difference frequency
vector corresponding to the current window of length m (call by refer-
ence), INT : an array to hold the intervals associated with different costs
(call by reference), c: cost to covert current window into P , t: the er-
ror threshold, k: the last position of the current window, and the hash
function ρ

Output: Write t− c + 1 intervals in the array INT

1: lb← k
2: cost← c
3: while cost ≤ t do ⊲ write left boundaries of intervals in INT
4: if DFV [ρ(T [lb])≤ 0 then ⊲ left boundary reached
5: INT [cost× 2 + 1]← lb
6: cost← cost + 1⊲ find left boundary of next cost interval
7: Decrement DFV [ρ(T [lb])] by 1
8: lb← lb− 1
9: for j = lb + 1 to k do ⊲ undo changes made in DFV

10: Increment DFV [ρ(T [j])] by 1
11: rb← k + 1
12: cost← c
13: while cost ≤ t do ⊲ write right boundaries of intervals in INT
14: if DFV [ρ(T [rb]) > 0 then ⊲ next cost interval begins
15: INT [cost× 2 + 2]← rb− 1
16: cost← cost + 1
17: Increment DFV [ρ(T [rb])] by 1
18: rb← rb + 1
19: for j = rb − 1 downto k + 1 do ⊲ undo changes made in DFV
20: Decrement DFV [ρ(T [j])] by 1

103



array 2× (t + 1).

If the first m characters of T constitute an approximate match, then to
generate the cost intervals corresponding to the position 1 of T , we call the
sub-routine F indIntervals in line 12 of the algorithm.

The sub-routine F indIntervals (Algorithm 11), takes as argument the
input text T , DFV corresponding to the current window of length m, the
array INT to record the intervals generated by the routine, the associated
cost of the current window c, the error threshold t, the last position of the
current window k, and the hash function ρ. It writes the cost intervals
corresponding to the starting position of the current position at appropriate
positions in the array INT .

The sub-routine works in two phases: in the first phase we record the left
boundaries of the cost intervals (this is done in the while loop of line 3-8 of the
sub-routine), and in the second phase we record the right boundaries of the
cost intervals (this is done in the while loop of line 13-18 of the sub-routine).

In line-1 of the sub-routine, we initially set the left boundary (lb) of inner-
most cost interval at the last position of the current window (which, according
to Observation 24, must fall in the innermost cost interval). In line-2, we
associate the cost of current window c to our first/innermost cost interval.
And then in the while loop of line 3-8, we write left boundaries of the cost
intervals – with associated costs ranging from c to t – at appropriate positions
in the array INT .

The mechanism for finding the left boundary of a cost interval is to move
lb towards the left by one position and see if the character Tlb is a deficit
character. If this is the case, then it means that the cost will incur an extra
insertion operation if this character is removed from the current window.
Hence lb is the left boundary of the current cost interval, we write it at the
appropriate position in INT and move on to the next cost interval.

After we have written the left boundaries of all the cost intervals having
associated costs ranging from c to t, we undo the changes made in DFV
during the left boundary search loop (the while loop of line 3-8 ). This is
done in the for loop of line 9-10.

Now we start looking for the right boundaries of the cost intervals. We
initialize rb with the value k + 1 at line 11. The variable rb is aimed to hold
the position next to the right boundary of a cost interval. As the last position
of the current window k can also be the right boundary of the innermost cost
interval (the last position of the current window is already included in the
innermost cost interval (Observation 24)), we initialize rb with the position
next to it. At line 12, we reset cost at the value of the associated cost of the
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innermost cost interval (which is same as c, the cost of the current window).
And finally in the while loop of line 13-18, we write right boundaries of the
cost intervals – with associated costs ranging from c to t – at appropriate
positions in the array INT .

The idea to locate the right boundary of a cost interval is as follows: If
the character at position rb is a spare character, then it means that if we
include Trb in the window, a deletion operation will be added to the cost of
the substring contained in the extended window. Therefore, rb indicates the
beginning of the next cost interval. Hence, the right boundary of the current
cost interval is at one position before rb.

We write the right boundaries of the cost intervals at appropriate positions in
the array INT at line 15 of the sub-routine. After the while loop of line 13-
18 is terminated, we undo the changes made in DFV using the for loop of
line 19-20.

When the F indIntervals routine is finished, we have entries of all the cost
intervals, having associated costs ranging from c to t, in the array INT , and
this information is then used by the calling main algorithm.

In the for loop of line 13-14 of the main algorithm (Algorithm 10), we
report the cost intervals written by the sub-routine F indIntervals in the
array INT , along with their associated costs. Note that this for loop makes
t− ops+1 iterations which is the number of the cost intervals corresponding
to starting position of the current window (Lemma 32).

In the while loop of line 16-30 of the algorithm, we slide the window along the
whole text T . In each iteration of the loop we advance the window towards
right by one position, compute the associated cost of the new window (using
the same procedure that we used in the algorithm for approximate abelian
pattern matching under the substitution error model (Algorithm 4)) and if
this cost is less than or equal to t, then we call the sub-routine F indIntervals
and report the cost intervals found in the routine.

4.5.3 Complexity Analysis

The time complexity of the algorithm is O(n +Mt), where M is the number
of approximate matches of length m and O(t) comes from the complexity of
the sub-routine F indIntervals.

The algorithm keeps two arrays; DFV comprising of σ elements, and
INT requiring O(t) storage. Hence the space complexity of the algorithm is
O(σ + t), in addition to the space requirement for the input and the output.
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4.6 Conclusion

In this chapter, we have shed light on the problem of approximate abelian
pattern matching. We defined three error models to measure the degree of
approximation in a matching substring of a given abelian pattern.

The substitution error model focused on the approximate abelian matches
of the fixed length m, whereas the other two models allowed for the matches
of lengths other than m too.

For each of the three error models, we presented algorithms for approxi-
mate abelian pattern matching under that model in the chapter.
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Chapter 5

Conclusion

Pattern matching in strings is an already established research area, however,
abelian pattern matching is quite a new direction of research. Study of
methods and algorithms for abelian pattern matching is still in its infancy
and little literature is available on this topic. In this thesis, we have studied
the problem of abelian pattern matching in strings in a systematic manner,
and presented several algorithms for exact as well as approximate abelian
pattern matching. We have also presented different strategies for indexing
the input text to make the abelian pattern matching more efficient.

5.1 Contribution of the Thesis

We have discussed several algorithms for online abelian pattern matching in
Chapter 2. The algorithms were based on two different approaches, the prefix
based approach and the suffix based approach. In the case of the prefix based
approach, the algorithm kept track of a prefix of the substring contained
in the sliding window, whereas, in the case of the suffix based approach,
the algorithm had information about a suffix of the substring contained in
the sliding window. We have shed light on the relative advantage of one
approach over the other. Later in the chapter, we developed a variant of
the suffix based algorithm to avoid the high time complexity of the original
suffix based algorithm in the worst case situations. We have also given a
tight lower bound for the problem of online abelian pattern matching in this
chapter.

In Chapter 3, we have shed light on the indexing strategies for the input text
to make the abelian pattern matching more efficient. We explained how an
existing indexing scheme, the parikh index, could be adapted for the problem
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of abelian pattern matching. Later, we presented an indexing scheme, the
abelian tree, which is customized for the problem of abelian patter matching,
and showed the significant improvement in the query processing time when
we use the abelian tree instead of the parikh index to index the input text.

Finally, we have addressed the problem of finding the approximate abelian
matches of a given abelian pattern in Chapter 4. We have defined three error
models, the substitution error model, the insertion/deletion error model and
the minimum operations error model, to measure the degree of approxima-
tion in a matching substring of a given abelian pattern. The substitution
error model focused on the approximate abelian matches of the fixed length
m (the length of the abelian pattern to be found), whereas the other two
models allowed for the matches of arbitrary lengths. For each of the three
error models, we have presented algorithms for approximate abelian pattern
matching under that model.

5.2 Future Research Directions

The abelian patterns lie at the middle point between the classical patterns
and the regular expressions. In case of the classical patterns, both the count
and the order of the characters in a pattern are preserved. On the other
hand, in case of the regular expressions, neither the count nor the order
of the characters are rigidly preserved (e.g. consider the regular expression
(a + b)∗). In case of the abelian patterns, the order of the characters in a
pattern in not important, however, the count of the characters in the pattern
plays a pivotal role in defining the pattern.

An interesting topic for future research is to combine the abelian pattern
matching with the classical pattern matching and the regular expressions
based pattern matching (one such approach, without the notion of abelian
patterns, already exists [16]). Note that the regular expressions based pattern
matching already incorporates the classical pattern matching, as in a regular
expression we can always place a fragment of another classical pattern (e.g.
the resulting matches of the regular expression a∗cdc(a + b)+ must contain
the classical pattern cdc).

So a nice problem to work with in future is to develop the algorithms for com-
plex pattern matching in strings, where a complex pattern is a combination
of the abelian patterns, the classical patterns and the regular expressions.
For example, (2a + 5b)(a + b)∗abba is a complex pattern which combines the
abelian pattern (2a + 5b), the regular expression (a + b)∗ and the classical
pattern abba. Note that we have mentioned the term (a + b)∗ as a regular
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expression and the term abba as a classical pattern just to put an emphasis
on the presence of the classical patterns in the complex patterns; otherwise,
by definition the term (a + b)∗abba itself is a regular expression.

Another extension to the problem of abelian pattern matching in strings
is finding abelian patterns with fixed length gaps (these patterns have already
been studied as a discovery problem [30]). For example, (2a + c)3?(a + 2d)
means that we want to find those locations in the input text where the
abelian pattern a + 2d occurs three positions after the occurrence of the
abelian pattern 2a + c (acaccbdad is a resulting match of this query). Note
that the problem of finding abelian patterns with arbitrary length gaps can
be modeled by a complex pattern, such that the gaps are represented by the
regular expression (c1 + c2 + · · ·+ c|Σ|)

∗, where Σ is the alphabet of the input
text and ci ∈ Σ for 1 ≤ i ≤ |Σ|.
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Appendix A

Empirical Analysis of the
Prefix Based and the Suffix
Based Algorithms

In this appendix, we present detailed (pattern wise) results of the experiments
performed for an empirical analysis of the prefix based and the suffix based
algorithms for abelian pattern matching.

The analysis is based on the actual CPU time taken by the executions
of the algorithms. The experiments were performed on a computer having
two “Intel® Core�2 Duo CPU E6750 @ 2.66 GHz” processors and 3.8 GiB
memory, running Ubuntu 9.04.

We generated random texts comprising of 10000000 characters for σ = 4
and σ = 8. For each Σ, two different random texts were generated: one
based on a uniform distribution of the characters of Σ and the other based
on a non-uniform distribution of the characters of Σ.

We also used real text to compare the performance of the algorithms.
The real text consisted of a collection of the plays of famous English writer
William Shakespeare; these plays are available in text form on the web site
http://shakespeare.mit.edu/. The real text comprised of 3712565 char-
acters.
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A.1 The Input Texts are Defined over

Σ := {c1, c2, c3, c4}

The results presented in this section pertain to the execution of the algo-
rithms on the input texts defined over four characters (i.e. σ = 4). We
generated two different input texts T4U

and T4
Ú

defined over Σ. The input
text T4U

is based on the uniform distribution of the characters of Σ, whereas,
the input text T4

Ú
is based on a non-uniform distribution of the characters

of Σ.

A.1.1 Comparison of the Two Algorithms for the In-

put Text T4U

The input text T4U
is based on the uniform distribution of the characters

in Σ := {c1, c2, c3, c4}, i.e. on every text position in T4U
, the probability of

occurring a character ci ∈ Σ is same for all 1 ≤ i ≤ 4. The text comprises of
10000000 characters, i.e. n := |T4U

| = 10000000.

We generated abelian patterns having different frequency distributions
of the characters in Σ. The frequency distributions of the patterns ranged
form the distribution similar to the distribution of the characters in T4U

(e.g.
the pattern 3c1 + 3c2 + 3c3 + 3c4) to the distribution that was extremely
different from the distribution of the characters in T4U

(e.g. the pattern
0c1 + 0c2 + 0c3 + 12c4).

Abelian Pattern Matching for m = 12 in T4U

Table A.1 shows the respective CPU times taken by the prefix based and the
suffix based algorithms for finding the abelian patterns of length 12 in the
input text T4U

.

The suffix based algorithm performed slightly worse than the prefix based
algorithm in the situations where the characters in the patterns had a fre-
quency distribution similar to the distribution of the characters in the input
text (pattern 1 & 2). However, as the frequency distribution of the charac-
ters in the patterns became different form the frequency distribution of the
characters in the input text, the suffix based algorithm started performing
better than the prefix based algorithm. The suffix based algorithm gave the
best processing time when the pattern had a frequency distribution totally
different form the distribution of the characters in the input text (pattern
10).
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Abelian Pattern Matching for m = 48 & m = 120 in T4U

We extended the patterns in a manner such that the length of a pattern
was increased without affecting the underlying frequency distribution of the
characters in the pattern. In this way, we could analyze the effect of the
pattern length on the performance of the algorithms.

Tables A.2 and A.3 show the respective CPU times taken by the pre-
fix based and the suffix based algorithms for finding the abelian patterns of
length 48 and 120 in the input text T4U

.

Effect of the Pattern Length on the Relative Efficiency of the Suffix
Based and the Prefix Based Algorithms

The suffix to prefix CPU time ratio for the patterns that had same under-
lying frequency distribution but were different in their lengths is shown in
Table A.4. It is evident form the table that an increase in the length of a
pattern (without disturbing the frequency distribution of the characters in
the pattern) had two different behaviors:� If the suffix to prefix CPU time ratio was greater than 1 (i.e. the prefix

based algorithm was more suitable for the pattern), then by increasing
the length of the pattern this ratio further increased (patterns 1 & 2)
thus indicating that the prefix based approach was even more suitable
for longer patterns of the same type.� However, if the suffix to prefix CPU time ratio was less than 1 (indi-
cating a relative advantage of the suffix based approach over the prefix
based approach), then by increasing the length of the pattern this ratio
further decreased indicating that the suffix based approach was even
more suitable for longer patterns of the same type.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 3c1 + 3c2 + 3c3 + 3c4 221734 650010 751180 1.16

2 2c1 + 3c2 + 3c3 + 4c4 164647 613480 617110 1.01

3 1c1 + 2c2 + 3c3 + 6c4 33491 354030 217070 0.61

4 0c1 + 4c2 + 4c3 + 4c4 21023 340990 123400 0.36

5 0c1 + 2c2 + 4c3 + 6c4 8312 291090 92650 0.32

6 0c1 + 2c2 + 2c3 + 8c4 1782 246980 72910 0.3

7 0c1 + 0c2 + 6c3 + 6c4 565 210480 46840 0.22

8 0c1 + 0c2 + 4c3 + 8c4 271 224320 43660 0.19

9 0c1 + 0c2 + 2c3 + 10c4 45 220550 39380 0.18

10 0c1 + 0c2 + 0c3 + 12c4 0 189810 24970 0.13

Table A.1: CPU time taken by the prefix based and the suffix based algo-
rithms for finding different abelian patterns of length 12 in the input text
T4U

. The last column of the table (Suf/Pre Ratio) represents the suffix to
prefix CPU time ratio which is defined as “CPU time taken by the suffix
based algorithm / CPU time taken by the prefix based algorithm”. A value
greater than 1 in this column indicates that the prefix based algorithm is
faster then the suffix based algorithm for finding the matches of the pattern
in the input text and vice versa.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 12c1 + 12c2 + 12c3 + 12c4 29180 340700 662980 1.95

2 8c1 + 12c2 + 12c3 + 16c4 8987 278030 379340 1.36

3 4c1 + 8c2 + 12c3 + 24c4 6 206180 87070 0.42

4 0c1 + 16c2 + 16c3 + 16c4 0 203180 20070 0.1

5 0c1 + 8c2 + 16c3 + 24c4 0 192050 20160 0.1

6 0c1 + 8c2 + 8c3 + 32c4 0 189590 20590 0.11

7 0c1 + 0c2 + 24c3 + 24c4 0 173990 16620 0.1

8 0c1 + 0c2 + 16c3 + 32c4 0 181610 16180 0.09

9 0c1 + 0c2 + 8c3 + 40c4 0 177990 16190 0.09

10 0c1 + 0c2 + 0c3 + 48c4 0 171140 13610 0.08

Table A.2: CPU time taken by the prefix based and the suffix based algo-
rithms and the ratio between the CPU times taken by the two algorithms for
abelian patterns of length 48.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 30c1 + 30c2 + 30c3 + 30c4 7688 269550 855630 3.17

2 20c1 + 30c2 + 30c3 + 40c4 261 223810 313660 1.4

3 10c1 + 20c2 + 30c3 + 60c4 0 194020 74130 0.38

4 0c1 + 40c2 + 40c3 + 40c4 0 188570 12290 0.07

5 0c1 + 20c2 + 40c3 + 60c4 0 185990 12560 0.07

6 0c1 + 20c2 + 20c3 + 80c4 0 176270 12080 0.07

7 0c1 + 0c2 + 60c3 + 60c4 0 171720 9330 0.05

8 0c1 + 0c2 + 40c3 + 80c4 0 173370 9350 0.05

9 0c1 + 0c2 + 20c3 + 100c4 0 180770 9380 0.05

10 0c1 + 0c2 + 0c3 + 120c4 0 180480 6740 0.04

Table A.3: CPU time taken by the prefix based and the suffix based algo-
rithms and the ratio between the CPU times taken by the two algorithms for
abelian patterns of length 120.
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Frequency Ratio Suf/Pre Ratio

#
(c1 : c2 : c3 : c4) m = 12 m = 48 m = 120

1 3 : 3 : 3 : 3 1.16 1.95 3.17

2 2 : 3 : 3 : 4 1.01 1.36 1.4

3 1 : 2 : 3 : 6 0.61 0.42 0.38

4 0 : 4 : 4 : 4 0.36 0.1 0.07

5 0 : 2 : 4 : 6 0.32 0.1 0.07

6 0 : 2 : 2 : 8 0.3 0.11 0.07

7 0 : 0 : 6 : 6 0.22 0.1 0.05

8 0 : 0 : 4 : 8 0.19 0.09 0.05

9 0 : 0 : 2 : 10 0.18 0.09 0.05

10 0 : 0 : 0 : 12 0.13 0.08 0.04

Table A.4: The suffix to prefix CPU time ratio for abelian patterns of different
lengths having same underlying frequency distribution of characters.
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A.1.2 Comparison of the Two Algorithms for the In-

put Text T4
Ú

The input text T4
Ú

is based on a non-uniform distribution of the characters
in Σ := {c1, c2, c3, c4}. The frequency ratio of the characters in T4

Ú
is as

follows:
c1 : c2 : c3 : c4 ≡ 6 : 3 : 2 : 1

The text comprises of 10000000 characters, i.e. n := |T4
Ú
| = 10000000.

We generated abelian patterns having different frequency distributions
of the characters in Σ. The frequency distributions of the patterns ranged
form the most similar one to the distribution of the characters in T4

Ú
(e.g.

the pattern 6c1 + 3c2 + 2c3 + 1c4) to the distribution that was extremely
different from the distribution of the characters in T4

Ú
(e.g. the pattern

0c1 + 0c2 + 0c3 + 12c4).

Abelian Pattern Matching for m = 12 in T4
Ú

Table A.5 shows the respective CPU times taken by the prefix based and the
suffix based algorithms for finding the abelian patterns of length 12 in the
input text T4

Ú
.

The suffix based algorithm performed slightly worse than the prefix based
algorithm in the situations where the characters in the patterns had a fre-
quency distribution similar to the distribution of the characters in the input
text (pattern 1,2 & 3). However, as the frequency distribution of the char-
acters in the patterns got different form the frequency distribution of the
characters in the input text, the suffix based algorithm started performing
better than the prefix based algorithm. The suffix based algorithm gave the
best result when the pattern had a frequency distribution totally different
form the distribution of the characters in the input text (pattern 15).

Abelian Pattern Matching for m = 48 & m = 120 in T4
Ú

We extended the patterns in a manner such that the length of a pattern
was increased without affecting the underlying frequency distribution of the
characters in the pattern. In this way, we could analyze the effect of the
pattern length on the performance of the algorithms.

Tables A.6 and A.7 show the respective CPU times taken by the pre-
fix based and the suffix based algorithms for finding the abelian patterns of
length 48 and 120 in the input text T4

Ú
.
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Effect of the Pattern Length on the Relative Efficiency of the Suffix
Based and the Prefix Based Algorithms

The suffix to prefix CPU time ratio for the patterns that had same underlying
frequency distribution but were different in their lengths is shown in Table
A.8. In the table, the suffix to prefix CPU time ratio goes up with an increase
in the length of the patterns for those patterns which have a ratio greater
than or equal to 0.81 for m = 12; after this point the suffix to prefix ratio
starts going down with an increase in the length of the pattern.

Following is an interesting observation from Table A.8:� Let r be the suffix to prefix CPU time ratio of an abelian pattern P
and by increasing the pattern length m of P (without changing the
underlying frequency distribution of the characters in P ) r increased,
then for an abelian pattern P̂ having suffix to prefix CPU time ratio
r̂ > r, when the pattern length of P̂ was increased then r̂ also increased.� Let r be the suffix to prefix CPU time ratio of an abelian pattern P
and by increasing the pattern length m of P (without changing the
underlying frequency distribution of the characters in P ) r decreased,
then for an abelian pattern P̂ having suffix to prefix CPU time ratio
r̂ < r, when the pattern length of P̂ was increased then r̂ decreased.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 6c1 + 3c2 + 2c3 + 1c4 312413 773380 884280 1.14

2 5c1 + 3c2 + 2c3 + 2c4 158174 551870 656370 1.19

3 4c1 + 3c2 + 2c3 + 3c4 43562 372230 378470 1.02

4 4c1 + 2c2 + 3c3 + 3c4 29559 332440 269570 0.81

5 3c1 + 2c2 + 3c3 + 4c4 4975 259400 174690 0.67

6 2c1 + 2c2 + 3c3 + 5c4 514 258560 121200 0.47

7 2c1 + 2c2 + 4c3 + 4c4 1275 222320 125310 0.56

8 1c1 + 1c2 + 4c3 + 6c4 12 237140 76010 0.32

9 0c1 + 2c2 + 4c3 + 6c4 1 224780 40200 0.18

10 0c1 + 1c2 + 3c3 + 8c4 0 210610 34550 0.16

11 0c1 + 1c2 + 4c3 + 7c4 0 211630 37930 0.18

12 0c1 + 1c2 + 5c3 + 6c4 0 211850 37580 0.18

13 0c1 + 0c2 + 4c3 + 8c4 0 188910 24740 0.13

14 0c1 + 0c2 + 6c3 + 6c4 0 179450 24520 0.14

15 0c1 + 0c2 + 0c3 + 12c4 0 185890 18610 0.1

Table A.5: CPU time taken by the prefix based and the suffix based algo-
rithms for finding different abelian patterns of length 12 in the input text
T4

Ú
. The last column of the table shows the ratio between the CPU times

taken by the two algorithms.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 24c1 + 12c2 + 8c3 + 4c4 43274 352090 727910 2.07

2 20c1 + 12c2 + 8c3 + 8c4 4965 267610 477940 1.79

3 16c1 + 12c2 + 8c3 + 12c4 26 224590 249280 1.11

4 16c1 + 8c2 + 12c3 + 12c4 5 202980 196510 0.97

5 12c1 + 8c2 + 12c3 + 16c4 0 189440 125270 0.66

6 8c1 + 8c2 + 12c3 + 20c4 0 189360 73060 0.39

7 8c1 + 8c2 + 16c3 + 16c4 0 200280 74890 0.37

8 4c1 + 4c2 + 16c3 + 24c4 0 179100 35560 0.2

9 0c1 + 8c2 + 16c3 + 24c4 0 181380 16480 0.09

10 0c1 + 4c2 + 12c3 + 32c4 0 182990 16640 0.09

11 0c1 + 4c2 + 16c3 + 28c4 0 180370 16630 0.09

12 0c1 + 4c2 + 20c3 + 24c4 0 179880 17020 0.09

13 0c1 + 0c2 + 16c3 + 32c4 0 179820 13920 0.08

14 0c1 + 0c2 + 24c3 + 24c4 0 180070 13980 0.08

15 0c1 + 0c2 + 0c3 + 48c4 0 180230 12010 0.07

Table A.6: CPU time taken by the prefix based and the suffix based algo-
rithms and the ratio between the CPU times taken by the two algorithms for
abelian patterns of length 48.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 60c1 + 30c2 + 20c3 + 10c4 11367 285140 877670 3.08

2 50c1 + 30c2 + 20c3 + 20c4 61 211840 501950 2.37

3 40c1 + 30c2 + 20c3 + 30c4 0 195380 233640 1.2

4 40c1 + 20c2 + 30c3 + 30c4 0 175670 191180 1.09

5 30c1 + 20c2 + 30c3 + 40c4 0 193350 129560 0.67

6 20c1 + 20c2 + 30c3 + 50c4 0 188030 73940 0.39

7 20c1 + 20c2 + 40c3 + 40c4 0 173820 66840 0.38

8 10c1 + 10c2 + 40c3 + 60c4 0 184870 33740 0.18

9 0c1 + 20c2 + 40c3 + 60c4 0 182850 9410 0.05

10 0c1 + 10c2 + 30c3 + 80c4 0 175600 9390 0.05

11 0c1 + 10c2 + 40c3 + 70c4 0 174880 9420 0.05

12 0c1 + 10c2 + 50c3 + 60c4 0 177200 9480 0.05

13 0c1 + 0c2 + 40c3 + 80c4 0 179810 6790 0.04

14 0c1 + 0c2 + 60c3 + 60c4 0 179320 6780 0.04

15 0c1 + 0c2 + 0c3 + 120c4 0 184510 5620 0.03

Table A.7: CPU time taken by the prefix based and the suffix based algo-
rithms and the ratio between the CPU times taken by the two algorithms for
abelian patterns of length 120
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Frequency Ratio Suf/Pre Ratio

#
(c1 : c2 : c3 : c4) m = 12 m = 48 m = 120

1 6 : 3 : 2 : 1 1.14 2.07 3.08

2 5 : 3 : 2 : 2 1.19 1.79 2.37

3 4 : 3 : 2 : 3 1.02 1.11 1.2

4 4 : 2 : 3 : 3 0.81 0.97 1.09

5 3 : 2 : 3 : 4 0.67 0.66 0.67

6 2 : 2 : 3 : 5 0.47 0.39 0.39

7 2 : 2 : 4 : 4 0.56 0.37 0.38

8 1 : 1 : 4 : 6 0.32 0.2 0.18

9 0 : 2 : 4 : 6 0.18 0.09 0.05

10 0 : 1 : 3 : 8 0.16 0.09 0.05

11 0 : 1 : 4 : 7 0.18 0.09 0.05

12 0 : 1 : 5 : 6 0.18 0.09 0.05

13 0 : 0 : 4 : 8 0.13 0.08 0.04

14 0 : 0 : 6 : 6 0.14 0.08 0.04

15 0 : 0 : 0 : 12 0.1 0.07 0.03

Table A.8: The suffix to prefix CPU time ratio for abelian patterns of different
lengths having same underlying frequency distribution of characters.
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A.2 The Input Texts are Defined over

Σ := {c1, c2, . . . , c8}

The results presented in this section pertain to the execution of the algo-
rithms on the input texts defined over eight characters (i.e. σ = 8). We
generated two different input texts T8U

and T8
Ú

defined over Σ. The input
text T8U

is based on the uniform distribution of the characters in Σ, whereas,
the input text T8

Ú
is based on a non-uniform, distribution of the characters

in Σ.

A.2.1 Comparison of the Two Algorithms for the In-

put Text T8U

The input text T8U
is based on the uniform distribution of the characters in

Σ := {c1, c2, . . . , c8}, i.e. on every text position in T8U
, the probability of

occurring a character ci ∈ Σ is same for all 1 ≤ i ≤ 8. The text comprises of
10000000 characters, i.e. n := |T8U

| = 10000000.

We generated abelian patterns having different frequency distributions of
the characters in Σ. The frequency distributions of the patterns ranged form
the most similar one to the distribution of T8U

(e.g. the pattern
∑8

i=1 2ci)
to the most different one from the distribution of T8U

(e.g. the pattern
∑7

i=1 0ci + 16c8).

Abelian Pattern Matching for m = 16 in T8U

Table A.9 shows the respective CPU times taken by the prefix based and the
suffix based algorithms for finding the abelian patterns of length 16 in the
input text T8U

.

The suffix based algorithm performed better than the prefix based algo-
rithm in all the patterns of length 16. However, the suffix to prefix CPU
time ratio got even better when the frequency distribution of the characters
in the patterns became different form the frequency distribution of the char-
acters in the input text. The suffix based algorithm gave the best processing
time when the pattern had a frequency distribution totally different form the
distribution of the characters in the input text (pattern 15).
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Abelian Pattern Matching for m = 80 & m = 240 in T8U

We extended the patterns in a manner such that the length of a pattern
was increased without affecting the underlying frequency distribution of the
characters in the pattern. In this way, we could analyze the effect of the
pattern length on the performance of the algorithms.

Tables A.10 and A.11 show the respective CPU times taken by the prefix
based and the suffix based algorithms for finding the abelian patterns of
length 80 and 240 in the input text T8U

.

Effect of the Pattern Length on the Relative Efficiency of the Suffix
Based and the Prefix Based Algorithms

The suffix to prefix CPU time ratio for the patterns that had same underlying
frequency distribution but were different in their lengths is shown in Table
A.12. In the table, the suffix to prefix CPU time ratio goes up with an
increase in the length of the patterns for those patterns which have a ratio
greater than or equal to 0.43 for m = 16; after this point the suffix to prefix
ratio starts going down with an increase in the length of the pattern.

Moreover, following can also be observed from Table A.12:� Let r be the suffix to prefix CPU time ratio of an abelian pattern P
and by increasing the pattern length m of P (without changing the
underlying frequency distribution of the characters in P ) r increased,
then for an abelian pattern P̂ having suffix to prefix CPU time ratio
r̂ > r, when the pattern length of P̂ was increased then r̂ also increased.� Let r be the suffix to prefix CPU time ratio of an abelian pattern P
and by increasing the pattern length m of P (without changing the
underlying frequency distribution of the characters in P ) r decreased,
then for an abelian pattern P̂ having suffix to prefix CPU time ratio
r̂ < r, when the pattern length of P̂ was increased then r̂ decreased.



Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 2c1 + 2c2 + 2c3 + 2c4

+2c5 + 2c6 + 2c7 + 2c8 2914 348110 169740 0.49

2 1c1 + 2c2 + 2c3 + 2c4

+2c5 + 2c6 + 2c7 + 3c8 1948 340720 145100 0.43

3 0c1 + 1c2 + 2c3 + 2c4

+2c5 + 2c6 + 3c7 + 4c8 297 319630 75550 0.24

4 0c1 + 0c2 + 1c3 + 2c4

+2c5 + 3c6 + 4c7 + 4c8 56 287970 48960 0.17

5 0c1 + 0c2 + 0c3 + 1c4

+3c5 + 3c6 + 4c7 + 5c8 7 258490 38810 0.15

6 0c1 + 0c2 + 0c3 + 0c4

+4c5 + 4c6 + 4c7 + 4c8 1 233570 31780 0.14

7 0c1 + 0c2 + 0c3 + 0c4

+2c5 + 4c6 + 5c7 + 5c8 0 241970 31230 0.13

8 0c1 + 0c2 + 0c3 + 0c4

+1c5 + 3c6 + 6c7 + 6c8 0 238920 28650 0.12

9 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 5c6 + 5c7 + 6c8 0 204500 23500 0.11

10 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 4c6 + 4c7 + 8c8 0 218820 24470 0.11

11 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 8c7 + 8c8 0 210580 19230 0.09

12 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 6c7 + 10c8 0 206120 18900 0.09

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 4c7 + 12c8 0 213960 18930 0.09

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 2c7 + 14c8 0 224630 18790 0.08

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 16c8 0 209800 15610 0.07

Table A.9: CPU time of the prefix based and the suffix based algorithms for
abelian patterns of length 16. The last column of the table (Suf/Pre Ratio)
represents the ratio between the CPU times taken by the suffix based and
the prefix based algorithms for a pattern.



Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 10c1 + 10c2 + 10c3 + 10c4

+10c5 + 10c6 + 10c7 + 10c8 12 269420 267990 0.99

2 5c1 + 10c2 + 10c3 + 10c4

+10c5 + 10c6 + 10c7 + 15c8 3 250130 150110 0.6

3 0c1 + 5c2 + 10c3 + 10c4

+10c5 + 10c6 + 15c7 + 20c8 0 226200 22090 0.1

4 0c1 + 0c2 + 5c3 + 10c4

+10c5 + 15c6 + 20c7 + 20c8 0 197130 15920 0.08

5 0c1 + 0c2 + 0c3 + 5c4

+15c5 + 15c6 + 20c7 + 25c8 0 180710 13890 0.08

6 0c1 + 0c2 + 0c3 + 0c4

+20c5 + 20c6 + 20c7 + 20c8 0 179190 12630 0.07

7 0c1 + 0c2 + 0c3 + 0c4

+10c5 + 20c6 + 25c7 + 25c8 0 192060 12610 0.07

8 0c1 + 0c2 + 0c3 + 0c4

+5c5 + 15c6 + 30c7 + 30c8 0 183830 12440 0.07

9 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 25c6 + 25c7 + 30c8 0 178860 10690 0.06

10 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 20c6 + 20c7 + 40c8 0 179460 10780 0.06

11 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 40c7 + 40c8 0 173630 8980 0.05

12 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 30c7 + 50c8 0 172080 9040 0.05

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 20c7 + 60c8 0 171940 9010 0.05

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 10c7 + 70c8 0 180490 9000 0.05

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 80c8 0 170850 7860 0.05

Table A.10: CPU time of the prefix based and the suffix based algorithms
and the ratio between the CPU times taken by the algorithms for abelian
patterns of length 80.



Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 30c1 + 30c2 + 30c3 + 30c4

+30c5 + 30c6 + 30c7 + 30c8 1 227400 475400 2.09

2 15c1 + 30c2 + 30c3 + 30c4

+30c5 + 30c6 + 30c7 + 45c8 0 207170 137860 0.67

3 0c1 + 15c2 + 30c3 + 30c4

+30c5 + 30c6 + 45c7 + 60c8 0 197870 8740 0.04

4 0c1 + 0c2 + 15c3 + 30c4

+30c5 + 45c6 + 60c7 + 60c8 0 185940 6600 0.04

5 0c1 + 0c2 + 0c3 + 15c4

+45c5 + 45c6 + 60c7 + 75c8 0 172040 5760 0.03

6 0c1 + 0c2 + 0c3 + 0c4

+60c5 + 60c6 + 60c7 + 60c8 0 172040 5120 0.03

7 0c1 + 0c2 + 0c3 + 0c4

+30c5 + 60c6 + 75c7 + 75c8 0 181460 5180 0.03

8 0c1 + 0c2 + 0c3 + 0c4

+15c5 + 45c6 + 90c7 + 90c8 0 179710 5150 0.03

9 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 75c6 + 75c7 + 90c8 0 179290 4500 0.03

10 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 60c6 + 60c7 + 120c8 0 173240 4350 0.03

11 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 120c7 + 120c8 0 169900 3730 0.02

12 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 90c7 + 150c8 0 169550 3760 0.02

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 60c7 + 180c8 0 169940 3870 0.02

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 30c7 + 210c8 0 178240 3830 0.02

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 240c8 0 172970 3260 0.02

Table A.11: CPU time of the prefix based and the suffix based algorithms
and the ratio between the CPU times taken by the algorithms for abelian
patterns of length 240.



Frequency Ratio Suf/Pre Ratio

#
(c1 : c2 : c3 : c4 : c5 : c6 : c7 : c8) m = 16 m = 80 m = 240

1 2:2:2:2:2:2:2:2 0.49 0.99 2.09

2 1:2:2:2:2:2:2:3 0.43 0.6 0.67

3 0:1:2:2:2:2:3:4 0.24 0.1 0.04

4 0:0:1:2:2:3:4:4 0.17 0.08 0.04

5 0:0:0:1:3:3:4:5 0.15 0.08 0.03

6 0:0:0:0:4:4:4:4 0.14 0.07 0.03

7 0:0:0:0:2:4:5:5 0.13 0.07 0.03

8 0:0:0:0:1:3:6:6 0.12 0.07 0.03

9 0:0:0:0:0:5:5:6 0.11 0.06 0.03

10 0:0:0:0:0:4:4:8 0.11 0.06 0.03

11 0:0:0:0:0:0:8:8 0.09 0.05 0.02

12 0:0:0:0:0:0:6:10 0.09 0.05 0.02

13 0:0:0:0:0:0:4:12 0.09 0.05 0.02

14 0:0:0:0:0:0:2:14 0.08 0.05 0.02

15 0:0:0:0:0:0:0:16 0.07 0.05 0.02

Table A.12: The suffix to prefix CPU time ratio for abelian patterns of
different lengths having same underlying frequency distribution of characters.



A.2.2 Comparison of the Two Algorithms on the Input

Text T8
Ú

The input text T8
Ú

is based on a non-uniform distribution of the characters
in Σ := {c1, c2, . . . , c8}. The frequency ratio of the characters in T8

Ú
is as

follows:

c1 : c2 : c3 : c4 : c5 : c6 : c7 : c8 ≡ 15 : 10 : 8 : 6 : 4 : 3 : 2 : 1

The text comprises of 10000000 characters, i.e. n := |T8
Ú
| = 10000000.

We generated abelian patterns having different frequency distributions
of the characters in Σ. The frequency distributions of the characters in the
patterns ranged form the most similar one to the distribution of T8

Ú
(e.g. the

pattern 15c1 + 10c2 + 8c3 + 6c4 + 4c5 + 3c6 + 2c7 + 1c8) to the most different
one from the distribution of T8

Ú
(e.g. the pattern

∑7
i=1 0ci + 49c8).

Abelian Pattern Matching for m = 49

Table A.13 shows the respective CPU times taken by the prefix based and
the suffix based algorithms for finding the abelian patterns of length 49 in
the input text T8

Ú
.

Here too, the suffix based algorithm performed better than the prefix
based algorithm in all the patterns of length 49. The suffix to prefix CPU time
ratio got much better as the frequency distribution of the characters in the
patterns became different form the frequency distribution of the characters
in the input text. The suffix based algorithm gave the best processing time
when the pattern had a frequency distribution totally different form the
distribution of the characters in the input text (pattern 15).

Abelian Pattern Matching for m = 98 & m = 196

We extended the patterns in a manner such that the length of a patterns
was increased without affecting the underlying frequency distribution of the
characters in the pattern. In this way, we could analyze the effect of the
pattern length on the performance of the algorithms.

Tables A.14 and A.15 show the respective CPU times taken by the pre-
fix based and the suffix based algorithms for finding the abelian patterns of
length 98 and 196 in the input text T8

Ú
.
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Effect of the Pattern Length on the Relative Efficiency of the Suffix
Based and the Prefix Based Algorithms

The suffix to prefix CPU time ratio for the patterns that had same underlying
frequency distribution but were different in their lengths is shown in Table
A.16. In the table, the suffix to prefix CPU time ratio goes up with an
increase in the length of the patterns for those patterns which have a ratio
less than or equal to 0.36 for m = 49; after this point the suffix to prefix
ratio starts going down with an increase in the length of the pattern.

Following was observed from Table A.16 also:� Let r be the suffix to prefix CPU time ratio of an abelian pattern P
and by increasing the pattern length m of P (without changing the
underlying frequency distribution of the characters in P ) r increased,
then for an abelian pattern P̂ having suffix to prefix CPU time ratio
r̂ > r, when the pattern length of P̂ was increased then r̂ also increased.� Let r be the suffix to prefix CPU time ratio of an abelian pattern P
and by increasing the pattern length m of P (without changing the
underlying frequency distribution of the characters in P ) r decreased,
then for an abelian pattern P̂ having suffix to prefix CPU time ratio
r̂ < r, when the pattern length of P̂ was increased then r̂ decreased.



Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 15c1 + 10c2 + 8c3 + 6c4

+4c5 + 3c6 + 2c7 + 1c8 209 287460 207050 0.72

2 10c1 + 9c2 + 7c3 + 6c4

+5c5 + 5c6 + 3c7 + 4c8 1 245780 190120 0.77

3 8c1 + 7c2 + 7c3 + 7c4

+4c5 + 5c6 + 5c7 + 6c8 0 224830 123260 0.55

4 5c1 + 6c2 + 6c3 + 6c4

+6c5 + 6c6 + 7c7 + 7c8 0 222540 79680 0.36

5 0c1 + 7c2 + 7c3 + 7c4

+7c5 + 7c6 + 7c7 + 7c8 0 221710 19000 0.09

6 0c1 + 5c2 + 6c3 + 7c4

+7c5 + 8c6 + 8c7 + 8c8 0 210020 18940 0.09

7 0c1 + 2c2 + 6c3 + 7c4

+7c5 + 8c6 + 9c7 + 10c8 0 199820 18380 0.09

8 0c1 + 0c2 + 7c3 + 8c4

+8c5 + 8c6 + 8c7 + 10c8 0 198360 16180 0.08

9 0c1 + 0c2 + 3c3 + 8c4

+9c5 + 9c6 + 10c7 + 10c8 0 191290 16350 0.09

10 0c1 + 0c2 + 0c3 + 9c4

+10c5 + 10c6 + 10c7 + 10c8 0 187890 14430 0.08

11 0c1 + 0c2 + 0c3 + 5c4

+10c5 + 11c6 + 11c7 + 12c8 0 189860 14170 0.07

12 0c1 + 0c2 + 0c3 + 0c4

+6c5 + 12c6 + 14c7 + 17c8 0 183460 12750 0.07

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 16c6 + 16c7 + 17c8 0 182630 12230 0.07

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 24c7 + 25c8 0 184920 11640 0.06

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 49c8 0 187720 11420 0.06

Table A.13: CPU time of the prefix based and the suffix based algorithms for
abelian patterns of length 49. The last column of the table (Suf/Pre Ratio)
represents the ratio between the CPU times taken by the suffix based and
the prefix based algorithms for a pattern.



Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 30c1 + 20c2 + 16c3 + 12c4

+8c5 + 6c6 + 4c7 + 2c8 15 257100 268800 1.05

2 20c1 + 18c2 + 14c3 + 12c4

+10c5 + 10c6 + 6c7 + 8c8 0 220450 211330 0.96

3 16c1 + 14c2 + 14c3 + 14c4

+8c5 + 10c6 + 10c7 + 12c8 0 208130 130690 0.63

4 10c1 + 12c2 + 12c3 + 12c4

+12c5 + 12c6 + 14c7 + 14c8 0 193220 71450 0.37

5 0c1 + 14c2 + 14c3 + 14c4

+14c5 + 14c6 + 14c7 + 14c8 0 202240 12880 0.06

6 0c1 + 10c2 + 12c3 + 14c4

+14c5 + 16c6 + 16c7 + 16c8 0 188760 13000 0.07

7 0c1 + 4c2 + 12c3 + 14c4

+14c5 + 16c6 + 18c7 + 20c8 0 186420 12850 0.07

8 0c1 + 0c2 + 14c3 + 16c4

+16c5 + 16c6 + 16c7 + 20c8 0 195160 10740 0.06

9 0c1 + 0c2 + 6c3 + 16c4

+18c5 + 18c6 + 20c7 + 20c8 0 185060 10680 0.06

10 0c1 + 0c2 + 0c3 + 18c4

+20c5 + 20c6 + 20c7 + 20c8 0 185770 9050 0.05

11 0c1 + 0c2 + 0c3 + 10c4

+20c5 + 22c6 + 22c7 + 24c8 0 194240 9040 0.05

12 0c1 + 0c2 + 0c3 + 0c4

+12c5 + 24c6 + 28c7 + 34c8 0 189150 7780 0.04

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 32c6 + 32c7 + 34c8 0 175640 6820 0.04

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 48c7 + 50c8 0 176490 6500 0.04

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 98c8 0 177240 6420 0.04

Table A.14: CPU time of the prefix based and the suffix based algorithms
and the ratio between the CPU times taken by the algorithms for abelian
patterns of length 98.



Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 60c1 + 40c2 + 32c3 + 24c4

+16c5 + 12c6 + 8c7 + 4c8 1 235350 364370 1.55

2 40c1 + 36c2 + 28c3 + 24c4

+20c5 + 20c6 + 12c7 + 16c8 0 201840 238900 1.18

3 32c1 + 28c2 + 28c3 + 28c4

+16c5 + 20c6 + 20c7 + 24c8 0 199100 142120 0.71

4 20c1 + 24c2 + 24c3 + 24c4

+24c5 + 24c6 + 28c7 + 28c8 0 193250 70400 0.36

5 0c1 + 28c2 + 28c3 + 28c4

+28c5 + 28c6 + 28c7 + 28c8 0 219650 7000 0.03

6 0c1 + 20c2 + 24c3 + 28c4

+28c5 + 32c6 + 32c7 + 32c8 0 216350 8140 0.04

7 0c1 + 8c2 + 24c3 + 28c4

+28c5 + 32c6 + 36c7 + 40c8 0 214530 8090 0.04

8 0c1 + 0c2 + 28c3 + 32c4

+32c5 + 32c6 + 32c7 + 40c8 0 216070 6450 0.03

9 0c1 + 0c2 + 12c3 + 32c4

+36c5 + 36c6 + 40c7 + 40c8 0 214230 6480 0.03

10 0c1 + 0c2 + 0c3 + 36c4

+40c5 + 40c6 + 40c7 + 40c8 0 209000 5220 0.02

11 0c1 + 0c2 + 0c3 + 20c4

+40c5 + 44c6 + 44c7 + 48c8 0 216700 5130 0.02

12 0c1 + 0c2 + 0c3 + 0c4

+24c5 + 48c6 + 56c7 + 68c8 0 213990 4360 0.02

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 64c6 + 64c7 + 68c8 0 200830 3900 0.02

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 96c7 + 100c8 0 213060 3610 0.02

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 196c8 0 208130 3480 0.02

Table A.15: CPU time of the prefix based and the suffix based algorithms
and the ratio between the CPU times taken by the algorithms for abelian
patterns of length 196.



Frequency Ratio Suf/Pre Ratio

#
(c1 : c2 : c3 : c4 : c5 : c6 : c7 : c8) m = 49 m = 98 m = 196

1 15:10:8:6:4:3:2:1 0.72 1.05 1.55

2 10:9:7:6:5:5:3:4 0.77 0.96 1.18

3 8:7:7:7:4:5:5:6 0.55 0.63 0.71

4 5:6:6:6:6:6:7:7 0.36 0.37 0.36

5 0:7:7:7:7:7:7:7 0.09 0.06 0.03

6 0:5:6:7:7:8:8:8 0.09 0.07 0.04

7 0:2:6:7:7:8:9:10 0.09 0.07 0.04

8 0:0:7:8:8:8:8:10 0.08 0.06 0.03

9 0:0:3:8:9:9:10:10 0.09 0.06 0.03

10 0:0:0:9:10:10:10:10 0.08 0.05 0.02

11 0:0:0:5:10:11:11:12 0.07 0.05 0.02

12 0:0:0:0:6:12:14:17 0.07 0.04 0.02

13 0:0:0:0:0:16:16:17 0.07 0.04 0.02

14 0:0:0:0:0:0:24:25 0.06 0.04 0.02

15 0:0:0:0:0:0:0:49 0.06 0.04 0.02

Table A.16: The Suffix/Prefix ratio of the CPU time for different pattern
lengths having same underlying frequency distribution of characters.



A.3 The Input Text TReal is a Collection of

the Work of Shakespeare

The input text TReal is defined over English alphabet. Moreover, the text
is not randomly generated, rather it is a real text consisting of a collection
of the plays of famous English writer William Shakespeare; these plays are
available in text form on the web site http://shakespeare.mit.edu/. The
text was pre-processed and all the punctuation marks and white spaces were
removed form the text. We also changed the upper case letters into lower
case, thus making σ = 26. The post-processed text comprised of 3712565
characters, i.e. n := |TReal| = 3712565.

A.3.1 Comparison of the Two Algorithms on the In-

put Text TReal for Randomly Selected Substrings
of TReal

We randomly selected substrings of various lengths from TReal and converted
these substrings into equivalent abelian patterns. The chosen lengths for the
substrings were 5, 10, 20 and 50.

Abelian Pattern Matching for m = 5 in TReal

Table A.17 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns of length 5 in the input text TReal.

The suffix based algorithm performed better than the prefix based algo-
rithm for all the patterns of length 5 which were randomly selected for the
experiments. The suffix to prefix CPU time ratio ranged between 0.21−0.31.

Abelian Pattern Matching for m = 10 in TReal

Table A.18 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns of length 10 in the input text TReal.

The suffix based algorithm performs better than the prefix based algo-
rithm for all the patterns of length 10 which were randomly chosen for the
experiments. The suffix to prefix CPU time ratio ranged between 0.12−0.17.
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Abelian Pattern Matching for m = 20 in TReal

Table A.19 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns of length 20 in the input text TReal.

The suffix based algorithm performs better than the prefix based algo-
rithm for all the patterns of length 20 which were randomly chosen for the
experiments. The suffix to prefix CPU time ratio ranged between 0.07−0.14.

Abelian Pattern Matching for m = 50 in TReal

Table A.20 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns of length 50 in the input text TReal.

The suffix based algorithm performs better than the prefix based algo-
rithm for all the patterns of length 50 which were randomly chosen for the
experiments. The suffix to prefix CPU time ratio ranged between 0.07−0.13.

Effect of the Pattern Length on the Relative Efficiency of the Suffix
Based and the Prefix Based Algorithms

Although, in this case, the abelian patterns of different lengths did not have
same frequency distribution, yet the suffix to prefix CPU time ratio decreased
with an increase in the pattern length. The suffix to prefix CPU time ratio
ranged between 0.21− 0.31 for the pattern of length 5; and this ratio ranged
between 0.07− 0.13 for the patterns of length 50.

141



Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 2e + 1h + 1r + 1w 3630 133740 35680 0.27
2 1e + 1h + 1m + 1o + 1t 3525 128430 39850 0.31
3 1d + 1l + 1o + 1r + 1y 2094 119550 32770 0.27
4 1e + 1f + 1o + 2r 1991 125880 35420 0.28
5 1e + 1m + 1o + 1r + 1s 1697 125650 37460 0.3
6 1g + 2h + 1o + 1u 1451 119470 29460 0.25
7 1c + 1i + 1n + 1p + 1r 1136 114640 29140 0.25
8 1a + 1d + 1e + 1m + 1r 1042 114340 33500 0.29
9 1a + 1d + 1e + 1s + 1t 908 119320 34720 0.29
10 1e + 1f + 1l + 1s + 1y 869 112900 30830 0.27
11 1a + 1e + 1i + 1m + 1r 817 117690 32790 0.28
12 2e + 1m + 1n + 1t 760 126460 31580 0.25
13 1e + 1f + 1g + 1o + 1r 678 118130 30650 0.26
14 1d + 1e + 1l + 1n + 1o 597 110970 31290 0.28
15 2a + 2d + 1n 582 113150 27730 0.25
16 1c + 1e + 1i + 1l + 1r 510 115270 30200 0.26
17 1a + 1h + 1n + 1o + 1w 506 117950 30880 0.26
18 2e + 1m + 1n + 1s 460 119950 28950 0.24
19 1a + 1d + 1i + 1s + 1y 448 118610 29020 0.24
20 1c + 1i + 1l + 1o + 1u 436 115190 28750 0.25
21 1a + 1d + 1o + 1s + 1t 430 112080 29540 0.26
22 1a + 1e + 1l + 1t + 1w 338 108540 29180 0.27
23 1o + 1r + 2t + 1u 331 111670 27450 0.25
24 1o + 2p + 1r + 1u 327 105030 24620 0.23
25 1e + 1h + 1i + 1k + 1s 322 110120 29390 0.27
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

26 1e + 1i + 2n + 1s 253 113350 28390 0.25
27 1a + 1e + 1l + 1m + 1y 252 117560 28930 0.25
28 1h + 1i + 2s + 1w 248 120480 28030 0.23
29 1e + 1i + 1s + 1v + 1w 187 104780 26200 0.25
30 1b + 2e + 1f + 1r 125 107170 24350 0.23
31 1h + 1i + 1s + 1t + 1v 117 117340 29470 0.25
32 1a + 1d + 1s + 1t + 1w 75 118080 27610 0.23
33 1a + 1b + 1l + 1m + 1o 56 112660 25120 0.22
34 1l + 1m + 1o + 1p + 1u 22 112150 24490 0.22
35 2c + 1k + 1n + 1o 21 108590 23780 0.22
36 1a + 1r + 1s + 2y 20 116570 25110 0.22
37 2a + 1c + 1m + 1p 15 111890 23440 0.21

Table A.17: CPU time of the prefix based and the suffix based algorithms for
abelian patterns of length 5. The last column of the table (Suf/Pre Ratio)
represents the ratio between the CPU times taken by the suffix based and
the prefix based algorithms for a pattern.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 1c + 3e + 1g + 1l +1o +1s +
1t + 1u

116 132500 17790 0.13

2 2e +1h+1i +1o+1r +1s+
2t + 1w

71 137400 22770 0.17

3 1a+1e+2h+2l+2o+1t+1w 25 132650 18470 0.14
4 2d + 3e + 1h + 2i + 1n + 1s 23 130110 16540 0.13
5 2a+1d+1e+1h+1o+1r +

1t + 1u + 1y
21 133850 21660 0.16

6 1a+2e+1h+1n+1o+1r+
1t + 1v + 1y

21 131210 21220 0.16

7 2e+1h+1l+1o+1r+2s+2t 19 133260 19020 0.14
8 1e + 1h + 1i + 1l + 1o + 1s +

2t + 1u + 1y
19 132240 20280 0.15

9 1a+1f +1i+1m+1n+2o+
1r + 2t

18 136720 17700 0.13

10 2e + 1h + 1i + 1l +1o + 1r +
2t + 1v

18 134080 19590 0.15

11 3e+1g+1h+1i+1m+1o+
1t + 1v

16 131680 16620 0.13

12 2a+1b+2e+1h+1l+2r+1t 9 131110 17970 0.14
13 3e+1h+1i+1k+1l +1m+

1s + 1t
9 131030 18320 0.14

14 1a +1e + 1i + 1l + 1n +1o +
1r + 1s + 1u + 1v

9 133790 21670 0.16

15 4e+1h+1n+1o+1r+1t+1v 8 132510 18600 0.14
16 2e +1h+1i +1r +2t +1u +

1v + 1y
7 133400 18000 0.13

17 1e+1f+2n+3o+1s+1u+1y 6 126930 15300 0.12
18 1d+1e+1n+3o+2s+1t+1u 6 129710 17950 0.14
19 1b+1d+2e+1l +1m+1o+

1r + 1u + 1v
4 129850 17100 0.13
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

20 3e+1h+1i+2o+1p+1s+1t 4 129270 18160 0.14
21 1h+1i+1n+1o+2r +1s+

2t + 1u
3 130010 19860 0.15

22 1c + 1d +2e + 1h + 1i +1l +
1p + 1r + 1s

3 134800 18850 0.14

23 1h+2i+1n+1o+2s+1u+
1w + 1y

2 133010 17240 0.13

24 1a+1b+1e+1m+1n+1o+
1r + 1t + 1u + 1w

2 131030 21010 0.16

25 1a+2d+2e+1m+1s+2t+1y 2 128820 17160 0.13
26 1a +1d+1e +1g+1h+1l +

1n + 1o + 2r
2 130240 19670 0.15

27 1d+1h+2i+1p+2r+1s+2t 1 126390 15950 0.13
28 1a + 1h + 3i + 1o + 2s + 2t 1 125640 17820 0.14
29 2a+1c+1e+2m+1n+1r+2u 1 125830 15690 0.12
30 1a+3e+1f +1h+1q +1r+

1t + 1u
1 132890 18270 0.14

31 1a+1c+2d+1e+1h+1o+
2t + 1y

1 132830 19030 0.14

32 1b+2e+1f+1i+2o+2r+1s 1 133060 16610 0.12
33 1b +1e +2o +1p +1r + 2t +

1u + 1y
1 127680 17350 0.14

34 1b + 2d + 1e + 2h + 1i +1l +
1o + 1t

1 128170 18040 0.14

35 1a+2d+2h+1m+1n+1r+
1t + 1u

1 129780 17140 0.13

36 2e + 2i + 2l + 1p + 2t + 1y 1 122900 14360 0.12
37 1e+2g +1h+1i+1l +1m+

1o + 1t + 1y
1 125920 18770 0.15

Table A.18: CPU time of the prefix based and the suffix based algorithms
for abelian patterns of length 10.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 5a+1c+1d+1i+1k+1m+
3n + 2o + 1r + 2t + 1v + 1y

13 124640 11300 0.09

2 2a+1d+1e+3h+2i+1m+
1n + 1o + 2s + 5t + 1y

2 128500 15160 0.12

3 2a +1b +1c+1d+3e +3h+
1i + 1o + 1r + 4t + 2u

2 128790 12660 0.1

4 2c +2e +1f + 2h +3i + 1l +
1m + 1n + 3o + 3t + 1w

2 125530 11940 0.1

5 3a + 2b + 2d + 3e + 2i + 1l +
2m + 2n + 2s + 1t

2 121480 11680 0.1

6 2a+1c+2e+1f +1g +1h+
3i+2k+2n+2r+1t+1v+1y

1 125550 12720 0.1

7 1a+1b+2d+3e+1g +1h+
2n + 3o + 1p + 3t + 1u + 1w

1 125050 12370 0.1

8 2a + 2c + 2i + 2l + 3o + 5s +
3u + 1w

1 113250 8470 0.07

9 4a+1b+1c+2e+1f+1h+3l+
1n+1o+1p+1t+1u+1w+1y

1 127210 12810 0.1

10 2a+1c+1d+3e+1g +3h+
4l + 1o + 1t + 1u + 1v + 1w

1 125690 11750 0.09

11 1b +1c +2h + 1i + 1l +2n +
3o + 1p + 2s + 3u + 3w

1 120450 9450 0.08

12 5a+2c+1d+1g +1h+1j +
2k+1n+1o+1r+2s+1u+1w

1 122450 11000 0.09
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

13 4a +1b +3d+2e +1h+2i +
1m + 1n + 2r + 1s + 1t + 1y

1 128960 14650 0.11

14 6e+1i+1l +1m+2n+1r+
4s + 3t + 1y

1 117490 10400 0.09

15 1a +1b +5e +1g +1h+3i +
1l + 1p + 2r + 1s + 3t

1 119780 12280 0.1

16 2a+2e+1f +2n+5o+1r+
5t + 1u + 1y

1 118850 10940 0.09

17 3a+1d+2e+2h+1i+1k +
1n+2o+1s+3t+1u+1v+1y

1 129250 14920 0.12

18 2a + 1b + 1d + 2e + 2i + 3l +
1n+1o+1p+1r+3t+1u+1w

1 132640 14440 0.11

19 2a+1b+1c+3e+1f +1h+
1i+1k+2l+1m+3s+2t+1x

1 128950 12440 0.1

20 5e+1f +1h+1i+1n+1o+
1r + 4s + 3t + 1u + 1w

1 125240 14740 0.12

21 1d+2e+2f +1g +1h+1i+
4o + 2r + 1s + 2t + 3u

1 128430 12900 0.1

22 2a +1b +3e +1g +1h+2i +
3l+1m+1n+1o+1r+2s+1z

1 133390 13790 0.1

23 4a +1d+1e +1g+1l +2n+
2o + 2r + 3s + 2u + 1w

1 122110 11660 0.1

24 3a +3c+3e +1h+1i +4n+
1o + 1r + 3t

1 121270 12420 0.1
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

25 1b +1d+5e +1g +1h+1i +
2m + 1n + 2r + 1s + 3t + 1w

1 121880 12640 0.1

26 4a+2d+3e+1h+2n+2s+
2t + 1v + 1w + 2y

1 120480 11480 0.1

27 2a+1b+1c+1d+2e+1f +
1m+3o+2r+3s+1t+1x+1y

1 127600 12150 0.1

28 1c+3e+1f +1h+2i+1k +
1l+3n+1r+2s+1t+2u+1y

1 129360 13110 0.1

29 3a+1d+1e+1f +1h+1i+
2m+1n+1p+2r+1s+2t+
1u + 2y

1 131090 15260 0.12

30 2a+1b+1d+1e+1f +1g +
1i +2n +2o +2r + 2s+ 1t +
2u + 1w

1 127520 16050 0.13

31 2a+1b+1c+1d+3e+2f +
1h + 1l + 1n + 3o + 3t + 1u

1 126240 12600 0.1

32 1a +1b +1c+1d+1e +1g +
1h+3i+3n+1o+1r +2s+
1t + 2u

1 126270 17330 0.14

33 1a +1b +3e +2h+1i +1n+
1o + 4r + 2s + 2u + 1w + 1y

1 124120 12750 0.1

34 1c+2e+2h+1i+1l +2m+
2o+1p+1r +3s+1t +1u +
1x + 1y

1 125960 14370 0.11

35 3a +1e +1f +2h+1i +2l +
2o + 1p + 1r + 2u + 1v + 3y

1 119660 10850 0.09

36 1d + 2e + 1f +2i +1j + 1l +
1n+2o+3r+2s+1t+1u+2y

1 127800 14480 0.11

37 2a+2d+2e+1f +1h+1i+
3l+2n+2r+1s+1t+1u+1w

1 128080 15530 0.12

Table A.19: CPU time of the prefix based and the suffix based algorithms
for abelian patterns of length 20.
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 4a+3d+3e+1f +2h+3i+
3l +2m+6n+6o+1s+6t+
2u + 2v + 4w + 2y

2 104960 9130 0.09

2 5a+3b+1c+5d+4e+1f +
2h+2i+2l +2m+3n+6o+
1p + 4r + 3s + 3t + 2w + 1y

2 112940 13810 0.12

3 3a+1b+2c+7e+1f +3h+
2i+1k+2l +1m+7n+7o+
1p + 4r + 3s + 2t + 1u + 2v

2 110460 11040 0.1

4 6a+1b+5d+4e+1f +1g +
2h+4i+2k+1l+1m+3n+
5o + 3r + 1s + 7t + 1v + 2w

1 109830 11040 0.1

5 6a+1b+4d+4e+2g +1h+
5i+4l +4m+6n+3o+3r+
2s + 4t + 1y

1 105200 9320 0.09

6 6a+2b+1d+9e+1f +4h+
1i +1k +3l +3n+3o+3r +
4s + 6t + 1u + 1w + 1y

1 110160 11260 0.1

7 3a+1b+1c+3d+6e+1f +
3g + 3i +4l +2n +6o +3r +
4s + 8t + 1u + 1w

1 109900 9090 0.08

8 4a +1b +3c+2d+6e +2h+
3i+2l +1m+1n+4o+3p+
7r + 3s + 2t + 2u + 1w + 3y

1 110000 13220 0.12

9 7a +1b +1c+3e +1g+2h+
2k+2l+1m+3n+7o+6r+
1s + 3t + 3u + 2w + 5y

1 101940 9010 0.09

10 2a+1c+1d+5e+3f +1g +
3h+3i +2l +3n+5o+1q +
3r + 5s + 5t + 5u + 1w + 1y

1 115010 12280 0.11
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

11 1a+1b+1c+2d+9e+1f +
1g+1h+6i+1k+1m+3n+
2o+2p+3r+8s+5t+1u+1v

1 105700 11460 0.11

12 5a+1b+1d+7e+1f +2h+
4i+7l +1m+3o+2r +8s+
3t + 3w + 2y

1 106210 8770 0.08

13 6a+2b+3d+4e+1f +1g +
2h+8i+3m+4n+1o+1p+
2r + 4s + 6t + 2u

1 106620 9540 0.09

14 7a +2b +3c+3d+3e +4h+
4i+2k+1l +1m+3n+2o+
4r + 3s + 6t + 1u + 1v

1 109360 11120 0.1

15 4a +1b +3c+2d+4e +5h+
2l+6m+2n+5o+2r+4s+
3t + 4w + 3y

1 107880 8800 0.08

16 4a +3c+2d+6e +5h+3i +
1l +3n + 4o + 5r +3s + 6t +
3u + 1w + 1y

1 115110 9780 0.08

17 5a+2b+1d+6e+1f +1g +
2h+3i +1k +2l +4n+4o+
3r + 7s + 4t + 1u + 2w + 1y

1 113500 12350 0.11

18 1a+1c+4e+1f +2g +5h+
5i +1j +2n+5o+2r +5s+
10t + 4u + 2y

1 99770 8120 0.08

19 3a+1b+8e+1f+8h+5i+3l+
1m+1p+4r+6s+5t+3w+1y

1 101570 7460 0.07

20 8a +1d +5e + 1g +3i + 4l +
8n+7o+5r+2s+3t+1y+2z

1 100520 7250 0.07
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

21 2a +2b +8e +2g +4h+7i +
3l +5n+5o+1p+3r +1s+
4t + 1u + 1v + 1x

1 105140 8280 0.08

22 3a+1c+1d+8e+1g +4h+
4i+2k+2l +2m+3n+1o+
2r+3s+6t+2u+2v+2w+1y

1 113390 14220 0.13

23 5a +1b +1c+2d+3e +2g +
3h+5i+1k+2l+2m+5n+
1o+3r+2s+5t+1u+5w+1y

1 108230 14010 0.13

24 4a+2b+1d+8e+1f +3h+
2i+1k+2l +2m+5n+5o+
3r + 1s + 6t + 3w + 1y

1 112900 11260 0.1

25 4a+1b+3c+1d+6e+2f +
1g+4h+4i+2l+1m+4n+
2o+2p+3r+5s+2t+2u+1v

1 115810 14840 0.13

26 2a+1b+1d+11e+4h+1i+
1l +3n+5o+1q +3r +7s+
6t + 2u + 1v + 1w

1 107460 9280 0.09

27 3a+4d+6e+2f +1g+1h+
5i+2l +1m+4n+7o+1p+
4r + 3s + 3t + 1v + 1x + 1y

1 111360 11150 0.1

28 3a+1b+3c+10e+3g+3h+
5i+1k+1l +1m+5n+1o+
1p + 2r + 3s + 5t + 1u + 1x

1 103700 9530 0.09

29 4a+1b+2c+6d+6e+1f +
4h+5i +2l +6n+3o+2p+
3r + 2s + 2t + 1w

1 107040 10190 0.1

30 3a+5e+4f +2g +6h+4i+
2k +5n+3o+1p+5r+3s+
6t + 1y

1 103930 7960 0.08
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Number CPU Time

# The Pattern of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

31 2a+1b+1d+1e+1f +1h+
2i+1k+3l+3n+11o+3p+
3r+3s+3t+4u+2v+3w+2y

1 102150 10360 0.1

32 2a+2c+3d+5e+3f +1g +
2h+1i+7l +2m+2n+8o+
4r + 2s + 2t + 1u + 2w + 1y

1 105830 13890 0.13

33 4a+1b+1d+7e+1f +1g +
5h+5i+4l +3m+2n+2o+
1q + 2r + 3s + 6t + 1u + 1y

1 112380 12310 0.11

34 3a+1b+3c+6e+1f +1g +
2h+1i+1l +1m+6n+4o+
4r + 4s + 5t + 4u + 3y

1 113490 11070 0.1

35 5a+1b+1c+1d+2e+1f +
1g+4h+6i+4l+2m+3n+
6o + 2s + 6t + 1v + 3w + 1y

1 104800 9970 0.1

36 5a+3d+6e+1f +1g+3h+
3i+2l +1m+4n+1o+1p+
3r+7s+3t+1u+1v+2w+2y

1 111940 14660 0.13

37 3a +2c+8e +2f +2h+4i +
1k+2l+2m+7n+5o+3p+
1s + 5t + 1v + 1x + 1y

1 104150 8000 0.08

Table A.20: CPU time of the prefix based and the suffix based algorithms
for abelian patterns of length 50.
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A.3.2 Comparison of the Two Algorithms on the Input

Text TReal for Commonly Used English Words

We picked the most frequent 1000 English words from the web site http://

www.duboislc.org/EducationWatch/First100Words.htmlwhich are taken
from [15]. We selected words of length ≥ 3 only, and for each word we com-
puted its count in TReal. After that, from the words of the same length, we
selected equal number of the most frequently and the least frequently oc-
curring words in TReal (we selected all of the words of length ≥ 9, as they
were very few in number). These word were then converted into equivalent
abelian patterns and experiments were performed on these patterns.

Abelian Pattern Matching for English Words of Length 3

Table A.21 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns corresponding to the selected English words of
length 3 in the input text TReal. The first 10 patterns have highest count in
TReal, whereas the last 10 patterns have lowest count in TReal.

The suffix based algorithm performed better than the prefix based algo-
rithm for all the selected English words of length 3. The suffix to prefix CPU
time ratio ranged between 0.32−0.75. A significant difference in the suffix to
prefix CPU time ratio is observable between frequent and infrequent words.

Abelian Pattern Matching for English Words of Length 4

Table A.22 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns corresponding to the selected English words of
length 4 in the input text TReal. The first 20 patterns have highest count in
TReal, whereas the last 20 patterns have lowest count in TReal.

The suffix based algorithm performed better than the prefix based algo-
rithm for all the selected English words of length 4. The suffix to prefix CPU
time ratio range between 0.22− 0.41. A significant difference in the suffix to
prefix CPU time ratio is observable between frequent and infrequent words.

Abelian Pattern Matching for English Words of Length 5

Table A.23 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns corresponding to the selected English words of
length 5 in the input text TReal. The first 15 patterns have highest count in
TReal, whereas the last 15 patterns have lowest count in TReal.
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The suffix based algorithm performed better than the prefix based algo-
rithm for all the selected English words of length 5. The suffix to prefix CPU
time ratio ranged between 0.18−0.36. A significant difference in the suffix to
prefix CPU time ratio is observable between frequent and infrequent words.

Abelian Pattern Matching for English Words of Length 6

Table A.24 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns corresponding to the selected English words of
length 6 in the input text TReal. The first 10 patterns have highest count in
TReal, whereas the last 10 patterns have lowest count in TReal.

The suffix based algorithm performed better than the prefix based algo-
rithm for all the selected English words of length 6. The suffix to prefix CPU
time ratio ranged between 0.15 − 0.25. A difference in the suffix to prefix
CPU time ratio is observable between frequent and infrequent words.

Abelian Pattern Matching for English Words of Length 7

Table A.25 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns corresponding to the selected English words of
length 7 in the input text TReal. The first 10 patterns have highest count in
TReal, whereas the last 10 patterns have lowest count in TReal.

The suffix based algorithm performed better than the prefix based algo-
rithm for all the selected English words of length 6. The suffix to prefix CPU
time ratio ranged between 0.13 − 0.25. A difference in the suffix to prefix
CPU time ratio is observable between frequent and infrequent words.

Abelian Pattern Matching for English Words of Length 8

Table A.26 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns corresponding to the selected English words of
length 8 in the input text TReal. The first 10 patterns have highest count in
TReal, whereas the last 10 patterns have lowest count in TReal.

The suffix based algorithm performed better than the prefix based algo-
rithm for all the selected English words of length 6. The suffix to prefix CPU
time ratio ranged between 0.12− 0.21.
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Abelian Pattern Matching for English Words of Length ≥ 9

Table A.27 shows the respective CPU times taken by the two algorithms for
finding the abelian patterns corresponding to the selected English words of
length 9−11 in the input text TReal. The first 21 words have length 9, words
from 22− 37 have length 10 and the last 3 words have length 11.

The suffix based algorithm performed better than the prefix based algo-
rithm for all the selected English words of length ≥ 9. The suffix to prefix
CPU time ratio ranged between 0.11−0.19 for words of length 9, 0.11−0.15
for words of length 10 and 0.11− 0.13 for words of length 11.

Effect of the Pattern Length on the Relative Efficiency of the Suffix
Based and the Prefix Based Algorithms

The suffix to prefix CPU time ratio decreased with an increase in the pattern
length. The suffix to prefix CPU time ratio ranged between 0.32− 0.75 for
the pattern of length 3, and it ranged between 0.11 − 0.13 for the patterns
of length 11.

Moreover, the suffix to prefix CPU time ratio for the frequent words was
higher then the ratio for the infrequent words (this is readily observable for
the pattern of smaller lengths e.g. the lowest suffix to prefix CPU time ratio
for frequent patterns of length 3 was 0.51, whereas the highest suffix to prefix
CPU time ratio for infrequent patterns of length 3 was 0.36).
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 the 72726 212180 160030 0.75

2 hat 45657 168730 111980 0.66

3 and 40468 158460 101260 0.64

4 hit 28266 145120 85090 0.59

5 are 27054 144310 83240 0.58

6 her 25281 133800 77720 0.58

7 not 24682 137960 77550 0.56

8 hot 24625 139360 78630 0.56

9 you 22829 128430 69200 0.54

10 ten 22643 140630 71700 0.51

11 add 690 96000 30820 0.32

12 fig 684 91490 31020 0.34

13 few 600 92700 33130 0.36

14 key 591 93290 33320 0.36

15 fun 451 92420 30370 0.33

16 six 195 90180 32130 0.36

17 sky 177 88460 28990 0.33

18 big 138 87750 29440 0.34

19 job 53 86620 28590 0.33

20 box 45 86150 28710 0.33

Table A.21: CPU time of the prefix based and the suffix based algorithms
for abelian patterns corresponding to English words of length 3. The first
10 patterns have highest count in TReal, whereas the last 10 patterns have
lowest count in TReal.
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 that 17195 139920 55450 0.4
2 this 13503 135530 54340 0.4
3 then 12041 131220 52750 0.4
4 here 11892 131320 48620 0.37
5 rest 10947 132150 52050 0.39
6 heat 10870 132080 53820 0.41
7 with 10864 125540 48880 0.39
8 sand 10358 125390 44550 0.36
9 thin 9933 129400 45630 0.35
10 your 9392 123560 41450 0.34
11 have 8616 123190 41700 0.34
12 what 8171 122650 42730 0.35
13 them 8123 122880 45180 0.37
14 into 7869 125070 45150 0.36
15 than 7423 124570 43280 0.35
16 ears 6971 126970 44460 0.35
17 they 6539 119060 42380 0.36
18 note 6450 128460 43800 0.34
19 tone 6450 126520 45110 0.36
20 hear 6235 124740 42730 0.34
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

21 feet 226 112980 27610 0.24
22 warm 207 107800 25550 0.24
23 grew 199 106490 27590 0.26
24 book 182 101520 22290 0.22
25 fact 180 107780 26720 0.25
26 noun 161 108110 26350 0.24
27 rock 146 104880 26020 0.25
28 kept 142 103120 26880 0.26
29 swim 128 107710 26220 0.24
30 type 126 104970 27840 0.27
31 week 106 105600 24290 0.23
32 park 105 103320 24360 0.24
33 milk 105 100470 24190 0.24
34 cook 104 102110 22460 0.22
35 size 98 106300 28350 0.27
36 cows 83 106130 25880 0.24
37 bank 60 105770 24190 0.23
38 baby 57 98820 22670 0.23
39 copy 51 101710 23860 0.23
40 eggs 45 101520 25940 0.26

Table A.22: CPU time of the prefix based and the suffix based algorithms
for abelian patterns corresponding to English words of length 4. The first
20 patterns have highest count in TReal, whereas the last 20 patterns have
lowest count in TReal.
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 three 10001 138960 46820 0.34

2 there 10001 144080 45480 0.32

3 earth 9671 136790 48680 0.36

4 heart 9671 140340 49120 0.35

5 other 8096 133890 46110 0.34

6 their 5635 128520 40580 0.32

7 these 5487 133470 36720 0.28

8 night 5102 127470 33780 0.27

9 thing 5102 128850 34670 0.27

10 shall 4529 128350 29290 0.23

11 stand 3756 125050 33710 0.27

12 where 3630 127180 30290 0.24

13 those 3287 125910 38710 0.31

14 youre 3036 123420 32040 0.26

15 death 2886 124170 35480 0.29

159



Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

16 build 96 117090 22010 0.19

17 human 94 121530 23900 0.2

18 enjoy 93 114950 24520 0.21

19 crops 80 115950 22990 0.2

20 class 77 115230 21520 0.19

21 greek 76 116860 21980 0.19

22 grass 70 117960 22000 0.19

23 cells 56 113530 23500 0.21

24 color 54 117350 22000 0.19

25 didnt 48 119380 23650 0.2

26 block 40 108520 19500 0.18

27 track 34 117680 22730 0.19

28 group 22 115800 22110 0.19

29 major 16 115940 23230 0.2

30 check 6 111180 21250 0.19

Table A.23: CPU time of the prefix based and the suffix based algorithms
for abelian patterns corresponding to English words of length 5. The first
15 patterns have highest count in TReal, whereas the last 15 patterns have
lowest count in TReal.
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 though 2629 132180 26460 0.2

2 mother 2539 131390 32800 0.25

3 either 2353 133330 30590 0.23

4 father 2291 129870 32960 0.25

5 should 2074 130320 26090 0.2

6 sister 1971 131730 28580 0.22

7 stream 1607 126200 29680 0.24

8 resent 1520 133270 28480 0.21

9 before 1236 128550 23970 0.19

10 reason 1125 125400 29300 0.23

11 family 22 123460 20020 0.16

12 picked 22 122520 20560 0.17

13 valley 21 126240 20650 0.16

14 joined 20 127540 23970 0.19

15 pulled 18 118920 19080 0.16

16 slowly 16 121530 18770 0.15

17 plural 12 123730 18400 0.15

18 pushed 9 121940 22220 0.18

19 rhythm 4 127270 19970 0.16

20 column 3 124680 19940 0.16

Table A.24: CPU time of the prefix based and the suffix based algorithms
for abelian patterns corresponding to English words of length 6. The first
10 patterns have highest count in TReal, whereas the last 10 patterns have
lowest count in TReal.
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 another 1457 132600 32990 0.25

2 thought 1247 132310 20500 0.15

3 brother 1028 128900 24990 0.19

4 nothing 867 134630 23410 0.17

5 weather 809 134350 26520 0.2

6 against 790 132910 22760 0.17

7 friends 750 131950 25040 0.19

8 through 714 131370 21670 0.16

9 without 665 132580 22060 0.17

10 strange 617 130950 26930 0.21

11 farmers 10 128800 20750 0.16

12 finally 8 129410 18400 0.14

13 exactly 7 123480 19080 0.15

14 decided 5 125130 16180 0.13

15 symbols 5 127340 16590 0.13

16 usually 5 126600 16670 0.13

17 century 2 127280 20860 0.16

18 climbed 2 128250 19450 0.15

19 problem 1 124220 19880 0.16

20 explain 1 125050 20400 0.16

Table A.25: CPU time of the prefix based and the suffix based algorithms
for abelian patterns corresponding to English words of length 7. The first
10 patterns have highest count in TReal, whereas the last 10 patterns have
lowest count in TReal.
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 together 431 134230 23150 0.17

2 yourself 363 137430 23150 0.17

3 soldiers 322 137310 21720 0.16

4 business 314 130690 18400 0.14

5 remember 280 125540 15010 0.12

6 shoulder 241 132740 22950 0.17

7 straight 227 137080 22120 0.16

8 anything 175 132610 19910 0.15

9 southern 157 128580 27020 0.21

10 consider 151 131470 23440 0.18

11 students 7 133970 19020 0.14

12 equation 7 130460 22160 0.17

13 happened 4 130950 18230 0.14

14 products 4 133400 19060 0.14

15 movement 2 130720 19100 0.15

16 electric 1 135190 18720 0.14

17 probably 1 131650 16740 0.13

18 actually 1 131810 15260 0.12

19 practice 1 132970 20700 0.16

20 exciting 1 132580 17760 0.13

Table A.26: CPU time of the prefix based and the suffix based algorithms
for abelian patterns corresponding to English words of length 8. The first
10 patterns have highest count in TReal, whereas the last 10 patterns have
lowest count in TReal.
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

1 something 257 133960 25900 0.19
2 sometimes 112 134400 18240 0.14
3 thousands 104 139160 21790 0.16
4 determine 96 135560 18800 0.14
5 direction 61 135130 21220 0.16
6 represent 53 132190 16690 0.13
7 different 36 134460 18620 0.14
8 factories 34 130540 23540 0.18
9 questions 30 134150 20360 0.15
10 continued 30 135310 19770 0.15
11 statement 24 135290 18150 0.13
12 stretched 24 137250 20060 0.15
13 necessary 24 135350 18800 0.14
14 beautiful 18 134000 18190 0.14
15 important 14 136520 19930 0.15
16 carefully 11 135050 16850 0.12
17 consonant 7 133920 16740 0.13
18 difficult 6 133580 14200 0.11
19 suggested 5 134340 15180 0.11
20 underline 4 135380 17430 0.13
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Number CPU Time

# The Word of ( µ sec) Suf/Pre

Ratio
Matches Prefix Suffix

21 syllables 2 129740 15130 0.12
22 themselves 221 133010 16400 0.12
23 understand 157 136450 20810 0.15
24 particular 80 134470 15100 0.11
25 everything 68 136380 20090 0.15
26 difference 65 134260 16040 0.12
27 conditions 43 136340 16650 0.12
28 experience 32 132240 14390 0.11
29 government 30 135550 17470 0.13
30 washington 25 138050 20930 0.15
31 especially 23 137630 15810 0.11
32 discovered 20 136400 17510 0.13
33 substances 12 135570 17530 0.13
34 presidents 12 135820 19550 0.14
35 experiment 5 135330 16720 0.12
36 dictionary 3 139160 19600 0.14
37 scientists 0 134260 16220 0.12
38 instruments 42 136730 17880 0.13
39 information 21 135360 15920 0.12
40 temperature 6 134640 14800 0.11

Table A.27: CPU time of the prefix based and the suffix based algorithms
for abelian patterns corresponding to English words of length ≥ 9. The first
21 words have length 9, words from 22 − 37 have length 10 and the last 3
words have length 11.
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Appendix B

Empirical Analysis of the
Parameterized Suffix Based
Algorithms for Different Values
of Epsilon

In this appendix, we present results of the experiments performed for an
empirical analysis of the parameterized suffix based algorithms for different
values of ǫ. For the experiments, we used same input texts and abelian
patterns which were used for the empirical analysis of the prefix based and
the suffix based algorithms (Appendix A).

We executed the parameterized suffix based algorithm for different values
of reset threshold ǫ. The values of ǫ used in the experiments are 0.2, 0.4, 0.6
and 0.8.

Note that the actual reset threshold for parameterized suffix based algorithm
is obtained by ⌊ǫm⌋, hence, more than one values of ǫ can result into the same
amount of actual reset threshold. For m = 12 and ǫ = 0.8, the reset threshold
is 9 characters, which indicates an actual value of ǫ = 0.75 in this case (i.e.
ǫ = 0.8 is same as ǫ = 0.75 in this situation). We call ǫ = 0.8 as the given
value of ǫ and ǫ = 0.75 as the actual value of ǫ.

In the following sections, we mention the given values of ǫ while presenting
the results of the parameterized suffix based algorithm.
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B.1 Comparison of Different Values of ǫ for

the Input Text T4U

The input text T4U
is based on the uniform distribution of the characters

in Σ := {c1, c2, c3, c4}, i.e. on every text position in T4U
, the probability of

occurring a character ci ∈ Σ is same for all 1 ≤ i ≤ 4. The text comprises of
10000000 characters, i.e. n := |T4U

| = 10000000.

B.1.1 Abelian Pattern Matching for m = 12 in T4U

Table B.1 shows the CPU time taken by the parameterized suffix based al-
gorithm for different values of ǫ. The last column of the table shows the
efficiency ranking of the three algorithms. In the raking, P denotes the pre-
fix based algorithms, S denotes the suffix based algorithm and R denotes
the parameterized suffix based algorithm (the CPU time considered for the
parameterized suffix based algorithm in the ranking is the CPU time for
the best ǫ for a pattern). The ranking value PRS means the prefix based
algorithm is the most efficient algorithm, the parametrized suffix based algo-
rithms is the second efficient algorithm and the suffix based algorithm is the
slowest algorithm.

There was no single value of ǫ that was the best for all the patterns. The
value ǫ = 0.8 gave minimum CPU time for most of the patterns, however,
ǫ = 0.6 was quite close and in many cases the difference between the CPU
time for ǫ = 0.6 and ǫ = 0.8 was just minimal. The parameterized algorithm
was not at third place in any of the patterns. However, it was not the
most efficient algorithm for most of the patterns (only in pattern 2 & 3, the
parameterized algorithms was better than the other two algorithms).

B.1.2 Abelian Pattern Matching for m = 48 in T4U

Table B.2 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 4 − 10. The most promising value for ǫ was 0.6.
The parameterized algorithm was not at third place in any of the patterns.
For patterns 3 − 10, the time taken by the suffix based algorithm and the
parameterized suffix based algorithm was almost the same.
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B.1.3 Abelian Pattern Matching for m = 120 in T4U

Table B.3 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 4 − 10. For patterns 2 & 3, ǫ = 0.6 was the best
followed by ǫ = 0.8 with a small difference. Interestingly, ǫ = 0.8 gave the
slowest performance for pattern 1; here ǫ = 0.4 was the best (although, it was
not significantly better than ǫ = 0.6 and ǫ = 0.2). The interesting thing about
pattern 1 is that prefix based algorithm was the most efficient algorithm
for pattern 1. Moreover, for this pattern, the suffix based algorithm was
3.17 times slower than the prefix based algorithm (Section A.1.1), whereas
the parameterized suffix based algorithm was only 1.37 times to 1.58 times
slower than the prefix based algorithm for its different values of ǫ. The
parameterized algorithm was not at third place in any of the patterns.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 3c1 + 3c2 + 3c3 + 3c4 785420 735420 689550 725270 0.6 650010 751180 689550 PRS

2 2c1 + 3c2 + 3c3 + 4c4 665130 619260 588960 586890 0.8 613480 617110 586890 RPS

3 1c1 + 2c2 + 3c3 + 6c4 277950 236420 210630 207740 0.8 354030 217070 207740 RSP

4 0c1 + 4c2 + 4c3 + 4c4 140650 133030 125210 123740 0.8 340990 123400 123740 SRP

5 0c1 + 2c2 + 4c3 + 6c4 110670 103310 96610 94390 0.8 291090 92650 94390 SRP

6 0c1 + 2c2 + 2c3 + 8c4 92200 84730 80400 79210 0.8 246980 72910 79210 SRP

7 0c1 + 0c2 + 6c3 + 6c4 48300 48330 47580 47060 0.8 210480 46840 47060 SRP

8 0c1 + 0c2 + 4c3 + 8c4 47060 45450 44340 44250 0.8 224320 43660 44250 SRP

9 0c1 + 0c2 + 2c3 + 10c4 42930 41030 40550 40220 0.8 220550 39380 40220 SRP

10 0c1 + 0c2 + 0c3 + 12c4 27140 26850 26880 27110 0.4 189810 24970 26850 SRP

Table B.1: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 12 in the input text T4U

. The last column of the table represents the efficiency ranking
of the algorithms. P represent the prefix based algorithms, S represent the suffix based algorithm and R represents
the parameterized suffix based algorithm (the CPU time considered for the parameterized suffix based algorithm for
a pattern is the CPU time for the best ǫ). The ranking value PRS means the prefix based algorithm is the most
efficient algorithm, the parametrized suffix based algorithms is the second efficient algorithm and the suffix based
algorithm is the slowest algorithm.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 12c1 + 12c2 + 12c3 + 12c4 454210 474060 450950 468410 0.6 340700 662980 450950 PRS

2 8c1 + 12c2 + 12c3 + 16c4 389360 330780 291910 302530 0.6 278030 379340 291910 PRS

3 4c1 + 8c2 + 12c3 + 24c4 181500 115030 89190 86760 0.8 206180 87070 86760 RSP

4 0c1 + 16c2 + 16c3 + 16c4 21530 20860 20810 20840 0.6 203180 20070 20810 SRP

5 0c1 + 8c2 + 16c3 + 24c4 21730 20940 20860 20870 0.6 192050 20160 20860 SRP

6 0c1 + 8c2 + 8c3 + 32c4 22250 20980 20960 20950 0.8 189590 20590 20950 SRP

7 0c1 + 0c2 + 24c3 + 24c4 16630 16740 16560 16770 0.6 173990 16620 16560 RSP

8 0c1 + 0c2 + 16c3 + 32c4 16450 16300 16280 16360 0.6 181610 16180 16280 SRP

9 0c1 + 0c2 + 8c3 + 40c4 16130 16320 16080 16110 0.6 177990 16190 16080 RSP

10 0c1 + 0c2 + 0c3 + 48c4 13890 13850 13900 13930 0.4 171140 13610 13850 SRP

Table B.2: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 48 in the input text T4U

. The last column of the table represents the efficiency ranking of
the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 30c1 + 30c2 + 30c3 + 30c4 372930 369480 370270 425770 0.4 269550 855630 369480 PRS

2 20c1 + 30c2 + 30c3 + 40c4 301390 293950 253300 268920 0.6 223810 313660 253300 PRS

3 10c1 + 20c2 + 30c3 + 60c4 165960 90410 73080 73950 0.6 194020 74130 73080 RSP

4 0c1 + 40c2 + 40c3 + 40c4 12510 12670 12700 12430 0.8 188570 12290 12430 SRP

5 0c1 + 20c2 + 40c3 + 60c4 12780 12480 12680 12500 0.4 185990 12560 12480 RSP

6 0c1 + 20c2 + 20c3 + 80c4 12220 12190 12330 12210 0.4 176270 12080 12190 SRP

7 0c1 + 0c2 + 60c3 + 60c4 9390 9480 9310 9380 0.6 171720 9330 9310 RSP

8 0c1 + 0c2 + 40c3 + 80c4 9590 9500 9490 9510 0.6 173370 9350 9490 SRP

9 0c1 + 0c2 + 20c3 + 100c4 9480 9530 9550 9580 0.2 180770 9380 9480 SRP

10 0c1 + 0c2 + 0c3 + 120c4 6760 6800 6800 6820 0.2 180480 6740 6760 SRP

Table B.3: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 120 in the input text T4U

. The last column of the table represents the efficiency ranking
of the algorithms.
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B.2 Comparison of Different Values of ǫ for

the Input Text T4
Ú

The input text T4
Ú

is based on a non-uniform distribution of the characters
in Σ := {c1, c2, c3, c4}. The frequency ratio of the characters in T4

Ú
is as

follows:

c1 : c2 : c3 : c4 ≡ 6 : 3 : 2 : 1

The text comprises of 10000000 characters, i.e. n := |T4
Ú
| = 10000000.

B.2.1 Abelian Pattern Matching for m = 12 in T4
Ú

Table B.4 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 9− 10 and 12− 15. The ǫ values 0.6 and 0.8 were the
most prominent values, although, there was not a big difference between the
CPU time taken by the parameterized suffix based algorithm for ǫ = 0.6 and
ǫ = 0.8. The parameterized algorithm was not at third place in any of the
patterns. In six patterns (pattern 3,4,6,7,8 & 12), the parametrized suffix
based algorithm was more efficient than the other two algorithms.

B.2.2 Abelian Pattern Matching for m = 48 in T4
Ú

Table B.5 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 9−15. The value ǫ = 0.8 resulted in efficient execution
of the algorithm for many patterns. The performance of the algorithm for
ǫ = 0.6 was also good. In pattern 1 (where prefix based algorithm was the
fastest algorithm), the parameterized algorithm was most efficient for ǫ = 0.4
followed by ǫ = 0.6. The parameterized algorithm was not at third place in
any of the patterns. It outperformed the other two algorithms in two patterns
(pattern 4 & 5).
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B.2.3 Abelian Pattern Matching for m = 120 in T4
Ú

Table B.6 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 9− 15. For patterns 1 & 2, ǫ = 0.6 was the best and
ǫ = 0.8 gave the slowest CPU time in these patterns. Overall, ǫ = 0.6 and
ǫ = 0.8 gave better results. The parameterized algorithm was the slowest
algorithm for pattern 3, however, the difference between the parameterized
algorithm and the suffix based algorithm (the second in the efficiency ranking
for pattern 3) was marginal. Parameterized suffix based algorithm outper-
formed the other two algorithms for two patterns (pattern 5 & 6).
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 6c1 + 3c2 + 2c3 + 1c4 860030 834790 821550 829810 0.6 773380 884280 821550 PRS

2 5c1 + 3c2 + 2c3 + 2c4 683660 664290 603620 612750 0.6 551870 656370 603620 PRS

3 4c1 + 3c2 + 2c3 + 3c4 411840 395300 349370 352130 0.6 372230 378470 349370 RPS

4 4c1 + 2c2 + 3c3 + 3c4 389980 336310 271900 265010 0.8 332440 269570 265010 RSP

5 3c1 + 2c2 + 3c3 + 4c4 281840 245760 191520 188630 0.8 259400 174690 188630 SRP

6 2c1 + 2c2 + 3c3 + 5c4 204690 154620 119950 122620 0.6 258560 121200 119950 RSP

7 2c1 + 2c2 + 4c3 + 4c4 202020 156690 122990 117670 0.8 222320 125310 117670 RSP

8 1c1 + 1c2 + 4c3 + 6c4 98620 82980 74180 73110 0.8 237140 76010 73110 RSP

9 0c1 + 2c2 + 4c3 + 6c4 43400 41860 41640 41510 0.8 224780 40200 41510 SRP

10 0c1 + 1c2 + 3c3 + 8c4 36960 36350 36140 35940 0.8 210610 34550 35940 SRP

11 0c1 + 1c2 + 4c3 + 7c4 40890 39360 39560 39920 0.4 211630 37930 39360 SRP

12 0c1 + 1c2 + 5c3 + 6c4 40060 36970 36920 36770 0.8 211850 37580 36770 RSP

13 0c1 + 0c2 + 4c3 + 8c4 26620 26240 26110 26090 0.8 188910 24740 26090 SRP

14 0c1 + 0c2 + 6c3 + 6c4 26410 26370 26530 26410 0.4 179450 24520 26370 SRP

15 0c1 + 0c2 + 0c3 + 12c4 20640 20640 20640 20690 0.6 185890 18610 20640 SRP

Table B.4: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 12 in the input text T4

Ú
. The last column of the table represents the efficiency ranking of

the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 24c1 + 12c2 + 8c3 + 4c4 437260 416760 422450 474940 0.4 352090 727910 416760 PRS

2 20c1 + 12c2 + 8c3 + 8c4 360530 366690 352410 387860 0.6 267610 477940 352410 PRS

3 16c1 + 12c2 + 8c3 + 12c4 333360 333500 273800 247300 0.8 224590 249280 247300 PRS

4 16c1 + 8c2 + 12c3 + 12c4 317860 294330 217960 194090 0.8 202980 196510 194090 RSP

5 12c1 + 8c2 + 12c3 + 16c4 291290 228170 129270 123360 0.8 189440 125270 123360 RSP

6 8c1 + 8c2 + 12c3 + 20c4 191650 98100 79560 79670 0.6 189360 73060 79560 SRP

7 8c1 + 8c2 + 16c3 + 16c4 186490 91130 77240 76490 0.8 200280 74890 76490 SRP

8 4c1 + 4c2 + 16c3 + 24c4 49070 35890 35920 35920 0.4 179100 35560 35890 SRP

9 0c1 + 8c2 + 16c3 + 24c4 16530 16560 16500 16540 0.6 181380 16480 16500 SRP

10 0c1 + 4c2 + 12c3 + 32c4 16820 16720 16770 16830 0.4 182990 16640 16720 SRP

11 0c1 + 4c2 + 16c3 + 28c4 16680 16810 16730 16710 0.2 180370 16630 16680 SRP

12 0c1 + 4c2 + 20c3 + 24c4 17140 17090 17210 16950 0.8 179880 17020 16950 RSP

13 0c1 + 0c2 + 16c3 + 32c4 14260 14270 14300 14200 0.8 179820 13920 14200 SRP

14 0c1 + 0c2 + 24c3 + 24c4 14300 14110 14050 14050 0.8 180070 13980 14050 SRP

15 0c1 + 0c2 + 0c3 + 48c4 12300 12310 12340 12260 0.8 180230 12010 12260 SRP

Table B.5: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 48 in the input text T4

Ú
. The last column of the table represents the efficiency ranking of

the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 60c1 + 30c2 + 20c3 + 10c4 346040 347350 342510 396290 0.6 285140 877670 342510 PRS

2 50c1 + 30c2 + 20c3 + 20c4 321180 322180 320790 384450 0.6 211840 501950 320790 PRS

3 40c1 + 30c2 + 20c3 + 30c4 320850 323360 274100 233760 0.8 195380 233640 233760 PSR

4 40c1 + 20c2 + 30c3 + 30c4 319580 306410 213200 184040 0.8 175670 191180 184040 PRS

5 30c1 + 20c2 + 30c3 + 40c4 324600 279010 121930 121380 0.8 193350 129560 121380 RSP

6 20c1 + 20c2 + 30c3 + 50c4 178140 78260 70210 66840 0.8 188030 73940 66840 RSP

7 20c1 + 20c2 + 40c3 + 40c4 173150 73320 66950 70190 0.6 173820 66840 66950 SRP

8 10c1 + 10c2 + 40c3 + 60c4 39870 34290 34020 34350 0.6 184870 33740 34020 SRP

9 0c1 + 20c2 + 40c3 + 60c4 9500 9530 9530 9520 0.2 182850 9410 9500 SRP

10 0c1 + 10c2 + 30c3 + 80c4 9520 9480 9470 9510 0.6 175600 9390 9470 SRP

11 0c1 + 10c2 + 40c3 + 70c4 9570 9520 9500 9510 0.6 174880 9420 9500 SRP

12 0c1 + 10c2 + 50c3 + 60c4 9670 9570 9560 9480 0.8 177200 9480 9480 SRP

13 0c1 + 0c2 + 40c3 + 80c4 6970 6920 7030 6930 0.4 179810 6790 6920 SRP

14 0c1 + 0c2 + 60c3 + 60c4 7040 6920 6960 6920 0.8 179320 6780 6920 SRP

15 0c1 + 0c2 + 0c3 + 120c4 5720 5730 5720 5770 0.6 184510 5620 5720 SRP

Table B.6: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 120 in the input text T4

Ú
. The last column of the table represents the efficiency ranking

of the algorithms.
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B.3 Comparison of Different Values of ǫ for

the Input Text T8U

The input text T8U
is based on the uniform distribution of the characters in

Σ := {c1, c2, . . . , c8}, i.e. on every text position in T8U
, the probability of

occurring a character ci ∈ Σ is same for all 1 ≤ i ≤ 8. The text comprises of
10000000 characters, i.e. n := |T8U

| = 10000000.

B.3.1 Abelian Pattern Matching for m = 16 in T8U

Table B.7 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 6− 15. The value ǫ = 0.8 gave minimum CPU time
for many patterns; it was followed by the value ǫ = 0.6. The parameterized
algorithm was not at third place in any of the patterns. It outperformed the
other two algorithms for just one patterns (pattern 3).

B.3.2 Abelian Pattern Matching for m = 80 in T8U

Table B.8 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for the patterns of length 80. In situations where the difference
between the CPU time taken by the parameterized suffix based algorithm
for different values of ǫ was noticeable (pattern 1,2 & 3), the values ǫ = 0.6
and ǫ = 0.8 performed better than other values for ǫ. The parameterized
algorithm was not at third place in any of the patterns.

B.3.3 Abelian Pattern Matching for m = 240 in T8U

Table B.9 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The value ǫ = 0.6 performed better than other values for ǫ in situations
where the difference between the CPU time taken by the parameterized suffix
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based algorithm for different values of ǫ was noticeable (pattern 1 & 2). The
parameterized algorithm was second in the efficiency ranking of the three
algorithms for all the patterns. However, in most of the situations, there
was very small difference between the parameterized algorithm and the most
efficient algorithm.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 2c1 + 2c2 + 2c3 + 2c4

+2c5 + 2c6 + 2c7 + 2c8 269400 215510 186190 174930 0.8 348110 169740 174930 SRP

2 1c1 + 2c2 + 2c3 + 2c4

+2c5 + 2c6 + 2c7 + 3c8 222720 181360 156650 151200 0.8 340720 145100 151200 SRP

3 0c1 + 1c2 + 2c3 + 2c4

+2c5 + 2c6 + 3c7 + 4c8 100490 84090 75650 73990 0.8 319630 75550 73990 RSP

4 0c1 + 0c2 + 1c3 + 2c4

+2c5 + 3c6 + 4c7 + 4c8 59810 53420 51370 50510 0.8 287970 48960 50510 SRP

5 0c1 + 0c2 + 0c3 + 1c4

+3c5 + 3c6 + 4c7 + 5c8 43820 41680 40800 40870 0.6 258490 38810 40800 SRP

6 0c1 + 0c2 + 0c3 + 0c4

+4c5 + 4c6 + 4c7 + 4c8 33840 32570 32480 32660 0.6 233570 31780 32480 SRP

7 0c1 + 0c2 + 0c3 + 0c4

+2c5 + 4c6 + 5c7 + 5c8 33290 33100 32690 32470 0.8 241970 31230 32470 SRP

8 0c1 + 0c2 + 0c3 + 0c4

+1c5 + 3c6 + 6c7 + 6c8 30460 29790 30140 29680 0.8 238920 28650 29680 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

9 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 5c6 + 5c7 + 6c8 24980 24240 24510 24520 0.4 204500 23500 24240 SRP

10 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 4c6 + 4c7 + 8c8 25960 25550 25380 25720 0.6 218820 24470 25380 SRP

11 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 8c7 + 8c8 20710 20460 20840 20200 0.8 210580 19230 20200 SRP

12 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 6c7 + 10c8 20070 20040 20040 20100 0.6 206120 18900 20040 SRP

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 4c7 + 12c8 20050 19840 20020 19890 0.4 213960 18930 19840 SRP

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 2c7 + 14c8 20270 19840 20060 20030 0.4 224630 18790 19840 SRP

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 16c8 16810 16760 16680 16930 0.6 209800 15610 16680 SRP

Table B.7: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 16 in the input text T8U

. The last column of the table represents the efficiency ranking of
the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 10c1 + 10c2 + 10c3 + 10c4

+10c5 + 10c6 + 10c7 + 10c8 276840 265110 235980 253450 0.6 269420 267990 235980 RSP

2 5c1 + 10c2 + 10c3 + 10c4

+10c5 + 10c6 + 10c7 + 15c8 222860 183920 150650 148520 0.8 250130 150110 148520 RSP

3 0c1 + 5c2 + 10c3 + 10c4

+10c5 + 10c6 + 15c7 + 20c8 23960 22240 22050 21710 0.8 226200 22090 21710 RSP

4 0c1 + 0c2 + 5c3 + 10c4

+10c5 + 15c6 + 20c7 + 20c8 16110 16170 16300 16230 0.2 197130 15920 16110 SRP

5 0c1 + 0c2 + 0c3 + 5c4

+15c5 + 15c6 + 20c7 + 25c8 14160 14220 14140 14160 0.6 180710 13890 14140 SRP

6 0c1 + 0c2 + 0c3 + 0c4

+20c5 + 20c6 + 20c7 + 20c8 12600 12700 12620 12640 0.2 179190 12630 12600 RSP

7 0c1 + 0c2 + 0c3 + 0c4

+10c5 + 20c6 + 25c7 + 25c8 12660 12670 12520 12750 0.6 192060 12610 12520 RSP

8 0c1 + 0c2 + 0c3 + 0c4

+5c5 + 15c6 + 30c7 + 30c8 12650 12560 12590 12630 0.4 183830 12440 12560 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

9 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 25c6 + 25c7 + 30c8 10960 10830 10830 10930 0.6 178860 10690 10830 SRP

10 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 20c6 + 20c7 + 40c8 10910 10770 10940 10870 0.4 179460 10780 10770 RSP

11 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 40c7 + 40c8 9230 9190 9290 9190 0.8 173630 8980 9190 SRP

12 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 30c7 + 50c8 9160 9340 9200 9200 0.2 172080 9040 9160 SRP

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 20c7 + 60c8 9150 9220 9170 9270 0.2 171940 9010 9150 SRP

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 10c7 + 70c8 9170 9180 9250 9220 0.2 180490 9000 9170 SRP

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 80c8 8080 8070 8080 8120 0.4 170850 7860 8070 SRP

Table B.8: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 80 in the input text T8U

. The last column of the table represents the efficiency ranking of
the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 30c1 + 30c2 + 30c3 + 30c4

+30c5 + 30c6 + 30c7 + 30c8 246940 245540 244130 338350 0.6 227400 475400 244130 PRS

2 15c1 + 30c2 + 30c3 + 30c4

+30c5 + 30c6 + 30c7 + 45c8 207850 176880 138950 140640 0.6 207170 137860 138950 SRP

3 0c1 + 15c2 + 30c3 + 30c4

+30c5 + 30c6 + 45c7 + 60c8 8990 8940 9340 8940 0.8 197870 8740 8940 SRP

4 0c1 + 0c2 + 15c3 + 30c4

+30c5 + 45c6 + 60c7 + 60c8 6760 6670 6650 6790 0.6 185940 6600 6650 SRP

5 0c1 + 0c2 + 0c3 + 15c4

+45c5 + 45c6 + 60c7 + 75c8 5920 5840 5860 5890 0.4 172040 5760 5840 SRP

6 0c1 + 0c2 + 0c3 + 0c4

+60c5 + 60c6 + 60c7 + 60c8 5170 5150 5150 5210 0.6 172040 5120 5150 SRP

7 0c1 + 0c2 + 0c3 + 0c4

+30c5 + 60c6 + 75c7 + 75c8 5270 5310 5330 5310 0.2 181460 5180 5270 SRP

8 0c1 + 0c2 + 0c3 + 0c4

+15c5 + 45c6 + 90c7 + 90c8 5310 5300 5310 5300 0.8 179710 5150 5300 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

9 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 75c6 + 75c7 + 90c8 4660 4650 4680 4650 0.8 179290 4500 4650 SRP

10 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 60c6 + 60c7 + 120c8 4560 4540 4490 4560 0.6 173240 4350 4490 SRP

11 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 120c7 + 120c8 3860 3850 3900 3910 0.4 169900 3730 3850 SRP

12 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 90c7 + 150c8 3870 3890 3880 3900 0.2 169550 3760 3870 SRP

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 60c7 + 180c8 3890 3930 3890 3890 0.8 169940 3870 3890 SRP

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 30c7 + 210c8 3880 3910 3880 3940 0.6 178240 3830 3880 SRP

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 240c8 3380 3410 3440 3360 0.8 172970 3260 3360 SRP

Table B.9: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 240 in the input text T8U

. The last column of the table represents the efficiency ranking
of the algorithms.
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B.4 Comparison of Different Values of ǫ for

the Input Text T8
Ú

The input text T8
Ú

is based on a non-uniform distribution of the characters
in Σ := {c1, c2, . . . , c8}. The frequency ratio of the characters in T8

Ú
is as

follows:

c1 : c2 : c3 : c4 : c5 : c6 : c7 : c8 ≡ 15 : 10 : 8 : 6 : 4 : 3 : 2 : 1

The text comprises of 10000000 characters, i.e. n := |T8
Ú
| = 10000000.

B.4.1 Abelian Pattern Matching for m = 49 in T8
Ú

Table B.10 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 5− 15. The value ǫ = 0.8 gave minimum CPU time
for most of those patterns for which the difference between the CPU time
taken by the parameterized suffix based algorithm for different values of ǫ
was noticeable; it was followed by the value ǫ = 0.6. The parameterized
algorithm was not at third place in any of the patterns and it outperformed
the other two algorithms in two patterns (pattern 1 & 2). For other patterns,
there was not a significant difference between the CPU times taken by the
parameterized suffix based algorithm and the suffix based algorithm.

B.4.2 Abelian Pattern Matching for m = 98 in T8
Ú

Table B.11 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

In situations where the difference between the CPU time taken by the
parameterized suffix based algorithm for different values of ǫ was noticeable
(patterns 1− 4), the values ǫ = 0.6 and ǫ = 0.8 performed better than other
values for ǫ. The parameterized algorithm was not at third place in any of the
patterns. It outperformed the other two algorithms in three patterns (pattern
1,3, & 4). For many patterns, there was not a significant difference between
the CPU times taken by the parameterized suffix based algorithm and the
suffix based algorithm (e.g. in pattern 12, although the parameterized suffix
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based algorithm is the most efficient, the CPU time taken by the algorithm
is almost same as the CPU time taken by the suffix based algorithm).

B.4.3 Abelian Pattern Matching for m = 196 in T8
Ú

Table B.12 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for patterns 5 − 15. The values ǫ = 0.6 and ǫ = 0.8 performed
better than other values for ǫ in situations where the difference between the
CPU time taken by the parameterized suffix based algorithm for different
values of ǫ was noticeable. The parameterized algorithm was not at third
place in any of the patterns and it outperformed the other two algorithms in
two patterns (pattern 1 & 4).
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 15c1 + 10c2 + 8c3 + 6c4

+4c5 + 3c6 + 2c7 + 1c8 241350 216160 190890 189370 0.8 287460 207050 189370 RSP

2 10c1 + 9c2 + 7c3 + 6c4

+5c5 + 5c6 + 3c7 + 4c8 307910 263390 193850 180660 0.8 245780 190120 180660 RSP

3 8c1 + 7c2 + 7c3 + 7c4

+4c5 + 5c6 + 5c7 + 6c8 273010 205020 135550 129930 0.8 224830 123260 129930 SRP

4 5c1 + 6c2 + 6c3 + 6c4

+6c5 + 6c6 + 7c7 + 7c8 183570 101740 80400 81040 0.6 222540 79680 80400 SRP

5 0c1 + 7c2 + 7c3 + 7c4

+7c5 + 7c6 + 7c7 + 7c8 19560 19490 19270 19510 0.6 221710 19000 19270 SRP

6 0c1 + 5c2 + 6c3 + 7c4

+7c5 + 8c6 + 8c7 + 8c8 19850 19180 19330 18960 0.8 210020 18940 18960 SRP

7 0c1 + 2c2 + 6c3 + 7c4

+7c5 + 8c6 + 9c7 + 10c8 18730 18490 18550 18440 0.8 199820 18380 18440 SRP

8 0c1 + 0c2 + 7c3 + 8c4

+8c5 + 8c6 + 8c7 + 10c8 16200 16270 16130 16140 0.6 198360 16180 16130 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

9 0c1 + 0c2 + 3c3 + 8c4

+9c5 + 9c6 + 10c7 + 10c8 16620 16670 16600 16710 0.6 191290 16350 16600 SRP

10 0c1 + 0c2 + 0c3 + 9c4

+10c5 + 10c6 + 10c7 + 10c8 14880 14750 14970 14820 0.4 187890 14430 14750 SRP

11 0c1 + 0c2 + 0c3 + 5c4

+10c5 + 11c6 + 11c7 + 12c8 14490 14590 14330 14500 0.6 189860 14170 14330 SRP

12 0c1 + 0c2 + 0c3 + 0c4

+6c5 + 12c6 + 14c7 + 17c8 12980 12920 13090 13440 0.4 183460 12750 12920 SRP

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 16c6 + 16c7 + 17c8 12550 12610 12540 12560 0.6 182630 12230 12540 SRP

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 24c7 + 25c8 12000 11980 11950 12000 0.6 184920 11640 11950 SRP

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 49c8 11720 11730 11930 11770 0.2 187720 11420 11720 SRP

Table B.10: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 49 in the input text T8

Ú
. The last column of the table represents the efficiency ranking of

the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 30c1 + 20c2 + 16c3 + 12c4

+8c5 + 6c6 + 4c7 + 2c8 236580 221900 211200 237130 0.6 257100 268800 211200 RPS

2 20c1 + 18c2 + 14c3 + 12c4

+10c5 + 10c6 + 6c7 + 8c8 294030 291930 227450 212350 0.8 220450 211330 212350 SRP

3 16c1 + 14c2 + 14c3 + 14c4

+8c5 + 10c6 + 10c7 + 12c8 283340 232220 135590 128910 0.8 208130 130690 128910 RSP

4 10c1 + 12c2 + 12c3 + 12c4

+12c5 + 12c6 + 14c7 + 14c8 175680 84520 70780 70340 0.8 193220 71450 70340 RSP

5 0c1 + 14c2 + 14c3 + 14c4

+14c5 + 14c6 + 14c7 + 14c8 13120 13250 13310 13150 0.2 202240 12880 13120 SRP

6 0c1 + 10c2 + 12c3 + 14c4

+14c5 + 16c6 + 16c7 + 16c8 13100 13150 13150 13180 0.2 188760 13000 13100 SRP

7 0c1 + 4c2 + 12c3 + 14c4

+14c5 + 16c6 + 18c7 + 20c8 13150 13180 13290 13350 0.2 186420 12850 13150 SRP

8 0c1 + 0c2 + 14c3 + 16c4

+16c5 + 16c6 + 16c7 + 20c8 10770 10910 10790 10950 0.2 195160 10740 10770 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

9 0c1 + 0c2 + 6c3 + 16c4

+18c5 + 18c6 + 20c7 + 20c8 10820 10800 10920 10970 0.4 185060 10680 10800 SRP

10 0c1 + 0c2 + 0c3 + 18c4

+20c5 + 20c6 + 20c7 + 20c8 9350 9330 9370 9290 0.8 185770 9050 9290 SRP

11 0c1 + 0c2 + 0c3 + 10c4

+20c5 + 22c6 + 22c7 + 24c8 9250 9370 9620 9290 0.2 194240 9040 9250 SRP

12 0c1 + 0c2 + 0c3 + 0c4

+12c5 + 24c6 + 28c7 + 34c8 7790 7680 7660 7740 0.6 189150 7780 7660 RSP

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 32c6 + 32c7 + 34c8 7030 7020 7080 7070 0.4 175640 6820 7020 SRP

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 48c7 + 50c8 6680 6660 6660 6720 0.6 176490 6500 6660 SRP

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 98c8 6520 6590 6490 6490 0.8 177240 6420 6490 SRP

Table B.11: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 98 in the input text T8

Ú
. The last column of the table represents the efficiency ranking of

the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 60c1 + 40c2 + 32c3 + 24c4

+16c5 + 12c6 + 8c7 + 4c8 235100 230640 225460 272640 0.6 235350 364370 225460 RPS

2 40c1 + 36c2 + 28c3 + 24c4

+20c5 + 20c6 + 12c7 + 16c8 308590 308620 254320 233260 0.8 201840 238900 233260 PRS

3 32c1 + 28c2 + 28c3 + 28c4

+16c5 + 20c6 + 20c7 + 24c8 319380 302840 150510 142290 0.8 199100 142120 142290 SRP

4 20c1 + 24c2 + 24c3 + 24c4

+24c5 + 24c6 + 28c7 + 28c8 169810 73980 66030 71950 0.6 193250 70400 66030 RSP

5 0c1 + 28c2 + 28c3 + 28c4

+28c5 + 28c6 + 28c7 + 28c8 7150 7240 8360 8370 0.2 219650 7000 7150 SRP

6 0c1 + 20c2 + 24c3 + 28c4

+28c5 + 32c6 + 32c7 + 32c8 8420 8400 8330 8420 0.6 216350 8140 8330 SRP

7 0c1 + 8c2 + 24c3 + 28c4

+28c5 + 32c6 + 36c7 + 40c8 8410 8400 8410 8330 0.8 214530 8090 8330 SRP

8 0c1 + 0c2 + 28c3 + 32c4

+32c5 + 32c6 + 32c7 + 40c8 6580 6630 6640 6630 0.2 216070 6450 6580 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

9 0c1 + 0c2 + 12c3 + 32c4

+36c5 + 36c6 + 40c7 + 40c8 6650 6640 6630 6600 0.8 214230 6480 6600 SRP

10 0c1 + 0c2 + 0c3 + 36c4

+40c5 + 40c6 + 40c7 + 40c8 5390 5360 5180 5230 0.6 209000 5220 5180 RSP

11 0c1 + 0c2 + 0c3 + 20c4

+40c5 + 44c6 + 44c7 + 48c8 5310 5320 5310 5320 0.6 216700 5130 5310 SRP

12 0c1 + 0c2 + 0c3 + 0c4

+24c5 + 48c6 + 56c7 + 68c8 4430 4440 4440 4440 0.2 213990 4360 4430 SRP

13 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 64c6 + 64c7 + 68c8 3980 4020 4000 4000 0.2 200830 3900 3980 SRP

14 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 96c7 + 100c8 3730 3720 3720 3720 0.8 213060 3610 3720 SRP

15 0c1 + 0c2 + 0c3 + 0c4

+0c5 + 0c6 + 0c7 + 196c8 3560 3560 3570 3550 0.8 208130 3480 3550 SRP

Table B.12: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 196 in the input text T8

Ú
. The last column of the table represents the efficiency ranking

of the algorithms.
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B.5 Comparison of Different Values of ǫ for

the Input Text TReal

The input text TReal is defined over English alphabet (i.e. σ = 26). Moreover,
the text is not randomly generated, rather it is a real text comprising of a
collection of the plays of famous English writer William Shakespeare. We
removed all the punctuation marks and white spaces from the text to limit
the character set to English alphabets only (the uppercase characters were
also transformed into lowercase). The text comprises of 3712565 characters,
i.e. n := |TReal| = 3712565.

B.5.1 Comparison of Different Values of ǫ for the In-
put Text TReal for Finding the Abelian Patterns

Corresponding to Different Substrings of TReal

In the following sections, we present the results of the experiments performed
on the input text TReal for finding the abelian patterns corresponding to
different substrings of TReal.

Abelian Pattern Matching for m = 5 in TReal

Table B.13 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant. The parameterized algorithm was the most efficient algorithm
for all but one of the patterns (in pattern 26, the parameterized algorithm
was the second in the efficiency ranking of the algorithms). There was not a
big difference between the CPU time taken by the parameterized algorithm
and the suffix based algorithm for most of the patterns.

Abelian Pattern Matching for m = 10 in TReal

Table B.14 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant. Moreover, the difference between the CPU time taken by the
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parameterized algorithm and the suffix based algorithm was also not signifi-
cant. The prefix based algorithm was the slowest, whereas the parameterized
algorithm and the prefix based algorithm had almost same efficiency.

Abelian Pattern Matching for m = 20 in TReal

Table B.15 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for most of the patterns. The values ǫ = 0.6 and ǫ = 0.8 were the
promising values for ǫ. The prefix based algorithm was the slowest, whereas
the parameterized algorithm and the prefix based algorithm had almost same
efficiency.

Abelian Pattern Matching for m = 50 in TReal

Table B.16 shows the CPU time taken by the parameterized suffix based
algorithm for different values of ǫ along with the efficiency ranking of the
three algorithms.

The difference between the CPU time for different values of ǫ was not
significant for ǫ = 0.4, ǫ = 0.6 and ǫ = 0.8. The values ǫ = 0.6 and ǫ = 0.8
were the promising values for ǫ. The prefix based algorithm was the slowest,
whereas the parameterized algorithm and the prefix based algorithm had
almost same efficiency.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 2e + 1h + 1r + 1w 35720 34330 33130 33010 0.8 133740 35680 33010 RSP

2 1e + 1h + 1m + 1o + 1t 41720 39690 39630 38860 0.8 128430 39850 38860 RSP

3 1d + 1l + 1o + 1r + 1y 31020 30370 30210 30840 0.6 119550 32770 30210 RSP

4 1e + 1f + 1o + 2r 33910 32470 33390 32460 0.8 125880 35420 32460 RSP

5 1e + 1m + 1o + 1r + 1s 36930 35080 35050 35400 0.6 125650 37460 35050 RSP

6 1g + 2h + 1o + 1u 27620 26700 27270 26230 0.8 119470 29460 26230 RSP

7 1c + 1i + 1n + 1p + 1r 27660 27560 27080 26980 0.8 114640 29140 26980 RSP

8 1a + 1d + 1e + 1m + 1r 32890 33520 32090 32350 0.6 114340 33500 32090 RSP

9 1a + 1d + 1e + 1s + 1t 35580 33700 33390 34070 0.6 119320 34720 33390 RSP

10 1e + 1f + 1l + 1s + 1y 29290 28650 27680 28590 0.6 112900 30830 27680 RSP

11 1a + 1e + 1i + 1m + 1r 33390 31890 33240 32700 0.4 117690 32790 31890 RSP

12 2e + 1m + 1n + 1t 31190 30290 29480 30260 0.6 126460 31580 29480 RSP

13 1e + 1f + 1g + 1o + 1r 30040 29480 29260 29400 0.6 118130 30650 29260 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

14 1d + 1e + 1l + 1n + 1o 31840 30400 30430 30870 0.4 110970 31290 30400 RSP

15 2a + 2d + 1n 25040 25540 25210 25260 0.2 113150 27730 25040 RSP

16 1c + 1e + 1i + 1l + 1r 29760 28530 28850 29490 0.4 115270 30200 28530 RSP

17 1a + 1h + 1n + 1o + 1w 29720 29330 29670 29180 0.8 117950 30880 29180 RSP

18 2e + 1m + 1n + 1s 28270 28040 27450 27840 0.6 119950 28950 27450 RSP

19 1a + 1d + 1i + 1s + 1y 27160 27360 27090 27020 0.8 118610 29020 27020 RSP

20 1c + 1i + 1l + 1o + 1u 27090 25770 25450 25580 0.6 115190 28750 25450 RSP

21 1a + 1d + 1o + 1s + 1t 30080 29300 28630 28810 0.6 112080 29540 28630 RSP

22 1a + 1e + 1l + 1t + 1w 28930 28130 27920 28540 0.6 108540 29180 27920 RSP

23 1o + 1r + 2t + 1u 25940 25490 25210 26060 0.6 111670 27450 25210 RSP

24 1o + 2p + 1r + 1u 23960 23730 23360 23630 0.6 105030 24620 23360 RSP

25 1e + 1h + 1i + 1k + 1s 28990 28080 28070 28270 0.6 110120 29390 28070 RSP

26 1e + 1i + 2n + 1s 28640 30740 29190 29010 0.2 113350 28390 28640 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

27 1a + 1e + 1l + 1m + 1y 30090 27460 28090 29000 0.4 117560 28930 27460 RSP

28 1h + 1i + 2s + 1w 23630 23230 23520 23450 0.4 120480 28030 23230 RSP

29 1e + 1i + 1s + 1v + 1w 25580 24960 24390 24810 0.6 104780 26200 24390 RSP

30 1b + 2e + 1f + 1r 22550 22160 22150 24080 0.6 107170 24350 22150 RSP

31 1h + 1i + 1s + 1t + 1v 28820 27730 27370 28080 0.6 117340 29470 27370 RSP

32 1a + 1d + 1s + 1t + 1w 26480 26480 26380 26210 0.8 118080 27610 26210 RSP

33 1a + 1b + 1l + 1m + 1o 23970 23780 23380 23730 0.6 112660 25120 23380 RSP

34 1l + 1m + 1o + 1p + 1u 22570 22320 22270 22090 0.8 112150 24490 22090 RSP

35 2c + 1k + 1n + 1o 21160 21550 21050 21170 0.6 108590 23780 21050 RSP

36 1a + 1r + 1s + 2y 23290 23430 23210 23030 0.8 116570 25110 23030 RSP

37 2a + 1c + 1m + 1p 19790 20000 20210 20720 0.2 111890 23440 19790 RSP

Table B.13: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 5 in the input text TReal. The last column of the table represents the efficiency ranking
of the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 1c + 3e + 1g + 1l + 1o +1s +
1t + 1u

17560 17810 17370 17110 0.8 132500 17790 17110 RSP

2 2e +1h+1i +1o+1r +1s+
2t + 1w

24440 23000 22690 22360 0.8 137400 22770 22360 RSP

3 1a+1e+2h+2l+2o+1t+1w 19490 18720 18800 18630 0.8 132650 18470 18630 SRP

4 2d + 3e + 1h + 2i + 1n + 1s 17320 16600 16690 16530 0.8 130110 16540 16530 RSP

5 2a+1d+1e+1h+1o+1r +
1t + 1u + 1y

23700 22350 21680 21410 0.8 133850 21660 21410 RSP

6 1a+2e+1h+1n+1o+1r+
1t + 1v + 1y

23060 21700 21150 21230 0.6 131210 21220 21150 RSP

7 2e+1h+1l+1o+1r+2s+2t 20160 19370 19270 19000 0.8 133260 19020 19000 RSP

8 1e + 1h + 1i + 1l + 1o + 1s +
2t + 1u + 1y

23090 21810 22220 21310 0.8 132240 20280 21310 SRP

9 1a+1f +1i+1m+1n+2o+
1r + 2t

19810 18690 18700 18730 0.4 136720 17700 18690 SRP

10 2e + 1h +1i + 1l +1o + 1r +
2t + 1v

21380 20080 20390 20280 0.4 134080 19590 20080 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

11 3e+1g+1h+1i+1m+1o+
1t + 1v

17160 16910 16460 16610 0.6 131680 16620 16460 RSP

12 2a+1b+2e+1h+1l+2r+1t 19000 18450 18180 18050 0.8 131110 17970 18050 SRP

13 3e+1h+1i+1k+1l +1m+
1s + 1t

19040 18540 18820 18580 0.4 131030 18320 18540 SRP

14 1a +1e + 1i + 1l + 1n+ 1o +
1r + 1s + 1u + 1v

23800 22520 22410 22050 0.8 133790 21670 22050 SRP

15 4e+1h+1n+1o+1r+1t+1v 19240 18950 19300 18870 0.8 132510 18600 18870 SRP

16 2e +1h+1i +1r +2t +1u +
1v + 1y

18770 18020 17710 17660 0.8 133400 18000 17660 RSP

17 1e+1f+2n+3o+1s+1u+1y 15810 15650 15340 15370 0.6 126930 15300 15340 SRP

18 1d+1e+1n+3o+2s+1t+1u 18290 18140 17760 17920 0.6 129710 17950 17760 RSP

19 1b+1d+2e+1l +1m+1o+
1r + 1u + 1v

18160 17110 17110 17030 0.8 129850 17100 17030 RSP

20 3e+1h+1i+2o+1p+1s+1t 19060 18610 18150 18300 0.6 129270 18160 18150 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

21 1h+1i+1n+1o+2r +1s+
2t + 1u

21040 20120 20120 20500 0.6 130010 19860 20120 SRP

22 1c + 1d +2e + 1h + 1i +1l +
1p + 1r + 1s

19940 19650 18800 18830 0.6 134800 18850 18800 RSP

23 1h+2i+1n+1o+2s+1u+
1w + 1y

16950 16520 16500 16550 0.6 133010 17240 16500 RSP

24 1a+1b+1e+1m+1n+1o+
1r + 1t + 1u + 1w

22030 21160 21220 21230 0.4 131030 21010 21160 SRP

25 1a+2d+2e+1m+1s+2t+1y 17760 16840 16730 16390 0.8 128820 17160 16390 RSP

26 1a +1d+1e +1g+1h+1l +
1n + 1o + 2r

21030 20590 19930 20980 0.6 130240 19670 19930 SRP

27 1d+1h+2i+1p+2r+1s+2t 15790 15830 15820 15710 0.8 126390 15950 15710 RSP

28 1a + 1h + 3i + 1o + 2s + 2t 17700 17550 17240 17140 0.8 125640 17820 17140 RSP

29 2a+1c+1e+2m+1n+1r+2u 15750 15830 16130 15980 0.2 125830 15690 15750 SRP

30 1a+3e+1f +1h+1q +1r+
1t + 1u

18740 18590 18720 18010 0.8 132890 18270 18010 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

31 1a+1c+2d+1e+1h+1o+
2t + 1y

19540 18870 19190 19220 0.4 132830 19030 18870 RSP

32 1b+2e+1f+1i+2o+2r+1s 16900 16690 16400 16430 0.6 133060 16610 16400 RSP

33 1b +1e +2o +1p + 1r + 2t +
1u + 1y

17190 17680 17210 16850 0.8 127680 17350 16850 RSP

34 1b + 2d + 1e + 2h + 1i +1l +
1o + 1t

18720 18120 18390 18290 0.4 128170 18040 18120 SRP

35 1a+2d+2h+1m+1n+1r+
1t + 1u

17950 17060 17160 17000 0.8 129780 17140 17000 RSP

36 2e + 2i + 2l + 1p + 2t + 1y 13930 14000 14200 14070 0.2 122900 14360 13930 RSP

37 1e+2g +1h+1i+1l +1m+
1o + 1t + 1y

19520 19360 18680 18720 0.6 125920 18770 18680 RSP

Table B.14: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 10 in the input text TReal. The last column of the table represents the efficiency ranking
of the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 5a+1c+1d+1i+1k+1m+
3n + 2o + 1r + 2t + 1v + 1y

11550 11290 11440 11520 0.4 124640 11300 11290 RSP

2 2a+1d+1e+3h+2i+1m+
1n + 1o + 2s + 5t + 1y

15910 14790 14970 14610 0.8 128500 15160 14610 RSP

3 2a +1b +1c+1d+3e +3h+
1i + 1o + 1r + 4t + 2u

14570 13110 12880 13140 0.6 128790 12660 12880 SRP

4 2c +2e +1f + 2h +3i + 1l +
1m + 1n + 3o + 3t + 1w

12740 12130 12290 12500 0.4 125530 11940 12130 SRP

5 3a + 2b + 2d + 3e + 2i + 1l +
2m + 2n + 2s + 1t

12520 12240 12360 11770 0.8 121480 11680 11770 SRP

6 2a+1c+2e+1f +1g +1h+
3i+2k+2n+2r+1t+1v+1y

14320 13170 12980 13050 0.6 125550 12720 12980 SRP

7 1a+1b+2d+3e+1g +1h+
2n + 3o + 1p + 3t + 1u + 1w

13280 12680 12900 12650 0.8 125050 12370 12650 SRP

8 2a + 2c + 2i + 2l + 3o + 5s +
3u + 1w

8630 8360 8560 8530 0.4 113250 8470 8360 RSP

9 4a+1b+1c+2e+1f+1h+3l+
1n+1o+1p+1t+1u+1w+1y

14470 14000 13390 13820 0.6 127210 12810 13390 SRP

10 2a+1c+1d+3e+1g +3h+
4l + 1o + 1t + 1u + 1v + 1w

12460 11720 11790 11840 0.4 125690 11750 11720 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

11 1b +1c + 2h + 1i + 1l + 2n +
3o + 1p + 2s + 3u + 3w

9650 9810 9740 9670 0.2 120450 9450 9650 SRP

12 5a+2c+1d+1g +1h+1j +
2k+1n+1o+1r+2s+1u+1w

11090 10890 11020 10680 0.8 122450 11000 10680 RSP

13 4a +1b +3d+2e +1h+2i +
1m + 1n + 2r + 1s + 1t + 1y

16560 15290 14720 14980 0.6 128960 14650 14720 SRP

14 6e+1i+1l +1m+2n+1r+
4s + 3t + 1y

10910 11360 11160 10900 0.8 117490 10400 10900 SRP

15 1a +1b +5e +1g +1h+3i +
1l + 1p + 2r + 1s + 3t

13820 12660 12550 12510 0.8 119780 12280 12510 SRP

16 2a+2e+1f +2n+5o+1r+
5t + 1u + 1y

10810 10940 10970 10610 0.8 118850 10940 10610 RSP

17 3a+1d+2e+2h+1i+1k +
1n+2o+1s+3t+1u+1v+1y

17360 15470 15190 15080 0.8 129250 14920 15080 SRP

18 2a + 1b + 1d + 2e + 2i + 3l +
1n+1o+1p+1r+3t+1u+1w

15670 14920 15000 14460 0.8 132640 14440 14460 SRP

19 2a+1b+1c+3e+1f +1h+
1i+1k+2l+1m+3s+2t+1x

14420 13260 12690 12700 0.6 128950 12440 12690 SRP

20 5e+1f +1h+1i+1n+1o+
1r + 4s + 3t + 1u + 1w

15100 14580 15210 14940 0.4 125240 14740 14580 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

21 1d+2e+2f +1g +1h+1i+
4o + 2r + 1s + 2t + 3u

14890 13320 13210 13490 0.6 128430 12900 13210 SRP

22 2a +1b +3e +1g +1h+2i +
3l+1m+1n+1o+1r+2s+1z

14920 14720 14230 14470 0.6 133390 13790 14230 SRP

23 4a +1d+1e +1g+1l +2n+
2o + 2r + 3s + 2u + 1w

12590 12140 12210 11990 0.8 122110 11660 11990 SRP

24 3a +3c+3e +1h+1i +4n+
1o + 1r + 3t

13140 12250 12330 12320 0.4 121270 12420 12250 RSP

25 1b +1d+5e +1g +1h+1i +
2m + 1n + 2r + 1s + 3t + 1w

15090 13110 13120 13180 0.4 121880 12640 13110 SRP

26 4a+2d+3e+1h+2n+2s+
2t + 1v + 1w + 2y

12540 11820 11840 11660 0.8 120480 11480 11660 SRP

27 2a+1b+1c+1d+2e+1f +
1m+3o+2r+3s+1t+1x+1y

13540 12910 12640 12530 0.8 127600 12150 12530 SRP

28 1c+3e+1f +1h+2i+1k +
1l+3n+1r+2s+1t+2u+1y

14880 13610 13310 13590 0.6 129360 13110 13310 SRP

29 3a+1d+1e+1f +1h+1i+
2m+1n+1p+2r+1s+2t+
1u + 2y

18190 15730 15860 16310 0.4 131090 15260 15730 SRP

30 2a+1b+1d+1e+1f +1g +
1i +2n +2o +2r + 2s+ 1t +
2u + 1w

18220 15960 16110 16180 0.4 127520 16050 15960 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

31 2a+1b+1c+1d+3e+2f +
1h + 1l + 1n + 3o + 3t + 1u

14320 13030 12900 12920 0.6 126240 12600 12900 SRP

32 1a +1b +1c+1d+1e +1g +
1h+3i+3n+1o+1r +2s+
1t + 2u

20310 18120 16880 17690 0.6 126270 17330 16880 RSP

33 1a +1b +3e +2h+1i +1n+
1o + 4r + 2s + 2u + 1w + 1y

14430 12930 12820 12760 0.8 124120 12750 12760 SRP

34 1c+2e+2h+1i+1l +2m+
2o+1p+1r +3s+1t +1u +
1x + 1y

15810 14540 14310 14530 0.6 125960 14370 14310 RSP

35 3a +1e +1f +2h+1i +2l +
2o + 1p + 1r + 2u + 1v + 3y

11850 11350 11200 11160 0.8 119660 10850 11160 SRP

36 1d + 2e + 1f +2i +1j + 1l +
1n+2o+3r+2s+1t+1u+2y

14850 14740 15150 14650 0.8 127800 14480 14650 SRP

37 2a+2d+2e+1f +1h+1i+
3l+2n+2r+1s+1t+1u+1w

18700 16350 16360 15980 0.8 128080 15530 15980 SRP

Table B.15: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 20 in the input text TReal. The last column of the table represents the efficiency ranking
of the algorithms.
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 4a+3d+3e+1f +2h+3i+
3l +2m+6n+6o+1s+6t+
2u + 2v + 4w + 2y

11160 9500 9540 9360 0.8 104960 9130 9360 SRP

2 5a+3b+1c+5d+4e+1f +
2h+2i+2l +2m+3n+6o+
1p + 4r + 3s + 3t + 2w + 1y

18330 14750 14350 13980 0.8 112940 13810 13980 SRP

3 3a+1b+2c+7e+1f +3h+
2i+1k+2l +1m+7n+7o+
1p + 4r + 3s + 2t + 1u + 2v

12950 10970 10830 10760 0.8 110460 11040 10760 RSP

4 6a+1b+5d+4e+1f +1g +
2h+4i+2k+1l+1m+3n+
5o + 3r + 1s + 7t + 1v + 2w

13170 11110 11050 10880 0.8 109830 11040 10880 RSP

5 6a+1b+4d+4e+2g +1h+
5i+4l +4m+6n+3o+3r+
2s + 4t + 1y

11410 9730 9500 9500 0.8 105200 9320 9500 SRP

6 6a+2b+1d+9e+1f +4h+
1i +1k +3l +3n+3o+3r +
4s + 6t + 1u + 1w + 1y

12480 10940 10580 10890 0.6 110160 11260 10580 RSP

7 3a+1b+1c+3d+6e+1f +
3g +3i +4l +2n +6o +3r +
4s + 8t + 1u + 1w

9680 9010 9270 8960 0.8 109900 9090 8960 RSP

8 4a +1b +3c+2d+6e +2h+
3i+2l +1m+1n+4o+3p+
7r + 3s + 2t + 2u + 1w + 3y

17420 13990 12900 13540 0.6 110000 13220 12900 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

9 7a +1b +1c+3e +1g+2h+
2k+2l+1m+3n+7o+6r+
1s + 3t + 3u + 2w + 5y

9800 8890 9040 8830 0.8 101940 9010 8830 RSP

10 2a+1c+1d+5e+3f +1g +
3h+3i +2l +3n+5o+1q +
3r + 5s + 5t + 5u + 1w + 1y

15600 13660 12720 12750 0.6 115010 12280 12720 SRP

11 1a+1b+1c+2d+9e+1f +
1g+1h+6i+1k+1m+3n+
2o+2p+3r+8s+5t+1u+1v

13080 10700 11120 10920 0.4 105700 11460 10700 RSP

12 5a+1b+1d+7e+1f +2h+
4i+7l +1m+3o+2r +8s+
3t + 3w + 2y

9450 8900 8750 8890 0.6 106210 8770 8750 RSP

13 6a+2b+3d+4e+1f +1g +
2h+8i+3m+4n+1o+1p+
2r + 4s + 6t + 2u

11090 9930 9640 9660 0.6 106620 9540 9640 SRP

14 7a +2b +3c+3d+3e +4h+
4i+2k+1l +1m+3n+2o+
4r + 3s + 6t + 1u + 1v

12560 11040 10720 11070 0.6 109360 11120 10720 RSP

15 4a +1b +3c+2d+4e +5h+
2l+6m+2n+5o+2r+4s+
3t + 4w + 3y

9830 8880 8980 9110 0.4 107880 8800 8880 SRP

16 4a +3c+2d+6e +5h+3i +
1l +3n + 4o + 5r +3s + 6t +
3u + 1w + 1y

11530 10690 10320 10310 0.8 115110 9780 10310 SRP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

17 5a+2b+1d+6e+1f +1g +
2h+3i +1k +2l +4n+4o+
3r + 7s + 4t + 1u + 2w + 1y

15270 13000 12570 12380 0.8 113500 12350 12380 SRP

18 1a+1c+4e+1f +2g +5h+
5i +1j +2n+5o+2r +5s+
10t + 4u + 2y

8660 8300 8250 8150 0.8 99770 8120 8150 SRP

19 3a+1b+8e+1f+8h+5i+3l+
1m+1p+4r+6s+5t+3w+1y

7670 7470 7460 7440 0.8 101570 7460 7440 RSP

20 8a +1d +5e +1g +3i + 4l +
8n+7o+5r+2s+3t+1y+2z

7590 7450 7420 7350 0.8 100520 7250 7350 SRP

21 2a +2b +8e +2g +4h+7i +
3l +5n+5o+1p+3r +1s+
4t + 1u + 1v + 1x

9130 8410 8560 8390 0.8 105140 8280 8390 SRP

22 3a+1c+1d+8e+1g +4h+
4i+2k+2l +2m+3n+1o+
2r+3s+6t+2u+2v+2w+1y

18700 15230 14260 13540 0.8 113390 14220 13540 RSP

23 5a +1b +1c+2d+3e +2g +
3h+5i+1k+2l+2m+5n+
1o+3r+2s+5t+1u+5w+1y

18530 14310 15130 14650 0.4 108230 14010 14310 SRP

24 4a+2b+1d+8e+1f +3h+
2i+1k+2l +2m+5n+5o+
3r + 1s + 6t + 3w + 1y

12510 11010 11110 10930 0.8 112900 11260 10930 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

25 4a+1b+3c+1d+6e+2f +
1g+4h+4i+2l+1m+4n+
2o+2p+3r+5s+2t+2u+1v

18720 15000 14620 14580 0.8 115810 14840 14580 RSP

26 2a+1b+1d+11e+4h+1i+
1l +3n+5o+1q +3r +7s+
6t + 2u + 1v + 1w

9870 9180 9300 9410 0.4 107460 9280 9180 RSP

27 3a+4d+6e+2f +1g+1h+
5i+2l +1m+4n+7o+1p+
4r + 3s + 3t + 1v + 1x + 1y

12490 10950 10600 11020 0.6 111360 11150 10600 RSP

28 3a+1b+3c+10e+3g+3h+
5i+1k+1l +1m+5n+1o+
1p + 2r + 3s + 5t + 1u + 1x

10750 9710 9580 9460 0.8 103700 9530 9460 RSP

29 4a+1b+2c+6d+6e+1f +
4h+5i +2l +6n+3o+2p+
3r + 2s + 2t + 1w

11420 10770 10810 10690 0.8 107040 10190 10690 SRP

30 3a+5e+4f +2g +6h+4i+
2k +5n+3o+1p+5r+3s+
6t + 1y

8250 8050 8020 8030 0.6 103930 7960 8020 SRP

31 2a+1b+1d+1e+1f +1h+
2i+1k+3l+3n+11o+3p+
3r+3s+3t+4u+2v+3w+2y

12090 10670 10560 10510 0.8 102150 10360 10510 SRP

32 2a+2c+3d+5e+3f +1g +
2h+1i+7l +2m+2n+8o+
4r + 2s + 2t + 1u + 2w + 1y

17490 13930 13250 13660 0.6 105830 13890 13250 RSP
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# The Pattern
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

33 4a+1b+1d+7e+1f +1g +
5h+5i+4l +3m+2n+2o+
1q + 2r + 3s + 6t + 1u + 1y

14990 12450 12070 11920 0.8 112380 12310 11920 RSP

34 3a+1b+3c+6e+1f +1g +
2h+1i+1l +1m+6n+4o+
4r + 4s + 5t + 4u + 3y

12410 10580 11600 11740 0.4 113490 11070 10580 RSP

35 5a+1b+1c+1d+2e+1f +
1g+4h+6i+4l+2m+3n+
6o + 2s + 6t + 1v + 3w + 1y

11250 10550 10670 10500 0.8 104800 9970 10500 SRP

36 5a+3d+6e+1f +1g+3h+
3i+2l +1m+4n+1o+1p+
3r+7s+3t+1u+1v+2w+2y

18340 14670 15020 14880 0.4 111940 14660 14670 SRP

37 3a +2c+8e +2f +2h+4i +
1k+2l+2m+7n+5o+3p+
1s + 5t + 1v + 1x + 1y

8650 8250 8090 8250 0.6 104150 8000 8090 SRP

Table B.16: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns of length 50 in the input text TReal. The last column of the table represents the efficiency ranking
of the algorithms.
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B.5.2 Comparison of Different Values of ǫ for the Input

Text TReal for Finding the Abelian Patterns Cor-

responding to Frequently Used English Words

In this section, we present the results of the experiments performed on the
input text TReal for finding the abelian patterns corresponding to frequently
used English words.

Tables B.17−B.21 show the CPU time taken by the parameterized suffix
based algorithm for different values of ǫ, to find the matches of the abelian
patterns corresponding to commonly used English words of lengths 5 − 11.
The efficiency ranking of the three algorithms is also presented in the tables.

From the tables it is observed that their was not a significant difference
between the CPU time taken by the parameterized suffix based algorithm for
different values of ǫ. However, for some patterns, the algorithm took slightly
more time for ǫ = 0.2 than for other values of ǫ.

The suffix based algorithm was the most efficient algorithm. The param-
eterized algorithm was the second in the efficiency ranking of the algorithms,
however, there was not a significant difference between the CPU time taken
by the parameterized algorithm and the suffix based algorithm for most of
the patterns. The prefix based algorithm was the slowest algorithm and
there was a big difference between the CPU time taken by the prefix based
algorithm and the other two algorithms.
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 three 48190 46690 47090 46970 0.4 138960 46820 46690 RSP

2 there 48250 46750 46510 46030 0.8 144080 45480 46030 SRP

3 earth 52270 50500 49900 50090 0.6 136790 48680 49900 SRP

4 heart 52850 50850 50520 50480 0.8 140340 49120 50480 SRP

5 other 48620 46420 46230 46420 0.6 133890 46110 46230 SRP

6 their 43740 41960 41680 41650 0.8 128520 40580 41650 SRP

7 these 39720 38130 38150 38300 0.4 133470 36720 38130 SRP

8 night 36960 36410 36080 36720 0.6 127470 33780 36080 SRP

9 thing 37610 36450 36260 36630 0.6 128850 34670 36260 SRP

10 shall 32180 31900 31750 31880 0.6 128350 29290 31750 SRP

11 stand 36090 34800 34550 34800 0.6 125050 33710 34550 SRP

12 where 33950 32520 33620 33190 0.4 127180 30290 32520 SRP

13 those 41340 40320 39890 39340 0.8 125910 38710 39340 SRP

14 youre 34630 33940 34130 36660 0.4 123420 32040 33940 SRP

15 death 38400 38990 39400 39180 0.2 124170 35480 38400 SRP
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

16 build 23600 23430 23680 23400 0.8 117090 22010 23400 SRP

17 human 26480 25930 26210 25170 0.8 121530 23900 25170 SRP

18 enjoy 26400 26340 25670 25540 0.8 114950 24520 25540 SRP

19 crops 24640 24770 24310 24210 0.8 115950 22990 24210 SRP

20 class 23350 23320 22990 23600 0.6 115230 21520 22990 SRP

21 greek 23350 23680 22860 23130 0.6 116860 21980 22860 SRP

22 grass 24220 23290 23650 23670 0.4 117960 22000 23290 SRP

23 cells 24990 24930 24590 25010 0.6 113530 23500 24590 SRP

24 color 23310 23850 23110 23320 0.6 117350 22000 23110 SRP

25 didnt 25620 24920 25020 25090 0.4 119380 23650 24920 SRP

26 block 21320 21410 21590 21240 0.8 108520 19500 21240 SRP

27 track 24910 25620 24900 25330 0.6 117680 22730 24900 SRP

28 group 25260 24090 24070 23950 0.8 115800 22110 23950 SRP

29 major 25160 24730 24650 25000 0.6 115940 23230 24650 SRP

30 check 23410 23340 23370 23720 0.4 111180 21250 23340 SRP

Table B.17: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns corresponding to English words of length 5 in the input text TReal. The last column of the table
represents the efficiency ranking of the algorithms.
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 though 28920 28240 28310 27780 0.8 132180 26460 27780 SRP

2 mother 36120 34520 34130 33940 0.8 131390 32800 33940 SRP

3 either 33900 32820 32660 31890 0.8 133330 30590 31890 SRP

4 father 35940 34240 34130 33890 0.8 129870 32960 33890 SRP

5 should 28440 27270 27350 26420 0.8 130320 26090 26420 SRP

6 sister 31900 30190 30240 29850 0.8 131730 28580 29850 SRP

7 stream 33680 31970 32170 31750 0.8 126200 29680 31750 SRP

8 resent 31560 29920 30750 30210 0.4 133270 28480 29920 SRP

9 before 26480 24720 24800 24840 0.4 128550 23970 24720 SRP

10 reason 33130 31600 31060 30930 0.8 125400 29300 30930 SRP
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

11 family 21380 20910 21350 20570 0.8 123460 20020 20570 SRP

12 picked 22060 21530 21670 21980 0.4 122520 20560 21530 SRP

13 valley 23150 22670 22650 21930 0.8 126240 20650 21930 SRP

14 joined 27040 25410 25230 24140 0.8 127540 23970 24140 SRP

15 pulled 20950 20290 20160 20670 0.6 118920 19080 20160 SRP

16 slowly 20520 20210 20170 20800 0.6 121530 18770 20170 SRP

17 plural 20480 20300 20460 20300 0.8 123730 18400 20300 SRP

18 pushed 24620 23670 23760 23360 0.8 121940 22220 23360 SRP

19 rhythm 21530 20550 20880 20770 0.4 127270 19970 20550 SRP

20 column 22230 21600 21970 21590 0.8 124680 19940 21590 SRP

Table B.18: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns corresponding to English words of length 6 in the input text TReal. The last column of the table
represents the efficiency ranking of the algorithms.
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 another 37850 35140 34370 33530 0.8 132600 32990 33530 SRP

2 thought 24660 21730 21640 21510 0.8 132310 20500 21510 SRP

3 brother 27560 26620 26030 26060 0.6 128900 24990 26030 SRP

4 nothing 25880 25460 24580 24500 0.8 134630 23410 24500 SRP

5 weather 29070 28290 27450 27560 0.6 134350 26520 27450 SRP

6 against 24950 24530 24640 24390 0.8 132910 22760 24390 SRP

7 friends 27900 26760 26200 25950 0.8 131950 25040 25950 SRP

8 through 23680 23570 22940 22560 0.8 131370 21670 22560 SRP

9 without 24630 23700 23170 23450 0.6 132580 22060 23170 SRP

10 strange 30530 28100 28180 28200 0.4 130950 26930 28100 SRP
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

11 farmers 23030 21510 21680 21760 0.4 128800 20750 21510 SRP

12 finally 19940 19120 18970 19070 0.6 129410 18400 18970 SRP

13 exactly 21560 20740 20680 21350 0.6 123480 19080 20680 SRP

14 decided 18040 16840 17250 17130 0.4 125130 16180 16840 SRP

15 symbols 18070 18040 17990 17950 0.8 127340 16590 17950 SRP

16 usually 17960 17880 17510 17250 0.8 126600 16670 17250 SRP

17 century 23010 22270 22070 22320 0.6 127280 20860 22070 SRP

18 climbed 21050 20180 20000 19540 0.8 128250 19450 19540 SRP

19 problem 22220 21610 21230 21240 0.6 124220 19880 21230 SRP

20 explain 22630 21340 21280 21300 0.6 125050 20400 21280 SRP

Table B.19: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns corresponding to English words of length 7 in the input text TReal. The last column of the table
represents the efficiency ranking of the algorithms.
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 together 26030 25480 24450 24630 0.6 134230 23150 24450 SRP

2 yourself 26050 24030 24700 24810 0.4 137430 23150 24030 SRP

3 soldiers 24330 23400 22470 23040 0.6 137310 21720 22470 SRP

4 business 19760 19310 19390 19650 0.4 130690 18400 19310 SRP

5 remember 16670 16160 15530 15770 0.6 125540 15010 15530 SRP

6 shoulder 25960 24050 24330 24390 0.4 132740 22950 24050 SRP

7 straight 25180 23490 22840 23630 0.6 137080 22120 22840 SRP

8 anything 22360 21170 20800 21020 0.6 132610 19910 20800 SRP

9 southern 32590 28510 27720 27830 0.6 128580 27020 27720 SRP

10 consider 27830 25570 25170 25410 0.6 131470 23440 25170 SRP
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# Word
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

11 students 21100 19990 19970 20170 0.6 133970 19020 19970 SRP

12 equation 24910 22360 23080 22470 0.4 130460 22160 22360 SRP

13 happened 20650 19560 19250 19320 0.6 130950 18230 19250 SRP

14 products 21780 20350 20280 20170 0.8 133400 19060 20170 SRP

15 movement 20640 19660 20040 19880 0.4 130720 19100 19660 SRP

16 electric 20660 19660 19850 20000 0.4 135190 18720 19660 SRP

17 probably 18200 17830 17600 17560 0.8 131650 16740 17560 SRP

18 actually 16590 16300 16460 16070 0.8 131810 15260 16070 SRP

19 practice 22320 21030 20690 20930 0.6 132970 20700 20690 RSP

20 exciting 20380 19140 18900 18500 0.8 132580 17760 18500 SRP

Table B.20: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns corresponding to English words of length 8 in the input text TReal. The last column of the table
represents the efficiency ranking of the algorithms.
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# Word m
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

1 something 9 31660 27740 26580 26220 0.8 133960 25900 26220 SRP

2 sometimes 9 20640 19740 19740 19050 0.8 134400 18240 19050 SRP

3 thousands 9 25240 23250 22740 22360 0.8 139160 21790 22360 SRP

4 determine 9 21800 20090 19710 19880 0.6 135560 18800 19710 SRP

5 direction 9 25170 23630 22630 21980 0.8 135130 21220 21980 SRP

6 represent 9 18950 17890 18110 17980 0.4 132190 16690 17890 SRP

7 different 9 21410 19500 19900 19880 0.4 134460 18620 19500 SRP

8 factories 9 27810 25570 24700 24770 0.6 130540 23540 24700 SRP

9 questions 9 23580 22060 20970 21590 0.6 134150 20360 20970 SRP

10 continued 9 22540 21930 20430 21170 0.6 135310 19770 20430 SRP

11 statement 9 20270 19520 19200 19250 0.6 135290 18150 19200 SRP

12 stretched 9 23180 21220 21180 20350 0.8 137250 20060 20350 SRP

13 necessary 9 21260 19470 19700 19630 0.4 135350 18800 19470 SRP

14 beautiful 9 19520 18990 18740 18240 0.8 134000 18190 18240 SRP

221



# Word m
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

15 important 9 22700 21160 20900 20340 0.8 136520 19930 20340 SRP

16 carefully 9 18950 18000 17830 18050 0.6 135050 16850 17830 SRP

17 consonant 9 18650 17520 17240 17630 0.6 133920 16740 17240 SRP

18 difficult 9 15280 14950 15280 15350 0.4 133580 14200 14950 SRP

19 suggested 9 16830 16440 15670 15920 0.6 134340 15180 15670 SRP

20 underline 9 20270 18450 19100 18500 0.4 135380 17430 18450 SRP

21 syllables 9 17020 16020 16330 15870 0.8 129740 15130 15870 SRP

22 themselves 10 17600 17350 17270 17760 0.6 133010 16400 17270 SRP

23 understand 10 23020 21320 21230 21450 0.6 136450 20810 21230 SRP

24 particular 10 16310 15900 15900 16170 0.6 134470 15100 15900 SRP

25 everything 10 22100 21110 20800 20920 0.6 136380 20090 20800 SRP

26 difference 10 16260 16020 16450 16620 0.4 134260 16040 16020 RSP

27 conditions 10 17760 17360 17620 17120 0.8 136340 16650 17120 SRP

28 experience 10 15340 15010 14960 15130 0.6 132240 14390 14960 SRP
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# Word m
CPU Time

Best
CPU Time

Algo
(µ sec) (µ sec)

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6 ǫ = 0.8 ǫ Pre Suf paRa Ranking

29 government 10 18640 18670 18140 18040 0.8 135550 17470 18040 SRP

30 washington 10 23320 21980 22270 22200 0.4 138050 20930 21980 SRP

31 especially 10 17410 16770 17030 17070 0.4 137630 15810 16770 SRP

32 discovered 10 18660 18230 18080 18250 0.6 136400 17510 18080 SRP

33 substances 10 18650 18150 18150 18380 0.6 135570 17530 18150 SRP

34 presidents 10 21250 20620 20620 19980 0.8 135820 19550 19980 SRP

35 experiment 10 17590 17230 16860 17340 0.6 135330 16720 16860 SRP

36 dictionary 10 20200 19650 19840 19690 0.4 139160 19600 19650 SRP

37 scientists 10 16970 17060 16590 16900 0.6 134260 16220 16590 SRP

38 instruments 11 19020 18920 18240 18610 0.6 136730 17880 18240 SRP

39 information 11 18070 17100 17130 17560 0.4 135360 15920 17100 SRP

40 temperature 11 15590 15010 15280 15470 0.4 134640 14800 15010 SRP

Table B.21: CPU time taken by the parameterized suffix based algorithms for different values of ǫ to find different
abelian patterns corresponding to English words of length ≥ 9 in the input text TReal. The last column of the table
represents the efficiency ranking of the algorithms.
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Appendix C

Empirical Analysis of the
Algorithms for Approximate
Abelian Pattern Matching
Under Insertion/Deletion
(InDel) Error Model

In this appendix, we present the results of the experiments performed for
an empirical analysis of the two algorithms for approximate abelian pattern
matching under insertion/deletion error model. The first algorithm uses a
search window of fixed length (Section 4.4.3), here we refer to this algorithm
as Algorithm A; the second algorithm uses a search window of flexible length
(Section 4.4.5), here we refer to this algorithm as Algorithm B.

For the experiments, we used same input texts that were used for the
empirical analysis of the prefix based and the suffix based algorithms (Ap-
pendix A). We executed algorithms A and B on randomly generated abelian
patterns for different values of error threshold t. For each abelian pattern,
we performed 200 iterations of each of the algorithms and took the mean
values of the CPU time taken by the algorithms in 200 iterations.
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C.1 Comparison of the Relative Efficiency of

the Algorithms for the Input Text T4U

Table C.1 shows the CPU times taken by the algorithms A & B for finding
approximate matches of randomly generated abelian patterns in the input
text T4U

for different values of the error threshold t.

Algorithm B was generally more efficient than Algorithm A. In the best
case, Algorithm B was 1.59 times faster than Algorithm A for t = 0.1m, and
2.94 times faster than Algorithm A for t = 0.2m. Table C.2 lists the abelian
patterns used for the experiments performed on the input text T4U

.

C.2 Comparison of the Relative Efficiency of

the Algorithms for the Input Text T8U

Table C.3 shows the CPU times taken by the algorithms A & B for finding
approximate matches of randomly generated abelian patterns in the input
text T8U

for different values of the error threshold t.

Here too, Algorithm B was generally more efficient than Algorithm A.
In the best case, Algorithm B was 1.26 times faster than Algorithm A for
t = 0.1m, and 3.57 times faster than Algorithm A for t = 0.2m. Table C.4
lists the abelian patterns used for the experiments performed on the input
text T8U

.

C.3 Comparison of the Relative Efficiency of

the Algorithms for the Input Text TReal

Table C.5 shows the CPU times taken by the algorithms A & B for finding
approximate matches of randomly selected abelian patterns in the input text
TReal for different values of the error threshold t.

In the case of real input text also, Algorithm B was more efficient than
Algorithm A. In the best case, Algorithm B was 1.19 times faster than Algo-
rithm A for t = 0.1m, and 4.16 times faster than Algorithm A for t = 0.2m.
Table C.6 lists the abelian patterns used for the experiments performed on
the input text TReal.
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# m t

CPU Time
B/A

t

CPU Time
B/A

(µ Sec) (µ Sec)

Algo A Algo B Ratio Algo A Algo B Ratio

1 20 2 419500 348600 0.83 4 492050 292650 0.59

2 20 2 576150 474750 0.82 4 789550 506550 0.64

3 20 2 1321500 1107450 0.84 4 1623350 1277000 0.79

4 20 2 947000 760500 0.8 4 1164850 897150 0.77

5 20 2 402650 340500 0.85 4 453800 275500 0.61

6 20 2 796350 628450 0.79 4 1049050 726300 0.69

7 20 2 493000 417150 0.85 4 591550 371300 0.63

8 20 2 800050 619100 0.77 4 1055550 737500 0.7

9 20 2 600750 498000 0.83 4 791400 495250 0.63

10 20 2 607600 505050 0.83 4 796900 502250 0.63

11 20 2 385850 333950 0.87 4 364800 230600 0.63

12 20 2 1012550 837650 0.83 4 1302750 973300 0.75

13 20 2 2187600 1813000 0.83 4 2347500 1919650 0.82

14 20 2 2104950 1780900 0.85 4 2289150 1870550 0.82

15 20 2 491450 411850 0.84 4 590900 342650 0.58

16 20 2 1125850 958400 0.85 4 1401300 1061250 0.76

17 20 2 2698250 2381350 0.88 4 2817200 2331950 0.83

18 20 2 1632950 1369650 0.84 4 1931750 1472150 0.76

19 20 2 661350 533850 0.81 4 848050 544550 0.64

20 20 2 389450 332950 0.85 4 430150 264250 0.61

21 40 4 300050 256500 0.85 8 308850 136500 0.44

22 40 4 299100 260850 0.87 8 303950 133050 0.44

23 40 4 362650 284000 0.78 8 693850 257100 0.37

24 40 4 305050 270400 0.89 8 264100 119950 0.45

25 40 4 314300 277250 0.88 8 302700 143150 0.47

26 40 4 312850 259500 0.83 8 175450 95900 0.55

27 40 4 307200 267200 0.87 8 186900 103150 0.55
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# m t

CPU Time
B/A

t

CPU Time
B/A

(µ Sec) (µ Sec)

Algo A Algo B Ratio Algo A Algo B Ratio

28 40 4 1945450 1234450 0.63 8 2484600 1783550 0.72

29 40 4 302200 258150 0.85 8 199250 101100 0.51

30 40 4 301250 255500 0.85 8 331050 154000 0.47

31 40 4 421250 330250 0.78 8 798200 357400 0.45

32 40 4 295350 239000 0.81 8 403850 138650 0.34

33 40 4 450000 350950 0.78 8 927750 433700 0.47

34 40 4 300200 258050 0.86 8 113650 94900 0.84

35 40 4 573900 410450 0.72 8 1169250 568700 0.49

36 40 4 381950 302100 0.79 8 788950 371100 0.47

37 40 4 3655350 2790900 0.76 8 4007650 3048300 0.76

38 40 4 300800 253300 0.84 8 366350 130200 0.36

39 40 4 295100 253550 0.86 8 327950 149000 0.45

40 40 4 286000 248750 0.87 8 142500 101100 0.71

Table C.1: CPU time taken by Algorithm A (which uses a search window of
fixed length) and Algorithm B (which uses a search window of flexible length)
for finding approximate matches of randomly generated abelian patterns in
the input text T4U

. Column 1 of the table represents the pattern number,
column 2 represents the pattern length m, column 3 and 7 represent the error
threshold t. Column 6 and 9 represent the relative advantage of Algorithm
B over Algorithm A.
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#
Corresponding

#
Corresponding

Pattern Pattern

1 5c1 + 9c2 + 0c3 + 6c4 21 6c1 + 19c2 + 1c3 + 14c4

2 1c1 + 9c2 + 5c3 + 5c4 22 6c1 + 14c2 + 1c3 + 19c4

3 5c1 + 8c2 + 3c3 + 4c4 23 4c1 + 7c2 + 9c3 + 20c4

4 2c1 + 4c2 + 8c3 + 6c4 24 7c1 + 20c2 + 13c3 + 0c4

5 4c1 + 0c2 + 8c3 + 8c4 25 16c1 + 7c2 + 17c3 + 0c4

6 1c1 + 6c2 + 6c3 + 7c4 26 10c1 + 24c2 + 0c3 + 6c4

7 9c1 + 2c2 + 7c3 + 2c4 27 11c1 + 0c2 + 6c3 + 23c4

8 7c1 + 6c2 + 1c3 + 6c4 28 9c1 + 6c2 + 11c3 + 14c4

9 7c1 + 4c2 + 1c3 + 8c4 29 11c1 + 3c2 + 3c3 + 23c4

10 7c1 + 4c2 + 8c3 + 1c4 30 16c1 + 17c2 + 1c3 + 6c4

11 8c1 + 9c2 + 1c3 + 2c4 31 3c1 + 7c2 + 13c3 + 17c4

12 4c1 + 7c2 + 2c3 + 7c4 32 8c1 + 3c2 + 22c3 + 7c4

13 5c1 + 4c2 + 7c3 + 4c4 33 16c1 + 10c2 + 12c3 + 2c4

14 3c1 + 5c2 + 6c3 + 6c4 34 0c1 + 2c2 + 24c3 + 14c4

15 9c1 + 7c2 + 2c3 + 2c4 35 16c1 + 10c2 + 11c3 + 3c4

16 7c1 + 3c2 + 7c3 + 3c4 36 14c1 + 1c2 + 11c3 + 14c4

17 5c1 + 6c2 + 5c3 + 4c4 37 10c1 + 10c2 + 12c3 + 8c4

18 4c1 + 3c2 + 6c3 + 7c4 38 7c1 + 2c2 + 22c3 + 9c4

19 2c1 + 9c2 + 6c3 + 3c4 39 6c1 + 1c2 + 18c3 + 15c4

20 4c1 + 9c2 + 0c3 + 7c4 40 4c1 + 13c2 + 23c3 + 0c4

Table C.2: List of the abelian patterns presented in Table C.1
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# m t

CPU Time
B/A

t

CPU Time
B/A

(µ Sec) (µ Sec)

Algo A Algo B Ratio Algo A Algo B Ratio

1 30 3 296450 261250 0.88 6 142150 101900 0.72

2 30 3 306250 266600 0.87 6 389250 170600 0.44

3 30 3 314600 269900 0.86 6 410050 177800 0.43

4 30 3 371000 301550 0.81 6 631150 276800 0.44

5 30 3 291100 259500 0.89 6 133100 102100 0.77

6 30 3 309550 276700 0.89 6 174450 108450 0.62

7 30 3 297500 264700 0.89 6 137850 102250 0.74

8 30 3 310400 279250 0.9 6 255500 125100 0.49

9 30 3 311100 270000 0.87 6 211400 111450 0.53

10 30 3 327750 280750 0.86 6 398650 171950 0.43

11 30 3 309850 273700 0.88 6 140600 99600 0.71

12 30 3 315350 276850 0.88 6 242550 122450 0.5

13 30 3 334600 283000 0.85 6 433000 182800 0.42

14 30 3 409150 326750 0.8 6 715400 346650 0.48

15 30 3 330350 282150 0.85 6 442900 186650 0.42

16 30 3 305350 271050 0.89 6 299050 142600 0.48

17 30 3 305250 276550 0.91 6 129200 106400 0.82

18 30 3 319050 277750 0.87 6 277700 134350 0.48

19 30 3 341950 294100 0.86 6 481700 200800 0.42

20 30 3 314000 288750 0.92 6 207350 114000 0.55

21 50 5 327000 282500 0.86 10 643300 207650 0.32

22 50 5 312650 283900 0.91 10 196650 106650 0.54

23 50 5 308600 271750 0.88 10 247100 106650 0.43

24 50 5 362050 285250 0.79 10 856250 269400 0.31

25 50 5 321650 281850 0.88 10 253400 109250 0.43

26 50 5 329850 274750 0.83 10 717200 244150 0.34

27 50 5 324000 277350 0.86 10 276200 108000 0.39
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# m t

CPU Time
B/A

t

CPU Time
B/A

(µ Sec) (µ Sec)

Algo A Algo B Ratio Algo A Algo B Ratio

28 50 5 324550 279900 0.86 10 491200 154950 0.32

29 50 5 328100 293750 0.9 10 233200 107850 0.46

30 50 5 319300 279150 0.87 10 381850 128800 0.34

31 50 5 330100 272600 0.83 10 617400 169800 0.28

32 50 5 300250 267250 0.89 10 339150 118450 0.35

33 50 5 303650 267300 0.88 10 356600 121250 0.34

34 50 5 287850 254750 0.89 10 228850 106100 0.46

35 50 5 293150 259400 0.88 10 139200 104650 0.75

36 50 5 296800 263150 0.89 10 206950 105800 0.51

37 50 5 332800 280550 0.84 10 625000 203200 0.33

38 50 5 324150 280900 0.87 10 484250 149550 0.31

39 50 5 308550 278300 0.9 10 140600 104300 0.74

40 50 5 314550 279450 0.89 10 260800 110750 0.42

Table C.3: CPU time taken by Algorithm A (which uses a search window of
fixed length) and Algorithm B (which uses a search window of flexible length)
for finding approximate matches of randomly generated abelian patterns in
the input text T8U

. Column 1 of the table represents the pattern number,
column 2 represents the pattern length m, column 3 and 7 represent the error
threshold t. Column 6 and 9 represent the relative advantage of Algorithm
B over Algorithm A.
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# Corresponding Pattern

1 5c1 + 8c2 + 0c3 + 5c40c5 + 1c6 + 2c7 + 9c8

2 3c1 + 6c2 + 7c3 + 4c40c5 + 5c6 + 4c7 + 1c8

3 3c1 + 5c2 + 1c3 + 1c45c5 + 2c6 + 7c7 + 6c8

4 2c1 + 7c2 + 2c3 + 6c44c5 + 3c6 + 2c7 + 4c8

5 0c1 + 4c2 + 0c3 + 3c48c5 + 0c6 + 9c7 + 6c8

6 0c1 + 2c2 + 8c3 + 6c46c5 + 6c6 + 2c7 + 0c8

7 4c1 + 8c2 + 9c3 + 0c40c5 + 5c6 + 4c7 + 0c8

8 0c1 + 4c2 + 5c3 + 0c43c5 + 5c6 + 5c7 + 8c8

9 9c1 + 2c2 + 2c3 + 1c44c5 + 3c6 + 1c7 + 8c8

10 0c1 + 6c2 + 7c3 + 1c44c5 + 4c6 + 4c7 + 4c8

11 9c1 + 3c2 + 0c3 + 2c40c5 + 2c6 + 7c7 + 7c8

12 3c1 + 0c2 + 7c3 + 2c48c5 + 4c6 + 5c7 + 1c8

13 4c1 + 6c2 + 7c3 + 1c45c5 + 2c6 + 1c7 + 4c8

14 3c1 + 1c2 + 5c3 + 2c45c5 + 4c6 + 4c7 + 6c8

15 4c1 + 2c2 + 4c3 + 2c43c5 + 6c6 + 1c7 + 8c8

16 0c1 + 9c2 + 6c3 + 3c44c5 + 2c6 + 2c7 + 4c8

17 0c1 + 2c2 + 0c3 + 7c40c5 + 9c6 + 5c7 + 7c8

18 4c1 + 1c2 + 6c3 + 1c44c5 + 1c6 + 9c7 + 4c8

19 2c1 + 2c2 + 7c3 + 3c47c5 + 1c6 + 4c7 + 4c8

20 1c1 + 2c2 + 7c3 + 2c42c5 + 1c6 + 9c7 + 6c8

21 8c1 + 7c2 + 8c3 + 7c411c5 + 2c6 + 7c7 + 0c8

22 6c1 + 6c2 + 1c3 + 9c413c5 + 1c6 + 1c7 + 13c8

23 14c1 + 2c2 + 8c3 + 3c42c5 + 6c6 + 2c7 + 13c8

24 2c1 + 9c2 + 13c3 + 6c46c5 + 6c6 + 4c7 + 4c8

25 9c1 + 5c2 + 9c3 + 2c412c5 + 1c6 + 11c7 + 1c8

26 6c1 + 10c2 + 10c3 + 3c43c5 + 9c6 + 7c7 + 2c8

27 10c1 + 1c2 + 13c3 + 4c40c5 + 5c6 + 10c7 + 7c8
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# Corresponding Pattern

28 4c1 + 2c2 + 9c3 + 12c46c5 + 10c6 + 6c7 + 1c8

29 1c1 + 14c2 + 5c3 + 11c48c5 + 0c6 + 8c7 + 3c8

30 12c1 + 3c2 + 12c3 + 7c42c5 + 8c6 + 1c7 + 5c8

31 13c1 + 4c2 + 11c3 + 6c42c5 + 3c6 + 6c7 + 5c8

32 6c1 + 11c2 + 9c3 + 1c41c5 + 7c6 + 12c7 + 3c8

33 13c1 + 5c2 + 5c3 + 5c411c5 + 9c6 + 2c7 + 0c8

34 14c1 + 3c2 + 7c3 + 7c413c5 + 2c6 + 0c7 + 4c8

35 14c1 + 9c2 + 11c3 + 5c41c5 + 0c6 + 0c7 + 10c8

36 4c1 + 11c2 + 0c3 + 1c48c5 + 9c6 + 14c7 + 3c8

37 9c1 + 2c2 + 2c3 + 9c410c5 + 9c6 + 6c7 + 3c8

38 3c1 + 5c2 + 8c3 + 3c412c5 + 7c6 + 1c7 + 11c8

39 13c1 + 14c2 + 11c3 + 0c43c5 + 6c6 + 1c7 + 2c8

40 9c1 + 13c2 + 7c3 + 10c44c5 + 7c6 + 0c7 + 0c8

Table C.4: List of the abelian patterns presented in Table C.3
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# m t

CPU Time
B/A

t

CPU Time
B/A

(µ Sec) (µ Sec)

Algo A Algo B Ratio Algo A Algo B Ratio

1 20 2 113750 99450 0.87 4 128050 103550 0.81

2 20 2 117600 103600 0.88 4 149750 102000 0.68

3 20 2 116400 102000 0.88 4 146250 105700 0.72

4 20 2 117850 103150 0.88 4 150850 107400 0.71

5 20 2 112300 100550 0.9 4 126550 102100 0.81

6 20 2 109850 99700 0.91 4 122300 101200 0.83

7 20 2 114700 101250 0.88 4 122750 105400 0.86

8 20 2 116700 104800 0.9 4 142200 106500 0.75

9 20 2 118450 102950 0.87 4 137050 104700 0.76

10 20 2 113700 101800 0.9 4 123300 103800 0.84

11 20 2 116750 99800 0.85 4 129100 101600 0.79

12 20 2 112100 98650 0.88 4 117850 99600 0.85

13 20 2 117050 98700 0.84 4 127800 96500 0.76

14 20 2 113400 99400 0.88 4 133900 100850 0.75

15 20 2 113400 101850 0.9 4 123200 99650 0.81

16 20 2 106200 95400 0.9 4 109700 92500 0.84

17 20 2 114000 99900 0.88 4 118050 100000 0.85

18 20 2 115950 105200 0.91 4 146550 99950 0.68

19 20 2 114250 102400 0.9 4 121900 99900 0.82

20 20 2 116350 103950 0.89 4 138450 100950 0.73

21 50 5 116100 104650 0.9 10 474250 113750 0.24

22 50 5 115100 101100 0.88 10 293650 104850 0.36

23 50 5 114700 101800 0.89 10 354150 113200 0.32

24 50 5 116100 104050 0.9 10 512200 129050 0.25

25 50 5 116250 101100 0.87 10 327300 109400 0.33

26 50 5 116600 103200 0.89 10 425200 124000 0.29

27 50 5 115100 101850 0.88 10 495950 131900 0.27
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# m t

CPU Time
B/A

t

CPU Time
B/A

(µ Sec) (µ Sec)

Algo A Algo B Ratio Algo A Algo B Ratio

28 50 5 117450 101050 0.86 10 292500 108150 0.37

29 50 5 116950 102150 0.87 10 500600 134650 0.27

30 50 5 116850 102400 0.88 10 300600 116600 0.39

31 50 5 113700 101900 0.9 10 185650 112900 0.61

32 50 5 114100 100700 0.88 10 332250 115400 0.35

33 50 5 114700 102800 0.9 10 553400 132450 0.24

34 50 5 113650 101000 0.89 10 391150 112900 0.29

35 50 5 111250 98850 0.89 10 140700 99900 0.71

36 50 5 114400 100850 0.88 10 291300 110300 0.38

37 50 5 115250 101850 0.88 10 174650 105200 0.6

38 50 5 113700 100850 0.89 10 210400 103900 0.49

39 50 5 112950 103500 0.92 10 308400 114500 0.37

40 50 5 115300 100350 0.87 10 427750 118350 0.28

Table C.5: CPU time taken by Algorithm A (which uses a search window of
fixed length) and Algorithm B (which uses a search window of flexible length)
for finding approximate matches of randomly selected abelian patterns in
the input text TReal. Column 1 of the table represents the pattern number,
column 2 represents the pattern length m, column 3 and 7 represent the error
threshold t. Column 6 and 9 represent the relative advantage of Algorithm
B over Algorithm A.
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# Corresponding Pattern

1 1c + 2d + 2e + 1h + 2i + 2k + 2n + 2o + 3t + 1u + 2w

2 2a+3e+1f +1i+1k+2l+1n+2o+2r+1s+2t+1w+1y

3 2a+1d+2e+2g+2h+1i+1l+1m+2n+1o+2r+1t+1u+1w

4 2a + 1e + 2h + 2i + 1l + 2n + 1o + 1r + 3s + 3t + 1u + 1v

5 1a + 1c + 1d + 1e + 1h + 4i + 1l + 1n + 2o + 2r + 4s + 1u

6 1a +2c+5e +1h+1m +2n+1o+1p+1s+2t +1u +2x

7 5a + 3e + 2h + 1l + 1m + 1n + 1p + 3s + 3t

8 2a +1d + 4e +1g + 1h+ 1l +2m +2n +1o + 1r +3t + 1u

9 2a + 2d + 1e + 3h + 1i + 2o + 2r + 2s + 4t + 1w

10 1a + 1c + 2d + 4e + 2h + 2i + 4l + 2s + 1t + 1w

11 2a+1b+1c+1d+3e+1f+3h+1i+1l+2n+1r+1s+1w+1y

12 3a + 1c + 2d + 2e + 2f + 2l + 1n + 2o + 1p + 3r + 1u

13 1a+2d+2e+1f+2l+2m+1n+3o+2r+1s+1t+1w+1y

14 2a+2d+2e+1f +1h+2i+1l+2n+3o+1t+1v+1w+1y

15 1a+1c+5e+1f +2i+2l+1m+1n+1o+1r+2s+1v+1y

16 1a + 2b + 3c + 2e + 2h + 1i + 4l + 1n + 1p + 1s + 1u + 1y

17 1a + 1b + 1c + 4e + 2f + 1g + 1i + 2n + 4o + 1r + 1t + 1v

18 1a+1c+2d+3e+2h+1i+2m+1n+2o+1s+2t+1u+1w

19 3a + 1c + 1e + 1i + 1m + 1n + 3o + 3s + 4t + 1u + 1y

20 1a + 1b + 3e + 2h +2n + 1o +2r +1s +3t +2u +1w + 1y

21 3a + 1b + 3d + 7e + 1f + 3h + 4i + 2k + 3l + 1m + 3n +
3o + 1p + 2r + 7s + 4t + 1u + 1y

22 4a + 2c + 2d + 6e + 1h + 3i + 2l + 2n + 5o + 1p + 1q +
5r + 3s + 4t + 7u + 1v + 1y

23 3a + 1b + 1d + 9e + 1f + 2h + 4i + 3l + 1m + 3n + 2o +
4r + 7s + 4t + 1u + 2v + 2y

24 6a + 1c + 1d + 6e + 4f + 3h + 3i + 1l + 2m + 4n + 3o +
1p + 2r + 3s + 6t + 1u + 1v + 1w + 1y

25 2a + 2b + 1c + 1d + 7e + 1f + 1g + 2h + 4i + 1m + 3n +
3o + 2p + 2q + 2r + 3s + 9t + 2u + 1w + 1y

26 3a + 2c + 2d + 5e + 1f + 1g + 6h + 1i + 1l + 2m + 3n +
5o + 2p + 2r + 3s + 7t + 3u + 1y
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# Corresponding Pattern

27 3a + 1b + 2c + 2d + 7e + 2f + 1g + 2h + 6i + 3m + 4n +
3o + 1p + 4r + 3s + 4t + 1u + 1y

28 5a + 1c + 5d + 4e + 1g + 6h + 3i + 3k + 3n + 5o + 1p +
3r + 4s + 2t + 1u + 2w + 1y

29 3a + 1d + 5e + 1g + 2h + 5i + 1k + 2l + 1m + 4n + 6o +
1p + 2r + 6s + 6t + 1u + 1v + 1w + 1y

30 7a + 1c + 1d + 6e + 1f + 6h + 1i + 6l + 1m + 2n + 6o +
1r + 3s + 4t + 1u + 1v + 1w + 1y

31 5a + 2c + 3d + 3e + 1g + 1h + 6i + 1k + 1m + 4n + 4o +
3p + 6r + 6s + 1t + 2u + 1v

32 2a + 1b + 2c + 1d + 11e + 3h + 3i + 1k + 2l + 2m + 5n +
5o + 2r + 1s + 4t + 2u + 2v + 1y

33 6a + 1c + 2d + 7e + 1f + 1g + 4h + 1i + 1k + 3l + 2m +
3n + 3o + 2r + 4s + 4t + 3u + 2y

34 3a + 2d + 6e + 2h + 6i + 3l + 1m + 2n + 6o + 1p + 6r +
4s + 3t + 3u + 1v + 1y

35 2a + 2b + 5d + 13e + 1f + 5h + 1i + 1l + 7n + 3o + 3r +
1s + 2t + 1u + 1v + 1w + 1y

36 4a + 1b + 2d + 7e + 1f + 2g + 4h + 2i + 2l + 3m + 7n +
3o + 1r + 1s + 7t + 1u + 1w + 1x

37 1a + 2c + 3d + 9e + 2f + 2h + 8i + 1j + 1k + 1l + 5n +
2o + 1r + 4s + 3t + 2u + 1v + 2w

38 3a + 2c + 3d + 5e + 6h + 7i + 4l + 1m + 2n + 1o + 2p +
5r + 5s + 2t + 1w + 1y

39 7a + 2b + 1c + 8e + 1f + 5h + 3i + 4l + 1m + 1n + 2o +
1p + 2r + 3s + 6t + 1u + 1v + 1y

40 5a + 2b + 3d + 6e + 2f + 6h + 2i + 2m + 4n + 3o + 4r +
2s + 4t + 2u + 1w + 2y

Table C.6: List of the abelian patterns presented in Table C.5
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