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Chapter 1

Introduction

Classical statistical methods often make parametric assumptions about dis-

tributions, the most common one being the assumption of a normal distribu-

tion. Although parametric distributions provide a reasonable approximation

to the truth in many cases, there are also many situations were their use

is not justified. A wide variety of nonparametric methods have been devel-

oped to alleviate this problem. These are, for example, based on ranks or the

empirical distribution function. Many nonparametric methods, however, lack

interpretability. Finite mixture models assume that a distribution is a combi-

nation of several parametric distributions. They offer a compromise between

the interpretability of parametric models and the flexibility of nonparametric

models. Although they are strictly speaking still parametric models, they are

therefore sometimes considered to be semiparametric. Figure 1.1 shows some

examples of mixtures of two normals that show features that normal distri-

butions cannot possess, i.e., bimodality, heavy tails and skewness. While the

densities shown have only two components and are still relatively close to the

normal distribution, Marron and Wand (1992) give a collection of mixtures

of normals that have densities with a much wider range of shapes.

1
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Figure 1.1: Densities of three mixtures of two normals exhibiting bimodality,

heavy tails and skewness. The densities belong to mixture distributions given by

0.5 ·N(−1.5, 1) + 0.5 ·N(1.5, 1), 0.549 ·N(0, 0.676) + 0.451 ·N(0, 2.799) and 0.7 ·N(0, 1) +

0.3 ·N(1.75, 2.25) (N(µ, σ2) denotes a normal distribution with mean µ and variance σ2).

The second mixture is chosen to minimize the absolute distance to the density of the t-

distribution with 4 degrees of freedom, integrated between the 0.01 and 0.99 quantiles of

the t-distribution.

Fitting finite mixture models in a Bayesian framework offers many ad-

vantages. As will be discussed in Chapter 2 it allows valid inference also for

small samples and, using only weak prior information, can solve problems

with unbounded likelihood functions that can, for example, occur with finite

mixtures of normals. The Bayesian approach also offers an elegant exten-

sion of finite to (countable) infinite mixture models. These can be shown

to provide the same flexibility as nonparametric models, as the posterior

on the space of distributions can be shown to accumulate around the true

distribution. These results are reported in Chapter 3 where, as an example,

Bayesian mixtures are also used to flexibly model the goalkeeper’s effect on

the probability of saving a penalty.
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Depending on the application the components of mixture models can

either be viewed as just a means to the flexible modeling of a distribution or as

defining subgroups of a population with different parametric distributions. In

the latter case mixture models can be used for cluster analysis and the group

structure of a sample of observations can be inferred. In a cluster analysis

application Bayesian mixtures, besides the already mentioned advantages,

allow the estimation of the number of clusters at the same time as the cluster-

specific parameters.

A drawback is, however, that the standard approach for fitting Bayesian

models, Markov Chain Monte Carlo (MCMC), unfortunately leads to infer-

ential difficulties in this case. Since the likelihood (and usually the posterior

as well) of a mixture model is invariant to a permutation of component labels,

the labels associated with the clusters can change during the MCMC run,

a phenomenon called label-switching. Label switching has to be addressed

appropriately before clustering inference can be drawn. The problem gets

severe, if the number of clusters is indeed allowed to vary during the MCMC

run. Existing methods to deal with label-switching and a varying number of

components are reviewed in Chapter 5 and new approaches are proposed for

both situations. One of the new approaches, the maximization of the pos-

terior expected adjusted Rand index, makes use of similarity measures for

clusterings. These are therefore reviewed in Chapter 4, along with a short

general introduction to cluster analysis and a description of the relation of

finite mixture models and common clustering criteria. Finally, the new ap-

proaches are compared to the previous methods on simulated and real data.

The real data used for cluster analysis are two gene expression data sets and

Fisher’s iris data.



Chapter 2

Bayesian Mixtures

2.1 Finite Mixtures

2.1.1 Basic Definition

Finite mixture distributions have a long history in statistics dating back

to the work of Pearson (1894) who first fitted a mixture with two normal

components to a data set. Only a brief introduction to the theory of finite

mixture models can be given here, which focuses on Bayesian approaches.

More detailed discussion of many aspects sketched here can be found in

Frühwirth-Schnatter (2006). For more details on the frequentist approach to

finite mixture modeling see McLachlan and Peel (2000).

A random variable or vector Y that takes values in Y ⊆ Rp has a finite

mixture distribution if its probability density function (existence of densities

with respect to the Lebesgue measure will be assumed throughout this thesis)

can be written as

p(y|θ,π) =
K∑

k=1

πkp(y|θk) , (2.1)

where θ = (θ1, . . . , θK)′ and π = (π1, . . . , πK)′ and p(y|θk) is a probability

4
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density with parameter θk and πk is the weight of the kth component. The

weights are restricted by

πk ≥ 0 and
K∑

k=1

πk = 1 ,

so that π is a point on the K-dimensional simplex. While the component

densities p(y|θk) can be arbitrary parametric densities, they are often taken to

be members of the exponential family. In this thesis p(y|θk) will in most cases

be univariate or multivariate normal distributions which will then be denoted

by φ(y|µk, σ
2
k) and φ(y|µk, Σk), so that θk = (µk, σ

2
k)
′ and θk = (µk, Σk)

′. For

now the number of components K ∈ N will be assumed to be known.

An equivalent formulation of model (2.1) is obtained by introducing an

allocation variable Z where

p(y|θ,π) =
K∑

k=1

P (Z = k|π)p(y|Z = k, θ)

with

P (Z = k|π) = πk and

p(y|Z = k, θ) = p(y|θk) .

This formulation is needed for cluster analysis, as Z = k denotes membership

in the kth cluster in this case. If θ and π are known a simple application of

Bayes’ theorem gives the distribution of Z|y as

P (Z = j|y, θ,π) =
πjp(y|θj)∑K

k=1 πkp(y|θk)
. (2.2)

Estimating Z to be equal to the value of j that maximizes (2.2) is often

referred to as the Bayes classifier for Z.

If a sample of independent random variables Y1, . . . , Yn from (2.1) is ob-

served, yielding observations y = (y1, . . . , yn)′, the likelihood function is given
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by

p(y|θ,π) =
n∏

i=1

p(yi|θ,π) =
n∏

i=1

(
K∑

k=1

πkp(yi|θk)

)
. (2.3)

This can again be written in an alternative form with a vector Z =

(Z1, . . . , Zn)′ of allocation variables via

p(y|Z,θ) =
n∏

i=1

K∏

k=1

p(yi|θk)
I(Zi=k) (2.4)

and

p(Z|π) =
n∏

i=1

K∏

k=1

π
I(Zi=k)
k =

K∏

k=1

π
Pn

i=1 I(Zi=k)
k , (2.5)

where I(.) denotes an indicator function. In the following
∑n

i=1 I(Zi = k),

the number of observations associated with component k, will be abbreviated

by nk. The likelihood (2.3) is recovered by summing p(y|Z,θ)p(Z|π) over the

Kn possible values of Z.

2.1.2 Priors

For Bayesian inference a prior distribution has to be assigned to the param-

eters θ and π, which are usually assumed to be independent a priori, so

that

p(θ, π) = p(θ)p(π) .

For the prior on the weights π a Dirichlet distribution with parameter α =

(α1, . . . , αK)′ will be taken, which will be denoted by Dir(α). The density is

given by

p(π) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏

k=1

παk−1
k ∝

K∏

k=1

παk−1
k .

The Dirichlet distribution is the multivariate extension of the Beta distribu-

tion. The reason for using it is that it is the conjugate prior for π in (2.5),
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because

p(π|Z) ∝ p(Z|π)p(π) ∝
K∏

k=1

παk+nk−1
k ,

which is a Dir(α1+n1, . . . , αK +nK). This property will turn out to be useful

for fitting the model (2.3).

The specific prior assigned to θ depends of course on the form of the

p(y|θk). Roeder and Wasserman (1997) showed that in general assigning an

improper prior to θ leads to an improper posterior. This is due to the fact

that similar to the likelihood (2.3) the posterior p(θ,π|y) can be written

as a summation over all possible allocations of Z. For values of Z where

at least one component is empty the observations provide no information

on some of the θk’s. For these Z an improper prior leads to p(θ,π|y,Z)

being improper which then leads to the whole posterior being improper. We

will therefore tend to assign relative vague but proper prior distributions

to θ. If the component densities are from the exponential family it is again

convenient for model fitting to use conjugate priors. As an example we will

consider the case where the component densities are univariate normals. A

prior suggested, for example, by Bensmail et al. (1997) is the conditionally

conjugate prior

p(θ) =
K∏

k=1

p(µk|σ2
k)p(σ2

k)

µk|σ2
k ∼ N(b0, σ

2
k/v) (2.6)

σ−2
k ∼ Ga(c0, C0) .

The component parameters θk = (µk, σ
2
k)
′ are assumed to be independent,

whereas µk and σ2
k are dependent in each component. Ga(c0, C0) denotes

a Gamma distribution with expectation c0/C0. The posterior distribution

p(θ|y,Z) for a known allocation vector Z is then available in closed form,
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which is given by

p(θ|y,Z) =
K∏

k=1

p(µk|σ2
k,y,Z)p(σ2

k|y,Z)

µk|σ2
k,y,Z ∼ N

(
v

v + nk

b0 +
nk

v + nk

ȳk,
σ2

k

v + nk

)

σ−2
k |y,Z ∼ Ga

(
c0 +

nk

2
, C0 +

1

2

[
nks

2
y,k +

v nk

v + nk

(ȳk − b0)
2

])
.

where ȳk and s2
y,k are the sample mean and variance of the observations

with Zi = k. Bensmail et al. (1997) choose the hyperparameters to be data-

dependent as b0 = ȳ, v = 1, c0 = 2.5 and C0 = 0.5 · s2
y, where ȳ and s2

y are

the sample mean and variance of all observations.

2.1.3 Identifiability

A problem with mixture models is that they are not identifiable, i.e., there

are distinct parameter values (θ, π)′ and (θ∗,π∗)′ so that

p(y|θ,π) = p(y|θ∗,π∗) for almost all y ∈ Y .

One reason for this is that a permutation of the component labels does not

change p(y|θ, π), as just the order of summation in (2.1) is changed. So

for any permutation ν (i.e., ν being a bijective map from {1, . . . , K} into

{1, . . . , K}) it holds that p(y|θ,π) = p(y|ν(θ), ν(π)). This leads to the like-

lihood (2.3) having K! identical modes. The same is true for the posterior

distribution p(θ,π|y) if the priors p(θk) and p(πk) are identical for all k,

which will usually be the case. This will lead to problems for the Bayesian

estimation of (θk, πk)
′ or Z, which will be considered in detail in Chapter 5.

Note, however, that identifiability is not an issue if one wants to estimate a

function of the parameters that is invariant to a permutation of component

labels, for example, the mixture density p(y|θ,π) itself.
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Unidentifiability of p(y|θ,π) also arises when a (K + 1)th component is

added and either π∗K+1 = 0 or θ∗K+1 = θk and π∗K+1 + π∗k = πk. As will be

discussed in Subsection 2.1.5 at least the situation where π∗K+1 = 0 can be

effectively dealt with by choosing an appropriate prior for the weights π.

While the above mentioned problems with identifiability arise for com-

ponent densities p(y|θk) of any family of distributions, for some families the

additional problem of generic identifiability arises. One such family is the

family of uniform distributions where, for example,

Y1 ∼ 1

2
U [−2, 1] +

1

2
U [−1, 2] and

Y2 ∼ 1

3
U [−1, 1] +

2

3
U [−2, 2]

have the same density. Another example is a mixture of Bernoulli distribu-

tions
∑K

k=1 πkBern(pk), which turns out to have the same density as a single

Bernoulli with parameter
∑K

k=1 πkpk. Teicher (1963) proved that, among oth-

ers, univariate mixtures of normals and Gamma distributions are generically

identifiable. These results were extended to multivariate mixtures of normals

by Yakowitz and Spragins (1968).

2.1.4 Model Fitting

Modern computational approaches for fitting the finite mixture model make

use of the representation of the likelihood given by (2.4) and (2.5), which

includes the allocation vector Z. In a frequentist setting maximum likelihood

estimates are usually obtained via the Expectation-Maximization (EM) al-

gorithm (Dempster et al., 1977). This algorithm iterates between the E-step,

which for finite mixture models consists of computing the expectations

E(I(Zi = k)|yi,θ
(t),π(t)) = P (Zi = k|yi,θ

(t),π(t)) + Ẑ
(t+1)
ik
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given the values θ(t) and π(t) at iteration t, where the ’+’-symbol denotes a

definition. The Ẑ
(t+1)
ik are then given by (2.2).

In the M-step the expectation of the logarithm of the likelihood

K∑

k=1

n∑
i=1

Ẑ
(t+1)
ik (log πk + log p(yi|θk)) (2.7)

is maximized with respect to θ and π to obtain θ(t+1) and π(t+1). The value

of π that maximizes (2.7) is in general given by

π
(t+1)
k =

n∑
i=1

Ẑik

n
, (2.8)

whereas the value of θ that maximizes (2.7) depends of course on the distri-

bution family of p(y|θk). It is often available in closed form.

Dempster et al. (1977) show that an iteration of the EM algorithm does

not decrease the likelihood p(y|θ,π), so that the algorithm is guaranteed to

converge if the likelihood is bounded from above. The EM algorithm can also

be applied in a Bayesian context, where the aim is to find values of θ and

π that maximize the posterior density p(θ, π|y), also known as the MAP

estimate. This approach is, for example, taken by Fraley and Raftery (2007).

The E-step is unchanged and for the M-step the terms log p(π) and log p(θ)

representing the priors are included in (2.7). For example, under the Dir(α)

prior for π (2.8) changes to

π
(t+1)
k =

n∑
i=1

Ẑik + αk − 1

n +
∑K

k=1 αk −K
.

Alternatively, Markov Chain Monte Carlo (MCMC) methods can be applied

to obtain a sample of the posterior distribution. These methods construct

a Markov chain that has the posterior as its stationary distribution. If the

chain is run for some time the draws will come from the posterior distribu-

tion. More details on MCMC methods can, for example, be found in Robert
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and Casella (2004). For finite mixtures a special MCMC method, the Gibbs

sampler (Gelfand and Smith, 1990), is usually employed. The Gibbs sam-

pler starts from some allocation Z(0) and iterates the following steps, where

y
(t)
k = {yi : Z

(t)
i = k}:

1a) π(t+1)|Z(t) is sampled from Dir(α1 + n1, . . . , αK + nK).

1b) For k = 1, . . . , K: θ
(t+1)
k |y,Z(t) is sampled from p(θk|y(t)

k ).

2) For i = 1, . . . , n: Z
(t+1)
i |yi,θ

(t+1),π(t+1) is sampled from the multino-

mial distribution given by (2.2).

If a conjugate prior p(θ) has been chosen as in (2.6) the posterior p(θk|yk)

is available in closed form. The first B iterations, which the chain needs to

reach its stationary distribution, are discarded and inferences are based on

the remaining sample (θ(t),π(t)), t = B + 1, . . .. Optionally this sample can

be thinned to reduce autocorrelation by keeping only every jth draw. The

Gibbs sampler can be seen as a stochastic version of the EM algorithm.

As pointed out by Chen and Liu (1996) an alternative Gibbs sampler is

available that consists of sampling from the posterior of the allocations

p(Z|y) ∝ p(y|Z)p(Z)

directly. For this the distributions

p(y|Z) =
K∏

k=1

∫
p(yk|θk)p(θk)dθk and

p(Z) =

∫
p(Z|π)p(π)dπ

must be available in closed form, which for the former is the case if p(θk)

is conjugate. For a Dir(α) prior on π with a symmetric parameter α =

(α, . . . , α)′ it turns out that

p(Z) =
Γ(Kα)

∏K
k=1 Γ(α + nk)

Γ(Kα + n)Γ(α)K
. (2.9)
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The distribution of Zi|Z−i,y is then used for Gibbs sampling, where Z−i =

(Z1, . . . , Zi−1, Zi+1, . . . , Zn)′. Details can be found in Chen and Liu (1996) or

Frühwirth-Schnatter (2006, Chapter 3.4).

2.1.5 Advantages of a Bayesian Approach

So why be Bayesian when fitting a finite mixture model? It is usually not

the case that substantive prior information is included in either p(θ) or p(π).

However, to have weakly informative priors on these parameters as in (2.6)

can be of advantage. It is well known that the EM algorithm for ML esti-

mation of (θ,π) often diverges to a point of infinite likelihood. For many

mixtures, e.g., univariate and multivariate mixtures of normals where the

components have different variances, the likelihood is unbounded. Consider

a mixture of univariate normals. If µk = yi for some k and i the likelihood

(2.3) contains a factor that is proportional to 1/σk. If σ2
k → 0 the likelihood

will tend to infinity. It also often happens that the EM algorithm converges

to so-called spurious modes of the likelihood, that correspond to a compo-

nent of small variance being fitted to a small group of close observations.

McLachlan and Peel (2000, Chapter 3.10) give a detailed discussion on spu-

rious modes. A possible solution due to Hathaway (1985) is to impose the

constraint mink,j σ2
k/σ

2
j ≥ c > 0. The problem is, however, to find a value of

c that is large enough to get rid of most spurious modes but not so large that

the constraint is not fulfilled by the true parameter value (Hathaway, 1985).

If a Ga(c0, C0) prior for σ−2 is used as in (2.6), Frühwirth-Schnatter (2006,

p. 180) shows that σ2
k/σ

2
j follows an F-distribution with parameters 2c0 and

2c0. For c0 > 2 this density has finite variance and is bounded away from 0,

leading to a stochastic version of Hathaway’s constraint. A stochastic con-

straint is more flexible than a strict boundary, instead of completely ruling
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out some solutions they are only downweighted by the prior. The model is

thus less sensitive to the choice of c0 than of c.

Often it is desirable to have all πk > 0, so that the model can be dis-

tinguished from a (K − 1)-dimensional mixture. The Dirichlet distribution

on π is usually chosen to be symmetric in the components, an exception

being outlier modeling, see e.g., Verdinelli and Wasserman (1991), so that

α1 = . . . = αK + α. Then marginally πk ∼ Beta(α, (K − 1)α), which can

be bounded away from 0 by choosing α > 1, Frühwirth-Schnatter (2006,

pp. 104-105), for example, advocates using α = 4.

So even with relatively vague priors it is possible to rule out undesirable

behavior of the parameters. Another advantage is that for finite mixture

models the sample size has to be fairly large before the asymptotic theory of

maximum likelihood applies (McLachlan and Peel, 2000, p. 68). A Bayesian

approach via Gibbs sampling draws directly from the posterior distribution

and allows valid inference also for small samples.

2.1.6 Choice of Number of Components K

Up till now the number of components K has been assumed to be known.

If K is unknown one is faced with a model selection problem. If the finite

mixture model with K components is denoted by MK , one has to choose

one of the models M1, . . . ,MKmax . Often standard model selection criteria

of the form

−2 log p(y|θ̂, π̂,MK) + λ · dK

are minimized, where θ̂ and π̂ refer to either ML or MAP estimates, λ is a

penalty parameter for model complexity and dK is the number of parameters

of MK . Choosing λ = 2 or λ = log(n) leads to the well-known information

criteria AIC (Akaike, 1974) or BIC (Schwarz, 1978), respectively. It should be
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noted that because of the identifiability issues discussed in Subsection 2.1.3

the regularity conditions for the asymptotic justification of these criteria do

not hold. Nevertheless the criteria are often employed for finite mixtures. For

AIC it has been found by many authors that the true number of components

is overestimated, see e.g., McLachlan and Peel (2000, pp. 217-220). Use of

BIC is advocated among others by Roeder and Wasserman (1997) and Fraley

and Raftery (2002) and it selects the correct number of components if the

component densities p(y|θk) are correctly specified.

The BIC gives an asymptotic approximation to the logarithm of the

marginal likelihood

p(y|MK) =

∫
p(y|θ,π,MK)p(θ,π|MK)dθdπ ,

see Kass and Raftery (1995) for details. Given an MCMC sample (θ(t),π(t))

the integral can also be approximated using numerical methods which are

discussed in detail in Frühwirth-Schnatter (2006, pp. 139-165). K can then

be chosen so that the marginal likelihood is maximized.

It is also possible to treat MK as a random variable, to as-

sign it a prior distribution and to consider the posterior distribution

p(θ,π|MK ,y)p(MK |y). To sample from such a posterior an MCMC sampler

that includes moves that change the dimension of θ and π is needed. Such

a sampler is given by the reversible jump algorithm of Green (1995), which

has been applied to finite mixture models by Richardson and Green (1997).

They consider moves that split a component in two or merge two components

as well as the birth or death of an empty component. Care must be taken

to define these dimension-changing moves in such a way that they can be

reverted. See Frühwirth-Schnatter (2006, pp. 129-139) for an introduction to

reversible jump MCMC for finite mixture models.

Although reversible jump MCMC has been applied successfully to a vari-
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ety of mixture models, in this thesis we will focus on another approach, that

will be considered in the next section. The approach extends the finite mix-

ture model to an infinite mixture, which implicitly places a prior distribution

on the number of components K.

2.2 Infinite Mixtures

In this section it is described how infinite mixture models can be defined di-

rectly via a stick-breaking construction as well as indirectly via discrete ran-

dom mixing measures. A focus will be on mixtures arising from the Dirichlet

process (Ferguson, 1973), as they are historically the first models of this kind

and still the most commonly applied.

2.2.1 Stick-Breaking Priors

It is possible to extend the finite mixture model of Section 2.1 to a (countable)

infinite mixture model of the form

p(yi|θ,π) =
∞∑

k=1

πkp(yi|θk) . (2.10)

As in the finite mixture case the prior distributions for θ and π are assumed

independent, where the distribution of the πk needs to fulfill the conditions

πk ≥ 0 and ∞∑

k=1

πk = 1 almost surely . (2.11)

Ishwaran and James (2001) define p(π) by a so-called stick-breaking con-

struction, where

π1 = V1 and

πk = (1− V1)(1− V2) . . . (1− Vk−1)Vk , k ≥ 2 , (2.12)
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V1 = π11 − V1

V2(1 − V1) = π2(1 − V2)(1 − V1)

Figure 2.1: Illustration of stick-breaking construction process.

and the Vk are independently Beta(ak, bk) distributed with ak, bk > 0. Start-

ing with a stick of length 1, pieces are successively broken off. The proportion

of the remaining stick that is broken off is determined by Vk. Figure 2.1 illus-

trates this construction. Ishwaran and James (2001) give conditions on the ak

and bk for (2.11) to hold, it is for example fulfilled iff
∑∞

k=1 log(1 + ak

bk
) = ∞.

An example where this is not the case is given by ak = a and bk = k2, since

log(1 + a
k2 ) < a

k2 and
∑∞

k=1
a
k2 < ∞.

The most common stick-breaking priors arise from the Dirichlet process

of Ferguson (1973) and from the Pitman-Yor process (Pitman and Yor, 1997).

In these cases the πk’s have stick-breaking constructions that fulfill condition

(2.11) with ak = 1 and bk = α > 0 for the Dirichlet process and ak = 1 − β

and bk = α + kβ for the Pitman-Yor process, where 0 ≤ β < 1 and α > −β.

In the next subsection the Dirichlet process will be considered in more detail

as the applications in Section 3.2 and 5.5 make use of it.
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2.2.2 The Dirichlet Process

An alternative way to express a mixture model is as

p(yi|θ, π) =

∫
p(yi|ϕ)dG(ϕ) ,

where G is a discrete probability measure with atoms θ and weights π. If

(θ, π) are assigned a prior, G becomes random. For infinite mixtures it is

common to define a prior directly for the measure G. In this case the model

can be written as

yi|ϕi ∼ F (ϕi)

ϕi|G ∼ G (2.13)

G ∼ D ,

where F (ϕ) is the distribution with density p(y|ϕ), and D specifies a distribu-

tion over the distributions G. The most common choice for D is the Dirichlet

process (DP). Ferguson (1973) introduced the DP as a random probability

measure on a measurable space (Ω,A) with mass parameter α and base mea-

sure G0, written G ∼ DP (α, G0). Its defining property is that for every finite

partition (A1, . . . , Al) of Ω,

(G(A1), . . . , G(Al)) ∼ Dir(αG0(A1), . . . , αG0(Al)) . (2.14)

Ferguson shows that the distributions (2.14) are consistent over all partitions

and thus define a stochastic process. Since (A,AC) is a partition it follows

that G(A) has a Beta(αG0(A), α[1−G0(A)]) distribution for all A ∈ A and

thus

E(G(A)) = G0(A) and (2.15)

V ar(G(A)) =
G0(A)(1−G0(A))

α + 1
. (2.16)
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The base measure G0 can therefore be seen as the expectation of G, whereas

α determines its variability around G0. Ferguson (1973) also gives the covari-

ance of G for any two sets A1, A2 ∈ A as

Cov(G(A1), G(A2)) =
G0(A1 ∩ A2)−G0(A1)G0(A2)

α + 1
.

Sethuraman (1994) showed that the DP can be written as

G =
∞∑

k=1

πkδθk
, (2.17)

where the θk are drawn from G0 independently from each other and the πk’s

follow the stick-breaking construction given in the last subsection. Because

of the discreteness of the DP, exhibited in (2.17), it is generally not used to

model observations directly. Rather an underlying parameter ϕ is assumed

to follow a DP, as in (2.13). Such Dirichlet process mixture models were first

considered by Antoniak (1974). In the following we will therefore assume that

the Dirichlet process is used to model the distribution of a parameter ϕ.

The Dirichlet process also has a conjugacy property. If ϕ1, . . . , ϕn|G i.i.d.∼ G

and G ∼ DP (α,G0) then the posterior distribution G|ϕ1, . . . , ϕn is again a

Dirichlet process with parameters α + n and

G∗
0 =

α

α + n
G0 +

1

α + n

n∑
i=1

δϕi
. (2.18)

The distribution function of G∗
0 is thus a weighted mean of the distribution

function of G0 and the empirical distribution function of the ϕi’s.

Blackwell and MacQueen (1973) showed that the predictive distribution

of ϕn+1|ϕ1, . . . , ϕn, where G has been integrated out, is given by (2.18). There

is thus positive probability that ϕn+1 is equal to one of the previously drawn

ϕ’s. The successive distributions of ϕi|ϕ1, . . . , ϕi−1 have been described by

Pitman (mentioned in Aldous (1985)) with the metaphor of the Chinese
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Figure 2.2: Chinese restaurant process.

restaurant process, where customers ϕ1, ϕ2, . . . arrive in a restaurant with

infinitely many tables, where a specific dish θk is served at each table. If a

newly arriving guest knows someone already sitting at a table he joins that

table, otherwise he starts a new table, see Figure 2.2 for an illustration. A

related metaphor is that of a Pólya urn. Let θ1, . . . , θK be the unique values

of ϕ1, . . . , ϕn with K ≤ n and, as in the finite mixture model, introduce

allocation variables Zi such that ϕi = θZi
. The distribution of Zi|Zi−1 with

Zi−1 = (Z1, . . . , Zi−1)
′ is then given by

P (Zi = k|Zi−1) =





nk,i−1

α+i−1
, k = 1, . . . , K

α
α+i−1

, k = K + 1
, (2.19)

with nk,i−1 being the number of Zi−1 equal to k. The successive draws of

Zi|Zi−1 thus follow an urn scheme, where, if a ball of a specific color is

drawn, the ball is replaced and another one of the same color is added and

with probability α/(α + i− 1) a ball of a new color is drawn.

Neal (2000) and Green and Richardson (2001) considered the deriva-

tion of the Dirichlet process as limit of a finite mixture model. For a fi-

nite mixture model with K∗ components, where a priori θk
i.i.d∼ G0 and
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π ∼ Dir(α/K∗, . . . , α/K∗), it can be obtained that

P (Zi = k|Zi−1) =
P (Zi = k,Zi−1)

P (Zi−1)

(2.9)
=

Γ( α
K∗ + nk,i−1 + 1)

Γ(α + i)

Γ(α + i− 1)

Γ( α
K∗ + nk,i−1)

=
α

K∗ + nk,i−1

α + i− 1
,

which for K∗ →∞ leads to

P (Zi = k|Zi−1) =
nk,i−1

α + i− 1
and (2.20)

P (Zi 6= k ∀k ≤ K|Zi−1) =
α

α + i− 1
. (2.21)

In (2.21) Zi can be set to K + 1. The distribution of Zi|Zi−1 given by (2.20)

and (2.21) is then equal to (2.19), so that the defined models are the same.

2.2.3 Model Fitting

In this subsection two Gibbs sampling algorithms for fitting infinite mixture

models of the form (2.13) are introduced. They are described for the special

case of Dirichlet process mixture models but can be used in a similar fashion

for other stick-breaking priors (Ishwaran and James, 2001). The first algo-

rithm relies on the Pólya urn scheme (2.19). Given a sample y1, . . . , yn each

Zi is taken in turn to be the last observation arising from the urn, which is

valid because the Zi are exchangeable. Then

P (Zi = k|Z−i,y, θ) ∝




nk,−i

α+n−1
p(yi|θk) , k = 1, . . . , K

α
α+n−1

∫
p(yi|θ)dG0(θ) , k = K + 1

,

(2.22)

with nk,−i being the number of Z−i equal to k. The Pólya urn Gibbs sampler

repeats the following steps starting from an allocation Z0:

1) For k = 1, . . . , K: θ
(t+1)
k |y,Z(t) is sampled from p(θk|y(t)

k ).
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2) For i = 1, . . . , n: Z
(t+1)
i |Z(t)

−i, yi, θ
(t+1) is sampled from (2.22).

Note that K varies between the iterations. Basically only the θk of compo-

nents of the infinite mixture (2.10), that are currently associated with at

least one observation, are sampled. This sampler is applicable, if the inte-

gral in (2.22) can be solved analytically and if it is possible to sample from

p(θk|yk), both being the case if G0 is the conjugate distribution for p(y|θ).
In that case it is also possible to analytically integrate over the θk to obtain

the distribution

P (Zi = k|Z−i,y) ∝




nk,−i

α+n−1

∫
p(yi|θ)p(θ|y−i,k)dθ , k = 1, . . . , K

α
α+n−1

∫
p(yi|θ)dG0(θ) , k = K + 1

.

(2.23)

The Pólya urn Gibbs sampler reduces then to repeating step 2) with the

distribution (2.23). Algorithms for non-conjugate G0 are, for example, given

by Neal (2000).

The second Gibbs sampler approximates the infinite mixture by a finite

one. The random probability measure G in (2.17) is truncated at a large

value N , so that G =
∑N

k=1 πkδθk
. The truncation is done by setting VN = 1

in the stick-breaking construction (2.1) of the πk and the resulting random

probability measure is referred to as a truncated Dirichlet process (TDP).

Ohlssen et al. (2007) choose N by considering E(
∑∞

k=N πk), the expected sum

of the weights of the components that differ between the two processes. From

(2.1) this is equal to E(
∏N−1

k=1 (1 − Vk)) = ( α
α+1

)N−1, since for the Dirichlet

process (1 − Vk) are independently Beta(α, 1) distributed. Ishwaran (2000)

derives bounds on the total variation distance between the DP and TDP. The

Gibbs sampler employing the TDP is referred to as blocked Gibbs sampler

by Ishwaran and James (2001). It basically consists of the same steps as the

Gibbs sampler for the finite mixture model in Subsection 2.1.4, except that
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π|Z is not sampled directly but via (2.12) and

Vk|Z ∼ Beta(1 + nk, α +
N∑

l=k+1

nl) .

Recently, Papaspiliopoulos and Roberts (2008) proposed an MCMC sampler

that avoids the need for truncating the stick-breaking construction of G. The

idea is that sampling of πK∗ and θK∗ for larger values of K∗ is only started

at that point where the number of components K first reaches K∗ during the

MCMC run.

2.2.4 Extensions of the Dirichlet Process

Its conjugacy and the availability of efficient computational methods have

made the Dirichlet process a popular choice for modeling a single distribu-

tion with a Bayesian mixture. Several extensions of the DP, like hierarchical,

nested and dependent DPs, have been proposed to model a collection of re-

lated distributions. As an example consider distributions of patient outcomes

in several hospitals. For such a situation Teh et al. (2006) propose a hier-

archical Dirichlet process where the distribution Gj of outcomes in the jth

hospital follows a Dirichlet process

Gj|G0 ∼ DP (α, G0) ,

and the base measure G0 itself also follows a DP

G0 ∼ DP (γ, H) .

This leads to the Gj being discrete random measures with the same atoms θ’s

(drawn from H) and distinct but dependent π’s. The hierarchical DP can

be used to identify clusters of patients with similar outcomes over several

hospitals, so that hospitals will share some of their clusters. In a related
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approach, the nested Dirichlet process due to Rodriguez et al. (2008), the Gj

are distributed as mixtures of Dirichlet processes via

Gj =
∞∑

k=1

πjkδG∗k and G∗
k ∼ DP (γ,G0) ,

where the πjk follow the stick-breaking construction (2.12). In contrast to the

hierarchical DP the nested DP assigns positive prior probability to Gj being

equal to Gj′ for j 6= j′. It can thus be used for clustering hospitals with simi-

lar outcome distributions, while flexibly modeling the outcome distributions

themselves.

The idea of replacing the atoms of an infinite mixture by stochastic pro-

cesses is also useful for modeling related distributions Gx that are indexed by

a a continuous covariate x ∈ X . For example, Gelfand et al. (2005) develop

a model for spatial data analysis with the outcome distribution at a location

x being

Gx =
∞∑

k=1

πkδΘk(x)

where the Θk are 2-dimensional Gaussian processes. Alternatively Griffin and

Steel (2006) allow the weights πk to depend on x. Most important for these

approaches is to define the random distributions so that they are continuous

in the covariate, i.e., that Gx → Gx0 in distribution if x → x0. MacEachern

(2000) gives a general theory for such dependent Dirichlet processes.



Chapter 3

Flexible Modeling with

Bayesian Mixtures

3.1 Approximation of Distributions

When modeling the distribution of a random variable Y the assumption

that PY belongs to a specific parametric family is often not justified. Results

that show that Bayesian mixture models provide a suitable, more flexible

alternative are given in this section. These results concern the possibility

of approximating a distribution by mixtures and the accumulation of the

posterior around the true distribution.

3.1.1 Density Estimation

From Figure 1.1 it becomes clear that mixtures of normals can approxi-

mate a wide variety of distributions. Escobar and West (1995) and Roeder

and Wasserman (1997) therefore considered the use of Bayesian mixtures of

normals for density estimation. An interesting question in this situation is

whether it is possible to approximate any distribution on Y arbitrarily well

24
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with a mixture of e.g., exponential family distributions.

To answer this question it has to be specified first, what one understands

by ”arbitrarily well”. Let f0 ∈ M be the true density of Y , with M being

the space of all probability densities on Y . To approximate f0 arbitrarily

well is then taken to mean that ∀ε > 0 there is a mixture with density

fK =
∑K

k=1 πkp(y|θk), K ≤ ∞, such that d(f0, fK) < ε, with d(., .) being

a distance metric for densities. One common metric is the total variation

metric

dTV (f, g) =

∫

Y
|f(y)− g(y)|dy .

Another often applied metric is the Prokhorov or weak metric dw(f, g). While

this metric has a rather complicated form, (see, e.g., Gibbs and Su (2002)),

it is mainly important because dw(f, g) → 0 is equivalent with the weak

convergence of the underlying distributions Pf and Pg. As suggested by the

names, the total variation metric is stronger than the weak metric as it can

be shown that dw(f, g) ≤ dTV (f, g) for all f, g ∈ M (Huber and Ronchetti,

2009, p. 36).

In the context of approximating a prior distribution by a mixture of con-

jugate priors Diaconis and Ylvisaker (1985) show that any prior for an ex-

ponential family parameter can be approximated arbitrarily well in the weak

sense. This implies that any distribution on Rp can be approximated arbi-

trarily well by a mixture of multivariate normals, any distribution on (0, 1)

by a mixture of Betas and any distribution on (0,∞) by a mixture of Gam-

mas. In their proof Diaconis and Ylvisaker (1985) show that any distribution

can be approximated by a mixture of point masses and that any mixture of

point masses can be approximated by a mixture of conjugate priors. This also

demonstrates why an approximation in the weak sense is often not entirely

satisfying, since it does not, for example, require that the approximation of
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a continuous density is itself continuous.

Dalal and Hall (1983) consider the approximation of a prior density f0 by

a mixture of conjugate priors fK in the stronger total variation sense. They

show that f0 can be approximated arbitrarily well by fK if f0 is bounded and

continuous.

With these results it is clear that mixture models are generally flexible

enough to be used for approximating distributions.

3.1.2 Consistency of Posterior Distribution

By placing a prior on either θ and π or on a random mixing measure G

in a Bayesian analysis of mixtures one also implicitly assigns a prior to the

space of mixture densities F =
⋃∞

K=1FK , with FK being the set of densities

that are mixtures of K components. The space F is a subset of M, the

space of all probability densities on Y . An additional question is then that of

consistency, which means that given a sample Yn = (Y1, Y2, . . . , Yn)′ from a

true distribution P0 (with density f0), does the posterior distribution on F
accumulate around the true density f0 ∈M?

Formally, let Aε = {f : d(f0, f) < ε} be an ε-neighborhood of f0 and let

Π denote the induced probability distribution on F . Consistency then means

that

∀ε > 0 : Π(Aε|Yn) → 1 a.s. P∞
0 , (3.1)

where P∞
0 denotes repeated sampling from P0. The neighborhood Aε de-

pends of course on the chosen metric d, e.g., there are weak and total varia-

tion neighborhoods. Depending on the type of neighborhoods for which (3.1)

holds, it is spoken of weak or total variation consistency, the latter is also

referred to as strong consistency.
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An important role in proving consistency is played by Kullback-Leibler

neighborhoods for which d is the Kullback-Leibler (KL) divergence

dKL(f, g) =

∫

Y
f(y) log

f(y)

g(y)
dy . (3.2)

It can be shown that dKL(f, g) ≥ 0, with equality only for f
a.e.
= g, but that

dKL(f, g) 6= dKL(g, f) and that dKL does not fulfill a triangle inequality.

The Kullback-Leibler divergence is thus not a metric but has nevertheless

proven to be useful in information theory, probability and statistics. Many

of its properties are discussed in Cover and Thomas (1991). It holds that

dTV (f, g)2/2 ≤ dKL(f, g), so that Kullback-Leibler neighborhoods are smaller

than weak and total variation ones.

A necessary condition for posterior consistency is that of support of the

true density. This means that the prior puts mass in every neighborhood

of f0, formally: f0 has support iff ∀ε > 0 : Π(Aε) > 0. Different types of

neighborhoods Aε lead again to different types of support. Support basically

means that f0 can be approximated arbitrarily well and that some prior

weight is assigned to the approximation.

Freedman (1963) shows that weak support does not necessarily imply

weak consistency, whereas Schwartz (1965) proves that KL support is a suf-

ficient condition for weak consistency. KL support is therefore an important

property for which Wu and Ghosal (2008) provide an extensive treatment.

For many kinds of mixture distributions they derive conditions on f0 so

that KL support holds. For mixtures of univariate normal distributions it

is, for example, necessary for f0 to be bounded and continuous and that
∫
R |y|2+δf0(y)dy < ∞ for some δ > 0. Barron (1988) first established that

total variation consistency follows from KL support and some additional reg-

ularity conditions on Π. As exemplified by Barron, Schervish, and Wasserman

(1999) these conditions prevent the prior from assigning too much mass to
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very rough densities. They present one set of conditions, others are provided

by Ghosal, Ghosh, and Ramamoorthi (1999) and Walker (2004). Ghosal et al.

(1999) also show that the regularity conditions are met by Dirichlet process

mixtures of normals, thus establishing total variation consistency in this case.

Roeder and Wasserman (1997) show that for a finite mixture of normal dis-

tributions total variation consistency holds if f0 ∈ F , i.e., if f0 is itself a

mixture of normals. If f0 /∈ F , but in the KL support of F , it is necessary to

let K grow at a rate of o(n/ log n) to obtain total variation consistency. These

results show that Bayesian mixtures provide valid estimates of an unknown

density f0. And, as shown by Roeder and Wasserman (1997), they often out-

perform other commonly used methods, such as kernel density estimation,

while being better interpretable.

3.1.3 Hierarchical Models

Frequently Bayesian mixtures are not used to model a distribution of ob-

servations directly but for distributions that are part of a larger statistical

model. In commonly applied Bayesian hierarchical models, as described, for

example, in Gelman et al. (2004), Bayesian mixtures can be used to model

distributions on a higher level of the hierarchy. This is advantageous since

parametric assumptions about distributions on these higher levels can be dif-

ficult to check, yet can have considerable influence on the obtained results.

There are numerous applications using models of this kind, an early exam-

ple being Bush and MacEachern (1996), who consider a randomized block

design. They model the treatment effects parametrically, but use a Dirichlet

process mixture for the distribution of the block effects. Another example is

the work of Newton et al. (1996), who use a DPM to model the link func-

tion in a binary regression model. A recent review of related applications in
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biostatistics is given by Dunson (2010). In the next section a detailed case

study, concerning the flexible modeling of a random effects distribution in a

logistic regression setting, is given.

3.2 Application: Goalkeepers’ Performance

in Saving Penalties

3.2.1 Background

In modern soccer, penalty shots are of vital importance. The world cup

finals in 1990, 1994, and 2006, for example, were all decided by penal-

ties. Special skills in saving penalties is commonly attributed to some

goalkeepers. For example the German Wikipedia page on the penalty

(http://de.wikipedia.org/wiki/Elfmeter, accessed 08.12.2009) asserts that

there are some goalkeepers who are able to save more penalties than the

average goalkeeper and gives a ranking of the German goalkeepers with the

largest number of saved penalties. It is interesting from a statistical viewpoint

that this ranking contains only the absolute number of saved penalties, not

accounting for the number of potentially savable penalties for the respective

goalkeeper.

Bornkamp, Fritsch, Kuß, and Ickstadt (2008) therefore approached the

problem of ranking goalkeepers in a statistical more valid way. They con-

sidered all penalties from the German Bundesliga between August 1963 and

May 2007. Here we repeat their analysis also including penalties from Au-

gust 2007 to May 2009. In these 46 seasons a total number of 3907 penalties

occurred. As we are focusing on the goalkeepers’ ability to save penalties, we

removed all penalties that missed the goal or hit goal-post or crossbar. This
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Figure 3.1: (i) Counts of penalties per goalkeeper and (ii) histogram of relative

frequencies of saved penalties per goalkeeper.

resulted in 271 deletions with 3636 penalties remaining for the final analysis.

Out of these 3636 penalties 736 were saved by the goalkeepers corresponding

to a rate of 20.2%. In total 288 goalkeepers were involved in the 3636 penal-

ties, many of them having been faced only with a small number of penalties

(101 were involved in three or less penalties, see also Figure 3.1 (i)). Figure

3.1 (ii) shows the relative frequencies of saved penalties for all goalkeepers.

The modes of the density at 0 and 1 are due to the goalkeepers that were in-

volved in very few penalties and saved none or all. It is intuitively clear that a

goalkeeper who was involved in only one single penalty during his career and

saved this should not be considered the best penalty saver despite his 100%

saving rate. Consequently, the relative frequency of saved penalties is a bad

estimator of the “true” ability of the goalkeeper. A model also accounting

for the number of penalties, that could potentially be saved, is needed.

3.2.2 Models

We will model the jth observed penalty of the ith goalkeeper as a realization

of a Bernoulli random variable with probability ρij that the goalkeeper saves



CHAPTER 3. FLEXIBLE MODELING W. BAYESIAN MIXTURES 31

the penalty. This probability ρij is modeled as a function of the ith goalkeeper

and some additional covariates xij. That is, we assume the model

logit(ρij) = γi + β′xij , i = 1, . . . , 288 , j = 1, . . . , ni ,

where γi is the random effect of the ith goalkeeper, ni is the number of

penalties the ith goalkeeper was involved in, and β is the vector of regression

coefficients for the covariates. Looking at Figure 3.1 (ii) it seems plausible

that the distribution of goalkeeper effects is skewed or multimodal, even

when the modes at 0 and 1 are ignored. The γi are therefore assumed to

follow a mixture distribution. More specifically, a Dirichlet process mixture,

as described in Subsection 2.2.2, is chosen. The components distributions are

assumed to be normal with equal variance, so that the model is given by

γi|µi, σ
2 ∼ N(µi, σ

2)

µi|G ∼ G (3.3)

G ∼ DP (α, N(0, 3.289))

The base measure G0 = N(0, 3.289) is chosen such that it is approximately

uniform on the probability scale. The prior on the variance σ2 of the normal

components is chosen as a relatively vague InvGa(1, 1/16) distribution and

the distribution for the regression parameters β are chosen as independent

vague uniform distributions. The parameter α of the Dirichlet process is set

to 1/3. As will be discussed in Subsection 5.2.2 this leads to a prior mean of ≈
2.93 occupied clusters/components and virtually no prior mass on more than

8 components. This seems reasonable as we do not expect a large number of

components for the penalty data.

To assess the merit of a flexible modeling of the random effects distribu-

tion via the proposed Dirichlet process model, we compare it to two more rigid
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models via the deviance information criterion (DIC) (Spiegelhalter et al.,

2002). The DIC is similar to AIC or BIC described in Subsection 2.1.6, but

more suitable for hierarchical models. Defining ρ as the vector containing the

probabilities ρij the deviance is given by

D(ρ|y) = −2
288∑
i=1

ni∑
j=1

yij log(ρij) + (1− yij) log(1− ρij) .

The DIC is then defined as D(ρ|y)+pD, where D(ρ|y) is the average deviance

over the MCMC draws measuring the model fit and pD = D(ρ|y)−D(ρ̄|y)

is an estimate of the “effective” number of parameters penalizing the model

complexity (ρ̄ is the average of ρ over the MCMC iterations). For more

details on the DIC we refer to Spiegelhalter et al. (2002).

The first model that will be used for comparison, is a model that does

not allow for individual goalkeeper effects at all, leading to

logit(ρij) = µ0 + β′xij ,

with a fixed common intercept µ0. Hence, by comparing this model with the

Dirichlet process model in terms of the DIC we will be able to quantify the

improvement of modeling individual goalkeeper effects. The second model we

use for a comparison is a parametric normal random effects model, which can

be obtained by setting

γi ∼ N (µ0, σ
2
0)

and using suitable vague hyper-priors for µ0 and σ2
0 (here we use µ0 ∼

N (0, 3.289) and σ2
0 ∼ InvGa(0.01, 0.01)). By comparing the Dirichlet process

model with this parametric model we will be able to quantify the improve-

ment of a flexible modeling of the random effects distribution. Subsequently

the two restricted models will be referred to as ’Intercept’ and ’Normal’, our

proposed model will be termed the ’DP’ model.
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3.2.3 Choice of Covariates

The main aim of this analysis is to model the goalkeeper’s effect on the

probability of saving a penalty kick, but the effect of the scorer should also

be taken into account. The logarithm of the number of taken penalties is

chosen to represent the penalty takers’ effect. For better interpretability the

logarithm of base 2 is chosen. As home field advantage has an effect in many

sports, the home field advantage of the goalkeeper is included as a binary

covariate. To see whether there is a general time trend in the probability

of saving a penalty, year is included as a covariate. “Year” here refers to a

soccer season, which starts at the end of summer. A year effect could be due

to improved techniques for saving or taking a penalty, e.g., Leininger and

Ockenfels (2008) argue that it became more common to shoot a penalty into

the middle of the goal after Neeskens succeeded with such a shot in the world

cup final in 1974. This would lead to the penalty taker having more choices

and thus would make it harder to save the penalty. The day of the season

is also included as a covariate to account for possible time trends within a

season.

3.2.4 Results

The models described above are fitted to the data using the OpenBUGS soft-

ware version 3.0.3. Code implementing the blocked Gibbs sampler of Subsec-

tion 2.2.3 is adapted from Ohlssen et al. (2007). The truncation parameter

N is set to 10. Larger values of N were tried as well, but did not influence re-

sults. For each model the MCMC sampler is run with two independent chains

with a burn-in of 10,000 iterations followed by 100,000 iterations of which

every 20th is kept. Trace plots of parameters did not indicate problems with
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Model D(ρ|y) pD DIC

Intercept 3570.6 5.0 3575.6

Normal 3534.8 33.6 3568.4

DP 3530.4 37.3 3567.7

Table 3.1: Average deviance, effective number of parameters and DIC for the

different models.

convergence of the chains and the results of the independent chains are simi-

lar. The results presented are based on the pooled draws of the independent

chains, leading to a total number of 10,000 draws for each model.

First the overall fit of the models is compared with the DIC criterion.

Table 3.1 shows the DIC and its components for the three models consid-

ered. Both the Normal and the DP model improve on the model with only

an intercept, indicating some gain with the inclusion of a random effects dis-

tribution. The improvement is not very large, indicating that the probability

of saving a penalty does not vary too much between goalkeepers. As it is

more flexible, the DP model has a lower average deviance than the Normal

model but also a larger number of effective parameters leading to a DIC that

is only slightly lower.

Figure 3.2 shows the posterior expectation of the random effects distribu-

tion for the DP and Normal model. As might have been expected from the

similar DICs, the distributions do not differ much between the two models.

However, the more flexible DP model leads to a distribution with heavier

tails than the one resulting from the Normal model. As can be seen from

Figure 3.2 (ii) this distribution is not fully symmetric.

Next we take a look at the estimates for the goalkeepers’ probabilities to
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Figure 3.2: (i) Posterior expected random effects distribution γ for the Nor-

mal and DP model. (ii) Difference of Normal and DP posterior expected

random effects distributions.

save a penalty that can be derived from the models. For this we consider

E

(
exp(γi + β′xmed)

1 + exp(γi + β′xmed)

∣∣∣y
)

, i = 1, . . . , 288, (3.4)

the posterior expectation of the goalkeepers’ probabilities to save a

penalty kick when the covariates take their respective median values xmed.

The median values stand for a scorer with 9 taken penalties, the season

1985/86 and the 17th day of the season. The binary variable home field ad-

vantage is set to 0, representing no home field advantage for the goalkeeper.

Figure 3.3 shows the posterior mean probabilities of the goalkeepers (from

Equation (3.4)) for all goalkeepers smoothed by a kernel density estimate.

Comparing Figure 3.3 (i) to the distribution of the relative frequencies in

Figure 3.1 (ii) it can be seen that the probabilities are considerably shrunken

towards each other. The range of estimates is only about 0.1. Figure 3.3 (ii)

shows a close-up look at the distribution in (i), and as for the random effects

distribution it can be seen that the estimates of the Normal and DP model
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Figure 3.3: Posterior expected probabilities of saving a penalty for the Normal

and DP model; (i) on the range [0,1] and (ii) on the range [0.15, 0.27].

differ mainly in the tails, with the DP model leading to more pronounced

tails.

Regarding the question of identifying the best and worst keepers, the

tails of the distribution are of importance. As the DP model is more flexible

in the tails it is used to determine a ranking of the keepers. In performing

the ranking, part of which is given in Table B.1 in the appendix, we rely

on the recommendations of Lin et al. (2006) who argue that ranking should

be based on the posterior expectation of the rank rather than the posterior

expected effect. This explains the fact that in some cases a goalkeeper with

a higher rank nevertheless has a higher posterior expected probability of

saving a penalty. An example of this is given by Robert Enke and Jean-Marie

Pfaff having rank 2 and 3 and estimated saving probabilities of 24.3% and

24.9%, respectively. The top goalkeeper with an estimated saving probability

of 26.0% is Rudolf Kargus. With 23 saved penalties out of 70 he is also the

goalkeeper with the highest absolute number of saved penalties.

Several other interesting observations arise from the ranking in Table
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B.1. Goalkeepers’ estimated saving probabilities are not really different, with

the best keeper having 26.0% and the worst keeper having 16.2%, yielding

only a 10%-points difference. Moreover, the credible intervals for the saving

probabilities are seen to be pretty large, credible intervals for the best and

the worst keeper overlap considerably. As such, saving capabilities are rather

similar across goalkeepers. It is nevertheless surprising, that two German

goalkeepers who are thought to be penalty specialists (Oliver Kahn and Jens

Lehmann) rank relatively low (and right next to each other), indicating that

both of them perform rather badly in penalty saving. This is probably due

to the perception of the German expertise in penalty shoot-outs in recent

tournaments, with Kahn and Lehmann playing prominent roles on these

occasions.

The hierarchical model leads to a considerable shrinkage effect. This is

demonstrated by Michael Melka and Gerhard Teupel as two representatives of

the goalkeepers who were faced with only one single penalty during their ca-

reer in the German Bundesliga. Michael Melka, who saved this single penalty

(thus having an observed 100% saving rate), has an estimated saving proba-

bility of only 20.4%. Gerhard Teupel, not saving this single penalty (resulting

in an observed 0% saving rate) estimated saving probability is 19.2%, not very

different from Melka’s probability. It is somewhat surprising to see a well-

known goalkeeper like Sepp Maier rank so low. This is a direct consequence of

the shrinkage effect of the random effects model: As can be seen in Table B.1,

only goalkeepers who were involved in many penalties can rank at the top or

the bottom of the list, while the goalkeepers with fewer penalties are all in

the middle of the ranking. This is reasonable from a statistical point of view,

as we can only make statistically accurate estimates for keepers with many

penalties, while those with few penalties are shrunken towards the overall
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Covariate OR with 95% CI

Scorer 0.752 [0.710, 0.795]

Home Field Advantage 0.943 [0.784, 1.131]

Year 0.805 [0.571, 1.101]

Day of Season 0.930 [0.706, 1.203]

Table 3.2: Estimated odds ratios with 95% credible intervals in the DP model.

For the penalty taker odds ratio is for a scorer with twice the number of penalties. The

odds ratio for year compares the last to the first year, which is also the case for day of the

season.

mean. This shrinkage effect should be kept in mind, when interpreting the

ranking of goalkeepers from an application viewpoint.

Finally, we consider the effects of the covariates. Since a logistic regression

model is fitted, exp(βj) can be interpreted as the change in the odds of the

event, if the jth covariate is risen by 1. Table 3.2 shows the estimated odds

ratios for the DP model. As the credible interval for the odds ratio of the

scorer effect does not contain 1 there is strong evidence that a scorer that

has taken more penalties reduces the goalkeeper’s probability of saving the

penalty. This is a reasonable result, since players that are known to be good

penalty takers are probably chosen more often to take a penalty kick. As

the scorer effect is given on the log2 scale, the odds ratio can be interpreted

as follows: Faced with a scorer that scored twice as many penalties, the

goalkeeper’s odds of saving is multiplied by 0.752. For all the other covariates,

1 is inside the credible interval. This implies that there is no evidence for a

home field advantage for the goalkeeper. Additionally, evidence can neither

be found for an overall time trend or a time trend within seasons. These

conclusions are also obtained for the other two models.



Chapter 4

Introduction to Cluster

Analysis

Gallia est omnis divisa in partes tres, [...]. Hi omnes lingua, in-

stitutis, legibus inter se differunt.

All Gaul is divided into three parts, [...]. All these differ from each

other in language, customs and law.

Julius Caesar, Commentarii de Bello Gallico

Cluster analysis is the attempt to group previously unstructured data so that

the observations in a group are more similar to each other than to observa-

tions from other groups. As the above quote shows people have informally

defined such groupings for a long time. And they continue to do so, as the

conscious or unconscious grouping of objects is an important part of learning

and structuring new knowledge. Usually there is not one single way in which

a given set of objects should be grouped or clustered. A useful analogy is the

sorting of books in a library: there is more than one meaningful way to do

it. The way a set of objects should be grouped depends on the aspects of the

39
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objects that are of interest and how one defines similarity between objects.

Statistics can help to formalize and automate such a process, either by defin-

ing criteria that should be optimized by a clustering or by formulating an

underlying probability model. The latter is referred to as model-based cluster

analysis. In the next chapter the use of Bayesian mixtures for model-based

cluster analysis will be discussed in detail.

Cluster analysis started to be developed and applied in evolutionary biol-

ogy and psychology and is nowadays used in a wide variety of fields, ranging

from astronomy (classification of stars), geography (grouping of regions),

chemistry (grouping of compounds) to marketing (market segmentation).

Overviews are provided by Kaufman and Rousseeuw (1990), Everitt et al.

(2001) and Mirkin (2005). A recent surge of interest in cluster methods is

due to applications in bioinformatics, after a seminal paper by Eisen et al.

(1998) demonstrated that the clustering of microarray gene expression mea-

surements can identify groups of functionally related genes. See, for example,

Podwojski et al. (2009) for a recent bioinformatics application. In the last

years many applications also came up in the context of data mining (Mirkin,

2005), e.g., the clustering of text documents in large databases. In the next

section a short introduction to some of the classical methods of cluster anal-

ysis will be given and it will be shown that many common clustering criteria

can be better understood in the context of mixture models. In Section 4.2

distance measures between clusterings will be introduced as these will be

important for our study of cluster analysis with Bayesian mixtures.
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4.1 Classical Methods

Formally a clustering C is a partition of a set S of n objects or observations

into K subsets C1, . . . , CK such that Ck ∩ Ck′ = ∅ for k 6= k′ and
⋃K

k=1 Ck =

S. Cluster methods can be roughly grouped into partitioning methods and

hierarchical methods (this is, by the way, a clustering of clustering methods).

The former try to find an optimal clustering with regard to some criterion for

a fixed number of groups K, while the latter form a sequence of clusterings

C(K) for K = 1, . . . , n, such that C(n) has each observation in a singleton

cluster and C(K−1) is obtained from C(K) by merging two of its clusters.

4.1.1 Partitioning Clustering

An allocation vector Z as employed in Chapter 2 uniquely defines a clustering

C(Z) (the opposite is not true, see Chapter 2.1.3 and Chapter 5.3). For ease

of notation in this subsection a clustering will be referred to by an allocation

vector Z. The goal is then to find a clustering Z with K groups that optimizes

a criterion c(Z). Common criteria for observations y1, . . . , yn from Rp are

based on an ANOVA like decomposition of the total variability T =
∑

i(yi−
ȳ)(yi − ȳ)′ of the data into

T = W (Z) + B(Z) where

W (Z) =
n∑

i=1

(yi − ȳZi
)(yi − ȳZi

)′

=
K∑

k=1

∑

i:Zi=k

(yi − ȳk)(yi − ȳk)
′ and

B(Z) =
n∑

i=1

(ȳZi
− ȳ)(ȳZi

− ȳ)′

=
K∑

k=1

nk(ȳk − ȳ)(ȳk − ȳ)′ .
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It is then desirable to have the within-cluster variability W (Z) as small as

possible (and accordingly the between-cluster variability B(Z) as large as

possible). The K-means method proposed by MacQueen (1967) attempts to

minimize the squared Euclidean distance of each observation to its cluster

mean, which is the same as minimizing tr(W (Z)). Friedman and Rubin (1967)

considered the minimization of the determinant |W (Z)|.
Scott and Symons (1971) (see also Frühwirth-Schnatter (2006, pp. 207-

210)) showed that these heuristic criteria arise from maximizing p(y|Z,θ)

given in (2.4) with respect to Z and θ for a mixture of normal distributions.

Note that this is not the same as maximizing the finite mixture likelihood

(2.3) and is referred to as classification likelihood. For a mixture of normals

log p(y|Z,µ,Σ) ∝ − 1

2

K∑

k=1

(
nk log |Σk|+

∑

i:Zi=k

(yi − µk)
′Σ−1

k (yi − µk)

)
.

It is a well known result in multivariate statistics that maximizing

p(y|Z,µ,Σ) with fixed Z reduces to maximizing p(y|Z, µ̂(Z),Σ) with re-

spect to Σ, where µ̂k = ȳk. p(y|Z, µ̂(Z),Σ) is then proportional to

−1

2

(
K∑

k=1

nk log |Σk|+ tr(Wk(Z)Σ−1
k )

)
, (4.1)

with Wk(Z) =
∑

i:Zi=k(yi− ȳk)(yi− ȳk)
′ being the variability in cluster k. For

a mixture with spherical components of equal variance Σk = σ2I and (4.1)

reduces to

−1

2

(
np log σ2 +

1

σ2
tr(W (Z))

)
,

which for fixed Z is maximized by σ̂2 = tr(W (Z))/n. To find an optimal

clustering one then has to maximize

c(Z) = −1

2
np log tr(W (Z)) , (4.2)
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which is the same as minimizing tr(W (Z)). It can be shown similarly that

minimizing |W (Z)| arises from assuming a homoscedastic mixture Σk = Σ.

The approach can of course be extended to other assumptions about the

variance structure of the mixture. A spherical mixture with different variances

Σk = σ2
kI leads to the minimization of

K∏

k=1

tr

(
Wk(Z)

nk

)nk

with respect to Z. For heteroscedastic mixtures with unconstrained covari-

ance matrices Σk the expression to be minimized is

K∏

k=1

∣∣∣∣
Wk(Z)

nk

∣∣∣∣
nk

.

The above criteria have been derived by maximizing p(y|Z, µ,Σ), so that

it is implicitly assumed that p(Z|π) is fixed. It can be seen from (2.5) that

this is equivalent to assuming that π = (1/K, . . . , 1/K)′. Symons (1981)

considered maximizing p(y|Z, µ,Σ)p(Z|π). For a given Z this is maximized

by π̂k = nk/n, without affecting µ̂k and Σ̂k. Including maximization with

respect to π then changes (4.2) to

c(Z) = −1

2
np log tr(W (Z)) +

K∑

k=1

nk log nk .

Similar criteria can be obtained for the other assumptions about the variance.

These results give an explanation for the empirical finding that the K-means

algorithm tends to produce spherical clusters of similar size.

4.1.2 Hierarchical Clustering

Hierarchical clustering produces a sequence of nested clusterings for K =

1, . . . , n. One distinguishes between agglomerative and divisive approaches
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depending on whether the method starts with n clusters which are suc-

cessively merged or with one cluster, that is then successively split. Ag-

glomerative methods are the more commonly applied. The clusters are con-

structed based on the matrix of pairwise distances of the observations d(i, j),

i, j = 1, . . . , n. d is usually a metric, but might also be a dissimilarity measure

that does not fulfill all requirements of a metric. All agglomerative methods

start by merging the two objects i′ and j′ that have minimal distance d(i′, j′)

into a cluster. The distances between objects d(i, j) are then used to con-

struct distances between clusters d(Ck, Ck′), with the methods differing in

the way this is done. For the average linkage method by Sokal and Michener

(1958) the distance between cluster k and k′ is

d(Ck, Ck′) =
1

nknk′

∑
i∈Ck, j∈Ck′

d(i, j) , (4.3)

where nk denotes the number of objects in cluster k. The distance of the two

clusters is thus the average distance of an object in cluster k to an object

in cluster k′. After merging two clusters the distances of the obtained new

cluster to the other clusters are computed. It is not necessary to resort to

the object-wise distances, as the cluster-wise distances can be updated. For

average linkage the updating formula is given by

d(Ck ∪ Ck′ , Ck′′) =
nk

nk + nk′
d(Ck, Ck′′) +

nk′

nk + nk′
d(Ck′ , Ck′′) . (4.4)

The two closest clusters with respect to the updated distances are merged

in the next step until all observations are in one cluster. Other common

agglomerative methods are single linkage and complete linkage, where the

distance of two clusters is the minimum respectively maximum pairwise dis-

tance between objects in the two clusters. The method of Ward (1963) is

the hierarchical equivalent to the K-means method. It is used for Euclidean
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Figure 4.1: Dendrogram of genetic distances.

distances d(i, j) and at each step merges two clusters such that the increase

in tr(W (Z)) is minimal (tr(W (Z)) cannot decrease when merging clusters).

Lance and Williams (1966) give a general updating formula similar to (4.4)

that applies to single and complete linkage. Wishart (1969) showed that there

is also an updating formula for Ward’s method.

A hierarchical clustering is usually visualized by a dendrogram, see Figure

4.1 for an illustrative example. Average linkage is applied to genetic distances

between Human, the three great apes and the Rhesus monkey (data taken

from Mirkin (2005, p. 5)). The dendrogram visualizes the distance at which

mergers have taken place. The distance between two objects is given by the

vertical distance at which their branches coincide. These distances possess the

ultrametric property d(i, j) ≤ max{d(i, l), d(j, l)}, which is a stronger version

of the triangle inequality. The property implies that two of the distances

d(i, j), d(i, l) and d(j, l) are equal and that the third is not larger than the

other two. In the genetic example shown in Figure 4.1 the whole hierarchy is of

interest as it represents an evolutionary tree. In other situations hierarchical
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clustering is used as an informal method to select the number of clusters K,

e.g., by cutting the dendrogram at the point where the vertical distance to

the next merger is maximal. For the genetic data this would imply to form

one cluster containing Human and the great apes and one containing only

the Rhesus monkey.

4.2 Similarity Measures for Clusterings

It is often of interest to have a measure of how close two clusterings C and C ′

of the same objects are. This might be the case because one wants to com-

pare the results of several clustering algorithms or because a clustering is to

be compared to a known partition, e.g., in a validation study of clustering

methods. Here we will consider three classes of similarity measures: mea-

sures based on pairs of observations, based on cluster matching and based

on information theory.

The first class of similarity measures is concerned with the treatment of

pairs of observations in the two clusterings. Each of the
(

n
2

)
pairs of objects

belongs to one of the four categories:

(i) objects are in the same cluster in C and in the same cluster in C ′,

(ii) objects are not in the same cluster in C and not in the same cluster in

C ′,

(iii) objects are in the same cluster in C and not in the same cluster in C ′,

(iv) objects are not in the same cluster in C and in the same cluster in C ′.

Let n(x) denote the number of pairs of type (x), then n(i) + n(ii) = A is

sometimes called the number of agreements. Vice versa n(iii) + n(iv) = D
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is called the number of disagreements. Note that n(i)+n(ii)+n(iii)+n(iv)=

A + D =
(

n
2

)
. Rand (1971) proposed R(C, C ′) = A/

(
n
2

)
, the proportion

of agreements, as a similarity measure for clusterings. The Jaccard index

J(C, C ′) = n(i)/[n(i) + n(iii) + n(iv)] is similar but does not count pairs of

type (ii). Because of the fixed number of pairs, they are, however, still im-

plicitly included. The index of Fowlkes and Mallows (1983) does also not

explicitly consider the pairs of type (ii) and is given by

FM(C, C ′) =
n(i)√

[n(i) + n(iii)][n(i) + n(iv)]
.

All these indices take values in [0,1] and are equal to 1 if the two clusterings

are identical. 1−R(C, C ′) can be shown to be a metric for clusterings (Mirkin,

1996). The Rand index can be interpreted as the probability that a randomly

chosen pair of objects is treated the same in both clusterings. A probabilistic

interpretation is also available for the Fowlkes and Mallows index: it is the

geometric mean of the probability that a pair of observations is in one cluster

in C given it is in one cluster in C ′ and the same probability with the role of

C and C ′ interchanged.

Hubert and Arabie (1985) recognized that for the Rand index the number

of expected chance agreements between the two clusterings depends heavily

on the number of groups in each clustering, their sizes, and the overall number

of observations. To overcome this problem they considered the contingency

table of two clusterings shown in Table 4.1 and proposed an adjusted Rand

index, where the index is corrected for its expected value under the assump-

tion of random sampling of the nkk′ from fixed marginal sizes nk. and n.k′ ,

i.e., assuming a generalized hypergeometric distribution for the contingency

table. The adjusted Rand has the usual form of an index corrected for chance:

Index - Expected Index

Maximum Index - Expected Index
.
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Clustering C ′

Cluster C ′
1 · · · C ′

K′
∑

C1 n11 · · · n1K′ n1.

Clustering C ...
...

...
...

CK nK1 · · · nKK′ nK.

∑
n.1 · · · n.K′ n

Table 4.1: The contingency table of two clusterings.

It has a maximum value of 1 and its value is 0 if the index equals its expected

value. Negative values are possible, but uninteresting as they indicate less

agreement than expected by chance. Hubert and Arabie (1985) derive the

following formula for the adjusted Rand index:

AR(C, C ′) =

∑
k,l

(
nkk′

2

)−∑
k

(
nk.

2

) ∑
k′

(
n.k′
2

)
/
(

n
2

)
1
2
[
∑

k

(
nk.

2

)
+

∑
k′

(
n.k′
2

)
]−∑

k

(
nk.

2

) ∑
k′

(
n.k′
2

)
/
(

n
2

) . (4.5)

Milligan and Cooper (1986) compared the four above mentioned indices in a

simulation study. They fitted hierarchical clusterings to data without cluster

structure (i.e., drawn from uniform distributions over a region) and computed

the similarity of the clusterings across the hierarchy with a fixed reference

clustering. Since there is no relation to the reference clustering the indices

should on average be constant over the hierarchy. Milligan and Cooper (1986)

found this only to be the case for the adjusted Rand index, whereas the Rand

index tended to increase and the Jaccard and Fowlkes and Mallows indices

tended to decrease with the number of clusters in the hierarchical clustering.

They also found that especially the Rand index has a very large variance,

which is not the case for the adjusted Rand. Since they could also show that

the adjusted Rand is able to recover a cluster structure present in the data

they recommend it as measure for the comparison of clusterings.
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Another possibility for measuring similarity of clusterings is by matching

the clusters in both clusterings and computing classification rates. Meilă and

Heckerman (2001) give such a matching measure by

M(C, C ′) =
1

n
max

ρ

K∑

k=1

nkρ(k) ,

where, without loss of generality, K ≤ K ′ and ρ is an injective mapping

from {1, . . . , K} to {1, . . . , K ′}. So the clusters in both clusterings are first

(partially) matched and the percentage of correctly classified observations

is computed. The similarity measure is then obtained by maximizing the

classification rate over all matchings. One problem with a matching similarity

is that it ignores what happens to the unmatched part of each cluster. As

pointed out by Meilă (2007) quite different clusterings C ′ result, for example,

if the unmatched part of each cluster in C is spread equally over the clusters in

C ′ or if it is assigned to only one other cluster. These clusterings will have the

same matching similarity to C although intuitively the latter should be more

similar. A simulation study by Steinley (2004) showed that the matching

similarity decreases only slowly when the overlap between two clusterings is

decreased and only rarely attains values less than 0.3. He also finds that the

adjusted Rand has a superior performance.

Meilă (2007) derives a (dis-)similarity measure based on information the-

ory. Each clustering C defines a discrete random variable C with P (C =

k) = nk/n. The “variation of information”-distance of Meilă (2007) between

clusterings C and C ′ is then given by sum of the conditional entropies of the

associated random variables C and C ′, i.e.,

V I(C, C ′) = H(C|C ′) + H(C ′|C) ,
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where the conditional entropy is given by

H(C|C ′) = −
K′∑

k′=1

P (C ′ = k′)
K∑

k=1

P (C = k|C ′ = k′) log P (C = k|C ′ = k′) .

It is a measure of the uncertainty in C that is not explained by C ′, see

Cover and Thomas (1991, Chapter 2) for details. Meilă (2007) shows that

the V I-distance has many desirable properties. First, it is a metric for the

space of clusterings, i.e., V I(C, C ′) ≥ 0 with equality if and only if C = C ′,
V I(C, C ′) = V I(C ′, C) and V I(C, C ′) ≤ V I(C, C ′′) + V I(C ′, C ′′). In addition

it is n-invariant, meaning that the value of V I only depends on the relative

sizes of the clusters and not directly on the number of observations n. If, for

example, all entries in Table 4.1 are multiplied by a constant the criterion

is not changed. The V I-distance also has the property of convex additivity,

which means that if C ′ and C ′′ are each obtained from C by further splitting

the clusters of C, the V I-distance of C ′ and C ′′ is given by

V I(C ′, C ′′) =
K∑

k=1

P (C = k)V I(C ′k, C ′′k) ,

where C ′k and C ′′k are the partitions of Ck. Convex additivity implies that if

cluster Ck is split to obtain a new clustering C ′ the distance to the original

clustering does only depend on the size of Ck and the way it is split and

not on the way the rest of the data is clustered. Meilă (2007) discusses in

detail which of the mentioned properties are fulfilled by the other similarity

measures, the adjusted Rand index, for example, does not possess convex

additivity.

Sometimes the mutual information MI(C,C ′), which is related to the

V I-distance by

V I(C, C ′) = H(C) + H(C ′)− 2 ·MI(C,C ′) , (4.6)
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is used as a similarity measure for clusterings. H in (4.6) denotes the (uncon-

ditional) entropy given by H(C) = −∑K
k=1 P (C = k) log P (C = k). Since the

mutual information is not a metric for clusterings the use of the V I-distance

should generally be preferred.

Treppmann (2010) repeated the simulation study of Milligan and Cooper

(1986) mentioned above. In addition to the similarity measures based on pairs

she included the matching measure and the V I-distance. Both new measures

successfully identify cluster structure when it is present. When applied to

the hierarchical clustering of noise data, however, both criteria fail to be on

average constant across the hierarchy. This is especially problematic for the

V I-distance. Treppmann (2010) found that the adjusted Rand index still

gives the best results.

In the following we will employ both the adjusted Rand index and the

V I-distance for the comparison of clusterings. The former is used because

of its good performance in simulation studies and the latter because of its

many reasonable theoretical properties.



Chapter 5

Cluster Analysis with Bayesian

Mixtures

Due to their computational efficiency the classical methods of cluster analysis

described in Section 4.1 remain popular, although it is difficult to assess the

statistical properties of the solutions provided by these methods. It is, for ex-

ample, hard to quantify the uncertainty of the allocation of an observation to

a specific group or the probability that two observations belong to the same

group. These quantities can easily be estimated using model-based cluster

methods based on mixtures. Among the advantages of a Bayesian approach

to these models are the ones discussed in Subsection 2.1.5 and that MCMC

algorithms allow to take the uncertainty in parameters better into account

than single estimates. Bayesian mixtures can also be extended to fairly com-

plex models. As discussed in Chapter 2, one can, for example, estimate the

number of clusters K at the same time as the other parameters by either

the reversible jump algorithm (Richardson and Green, 1997) or by infinite

mixture models.

Other implementations of complex Bayesian cluster models allow for out-

52
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lier detection (Quintana and Iglesias, 2003), simultaneous clustering and

variable selection (Kim et al., 2006; Tadesse et al., 2005), improving the

power of multiple testing by clustering correlated observations (Dahl and

Newton, 2007), or clustering transcription factor binding motifs of varying

width (Jensen and Liu, 2008).

In Section 5.1 it will be discussed under which conditions a Bayesian mix-

ture can be used for cluster analysis and in Section 5.2 priors that Bayesian

mixtures induce on important quantities, like the number of clusters and the

clusterings itself, will be given. In Section 5.3 and 5.4 existing approaches

for clustering inference with fixed and varying number of groups K are dis-

cussed and new methods are developed for both situations. Section 5.5 gives

applications of cluster analysis with Bayesian mixtures to simulated and real

data.

5.1 Conditions for Cluster Analysis: An Ex-

ample

It has been seen in Chapter 3 that a mixture model can be used as an

approximation to (almost) any desired distribution. In this section it will be

considered under what conditions a mixture model can be used for cluster

analysis. Assume that Y1, . . . , Yn are independent random variables with a

finite mixture distribution of the form (2.1). For now we will assume that

the parameters θ and π are known. Then cluster analysis requires to make

inferences about the Zi|Yi, with distributions given by (2.2). To obtain a

useful clustering it should be possible to assign most Zi with high probability

to one of the components 1 to K, i.e., maxj P (Zi = j|Yi = yi) should be large

for most i. To infer a group structure it is also desirable if the Zi that can be
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assigned with high probability are not all assigned to the same component.

To formalize these properties of a mixture model we define Zi to be un-

certain if maxj P (Zi = j|Y ) < u. To be useful for clustering a mixture model

should fulfill the conditions:

1. q = PY (Z uncertain) should be small.

2. PY (Z = k|Z not uncertain) > 0 for more than one k.

It holds that

q = PY (max
j

P (Z = j|Y ) < u)

= PY

(
maxj πjp(Y |θj)∑K

k=1 πkp(Y |θk)
< u

)

=

∫

U

p(y|θ,π)dy with U =

{
y

∣∣∣∣∣
maxj πjp(y|θj)∑K

k=1 πkp(y|θk)
< u

}
.

As a simple example consider a univariate location mixture of two normals

with σ2 = 1, i.e.,

p(y|µ, π) = πφ(y|µ1, 1) + (1− π)φ(y|µ2, 1) .

The region U where an observation is likely to be of either component and

thus uncertain is in this case an interval [l1, l2], that will usually lie inside

[µ1, µ2] (assuming w.l.o.g. that µ1 < µ2). Note, however, that for π close to

0 l1 can be smaller than µ1 and for π close to 1 l2 can be larger than µ2. The

probability of an uncertain Z is then given by q =
∫ l2

l1
p(y|µ, π)dy. The lower

limit l1 can be found by equating

πφ(l1|µ1, 1)

πφ(l1|µ1, 1) + (1− π)φ(l1|µ2, 1)
= u ,

which is solved by

l1 = µ̄− log
(

u
1−u

1−π
π

)

µ2 − µ1

,
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Figure 5.1: Probability that cluster membership Z is not uncertain. Solid line:

Total probability 1− q; Dashed (dash-doted) line: part of probability due to cluster 1 (2).

Uncertainty threshold u = 0.75.

with µ̄ = (µ1 + µ2)/2. Similarly the upper limit l2 is given by

l2 = µ̄− log
(

1−u
u

1−π
π

)

µ2 − µ1

. (5.1)

The probability of an uncertain Z is then

q =

∫ l2

l1

πφ(y|µ1, 1) + (1− π)φ(y|µ2, 1)dy

= π [Φ(l2 − µ1)− Φ(l1 − µ1)] + (1− π) [Φ(l2 − µ2)− Φ(l1 − µ2)] .

Figure 5.1 shows 1−q as a function of µ2−µ1 for different values of π, where

the uncertainty threshold u is taken to be 0.75. For π = 0.2 the probability

of Z not being uncertain is close to 1 for small values of µ2 − µ1 and first
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decreases when µ2 − µ1 gets larger until it rises again. A reason for this can

be seen from (5.1): if π < 1 − u then l2 → −∞ for µ2 − µ1 → 0. Thus for

a small difference in means all observations will be assigned to component 2

with high probability. With an increasing difference at first the components of

some observations become uncertain before the difference gets large enough so

that some observations are also assigned with high probability to component

1. For small π and a small difference in means the first condition for cluster

analysis is thus met very well while the second is violated. The two conditions

small q and high probability assignment of observations to both groups seem

to be reasonably well satisfied for all values of π if µ2 − µ1 > 3.

The above demonstrates that the components of a mixture need to be

sufficiently separated if the model is to be used for cluster analysis. An al-

ternative is to combine components that are close together to one “super-

component”. As in Chapter 3 the distribution in this super-component is then

flexibly modeled by the mixture of the component distributions. A cluster

that has a skewed distribution could, for example, be fitted by several compo-

nents in a mixture of normals. Leisch (2004) suggests combining components

that have a small Kullback-Leibler divergence (3.2). Ray and Lindsay (2005)

consider the number of modes of a multivariate mixture of normals. They

show that any mode (as well as each local minimum and saddle point) has to

lie in a so-called ridgeline surface, which for K = 2 reduces to the ridgeline

from µ1 to µ2 given by

y(γ) =
[
(1− γ)Σ−1

1 + γΣ−1
2

]−1 [
(1− γ)Σ−1

1 µ1 + γΣ−1
2 µ2

]
,

where γ ∈ [0, 1]. While the ridgeline itself does not depend on π, the location

of modes on the ridgeline does. Based on these results Ray and Lindsay

(2005) give detailed conditions for a mixture of two normals to be unimodal

or to have more than one mode. One of their surprising findings is that such
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Figure 5.2: (i) Contour plot of a mixture of two bivariate normal distributions
that has three modes and (ii) density of a mixture of two univariate normals
that has (barely) two modes.

a mixture can have more than two modes, see Figure 5.2 (i) for an example.

More than two modes can, however, not occur if the covariance matrices are

proportional, i.e., Σ1 = ωΣ2 with ω > 0. From this it follows that a univariate

mixture of normals can have no more than K modes, as σ2
k = ωσ2

k′ is always

fulfilled. Ray and Lindsay (2005) suggest combining components that form

a single mode. In a subsequent paper Li, Ray, and Lindsay (2007) extend

this to components that form separate modes but where there is only a small

“dip” in the ridgeline between the modes, see Figure 5.2 (ii) for an example.

5.2 Priors Induced by Bayesian Mixtures

When assigning a prior to the parameters of a Bayesian mixture model one

implicitly assigns priors to other relevant quantities as well, such as a prior on

the clusterings itself. Also of interest are the induced prior on the number of

components K and on the pairwise clustering probability, i.e., the probability
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P (Zi = Zj) that two observations i and j share a cluster. The induced priors

are given for several mixture models in the next subsections. Section 5.2.4

then discusses how these priors can help in the choice of a hyperprior for the

parameter α of the Dirichlet process.

5.2.1 Priors on Clusterings

The number of possible clusterings of a set of n objects is known as the

nth Bell number Bn (Bell, 1934; Rota, 1964). With B0 = B1 = 1 the Bell

numbers can be computed by the recurrence formula

Bn+1 =
n∑

k=0

(
n

k

)
Bk .

The formula holds because the observation n+1 can be added as a singleton

clustering to each of the Bn clusterings, it can form a cluster of two with each

of the n observations which can be combined with any of the Bn−1 clusterings

of the remaining n − 1 observations, it can join a cluster of three in
(

n
n−2

)

ways which can be combined with Bn−2 other clusterings and so on. From

this construction it becomes clear that the numbers get huge quickly. While

B10 is 115975, B20 is already about 5.17 · 1013. Computation of a posterior

for all clusterings will therefore usually not be possible.

A finite mixture with K components assigns prior mass only to clusterings

with K or less than K components (some groups might be left empty). For

a symmetric Dir(α) distribution it is given by

PFM(C|α) =
K!

Kemp!

Γ(Kα)
∏K

k=1 Γ(α + nk)

Γ(Kα + n)Γ(α)K
,

where Kemp is the number of empty components. Note that except for the

factor K!/Kemp! the prior on clusterings C is the same as the prior on al-

location vectors Z given in (2.9). The factor gives the number of allocation

vectors that define the same clustering.
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For the Dirichlet process the prior on a clustering can be obtained from

the product of the distributions of allocation variables Zi|Zi−1 given in (2.19)

(which does not depend on the labeling of Zi−1) and turns out to be

PDP (C|α) =

∏K
k=1 αΓ(nk)∏n

i=1(α + i− 1)
=

Γ(α)

Γ(α + n)

K∏

k=1

αΓ(nk) . (5.2)

The product
∏K

k=1 Γ(nk) is larger for clusterings with unequal cluster sizes

so that the Dirichlet process places more mass on these clusterings. This is

not surprising considering the derivation of the Dirichlet process as limit of

a finite mixture model with a Dir(α/K∗, . . . , α/K∗) prior on π discussed in

Subsection 2.2.2, as this prior places most mass on π’s with rather different

πk. The influence of the favoring of unequal cluster sizes on posterior inference

is discussed by Green and Richardson (2001).

For the Pitman-Yor process the prior is given by

PPY (C|α, β) =
Γ(α)

Γ(α + n)

K∏

k=1

[
(α + (k − 1)β)

Γ(nk − β)

Γ(1− β)

]
, (5.3)

see Pitman (2006, p. 61). As the Pitman-Yor process reduces to the Dirichlet

process for β = 0, (5.3) behaves similar to (5.2) for β close to 0. For larger

values of β the Pitman-Yor process tends to assign more mass to clusterings

with many singletons. For β → 1 all mass is given to the clustering where

each observation is in its own cluster. It should be noted that a clustering

with a small number of about equally sized clusters does not have a high

prior probability under either the Dirichlet or the Pitman-Yor process.

Pitman (2006) also considers the important concept of an exchangeable

prior on clusterings, which, for example, implies that the prior behaves con-

sistently when an additional observation is added, i.e.,

P (C) =
K+1∑

k=1

P (C, Zn+1 = k) . (5.4)
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The priors discussed above can all be shown to be exchangeable. A prior that

is not exchangeable is considered by Jensen and Liu (2008). It is defined by

changing the transition probability of joining an existing cluster in the Pólya

urn scheme (2.19) of the Dirichlet process from nk/(α + i − 1) to 1/(α +

i − 1), leading to a prior that puts more weight on clusterings with about

equally sized clusters. See Jensen and Liu (2008) for possibilities to deal with

the non-exchangeability. Based on ideas of Hartigan (1990), Quintana and

Iglesias (2003) directly assign a prior to the space of all clusterings without

defining an underlying mixture model, which is then referred to as a product

partition model. Because of computational simplicity the prior they mostly

use is, however, (5.2), i.e., the one arising from the Dirichlet process. Product

partition methods provide, however, the possibility to use more general priors

on clusterings.

5.2.2 Priors on Number of Clusters

For a finite mixture model one can assign a prior on the number of clusters

K, which is usually taken either to be a Poisson distribution or as a uni-

form distribution on {1, . . . , Kmax}. For infinite mixture models only a finite

number of groups will be observed in a sample, so that they also induce a

prior on the number of clusters. This prior will however depend on n. For

the Dirichlet process Antoniak (1974) derives the expression

PDP (K = k|α, n) =

[
n
k

]
αk

∑n
i=1

[
n
i

]
αi

=
Γ(α)

[
n
k

]
αk

Γ(α + n)
, (5.5)

where
[
n
k

]
denotes a Stirling number of the first kind. Properties of Stirling

numbers are discussed in Graham et al. (1989, Chapter 6), it holds, for exam-

ple, that
∑n

i=1

[
n
i

]
αi =

∏n
i=1(α+i−1), justifying the second equality in (5.5).

The expected number of clusters can be derived by considering the Pólya urn
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scheme (2.19) and noting that the random variables Wi, with Wi = 1 if ob-

servation i starts a new cluster and Wi = 0 otherwise, have independent

Bernoulli distributions with parameters α/(α + i− 1). It follows that

EDP (K|α, n) = E

(
n∑

i=1

Wi

)
=

n∑
i=1

E(Wi) =
n∑

i=1

α

α + i− 1
.

Because of the relation between the logarithm and the harmonic series the

expected number of clusters for the Dirichlet process behaves asymptotically

as α log n. For the Pitman-Yor process the distribution of the number of

clusters is given by a relatively complicated expression (see Pitman, 2006,

p. 65) and the expected value is found as

EPY (K|α, β, n) =
Γ(α + β + n)

Γ(α + β)

Γ(α + 1)

βΓ(α + n)
− α

β
.

The asymptotic behavior is as Γ(α+1)
βΓ(α+β)

nβ, so that the number of clusters grows

much faster with the sample size than for the Dirichlet process.

5.2.3 Priors on Pairwise Clustering Probabilities

Model FMfix FMsymDir DPM PYPM

P (Zi = Zj)
∑K

k=1 π2
k

α+1
Kα+1

1
α+1

1−β
α+1

Table 5.1: Pairwise prior clustering probabilities for several mixture models.
FMfix: Finite mixture model with fixed π, FMsymDir: Finite mixture model with sym-
metric Dir(α) prior on π, DPM: Dirichlet process mixture, PYPM: Pitman-Yor process
mixture.

Use of the posterior probabilities P (Zi = Zj|y) that observation i and

j are in one cluster for inference is discussed in Section 5.4. Table 5.1 gives

the prior probabilities P (Zi = Zj) for several mixture models. As mentioned

above these models induce exchangeable priors on all clusterings and thus

fulfill equation (5.4). The expressions in Table 5.1 can therefore be derived
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by considering the clustering of only two observations. For the finite mixture

model with fixed π the probability is given by
∑K

k=1 π2
k, the probability of

drawing two consecutive observations from the same component. For the

other models it is possible to show that the entries in the table are equal to

E(
∑K

k=1 π2
k), respectively E(

∑∞
k=1 π2

k). For example, Ongaro and Cattaneo

(2004) show for the Dirichlet process that, if G ∼ DP (α, G0), the variance

of G(A), with A ∈ A, can be written as

V ar(G(A)) = E

( ∞∑

k=1

π2
k

)
G0(A)(1−G0(A)) .

By comparison with (2.16) one obtains

E

( ∞∑

k=1

π2
k

)
=

1

α + 1
.

5.2.4 Prior Setting in Dirichlet Process Mixture Mod-
els

It has been seen in the previous subsections that the prior clustering behav-

ior of the Dirichlet process depends only on the parameter α. It is therefore

advisable to place a hyperprior on this parameter in a cluster analysis ap-

plication. Escobar and West (1995) show that the conditional distribution

p(α|Z,y) does only depend on the number of clusters K in Z. The distribu-

tion

p(α|k) ∝ p(α)P (K = k|α)

can then be used for sampling α in an MCMC algorithm, where P (k|α) is

given in (5.5). They also show that if the prior on α is chosen as a Gamma

distribution, p(α|k) can be written as a mixture of two Gammas, which makes

Gibbs sampling possible. Griffin and Steel (2006) use an inverted Beta dis-

tribution as p(α) which is parameterized by a median n0 and a parameter
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η controlling the variability. Medvedovic et al. (2004) propose to use an in-

verted Gamma distribution with parameters 0.5 and 0.5 as an uninformative

prior.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

γ = 1 (α + 1)

p(
γ)

Ga(4,2)
InvGa(0.5,0.5)

Figure 5.3: Priors induced by two different choices of p(α) on γ = 1/(α + 1).

The choice of the prior is usually guided by considering the induced prior

on the number of components K. In Section 5.4 it is proposed to base pos-

terior inference on πij = P (Zi = Zj|y). In that case it is more important to

consider the induced prior on γ = P (Zi = Zj), which for the Dirichlet process

is given by 1/(α + 1) (see Table 5.1). Figure 5.3 shows this induced prior for

two different choices of p(α). It can be seen that the InvGa(0.5, 0.5) prior of

Medvedovic et al. (2004) places a lot of weight on γ being near 0. This could

lead to many observations being put into singleton clusterings and is in this

context not uninformative at all. When there is a cluster structure present in

the data most observations will be in a cluster with only some of the other

observations. A prior that places most mass on P (Zi = Zj) being between

0.1 and 0.6, like the Ga(4, 2) also shown in Figure 5.3, seems a reasonable
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default choice if a cluster structure is expected.

Alternatively, a prior could be assigned directly to 1/(α + 1). Using a

Beta(v1, v2) for this in turn induces a prior on α given by

p(α) =
Γ(v1 + v2)

Γ(v1)Γ(v2)
αv2−1(α + 1)−(v1+v2) . (5.6)

This is a Beta distribution of the second kind (Johnson et al., 1995, p. 248).

A possible choice for an uninformative prior is a uniform (i.e., Beta(1, 1))

prior on the prior clustering probability leading to p(α) = 1/(α + 1)2.

5.3 Clustering With a Fixed Number of Clus-

ters

5.3.1 Label-Switching

It has been discussed in Subsection 2.1.3 that the likelihood of a finite mix-

ture model is not identifiable. One reason for this is that a permutation of

the component labels {1, . . . , K} does not change the likelihood, which has

thus K! modes of equal height. With exchangeable priors p(θk) and p(πk)

the same holds for the posterior distribution. This is not a concern if one

wants to obtain a clustering C of the observations via an allocation vector Ẑ

that maximizes the posterior p(C(Z)|y) ∝ p(y|Z)p(C(Z)) since the allocation

vectors of all modes define the same clustering C. However, when using an

MCMC algorithm to sample from the posterior, it is likely that more than

one mode is visited during the run, a phenomenon called “label-switching”.

This will necessarily occur if the MCMC sampler is run long enough, as it is

guaranteed to eventually visit all the modes. An illustration of label-switching

is given in Figure 5.4. It shows the mean of the second component during

the MCMC fitting of one of the simulated data sets described in Subsec-

tion 5.5.1. Depending on which of the real clusters the component represents
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Figure 5.4: Illustration of label-switching.

the values are either around -2 or around 2. So when one has obtained an

MCMC sample of allocation vectors Z(1), . . . ,Z(M) the intuitive estimator for

the posterior probability that observation i belongs to cluster k,

P (Zi = k|y) ≈ 1

M

M∑
m=1

I{Z(m)
i =k} , (5.7)

with i = 1, . . . , n and k = 1, . . . , K, does not lead to sensible results when

applied to the unprocessed sample. In (5.7) the running index m is used

instead of the index t employed in Chapter 2. This is to indicate that possibly

some processing like discarding a burn-in and thinning has taken place.

5.3.2 Identifiability Constraints

One approach to deal with label-switching to impose an identifiability con-

straint that is fulfilled by only one of the K! permutations, e.g., imposing

µ1 < µ2 < . . . < µK in a univariate mixture of normals. This restricts the
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prior p(θ,π), and thus the posterior, to a region containing only one mode.

Stephens (1997, pp. 43-44) showed that it is not necessary to include the con-

straint in the MCMC run, which might be difficult or inefficient. Running

an unconstrained sampler and post-processing the sample by permuting each

(θ(m), π(m)) such that the constraint is fulfilled also leads to a sample from the

constrained posterior. It is, however, not the case that an arbitrary identifia-

bility constraint induces a unique labeling. Although the constrained region

contains only one mode there might still be considerable posterior mass from

other modes in it. This happens if some of the constraints are only barely

fulfilled, e.g., if µ1 is only a bit smaller than µ2 in a univariate mixture of

normals. So especially for a higher-dimensional θ it can be difficult to find

a suitable constraint. See Stephens (2000) and Frühwirth-Schnatter (2006,

pp. 44-49) for additional discussion and examples.

5.3.3 Relabeling Algorithms

Stephens (2000) proposes to use so-called relabeling algorithms instead of

identifiability constraints. These are based on a loss function L(P, (θ,π)),

where P is the n×K matrix of allocation probabilities P (Zi = k) + pik. The

basic loss function proposed by Stephens is given by

LS
0 (P, (θ,π)) =

n∑
i=1

K∑

k=1

P (Zi = k|y,θ,π) log
P (Zi = k|y,θ,π)

pik

, (5.8)

where P (Zi = k|y,θ,π) = πkp(yi|θk)PK
l=1 πlp(yi|θl)

and the pik need to fulfill the con-

straints
∑

k pik = 1, i = 1, . . . , n. Here we propose the use of a variant of

the loss function of Stephens (2000) that depends on Z rather than (θ,π).

We will first introduce the resulting algorithm and then compare it with

Stephens’ approach.
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The basic loss function of our approach is given by

L0(P,Z) =
n∑

i=1

K∑

k=1

− log pik · I{Zi=k} . (5.9)

Using the convention log 0 · 0 = 0 the loss is zero if pik = 1 whenever Zi = k

and the loss will be bigger than zero otherwise. Since a permutation ν of

the cluster labels does not change the clustering, the loss function should be

invariant to such a permutation so that the loss function actually employed

will be

L(P,Z) = min
ν

L0(P, ν(Z)) = min
ν

n∑
i=1

K∑

k=1

− log pik · I{ν(Zi)=k} .

A decision-theoretic approach is now to choose P̂ such that the posterior

expected loss (or posterior risk) E(L(P,Z)|y) is minimized at P̂. It is not

feasible to compute the posterior risk directly since this involves summation

over the Kn possible values of Z but it can be approximated from the MCMC

sample Z(1), . . . ,Z(M) by

E(L(P,Z)|y) ≈ 1

M

M∑
m=1

min
νm

n∑
i=1

K∑

k=1

− log pik · I{νm

“
Z

(m)
i

”
=k} . (5.10)

The following algorithm can then be used to find a P̂ minimizing (5.10).

Algorithm 5.1: Allocation Relabeling:

Start with some initial values for ν1, . . . , νM and repeat until convergence:

1) Set p̂ik = 1
M

∑M
m=1 I{νm

“
Z

(m)
i

”
=k}.

2) For m = 1, . . . , M : Choose νm to minimize

n∑
i=1

K∑

k=1

− log p̂ik · I{νm

“
Z

(m)
i

”
=k} .
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Steps 1 and 2 decrease (5.10) (this is obvious for step 2, see Lemma 5.1

below for step 1). Repeating both steps is then guaranteed to reach a local

minimum of (5.10), as there are only finitely many permutations ν1, . . . , νM .

It is, however, not guaranteed that a global minimum is found, so that several

starting values for the labels should be tried.

Lemma 5.1: The value of pik that minimizes (5.10), subject to the con-

straint
∑

k pik = 1, is given by p̂ik = 1
M

∑M
m=1 I{νm

“
Z

(m)
i

”
=k}.

Proof : Differentiating (5.10) with respect to pik and including the constraint
∑

k pik = 1 with a Lagrange multiplier leads to

∂

∂pik

[
1

M

M∑
m=1

n∑
i=1

K∑

k=1

− log pik · I{Z(m)
i =k} + λ

(
K∑

k=1

pik − 1

)]

=
1

M

M∑
m=1

− ∂

∂pik

log pik · I{Z(m)
i =k} + λ

= − 1

Mpik

M∑
m=1

I{Z(m)
i =k} + λ

Setting the last expression to 0 leads to

pik =
1

Mλ

M∑
m=1

I{Z(m)
i =k} ,

which, using
∑

k pik = 1, is solved by λ = 1 and thus p̂ik = 1
M

∑M
m=1 I{Z(m)

i =k}.

By taking the second derivative it is easily verified that this is indeed a

minimum.

It is not necessary to try all possible permutations νm in step 2, as the

minimization can be formulated as an instance of the assignment problem of

linear programming, see Stephens (2000) for details. For this problem efficient

algorithms with running times of the order O(K3) are available.
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The algorithm originally proposed by Stephens (based on the basic loss

(5.8)) involves the minimization of an expression that is analog to (5.10).

By comparing (5.8) and (5.9) it can be seen that the algorithm proposed

here effectively replaces P (Zi = k|y,θ(m),π(m)) by I{Z(m)
i =k}. Although the

former possibly contains a bit more information about the group struc-

ture, using the Z(m) for relabeling offers two advantages. First it is com-

putationally less demanding. Stephens’ algorithm requires the computation

and storage of M matrices of dimension n ×K containing the probabilities

P (Zi = k|y,θ(m),π(m)) which is not necessary for Algorithm 5.1. The second

advantage is that the algorithm does not depend on the form of the compo-

nent densities p(y|θ). It is therefore more general and can be applied without

modification to the MCMC output of any finite mixture model. It can also be

used in connection with samplers that only sample Z, e.g., the one of Chen

and Liu (1996) discussed in Subsection 2.1.4.

5.4 Clustering With a Varying Number of

Clusters

When an infinite mixture or a finite mixture with a prior on K is fitted via

an MCMC algorithm an additional complication in summarizing the sample

of allocation vectors Z(1), . . . ,Z(M) for clustering inference arises. Now not

only the labeling of groups can differ between the Z(m) but also the number

of groups there are. The relabeling algorithm of the last section can no longer

be applied. A possible solution proposed by Tadesse et al. (2006) is to apply

the algorithm only to those Z(m), where the number of groups K(m) is equal

to K̂ = arg maxk

∑M
m=1 I{K(m)=k}, i.e., the most commonly occurring number

of groups. This means first obtaining a MAP estimate of K and then doing

inference conditional on that estimate. The approach might, however, be
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wasteful if the marginal posterior P (K|y) does not have a pronounced mode.

Another possibility is basing the inference on the pairwise posterior clustering

probability, which will be considered in the following.

5.4.1 The Posterior Similarity Matrix

The matrix of pairwise posterior probabilities that observations i and j are

in one cluster P (Zi = Zj|y) will be denoted as posterior similarity matrix

(PSM). It is easy to see that label-switching does not affect the PSM which

can therefore be estimated from the MCMC sample by

πij = P (Zi = Zj|y) ≈ 1

M

M∑
m=1

I{Z(m)
i =Z

(m)
j } . (5.11)

In (5.11) the number of groups does not have to be fixed.

A distance matrix is given by 1-PSM, which contains the posterior proba-

bilities that the observations i and j are not in one cluster. These probabilities

define a sensible distance measure, as shown in the following lemma.

Lemma 5.2: 1−πij is a topological pseudometric for the space of observa-

tions as it fulfills the conditions

1− πii = 0 (5.12)

1− πij = 1− πji (5.13)

and (1− πij) ≤ (1− πil) + (1− πjl) , (5.14)

for all i, j ∈ {1, . . . , n}.

Proof: (5.12) and (5.13) are straightforward to see. 1 − πij is not a metric

since 1 − πij = 0 does not imply that the observations i and j are equal. It

remains to show that the triangle inequality (5.14) is valid, which is equivalent
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to

(1− πij) ≤ (1− πil) + (1− πjl)

⇐⇒ πij ≥ πil + πjl − 1 .

In every possible clustering the observations i,j and l are grouped according

to one of the patterns

I : {i, j, l} II : {i, j}, {l} III : {i}, {j, l}
IV : {i, l}, {j} V : {i}, {j}, {l} .

Then the following equations hold

πij = P (I|y) + P (II|y) (5.15)

πjl = P (I|y) + P (III|y) (5.16)

πil = P (I|y) + P (IV|y) (5.17)

1 = P (I|y) + · · ·+ P (V|y) , (5.18)

and with (5.16) and (5.17) one obtains

πjl + πil − 1 = 2 · P (I|y) + P (III|y) + P (IV|y)− 1

(5.15)
= P (I|y) + P (III|y) + P (IV|y)− P (II|y) + πij − 1

(5.18)
= −2 · P (II|y)− P (V|y) + πij

≤ πij

The posterior similarity matrix can be displayed as a heatmap to give an

overview over the clustering of observations. An example involving the iris

data, which will be discussed in detail in Subsection 5.5.4, is given in Figure

5.5 (i). Since 1-PSM is a distance matrix another possibility for visualization

is to apply multidimensional scaling (see, e.g., Cox and Cox, 2001) to 1-

PSM, giving a set of points that have relative Euclidean distances which
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Figure 5.5: (i) Heatmap of PSM for iris data. Light yellow indicates low πij , dark
red high πij . (ii) Classical multidimensional scaling applied to PSM of iris data.

closely match the distances 1 − πij. See Figure 5.5 (ii) for an example with

the iris data.

5.4.2 Clustering Methods Based on the Posterior Sim-
ilarity Matrix

The sample Z(1), . . . ,Z(M) contains a lot of information, which is however

hard to overlook in its entirety. The PSM already provides a useful summary.

Usually one would also like to summarize the sample with a single allocation

vector Ẑ, to obtain a summarizing clustering C(Ẑ). We now consider methods

for choosing Ẑ based on the PSM.

Ad hoc approach of Medvedovic et al. (2004)

Medvedovic et al. (2004) employ agglomerative hierarchical clustering, as

described in Subsection 4.1.2, to obtain an estimate Ẑ, using 1 − πij as the

distance between the observations i and j. If K is known they use average

linkage and cut the dendrogram at K groups. For unknown K they use

complete linkage and cut the dendrogram at a distance of 1 − ε, for small,
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positive ε. For two distinct clusters Ck and Ck′ there is then at least one pair

of observations (i, j) with Zi = k and Zj = k′, such that πij < ε. In the

applications in the next section a value of ε = 0.01 will be employed.

Binder’s loss function

Binder (1978) was the first to consider loss functions based on pairwise oc-

currences of observations, i.e.,

L(Z∗,Z) =
∑
i<j

`1 · I{Z∗i 6=Z∗j }I{Zi=Zj} + `2 · I{Z∗i =Z∗j }I{Zi 6=Zj} , (5.19)

with positive constants `1 and `2. Z∗ is a proposed estimate and the ma-

trix containing I{Z∗i =Z∗j } is a known 0-1 matrix, which will be referred to as

estimated similarity matrix. The unknown true allocation vector Z has a

similarity matrix containing I{Zi=Zj}. Since E(I{Zi=Zj}|y) = πij, the poste-

rior similarity matrix can be seen as the similarity matrix of the posterior

expected clustering E(C(Z)|y).

The two parts of (5.19) represent two different goals of cluster analysis,

completeness and homogeneity. Completeness means that all observations

from a true group are together in an estimated cluster and lack of it is pe-

nalized by the term `1 · I{Z∗i 6=Z∗j }I{Zi=Zj}. Homogeneity is achieved if each

estimated cluster contains only observations from one true group. Lack of

it is penalized by `2 · I{Z∗i =Z∗j }I{Zi 6=Zj}. There is a trade-off between the two

goals, similarly to the trade-off between bias and variance in point estimation.

Completeness can be better achieved by relatively large estimated clusters

whereas relatively small estimated clusters are better for homogeneity. One

of the goals can be perfectly achieved while sacrificing the other by either

putting all observations into one large cluster or all observations into single-

ton clusters. The quotient `1/`2 determines the relative importance of the

two goals. When there is no particular preference a pragmatic solution is to
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set `1 = `2 = 1 and thus to weight the goals equally. This approach is taken

by Hurn et al. (2003) in the context of a switching regression model. In the

following we will refer to the `1 = `2 = 1 case of (5.19) as Binder’s loss.

The posterior expectation of this loss can be written as

E(L(Z∗,Z)|y) =
∑
i<j

|I{Z∗i =Z∗j } − πij| , (5.20)

i.e., the sum of absolute deviations of the estimated similarity matrix to the

posterior similarity matrix. The estimated Ẑ can be taken as the allocation

vector Z∗ minimizing (5.20). Because of the linearity of the loss function

the same expression is obtained if the loss function is computed between

estimated and posterior expected clustering, so that

E(L(Z∗,Z)|y) = L(Z∗, E(C(Z)|y)) . (5.21)

With Binder’s loss function a loss of 1 is made whenever a pair of obser-

vations is treated differently in the estimated clustering C(Z∗) than in the

true C(Z). The loss is thus the sum of disagreements in the treatment of pairs

of observations between the estimated and true clustering. Considering the

Rand index of Section 4.2 it can then be seen that

R(C(Z∗), C(Z)) = 1− L(Z∗,Z)(
n
2

) .

The Ẑ that minimizes the posterior expectation of Binder’s loss in equation

(5.20) also maximizes the posterior expected Rand index with the true clus-

tering and, considering equation (5.21), the Rand index of estimated and

posterior expected clustering. For simplicity we will write R(C(Z∗), C(Z)) as

R(Z∗,Z) in the following.
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Dahl’s criterion

Dahl (2006) proposed
∑
i<j

(I{Z∗i =Z∗j } − πij)
2 (5.22)

as a heuristic criterion to be minimized to obtain an estimate Ẑ, without giv-

ing a decision-theoretic motivation. It turns out that minimization of (5.20)

and (5.22) is equivalent, which can be seen by writing

∑
i<j

|I{Z∗i =Z∗j } − πij| =
∑
i<j

(πij − 2 · I{Z∗i =Z∗j }πij + I{Z∗i =Z∗j }) ,

and

∑
i<j

(I{Z∗i =Z∗j } − πij)
2 =

∑
i<j

(π2
ij − 2 · I{Z∗i =Z∗j }πij + I{Z∗i =Z∗j }) .

The difference between these sums is
∑

i<j πij(1− πij), which does not de-

pend on Z∗, so that minimization of Dahl’s criterion is equivalent to the

minimization of the posterior expectation of Binder’s loss.

Posterior Expected Adjusted Rand

As discussed in Section 4.2 the adjusted Rand index is usually preferable as a

measure of association to the unadjusted index. It is also used by Dahl (2006)

and Medvedovic et al. (2004) in the evaluation of their simulation studies.

Fritsch and Ickstadt (2009) therefore propose to maximize the adjusted Rand

index of estimated and true clustering AR(Z∗,Z) instead of R(Z∗,Z), as is

done with the minimization of Binder’s loss.

Suppose that the estimated and true clustering corresponds to clustering
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C and C ′ in Table 4.1, respectively. In that case the equations

∑
k

(
nk.

2

)
=

∑
i<j

I{Z∗i =Z∗j } ,

∑
l

(
n.l

2

)
=

∑
i<j

I{Zi=Zj} and

∑
k,l

(
nkl

2

)
=

∑
i<j

I{Z∗i =Z∗j }I{Zi=Zj} ,

hold. The adjusted Rand index of (4.5) can then be written as

∑
i<j I{Z∗i =Z∗j }I{Zi=Zj} −

∑
i<j I{Z∗i =Z∗j }

∑
i<j I{Zi=Zj}/

(
n
2

)
1
2
[
∑

i<j I{Z∗i =Z∗j } +
∑

i<j I{Zi=Zj}]−
∑

i<j I{Z∗i =Z∗j }
∑

i<j I{Zi=Zj}/
(

n
2

) .

This expression depends of course on the unknown true allocation

Z. When taking the posterior expectation to obtain an expression that

can be computed given a potential estimate Z∗ and the MCMC sample

Z(1),Z(2) . . . ,Z(M) we can utilize either side of equation (5.21) leading to ei-

ther E(AR(Z∗,Z)|y) or AR(Z∗, E(C(Z)|y)). Unlike Binder’s loss AR(Z∗,Z)

is not a linear function of the I{Zi=Zj}, so these two expressions are related

but not the same.

Maximizing E(AR(Z∗,Z)|y) over Z∗ leads to a clustering that has maxi-

mum posterior expected adjusted Rand index with the true clustering. This

can be approximated from the MCMC sample by

1

M

M∑
m=1

AR(Z∗,Z(m)) , (5.23)

with AR(Z∗,Z(m)) being computed by equation (4.5).

The adjusted Rand index with the posterior expected clustering

AR(Z∗, E(C(Z)|y)) is given by the expression

∑
i<j I{Z∗i =Z∗j }πij −

∑
i<j I{Z∗i =Z∗j }

∑
i<j πij/

(
n
2

)
1
2
[
∑

i<j I{Z∗i =Z∗j } +
∑

i<j πij]−
∑

i<j I{Z∗i =Z∗j }
∑

i<j πij/
(

n
2

) , (5.24)
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where the πij are estimated from the MCMC sample via equation (5.11).

These two slightly different criteria are introduced in this thesis since both

have distinctive advantages. Expression (5.24) requires the computation of

the posterior similarity matrix, but can then be evaluated a lot faster than

(5.23), which is advantageous if the criterion needs to be calculated for many

different Z∗. We also found (5.24) to be more amenable to a theoretical

study. Expression (5.23) on the other hand does not require the compu-

tation of the posterior similarity matrix, which can be preferable for large

n, where this matrix gets too large to be stored. And one can argue that

maximizing E(AR(Z∗,Z)|y) is a more standard approach than maximizing

AR(Z∗, E(C(Z))|y)). Practically, however, we found in our applications that

maximization of either criterion leads to nearly identical results. For sim-

plicity we will in the following refer to both criteria as PEAR for Posterior

Expected Adjusted Rand.

A possible disadvantage of using PEAR as an optimality criterion is that

the adjusted Rand index is 0 if one of the compared clusterings consists of

only one cluster or of all singletons. As there will always be allocations Z∗

leading to positive values of (5.23) or (5.24) these extreme clusterings will

never be chosen as Ẑ.

A shrinkage property

It is instructive to consider the behavior of Binder’s loss and PEAR, if there

were no restrictions for the I{Z∗i =Z∗j }, i.e., all I{Z∗i =Z∗j } could be set individually

to 0 or 1 without regard of the other indicator functions. From equation (5.20)

it is clear that for Binder’s loss the optimal solution in that case is simply

to set I{Z∗i =Z∗j } = 1, if πij ≥ 0.5. In the case of PEAR it can be seen that for

the expression (5.24) if ` of the I{Z∗i =Z∗j } are 1 and the rest 0, the maximum
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is attained if the I{c∗i =c∗j} = 1 correspond to the ` highest πij. Denoting with

π(i) the ith largest πij and letting
∑

i<j πij/
(

n
2

)
= π̄.., the maximum of (5.24)

is then given by the maximum of

PEAR∗(`) =

∑`
i=1 π(i) − ` π̄..

1
2
` (1− 2π̄..) + 1

2

(
n
2

)
π̄..

(5.25)

for ` = 0, 1, . . . ,
(

n
2

)
. Then the following lemma shows that PEAR has a

shrinkage property.

Lemma 5.3: At the value `∗ for which (5.25) is maximal there is a thres-

hold t such that π(`∗) = min{π(i) : π(i) ≥ t} and the following relation holds:

π̄.. < t < 0.5 if π̄.. < 0.5

t = 0.5 if π̄.. = 0.5

π̄.. > t > 0.5 if π̄.. > 0.5 . (5.26)

Proof: See Appendix A.

Compared to Binder’s loss, where t is always 0.5, Lemma 5.3 shows that

for PEAR the threshold for setting I{Zi=Zj}=1 is shrunk towards the mean of

the πij. PEAR thus adjusts to the amount of clustering found in the data. If

overall only few πij are large, the conditions on putting two observations in

one cluster are less strict, e.g., two observations i and j might be clustered

together if πij is only 0.4. The opposite applies if overall many πij are large.

5.4.3 Optimization of Criteria

Unlike the method of Medvedovic et al. (2004) the expectation of Binder’s

loss and PEAR have to be optimized over several Z∗ to obtain a clustering

estimate Ẑ. The same is the case for a MAP estimate, as the EM algorithm

is no longer applicable with varying K. Due to the exponential growth of the
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Bell numbers Bn it is not feasible to compute the criteria for all possible clus-

terings, except for very small n. So a small set of candidate allocations Z∗ that

will lead to a close to optimal solution is needed. A simple solution chosen,

for example, by Dahl (2006) is to take the MCMC sample Z(1),Z(2) . . . ,Z(M)

as this set.

Another possibility of a small set of clusterings with potentially good

values that will be considered here is given by the clusterings obtained by

the hierarchical clustering approach with distances 1 − πij of Medvedovic

et al.. The criteria can be computed for the clusterings on every level of the

hierarchy and Ẑ taken to be the optimal among these. For the special case of

the expectation of Binder’s loss and the clusterings Z∗ from the hierarchical

clustering with average linkage it is not necessary to compute the criterion

for all Z∗, as the following lemma shows.

Lemma 5.4: Among the clusterings Z∗ given by the levels of the hierar-

chical clustering with average linkage and distances 1− πij, the clustering Ẑ

minimizing E(L(Z∗,Z)|y) =
∑

i<j |I{Z∗i =Z∗j } − πij| is obtained by cutting the

dendrogram at a height of 0.5.

Proof: When clusters Ck and Ck′ are merged the I{Z∗i =Z∗j } with i ∈ Ck

and j ∈ Ck′ are set from 0 to 1. The change in E(L(Z∗,Z)|y) =
∑

i<j |I{Z∗i =Z∗j } − πij| is then

∑
i∈Ck

∑
j∈Ck′

(1− πij)−
∑
i∈Ck

∑
j∈Ck′

πij

=
∑
i∈Ck

∑
j∈Ck′

(1− 2πij). (5.27)

If (5.27) is smaller than 0 the merge improves the expectation of Binder’s
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loss. This is equivalent to

∑
i∈Ck

∑
j∈Ck′

(1− 2πij) < 0

⇐⇒ nknk′ − 2
∑

i

∑
j πij < 0

⇐⇒ nknk′
2

−∑
i

∑
j πij < 0

⇐⇒ nknk′ −
∑

i

∑
j πij <

nknk′

2

⇐⇒ ∑
i

∑
j(1− πij) <

nknk′

2

⇐⇒
P

i∈Ck

P
j∈Ck′

(1−πij)

nknk′
<

1

2
.

The left hand side of the last expression is the distance d(Ck, Ck′) given in

(4.3), that is used in average linkage. Merging of clusters up to a distance of

0.5 will thus improve (5.20) and merging clusters with a larger distance will

deteriorate it.

More sophisticated optimization methods could of course be applied. For

the expectation of Binder’s loss Lau and Green (2007) show that it suffices

to minimize the linear functional

∑
i<j

I{Z∗i =Z∗j }(1− 2πij) .

Using the constraints that for all triples (i, j, l), if I{Z∗i =Z∗j } = 1 then I{Z∗i =Z∗l }

= I{Z∗j =Z∗l }, they formulate the minimization of the expected loss as a bi-

nary integer programming problem, which can be solved exactly. Bansal

et al. (2004) have, however, shown that this is an NP-hard problem. Lau

and Green therefore propose an approximate solution where in turn each of

the n observations is allocated optimally while holding the clustering of the

other n−1 observations fixed. Even this approximation algorithm requires to

solve n binary integer programming problems with O(n) variables and O(n2)

constraints in each iteration.
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In machine learning the problem of combining several clusterings is known

as consensus clustering. The clusterings to be combined are in that case not

necessarily from an MCMC sample but might, for example, also result from

applying K-means with different starting values or values of K. The proposed

solutions mostly try to minimize a function equivalent to the expectation of

Binder’s loss. Goder and Filkov (2008) give a recent overview of algorithms

that have been used for this goal. These include the already discussed ap-

proaches of taking the best among the given clusterings or from a hierarchical

clustering with average linkage. Goder and Filkov did, however, not realize

that in the latter case the best solution is always attained by cutting at 0.5,

as shown in Lemma 5.4. Other approaches considered by them are greedy

search and simulated annealing algorithms. They do not consider integer

programming based algorithms like the one of Lau and Green (2007). In a

simulation study Goder and Filkov (2008) find that overall the best perfor-

mance is given by combining the average linkage algorithm with some greedy

steps on the resulting clustering.

5.5 Applications

In this chapter Bayesian mixtures are used for cluster analysis on simulated

and real data, applying the methods described thus far. Computation times

refer to a desktop computer with 3 GHz and 2 GB RAM. A package mcclust

for the statistical software R (R Development Core Team, 2009) has been

written. It implements the computation of the posterior similarity matrix, the

optimization of Binder’s loss and PEAR as well as the relabeling algorithm

of Subsection 5.3.3. The functions of the package are described in Appendix

E.
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5.5.1 Simulation Study

Setup

The simulated data are 3-dimensional with 8 clusters, where the cluster

means are given by the 8 possible values of (±δ,±δ,±δ)T . Observations

are obtained by adding independent standard normal errors to the cluster

means. As δ determines how well the clusters are separated, we use values

of δ ∈ {0.5, 1.0, 1.5, 2.0} to get data sets that range from ones with largely

overlapping to ones with fairly well separated clusters. One scenario with

equal cluster sizes is simulated, where each cluster contains 50 observations

and one with unequal sizes where half of the clusters contain 20 and the other

half 80 observations. For each combination of δ and cluster size 10 data sets

are generated. To investigate how the clustering methods perform in extreme

cases, data sets are also generated for δ = 0, so that all observations come

from the same normal component. A scenario were each observation comes

from its own component is simulated by setting δ = 2 and extending the

dimensionality of the data to 9, giving 512 observations with distinct cluster

means.

Dirichlet process mixture model

The used model is similar to the one proposed by Qin (2006). It assumes

yi|µi, σ
2
i ∼ N(µi, σ

2
i Ip)

µi, σ
2
i |G ∼ G (5.28)

G ∼ DP (α, p(µ, σ2)) ,

with random probability measure G. Clustering is thus induced on common

values of (µ, σ2). The base distribution is chosen as a conjugate Normal-
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Inverse Gamma

p(µ, σ2) = p(µ|σ2)p(σ2)

= N(0, σ2v−1Ip)InvGa(a, b) .

As discussed in Subsection 2.2.3 a conjugate base distribution makes it pos-

sible to analytically integrate out θ and to sample only the allocation vector

Z. The parameter α is assigned a Ga(4, 2) distribution, see Subsection 5.2.4

for motivation. The hyperparameters a, b and v are set to 1. An iteration of

the MCMC algorithm consists of one conjugate Gibbs scan and three split-

merge proposals as described by Dahl (2007). We found that the latter are

beneficial in reducing the autocorrelation of the chain. More details on the

MCMC sampler are given in Appendix C. When starting the sampler from

a clustering with each observation in its own cluster, trace plots of the num-

ber of clusters indicate a quick convergence. After discarding the first 1000

iterations the algorithm is run for 50,000 iterations of which every 100th is

used for the estimation of the posterior similarity matrix. The model is im-

plemented in R where C functions are called for the time-demanding Gibbs

sampling and split-merge steps. It takes about 8 minutes to run the model

for one data set.

Comparison of optimization methods

First we take a look at the performance of the different optimization proce-

dures mentioned in Subsection 5.4.3. Table 5.2 shows the average minimal

value found for the posterior expectation of Binder’s loss with different ap-

proaches. Using the R package lpSolve as done by Lau and Green (2007) to

implement their algorithm it was not possible to apply the algorithm to all

400 observations, as the optimization problems required at each iteration got

too large to be handled by the software. We therefore tested the approach
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Table 5.2: Mean minimal value of posterior expectation of Binder’s loss found
with different optimization methods for the equal cluster size data.

Half of observations (n=200)
Draws Comp Avg Avg&Grdy Lau&Green

δ=0.5 5368 5378 5366 5365 5363
δ=1.0 6112 6095 6075 6070 6062
δ=1.5 2487 2175 2143 2142 2141
δ=2.0 1016 913 895 895 894

All observations (n=400)
Draws Comp Avg Avg&Grdy

δ=0.5 21527 21561 21544 21544
δ=1.0 24477 24457 24315 24295
δ=1.5 10087 8842 8639 8629
δ=2.0 4465 3843 3739 3735

Draws refers to minimization over the MCMC sample, Comp and Avg to the
minimization over all levels of the hierarchical clustering with complete/average
linkage, Avg&Grdy to additional greedy optimization steps and Lau&Green to
the optimization method proposed by Lau and Green (2007), which could not be
applied to all observations.

by only considering a part of the posterior similarity matrix corresponding

to the first half of observations from each true cluster. For these 200 observa-

tions it took the algorithm of Lau and Green about 30-40 minutes to finish

for each data set. The algorithm did succeed in finding clusterings with the

lowest value, but is closely followed by the hierarchical clustering with aver-

age linkage, which took less than a second to compute. The additional greedy

assignment of single observations to other clusters makes the difference even

smaller and takes only a few extra seconds. Note also that minimization of

the criterion over the drawn clusterings does lead to minimal values that are

much higher than for the other methods. Similar results have also been found

for the unequal cluster size data and for the optimization of the criteria MAP

and PEAR (results not shown). In the following we take the best clustering

over all optimization methods as Ẑ for each criterion.
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Results

From the MCMC output of the Dirichlet process mixture model estimates

Ẑ are obtained by the following methods: Minimization of the posterior ex-

pectation of Binder’s loss (Eqn. (5.20)) which is referred to as MinBinder,

maximization of PEAR (Eqn. (5.24)) abbreviated as MPEAR, the complete

linkage method for unknown K of Medvedovic et al. (2004) (MedvC) and

by maximizing the posterior density (MAP). The relabel algorithm is ap-

plied using the approach proposed by Tadesse et al. (2006), i.e., discarding

all draws Z(m) where K(m) is not equal to the most often occurring number

of groups. A finite mixture model is also fitted via the EM algorithm using

the MCLUST procedure of Fraley and Raftery (2007) which is applied as im-

plemented in the R package mclust with default settings. MCLUST chooses

K via the BIC (see Subsection 2.1.6).

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Equal Cluster Sizes

δ

A
dj

us
te

d 
R

an
d 

w
ith

 T
ru

e 
C

lu
st

er
in

g

MAP
MinBinder
MPEAR
MedvC
MCLUST
Relabel

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unequal Cluster Sizes

δ

A
dj

us
te

d 
R

an
d 

w
ith

 T
ru

e 
C

lu
st

er
in

g

Figure 5.6: Adjusted Rand Index with true clustering for clusterings esti-
mated with six different methods. Left: Data with clusters of equal sizes.
Right: Data with clusters of unequal sizes.
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To evaluate how close the Ẑ of the different criteria are to the true clus-

tering adjusted Rand indices of estimated and true clustering are computed.

Figure 5.6 shows these for the data with equal and unequal cluster sizes.

In the case of δ = 2, i.e., for well separated clusters, all methods perform

comparably. When the clusters are more overlapping MPEAR can be seen to

give estimates closer to the true clustering than the other approaches. It gives

notably better results than MinBinder, which it is meant to improve. This

might be the case because the mentioned shrinkage effect comes into play. It

is probably most beneficial if there are many πij’s close to 0.5, which is not

the case for δ = 2. For δ = 0.5 most of the MCMC clusterings consist of only

one cluster so that none of the estimation criteria can find meaningful cluster

structure. The other methods also put all observations into one cluster for

higher values of δ (MedvC, MCLUST and Relabel for δ equal to 1.0, MAP al-

ready for δ = 1.5). In the case of MAP this can be explained by the high prior

probability that the Dirichlet process places on allocating all observations to

one component as can be inferred from formula (5.2). The likelihood has to

be quite high to counteract this. The Relabel approach discards about 75%-

90% of the MCMC allocation vectors for each data set but still performs very

well in finding a clustering close to the true one. Figure B.1 in Appendix B

gives the V I-distance to the true clustering for the simulation study. For low

values of δ the main difference to the results with the adjusted Rand is that

the V I-distance does not penalize putting all observations into one cluster

as much as the adjusted Rand, so that now MinBinder and MPEAR give the

worst results. For the higher values of δ especially the relative performance

of MCLUST and Relabel is improved compared to Figure 5.6.

For the data sets with only one true cluster all criteria except MPEAR

correctly assign all observations to one cluster. As noted PEAR will never be
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Table 5.3: Mean number of clusters found in the simulation study.

Equal Cluster Sizes
MAP MinBinder MPEAR MedvC MCLUST Relabel

δ=0.5 1.0 1.4 6.5 1.0 1.0 1.1
δ=1.0 1.0 5.2 3.4 1.0 1.0 1.1
δ=1.5 1.0 89.1 12.7 6.6 3.4 8.2
δ=2.0 8.1 23.7 12.2 8.0 8.0 8.1

Unequal Cluster Sizes
MAP MinBinder MPEAR MedvC MCLUST Relabel

δ=0.5 1.0 2.5 5.9 1.0 1.0 1.6
δ=1.0 1.0 35.1 4.8 1.1 1.1 2.8
δ=1.5 1.7 72.2 14.3 5.2 4.6 7.5
δ=2.0 8.1 23.6 13.4 7.5 8.2 8.2

Extreme Case Data
MAP MinBinder MPEAR MedvC MCLUST Relabel

One Cluster 1.0 1.0 7.8 1.0 1.0 1.0
Singletons 1.0 1.0 7.7 1.0 4.3 1.0

maximal at one cluster and thus places some observations into other clusters,

with most observations still being in one large cluster. For the data where

all observations come from distinct components the MCMC output of the

DP mixture model consists again mostly of clusterings with only one cluster

and the criteria based on its output accordingly put all observations into one

cluster. While this might look like a flaw of the DP mixture model, it can be

argued that all observations in one cluster or all in singleton clusterings are

just different ways of expressing that no cluster structures have been found

in the data.

The mean number of clusters found by the different methods are shown in

Table 5.3. It can be seen that for the higher values of δ the estimate obtained

with MinBinder has a lot more clusters than the 8 truly present. This is also

the case for MPEAR, but far less extreme. When the other methods do not
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Table 5.4: Mean number of singletons and large clusters (more than 10 ob-
servations) for equal cluster size data.

MPEAR MinBinder
Singletons Large Clusters Singletons Large Clusters

δ=0.5 2.5 2.2 0.1 1.0
δ=1.0 0.2 3.0 1.6 2.2
δ=1.5 2.0 8.1 66.5 8.9
δ=2.0 3.8 8.0 12.1 8.0

put all observations in one cluster their estimates have less than the true

number of clusters for δ = 1.5 and are on average approximately correct for

δ = 2.

The tendency of MinBinder and MPEAR to overestimate the number

of clusters can be explained by the fact that many observations are put in

singleton or in very small clusters. Table 5.4 shows the mean number of

singletons and larger clusters for the two criteria. It can be seen that on

average both methods are close to the correct number of (large) clusters for

δ equal to 1.5 and 2. MinBinder produces many singletons. An example of

this is given in Figure B.2 in the appendix. It shows the πij for an observation

i that is put in a singleton cluster by both MinBinder and MPEAR and for

an observation that is clustered by itself only by MinBinder. In the latter

case it can be seen that the shrunken threshold t on πij of MPEAR leads to

the observation being assigned to the correct cluster. In the simulation study

comparing similarity measures for clusterings of Milligan and Cooper (1986)

it was found that the Rand index will typically lead one to choose many

clusters. Since MinBinder maximizes the posterior expected Rand index with

the true clustering the results above are not surprising.

A sensitivity analysis of the simulation study concerning the number of

MCMC iterations and different prior settings of the DP mixture model is
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given in Appendix D. The results of the sensitivity analysis indicate that

especially MPEAR is fairly robust to changes in the underlying model, at

least if there is clear cluster structure in the data, i.e., for the cases δ = 1.5

and δ = 2. If there is no clear cluster structure the results are sensitive to

the prior distribution of α.

5.5.2 Leukemia Data

Golub et al. (1999) obtained microarray gene expression measurements of

bone marrow samples from leukemia patients. The patients have differ-

ent subtypes of leukemia, B-cell acute lymphoblastic leukemia (ALL-B),

T-cell acute lymphoblastic leukemia (ALL-T) and acute myeloid leukemia

(AML), that differ in prognosis and treatment regime that should be ap-

plied. We investigate whether a Bayesian mixture model can recover the

known group structure. The data are available in the Bioconductor reposi-

tory (www.bioconductor.org, Gentleman et al., 2004) as package golubEsets.

Considering only the training data set of Golub et al. (1999) the expression of

7129 genes has been measured on 38 patients. Some preprocessing steps as in

Dudoit et al. (2002) are applied: setting measurements below 100 and above

16.000 to 100 and 16.000, respectively, and a logarithmic transformation. To

reduce the dimensionality of the data we then compute principal components

for the 1% genes with the largest variances across patients. The reason for

using only highly variable genes is that these are the most likely to have a

high between-group variation. And, as mentioned by McLachlan and Peel

(2000, p. 239), if the groups are relatively well separated and the between-

group variation dominates the within-group variation, the group structure

should be represented by the projections on the first few principal axes.

As the first two principal components explain far more variation than the
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Figure 5.7: Leukemia data. (i) Percentage of total variance explained by first
few principal components. (ii) Scatterplot of first two principal components.

others (see Figure 5.7 (i)) they will be used for the cluster analysis. Figure

5.7 (ii) plots the first two principal components. A group structure can be

seen, even if the given annotation of the true subtypes is ignored.

As the clusters for the leukemia data are not necessarily spherical the

simple DP mixture model used for the simulation study is replaced by a

model with unrestricted covariance matrices. The model is

yi|µi, Σi ∼ N(µi, Σi)

µi, Σi|G ∼ G (5.29)

G ∼ DP (α, p(µ, Σ)) ,

with base measure

p(µ, Σ) = p(µ|Σ)p(Σ)

= N(0, v−1Σ)IW (c0, C0) .

IW (c0, C0) denotes the inverted Wishart distribution with expectation

E(Σ) = C0/(c0 − (d + 1)/2) (which exists for c0 > (d + 1)/2). The hyperpa-
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rameters are set to v = 1, c0 = 2.5 and C0 to a diagonal matrix containing

the sample variances s2
yj

, following Bensmail et al. (1997). As in the simula-

tion study, α is given a Ga(4, 2) prior. The model is fit using the function

DPdensity from the R package DPpackage (Jara et al., 2009) with the number

of MCMC iterations, burn-in and thinning as in the simulation study.
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Figure 5.8: Leukemia data. (i) Heatmap of Posterior Similarity Matrix. (ii)
Multidimensional scaling applied to Posterior Similarity Matrix.

Figure 5.8 shows the visualizations of the posterior similarity matrix com-

puted from the MCMC sample of allocations Z(1), . . . ,Z(M). The true sub-

types have been well separated except for three observations. Figure 5.9 shows

the clusterings estimated with the different methods. The MAP approach is

able to perfectly recover the true subtypes, although from the heatmap in

Figure 5.8 it can be seen that one of the ALL-B observations (this is the

observation closest to the middle of Figure 5.7 (ii)) is only rarely in a cluster

with the other ALL-B’s. The second best solution in terms of adjusted Rand

index and V I-distance is given by MPEAR, where this ALL-B observation

is assigned its own cluster. The Relabel approach wrongly assigns the obser-

vation into a cluster with the ALL-T’s. As before MinBinder has a tendency
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Figure 5.9: Clusterings of leukemia data. Letters denote true subtype, color indi-
cates an estimated cluster. Adjusted Rand and V I-distance give similarity to true grouping
of subtypes.

to produce singletons and assigns all three observations with unclear cluster

status to their own cluster. For the leukemia data MedvC and MCLUST

do not work very well and detect either too few or too many clusters. For
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MedvC this can be explained by the fact that the one ALL-B observation

and the AML and ALL-T observations are together in a cluster in about

2% of the MCMC clusterings. Hierarchical clustering with complete linkage

and distances 1− πij and cutting the dendrogram at a value of 0.99, as done

by MedvC, then leads to these observations being in one cluster. MCLUST

uses the BIC to decide between several possible variance structures and here

chooses a structure that is too simple. With only 38 observations a asymp-

totic criterion like BIC is probably not justified.

Although the MAP clustering recovers the true subtypes it might be ar-

gued whether the clustering given by MPEAR is not preferable since it seems

a sensible idea to assign the one ALL-B observation to a “status unclear”

cluster.

5.5.3 Galactose Data

A Bayesian mixture model is applied to another gene expression data set,

where it is the aim to cluster genes to obtain groups that are functionally

related. The expression data are from a study on the galactose pathway

(Ideker et al., 2001). Microarrays were used to measure mRNA concentra-

tions under 20 different conditions in growing yeast, with the experiment

being replicated four times. We use the same subset of 205 genes already

employed by Medvedovic et al. (2004) and Qin (2006). The subset is chosen

to reflect four functional categories of the Gene Ontology (Gene Ontology

Consortium, 2000), which will be assumed to represent the true clustering.

Figure 5.10 shows the mean expressions of the genes over the 20 conditions.

There are two large groups containing 83 and 93 genes and two small ones

with 14 and 15 genes. While Qin (2006) and Medvedovic et al. (2004) used

the original data for clustering we will again use the first two principal com-
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Figure 5.10: Mean expression levels of genes involved in the galactose pathway
over different conditions. Colors indicate different functional categories of the Gene
Ontology.

ponents as these explain a large part of the variation of the data and show

clear cluster structures when plotted (see Figure B.3 in the appendix). The

Dirichlet process mixture model (5.29) used for the leukemia data is fitted

with the same prior settings and number of MCMC iterations to the PCs de-

rived from each single experimental replicate and from the average expression

over the four replicates.

Table 5.5 gives the similarity measures with the true clustering for the

clusterings obtained with the different estimation approaches. Overall we ob-

tain better results using principal components than reported by Medvedovic

et al. and Qin for the original data. For the mean expression data MinBinder

and MPEAR give the best solution, although all methods perform relatively

well. For the single replicates MinBinder and MPEAR do not perform very

well. The reason is that here both put many observations into singletons,
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Table 5.5: Similarity measure with true clustering for yeast galactose data.
(Results for replicates are averages over the four replications.)

Adjusted Rand index
MAP MinBinder MPEAR MedvC MCLUST Relab

Mean Expr. 0.965 0.965 0.965 0.960 0.937 0.965
Replicates 0.922 0.850 0.878 0.913 0.841 0.866

V I-distance
MAP MinBinder MPEAR MedvC MCLUST Relab

Mean Expr. 0.248 0.224 0.224 0.241 0.379 0.224
Replicates 0.439 0.678 0.602 0.489 0.633 0.586

MinBinder again some more than MPEAR. Similar to the leukemia data for

the single replicates, MAP gives clusterings closest to the true one.

With the original data, instead of using an average expression vector,

the four replicates could be modeled with an additional hierarchical level in

model (5.29). A mean expression vector mi then replaces yi in (5.29) and the

jth repetition of the ith gene expression vector yij is, for example, modeled

by

yij|mi ∼ N(mi, ψiI) , (5.30)

thus allowing to take gene-specific variances ψi into account. Medvedovic

et al. (2004) consider such a model and demonstrate its usefulness in the

presence of heteroscedastic genes in a simulation study. For the galactose

data they find that not much is gained with the inclusion of a hierarchical

level of the form (5.30), so that the genes seem to have similar variances. The

use of average expression profiles thus seems to be justified here.

5.5.4 Iris Data

The iris data from Anderson (1935), first analyzed by Fisher (1936), are

a well known data set in multivariate analysis. The data consist of four
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measurements (length and width of the sepals and length and width of the

petals) on 150 irises, with 50 observations from each of the species iris setosa,

versicolor, and virginica. Fitting either the DP mixture model (5.29) with the

previous prior settings or MCLUST does lead to a clustering where versicolor

and virginica are merged into one cluster, no matter which of the estimation

methods is applied. Extending the model (5.29) with hyperpriors on v and C0

leads to better results. The priors used are v ∼ Ga(1, 1) and C0 ∼ W (g0, G0)

with W (g0, G0) being a Wishart distribution with expectation G0/g0. Along

the lines of Stephens (1997) the remaining hyperparameters are set to c0 =

d + 1 = 5, g0 = c0/10 and G0 to a diagonal matrix with entries 10/R2
j , R2

j

being the range of the jth y variable. The extended model can be fit with

the DPdensity function of the DPpackage package.

Table 5.6: Contingency tables of iris grouping with clusterings estimated by
different methods.

MedvC, MAP MinBinder, MPEAR, Relabel

Cluster setosa versicolor virginica setosa versicolor virginica
1 50 0 0 50 0 0
2 0 46 1 0 45 0
3 0 4 49 0 5 41
4 - - - 0 0 9

The posterior similarity matrix that is obtained from the MCMC output

of the extended model has already been shown in Figure 5.5. It can be seen

that the setosa group is well separated from the other two, that there is some

overlap between versicolor and virginica and that there are two subgroups of

virginica. Applying the estimation methods to the PSM yields two cluster-

ings. Their contingency tables with the true iris grouping are shown in Table

5.6. The criteria MAP and MedvC find a clustering with three clusters with
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some observations interchanged between the versicolor and virginica group.

In the clustering with four clusters found by MinBinder, MPEAR and Relabel

the smaller subgroup of the virginica cluster is made up of the observations

6, 8, 18, 19, 23, 26, 30, 31, 32. The original reason of Anderson (1935) for

collecting the iris data was to look for signs of continuing evolution. Looking

at the scatterplots in Figure 5.11 it seems plausible that the smaller cluster

corresponds to a potential subspecies of iris virginica, as the observations in

it have large values for petal width, petal length and sepal length and there is

a gap between them and the other virginica observations. The distributions

of sepal width is similar between the two clusters.
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Figure 5.11: Iris data. Petal width against petal length and sepal length. Color
indicates estimated clusters.

The subgroups of virginica have been identified previously. They are men-

tioned by Wilson (1982) who used an exploratory data analysis method based

on sound, where p-dimensional observations are transformed into a melody

of p notes. McLachlan and Peel (2000, Chapter 3.11) use the EM algorithm
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to fit a mixture of two normals with unrestricted covariance matrices to only

the data of the virginica group and find that the splitting of the data into the

discussed two subgroups corresponds to a local mode of the likelihood that is

probably not spurious. They find, however, that a formal test of H0 : K = 1

vs. H1 : K = 2 is not significant. In contrast, the model fitted by us strongly

suggests the existence of the two virginica clusters, as they are present in most

of the MCMC samples. This can be seen clearly in Figure 5.5. The difference

is possibly due to the use of the hyperprior on C0, i.e., C0 ∼ W (g0, G0).

Use of a hyperprior is equivalent to assuming that the clusters have different

but similar covariance matrices. From Figure 5.11 and the other scatterplots

of the variables (not shown) the assumption of similar covariance matrices

seems reasonable. As the use of a hyperprior on C0 seems plausible and the

model incorporating such a prior strongly suggest four clusters there is some

support for the existence of two subspecies of virginica.



Chapter 6

Conclusions and Outlook

In this thesis Bayesian mixtures, especially finite mixtures and Dirichlet pro-

cess mixtures, have been investigated. One possible application of these mod-

els is as a semiparametric extension of standard parametric models. The ap-

plicability of Bayesian mixtures for such a flexible modeling of distributions

has been demonstrated both theoretically and practically. The former was

done by stating consistency results and the latter by modeling the random

effects distribution in a logistic regression model. In this application, which

considered the goalkeeper’s effect in saving a penalty, the Dirichlet process

mixture model led to results very similar to the ones resulting from a nor-

mal model. The DP mixture model nevertheless provided a useful sensitivity

analysis of the normal model and indicated that the tails of the random

effects distribution should be somewhat more pronounced. From an applica-

tion point of view the used hierarchical model, with its associated shrinkage

effect, is more appropriate than using just the number or percentage of saved

penalties for estimating the ability of a goalkeeper.

When using a Bayesian mixture for cluster analysis, the arbitrariness of

cluster labels leads to the label-switching problem in the MCMC fitting of

the model. The problem gets severe when the number of clusters is allowed

99
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to vary. Two new approaches to this problem have been proposed in this

thesis. The first consists of a more generally applicable variant of the relabel-

ing algorithm of Stephens (2000). The variant is more general, as it applies

to drawn clusterings and not drawn parameter values. Therefore it does not

depend on the specific form of the component distributions. The second ap-

proach is based on pairwise posterior probabilities and is an improvement of

a commonly used loss function due to Binder (1978). Minimization of this

loss has been shown to be equivalent to maximizing the posterior expected

Rand index with the true clustering. As the adjusted Rand index is prefer-

able to the raw index, the maximization of the posterior expected adjusted

Rand has been proposed. The resulting PEAR criterion could be shown to

possess a shrinkage property and performed well in a simulation study and

in an application to two gene expression data sets, where estimated cluster-

ings closer to the truth than the ones resulting from minimizing Binder’s loss

could be found. The number of clusters was not assumed to be known for

these data sets. Although the relabeling algorithm was designed for a fixed

number of clusters, it has been applied after conditioning on a MAP estimate

of the number of clusters. Despite the fact that the conditioning required to

discard 75% - 90% of the MCMC clusterings, the relabeling approach worked

almost as good as PEAR. Both approaches compared favorably to the clus-

terings obtained using an ad hoc criterion of Medvedovic et al. (2004) and

MCLUST. The MAP clustering did not give good results for overlapping

clusters in the simulation study, but performed well for the gene expression

data. Similarly to Stephens’ relabeling algorithm, a specific formula has to

be used for the MAP in each mixture model, whereas the other methods can

be applied without modification to the MCMC output of a Bayesian mix-

ture model. We would therefore generally recommend to use PEAR or the
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relabeling algorithm instead of Binder’s loss or Medvedovic’s approach. A

model-specific MAP also seems to work well if clusters are not overlapping.

For Fishers iris data the new postprocessing methods, together with the

assumption of similar covariances in the clusters, lead to the (re-)discovery

of two subgroups of iris virginica, which might be an indication of continuing

evolution in these plants.

In the optimization of Binder’s loss and PEAR it turned out that hier-

archical clustering with 1 − πij as distance and average linkage is a quick

way to get a good approximation to the optimum. The attained solution can

be further improved with some greedy optimization steps. For minimization

of the posterior expectation of Binder’s loss this approach gave estimated

clusterings with almost as low values as obtained with the optimization al-

gorithm of Lau and Green (2007), but took only a few seconds to compute,

instead of 30 minutes. Although frequently proposed in the literature, op-

timizing the criteria only over the MCMC sample of clusterings performed

worse and seems not to be a very good way to obtain an estimate Ẑ.

An issue not yet discussed is the scalability of the proposed methods.

Regarding the dimension p of each single observation the clustering mod-

els in Section 5.5 could be applied without problems when p is in the order

of a few tens. In that case a model with a restricted covariance structure,

like (5.28), should be preferred to a model with an unrestricted covariance

matrix, like (5.29). As demonstrated with the two gene expression data sets

using principal components to reduce p can work very well for clustering. Al-

though this does not have to be the case, dimension reduction with principal

components is a simple approach that usually seems worth trying. Regard-

ing the number of observations n, Medvedovic et al. (2004) and Dahl (2006)

apply clustering methods based on Dirichlet process mixtures and the pos-
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terior similarity matrix to data sets with n ≈ 10, 000. Besides running times

of several hours to few days on a desktop computer they do not report any

problems. As discussed in Subsection 5.4.2, for large n it might be preferable

to avoid computation of the posterior similarity matrix and compute PEAR

using (5.23) rather than (5.24). The proposed relabeling algorithm is compu-

tationally less demanding and thus more suitable for large n than Stephens’

approach. The most important limiting factor for the algorithm is probably

the number of clusters K, as each iteration requires solving M assignment

problems with running times of the order O(K3).

The work on PEAR in this thesis could be extended by considering the

minimization of the posterior expectation of the distance between estimated

and true clustering, using distance measures other than the adjusted Rand,

e.g., the discussed “variation of information”-distance. An empirical compar-

ison of the proposed relabeling algorithm with Stephens’ original approach

might also be interesting.

Bayesian mixtures are a very active area of research. The main focus of

this thesis has been on cluster analysis and the modeling of a single dis-

tribution. The interesting modeling of several related distributions has only

been mentioned briefly in Subsection 2.2.4. Much work is also done con-

cerning Bayesian mixtures of regression or time series models, see for exam-

ple Frühwirth-Schnatter (2006, Chapters 8 and 10-13) and Bornkamp et al.

(2010). A large number of both theoretical and applied articles have also been

published in recent years in the general area of Bayesian nonparametrics, to

which methods based on the Dirichlet process are counted. Developments in-

clude extensions of the Dirichlet process, alternatives, for example, general-

ized gamma process priors (Lijoi et al., 2007), new computational approaches

and asymptotic theory. An overview of recent results can be found in Hjort
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et al. (2010). Many interesting statistical methods are still to be expected

from this line of research.



Appendix A

Additional Proof

Proof of Lemma 5.3:

The conditions on π(`∗) for PEAR∗ of equation (5.25) to take its maximum

are considered. This is done by considering under what conditions PEAR∗(`)

is greater than PEAR∗(`− 1). Recall that π(i) is the ith largest πij. Then

PEAR∗(`) ≥ PEAR∗(`− 1)

⇐⇒
∑`

i=1 π(i) − ` π̄..

1
2
` (1− 2π̄..) + 1

2

(
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2

)
π̄..

≥
∑`−1

i=1 π(i) − (`− 1) π̄..

1
2
(`− 1) (1− 2π̄..) + 1

2

(
n
2

)
π̄..

⇐⇒ π(`)

[
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π̄..

]
≥ (1− 2π̄..)
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(
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)
π̄2

.. (A.1)

⇐⇒ π(`)

(
n

2

)
π̄.. −

(
n

2

)
π̄2

.. ≥ (1− 2π̄..)

[
`−1∑
i=1

π(i) − (`− 1)π(`)

]

⇐⇒
(

n

2

)
π̄..(π(`) − π̄..) ≥ (1− 2π̄..)

`−1∑
i=1

(π(i) − π(`)) (A.2)

Obtaining (A.1) from the previous line requires multiplication with the de-

nominators, expansion and deletion of terms occurring on both sides of the

equation. For π̄.. ≤ 0.5 (A.2) is decreasing on the left hand side with rising

` and increasing on the right hand side, so that PEAR∗ has a unique maxi-

mum (or two maxima at adjacent values). The uniqueness of the maximum

for π̄.. ≤ 0.5 is a bit more complicated and is shown later.
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The threshold t can be determined by setting (A.2) to equality

(
n

2

)
π̄..(t− π̄..) = (1− 2π̄..)

`−1∑
i=1

(π(i) − t) . (A.3)

Since
∑`−1

i=1 (π(i) − t) > 0 it follows that

t > π̄.. if π̄.. < 0.5

t = π̄.. if π̄.. = 0.5

t < π̄.. if π̄.. > 0.5 .

To prove the relation of t to 0.5 we solve (A.3) for t and show that for π̄.. < 0.5

it is smaller than 0.5:
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The maximum that the term on the left can take is (` − 1), this is the case

if the first (` − 1) π(i) are equal to 1. As
(

n
2

)
π̄.. =

∑
i π(i), the term on the

right is at least as large. Equality holds, if π(i) = 1 for i ≤ `− 1 and all other

π(i) = 0.

For π̄.. > 0.5 the direction of the inequality is changed when dividing by

(1− 2π̄..), so that t is larger than 0.5 in this case.
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It remains to show that PEAR∗ has a unique maximum for π̄.. > 0.5.

Rewriting (A.1) yields

π(`) ≥
(1− 2π̄..)

∑`−1
i=1 π(i) +

(
n
2

)
π̄2

..

(1− 2π̄..)(`− 1) +
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2

)
π̄..

. (A.4)

The left hand side of (A.4) is decreasing with rising ` and the right hand

side is equal to π̄.. for ` = 1 and ` =
(

n
2

)
. To determine the behavior of the

r.h.s. of (A.4) for the intermediate values of ` it is considered under what

conditions it is decreasing. The equation

(1− 2π̄..)
∑`

i=1 π(i) +
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π̄2

..
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2

)
π̄2

..

(1− 2π̄..)(`− 1) +
(

n
2

)
π̄..

can be shown to be equivalent to (A.4). Then PEAR∗(`) ≥ PEAR∗(` − 1)

iff the r.h.s. of (A.4) is decreasing. Since the l.h.s. of (A.4) is in general

decreasing the maximum has to be unique.
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Additional Graphs and Tables
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Figure B.1: V I-distance to true clustering for clusterings of simulation study.
Left: Data with clusters of equal sizes. Right: Data with clusters of unequal
sizes.
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Goalkeeper Rank P (Saving|y) with 95% CI % Saved # Saved # Penalties
Kargus, Rudolf 1 0.260 [0.189, 0.354] 0.329 23 70
Enke, Robert 2 0.243 [0.166, 0.357] 0.407 11 27

Pfaff, Jean-Marie 3 0.249 [0.160, 0.426] 0.545 6 11
Köpke, Andreas 4 0.234 [0.165, 0.329] 0.317 13 41

Radenkovic, Petar 5 0.233 [0.161, 0.333] 0.353 12 34
...

...
...

...
...

...
Melka, Michael 59 0.204 [0.126, 0.304] 1.000 1 1

...
...

...
...

...
...

Teupel, Gerhard 134 0.192 [0.113, 0.287] 0.000 0 1
...

...
...

...
...

...
Lehmann, Jens 221 0.186 [0.123, 0.259] 0.189 7 37
Kahn, Oliver 222 0.186 [0.126, 0.253] 0.172 10 58

...
...

...
...

...
...

Schmadtke, Jörg 284 0.167 [0.101, 0.234] 0.098 4 42
Rynio, Jürgen 285 0.164 [0.089, 0.235] 0.074 2 27

Müller, Manfred 286 0.163 [0.085, 0.237] 0.040 1 25
Junghans, Walter 287 0.163 [0.086, 0.236] 0.042 1 24

Maier, Sepp 288 0.162 [0.105, 0.221] 0.130 9 69

Table B.1: Ranking of goalkeepers based on the Dirichlet process mixture
model (3.3). The ranking is determined by the average rank during the MCMC run and
not by the average posterior saving probability.
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Figure B.2: Pairwise posterior probabilities πij for two observations i. Equal
cluster size data with δ = 2 and π̄..=0.119. Left: Observation is put into its
own cluster by MPEAR and MinBinder. Right: Observation is put into its
own cluster only by MinBinder. Lines indicate thresholds t for MPEAR ( - -
- ) and MinBinder (· · · ), t is described in Subsection 5.4.2.
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Figure B.3: Principal components of mean expression galactose data. (i) Per-
centage of total variance explained by first few principal components. (ii)
Scatterplot of first two principal components. Plot characters denote the four
Gene Ontology groups.
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Details on MCMC Sampler

This section describes the MCMC sampler used for fitting the simple Dirichlet

process mixture model (5.28) in Subsection 5.5.1.

The conditional distribution of Zi given all other indicators Z−i and y is

given by

P (Zi = k|Z−i,y) ∝ nk,−i

α+n−1

∫
N(yi|µ, σ2)p(µ, σ2|yk,−i) dµ dσ2(C.1)

P (Zi = K + 1|Z−i,y) ∝ α
α+n−1

∫
N(yi|µ, σ2)p(µ, σ2) dµ dσ2 , (C.2)

where K is the number of clusters in Z−i, nk,−i is the number of Z−i = k and

yk,−i are the corresponding observations. Conditioning on current draws of

any of the hyperparameters α, b and v that is assigned a prior distribution is

also assumed. Since p(µ|σ2)p(σ2) = Np(0, σ
2v−1Ip)InvGa(a, b) the integral in

(C.2) can be solved by first integrating with respect to µ, leading to p(yi|Zi =

K + 1, σ2) = Np(0, σ
2(1 + v−1)Ip) and then using results of Bernardo and

Smith (1994, p.140) to obtain

p(yi|Zi = K + 1) = tp(0,
b

a
(1 + v−1)I, 2a) ,

where tp(η, Σ, ν) is the p-dimensional Student t-distribution with expectation

η (for ν > 1) and variance ν
ν−2

Σ (for ν > 2).
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The integral in (C.1) can be solved by first employing stan-

dard results in Bayesian inference to give p(µ|σ2,yk,−i)p(σ2|yk,−i) =

Np(µ
∗, σ2v∗−1I)InvGa(a∗, b∗), where

µ∗ =
nk,−i

v + nk,−i

ȳk,−i

v∗ = v + nk,−i

a∗ = a + dnk,−i/2

b∗ = b +
1

2
[
∑
j 6=i

Zj=k

yT
j yj − v∗µ∗T µ∗] .

Applying the same reasoning as above one then obtains

p(yi|Zi = k,Z−i,yk,−i) = tp(µ
∗,

b∗

a∗
(1 + v∗−1)I, 2a∗) .

If the hyperparameter α is assigned a Ga(δ1, δ2) prior the Gibbs sampling

scheme of Escobar and West (1995) is employed.

A Beta(v1, v2) prior on 1/(1 + α) induces the Beta of the second kind

prior on α given in (5.6) leading to a full conditional depending only on K

and n

p(α|K, n) ∝ αK+v2−1

(1 + α)(v1+v2)

Γ(α)

Γ(α + n)

which is updated with a random walk Metropolis algorithm on log(α).

If v is assigned a Ga(γ1, γ2) prior its full conditional is given by a

Ga(γ1 +
K · d

2
, γ2 +

1

2

K∑

k=1

σ−2
k · µT

k µk) ,

where µk, σ
2
k are sampled for each cluster from the

Np(µ
∗, σ2v∗−1I)InvGa(a∗, b∗) distribution given above. Similarly, if b is as-

signed a Ga(η1, η2) prior the full conditional is a Ga(η1+K ·a, η2+
∑K

k=1 σ−2
k ).
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Sensitivity Analysis of
Simulation Study

This section gives a sensitivity analysis of the simulation study in Subsection

5.5.1 concerning the number of MCMC iterations and different prior settings

of the Dirichlet process mixture model (5.28).

To evaluate the effect of the number of MCMC iterations some of the

data sets have been fitted with twice the number of iterations, which did

not improve the results (data not shown). More iterations seemed only to

be beneficial if the optimization of the criteria is done solely over the drawn

allocations Z(1),Z(2) . . . ,Z(M), where in some case better scoring clusterings

could be found.

To investigate the effect that the underlying clustering model has on the

estimated clusterings the DP mixture model is also fit to the simulated data

with different priors for the hyperparameters. The first modification consists

of placing additional Ga(1, 1) priors on both b and v. For the second setting

the Ga(4, 2) on α is replaced by a vague prior. As mentioned in Subsection

5.2.4 in a clustering context a good choice for a vague prior seems to be to

let P (Zi = Zj) = 1/(1 + α) ∼ Beta(1, 1). The last setting has a fixed α = 4.

Table D.1 shows the average adjusted Rand indices that resulted from
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Table D.1: Average adjusted Rand index with the true clustering for equal
cluster size data and different prior settings.

δ = 1.5
Prior MAP MinBinder MPEAR MedvC Relabel

Standard 0.000 0.485 0.601 0.476 0.586
Gamma b,v 0.000 0.393 0.568 0.456 0.547

Vague α 0.000 0.414 0.547 0.326 0.423
Fixed α 0.000 0.428 0.592 0.550 0.593

δ = 2
Prior MAP MinBinder MPEAR MedvC Relabel

Standard 0.836 0.824 0.837 0.833 0.835
Gamma b,v 0.784 0.793 0.821 0.827 0.829

Vague α 0.838 0.826 0.840 0.835 0.838
Fixed α 0.831 0.820 0.831 0.836 0.837

applying the estimation methods to the output of the model with the different

priors for the equal cluster size data and δ equal to 1.5 and 2. For δ = 2 the

results are relatively robust for all criteria. In the case of δ = 1.5 the average

adjusted Rand indices are generally a bit worse for the ”Gamma b, v” and

”Vague α” setting, indicating that here the added prior flexibility makes it

harder to find the true cluster structure. The results of MPEAR are the least

affected by the different priors and still lead to the best average result. The

results for δ equal to 0.5 and 1 do not change much compared to the standard

prior (data not shown), except that for δ = 1 and the ”Vague α” setting none

of the criteria can find any cluster structure and that the results are better

for MinBinder and MPEAR for the ”Fixed α” setting.

A similar pattern is found for the unequal cluster size data while the

results for the extreme case data sets are not affected by the different priors.
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R Package mcclust

mcclust-package Process MCMC Sample of Clusterings.

Description

Implements methods for processing a sample of (hard) clusterings, e.g., the
MCMC output of a Bayesian clustering model. Among them are methods that
find a single best clustering to represent the sample, which are based on the
posterior similarity matrix or a relabeling algorithm.

Details

Package: mcclust
Type: Package
Version: 1.0
Date: 2009-03-12
License: GPL (>= 2)
LazyLoad: yes

Most important functions:

comp.psm for computing posterior similarity matrix (PSM). Based on the
PSM maxpear and minbinder provide several optimization methods to find a
clustering with maximal posterior expected adjusted Rand index with the true
clustering or one that minimizes the posterior expectation of a loss function
by Binder (1978). minbinder provides the optimization algorithm of Lau and
Green.
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relabel contains the relabeling algorithm of Stephens (2000).

arandi and vi.dist compute distance functions for clusterings, the (adjusted)
Rand index and the entropy-based variation of information distance.

Author(s)

Arno Fritsch

Maintainer: Arno Fritsch <arno.fritsch@tu-dortmund.de>

References

Binder, D.A. (1978) Bayesian cluster analysis, Biometrika 65, 31–38.

Fritsch, A. and Ickstadt, K. (2009) An improved criterion for clustering based
on the posterior similarity matrix, Bayesian Analysis, 4, 367–392.

Lau, J.W. and Green, P.J. (2007) Bayesian model based clustering procedures,
Journal of Computational and Graphical Statistics 16, 526–558.

Stephens, M. (2000) Dealing with label-switching in mixture models. Journal
of the Royal Statistical Society Series B, 62, 795–809.

Examples

data(cls.draw2)
# sample of 500 clusterings from a Bayesian cluster model
tru.class <- rep(1:8,each=50)
# the true grouping of the observations
psm2 <- comp.psm(cls.draw2)
# posterior similarity matrix

# optimize criteria based on PSM
mbind2 <- minbinder(psm2)
mpear2 <- maxpear(psm2)

# Relabeling
k <- apply(cls.draw2,1, function(cl) length(table(cl)))
max.k <- as.numeric(names(table(k))[which.max(table(k))])
relab2 <- relabel(cls.draw2[k==max.k,])

# compare clusterings found by different methods with
# true grouping
arandi(mpear2$cl, tru.class)
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arandi(mbind2$cl, tru.class)
arandi(relab2$cl, tru.class)

arandi (Adjusted) Rand Index for Clusterings

Description

Computes the adjusted or unadjusted Rand index between two cluster-
ings/partitions of the same objects.

Usage

arandi(cl1, cl2, adjust = TRUE)

Arguments

cl1,cl2 vectors of cluster memberships (need to have the same
lengths).

adjust logical. Should index be adjusted? Defaults to TRUE.

Details

The Rand index is based on how often the two clusterings agree in the treat-
ment of pairs of observations, where agreement means that two observations
are in/not in the same cluster in both clusterings.

The adjusted Rand index adjusts for the expected number of chance agree-
ments.

Formulas of Hubert and Arabie (1985) are used for the computation.

References

Hubert, L. and Arabie, P. (1985): Comparing partitions. Journal of Classifi-
cation, 2, 193–218.

See Also

vi.dist
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Examples

cl1 <- sample(1:3,10,replace=TRUE)
cl2 <- c(cl1[1:5], sample(1:3,5,replace=TRUE))
arandi(cl1,cl2)
arandi(cl1,cl2,adjust=FALSE)

cls.draw1.5 Sample of Clusterings from Posterior Distribution of
Bayesian Cluster Model

Description

Output of a Dirichlet process mixture model with normal components fitted
to the data set Ysim1.5. True clusters are given by rep(1:8,each =50).

Usage

data(cls.draw1.5)

Format

matrix with 500 rows and 400 columns. Each row contains a clustering of the
400 observations.

cls.draw2 Sample of Clusterings from Posterior Distribution of
Bayesian Cluster Model

Description

Output of a Dirichlet process mixture model with normal components fitted
to the data set Ysim2. True clusters are given by rep(1:8,each =50).

Usage

data(cls.draw2)

Format

matrix with 500 rows and 400 columns. Each row contains a clustering of the
400 observations.
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comp.psm Estimate Posterior Similarity Matrix

Description

For a sample of clusterings of the same objects the proportion of clusterings in
which observation i and j are together in a cluster is computed and a matrix
containing all proportions is given out.

Usage

comp.psm(cls)

Arguments

cls a matrix in which every row corresponds to a clustering of the
ncol(cls) objects

Details

In Bayesian cluster analysis the posterior similarity matrix is a matrix whose
entry [i, j] contains the posterior probability that observation i and j are to-
gether in a cluster. It is estimated by the proportion of a posteriori clusterings
in which i and j cluster together.

Value

a symmetric ncol(cls)*ncol(cls) matrix

See Also

cltoSim

Examples

(cls <- rbind(c(1,1,2,2),c(1,1,2,2),c(1,2,2,2),c(2,2,1,1)))
comp.psm(cls)
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maxpear Maximize/Compute Posterior Expected Adjusted Rand
Index

Description

Based on a posterior similarity matrix of a sample of clusterings maxpear
finds the clustering that maximizes the posterior expected Rand adjusted in-
dex (PEAR) with the true clustering, while pear computes PEAR for several
provided clusterings.

Usage

maxpear(psm, cls.draw = NULL, method = c("avg", "comp", "draws",
"all"), max.k = NULL)

pear(cls,psm)

Arguments

psm a posterior similarity matrix, usually obtained from a call to
comp.psm.

cls, cls.draw

a matrix in which every row corresponds to a clustering of the
ncol(cls) objects. cls.draw refers to the clusterings that
have been used to compute psm, cls.draw has to be provided
if method="draw" or "all".

method the maximization method used. Should be one of "avg",
"comp", "draws" or "all". The default is "avg".

max.k integer, if method="avg" or "comp" the maximum number of
clusters up to which the hierarchical clustering is cut. Defaults
to ceiling(nrow(psm)/8).

Details

For method="avg" and "comp" 1-psm is used as a distance matrix for hierar-
chical clustering with average/complete linkage. The hierarchical clustering is
cut for the cluster sizes 1:max.k and PEAR computed for these clusterings.
Method "draws" simply computes PEAR for each row of cls.draw and takes
the maximum.
If method="all" all maximization methods are applied.
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Value

cl clustering with maximal value of PEAR. If method="all"
a matrix containing the clustering with the highest value of
PEAR over all methods in the first row and the clusterings of
the individual methods in the next rows.

value value of PEAR. A vector corresponding to the rows of cl if
method="all".

method the maximization method used.

See Also

comp.psm for computing posterior similarity matrix, minbinder, medv,
relabel for other possibilities for processing a sample of clusterings.

Examples

data(cls.draw1.5)
# sample of 500 clusterings from a Bayesian cluster model
tru.class <- rep(1:8,each=50)
# the true grouping of the observations
psm1.5 <- comp.psm(cls.draw1.5)
mpear1.5 <- maxpear(psm1.5)
table(mpear1.5$cl, tru.class)

# Does hierarchical clustering with Ward's method lead
# to a better value of PEAR?
hclust.ward <- hclust(as.dist(1-psm1.5), method="ward")
cls.ward <-
t(apply(matrix(1:20),1, function(k) cutree(hclust.ward,k=k)))
ward1.5 <- pear(cls.ward, psm1.5)
max(ward1.5) > mpear1.5$value

medv Clustering Method of Medvedovic

Description

Based on a posterior similarity matrix of a sample of clusterings medv obtains
a clustering by using 1-psm as distance matrix for hierarchical clustering with
complete linkage. The dendrogram is cut at a value h close to 1.
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Usage

medv(psm, h=0.99)

Arguments

psm a posterior similarity matrix, usually obtained from a call to
comp.psm.

h The height at which the dendrogram is cut.

Value

vector of cluster memberships.

References

Medvedovic, M. Yeung, K. and Bumgarner, R. (2004) Bayesian mixture model
based clustering of replicated microarray data, Bioinformatics, 20, 1222-1232.

See Also

comp.psm for computing posterior similarity matrix, maxpear, minbinder,
relabel for other possibilities for processing a sample of clusterings.

Examples

data(cls.draw1.5)
# sample of 500 clusterings from a Bayesian cluster model
tru.class <- rep(1:8,each=50)
# the true grouping of the observations
psm1.5 <- comp.psm(cls.draw1.5)
medv1.5 <- medv(psm1.5)
table(medv1.5, tru.class)

minbinder Minimize/Compute Posterior Expectation of Binders
Loss Function

Description

Based on a posterior similarity matrix of a sample of clusterings minbinder
finds the clustering that minimizes the posterior expectation of Binders loss
function, while binder computes the posterior expected loss for several pro-
vided clusterings.
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Usage

minbinder(psm, cls.draw = NULL, method = c("avg", "comp", "draws",
"laugreen","all"), max.k = NULL, include.lg = FALSE,
start.cl = NULL, tol = 0.001)

binder(cls,psm)

laugreen(psm, start.cl, tol=0.001)

Arguments

psm a posterior similarity matrix, usually obtained from a call to
comp.psm.

cls, cls.draw

a matrix in which every row corresponds to a clustering of the
ncol(cls) objects. cls.draw refers to the clusterings that
have been used to compute psm, cls.draw has to be provided
if method="draw" or "all".

method the maximization method used. Should be one of "avg",
"comp", "draws", "laugreen" or "all". The default is "avg".

max.k integer, if method="avg" or "comp" the maximum number of
clusters up to which the hierarchical clustering is cut. Defaults
to ceiling(nrow(psm)/4).

include.lg logical, should method "laugreen" be included when
method="all"? Defaults to FALSE.

start.cl clustering used as starting point for method="laugreen". If
NULL start.cl= 1:nrow(psm) is used.

tol convergence tolerance for method="laugreen".

Details

The posterior expected loss is the sum of the absolute differences of the in-
dicator function of observation i and j clustering together and the posterior
probability that they are in one cluster.

For method="avg" and "comp" 1-psm is used as a distance matrix for hierar-
chical clustering with average/complete linkage. The hierarchical clustering is
cut for the cluster sizes 1:max.k and the posterior expected loss is computed
for these clusterings.
Method "draws" simply computes the posterior expected loss for each row of
cls.draw and takes the minimum.
Method "laugreen" implements the algorithm of Lau and Green (2007), which



minbinder 123

is based on binary integer programming. Since the method can take some time
to converge it is only used if explicitly demanded with method="laugreen"
or method="all" and include.lg=TRUE. If method="all" all minimization
methods except "laugreen" are applied.

Value

cl clustering with minimal value of expected loss. If
method="all" a matrix containing the clustering with
the smallest value of the expected loss over all methods in
the first row and the clusterings of the individual methods in
the next rows.

value value of posterior expected loss. A vector corresponding to the
rows of cl if method="all".

method the maximization method used.

iter.lg if method="laugreen" the number of iterations the method
needed to converge.

References

Binder, D.A. (1978) Bayesian cluster analysis, Biometrika 65, 31–38.

Fritsch, A. and Ickstadt, K. (2009) An improved criterion for clustering based
on the posterior similarity matrix, Bayesian Analysis, 4, 367–392.

Lau, J.W. and Green, P.J. (2007) Bayesian model based clustering procedures,
Journal of Computational and Graphical Statistics 16, 526–558.

See Also

comp.psm for computing posterior similarity matrix, maxpear, medv, relabel
for other possibilities for processing a sample of clusterings. lp for the linear
programming.

Examples

data(cls.draw2)
# sample of 500 clusterings from a Bayesian cluster model
tru.class <- rep(1:8,each=50)
# the true grouping of the observations
psm2 <- comp.psm(cls.draw2)
mbind2 <- minbinder(psm2)
table(mbind2$cl, tru.class)

# Does hierarchical clustering with Ward's method lead
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# to a lower value of Binders loss?
hclust.ward <- hclust(as.dist(1-psm2), method="ward")
cls.ward <-
t(apply(matrix(1:20),1, function(k) cutree(hclust.ward,k=k)))
ward2 <- binder(cls.ward, psm2)
min(ward2) < mbind2$value

# Method laugreen is applied to 40 randomly selected observations
ind <- sample(1:400, 40)
mbind.lg <- minbinder(psm2[ind, ind],cls.draw2[,ind], method="all"

,include.lg=TRUE)
mbind.lg$value

norm.label Norm Labelling of a Clustering

Description

Cluster labels of a clusterings are replaced by 1:length(table(cl)).

Usage

norm.label(cl)

Arguments

cl vector of cluster memberships

Value

the clustering with normed labels.

See Also

relabel for labelling a sample of clusterings the same way

Examples

(cl <- sample(c(13,12,34), 13, replace=TRUE))
norm.label(cl)

(cl <- sample(c("a","b","f31"), 13, replace=TRUE))
norm.label(cl)



relabel 125

relabel Stephens’ Relabeling Algorithm for Clusterings

Description

For a sample of clusterings in which corresponding clusters have different labels
the algorithm attempts to bring the clusterings to a unique labelling.

Usage

relabel(cls, print.loss = TRUE)

Arguments

cls a matrix in which every row corresponds to a clustering of the
ncol(cls) objects.

print.loss logical, should current value of loss function be printed after
each iteration? Defaults to TRUE.

Details

The algorithm minimizes the loss function

M∑

m=1

n∑

i=1

K∑

j=1

− log p̂ij · I{z(m)
i =j}

over the M clusterings, n observations and K clusters, where p̂ij is the esti-
mated probability that observation i belongs to cluster j and z

(m)
i indicates

to which cluster observation i belongs in clustering m. I{.} is an indicator
function.

Minimization is achieved by iterating the estimation of p̂ij over all clusterings
and the minimization of the loss function in each clustering by permuting the
cluster labels. The latter is done by linear programming.

Value

cls the input cls with unified labelling.

P an n × K matrix, where entry [i, j] contains the estimated
probability that observation i belongs to cluster j.

loss.val value of the loss function.

cl vector of cluster memberships that have the highest probabil-
ities p̂ij .
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Warning

The algorithm assumes that the number of clusters K is fixed. If this is not
the case K is taken to be the most common number of clusters. Clusterings
with other numbers of clusters are discarded and a warning is issued.

Note

The implementation is a variant of the algorithm of Stephens which is originally
applied to draws of parameters for each observation, not to cluster labels.

References

Stephens, M. (2000) Dealing with label-switching in mixture models. Journal
of the Royal Statistical Society Series B, 62, 795–809.

See Also

lp.transport for the linear programming, maxpear, minbinder, medv for
other possibilities of processing a sample of clusterings.

Examples

(cls <- rbind(c(1,1,2,2),c(1,1,2,2),c(1,2,2,2),c(2,2,1,1)))
# group 2 in clustering 4 corresponds to group 1 in clustering 1-3.
cls.relab <- relabel(cls)
cls.relab$cls

vi.dist Variation of Information Distance for Clusterings

Description

Computes the ’variation of information’ distance of Meila (2007) between two
clusterings/partitions of the same objects.

Usage

vi.dist(cl1, cl2, parts = FALSE, base = 2)
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Arguments

cl1,cl2 vectors of cluster memberships (need to have the same
lengths).

parts logical; should the two conditional entropies also be returned?

base base of logarithm used for computation of entropy and mutual
information.

Details

The variation of information distance is the sum of the two conditional en-
tropies of one clustering given the other. For details see Meila (2007).

Value

The VI distance. If parts=TRUE the two conditional entropies are appended.

References

Meila, M. (2007) Comparing Clusterings - an Information Based Distance.
Journal of Multivariate Analysis, 98, 873 – 895.

See Also

arandi

Examples

cl1 <- sample(1:3,10,replace=TRUE)
cl2 <- c(cl1[1:5], sample(1:3,5,replace=TRUE))
vi.dist(cl1,cl2)
vi.dist(cl1,cl2, parts=TRUE)

Ysim1.5 Simulated 3-dimensional Normal Data Containing 8
Clusters

Description

Cluster means are given by the 8 possible values of (±1.5,±1.5,±1.5) to which
standard normal noise was added. True clusters are given by rep(1:8,each
=50).
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Usage

data(Ysim1.5)

Format

matrix with 400 rows and 3 columns.

Source

Simulated by
1.5 * matrix(c(rep(c(1,1,1),50), rep(c(1,1,-1),50), rep(c(1,-
1,1),50), rep(c(-1,1,1),50), rep(c(1,-1,-1),50), rep(c(-1,1,-
1),50), rep(c(-1,-1,1),50), rep(c(-1,-1,-1),50)), byrow=TRUE,
ncol=3) + matrix(rnorm( 400*3),ncol=3)

Ysim2 Simulated 3-dimensional Normal Data Containing 8
Clusters

Description

Cluster means are given by the 8 possible values of (±2,±2,±2) to which
standard normal noise was added. True clusters are given by rep(1:8,each
=50).

Usage

data(Ysim2)

Format

matrix with 400 rows and 3 columns.

Source

Simulated by
2 * matrix(c(rep(c(1,1,1),50), rep(c(1,1,-1),50), rep(c(1,-
1,1),50), rep(c(-1,1,1),50), rep(c(1,-1,-1),50), rep(c(-1,1,-
1),50), rep(c(-1,-1,1),50), rep(c(-1,-1,-1),50)), byrow=TRUE,
ncol=3) + matrix(rnorm( 400*3),ncol=3)
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