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Abstract: Finite mixture models assume that a distribution is a com-

bination of several parametric distributions. They offer a compromise

between the interpretability of parametric models and the flexibility of

nonparametric models. This thesis considers a Bayesian approach to these

models, which has several advantages. For example, using only weak prior

information, it can solve problems with unbounded likelihood functions,

that can occur in mixture models. The Bayesian approach also allows an

elegant extension of finite to (countable) infinite mixture models. Depending

on the application, the components of mixture models can either be viewed

as just a means to the flexible modeling of a distribution or as defining

subgroups of a population with different parametric distributions. Regarding

the former case consistency results for Bayesian mixtures are stated. An

example concerning the flexible modeling of a random effects distribution in

a logistic regression is also given. The application considers the goalkeeper’s

effect in saving a penalty. In the latter case mixture models can be used

for clustering. Bayesian mixtures then allow the estimation of the number

of clusters at the same time as the cluster-specific parameters. For cluster

analysis the standard approach for fitting Bayesian mixtures, Markov Chain

Monte Carlo (MCMC), unfortunately leads to inferential difficulties. The

labels associated with the clusters can change during the MCMC run, a

phenomenon called label-switching. The problem gets severe, if the number

of clusters is allowed to vary. Existing methods to deal with label-switching



and a varying number of components are reviewed and new approaches are

proposed for both situations. The first consists of a variant of the relabeling

algorithm of Stephens (2000). The variant is more general, as it applies to

drawn clusterings and not drawn parameter values. Therefore it does not

depend on the specific form of the component distributions. The second

approach is based on pairwise posterior probabilities and is an improvement

of a commonly used loss function due to Binder (1978). Minimization of this

loss is shown to be equivalent to maximizing the posterior expected Rand

index with the true clustering. As the adjusted Rand index is preferable to

the raw index, the maximization of the posterior expected adjusted Rand

is proposed. The new approaches are compared to the previous methods on

simulated and real data. The real data used for cluster analysis are two gene

expression data sets and Fisher’s iris data.
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