
 

 1

Development of a Software Process Model for Multimedia 
CAL Systems by Applying Process Landscaping 

 
 
 
 

Corina Kopka, Ursula Wellen 
University of Dortmund 

Chair for Software Technology 
{kopka, wellen}@ls10.cs.uni-dortmund.de 

 
 
 
 
Abstract 
 
In software engineering a lot of different process models are established. They focus on different 
features or are adapted to different application domains. New roles in the development of multimedia 
computer-aided learning system (CAL) applications, hitherto not considered, require an additional 
process model. This paper presents an approach for the development of a software process model for 
multimedia CAL systems by applying the method of Process Landscaping. The resulting process 
landscape focuses on the different roles taking part in the underlying software process. Additionally, 
Process Landscaping provides a restructuring algorithm to achieve a more conventional view where 
activities are arranged by the order of their appearance within the software process. Its application is 
also discussed in this paper. There are mainly two advantages of providing both views of the same 
software process. The first is to employ the participating roles with a perspective of a process model 
they are familiar with but which also considers interfaces between the roles. The second is to provide 
a process model of the same software process which focuses on activities and their interrelations 
relevant for process management. 
 
Keywords 
 
computer-aided learning system, multimedia, process model, Process Landscaping, software process 
 
 
 
1 Introduction 
 
A development process "from the inception of an idea all the way to the delivery and final retirement of 
the system, is called a software production process" [GJM91]. In accordance with Ghezzi et al.'s 
definition we call the representing model a software production process model. In this paper, we use 
this term instead of the term software process model to distinguish between a model representing a 
software production process, and a model supporting the participating roles with guidelines and 
recommendations which is also called process model. The study of those software production process 
models shows an enormous variety of software development approaches. Main reasons are the 
evolution of different software life cycle approaches [Boe86, BP92, BD95], the distribution of 
development activities to different locations [NKF+95, Yan98], progress in the area of software 
technology [BRJ98, Bro96] and domain-specific requirements for different types of applications as 
discussed by Arndt [Arn99] and Calvez [Cal93]. 
 
During the recent past several multimedia CAL systems have been developed [ADK99, DEM+99, 
Wei00]. Initial experience shows that the underlying production processes involve additional roles like 
didactic, content and media experts, requiring the coordination of tasks arising from various 
disciplines. Currently, efforts are being made to adapt available software production processes from 
the domain of authoring systems [DEM+99]. But this approach seems to be insufficient because it is 
strongly customized to the application of programming tools. Another approach adapts software 
production processes used for the development of component-based software by generating learning 
modules as components for computer-based training systems [Wei00]. But in our opinion both 
approaches do not consider sufficiently the roles, their different responsibilities and their interrelations 
in the software production process. 



 

 2

 
The study of existing approaches towards a suitable software production process has resulted in the 
need to develop a production process by starting with special focus on the different roles instead of 
adapting existing processes. This process development requires a structured method which supports 
the identification of different roles, their appearance during the production process, and their interfaces 
and dependencies. 
 
It is necessary to provide a view of the entire production process focussing on roles to obtain the 
acceptance of all participants. The domains they usually work in (e.g. didactics, media production, 
software development) are too different to provide an accepted process model where the focus is on 
the order of and dependencies between activities. But the latter perspective is useful for the process 
management because it supports analysis and control tasks. Therefore, we need an additional view of 
the same software production process which fulfils process management requirements without loosing 
information about associated roles. 
 
In this paper we discuss the method of Process Landscaping [GW00a] as a suitable method for our 
purposes. Section 2 introduces the basic concepts of multimedia CAL systems and discuss software 
production processes for these systems. Section 3 explains the main ideas of Process Landscaping 
with focus on features relevant for the development of certain views of process models. In section 4, 
we apply the method by introducing first a role-based view for parts of the multimedia CAL production 
process (section 4.1) and by rearranging afterwards all activities according to the order of their 
appearance within the software process to fulfil process management requirements (section 4.2). 
Section 5 summarizes the results and offers a perspective of our future research. 
 
 
2 Multimedia CAL Systems 
 
In this section we discuss production processes for multimedia CAL systems and motivate the need of 
different views of the same entire production process. We discuss our approach of developing a 
software production process model which offers suitable views for the participating roles as well as for 
the process management. To understand the special features in the production process for this kind of 
software, basic concepts of multimedia CAL systems are introduced before. 
 
2.1 Basic Concepts of Multimedia CAL Systems 
 
Multimedia CAL systems are different from conventional software and have some special 
characteristics: 
 
• For this kind of application the presentation structure depends on the didactical concept. 
• The presented content in the CAL system also has to be considered. 
• Because of the representation of domain content, multiple media also have to be integrated. 
 
These characteristics of multimedia CAL systems have to be taken into consideration during the 
software production process. Nevertheless, a multimedia CAL system is also software and therefore 
software engineering methods should be applied.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: From conventional software to multimedia CAL systems 

integration of 
didactic learning 

content

conventional 
software 

integration of links 
and media 
 

CAL 
software

multimedia CAL 
software 

multimedia
software

 

 

 

 

1

2 3

4



 

 3

 
Figure 1 illustrates the evolution from conventional software to multimedia CAL systems along the time 
line, indicated by an arrow at the bottom of the figure. Conventional software systems such as 
information or management systems can be interpreted as representations for specific domain 
structures (e.g. hospital information systems). CAL systems differ from such conventional software 
systems since they prepare learning content didactically and integrate them [Bod90]. Didactical 
preparation, based on didactical concepts, means designing a virtual world with individual learning 
units. The virtual world is oriented on cognitive models and does not present the formal structure of 
learning contents. The evolution from conventional software to CAL software is illustrated in figure 1 by 
arrow 1. Multimedia systems, such as kiosk applications [Mül95] and product catalogues [SKT+97], 
derive from conventional systems by using media for visual representation of entities and links for 
representation of relations (see arrow 2 in figure 1). As indicated by arrows 3 and 4, multimedia CAL 
software integrate characteristic features of both, multimedia and CAL software. Summarizing all 
features, we describe multimedia CAL systems as a combination of multimedia and CAL systems. 
 
2.2 Production Processes for Multimedia CAL Systems 
 
Unfortunately, none of the underlying software production processes for multimedia and CAL systems 
fulfil our requirements concerning a production process for multimedia CAL systems: the Relationship 
Management Methodology (RMM) [ISB95], Hypertext Design Model (HDM) [GPS93] and Object-
Oriented Hypermedia Design Model (OOHDM) [SR95] are development models and methods used for 
hypermedia or multimedia applications. They can only be applied to well-structured domain data. This 
is not the case for multimedia CAL systems. Didactical and content preparation implies different 
design for individual scenes. This leads to individual and partially or even unstructured domain data. 
Application or adaption of the models and methods mentioned above is therefore not suitable. Morris 
and Finkelstein [MF96] propose a discourse-driven design process model to guide engineers 
developing software and designers generating content. This design process model integrates media 
designers explicitly, but does not focus on didactical aspects. All methods focus on the software 
design process and do not support the entire software production process. 
 
Software production process models for CAL systems are for example described in [Bod90] and 
[GH91]. Similar to conventional software development processes, they are linear, iterative, 
prototyping-based or evolutionary. Roles are defined and assigned only to some core development 
activities. A detailed description of production processes, however, which consider each role is 
missing:  
 
• analysis and design activities focus on didactical and content work,  
• implementation activities focus on implementation by programmers ignoring the necessity of 

additional analysis and design activities by a software analyst and designer.  
 
The development of multimedia CAL systems requires an interdisciplinary approach because it 
intertwines activities from teaching, publishing and software development. This experience is based on 
observations during the Altenberg Cathedral Project [ADK99], where software developers and art 
historians worked together: Beside software developers, we had non-technical developers, such as 
didactic and content experts, media designers and producers, as additional roles in the production 
process. They had their individual way to work in their discipline, but all had to work together 
throughout the entire software production process. For example, in the analysis phase a target 
catalogue was developed from the didactic expert and further used by the content expert for content 
structuring into learning units and scenes. 
 
As mentioned above, it is necessary to employ participating roles with a perspective of a process 
model they are familiar with and to obtain the acceptance of all participants. Because roles have their 
individual way of working we want to consider a production process for multimedia CAL systems 
modelled in a prescriptive [Poh95] and role-based way. In our opinion this approach is useful for 
guiding the work of each role within the entire production process by the division of work according to 
role specific tasks. Nevertheless, the roles have to work together. Therefore, another aspect within the 
production process to be considered is that interfaces between the role-based process models have to 
be identified, indicating where and with which information objects the related roles work with each 
other. Finally, the role-based process models and their interfaces have to be integrated in an entire 
production process model for multimedia CAL systems. In doing so, we obtain a software production 
process model providing an overview for role activities and a role-based view of the process.  



 

 4

 
For process management a descriptive production process model [Poh95] considering activities, their 
interrelations and their order is necessary. The purposes of process management are e.g. process 
documentation, analysis and process improvement and require another perspective of the same 
production process. This perspective has no focus on role specific aspects. It considers temporal and 
causal dependencies of the different activities. This view abstracts from knowledge about the different 
roles and allows us to compare the entire production process model for multimedia CAL systems with 
others. Therefore, we introduce an approach which considers both perspectives mentioned above, 
because in the production process for multimedia CAL systems we need both. We start with the 
development of role-based process models to provide process understanding and guidance for each 
role. To identify interfaces as particular points of cooperation between roles we consider role tasks for 
analysis, design, implementation and test. This classification originates from traditional software 
phases and is now applied to the other roles. Because the roles have to work together, it is helpful to 
detect activities where more than one role is involved, and cooperation points between roles. These 
also form the basis of improving cooperation between roles. Identification of these interfaces supports 
the integration of role-based process models into one process model. Because a process 
management perspective is also needed, we restructure the role-based perspective. This ensures to 
preserve all information already modelled in the role-based process models and emphasizes 
information required from process management.  
 
The approach presented in this paper includes consideration of both perspectives needed in the 
production process of multimedia CAL systems and the facility of changing the perspectives. It 
considers roles and their dedicated activities, and integrates them in the entire software production 
process. This requires careful elicitation of interfaces between roles and their activities. Detailed and 
consistent refinement of interfaces between roles requires a formal base. The latter is also required to 
change the role-based view of our software production process into a more conventional view 
considering the temporal and causal dependencies of the different activities. 
 
We can now formulate our approach as a three-step procedure: 
 
1. Identification of roles and their area of responsibility (core tasks) in the production process and 

identification of interfaces between them. 
2. Integration of the process models for each role into one process model by connection of interfaces 

between role-based process models and refinement of the core tasks by identification of activities 
for analysis, design, implementation, and test for each role. 

3. Restructuring of the role-based view into a view considering the temporal and causal 
dependencies of the different activities. 

 
We implement this three-step-procedure for the development of a software production process model 
for multimedia CAL systems by applying the Process Landscaping method, because it supports us 
with 
 
• treating interfaces as first class entities, which means that they are already considered at the 

beginning of each modelling project; 
• flexible refinement, which helps keep an overview of the entire process model;  
• providing a formal basis, essential for consistent refinements of interfaces and for changing the 

role-based view of our software production process into a view supporting the process 
management; 

• restructuring without loosing information. 
 
Before we discuss our approach in more detail, we first explain the key features of the Process 
Landscaping method. 
 
 
3 The Process Landscaping Method 
 
Process Landscaping is a method which supports the modelling of a set of complex processes related 
to each other. Its purpose is to model processes to retain the overview of the entire process framework 
and to ensure the identification of all interfaces between the processes. The result of applying this 
method is called a process landscape. It represents processes and their interfaces, both on different 
levels of refinement. In this paper we do not present all details of the several method steps. We only 



 

 5

discuss features of interest for the development of a process landscape for multimedia CAL systems 
which have not been discussed sufficiently in other papers yet. For the sake of simplicity we do not 
explain these features along an example for multimedia CAL production processes but along a 
process landscape representing the well-known distributed development of component-based 
software applications. Process Landscaping has already been applied to several real-world processes, 
e.g. to the business of a telecommunications company [GW00a] and software development processes 
[GW00b].  
 
Applying the method of Process Landscaping means at least executing the following steps: 
 
• identification of core processes and interfaces 
• refinement of both core processes and interfaces to (possibly) different extensions 
 
A process landscape can be analyzed with respect to different properties, e.g. distribution and 
communication properties [GW01]. Petri nets [Rei86, Jen97] have proved to be a suitable formal basis 
for modelling and analyzing process landscapes. It enables the modeller not only to depict processes 
and interfaces on different levels of refinement, but also to define landscape properties simply as 
attributes assigned to activities, interfaces and relations. Such assignments are introduced as 
extensions of a "Petri net kernel" serving as the formal basis for a process landscape. In the following, 
we introduce extensions allowing us not only to define and assign locations where activities take 
place, but also to restructure the extended process landscape in order to consider locational 
distribution. 
 
A process landscape is defined as a triple PL = (C, S, F), where C represents a set of activities, S a 
set of interfaces, and F a set of relations. With function loc: C → P(LOC), where P(LOC) represents a 
powerset of locations, we assign one or more locations to each activity in order to define where the 
different activities take place.  
 
Each element l of the set LOC, which we call local class, is structured in the following way: l = (T, N) is 
a tuple, where T is a set of local types marked as either toplevel or sublevel [Poh00]. N is a set of local 
names. Local types group local names by their structure. For example, city is the local type for the 
local names Munich and London. Markings toplevel and sublevel indicate where process landscape 
elements are arranged, on the top level of the landscape or on a sublevel. The following example 
shows the procedure and a possible result of the assignment of locations to a process landscape. At 
first, we define the sets T and N. Their elements are listed in the table in figure 2. 
 

local type T marking of T local name N 
   
country toplevel Germany 
country toplevel India 
country toplevel Britain 
city sublevel London 
city sublevel Dortmund 
city sublevel Munich 
city sublevel New Delhi 

 
Figure 2: Example for a local class 
 
We distinguish between two local types country, marked as toplevel and city, marked as sublevel. For 
local type country we have defined three country names, and for city we have defined four different 
city names. Figure 3 indicates how the local types are assigned to different activities. Activities at this 
level of refinement are represented by rectangles, interfaces by circles. Activities with a bold frame 
indicate a higher complexity than activities represented by window symbols. Domain Analysis is an 
example for an activity which has already been refined further. We distinguish beween two types of 
interfaces, simple circles indicating interfaces between activities within a process model and circles 
with a vertical line showing interfaces between different process models.  
 
Figure 3 shows parts of a component-based software development process, mainly activities for 
designing and implementing server and client software, and the domain analysis. It starts with 
requirements documents for client and server functionalities. The resultant software codes are 
forwarded to activities concerning domain analysis. Activities necessary for the development of client 
components are located in India and Germany, and activities concerning the development of server 



 

 6

components are only carried out in Germany. Domain analysis takes places in Britain and Germany, 
but for the latter case in another city than development activities. 
 

 

 
 
 
Figure 3: Assignment of locations to process landscape parts 
 
Depending on the properties to be analyzed, different views of the landscape are required in order to 
emphasize different aspects. Note, that we use the term view in a special way: in [DKW98], Derniame 
et al. define a view as "the particular approach to a software process conveyed by a (sub-)model". 
They distinguish between models describing activities, organizational structures, products, resources 
and roles. This means different models representing different aspects of the same process landscape. 
In the context of Process Landscaping the term view is used for describing a certain perspective of 
always the entire process landscape, just by emphasizing different properties. 
 
Process Landscaping distinguishes e.g. the logical and the locational view of a process landscape. 
When we use the term logical, we talk about causal and temporal logic of the activities’ order. A 
locational view represents the distribution of activities among different locations. Figure 3 shows the 
logical view of the example where the process activities are modelled by their logical order. In this 
graphical representation it is not possible to see without additional notations where the different 
activities are taking place. This requires another view of the process landscape, the locational view. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Locational view of a process landscape 
 
Figure 4 shows the same parts of the software development process as depicted in figure 3. It 
emphasizes locational aspects of the process landscape. For the sake of simplicity, we represent the 
local names introduced in figure 4 as A, B, C and D. Now we can see that two client components have 
to be developed at two different locations A and B. One server component also has to be developed at 
location B. The software code of all three components is sent to two different locations C and D where 
domain analysis has to be carried out. 
 
The process landscape in figure 4 is the result of a restructuring algorithm applied to the landscape in 
figure 3. The algorithm uses the location attribute to restructure a logical into a locational view. To 
obtain this view, the different locations have been assigned to all activities with function loc. For 
example, loc(design client component) = {(India, New Delhi), (Germany, Dortmund)} and loc(design 
server component) = {(Germany, Dortmund)}. No information of the logical view is lost, but distribution 
information has been emphasized. Now it is possible to analyze distribution properties in a more 
comfortable and transparent way. 

Locations: 
C: Britain, London 
D: Germany, Munich  

Locations: 
A: India, New Delhi 
B: Germany, Dortmund 

 

Location: 
B: Germany, Dortmund  



 

 7

 
In this paper, we do not discuss the formalism of the restructuring algorithm. We just want to make 
obvious the necessity of different views of one process landscape by the example of logical and 
locational views. The definition of other types of views like role-based views is also possible. But we 
can also start the modelling of such a role-based view on a process landscape and restructure it to 
another view, if required. For this purpose we have to adapt the idea of a class of toplevel and 
sublevel types and affiliated names to a given view by introducing a suitable "logical class". The 
restructuring algorithm uses this logical class to develop the logical view. The implementation of this 
idea is presented in section 4.2. Its motivation has already been discussed in sections 1 and 2. 
 
 
4 Developing the Software Production Process Model for 

Multimedia CAL Systems 
 
Until now, we have introduced the characteristics of multimedia CAL systems and our approach to 
obtain a suitable software production process model in section 2. In this section, we apply the Process 
Landscaping method presented in section 3 to develop a role-based process landscape representing 
parts of a software production process for multimedia CAL systems. Furthermore, we restructure this 
landscape to obtain the more conventional logical view without loosing information about the 
participating roles.  
 
At first, we introduce in more detail two specific roles within a software production process for 
multimedia CAL systems. Because of the high complexity of this production process we restrict 
ourselves in this paper to these two roles and their refined process models. They form the basis for the 
application of the Process Landscaping method in this paper: 
 
• Didactic expert. This role is important for multimedia CAL systems especially for selection and 

application of pedagogical principles according to suitable learning theories. Additionally, the 
didactic expert decides about the usage of certain types of media. 

 
• Content expert. The main tasks of the content expert are the provision and preparation of 

contents. This is different to approaches for authoring systems where additional tasks such as 
didactical conception and parts of media design [GH91], or content preparation (e.g. storyboards) 
are carried out [SS96]. Both are in the responsibility of an author. 

 
4.1  Development of a Role-based View of a Software Process Landscape 
 
To obtain the role-based view of our process landscape we now apply the three-step procedure  
discussed in section 2. The first step is the identification of roles, their area of responsibility (core 
tasks) and the identification of interfaces. Applying Process Landscaping to this step means the 
identification of core processes, called clusters, and interfaces.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Top level of a process landscape for multimedia CAL system development 

duration of employment in a software production process  

Media Designer 

Media Producer

Software Developer

Didactic Expert 

cu
st

om
er

 li
fe

 c
yc

le
 

Content Expert 



 

 8

 
Figure 5 shows a process landscape for multimedia CAL system development indicating the most 
important roles. This representation abstracts from project and quality management and their affiliated 
roles. It focuses on roles for development activities, modelled on a top level as clusters. These are the 
roles of the didactic expert, the content expert, the media designer, the media producer and the 
software developer. Interfaces between the role-based clusters are indicated by bidirectional arrows 
(see figure 5). At this level, process landscape elements are arranged according to the temporal order 
in which they may appear first within a customer life cycle (Y-axis) and the duration of their 
employment (X-axis). A customer life cycle starts when a customer requires a multimedia CAL system 
and ends when the software production process has been finished. 
 
The didactic expert starts the production process with analysis and design activities. The content 
expert continues by using didactic  documents. Therefore, in figure 5 the ellipse depicting cluster 
Didactic Expert starts in the bottom left corner of the system of coordinates. Within the system of 
coordinates, cluster Content Expert is arranged more to the right, because the affiliated activities are 
carried out later in the customer life cycle. In the further proceeding of the production process 
specifications and guidelines from didactic and content experts are used by media designers, media 
producers and software developers. In doing so, knowledge is transferred from some roles via the 
indicated interfaces to others in order to extend or specify it.  
 
In our three-step approach a more detailed description of interfaces is possible, but not required as 
second step (according to the method of Process Landscaping). Figure 6 illustrates the refined 
interface between clusters Didactic Expert and Content Expert. Refining an interface means to identify 
concrete information objects to be exchanged and to define the direction of information exchange. the 
interface illustrated in figure 6 contains target catalogue, coarse didactical concept, employed media 
types, fine didactical concept, structural and interaction storyboards. The structural storyboard 
contains sequences of learning units, structured learning paths and the definition of structural links. 
The interaction storyboard contains more detailed information about learning paths, depending on 
user answers and actions. The content expert completes both storyboards with content specific details 
or additional information.  
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
Figure 6: Interfaces between the clusters didactic expert and content expert 
 
The direction of the data exchange has also been refined. For example, content catalogue  is sent 
from the didactic expert to the content expert. Figure 6 does not show all information exchanged via 
this interface. The method of Process Landscaping allows us to extend each interface whenever one 
has identified further information objects. Summarizing the execution of an interface refinement, we 
have refined the interface between clusters Didactic Expert and Content Expert by identifying at least 
six documents to be exchanged (indicated in figure 6 by letters A to F). All of them are sent from 
didactic expert's activities to content expert's activities. 
 
The second step of our approach is the refinement of each top level cluster by modelling all activities 
belonging to the different role responsibilities. This has to be done for each role by identifying analysis, 
design and implementation activities as (complex) tasks. Applying Process Landscaping for this 
second step therefore means refinement of the role-based clusters.  
 

A: target catalogue 
B: coarse didactical concept 
C: employed media types 
D: refined didactical concept 
E: structural storyboard 
F: interaction storyboard 

 
 
 
 

Content 
Expert 

 
 
 
 

Didactic 
Expert 

A

D

C

E

F

B



 

 9

Figure 7 shows the role-based view of the process landscape depicting the production process for 
multimedia CAL systems at different levels of refinement. The roles didactic expert and content expert 
are illustrated at the top level of the landscape as clusters together with their interface. These clusters 
are refined to two process models. The interface between them is also refined and corresponds to the 
integration step of our approach. The hierarchical relationship between the entire process landscape, 
the role-based clusters and their affiliated process models is indicated by white-headed arrows (see 
fig. 7). For the sake of simplicity, figure 7 illustrates only parts of the process models corresponding to 
the didactic and the content expert. The analysis and design activities of both are represented in the 
two process models. The structural and interaction storyboards, produced by the didactic expert and 
required by the content expert, are used later, during the implementation phases of both roles.  
 
Target catalogue and coarse didactical concept are analysis results of the didactic expert’s 
preparatory work. The didactical targets and the developed didactical structure have impact on the 
work of the content expert. He needs this information for his own analysis, namely the structuring of 
content, in order to define learning units and scenes. Employed media types are needed from the 
content expert to decide about the media used and their combination in scenes. Refined didactical 
concept forms the basis for further content design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Role-based view of the software production process landscape 
 
Until now, we have applied Process Landscaping to develop a role-based view of the process 
landscape representing parts of a software production process for multimedia CAL systems. This role-
based view is useful for considering activities for each role together with their relations to each other. It 
serves as a guideline supporting the understanding of role-specific activities during the production 
process and the interrelations of the different roles. 
 
In the following we restructure this landscape to obtain the more conventional logical view. 
 
 
 

Process 
Landscape

Didactic Expert Content Expert



 

 10

4.2 Restructuring the Process Landscape to Obtain the Logical View 
 
We have to abstract from role aspects and have to emphasize logical dependencies to restructure the 
role-based view of a process landscape for multimedia CAL development to the more conventional 
logical view. For this purpose phases within the software production process, such as analysis, design, 
implementation and test phases, are of particular interest. For a logical view of the software production 
process each of the identified activities in the role-based view is assigned to one of the mentioned 
phases. 
 
According to the introduction of a local class (as discussed in section 3) we now introduce a logical 
class to restructure a given process landscape. Figure 8 shows this logical class and illustrates the 
relation of logical types and activities of the example process landscape. In our example we have only 
one logical type marked as toplevel, but a further extension to logical sublevel types is possible. 
Analysis and design phases are represented by the logical names Analysis and Design. They are 
assigned to activities of the didactic and the content expert modelled as clusters in section 4.1. For 
example, for the content expert content structuring is assigned to Analysis and conception of scenes is 
assigned to Design. 
 

activity logical type marking logical name 
    
target group analysis core activity toplevel Analysis 
target analysis core activity toplevel Analysis 
development target catalogue core activity toplevel Analysis 
development of didact. structure core activity toplevel Analysis 
content structuring core activity toplevel Analysis 
development method concept core activity toplevel Design 
commitment to system type core activity toplevel Design 
planning media type usage core activity toplevel Design 
didactical design core activity toplevel Design 
conception of scenes core activity toplevel Design 
assignment media to scenes core activity toplevel Design 
content design core activity toplevel Design 

 
Figure 8: Assignment of logical types and names to activities 
 
Restructuring the process landscape leads to the logical view shown in figure 9. At the top level of the 
process landscape we now obtain the core activities Analysis, Design and Implementation represented 
as clusters. Analysis and Design have been refined further to two subprocesses, integrating the 
corresponding activities of the didactic expert and the content expert. For example, analysis activities 
of the didactic expert, namely target group analysis, target analysis, development target catalogue and 
development of didactic structure  are correlated to activity content structuring for which the content 
expert is responsible. The resulting subprocess represents a logical view of analysis activities. The 
same integration step has been done for the design activities of both roles. 
 
The interfaces between clusters of the role-based view of the process landscape (see fig. 7) and their 
affiliated documents are integrated in the new clusters of the logical view. The new interfaces consist 
of those documents which are produced during the analysis phase and required for the design phase. 
In the logical view the interface between clusters Analysis and Design contains at least the coarse 
didactic concept and the coarse content concept indicated in figure 9 by circles with a vertical line. 
They are represented twice, as output documents of cluster Analysis and as input documents for 
cluster Design. A restructuring algorithm identifies them in the role-based view by looking for places in 
the underlying Petri net fulfilling the following condition: pre- and post-transitions are taking place 
during different phases.  
 
With the resulting logical view of the software production process we have finished step 3 of our 
approach (see section 2). It enables control and analysis tasks of the process manager at different 
levels of detail. It also enables the process management to compare this process model easily with 
others, which are often structured similar, namely according to their temporal and causal 
dependencies. 
 



 

 11

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Logical view of the software production process landscape 
 
 
5 Conclusions 
 
In this paper we have discussed the differences between multimedia CAL systems and conventional 
software and their affiliated software production processes. We introduced a role-based view of the 
production process of multimedia CAL systems and restructured it to the logical view, both by applying 
the Process Landscaping method. For the restructuring we first defined logical types assigned to each 
activity. This resulted in toplevel clusters, submodels and interfaces focussing on logical 
dependencies, thus the logical view. 
 
Besides the development of a role-based view of a software production process landscape, we have 
restructured this landscape to the logical view. Thus, we have emphasized the logical aspects in this 
landscape without loosing information about associated roles. Both, the role-based and the logical 
view, are necessary during the production process of multimedia CAL systems. The role-based view is 
useful for the participating roles to follow the production process. Beside process understanding, the 
role-based view provides process guidance required for the work of each role and for the cooperation 
between them. This ensures the acceptance of the participating roles for a process model they are 
familiar with. The logical view is necessary for process management to understand the entire 
production process. The process landscape in this view is a result of restructuring the role-based view. 
Understanding the descriptive logical view means understanding of a production process model 
concerning process traceability in order to compare it with other production processes modelled in a 
similar way. This is to make clear the different objectives in both views. 
 
Our future research will focus on the extension of the role-based view of our process landscape to all 
roles taking part in the represented software production process for multimedia CAL systems. Further 
logical view refinement by assigning sublevel types to all activities and applying the restructuring 
algorithm on each cluster will also be done. 
 
 
 
 

Process 
Landscape

Analysis Design Implementation 



 

 12

6 References 
 
[Arn99] T. Arndt, The Evolving Role of Software Engineering in the Production of Multimedia 

Applications, In: Proceedings of the Int. Conference on Multimedia Computing and Systems, 
Florence, Italy, pages 79-84, June 1999 

[ADK99] K. Alfert, E.-E. Doberkat, C. Kopka, Towards Constructing a Flexible Multimedia 
Environment for Teaching the History of Art, Technical Report No. 101, Software 
Technology, Department of Computer Science, University of Dortmund, September 1999 

[Bod90] F. Bodendorf, Computer in der fachlichen und universitären Ausbildung, Oldenbourg, 1990, 
in German 

[Boe86] B. W. Boehm, A Spiral Model of Software Development and Enhancement, ACM, New York, 
1986 

[Bro96] A. W. Brown (ed.), Component-based Software Engineering – Selected Papers from the 
Software Engineering Institute, IEEE Computer Society, 1996 

[BD95] A.-P. Bröhl, W. Dröschel, Das V–Modell, R. Oldenbourg Verlag, 1995, in German 
[BP92] W. Bischofberger, G. Pomberger, Prototyping - Oriented Software Development Concepts 

and Tools, Springer Verlag, 1992 
[BRJ98] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison 

Wesley, Reading, Massachusetts, 1998 
[Cal93] J.P. Calvez, Embedded Real-Time Systems. A Specification and Design Methodology, John 

Wiley, 1993 
[DEM+99] R. Depke, G. Engels, K. Mehner, S. Sauer, A. Wagner, Ein Vorgehensmodell für die 

Multimedia-Entwicklung mit Autorensystemen, In: Informatik-Forschung und Entwicklung, 
Vol.14, No.2, pages 83-94, June 1999, in German 

[DKW98] J.-C. Derniame, B.A. Kaba, D. Wastell, The Software Process: Modelling and Technology, 
In: Software Process: Principles, Methodology and Technology, appeared as Lecture Notes 
in Computer Science No. 1500, Springer Verlag, pages 1-12, 1998 

[GH91] K. Götz, P. Häfner, Computerunterstütztes Lernen in der Aus- und Weiterbildung, Deutscher 
Studien Verlag, 1991, in German 

[GJM91] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering, Prentice-Hall, 
1991 

[GPS93] F. Garzotto, P. Paolini, D. Schwabe, HDM – A Model-Based Approach to Hypertext 
Application Design, ACM Transactions on Information Systems, Vol. 11, No. 1, pages 1-26, 
January 1993 

[GW00a] V. Gruhn, U. Wellen, Structuring Complex Software Processes by "Process Landscaping", 
In: Reidar Conradi (ed.), 7th European Workshop on Software Process Technology, EWSPT 
2000, Kaprun, Austria, February 2000, appeared as Lecture Notes in Computer Science No. 
1780, Springer Verlag, pages138-149, 2000 

[GW00b] V. Gruhn, U. Wellen, Process Landscaping – Eine Methode zur 
Geschäftsprozessmodellierung, In: Wirtschaftsinformatik, Vol. 4, Vieweg Verlag, pages 297-
309, August 2000, in German 

[GW01] V. Gruhn, U. Wellen, Analyzing a Process Landscape by Simulation, accepted submission 
in Journal of Systems and Software, Elsevier, to appear in 2001 

[ISB95] T. Isakowitz, W. A. Stohr, P. Balasubramanian, RMM: A Methodology for Structured 
Hypermedia Design, Communications of the ACM, Vol. 38, No. 8, pages 34-44, August 
1995 

[Jen97] K. Jensen, Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical Use, 
Volume 1, second Edition, Springer Verlag, 1997 

[MF96] S. J. Morris, A. Finkelstein, An Experimental Hypertext Design Method and Application in 
the Field of Art History, Computers and the History of Art, Vol. 2 (part 2), pages 45-63, 1996 

[Mül95] W. Müller, Interaktive Medien im professionellen Einsatz, Addison Wesley, 1995, in German 
[NKF+95] B. Nuseibeh, J. Kramer, A. Finkelstein, U. Leonhardt, Decentralised Process Modelling, In: 

W. Schäfer (ed.), 4th European Workshop on Software Process Technology, EWSPT’95, 
Noordwijkerhout, The Netherlands, April 1995, appeared as Lecture Notes in Computer 
Science No. 913, pages 185-188, 1995 

[Poh95] K. Pohl, A Process Centered Requirements Enginering Environment, PhD thesis at RWTH 
Aachen, 1995 

[Poh00] A. Pohlmann, Visualisierung und Simulation von Prozesslandschaften – Die lokale 
Sichtweise, master thesis at the University of Dortmund, Department of Computer Science, 
Software Technology, May 2000, in German 

[Rei86] W. Reisig, Petrinetze, Springer Verlag, Germany, 1986, in German 



 

 13

[SKT+97] J. Schneeberger, N. Koch, A. Turk, R. Lutze, M. Wirsing, H. Fritsche, P. Closhen, EPK-fix: 
Software Engineering und Werkzeuge für elektronische Produktkataloge, In: M. Jarke, K. 
Pasedack, K. Pohl (eds.), Informatik 97. Informatik als Innovationsmotor, Berlin, Springer 
Verlag, pages 446-455, 1997, in German 

[SS96] J. Sander and A.-W. Scheer, Multimedia Engineering: Rahmenkonzept zum 
interdisziplinären Management von Multimedia-Projekten, Research Report No. 132, Institut 
für Wirtschaftsinformatik, University of Saarbrücken, July 1996, in German 

[SR95] D. Schwabe, G. Rossi, The Object-Oriented Hypermedia Design Model, Communications of 
the ACM, Vol. 38, No. 8, pages 45-46, August 1995 

[Wei00] C. Weidauer, Generatorunterstützte objektorientierte Entwicklung multimedialer Lehr- und 
Lernsysteme zur Effizienzsteigerung und Qualitätsverbesserung, In: K. Mehlhorn , G. 
Snelting (eds.): 30. Jahrestagung der Gesellschaft für Informatik, Informatik 2000, Berlin, 
September 2000, Springer Verlag, in German 

[Yan98] Y. Yang, Issues on Supporting Distributed Software Processes, In: V. Gruhn (ed.), 6th 
European Workshop on Software Process Technology, EWSPT’98, Weybridge, UK, 
appeared as Lecture Notes in Computer Science No. 1487, Springer Verlag, pages 143-
147, September 1998 


	Abstract
	Keywords
	Introduction
	Multimedia CAL Systems
	2.1	Basic Concepts of Multimedia CAL Systems
	The Process Landscaping Method
	Developing the Software Production Process Model for Multimedia CAL Systems
	5	Conclusions
	6	References

