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INTRODUCTION

Since the famous clinical trial done by James Lind in 1753 on
the treatment of scurvy (reported in [Troh 03]), the assessment of
pharmaceutical adverse effects has become a major issue in in-
dustrial drug development. Avicenna (980-1073) first introduced
rules for the experimental testing of new pharmaceuticals in 1025
AD in his book The Canon of Medicine. This early work is still
the basis of modern clinical trials in safety pharmacology for the
analysis of new drugs [Brat oo].

The testing of a new chemical entity (NCE) starts with preclini-
cal in vitro and in vivo tests. In vitro tests aim at the investigation
of intended or unexpected interactions of the NCE in a controlled
environment. After the efficacy is proven by in vitro tests and no
undesired interactions could be observed, pharmacological and
toxicological effects are tested by in vivo tests in animal studies.
The organism used for testing is chosen in order to achieve re-
sults that can be transferred to the human organism. Rats are a
typical example of an organism chosen for early studies in drug
development. These studies are strictly regularized for ethical
reasons and an important goal in industrial drug design is to
reduce the number of animal experiments for ethical and cost
reasons.

Reliable methods for the detection of adverse effects in preclin-
ical trials are required for the reduction of animal testings and to
allow for safe clinical testings of NCEs in humans. These clinical
studies are usually performed in a stepwise procedure as shown
in figure 1.1. Trials pursued in the first phase aim at the detection
of adverse effects and the definition of the appropriate dose by
the application of the NCE to usually healthy volunteers (20-50).
Compounds showing no toxic adverse effects in the first phase
are tested on a larger group of diseased patients (20-300) who
should benefit from the pharmaceutical compound. Thereby, the
efficacy is determined and adverse effects can be studied on a
larger group of patients. Drug candidate failure usually occurs in
this stage due to a low efficacy or toxic adverse effects. The drug
candidate is applied to a group of significant size (300-3 000 vol-
unteers) in different medical centers for the final determination
of effectiveness and adverse effects. The third phase is the longest
and most expensive one, and an approval for the marketing of
the NCEs passing this phase is given by regulatory agencies.

Passing preclinical and clinical trials can last several years and
costs between 500 and 2000 million US dollars (cf. [Adam 06,

adverse effects

safety pharmacology

preclinical in vivo
and in vitro studies

clinical trials in
three phases

determination of
efficacy and adverse

effects

drug development
costs up to 2 000
million US dollars
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Figure 1.1: Phases in clinical trials (cf. [DiMa 91]).

DiMa o03]). Candidate drug failure can occur even after the prod-
uct release stage and endanger the safety of numerous patients
[Kola o4]. Thus, an early detection of vital adverse effects, which
is the main reason for drug withdrawal from the worldwide
pharmaceutical market [Fung o1], can improve industrial drug
development. Thereby, a faster drug design leads to safer phar-
maceuticals and reduces the costs of their development.

In order to prevent drug withdrawal in late phases of the drug
development process, toxic adverse effects have to be reliably
detected in preclinical trials. Current approaches are based on the
visual examination of tissue samples by histopathology, or the
analysis of the composition of biofluids such as blood or urine.
While organ toxicities are identified by an expert in histopathol-
ogy by visual examination based on abnormal shapes and struc-
tures visible under the microscope, analysis results concerning
the composition of biofluids have to be interpreted by an expert
with specific background knowledge. A small number of biofluid
ingredients are known, which show a change in concentration in
relation to the health status of a particular organ due to leakage
of cell content, or changes in the metabolic activity. However, this
procedure is dependent on the knowledge of threshold values
for the biomarker substances. In order to give support in safety
pharmacology, new analysis techniques independent of expert
knowledge and a high sensitivity after single administration are
required.

New approaches for the detection of organ toxicities based on
spectroscopic measurements of biofluids have been presented in
recent years in the field of Metabonomics. Developments in Nu-
clear Magnetic Resonance (NMR) instrument and measurement
techniques have led to highly reproducible spectroscopic data
in a high resolution. Therefore, several institutions used NMR
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spectra of biofluids for the identification of particular effects in
the metabolism induced by application of pharmaceutical com-
pounds. NMR spectra of urine samples represent the concentra-
tions of several molecules contained in the samples as a spectral
profile composed of a multitude of spectral signals denoted as
peaks.

The analysis of the urine composition allows for the collection
of multiple samples from the same animal at different points in
time, thereby reducing the amount of animals used in the studies.
Changes in concentration are indicated by different intensities
of the same peak in several spectra, thereby allowing for the
detection of changes of the urine composition. However, the
relevance of each peak for the detection of organ toxicities is not
known and has to be determined with respect to a set of spectra
with known classification as being non-toxic and toxic.

Generally, methods from the field of pattern recognition can
be applied in order to achieve a classification of spectra as being
non-toxic or toxic. Data sets used in metabonomic applications
are rather small due to the expensive measurement procedure.
Furthermore, each spectrum contains approximately 1 000 peak
signals. Thus, robust classification approaches achieving a reliable
classification even in case of sparse and complex data sets have
to be applied.

Ensemble methods are an emerging technique from the field
of pattern recognition showing competitive classification results
for several applications. For example, the Knowledge Discover
and Data Mining (KDD) Cup is an annual competition for the
development of the best classification approach to different ap-
plications. Algorithms based on ensemble methods won the first
price in all categories in the year 2005, and the best approaches
in at least one category were based on ensemble methods in the
following years. Also the winner of the Netflix Prize is based on
ensemble methods, improving by 10 % the prediction accuracy of
how much a person likes a film based on their known movie pref-
erences. The general approach of ensemble systems is to define
a more accurate and robust classification system by combining
several (simple) classifiers instead of relying on a single one. Due
to the effectiveness of ensemble methods and the possibility of
defining a classification system design for a particular problem,
the application of ensemble methods is promising for assistance
in drug development.

1.1 FOCUS

Interpretation of NMR spectra from urine samples as high-di-
mensional feature vectors allows for the application of pattern
recognition approaches. Thereby, a classification of samples be-
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INTRODUCTION

ing non-toxic or toxic for a particular organ can be achieved.
Changes in peak intensity are expected to be present in the same
dimension of all samples, thereby an inference on changes in
concentration of specific molecules is achieved. This theoretical
assumption does not completely hold in practice due to differ-
ent sources modifying the exact position and intensity of peaks.
These perturbations are reduced in this thesis by methods estab-
lished in metabonomic applications. Thus, this thesis aims at the
development of a classification system, which achieves a high
classification accuracy even in case of sparse, complex and noisy
data sets.

Ensemble methods have shown in several applications competi-
tive classification results in comparison to alternative approaches.
Furthermore, ensemble combination and aggregation techniques
can be designed for the particular application, thereby respect-
ing particular characteristics of a given data set. Due to these
advantages, the focus of this thesis is on the development and
application of ensemble methods for the automatic classification
of NMR spectra as being non-toxic or toxic for a particular organ.
Thereby, an improved classification performance is the main goal
of this thesis. However, also the interpretation of ensemble classi-
fications is investigated in order to gain additional information
on the grade of a detected toxic effect or the detection of peak
signals mainly relevant to classification.

1.2 ORGANIZATION OF THE THESIS

This thesis is an interdisciplinary work, applying methods from
the field of pattern recognition for metabonomic applications in
order to support drug development in industrial studies. Thus,
chapters 2 and 3 give an overview of related work from metabo-
nomic applications and ensemble theory in the first part of this
thesis, respectively. The first two sections of chapter 2 deal with es-
tablished approaches for the detection of adverse effects in safety
pharmacology, and the fundamentals of NMR spectroscopy. In the
following two sections, common approaches for the interpreta-
tion and classification of metabonomic data sets are discussed. In
chapter 3 the focus is on the general concept of multiple classifier
systems and common ensemble approaches.

The data sets and evaluation approaches presented in chapter
4 form the basis for the development and evaluation of advanced
ensemble systems in the second part of this thesis. The general
concept of multiple classifier systems is applied in an ensemble
approach presented in the first part of chapter 5. Common en-
semble methods are used in this approach, but the main potential
of ensemble systems for metabonomic applications is the design
of a multiple classifier system for the particular characteristics of
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the data. Therefore, two further approaches are presented, mainly
aiming at an improvement of classification performance by focus-
ing on spectral regions, which are most relevant to classification.
These spectral regions are determined in an automated way, re-
quiring no background knowledge on the relevance of signals in
the spectrum. The classification performance and interpretability
of the newly developed ensemble approaches is investigated in
an experimental evaluation presented in section 6.

The thesis concludes with a summary in chapter 7, where the
main achievements of this thesis are discussed. Finally, possi-
ble starting points for a further improvement of the presented
ensemble approaches are discussed.

experimental
evaluation






ANALYSIS OF METABOLIC RESPONSES

The design of new chemical entities (NCEs) having an effect on a
biological target relevant in an investigated disease is the primary
goal in industrial drug design. While chemical reactions between
the NCE and the biological target can be studied in vitro, the
overall effect on the target organism and possible adverse effects
have to be studied in vivo.

Any pharmaceutical that has been applied orally, intravenously
or in any other administration form is subject to further trans-
portation and metabolic decomposition in the organism. Depen-
dent on the applied product, transportation is achieved in the
blood circulation or digestion system until the product is finally
excreted from the body. While the product remains in the body it
is further decomposed by enzymatic reactions. The product by it-
self or metabolic byproducts interact in various ways with organs
and other molecules. These interactions can be intended in drug
design in order to heal an illness or reduce its symptoms, or could
have negative affects on the organism — commonly referred to
as adverse affects. Since generally neither adverse affects of new
substances nor enzymatic reactions and transportation systems of
an organism are completely known, adverse affects of a new NCE
have to be identified during experiments with model organisms.
Organ toxicities, as one of the most frequent adverse effects of
nowadays’ pharmaceuticals, are detected during industrial drug
design by safety pharmacology methods. These methods either
detect organ toxicities by visual judgment in histopathology or
analysis of metabolic changes reflected in the composition of
biofluids such as blood or urine.

An emergent technology in the field of safety pharmacology is
Metabonomics, defined as "the quantitative measurement of the
time-related multiparametric metabolic response of living sys-
tems to pathophysical stimuli or genetic modification" [Nich 99].
Metabonomics is usually applied for the analysis of spectroscopic
data from biofluids in order to give support to the interpreta-
tion of drug-induced metabolic changes. This analysis can be
performed on different levels: a) detection of an induced organ
toxicity, b) identification of the affected organ(s), or c) determi-
nation of metabolites relevant to the detection of a potentially
observed organ toxicity. While the first two aspects give informa-
tion on the applied NCE, the detection of metabolites indicating
an induced organ toxicity (biomarker) provides a deeper insight
into the underlying biological mechanisms. This knowledge can

drug design

adverse effects

safety pharmacology

Metabonomics

biomarker
identification
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be used in further studies and organ toxicities can be detected by
measurement of these identified metabolites.

In this chapter an overview of approaches for the detection of
adverse effects in safety pharmacology and fundamental meth-
ods used in Metabonomics will be given. The main focus of this
thesis is on the development of a classification system for the
automatic classification of spectroscopic data using pattern recog-
nition methods. Therefore, pharmacological and spectroscopic
methods will be explained according to their basic principles.
The following explanations will be sufficient to understand the
concepts and relevant aspects of the methods, but for a detailed
description key references will be given in the respective sections.

In section 2.1 two basic approaches for the identification of
adverse effects in safety pharmacology will be outlined. First,
the measurement and interpretation of metabolite concentrations
in biofluids will be shown, followed by histological analysis
of biosamples. The basic principles of NMR spectroscopy will
be described in section 2.2, giving a deeper insight in the way
of representing information on molecules in spectroscopic data
and steps necessary for data preparation. Different sources can
modify the data samples, and approaches to a reduction of these
perturbations will be explained in section 2.3. Metabonomics
has already been used for the interpretation of several data sets
by multivariate data analysis methods. An overview of these
methods will be given in section 2.4, followed by a summarizing
section.

2.1 DETECTION OF ADVERSE EFFECTS IN SAFETY
PHARMACOLOGY

The design of NCEs to influence biological targets in order to
cure a disease or alleviate its symptoms is already a challenging
task. But NCEs can also negatively effect other organs or metabolic
reactions and these adverse effects have to be identified by methods
from the field of safety pharmacology. Thus, NCEs are tested in
preclinical and clinical trials to determine the efficacy and adverse
effects in the target organisms.

A NCE is administered within preclinical trials to experimental
animals in a certain dose over a defined time period. Analysis of
biofluids, which can be collected during the whole experiment,
allows for the detection of metabolic changes by measurement
and interpretation of certain molecules” concentrations. Further-
more, all organs can be investigated afterwards by histopathology
and abnormal modifications of distinct organic regions can be
detected.
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Figure 2.1: Structure of the nephron and functions of different segments
of the transport epithelium (adopted from [Camp 03], p.
1136).

2.1.1  Analysis of Metabolites by Clinical Chemistry

An induced organ toxicity will generally affect the organ’s func-
tionality and the metabolic reactions it is involved in. Therefore,
specific changes in the metabolite concentrations can be used as
a marker for the functionality of distinct organs or even organ re-
gions. These changes are expected to be recognizable by analysis
of metabolite, enzyme or electrolyte concentrations in biofluids
like urine or blood, simultaneously leading to an overview of the
viability of several organs.

The functionality of the kidney, as an important organ for the
regularization of urine composition, will be briefly summarized
in the following part based on the explanations in [Camp 03].
Subsequently, the effect of an induced organ toxicity and its use
for the detection of organ toxicities based on the analysis of
metabolite concentrations will be presented.

Kidney Functionality

The kidneys of vertebrates play a key role in the osmoregulation
and excretion. Essential ingredients like salt and water are ex-
tracted from the blood, a vital prerequisite for organisms living
outside of the water to prevent dehydration. Each of the two hu-
man kidneys consists of tenuous blood vessels, collection ducts
and around one million nephrons (cf. figure 2.1) — the functional
unit of the kidney.

Water and solute up to a molecular weight of 5000 Dalton
permeate through particular cells in the glomerulum from the
blood to the proximal tubule, forming the so-called ultrafiltrate.

9
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Blood cells and proteins remain in the blood because of their high
molecular weight. The proximal and distal tubule are important
segments for the regulation of the urine composition. Water and
salt are filtered by reabsorption and the acid-base balance is
adjusted by the secretion of protons (H') and the reabsorption
of bicarbonates (HCOj'). Water is further extracted within the
water-permeable descending limb of the loop of Henle due to
the increased osmolarity of the hyperosmotic interstitial fluid.
Salt is extracted by active and passive transport in the ascending
limb, leading to a further dilution of the ultrafiltrate. Further
reabsorption and secretion is carried out in the distal tubule and
the ultrafiltrate is led into the collecting duct. The ultrafiltrate
from several nephrons is further modified in the collecting duct
by active transport of salt, and passive transport of water and
urea into the core of the nephron. Finally, the urine is collected
in the urinary bladder and excreted.

Regional Markers for Kidney Damage

The kidney is divided into functional segments with a certain
role in the regularization of urine composition as shown in the
previous section. The cells of each region have a certain enzymatic
composition according to their regulative function. A regional
cell damage, one of the different types of organ toxicities, causes
a decreased efficiency of metabolic reactions or a release of the
cell content, leading to a change of the urine composition.

An illustration of an induced cell damage in the region of the
proximal tubule by an applied pharmaceutical is shown in figure
2.2. Apoptosis of epithelial cells leads to cellular desquamation
and accumulation of cellular debris in the ultrafiltrate, increasing
the concentration of enzymes specific for the proximal tubule
cells (e.g. NAG, LDH, ...) in the urine. Gaps between epithelial
cells are covered by neighboring epithelial cells during recovery
and the amount of cellular debris in the ultrafiltrate is decreased.

Changes of urine ingredients” concentrations can be quantified
in clinical chemistry by using photometric measurement methods
in an automated assay. Concentrations of several sample ingredi-
ents can be quantified by the addition of chemicals, inducing a
colorization of the sample, which indicates the concentration of a
specific molecule and can be measured by a photometer. Certain
changes in urine composition serve as markers for the damage
of distinct organs or even organ regions and can be identified by
an expert. Thus, a non-invasive monitoring of different organs’
functionality is possible throughout an experiment, allowing for
the detection of a drug-induced organ toxicity at different points
of time.
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Figure 2.2: llustration of a drug-induced organ damage. Apoptotic
cells desquamate in the period of main damage and the
gaps are filled with epithelial cells during recovery.

2.1.2  Histopathological Analysis of Biosamples

In addition, histopathology is a valuable technique for the de-
tection of abnormal modifications of organs or distinct organic
regions. Therefore, tissue samples are collected and prepared by
histology procedures to be examined under a microscope by a
qualified specialist. Different cellular components can be distin-
guished by staining procedures, leading to a certain color for
cellular components or substances within the tissue.

Histopathological images from a normal and damaged rat
kidney are shown in figure 2.3. The damaged kidney originates
from a rat treated over 7 days with a known nephrotoxicant.
The circular glomerulum is visible in the lower part and the
remaining shapes are cuts through the tubule. The bright center
of the tubule are the interior for the transportation of the urine
and the darker outer parts are the epithelial cells.

Three bright tubule cuts with nearly invisible epithelial cells
are located in the center of figure 2.3b, indicating a cell necrosis.
A degenerated tubule with an abnormal shape, size and staining
is visible in the right part of figure 2.3b. These cell damages seri-
ously affect the kidney functionality and the urine composition.

Histopathology is an important tool for the diagnosis of several
diseases (e.g. cancer), but the application in preclinical or clinical
trials has its disadvantages. Tissue samples or cells have to be
removed by an invasive procedure, thereby producing stress
for the subject and influencing the further progress of the test.
Animal studies require euthanasia prior to biopsy, impeding
the creation of time-series data without the use of a significant
amount of experimental animals. The amount of experimental
animals used in preclinical studies is also an important aspect
and strictly controlled by ethical regulations.
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Figure 2.3: Histopathology of a (a) healthy kidney and (b) kidney with
cell necrosis and degeneration after a daily treatment with
a nephrotoxicant over a period of 7 days (courtesy of Dr.
Thomas Nolte, Boehringer Ingelheim Pharma GmbH & Co.
KG).

2.2 FUNDAMENTALS OF lH—NMR SPECTROSCOPY

An emerging technology for the analysis of biofluids for a better
understanding of metabolic processes in living systems is the
NMR spectroscopy. Samples are exposed to a strong magnetic
field and an additional external magnetic field with different
orientation is applied. Several molecules and their concentrations
in the sample can be identified with respect to their specific
reaction of certain molecule’s atoms.

This non-invasive method allows for the simultaneous detec-
tion and quantification of various molecules without the prior
definition of molecules to be measured. A further advantage
of the NMR spectroscopy is its high reproducibility in case of
controlled experimental conditions [Duma 06]. Keun et al. have
shown the similarity of spectroscopic data, even when the same
sample is measured in different institutions [Keun o2]. This is a
major prerequisite, since even small spectral differences are used
in metabonomic studies in order to analyze certain properties of
the samples. Thus, the main variance in the data has to originate
from biology and not from the measurement process. Otherwise,
relevant information could be falsified and degrade a subsequent
classification procedure.

Generally, all chemical elements with an odd number of pro-
tons or neutrons could be measured within NMR experiments. But
specific elements are favorable due to their high concentration
in the sample or an increased sensitivity in the measurement
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QUANTUM GYROMAGNETIC
ISOTOPE ABUNDANCE

NUMBER RATIO
'H 99.985 1 26.75
12c 98.9 % 0 -
3¢ 1.108 % 1 6.73
160 99.96 % 0 -
70 0.037 3 —3.63

Table 2.1: Properties of isotopes with putative relevance for the mea-
surement of NMR spectra from biological samples (adopted
from [Frie 99], page 3).

process. The most frequent elements in samples from biology
are carbon (C), oxygen (O) and hydrogen (H). However, among
these elements hydrogen is the only one measurable in NMR spec-
troscopy due to its odd number of protons. Although isotopes of
C and O exist with an odd number of protons or neutrons, they
are quite rare in nature as shown in table 2.1.

Hydrogen atoms are widely distributed in chemical compounds
to be analyzed in medical investigations and have a very strong
nuclear magnetism. Thus, 'H-NMR spectroscopy (henceforth de-
noted as NMR spectroscopy) will be the sole NMR spectroscopic
method discussed in this thesis. The following explanations on
the basic principles of NMR spectroscopy are based on [Free 03,
Frie 99, Schw 96].

2.2.1  Nuclear Spin in a Magnetic Field

Hydrogen atoms are made up of a nucleus and a surrounding
electron, whereby the nucleus accounts for the main mass. One
very important property of the nucleus is its spinning movement
around a fixed axis. Thereby, an electric current and a magnetic
field is induced as shown in figure 2.4a. The magnetic moment u
is defined according to the isotope-specific spin I, the gyromag-
netic ratio 7y and Planck’s reduced constant 7 by

u="y\/I(I+1)h.

Isotopes with a high -y have a high detection sensitivity within the
NMR measurement process. The orientation and magnitude of the
angular momentum is quantized according to the isotope-specific
quantum number m (cf. table 2.1). Hydrogen has a spin of ; and
m can take only the values m = —1 or m = +3.

Placing the sample into a strong magnetic field leads to a
quantized orientation of the angular momentum in parallel or

antiparallel to the applied magnetic field direction (cf. figure
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(a) Spinning nucleus. (b) Orientations of the hydrogen nucleus
in a magnetic field (adopted from
[Free 03]).

Figure 2.4: Magnetism of nuclei and their reaction to an external mag-
netic field.
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Figure 2.5: Correspondence between magnetic field strength By and
resonance energy AE for a state transition between the low-
energy state E; and the high-energy state E,.

2.4b). The parallel spin-up orientation has a lower energy level
than the antiparallel spin-down orientation. A transition between
these two states requires an energy of AE, which is dependent on
the strength of the applied magnetic field By (cf. figure 2.5). The
lower energy level is slightly favored, leading to a macroscopic
magnetism into the direction of the applied magnetic field. Ac-
tually, the spins do not align exactly to the magnetic field, but
precess in the spin-up and spin-down direction on the surface
of a cone. The precession frequency v;, also known as Lamor
frequency, is proportional to By by

kAP
VL ’211 0-

2.2.2  Nuclear Magnetic Resonance and Relaxation

The basic concept of NMR measurements is the nuclear magnetic
resonance, which is based on the interaction of precessing nuclei
in a strong magnetic field with an additional magnetic field.
This phenomenon was first described and measured in the year
1938 by Isidor Rabi [Rabi 38] and was further refined by several
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Figure 2.6: Spin resonance and relaxation during a NMR measurement.

researchers. Their work lead to a Nobel price in physics in the
year 1952 for Felix Bloch and Edward Mills Purcell, a Nobel Price
in chemistry for Richard R. Ernst in the year 1991, and John B.
Fenn, Koichi Tanaka and Kurt Wiithrich in the year 2002.

In order to measure a nuclear magnetic resonance, the distri-
bution of nuclei on the different energy levels is altered by an
additional magnetic field B;. The energy v; of this field has to
fulfill the following condition

%
AE = Ji :ﬁ‘—‘B ,
Y1 o111 70

leading to changes of the energy levels from spin-up to spin-
down by absorption and vice versa by emission. Both transitions
have the same probability, but more changes from the lower
energy level to the higher energy level occur due to the favored
occupation of the lower energy level. These transitions induce a
change of the macroscopic magnetism orthogonal to the direction
of the external magnetic field By as shown in figure 2.6.

An equal occupation of the two energy levels would gener-
ally lead to a saturation and no macroscopic magnetism would
be measurable. However, the nuclei do not precess statistically
equally distributed on the cone surface and induce a magnetic
field orthogonal to the z-direction by means of their grouped
precession. Turning off the magnetic field B; leads to a gradual
movement of the macroscopic magnetism in direction of the mag-
netic field By and a decay of the measured signal intensity, known
as relaxation. The precessing macroscopic magnetism is recorded
by the receiver coil and converted into a spectrum representa-
tion, allowing for the identification and quantization of distinct
molecules.

2.2.3 From Time to Frequency Domain

The signal recorded in the receiver coil (cf. figure 2.6) is a mixture
of several decaying complex-valued sinusoid signals, denoted
as free induction decay (FID), as shown in figure 2.7a. While the
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(a) Free induction decay. (b) NMR spectrum.

Figure 2.7: Free induction decay and NMR spectrum of a representative
rat urine sample measured at 600 MHz.

frequency of each signal is equal to the difference between the
precession frequency of the particular molecule’s atom Lamor
frequency vy and the impulse frequency v;, the amplitude is
dependent on the concentration of the molecule in the sample.
Although the absolute concentration of each molecule cannot be
determined in relation to the amplitude of a single signal, it can
be quantified by relation to the signal intensity of a molecule
with known concentration.

Information contained in the FID is not easily accessible due to
the superimposition of multiple sinusoid signals. Frequency and
amplitude of these signals are the important signal characteristics
and are extracted by fourier transformation. Thereby, the FID is
expressed as a superimposition of fourier coefficient weighted
sine and cosine signals and transferred from the time-domain to
the frequency domain. The resulting NMR spectrum® (cf. figure
2.7b) represents single signals by peaks and the signal amplitude
corresponds to the peak height.

2.2.4 The Chemical Shift

According to the precession frequency of hydrogen, there would
be only a single measurable signal by nuclear magnetic resonance
to an applied magnetic impulse and the method would not be
of interest for the chemist. However, the precession frequency
v1 is modified by the shielding properties of the extranuclear
electron and interaction between neighboring electrons. Thereby,
the effective magnetic field at the nucleus B is slightly reduced

PPM values on the horizontal axis are denoted in decreasing order. Signals are
sorted according to their shielding and molecules with low shielding induce
signals with a high chemical shift. Thus, these are located in the left part of the
spectrum.
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in comparison to the externally applied magnetic field By with
respect to the shielding parameter o by

Begt = (1 — ) Bo.

Thus, the resonance frequency v, is slightly changed according
to o by

v, = ‘%’ (1— o)Bo.

The shielding property ¢ is independent from By, and v; is propor-
tional to the shielding term (1 — o) and By. Therefore, chemically
non-equivalent nuclei produce peaks at different spectral posi-
tions, allowing for the discrimination of signals from different
molecules.

The resonance frequency is not an absolute measure for the
position of certain peaks due to the dependency of the exter-
nal magnetic field By. Improvements in the development of new
NMR spectrometers lead to higher magnetic field strengths, which
generally allow for a better resolution of the spectra, but also
cause different resonance frequencies of identical samples. Since
the acquisition of samples and spectroscopic data is a laborious
and sumptuous process, previous experiments performed with
a spectrometer of different magnetic field strength should be
conferrable for comparison with new samples. Thus, a normal-
ization of the resonance frequency is required for compensation
of changes in the magnetic field strength.

A first normalization regarding the zero point of the new scale
is achieved by reference to a compound previously added to the
sample. Nowadays, 2,2-dimethylsilapentane-5-sulfonic acid (DSS)
is the agreed standard due to sharp signal® and the increased
stability to sample condition changes in comparison to the for-
mer standard tetramethylsilane. The distance Av between the
resonance frequency of the reference standard vpgs and the ac-
tual substance v, is still dependent on By. Thus, this difference
is divided by vy and multiplied by a constant scaling factor3
of 10° and the final scale is denoted as ppm (parts per million).
The scaled difference between vpgss and v, is called the chemical
shift §, the main information for discrimination of signals from
chemically different hydrogen nuclei.

5= 2V 108
Vo

Although it is hard to predict the peak pattern of a molecule

with known structure, certain chemical groups produce signals

DSS emits a strong signal with a low chemical shift due to the presence of nine
identical methyl protons shielded by the low electronegativity of the silicon
atom in the molecular structure.

The scaling constant has originally been defined for a simpler notation of ppm
values and is used henceforth as scaling constant for conversion of frequencies
to ppm values.
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Figure 2.8: Chemical shift ranges for some organic groups in NMR spec-
troscopy (adopted from [Free 03], page 97).

in specific spectral regions as shown in figure 2.8. Thereby, a
coarse categorization of corresponding molecules to putatively
interesting peaks detected in a NMR spectrum can be achieved
according to the organic group the signal emitting hydrogen nu-
cleus is part of. Determination of the corresponding molecule to
spectral peaks is mainly achieved by comparison to signals stored
in databases containing NMR signals of various molecules. How-
ever, a single peak is practically not sufficient for a reasonable
unique identification of a molecule. Rather all signals emitted by
the molecule’s hydrogen nuclei should be used for a database
search. But all signals corresponding to the same molecule are not
easy to determine in biofluids, since these are usually a mixture
of several molecules. Thus, background knowledge on possible
molecules contained in the sample has to be applied in order to
curtail the list of possible molecules.

Peak intensity is dependent on the concentration of the sam-
ple’s ingredients and is usually not named in connection with a
certain unit. Generally, methods for the normalization of inten-
sity values have to be applied in order to achieve a reasonable
comparison of samples, especially in case of biofluids. For the
analysis of metabolite concentrations in urine samples as one
prominent application, the concentration of the urine has to be
normalized. The amount of excreted metabolites is of interest
in these studies, but since a fixed volume of a urine sample is
analyzed, the signal intensity emitted by a certain metabolite
depends on the (usually unknown) concentration of the urine.
Thus, signal strength will be denoted throughout this thesis as
(peak) intensity without any unit terms.

Up to now a single peak for chemically equivalent hydrogen
nuclei has been assumed, but this is the exception rather than
the rule. Spin coupling between neighboring magnetic nuclear
dipoles leads to a weakened or amplified magnetic field B at
the nuclei and a modification of the resonance signal v;. This
complex interaction leads to a split of the resonance signal into
a multiplet signal. However, the chemical foundations of spin



2.2 FUNDAMENTALS OF 1H-NMR SPECTROSCOPY

a
)
g
I
)
1<
e
=]

o
o
o

>

bore g;;perconducting
tube magnet

(a) 6ooMHz NMR spec- (b) Spectrometer structure.
trometer.

Figure 2.9: (a) Picture of a 6oo MHz NMR spectrometer (Bruker
AVANCE 600 plus Ultrashield™) equipped with an au-
tomatic probe handler commonly used in metabonomic
studies (courtesy of Dr. Christina Schreier, LipoFit Analytic
GmbH). The general structure of a NMR spectrometer is
shown in (b).

coupling are not relevant for the investigations pursued in this
thesis and will not be discussed in detail. If any further details
on spin coupling and shielding effects are of interest, these can
be found in [Free 03].

2.2.5 Industrial Measurement of NMR Spectra

Nowadays measurement of NMR spectra is a highly automated
procedure. Human interaction is required for sample prepara-
tion and spectral processing. NMR spectrometers (cf. figure 2.9a)
used in industrial applications are built up of different parts
as shown in figure 2.9b. The central part of the spectrometer is
the persistent superconducting magnet, generating the strong
magnetic field By. Current NMR spectrometers have a magnetic
field strength up to 21 Tesla which corresponds to a Lamor fre-
quency for hydrogen atoms up to goo MHz, but 600 MHz is the
most common frequency used in current metabonomic studies.
In order to generate such a strong magnetic field that is approx-
imately 5 10° times stronger than the earth’s magnetic field
special constructions have to be used.
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The wire of the magnet coil is kept at a temperature lower than
6 K in liquid helium. Thus the resistance goes to zero and once
a current is set running in the coil it will persist and no further
electrical power supply is required to keep up the magnetic field.
In order to reduce the need of rather expensive liquid helium for
maintenance of the spectrometer a heat shield of liquid nitrogen
surrounds the core of the spectrometer. For further reduction
of heat flow from the environment, the whole assembly is kept
in a vacuum flask. These low temperatures could negatively
affect the sample, thus the sample is placed in a tube with room
temperature in the center of the spectrometer — the bore tube.

In order to keep the magnetic field as homogeneous as possible
within the bore tube, the sample to be analyzed is surrounded by
several shim coils. These shim coils can generate small magnetic
fields with specific spatial profiles. Thus, inhomogeneities in the
magnetic field can be canceled by controlling the magnetic fields
induced by the shim coils. This adjustment can be a complex
task dependent on the number of shim coils, but has only to be
applied once a day and not prior to each measurement procedure.

The sample is placed by an automatic probe handler in the
probehead. The probehead, located inside the bore tube, is the
central part for excitation and detection of the NMR signal by a
small coil. The coil has to be as close as possible to the sample
in order to achieve the best results and a lot of effort is invested
in the design of these probe heads. Furthermore, sample tem-
perature can be controlled by the probehead, achieving identical
conditions for each measurement. After pulse excitation by the
probehead the NMR signal is recorded, amplified and converted
to the FID by the digitizer. Conversion of this FID from the time
domain to the frequency domain is achieved by fourier transfor-
mation as shown in figure 2.7. This spectral representation allows
for the analysis of concentrations from several molecules. Each
peak corresponds to a specific molecule and the peak intensity is
dependent on the molecule’s concentration.

2.3 ANALYSIS OF SPECTROSCOPIC DATA

NMR spectroscopy is a robust and reliable method for the anal-
ysis of biofluids and apart from mass spectrometry the most
frequently applied measurement procedure in Metabonomics
[Lenz oy]. Thereby, numerous different molecules are simultane-
ously measured in an automated procedure. Furthermore, only
small sample volumes are required and the measurement pro-
cedure is non-destructive allowing for further measurements of
the same sample. Differences in the concentration of molecules
between several samples can be identified by the comparison of
peak intensities between the samples’ spectra. Although the un-
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derlying molecules of peaks with changing concentration are not
necessarily known, changes in peak intensity indicate a change
in sample’s composition. Systematic variations in peak intensity
with respect to known properties of the sample’s donor individ-
ual like gender or health status could be used to analyze new
samples.

In spite of all these valuable properties of NMR spectroscopy
there are some drawbacks, impeding a straightforward usage of
NMR spectra for classification or data analysis purposes. Initially,
the numerical range of chemical shifts used in the subsequent
procedures has to be determined. If prior knowledge of relevant
metabolites and their chemical shifts is present, these ranges will
be analyzed and the remaining spectral information discarded.
Typically this information is not available in metabonomic studies
and the chemical shift range from oppm to 10ppm is used,
excluding the region of the dominant and non-informative water
and urea signal from 4.5 ppm to 6 ppm. These selected regions
cover the main signals present in NMR spectra from urine samples
and restricting the analysis to these regions is the quasi standard
procedure in Metabonomics.

Furthermore, the spectra are altered by experimental or sample
conditions, possibly leading to a misinterpretation. Serious per-
turbations of the spectra by high content of additional substances
in the sample or errors in the measurement process can be de-
tected beforehand by multivariate data analysis methods and
corresponding samples are excluded from the following analysis.
Further alterations caused by slight changes in physiochemical
factors frequently occur, but methods to compensate these have
been proposed and are still part of current research.

2.3.1  Peak Alignment

In multivariate data analysis, NMR spectra are treated as high-di-
mensional feature vectors. Hence, corresponding peak informa-
tion has to be represented by the same variable among all spectra
in order to achieve a reasonable interpretation of the data. How-
ever, the electromagnetic environment of the hydrogen nucleus
is mainly influenced among several physiochemical factors by
ion concentration and pH value [Wu 06], leading to a change of
the exact peak position in the spectrum. Thus, it is difficult to
identify signals from the same molecule among several spectra
according to their exact position, denoted as the correspondence
problem [Aber o9]. These peak shifts have to be compensated in or-
der to achieve a reasonable interpretation of spectra represented
as vectorial data.

Different NMR spectra of the same sample measured after man-
ual adjustment of the sample’s pH value are shown in figure
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Figure 2.10: Effect of variation in pH value of a urine sample on the
position of peaks in NMR spectra. Increasing the pH value
leads to a shift to the right of the central peak, while other
peaks nearly remain at their position.

2.10. The central peak doublet shifts to the right with increasing
pH value due to the change of the electromagnetic environment
of the corresponding hydrogen nucleus. Several other peaks in
the same spectral region are nearly unaffected by variation of
the pH value and remain at their position throughout all spectra.
Such dramatic changes in pH values of urine samples would
not occur naturally. However, this example illustrates the peak
shifting effect of variations in physiochemical factors, and the
specific sensitivity of each hydrogen nucleus to these factors.

Bucketing was presented as a first approach for minimization
of peak shift effects, integrating small consecutive parts of the
spectrum (buckets) to a single value located at the center of the
integrated region [Holm 94, Spra 94, Holm 98b]. Thereby, exact
peak positions are blurred and minor changes in the peak po-
sitions are compensated in case of adequate bucket boundaries.
However, the bucket boundaries are mostly chosen independently
from the underlying data and a peak shift across several buckets
can generally not be avoided. A further disadvantage of the buck-
eting procedure is the loss of spectral resolution, complicating
the reference to single peaks with changing intensity within a
bucket.

The effect of different bucket boundaries on the resulting spec-
trum is shown in figure 2.11 based on simulated data and using
a bucket width of 0.04 ppm. Using first row bucket boundaries
results in a nearly full compensation of peak shifts, and intensity
information from the two central peaks is still distributed over
two bucket values. However, adding an offset of 0.02 ppm to the
bucket boundaries results in a significant change of alignment
quality. Peak shifts are still present at the right peak and informa-
tion from the two central peaks is merged to a single value. Thus
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Figure 2.11: Compensation of peak shifts can be achieved by a bucket-
ing procedure, but the success of this alignment is mainly
influenced by the position of bucket boundaries.

intensity changes of the bucket value cannot be associated with
one of these peaks.

These drawbacks of bucketing show the necessity for more so-
phisticated alignment procedures. Several approaches have been
published [Fors 03, Stoy 04, Wu 06, Wang 06] and applied to NMR
spectra [Fors o5] in recent years. Basically, alignment methods
differ in their data representation, their methodology for the
determination of peak shift corrections and the way of revising
these shifts. Three recent alignment strategies will be shown as
examples in order to clarify the problems in the identification of
corresponding peaks among several spectra.

Peak Alignment Using Reduced Set Mapping

The alignment method proposed by Torgrip et al. [Torg 03], de-
noted as peak alignment using reduced set mapping (PARSE),
aligns peaks from two different spectra by the conversion of
the spectra into a peak representation and optimization of the
peak-association between those spectra. Once the correspondence
between peaks is determined, insertion and deletion operations
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Figure 2.12: Conversion of a spectrum to peak representation and as-
signment of borderline regions for insertion and deletion
operations (adopted from [Torg o3].

are applied in baseline regions containing non-relevant signals
for the adjustment of corresponding peak positions.

As a first step in PARSE the spectra need to be converted into
a peak representations as exemplified in figure 2.12. Therefore,
peak maxima and their positions are determined for each spec-
trum according to the Savitzky-Golay [Savi 64] first derivative of
second order and transferred to the target peak representation
with ones at the peak positions and zeros otherwise. The Savitzky-
Golay derivatives are determined according to the higher order
coefficients of a polynomial fitting for smoothing of the data.
Using a polynomial of second order allows for suppression of
noise signals in the data while retaining peak information similar
to their original shape.

Subsequently, peak boundaries for putative insertion and dele-
tion operations are identified according to the peak maxima and
the estimated baseline by a running windowed median. Accord-
ing to this baseline and a meta-parameter « a threshold is defined
indicating the transition from peak to baseline segments. Thus,
peak boundaries are defined by tracing the signal from peak
maxima to the left and to the right until reaching the threshold.

In order to achieve an alignment of all spectra based on the
peak representation and identified peak boundaries a target spec-
trum has to be defined. This spectrum should be as representative
as possible and is usually a selected spectrum with the most com-
mon peaks or either a mean or median spectrum. The selection
of a reference spectrum can be a severe drawback in heteroge-
neous data sets containing new or vanishing peaks. However,
choosing a reference spectrum for alignment is a prerequisite in
most alignment approaches. Up to now only some heuristics have
been presented to achieve an automated and objective reference
spectrum selection.
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Final alignment is realized using the peak representation of
the reference sample and each spectrum, respectively. The opti-
mal alignment scheme is calculated by dynamic programming
according to the Smith-Waterman algorithm [Smit 81]. This is
algorithm is based on the efficient determination of the optimal
path through a distance map D. This map contains the Euclidean
distances between all peaks of the two spectra to be aligned (cf.
[Prav oz]). An optimal path through this map is determined by
backtracing the map along the minimum cumulative path. In-
corporating background knowledge on the maximum distance
between two shifted peaks allows for a reduction of the dis-
tance map according to [Sako 78], thereby, saving memory and
reducing the computational complexity.

Alternatively, representing the peak list in a directed graph
allows for alignment by finding the shortest path through this
graph. Each vertex is a match between two peaks, whereby, only
peaks with a distance lower than a maximal value are chosen
for a possible alignment. A weight is assigned to each edge
according to the distance of the two peaks to be matched and the
number of missed matches of peaks between the two peaks. The
shortest path through this graph is determined by a breadth first
search algorithm, systematically examining the entire graph and
finding the optimal solution by an exhaustive search without any
heuristics for the reduction of computational complexity.

Both optimization methods lead to a match of corresponding
peaks between the target and sample spectrum and the exact
peak position of the sample spectrum is corrected according
to these correspondences. Relocation of peaks is achieved by
insertion and deletion operations in adjacent baseline regions.
Thereby, peak shifts are corrected without modification of peak
shapes. However, the matched peak lists are already a compact
representation of the spectral information and can be used for
further analysis as shown in [Torg o6].

Correlation Optimized Warping

Nielsen et al. first introduced correlation optimized warping (COW)
as a methodology to align shifted signals in spectroscopic data
[Niel 98]. This method is known as a piecewise or segmented
data preprocessing method, aligning a sample spectrum to a pre-
viously selected reference spectrum by stretching and squeezing
of spectral segments in order to optimize correlation between
the two samples. Finally, the global alignment is achieved by
combination of local segment modifications.

Comparable to the PARSE method, the selection of a reference
spectrum influences the subsequent alignment results. Besides
the selection of a reference sample according to prior knowledge
Skov et. al presented a more objective approach to achieve a
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reasonable reference spectrum selection [Skov 06]. Although, se-
lection of the mean spectrum or the spectrum most similar to the
first principal component of a Principal Component Analysis (PCA)
model seems reasonable, these spectra are still influenced by peak
shifts. Thus, an alternative approach is presented aiming at the
selection of the spectrum with the maximum similarity to all
other samples in the data set Z, consisting of N samples of size n.
A measure reflecting this similarity is the similarity index, using
the correlation coefficients r(z,, z;) between the samples z, and
z;i=1,...,N, respectively.

N
Similarity index = H |r(zs,2:)|,
i=1

where

5T
Z,272;

121/(1l2]|* — nzi)'/2
This equation has been introduced in [Skov 06] and Z, is the
centered sample z, and Z; is the mean value of z;. The similar-
ity index ranges from zero to one, whereby the spectrum with
maximum similarity to all other samples will have the highest
similarity index and is selected as reference sample.

After selection of a reference spectrum, the reference spectrum
z, and the sample to be aligned z; are divided into equally sized
segments of length I. The alignment procedure basically consists
of shifting the segment boundary positions of zs and interpolat-
ing the segments to original size in order to achieve a maximal
correlation between the spectra. This global alignment problem
can be broken down by calculation of segment-wise correlations
for each desired boundary shift. The globally optimal combina-
tion of shifts is determined by dynamic programming techniques
[Niel 98]. The maximal position shift of segment boundaries ¢ —
denoted as slack area — together with the segment length I are the
sole parameters of the alignment procedure to be optimized in
order to achieve the best alignment results.

The effect of the different parameters and the overall principle
of the alignment procedure is explained by means of a simple
example shown in figure 2.13. A spectrum z; of length 16 has to
be aligned to the reference spectrum z, of length 17. Initially, the
spectra are divided into 4 segments, whereby interpolation will be
used within the alignment procedure to compensate differences
in the size of the last segments.

Beginning with the last segment, the left border can be a)
shifted to the right, b) remain in the same position or be c) shifted
to the left. According to the slack parameter t equal to one, shifts
can only be a single data point to the left or to the right. Thus
in this step only three modifications are possible. Dependent
on the segment size of the reference sample, an interpolation

r(2r,2;)
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Figure 2.13: Example of the COW alignment procedure (see text for
details, adopted from [Toma o4]).

of the sample segment has to be performed for equal segment
lengths. This allows for calculation of the segment correlation
p(n) between the resulting segments at position 7.

p(n) = r(z:(n),25(n))

Subsequent to each of the different choices for segment bor-
der modification the process repeats for the left border of the
next segment until the last segment is reached. Thereby, global
correlation P can be calculated by summation of the segment
correlations. In order to achieve a maximal global correlation a
dynamic programming algorithm is applied, leading to the opti-
mal combination of segment border modifications. Application of
the optimal combination of segment border modifications leads
to an alignment of a sample spectrum to the reference spectrum
by squeezing of signal segments.
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The result of the COW alignment procedure is mainly con-
trolled by the choice of segment length and the slack parameter.
These are usually determined by rules of thumb or by means
of cross-validation procedure. Skov et. al presented a system-
atic procedure for determination of the optimal parametrization.
Additionally, some modifications of the original algorithm are
introduced to speed up necessary calculations allowing for a
parameter optimization in reasonable time [Skov 06]. Alignment
results based on different parameter settings are compared ac-
cording to the newly defined warping effect, a summation of the
simplicity value and peak factor.

The simplicity value measures the alignment quality of a data
set Z by analysis of the partitioning of explained variance into the
singular values resulting from singular value decomposition (SVD)
of Z. Variance is mainly explained by the first few components
in case of well aligned spectra, leading to large first eigenval-
ues. Contrary to this, the explained variance will be distributed
among several singular values in case of unaligned data. Thus,
summation of the first R singular values taken to the power of
four* will be the higher the more data variation is explained by
the first components. SVD is applied on a scaled version of Z in
the calculation of simplicity:

R
simplicity = ) _ [ SVD, [ Z/

r=1

where SVD, denotes the singular value of the r'" component from
SVD. This measure ranges from zero to one, whereby a value of
one indicates a perfect alignment result.

Effects of variations in physiochemical factors induce peak
shifts that have to be compensated by alignment methods, but no
further changes in spectral properties (e.g. peak shape) should be
caused. However, modifications applied in COW could distort the
peak shapes and these changes have to be taken into account in
selection of a feasible slack parameter and number of segments.
Changes in peak shapes are quantified in the presented approach
by the peak factor (0 < peak factor < 1), measuring the difference
between the norm of the original sample z and the aligned sample

A

z.

N
Y. (1 — minimum(c(7),1)?)
peak factor = =1

N
where

c(i) =

|Z1H |Zz||'
[EAl

4 Using the fourth power allows for the use of this measure even if all singular
values are retained. The squared sum of all singular values is by definition
always equal to one [Skov 06].
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(a) Warping effect values. (b) Simplex optimization.

Figure 2.14: Warping effect values for different combinations of seg-
ment length and slack size are shown in (a). Filled circles
are the six best parametrizations of an initial 5x5 grid
evaluation. These serve as starting points for simplex opti-
mization as illustrated in (b) (courtesy of [Skov 06]).

Combination of the simplicity value and peak factor to the warp-
ing effect by summation facilitates the efficient comparison of
alignment results achieved by different parameter settings. How-
ever, an exhaustive search for the optimal parameter setting is
not feasible since the alignment procedure is still computation-
ally demanding. Thus, a stepwise optimization procedure based
on the simplex algorithm [Spen 62] has been presented, initially
defining the boundaries of the optimization space according to
certain spectral properties (e.g. peak width). Different parameter
combinations are evaluated in this space using a 5x5 grid and the
six best results serve as starting point for further search (cf. figure
2.14a). Starting at each of these points two adjacent parameter
settings are evaluated, forming a triangle as shown in figure 2.14b
with the starting point as base. The triangle is flipped over to
the side of the line between the points in the triangle with the
maximum warping effect. This process is iteratively repeated
until the search ends at one configuration. The parametrization
leading to the maximum warping effect among all six search
procedures is regarded as the optimal configuration.

A comparison of COW to dynamic time warping [Kass 98] as
alternative alignment method by Pravdova et al. has shown the
capability of COW to compensate peak shifts. But limitations in
baseline correction still exist [Prav 02]. Crucial aspects within
this approach, such as the selection of a reference spectrum
and parameter settings, have been discussed by Skov et al. and
algorithmic solutions have been presented.

29

simplex optimization

determination of the
parametrization with
the maximum

warping effect



30 ANALYSIS OF METABOLIC RESPONSES

Intensity

e o er—
273 271 269 26/ 265 263
PPM

(a) Shifted citrate doublet and an addi-
tional peak.

reference

g reference 3 shape
. ; peak Y
£ g
S &
3 , g
L 8
5 8
2 2

" 4 1 L 1 1 1

269 26/ 265 263 273 271 269 267 265 263

PPM PPM
(b) Sorted image representation. (c) Indicator matrix.

Figure 2.15: Conversion of the (a) standard spectrum representation to
the (b) image representation sorted according to a reference
peak. The (c) indicator matrix containing peak maxima is
used for detection of peak shifts by the GFHT.

Generalized Fuzzy Hough Transform

A quite different alignment approach presented by Csenki et
al. is based on the generalized fuzzy Hough transform (GFHT)
detection of shift  [Suet 06], identifying peak shifts by detection of certain patterns
patterns —in an image representation of a data set [Csen o7]. Thereby, spec-
tra are not plotted in a typical way as shown in figure 2.15a, but
stacked to form a matrix encoding the intensity by a color code
(cf. figure 2.15b). Spectra are sorted within this representation
according to the position of a previously defined reference peak
with known sensitivity to physiochemical factors. pH is expected
to be the major source for changes in peak positions, but for the
GFHT alignment approach it is not necessary to know the exact
factors leading to peak shifts. For the detection of peak shifts it is
common shift sufficient to assume a common shift pattern for all shifting peaks.
pattern In order to achieve a reasonable representation of the spectra
certain prerequisites have to be fulfilled by the reference peak. The
reference peak  reference peak has to be sensitive to changes in physiochemical
determination g5 ctors in order to qualify the common shift pattern. Furthermore,
the signal should be strong enough and not overlap with other
signals in order to unambiguously identify the reference peak in
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each spectrum. The selection of the reference peak is a crucial step
in this procedure and can be achieved according to the presence
of strong signals with known relevance to physiochemical factors
or visual investigation of the data set.

Initially, the spectra are transformed into an indicator matrix
having a one at peak positions detected by a preceding peak-
detection method and a zero otherwise as shown in figure 2.15c.
Corresponding peaks can be identified among the spectra in
the indicator matrix as points of a vertical line, while shifting
peaks induce slightly skewed vertical lines. Thus, the objective of
peak shift detection can be reformulated by finding shapes in the
indicator matrix representation similar to the shape produced by
the reference peak in different positions and slight rotations. In
the context of the GFHT approach the phrase peak shape is used
for the line in the indicator matrix produced by a specific peak
and should not be mixed up with the shape of a single peak in a
NMR spectrum. The position of a peak shape is specific to a peak
and the rotation is dependent on the particular sensitivity of the
hydrogen nucleus to the shift inducing physiochemical factors.

Differences in sensitivity to physiochemical factors can be ob-
served in figure 2.15. The second peak of the citrate doublet has
an almost equal shape like the reference peak due to the equal
sensitivity to physiochemical factors. The left peak seems to be
more stable than the two other peaks but large shifts can be
observed in a few samples as a result of changes in physiochem-
ical factors not affecting the citrate doublet. This demonstrates
the problem of finding an optimal reference peak for sorting of
the spectra, since different physiochemical factors influence the
position of molecules to a different extent.

A method from the field of image analysis for the detection of
shapes described by analytical functions (e.g. lines) in images is
the Hough transformation [Duda 72]. In the case of shapes that
are not described by an analytical function but a list of points,
such as the peak positions of the reference peak forming the
reference shape, the generalized Hough transform can be applied
[Sama 97, Ball 81]. However, in presence of noise the generalized
Hough transform would not detect every line with a shape similar
to the reference shape since these are not identical in every point.
Therefore, fuzzy Hough transform has been developed, allowing
for slight distortions of the shape to be detected by increasing the
vote of a detected shape according to the distance of a possible
peak [Han 94]. Combining these two extensions of the classical
Hough transform allows for the robust detection of shapes similar
to a given list of points in images. This approach is applied for the
detection of corresponding peaks among several spectra based
on the presented indicator matrix representation.
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The vote h(a, k) for a shape similar to the shape of the mean-
centered reference peak s at position k and expansion factor a in
the indicator matrix X is defined as

h(a, k) = H(X,s,0) = Zinjp(i,j, s,0)
i

p(i,j,s,0) = exp (—; (W)2> )

The expansion factor denotes the relative sensitivity of the cur-
rent peak to the physiochemical factors, whereby a value smaller
than one indicates less sensitivity and vice versa. Calculating
the vote for all spectral positions and several expansion factors
results in a matrix H of votes h(a, k). Local maxima in this matrix
indicate peak shapes similar to the reference peak shape. Using
the information on position and expansion factor allows for the
detection of corresponding peaks in the spectra. Thus, iterating
over all local maxima of H until no further peak can be extracted
results in a list of peak information and their correspondence be-
tween the spectra. Compensation of peak shifts is achieved by the
modification of the exact position from all peaks corresponding
to an identified shape. Alternatively, the intensity information
can be directly incorporated in further analysis as already shown
by PARSE.

Assuming that every shifting peak has a common shift pattern
with varying accentuation subject to the respective sensitivity
to physiochemical factors, peaks can shift across each other in
the spectrum. This phenomenon can solely be detected by GFHT
alignment due to the incorporation of shift patterns in other
spectra. This is a clear advantage of the GFHT approach, while
the computational complexity could be regarded as a drawback
in practical applications. However, even a computation time of
several days in order to achieve an aligned data set are usually not
a problem, since the organization and realization of metabonomic
experiments can last several months.

where

2.3.2  Compensation of Dilution Effects

Analysis of NMR spectra is primarily based on the comparison
of peak intensities, which reflect the concentrations of certain
molecules. However, peak intensities are no absolute measure
and can be influenced by experimental variables (e.g. sample
dilution). A comparison of two spectral regions from untreated
rats before and after normalization is shown in figure 2.16. Peak
intensities are extremely different in the original spectra due to
dilution differences, leading to an increased inter-sample variance
[Crai 06, Diet 06]. In order to allow for a reasonable analysis of
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Figure 2.16: Normalization effect of a spectral region from two un-
treated rats for the compensation of dilution effects.

the spectra, a change in peak intensity should only be induced
by an altered molecule concentration and the influence of other
variables has to be reduced.

Spectral normalization to a constant sum is commonly used
in Metabonomics, scaling each spectrum to a previously defined
total spectral area, but it has some major drawbacks. This ap-
proach is based on the assumption that the majority of a spectrum
is stable and only minor changes in some peak’s intensity will
be present. However, even small changes in peak intensities of
abundant molecules will affect the whole spectrum and change
the peak intensities of molecules with an unaltered concentration.
Furthermore, new peaks can occur in some spectra, especially in
Metabonomics, as a metabolic product from the applied substance
or caused by a seriously damaged organ, thereby decreasing the
intensity of all other peaks.

The spectral area of creatinine, which is assumed to be a con-
stantly excreted substance, has been used in clinical chemistry
for spectral normalization [Cons o5]. But there are serious prob-
lems from the technical and biological point of view. Creatinine
peaks are sensitive to physiochemical factors and are not well
separated from other peaks, impeding a reliable peak detection
and peak area determination. Furthermore, creatinine excretion
is not constant in case of kidney impairment and cannot be
used for investigations of drugs with well-known kidney toxicity.
Thus, normalization to creatinine excretion is used in only few
metabonomic studies and no alternative substance with com-
monly accepted constant excretion has been published up to
now.
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An alternative scaling method, denoted as probabilistic quotient
normalization, has been proposed by Craig et al. for spectral nor-
malization of NMR spectra independent of a reference substance
[Crai 06]. Thereby, a reference spectrum for normalization is se-
lected and compared with corresponding data points of a sample
spectrum. The median quotient is used for the scaling of the
sample spectrum, thereby reducing the impact of single peaks on
normalization.

A quite different approach presented by Torgrip et al. [Torg o8]
utilizes histogram matching techniques from the field of image
processing [Rose 76] for spectral normalization. Each spectrum
is transformed from the intensity space to counting space by his-
togram calculation. Thereby, the number of variables falling in
the range of several non-overlapping intervals sorted according
to their numerical range is counted. Normalization is realized by
the calculation of the dilution factor, minimizing the difference
between the histogram of the sample and reference spectrum.
Thereby, the method is unaffected by peak shifts and the influence
of each variable on the normalization procedure is independent
of its value.

2.4 MULTIVARIATE DATA ANALYSIS IN METABONOMICS

Modern spectroscopic methods used in Metabonomics produce
complex and high-dimensional data sets, but due to the high
cost for each measured sample their amount is usually rather
limited. Therefore, methods from multivariate data analysis are
applied for the interpretation of these valuable data sets, allow-
ing for multifarious data exploration even on small data sets.
Data interpretation and classification are the two major goals in
Metabonomics, giving a deeper insight into the underlying bio-
logical mechanisms reflected in the data or allowing for a fast
classification of unknown samples.

2.4.1 Interpretation of NMR Data Sets

Data analysis by projection methods allows for a low-dimensional
representation and graphical interpretation of complex data sets.
One of the first methods applied for data projection purposes
has been Principal Component Analysis (PCA) [Joll 02]. Thereby, a
new coordinate system is determined by the maximization of the
data variance explained by the coordinate axes, which are called
Principal Components (PCs). These PCs are sorted in decreasing
order according to the amount of explained variance. Thereby,
the main variance in the data is covered by the first few PCs. It is
reasonably assumed that the dimensionality of the samples can
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Figure 2.17: PCA (a) score and (b) loading plots from the first two prin-
cipal components of a PCA model estimated on a set of
NMR spectra derived from rat urine. Samples from rats
treated with a non-toxic and toxic compound, and samples
from different urine collection time-points are marked in
the score plot for both compounds, respectively. Spectral
positions of variables in the loadings plot are denoted in

be reduced by projection onto a subset of all PCs (cf. appendix
A.1).

A projection of spectra on the first two PCs of a PCA model
estimated on a data set of NMR spectra from rat urine is shown
in figure 2.17a. This score plot allows for a graphical discrimina-
tion of samples from rats treated with a non-toxic compound
(blue circles) and a nephrotoxicant (red circles) according to the
projection value on the first PC. The second PC discriminates in
this data set samples from different sample collection time-points
after drug application.
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The contribution of each variable (or in this case spectral region)
on the separation of samples in the score plot is reflected by the
coefficient, denoted as loading, of the corresponding variable.
The loadings of two PCs can be visualized by a loading plot as
shown in figure 2.17b. In this plot, each point represents a specific
feature of the original data set and the associated spectral regions
are additionally shown. Thereby, variables relevant to sample
separation are indicated by values lower or higher than the bulk
of variables. Apparently, peaks in the regions of 3.9 ppm, 7.6 ppm
and 3.7 ppm primarily contribute to the separation with respect to
the drug-induced metabolic changes (first PC). The region around
2.6 ppm, 3 ppm and also 3.7 ppm cause a separation of samples
regarding the collection time (second PC).

This straightforward graphical interpretation of a data set by
PCA score and loading plots is mostly considered as first step in
data analysis and has been used in numerous studies in the field
of Metabonomics [Holm 98b, Fors 03, Nich o1, Wate o5]. How-
ever, this interpretation of the first PCs for data discrimination is
not explicitly modeled but can be achieved due to data variance
induced by differences between the samples. Using a more com-
plex and heterogeneous data set would lead to data variance not
connected with the previously mentioned sample properties and
interpretation would not be that clear as presented.

PCA as an unsupervised projection method assumes a strong
connection between the variance and importance of each vari-
able, an assumption that is not always true for spectroscopic
data from biosamples. Changes in metabolite concentrations can
be induced by various sources, while changes relevant for the
separation of current interest can have a low variance due to the
initial low substance’s concentration. Partial Least Squares (PLS)
— also known as Projection to Latent Structures — as supervised
multivariate data analysis method is a frequently applied tech-
nique in chemometric and metabonomic studies. Based on a
labeled data set correlations between the spectral data and class
labels are derived [Esbe o1, Mart 89, Wold 66]. Similar to PCA a
new subspace is defined by PLS but instead of maximizing the
variance explained by the coordinate axes (latent variables), the
covariance between the spectral variables and class labels is max-
imized (further details are given in A.2). Thereby, information
on the class membership of each sample is integrated into the
model calculation, mostly leading to a better class separation in
comparison to PCA. This improved class separation and the pos-
sibility of inferring the relevant spectral regions by the analysis
of the latent variables has made PLS the quasi standard analy-
sis method in metabonomic studies [Brin 02, Keun 03, Pear o5].
Prediction of unknown samples can also be achieved by PLS dis-
criminant analysis due to the incorporation of class information
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in PLS model estimation. Beside the original PLS method several
modifications exist with improved model interpretation or class
separation capabilities [Byle 06, Rant oy, Tryg 02].

2.4.2  Classification of NMR Data Sets

Not only data interpretation is of interest in metabonomic stud-
ies, but also data classification for the prediction of unknown
samples. Thereby, spectra can be separated into different classes
(e.g. the type of drug-induced organ toxicity) without manual
interpretation of certain substances’ concentrations measured by
time-consuming methods and not requiring expert knowledge
in the specific field for data assessment. However, according to
the current literature only few attempts have been realized for
an automatic classification of NMR spectra, indicating the chal-
lenging type of data and apparent problems to derive a reliable
classification.

The COMET classification system

Probably the most prominent classification approach has been
presented within the Consortium for Metabonomic Toxicity (COMET)
[Ebbe o7, Lind 03, Lind 05], a collaboration between five major
pharmaceutical companies (Bristol-Myers-Squibb, Eli Lilly & Co.,
Hoffman-La Roche, NovoNordisk, Pfizer Inc.) and the Imperial
College London, UK. Using a data set of 12935 NMR spectra from
1652 rats treated from a set of 8o different compounds>, a classi-
fication system as shown in figure 2.18 incorporating methods
for data preprocessing, normalization, classification and rejection
has been established.

Initially, spectra are preprocessed in order to compensate varia-
tions induced by peak shifts or urinary concentration and a model
for all control samples is built. This control model is expected
to describe urinary variations of physiologically normal animals.
Thus, a first discrimination of samples from control and treated
animals can be achieved. Spectra regarded as samples from ani-
mals with an abnormal metabolic profile are further scaled and
their similarities to known treatments are estimated by the clas-
sification of unknowns by density superimposition (CLOUDS)
approach [Ebbe 03]. Finally, similarities induced by interfering
signals are detected and removed for the subsequent classifica-
tion based on the closest matching treatment. This multi-stage
approach for the processing and classification of NMR spectra has
been so far the only method validated on a large-scale database

As most data sets used in Metabonomic studies these spectra are not available
for public use.
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Figure 2.18: COMET screening method for the detection of drug-
induced organ toxicities (see text for description, adopted
from [Ebbe 07]).

and has proven the applicability of metabonomic methods for
the detection of adverse effects in preclinical toxicology.

The data set used within the COMET approach contains NMR
spectra from time-series samples. Therefore, urine samples are
collected two times before and eight times after the application
of a pharmaceutical compound. For compensation of minor peak
shifts, a bucketing procedure using a bucket-width of 0.04 ppm
(cf. section 2.3.1) is applied. The spectral range from 0.02 ppm to
10 ppm is used for further analysis excluding the urea and water
region from 4.5 ppm to 5.98 ppm. Signals from non-endogenous
compounds (e. g. drug-related compounds, DRCs) are replaced by
the corresponding value of the mean control spectrum in order to
concentrate on endogenous compounds in the subsequent analy-
sis. Furthermore, variations in urine concentration are corrected
by integral normalization to a value of 100.

By means of an approach from multivariate data analysis,
normal variations of control animals are described in a PCA model
estimated on the control group of all treatments. Thereby, the
number of PCs is determined using the predicted variance Q?
on the validation set in a y-fold cross-validation design. The
predicted variance is based on the predicted residual sum of
squares (PRESS), calculated as

N
PRESS = ) |2; — z;|*
i=1

where 2; is the reconstruction of the sample z; after projection into
the PCA space (cf. A.1) estimated on the corresponding training
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Figure 2.19: Normalization of response magnitude to an applied phar-
maceutical using a trajectory representation in the score
space of a PCA model (see text for explanations).

set. The Q? value is defined with respect to the sum of squares
SS of the centered data by
0 —1- PRESS

SS
representing the quality of the estimated model. Subsequently, the
control model is optimized by an iterative procedure restricting
the selection of samples used for estimation of the model to
those with a low reconstruction error after projection (cf. A.1). By
means of this optimization routine control samples consistently
showing abnormal spectral profiles induced by influences like
stress or undiagnosed diseases can be excluded (cf. [Ebbe 07]).
Finally, 4 023 of the originally 6 260 control samples are used for
estimation of the control model.

Subsequently, the control model is used to select dosed sam-
ples for the further analysis. A sample is regarded as toxic if at
least 50 % of samples corresponding to the same treatment are
assumed as abnormal and if a significant toxicity of the treatment
could be detected in histopathology. This selection has reduced
the set of samples from treated animals showing a toxic effect
to a set of size 2056 samples. Thus, less than one third of all
samples are assumed to indicate the intended reaction to the
respective treatment. Animals not showing the reaction as previ-
ously assumed due to resistance, fast recovery or late onset of the
toxic episode are common observations in metabonomic studies,
denoted to as non-responder.

Samples selected for further analysis and reduced by PCA trans-
formation are normalized by a two-stage scaling procedure. Ini-
tially, differences in the degree of reaction to an applied treatment
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are compensated using the SMART procedure as shown in figure
2.19b. In this approach samples of the same treatment from
different time-points are reduced by PCA transformation and rep-
resented as trajectory as shown in figure 2.19a [Keun o4]. The
pre-dose sample of each treatment is subtracted from correspond-
ing samples, achieving a compensation of pre-dose differences
between different animals. The response magnitude to an applied
pharmaceutical is normalized according to the maximum effect
response, defined as the sample with the maximum squared sum
of values within a time-series of samples.

Subsequently, larger variations in some spectral regions are
compensated by variable stability scaling (VAST) [Keun o03]. Thereby,
each variable is scaled to unit variance and multiplied by the
ratio of mean value and standard deviation. By application of
this scaling method the variance of features with large variation
relative to their mean value is decreased.

These normalized samples serve as basis for the prediction of
specific organ toxicities by the CLOUDS approach, a technique
based on probabilistic neural networks [Spec 9o]. Each class
(= treatment) is represented by a combination of several Gaussian
densities. Each sample of the corresponding class serves as center
point of a Gaussian density, respectively, and a predefined stan-
dard deviation ¢ is used. An exemplary data set and its CLOUDS
representation are shown in figure 2.20. The probability for an
n-dimensional sample z belonging to class A containing N4 sam-
ples is determined by summation over the probabilities of the
sample belonging to each Gaussian density of the particular class.

(z|z: )_;Zex —lz-zf
PAVEIEIEA) = Na2ro?)n2 = P\ 7 202

Strictly speaking, the presented classification approach is more
similar to a mixture density classifier than to a neural network
approach. Neither a network training nor a network structure is
used in this approach. However, the approach has been derived
from probabilistic neural network (PNN) theory and is applied,
as stated by the author, in a non-neural architecture.

The formulation of class probability can be extended to a
similarity measure between two classes A and B by assessment
of the overlap integral, defined as

B —|zi — z;?
Ons = N Ny (@ro2) 2 L L exp < 102 ‘

icAjeB

The overlap similarity between classes A and B is finally derived
by a normalization of the overlap integral to [0...1] as follows

Sap = &
vV Oa40g3
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Figure 2.20: Representation of a data set by the CLOUDS approach by
Gaussians centered at each data point with predefined
standard deviation.

The overlap similarity measure is used to define a similarity
matrix. Rows of this matrix correspond to classes described by
treatments from the training set. Columns contain groups of
samples from treatments to be classified. Optimization of the
Gaussian smoothing parameter ¢ can be achieved by computation
of the similarity matrix between the treatments in the data set.
The value maximizing the Shannon entropy of the matrix values
is selected for the further progress. Thereby, an intermediate
configuration between no overlap of classes due to a small value
and great overlap induced by a high value of ¢ is achieved.

Erroneously detected similarities between treatments, induced
by the elimination of sample values containing DRCs (cf. [Ebbe 07]),
are excluded and the three most similar treatments are deter-
mined. These similarities are allocated to one of four levels cor-
responding to very high, high, low and very low. Whether a
treatment can be classified as toxic for a particular organ is deter-
mined according to the similarity level of the three most similar
treatments with known main organ effect. Tests concerning the
similarity levels of the three most similar treatments are applied.
A class label is assigned in case of agreement or very high con-
fidence. The significance of this classification is assessed by a
permutation test, randomly selecting the top three hits for the
classification of a treatment.

To sum up, the classification approach developed within the
COMET project comprises methods for spectral preprocessing and
normalization. Following this, a system for estimation of simi-
larities between different treatments allowing for a prediction
of organ toxicities is defined. By an experimental evaluation of
the expert system on the given data set by leave-one-out cross-
validation seven out of overall 17 substances inducing kidney
toxicity could be detected. Thereby, 24 out of 31 substances in-
ducing liver toxicity could be classified correctly [Ebbe o7].
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Generally, results achieved by the COMET approach cannot be
objectively compared to other approaches since the data set is
not publicly available. Previous investigation of methods for the
interpretation and classification of a subset of the presented data
set, including hierarchical cluster analysis, principal component
analysis and k-nearest-neighbor classification [Beck 03], gave first
reasonable classification results. However, these alternative clas-
sification approaches evaluated on a comparable data set could
not outperform the CLOUDS approach.

Alternative Classification Approaches

Beyond the COMET project only very few attempts for automatic
classification of NMR spectra have been published. A first classifi-
cation approach presented by Gray et al. in 1998 applies genetic
programming [Gold 89] for the determination of the best combi-
nation of functions on the feature representation of 75 NMR spec-
tra from human brain tumor extracts [Gray 98]. Thereby, features
were extracted by projection of the spectra on the first 20 princi-
pal components from PCA (accounting for 99 % of the variance).
The classes were defined as meningioma® and non-meningioma.
Score values were combined using adapted arithmetic, trigono-
metric, logical and conditional functions and classified according
their sign to one of the two possible classes. Evaluation of classi-
fication accuracy has been performed based on a cross-validation
approach and 70 % of the samples from the test set could be
predicted correctly.

The data set used in the previous study has been relatively
small due to the complex sample acquisition process and expen-
sive measurement methods. Holmes et al. presented in the same
year soft independent modelling of class analogy (SIMCA) [Holm 98a]
as an alternative method for classification of NMR spectra based
on a set of 244 spectra from rat urine. A separate PCA model
is built for the samples of each toxin type in SIMCA and new
samples are assigned to the class with the minimum distance
after projection. A PCA score plot revealed some samples with an
unusual response to the applied pharmaceutical, and also some
outlying clusters which were excluded prior to further analysis.
Exclusion of these outlier samples has improved the classification
accuracy from 84 % to 98 % on the test set. For the final set of
191 samples 11 compounds have been applied, which are only
14 % of the amount of samples used in the COMET project. Thus,
these results are not directly comparable with those achieved in
the COMET project. This is a reoccurring problem since no data
sets for metabonomic studies are publicly available and usually

6 Meningiomas are the most common tumor type in the central nervous system.
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neither financial support nor the biomedical background for the
acquisition of a reasonable and large-scale data set is present.

2.5 SUMMARY

The improvements in spectral resolution and quality of NMR
spectra achieved in the last decade allow for the non-destructive
analysis of the composition of biosamples. Alternative measure-
ment techniques from clinical chemistry can specifically quantify
metabolites, enzymes or electrolytes. However, these have to be
defined beforehand based on knowledge of relevant markers for
the physical reaction to be detected. Furthermore, the measured
concentrations have to be interpreted by an expert, which is a
time-consuming process and the interpretation is dependent on
the experience and knowledge of the expert. NMR spectroscopy
principally measures each NMR active compound of sufficient
concentration in a sample without prior preselection of putatively
relevant substances. Thus, NMR spectra contain several signals
and the goal of a detailed analysis is to extract the relevant infor-
mation for the topic to be investigated.

Analysis of spectroscopic data from biosamples with respect
to physiological reactions induced by pathophysical stimuli is
pursued in the field of Metabonomics. Information coded in spec-
troscopic data by peak signals is connected to known properties
of the sample donor organism like gender or the physical reac-
tions induced by an applied pharmaceutical. Peak signals, that
show an intensity change induced by a relevant physiological
reaction, can provide information on the underlying biological
process. This information can also be used to detect this specific
physiological reaction by the analysis of unknown samples.

Although NMR spectroscopy is susceptible to perturbations by
physiochemical factors or sample properties, several methods
have been proposed to reduce the impact of these sources allow-
ing for a reasonable analysis of a data set. Thus, information on
the health status or other physiological properties of an organ-
ism can be derived based on urine samples in a non-invasive
automated analysis without the necessity of interpretation by
an expert. Identification of peaks relevant for the detection of
certain physiological reactions can give a deeper insight into the
underlying biological mechanisms — an important aspect in safety
pharmacology.

This information is usually acquired using methods from the
field of multivariate data analysis. Relevant information in the
given (and mostly labeled) data set is extracted and used for low-
dimensional data visualization or direct analysis of the relevant
variables. These correspond to spectral regions in Metabonomics.
This approach requires manual interpretation but an automated

43

analysis of
biosamples

NMR spectroscopy

physical reactions
induce changes in
the spectral profile

compensation of
spectrum
modifications

automated analysis
of unknown samples



44

usually only small
data sets available

large data sets
not available for
public use

ANALYSIS OF METABOLIC RESPONSES

analysis of unknown samples is desired. This could be achieved
by methods from the field of pattern recognition, but considering
the current literature only few approaches have been published.

One drawback of most pattern recognition methods is the ne-
cessity of a large-scale data set for reasonable classifier training
and classification system evaluation. Collection of urine samples
from experimental animals is easier than e.g. biopsy at humans.
However, data sets of NMR spectra from urine samples are usually
quite small due to the complex design of the experiments and
the expensive measurement process. Usually, not every sample
exhibits the reaction to a treatment as previously desired. Fur-
thermore, artifacts induced by experimental conditions can alter
the samples as seen within the COMET project. These samples
have to be excluded from the further analysis, further reducing
the size of the data set.

Only large-scale projects like COMET can afford the buildup of
huge databases by financial support of industrial partners. Up to
now, this has been the only project up to now in this dimension
and the data set is not publicly available. Thus, most projects
aiming at the automatic classification of NMR spectra have to deal
with the high data-dimensionality and rather small amount of
samples in addition to the rather noisy data due to perturbations
by external factors.

To sum up, NMR spectroscopy is a valuable method for analysis
of biofluids in the context of safety pharmacology. But prior to an
application of methods from the field of pattern recognition for
automated classification of new samples several preprocessing
steps are necessary. Subsequently, pattern recognition methods
allowing for a robust classification even based on small data sets
have to be applied.



MULTIPLE CLASSIFIER SYSTEMS

Pattern recognition methods aim at the assignment of class labels
to objects, whereby each object is described by a set of features.
The criteria for discrimination between different classes are au-
tomatically determined based on the given attributes. Generally,
different preprocessing and feature extraction methods are avail-
able for different kinds of data and the optimal classification
algorithm is usually not known beforehand. Thus, in order to
derive a classification system with optimal classification accuracy,
methods used within this system have to be evaluated and the
combination with the best performance is usually applied for
classification.

Interestingly, configurations with comparatively low classifica-
tion accuracy are completely discarded and not further analyzed.
However, samples misclassified by different classifiers do not
necessarily overlap. Thus, each classifier can offer complemen-
tary information on a given data set. This distinction is induced
by differences in the data set or the applied classification algo-
rithm. The combination of different classifiers” predictions for
a consensus decision could improve classification performance.
Thereby, the principle of democracy is applied in order to achieve
a consensus decision and not only the prediction of the best per-
forming classifier is used. This idea motivated the still ongoing
research in the field of multiple classifier systems - also denoted as
ensemble systems - in the middle of the 1990s. Multiple classifier
systems are based on a well-defined theoretical foundation and
have successfully been applied to several complex classification
problems as a result of this research.

This chapter will give an overview of the principles of multi-
ple classifier systems. Although multiple classifier systems are a
promising classification technique, they have not been applied to
the classification of spectroscopic data in the context of Metabo-
nomics. Thus, remarks on the application of the presented tech-
niques in this section will be universal or focus on similar applica-
tions. Basic notation conventions and concepts consistently used
during this thesis will be introduced in the following section 3.1.
Section 3.2 will give an overview of properties of ensemble sys-
tems and theoretical assumptions on the advantage of combining
multiple classifier in an ensemble. Methods for the construction
of varying data representations for the training of different clas-
sifiers will be presented in section 3.3. A selection of frequently
applied classification approaches as base classifier in an ensemble
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Figure 3.1: Overview of modules in a classification system.

will be presented in section 3.4, but generally any classification
algorithm can be applied. Combining the predictions of all ex-
perts by aggregation methods as shown in section 3.5 is usually
the last step in ensemble classification leading to a consensus de-
cision for prediction of a sample. Boosting and random forests as
extensively investigated and often applied ensemble approaches
will be explained separately in section 3.6 and 3.7.

A large variety of ensemble approaches have been published
for numerous applications since the first investigations on the
application of multiple classifier systems. Thus, the descriptions
in this section are not intended to be exhaustive and will cover
the generally most important and most relevant approaches for
the intended application. If no reference is explicitly given, the
argumentation will be based on [Diet oo, Kitt 98, Kunc 04], which
also serve as good starting point for further reading on multiple
classifier systems.

3.1 NOTATION CONVENTIONS AND PATTERN
RECOGNITION CONCEPTS

The basic principle of pattern recognition systems is the classi-
fication of samples into previously defined classes in a process
general structure of a as shown in figure 3.1. Beginning with the data acquisition stage
classification system  the process proceeds with preprocessing and feature extraction
methods. The extracted features serve as data basis for the clas-
sification into distinct classes. Thereby, classes are characterized
by the similarity of samples they contain, while these samples
should be dissimilar to samples of other classes. Depending
on the particular application, the distinction between different
classes can be unambiguously defined or rather depend on the
interpretation of a set of samples.
For a consistent notation throughout this thesis a set of N
n-dimensional samples will be denoted as dataset Z = {z,...,zN},
z; € R",j=1,...,N. Each sample z; in the data set Z, has previ-
ously been assigned or has to be classified to a class I(z;) € Q,
whereby () is a set of ¢ distinct classes Q) = {wy, ..., wc}.
Usually, samples will not directly be used for classification,
but more characteristic representations of the samples are cal-
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1(x)

(0) 1

< 0 | true negative (TN) | false negative (FN)

1 | false positive (FP) | true positive (TP)

Table 3.1: Confusion matrix of a two-class problem.

culated by feature extraction methods (e.g. projection methods,
signal processing methods, etc.). Thereby, an n-dimensional sam-
ple z is described by a feature vector x = [xi,...,%,] in an
m-dimensional feature space with m < n. This low-dimensional
feature representation describes all information relevant of the
discrimination of distinct classes and improve performance of
statistical pattern recognition methods by decreasing the data
dimensionality while retaining the amount of samples. Generally,
feature representation types can be separated into numerical and
categorical features, but within this thesis only numerical features
will be discussed. Based on the m-dimensional feature represen-
tation of a sample x a classifier D has to be defined, achieving a
classification into a single class [(x) € Q.

Before some classification approaches will be presented later
in this thesis, accuracy measures and training strategies will be
shown in the following.

3.1.1  Evaluation of Classification Performance

A basic prerequisite for the successful development of a classi-
fication system is the determination of its classification perfor-
mance. This information can either be used for the optimization
of a single classifier or as performance measure in comparison
with alternative classification systems. Different measures for
estimation of classification performance exist dependent on the
classification problem to be solved. In the following, performance
measures specific of two-class problems will be presented, since
the usual problem in metabonomic applications is to discriminate
between samples labeled as non-toxic and toxic. An overview of
alternative measures also applicable for multi-class problems can
be found in [Bald oo].

Given a data set X and labels for each sample I(x;), i =1,...,N,
the performance of a given classifier D can be evaluated by the
comparison of the original labels with the predicted labels [(x;)
achieved by classification. Therefore, a confusion matrix as shown
in table 3.1 is built counting the amount of negative samples
(I(x;) = 0) labeled as negative (true negative) and positive (false
positive), and positive samples (I(x;) = 1) labeled as positive
(true positive) and negative (false negative).
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assessment of
classification
performance

confusion matrix
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The overall classification performance of D is expressed by
the classification accuracy A, comparing the amount of correctly
labeled samples with the overall amount of samples.

_ TP+ TN
 FN+FP+TN+TP

In binary classifications (e.g. classification as negative or positive
with respect to a drug-induced organ toxicity in drug design)
two additional measures are usually given in order to indicate
the performance of the classification system regarding different
aspects. The sensitivity measures the percentage of positive sam-
ples which have been correctly identified as positive, while the
specificity measures the proportion of negative samples classified
as negative.

TP TN

sensitivity = TP+ EN specificity = TN+ EP

An experimental evaluation of a classification system on a fi-
nite test set can generally indicate the capabilities of the system.
However, this performance cannot be guaranteed for the classifi-
cation of alternative data sets, since only a fraction of all possible
samples generated by the underlying statistical process are in-
vestigated. A confidence interval [A;, A, can be used in order to
assess the variability of an evaluated classification performance
achieved on a data set of size N (cf. e.g. [Schl 03]). The lower
bound of this interval is defined by

__N 7> \/A(l—/\) 7
A’_N+q2<A+2N_”’ N N

and the upper bound by

__N g’ \/A(l—/\) 7
A”_N+q2<A+2N+q N TaNz)-

Within these calculations g represents the (1 — §) quantile of
the standard normal distribution, whose values can be found in
literature. A commonly used confidence level is 1 — & = 95 %, in-
dicating that the real classification accuracy lies in the given inter-
val with a probability of 95 percent. Furthermore, the confidence
interval can be used in order to rate an achieved improvement
or degradation of classification performance caused by modifica-
tions of the classification system as statistically significant. If a
classification performance outside of the confidence interval is
achieved, the change is designated as statistically significant and
has not only been obtained due to the finite test set.

Two-class data sets employed for the evaluation of classification
performance are usually designed to have a comparable amount
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of negative and positive samples. Thereby, the classification per-
formance, which is mostly used as the primary performance
measure, is not mainly influenced by the predictions for the sam-
ples of the prevalent class. However, an almost equal amount
of positive and negative samples cannot always be achieved
in case of sparse data sets. Thus, a robust measure for perfor-
mance assessment even in case of imbalanced data sets is needed.
One of these measures is the Matthews Correlation Coefficient (MC)
[Bald oo], incorporating all four entries of the confusion matrix
for the determination of classification performance. This measure
ranges from —1 to +1, whereby —1 indicates full disagreement
and +1 full agreement between true and predicted class labels.
A random prediction is indicated by a value of 0.

TP x TN — FP x FN
V(TP + EN)(TP + FP)(TN + FP)(TN + EN)

MC =

According to literature, a multiplicity of further measures for
classification performance dependent on the application or objec-
tives of evaluation have been defined. Measures presented in this
section are relevant to this thesis and the interested reader is re-
ferred to the literature for further information (cf. e.g. [Bald 00]).

3.1.2  Strategies for Classifier Training and Evaluation

Besides the large variety of measures for the estimation of classifi-
cation performance described in the literature (cf. e.g. [Bald oo]),
experimental design for training and testing of a data set has been
discussed for a long time [Tous 74]. Although, using the same
data set for training and testing has been proposed as resubsti-
tution method [Smit 47], this is generally not a valid procedure
for the estimation of the classification performance A. The result-
ing classifier is expected to be overtrained on the data and will
fail on unseen data. The generalizability of a classification system,
achieving a reliable prediction for unseen data, has become an im-
portant prerequisite of classification systems for their successful
application to real-world classification tasks.

A method for training and evaluation of a classifier allowing
for a reliable estimate of A is the K-fold cross-validation [Koha 95].
Thereby, the data set is randomly split into K parts of comparable
size and classifier evaluation is carried out on one part, whereby
the union of all other parts is used for classifier training. This
training and evaluation procedure is repeated K times. Each time
a different part is used for testing and the final A is calculated by
averaging over all test results, respectively. In case of K equal to
N the method is called leave-one-out (LOO) cross-validation, as in
each of the K folds a single sample is used for testing.
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Figure 3.2: Structure of data set separation and combination for five-
fold cross-validation and test.

Most classification algorithms require the optimization of spe-
cific parameters in order to adapt the classification decision to
the particular problem. If these parameters cannot be determined
according to data properties like the amount of samples or di-
mensionality, these are usually optimized according to the classi-
fication performance on the test set under parameter variation.
Thereby, overfitting on the training set can be avoided by the
selection of the configuration optimally performing on the test
set. However, incorporating knowledge in the final performance
of the classification system for parameter selection violates the
necessity of independence of the test set.

Parameter optimization and an independent test set can be
achieved by applying the cross-validation principle, but addition-
ally using one of the K — 1 training parts for validation as shown
in figure 3.2. Thereby, in case of a five-fold cross-validation and
test approach three fifths of the five data set parts are used for the
training of the classification algorithm, one fifth for parameter
optimization, and the remaining fifth for final testing. This parti-
tioning is rotated K times and the final results are averaged over
all respective classifications. However, in case of small data sets
this approach can reduce classification performance of the final
classifier due to the decreased amount of samples incorporated
in classifier evaluation and training.

If multiple evaluations based on different parts for testing
have been used for the optimization of a classifier, the question
arises which classifier should be used for final classification. A
straightforward solution would be to use the best performing
classification approach combined with the optimized parameters
for the training of a classifier on the whole data. However, an
alternative way of combining classifiers trained and optimized on
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individual cross-validation sets is the aggregation in an ensemble
system.

3.2 CONCEPTS OF MULTIPLE CLASSIFIER SYSTEMS

The design of a classification system achieving a reasonable per-
formance on a certain classification task generally consists of
defining an adequate feature extraction and classification method.
Even though this sounds quite straightforward, methods achiev-
ing good results in other fields may not be suitable for the current
application. In order to determine the optimal system design sev-
eral combinations of preprocessing and feature extraction meth-
ods have to be evaluated. Classification systems evaluated within
this optimization process usually differ in their data represen-
tation or focus on different data aspects for classification. Thus,
each classification approach performs well for a certain subset
of the test samples and misclassifies the remaining samples. If
the sets of misclassified samples from each evaluated classifica-
tion approach do not strongly overlap, each of the classification
approaches provides complementary information on the samples.

Multiple classifier systems aim at taking advantage of this prop-
erty. Therefore, predictions of several base classifiers, each giving
diverse prediction results for the same samples, are combined
instead of relying on a single classifier. Thereby, an improved
classification performance and generalizability is expected. This
basic principle of ensemble systems is graphically illustrated in
figure 3.3. In this example a set of three classifiers D1, D, D3
are given, misclassifying partially different regions of samples
from the data space U (cf. figure 3.3a). The combination of the
classifiers by assigning the label predicted by at least two of the
three classifiers leads to a smaller region of misclassified samples
in comparison with the single classifiers as shown in figure 3.3b.

This example illustrates two basic prerequisites that have to
be fulfilled by multiple classifier systems according to Hansen et
al. [Hans 9o]. As a first prerequisite, the base classifiers” regions
of misclassified samples should not strongly overlap. Otherwise,
no improved classification performance can be achieved. Further-
more, the classification performance of each individual classifier
has to be better than random guessing in order to decrease the re-
gion of misclassified samples by increasing the number of experts
in the ensemble.

3.2.1  General Structure of Multiple Classifier Systems

The general architecture of an ensemble system (cf. figure 3.4)
is almost identical to the structure of common classification sys-
tems as previously shown in figure 3.1. Differences solely exist
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(a) Regions of misclassified samples for (b) Region of misclassified samples af-
classifiers D1, D5, Ds. ter combination of the three classi-
fiers to a single classifier D.

Figure 3.3: Exemplary graphical illustration of the ensemble effect. The
region of misclassified samples (gray area) in the data space
U is reduced by combining the three classifiers to a single
classifier (adopted from ([Kim 03]).

regarding the classifier training and determination of a final clas-
sification for each sample. This implies two important steps which
are specific for each multiple classifier system and are also crucial
for the classification performance. First of all an ensemble creation
method has to be applied in order to train L diverse classifiers.
Each of these base classifiers D;, i = 1,..., L predicts the label of a
given sample x and these predictions s = [sy,...,s.] € QL have
to be combined to a final prediction [(x) by aggregation methods.

Variations concerning the ensemble creation method, the base
classifier algorithm selection or the ensemble aggregation method
are usually evaluated in order to achieve the best classification
performance for the current classification problem. Although
some methods tend to perform well on a variety of applications,
they are not expected to be optimal for every application.

3.2.2  Why Do Ensembles Work?

Generating an ensemble of accurate and diverse classifiers com-
bined via a voting scheme is expected to increase the classification
performance in comparison with each individual classifier. But is
it always possible to construct good ensembles in practice? Al-
though no theoretical proof can be given to affirm this question,
Dietterich presented three fundamental reasons that demonstrate
the advantages of multiple classifier systems [Diet 00].
Classifier training utilizing a learning algorithm involves the
selection of a classifier from the space of available classifiers as
shown in figure 3.5. If only small data sets are available no robust
estimation of the underlying statistical models can be achieved.
In this case several classifiers D; can be determined, each giving a
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Figure 3.4: General structure of an ensemble system.

reasonable classification accuracy as indicated by the inner region
in figure 3.5a. These classifier perform worse in comparison to
the optimal classifier D*, but averaging over their predictions
is expected to compensate individual false classifications and
improve classification performance.

Classifier training usually involves the optimization of specific
parameters in order to obtain the optimal classifier that can
be achieved in the classifier space. However, these algorithms
can get stuck in local optima and dependent on the starting
point of optimization different classifiers close to the optimal
classifier are generated (cf. figure 3.5b). Again, by averaging
over the predictions of the individual classifiers, classification

D*

(a) Statistical (b) Computational (c) Representational

Figure 3.5: Different examples for explanations why an ensemble clas-
sification can improve classification performance compared
with a single classifier in practical applications (adopted
from [Diet oo] and [Kunc o4]).
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performance closer to the optimal classifier than each individual
classifier can be achieved.

The third reason for an improved classification performance
of the ensemble is based on the classifier space spanned by the
applied classification algorithms as shown in figure 3.5¢. If for
example a non-linear classifier is needed for optimal classification
of a data set but only linear classifiers are applied, the non-linear
decision can be approximated by averaging over the decisions
of linear classifications from base classifiers. Defining a differ-
ent classifier space including D* can generally achieve a high
classification accuracy, but it is more straightforward to train an
ensemble of simple classifiers than a single complex classifier.
Furthermore, the single complex classifier is again endangered
to get stuck in local optima during optimization, which can be
avoided by averaging over several simple classifiers.

Although the given examples are no theoretical foundation
proving the general predominance of multiple classifier systems
over single classifier approaches, they demonstrate the suspected
benefit by averaging over several simple classifiers. The success
of multiple classifier systems in quite a number of practical appli-
cations and the demonstrated suitability for special cases further
supports this assumption.

3.3 ENSEMBLE CREATION TECHNIQUES

Training a classifier based on a given data set is everyday practice
in the field of pattern recognition. But achieving an ensemble of
multiple accurate and diverse classifiers requires additional en-
semble creation methods. In some applications the problem arises
to combine different classifiers due to different input sources
or the use of different classification approaches. In these cases
the strategy for the creation of the ensemble is already defined.
Notwithstanding, this is rather the exception than the rule. A se-
lection of the most important generic ensemble creation methods
that can be used in practical applications will be presented in the
following.

3.3.1 Data Set Modification

Classifier training using a learning algorithm aims at deriving
regularities of the data or estimating the underlying statistical
model for discrimination between distinct classes. These discrim-
ination criteria are learned based on a given data set. Thus, the
data set is crucial for the performance and predictions made by
the classifier. Consequently, diverse classifiers can be achieved by
using different subsets of the data set for each of the classifier
training procedures. This results in a set of classifiers predicting
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Figure 3.6: Bagging procedure for creation of L different classifiers for
an exemplary data set. For each bootstrap replicate nine
samples are randomly selected with replacement from the
data set of size nine.

the label of a new sample based on a particular data subset used
for training.

In order to achieve diverse classifiers by this procedure, unstable
learning algorithms [Brei 96a] are required, which show a strong
dependence between their prediction and samples used for train-
ing. If even small modifications of the data set do not lead to
changes in classification results, predictions from each classifier in
the ensemble will be identical. No improvement in classification
performance of the ensemble system can be achieved in this case.
Neural networks and classification trees are regarded as unstable
classifiers, while the k nearest neighbor is stable [Brei 96b].

A quite straightforward method for the selection of data sub-
sets was presented by Breiman, denoted as Bagging (abbreviation
for bootstrap agqregating) [Brei g6a]. Subsets are determined by
a random selection of N samples with replacement from the
original data set as shown in figure 3.6. The resulting subsets are
denoted as bootstrap replicates, containing on an average 63.2 %
of the original samples and several replicates [Brei g6a]. Bag-
ging is combined according to the originally proposed approach
with decision or regression trees as base classifiers. Ensemble
aggregation is achieved by the assignment of the class with the
maximum number of votes. Several experiments have shown
an improved classification performance by using the bagging
procedure. Bagging can also be combined with alternative classi-
fication algorithms and ensemble aggregation techniques as long
as unstable classification algorithms are used.
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Partitioning of a data set is also a quite common method used
for the creation of cross-validation sets as shown in section 3.1.2.
Thereby, the whole data set is split into K parts and classifiers
are trained on the union of all parts each time excluding one
part. This can also be applied for the creation of an ensemble
of classifiers, whereby background knowledge on similarities
of samples can be introduced in order to improve diversity of
the resulting classifier. Due to the similarity of this procedure to
the cross-validation procedure ensembles built according to this
method are denoted as cross-validated committees [Parm 96].

3.3.2 Input Feature Modification

Not only the selection of training samples but also the defini-
tion and selection of features heavily influences the classification
decisions and performance of each classifier. Thus, achieving
variability in the selection or the type of features used for the
learning algorithm would cause diverse classifiers by the integra-
tion of different information on the samples in the discrimination
decision.

The Random Subspace Sampling (RSS) method originally pro-
posed by Ho for the construction of an ensemble of decision
trees selects a subset of features randomly [Ho 98]. Thereby, each
classifier uses one out of multiple feature subset combinations
as shown in figure 3.7, leading to a set of diverse predictions.
This method is expected to perform well especially in the case of
redundant features by distributing these among several subsets
rather than combining them for a single classification. But as
shown by Tumer and Ghosh, RSS could lead to worse results if
all features are essential in order to derive a robust classification
[Tume 96].

The general structure of a classification system (cf. figure 3.1)
includes the application of preprocessing and feature extraction
methods prior to the final classification. Several combinations
of these methods are possible and the optimal combination is
usually determined by an experimental evaluation. However,
each combination usually emphasizes different aspects of the
data which seems to be advantageous to classification purposes.
This variability in data representation can again be used for
ensemble creation by training a classifier on each combination,
achieving a reasonable classification performance and integration
into an ensemble.

3.3.3 Assessment of Ensemble Diversity

Modifications regarding the selection of samples or features used
for the training of a classifier leads to diverse classifiers, which
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Figure 3.7: Exemplary random subspace sampling procedure for cre-
ation of L different classifiers by random selection of a subset
of five features from an eight-dimensional data set.

is a major prerequisite for the successful application of multiple
classifier systems. But no commonly accepted definition of en-
semble diversity can be found in the literature. Kuncheva and
Whitaker presented a comprehensive overview and comparison
of diversity measures and discuss the question whether the clas-
sification performance of an ensemble is strongly connected with
classifier diversity [Kunc o3].

Q statistic

The estimation of diversity between a pair of classifiers can be
achieved by direct comparison of their predictions for the samples
xj,j=1,...,N from the labeled data set X. Coding the predic-
tions of a single classifier by a binary vector containing a 1 at
position j if the classifier predicts the sample x; in the correct class
and 0 otherwise, allows to compare the similarity of classifier D,
and D, by Yule’s Q statistic [Yule oo] as follows

NllNOO _ NOl NlO

Qop = NTIN00 - NOINTO

Thereby, N° represents the amount of positions with value ¢ in
the coded prediction vector of D, and a value of 4 in the vector of
Dy,. The pairwise Q statistic is estimated for each combination and
averaged over the number of combinations in order to achieve a
final Q statistic for a set of L classifiers.

2 L-1 L
Quw = m 2 Z Qi,k

i=1 k=i+1
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Independence among the classifiers of an ensemble is indicated
by a value of Q,, close to zero, while negative values are achieved
if different samples are misclassified by the base classifiers. The
latter is expected to have a positive effect on classification perfor-
mance and to be a possible criterion to appraise the quality of
ensemble creation techniques.

Entropy Measure

High diversity can intuitively be recognized in case of two-class
classification problems if fifty percent of the base classifiers assign
the correct label to a given sample, while the remaining classifiers
assign the incorrect label. The other extreme is full agreement
amonyg all classifiers, indicating no diversity in the ensemble. This
intuitive understanding of diversity is reflected by the entropy
measure E, indicating maximum diversity by a value of 1, and 0
if full agreement among all classifiers is present.

1 2 N L L
E=nrorming (Lvii | b= (L
j=1 i=1 i=1
where
1, D; classifies x; correctly
Yij =

0, otherwise.

The entropy measure E is not a standard entropy function
since no logarithm function is used. Cunningham and Carney
presented in [Cunn oo] a more classical formulation of the en-
tropy measure. But these two measures are similar related to the
ensemble accuracy as mentioned by Kuncheva [Kunc o4].

Kohavi-Wolpert Variance

Considering different training sets for a single classifier, Kohavi
and Wolpert defined an estimation for the variance of the predic-
tion y for a single sample x by

1 C
variance, = 5 (l -) P(y= wi|x)2> .

i=1

Transferring this formulation to predictions achieved by differ-
ent classifiers Dy, ..., D allows for an estimation of ensemble
diversity. Simplifying the formula by restricting classifier outputs
to correct and incorrect instead of being an element of () leads
to the following definition of the Kohavi-Wolpert variance (KWV)
according to [Kunc o4]:

N
KWV = g7z Y06 (L = Yo
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where L
Y(X]) = Eyi,]' .
i=1

Comparing KWV values of different ensemble classifications al-
lows to determine the ensemble with the largest value as the
ensemble with the most diverse classifiers.

Measure of difficulty

The last diversity measure that will be presented in this section
has been inspired by a study of Hansen and Salamon [Hans 9o],
denoted as the measure of “difficulty” 0. Thereby, a discrete random
variable Z taking values from {0,1/L,2/L,...,(L—1)/L,1} is
assumed, denoting the proportion of classifiers that correctly
classify a given sample x. The L classifiers are used to classify the
samples in X, resulting in an estimated probability mass function
of Z.

Figure 3.8 depicts exemplary histograms of Z using seven clas-
sifiers, each classifying 60 % of the samples from X in the correct
class. In case of independence between the classifiers the his-
togram is similar to a binomial distribution as shown in figure
3.8a. In this case the ensemble classification accuracy would be
increased to approximately 75 % by the prediction of samples
into the class with the majority of votes for ensemble aggregation.
If the ensemble consists of identical classifiers a full agreement in
all decisions is achieved (cf. figure 3.8b). Either 100 % or 0 % of all
classifiers predict the correct label and classification performance
remains at 60 %. The optimal case of negatively dependent clas-
sifiers is shown in figure 3.8c, whereby each classifier correctly
predicts different subsets of the data. Thus, a perfect classifica-
tion is achieved by the combination of diverse classifiers, further
supporting the assumed connection between ensemble diversity
and accuracy. Generally, an ensemble with negatively dependent
classifiers is desired, but due to the generally low diversity of
classifiers in most applications, rather positive dependence is
usually the case.

In order to derive a diversity measure according to this repre-
sentation, the distribution of correctly classified proportions has
to be evaluated. The histogram with diverse classifiers shown
in the right plot has a small variance, while the ensemble with
identical classifiers produces a histogram with large variance as
shown in the middle plot. Thus, the variance of the histogram
serves as indicator on the ensemble diversity, whereby a variance
close to zero corresponds to a high ensemble diversity.
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Figure 3.8: Exemplary histograms of values assigned to Z in case of
three different dependency situations of classifiers within an
ensemble. The x-axis corresponds to the proportion of clas-
sifiers assigning the correct label (adopted from [Kunc o4]).

Summary

Beyond the presented diversity measures several other are pro-
posed in literature [Akse 03, Banf 03, Kunc 03, Ruta 03], further
illustrating the variety of diversity measures. A comparison of
these methods was presented by Kuncheva et al., also addressing
the question whether the assumed relation between classification
performance and diversity can be confirmed [Kunc 03, Kunc o4].
Within their experiments a strong relation between different di-
versity measures could be shown, but no measure with strongest
relation to improvement in classification accuracy could be de-
noted. However, Qg is recommended due to its easy calculation
and indicating independence by a value of zero and negative
dependence by negative values.

Although a relation between ensemble diversity and classifi-
cation accuracy could be observed in experiments pursued in
[Kunc o4], most practical applications have to deal with quite
similar base classifiers. Thus minor changes in diversity would
not lead to a significant improvement in classification perfor-
mance. Nevertheless, diversity in an ensemble has to be enforced
in order to achieve a classification performance superior to the
single best classifier.

3.4 BASE CLASSIFIERS

In the progress of ensemble generation, classifiers are trained on
data sets generated by ensemble creation techniques. These form
the basis for the prediction of new samples by individually as-
signing class labels to the samples. Only few prerequisites have to
be fulfilled by the base classifiers, namely diversity and accuracy.
While diversity is mainly induced by ensemble creation methods,
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unstable classification algorithms can further increase diversity
for an improved ensemble performance. The required accuracy of
base classifiers is not intended to achieve a perfect classification,
but an accuracy better than random guessing [Hans go]. Thus,
they are usually referred to as weak classifiers and the desired
strong classification of the ensemble is achieved by the combina-
tion of their predictions.

However, also strong classification approaches such as support
vector machines or neural networks can be used as base classi-
fiers. Even though single strong classifiers can achieve reasonable
classification results, the combination of diverse strong classifiers
is expected to slightly increase classification performance and —
as the most important aspect — improve generalizability.

The choice of the learning algorithm for base classifiers is not
restricted to a certain algorithm and the suitability of different
approaches has to be evaluated for the problem at hand. Nev-
ertheless, some algorithms have shown good results in several
applications and are generally considered to be a good start-
ing point for further investigations of ensemble variations. An
overview of commonly used base classifier algorithms is pre-
sented in the following.

3.4.1 k Nearest Neighbor Classifier

The basic assumption of pattern classification approaches is the
similarity of samples from the same class, while being different
to samples from other classes. Thus, similarity between samples
can be used as criterion for the classification of new samples.
Similarity is usually defined in a geometrical sense, indicating
similarity between two samples if their distance in the feature
space is smaller than to other samples.

These considerations are directly used in the nearest neighbor
(NN) classification rule by assuming a labeled set of samples
as representatives of their respective classes. New samples are
classified by calculation of the distances to all representatives and
assignment of the closest representative’s label. Figure 3.9a shows
an exemplary two-class data set and a new sample to be classified.
According to the NN rule the new sample is classified into the
class of the diamonds. Classification regions of the data set based
on the euclidean distance are shown by a Voronoi diagram in
figure 3.9b. The partitioning of the data space is dependent on
the chosen metric for distance calculations and according to the
current classification problem different metrics can be evaluated.

Extending the NN rule by classification to the class most repre-
sented among the, e.g., three closest neighbors would lead in the
example to a classification into the class of the circles. Generally,
extending the classification rule to the k closest samples is applied
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Figure 3.9: Classification of a new sample via the 1-NN and 3-NN
classification rule and the corresponding Voronoi diagram.

in real-world applications in order to prevent false classifications
in the presence of noisy or falsely labeled samples in the training
set. In consistency with NN classification this approach is denoted
as k nearest neighbor (kNN) classification.

Assuming the whole training set as representatives is straight-
forward but with the currently available large data sets in mind
this procedure can produce problems. Two of these problems are
the large memory usage and computational complexity for deter-
mination of the distances to all representatives. Thus, common
practice is to determine prototypes for a given data set that serve
as representatives of the classes, thereby reducing memory usage
and computational complexity. Furthermore, the determination
of representative prototypes allows for the exclusion of noisy
objects, and improvements in classification performance can be
achieved [Ferr 9g].

One method of the reduction of the set of representatives is
the selection of a subset of the original samples (prototype se-
lection), thereby optimizing the subset selection with respect to
the classification performance on an independent test set (cf. e.g.
[Hart 68, Skal 94, Wils 72]). Alternatively, the original data set can
be used to derive new samples as representatives (prototype extrac-
tion) by competitive learning, gradient descent optimization, or
bootstrap random methods (cf. e.g. [Bezd 98, Deca 97, Hama 97]).

The kNN classification approach has been applied for the de-
tection of drug-induced organ toxicities based on NMR spectra
by Beckonert et al. in [Beck 03] and has later been reviewed by
Keun [Keun 06]. Spectra are preprocessed in this approach using
a bucketing procedure with a bucket-width of 0.04 ppm, spectral
normalization to a constant sum and exclusion of the water and
urea signal (cf. section 2.3). PCA, PLS and hierarchical cluster anal-
ysis are first applied in order to visualize groupings of spectra
related to the same toxin type by score plot and dendogram anal-
ysis, respectively. A first grouping of spectra could be observed
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by these methods, whereby the groups correspond to spectra
of urine samples from experimental animals treated with phar-
maceuticals inducing liver or kidney toxicity, or having no toxic
effect. Samples that are regarded to indicate a toxic effect but have
no significant difference to control animals in the dendogram
analysis are excluded from the further analysis.

Classification performance of the kNN approach is determined
by means of a LOO and two-fold cross-validation design. In the
final evaluation the two different types of organ toxicity, and
control samples could be detected by an individual accuracy
of approximately 9o %. Another important outcome of the ex-
perimental evaluation is the drop of classification performance
of about 1—4 % and the increased robustness of classification
models when using the two-fold instead of LOO cross-validation
design. This change in classification performance demonstrates
the optimistic results achieved by LOO cross-validation and the
importance of a valid experiment design. This is a critical aspect
in metabonomic investigations where multiple samples from the
same animal are collected at different time points.

These first experiments using pattern recognition methods for
the detection of drug-induced organ toxicities have shown promis-
ing results. In comparison to similar studies using PCA, SIMCA
[Robe 0o, Holm g8a] or probabilistic neural networks [Holm o1]
the kNN classification approach achieves improved classifica-
tion results [Beck 03]. Thus, the kNN classification approach is
a straightforward but competitive classification approach for
metabonomic applications.

3.4.2 Decision Trees

The most intuitive approach for the discrimination of samples
from different classes is to decide according to discriminating
properties of the samples. This approach of deducing the class
membership by decisions regarding a certain property of the
sample is used by decision trees, representing the decision process
by a graph terminology. Internal nodes and the root of the graph
contain certain features of the samples. Decisions regarding the
value of the features are specified by the branches to the child
nodes. Each leaf node represents a class label, whereby the same
class label can be represented by multiple leaf nodes. The class
relationship of a sample can be traced by following a path ful-
filling all conditions at the branches until a leaf node is reached.
An exemplary decision tree for discrimination between different
fruits is shown in figure 3.10. Initial discrimination is achieved
according to the color as nominal feature and final specification
of the fruit is based on size, shape or weight of the possible fruits,
respectively.
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Figure 3.10: Decision tree for discrimination between apple, grape,
cherry, lemon and banana (adopted from [Duda o1], p.

397).

The essential step in order to achieve a classification by decision
trees is the tree construction procedure. Thereby, the feature and
criterion of each node and branch have to be defined, allowing
for the best classification of a given labeled data set. Initially,
all samples are assigned to the root and the best feature for the
separation of the sample set into subparts and assignment to
the child nodes has to be determined. Basically, these splits can
be binary or non-binary depending on the tree design or the
user-defined branching factor. Since each non-binary split into K
parts can be represented by K — 1 binary splits only binary splits
are assumed in the following. After the separation of samples
to the child nodes this progress is iteratively repeated until all
samples assigned to a node have the same class label or only few
differently classified samples are present. The construction of a
decision tree is heavily influenced by the training samples. There-
fore, tree classifiers are regarded as unstable classifiers and are
often used as base classifier algorithm in ensemble classification
systems.

The objective in selection of the best splitting feature and
value is the classification accuracy and simplicity of the final
tree. Therefore, the impurity of samples at descendant nodes
can be measured according to their corresponding class labels
and the feature minimizing this impurity is selected for splitting
at the current node. In case of nominal features, this splitting
results in child nodes according to single categories or subsets
of categories, while for real-valued features a split in two child
nodes is usually achieved according to a specific threshold.

Assuming a node t in a decision tree and a set of samples
with known classes assigned to that node, the probability P;
of class w; € O = wy,...,w, at that node can be estimated
according to the proportion of samples from class w;. The entropy
of probabilities of all possible classes can be used as one criterion
for the definition of the impurity at node ¢ by

ie(t) = — ) PjlogP;
=1
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whereby a minimum value ig(f) = 0 is achieved if samples of
only a single class are assigned to node ¢.

A further measure for impurity is based on the misclassifica-
tion achieved if a class label for a sample at node t is selected
randomly according to the probability of the different classes,
denoted as the Gini impurity.

The misclassification impurity measure has an even stronger
relation to the classification performance. For this measure the
current internal node is treated as a leaf node and the expected
error by assigning the label of the class with the maximum per-
centage of samples at the node is measured.

im(t) =1~ max P
j=1,...c

An improvement in splitting according to a certain feature is
indicated by comparison of the impurity before splitting and the
averaged impurity of the child nodes. The feature leading to the
maximum improvement is selected for the splitting of a sample
subset at node t.

Construction of the tree is stopped if nodes contain only sam-
ples of the same class and the node becomes a leaf with the
corresponding class. Thereby, a perfect classification of the train-
ing set can be achieved if no identical samples with different
class labels are in the data set. However, large trees tend to overfit
on the training data and early stopping of the tree construction
procedure is proposed, leading to impure nodes but achieving
an increased generalizability of the decision tree (cf. [Duda o1]).
If early stopping is applied, probably beneficial splits beyond the
stopping point will not be used for classification, a phenomenon
denoted as the horizon effect [Duda o1].

Pruning methods have been proposed in order to circumvent
this problem by building the tree to its full size and retrospec-
tively pruning superfluous parts of the tree by merging descen-
dant nodes into a leaf node. Esposito et al. gave a comprehensive
overview of pruning methods in [Espo 97] to which the interested
reader is referred for further information. An extensive compara-
tive study presented in the work of Esposito et al. investigated the
purpose of pruning methods on different classification problems.
Although a general statistically significant improvement could
not be achieved by pruning methods for all problems, pruning
methods were regarded as advantageous to most applications.
However, pruning is usually not applied for decision trees as
base classifier in ensemble methods in order to increase the diver-
sity of the different decision trees. An improved generalizability
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is achieved by averaging over the predictions of decision trees.
Furthermore, decision stumps are often applied in ensemble
methods, thus stopping tree construction after splitting at the
root.

The theory of decision trees presented up to now has been
mainly oriented according to the classification and regression tree
(CART) approach proposed by Breiman et al. [Brei 84]. Besides
the CART approach two alternative tree designs are commonly
used for classification, namely ID3 and C4.5. The major differ-
ence between CART and ID3" proposed by Quinlan [Quin 86] is
the type of features used for the separation of data sets. While
nominal and real-valued features can be used within CART, ID3
restricts the type of data to nominal features. In order to handle
real-valued features these have to be discretized in attribute bins.
The number of descendants at each node is equal to the number
of categories for the selected variable. Nodes are split until all fea-
tures have been used for splitting or all nodes are pure, leading
to a depth of ID3 trees equal to the number of input variables.

According to [Duda o1] the C4.5 algorithm [Quin 93] is the
most popular decision tree approach and a successor of the
ID3 algorithm. Real-valued features are treated as in CART and
nominal features like in ID3. The major difference between the
C4.5 algorithm and CART, besides the possibility of non-binary
splits in case of nominal data, is the treatment of missing features.
If a test sample has a missing value at node L used for the
splitting of the sample set, all succeeding branches are followed
to the leaf nodes. A final label is assigned according to the labels
of these leaf nodes and the probabilities of each at branch at
the node L. Furthermore, the C4.5 algorithm applies pruning
methods in order to delete unnecessary splits and create leaf
nodes at the corresponding node.

The application of decision trees in metabonomic applications
is generally a promising approach, since a classification of spectra
is achieved according to metabolite concentrations above or below
an optimized classification threshold. This classification approach
reflects the common practice in safety pharmacology by analyz-
ing changes of specific metabolites. The non-selectivity of NMR
spectroscopy allows for an automated selection of these metabo-
lites and new biomarkers could be detected. A comparison of six
different multivariate methods including CART for identification
of biomarkers based on an artificial set of NMR spectra carried
out by Rousseau et al. has shown good detection results of CART
in the absence of noise [Rous 08]. But as soon as the noise level
in the data is increased, no reliable identification of biomarkers
could be achieved. These experiments demonstrate the sensitivity

1 ID3 is the third algorithm of a series of active dichotomizer algorithms.
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Figure 3.11: Structure of a (a) biological and (b) artificial neuron receiv-
ing signals from several inputs and transmitting a signal.

of decision trees to noise and as proposed by Rousseau more
robust related models have to be applied.

3.4.3 Neural Networks

An approach to model human intellectual abilities are artifical
neural networks (ANNs) (or simply neural networks). These are sim-
ilarly designed as the human brain by several interconnected
functional units working in parallel. ANNs are regarded as a
valuable classification tool for pattern recognition problems and
are also often used as base classifier in ensemble approaches
[Hans 9o, Opit 99, Schw oo, Zhou 02]. ANNs are like decision
trees unstable classifiers, leading to changes in the network pa-
rameters in case of modified training sets.

The functional units of the human brain are the neurons and
their connections, allowing for admission and transmission of
electric signals. Neurons consist of different functional parts as
shown in figure 3.11a. The central part of the neuron is the soma,
containing cytoplasm and the nucleus like every other human
cell. Electric signals are transmitted through the axon and synapses
via dendrites to other neurons. The transition of an electric signal
from an axon to a dendrite is realized at the synapses. These
serve as connection of neurons by ion exchanges, which induce
spiked electric signals in the dendrite. These signals are further
transmitted to other neurons.

Inspired by the biological model, artificial neurons consist of
several inputs and a single output as shown in figure 3.11b.
Synaptic weights w = [wy, ..., w,] € R7™! are assigned to each
variable of the input vector u = [ug,...,1,] € R7™ and the
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output v € R is generated according to an activation function ¢ of
the weighted summation of input features.

v=4¢ <iw,~ui +ZUQ)>
i=1

Thereby, ug is set equal to one and wy serves as bias. Different
activation functions ¢ can be applied but the sigmoid function is
the most common one. The sigmoid function is differentiable and
incorporates characteristics from linear functions close to zero
and from threshold functions for larger values.

1
- T+ep(=g)
Rosenblatt applied a threshold activation function, defining a

separation hyperplane in RY, in order to achieve a classification
of samples by the so-called perceptron [Rose 62].

$(&)

1, if ¢ >0,
(&) = e

—1. otherwise

A modification of the hyperplane’s position is achieved by the
adjustment of the weights w aiming at an optimal classification
of a labeled data set X. The training procedure initializes the
weights randomly and samples of X are successively classified.
Weight modifications are applied in case of false predictions by

W —— W — V7Xj,

where v is the classification result for x; and 7 specifies the
learning rate of the training procedure. In case of a linearly sepa-
rable data set in IR" this training procedure will converge to the
definition of a linear separating function allowing for perfect clas-
sification of samples from X. But if X is not linearly separable the
training procedure will not converge and no perfect classification
can be achieved.

By the connection of multiple perceptrons to a network of neu-
rons in accordance with the biological model more complex and
even non-linear discriminant functions can be defined. The most
famous type of ANNSs is the multilayer perceptron (MLP) as shown
in figure 3.12, a feedforward network with directed connections
from one layer to all perceptrons of the subsequent layer. Percep-
trons are not connected within a layer or to nonadjacent layers.
Thus, the output of perceptrons from one layer serves as input
for the subsequent layer and three different layer types can be
distinguished.

Each variable x; of an m-dimensional input-vector is the sole
input of corresponding perceptrons of the input layer and the
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input layer hidden layers output layer

1

x2

Tm

Figure 3.12: Structure of a MLP with an input layer for the m-
dimensional sample x, two hidden layers and an output
layer with decision functions g for each of the ¢ possible
classes (adopted from [Kunc o4]).

activation function is the identity function. The output of the
input layer is connected to all perceptrons of the subsequent hid-
den layer and their output v is further transmitted to subsequent
hidden layers. Outputs of the last hidden layer are submitted to
perceptrons of the output layer, whereby each perceptron defines a
decision function for each of the c classes according to the sample
x. The index k of the class assigned to the sample x is determined
by the output neuron with maximum value of the corresponding
decision function.
k = argmax gi(x)
j=1,...c

While the number of perceptrons in the input and output
layer is defined according to the sample dimensionality m and
number of classes ¢, respectively, the number of hidden layers and
corresponding perceptrons is usually not restricted. However, it
has theoretically been shown that a MLP with a single hidden layer
can approximate any discrimination function with a predefined
precision [Bish 95, Scar 98]. Despite these theoretical results the
question arises how to train the MLP.

Given an ANN with a defined number of hidden layers, per-
ceptrons, and a differentiable activation function the network
parameters are determined according to the backpropagation algo-
rithm (cf. e.g. [Bish 95]). Thereby errors at the output layer are
propagated backwards through the net to inner nodes. Thus, the
gradient of the error of the network is estimated with respect to
the network parameters and weights minimizing this error are
determined by a gradient descent algorithm. Backpropagation
training facilitates a fast determination of reasonable network
parameters allowing for optimization of network designs in prac-
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tical applications. Several modifications of the backpropagation
algorithm have been presented up to now aiming at an improved
training procedure regarding stability and convergence (cf. e.g..
[Loon g97]). Details on backpropagation training is beyond the
scope of this thesis and the interested reader is referred to one
of the publications on ANNs (e.g. [Bish 95, Duda o1]) for further
reading.

Backpropagation training is an optimization algorithm for ad-
justment of network weights in order to achieve the best clas-
sification performance on a cross-validation set. However, this
optimization procedure could get stuck in local minima. The
finally optimized network weights are dependent on factors such
as the weight initialization, value of the learning rate, or the set of
samples used for training. Determination of the global optimum
in the presence of many local optima is the problem of most
parameter optimization algorithms as discussed in section 3.2.2.

The basic principle of multiple classifier systems is to com-
bine a set of non-optimal classifiers in order to approximate
the optimal but unknown classifier. This approach has been
applied for an ensemble of neural networks in several studies
[Hans 9o, Opit 99, Schw 0o]. Hansen et al. induced differences
between neural networks by variations in the selection of initial
weights or training samples, and the sequence these samples are
used within backpropagation training. Final prediction of a sam-
ple is achieved by assigning the class label with the maximum
number of votes from the individual networks. Experiments pre-
sented by Hansen et al. demonstrate the improved classification
performance of the ensemble in comparison to the best individual
neural network [Hans 90].

Some of the first approaches for the classification of NMR spec-
tra by ANNs has been presented by Anthony et al. [Anth 95]
and later on by Lisboa et al. [Lisb 98]. Results achieved in these
experiments are based on concentration information of several
molecules extracted from a spectral profile. Furthermore, only a
very limited data set is used. Holmes et al. applied ANNs for the
prediction of drug-induced organ toxicities on a significant larger
data set and an increased spectral range is used, as it is common
practice in current metabonomic studies [Holm o1]. In these ex-
periments PNNs [Spec 9o], as a special type of ANNs, are used for
distinction between different toxicity classes. Thereby, an expo-
nential function instead of a sigmoidal one is used as activation
function at the nodes, allowing for the definition of non-linear
decision boundaries. In fact, class regions are described by a
sum of Gaussians with a defined variance centered at all training
patterns of the classes, respectively.

The objective in the experimental evaluation of the PNN ap-
proach is to differentiate between five different toxicity classes
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and two different rat strains. A PNN is trained on a single training
set (583 samples) and the classification performance is determined
on a test set (727 samples). Different types of organ toxicity in
combination with the rat strain could be classified with an accu-
racy of 94 %. In comparison with alternative classifications by a
MLP or SIMCA approach, PNNs achieved the best overall classifi-
cation performance. The MLP has shown the worst classification
performance assigning only in 52 % of the cases the correct class
label. This performance could be caused by noise in the data
from environmental factors as stated by Ott et al. [Ott 03]. These
perturbations of the samples seem to be compensated by PNNs.

Generally, ANN approaches seem to be promising for metabo-
nomic applications, but in order to achieve stable classification
results large data sets are required. Furthermore, network opti-
mization by backpropagation training is sensitive to noise in the
data. Noisy data sets are a common problem in metabonomic
studies, thus either advanced preprocessing methods have to be
applied in order to reduce this noise or alternative ANNs types
such as PNNs have to be used.

3.4.4 Support Vector Machines

The kNN classification rule demonstrated the idea for classification
of new samples according to their similarity to known samples.
Classification by support vector machines (SVMs) [Vapn 95] aims
not at the description of class regions but at a discrimination
between samples from two classes with respect to their relative
position to a separating hyperplane®. The position of the separat-
ing hyperplane is optimized in a training procedure in order to
discriminate samples of two classes and to achieve a maximum
distance to a subset of training samples. These samples specifying
the position of the hyperplane are denoted as support vectors (SVs)
and maximization of the distance between the hyperplane and
SVs improves generalizability of the classification. The book of
Scholkopf and Smola [Scho 02] is a comprehensive work on the
theory and application of SVMs and serves as basis for the fol-
lowing argumentation. Further details on SVM classification and
training can be found in [Cort 95, Chri oo, Plat g99a].

Separation of two classes by a linear function in the original
data space is commonly used as a toy example, but this is hardly
ever the case in real-world problems. But the application of a
suitable transformation can allow for a linear discrimination in
the higher dimensional feature space, representing a non-linear
separation in the data space. Thus, in the SVM approach the

Generally, every n-class problem can be reformulated by several two-class
problems, thus explanations regarding the classifications by SVMs are restricted
to two-class problems for simplification.
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Figure 3.13: Transformation from the data space into the feature
space of higher dimensionality by ®(x) = (¥, %, ¥3) =
(x%, x3,v/2x1x;) (adopted from [Scho 02]).

transformation @ is applied for mapping of samples from the
data space X into a feature space ‘H of higher dimensionality.

. X —H

X — X 1= ®(x)

Transformation of an exemplary non-linearly separable data set
into a higher-dimensional feature space as shown in figure 3.13
allows for separation by a hyperplane.

Distance estimations in the feature space can be achieved by
sample transformation and calculation of the scalar product.
However, this can be computational demanding and as it is an
essential step in optimization of the hyperplane position an effec-
tive distance estimation approach is required. Kernel functions k
are usually applied, allowing for distance estimation between two
samples x, and x,, in feature space without prior transformation.

k(xa,xp) := (Xa, %p) = (P(xa), P(xp))

Although kernel functions can specifically be defined for the
current application, some kernel functions have frequently been
used in practical applications showing reasonable classification
results. Besides the linear kernel, representing the distance in the
original space, prevalent kernel functions are the polynomial, sig-
moidal and radial basis function (RBF) kernel defined as follows
(cf. [Chan o1]):

k(Xa,Xp) = (7 (Xa, %) + ©)*
k(xa, %) = exp (=[x —x?)
k(xq,xp) = tanh (7y(x4, ;) + ©)

polynomial kernel
RBF kernel

sigmoidal kernel

Kernel-specific parameters d € IN and 7, ® € R have to be
adjusted for each classification problem by an optimization pro-
cedure. The RBF kernel is recommended for most applications,
achieving reasonable classification results and only a single kernel
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parameter <y defining the width of Gaussians used for transfor-
mation has to be optimized.

In order to achieve a discrimination between two classes a
separating hyperplane H and the corresponding normal vector w
have to be defined.

H={x|(w,x)+b=0} with weH,beR

The hyperplane H allows for the formulation of a decision func-
tion f for the classification of a sample x in one of the two possible
classes w € {+1}.

f(x) = sgn ({w,x) +b)

Basically, in the linearly separable case as shown in figure
3.14a, several hyperplanes can be defined allowing for a perfect
discrimination based on the current data set used for SVM train-
ing. The generalizability of a classification system is besides the
classification performance the main criterion for assessment of
classification quality. Thus, a hyperplane achieving good results
also on unseen samples has to be determined.

Considering a large margin in class separation it is quite in-
tuitive to assume that the classification performance on unseen
samples will be comparable to the performance on the training
set. This intuitive understanding of generalizability can further
be supported by assuming the same dependence for the genera-
tion of training and test samples, which is the basic assumption
in pattern classification. Thereby, differences between training
and test patterns are induced by class-specific variability of the
samples. If a separation with a margin larger than the maximum
variability is achieved, the separating hyperplane will generalize
well on unseen samples. Thus, the optimal hyperplane should
maximize the minimal distance to the Svs, thereby maximizing
the distance between two class regions (cf. figure 3.14b) by:

maximize min{|x—x;| |xeH, (w,x)+b=0,i=1,...,m}.
weH,beR

In order to construct the optimal hyperplane with a normal
vector leading to the largest margin the following optimization
problem has to be solved:

minimize T (w) = L |w||?
weH, beR S 2

where w; ((w,x;) +b)>1 fori=1,...,N.

This constrained optimization problem, comprising the objective
function T and inequality constraints, can be solved by intro-

73

decision function

generalizability of
the classification
decision

margin
maximization



74

dual optimization
problem

slack variable

MULTIPLE CLASSIFIER SYSTEMS

. Support Vector

(a) Hyperplanes separating a lin- (b) Optimal hyperplane maximiz-
early separable data set. ing the margin.

Figure 3.14: Data set to be classified by a SVM. Several hyperplanes
can be used for class discrimination but only a single one
maximizes the margin, thus being optimal for classification.

ducing Lagrange multipliers a; and a Lagrangian to form the dual
optimization problem

N N
1
maximize W (a) =) a;—= Y majwiw;k (xi,X;)
xRN = 2 i=1

where «; >0, i=1,...,N

N
and Z niw; = 0.
i=1

The set of Lagrangian multipliers & = (ay,...,ay) character-
izes the influence of each training sample for construction of
the hyperplane. Samples with a Lagrangian multiplier «; equal
to zero are irrelevant for classification of new samples and the
subset of samples with &; > 0 are the SVs, influencing the classi-
fication decision. This can be visualized by a sheet lying along
the hyperplane. Each SV exerts a force relative to «; in direction
of the normal vector on the sheet. Thereby, forces of Svs from
each side of the sheet sum up to zero and stabilize the position
of the sheet, thus supporting the plane sheet. Classification of an
unknown sample x is realized by the decision function f(x) as
follows:

f(x) = sgn (Zwlaz (x,x;) +b>

Although transformation of a data set in a space of higher
dimensionality is expected to increase separability of two data
sets, a linear separation in the kernel space cannot be guaranteed
in case of still overlapping class regions. In order to account for
a non-linearly separable data set slack variables are introduced
allowing for SVs on the wrong side of the hyperplane or a distance



3.4 BASE CLASSIFIERS

smaller than one. Thus, the condition of the samples” distance to
the hyperplane is alleviated as follows:

wi(<W,Xi>+b)Zl—€i fori=1,...,N
where ¢; > 0.

A well-performing classifier has to determine an optimal com-
bination of a normal vector w and the amount of slack variables
used for determination of the separating hyperplane. Thereby,
the trade-off between maximization of the margin and classifi-
cation performance is controlled. The number of slack variables
can be controlled by a slack parameter C, which is included in
the minimization problem as follows:

1 2
minimize T (w, + — E
weH, EeRN ( ff) H Cl

This minimization problem can be reformulated as dual problem
by a Lagrangian as follows

1 N

N
maximize W (06) = Z N — = Z zx,-oc]-w,-wjk (Xi, X]')
«€RN i=1 2,5
with 0<w; < —, i=1,...,N

- N

N
and Z ajw; =0.

i=1
Thereby, a minimization of the training error and a maximiza-
tion of the margin is achieved. However, the absolute term C
is dependent on the range of data values. The incorporation of
the alternative parameter v as a data-independent optimization
parameter is presented by Scholkopf et al. in [Scho oo]. Besides
the regulation of slack variables, the amount of Svs used for the
definition of the separating hyperplane, representing the com-
plexity of the data separation, is controlled via the value of v.
The optimization problem can be redefined incorporating this
parameter by

L. ,
minimize T (W, ¢, “llw ot~
weH, EeRN,p,beR ( g P) || || Y Zél

where w; ((x;, W) +b) >p—¢;
and ¢; >0, p=>0.
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The dual problem is defined based on this optimization problem
using a Lagrangian as follows

1 N
maximize W (x)=—= ) wjwiwik (x;,x))
DLE]RN 2 l,]:1
with 0<q; < l i=1 N
= 1 = N/ - VAR

N
and Z niw; = 0
i=1

N
and Z n; > .
i=1

In comparison with the regulation by the slack parameter C the
influence of support vectors is controlled by an additional con-
dition and is not included in the primary optimization problem.
Further remarks on the relation of C and v can be found in
[Chan o1].

SVMs are regarded as a powerful classification approach, which
has achieved reasonable classification results in numerous appli-
cations (cf. e.g. [Hsu 02]). ANNs have also achieved reasonable
classification results in various fields, but certain aspects support
the application of rather SVMs than ANNs in metabonomic applica-
tions. As stated by Burbidge et al. [Burb o1], and later supported
by Byvatov et al. [Byva 03], SVMs also achieve improved classifi-
cation results when only few but high-dimensional samples are
available. The definition of a separating hyperplane can already
be achieved by a subset of the training samples and no statistical
models have to be estimated. Discrepancy between high data di-
mensionality and low number of samples is a common problem
in metabonomic studies, thus SVMs are expected to achieve good
classification results even on this complex data sets.

Similar to NNs, SVMs are regarded as strong learning algorithms
and even a single SVM can achieve a reasonable classification
performance. The combination of multiple SVMs generated by
bagging or AdaBoost methods [Kim 03, Li 05] is expected to
slightly increase the ensemble performance in comparison with
single SVMs and also improve generalizability. This suggestion is
supported by an empirical study of Wang et al. [Wang og] using
different ensemble construction techniques for SVM ensemb]es.
These ensembles are evaluated on 20 sets from the UCI machine
learning repository [Asun o7] and an industrial study of gear
defect detection. SYM ensembles could not outperform single SvM
classification on every data set, but on an average an improved
classification performance could be achieved.

The application of SVMs for the classification of NMR spectra
for metabonomic applications has not been extensively investi-
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gated up to now. While SVMs are already known in the related
field of chemometrics [Belo o2b, Belo 02a], one of the first clas-
sification approaches based on a data set of NMR spectra using
SVMs has been presented by Masoum et al. [Maso 07]. The goal
in this study was to discriminate farmed and wild salmon, and
different countries of origin. The whole data set was divided for
an experimental evaluation into a training (74 samples), valida-
tion (45 samples) and test set (22 samples). Data reduction has
been applied by averaging every two spectral values, leading to
a data set of only 141 samples but 11 501 dimensions. Spectral
preprocessing comprises COW alignment for peak shift reduction
and standard normal variate scaling [Barn 89] for compensation
of dilution effects. An evaluation of different kernel functions
has proven the RBF kernel to be the optimal choice due to the
low number of kernel parameters and the ability to model a
reasonable class separation even in case of this complex data set.
A perfect discrimination between wild and farmed salmon could
be achieved on the test set, while the origin was falsely predicted
for a single sample. These classification results are especially
impressive under the consideration of the data dimensionality.
To sum up, SVMs allow for a reasonable classification even
in case of high-dimensional and sparse data sets. Competitive
classification results could be achieved in several applications. In
contrast to ANNs, SVMs can compensate outlier samples by slack
variables and show a decreased sensitivity to noisy samples.

3.5 ENSEMBLE AGGREGATION TECHNIQUES

Ensemble creation methods form the foundation to achieve a
set of L diverse base classifiers D;, i = 1,...,L and to predict
the label of a test sample x by each of them. By means of base
classifier outputs a final ensemble classification [(x) is realized
using ensemble aggregation techniques. This combination of base
classifier outputs can basically be achieved by two different types
of methods, fusion and selection. In fusion each classifier has an
influence on the final decision, while in selection the prediction
of the classifier regarded as most suitable for the current sample
is selected.

Different aggregation strategies can be applied according to
[Xu 92] dependent on the type of classifier outputs. The most
common and universal output type is the assignment of a class
label s; € ),i =1,...,c to each of the test samples by the base
classifiers, respectively, denoted as the abstract level. Thus, the out-
put of the ensemble is a vector of predictions s = [sy,...,s.] € QL.
By this output a classification into a single class without specifi-
cation of alternative but less plausible predictions or definition of
classification certainty is achieved. An alternative output type is
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rank level — the rank level by assigning not a single class label to a test sample

but a subset of () ranked according to their grade of confidence

to be the correct label. A further possible output of a base classi-

fier is the definition of a vector containing values reflecting the

measurenent level support for a sample to be classified to each of the individual

classes, denoted as the measurement level. Finally, an oracle level

output can be used in case of a labeled data set as shown in

oracle level - section 3.3.3, assigning a 1 if prediction of the base classifier is
correct and 0 otherwise.

Several aggregation approaches have been proposed up to
now. The approaches presented in the following will not be
comprehensive but restricted to the relevant ones for this thesis.
Classification problems from the field of Metabonomics usually
aim at discrimination between very few classes. Thus outputs
from the rank level will not be discussed. Since the correct label
of new samples is unknown, outputs from the oracle level will
not be useful for the considered problem. A discussion of meth-
ods presented in this section and further ensemble aggregation
approaches can be found in [Kunc o4, Xu 92].

3.5.1 Majority Voting

Determination of a consensus decision by majority voting based on
outputs from the abstract level has a long history as for example
in democratic votings in politics. Majority voting is defined by
assigning the class with the maximum number of votes among a
set of classifiers” predictions to a test sample.

This understanding of majority voting can be mathematically
formulated by the definition of a c-dimensional vector [d; 1, ..., d; ]| €
[0,1]¢ containing a value of one at the position of the class pre-
dicted by the classifier D; and zero otherwise. The index k of the
class assigned to a sample x is defined by

L
k = argmax ) _d;;.
j=L...,c i=1

An alternative formulation is to assign a label only if the percent-
age of votes for the majority class is above a certain threshold
and reject it otherwise in order to guarantee a certain confidence

in the classification [Xu 92].
The majority vote is one of the most common fusion schemes
due to its simplicity and effectiveness, and its theoretical prop-
erties have been investigated in several studies (cf. e.g. [Lam 97,
classification Lin 03, Kunc o4]). In order to estimate the classification perfor-
performance of 1 ance achieved by majority voting, assume a set of L indepen-
MOy O Jent classifiers, whereby L should be odd. Each classifier assigns
the correct label to a sample x € R™ with known probability
p. Thus, the classification accuracy of the ensemble using the
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Figure 3.15: Majority vote accuracy of independent classifiers with spe-
cific probability p to assign the correct label under variation
of the ensemble size L.

majority vote for output combination can be estimated according
to [Nitz 82] as

= L
Praj = ), <m> pr1—p)t .
m=|L/2]+1
Some values of P, are shown in figure 3.15 for demonstration
of the effect of p and L on the expected ensemble classification
performance. According to the calculation of the expected classi-
fication performance, different results of the ensemble accuracy
under variation of L can be achieved, known as the Condorcet
Jury Theorem [Nitz 82]:

1. If p > 0.5, then P, increases up to 1if L — oo
2. If p < 0.5, then P, decreases down to 0 if L — oo
3. If p = 0.5, then Py, is equal to 0.5 for any L.

These results further support the general intuition to achieve
at least a classification performance of 0.5 by the base classifiers
in order to increase classification performance by ensemble com-
bination. However, identical performance of each base classifier
as assumed above is highly unrealistic. Shapley and Grofman
have proven the validity of these results also in case of unequal
probabilities symmetrically distributed around the mean p with
a value greater than 0.5 [Shap 84].

An example of three classifiers having each a probability of
0.6 to assign the correct label to one of 10 different examples
illustrates the influence of dependence between classifiers” pre-
dictions on the ensemble performance. In the optimal case, when
maximal two of the three classifiers agree on the correct label,
a classification performance of 0.9 can be achieved. But in the
worst case the classification performance can decrease down to
0.4 (cf. [Kunc o4], p. 117). Thus, an improved classification per-
formance cannot be guaranteed by using majority voting, but the
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probability to achieve good classification results increases with
the number of base classifiers and their mean performance.

3.5.2 Accuracy-Based Weighting

The influence of each expert on the final ensemble classification is
equally distributed among all L classifiers in majority voting. But
it is more intuitive to control the influence of each classifier with
respect to its individual competence to classify a given sample.
Thus, by assigning a weight w; to each classifier the weighted
majority voting can be formulated by

L
k = argmax ) wjd;;,
j=L,...,c i=1

where k reflects the index of the class assigned to the sample x.
Thereby, not only the amount of classifiers but also their joined
influence on the classification decision is decisive for the final
prediction.

An example originally shown by Shapley and Grofman [Shap 84]
is given in the following in order to demonstrate the effectiveness
of weighted majority voting. Given a set of five independent
classifiers Dy, ..., D5 with individual classification performance
of 0.9, 0.9, 0.6, 0.6 and 0.6. Majority voting would lead in this
example to an expected classification accuracy of Pp,; = 0.877 by

Praj = 3 X 0.9% x 0.4 X 0.6 + 0.6° + 6 x 0.9 x 0.1 x 0.6* x 0.4

as the probability that at least three classifiers assign the correct
label. Thus, majority voting would lead to a worse classification
accuracy compared to the single best classifier. But if the power of
the most competent classifiers is increased by assigning weights %,
1,3, 5 and §, respectively, the expected classification performance
is 1ncreased to P, = 0.927 by

Pigi = 0.9 +2x3x 0.9 x0.1x0.6*+2x09x01x06.

Due to the increased influence of the two best performing classi-
fiers a correct classification can be achieved if these two assign
the correct class label, or at least one and the majority of the three
remaining classifiers.

Actually, several other weightings would achieve an improved
classification performance. But in case of L conditionally inde-
pendent classifiers, such that

L
\w] = HP sl\w]
1

Z:
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Figure 3.16: Decision profile for a sample x; d;; corresponds to the
support of D; for class w; (adopted from [Step 06]).

is fulfilled, with accuracies py, ..., pr the maximum ensemble
classification performance is achieved according to [Shap 84] if
weights are assigned by

Pi
1— pi
Taking the prior probabilities of the respective classes into ac-
count, the index of the class assigned to a sample x is determined

by

w; « log

L .
k = argmax |log P(wj) + ) _d;;log - plp .
i=1 L

j=1,...c

Majority voting and accuracy-based weighting are combination
methods for output types of the abstract level, thereby every
classifier assigns a unique class label to a test sample. Several
other straightforward combination schemes even for outputs from
measurement level have been proposed up to now. An overview
and an experimental comparison of a selection of these can be
found in [Kitt 98, Kunc o4].

3.5.3 Class-Conscious Combiners

While outputs from the abstract level assign only a single class to
a sample, outputs from the measurement level indicate their sup-
port for classification in each of the ¢ different classes, respectively.
Thus, each expert defines a c-dimensional real-valued vector and
the outputs of L classifiers can be organized in a matrix as shown
in figure 3.16, denoted as decision profile (DP).

The fusion approach realized by majority voting can also be
applied to real-valued outputs and not only for label outputs.
Thereby, the support ; for the class w; is determined according
to the support given to the class w; by the L classifiers as denoted
in column j of the DP. The index k of the finally predicted class is
determined according to the maximum support achieved.

k = argmax p; = argmaxS[dllj(x), ... ,dL,j(x)]
j=1,..c j=1,....c
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Different combination functions S can be applied and common
rules are the average

and product combination

L
wi=11di(%).
i=1
Apart from these, alternative combination rules have been pro-
posed, but the suitability of each method is usually dependent
on the chosen base classifier algorithm and the problem at hand
[Kitt o2].

3.5.4 Class-Indifferent Combiners

Decision profiles as described in the previous section can also be
used for the classification of new samples without restrictions on
the column of the DP to be used. Thereby, DPs of samples from
each class are transferred into an intermediate feature space and
dependent on this representation the final class for a given test
sample is determined.

Decision Templates

A classifier fusion approach proposed by Kuncheva et al. aims at
the definition of a typical DP; for each class wj, called the decision
template (DT) [Kunc o1]. The DT; for class wj is calculated accord-
ing to the DPs of samples from the data subset X; containing N;
samples from the class w; by

1
DT/ = N Y DP(x).

) XkEXj

The classification of a test sample x is achieved by the calcula-
tion of the similarity between the DP for the sample and the DTs
of each of the c classes (cf. figure 3.17). The index k of the class
with the maximum similarity determines the final classification
result and is calculated according to

1 L C .
k = argmax |1— T Y Y (DThu — dun(x))?]
=1 m=1n=1

whereby DT), ,, is the entry of the DT for class wj in the row m and
column n. The presented similarity criterion is the euclidean dis-
tance between the two vectors in the L x c-dimensional space. But
also alternative similarity measures can be applied as presented
in [Kunc o1].
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Figure 3.17: Decision template classification procedure.

The advantage of the decision template approach is its simplic-
ity and its application has been presented in several applications
(cf. e.g. [Diet 03, Kitt 02, Step 06]). Like most classifier fusion
methods the decision templates approach is not superior to all
alternative fusion schemes, but shows comparable classification
performance. Additionally, it is more elegant due to the incorpo-
ration of support for each of the c classes from all L classifiers in
the final classification.

Behavior Knowledge Space

Huang et al. proposed a fusion scheme named behavior knowledge
space jointly considering the support of all classifiers to all classes
for final classification [Huan 95]. Thereby, each DP is transformed
into an L-dimensional feature vector §(x) = [d1(x),...,d.(x)] by
assigning the index of the class with the maximum support from
classifier D; for the sample x to feature J;(x). The resulting space
of transformed DPs is denoted as the behavior knowledge space.
Since only values from the interval [1,...,c| can be assigned to
each feature, each point in this space corresponds to a certain
bin.

The classification of a new sample x is achieved by the trans-
formation of DP(x) in the feature space. The amount of samples
from class wj in this bin is determined according to the histogram
function /;((x)) and sample x is classified into the most repre-
sentative class as follows

argmaxh;(d(x)) if i hi(6(x)) > 0 and M
A L hi(8(x))
i=1

> A

0 otherwise.

The label 0 corresponds to a rejection of the sample if either no
sample from the training set is at the specific position, or the
proportion of patterns from class wy is below a threshold A.

In summary, new samples are assigned to the class with the
majority of samples at the corresponding position of the feature
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Figure 3.18: Generalized stacking procedure.
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space. Kittler et al. propose to introduce class-specific weights
with respect to the class-specific prior probabilities in the deter-
mination of the maximum proportion of samples from each class
[Kitt 02]. Thereby, classes of different size in the training set can
be taken into account. An experimental comparison demonstrates
consistently better results achieved by the behavior knowledge
space approach in comparison with the decision templates ap-
proach [Kitt 02]. Even increasing the number of experts has lead
to improved classification results. Thus, no expert selection has
to be applied in order to increase classification performance.

3.5.5 Generalized Stacking

Wolpert presented stacked generalization as an ensemble aggrega-
tion strategy focusing on a high generalizability in ensemble ag-
gregation [Wolp 92]. Thereby, ensemble aggregation is achieved
by the training of an additional classifier on the predictions of
multiple classifiers for a given data set by means of a cross-
validation approach. Thus, an additional layer of abstraction is
introduced by interpretation of predictions from base classifiers
as features for a given sample.

As a first step in the stacked generalization approach (cf. figure
3.18), a given data set X = {xj,...,xy} is split into k parts.
With respect to these parts, k different training Xry, ..., X7 and
corresponding test sets Xv1, ..., Xyi are created according to the
cross-validation principle (cf. section 3.1.2). L different classifiers
Cy,...,Cy are trained on each of the k training sets. These level-0
models are applied for prediction of class labels from samples in
the respective test sets.

Predictions of level-0 models serve as features of the new data
set representation X = {Xy,..., Xy}, by

= [fl(xn),...,fL(xn)],n =1,...,N,

bl
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Figure 3.19: Two-class problem and the separating hyperplane of an
RBF SVM. Distances in the RBF space are coded by color and
the svs are marked by black circles.

where fi(xn), i=1,...,Lis the prediction of the class label from
classifier C; for sample x;. A level-1 generalizer C* is trained on
this newly created level-1 data X for classification of unknown
samples.

Investigations by Ting et al. have shown that class probabilities
rather than class predictions from level-0 models should be used
to form the level-1 data [Ting 99]. These cause an improved clas-
sification by the stacked classifier as shown by an experimental
evaluation. However, class probabilities are not estimated by each
classification approach as exemplary presented for SVMs. Classifi-
cation is achieved by SVMs with respect to the relative position
of samples to a separating hyperplane as outlined in section
3.4.4. Thus, SVMs produce generally no (pseudo-)probabilities
that could be used for a level-1 data representation.

An exemplary classification of two banana shaped classes? by
a RBF SVM is shown in figure 3.19. Differences can be noticed
in the confidence for the classification of samples with respect
to their relative position to the separating hyperplane. Samples
close to the class boundaries could be moved to the other side of
the hyperplane by added noise of low intensity. Thus, the larger
the distance to the separating hyperplane is, the higher is the
confidence in the correct classification.

These observations have been used by Platt for the definition
of a transformation of SVM outputs to class pseudo-probabilities
[Plat gg9a]. Evaluation of different transformation functions by
Platt on three sets from the UCI data set [Asun oy] have finally
led to the choice of a parametrized sigmoid function. Thereby,

The data set was generated using the gendatb command from the PRTOOLS
toolbox (Version 4.1.4) in Matlab. Software available at http://www.prtools.
org.
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Figure 3.20: (a) Comparison of posterior probabilities generated for the
UCI Adult data set by Bayes’ rule (plus marks) and the
sigmoidal fitted by the algorithm of Platt on SVM outputs.
The class-conditional histograms of SVvM outputs are shown
in (b) (adopted from [Plat ggb]).

the probability for a sample x to be labeled as 1 (and not as -1)
with respect to its distance f(x) to the separating hyperplane is
defined by

1

P(l(x) = 1|X) ~ Pa,b(f(x)) = 1 +exp(af(x) +b) .

For a given data set X = {xy,...,xy} the optimal parameters a
and b are determined by the solution of the following regularized
maximum likelihood problem, which is a cross-entropy error
function:

N

minibm%ze — Y (talog (Pyp(xu)) + (1 — tn)log (1 — Pop(xu))) |
abe

n=1
Ni+1 .
with t, — d N2 1100) =+1

where N1 and N_ corresponds to the amount of samples with
I(x) = +1 and I(x) = —1, respectively. Lin et al. presented in
[Lin o7] an optimization approach for the determination of 2 and
b. Thereby, improvements with respect to the algorithm proposed
by Platt could be achieved.

This transformation is exemplary shown in figure 3.20a for the
outputs of a linear SVM trained by a 3-fold cross-validation pro-
cedure on the Adult data set as performed by Platt in [Plat 99a].
The sigmoid function is fitted to the SVM outputs, and posterior
probabilities for all samples falling into the same bin of size 0.1 of
a histogram estimated on the SVM outputs are shown (cf. figure
3.20b). These posterior probabilities are determined according to
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Bayes’ rule on the histogram estimates of class-conditional densi-
ties from the SVMs trained via cross-validation (cf. [Plat 9ga] for
further details). As can be seen by this illustration, the determined
sigmoid function achieves a good estimate of the posterior proba-
bilities and is used as an alternative level-0 data representation
besides binary predictions achieved by SVMs as base classifiers.

36 BOOSTING METHODS

An ensemble system incorporating methods for ensemble cre-
ation, base classifier prediction, and ensemble aggregation is the
boosting approach. The boosting approach is based on a weighted
combination of multiple classifiers trained in a cascade. Each
classifier in the cascade is weighted and trained in order to com-
pensate errors made by previously trained classifiers. Thus, the
base classifiers are boosted by their weighted combination for
final classification.

In the AdaBoost approach, which is derived from adaptive
boosting [Freu 97], the training of classifiers in the cascade is
controlled by weights assigned to each sample. These weights
reflect the influence of each sample on the training and choice of
the base classifier. These weights are modified within an iterative
procedure as shown in algorithm 1, increasing the weights of
falsely classified samples and vice versa. Weights of samples can
be used in two different ways within classifier training. In case of
the resampling procedure weights regulate the probability of each
sample to be selected for the training set. Alternatively, weights
can be incorporated in the determination of the training error.
In the following the resampling procedure will be presented as
shown in algorithm 1 for two-class problems.

Given a data set X of size N and the corresponding class
labels I(x;),i = 1,...,N, sample weights w; are initially se-
lected to be uniform. In each of the kmax iterations a classifier
Dy, k =1,..., kmax is trained using a data set sampled according
to wX. Thus, the influence of each sample on the classifier is
controlled by the samples’ weights w*. The classification error
of Dy for X is calculated as weighted sum of misclassifications,
whereby w* determines the influence of each sample on the error.
Each classifier Dy has to achieve at least a classification error
smaller than 0.5 and greater than zero in order to achieve an
exponentially decreasing classification error [Freu o1]. Otherwise
the weights are set to be uniform and the next best classifier is
trained. If ¢, > 0 and €, < 0.5 the weight ay for the classifier
Dy is calculated. Finally, the sample weights are updated and
normalized to sum up to one, thereby increasing the weight of
wrongly classified samples leading to a stronger influence on the
classification decision in the following iteration.
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Algorithm 1 AdaBoost algorithm (adopted from [Freu 97])

Input: data matrix X and corresponding labels I(x;), i =1,..., N,
maximum number of iterations kmax
Output: set of classifiers Dy and corresponding weights ay

R 1
1 Vz.wiHN

2: fork < 1,...,kmax do
3 train Dy using w¥; get a hypothesis i = X — [0,1]

4  Calculate the error € of Dy
e — TN whlhy(x) — 1(x)|

5:  calculate the classifier weight a

€
1fek

K <

6: update the sample weights
w1 =1xq)D)
j TN, kel THo TN

7. end for

8 return Di,...,Dyand aq,...,x;

The classification of a new sample is achieved by a weighted
summation of the hypotheses i produced by each of the kmax
classifiers.

kmax kmax
L if ) (log ) h(x) >3 L log &

h(x) =

0 otherwise.

The presented algorithm achieves a binary classification but also
multi-class classifications can be realized by modifications of the
original algorithm denoted as AdaBoost.M1 and AdaBoost.M2
(cf. e.g. [Freu 97]).

An exemplary two-class data set to be classified by the Ad-
aBoost algorithm using threshold classifiers as base classifiers is
shown in figure 3.21. In the first round each sample has the same
weight (visualized by the size of the sample) and a hypothesis h;
is determined achieving the best classification accuracy. Weights
of samples misclassified by h; are increased while the remaining
ones are decreased and hy is determined in the second boosting
round. Finally, h3 is determined and the overall classification
decision i can be formulated according to a1, ap, a3 achieving a
perfect discrimination between the two classes on the training
set.

Although the focusing on samples hard to predict is the basic
principle of AdaBoost, this approach can have severe drawbacks
in case of noisy samples and outliers present in the data. In
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Figure 3.21: Toy example of the discrimination of a two-class data set
with threshold classifiers in each boosting round and the
final classification. The size of samples corresponds to the
weight assigned to the respective sample in each boosting
round.

these cases AdaBoost tends to overfit on the data trying to cor-
rectly classify the complete data set. Several modifications of
the original approach have been presented in order to achieve a
more robust classification. Basically, these modified approaches
limit the maximum weight that can be assigned to a sample
(cf. e.g. [Freu o1, Meir 03]) or modify the calculation of sample
weights (cf. e.g. [Frie 0o, Jin 03]) in order to reduce the influence
of potential outliers or noisy samples on the training procedure.
Approaches aiming at fast training even in case of large data sets
have been proposed [Brad oy, Hall o7], but in applications in the
field of Metabonomics rather high-dimensional and sparse data
sets are the usual case. Three different modifications of the origi-
nal AdaBoost approach, which are expected to achieve improved
classification results on sparse and high-dimensional data sets,
will be presented in the following.

3.6.0.1 LogitBoost

The LogitBoost approach introduced by Friedman et al. is expected
to achieve stable classification results even on small and high-
dimensional data sets [Frie 0o]. Thereby, boosting is reformulated
as additive logistic regression. A classification model is estimated
by a stepwise optimization of the binomial log-likelihood func-
tion, which seems to be more suitable in classification than the
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exponential criterion applied in the original AdaBoost. By this
modification, weights are increased linearly instead of exponen-
tially.

Investigations presented by Dettling et al. have shown in-
creased performance of LogitBoost on small and high-dimensional
gene expression data sets [Dett 03]. Within these experiments one-
level decision trees, denoted as decision stumps, have been used
as base classifiers. Further improvements in classification perfor-
mance could be achieved by the selection of features with high
significance for class discrimination as stated by the Wilcoxon
signed rank test [Wilc 45]. This statistical test estimates the signif-
icance of features for class discrimination according to a labeled
two-class data set.

3.6.0.2  BagBoost

An extension of the LogitBoost approach for large data sets has
been proposed by Dettling by the inclusion of the bagging method
(cf. section 3.3.1) within the LogitBoost approach, denoted as
BagBoost [Dett 04]. Thereby, not just a single classifier is estimated
within each boosting round but a set of classifiers each trained
on a bootstrap replicate of the original data set.

The rationale for this approach is the combination of the boost-
ing committee with lower bias and slightly increased variance
with the nearly identical bias but lower variance introduced by
the bagging procedure. Experiments on gene expression data
supported the assumed classification improvements due to both
reduced bias and variance [Dett o4]. Classification results were
not only competitive to bagging and boosting, but also to dis-
criminant analysis and SVMs.

3.6.0.3 Ly Boost

Interpretation of the boosting approach as functional gradient
descent technique has motivated the formulation of L, Boost by
Bithlmann et al. [Buhl 03]. Thereby, a hypothesis /; is determined
according to the gradient descent with respect to the loss function
l(x)_zhk(x).

An experimental evaluation of this approach has shown com-
parable results to LogitBoost in case of data sets of low dimen-
sionality, while the latter achieves the best results on data sets
of high dimensionality. Generally, the L, Boost approach seems
to work quite well with small decision trees as base classifiers or
even decision stumps.

3.6.0.4 Summary

Apart from the presented boosting approaches, several other
methods based on the AdaBoost algorithm have been presented
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up to now with modifications advantageous to a particular prob-
lem (cf. e.g. [Meir 03]). However, a systematic comparison of the
most promising boosting approaches on a variety of data sets
is still missing. But differences between the approaches seem to
be rather small in published evaluations of different boosting
methods.

Generally, boosting approaches show reasonable results in sev-
eral applications although it is a quite straightforward approach
taking advantage of the combination of several weak classifiers
— the general idea of multiple classifier systems. Additionally,
parameters of most boosting approaches are very limited or can
even be selected according to data properties like data set size or
data dimensionality. Thus no complex parameter optimization
by cross-validation has to be applied. Although most boosting
approaches tend to overfit on the data in case of noisy data
sets, modifications of the original boosting algorithm have been
proposed, also achieving a reasonable classification in these cases.

Although boosting methods are regarded as a valuable classifi-
cation tool for several classification problems, they have not been
applied for the detection of drug-induced organ toxicities based
on NMR spectra up to now.

3.7 RANDOM FORESTS

Bagging has been presented in section 3.3.1 as a generic ensemble
creation method in order to achieve multiple data subsets as a
basis for an ensemble system. Breiman presented a variant of
the bagging approach in combination with decision trees as base
classifier algorithm, denoted as random forest [Brei o1]. Generally,
a random forest is defined as a set of tree-structured classifiers
grown with respect to a set of independent and identically dis-
tributed random variables. Each tree in the forest classifies a
sample in a single class. The random variables control the en-
semble creation technique regarding the subset of samples or
features, or variations on tree parameters in order to achieve mul-
tiple diverse classifiers. Also a combination of these techniques
would lead to a random forest by selection of a subset of samples
and features for classifier training (cf. [Lati 00]).

The most successful method of ensemble creation is the ran-
dom input selection as shown in figure 3.22. Thereby, bootstrap
replicates of the original data set are sampled and a random
feature subset of size m’ (m’ < m) is selected randomly for the de-
termination of the best splitting feature at each node (cf. section
3.4.2). Breiman proposes the application of full CART trees with-
out pruning, but in several experiments decision stumps have
been used within the random forest approach. The performance
of the trees within a random forest is controlled via the param-
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Figure 3.22: Scheme for construction of a random forest using random
input selection. Different sample selections are used for the
creation of random forests by random selection of a subset
of features (m’ = 3) at each node for determination of the
best splitting feature.

eter m'. Large subspaces used for determination of the optimal
splitting criterion will increase the individual performance of the
decision trees but also increase their correlation. Assignment of
small values to m’ will result in a diverse set of low perform-
ing decision trees and the overall classification performance is
achieved by their combination in the ensemble. While the number
of trees has nearly no influence on the ensemble performance
(common default values are 1 000 — 5000) the value of m’ can have
a great influence on the ensemble if not all features are useful
for classification. In these cases large values for m’ have to be se-
lected, otherwise there is no significant influence on classification
performance (cf. e.g. [Brei o1, Diaz 06]).

Most classification approaches require an independent val-
idation set for the optimization of their parametrization and
estimation of classification performance. But within the random
forest approach this can be achieved by the classification of sam-
ples not used within the decision trees, respectively, denoted as
out-of-bag samples. An additional useful property of the random
forest approach is the possibility to estimate the relevance of each
feature for classification. This is achieved by adding noise to each
variable separately and according to the amount of changing pre-
dictions each feature’s relevance to the classification decision is
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estimated. However, this works only if no dependent features are
present in the data since each feature is changed independently of
each other. An approach to reveal these dependent variables for
estimating their impact on the classification has been presented
by Bureau et al. [Bure o5]. But a full evaluation of all possible vari-
able combinations usually fails due to the exponentially growing
computational complexity.

The random forest approach using random input selection has
several advantages in comparison with alternative classification
approaches as shown in [Brei o1]. It is comparable with AdaBoost,
as the state-of-the-art classification approach in the field of multi-
ple classifier systems in the late gos, achieving sometimes worse
but also better results. In contrast to AdaBoost random forests
are relatively insensitive to outliers and noise in the samples
since the influence of falsely classified samples on the classifi-
cation decision is not increased within the forest construction
procedure. Training a random forest is computationally efficient
since only simple comparisons have to be evaluated at each node.
Furthermore, each tree in the forest can be trained independently
of each other, thus allowing for the parallelization of the forest
construction.

3.8 SUMMARY

Like all classification approaches ensemble systems aim at the
improvement of classification performance for a certain applica-
tion. However, the major difference to other classification systems
is the incorporation of multiple classifiers in order to improve
classification performance by final ensemble combination. Exper-
imental evaluations clearly indicate the advantages of multiple
classifier systems, being a promising approach from the field of
pattern classification.

All ensemble systems have a common overall structure but
differ in the methods applied. In order to take advantage of mul-
tiple classifiers, diversity in the classifications from the set of
base classifiers has to be achieved. Otherwise, the classification
performance of the individual classifiers and the ensemble will
be identical. Different generic ensemble creation methods have
been proposed based on modifications of the data set by means
of varying samples or feature selections. Thus, each base classifier
is trained on a different data basis. Base classifiers have to be
sensitive to these variations in order to achieve diverse classifica-
tions. Besides their instability only a classification performance
better than 50 % is a prerequisite for an adequate classification
algorithm. If these conditions are fulfilled, predictions from the
diverse classifiers are finally aggregated to an ensemble classi-
fication which is expected to be better than every individual
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classifier. The applied fusion method depends on the output type
of the base classifiers and several aggregation methods have been
proposed.

The optimal combination of ensemble creation, classification
and ensemble aggregation methods can be determined according
to an experimental evaluation. Furthermore, out-of-bag samples
can be used in ensemble approaches like boosting or random
forests in order to determine the best ensemble design. However,
the ensemble design is not restricted to the proposed methods
and classification performance can usually be improved by the
adaptation of the specific methods to the problem at hand. The
identification of the major problems for a successful classification
of the present data set and design of a suitable ensemble system is
the major challenge but also represents the flexibility of ensemble
systems.



MATERIALS AND EVALUATION METHODS

Before new ensemble systems for the robust classification of
NMR spectra will be presented in the next chapter, the data sets
and evaluation strategies used for the development of the new
approaches are presented in this chapter. Data acquisition is an
important aspect in metabonomic applications due to the complex
experiment design and the expensive sample measurement by
NMR spectroscopy. Two different data sets will be presented in
section 4.1, followed by a detailed description of the evaluation
strategy used in this thesis.

4.1 DATA SETS

The design of a data set that is used for training and evaluation
is an important step in the development of new classification
systems. The data set should contain a reasonable amount of
representative examples from the particular domain in order
to achieve a good performance of the classification system on
unseen samples.

In order to fulfill this prerequisite in the presented metabo-
nomic application, a multitude of realistic experiments from stud-
ies pursued in safety pharmacology have to be performed. First
of all, a representative amount of pharmaceuticals with different
effects on the organism have to be applied, including harmless
substances in order to produce control samples. Furthermore, the
same pharmaceutical has to be applied to multiple experimental
animals in order to compensate variations in the response in-
duced by different genders or genetic variations of the particular
individuals. Since the point in time of the maximum response
to a pharmaceutical is usually unknown, it is not sufficient to
collect a single sample. Thus, samples from the same individual
have to be collected at multiple time points.

A thoughtful design of experiments is the key for acceptance
of results achieved in the study. Especially in drug design, each
newly developed pharmaceutical has to be accepted by particular
federal institutions before it can be sold in the respective country.
For example, the U.S. Food and Drug Administration (FDA) has
to control the efficacy and possible adverse effects of drugs and
foods in the United States of America. Only particular studies
are accepted by this institution in order to investigate possible
adverse effect. Thus, a valid design of experiments has to be
defined in order to achieve reliable results.
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MATERIALS AND EVALUATION METHODS

The investigation of the toxic effect of even a small set of com-
pounds requires the generation of hundreds of samples due to
the complex design of experiments. This acquisition is a complex
and laborious procedure, including the following steps:

1. specification of compounds to be applied
2. design of the animal study and sample collection
3. sample analysis by clinical chemistry

4. measurement by NMR spectroscopy.

Therefore, the buildup of a large data set of NMR requires con-
siderable amounts of financial expenditures, specific equipments,
and expert knowledge in the respective fields. Due to these facts,
metabonomic data sets are usually strictly confidential and are
not available for public use. Hence, the sets of spectra used in this
thesis are not publicly available and partially blinded. However,
all details are given that are necessary in order to follow results
presented from the experimental evaluation.

In the following, two data sets as they are used for experimental
evaluations presented in this thesis are presented. Following this,
the combination of predictions from several samples is presented,
which allows for a classification with respect to a compound
applied in a particular dose. Finally a detailed description of the
evaluation procedure by cross-validation is given.

4.1.1  Real Data Set from Safety Pharmacology (REAL . NMR)

The primary data set used in this thesis for the development of
new classification systems is a set of 'H NMR spectra of urine
samples from rats treated with one of 47 different compounds.
Throughout this thesis this data set is denoted as REAL.NMR. The
urine samples originate from a safety pharmacology study car-
ried out by the pharmaceutical company Boehringer Ingelheim
Pharma GmbH & Co KG (BI). In this study, each compound
was applied to a group of eight experimental animals, composed
of 4 male and 4 female rats, either orally (p.o.), intravenously
(i.v.), intraperitoneally (i.p.) or inhalatively (i.h.). These rats were
housed in metabolic cages and urine samples were collected 8
and 24 hours after the application of the compound. The use of
urine instead of blood allows the collection of biofluid samples
at different points in time, while animals would have to be eutha-
nized before blood samples can be taken. As a further important
aspect, the number of experimental animals used for this study
is reduced.

The main response is expected to be detectable in the first 24
hours and no further samples have been collected. Thus, 16 sam-
ples are collected for each compound. Certain experiments have
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been repeated using a different dose of the particular compound
in order to investigate dose dependent effects. Some compounds
have been applied multiple times for the generation of an in-
creased amount of samples for relevant compounds.

The NMR measurements were performed at LipoFit Analytic
GmbH (Regensburg, Germany) by order of Bl. Samples were
measured on a Bruker AVANCE 600 plus Ultrashield™ NMR
spectrometer, followed by automatic and manual spectroscopic
postprocessing procedures. Further details on the experimental
methods (animal study, probe handling, clinical chemistry, NMR
spectroscopy) can be found in [Lien 08b]. The full set of pro-
cessed NMR spectra was provided by BI for the evaluation of
classification systems.

A small set of samples could not be analyzed by clinical chem-
istry or NMR spectroscopy due to insufficient sample volumes
and was, hence, excluded from the data set. Furthermore, some
samples have shown large differences to the remaining samples,
indicated by outliers in PCA score plots, and are also excluded.
These differences are induced by strong NMR signals from drug
related compounds or by perturbing artifacts from the measure-
ment process.

Each of the 896 NMR spectra from the final data set is labeled
according to literature references as being non-toxic (651 samples)
or toxic (245 samples) with respect to the proximal tubule (cf.
[Lien 08b])". The applied compounds in combination with their
dose, amount of samples and the percentage of samples indicat-
ing a toxic effect according to the analysis of results from safety
pharmacology are shown in tables 4.1 and 4.2. Internal substances
of BI are not listed with their real name due to nondisclosure
agreements and are referred to as internal compound.

The majority of compounds judged as non-toxic are not induc-
ing any physiological reaction in the organism, but rather show
no toxic effect with respect to the proximal tubule. Thus, different
physiological reactions are induced by the applied pharmaceuti-
cals and the objective of classification methods is to determine
variations in molecule concentrations indicating an organ toxicity
of a particular organ. The small amount of real control samples
is the major difference to the data set generated in the COMET
project.

The low percentage of samples, which are expected to induce a
toxic effect but are judged as non-toxic according to results from
clinical chemistry, demonstrates the low sensitivity of clinical
chemistry. This is a known problem, especially in the analysis of
samples collected only few hours after single administration of a

Chloroquine is judged as non-toxic contrary to the literature reference given in
[Lien 08b] due to differences in the applied dose and analysis results by clinical
chemistry.
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(a) Properties of a Lorentzian peak (b) Different peak parametrizations

Figure 4.1: Characteristics of a parametrized Lorentzian line and exam-
ples of peaks resulting from different parametrizations.

compound. Thus, the objective of new classification methods is to
achieve a robust detection of drug-induced organ-toxicities even
for this particular type of samples. Therefore, literature references
are used for labeling as non-toxic or toxic in order to achieve a
reliable detection of organ toxicities where clinical chemistry is
not sensitive enough to detect them.

4.1.2  Artificial Data Set (SIM.NMR)

Even though a set of 896 samples is not regarded as a large data
set in comparison with other sets used in pattern classification ap-
plications, the REAL.NMR data covers a reasonable range of applied
compounds and toxic samples. In consideration of the complex
sample collection and expensive measurement procedure this
data set is a good basis for the development and evaluation of
classification methods in the field of Metabonomics. The presence
of peak signals allowing for classification of spectra is expected
due to results from experimental evaluations, but the amount,
relevance and positions of these signals are not known. Thus, in
order to model particular aspects of the data, which should be
identified by the classification methods, a data set of simulated
spectra is used in addition to the REAL.NMR data set for evaluation
and classification interpretation.

NMR spectra are mainly composed of noise in baseline regions
and several peak signals with variation in their exact position
and intensity. Baseline regions are modeled by random values
in a small range around zero, but the shape of simulated peaks
should be comparable with those in real NMR spectra. Following
[Koh 08], peaks in NMR spectra can be described by Lorentzian
lines, which are described by a parametrized Lorentzian function.
Given a peak at position xg, the peak intensity I and the half-
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Figure 4.2: Comparison of the spectral region around the citrate peak
of a simulated and a real spectrum.

width at half-maximum (HWHM) v (cf. figure 4.1a), the spectral
value s(x) at the position x is determined by

_r

G=x)P 72

These three parameters influence the position, intensity and shape
of the peak signal as shown in figure 4.1b. A spectrum is now
defined as the sum of a noisy baseline and a set of parametrized
peaks.

In order to achieve a peak representation similar to "H-NMR
spectra from urine samples, the 156 most dominant peaks from a
control spectrum are determined. The control spectrum is mea-
sured from a urine sample after the application of Natrosol™.
Peak detection is performed by the algorithm used in the PARSE
procedure (cf. section 2.3.1) and only peaks that could be robustly
detected are used. Thus, a representative non-toxic NMR spectrum
can be defined according to the identified peak positions and
intensities. A HWHM of 0.0025 ppm is used for peak simulation,
which is determined by visual investigation of real NMR spectra.
A comparison of a simulated and a real spectrum in the region
of the citrate peak is shown in figure 4.2. Major differences can
be observed with respect to the baseline, but the peak shapes are
well simulated.

A single peak is fully defined by its position, intensity and
HWHM, but changes in position and intensity have to be induced
in order to simulate different spectral profiles. A statistical model
of changes specific to each peak based on training samples can
not be determined due to the problems in peak detection and
alignment. Thus, random changes in position and intensity up
to a maximum value are applied to each peak. These maximum
values are specifically defined for each peak.

s(x) =1Ix
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Four multiplets have been identified by visual investigation
of the REAL.NMR spectra and modeled with the same peak shifts
and intensity changes. This leads to the definition of a set of
148 signals for the simulation of the spectra. Peak shifts of up
to 0.005 ppm to the left and to the right are randomly applied
to 30 % of the spectra. Intensity changes are applied in different
ranges dependent on the peak height. 129 groups show random
intensity changes from about 50% of their intensity defined
by the peak detection algorithm. In every spectrum a single
peak has the same intensity in order to identify scaling artifacts.
The remaining signals vary in their intensity between 20 % and
80 %. Additionally, 35 Random peaks with varying intensity and
position are added to the spectra in order to induce randomness
in the simulated spectra. Furthermore, samples originating from
the same compound are simulated by the addition of up to five
random peaks to the spectra of the particular compound.

Peaks defined up to now have shown purely random changes
in intensity and contain no information for classification pur-
poses. In order to define spectral profiles specific to non-toxic
and toxic samples, five different biomarker peaks are added to
the spectra. The position, intensity and maximum variation of
these biomarker patterns are shown in table 4.3. The class-specific
range of the intensity values are chosen in order not to allow for a
correct classification using a single peaks. Thus, no classification
system is expected to achieve a perfect classification, but different
classification approaches can be compared with respect to their
opportunity to combine and localize relevant spectral regions.

The simulation of random peaks is illustrated in figure 4.3 for
the biomarker peak BP_2. The mean peak intensity for non-toxic
and toxic samples is defined as 0.5 and 0.7, respectively. Intensity
changes are induced from -o0.2 to 0.2. Furthermore, the peak po-
sition randomly varies between 4.49 ppm and 4.51 ppm. Different
peak maxima defined by class-specific changes in intensity and
position define two overlapping regions, whereby, no linear dis-
crimination between non-toxic and toxic samples can be achieved.
This also holds for the remaining biomarker peaks defined in
table 4.3.

A final data set consisting of 960 spectra is defined, using these
definitions of normal, random and class-specific peaks, whereby
the sets of spectra labeled as non-toxic and toxic each contain 480
spectra. For data set creation it is assumed that samples originate
from the application of 20 different compounds. Thus, samples
originating from the application of a particular compound contain
up to five compound specific peaks, which other samples do
not contain. 10 compounds are used to define 16 spectra for
each compound and for every of the remaining compounds 32
samples are simulated. Furthermore random peaks and class-
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Figure 4.3: Demonstration of the regions of non-toxic and toxic peaks
for an exemplary simulated biomarker signal with simulated
changes in peak intensity and position.

specific peaks are included. Thereby, an amount of samples and
compounds comparable to the REAL.NMR data set is achieved.

The simulated data set SIM.NMR is expected to model only a
part of the full complexity present in the REAL.NMR data set. Re-
sults achieved on this data set are used for the comparison of
classification systems, but they do not reflect their true perfor-
mance on real metabonomic data sets. However, the evaluation
of newly developed ensemble systems on the simulated data
allows for a comparison of their interpretability. The presence of
biomarker patterns in the REAL.NMR data set is not proven and
can only be assumed with respect to the evaluation results. In
contrast to this, the position of biomarker patterns is known for
the simulated data set and can be used for the validation of the
final results.

4.2 EVALUATION OF CLASSIFICATION RESULTS

An experimental evaluation has to be properly designed in order
to determine the real performance of a classification system. A
selection of performance measures and strategies for classifier
evaluation are described in section 3.1.1. Methods applied for the
evaluation of the proposed classification approaches are outlined
in this section.

4.2.1  Performance Measures

Classification accuracy (acc), specificity (spec), and sensitivity
(sens) are commonly used performance measures in metabo-
nomic applications as shown in section 3.1.1. Additionally , the
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Matthews Correlation Coefficient (MC) is applied in order to
evaluate the classification performance even for classifications
of the imbalanced REAL.NMR data set?. Thus, the MC serves as
primary optimization criterion in the following evaluations and
the remaining measure are denoted in addition.

4.2.2  Cross-Validation and Test

Most classification methods require the optimization of particular
parameters. Thus, in order to allow for parameter optimization
on a validation set and determination of the final performance
on an independent test set, a stratified3 five-fold cross-validation
and test approach is applied (cf. section 3.1.2). Initially, the whole
data set is split into five parts of comparable size and five dif-
ferent cross-validation folds are defined. Three fifths are used
for classifier training and parameters specific to the classifier are
optimized on one fifth, denoted as validation set. The final perfor-
mance of the optimized classifier is determined on the remaining
fifth.

Precautions have to be taken if almost identical samples from
the same class are present in a data set. An example of an appli-
cation where nearly identical samples can lead to false evaluation
results is the image-based face-detection. If samples from the
same person exist in the training and test set, a classifier using
characteristics specific for this single individual would lead to
good results for samples in the test set. However, the objective is
to determine the performance of the system for unknown sam-
ples. Thus, very similar samples have to be contained in the same
fold in order to avoid their use for training and evaluation.

The presented REAL.NMR data set contains similarities between
spectra due to samples collected from the same animal or after
application of the same compound. Furthermore, compounds
can be grouped with respect to their target and indications as
shown in table 4.4. Compounds with the same indication are
expected to have a similar effect on the organism. Thus, groups
of samples associated with compounds of the same indication
are retained in the creation of the folds, avoiding similarities of
samples in training and validation or test sets induced by the
same indication. The low number of indications limits the number
of folds used in this thesis to five. Otherwise, very small folds,
or folds containing only negative or positive samples would be
defined.

2 Classifications for imbalanced data sets, containing unequal amounts of samples
labeled as non-toxic and toxic, would lead to good results even by assigning
the label of the prevalent class to all samples. Therefore, alternative evaluation
measures have to be applied.

3 Stratified cross-validation aims at creation of folds with an almost equal pro-
portion of samples from the different classes as the original data set.
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Figure 4.4: Combination of predictions for samples associated with the
same compound. The mean value of all samples from the
same collection time is determined and the final prediction
for the compound is achieved with respect to the maximum
of predictions for all time points.

4.2.3 Combination of Predictions for Compounds

Predictions achieved by a classification system are always as-
signed to individual samples. However, the main objective is the
detection of compounds, which induce a particular organ toxicity.
Thus, the predictions for samples of the same compound have to
be combined in order to achieve a classification as non-toxic or
toxic with respect to the particular dose.

A first combination of the samples associated with the same
substance-dose combination, and collected at the same time after
application can be achieved by averaging over their predictions.
Samples classified as non-toxic are labeled as “0” and in case of
a predicted toxic reaction the label is assigned. Toxic effects
are expected to be detectable at specific collection times and not
at each of them. Since, even a detected organ toxicity at a single
point of time is sufficient to classify a substance-dose combination
as inducing an organ toxicity, the maximum over predictions for
the respective points in time is used. If the final value is larger
than o.5, the compound is classified as toxic. The principle of this
group-classification is shown for an experiment with two collection
time-points in figure 4.4.

“_r
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IDENTIFIER SUBSTANCE DOSE ﬁ SAMPLES TOXIC
Cpdog BEA 2108 BR 10 ug/kgih. 15 13 %
Cpdos Bl internal o1 1omg / kg p.o. 31 0%
Cpdo6 BI internal o2 3omg / kg p.o. 15 0%
Cpdoy BI internal o2 100mg / kg p.o. 16 6%
Cpdo8 BI internal o2 300mg / kg p.o. 16 25 %
Cpdio Bl internal o4 1omg / kg p.o. 31 6%
Cpdi1 BI internal o5 25mg / kg p.o. 32 9%
Cpdiz2 Bl internal o6 1omg / kg p.o. 16 25%
Cpdi3 BI internal 06 100mg / kg p.o. 32 78 %
Cpdis BI internal oy 100mg / kg p.o. 13 33 %
Cpdi6 BI internal 08 5mg / kg p.o. 16 0%
Cpdiy BI internal 08 15mg / kg p.o. 16 13 %
Cpdi8 BI internal o9 o.5mg / kg p.o. 16 6%
Cpdig Bl internal 10 3omg / kg p.o. 16 0%
Cpd2o Bl internal 11 100 mg / kg p.o. 15 20 %
Cpda1 Bl internal 12 somg / kg p.o. 15 13 %
Cpd23 BI internal 14 200mg / kg p.o. 16 25 %
Cpd24 Bl internal 15 100mg / kg p.o. 16 31%
Cpd2s Bl internal 16 somg / kg p.o. 16 0%
Cpd26 Bl internal 17 54mg / kg p.o. 16 19 %
Cpd2y BI internal 18 300mg / kg p.o. 16 6%
Cpd28 Bl internal 19 54mg / kg p.o. 16 0%
Cpd2g BI internal 20 3omg / kg p.o. 16 6%
Cpd3o Bl internal 21 300mg / kg p.o. 16 13 %
Cpd31 Chloroquine 3omg / kg p.o. 14 0%
Cpdss Bl internal 22 100mg / kg p.o. 16 6%
Cpds4 BI internal 23 25mg / kg p.o. 16 0%
Cpdss Bl internal 24 120mg / kg p.o. 16 6%
Cpdgo HP--CD 3omg / kg i.v. 14 7 %
Cpdg1 Hydrochlorothiazide 20mg / kg p.o. 16 25 %
Cpdss Imipramine 100mg / kg p.o. 16 19 %
Cpdss NaCl 0.9 %i.v. 16 19 %
Cpdy6 NaCl / Glucose 0.9 % / 5% isoosm. 1:1 i.p. 14 0%
Cpdsg9 Natrosol 0.5 % Pp.o. 60 0%
Cpdso Netilmicin 20mg / kg i.p. 16 6%

Table 4.1: Substances regarded as non-toxic with respect to the proximal
tubule according to literature references (cf. [Lien 08b]). The
percentage of samples labeled as toxic according to the results

from clinical chemistry are additionally given.
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IDENTIFIER SUBSTANCE DOSE ﬁ SAMPLES TOXIC
Cpdo1 2-BEA 100mg / kg i.p. 16 69 %
Cpdo2 Amiodarone 200mg / kg p.o. 15 7%
Cpdo3 Ampothericin B 4mg / kg ip. 16 6%
Cpdog Bl internal 03 1oomg / kg 13 80 %
Cpdig BI internal 06 3oomg / kg p.o. 15 100 %
Cpd22 Bl internal 13 10 mg / kg 16 0%
Cpd32 Cisplatin 1omg / kg i.p. 16 25 %
Cpd36 Folic acid, unbuffered 200mg / kg i.p. 16 13 %
Cpd3sy Gentamicin 100mg / kg s.c. 14 7%
Cpds8 HCBD 100mg / kg i.p. 16 56 %
Cpd3g HgCl, 1mg / kg ip. 16 44 %
Cpdg2 Hydroquinone 10omg / kg p.o. 8 75 %
Cpdag Indomethacin 3omg / kg p.o. 13 15 %
Cpdsy NaCrOy4 3omg / kg i.p. 16 44 %
Cpd48 NaF 20mg / kg i.p. 16 13 %
Cpds1 N-phenyl-2-naphthylamine 250mg / kg p.o. 16 0%
Cpds2 Pluronic F-68 soomg / kg i.v. 7 43 %

Table 4.2: Substances regarded as toxic with respect to the proximal
tubule according to literature references (cf. [Lien 08b]). The
percentage of samples labeled as toxic according to the results
from clinical chemistry are additionally given.

INTENSITY TOXIC

NAME POSITION [ppm] INTENSITY NON-TOXIC
BP_1 1.0 (£0.01) 0.1 (+o0.1)
BP_2 4.5 (F0.01) 0.5 (£0.2)
BP_3 4.23 (£0.005) 0.5 (+o0.2)
BP_4 6.8 (£0.005) 0.2 (£0.1)
BP_5 8.11 (40.005) 0.3 (£0.1)

0.2 (£0.2)
0.7 (£0.2)
0.3 (£0.2)
0.1 (Fo0.1)
0.4 (£0.1)

Table 4.3: Position and intensity of biomarker patterns added to the
simulated data set. Positions and intensities are randomly

varied in the denoted ranges.
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SUBSTANCE INDICATION

2-BEA Experimental
Amiodarone Anti-Arrhytmic
Ampothericin B Antibiotic

BEA 2108 BR Anticholinergic Drug

BI internal o1
BI internal o2
BI internal 03
BI internal o4
BI internal o5
BI internal 06
BI internal o7
BI internal 08
BI internal o9
Bl internal 10
BI internal 11
Bl internal 12
Bl internal 13
Bl internal 14
Bl internal 15
BI internal 16
BI internal 17
BI internal 18
Bl internal 19
BI internal 20
BI internal 21
Chloroquine
Cisplatin

Bl internal 22
BI internal 23
Bl internal 24
Folic acid, unbuffered
Gentamicin
HCBD

HgCl,
HP-B-CD
Hydrochlorothiazide
Hydroquinone
Imipramine
Indomethacin
NaCl

NaCl / Glucose
NaCrOy

NaF

Natrosol
Netilmicin
N-phenyl-2-naphthylamine
Pluronic F-68

PDE IV

DPP IV / Diabetes
CGRP / Megrim

PDE IV

MCH

Factor 10a

CGRP / Megrim

PDE IV
Squalen-Cyclase-Inhibitor
Squalen-Cyclase-Inhibitor
CGRP / Megrim

EGFR
Fibrinogen-R-Antagonist
Fibrinogen-R-Antagonist
EGFR

NK1-Antagonist
NKi1-Antagonist
LTB4-Antagonist
NKi-Antagonist
NK1-Antagonist
LTB4-Antagonist
Antimalaria Agent
Cytostatic Drug
5HT3R-Antagonist
MCH

EGFR

Vitamin

Antibiotic Aminoglycosid
Experimental
Experimental

Excipient

Diuretikum
Experimental

Tricyclic Antidepressant
NSAID

Vehicel

Vehicel

Experimental
Experimental

Zellulose / Vehicel
Antibiotic Aminoglycosid
Experimental

Excipient

Table 4.4: Compounds and their division into different indication

classes.



ADVANCED ENSEMBLE APPROACHES FOR
CLASSIFICATION OF NMR SPECTRA

The reliable detection of drug-induced organ toxicities is an im-
portant prerequisite for efficient drug design in pharmaceutical
industry. Histopathology or analysis of biofluids by clinical chem-
istry allow for the identification of organ toxicities, but these
are complex procedures requiring expert knowledge in the re-
spective fields. Thus, an automatic detection of organ toxicities
is desired for a fast evaluation of animal experiments in order
to give support to the determination of possible adverse effects
induced by a pharmaceutical. Sample analysis can be achieved
by NMR spectroscopy in a non-destructive and non-selective way,
leading to spectral profiles specific to the organism’s health status.
Changes in the metabolism of an organism can be detected in
these spectra as variation of peak intensities.

Methods from the field of pattern recognition have been ap-
plied to analyze these complex NMR samples in order to auto-
matically detect organ toxicities based on patterns of spectral
changes. However, these patterns are not known beforehand and
their identification is a complex task. Spectral signals are altered
by different factors such as noise and peak shifts, whereby the
information on the concentration of specific molecules is not
easily accessible. Furthermore, available NMR data sets are rather
small with only hundreds to thousands of samples due to the
expensive measurement procedure.

As presented in chapter 3, ensemble methods have led in
several applications to more accurate and robust classification
models in comparison with single classifier approaches. The
basic design of ensemble methods aims at the creation of base
classifiers with different views on the data and their combination
by ensemble aggregation methods. Different views can either
be induced by the modification of the data or variation in the
training of the base classifier. Generally, ensemble methods are
not restricted to certain types of algorithms for the creation of
base classifiers, and any approach leading to a set of diverse
classifiers can be applied. This flexibility in the ensemble design
allows for the definition of views specific to the classification of
NMR spectra as either indicating an organ toxicity or not. Thus,
robust and accurate classifications can be achieved even for noisy
and sparse data sets.

NMR spectra are rich of information on the concentration of
multiple molecules contained in a sample. However, the identifi-
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cation of signals, which show intensity changes in case of organ
toxicities, is an important aspect in order to achieve a robust
few relevant signals classification. Since the measurement procedure is non-selective,
only a small fraction of signals present in a spectrum is expected
to be relevant to classification purposes. The flexibility of en-
semble systems in the creation of base classifiers can be used
to overcome this problem of many spectral regions not being
relevant to classification purposes. By estimating the relevance
focus on particular — of each spectral region in a data-driven way, this information
spectral regions .3 be included in the ensemble creation, finally leading to an
improved ensemble performance. Furthermore, the information
on relevant spectral regions can be used in safety pharmacology
for the determination of biomarker patterns. The identification of
molecules corresponding to the biomarker patterns is expected to
allow for a more robust and reliable detection of organ toxicities
in clinical chemistry.

Results presented in the following description of developed
ensemble methods are used for the illustration and justification
of particular decisions in the design of the ensemble creation pro-
cedures. An extensive experimental evaluation of the presented
approaches and a comparison with alternative classification meth-
ods is given in chapter 6.

5.1 VARIATION OF SPECTRAL PREPROCESSING METHODS
FOR ENSEMBLE CREATION

Raw NMR spectra are initially described by 250 000 spectral vari-
ables. This spectral range is larger than the region containing
peak signals. Thus, a commonly accepted preprocessing proce-
dure is the exclusion of spectral regions below 0.02 ppm and
above 10ppm for a metabonomic analysis. Furthermore, the
region around the water and urea peaks (4.5 ppm - 6 ppm) is
excluded in order to reduce disturbing artifacts induced by the
water and urea peak.
This restriction on particular spectral regions is a standard
no standardized  procedure, used in several publications. However, this is the only
prep r:;f:;;ti standardized preprocessing procedure. A variety of other pre-
P processing approaches is proposed in the literature, showing
improvements in metabonomic investigations of the respective
data sets. Although the application of a bucketing procedure
using a bucket width of 0.04 ppm is proposed in several publica-
tions, this bucket width is not well motivated' and can further

1 In fact, this bucket width has first been motivated in the early days of Metabo-
nomics. Bucketing was used as a method to reduce the number of variables
below 256 as the maximal number of columns in an Excel sheet. Using the
spectral range from 0.02 ppm to 4.5 ppm and 6 ppm to 10 ppm has led to the
choice of 0.04 ppm.
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Figure 5.1: General structure of the ensemble system based on variation
of spectral preprocessing and feature extraction methods.

be optimized for some particular data set. Due to the lack of a
standard preprocessing protocol, available preprocessing meth-
ods have to be evaluated and the best performing one is used for
final application.

This is a classical situation, where multiple classifiers with
varying performances are generated, but only a single one is
used due to the restriction to a single classifier system. Further-
more, the best performance is always limited to the particular
data set used during optimization. Thus, no general statement
about the applicability of different preprocessing methods can
be achieved. Ensemble systems allow to overcome this restric-
tion and combine the set of classifiers. This ensemble creation
procedure based on the variation of preprocessing methods is a
first general proof of concept of the suitability of ensembles for
metabonomic applications. This ensemble system has been pre-
sented in [Lien 08a, Lien 08b] and its general structure is shown
in figure 5.1.

A first variation is achieved in this approach by the selection of
0.01 ppm, 0.02 ppm or 0.04 ppm as bucket width. Large buckets
improve the compensation of peak shifting effects but also de-
crease the spectral resolution and increase the number of peaks
combined to a single variable. The selected bucket width either
allows for an increased spectral resolution or for a compensation
of peak shifts.

In addition to the bucketing operation, standard normal variate
(SNV) transformation is used for scaling spectroscopic data sets,
normalizing the variables of each spectrum to a mean-value of
zero and standard deviation of one [Barn 89]. This transformation
has been developed for the normalization of near infrared spec-

selection of the best
single preprocessing
procedure

combination of
different prepro-
cessing procedures

variation of bucket
width

optional SNV scaling
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troscopic data, but has also shown good results for NMR spectra
[Jank 09, Maso o7]. Variation of bucket width and the optional
application of the SNV transformation generates six different data
sets.

Common practice is also the projection of the spectral data
set by PLS transformation (cf. section A.2) into a feature space of
lower dimensionality. The PLS transformation focuses on variables
relevant to class discrimination, allowing for an improved per-

variation in the  formance of a subsequent classification procedure. The number
number of PLS o p1 5 components is usually determined according to the clas-
components sification performance on a validation set. However, this is only
a valid procedure if the estimated PLS model achieves for each
feature a correct estimation of its relevance to class discrimina-
tion. Otherwise, features generated by additional PLS components
contain information that lead to an improved performance of a
subsequent classification procedure. Thus, the number of PLS
components for the transformation of the six preprocessed data
sets is also evaluated by building models using one to five PLS
components and increasing the number up to fifty in steps of
five.

This variation of preprocessing and feature extraction finally
leads to a set of go differently preprocessed data sets, which
serve as data basis for the training of base classifiers. Each classi-
fier predicts a sample dependent on the respective preprocessing

ensemble  procedure, leading to different sets of misclassified samples. Com-
combination pination of these predictions by majority voting is expected to
lead to a reduced set of misclassified samples as introduced in

section 3.2.

5.2 MODIFICATION OF RSS FOR IMPROVED
ENSEMBLE CLASSIFICATION

The ensemble approach presented in the previous section serves
as a proof of concept for the applicability of ensemble systems
in metabonomic applications. Ensemble systems allow for the
design of ensemble creation and aggregation procedures in con-
sideration of characteristics of some particular data set. The classi-
fication system described in this section is based on a prominent
ensemble creation procedure, which is adapted for the domain
of NMR classification.

Reconsidering the representation of molecule concentrations
in an NMR spectrum (cf. section 2.2), it becomes clear that cer-
tain variables, which correspond to specific regions within the
spectrum, reflect the concentration of specific molecules. Only a
small fraction of the molecules measured by NMR spectroscopy is
expected to show changes in concentration caused by an induced
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organ toxicity. Thus, a selection of variables relevant to the classi-
fication of samples as non-toxic or toxic has to be determined.

The RSS procedure, as introduced in section 3.3.2, randomly
selects a subspace of variables for the creation of a new data set
®. Using this ensemble creation procedure, a subspace selection
and improved generalizability can be achieved [Ho 98]. However,
according to the originally proposed RSS procedure, all dimen-
sions are selected with equal probability for inclusion in each of
the subspaces. In order to include differences in the relevance of
particular variables for classification purposes in the subspace
selection procedure, weights are assigned to each variable. High
weights are assigned to the most relevant variables and increase
their probability to be selected for a subspace. However, in or-
der to derive this improved RSS procedure, a reasonable weight
distribution has to be estimated.

An iterative optimization procedure has first been presented
in [Lien oy] in order to determine a weight distribution for a
particular data set and a detailed description is given in this sec-
tion. The optimization procedure aims at increasing the weights
of features regarded as most relevant to classification purposes
in an automated way. Due to the correspondence of single vari-
ables to particular spectral regions, an automated selection of
relevant regions of the spectra is achieved. By this newly devel-
oped enhancement of the RSS procedure, the mean classification
performance of base classifiers is increased and finally leads to
an improved ensemble performance. Due to the modification of a
weight distribution used within the RSS procedure, this approach
is denoted as adapted random subspace sampling (ARSS).

Optimization of Weighted RSS

Prior to the optimization of variable weights, a bucketing proce-
dure using a bucket width of o0.01 ppm is applied to the spectral
data set. Peak shifts are a common problem in metabonomic inves-
tigation and influence the success of subsequent classification ap-
proaches. Using a bucket width smaller than the quasi-standard
of 0.04 ppm reduces the effect of peak-shift compensation, but
improves the spectral resolution. Thus, each bucket value con-
tains intensity information of a smaller number of peaks and the
selection of particular variables is comparable with the selection
of specific peak signals.

The optimization procedure, as shown in figure 5.2 and algo-
rithm 2, starts with uniform weights w;, i = 1,...,m assigned
to each dimension. According to these weights, a set of L sub-
spaces is extracted. Thereby, n dimensions are drawn randomly
with replacement from the originally n-dimensional data set. This
leads to L data sets A]- € R",j=1,...,L with in average 63.2 %

selection of spectral
regions

RSS

weighted RSS

automatic weight
optimization

preprocessing by a
bucketing procedure

uniform weight
distribution as
starting point
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Figure 5.2: Weight adaptation procedure.

unique features from the original data set [Brei 96¢]. This is the
general procedure applied in RSS and serves as starting point for
the optimization procedure.

The random selection of variables used for the definition of
the subspaces Ay, ..., AL is the basis for the training of diverse
classifiers Dy, ..., Dy with classification performances y1,...,vr.
In this ensemble, the estimated model for each classifier and
its classification performance are dependent on the selection of

classifier perfor-  variables contained in the particular subspace. Thus, variables
mance dependent on - yced by the classifier with the best performance 3 allow for
the subspace an improved classification of a validation set in comparison to
variables used for estimation of the classifier model with the
worst performance 7. This information on the variables used
by each classifier and the resulting classification performance is
the basis for the modification of weights used in the subspace

sampling procedure.

The features selected for the subspace of the best base classifier
are necessary in order to achieve a robust classification. Therefore,
weights of features used in this subspace are upscaled by multi-

upscaling of weights plication with the learning rate v (v > 1). However, if a feature
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Algorithm 2 Weight optimization procedure for RSS

Input: m-dimensional data set X, convergence threshold ¢, learn-

ing rate v, ensemble size L, number of repetitions K

Output: optimized weight distribution w

1:

[
Q

[
[

128

13:

14:

15:
16:

17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
20:
30:
31:
32:
33:
34
35:
36:

w,=1,i=1,...,m e initialize weight distribution w
7(0) =0
t=0
repeat
fork<—1,...,Kdo
for/ —1,...,Ldo
extract subspace A’l‘ given w
train classifier Df on A’{
determine classifier performance 7
end for
determine the best 3 and worst classification perfor-
mance Yy of Dy,..., Dy
for/ —1,...,Ldo
calculate scaling factor le for A; by

b (Bmy (- 1) i 11 <05

le — TB=YW v TB=TW
_ 2v=2)(vF—w) .
i (2-v)+ =, otherwise
end for
end for

for/ —1,...,Ldo

T =1/ H,Ile le o normalize scaling factors

end for

fori—1,...,mdo
c=0
s=1 e dimension scaling
for! —1,...,Ldo
if Al N {)\1} 7& @ then
c=c+1
S§=5%T o rescale scaling value
end if
end for
if ¢ # 0 then
s=+/s o normalize scaling value
end if
wW; = W; * S o scale variable weight
end for
t=t+1
until [7(t) —y(t—1)| <e e check on convergence
return optimized weights w
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Figure 5.3: Scaling factors T for different learning rates v.

contained in the subspace of the best classifier is also used by
the worst classifier, no inference of the feature’s relevance can
be determined. Thus, the weight of this feature is multiplied by
downscaling of 1 /v, thereby revoking the previous modification and the feature’s
weights  weight remains at its value. Furthermore, weights of features
used by the classifier with mean classification performance are
multiplied by one since their relevance for classification cannot
be determined in relation to the features used by the best and
worst classifiers.

determination of Based on these principles a scaling factor 7; has to be defined
scaling factors — gor each subspace. Therefore, scaling factors defined in the previ-
ous paragraph are used as fix points and linear interpolation is

applied between them, resulting in the following formulation:

1 2(vi—w) 1\ ¢ ViTIW
vt ( = > (1—y) if e < 05 forj=1,...,L.

(2—v)+ w otherwise

Tj:

Generally, alternative scaling functions can also be applied in
this stage, but the exact formulation is expected to be of minor
importance. The proposed calculation fulfills the previously men-
tioned requirements and the learning rate can be adjusted by a
single parameter. Thus, this function is a reasonable choice for
this application.

The main step in the optimization procedure is the modification
of the weight distribution. Scaling factors calculated for each
of the subspaces are the basis for determination of the weight
distribution used in the next iteration. A single dimension can
be used in several subspaces and the factor for scaling of the

normalization of  dimension’s weight is calculated as the geometric mean of all
sealing factors — oorresponding scaling factors. For example, if the feature with
the index k = 1,...,n is used in the subspaces Ay, As and Ay,

wy is changed by

wk:wk*,3/1'2*r5*1'12.
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In order to derive p = {p1,..., pn}, which controls the proba-
bility for each dimension to be chosen in the subspace selection
procedure, the percentage of each weight from the sum of all
weights is determined by

With respect to these modified probabilities, a new ensemble is
created and the process is repeated until convergence is achieved.
In this context, convergence is defined by a change in the mean
classification performance 4 of the individual base classifiers
below a predefined threshold €. Variables with upscaled weights
due to a relatively high classification performance achieved by
classifiers using this variable are favored in the next iteration and
are again modified in the next iteration.

Scaling factors determined in each iteration are dependent
on the subspace selection. In order to avoid putative statistical
artifacts induced by the subspace sampling procedure, multiple
ensembles are created using the same weight distribution. Com-
bination of scaling factors from several repetitions is achieved by
the calculation of their geometric mean.

Results of an exemplary weight optimization procedure for the
REAL.NMR data set, as presented in section 4.1.1, are shown in fig-
ure 5.4. SVMs using a linear kernel function are the base classifier
algorithm in this approach, allowing for a reasonable classifi-
cation performance and fast parameter optimization. The mean
performance of single classifiers increases in the optimization pro-
cedure due to the preference of variables with high weights. As
an effect of the improved single classifier performance, the ensem-
ble performance on the cross-validation set also increases. The
ensemble diversity, estimated by the entropy measure, decreases
during this optimization procedure by about 8o %, however the
ensemble performance on the test set is increased. Thus, despite
the decreased ensemble diversity, the ensemble performance on
the cross-validation and test set is improved by the optimiza-
tion of the weight distribution used in the ensemble creation.
The learning rate v controls the speed of convergence in this
approach. Values close to one will lead to only small changes of
variable weights, but increasing the learning rate could speed up
the optimization procedure.

As can be seen in figure 5.4, the iterative optimization of
weights used in a weighted RSS procedure leads to an improve-
ment of the base classifier performance. As an effect of the im-
proved base classifiers, the ensemble performance on the cross-
validation and test set also increases. Thus, it is reasonable to
focus in classification on only specific parts of the spectra, which
contain the most relevant information for classification purposes.

selection probability

convergence criterion

creation of multiple
ensembles in each
iteration

improved mean
classifiers

improved ensemble
performance
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Figure 5.4: Change of diversity, mean single classifier performance and
ensemble performance on the cross-validation and test set
throughout the proposed weight adaptation procedure.

Thereby, more accurate and robust classification models can be
trained and combined to an ensemble system.

5.3 ENSEMBLE OF LOCAL EXPERTS

In the previous section, an approach for guiding an RSS procedure
to favor relevant features in the selection of feature subspaces
was presented. This restriction on certain spectral regions for
classification is the central aspect in the adaptation of ensemble
methods for the automatic classification of NMR spectra. Although
this has been implicitly achieved by the optimization of RSS
weights, features with low weights can still influence the final
ensemble. Thus, no clear separation between non-informative
and informative regions can be achieved. The focus on the most
ensemble of local  relevant spectral regions and their automatic determination is
experts — presented in this section by the ensemble of local experts approach.
The overall structure of the new ensemble approach for clas-
sification of NMR spectra is shown in figure 5.5. Contrary to
the previously presented approach, a bucketing procedure is ap-
high spectral - plied using a small bucket width of 0.001 ppm. The objective of
resolution  this bucketing procedure is not the compensation of peak shifts
but the equal discretization of all spectra. Thereby, changes in
peak intensity of single peaks are noticeable and can be used for
classification.
general structure of Initially, multiple spectral regions ¥;, i = 1, ..., L are selected
the ensemble system— for further progress, denoted as the spectral regions of interest
(SROIs). An alignment procedure for the compensation of peak-
shift effects is applied to these SROIs and L base classifiers are
trained. These classifiers serve as local experts with a focused view
on the data including signals from a limited amount of molecules.
Since these local experts are the basis for the definition of the
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Figure 5.5: Overview of the ensemble of local experts approach.

ensemble system, it is denoted as ensemble of local experts and
has first been presented in [Lien 08c]. Finally, an ensemble opti-
mization procedure is applied for the improvement of ensemble
classification performance by the subsequent ensemble aggrega-
tion method. An optimization can be achieved by selection of a
subset of local experts used for the final ensemble classification
or application of alternative ensemble aggregation strategies.
The proposed procedure mainly consists of four different steps:

. Selection of SROIs

=

2. Alignment of SROIs
3. Training of base classifiers
4. Ensemble optimization

While the training of base classifiers can be achieved by super-
vised learning, the remaining steps require methods suitable for
the current application. The optimization of these methods is
achieved via cross-validation as presented in section 4.2. Finally,
the relevant SROIs, alignment models, parameters used for the
training of base classifiers and the final ensemble aggregation
method are obtained and can be used for the construction of the
final classification system. Therefore, all samples are partitioned
into the final SROIs, which have been used in the ensemble, and
the alignment procedure is applied. Parameters specific for the
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particular base classifier are used to train the local experts and
the final ensemble combination is achieved. Details on the meth-
ods used in the respective steps are presented in the following
sections.

5.3.1 Determination of Spectral Regions of Interest

The separation of a full spectrum into several segments allows
for the training of classifiers using only a limited amount of
information (represented by peak intensity changes) for their
focus of each local - classification decision. Since usually concentrations of several
expertonashort 1, lecyles are necessary to identify a toxic effect, it is unrealistic
spectral region . . . .
to assume that the use of a single local expert is sufficient to allow
for a perfect classification. But their combination in an ensemble
can achieve a higher classification than each individual classifier.
combination of  Thus, spectral regions used by the local experts should contain
multiple views in an information relevant to class discrimination. However, in this step
ensemble . . . . . .
the question arises how these regions can be reliably identified
since no information on the relevance of spectral signals for
classification is available.

Generally, peaks represent the main signals in an NMR spec-
trum. However, peak overlaps and signals with an intensity simi-
lar to the noise intensity complicate approaches for robust peak
detection. Furthermore, peak detection is usually applied to each

definition of SROIs spectrum separately. In order to determine spectral regions in-
independent of a dependently of the current spectrum, detected peaks have to be
specfic spectrum matched against each other. This is the basic problem in peak
alignment. Thus, the robust detection of SROIs is a complex task
and usually no background knowledge of relevant signals can be

applied.

Considering the problems in peak detection, an approach for
the automated extraction of SROIs independent of peak detection
results is developed (cf. figure 5.6). This approach is based on

sliding window  sliding windows, defining SROIs by windows of fixed size and
approach  an overlap of 50% on the whole spectrum. Moving the sliding
window by 50 % of the window size to the next position is used
for the compensation of problems caused by disadvantageous

border positions.

In order to achieve a local view on the spectra, each SROI should
include only a limited amount of signals. However, peaks in the
same spectral region are expected to originate from the same
chemical group. Combination of these signals can improve classi-
fication performance. In order to allow for sliding windows with
a very local view and also larger SROIs containing multiple sig-

windows in nals, sliding windows are applied in multiple scales. The smallest
different scales - \indow size of 0.025ppm is equal to the width of dominant
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Figure 5.6: Sliding window with overlap approach in multiple scales
for separation of a spectrum into multiple SROIs ¥1,..., ¥r.

peaks and doubled each time up to a size of 0.4 ppm, allowing
for the combination of neighboring peak signals.

Application of this approach on the spectral range from 0.2 to
4.5ppm and 6 to 10 ppm? in five scales using window sizes of
0.025, 0.05, 0.1, 0.2 and 0.4 ppm leads to the definition of 1241
SROIs. These spectral regions form the basis for the further process
of peak alignment and base classifier training.

In fact, no explicit selection of a subset of the full spectral range
but a separation of the spectrum into multiple parts is achieved.
In this early stage of the classification procedure, no information
on the relevance of spectral regions is present or can be derived
from the spectral profile. Even the presence of strong signals with
significantly changing intensities does not indicate a relevant
spectral region. These intensity changes could also be induced by
other sources independently of the investigated organ toxicity.

Thus, a collection of SROIs is defined in this step and the restric-
tion on particular spectral regions is achieved by the selection of
a subset of all available local experts. A first exclusion of local
experts can be achieved by the estimation of their classification
performance by a cross-validation procedure. In case of a low
classification performance, signals in the respective SROI are not
regarded as relevant to the current classification problem and are
excluded from further progress.

However, this first exclusion of local experts does not respect
their combined performance in the final ensemble. Thus, a further
ensemble optimization procedure is applied to an explicit selec-

The spectral region from 0.02 to 10 ppm contains the main peak signals and is
analyzed in metabonomic approaches. The spectral range from 4.5 to 6 ppm
contains the dominant peak signals from water and urea, and is usually ex-
cluded.
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optimization of  tion of local experts with respect to the classification performance
the expert Sezec“;l” achieved by ensemble aggregation methods. Neither the most
w;;;:;;?n Cz relevant spectral regions nor the optimal number of local experts
is known beforehand. Thus, the final selection of local experts
has to be determined in a data-driven way.

SROIs are the basis for the training of local experts, but in order
to achieve a robust classification of SROIs peak shifts have to
be compensated. Subsequent to the application of an alignment
procedure, base classifiers are trained and ensemble optimization
procedures are applied.

5.3.2  Compensation of Peak Shifts

Differences in sample properties, such as pH, temperature or ion
concentration, induce a slight modification of the peak position.
compensation of  These perturbations have to be compensated in order to allow
peak shifts  gor a reasonable classification (cf. 2.3.1). Each hydrogen atom is
influenced to a different extent by changes in pH, temperature
or ion concentration dependent on the electromagnetic environ-
ment of the nucleus. Thus, a correction of peak shifts cannot be
achieved by assigning a global shift factor moving the whole
spectrum to the correct position. However, the separation of the
spectrum into several SROIs allows to correct peak shifts present
separate alignment in quite small spectral regions containing only few peaks. Since
of each SROL these short spectral regions will be processed independently from
each other in the subsequent process, the problem of aligning the

whole spectrum is reduced by the alignment of each SROI.

Stoyanova et al. presented in [Stoy 04] an approach to the auto-
matic detection of peak shifts based on a principal component
analysis of a spectral data set. If no mean-centering is applied

identification of  prior to the estimation of the PCA model, peak shifts are indi-
peak shifts  cated in the second PC by a shape similar to the first derivative
of a peak signal. This characteristic can either be used for the
detection of peak shifts or for the quantization of peak shifts in
the current spectrum according to the influence of the distinct
model components.

The first two PCs for a simulated data set of an unaligned and
aligned peak, and the corresponding normalized eigenvalues are
shown in figure 5.7. In the unaligned case, the second PC has
the shape of a peak’s first derivative and merely 69.2 % of the
variance in the data is described by the first PC. This explained
variance increases to 99.8 % in the aligned case and the second

high explained vari- — PC has no derivative shape. Thus, the quality of an alignment

ance of first PCindi- 1, -0 cedure can be quantized by the determination of the explained
cates aligned peaks . . C . .

variance of the first PCs. Actually, the distribution of the explained

variance among the first PCs has also been applied in the COW

alignment procedure as presented by Skov et al. [Skov 06]. In this
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Figure 5.7: First two PCs of an unaligned and aligned simulated data
set. The percentage of explained variance by each individual
PC according to their eigenvalue is denoted.

context, the alignment quality is determined with respect to the
simplicity value (cf. section 2.3.1). Therefore, the maximization of
the explained variance of the first PC represents the main objective
of the new SROI alignment procedure.

The iterative alignment scheme is based on the evaluation of
several positive and negative alignment shifts separately applied
to each spectrum. The shift leading to the maximum similarity
of the current spectrum to the remaining spectra is assigned as
the shift factor 6;,i = 1,...,N (cf. figure 5.8). Before the align-
ment procedure can be applied, the maximum shift dmay, that is
expected to occur in a given spectral data set, has to be defined.
Given p as the number of shifts to be evaluated at each iteration,
discrete evaluation shifts d_max,...,0,...,0max are defined from
the negative maximum shift up to the positive maximum shift
in equally sized steps. Increasing p leads to a finer grid for the
search of an adequate alignment shift of the current spectrum in
each iteration, but also increases the computational complexity of
the alignment procedure. The similarity of each shifted version
of x; to the remaining data set is determined by calculation of
the reconstruction error € using the first PC 6; of a PCA model
estimated on the remaining data.

((xi61)01)]|

Peak shifts are modeled by the second PC and if the first PC is
sufficient for the description of the current spectrum, peak shift
effects are reduced. Thus, maximum similarity is achieved if the
reconstruction error becomes minimal. Therefore, the shift value
corresponding to the minimal reconstruction error is assigned as
shift factor ¢; to the sample x;. This procedure is applied to each
sample in the data set and repeated until the changes in shift
factors converge to a value close to zero.

This procedure requires the estimation of N PCA models, where
N is equal to the amount of samples in the data set. In order to

€ = [xi —
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Figure 5.8: Scheme for the alignment of a data set X. Each sample x;
is aligned to the remaining data set by means of the first
PC 01 of a PCA model. The shift factor §; leading to the
minimal reconstruction error is assigned to the spectrum
x; and the aligned spectrum is added to the next data set.
This procedure is iterated until shift factors converge close
to zero.
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Figure 5.9: Alignment results for one of the citrate doublets and the
change of simplicity during the iterative optimization.

reduce the computational complexity of the alignment procedure,
blocks of samples can be defined. These blocks are excluded
from the whole data set, shifted by the evaluation shifts and the
minimal reconstruction error is determined with respect to the
PCA model determined on the remaining data set. Randomization
of the selection of samples contained in each block after each
iteration allows for an alignment independent of a particular
partition of samples into these blocks.

An exemplary alignment result for one of the citrate doublets
from 50 randomly selected spectra is shown in figure 5.9. Citrate
peaks are present in every spectrum from urine samples and
show a high sensitivity to changing physiochemical factors. Thus,
these peaks are selected for the demonstration of the alignment
achieved by the procedure described in this section. The set of
spectra is randomly split into 20 sample subsets and aligned
against the remaining ones. The simplicity value of the unaligned
data set is equal to 0.48, whereby the values range from zero
to one and a well aligned data set has a simplicity of one. An
improvement of the alignment quality is achieved in the first
iteration and finally converges to a value of 0.91 in the following
iterations. The speed of convergence is mainly dependent on the
data, but the main improvement is achieved in the first iterations.

The proposed alignment procedure has several advantages
in the application for alignment of SROIs. Contrary to other ap-
proaches, no reference spectrum is required in order to achieve a
well-aligned data set. The alignment of new samples to this data
set is also straightforward by estimation of a final PCA model
for the whole data set and alignment of the new samples by
means of the first PC of this model. Furthermore, well aligned
spectra can be obtained in a reasonable time independently from
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the results of a peak detection algorithm. Thus, this alignment
scheme is applied on the selected SROIs by the multi-scale sliding
window approach and used for the training of base classifiers by
supervised learning.

5.3.3 Ensemble Optimization and Aggregation

The alignment of SROIs allows for the training of classifiers with a
limited view on the spectra and their integration into an ensemble
of local experts. SROIs containing information relevant for dis-
crimination between non-toxic and toxic samples are determined
in the ensemble of local experts approach by the selection of a
subset of all available experts. The problem of determining an
optimal subset of local experts for ensemble classification can be
ensemble optimizat-  compared to feature selection as a common problem in pattern clas-
fon comparable to gification tasks. Thereby, given a set of L features, the subset of I
feature selection . . cpe
(I < L) features leading to the optimal classification performance
of a subsequent classification system has to be determined.

An exhaustive search by the evaluation of all possible feature
combinations is usually not practical due to the computational
complexity of this procedure. For example, the determination of
the optimal subset of 10 features from 100 available ones by an
exhaustive search requires the evaluation of

100 100!
(10) 101100 — 10y — 7210

different subsets. Assuming that 100 different combinations could
be evaluated within a second, the whole evaluation would last
nearly 5500 years. This demonstrates the necessity of alterna-
tive approaches, which achieve good selections in a reasonable
time even though these could lead to suboptimal solutions. The
determination of a reasonable selection of local experts in a com-
ensemble  putationally feasible way is denoted in this thesis as ensemble
OpHmMIZANON  optimization.

An overview of different ensemble aggregation strategies has
been presented in section 3.5, but these consider all available
classifiers for determination of the final classification. Methods
optimizing the selection of local experts to be used for ensem-
ble aggregation by majority voting, and an aggregation method
focusing on generalizability of the aggregation method will be
presented in the following.

Sequential Optimization

Marill and Green introduced a feature selection algorithm, de-
noted as sequential backward selection (SBS) [Mari 63], and its bot-
tom up version sequential forward selection (SFS) is proposed by
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Whitney [Whit 71]. Thereby, a feature selection is iteratively op-
timized by stepwise exclusion / inclusion of features. Once a
feature is excluded / included in the subset, this decision cannot
be revoked during optimization, which is denoted as the nesting
effect [Pudi 94].

In order to overcome the nesting effect, the sequential back-
ward floating selection (SBFS) and sequential forward floating selection
(SFFS) approaches have been presented by Pudil et al. [Pudi 94].
These methods check after each selection of a feature to be ex-
cluded / included, whether the inclusion / exclusion of an already
evaluated feature improves ensemble quality. Feature selections
optimized by floating methods are not expected to be optimal
but show reasonable results by preventing the nesting effect. Fur-
thermore, the optimization procedure has a low computational
complexity (cf. [Pudi 94]).

The application of these floating methods for the problem
of ensemble optimization can be realized by using predictions
from local experts in the ensemble as features to be selected. The
quality of a given selection is determined by the classification
performance achieved by an ensemble aggregation method (e.g.
majority voting).

Before presenting details on selection procedures, some formal
definitions have to be introduced. The objective of the ensem-
ble optimization is to determine a selection &, = {¢1,..., P},
¢pie{l,...,L},i=1,...,kof k, 1 <k < L, local experts from
the set of all classifiers ® = {Dj, ..., D;}. The quality of an ex-
pert selection @ is determined according to the classification
performance achieved by majority voting, denoted as J(®y). In
accordance with [Pudi 94], the significance S;_1(¢;) of a classifier
¢; from the selection @y is determined by

Sk-1(¢i1) = J(Px) — J (P \ {i}),

where @y \ {¢;} is the set Oy excluding the classifier ¢;. The
significance Si.1(¢;), j = 1,... L — k of a classifier ¢; from the
set @ \ @ of unselected classifiers is calculated by

Se1(97) = J( P U{dj}) — J(Pr).-

The SFFS procedure mainly consists of three different steps that
are repeated until a maximum number of iterations or conver-
gence to a final selection is achieved. This procedure is initialized
with an empty set of classifiers ®y and the first two experts
are selected according to the general SFS procedure. After this
initialization, the SFFS procedure works as follows (cf. [Pudi 94]):
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STEP 1: INCLUSION OF THE BEST LOCAL EXPERT
Determination of the most significant classifier ¢, not al-
ready included in the ensemble according to

¢p = argmax J (P U {¢;})
$i € D\Py

and inclusion in ®; forming the new selection @y ;.

D1 = DU {¢p}

STEP 2: CONDITIONAL EXCLUSION OF THE WORST EXPERT
Determination of the least significant classifier ¢, in the set
@11 by
$w = argmax J(@ppa \ {‘Pj}) .
$j € Dpey1
If ¢ = ¢y then set k = k+ 1 and proceed with step 1.
Otherwise exclude classifier ¢, from @y, forming the new
set & by
B = Pt \ {pu}-

If k > 2 store the new set of classifiers ®; and the cor-
responding classification performance J(®;) and proceed
with step 3, else return to step 1.

STEP 3: CONTINUE CONDITIONAL EXCLUSIONS
Determination of the least significant classifier ¢ in the set
) by

¢s = argmax ] (P \ {¢;}).
(P]' € @;{

IF J(®\ {¢:}) < J(®; 1) then set

=@ and J(Px) = J(P1)
and continue with step 1. Otherwise set

D, =D \{¢s} and k=k—-1.

If k =2, set

@ =@ and  J(Px) = J(P})
and return to step 1. Otherwise repeat step 3.

floating ensemble The cardinality of the set of classifiers will float up and down
cardinality  throughout this process in order to include the best unselected ex-

pert or exclude the least significant expert. After this process has

stopped, the optimal selection achieved within SFFS is selected.

While the SFFS procedure is a bottom-up procedure starting with

an empty set of classifiers, the SBFS procedure works by means of

a top-down strategy. The full set of classifiers is used at the begin-

ning and the least significant expert is excluded or a previously
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Figure 5.10: Change of diversity and ensemble size in the first 500
iterations of an SFFS optimization on an exemplary set of
554 local experts.

excluded expert is integrated in the ensemble. Due to its simi-
larity to the SFFS procedure, this method will not be presented
in this work. The interested reader is referred to [Pudi 94] for a
detailed description.

Results of an exemplary ensemble optimization using the SFFS
procedure on a set of 554 local experts for the REAL.NMR data
set (cf. section 4.1.1) is shown in figure 5.10. The ensemble per-
formance increases up to an MC of approximately 0.68 in the
first iterations using an ensemble of 25 experts. The inclusion
of local experts is continued after this solution has been found,
but beyond this point the ensemble performance is decreasing.
Previously included experts are removed from the ensemble in
several steps during the optimization procedure as shown by
the number of local experts included in the ensemble in each
step. Thereby, the nesting effect can be avoided, which is a clear
advantage of the SFFS procedure in comparison to SFS. A clas-
sification performance below a previously defined threshold or
a constantly decreasing performance can be used as stopping
criterion for this optimization. However, results from the first 500
iterations are shown for demonstration of changes in ensemble
performance and size.

To sum up, floating methods determine an optimized subset
of local experts and improve classification performance of the
final ensemble. Since a pool of numerous classifiers is initially
created due to the segmentation of the spectrum into multiple
SROIs, an efficient optimization procedure is required. Floating
methods allow to determine an optimized classifier selection in
a reasonable time and are a promising ensemble optimization
approach investigated in this thesis for the selection of local
experts.
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Figure 5.11: Basic structure of hybrid genetic algorithm optimization.
Individuals are randomly selected from the initial pop-
ulation, modified by crossover and mutation operations,
and optimized by local search operations until the next
generation is created. In each iteration a new generation is
created until convergence is achieved.

Hybrid Genetic Algorithm Optimization

A comparison of several feature selection algorithms presented
by Oh et al. [Oh o04] has shown good results for SFFS but further
promising feature selection approaches are genetic algorithms
(GAs). These have also been investigated in earlier studies for their
application in feature selection and their effectiveness has been
extension of genetic proven [Bril 92, Raym oo, Sied 89, Yang 98]. An extension of GAs
algorithm approaches by ocal search operations are hybrid genetic algorithm (HGA). These
have shown superior results in [Oh o4] for data sets with more
than fifty features. The preselection of local experts is expected
to result in a set of typically a few hundred classifiers, wherefore
HGAs are a promising approach for the determination of an
optimized selection of local experts.

HGAs are non-sequential approaches evaluating multiple se-
lections at the same time. The distribution of solutions in the
parameter space is optimized by interaction of these solutions
using evolutionary concepts and local optimization methods (cf.
figure 5.11). HGAs have been presented by Oh et al. [Oh 04] as an
extension of the GA approach introduced by Goldberg [Gold 89].

combination of GA By combination of the GA and local search operations, individu-
principles and local als are improved in order to find local optima. Thus, no further
search operations . . . . .
iterations are required to search in the region close to the best
individuals.

The general structure of HGAs for expert selection optimization
is shown in algorithm 3. In an initial step, expert selections have to

chromosome  be encoded as chromosomes. This is achieved by the encoding of
encoding  each selection by a string of L binary digits, where L is the number
of local experts initially trained. The inclusion of expert D;, i =

1,...,L is encoded by assignment of “1” to the gene at position i
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Algorithm 3 HGA for local experts selection

Input: ripple factor r, population size P, crossover probability p.
and mutation probability p;,
Output: optimized expert selection ®

1: initialize population ® = {®4,...,Op}
2: repeat
32 for g «— 1,...,g do

4 select offsprings ®, and ®;, w.r.t. their fitness |

5: one-point crossover of @, and @, w.r.t. p,

6: mutation of ®, and &, w.r.t. py,

7: fori—1,...,rdo

8: remove the least significant expert from ®, and @,
o: end for
10: forj—1,...,2xrdo
11: add the most significant expert to &, and P,
12: end for
13: fork—1,...,rdo

14: remove the least significant expert from ®, and ®,
15: end for

16: add optimized offsprings to the next population &’

172 end for

18:  replace ® with &’

19: until convergence criterion fulfilled
20: return best individual of ®

in this string, and the exclusion by a “0”. For example, the string
“10001010” encodes the expert selection ® = {1,5,7}, including
predictions from D;, D5 and D7 for majority voting. The initial
population of P individuals is created by assigning randomly a
zero or one to the genes of each individual’s chromosome.

The selection of two individuals for the application of crossover
and mutation operations is controlled by the fitness of each indi-
vidual. This fitness corresponds to the classification performance
J(®k), k =1,..., P achieved by majority voting on the particular
selection ®; of predictions from local experts. According to this
fitness, the probability p; of the ith individual to be selected for
the population of the next generation is determined by fitness-
proportionate selection, also denoted as roulette-wheel scheme
[Mitc 96], as follows:

J(P;) .

pi = P
X J(®)
=1

This principle can be visualized by a circular “roulette-wheel”
and each individual has a slice of size proportional to its fitness
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J(®;) on this wheel. In order to determine a population of size P,
the wheel is spun P times and the individual under the marker
of the wheel is selected for the next generation in each spin.

crossover operation A crossover operation is applied with respect to the crossover
probability p. to two individuals, which are selected according
to the roulette-wheel scheme (cf. figure 5.11). The crossover oper-
ation is the main procedure to create new individuals in GAs by
exchanging all genes from two individuals behind a randomly
determined crossing point. Generally, multiple crossover points
can be selected, but since these can be achieved by multiple one-
point cross-overs, single crossover points are considered in this
thesis.

Each gene of the two offsprings is modified with respect to the

mutation operation mutation probability p,, by changing a zero into a one and vice
versa. Mutation operations are of minor importance in GAs but
can allow for explorations of regions in the parameter space that
could not be reached by using only the recombination scheme.
Thus, mutations cause a broader evaluation of the parameter
space even if the algorithm has converged to a local optimum.

After recombination and mutation, the offsprings are further

local search— optimized by local search operations in order to find local optima
operations  that can be determined by simple inclusion and exclusion of few
experts. These local search operations are comparable with the
optimization procedure of the SFFS. The grade of optimization is

controlled by the ripple factor r.

In the first optimization stage, the r least significant experts
are excluded from the current selection ®. The least significant
expert ¢, is defined by maximizing the individuals fitness after
exclusion.

¢e = argmax J(®\ {¢;}).
(Pj cd
Subsequently, 2r experts are added to the ensemble, whereby the
expert ¢, is significant if its inclusion leads to a maximization of
the individual’s fitness.

9a = argmax J (G U {¢,}).
P €D

Finally, r experts with the least significance are again excluded
from the ensemble. These inclusion and exclusion operations
aim at an improvement of each individual in order to find local

optima close to the individual in the solution space.
repetition of selec- The two offsprings are finally added to the next generation
tion, :‘:sggg’;”té‘:; and the selection, recombination, mutation and optimization
optimz’z;ztz'on procedures are repeated until a population size equal to the
previous population is achieved. This newly created population
replaces the previous one and the process is repeated until a
convergence criterion such as a minimal change in fitness or a
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Figure 5.12: Change of the MC of the best individual during GA and
HGA optimization. The number of iterations is shown on
a logarithmic scale for a better visualization of changes in
the first iterations.

maximum number of iterations is fulfilled. In order to avoid the
loss of previously found good solutions, the individuals with the
best fitness, which are denoted as the elite, remain unchanged
and are added to the next population.

Although GA and HGA approaches are identical with respect to
the genetic operations applied for the exploration of the solution
space, both approaches differ in their speed of convergence. While
GAs need several iterations for the determination of the local
optimum close to an already found solution, this local optimum
is directly searched in the HGA approach by local optimization
procedures. Thus, the HGA approach requires fewer iterations to
find local maxima close to solutions contained in the population
and finally achieves better results as shown in figure 5.12.

HGA and SFFS are regarded as the best methods for feature
selection. Therefore, the application of these methods for the
determination of the optimal subset of local experts for ensemble
classifications seems promising. Due to the multi-scale approach
for the determination of SROIs, a rather large set of local experts
is initially trained. Thus, optimization algorithms such as the
HGA are required, allowing for the determination of a reasonable
expert selection even in case of a multitude of available experts.

Stacking of Classifiers

SFFS and GA approaches aim at the explicit selection of experts for
the final ensemble. A final classification is achieved by majority

voting with respect to the predictions of the selected experts.

Although both approaches are expected to increase the ensemble
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Figure 5.13: Exemplary creation of level-1 data by prediction of local
experts Dy, ..., Dg based on a preselected subset of SROIs.

classification performance, optimization is performed on only
overfitting of one data set. Thus, the optimization of the non-trainable majority
ensemble optimi- — oting procedure by selection of local experts may lead to an
zation methods N . g .-
overfitting effect and perform worse in the classification of unseen
samples.
An ensemble of local experts aggregation approach presented
in [Lien og] aiming at an improved generalizability is inspired by
the stacked generalization procedure described in section 3.5.5.
This stacking approach is achieved by using the predictions of
local experts as a new data representation as shown in figure
5.13. Thus, each local expert Dy, ..., Dy, predicts a sample with
respect to the specific SROI as either being non-toxic or toxic, and
predictions of  predictions from all local experts serve as features. As stated
classifiers are used 1y section 3.5.5, probabilistic outputs rather than class labels
as features for a . )
stacked classifier should be used for the creation of the level-1 data representation.
Thus, a stacked classification algorithm is trained using this data
representation and is used for the classification of new samples.
No further selection of local experts is achieved if outputs from
all local experts are used for the training of a stacked classifier.
Thus, a further optimization step is required in order to achieve a
new data representation, thereby, focusing on features regarded
focus on relevant as most relevant to class discrimination. The PLS transformation,
features by PLS as introduced in section 2.4.1, is a projection method in order to
transformation . . . . . ..
achieve a data representation of low dimensionality containing
the main information relevant to classification. Thereby, the influ-
ence of each feature on the projection is determined based on a
labeled data set (cf. section A.2). Thus, the projection of the level-1
data set by PLS transformation is expected to implicitly emphasize
relevant features and improve classification performance of the
stacked classifier.
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To sum up, stacking allows for more complex ensemble aggre-
gations than those achieved by simple majority voting, and an
improved performance is expected. The influence of local experts
on the data representation used by the combiner is controlled
by the application of a PLS transformation. Incorporation of class
probabilities rather than class predictions is applied due to the
expected improvement of the classification results.

5.3.4 System Overview

Three essential steps of the proposed ensemble of local experts
approach have been presented in this section, namely

1. determination of SROIs
2. alignment of SROIs
3. ensemble aggregation.

The combination of these methods leads to the final ensemble
approach as shown in figure 5.14. In the first step, SROIs are de-
termined by a sliding window approach with overlap in different
scales. These short spectral regions restrict the view of the local
experts using only a subset of the whole information contained
in the spectra.

In order to achieve a reasonable classification of SROIs, peak
shifts have to be compensated. This is achieved by an appearance-
based alignment procedure, maximizing the similarity of all
spectra by an optimization of sample-specific SROI shifts. These
aligned SROIs serve as basis for the training of local experts, rep-
resenting the base classifiers in the proposed ensemble approach.

Ensemble aggregation by majority voting is a commonly used
method, but the explicit selection of local experts used for the
final combination of predictions is expected to increase ensemble
classification performance. This represents the general assump-
tion, that signals from few molecules are expected to give in-
formation for the reliable detection of organ toxicities. A first
exclusion of local experts can be realized with respect to their
individual classification performance. Local experts with a low
classification performance are expected to use spectral regions
containing no relevant information for class separation. These
local experts could increase the ensemble diversity but will also
decrease the mean classification performance of all local experts,
which finally leads to a decreased ensemble performance. Ensem-
ble optimization allows for the explicit selection of local experts
for final ensemble voting. Alternatively, a stacked classifier can
be used for aggregation of predictions from local experts.

The optimization of several parameters for the ensemble of lo-
cal experts approach is performed by a five-fold cross-validation
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Figure 5.14: Overview of the ensemble of local experts approach. SROIs
are initially selected by a multi-scale sliding window ap-
proach and are aligned by an appearance-based alignment
procedure. A preselected set of local experts trained on
aligned SROIs can either be used for expert selection proce-
dures or for a stacked classification approach.

and test procedure. The final classification performance is aver-
aged over the performances achieved on the test set of each fold.
However, for the final application in metabonomic studies, a sin-
gle classification system instead of five systems trained for each
cross-validation fold has to be trained. Therefore, the selection
of SROIs, alignment models and classifier parameters for each
SROI, and the weights for local experts or the stacked classifier
parameters are used to build a final ensemble on all available
samples.

5.4 INTERPRETABILITY OF ENSEMBLE CLASSIFICATION

In addition to the classification of new samples as non-toxic or
relevant spectral toxic, ensemble approaches allow for further interpretation. The

regions and confiden- uu main objectives are the determination of spectral regions
ce in classification
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containing relevant information for class discrimination and as-
sessment of confidence in the classification.

Identification of Relevant Spectral Regions

Inference on spectral regions relevant to the distinction between
non-toxic and toxic samples is an important prerequisite for the
identification of new biomarkers. A fast and reliable detection of
organ toxicities can be achieved by using methods from clinical
chemistry for the quantization of these biomarkers.

The identification of spectral regions containing peak signals of
biomarker candidates is achieved in the ensemble of local experts
approach by the analysis of SROIs used for the training of local
experts contained in the final ensemble after optimization. Count-
ing for each point in the spectrum the number of local experts
using this point indicates its relevance to classification purposes.
Thereby, an implicit weighting of spectral regions is achieved
by using overlapping SROIs in different scales. The higher the
number of local experts for a spectral region is, the more relevant
signals are contained in this region.

This weighting of spectral regions with respect to their rel-
evance for classification purposes is the main objective in the
modified RSS procedure and directly optimized by an iterative
procedure. Thus, the final weight distribution allows for the dis-
criminant between relevant and non-relevant variables. Spectral
regions with the highest weights can be used as a starting point
for further investigations.

The determination of relevant spectral regions does not auto-
matically allow for the unique identification of molecules corre-
sponding to peaks in these regions. Although databases contain-
ing NMR signals for a multitude of molecules are available, not
every molecule contained in urine samples from rats is contained
in these databases. Furthermore, identification with respect to a
single peak position may lead to several possible matches. The
amount of possible matches can be reduced by the incorporation
of the position of additional peaks induced by the same molecule,
but this information is not always available. Thus, the unique and
automatic identification of substances contained in the urine sam-
ples being relevant to class discrimination is still a challenging
task and will not be further investigated in this thesis.

Assessment of the Degree of Toxicity

Organ toxicities are induced in a rather gradual progress and the
binary classification as non-toxic or toxic is not common practice,
rather different degrees of toxicity are assigned. Information on
this grade of toxicity is useful for the interpretation of a prediction

135

new biomarkers

SROIs of local experts
in final ensemble

optimized weight
distribution in the
ARSS approach

identification of
molecules correspon-
ding to peak signals



136 ADVANCED ENSEMBLE APPROACHES FOR CLASSIFICATION OF NMR SPECTRA

confidence in the and can be used as a value of confidence in the classification. In
classification 556 of severe organ damages, several spectral regions will show a
decision . . .
spectral profile different from the profile of control samples. Thus,
the percentage of base classifiers in the ensemble approaches
predicting a sample as toxic can be regarded as an indicator on
the grade of changes in the spectral profile and the degree of
induced organ toxicity.

The grade of an induced organ toxicity is usually dependent
on the dose of the applied compound. The determination of a
dose-dependent effect  dose allowing for the desired effect of the pharmaceutical and not
inducing severe organ toxicities is an important aspect in safety
pharmacology. Assessment of the degree of toxicity with respect
to the percentage of base classifiers assigning the label toxic to a
sample allows for the observation of dose-dependent reactions.
Thereby, changes in the degree of toxicity can be observed by

increasing the dose up to the dose inducing a toxic effect.

5.5 SUMMARY

The analysis of biofluids by NMR spectroscopy leads to the rep-
resentation of concentration information for several signals in
a spectrum. In order to determine particular changes in the
metabolism, which indicate an organ toxicity, classification ap-
sparse and complex  proaches have to be applied, achieving even for these complex
datasets  and sparse data sets robust classification results.
Ensemble approaches presented in this chapter are designed
for the classification of NMR spectra respecting particular charac-
ensemble by varia-  teristics of this type of data. The ensemble based on the variation
tion of preprocessing o preprocessing and feature extraction methods aims at the inclu-
and feature extract- . . e . .

ion methods sion of multiple classifiers trained on differently processed data
sets in an ensemble system. This incorporation of different “views’
on the data improves classification performance and serves as
proof of concept for the applicability of ensemble methods for

the detection of organ toxicities.
Although multiple spectral signals are present in an NMR spec-
trum, only a small fraction is expected to contain information
focus on relevant necessary for a robust classification. Thus, ensemble systems are
spectral regions  Jesigned to focus on spectral regions relevant to classification,
leading to an improved ensemble performance. This is the main
principle proposed in this thesis and realized by two different

ensemble approaches.
The relevance of spectral regions is determined in the ARSS
optimized weight approach by the iterative optimization of a weight distribution
distribution for - ;564 in a weighted RSS procedure. Features with the highest
RSS ensemble . . . . .

weights are favored in subspace selection, thereby increasing the
final ensemble performance. Views on short spectral regions are
used in the ensemble of local experts approach for the training

7



5.5 SUMMARY

of classifiers and their combination in an ensemble system. The
optimization of the selection of local experts finally used in the
ensemble improves the ensemble performance by an emphasis on
the spectral regions relevant to classification. This ensemble not
only improves classification performance but also allow for an
interpretation of the ensemble decision. The percentage of votes
for a classification as toxic is used as indicator on the degree of
the toxic effect. Furthermore relevant spectral regions, which are
identified by high RSS weights or views of local experts, serve as
starting points for the identification of biomarker signals.
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EVALUATION

The automatic classification of NMR spectra from urine samples
for automatic detection of drug-induced organ toxicities is a
rarely investigated field. One of the most advanced approaches
is the classification system developed within the COMET project
as presented in section 2.4.2. However, neither the software nor
the data set used within the COMET project is available for public
use. This lack of benchmark data sets and systems is a common
problem in the comparison of newly developed classification
systems with alternative approaches in the field of Metabonomics.

Thus, the developed ensemble approaches presented in the
previous chapter are compared in an experimental evaluation
with approaches from pattern classification and ensemble theory.
The bases for these evaluations are the data sets and evaluation
methods presented in chapter 4.

After the presentation of evaluation results for a selection
of reference classification approaches from single and multiple
classifier theory, the parametrization of ensemble approaches is
optimized in section 6.2. The final ensemble design is chosen
with respect to the evaluation results on the validation set of the
REAL.NMR data set. Classification and interpretation of these opti-
mized ensembles is investigated in section 6.3. In order to validate
results obtained on real NMR spectra, the ensemble approaches
are applied to a simulated data set with known properties. Results
concerning the classification performance and interpretability are
presented in section 6.4. Finally, the ensemble approaches are
applied for the detection of alternative toxicity types, and this
chapter concludes with a summarizing section.

6.1 EFFECTIVENESS OF REFERENCE APPROACHES

The first classification results presented in this section are achieved
by the evaluation of selected reference classification systems for
the detection of drug-induced organ toxicities for the REAL.NMR
data set. These approaches are from the field of single and mul-
tiple classifier systems. The classification performances of these
methods serve as basis for the comparison of results achieved by
the proposed advanced ensemble methods.

NN, kNN, and SVMs using a linear or RBF kernel have shown
reasonable classification performances in previous informal ex-
periments. Thus, these are used as representatives for single
classifier approaches. Preprocessing of NMR spectra is optimized
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METHOD MC ACC[%] SPEC[%] SENS [%]
NN 0.363 75.8 (+£2.8) 86.2 48.2
KNN (k = 15) 0374 77.7 (£2.7)  92.7 38.0
Linear svM 0.449 772 (£2.7) 82.0 64.5
RBF SVM 0472 77.8 (£2.8) 81.6 67.8
RSS + Linear sSVM  0.427 79.1 (£2.7) 92.2 44.5
RSS + RBF SVM 0424 794 (£2.6) 94.3 39.6
Random Forest  0.429 79.6 (£2.6) 95.2 37.9
LogitBoost 0.402 78.1 (£2.7) 90.8 44.5
BagBoost 0424 789 (£2.7) 91.4 45.7
LyBoost 0.381 773 (£2.7) 90.0 43.6

Table 6.1: Classification performances on the validation set of the
REAL.NMR data set for different approaches from single clas-
sifier and ensemble theory. Ensemble methods show a low
sensitivity, leading to worse MCs in comparison with single
SVM classifications.

optimization of by the application of a bucketing procedure using a bucket width
preprocessing and ¢ 10,02 or 0.04 ppm. The chosen bucket widths either achieve
feature extraction . . . .
methods a higher spectral resolution or an improved peak shift compensa-
tion. The scaling of spectra for the correction of variations in the
sample concentration is achieved either by SNV or integral scaling.
Furthermore, a PLS transformation is optionally applied. The di-
mensionality of the final representation is varied from one to five,
and from five to fifty in steps of five. Thereby, classifier-specific
parameters, preprocessing procedures and the number of PLS
components are optimized for each classifier on the validation
set.
ensemble methods: Random forests, three different boosting approaches, and RSS
RS SVM, random approaches using either linear or RBF SVMs as base classifiers are
forest, LogitBoost, . . sl e . .
BagBoost, L»Boost applied as representative classification algorithms from the field
of multiple classifier systems. The particular boosting variants are
chosen due to their proposed ability to achieve reasonable classi-
fication results even in case of data sets with few samples of high
dimensionality (cf. section 3.6). The data set used for the evalua-
tion of ensemble approaches is preprocessed by integral scaling
and a bucketing procedure using a bucket width of o.01 ppm.
In this step a bucket width smaller than the quasi-standard of
0.04 ppm is applied in order to allow for the selection of single
relevant signals in the ensemble approaches. Parameters of these
ensemble methods are optimized by a grid-search algorithm and
the best performing parametrization is finally chosen.
The classification performances of the reference systems on the
validation set of the REAL.NMR data set are shown in table 6.1. The
best values for each of the performance measures are marked as
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METHOD MC ACC[%] SPEC[%] SENS [%]
NN 0302 731 (+29) 834 457
kNN (k = 15) 0283 750 (£2.8) 917 30.6
Linear SvM 0364 732 (£29) 782 60.0
RBF SVM 0.311 724 (£29) 80.0 52.2
RSS + Linear svM  0.355  76.6 (£+2.8) 90.0 40.8
RSS + RBF SVM 0.292 749 (£2.8) 90.3 33.9
Random Forest  0.292 74.6 (£2.9) 89.1 35.9
LogitBoost 0.301 74.3 (£2.9) 87.4 39.6
BagBoost 0.339 759 (+2.8)  89.1 40.8
LyBoost 0.311 749 (£+2.8) 88.3 39.2

Table 6.2: Classification performances on the test set of the REAL.NMR
data set for different approaches from single classifier and
ensemble theory. Random forest and boosting methods show
a low sensitivity, leading to worse MCs in comparison with
single SVM classification.

bold numbers and the confidence range (level of confidence: 95 %)
is denoted for each classification accuracy. SVMs using either a
linear or RBF kernel perform best with respect to the MC as main
optimization criterion in this thesis. Although the random forest
approach achieves the best classification accuracy, the single
RBF SVM achieves a higher MC value due to its high sensitivity.
This is caused by the imbalanced data set and demonstrates the
preference of the MC for optimization rather than the overall
classification performance. Generally, a decreased sensitivity of
the investigated ensemble systems in comparison with the single
SVMs can be observed.

Parameters specific for each classifier are optimized with re-
spect to the classification performance on the validation set. Thus,
the final performance has to be determined on a test set in ac-
cordance to the cross-validation and test procedure described in
section 4.2.2. Classification results on the test set presented in
table 6.2 demonstrate the low performance of nearest neighbor
approaches. Ensemble methods also have on the test set a low
sensitivity, resulting in a decreased MC value. Single SVM ap-
proaches achieve reasonable classification results on the test set,
and the linear SVM shows the best MC value among all evaluated
classification approaches. The low generalizability of the RBF SVM
is expected to be caused by a complex discrimination function,
which is too adapted for the training data. The presence of false
positive and negative training samples decreases the generaliz-
ability and an improved performance on the test set is achieved
by the linear SVM with a rather simple discrimination function.
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All ensemble approaches investigated as reference systems
perform worse in comparison with the single RBF and linear
SVM as the best classifier on the validation and test set, respec-
tively. Therefore, the linear and RBF SVM performances are used
in following evaluations as reference for comparison of newly
developed ensemble systems.

The main difference between the ensemble and single classifier
approaches is their decreased sensitivity, which leads to a lower
MC and a higher overall classification performance. This reduced
sensitivity is expected to be caused by the combination of mul-
tiple base classifiers achieving a sensitivity below fifty percent.
The combination of these base classifiers in an ensemble finally
leads to a reduced sensitivity and MC value.

6.2 OPTIMIZATION OF ADVANCED ENSEMBLE METHODS

The general ensemble design for advanced ensemble methods
was presented in chapter 5, but details on the optimal base classi-
tier algorithm, ensemble optimization or ensemble aggregation
strategy were not specified. These have to be investigated for the
particular data set with respect to classification results achieved
by a cross-validation procedure. This section presents evaluation
results for the optimization of the different ensemble approaches
and the final performances on the test set will be shown in the
next section.

6.2.1 Variation of Spectral Preprocessing Methods

The single classifier results presented in the previous section
are based on the optimization of preprocessing and feature ex-
traction methods. Instead of selecting the configuration with the
best performance, the ensemble approach presented in section
5.1 combines classifiers trained during this optimization. Each
preprocessing and feature extraction combination is expected to
model different aspects of the data. Linear or RBF SVM models,
which have shown the best performance in the previous eval-
uation, are trained on differently preprocessed data sets and
combined in a multiple classifier system.

The optimization of the set of base classifiers used for the fi-
nal ensemble was motivated for the ensemble of local experts
approach. While this leads to a selection of spectral regions in the
ensemble of local experts, this principle is applied in the variation
of spectral preprocessing methods for the improvement of the
final ensemble performance. Not every spectral preprocessing
procedure is expected to achieve a performance better than ran-
dom guessing, or that their combination leads to an ensemble of
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METHOD MC ACC|[%] SPEC[%] SENS][%]
Single Linear SVM 0449 772 (£2.7) 82.0 64.5
Ensemble Linear SVMs 0.504 81.2 (+2.6) 90.6 56.3
Single RBF SVM 0472 77.8 (£2.7) 81.6 67.8
Ensemble RBF SVMs 0.585 83.8 (£2.4) 90.0 67.3

Table 6.3: Comparison of the single best SVM using either a linear or
RBF kernel by variation of preprocessing methods and an
ensemble classification. The subset of classifiers combined
in an ensemble is optimized on the validation set of the
REAL.NMR data set.

diverse classifiers. Thus, hybrid genetic algorithm optimization
using a population size of 100, p. = 0.6, p,, = 0.05 and r = 3 (cf.
section 5.3.3) is applied for optimization of the classifier selection
for the final ensemble. HGAs have shown on this ensemble type
the best results in comparison with alternative base classifier
selection approaches presented in section 5.3.3 and are used in
this evaluation.

The ensemble performance is significantly increased in com-
parison with the single SVM results by the combination of an
optimized selection of classifiers as shown in table 6.3. While the
ensemble of linear SVMs leads to a reduced sensitivity, the combi-
nation of RBF SVMs results in an improved overall performance
and only a slight change in sensitivity. Thus, RBF SVMs are used
in the following investigations as base classifier algorithm for the
preprocessing ensemble.

This performance outperforms all classification approaches for
the REAL.NMR validation set presented up to now. Finally, these
results serve as the proof of concept for the general applicability
of advanced ensemble approaches for the automatic detection of
drug-induced organ toxicities by classification of NMR spectra.

6.2.2  Adapted Random Subspace Sampling

Evaluation results presented in the previous section demonstrate
improvements in classification performance by the combination of
multiple classifiers instead of using only the single best classifier.
This approach follows the general ensemble idea of combining
multiple diverse classifiers. The adapted random subspace sam-
pling (ARSS) procedure presented in section 5.2 is designed to
respect particular characteristics of NMR spectra for ensemble
creation. The final ensemble performance is increased by the
optimization of a weight distribution used in a weighted RSS
procedure, which leads to the exclusion of non-relevant spectral
signals.
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Figure 6.1: Change of diversity, mean single classifier performance and
ensemble performance throughout the iterative weight op-
timization procedure on the validation set of the REAL.NMR
data set.

SVMs using a linear kernel function serve as base classifiers
in the iterative weight optimization procedure due to their rea-
sonable performance shown in section 6.1. Furthermore, only
a single parameter has to be optimized, which allows for the
determination of an optimized SVM model for each subspace.
The ensemble creation is repeated 20 times in each iteration and
each ensemble consists of 25 base classifiers. The repetition of the
ensemble creation aims at the compensation of artifacts induced
by the random ensemble creation procedure. The ensemble size
is chosen in order to achieve an optimization in a reasonable time.
Each iteration requires the parameter optimization and training
of 500 SVMs. Thus, increasing the ensemble size or the number of
repetitions would lead to a higher computational effort.

The weight optimization leads to an improved mean base clas-
sifier performance as shown in figure 6.1. As an effect of the
improved base classifiers, the ensemble performance increases
and finally converges after 48 iterations. The weight distribution
used in the last iteration is used for the construction of the final
SVM ensemble. Diversity decreases during the iterative optimiza-
tion due to the focusing on the most relevant spectral regions.
However, this does not lead to a decreased ensemble performance.
Thus, the performance of base classifiers has a greater influence
on the ensemble performance than the diversity.

Evaluation results of an SVM ensemble using either linear or
RBF kernels before and after optimization of the weight distri-
bution are shown in table 6.4. The ensemble size is varied for
each configuration from five to 500 in steps of five and the best
performing ensemble is finally selected. SVM ensembles using a
uniform weight distribution perform worse than the best SvMm
presented in section 6.1. This can be explained by the low sen-
sitivity of the base classifiers, leading to a low sensitivity of the
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BASE

WEIGHTS  MC ACC[%] SPEC[%] SENS[%]
CLASSIFIER
Linear SVM  uniform  0.427 79.1 (£2.7) 92.2 445
Linear SYvM  optimized 0.790 91.9 (£1.8) 96.5 79.6
RBF SVM uniform 0424 79.4 (£2.6) 94.3 39.6
RBF SVM optimized 0.790 91.9 (£1.8) 96.3 80.0

Table 6.4: Comparison of RSS SVM ensembles using either uniform or
optimized weight distributions for the subspace selection
procedure on the validation set of the REAL.NMR data set.

final ensemble. However, using the optimized weight distribution
for the ensemble creation procedure leads to a significant im-
provement of the final ensemble performance for both SVM types.
The final ensemble shows a very high specificity and sensitivity,
which has not been achieved by any of the single classifier or
ensemble systems presented in the previous sections.

The two investigated types of SVMs show only minor differ-
ences by using the same weight distribution. This can be ex-
plained by the representational reason for the good performance
of ensemble systems (cf. section 3.2.2). Thereby, a non-linear clas-
sification is achieved by combination of multiple linear SVMs in
an RSS ensemble.

To sum up, classification performance is not improved by the
application of the original RSS procedure due to differences in
the relevance of variables and the low sensitivity of the base clas-
sifiers. By focusing on the most relevant features, the MC value
could be significantly increased from 0.424 to 0.790 using RBF
SVMs as base classifier. These results further illustrate the possi-
bility ofdesigning ensemble classification systems with respect
to particular characteristics of a data set. Furthermore, an impor-
tant result of these investigations is the different importance of
spectral signals for classification purposes.

6.2.3 Ensemble of Local Experts

Following the proof of concept for the general applicability of en-
semble methods for the classification of NMR spectra and improve-
ments achieved by focusing on particular spectral regions, the
ensemble of local experts approach is evaluated on the REAL.NMR
data set. This approach was introduced in section 5.3 and aims at
a more explicit selection of spectral regions than the one achieved
in the ARSS procedure. Therefore, base classifiers are trained on
short spectral regions and combined in an ensemble system.
The initial separation into SROIs is achieved in a multi-scale
sliding window approach using windows of size 0.025, 0.05, 0.1,

145

final ensemble
performance is
significantly
improved

focus on relevant
spectral regions

particular ensemble
design for the clas-
sification problem

five scales of sliding
windows



1241 initial SROIs

peak shift compensa-
tion by an alignment
procedure

increased simplicity
value for each SROI

preselection of local
experts = 554 SROIs

EVALUATION

0.2 or 0.4 ppm and an overlap of 50 %. The minimal window size
is determined according to the peak width of a peak of average
intensity in an NMR spectrum. This window size is doubled
until windows containing multiple signals are obtained. This
separation on spectra defined from 0.2 to 10 ppm excluding the
spectral region from 4.5 to 6 ppm leads to the initial definition of
1241 SROIS.

Peak shifts in these short spectral regions are corrected by
means of the appearance-based alignment procedure presented
in section 5.3.2. The maximum peak shift of 0.045 ppm used in
this alignment approach is the maximum shift observed for the
citrate peak in the REAL.NMR data set. This shift is expected to be
an upper bound for peak shifts occurring in the data set. The
alignment quality is determined with respect to the simplicity
value as presented in section 2.3.1 and large values indicate well
aligned spectra.

Application of the alignment procedure on the training, vali-
dation and test sets created by the five-fold cross-validation and
test procedure increases the mean simplicity value from 0.846 to
0.903. Thereby, the alignment quality is increased for each SROI
and is expected to lead to more robust local experts. The focus of
this thesis is on the development of classification systems with a
high classification performance and not the development of new
alignment methods or data representations. Thus, the appearance
based alignment scheme is applied on each SROI and differences
to alternative alignment strategies are not further investigated.

RBF SVMs are trained on the aligned SROIs and their classifica-
tion performance on the validation set is used as criterion for an
initial exclusion of local experts. Thereby, SROIs not leading to an
MC value greater than 0.2 are not used in the next steps, leading
to a set of 554 SROIs. The threshold of 0.2 is chosen in order to
exclude regions where a classification performance only slightly
better than random guessing or even worse is achieved. Never-
theless, several SROIs are still retained, which can be combined in
the final ensemble optimization procedure.

The sliding window approach is applied in five scales using an
overlap of 50 %, wherefore each spectral point can be contained
in up to ten different SROIs. Figure 6.2 illustrates the number of
SROIs located on each spectral point after the applied preselection
procedure. The count of SROIs is flipped over the horizontal axis
for visualization purposes. This set of SROIs serves as basis for the
determination of the best base classifier, ensemble optimization
and ensemble aggregation approach in the following.

Choice of the Base Classifier Algorithm

Generally, different base classifier algorithms can be applied for
sample classification according to ensemble theory. However, the
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Figure 6.2: Visualization of a control spectrum and the amount of SROIs
located on the particular spectral regions. SROIs not leading
to an MC value above 0.2 in RBF SVM classification on the
validation set of the REAL.NMR data set are excluded. SROI
counts are flipped over the horizontal axis for visualization

purposes.
BASE CLASSIFIER  MC ACC [%] SPEC[%] SENS [%]
NN 0.525 82.5(£2.5) 98.2 40.8
kNN 0.525 825 (+2.5) 98.2 40.8
Random Forest 0484 81.1 (+2.6) 98.5 35.1
Linear svM 0.580 84.0 (£2.4) 99.5 429
RBF SVM 0.683 87.6 (+2.2) 99.8 55.1

Table 6.5: Comparison of different base classifier algorithms for the en-
semble of local experts. SFFS is used as ensemble optimization
method on the validation set of the REAL.NMR data set.

expected amount of local experts leading to robust classifications
is rather limited due to the putative low number of relevant
spectral signals. Thus, local experts should already allow for a
high classification accuracy in order to improve the final ensemble
performance.

In section 6.1, selected classification algorithms are evaluated
for the classification of NMR spectra. A comparison of the en-
semble performance achieved by their use as base classifiers and
optimization of the expert selection by SFFS is shown in table 6.5.
NN and kNN achieve equal classification results as base classifiers
and the performance of random forests is low due to their de-
creased sensitivity. As in case of the single classifier evaluation,
SVMs show the best classification performance and the best results
are achieved using the RBF kernel. In this case, the non-linear
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METHOD MC ACC[%] SPEC[%] SENS[%]
Majority 0.233 74.7 (+2.8) 100 7.3
Accuracy Based 0.259 75.1 (£2.8) 100 9.0
DT 0.578 83.7 (£2.4) 90.6 65.3
SFS 0.666 87.1 (+2.2) 99.5 53.9
SBS 0.633 86.0 (+2.3) 98.6 52.7
SFFS 0.683 87.6 (£2.2) 99.8 55.1
GA 0.589 84.4 (£2.4) 99.4 445
HGA 0.633 85.8 (£2.3) 99.7 49.0
Stacking 0.576 83.3 (£2.4) 88.9 68.2
PLS Stacking 0.611 85.2 (+2.3) 92.8 64.9

Table 6.6: Classification performance after application of different en-
semble optimization procedures on the validation set of the
REAL.NMR data set.

classification performance of RBF SVMs cannot be achieved by a
combination of multiple linear SVMs since for each SROI only a sin-
gle expert is trained. Therefore, RBF SVMs serve as base classifier
algorithm used in the following evaluations.

Determination of the Final Ensemble Aggregation

The initial exclusion of local experts with respect to their classifi-
cation performance on the validation set leads to the focusing on
spectral regions, which allow for at least a minimal discrimination
between toxic and non-toxic samples. But this modification of
the ensemble composition does not respect the final performance
of local experts after their aggregation. Therefore, ensemble opti-
mization methods presented in section 5.3.3 are applied, aiming
at the determination of an expert selection with a high perfor-
mance.

Evaluation results of common ensemble combination meth-
ods, optimized ensemble decisions and the stacked classifier
approach are shown in table 6.6. Majority voting and accuracy-
based weighting achieve the lowest classification performances,
mainly due to the very low sensitivity. The initial selection of
local experts allows for base classifiers in the ensemble with low
sensitivity. Thus, their combination leads to a very low sensitivity
and MC value. Even though all classifiers are used in the decision
template approach for the determination of DTs, these templates
can model classifications with low confidences and improve the
final ensemble performance.

Ensemble optimization methods are applied to the predic-
tions achieved on the validation set and all optimized selec-
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tions perform better than the non-selective ensemble aggregation
techniques. Sequential optimization methods show an improved
ensemble performance by using the floating variants, whereby
the nesting effect is avoided. Also the combination of GAs with ~ SFFS is the best
local search operations in the HGA approach increases the ensem- ~ “/s¢/ble optimi-
ble performance in comparison with the original GA approach. ation method
Although these differences are not statistically relevant, an im-
proved expert selection could be defined. The final ensemble size
varies between 15 and 67, which further supports the expectation,
that only a small fraction of the originally defined 1241 SROIs are
relevant to classification.
Ensemble combination by a stacked classifier is realized using
an RBF SVM on the probabilistic outputs of all local experts. PLS
transformation is optionally applied on the probabilistic SVM out-
puts using three PLS components. The algorithm used for stacked
classification, the choice of probabilistic classifier outputs and the
number of PLS components is optimized by cross-validation. The
classification performance of the stacked classifier is worse than
most alternative approaches, but it is increased by using a PLS
transformation on the level-0 data before the stacked classifier is PLS transformation
applied. Furthermore, the trainable combiner is expected to avoid ~ "Proves the
overfitting effects that can occur by using optimization methods stacking approach
based on majority voting. The final performance of the ensemble
approaches on the test set has to be used in order to determine
their performance on unknown data.

6.2.4 Comparison of Ensemble Approaches

Before presenting results on the interpretability of ensemble sys-

tems and their performance on the test set, a summarizing com-

parison of evaluation results achieved by the different approaches

is shown in table 6.7. All ensemble approaches achieve signifi-

cantly higher classification accuracies than the single classifier

approaches. Among the ensemble approaches, the ARSS approach ~ ARSS best approach
leads to the best classification results. High specificity and even O the validation set
sensitivity rates are achieved by the ARSS procedure. The sensitiv-

ity of the local experts approaches is lower than for most of the

other classifiers. This can be caused by the low sensitivity of local

experts due to the absence of strong biomarker signals allowing

for a clear discrimination between non-toxic and toxic signals.

63 EFFECTIVENESS AND INTERPRETABILITY OF
ADVANCED ENSEMBLE APPROACHES

Evaluation results presented in the previous section lead to the
final design of the ensemble approaches. This section will com-
pare the evaluation results achieved on the test set, representing
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METHOD MC ACC[%] SPEC[%] SENS[%]
Linear svM 0449 772 (£2.7) 82.0 64.5
Single RBF SVM 0472 77.8 (£2.8) 81.6 67.8
Preprocessing Ensemble ~ 0.585 83.8 (£2.4) 90.0 67.3
ARSS ensemble 0.790 919 (+1.8) 96.3 80.0
Local Experts + Selection 0.683 87.6 (£2.2) 99.8 55.1
Local Experts + Stacking  0.611  85.2 (£2.3) 92.8 64.9

Table 6.7: Comparison of the best single classifier approaches and
advanced ensemble methods on the validation set of the
REAL.NMR data set. All ensemble systems outperform the sin-
gle classifiers, and the modified RSS procedure achieves the
best results.

METHOD MC ACC|[%] SPEC[%] SENS [%]
Single Linear SVM 0.364 73.2 (£2.9) 78.2 60.0
Single RBF SVM 0.318 724 (+2.9) 80.0 52.2
Preprocessing ensemble  0.435 77.3 (£2.7) 83.9 60.0
ARSS ensemble 0.549 83.0 (£2.5) 92.5 58.0
Local Experts + Selection 0.420 78.5 (£2.6) 95.7 35.9
Local Experts + Stacking 0.562 83.1 (£2.5) 90.6 63.3

Table 6.8: Comparison of evaluation results on the test set of the
REAL.NMR data set. Generally, performances decrease in com-
parison with validation results but all ensemble systems still
significantly outperform the single classifier approaches.

the real performance of the investigated ensemble approaches.
Besides the sample-wise classification results, predictions for ap-
plied pharmaceuticals and further interpretation of the ensemble
decisions can be achieved. These results are presented in the
following for the test set of the REAL.NMR data set.

6.3.1 Test Classification Performance

Classification performances on the validation set are used during
the ensemble design for the identification of the best parametriza-
tion of base classifiers, the ensemble creation procedure and
ensemble aggregation. Thereby, the ensemble performance is in-
fluenced and the real performance of the classification system
has to be determined on an independent test set. Due to the lim-
ited amount of samples in metabonomic applications, a five-fold
cross-validation and test procedure (cf. section 4.2.2) is applied.
The final ensemble performance is determined on the test
set of the REAL.NMR data set and shown in table 6.8. Ensem-
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ble approaches still significantly outperform single classifier ap-  ensenble approaches
proaches. Generally, a decreased classification performance can ~ cieve the best
be observed in comparison with results achieved on the vali- restlts
dation set. Each ensemble method is optimized with respect to
the particular validation set, which leads to overfitting effects
resulting in a decreased performance on the test set.
The local experts approach in combination with expert selec-
tion by ensemble optimization leads to relatively low classifi-
cation performances. This overfitting on the validation data is
induced by the ensemble optimization procedure. Application  stacking improves
of the stacking approach for ensemble aggregation improves the 2?‘15::22’2:;2552?
classification performance on the test set. Thus, the generalizabil- local experts
ity of the ensemble of local experts approach is improved by the
stacking procedure. Finally, a better classification performance is
achieved than in the ARSS procedure.
Even a classification accuracy of 8o % represents a reasonable
classification result for this kind of data. Several non-responders
are expected due to the low number of collection times and the
single administration of the pharmaceuticals. Class labels are
assigned with respect to literature references since the real la-
bels cannot be robustly determined by clinical chemistry due to
its low sensitivity. Thus, false positive and also false negative
samples are expected to be contained in the data set, thereby,
decreasing the classification performance of the whole system.
However, the presented ensemble approaches achieve a reason-
able classification performance on the test set and significantly
outperform single classifier approaches.

6.3.2  Compound Classification

The presented classification systems achieve a classification of
samples as non-toxic or toxic. However, the objective in safety
pharmacology is to detect organ toxicities induced by a particular
compound. Therefore, classifications of samples corresponding  combination of
to the same compound are combined to a final classification ~ S#Ple predictions
for each base classifier by the procedure presented in section Jor each compound
4.2.3. If a toxic reaction is detected at any collection time in more
than half of the samples, the compound is classified as toxic.
Thereby, non-responders or samples from animals with kidney
problems induced by other sources (e.g. stress, genetic factors)
can be compensated by averaging over several samples.
Compound classification results achieved by the best single
classifiers and the ensemble approaches are shown in table 6.9.
These results indicate a general improvement in classification ~ ARSS and the
performance. The best performing classification systems are the zzsi’::gl;c%ézceafhe
ARSS ensemble and the local experts approach in combination eft resulls
with the stacking procedure. Both methods misclassify only two



152

47 out of 52 com-
pounds are cor-
rectly classified

differences in the
grade of a toxic effect

EVALUATION

METHOD MC ACC[%] SPEC[%] SENS[%]
Single Linear SVM 0.617 80.8 (£10.6) 77.1 88.2
Single RBF SVM 0.506 75.0 (+11.5) 71.4 82.4
Preprocessing ensemble  0.578 76.5 (+10.6) 82.9 76.5
ARSS ensemble 0.779 90.4 (£8.2) 94.3 824
Local Experts + Selection 0.734  88.5 (£8.8) 97.1 70.6
Local Experts + Stacking  0.779  90.4 (£8.2) 94.3 82.4

Table 6.9: Comparison of compound classification results on the test set
for single classifiers and ensemble methods. Combination of
several samples for prediction of each compound increases
the classification performance of all ensemble methods.

non-toxic and three toxic compounds. These results are promising
taking the noisy, sparse and complex data sets into account.

Note that the amount of classifications is reduced from 896 to
52 by combination of sample predictions to compound classifica-
tions. Thereby, the significance levels are about four times larger
than for sample classifications. Furthermore, high changes in MC
values can be observed by misclassifying only few compounds.

The classification performance of most approaches is reduced
on the test set, but the percentage of detected organ toxicities is
still reasonable for this kind of data. Each compound has only
been applied once and urine samples are collected in the first
24 hours. Thus, sensitivity is expected to be very low. However,
82 % of all compounds labeled as toxic could be identified by the
ARSS procedure and the local experts approach in combination
with the stacking procedure. Overall, 47 of 52 compounds could
be correctly classified, which proves the effectiveness of the new
approach combining ensemble methods and metabonomic appli-
cations. A perfect classification is not expected since not every
organism reacts in the first 24 hours as it should according to
literature references. Thus, the presented classification systems
achieve very good results for the identification of toxic reactions
at the proximal tubule as a possible method applied in the early
stages in drug development.

6.3.3 Assessment of the Grade of Toxicity

The combination of sample predictions to compound classifi-
cations allows for a classification decision for each compound.
Furthermore, the consensus in the ensemble for a toxic classifi-
cation can be used as indicator on the degree of the toxic effect.
Severe organ damages in the proximal tubule are expected to lead
to significant changes in the urine composition, thereby induc-
ing several modifications of peak intensities. The more spectral
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Figure 6.3: Percentage of votes for a toxic classification of each com-
pound from an optimized ensemble of local experts for the
test set of the REAL.NMR data set.

changes occur, the higher the percentage of votes as toxic in the
ensemble approach should be, since even classifiers with a low
sensitivity are expected to detect them.

This information on the percentage of base classifiers voting
for a classification as toxic after combination to compound clas-
sifications can be visualized as exemplary shown in figure 6.3
for the ensemble of local experts using an optimized selection of
base classifiers. According to this plot, several compounds can
be clearly classified as non-toxic or toxic. Few samples are close
to the threshold of 50% votes for the toxic class, representing
the discrimination criterion between the non-toxic and toxic class.
Compounds close to this threshold are expected to be neither a
clear non-toxic nor toxic compound.

The correspondence of the expected toxic effect and the de-
termined degree will not be discussed for each compound, but
two prominent representatives will be mentioned. Most applied
compounds have at least some effect on the organism, although
not every one is known to induce a toxic effect at the proximal
tubule. Natrosol® is the only compound, which is expected to be
harmless to the organism. As can be seen in figure 6.3, none of
the local experts classifies Natrosol® as toxic. In contrast, mer-
cury chloride (HgCl) is a strong nephrotoxin, inducing severe
damages in the kidney. Approximately 8o % of all local experts
from the final ensemble assign the label toxic to the compound,
which indicates a strong physiological reaction reflected in the
spectral profile.

Three samples are applied in different doses and a change
of the toxic effect can be observed in figure 6.3. The ensemble
agreement is shown for each dose of the three compounds in
table 6.10. An increase of the expected degree of toxicity can
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COMPOUND DOSE % VOTES FOR TOXIC CLASS

Bl internal 02 30 mg / kg 5.1 non-toxic
Bl internal 02 100 mg / kg 25.6 non-toxic
Bl internal o2 300 mg / kg 28.2 non-toxic
Bl internal 06 10 mg / kg 0.0 non-toxic
Bl internal 06 100 mg / kg 2.6 non-toxic
Bl internal 06 300 mg / kg 10.3 toxic

Bl internal 08 5 mg / kg 59.0 non-toxic
Bl internal 08 15 mg/ kg 7.7 non-toxic

Table 6.10: Percentage of votes for the toxic class from an optimized
selection of local experts for compounds applied in multiple
doses.

be observed for compounds Bl internal o2 and BI internal 06 by
comparing low and high dose classifications. The low dose of
BI internal 08 has a higher value in this experiments than the
high dose. These low dose samples have led to peculiar results
in previous classification experiments. Thus, it is expected that
some other sources (e.g. stress) influenced the urine composition
of these samples.

The same approach can be applied for the visualization of the
ensemble decision for each compound achieved by the prepro-
cessing ensemble or the ARSS ensemble. However, the majority of
base classifiers in these approaches achieve the same classification
due to their low diversity. Thus, the interpretation of ensemble
decisions achieved in these approaches for the assessment of the
grade of an induced organ toxicity leads to worse results than
those from the ensemble of local experts approach. Furthermore,
the probabilistic outputs of a stacked SVM can be used for this vi-
sualization. However, for the illustration of the general principle,
investigations in this context are shown in an exemplary way for
the ensemble of local experts approach.

6.3.4 Determination of Relevant Spectral Regions

The determination of the degree of an organ toxicity is of interest
for compounds contained in the current data set. In addition to
this information, the determination of spectral regions relevant
for robust classification can allow for an improved classification
in future investigations. The identification of relevant spectral sig-
nals is the starting point for the definition of biomarker molecules,
which can be used by alternative measurement methods for the
detection of organ toxicities. Although the identification of spec-
tral regions is necessary for a robust classification, it does not
automatically lead to the underlying biomarker molecules. How-
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Figure 6.4: Weight distribution determined in the ARSS procedure and
an exemplary non-toxic spectrum. The plot of the RsS
weights is flipped over the horizontal axis for visualization
purposes.

ever, it is an important information to start the search for relevant
peak signals.

The ensemble approach based on variation of preprocessing
methods does not allow for the unique identification of spectral
regions mainly influencing the ensemble decision. PLS models
can be interpreted with respect to the weights assigned to each
variable for feature transformation. However, the problem of com-
bining information from multiple experts remains, whereby some
experts do not use a PLS transformation for feature extraction.

Inference on relevant spectral regions can directly be achieved
in the ARSS approach with respect to the weight distribution
determined in the iterative optimization procedure. High weights
are assigned in this optimization to the most relevant variables.
The final weight distribution and a typical non-toxic spectrum
are shown in figure 6.4. Several spectral points with high weights
can be noticed, which are mainly in regions of peak signals.
In contrast, regions with nearly no noticeable signals have low
weights.

The small bucket-width of 0.01 ppm used for preprocessing
the spectra improves the spectral resolution. Thereby, correspon-
dences between single weights and peak signals can be achieved.
However, there is no obvious separation between non-relevant
and relevant spectral regions, but can be achieved by the defini-
tion of a threshold. An alternative interpretation is the ranking
of signals. Thereby, identification of underlying molecules starts
using the signal with the highest weights and proceeds in de-
scending order.

high weights in
ARSS indicate
relevant signals

threshold for
detection of relevant
signals needed
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Figure 6.5: Visualization of the amount of base classifiers using each
spectral point in the optimized ensemble of local experts.
The most relevant spectral regions are expected to be used
by the most local experts.

The ARSS procedure requires the definition of a threshold for
discrimination between non-relevant and relevant spectral re-
gions. In contrast, the ensemble of local experts approach contains
this information in the spectral regions used by local experts. The
ensemble composition is optimized in order to maximize classifi-
cation performance, thereby, the focus on particular peak signal
is achieved by inclusion or exclusion of local experts. The amount
of local experts from the final ensemble using each particular
spectral point is shown in figure 6.5.

Up to ten different local experts can be localized on the same
spectral point due to the multi-scale sliding window approach
with overlap for initial SROI determination. One spectral signal
at approx. 3.7 ppm, is used by nearly all local experts trained on
this point, which indicates the relevance of this signal for class
discrimination. Comparing this result to the weights determined
in the ARSS procedure shows that the same spectral point is also
identified as the most relevant signal. The remaining regions
used in the local experts procedure are also located on variables
with high weights, but these variables are not that clearly iden-
tifiable as in the ARSS approach due to the larger window sizes.
However, even larger windows focus the view of local experts
on the regions containing the most relevant signals for class dis-
crimination. Based on these results, further investigations for
identification of underlying molecules can be performed.
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6.3.5 Summary

Classification and interpretation results presented in this sec-
tion demonstrate the effectiveness of the developed ensemble
methods for the detection of an organ toxicity at the proximal
tubule by classification of NMR spectra from urine samples. The
main characteristic of these ensemble methods is the focusing
on particular spectral regions, which are regarded as relevant
for classification purposes. This relevance is determined in an
automated approach, finally leading to a significant improvement
of classification performance with respect to other investigated
classification approaches. In particular, the generalizability of
the ensemble of local experts is improved by the application
of a stacked classifier, finally leading to the best classification
performance on the test set.

Classifications for all samples corresponding to a particular
compound are combined in order to derive a final compound
classification. Thereby, classification performance is increased by
compensation of non-responders or samples not showing the
expected toxic reaction due to resistance of the organism or a late
onset of the toxic effect. The consensus of classifiers is used as
indicator on the induced toxic effect, whereby a high percentage
of votes for classification as toxic is regarded as a strong toxic
effect.

Further interpretation capabilities are presented for the en-
semble of local experts and the ARSS procedure by deriving the
spectral regions mainly relevant for classification purposes. The
optimized weight distribution or the spectral regions used by
local experts identify spectral points or regions as most rele-
vant. These can be used as starting point for the identification of
molecules corresponding to the relevant signals.

64 CLASSIFICATION AND INTERPRETATION OF
THE SIM.NMR DATA SET

The REAL.NMR data set serves as basis for evaluation and inter-
pretation of newly developed ensemble approaches. The pres-
ence of signals in this data set, allowing for the discrimination
between non-toxic and toxic compounds, is derived from evalua-
tion results. However, their exact spectral position and individual
significance for classification purposes is not known. Thus, a sim-
ulated data set SIM.NMR, as described in section 4.1.2, is used for
further evaluation and interpretation of the different ensemble
approaches.

general idea:

focus on automatic-
ally determined rele-
vant spectral regions

grade of toxic effect
for each compound

determination of
relevant spectral
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biomarker signals
not known for real
spectra
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6.4.1 Evaluation Results

Classification results on the SIM.NMR data set are not intended to
represent the performance that can be achieved in real metabo-
nomic applications, but they allow for a comparison of the pre-
sented classification approaches. The classification results on the
REAL.NMR data set are dependent on the design of experiments,
the amount of samples, and the quality of the spectra. The re-
lation of changes in spectral profiles to the health status of the
particular organ is probably the most important aspect. This de-
pendence is modeled in the SIM.NMR data set for five spectral
signals, but none of them allows for a perfect discrimination
between non-toxic and toxic samples.

Evaluation of the approaches investigated in the previous sec-
tion is performed by a five-fold cross-validation and test pro-
cedure. Due to equally sized non-toxic and toxic classes in the
SIM.NMR data set, each fold contains an equal amount of non-
toxic and toxic samples. Parameter optimization regarding the
best single SVM or ensemble configurations is performed as de-
scribed in the previous sections. Note that the stacking procedure
achieves the best results for this data set without PLS transforma-
tion. This is caused by the reasonable performance of all experts
determined after the initial experts selection procedure.

The sample classification performances on the validation set
and test set shown in table 6.11 support the results obtained for
the REAL.NMR data set. All ensemble approaches outperform the
single SVMs on the validation set due to their possibility of adapt-
ing to the current data set. Furthermore, these approaches are
able to focus on particular spectral regions and exclude regions
with random intensity changes. The best performance on the
validation set is achieved by the ARSS procedure, followed by the
local expert approaches.

The classification performance on the test set indicates a low
generalizability of the preprocessing ensemble. Also the local
experts approach using the majority voting technique on an opti-
mized selection of base classifiers leads to a reduced performance
on the test set. The remaining approaches show a minor decreas-
ing classification performance and the ARSS approach is still the
best performing classification procedure. Compound classifica-
tions are not shown for this data set, since a perfect classification
is achieved for all classification approaches on the validation and
test set.

Sample classification results support the expectation that no
perfect classification of the simulated data set can be achieved.
Thus, it is a reasonable data set for the evaluation of the en-
semble approaches developed in this thesis. Generally, ensemble
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METHOD MC ACC [%] SPEC[%] SENS [%]

VALIDATION SET

Single Linear svM 0.777 88.9 (£2.0) 88.9 88.6
Single RBF SVM 0.777 88.9 (+2.0) 88.1 89.6
Preprocessing Ensemble ~ 0.840 92.0 (£1.7) 91.5 92.5
ARSS Ensemble 0952 97.6 (+1.0) 97.7 97.5
Local Experts + Selection 0.933  96.7 (£1.1) 96.9 96.5
Local Experts + Stacking  0.924 96.1 (+1.2) 94.2 98.1
TEST SET
Single Linear SVM 0.735 86.8 (£2.1) 86.7 86.9
Single RBF SVM 0.746 87.3 (£2.1) 86.9 87.7
Preprocessing Ensemble  0.607 80.2 (+2.5) 75.6 84.8
ARSS Ensemble 0.927 964 (£1.2) 96.5 96.3
Local Experts + Selection 0.871 93.5 (£1.6) 94.8 92.3
Local Experts + Stacking  0.908 95.4 (£1.3) 93.9 96.9

Table 6.11: Comparison of sample classifications on the validation and
test set of the SIM.NMR data set. Ensemble approaches outper-
form the single classifier approaches, but the preprocessing
ensemble and the optimized local expert selection indicate a
decreased generalizability.

approaches show an improved classification performance in com-
parison with the single classifier approaches.

6.4.2  Quality of Biomarker Identification

The SIM.NMR data set can be used for the comparison of different
classification approaches, but the main advantage is the known
position of biomarker peaks. Thus, the interpretability of the
ARSS procedure and the ensemble of local experts approach is
compared with respect to their capability to identify the five
biomarker positions described in table 4.3.

A comparison of the weight distribution achieved in the ARSS
procedure is shown in figure 6.6 together with an exemplary
simulated control spectrum. The positions of the biomarker sig-
nals are marked by red crosses. Eight spectral positions can be
identified with a weight higher than half of the maximum weight
at position 4.5 ppm, whereby the four highest weights are located
on biomarker peaks. The last biomarker at the spectral position
of 1.0 ppm is weighted with the sixth largest weight. This can be
explained by an additional peak at the same position with ran-
domly changing intensity. Thus, the last biomarker is supposed
to be the worst of the five biomarkers, which is reflected by the
weight assigned in the ARSS approach.

evaluation of
interpretability

biomarker signals
have high weights
in ARSS
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Figure 6.6: Comparison of the optimized weight distribution for the
SIM.NMR data set and known biomarker peaks marked by
crosses in an exemplary simulated spectrum.

Identification of relevant spectral regions can be achieved in
the ensemble of local experts approach by counting for each
spectral position how often it is used by local experts in the
optimized ensemble. According to the results shown in figure 6.7,
four spectral regions are of major relevance to classification and
two further regions are used by one or two local experts. Nearly
all local experts in the final ensemble are located on spectral
regions containing simulated biomarker peaks. However, only
their combination leads to an MC value of 0.871 on the test set,
whereby the best single local expert merely achieves a value of
0.569. The biomarker at position 1.0ppm is again regarded as
a peak of minor importance according to the number of local
experts since it is overlapping with a peak of randomly changing
intensity.

This example demonstrates the two major differences in the
identification of relevant spectral regions based on the analysis
of the ensemble decisions. The interpretation of ARSS weights
leads to well located spectral points which are expected to be
relevant for classification purposes. However, the definition of
possible biomarker patterns can only be achieved with respect to
a threshold, that has to be defined for each experiment. Spectral
regions used in the final ensemble of local experts are expected
to be relevant, since otherwise their exclusion would have led to
an improved classification performance. Although the view of
local experts is focused on the relevant spectral regions, the iden-
tification of single relevant spectral signals cannot be achieved as
in the ARSS approach.
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Figure 6.7: Count of local experts using each spectral point in the opti-
mized ensemble for the SIM.NMR data set. Biomarker peaks
are marked as crosses in an exemplary simulated spectrum.

Thus, each of the two approaches has advantages and disad-
vantages. However, both ensemble systems allow for a reasonable
classification and their results can be combined for interpretation.
Thereby, relevant spectral regions identified in the ensemble of
local experts procedure are used to determine variables with high
weights assigned by the ARSS in these regions. This would result
in the exact positions of the biomarker peaks in the SIM.NMR data
set and no additional signals would be detected. Thus, following
the general ensemble idea, the drawbacks of each approach for
identification of biomarker signals can be compensated by the
combination of their results.

65 DETECTION OF ALTERNATIVE TOXICITY TYPES

The proximal tubule is used in this thesis as the main organ region
for the detection of toxic adverse effects. This region of the kidney
is among other regions responsible for the regulation of the urine
composition. Thus, cell damage in this region is expected to result
in a changed concentration of particular molecules in the urine.
Compounds applied in this study do not only induce toxic
effects at the proximal tubule, but also alternative toxicity types
can be observed. Alternative toxicity types can either be charac-
terized by cell damages in other organ regions than the proximal
tubule or are not specific for a certain organ. Three alternative
toxicity types investigated in this section are the renal papillary
necrosis, acute liver toxicity and phospholipidosis. Note, that
compounds do not always induce a single type of toxicity, but dif-
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ferent combinations of induced organ toxicities can be observed
for different compounds.

A subset of the spectra used in the previous evaluations can
be classified as non-toxic or toxic for the three alternative toxic-
ity types according to literature references. Furthermore, a few
spectra, which are not used in the previous investigations due to
the absence of literature references for the proximal tubule, are
used for the particular toxicity type if literature references are
available. The amount of samples and class sizes of the data sets
for the alternative toxicity types are given in table 6.12.

TOXICITY TYPE SAMPLES NON-TOXIC TOXIC
Renal Papillary Necrosis 583 481 102
Acute Liver Toxicity 500 392 108
Phospholipidosis 733 403 330

Table 6.12: Data set and class sizes for alternative types of organ toxici-
ties investigated in this thesis.

In general, cell damages lead to changes in the cell metabolism
and an increased permeability of the cell membrane. The effect
on the urine composition is dependent on the intensity of the
induced damage and the specific organ. In the following, details
on the particular metabolic changes and evaluation results for the
detection of three alternative toxicity types based on NMR spectra
from urine samples will be presented.

Renal Papillary Necrosis

The renal papilla is a part of the kidney responsible for the
transportation of the urine in the collecting duct after passing the
nephron (cf. figure 2.1). Some pharmaceutical compounds induce
toxic reactions at this particular part of the kidney, leading to
cell damages. Thereby, the cell content may leak in the urine and
other substances can pass the renal papilla due to the damaged
cells.

The fraction of samples, which are expected to show a toxic
reaction at the renal papilla according to literature references,
is rather small. Thus the sensitivity of the classification systems
is the main problem as shown in table 6.13. However, ensem-
ble methods achieve a reasonable MC value and the amount of
detected organ toxicities is quite high with respect to the low
number of toxic samples. Thus, a relation between the health
status of the renal papilla, and the urine composition is expected.
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METHOD MC ACC[%] SPEC[%] SENS [%]

SAMPLE CLASSIFICATION

Single Linear svM 0364 85.2 (£2.9) 100 15.7
Single RBF SVM 0.194 78.6 (£3.3) 89.2 28.4
Preprocessing Ensemble ~ 0.116 ~ 80.4 (£3.2) 94.8 12.7
ARSS Ensemble 0.557 88.0 (£2.6) 94.6 56.9
Local Experts + Selection 0.435  86.5 (£2.8) 99.4 255
Local Experts + Stacking  0.557  88.3 (£2.6) 95.8 52.9
COMPOUND CLASSIFICATION
Single Linear SVM 0.339 81.3 (£13.2) 100 14.3
Single RBF SVM 0.189 75.0 (£14.4) 88.0 28.6
Preprocessing Ensemble  0.448 84.4 (+12.4) 100 28.6
ARSS Ensemble 0.714 90.6 (+10.5)  96.0 71.4
Local Experts + Selection 0.486 84.4 (+12.5) 96.0 429
Local Experts + Stacking  0.605 87.5 (£11.5) 96.0 57.1

Table 6.13: Evaluation results on the test set for the detection of renal
papillary necrosis.

Acute Liver Toxicity

The liver plays a key role in the metabolism of vertebrates and regularization of
severe liver damages can be lethal for the organism. Although  leod composition
the liver is able to regenerate, cell damages lead to a reduced
functionality and changes in the metabolism. Thus, by a changed
metabolic activity of the liver, the blood composition can change
and thereby indirectly affect the urine composition.

Evaluation results for sample and compound classification on
the test set for the detection of liver toxicities with respect to
literature references are shown in table 6.14. Generally, a liver
toxicity can be induced in different regions of the liver, leading
to different modifications of the blood composition. For this
application, a compound is defined as being toxic if an organ
toxicity in any region of the liver is expected to occur in the first
24 hours. The pattern of spectral changes is expected to be more
specific for the acute than for the general liver toxicity.

The main problem is the robust detection of positive samples heterogeneous
or compounds. This leads to low MC values for most classification damage patterns lead

to a low sensitivity

approaches except for the ARSS ensemble and the local experts
approach in combination with the stacking procedure. Both ap-
proaches achieve a reasonable classification performance under
consideration of the single drug administration and the few col-
lection times. Furthermore, metabolic changes induced by toxic
effects in other organs further modify the urine compositions and
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METHOD MC ACC[%] SPEC[%] SENS[%]
SAMPLE CLASSIFICATION
Single Linear SVM 0.158 73.8 (£3.8) 86.5 27.8
Single RBF SVM 0.161 74.0 (£3.8) 86.7 27.8
Preprocessing Ensemble ~ 0.181  79.2 (£3.6) 98.5 9.3
ARSS Ensemble 0.509 85.0 (£3.1) 95.4 47.2
Local Experts + Selection 0.446  83.8 (£3.2) 99.0 28.7
Local Experts + Stacking  0.511  83.2 (£3.3) 88.8 63.0
COMPOUND CLASSIFICATION
Single Linear SVM 0.222 73.1 (£16.2) 89.5 28.6
Single RBF SVM 0.222 73.1(£16.2) 89.5 28.6
Preprocessing Ensemble  0.052  69.2 (£+16.7) 89.5 14.3
ARSS Ensemble 0.703 88.5 (£12.5) 100 57.1
Local Experts + Selection 0.330 76.9 (£15.5) 100 14.3
Local Experts + Stacking  0.470  76.9 (£15.5) 78.9 714

Table 6.14: Evaluation results on the test set for the detection of liver
necrosis toxicity.

reduce the ability to detect changes induced by the acute liver
toxicity.

Phospholipidosis

The intracellular accumulation of phospholipids with lamellar
bodies is the main characteristic of drug-induced phospholipi-
dosis. The affection of organs with phospholipidosis leads to in-
flammatory reactions and changes in histology [Ande 06]. Thus,
phospholipidosis is not a type of toxicity for a particular or-
gan, but different organs show similar damages as in case of
a drug-induced organ toxicity. The target organ may vary for
phospholipidosis inducing compounds, but the toxic effect is
supposed to be present for each of them. If particular “damage
patterns” independent of the affected organ are recognizable in
the urine composition, a detection of phospholipidosis can be
achieved.

Sample and compound classification results on the test set
shown in table 6.15 clearly demonstrate the low classification
performance for the detection of drug-induced phospholipidosis.
The ARSS ensemble is the sole approach achieving an MC value
above 0.2 for sample classification. Good results of the local ex-
perts approach for classification of compounds is expected to
be caused by an advantageous distribution of falsely classified
samples. Although an MC value of 0.372 is achieved, the sample
classification performance of 0.110 demonstrates the low perfor-
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METHOD MC ACC [%] SPEC[%] SENS [%]

SAMPLE CLASSIFICATION

Single Linear SVM 0.047  53.1 (£3.6) 61.8 42.4
Single RBF SVM 0.063  54.6 (£3.6) 68.7 37.3
Preprocessing Ensemble 0.089  56.3 (£3.6) 79.2 28.5
ARSS Ensemble 0.335 67.3 (+3.4) 72.7 60.6
Local Experts + Selection ~ 0.110 56.2 (+3.6) 62.8 48.2
Local Experts + Stacking ~ 0.038  50.1 (£3.6) 72.7 65.8
COMPOUND CLASSIFICATION
Single Linear SVM —0.022 48.8 (£14.6) 42.8 55.0
Single RBF SVM 0.120  56.1 (£14.5) 61.9 50.0
Preprocessing Ensemble ~ —0.024 48.8 (£14.6) 47.6 50.0
ARSS Ensemble 0.372  68.3 (£13.7) 61.9 75.0
Local Experts + Selection  0.372  68.3 (+£13.7) 61.9 75.0
Local Experts + Stacking ~ —0.012 48.8 (£14.6) 14.6 80.0

Table 6.15: Evaluation results on the test set for the detection of phos-
pholipidosis.

mance of this approach for the detection of phospholipidosis.
Also the classification accuracy of nearly 70 % achieved by the
ARSS procedure in sample classification is not high enough for
applications in safety pharmacology. Thus, a robust detection
of phospholipidosis based on the analysis of NMR spectra from
urine samples is not expected.

Conclusions

Results for the detection of three toxicity types as alternatives to
the detection of organ damages at the proximal tubule further
demonstrate the improved classification performance achieved
by ensemble methods. However, a reasonable classification per-
formance cannot be achieved for every toxicity type. The main
problem in the detection of renal papillary necrosis and liver tox-
icity is the low number of positive samples in the data set. Thus,
a robust model for toxic samples can hardly be estimated, lead-
ing to low sensitivity values. However, the ARSS procedure and
the ensemble of local experts stacking procedure achieve even
for these data sets a good classification performance. Whether
this performance is sufficient for the final application in safety
pharmacology studies has to determined with respect to the per-
formance of alternative methods and the required classification
accuracies.

In contrast to the renal papillary necrosis and liver toxicity,
a robust detection of phospholipidosis could not be achieved.
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Although the ARSS procedure could classify about 67 % of all
samples, this is not expected to be robust enough for application
in safety pharmacology. Phospholipidosis can be observed in
different organs, and induced changes in urine composition are
expected to be not specific enough in order to achieve a robust
detection.

The proximal tubule has a great influence on the urine composi-
tions and is used as the main application in this thesis. Promising
results could be achieved in the detection of renal papillary necro-
sis and liver toxicity, but the collection of further positive samples
is expected to lead to an increased sensitivity.

6.6 SUMMARY

The effectiveness of the new ensemble approaches presented in
chapter 5 was determined in this section on a real data set from
safety pharmacology and a simulated data set for the validation
of identified relevant signals. Furthermore, the performance of
classification methods for the detection of alternative toxicity
types was investigated.

Evaluation results for the REAL.NMR data set demonstrate the
low performance of classical pattern recognition approaches from
single and multiple classifier theory. The best classification re-
sults are achieved by SVM approaches, which serve as reference
for comparison of newly developed systems. Even though the
reference systems are chosen due to their ability to achieve a rea-
sonable classification even in case of sparse and complex data sets,
classification performance needs to be improved for application
in safety pharmacology.

Advanced ensemble methods are optimized with respect to
the classification results achieved on the validation set of the
REAL.NMR data set and finally applied on the test set. All ensemble
approaches outperform SVMs as reference classification systems.
Reasonable classification results are achieved by the ARSS proce-
dure and the ensemble of local experts stacking approach. The
stacking procedure improves the generalizability of the ensemble
of local experts approach, which results in the best evaluation
results among the investigated methods. Combination of sam-
ple classifications to compound predictions further improves the
classification performance of the classification approaches.

To focus on the spectral regions relevant to the discrimination
between non-toxic and toxic samples represents the main char-
acteristic of newly developed ensemble methods and the central
hypothesis of this thesis. The ARSS procedure and the ensemble
of local experts represent two different approaches for the deter-
mination of relevant spectral regions and their incorporation in
the classification decision.



6.6 SUMMARY

Ensemble systems not only improve the classification perfor-
mance, but also allow for an interpretation of their ensemble
decision. The percentage of base classifiers detecting an organ
toxicity is an indicator of the degree of the toxic effect. Further-
more, the spectral signals used by the ARSS procedure and the
ensemble of local experts approach can be determined and used
as starting point for the identification of biomarker signals.

The promising results obtained in these evaluations are vali-
dated on a simulated data set. The ARSS approach and the en-
semble of local experts outperform the reference systems in the
classification of simulated NMR spectra and all biomarker signals
in the spectra are identified.

The improved classification performance of ensemble systems
is further validated in the classification of other toxicity types
than the proximal tubule as the main organ region investigated
in this thesis. Although classification results are below those
achieved in the detection of organ toxicity with respect to the
proximal tubule, ensemble approaches focusing on relevant spec-
tral regions outperform remaining classification approaches.
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CONCLUSION

Industrial drug design aims at the development of new phar-
maceuticals having a benefit for the patient. While this design
starts with the creation or combination of molecules having the
intended effect on the organism, other side effects such as organ
toxicities are usually unknown. Only if these adverse effects are
known and can influence the design, a safe and efficacious drug
can be developed.

In order to give support for a robust detection of organ toxi-
cities, new classification approaches for the automated classifi-
cation of urine samples based on the measurements from NMR
spectroscopy were developed in this thesis. This inference on
specific changes in the metabolism indicating a toxic effect based
on the analysis of spectroscopic data has been investigated in the
last decade(s) by different institutions. Thereby, mainly classical
pattern recognition approaches were used on rather limited data
sets.

Classification systems developed in this thesis are based on
ensemble methods, which achieved competitive classification re-
sults in different applications even in case of sparse and complex
data sets. However, their suitability for metabonomic applica-
tions has not been investigated up to now. Consequently, the
basic concepts of ensemble theory are used for the design of a
classification system respecting specific characteristics of NMR
spectra.

SUMMARY

Approaches for the identification of information contained in
NMR data relevant to the discrimination between induced toxic
effects are mainly based on multivariate data analysis methods,
such as PCA or PLS. Only few studies investigated the application
of alternative methods from the field of pattern recognition theory
on rather limited data sets.

The detection of characteristic changes in the spectral profiles
from urine samples is the main principle for the classification
of new samples as being non-toxic or toxic with respect to a
particular organ. The reliable detection of the relevant peaks in the
spectrum is the most challenging task due to the usually rather
small data sets. Therefore, robust classification methods that
achieve an automated determination and extraction of spectral
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signals or regions relevant to the discrimination between non-
toxic and toxic samples are presented in this thesis.

Ensemble systems are one prominent example of classification
methods which have shown competitive classification results in
several applications. The general ensemble principle is used in
this thesis for the design of ensemble classification systems, which
incorporate characteristics of the particular data set. Thus, the
effectiveness and flexibility of ensemble systems is combined for
the design of a robust classification system. The general concept
of combining multiple classifiers is achieved in a first ensemble
approach by the integration of classifiers trained on differently
preprocessed data sets in a multiple classifier system. Combina-
tion of these different “views” on the data in an ensemble leads
to an improved classification performance. This result serves as
proof of concept for the applicability of ensemble methods for the
classification of NMR spectra. However, the main improvement is
expected to be achieved by respecting particular characteristics
of the data in the ensemble design.

The emphasis on the relevant peaks in the classification system
is the fundamental approach for the improvement of classification
results presented in this thesis. The relevance of each bucket value
is determined in the ARSS approach by the iterative optimization
of a weight distribution, which is used for the subspace selection.
Thereby, weights are increased if their selection in a subspace
leads to higher classification results than those achieved by other
base classifiers. Finally, the ensemble performance is increased in
each iteration due to the improved base classifiers.

The initial step in the ensemble of local experts approach is the
definition of spectral regions by a sliding windows approach in
different scales. Local experts are trained on the short spectral re-
gions, thereby, focusing the view of each base classifier on specific
spectral signals. The optimization of the selection of local experts
for the final ensemble aggregation is achieved by approaches
originally used for feature selection problems. Thereby, local ex-
perts using the most relevant parts of the spectrum are used for
construction of the final ensemble decision. This selection of local
experts is prone to overfitting and an improved generalizability
is achieved by a stacking approach for ensemble aggregation.

The identification of the relevant spectral regions is achieved
by the presented ensemble approaches in an automated way.
Thereby, no background knowledge has to be incorporated. Thus,
sample ingredients, which have not been regarded as relevant
to the detection of organ toxicities, can be used for classification
and new biomarkers can be identified. The location of relevant
spectral regions is indicated either by high weights in the ARSS
procedure or by the specific regions used by local experts con-
tained in the final ensemble. Furthermore, the percentage of base
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classifiers assigning the label toxic to an applied compound is
used as indicator on the degree of the toxic effect.

The focus of the ensemble classification is concentrated on
particular spectral regions in the presented ensemble approaches
which leads to an improved accuracy in the classification of
spectra. However, the primary objective is the determination of
adverse effects for each applied compound and not for every
sample. Thus, the classifications of spectra corresponding to
each compound are combined for each sample collection time.
A compound is classified as being toxic if the combination of
predictions leads to a toxic label at one of the collection times.
Thereby, samples showing a non-toxic profile due to an increased
resistance of the organism or a late onset of the toxic effect are
compensated and a classification of each applied compound is
achieved.

The capabilities of the newly developed advanced ensemble
methods for automatic classification of NMR spectra are investi-
gated in an experimental evaluation based on a real set of NMR
spectra from safety pharmacology. A valid optimization and test
strategy is developed by the use of a five fold cross-validation and
test procedure, which allows for the optimization and evaluation
of the ensemble methods. Evaluation results have clearly shown
a significant improvement in classification performance of ensem-
ble methods in comparison with single SVM approaches, which
outperformed a selection of alternative ensemble approaches. The
main improvements are achieved by ensemble approaches focus-
ing on relevant spectral regions determined in an automated way.
While the base classifier selection procedure of the ensemble of
local experts approach leads to overfitting effects, an improved
generalizability is achieved by the alternative stacking approach.
The ARSS procedure and the ensemble of local experts show also
in compound classification the best evaluation results among
the investigated approaches. These results are confirmed for the
classification of alternative toxicity types, although a reasonable
classification performance cannot be achieved for each type.

Inference on the most relevant spectral regions is shown for the
REAL.NMR data set, but these results cannot be validated since no
information on the location of real biomarker signals is available.
Thus, a data set of simulated spectra containing mainly peaks sig-
nals with randomly changing intensity and five biomarker peaks
are used for evaluation of the interpretation results. The combi-
nation of results from both methods leads to the identification of
the exact signals of all biomarker signals, thereby demonstrating
the effectiveness of the ensemble methods.
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OUTLOOK

Metabonomics has a large potential to influence the develop-
ments of techniques used in drug design for the assessment of
toxic adverse effect after drug application. Ensemble methods pre-
sented in this thesis achieve superior results in comparison with
alternative investigated approaches. However, the accuracy has
to be improved in order to achieve acceptance of these automated
detection methods. The success of these methods has been re-
duced up to now by the relatively small data sets and the spectral
data representation. Generally, developments of new instruments
with stronger magnetic fields reduce the overlap of peak signals
and can improve description of alternative data representations
such as peak lists. Furthermore, 2D-NMR is an alternative mea-
surement procedure, which further reduces the overlap of signals
by their positioning on a 2D plane rather than on a 1D ppm
scale. These improvements combined with steadily decreasing
measurement costs, and advances in the data analysis techniques
are expected to be the key for achieving improved results in the
classification and interpretation of future spectroscopic data sets.

A further promising alternative to the presented classification
approaches is the incorporation of the changes in the spectral
profile of the same animal over time. The collection of samples
before the drug application allows for the determination of a
normal spectral profile for each animal. With respect to these
spectra, changes in the spectral profile can be qualified for further
collection points and used as information for an applied classifier.
Therefore, a data representation as shown for the SMART scaling
[Keun o4] can be created, or classifiers respecting time-series
data such as Hidden Markov Models (HMMSs) can be applied.
However, in order to use samples from several collection points
and to train robust classification models, a very large data set of
high quality has to be acquired.



APPENDIX

A.1 PRINCIPAL COMPONENT ANALYSIS

The basic concept of Principal Component Analysis (PCA) is
to transform a high-dimensional data set into a representation
with lower dimensionality while retaining most of the variation
present in the data. This transformation is achieved by projection
into a new coordinate system, whereby the axes, the so-called
Principal Components (PCs), are uncorrelated and sorted accord-
ing to the amount of explained data variation so that the main
variation in the data is described by the first few PCs.

Variation present in a data set to be analyzed is used for the
estimation of PCs. Variation is characterized by the scatter-matrix
S of a data set x1,xp, ..., xy defined as:

1 N
5= N (xi =x)(x=%)7,

Il
—_

For decorrelation of the data a transformation @ is required,
which transforms S to a diagonal matrix S

1
N :

1

O(x; — X)[O(x; — x)]T = @seT

™=

S =

I
—_

In order to retain the Euclidean distance between samples an
orthonormal transformation must be applied. The transposed
matrix @7 of eigenvectors 0; of S fullfills the constraints of or-
thonormality and is used for the decorrelation of S. Application
of the transformation to a data set with zero mean

y=0"(x-x)
leads to the transformed scatter matrix by

M 0

) A
$=07S0 = 0"0A0"0 = A = 2 :
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where Aj, Ay, ..., Ay are the eigenvalues of S expressing the vari-
ance of the data described by the PCs.

Information on the amount of each PC’s explained variance can
be used for dimension reduction of a n-dimensional data set by
using only the m first PCs (m < n) with the largest eigenvalues for
the construction of a feature space. Projecting the original samples
onto this new subspace reduces the sample dimensionality while
retaining the majority of data variance. The loss of information
by this projection can be expressed by the reconstruction error
€, which is basically the amount of variance explained by the
discarded PCs
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Figure A.1: A PCA model approximates the main variation in a given
data set. Interpretation can be pursued by low dimensional
representation of the samples in a score plot or describing
the influence of each input variable on the PCs (adopted
from [Tryg o7]).
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The projected samples are usually referred to as scores (cf.
figure A.1). These can be used for visualization purposes in a
score plot or even as feature representations of a data set in a
classification system. Using only the first few PCs reduces the
data dimensionality but the main variance present in the data is
retained.

PCs mainly reweight the dimensions of the input space ac-
cording to their relevance for description of the currently major
variance in the data. Thus, further knowledge on the variation of
each dimension in a data set can be achieved by analysis of these
weights, which are also referred to as loadings. If a separation
between classes is visible in the score plot, a loading plot can be
used to determine the features relevant to the class separation.
Each point in the loading plot corresponds to a particular feature.
Important variables are located in the periphery of the loading
plot and variables with low influence on the model are close to the
origin. This interpretation is usually applied in fields, where each
variable has a certain meaning and the most relevant features
have to be determined (e.g. chemometrics, metabonomics).

Further details of approaches for the estimation of PCA models,
and applications are described in [Fink o8] and [Joll 02], which
are the basis for previous explanations and are a good starting
point for further reading on PCA.

175

scores

score plot

loading plot



176

data transforma-
tion w.r.t. to vari-
ance in the data
and class labels

matrix of indepen-
dent variables

matrices of
orthogonal factors,
and weights

APPENDIX

A.2 PARTIAL LEAST SQUARES REGRESSION

Probably the best-known method in metabonomics is the Partial
Least Squares (PLS) regression, also referred to as projection
to latent structures. PLS has been introduced by the Swedish
statistican Herman O. A. Wold in 1966 [Wold 66]. Comparable
with PCA, a new coordinate system for the projection of the
independent variables (samples) is estimated within PLS. The
optimization criterion for this estimation is not the explained
variation of the new coordinates. Instead, the covariance between
the independent variables and a given set of dependent variables
(e.g. class labels) is maximized. Thus, PLS is a supervised method.

Due to the incorporation of additional information on the
samples regarding their class membership, an improved dis-
crimination between different groups can be achieved by PLS in
comparison with PCA. Furthermore, new samples can be classi-
fied according to the estimated PLS model. Due to its convincing
results in mutlivariate data analysis and its integration into sev-
eral commercial and non-commercial programs, PLS has become
increasingly popular in the field of metabonomics and chemo-
metrics.

The set of n k-dimensional independent variables is denoted
in the following as n x k matrix X, and the n [-dimensional
independent variables as 7 x [ matrix Y. The Y matrix is in case of
discriminant analysis formed as a "dummy matrix" of zeros and
ones, whereby each column corresponds to one of the different
classes. Each sample has a one in the column of the class it
belongs to and a zero in the column of classes it does not belong
to. Vectors t, u, w, ¢ and p are columns of the matrices T, U, W,
C and P, and b are diagonal elements of the diagonal matrix B.

Decomposition of the matrices X and Y (cf. figure A.2) is
achieved by a common set of orthogonal factors formed as matrix
T and specific weights P and C. Thereby, the matrix Y is only
approximated and Y # Y.

X =TPT
Y = TBCT,
where TIT =1

For the determination of the matrix T a maximzation problem
according the covariance between X and Y is formulated in order
to achieve the desired dependency between the two matrices.
Thereby, a set of factors w and ¢ has to be determined for a
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n X = n| T * m| P"
k
k m
n? = n| T * m| B :(-m(jT
m 1
1 m

Figure A.2: Decomposition of matrices X and Y.

linear combination of columns from X and Y. This maximization
problem can be formulated according to the following:

maximize t’u

tucRN
with t=Xw
u=Yc
where wiw =1
tTt=1.

Solving this maximization problem for t and u allows for the
calculation of p and b by

p:ETt
b=t"u,

where E is the matrix X after mean centering and variance nor-
malization. The influence of t can now be subtracted from X
and Y, and the process is iteratively repeated until the desired
number of components is calculated or X equals a zero matrix.

The interpretation of the estimated model parameters is com-
parable with the scores and loadings plots explained for PCA in
section A.1, while PLS has shown improved interpretation results
compared with PCA due to the incorporation of class labels in the
estimation of model components. One of the possible algorithms
for the calculation of a PLS model is outlined in the following
section.

NIPALS for Estimation of PLS Components

A commonly used method for the estimation of PLS components
is the nonlinear iterative partial least squares (NIPALS) algo-
rithm, which will be outlined based on [Abdi 03]. Mean-centered
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and variance normalized matrices X (independent variables) and
Y (dependent variables) are the input parameters for the PLS
estimation method shown in algorithm 4. The final model compo-
nents are determined in an iterative approach up to a predefined
number of iterations. Increasing the number of model compo-
nents improves the description of the data, while simultaneously
decreasing the generalization capability of the model for the
hihiprediction of unknown samples.

Algorithm 4 Calculation of a PLS model according to the NIPALS
algorithm (cf [Abdi 03, Wold o04])
Input: mean centered and variance normed matrices X and Y
and amount of factors m to be calculated
Output: Components of the PLS model: T, U, W, C, P and B
1:i=0
2: while (X # zero matrix AND i <m) do

30 initialize u randomly
4 i=i+1
50 tg =0
6 thew = 1

7. while tyq # thew do

8: told = thew
9: w = % o weights for X
X

10: t= 1. o factors for X
11: c= Z—;: o weights for Y
12: u= % e factors for Y
13: thew = t
14: end while
15 p = i(—;: o subtract the influence of t . ..
16: X=X—-tTp o ... fromX
17 Y=Y—-tTc o ...fromY
18 b=t"u o regression weight

19:  storet, u, w, ¢, p and b in the corresponding
matrices T, U, W, C, P und B

20: end while
21: return T, U, W, C, P und B




=

A3 EXAMPLE OF PC AND PLS REGRESSION

A.3 EXAMPLE OF PC AND PLS REGRESSION

Principal Component Regression (PCR) and Partial Least Squares
Regression (PLSR) are based on the analysis methods presented
in the previous two sections. A regression and not a classification
problem is assumed. This section® demonstrates the application
of both methods on a set of 60 near infrared (NIR) spectra at
401 wavelengths, whereby the analyzed gasoline samples have
different octane ratings (cf. [Kali 97]). The spectra of the data set
are shown in figure A 3.

!
/ u//,/ )
AR

AR

N\

Octane Wavelength Index

Figure A.3: Data set of 60 near infrared spectra of gasoline samples at
401 wavelengths and their octane ratings.

PCR and PLSR models are estimated under variation of the
number of components. Thereby, the percentage of explained
variance in the data space increases with each new component
as shown in figure A.4a. PCR components are estimated in order
to maximize the explained variance in the data space X. As a
result, the explained variance of PCR components is higher than
those of PLS components, since these are estimated by taking
also the response variable and not only the predictor variables
into account. The percentage of variance in the response variable
explained by the PLSR components is shown in figure A.4b.

More than 95 % of variance in the data space is explained by the
first four components of both regression approaches. However,
two comoponents of the PLSR model are already sufficient to
fit the data in the Y space as shown in figure A.4b. In practice,
methods such as cross-validation are applied for determination
of a reasonable number of PLS components.

Explanations in this section are based on the PCR and PLSR demon-
stration from the Matlab statistics toolbox, which can be found at
http://www.mathworks.com/products/statistics/demos.html?file=
/products/demos/shipping/stats/plspcrdemo.html
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Figure A.4: Percent of explained variance in X and Y of PC or PLS
models under variation of the model components.

Fitting a PCR and PLSR model with two components to the data
leads to fitted versus observed response plots as shown in figure
A.5a. The fitted PLSR responses do predict the octane ratings
very good and better than those achieved by the PCR model.
However, the choice of two components is based on observations
for the PLSR model and the quality of the fit of the PCR model
to the dependent variable is expected to increase by using more
components. Figure A.5b demonstrates the low difference in
residuals of both methods using ten model components.

Summarizing, the results of PCR and PLSR become quite similar
with an increasing number of model components. However, PLSR
is able to fit the response variables with a lower number of
components due to the incorporation of the response variables in
the model estimation.
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Figure A.5: Plot of fitted versus observed octane ratings using two or
ten model components.
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