# Detection of malicious network traffic using behavior signatures

Christian J. Dietrich

2010-07-07

SPRING 5, Bonn





#### **Contents**

- 1. Problem statement and requirements
- 2. Discussion of approaches
- 3. Outlook



#### **Problem statement (1/2)**

- Malicious remote controlled software, i.e. bots, cause lots of problems in today's Internet
- Malicious network traffic examples
  - Related damage (spam, infections, DDoS, credential theft, click fraud...)
  - Command and control (C&C) network traffic
  - Deluding network traffic
- None of these need to be obvious
  - e.g. a trojan exfiltrates data encrypted and steganographically hidden in an image uploaded to flickr / video to youtube / blog comment...

### Problem statement (2/2)

- Most existing botnet detection methods require related damage/attack traffic! (BotHunter, BotMiner)
- Existing detection is based on static criteria that are supposed to be characteristic for botnets, e.g.
  - Specific payload byte signatures (Botzilla, TAMD)
  - Regularity/periodicity of network behavior (BotSniffer, BotMiner, Intel Canary)
  - Destination access patterns (TAMD)
- C&C is more and more encrypted, thus payload byte signatures are no longer applicable
- Is it possible to detect malicious remote controlled software based on its network behavior?

# Requirements of a behavior-based bot detection method

#### Must-have

- 1. Behavior signatures should be dynamic and adapted as necessary (automated signature extraction)
- 2. Behavior signatures should be as independent as possible from the learning environment
- Detection should be adequately accurate, i.e. should have very low misclassification rates
- Nice to have
  - 4. Not solely depend on attack/damage traffic
    - Detection should be based on any kind of traffic that is present even if no attack takes place, such as C&C traffic
    - Attack traffic may support detection



# Approach: Flow Based Botnet Detection

- Extract features from bot network traffic samples
  - A) in a contained environment (sandnet)
  - B) in the wild (using A/V as sensors)
- Extract features from legitimate network traffic
- Label the feature sets (malicious/benign)
- Aggregate feature sets
  - Detect infected hosts
    - => aggregate by source IP address
- Build a model (machine learning, especially SVM)
- Apply the classifier to features extracted from live network traffic at network egress points

### Challenges

- Which features shall be extracted (abstraction)?
  - Network flow-level features (duration, src&dst, ports, l4proto, l7msgs, bytes sent/rcvd, entropy, dst\_domain, l7proto, ...)
- Formal definition of a behavior signature?
  - Aggregation of flows as a set (no order)
  - Express as a sequence of flows (causality)
  - SVM model based on training on an aggregation of flows
- Unclean training data
  - Clean network traffic is difficult to acquire
  - Bot traffic may contain legitimate-looking flows (e.g. a Google search)
  - Requires a robust learning method
- Lots of related work

#### Classic NetFlow (sFlow similar)

Flow

{ (t, sIP, dIP, sp, dp, bSent, bRcvd, duration), ... }

1

n

Frame

{ (t, srcMac, dstMac, l3proto, payload), ... }

10

#### From frames to flows to NBS

Network Behavior Signature

SVM model after training with labeled aggregated flows

Aggregation of Flows

Depends on the aim of the detection, e.g. hosts

#### enhanced Flow

m

Message

1 n

Frame

```
{ (t, sIP, dIP, sp, dp, bSent, bRcvd, duration, I7msgsSent, I7msgsRcvd, entropy, I7proto, dnsResolvedDst, dnsFailureRate, ...), ... }
```

{ (t, sIP, dIP, sp, dp, l7proto, payload, ...), ... }

{ (t, srcMac, dstMac, l3proto, payload), ... }

1

### **Aggregation of Flows**

- Aggregate a set of flows
  - Order of the flows is not important
- Aggregate a sequence of flows
  - Order of the flows is important
  - Implies causality of flows
- Aggregation criteria
  - Aggregate by source host / IP address
  - Aggregate by execution of a bot binary
  - Sample sets of flows over time

### **Network Behavior Signature**

- "Compare the resulting aggregations"
- Clustering of resulting aggregations
  - Are there "similar" aggregations among different bots?
- Aim: learning an SVM model based on the flow aggregations
- Define a network behavior signature as the model that results from SVM-based learning

# Building subsets of network traffic for training and detection

- Considering all network traffic might result in performance problems
- Are there reasonable subsets of network traffic that suffice for training and detection?
  - Certain layer 7 protocols, e.g. HTTP
  - Sampling of network traffic

#### **Restrict to HTTP traffic**

- HTTP is used more often by bots, especially as underlying C&C protocol
- Again flow based detection, but restrict to HTTP network traffic
  - Many false positive candidates
  - Thus, try to even restrict to HTTP C&C traffic
- Challenges
  - Definition/Identification of C&C traffic
  - Evaluation nearly impossible

### **Interim Findings**

- Botnet C&C network traffic is not detectable in mixed network traffic!
  - Botnet C&C is effectively a covert channel
  - There are always means to hide C&C communication in today's Internet traffic
  - Separation of C&C network traffic and non-C&C traffic is impossible, especially given an initial abstraction layer such as network flows
- Restricting the network traffic: risk of losing what is important
- 2. Bot detection based on the presence of network traffic (no matter what kind of traffic this is)
- → Hence look at further attack/damage functions



#### 3. Outlook

#### **Indirect infections**

- Focus on infections
  - So far: direct infections (mostly via 445 or 135/TCP)
  - Targets server/daemon software



Targets client software





Thanks for your attention.

Questions?