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Chapter 1

Introduction

In many medical applications, the common focus of analyses is to model the impact of
prognostic factors and therapies on the time to a certain event such as relapse or death. A
standard approach for such analyses is the Cox proportional hazards model (Cox, 1972),
which evaluates the instantaneous risk for the event of interest. This model is based on
assumptions which, for example, imply that the effects of prognostic factors and therapies
are constant over time (proportional hazards assumption). However, with long-term follow-
up this assumption may be questionable and erroneously assuming proportional hazards
(PH), i.e. time-constant effects, results in incorrect models. However, mismodelling the
shape of time-varying effects can likewise lead to incorrect models and false conclusions
thereof. Hence, beyond detecting time-varying effects, appropriate modelling of their shape
is at least as important.

Time-varying effects of prognostic factors have been detected in a variety of medical fields.
For instance, the effects of oestrogen receptor and tumour size in breast cancer have been
reported to change over time (Hilsenbeck et al., 1998; Coradini et al., 2000). Other ex-
amples include the effects of prothrombin time in primary biliary cirrhosis (Abrahamowicz
et al., 1996), the Karnofsky performance status in ovarian cancer studies (Verweij and van
Houwelingen, 1995) and diabetes on mortality after coronary artery bypass graft surgery
(Gao et al., 2006).

Besides gaining insight into the impact of prognostic factors on survival, the accurate as-
sessment of therapy effects is another important goal. As D’Agostino (2009) states: “To
advance our understanding of treatments for diseases that progress slowly but that are ulti-
mately debilitating, such as Alzheimer’s disease, Parkinson’s disease, rheumatoid arthritis,
and chronic obstructive pulmonary disease, it is essential to evaluate the disease-modifying
effects of administered treatments. It is also essential to separate these effects from the
short-term beneficial effects on symptoms that such treatments may provide.”
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Recently, the importance to account for non-PH has also been recognised in microarray
survival studies (Dunkler et al., 2010), where the PH assumption is unlikely to hold for each
gene. Ignoring the violation of PH of some genes may lead to false conclusions about their
importance.

The variety of methods to check for non-PH is broad, see e.g. Ng’Andu (1997) for an
overview of different tests. However, significant non-proportionality does not necessarily
involve the presence of time-varying effects. Spurious time-varying effects may also be
introduced by mismodelling other parts of the data, such as omission of an important covari-
ate, an incorrect functional form of covariates or an inappropriate survival model (Keiding
et al., 1997; Therneau and Grambsch, 2000, chap. 6). All of these issues are important and
mutually interact.

If the detected non-proportionality is due to a real time-varying effect, appropriate modelling
of this effect is an even more important task, as usually the interest lies not only in the pres-
ence of a time-varying effect, but rather in the interpretation of its shape. Mismodelling the
functional form of effects may lead to incorrect conclusions about prognostic factors and
therapies, e.g. false believe in the benefit of a therapy may in the last resort lead to an
increased mortality of patients. To cope with this task, several different approaches have
been proposed, which extend the Cox model to allow for time-varying effects. So far, there
is a lack of knowledge of properties of several of these approaches and advice on which
techniques to use is rare.

Time-varying effects are not to be mistaken with time-dependent covariates, i.e. covariates
that change values over time. In this context, only time-fixed covariates with time-varying
effect are considered, i.e. the values of covariates are fixed and do not change over time,
but their effects do. Of course, an extension to time-dependent covariates with time-varying
effects is possible, but is not considered here.

The aim of this thesis is to assess the properties of the Fractional Polynomial Time (FPT)
algorithm (Sauerbrei et al., 2007), which tests and models the time-varying effect of a single
covariate based on fractional polynomials, and its multivariable extension in a large simula-
tion study. Furthermore, to give guidance on different techniques, several recent approaches
for modelling time-varying effects are compared in a data example and a simulated data set.
The main focus in both investigations will be on the shape of the selected effects, to account
for the importance of appropriate modelling of time-varying effects rather than mere testing.
An investigation in this vein has, to our knowledge, not been accomplished before.

Chapter 2 gives a brief overview of different methods for modelling time-varying effects,
which are based on techniques like parametric functions of time, piecewise constant effects,
fractional polynomials, splines, cumulative effects, local linear estimation or neural networks.
A special focus is thereby on the different approaches under investigation in the subsequent



chapters.

The assessment criteria for selected models and individual (time-varying) effects are intro-
duced in Chapter 3. As graphical comparison of individual effects is limited in simulation
studies, we additionally utilise a measure which quantifies the distance of estimated effects
to the true effect by the weighted area between both functions. Furthermore, the prediction
performance of the complete model is assessed in terms of the prediction error.

In Chapter 4, we compare five recent approaches in example data sets including the Rot-
terdam breast cancer series, a prognostic factor study. To gain further insights into their
performance, all approaches are additionally applied to a simulated data set. We comment
on the practical applicability of the investigated approaches and demonstrate assets and
drawbacks to give guidance on which approaches seem to be most suitable.

In Chapter 5, we assess the stability of effects estimated by FPT in bootstrap samples of the
Rotterdam breast cancer series. To account for model selection uncertainty and to enhance
the reliability of time-varying effects, we propose a bootstrap based selection and modelling
strategy.

The results of a large simulation study on the properties of the FPT algorithm and its mul-
tivariable extension are presented in Chapter 6. The performance is assessed in terms of
type | and Il error. As the definition of a type Il error in the framework of time-varying effects
is difficult, we consider two different versions. The usual definition is the failure to detect the
time-dependency. Additionally we account for the shape of the selected effects by introduc-
ing a qualitative type Il error. For evaluation of the effect estimates and complete models, we
use the distance to the true effect and the prediction error, respectively. We had in mind to
include a competitive approach in the simulation study. However, several practical problems
arose in the application of this approach (Scheike and Martinussen, 2004) to the simulated
data, which are briefly presented subsequent to the simulation study.

We conclude with a discussion summarising all findings and commenting on future perspec-
tives in Chapter 7.






Chapter 2

Analysis of time-varying effects

2.1 The Cox model

The standard model for analysing survival data is the well-known Cox proportional hazards
(CoxPH) model (Cox, 1972)

M=

AHIX) = Ao(t) exp(Y. XiBy), 2.1)

i=1

with covariates X;, i = 1,...,q, covariate matrix X = (Xj ... X,), effects 3; and unspecified
baseline hazard Ay (t).

The effects 3; are estimated based on the partial likelihood, which for n, distinct ordered
eventtimes t(q),...,t,, is equal to

d.
sy Il exp (X1 XiiBi)
=1 {Eierq;) exp (T, XuBi) }

PL(B) (2.2)

where d; is the number of events at time ¢(; and R(t;)) the risk set at ¢(;), i.e. the set of all
individuals still at risk just prior to ¢ ;).

The maximum partial likelihood estimates for 3; are found by maximising (2.2), i.e. by solving
the set of g score equations U(B;) = 0,i = 1,...,q9. U(j3;) are the partial derivatives of
the log partial likelihood log(PL(3)) with respect to 3;. The score equations are usually
solved numerically using a Newton-Raphson algorithm, which starts with initial estimates
/31(0), e.g. /31(0) = 0, and iteratively updates them based on the score vectors and the Hessian
matrix H of mixed second partial derivatives of the log partial likelihood as

ﬁ(]"”) _ /31(]') _yg! (ﬁ(j))u(ﬁl(j))

1

5
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until convergence, i.e. until the log partial likelihood stabilises (for details see e.g. Therneau
and Grambsch, 2000, chap. 3 or Klein and Moeschberger, 2005, chap. 8). A variant of
the Newton-Raphson algorithm is the Fisher scoring algorithm, which replaces the Hessian
matrix by its expectation.

The baseline hazard Ay(t), i.e. the cumulative baseline hazard [§ A(s)ds, is usually esti-
mated afterwards using the Breslow estimate
d;

Holt) = e (2.3)
f%‘éf ZZER(tm) exp (2?21 X/iﬁi)

Estimation of the baseline hazard is, for example, required to obtain survival probabilities
t q
S(t|X) =expq — / Ao(s)dsexp | Y. XiBi | ¢ - (2.4)
/0 i=

The CoxPH model is based on several assumptions such as the proportional hazards (PH)
assumption, i.e. the ratio of the hazards of two individuals is assumed to be constant. How-
ever, if the effects of covariates change over time, this assumption is violated and an exten-
sion of model (2.1) is required, which allows for time-varying effects.

2.2 Central issues of multivariable model building

When thinking about multivariable model building strategies, time-varying effects are not the
only issue one has to deal with. In multivariable model building, three central issues have to
be considered:

(i) Which covariates have to be included into the model?

(i) Is the effect of continuous covariates linear as assumed in model (2.1) or is a non-linear
functional form f(X;) # X; more appropriate?

(iii) Do effects of covariates vary in time and if so, how do they look like?

All three issues are related to each other. Spurious time-varying effects may appear due
to mismodelling of the first two aspects, i.e. omitting an important variable or assuming an
incorrect functional form as discussed, for example, by Keiding et al. (1997), Therneau and
Grambsch (2000, chap. 6.6) and Abrahamowicz and MacKenzie (2007). Vice versa, erro-
neously assuming PH in the presence of time-varying effects also results in mismodelling of
the data.
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Several approaches have been proposed which concentrate on either of the three issues,
but only few consider all of them. One approach that addresses all three issues is the Mul-
tivariable Fractional Polynomial Time (MFPT) approach (Sauerbrei et al., 2007). It extends
the Multivariable Fractional Polynomial (MFP) approach (Sauerbrei and Royston, 1999) for
modelling of the functional form of continuous covariates (non-linear effects) by selecting
and modelling time-varying effects based on fractional polynomials (FPs).

The MFPT algorithm consists of three steps, which gradually extend the model:

Step 1: Select covariates with influence on survival time and functional forms of continu-
ous covariates by applying the MFP algorithm (Sauerbrei and Royston, 1999). The
resulting model assumes PH, but relaxes the linearity assumption.

Step 2: Add covariates with a short-term effect only. Restrict the data to a short—term period
[0, f] by censoring all observations at £, where f may be defined by the first half of
events. Rerun the MFP algorithm on this restricted data set, keeping covariates and
transformations selected in Step 1 fix, but re-estimating the regression coefficients.

Step 3: Identify and model time-varying effects for covariates selected in Steps 1 and 2 (see
Section 2.5.1).

Royston and Sauerbrei (2005) investigate the MFP approach (Step 1) by bootstrap resam-
pling with respect to the stability of selected models and FP transformations of covariates.
They show that MFP can find flexible functions for covariates if indicated by the data, without
incurring major instability of functional forms or models.

A few of the methods introduced in the following section also allow for testing and/or mod-
elling of non-linear covariate effects, but most approaches ignore these issues and focus
on modelling time-varying effects only. They take a time-fixed model as their starting point,
which may already include non-linear functional forms of covariates. In the analysis of a real
life example in Chapter 4, we apply the first two steps of the MFPT algorithm to develop such
a time-fixed model.

Since the focus of this work lies on the identification and modelling of time-varying effects,
we will in the sequel concentrate on this topic.

2.3 Approaches for modelling time-varying effects

The variety of approaches for modelling time-varying effects is broad. Often the methodol-
ogy is transferred from approaches for modelling non-linear functional forms of covariates.
Unfortunately, several of the approaches are introduced in univariate settings and lack suit-
able strategies for multivariable model building, which limits their practical applicability.
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In the sequel a selection of several approaches for modelling time-varying effects is pre-
sented, which is not claimed to be complete, but shall give an overview of the variety of
different techniques used in this field by discussing some approaches exemplarily.

To assess the performance and practical applicability of the different techniques, we chose
five recently proposed approaches representative for the different techniques and compare
their performance in data examples. We decided in favour of promising flexible techniques,
such as splines, FPs and non-parametric cumulative regression functions, including fre-
quentist as well as Bayesian methods. These approaches are introduced in more detail in
Section 2.5.

2.3.1 Parametric functions of time

The very first proposal for an extension of the CoxPH model is given by Cox (1972) in
his original paper. He proposed to introduce time-dependent components based on a pre-
defined function of time in case of non-proportional hazards. This corresponds to the inclu-
sion of a time-dependent covariate X;f;(t) representing an interaction between the predictor
and a parametric function of time f;(t). Hence, model (2.1) is modified to

A(tX) = Ao(t) exp (_i Xifi(t)ﬁi> = Ao(t) exp (_i Xiﬁi(f)> , (2.5)

with the time-varying effects ;(t) = vio + vi1fi(t). Model (2.5) simultaneously provides a
check of the PH assumption by testing on y;; = 0.

This approach is still used, as for example by Putter et al. (2005), who choose f(t) =
log(t + 1). Their work, though, puts much emphasis on estimating the baseline hazard
together with covariate effects to obtain a complete picture of the underlying structure.

The method is easy to implement in standard statistical software, but inference is highly
dependent on the choice of the parametric function f(t). As the shape of the estimated
time-varying effect is determined by the specified function, an inappropriate choice of f(t)
may lead to incorrect interpretation of results. Often several alternatives for f(t) are tried
to overcome this problem. However, different choices of f(¢) may also influence the corre-
sponding test on PH and may lead to different decisions, as the test depends on a specific
departure from the null hypothesis. Furthermore, some functions may fit equally well or none
might be able to describe the underlying effect, if its shape is too complex.

To enhance the flexibility in multivariable analyses, Quantin et al. (1999) allow different func-
tions f(t) for the time-varying effects of different covariates based on the best-fitting function
selected from {t,1log(t),t?,1/t} in univariate analyses. Furthermore, Therneau and Gramb-
sch (2000, chap. 6) give some guidance on how to choose f(t). Besides a choice based on
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theoretical considerations, they propose to use smoothed Schoenfeld residuals to explore
the shape of departure from PH.

2.3.2 Piecewise constant effects

Another straight-forward technique is partitioning of the time axis, also called piecewise
constant effects. Based on the idea that the PH assumption holds at least over short time
periods, separate effects are fitted for each period (under the PH assumption) resulting in
a step-function for 3(t). Although piecewise constant effects are very popular, they have
some drawbacks. The choice of the number of jump times is crucial. To produce reliable
estimates, a sufficient number of events in each interval is required. Otherwise, estimated
effects may be unstable or the algorithm may even fail to converge. This problem enhances
in multivariable analyses, where the same additionally applies for each subgroup of covariate
combinations.

Proposals on the number and position of jump times are manifold. Anderson and Senthil-
selvan (1982), for example, propose a stepwise regression model with as few steps as pos-
sible, e.g. two or three, to avoid estimation problems. To verify the PH assumption, they
investigate the residuals. Moreau et al. (1985) generalise this approach to a larger num-
ber of intervals, whereas O’Quigley and Pessione (1991) consider a special case by limiting
the change of coefficients in the two-step model to a mere change of sign, i.e. () =
By (I(t < T)—1I(t > 7)) for jump time 7.

Other approaches combine a larger number of jump times with penalised likelihood tech-
niques which ensure smoothness of the piecewise constant effects by penalising too abrupt
jumps. Verweij and van Houwelingen (1995), for example, suggest to estimate coefficients
at each event time, using a penalised partial likelihood approach with first order difference
penalty for adjacent values of coefficients. The smoothness parameters are determined
based on the AIC.

Due to the potential instability of effect estimates and their sensibility to the number and
position of jump times this class of approaches is not considered further.

2.3.3 Fractional polynomials

Often smooth functions are preferred to piecewise constant effects. One technique providing
smooth estimates of 3(t) are fractional polynomials (Royston and Altman, 1994), which have
been originally proposed for modelling of non-linear functional forms of covariates. Fractional
polynomials (FPs) are an extension of conventional polynomials allowing for non-integer
and negative powers. FP based approaches for modelling time-varying effects extend Cox’s
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idea of using a pre-defined function f(t). Instead of choosing one function prior to fitting
the model, they include multivariable selection procedures that determine the best-fitting
function f(t) out of a pre-defined set of functions for each variable in turn, including a test
on PH. Two such approaches have been proposed by Berger et al. (2003) and Sauerbrei
et al. (2007) and are described in more detail in Sections 2.5.2 and 2.5.1, respectively. FPs
have the advantage of providing simple functional forms of estimated time-varying effects
which are easy to interpret. As the class of FPs offers a broad variety of curve shapes, the
potential drawback of fitting a global function is deemed to be of minor importance and may
be outweighed by a better generalisability to other data sets.

2.3.4 Splines

Another large group of approaches for modelling time-varying effects is based on splines.
Splines are a flexible non-parametric tool to identify functional relationships and produce
visibly smooth curves. They are constructed from polynomial pieces joined at certain values
(knots). The choice of the number and position of these knots is crucial, as they influence
the fitted curve. Too many knots lead to overfitting of the data, while too few knots result in an
underfitting. Solutions to this problem tend to two directions. Either relatively few knots are
used or a relatively large number of knots is combined with a smoothness penalty, resulting
in penalised splines (Eilers and Marx, 1996).

For example, Hess (1994) and Heinzl and Kaider (1997) use (unpenalised) natural cubic
splines with 3 to 5 knots. Their proposals include a formal test of the PH assumption by
testing on the spline coefficients being equal to zero. Abrahamowicz et al. (1996) prefer
quadratic B-splines with no more than two knots.

Hastie and Tibshirani (1993) propose a penalised partial likelihood approach based on nat-
ural cubic splines, with knots at unique event times and second order penalty based on the
squared second derivative of the time-varying effects. The values of the smoothing param-
eters are selected by specifying the degrees of freedom for the smooth, i.e. the effective
number of parameters. Gray (1992) uses a similar method to determine the smoothing
parameters, but bases the estimation of time-varying effects on B-splines of degree two
and zero (i.e. piecewise constant effects) with a first order integral and first order difference
penalty, respectively. The number of knots is limited to ten.

Brown et al. (2007) propose a mixed model approach, which assumes that some effects
are random. They use linear B-splines or, equivalently, truncated polynomials penalised by
a difference matrix or identity matrix, respectively, to approximate the time-varying effects.
The number of knots are chosen to be min(%, 35), with n, the number of distinct survival
times as proposed by Ruppert et al. (2003, p. 126). The smoothing parameters relate to the
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variance components in the mixed model framework and are estimated in a hybrid approach
controlled by the AIC. The estimation procedure cycles between estimating the regression
coefficients for given smoothing parameters and vice versa, checking the AIC at each itera-
tion. The procedure stops if the AIC can no longer be improved.

2.3.5 Reduced Rank models

Another technique allowing for time-varying effects are Reduced Rank models (Perperoglou
et al., 2006b). In this approach, time-varying effects are modelled as (pre-defined) covariate
by time function interactions, e.g. based on splines. The main idea is to introduce a structure
matrix containing the regression coefficients of all covariate by time function interactions.
The rank of this structure matrix (i.e. the number of parameters to be estimated) is reduced
by factorisation, resulting in more stable and parsimonious models. Details on this approach
can be found in Section 2.5.5.

2.3.6 Cumulative regression effects

Scheike and Martinussen (2004) propose an approach which is mainly directed at succes-
sive testing of time-varying effects based on the non-parametric cumulative regression co-
efficients B(t) = [, B(s)ds. In multivariable analyses, time-varying effects can be selected
via backward elimination. The time-varying effects 3(t) themselves can be obtained via a
kernel estimator which smoothly downweights distant data points and requires specification
of an appropriate bandwidth. The approach is discussed in more detail in Section 2.5.4.

2.3.7 Local linear estimation

Other approaches include local linear estimation techniques as proposed by Cai and Sun
(2003). They use a weighted local partial likelihood in which a kernel function downweights
distant data points. Time-varying effects for a time t are approximated by a linear function
using a first order Taylor expansion around t. The partial likelihood estimate for the linear
function is calculated using the observed event times within a window around each t. The
estimated linear function at ¢ is taken as the estimate of 3(t). Tian et al. (2005) further in-
vestigate this approach. They propose to choose the smoothing parameter (bandwidth) by
cross-validation and construct confidence bands and tests for time-varying effects. In mul-
tivariable analyses time-varying effects may be selected in a backward elimination manner.
Although this approach seems to be rather flexible, to our knowledge, no software tools are
available for it. Therefore, we do not consider it further.
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2.3.8 Neural networks

Furthermore, time-varying effects are considered in the framework of feed forward neural
networks (Liestel et al., 1994; Biganzoli et al., 1998). The proposed networks calculate
linear combinations of the input nodes (covariates) with individual weights (regression co-
efficients) for each node. These linear combinations, also called hidden nodes, are then
transformed by a so called activation function, usually the logistic function, and are again
linearly combined to give the output node(s). Under the PH assumption, all weights (regres-
sion coefficients) for the same input node or hidden node are identical. Dropping this con-
straint yields time-varying effects. Penalty terms may be introduced to penalise deviations
from PH. Furthermore, the degree of smoothing is also influenced by the number of hidden
nodes. Both approaches, though, do not provide selection strategies for time-varying effects
and require grouping of survival times and hence are not considered in our investigations.

2.3.9 Bayesian inference

Besides the frequentist approaches discussed so far, similar approaches have been devel-
oped in the Bayesian framework. While frequentist methods regard the covariate effects as
fixed, but unknown, constants, Bayesian methods are based on the idea that all parameters
whose true value is uncertain, such as the covariate effects, are random variables and have
probability distributions (see e.g. Bland and Altman, 1998, for a short discussion of both
concepts).

McKeague and Tighiouart (2000), for example, proposed a non-parametric Bayesian ap-
proach based on step functions for the time-varying effect and the baseline hazard, where
the number and position of jump times are taken as random. The levels of the step functions
follow a Gaussian Markov random field prior with a pairwise dependency structure imposed
on adjacent values. Haneuse et al. (2008) extend this approach to allow for separate time-
scales for the baseline hazard and the time-varying effect of a time-dependent covariate.
They present an example, where the time scale of the baseline hazard is the usual one,
with its origin at study entry. The time scale of the time-varying effect of the time-dependent
exposure (transplant status), though, has its origin at the onset of the exposure (the time of
transplantation) and runs in parallel to the baseline time scale.

Costa and Shaw (2009) use Bayesian penalised spline models based on cubic splines. They
use a moderate number of knots (e.g. 10) placed at quantiles of event times and a first or
second order integral based penalty. A Gaussian prior is assumed for the spline parameters
with a conjugate gamma prior for the smoothing parameters. The authors further introduce a
double penalty as the sum of the first and second order penalty, which is claimed to be useful
in situations where the single penalty models do not attain the desired limit of smoothness.
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As setting a prior for the pairs of smoothing parameters for this double penalty is not straight-
forward, an empirical Bayes method is applied. This method estimates the hyperparameters
(i.e. the smoothing parameters) using the data at hand and inserts them in the prior. The
spline parameters are obtained via Markov chain Monte Carlo (MCMC) techniques, which
repeatedly sample the parameters from probability distributions by constructing a Markov
chain that has the desired distribution as its stationary distribution. The AIC can be used
to check whether inclusion of time-varying effects improves the model fit compared to time-
constant effects.

Structured additive regression models including Bayesian penalised splines provide another
alternative for modelling time-varying effects. Inference for these models can be performed
either with a full Bayes (Hennerfeind et al., 2006) or an empirical Bayes approach (Kneib
and Fahrmeir, 2007). For full Bayes inference, the regression parameters as well as their
variance (or smoothing) parameters are considered as random variables and are provided
with suitable priors and hyperpriors which express the prior beliefs about the parameters.
All parameters are jointly estimated via MCMC simulation techniques. The empirical Bayes
approach differentiates between the parameters of primary interest (the regression param-
eters) and the hyperparameters (variance or smoothing parameters). The latter are con-
sidered as constants and are estimated in advance from the data by restricted maximum
likelihood. Since this approach is based on optimising likelihood-based criteria, it avoids po-
tential problems with convergence and mixing of Markov chains (Kneib and Fahrmeir, 2007).
Both approaches are based on penalised B-splines with a second order random walk penalty
and a moderately large number of knots. Kneib and Fahrmeir (2007) show that both meth-
ods perform similar in terms of the posterior mode / posterior mean estimates. The empirical
Bayes approach is introduced in more detail in Section 2.5.3 including a multivariable model
building procedure recently proposed by Hofner et al. (2010).

Alternatively, He et al. (2010) suggest a linear Bayesian estimation approach for Bayesian
dynamic survival models. Time-varying effects are modelled by first order random walks,
i.e. piecewise constant effects. The major difference to MCMC estimation techniques is that
the smoothing parameters must be pre-specified. The optimal smoothing parameters are
chosen in terms of the minimum mean square error based on the changing pattern of the
estimated coefficients.

2.3.10 Average hazard ratio

In general, models incorporating time-varying effects are much more complex than the stan-
dard CoxPH model. In situations with very small sample size or high-dimensional data this
is problematic. For such cases, or when the shape of the underlying time-varying effect is of
little interest, Schemper et al. (2009) propose average hazard ratios by weighted Cox regres-
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sion. This method aims to provide a simple and interpretable multivariable analysis without
introducing further parameters. The weights reflect the relative importance of hazard ratios
over time and may, for example, be proportional to the number of individuals at risk. The
authors note that under the PH assumption, weighted CoxPH approaches entail some loss
of efficiency, but deem it to be small in practical applications. For non-PH on the contrary,
average hazard ratios are claimed to provide an intuitive interpretation and, for converging
hazards, improved power. Since we are particularly interested in modelling the shape of the
time-varying effects, this approach is not suitable for our investigations.

2.4 Properties and comparisons

Although the literature on modelling time-varying effects is manifold, theoretical results are
rare and we are not aware of larger simulation studies on properties of the approaches.
Furthermore, sensible comparisons of different approaches or advice on which techniques
to use are not supported by convincing studies.

Quantin et al. (1999) present a comparison of piecewise constant effects, different pre-
specified parametric functions of time and regression splines in a data example. Due to
the limited flexibility of the two former methods, they suggest to use the more flexible spline
method. He et al. (2010) conduct a small simulation study limited to three spline based ap-
proaches, using splines of degree one, i.e. piecewise constant effects. They compare their
linear Bayesian estimation approach to an MCMC approach (Hennerfeind et al., 2006) and
a penalised partial likelihood approach (Gray, 1994) and conclude that both Bayesian ap-
proaches perform well while the penalised partial likelihood approach tends to over-smooth
effects (using the default smoothing parameter). The MCMC approach is declared to be
the best of the investigated methods, since it estimates all smoothing parameters. However,
it is noted that the method may sometimes fail to converge when using splines of higher
degrees.

Lehr and Schemper (2007) compare pre-defined functions, simple piecewise constant ef-
fects, penalised piecewise constant effects (Verweij and van Houwelingen, 1995), natural
cubic splines (Hess, 1994; Abrahamowicz et al., 1996; Heinzl and Kaider, 1997) and FPs.
The test procedure of the FP approach is identical to that proposed by Sauerbrei et al.
(2007), apart from the default time transformation which is chosen to be t (as proposed by
Sauerbrei and Royston, 1999, for non-linear functional forms) instead of log(t) (see Sec-
tion 2.5.1 for details on the influence of the default transformation). They conduct a small
simulation study with sample sizes up to 300 to investigate overfitting due to modelling time-
varying effects. The results suggest that with respect to overfit FPs and penalised likelihood
approaches are the techniques of choice, as they maintain the power of tests on the PH
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assumption and simultaneously permit flexible modelling of time-varying effects.

However, inference about time-varying effects requires sufficiently large sample sizes and
investigation of such small data sets would be inadvisable in practical applications, as it pro-
vides only limited insight in the presence and shape of time-varying effects with considerable
uncertainty about conclusions.

So far, to our knowledge, no comprehensive comparisons of several recent approaches
based on different techniques for modelling time-varying effects have been conducted. To
assess the performance and practical applicability of different methods, we chose five se-
lective approaches representative for different techniques, which are compared in a real
life data example and a simulated data set with a special emphasis on the selected (time-
varying) effects. Besides the Fractional Polynomial Time (FPT) approach proposed by
Sauerbrei et al. (2007), on which the main focus of this thesis lies, an alternative FP ap-
proach (Berger et al., 2003), Reduced Rank models with splines (Perperoglou et al., 2006b),
a Bayes approach based on penalised splines (Kneib and Fahrmeir, 2007) and a non-
parametric approach based on cumulative regression functions (Scheike and Martinussen,
2004) are considered.

In addition to this comparison, the properties of the FPT approach are investigated in a large
simulation study considering ten different (time-varying) effects with respect to type | and Il
error, the quality of estimated effects and the prediction performance.

2.5 Recent (multivariable) modelling strategies for time-varying
effects

2.5.1 Fractional Polynomial Time (FPT) model

Fractional polynomial (FP) based approaches for modelling time-varying effects can be
viewed as an extension of Cox’s proposal of using a pre-defined function f(t) by select-
ing the best f(t) from a specified class of functions.

The Fractional Polynomial Time (FPT) procedure has been proposed by Sauerbrei et al.
(2007) and is intended as a transfer of the MFP approach (Sauerbrei and Royston, 1999) for
modelling the functional form of continuous covariates (i.e. non-linear effects) to time-varying
effects. It corresponds to Step 3 of the MFPT approach introduced in Section 2.2. Hence,
the FPT approach is based on a model of type

ACHX) = Aolt) exp <ifi(Xi)/31(f)>
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with potentially non-linear functional forms of covariates f;(X;) and time-varying effects S;(t).
Although FPT is a parametric approach based on global functions, the class of FPs is as-
sumed to provide members that are capable of modelling situations with medium-term as
well as long-term follow-up. That means, the functional form of the effect should remain the
same when more information (longer follow-up) becomes available.

Selection and estimation of time-varying effects

Time-varying effects are modelled as covariate by time function interactions based on FPs
of maximum degree 2. The class of FPs is defined by the set of powers

§={2-1,-05,005,1,2, 3}, (2.6)
where 9 is defined as log(t). In this case, an FP of degree 1 (FP1) is defined as
Bi(t) =vio +vut!, pesS,

and an FP of degree 2 (FP2) as

Bit) vio +vinth + viath?, p1 # p2p1,p2 €S
Yio +virt? + viatP log(t), p1=p2=peSs

For the selection of a time-varying effect of a single covariate Sauerbrei et al. (2007) pro-
posed the FPT algorithm:

e Calculate all possible FPs (8 FP1 and 36 FP2 functions for S as defined in (2.6))
e Determine the best FP1 and FP2 in terms of the deviance of the model

e Apply likelihood ratio tests to determine the best-fitting effect. The degrees of freedom
(df) of the x? test statistics are determined by the difference in complexity of fitted FPs.
The hierarchical closed test procedure compares the deviance differences between

(1) the best FP2 and a constant effect (4 df)
(2) the best FP2 and a default function, i.e. an FP1 based on log(t) (3 df)
(3) the best FP2 and the best FP1 (2 df)

This hierarchical closed test procedure aims to find a model which is as complex as neces-
sary, but as parsimonious as possible. It successively checks, whether (1) a time-varying
effect is needed at all, (2) the simple default time transformation log(t) already adequately
describes the time-varying pattern or (3) the best FP1 function is sufficient. If a test on any
of the three levels is not significant, the test procedure stops and chooses the more par-
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simonious effect of the respective test. If all three tests are significant, the most complex
modelling alternative, i.e. the best FP2, is used.

The choice of log(t) as a default time transformation is motivated by its practical plausibility.
It allows the modelling of short-term effects and is a popular choice when using parametric
functions of time. A logarithmic decrease (increase) of 3(t) relates to a uniform decrease
(increase) in the hazard ratio over time. The default time transformation is selected unless
the data gives strong evidence for a different shape.

Multivariable model building and properties

In a multivariable model, a forward selection procedure is applied. First, the best FP2 is
selected and tested against a time-constant effect for each covariate in turn. Denote the
p value of the most significant FP2 over all covariates as pi,. If ppuin < « for a nominal
significance level «, the final FP function for the corresponding covariate is determined using
the FPT algorithm. This is repeated until p,,;, > «, i.e. no possible time-varying effect is
significant any more.

Adding a time-varying effect based on FPs to a model can also be regarded as adding a
time-dependent covariate with constant effect, e.g. if the time-varying effect 3;(t) is an FP1

XiBi(t) = Xivio + Xitvin = Xivio + Xi(t) vin-

Consequently, the FPT model can be fitted using standard Cox regression tools for time-
dependent covariates based on maximum partial likelihood methodology.

Properties of this algorithm are unknown and remain to be investigated. Evaluation of its
performance is a major aim of this thesis.

2.5.2 Dynamic Cox model

Another approach based on FPs has been proposed by Berger et al. (2003). The main idea
of this method is the same as for the FPT approach, with a hazard of the form

q
A(tX) = Ao(t)exp (Z Xiﬁi(f)>
i=
with B;(t) = vio + LM 74"/} being an FP of maximum degree M = 2. y;; are the re-

gression coefficients and py < ... < pum the fractional polynomial exponents (p; € S =
{-2,-1,-0.5,0,0.5, 1, 2, 3}).
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Selection of time-varying effects

The selection procedure, though, differs from that of the FPT approach. While the basic
test procedure is also based on likelihood ratio tests, it is not hierarchical as in the FPT
approach and thus does not distinguish between FPs of different degrees. Furthermore, a
simultaneous test on the significance of the covariate (Hy : 3(t) = 0) may be performed.
The best FP for a time-varying effect is selected in terms of the minimum p value of the
likelihood ratio statistic with 2M degrees of freedom.

Multivariable model building and properties
A multivariable model (with g covariates) is derived in a backfitting-type procedure:
1. Select the best FP for the time-varying effect of covariate X; with time-constant ef-

fects for all other covariates. If the time-varying effect is significant (according to the
likelihood ratio test), keep the FP powers fixed.

2. Repeat this procedure for all other covariates X;, i = 2,...,4: Select the best FP for
X; while the FP powers for covariates X;, j =1,...,i — 1, are kept fixed and assuming

time-constant effects for all Xj, k =i+1,...,4.
3. Update the FPs for each X;, i = 1,...,4, in turn, fixing the FP powers of all other
covariates.

4. Repeat (3.) until the FP powers do not change any more.

This reveals another major difference to the FPT algorithm. While in the FPT algorithm the
FP powers for time-varying effects remain fix once they have been estimated, the above
algorithm enables updating of FPs. The order of the covariates should be irrelevant for
independent covariates. In case of dependent covariates, or to assure reproducibility, the
order of covariates may be fixed with respect to the p values of a full PH model.

Berger et al. (2003) investigate the test on time-varying effects in a simulation study. The
results are promising, with high power for detecting time variation in the investigated settings.
Comparison to standard tests shows a superiority of the FP test procedure. However, the
functional form of time-varying effects is not investigated and may be completely wrong.

As Berger et al. (2003) denote this model by “Dynamic Cox model”, we will in the sequel use
the same term.

2.5.3 Empirical Bayes model

An empirical Bayes approach based on structured additive regression is proposed by Kneib
and Fahrmeir (2007). This approach simultaneously estimates the regression and variance
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parameters using iteratively weighted least squares (IWLS) and restricted maximum likeli-
hood (REML), respectively. Time-varying effects are modelled through cubic Bayesian pe-
nalised B-splines (P-splines) with second order random walk penalty.

The posterior mode estimates can in a frequentist setting be interpreted as penalised like-
lihood estimates. The penalisation of regression coefficients in the frequentist framework
can from a Bayesian viewpoint be seen as specification of a prior for these coefficients. Fur-
thermore, the variance parameters in the Bayesian approach are equivalent to the inverse
smoothing parameters in a frequentist setting.

Model specification and priors

The empirical Bayes approach estimates the extended Cox model
Ai(t1X) = exp(ni(t)), i=1,...,n,

where n;(t) is a structured additive predictor which partitions the covariates with respect to
time-constant and time-varying effects and #n is the number of observations. Thus,

qtv
ni(t) = Bo(t) + Y xi¥Bj(t) + xf””StToc, (2.7)
=1

where f3q(t) = log(Ao(t)) is the log baseline hazard, j3;(t) are the time-varying effects of
covariates x?” and « contains the time-constant effects of the covariates in x"st,

To derive a matrix notation of (2.7), the predictor vector is defined as 1 = (n1,...,1.)7

where n; = n;(#;) is the value of predictor (2.7) at the observed survival time t;,i =1, ..., n.

Similarly, 3; = (Bj(t1),...,B(t.))" and B} = diag(xY, ..., x;7) B; are the vectors of evalua-
tions of 3;(t) and 3 j(t)xé-”, respectively. The latter can be expressed as the matrix product
of an appropriately defined design matrix Z; and a vector v; of regression coefficients

Bj =Zjvj.
Hence, the predictor vector is equal to
n= Z1 Yi+...+ quv’)/qtv + XconStOC. (28)

The fixed effects parameters « are assumed to follow a non-informative prior p(«) o const.
For random effects y4, ...,y Gaussian priors

1
p(yjlT?) o< exp (—zTgvam> (2.9)
]
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are assumed, where P; is a penalty matrix that penalises too abrupt jumps between neigh-
bouring parameters and r]? corresponds to the inverse smoothing parameter.

Modelling of time-varying effects

The unknown smooth functions 3; are modelled through P-splines, i.e. penalised B-splines.
Hence, 3; is estimated by a polynomial spline of degree p = 3 defined on a set of M + 1
knots t,i, = ko < K1 < ... < Kpm_1 < KM = tmax. The spline can then be written in terms of
a linear combination of p + M B-spline basis functions B, i.e.

p+M

/Sj(t) = Z ijBm(t)'

m=1
Thus, the design matrices Z; in (2.8) would be defined by Z;[i, m]| = xf}’Bm(t).

The number of knots is an essential choice. Here, the proposal of Eilers and Marx (1996)
for non-linear functional forms of covariates is adopted to time-varying effects. They use a
moderately large number (20 to 40) of equidistant knots, to obtain sufficient flexibility and
impose a difference penalty to ensure smoothness of underlying functions. The Empirical
Bayes approach uses the stochastic analogue of a second order difference penalty, a second
order random walk (Kneib, 2006, pp. 32-39).

For simplicity, assume that «;, are equidistant knots. For each «,,, one parameter y;,, is
estimated using random walk priors. Second order random walks are

Yim = 2Yjm-1—Yjm-2+Upm, ~m=3,...,p+M (2.10)

with Gaussian errors uj, ~ N(O, T]-Z) and diffuse priors p(yj1) and p(yj2) oc const. This
second order random walk acts as a smoothness prior penalising deviations from the linear
trend 2,1 — ¥jm—2- The precision matrix of the joint distribution of y; is then of the form
p; = DTD, where D is a second order difference matrix

In case of non-equally spaced survival times, the random walks must be modified to account
for non-equal distances (for details see Kneib, 2006, p. 37).

Hence, the prior (2.9) corresponds to the difference penalty vj)/jTPj)/j with smoothing param-
eters v; = 1/(2T]?) in a penalised log-likelihood setting.
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Reparametrisation and estimation

In most cases, the precision matrices P; will be rank-deficient. Therefore, the random effect
priors are partially improper. As standard mixed models require proper random effects priors,
all vectors of regression coefficients y; are reparametrised into an unpenalised part (fixed
effects) and a penalised part (random effects)

¥ = 2P 4 2 (2.11)
That is, y;’”p represents the part of y; that is not penalised by P; and yfe” represents the
deviations of the parameters ; from the nullspace of P;. From the general prior (2.9) for y;,
it follows that

p(v;™")

o const

and
Vi~ N(O, T L),

where k; is the rank of the precision matrix P;.

By defining the matrices U; = Z;Z;"" and Z; = Z;Z!"", the predictor (2.8) can be rewritten
as

to to

q ~ ~
n= Z ijj 4 Xconst“ — Z (Hﬂ/;mp + Zj,)/;?en) =+ Xconst“ — u,yunp 4 Zypen’

j=1 j=1
With Z = (Z1Za- Zgo), U = (Tl Uy X), 7 = (4™, (/4)")" and
Yy = ((y{")T, ..., (y;‘t'zp)T,ocT)T. This is a generalised linear mixed model (GLMM) with
fixed effects "7 and random effects y#** ~ N(0, £) where £ = blockdiag(t?1y,, ..., wa I )-
Thus, GLMM methodology for simultaneous estimation of the time-varying effects 3;(¢) and

the variance parameters sz can be applied. The estimation procedure iteratively updates
(i) the regression coefficients 7" and PP given the current variance parameters using
iteratively weighted least squares via a Newton-Raphson step and
(i) the variance parameters given the current regression coefficients using restricted max-

imum likelihood via a Fisher scoring step

until convergence.

Multivariable model building and properties

The selection of time-varying effects is carried out according to the proposal of Hofner et al.
(2010). For sole selection of time-varying effects (without variable selection and selection
of non-linear effects), their proposal corresponds to a forward selection algorithm based on
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the conditional AIC (AIC.), which is composed of the conditional likelihood and the effective
degrees of freedom as a complexity measure (Hofner et al., 2010). In the first iteration, all
possible models with one time-varying effect are fitted. The best model in terms of the AIC,
is compared to the PH model. If it is better, the time-varying effect is kept and one further
time-varying effect is added for each of the remaining covariates in turn. The best of these
models is then compared to the best model of the previous iteration. The procedure stops, if
no further improvement in terms of AlC; is achieved. Hofner et al. (2010) also investigate the
performance of the proposed model building strategy in combination with further modelling
alternatives.

2.5.4 Semiparametric Extended Cox model

The Semiparametric Extended Cox model (Martinussen et al., 2002; Scheike and Marti-
nussen, 2004; Martinussen and Scheike, 2006), as the authors name it, is based on cu-
mulative parameter functions. Asymptotic properties of the predictors have been developed
using the martingale structure of the model.

The intensity of a fully non-parametric model, where all covariate effects are allowed to vary
with time, is

ACHX) = Y(D)do(t) exp (i xi<t>/si<t>> , (2.12)

=1

where Y (t) is the at risk process. Estimation and tests are based on the cumulative regres-
sion functions

B(t) = [ Bilo)ds

as they converge at a faster rate than j3;(¢) and lead to a uniform asymptotic description
of the estimator which is necessary for hypothesis testing. Furthermore hypothesis testing
about j3;(t) can also be formulated in terms of B;(t).

Selection and modelling of time-varying effects

The test on a time-varying effect for covariate X; is based on the hypothesis Hy : 3;(t) = i,
or equivalently Hy : B;(t) = y;t. Test statistics for this hypothesis are based on the test
process

v (Bi(t) — it),
where B;(t) is an estimator for B;(t) and ¥; is computed under the null hypothesis. Under

the null, this process converges to a mean-zero Gaussian process. However, its limiting
distribution is complicated and the distribution of the test statistics need to be simulated.
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Scheike and Martinussen (2004) propose two test statistics, a Kolmogorov-Smirnov type

test ;
Ts = v/n sup |Bi(t) — Bi(T);|

t€[0,7]

and a Cramér-von Mises type test

t

2
)2t

= [ (Bi(t) — Bi(r)

Both test statistics are based on the idea that Bi(T)g is an estimate of the underlying con-
t

stant effect under the null, i.e. Bi(fr); = qur% = ;. A drawback of these tests is their
dependence on the choice of the interval [0, 7] which defines the observation period of inter-
est for the test. Furthermore, the supremum tends to be large at places with large variation.
Yet, looking at places with small variation is sometimes more interesting. Modified versions
of the above test statistics have been proposed which take the variance into account. These
test statistics, though, may show erratic behaviour at the start and end of the time interval,
because the test statistic, which is nearly zero, is divided by a standard error that is almost
zero. In such cases, a third version ignoring the first and last two jumps can be used.

For calculation of p values a large number of resampling processes (e.g. 1000) are gener-
ated under the null. Then the test statistics for these resampled processes A;(t) — A;(1)+
and the test process B;(t) — B;(t) < are calculated as

A

. t
Trest = \/E sup ‘Bi(t) - Z(T);|

te[0,1]

and

A A t
Tresampled = \/ﬁ sup ‘Ai<t) - Ai(T)fl
te[0,7] T

with the p value being equal to the probability

P(Tresampled > Ttest)-

Multivariable model building

In multivariable analyses, Scheike and Martinussen (2004) recommend (for testing purposes
and not too many covariates) to start with the non-parametric model (2.12) and then simplify
it in a backward elimination manner to a semiparametric model, where only some covariate
effects vary with time while others are assumed to be constant:

qtv qconst
A(t]X) = Y(£)Ao(t) exp (Z X[ (1)Bi(t) + ; Xf-“””(f)%) -

i=1 j
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Hence, starting with the non-parametric model, where all effects are allowed to vary in time,
p values for Hy : B;(t) = v;t are calculated for each of the time-varying effects. If the
largest p value p..x is smaller than a nominal significance level «, the current model is
accepted. If p,.r > «, the corresponding effect is assumed to be constant and the p values
are calculated for the model with one time-varying effect less. This procedure stops, when
pmax <  Or When all effects have been set to constant.

Estimation procedure

The likelihood based estimation procedure for j3;(t) is based on finding a solution to the
score equation X!”(t) (AN(t) — A(t|X)dt), the first derivative of the log-likelihood with re-
spect to 3;(t). This has no solution, as the first term represents a pure jump process while
the second is absolutely continuous. To obtain a solution, the cumulative parameter func-
tions B;(t) are estimated and smoothness of the underlying coefficients is introduced through
the estimation of j3;(t), for which a kernel estimator

Bi(t) = /b_1K <S ; t) dB;(s)

is used with positive bandwidth b and a uniformly continuous kernel K with support [-1,1],
satisfying [ K(s)ds = 1 and [sK(s)ds = 0. An iteration procedure for estimating the ef-
fects y; and 3;(t) is constructed based on initial estimates and iterated until convergence
according to the following scheme. For iteration r

1. Compute the Breslow estimator of the cumulative baseline hazard based on prelimi-
nary estimates j!(t) and 7} and smooth this estimate to obtain AL (t).

2. Estimate 77;“ based on the score equation using a Newton-Raphson algorithm.

3. Use the estimates 77?“ to calculate B{“(t) based on the score equations using a
Newton-Raphson algorithm.

4. Smooth B/ (t) to obtain B/ (t) and return to 1.

Properties

This approach leads to efficient estimates of y; and B;(t) (Scheike and Martinussen, 2004).
Furthermore, the random vector /n (77j — yj) is asymptotically normal with mean zero and
V1 (Bi(t) — B;(t)) converges towards a mean zero Gaussian process, both with variances/
covariances that can be consistently estimated.

To investigate the finite sample properties of the test statistics, Scheike and Martinussen
(2004) conduct a small simulation study based on two covariates, one time-varying effect
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and several sample sizes and correlation levels. They show that the procedure performs
quite well in terms of type | error and power.

The complete approach, though, was mainly developed for testing and leads to an algorithm
that is comparatively easy to study theoretically, but was not intended for estimating the time-
varying effects 3;(¢). When the interest lies in the shape of 3;(t) rather than the mere test
result, an additional transformation is required by the user.

Technical remarks

Within the estimation algorithm, a simple kernel smoother with global bandwidth is used to
obtain f3;(t). This can be improved by a local approach. Hence, we use the local polynomial
regression approach (Loader, 1999) implemented in the R package 1ocfit (Loader, 2007)
with quadratic polynomials, tricube weight function and a nearest neighbour fraction of 0.7
(the default setting) to smooth the final estimate. The first derivative is provided as a local
slope estimate.

2.5.5 Reduced Rank model

In the Reduced Rank model (Perperoglou et al., 2006a,b), time-varying effects are modelled
as covariate by time function interactions. The main idea of this approach is to reduce the
number of parameters in order to obtain more stable and parsimonious models depending
on the rank of the model.

The full rank model is identical to the Cox non-PH model
At X) = Ao(F) exp <X®FT(t)) . (2.13)

The row vector F(t) = (f1(t),..., fs(t)) contains the (pre-specified) time functions. The
structure matrix © is composed of the regression coefficients of all covariate by time function
interactions. For g covariates and s time functions, @ is of dimension g x s.

Estimation procedure

Model (2.13) can be estimated by standard software for time-dependent covariates by con-
sidering X;f;(t) as time-dependent covariates. This estimation, though, can be unstable for
many covariates and/or time functions. To avoid overfitting and instability, a rank restriction
is put on the structure matrix ©.

The idea behind this is that © can be factorised as ® = BI'T in different ways, with B being
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ag x rmatrix and I a s x r matrix. Thus the rank r model is

A(t|X) = Ao(t) exp(XBTTFI(t))

= Ao(t)exp (Z (Xﬁk)(F(t)Yk)>
k=1
where j; is the kth column of B and vy, the kth column of . Thus, the original set of
parameters is now reduced to a set of r linear combinations of time-functions F()y, and r
linear combinations of covariates XS, k=1,...,r

This model is then estimated in an iterative procedure using the partial log-likelihood

:iixﬁk (Evi) fln{ y exp(Z X;B)( mc))}

i=1k i=1 JER(L)

where X; is the covariate vector of the individual with an event at time ¢;, F; the row vector of
time functions at time t; and R(¢;) the risk set at ¢;.

The estimation procedure uses a Newton-Raphson algorithm and alternates between esti-
mation of the 3’s and the y’s. It starts with the estimation of the y’s with given initial values
for the r 3 vectors. For example, the estimates /3 from a simple Cox model can be used as
initial values for 31. If > 1, a random perturbation of the 3’s can be used as initial values

for Bo,..., Br.
The estimated effect of covariate X; is then given by

Model parameters and properties

The approach strongly depends on the choice of the rank r. To determine the optimal rank,
Perperoglou et al. (2006b) propose a forward-type algorithm. This starts by fitting a rank 1
model and then increases the rank up to the maximum rank r = min(q, s). The optimal rank
is chosen based on the AlC.

For the time functions F(t) = (f1(t), ..., fs(t)) many choices are possible. Perperoglou et al.
(2006b) propose to use B-splines with interior knots placed at convenient positions, ensuring
a sufficient number of events in each interval. Any choice of F(t) should meet the conditions
f1(0) =1 and f;(0) = 0 for k = 2,...,s. Furthermore, F(t) should include the constant to
assure that the Reduced Rank model also contains the basic PH model, e.g. f1(t) = 1.

The approach does not include selection of time-varying effects. An estimated effect for
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covariate X; can be time-constant only in the full rank model if f1(t) is set to f1(t) = 1 and
’)7]2: :’)7]5 =0.
Perperoglou et al. (2006a) investigate the speed of their algorithm in a small simulation

study with time-constant effects, but, to our knowledge, do not provide simulation studies on
time-varying effects.

2.6 Predictions

To evaluate the prediction performance of approaches, predicted survival probabilities are
required. However, information on evaluation of predictions for models allowing for time-
varying effects is rare. Hence, this section presents theoretical considerations on the cal-
culation of predicted survival probabilities for the approaches introduced in Sections 2.5.1-
2.5.5.

2.6.1 FPT and Dynamic Cox model

To obtain predicted survival probabilities for both FP models, the baseline hazard Aq(t) has
to be estimated. As Therneau and Grambsch (2000, chap. 10.2.4) and Kalbfleisch and
Prentice (2002, chap. 6.4.1) state, the Breslow estimate is also applicable to time-dependent
covariates, which is equivalent to our problem, as mentioned in Section 2.5.1. However, for
time-varying effects it is

t t
S(£|X) = exp {—/0 Ao(s) exp (X/s(s))ds} £ exp {—/0 Ao(s)ds exp (X/.%(s))}.
The cumulative baseline hazard for the FP models is estimated by

Ho(t) _ Ag(t(k)> for t(k) <t< t(k+1)
S(t(ne)) for t > t(ng)

with Hg(t(k)) being the Breslow estimate of the cumulative baseline hazard as defined in
(2.3).

Since Hy(t) is a step-function with jumps at event times twys k= 1,...,ne (with n, the
number of distinct event times), a derivative of Hy(t) is

A A

5 Ho(t(k11)) — Ho(t(x)) .
Ao(t(k)) = (bt )Ak (k) ’ with A= t(k+1) — t(k)'
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Taking into account that Aq(t) (and thus Aq(t) exp (LI, XiBi(t))) is a step function, the
estimate for (2.4) reduces to

A b, 9
S(t|X) = exp{—/0 Ao(s) exp (Z Xiﬁi(s)> ds}

K<t

Hy(t — Hy(t T
t 1

K<t

= exp { Z j\o(t(k)) exp (i XiBi(t(k))) Ak}
£ i

= exp { Y (HO(t(k+1)) - HO(t(k))> exp (f Xi/?’(t(k))> }
t( 1

K<t

The survival probabilities for new time points t* can then be calculated by

~ 1 for t* < t
S(e1x) =4 "
S(t(k)|X> for t(k) <t < t(k+1)

2.6.2 Empirical Bayes model

For the Empirical Bayes model, information on baseline hazard and time-varying effects is
available only at a finite number of time points. Hence, the predictor

const

q

qtv
MR Z X;v[jj(t) + Z X]C-O”St(x
=1 j=1

reduces to a step function with 3¢(t) being the log baseline hazard. The predicted survival
probabilities can be calculated using the numerical integral without loosing accuracy, giving:

O

3(t1X) = exp { Y exp (ﬁ(t))} .
The survival function is then defined as

~ 1 for t* <t
S 1x) =1, "
S(t(k)|X) for t(k) <t < t(k+1)
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Technical remarks: BayesXx estimates the full likelihood and thus provides estimates
for the log baseline hazard log(Ao(t)) and an additional constant offset ag, i.e. fBo(t) =
log(Ao(t)) + &p. The baseline hazard and time-varying effects are estimated at all distinct
survival times (event and censoring times).

2.6.3 Semiparametric Extended Cox model

The survival function for the Semiparametric Extended Cox model is given as

qtv qC(mSt
S(t|X) = exp {— /Ot Ao(t) exp (; X (1) Bi(t) + Z% X]C-O”St(t)yj> ds} (2.14)

]:
along the lines of Martinussen and Scheike (2006, p. 226).

As the cumulative regression functions are available only for a finite number of time points k,
k=1,...,n,., theintegral in (2.14) can be substituted by a numerical integral without loosing
accuracy, giving the estimator:

. . qtv . qconst
$(¢|X) = exp {— Y Aolt) exp (Z X" (D)Biltw) + X X?””St(t)?]) (s — tw)) }
i=1 j=1

iy <t

The survival probabilities for new time points +* are then calculated as

< 1 for t* <t
S(#X) =4 W
S(t(k)‘X) for t(k) <t < t(k—H)

Technical remarks: The timecox function only fits the reparametrised model

qtv qmnst
A(tX) = exp (ﬁo(f) +) X (D)Biltw) + ) Xf”"”(ﬂw) , (2.15)
i=1 j=1

providing cumulative regression functions for the log baseline hazard By(t) = log(Ao(t))
and the time-varying effects $;(t), estimated at all distinct event times.

The estimated cumulative effects must be smoothed to obtain the estimates for B(¢) and
Bi(f). For this smoothing step, though, numerous different possibilities exist. Here a local
polynomial regression will be used for this purpose.
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2.6.4 Reduced rank model

For the Reduced Rank model, the Breslow estimator of the cumulative baseline hazard can
be calculated as P

Ao(t) = Y, —
ty =t YjeR(ty,) eXP (Xj@FT(t(k))>
as outlined in Perperoglou et al. (2006a). Hence, an estimate for the baseline hazard is
given by

A 1
Ao(tw) = -
LjeR(t) €XP (Xj@FT(f(k)))

The survival probabilities can be estimated by a numerical integral with the intervals being
defined by the eventtimes (), k =1,..., 1,

<

S(tX) = exp{ Y. Ao(tuy) exp (X OFT(t tik ))) } .

The predicted survival probabilities for new time points t* are obtained by

. 1 for t* < t4
(#1x) =1 "
S(t(k)|X> for t(k) <t < t(k+1)

Technical remarks: The coxvc package offers the function calc.h0 to calculate the
estimated cumulative baseline hazard Fy(t).



Chapter 3

Assessment of time-varying effects

When assessing Cox models with time-varying effects, our interest lies in (i) the perfor-
mance of the complete (multivariable) model and (ii) the fit of a selected time-varying effect,
i.e. whether it adequately reflects the true effect or not. This chapter shortly presents two
methods addressing these issues.

3.1 Prediction error curves

Prediction error curves (Gerds and Schumacher, 2007) are used to assess and compare
prediction rules. Because resampling methods are used, the prediction rules can be as-
sessed in the same data they are developed. Due to its time-dependency, the prediction
error is also applicable to models with time-varying effects.

Let Q, = {Xj,..., X} be survival data of n individuals with X; = (T;, A;, Z;), where T; =
min(T;, C;) is composed of the event time T; and censoring time C;, A; = I(T; < C;) is
the event indicator and Z; a g-dimensional covariate vector. Additionally, Y;(t) = I(T; > t)
is the event status, r,(t|Z;) the predicted survival probability for individual i at time ¢t and
r» = r(Q,) the prediction rule trained on the data Q,,. The true prediction error of a prediction
rule r at time ¢ is defined as the expectation of the process of squared residuals

Err(t;r,Qn) = E{Y(t) — r,(t|Z)}2.

It measures how well r predicts the individual event status, given Q,, (where Y and Z are
replicates that are not in the sample). In practical applications, usually only time points
before a certain time T can be used due to censoring, where 7 is chosen such that
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e.g. T could be a time just before the maximum on study time.

The apparent error rate is a measure of the cumulative prediction error over [0, 7]:

_ A 1 & A
err(t;ry, Gy) = - Y AYi(t) = ru(t|1Zi) Y2W(t, G, X;)
=
with weights W (t, G, X;) = G((TTQ)‘ZZ) + G(EE)) Because the apparent error evaluates the

prediction rule on the training set, it may result in a seriously negative biased estimate for
the true prediction error.

Exactly the opposite direction of bias can be observed for the bootstrap based estimate of
prediction error. When bootstrap samples Q7, ..., Qj of size n are drawn with replacement
from the data Q,,, the bootstrap cross-validation estimate is obtained as

_ B X
Errpo(t;r) =B~ 'Y n™ ' Y {Yi(t) = rj(H1Z) YPW(t, G, Xi)
b=1 :X;€Q;

where Qg = {Xi: X; ¢ Q;} is the out-of-bag sample and r} is trained on Qj.

To overcome the bias problems, Efron (1983) proposes to use a linear combination of the
downward biased apparent error and the upward biased bootstrap cross-validation estimator

Erre(t) = {1 = w(t)}err(t; ru, Gn) + w(t)Errgo (£ 7)

with weight w(t) = 0.632 = P(X; € Q}). This choice reduces the bias (Efron, 1983) and is
motivated by the fact that bootstrap samples are supported on approximately 0.632n of the
original data points. This estimator can be further improved by choosing w depending on the
prediction rule. For this purpose, Efron and Tibshirani (1997) introduce the no-information
error rate

n
Nolnf(t;ry) =n" Z t) —ra(t1Z)Y2W(t, G, X5),

HM:

which assesses the performance of r in a situation where the survival status is independent
of the covariates, i.e. where the Z; are reallocated systematically on Y; forall j =1,...,n
This no-information error rate also contributes to the weights w.

A specific adaptation of the estimator for survival data is proposed by Gerds and Schu-
macher (2007) with

1 if NoInf(t;r,) < Errgo(t; 1)
w*(t) = 4 0.632 it NoInf(t;r,) < e (t;r,) or Errgo(t;r) < e (t; )
0632 otherwise

1—-0.368R(t)
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Figure 3.1: Scheme for calculating the area between curves of time-varying effects (ABC-
time).

and the relative overfitting rate

R(t) = Errpo(t; 1) — err(t; 1, Gu)
Nolnf(t;r,) —err(t;r,Gy)’

Hence, the improved bootstrap 0.632+ estimator is given by
E/;rw*(t) = {1 — w*(t)}err(t; 1y, Gy) + w*(t)E/;rBO(t;r).

As a summary measure of prediction error, the integrated prediction error (IPEC) can be
calculated using the Riemann integral implemented in the R package peperr (Porzelius
and Binder, 2009). The IPEC is presented as the difference to the Kaplan-Meier estimate
(dIPEC) following Porzelius et al. (2010).

3.2 Area between curves of time-varying effects (ABCtime)

To measure the distance between time-varying effects, we adapt an approach proposed by
Govindarajulu et al. (2007) to calculate the area between smoothed curves of exposure.
The area between curves for time-varying effects (ABCtime) should be applicable to various
types of time-varying effects. This aim requires an adaptation of the original approach.

The ABCtime is based on weighted numeric integration. The area under a curve is calcu-
lated using 500 successive, non-overlapping rectangles with equal width. The area between
two curves f31(t) and B2(t) is determined as the difference D; of pairs of rectangles as
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sketched in Figure 3.1. Only the absolute difference between the two curves is consid-
ered, ignoring the sign. To determine the height of rectangles, Govindarajulu et al. (2007)
use the right endpoint of intervals. For ABCtime, neither the right endpoint of intervals nor
the left endpoint seem very suitable, as both could introduce systematic bias if left- and
right-continuous step functions are compared. Instead, we prefer the midpoint of intervals
to determine the function value, in order to achieve adequate applicability for all types of
time-varying effects.

To account for the varying precision of estimates across the range of exposure, the area
between curves is calculated as a weighted sum. Govindarajulu et al. (2007) use bootstrap
based weights which can be very time-consuming. Therefore, we use the less computer-
intensive logrank like weights which upweight time points where many patients are at risk
and decrease for later time points, with less patients at risk:

R(ts))

w(t(s)) = 215:1 R(t(i))

with S being the number of intervals (here S = 500). Other choices of weights are possible.
Besides equal weights, weights based on the inverse variance of the reference (or true)
function or the inverse mean variance over competitive approaches could be used.

The ABCtime is then calculated as the weighted sum of rectangles Dj

_ 5 w(t)D
ABCtime:m((s)))s‘

Yo w(t(s)

Interpretation of the absolute value of ABCtime is not straight-forward. Therefore, we calcu-
late the percentage of ABCtime on the weighted area under the reference function (pABC-
time). The weights for this area under the reference function are equivalent to the weights
w(ts)) for the area between the curves. The reference function may, for example, be the true
time-varying effect in simulation studies or piecewise constant effects or smoothed Schoen-
feld residuals in real-life applications. An pABCtime value of zero means that the effect under
investigation is in perfect agreement with the reference.

As pABCtime has no upper bound, interpretation of a single value for one time-varying effect
may provide limited information on the agreement. For comparison of several alternatives,
though, pABCtime is a simple tool for identification of the best effect, i.e. the effect that is
most similar to the reference function.



Chapter 4

Comparison of different approaches

In this chapter, the five approaches introduced in Section 2.5 are compared in a prognostic
factor study, the Rotterdam breast cancer series. However, conclusions about selected
effects are somewhat limited in real data sets, because the true shape is unknown. To
obtain some more detailed insights, all approaches are additionally applied to a simulated
data set.

4.1 The Rotterdam breast cancer series

4.1.1 The data

The Rotterdam breast cancer series includes data on patients treated at the Erasmus MC
Daniel den Hoed Cancer Center for primary breast cancer between 1978 and 1993 (Foekens
et al., 2000; Sauerbrei et al., 2007).

Data from 2982 patients are available for analysis, with the follow-up time ranging from
1 to 231 months and a median follow-up time of 107 months (estimated with the reverse
Kaplan-Meier method). The final endpoint is event-free survival time (EFS) which is defined
as time from primary surgery to the first occurrence of locoregional or distant recurrence,
contralateral tumour, secondary tumour or death from breast cancer. Times to death from
other causes are treated as censored, resulting in 1518 events for EFS.

The data set contains the covariates age, menopausal status, tumour size, tumour grade,
number of positive lymph nodes, progesterone receptor, oestrogen receptor, hormonal ther-
apy and chemotherapy (see Table 4.1). We stick to the proposal of Sauerbrei et al. (2007)
to modify some of the variables. For tumour grade, they collapse grades 1 and 2 and use
MICE (van Buuren et al., 1999) to replace missing values. The variable tumour size is split

35
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Covariate Code Median (min, max) or percent
Age (years) X1 54 (24, 90)
Menopausal status Xo 44% pre, 56% post
Tumour size X3
> 20mm Xaq 47% no, 53% yes
> 50mm Xap 90% no, 10% yes
Tumour grade X4 2% 1,25%2,73% 3
Grade 1 and 2 collapsed Xap 27% 2,73% 3
No. of positive lymph nodes X5 1 (0, 34)
transformed to exp(—0.12X5)  Xs,
Progesterone receptor X6 41 (0, 5004)
Oestrogen receptor Xy 61 (0, 3275)
Hormonal therapy Xg 89% no, 11% yes
Chemotherapy Xg 81% no, 19% yes

Table 4.1: Covariates in the Rotterdam breast cancer series and their distribution.

into two dummy variables for tumour size >20mm and tumour size >50mm. Furthermore,
the preliminary transformation Xs, = exp(-0.12X5s) is applied as proposed by Sauerbrei and
Royston (1999). This modified version of the data is available on http://www.imbi.
uni-freiburg.de/biom/Royston—-Sauerbrei-book/index.html#datasets.
Since our focus lies on investigation of approaches for time-varying effects and not on med-
ical questions, we follow Sauerbrei et al. (2007) and consider the treatment variables in the
same way as the prognostic factors.

The Rotterdam breast cancer series contains continuous and binary variables. For con-
tinuous covariates, estimating the baseline at value zero is sometimes not sensible. For
variables like age, for example, estimation of baseline hazard and prediction at the mean co-
variate value is more suitable. Some prediction routines, as that for coxph in R even centre
all variables around their mean by default. To enable better interpretability and comparability
of all approaches, all variables of the Rotterdam breast cancer series are centred around
their mean prior to analysing the data set.

4.1.2 Selection of a time-fixed model

Mismodelling the data by omitting important variables or erroneously assuming linearity for
continuous covariates also influences the selection of time-varying effects. Most methods
for assessing time-varying effects focus on this aspect only and take a time-fixed model as
their starting point which may already include non-linear functional forms. We consider the
first two steps of the MFPT approach as introduced in Section 2.2 as a sensible approach
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Step 1 Step 2
Variable B SE B SE
X -0.013 0.002 -0.013 0.002
X3, 0.288 0.057 0.249 0.059
Xa, - - 0.171 0.080
Xap 0.390 0.064 0.354 0.065
X2, 1,742 0.083 -1.710 0.085
log(Xs) - - -0.032 0.012
Xg -0.387 0.085 -0.390 0.085
Xy -0.456 0.073 -0.444 0.073

Table 4.2: Selection of covariates and non-linear covariate effects in the Rotterdam breast
cancer series (variables adjusted by their mean) using the first two steps of the MFPT algo-
rithm.

to derive such a time-fixed model. However, in general any prespecified model may be
used as a starting point for investigating time-varying effects (Royston and Sauerbrei, 2008,
chap. 11).

In the first step of the MFPT procedure, six covariates are selected (first column of Table 4.2),
one of them with a non-linear functional form. The short-term analysis in step 2 adds two
further covariates, again one of them with a non-linear transformation. Hence, the final
model under the PH assumption consists of eight covariates as shown in the second column
of Table 4.2. This model is the starting point for the following analysis of time-varying effects
and builds a common basis for all five approaches under investigation.

We are aware that basing inference on this model, i.e. assuming that the model is given a
priori, ignores model selection uncertainty of selected components such as included vari-
ables and non-linear effects. Focusing on a single model neglects that there usually exist
other equally appropriate models. Different choices of the final PH model may also affect
the analysis of time-varying effects. However, to ensure comparability of all approaches with
respect to time-varying effects, this decision is necessary. As applied data analysis always
requires decisions on model building strategies, we accept that all inference on time-varying
effects is conditional on this decision of the final PH model.

4.1.3 Selection of time-varying effects

For all of the approaches under investigation several options must be set which may have
a strong influence on the results. In the sequel, we give some information on these options
and on the selection procedures.
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FPT model

The FPT algorithm is provided as an add-on function in stata (StataCorp, 2007) written
by Patrick Royston and is available at http://www.imbi.uni-freiburg.de/biom/
Royston-Sauerbrei-book/index.html#progs. From a technical side, a potential
drawback of this method is the need for a split at each event time to get the correct risk
sets for estimation of time-varying effects. For medium-sized data sets as the Rotterdam
example, such an enlargement of the data is unproblematic. For extremely large data sets,
though, technical problems may occur which require categorisation of survival times as dis-
cussed in Appendix B.

The results of the FPT algorithm with nominal significance level « = 0.01 for selection of
time-varying effects are shown in Table 4.3. In each iteration of the procedure, the deviance
difference between the model with time-varying effect for the covariate under investigation
is compared to the model with time-constant effect for the same covariate. In iteration 1,
log(Xs) has the largest deviance difference for the best FP2 compared to constant effect.
The deviance difference of 83.218 corresponds to a p value < 0.0001. Thus, the first test of
the hierarchical test procedure (best FP2 vs. constant effect) is significant. The following test
on the best FP2 vs. default log(t) is not significant (p = 0.1160). Consequently, the default
transformation is used as basis for the time-varying effect. In the same way the default
transformation is selected for xge,xg and Xg in iterations 2 to 4. In iteration 5, the largest
deviance difference is observed for Xy, which is not significant (p = 0.0426). Consequently
the algorithm stops and the final model includes time-varying effects for X2,, log(Xs), Xs and
Xg.

The decision for X2, in iteration 2 is close (dev = 17.419). Xa, has an only marginally
smaller deviance difference of 17.396 with identical p-value. This close decision influences
all following selection steps. If X3, would have been selected instead of X2,, the selection
procedure would stop in iteration 3, because the smallest p value (p = 0.0222 for Xg) is
not significant at the 1% level. Hence, the final model would include time-varying effects for
log(Xg) and Xs, only.

The standard FPT algorithm uses log(t) as default transformation of time. When omitting
the use of a default transformation, the FPT algorithm selects time-varying effects for the
same covariates, because this decision is independent of the default function. Yet, the se-
lected FP transformations change. In the Rotterdam data, decisions in the first two iterations
are identical to those shown in Table 4.3, because for both X2, and log(Xs) the log trans-
formation is the best FP1 transformation. In iteration 3, though, the best FP1 power -0.5 is
chosen for Xg. Hence, deviances and p values of all consecutive iterations change slightly.
In the fourth iteration, the time-varying effect for Xg is selected with the best FP1 power 0.5.
Consequently, the coefficients of the final model differ slightly from those derived with default



4.1 The Rotterdam breast cancer series 39

best FP2 best FP1 default p values of test vs. best FP2

Variable powers deviance power deviance deviance constant default best FP1
Iteration 1

X4 0505 9.450 -1 3.654 1.131 0.0508 0.0399 0.0551
X3, 20 26.295 0.5 25.241 24.863 0.0000 0.6981 0.5903
Xap -2-0.5 13.383 0 12.189 12.189 0.0095 0.7546 0.5507
Xap 22 7.748 -1 6.668 5.115 0.1013 0.4518 0.5824
sz,e -2 -1 21.071 0 18.694 18.694 0.0003 0.4980 0.3047
log(Xg) 12| 83218 0 77307  77.307 [ 0.0000 0.1160  0.0521 |
Xg -1-1 6.453 -2 3.200 0.349 0.1678 0.1067 0.1966
Xg 0.50.5 12.310 -1 7.648 4.600 0.0152 0.0524 0.0972
Iteration 2

X4 0505 9.937 -1 3.920 1.330 0.0415 0.0350 0.0494
X3, 20 17.396 0.5 16.369 15.982 0.0016 0.7024 0.5983
Xap -2-0.5 10.286 0 8.920 8.920 0.0359 0.7135 0.5051
Xap 2-2 2.821 -2 2.677 0.481 0.5882 0.5049 0.9304
X2, 2-1 | 17.419 0 14268  14.268 [ 0.0016 0.3689  0.2069 |
Xg -1 -1 7.306 -2 2.158 1.327 0.1206 0.1126 0.0762
Xy 0505 10.810 -1 5.931 3.102 0.0288 0.0524 0.0872
Iteration 3

X4 0505 8.755 3 2.658 0.471 0.0675 0.0405 0.0474
X3, 20 10.113 0.5 9.247 8.569 0.0386 0.6722 0.6486
X3p -2-0.5 5.461 0 4.167 4.167 0.2432 0.7306 0.5237
Xap -2 -1 2.451 -2 2.095 0.138 0.6534 0.5101 0.8370
Xg -1-1 10.887 0.5 5.187 4,535 0.0279 0.0957 0.0578
Xq 0505 14.077 -0.5 10.377 7.740 | 0.0071 0.0963 0.1572 |
Iteration 4

X4 0505 8.790 3 6.057 0.399 0.0666 0.0386 0.2550
X3, 20 9.948 0.5 9.096 8.272 0.0413 0.6424 0.6532
X3y -2-0.5 5.404 0 4.105 4.105 0.2483 0.7292 0.5221
Xap -2 -1 2.478 -2 2.107 0.130 0.6486 0.5033 0.8307
Xg -1-1 13.378 0.5 7.407 6.985 | 0.0096 0.0940 0.0505 |
Iteration 5

X4 0505 9.873 3 6.375 0.146 | 0.0426 0.0210 0.1740 |
X3, 20 9.710 0.5 8.823 7.972 0.0456 0.6283 0.6416
X3y -2 -1 5.053 0 3.736 3.736 0.2819 0.7251 0.5176
Xap -2 -1 2.587 -2 2.281 0.195 0.6292 0.4953 0.8580

Table 4.3: Forward selection based on deviance differences for FPT in the Rotterdam breast
cancer series. Covariates for which time-varying effects are selected are in bold.

time-transformation. However, selected time-varying effects for X2, and log(Xs) are virtually
identical. For Xg and Xg, where a different functional form is selected, time-varying effects
are at least similar in shape (see Figure A.1 in the Appendix).
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Variable best power(s) p value Variable best power(s) p value
Iteration 1 Iteration 3

X -1 <0.001 X 3 0.134
X3, 0 <0.001 X3, 0.5 0.003
X3y 0 0.105 X3p 0 0.308
Xap -2 0.101 Xap -2 0.411
X2, -0.5 0.006 X2, -0.5 <0.001
log(Xs) 0 <0.001 log(Xs) 0 <0.001
Xg 12 0.039 Xg 12 0.012
Xo 2-2 0.012 Xo -2-2 0.006
Iteration 2 Iteration 4

X 050.5 0.111 X4 3 0.121
X3, 0.5 0.006 X3, 0.5 0.007
X3y 0 0.365 X3p 0 0.330
Xap -2 0.395 Xap -2 0.391
X2, -1 0.003 X2, -0.5 <0.001
log(Xs) 0 <0.001 log(Xs) 0 <0.001
Xg 12 0.088 Xs 12 0.012
Xo -2 -2 0.008 Xo -2 -2 0.006

Table 4.4: Backfitting algorithm based on likelihood ratio tests for the Dynamic Cox model in
the Rotterdam breast cancer series. Covariates with significant time-varying effects are in
bold.

Dynamic Cox model

The Dynamic Cox model is available as an add-on library for s-p1us written by Ursula
Berger. In older s-p1us versions, the functions can easily be executed. For execution in
newer versions, updating of the functions would be needed.

Another major drawback of the program are potential technical problems due to the required
enlargement of the data. With data sets of more than a few hundred observations, i.e. dis-
tinct survival times, splitting at each event time fails. A possible solution to this problem is
categorisation of survival time, which is discussed in Appendix B in more detail. In the Rot-
terdam data, survival time is categorised into one month intervals to reduce the enlarged
data set to a manageable size.

For a nominal significance level of « = 0.01 for selection of time-varying effects, the backfit-
ting algorithm of the Dynamic Cox model stops after four iterations (see Table 4.4). Variable
log(Xs) has a highly significant time-varying effect with power 0 in all iterations. The time-
varying effects of X3, and X2, also remain significant throughout all iterations. Their FP
powers, though, are subject to changes. The powers of Xg, on the contrary, are stable over
all iterations, but are significant only from iteration 2 on. The opposite is observed for Xj,
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Variable AIC,

Variable AIC,

Iteration 0 Iteration 4

PH 9568.14 Xap 9472.07

Iteration 1 ng 9475.30

Xy 9561.94 X5e 9470.18

Xa, 9547 99 Xs 9470.92

Xap 9559.76 Xg 9472.50

Xap 9556.91 Iteration 5

X2, 9554.57 X3y 9470.39

log(Xs) 9491.38 Xap 9472.32

Xg 9569.14 Xs 9465.97

Xg 9563.62 Xg 9466.72

Iteration 2 Iteration 6

X 9485.18 X3y 9466.31

X34 9478.75 Xap 9468.12

Xap 9485.77 Xo 9460.20

ng 9493.40 Iteration 7

XEg, 9482.30 X 9460.56
3b

Xg 9491.10 pon 9462.29

X9 9488.04

Iteration 3

X 9473.19

X3y, 9477.40

Xap 9480.88

X2, 9475.70

Xg 9477.72

Xg 9475.21

Table 4.5: Forward selection procedure based on the AIC, for the Empirical Bayes model in
the Rotterdam breast cancer series. Covariates for which time-varying effects are selected
are in bold.

which looses significance of the time-varying effect after iteration 1. In the final model it is
included with a constant effect, which is also the case for X3, X4, and Xg.

Empirical Bayes model

The Empirical Bayes model is fitted using remlreg in BayesX (Belitz et al., 2009). The
random effects priors for the time-varying effects are chosen as cubic P-splines with second
order random walk penalty and 20 equidistant knots, which is the default setting. For fixed
effects, diffuse priors are used.

As the approach does not automatically involve selection of time-varying effects, a manual
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forward selection type procedure comparing the models based on the AIC, is applied follow-
ing Hofner et al. (2010). In the Rotterdam data this forward selection procedure stops after 7
iterations (see Table 4.5) with time-varying effects for X1, Xs,, X§E, log(Xs), Xs and Xg. Thus,
it results in a quite complex model with six time-varying effects and two time-constant effects
for X3, and Xyy.

Selection of time-varying effects based on BIC; instead of AIC. results in a more parsi-
monious model. With this criterion, the selection procedure stops in iteration three with
time-varying effects for log(Xg) and Xz, only.

Semiparametric Extended Cox model

The Semiparametric Extended Cox model is implemented in an R package (Scheike, 2009)
which is available on CRAN (http://cran.r-project.org/). The functions are easy
to use but require some specifications and further programming by the user. Selection of
time-varying effects is not included in the package and is in the sequel realised by the back-
ward elimination strategy proposed in Scheike and Martinussen (2004). The final cumulative
regression coefficients are smoothed using local polynomial regression with quadratic poly-
nomials, tricube weight function and a nearest neighbour fraction of 0.7 provided by the R
package locfit (Loader, 2007).

The choice of a suitable bandwidth for the kernel smoother used within the estimation pro-
cedure is also important. For the moment, we stick to the default value of 0.5. The influence
of the bandwidth is discussed in more detail in Section 6.8.

For testing on a single time-varying effect, we use the variance weighted Kolmogorov-
Smirnov type test (w = 1) with a nominal significance level of « = 0.01 in the backward
elimination procedure. In each step, the largest p value is considered. If it is larger than the
nominal significance level, the time-varying effect of the covariate is changed to a constant
effect.

Table 4.1 shows the results of the selection procedure. In iteration 1, the largest p value is
0.719 for X4;, which is not significant. In iterations 2 to 7, time-varying effects for covariates
Xg, Xg, Xap, X1, X2, and X3, are set to constant in the same way. The p value for log(Xg) in
iteration 8 equals p = 0.000 and thus the time-varying effect is kept in the model and the
procedure stops.

The model fitting procedure provides estimates for the cumulative time-varying effects B(t).
The first derivative 3(t) is obtained as a local slope estimate of a local polynomial regres-
sion on B(t). Both the estimated cumulative effect B(t) and the time-varying effect j(t) for
log(Xg) are shown in Figure 4.2.

The selection of time-varying effects strongly depends on the test that is applied. The vari-
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Variable p value

Variable p value

Iteration 1

X 0.361
X3, 0.142
Xap 0.489
Xap 0.719
X;f’e 0.302
log(Xs)  0.004
Xg 0.319
Xo 0.432
Iteration 2

X4 0.330
X3, 0.081
Xap 0.416
X§e 0.324
log(Xs)  0.001
Xg 0.367
Xo 0.422
Iteration 3

X4 0.260
X3, 0.114
Xap 0.335
Xge 0.183
log(Xs)  0.000
Xg 0.683

Iteration 4

X4 0.263
X3, 0.098
X3y 0.356
Xge 0.191
log(Xs)  0.000
Iteration 5

X 0.293
X3, 0.057
Xge 0.150
log(Xs)  0.000
Iteration 6

X3, 0.041
X2, 0.204
log(Xs)  0.000
Iteration 7

X3, 0.028
log(Xs)  0.000
Iteration 8

log(Xs)  0.000

Figure 4.1: Backward elimination based on the p value of the variance weighted Kolmogorov-
Smirnov type test for the Semiparametric Extended Cox model in the Rotterdam breast
cancer series. Covariates for which time-varying effects are eliminated from the model are

in bold.

04

02

0.0

-02

Figure 4.2: Estimated cumulative regression function B(t) (—) and smoothed time-varying
effect 3(t) (- -) of covariate log(Xg). 3(t) is obtained as the local slope estimate of a local

polynomial regression on B(t) with a nearest neighbour fraction of 0.7.
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ance weighted Kolmogorov-Smirnov type test with end points removed (w = 2) gives slightly
different p values and excludes time-varying effects in a different order, but results in an iden-
tical final model. The unweighted test (w = 0), though, results in a PH model without any
time-varying effects.

Reduced Rank model

The Reduced Rank approach is implemented in the R package coxvc (Perperoglou, 2005),
which requires several decisions that influence estimation results. These include decisions
on the choice of the optimal rank and the time functions for modelling of time-varying effects.

The optimal rank is chosen based on the AIC, following the recommendation of Perperoglou
et al. (2006b). The time functions are quadratic B-Splines with interior knots at the quartiles
of uncensored event times.

With these choices, the optimal model is of rank 3. As no selection of time-varying effects is
applied, all effects vary with time. Figure 4.3 gives an overview of all possible models of rank
1 to 6. The effect functions are relatively smooth for lower ranks, but become more wiggly
for larger ranks.

4.1.4 Investigation of the scaled Schoenfeld residuals

To get a first impression of the nature and extent of the time-varying behaviour of effects, we
use the PH test based on the scaled Schoenfeld residuals (Grambsch and Therneau, 1994)
for different functions of time.

The p values of PH tests (Table 4.6) indicate time-varying effects for X2, and log(Xs), which
are significant at the 1% level, irrespective of the time transformation. Furthermore, there

p value
Variable t rank(t) log(t) Vit
X4 0.1880 0.4744 0.5835 0.3179
X3 0.0070 0.0183 0.0268 0.0108
Xap 0.3379 0.1531 0.1311 0.2136
Xap 0.9420 0.8956 0.8939 0.9711
X2, 0.0037 0.0005 0.0003 0.0009
log(Xs) 0.0000 0.0000 0.0000 0.0000
Xg 0.0396 0.0023 0.0079 0.0120
Xy 0.0387 0.0020 0.0017 0.0079

Table 4.6: 