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Chapter 1

Introduction

In many medical applications, the common focus of analyses is to model the impact of
prognostic factors and therapies on the time to a certain event such as relapse or death. A
standard approach for such analyses is the Cox proportional hazards model (Cox, 1972),
which evaluates the instantaneous risk for the event of interest. This model is based on
assumptions which, for example, imply that the effects of prognostic factors and therapies
are constant over time (proportional hazards assumption). However, with long-term follow-
up this assumption may be questionable and erroneously assuming proportional hazards
(PH), i.e. time-constant effects, results in incorrect models. However, mismodelling the
shape of time-varying effects can likewise lead to incorrect models and false conclusions
thereof. Hence, beyond detecting time-varying effects, appropriate modelling of their shape
is at least as important.

Time-varying effects of prognostic factors have been detected in a variety of medical fields.
For instance, the effects of oestrogen receptor and tumour size in breast cancer have been
reported to change over time (Hilsenbeck et al., 1998; Coradini et al., 2000). Other ex-
amples include the effects of prothrombin time in primary biliary cirrhosis (Abrahamowicz
et al., 1996), the Karnofsky performance status in ovarian cancer studies (Verweij and van
Houwelingen, 1995) and diabetes on mortality after coronary artery bypass graft surgery
(Gao et al., 2006).
Besides gaining insight into the impact of prognostic factors on survival, the accurate as-
sessment of therapy effects is another important goal. As D’Agostino (2009) states: “To
advance our understanding of treatments for diseases that progress slowly but that are ulti-
mately debilitating, such as Alzheimer’s disease, Parkinson’s disease, rheumatoid arthritis,
and chronic obstructive pulmonary disease, it is essential to evaluate the disease-modifying
effects of administered treatments. It is also essential to separate these effects from the
short-term beneficial effects on symptoms that such treatments may provide.”

1



2 1. Introduction

Recently, the importance to account for non-PH has also been recognised in microarray
survival studies (Dunkler et al., 2010), where the PH assumption is unlikely to hold for each
gene. Ignoring the violation of PH of some genes may lead to false conclusions about their
importance.

The variety of methods to check for non-PH is broad, see e.g. Ng’Andu (1997) for an
overview of different tests. However, significant non-proportionality does not necessarily
involve the presence of time-varying effects. Spurious time-varying effects may also be
introduced by mismodelling other parts of the data, such as omission of an important covari-
ate, an incorrect functional form of covariates or an inappropriate survival model (Keiding
et al., 1997; Therneau and Grambsch, 2000, chap. 6). All of these issues are important and
mutually interact.
If the detected non-proportionality is due to a real time-varying effect, appropriate modelling
of this effect is an even more important task, as usually the interest lies not only in the pres-
ence of a time-varying effect, but rather in the interpretation of its shape. Mismodelling the
functional form of effects may lead to incorrect conclusions about prognostic factors and
therapies, e.g. false believe in the benefit of a therapy may in the last resort lead to an
increased mortality of patients. To cope with this task, several different approaches have
been proposed, which extend the Cox model to allow for time-varying effects. So far, there
is a lack of knowledge of properties of several of these approaches and advice on which
techniques to use is rare.

Time-varying effects are not to be mistaken with time-dependent covariates, i.e. covariates
that change values over time. In this context, only time-fixed covariates with time-varying
effect are considered, i.e. the values of covariates are fixed and do not change over time,
but their effects do. Of course, an extension to time-dependent covariates with time-varying
effects is possible, but is not considered here.

The aim of this thesis is to assess the properties of the Fractional Polynomial Time (FPT)
algorithm (Sauerbrei et al., 2007), which tests and models the time-varying effect of a single
covariate based on fractional polynomials, and its multivariable extension in a large simula-
tion study. Furthermore, to give guidance on different techniques, several recent approaches
for modelling time-varying effects are compared in a data example and a simulated data set.
The main focus in both investigations will be on the shape of the selected effects, to account
for the importance of appropriate modelling of time-varying effects rather than mere testing.
An investigation in this vein has, to our knowledge, not been accomplished before.

Chapter 2 gives a brief overview of different methods for modelling time-varying effects,
which are based on techniques like parametric functions of time, piecewise constant effects,
fractional polynomials, splines, cumulative effects, local linear estimation or neural networks.
A special focus is thereby on the different approaches under investigation in the subsequent
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chapters.
The assessment criteria for selected models and individual (time-varying) effects are intro-
duced in Chapter 3. As graphical comparison of individual effects is limited in simulation
studies, we additionally utilise a measure which quantifies the distance of estimated effects
to the true effect by the weighted area between both functions. Furthermore, the prediction
performance of the complete model is assessed in terms of the prediction error.
In Chapter 4, we compare five recent approaches in example data sets including the Rot-
terdam breast cancer series, a prognostic factor study. To gain further insights into their
performance, all approaches are additionally applied to a simulated data set. We comment
on the practical applicability of the investigated approaches and demonstrate assets and
drawbacks to give guidance on which approaches seem to be most suitable.
In Chapter 5, we assess the stability of effects estimated by FPT in bootstrap samples of the
Rotterdam breast cancer series. To account for model selection uncertainty and to enhance
the reliability of time-varying effects, we propose a bootstrap based selection and modelling
strategy.
The results of a large simulation study on the properties of the FPT algorithm and its mul-
tivariable extension are presented in Chapter 6. The performance is assessed in terms of
type I and II error. As the definition of a type II error in the framework of time-varying effects
is difficult, we consider two different versions. The usual definition is the failure to detect the
time-dependency. Additionally we account for the shape of the selected effects by introduc-
ing a qualitative type II error. For evaluation of the effect estimates and complete models, we
use the distance to the true effect and the prediction error, respectively. We had in mind to
include a competitive approach in the simulation study. However, several practical problems
arose in the application of this approach (Scheike and Martinussen, 2004) to the simulated
data, which are briefly presented subsequent to the simulation study.
We conclude with a discussion summarising all findings and commenting on future perspec-
tives in Chapter 7.





Chapter 2

Analysis of time-varying effects

2.1 The Cox model

The standard model for analysing survival data is the well-known Cox proportional hazards
(CoxPH) model (Cox, 1972)

λ(t|X) = λ0(t) exp(
q

∑
i=1

Xiβi), (2.1)

with covariates Xi, i = 1, . . . , q, covariate matrix X = (X1 . . . Xq), effects βi and unspecified
baseline hazard λ0(t).

The effects βi are estimated based on the partial likelihood, which for ne distinct ordered
event times t(1), . . . , t(ne) is equal to

PL(β) =
ne

∏
j=1

∏
d j
k=1 exp

(
∑

q
i=1 X jiβi

)
{∑l∈R(t( j)) exp

(
∑

q
i=1 Xliβi

)
}d j

, (2.2)

where d j is the number of events at time t( j) and R(t( j)) the risk set at t( j), i.e. the set of all
individuals still at risk just prior to t( j).
The maximum partial likelihood estimates for βi are found by maximising (2.2), i.e. by solving
the set of q score equations U(βi) = 0, i = 1, . . . , q. U(βi) are the partial derivatives of
the log partial likelihood log(PL(β)) with respect to βi. The score equations are usually
solved numerically using a Newton-Raphson algorithm, which starts with initial estimates
β

(0)
i , e.g. β(0)

i = 0, and iteratively updates them based on the score vectors and the Hessian
matrix H of mixed second partial derivatives of the log partial likelihood as

β
( j+1)
i = β

( j)
i − H−1(β( j)

i )U(β( j)
i )

5



6 2. Analysis of time-varying effects

until convergence, i.e. until the log partial likelihood stabilises (for details see e.g. Therneau
and Grambsch, 2000, chap. 3 or Klein and Moeschberger, 2005, chap. 8). A variant of
the Newton-Raphson algorithm is the Fisher scoring algorithm, which replaces the Hessian
matrix by its expectation.

The baseline hazard λ0(t), i.e. the cumulative baseline hazard
∫ t

0 λ0(s)ds, is usually esti-
mated afterwards using the Breslow estimate

Ĥ0(t) = ∑
t( j)≤t

d j

∑l∈R(t( j)) exp
(
∑

q
i=1 Xliβ̂i

) . (2.3)

Estimation of the baseline hazard is, for example, required to obtain survival probabilities

S(t|X) = exp

{
−
∫ t

0
λ0(s)ds exp

(
q

∑
i=1

Xiβi

)}
. (2.4)

The CoxPH model is based on several assumptions such as the proportional hazards (PH)
assumption, i.e. the ratio of the hazards of two individuals is assumed to be constant. How-
ever, if the effects of covariates change over time, this assumption is violated and an exten-
sion of model (2.1) is required, which allows for time-varying effects.

2.2 Central issues of multivariable model building

When thinking about multivariable model building strategies, time-varying effects are not the
only issue one has to deal with. In multivariable model building, three central issues have to
be considered:

(i) Which covariates have to be included into the model?

(ii) Is the effect of continuous covariates linear as assumed in model (2.1) or is a non-linear
functional form f (Xi) 6= Xi more appropriate?

(iii) Do effects of covariates vary in time and if so, how do they look like?

All three issues are related to each other. Spurious time-varying effects may appear due
to mismodelling of the first two aspects, i.e. omitting an important variable or assuming an
incorrect functional form as discussed, for example, by Keiding et al. (1997), Therneau and
Grambsch (2000, chap. 6.6) and Abrahamowicz and MacKenzie (2007). Vice versa, erro-
neously assuming PH in the presence of time-varying effects also results in mismodelling of
the data.
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Several approaches have been proposed which concentrate on either of the three issues,
but only few consider all of them. One approach that addresses all three issues is the Mul-
tivariable Fractional Polynomial Time (MFPT) approach (Sauerbrei et al., 2007). It extends
the Multivariable Fractional Polynomial (MFP) approach (Sauerbrei and Royston, 1999) for
modelling of the functional form of continuous covariates (non-linear effects) by selecting
and modelling time-varying effects based on fractional polynomials (FPs).

The MFPT algorithm consists of three steps, which gradually extend the model:

Step 1: Select covariates with influence on survival time and functional forms of continu-
ous covariates by applying the MFP algorithm (Sauerbrei and Royston, 1999). The
resulting model assumes PH, but relaxes the linearity assumption.

Step 2: Add covariates with a short-term effect only. Restrict the data to a short–term period
[0, t̃] by censoring all observations at t̃, where t̃ may be defined by the first half of
events. Rerun the MFP algorithm on this restricted data set, keeping covariates and
transformations selected in Step 1 fix, but re-estimating the regression coefficients.

Step 3: Identify and model time-varying effects for covariates selected in Steps 1 and 2 (see
Section 2.5.1).

Royston and Sauerbrei (2005) investigate the MFP approach (Step 1) by bootstrap resam-
pling with respect to the stability of selected models and FP transformations of covariates.
They show that MFP can find flexible functions for covariates if indicated by the data, without
incurring major instability of functional forms or models.

A few of the methods introduced in the following section also allow for testing and/or mod-
elling of non-linear covariate effects, but most approaches ignore these issues and focus
on modelling time-varying effects only. They take a time-fixed model as their starting point,
which may already include non-linear functional forms of covariates. In the analysis of a real
life example in Chapter 4, we apply the first two steps of the MFPT algorithm to develop such
a time-fixed model.
Since the focus of this work lies on the identification and modelling of time-varying effects,
we will in the sequel concentrate on this topic.

2.3 Approaches for modelling time-varying effects

The variety of approaches for modelling time-varying effects is broad. Often the methodol-
ogy is transferred from approaches for modelling non-linear functional forms of covariates.
Unfortunately, several of the approaches are introduced in univariate settings and lack suit-
able strategies for multivariable model building, which limits their practical applicability.
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In the sequel a selection of several approaches for modelling time-varying effects is pre-
sented, which is not claimed to be complete, but shall give an overview of the variety of
different techniques used in this field by discussing some approaches exemplarily.
To assess the performance and practical applicability of the different techniques, we chose
five recently proposed approaches representative for the different techniques and compare
their performance in data examples. We decided in favour of promising flexible techniques,
such as splines, FPs and non-parametric cumulative regression functions, including fre-
quentist as well as Bayesian methods. These approaches are introduced in more detail in
Section 2.5.

2.3.1 Parametric functions of time

The very first proposal for an extension of the CoxPH model is given by Cox (1972) in
his original paper. He proposed to introduce time-dependent components based on a pre-
defined function of time in case of non-proportional hazards. This corresponds to the inclu-
sion of a time-dependent covariate Xi fi(t) representing an interaction between the predictor
and a parametric function of time fi(t). Hence, model (2.1) is modified to

λ(t|X) = λ0(t) exp

(
q

∑
i=1

Xi fi(t)βi

)
= λ0(t) exp

(
q

∑
i=1

Xiβi(t)

)
, (2.5)

with the time-varying effects βi(t) = γi0 + γi1 fi(t). Model (2.5) simultaneously provides a
check of the PH assumption by testing on γi1 = 0.
This approach is still used, as for example by Putter et al. (2005), who choose f (t) =
log(t + 1). Their work, though, puts much emphasis on estimating the baseline hazard
together with covariate effects to obtain a complete picture of the underlying structure.

The method is easy to implement in standard statistical software, but inference is highly
dependent on the choice of the parametric function f (t). As the shape of the estimated
time-varying effect is determined by the specified function, an inappropriate choice of f (t)
may lead to incorrect interpretation of results. Often several alternatives for f (t) are tried
to overcome this problem. However, different choices of f (t) may also influence the corre-
sponding test on PH and may lead to different decisions, as the test depends on a specific
departure from the null hypothesis. Furthermore, some functions may fit equally well or none
might be able to describe the underlying effect, if its shape is too complex.

To enhance the flexibility in multivariable analyses, Quantin et al. (1999) allow different func-
tions f (t) for the time-varying effects of different covariates based on the best-fitting function
selected from {t, log(t), t2, 1/t} in univariate analyses. Furthermore, Therneau and Gramb-
sch (2000, chap. 6) give some guidance on how to choose f (t). Besides a choice based on
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theoretical considerations, they propose to use smoothed Schoenfeld residuals to explore
the shape of departure from PH.

2.3.2 Piecewise constant effects

Another straight-forward technique is partitioning of the time axis, also called piecewise
constant effects. Based on the idea that the PH assumption holds at least over short time
periods, separate effects are fitted for each period (under the PH assumption) resulting in
a step-function for β(t). Although piecewise constant effects are very popular, they have
some drawbacks. The choice of the number of jump times is crucial. To produce reliable
estimates, a sufficient number of events in each interval is required. Otherwise, estimated
effects may be unstable or the algorithm may even fail to converge. This problem enhances
in multivariable analyses, where the same additionally applies for each subgroup of covariate
combinations.

Proposals on the number and position of jump times are manifold. Anderson and Senthil-
selvan (1982), for example, propose a stepwise regression model with as few steps as pos-
sible, e.g. two or three, to avoid estimation problems. To verify the PH assumption, they
investigate the residuals. Moreau et al. (1985) generalise this approach to a larger num-
ber of intervals, whereas O’Quigley and Pessione (1991) consider a special case by limiting
the change of coefficients in the two-step model to a mere change of sign, i.e. β(t) =
β1 (I(t ≤ τ)− I(t > τ)) for jump time τ .

Other approaches combine a larger number of jump times with penalised likelihood tech-
niques which ensure smoothness of the piecewise constant effects by penalising too abrupt
jumps. Verweij and van Houwelingen (1995), for example, suggest to estimate coefficients
at each event time, using a penalised partial likelihood approach with first order difference
penalty for adjacent values of coefficients. The smoothness parameters are determined
based on the AIC.

Due to the potential instability of effect estimates and their sensibility to the number and
position of jump times this class of approaches is not considered further.

2.3.3 Fractional polynomials

Often smooth functions are preferred to piecewise constant effects. One technique providing
smooth estimates of β(t) are fractional polynomials (Royston and Altman, 1994), which have
been originally proposed for modelling of non-linear functional forms of covariates. Fractional
polynomials (FPs) are an extension of conventional polynomials allowing for non-integer
and negative powers. FP based approaches for modelling time-varying effects extend Cox’s
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idea of using a pre-defined function f (t). Instead of choosing one function prior to fitting
the model, they include multivariable selection procedures that determine the best-fitting
function f (t) out of a pre-defined set of functions for each variable in turn, including a test
on PH. Two such approaches have been proposed by Berger et al. (2003) and Sauerbrei
et al. (2007) and are described in more detail in Sections 2.5.2 and 2.5.1, respectively. FPs
have the advantage of providing simple functional forms of estimated time-varying effects
which are easy to interpret. As the class of FPs offers a broad variety of curve shapes, the
potential drawback of fitting a global function is deemed to be of minor importance and may
be outweighed by a better generalisability to other data sets.

2.3.4 Splines

Another large group of approaches for modelling time-varying effects is based on splines.
Splines are a flexible non-parametric tool to identify functional relationships and produce
visibly smooth curves. They are constructed from polynomial pieces joined at certain values
(knots). The choice of the number and position of these knots is crucial, as they influence
the fitted curve. Too many knots lead to overfitting of the data, while too few knots result in an
underfitting. Solutions to this problem tend to two directions. Either relatively few knots are
used or a relatively large number of knots is combined with a smoothness penalty, resulting
in penalised splines (Eilers and Marx, 1996).

For example, Hess (1994) and Heinzl and Kaider (1997) use (unpenalised) natural cubic
splines with 3 to 5 knots. Their proposals include a formal test of the PH assumption by
testing on the spline coefficients being equal to zero. Abrahamowicz et al. (1996) prefer
quadratic B-splines with no more than two knots.

Hastie and Tibshirani (1993) propose a penalised partial likelihood approach based on nat-
ural cubic splines, with knots at unique event times and second order penalty based on the
squared second derivative of the time-varying effects. The values of the smoothing param-
eters are selected by specifying the degrees of freedom for the smooth, i.e. the effective
number of parameters. Gray (1992) uses a similar method to determine the smoothing
parameters, but bases the estimation of time-varying effects on B-splines of degree two
and zero (i.e. piecewise constant effects) with a first order integral and first order difference
penalty, respectively. The number of knots is limited to ten.

Brown et al. (2007) propose a mixed model approach, which assumes that some effects
are random. They use linear B-splines or, equivalently, truncated polynomials penalised by
a difference matrix or identity matrix, respectively, to approximate the time-varying effects.
The number of knots are chosen to be min( ne

4 , 35), with ne the number of distinct survival
times as proposed by Ruppert et al. (2003, p. 126). The smoothing parameters relate to the
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variance components in the mixed model framework and are estimated in a hybrid approach
controlled by the AIC. The estimation procedure cycles between estimating the regression
coefficients for given smoothing parameters and vice versa, checking the AIC at each itera-
tion. The procedure stops if the AIC can no longer be improved.

2.3.5 Reduced Rank models

Another technique allowing for time-varying effects are Reduced Rank models (Perperoglou
et al., 2006b). In this approach, time-varying effects are modelled as (pre-defined) covariate
by time function interactions, e.g. based on splines. The main idea is to introduce a structure
matrix containing the regression coefficients of all covariate by time function interactions.
The rank of this structure matrix (i.e. the number of parameters to be estimated) is reduced
by factorisation, resulting in more stable and parsimonious models. Details on this approach
can be found in Section 2.5.5.

2.3.6 Cumulative regression effects

Scheike and Martinussen (2004) propose an approach which is mainly directed at succes-
sive testing of time-varying effects based on the non-parametric cumulative regression co-
efficients B(t) =

∫ t
0 β(s)ds. In multivariable analyses, time-varying effects can be selected

via backward elimination. The time-varying effects β(t) themselves can be obtained via a
kernel estimator which smoothly downweights distant data points and requires specification
of an appropriate bandwidth. The approach is discussed in more detail in Section 2.5.4.

2.3.7 Local linear estimation

Other approaches include local linear estimation techniques as proposed by Cai and Sun
(2003). They use a weighted local partial likelihood in which a kernel function downweights
distant data points. Time-varying effects for a time t are approximated by a linear function
using a first order Taylor expansion around t. The partial likelihood estimate for the linear
function is calculated using the observed event times within a window around each t. The
estimated linear function at t is taken as the estimate of β(t). Tian et al. (2005) further in-
vestigate this approach. They propose to choose the smoothing parameter (bandwidth) by
cross-validation and construct confidence bands and tests for time-varying effects. In mul-
tivariable analyses time-varying effects may be selected in a backward elimination manner.
Although this approach seems to be rather flexible, to our knowledge, no software tools are
available for it. Therefore, we do not consider it further.
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2.3.8 Neural networks

Furthermore, time-varying effects are considered in the framework of feed forward neural
networks (Liestøl et al., 1994; Biganzoli et al., 1998). The proposed networks calculate
linear combinations of the input nodes (covariates) with individual weights (regression co-
efficients) for each node. These linear combinations, also called hidden nodes, are then
transformed by a so called activation function, usually the logistic function, and are again
linearly combined to give the output node(s). Under the PH assumption, all weights (regres-
sion coefficients) for the same input node or hidden node are identical. Dropping this con-
straint yields time-varying effects. Penalty terms may be introduced to penalise deviations
from PH. Furthermore, the degree of smoothing is also influenced by the number of hidden
nodes. Both approaches, though, do not provide selection strategies for time-varying effects
and require grouping of survival times and hence are not considered in our investigations.

2.3.9 Bayesian inference

Besides the frequentist approaches discussed so far, similar approaches have been devel-
oped in the Bayesian framework. While frequentist methods regard the covariate effects as
fixed, but unknown, constants, Bayesian methods are based on the idea that all parameters
whose true value is uncertain, such as the covariate effects, are random variables and have
probability distributions (see e.g. Bland and Altman, 1998, for a short discussion of both
concepts).

McKeague and Tighiouart (2000), for example, proposed a non-parametric Bayesian ap-
proach based on step functions for the time-varying effect and the baseline hazard, where
the number and position of jump times are taken as random. The levels of the step functions
follow a Gaussian Markov random field prior with a pairwise dependency structure imposed
on adjacent values. Haneuse et al. (2008) extend this approach to allow for separate time-
scales for the baseline hazard and the time-varying effect of a time-dependent covariate.
They present an example, where the time scale of the baseline hazard is the usual one,
with its origin at study entry. The time scale of the time-varying effect of the time-dependent
exposure (transplant status), though, has its origin at the onset of the exposure (the time of
transplantation) and runs in parallel to the baseline time scale.

Costa and Shaw (2009) use Bayesian penalised spline models based on cubic splines. They
use a moderate number of knots (e.g. 10) placed at quantiles of event times and a first or
second order integral based penalty. A Gaussian prior is assumed for the spline parameters
with a conjugate gamma prior for the smoothing parameters. The authors further introduce a
double penalty as the sum of the first and second order penalty, which is claimed to be useful
in situations where the single penalty models do not attain the desired limit of smoothness.
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As setting a prior for the pairs of smoothing parameters for this double penalty is not straight-
forward, an empirical Bayes method is applied. This method estimates the hyperparameters
(i.e. the smoothing parameters) using the data at hand and inserts them in the prior. The
spline parameters are obtained via Markov chain Monte Carlo (MCMC) techniques, which
repeatedly sample the parameters from probability distributions by constructing a Markov
chain that has the desired distribution as its stationary distribution. The AIC can be used
to check whether inclusion of time-varying effects improves the model fit compared to time-
constant effects.

Structured additive regression models including Bayesian penalised splines provide another
alternative for modelling time-varying effects. Inference for these models can be performed
either with a full Bayes (Hennerfeind et al., 2006) or an empirical Bayes approach (Kneib
and Fahrmeir, 2007). For full Bayes inference, the regression parameters as well as their
variance (or smoothing) parameters are considered as random variables and are provided
with suitable priors and hyperpriors which express the prior beliefs about the parameters.
All parameters are jointly estimated via MCMC simulation techniques. The empirical Bayes
approach differentiates between the parameters of primary interest (the regression param-
eters) and the hyperparameters (variance or smoothing parameters). The latter are con-
sidered as constants and are estimated in advance from the data by restricted maximum
likelihood. Since this approach is based on optimising likelihood-based criteria, it avoids po-
tential problems with convergence and mixing of Markov chains (Kneib and Fahrmeir, 2007).
Both approaches are based on penalised B-splines with a second order random walk penalty
and a moderately large number of knots. Kneib and Fahrmeir (2007) show that both meth-
ods perform similar in terms of the posterior mode / posterior mean estimates. The empirical
Bayes approach is introduced in more detail in Section 2.5.3 including a multivariable model
building procedure recently proposed by Hofner et al. (2010).
Alternatively, He et al. (2010) suggest a linear Bayesian estimation approach for Bayesian
dynamic survival models. Time-varying effects are modelled by first order random walks,
i.e. piecewise constant effects. The major difference to MCMC estimation techniques is that
the smoothing parameters must be pre-specified. The optimal smoothing parameters are
chosen in terms of the minimum mean square error based on the changing pattern of the
estimated coefficients.

2.3.10 Average hazard ratio

In general, models incorporating time-varying effects are much more complex than the stan-
dard CoxPH model. In situations with very small sample size or high-dimensional data this
is problematic. For such cases, or when the shape of the underlying time-varying effect is of
little interest, Schemper et al. (2009) propose average hazard ratios by weighted Cox regres-
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sion. This method aims to provide a simple and interpretable multivariable analysis without
introducing further parameters. The weights reflect the relative importance of hazard ratios
over time and may, for example, be proportional to the number of individuals at risk. The
authors note that under the PH assumption, weighted CoxPH approaches entail some loss
of efficiency, but deem it to be small in practical applications. For non-PH on the contrary,
average hazard ratios are claimed to provide an intuitive interpretation and, for converging
hazards, improved power. Since we are particularly interested in modelling the shape of the
time-varying effects, this approach is not suitable for our investigations.

2.4 Properties and comparisons

Although the literature on modelling time-varying effects is manifold, theoretical results are
rare and we are not aware of larger simulation studies on properties of the approaches.
Furthermore, sensible comparisons of different approaches or advice on which techniques
to use are not supported by convincing studies.

Quantin et al. (1999) present a comparison of piecewise constant effects, different pre-
specified parametric functions of time and regression splines in a data example. Due to
the limited flexibility of the two former methods, they suggest to use the more flexible spline
method. He et al. (2010) conduct a small simulation study limited to three spline based ap-
proaches, using splines of degree one, i.e. piecewise constant effects. They compare their
linear Bayesian estimation approach to an MCMC approach (Hennerfeind et al., 2006) and
a penalised partial likelihood approach (Gray, 1994) and conclude that both Bayesian ap-
proaches perform well while the penalised partial likelihood approach tends to over-smooth
effects (using the default smoothing parameter). The MCMC approach is declared to be
the best of the investigated methods, since it estimates all smoothing parameters. However,
it is noted that the method may sometimes fail to converge when using splines of higher
degrees.

Lehr and Schemper (2007) compare pre-defined functions, simple piecewise constant ef-
fects, penalised piecewise constant effects (Verweij and van Houwelingen, 1995), natural
cubic splines (Hess, 1994; Abrahamowicz et al., 1996; Heinzl and Kaider, 1997) and FPs.
The test procedure of the FP approach is identical to that proposed by Sauerbrei et al.
(2007), apart from the default time transformation which is chosen to be t (as proposed by
Sauerbrei and Royston, 1999, for non-linear functional forms) instead of log(t) (see Sec-
tion 2.5.1 for details on the influence of the default transformation). They conduct a small
simulation study with sample sizes up to 300 to investigate overfitting due to modelling time-
varying effects. The results suggest that with respect to overfit FPs and penalised likelihood
approaches are the techniques of choice, as they maintain the power of tests on the PH
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assumption and simultaneously permit flexible modelling of time-varying effects.
However, inference about time-varying effects requires sufficiently large sample sizes and
investigation of such small data sets would be inadvisable in practical applications, as it pro-
vides only limited insight in the presence and shape of time-varying effects with considerable
uncertainty about conclusions.

So far, to our knowledge, no comprehensive comparisons of several recent approaches
based on different techniques for modelling time-varying effects have been conducted. To
assess the performance and practical applicability of different methods, we chose five se-
lective approaches representative for different techniques, which are compared in a real
life data example and a simulated data set with a special emphasis on the selected (time-
varying) effects. Besides the Fractional Polynomial Time (FPT) approach proposed by
Sauerbrei et al. (2007), on which the main focus of this thesis lies, an alternative FP ap-
proach (Berger et al., 2003), Reduced Rank models with splines (Perperoglou et al., 2006b),
a Bayes approach based on penalised splines (Kneib and Fahrmeir, 2007) and a non-
parametric approach based on cumulative regression functions (Scheike and Martinussen,
2004) are considered.

In addition to this comparison, the properties of the FPT approach are investigated in a large
simulation study considering ten different (time-varying) effects with respect to type I and II
error, the quality of estimated effects and the prediction performance.

2.5 Recent (multivariable) modelling strategies for time-varying
effects

2.5.1 Fractional Polynomial Time (FPT) model

Fractional polynomial (FP) based approaches for modelling time-varying effects can be
viewed as an extension of Cox’s proposal of using a pre-defined function f (t) by select-
ing the best f (t) from a specified class of functions.
The Fractional Polynomial Time (FPT) procedure has been proposed by Sauerbrei et al.
(2007) and is intended as a transfer of the MFP approach (Sauerbrei and Royston, 1999) for
modelling the functional form of continuous covariates (i.e. non-linear effects) to time-varying
effects. It corresponds to Step 3 of the MFPT approach introduced in Section 2.2. Hence,
the FPT approach is based on a model of type

λ(t|X) = λ0(t) exp

(
q

∑
i=1

fi(Xi)βi(t)

)
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with potentially non-linear functional forms of covariates fi(Xi) and time-varying effectsβi(t).
Although FPT is a parametric approach based on global functions, the class of FPs is as-
sumed to provide members that are capable of modelling situations with medium-term as
well as long-term follow-up. That means, the functional form of the effect should remain the
same when more information (longer follow-up) becomes available.

Selection and estimation of time-varying effects

Time-varying effects are modelled as covariate by time function interactions based on FPs
of maximum degree 2. The class of FPs is defined by the set of powers

S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3}, (2.6)

where t0 is defined as log(t). In this case, an FP of degree 1 (FP1) is defined as

βi(t) = γi0 +γi1tp, p ∈ S ,

and an FP of degree 2 (FP2) as

βi(t) =

γi0 +γi1tp1 +γi2tp2 , p1 6= p2; p1, p2 ∈ S

γi0 +γi1tp +γi2tp log(t), p1 = p2 = p ∈ S

For the selection of a time-varying effect of a single covariate Sauerbrei et al. (2007) pro-
posed the FPT algorithm:

• Calculate all possible FPs (8 FP1 and 36 FP2 functions for S as defined in (2.6))

• Determine the best FP1 and FP2 in terms of the deviance of the model

• Apply likelihood ratio tests to determine the best-fitting effect. The degrees of freedom
(df ) of the χ2 test statistics are determined by the difference in complexity of fitted FPs.
The hierarchical closed test procedure compares the deviance differences between
(1) the best FP2 and a constant effect (4 df )
(2) the best FP2 and a default function, i.e. an FP1 based on log(t) (3 df )
(3) the best FP2 and the best FP1 (2 df )

This hierarchical closed test procedure aims to find a model which is as complex as neces-
sary, but as parsimonious as possible. It successively checks, whether (1) a time-varying
effect is needed at all, (2) the simple default time transformation log(t) already adequately
describes the time-varying pattern or (3) the best FP1 function is sufficient. If a test on any
of the three levels is not significant, the test procedure stops and chooses the more par-
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simonious effect of the respective test. If all three tests are significant, the most complex
modelling alternative, i.e. the best FP2, is used.

The choice of log(t) as a default time transformation is motivated by its practical plausibility.
It allows the modelling of short-term effects and is a popular choice when using parametric
functions of time. A logarithmic decrease (increase) of β(t) relates to a uniform decrease
(increase) in the hazard ratio over time. The default time transformation is selected unless
the data gives strong evidence for a different shape.

Multivariable model building and properties

In a multivariable model, a forward selection procedure is applied. First, the best FP2 is
selected and tested against a time-constant effect for each covariate in turn. Denote the
p value of the most significant FP2 over all covariates as pmin. If pmin ≤ α for a nominal
significance levelα, the final FP function for the corresponding covariate is determined using
the FPT algorithm. This is repeated until pmin > α, i.e. no possible time-varying effect is
significant any more.

Adding a time-varying effect based on FPs to a model can also be regarded as adding a
time-dependent covariate with constant effect, e.g. if the time-varying effect βi(t) is an FP1

Xiβi(t) = Xiγi0 + Xitpγi1 = Xiγi0 + X̃i(t)γi1.

Consequently, the FPT model can be fitted using standard Cox regression tools for time-
dependent covariates based on maximum partial likelihood methodology.

Properties of this algorithm are unknown and remain to be investigated. Evaluation of its
performance is a major aim of this thesis.

2.5.2 Dynamic Cox model

Another approach based on FPs has been proposed by Berger et al. (2003). The main idea
of this method is the same as for the FPT approach, with a hazard of the form

λ(t|X) = λ0(t)exp

(
q

∑
i=1

Xiβi(t)

)

with βi(t) = γi0 + ∑
M
j=1 γi jt(p j) being an FP of maximum degree M = 2. γi j are the re-

gression coefficients and p1 ≤ . . . ≤ pM the fractional polynomial exponents (p j ∈ S =
{-2, -1, -0.5, 0, 0.5, 1, 2, 3}).



18 2. Analysis of time-varying effects

Selection of time-varying effects

The selection procedure, though, differs from that of the FPT approach. While the basic
test procedure is also based on likelihood ratio tests, it is not hierarchical as in the FPT
approach and thus does not distinguish between FPs of different degrees. Furthermore, a
simultaneous test on the significance of the covariate (H0 : β(t) = 0) may be performed.
The best FP for a time-varying effect is selected in terms of the minimum p value of the
likelihood ratio statistic with 2M degrees of freedom.

Multivariable model building and properties

A multivariable model (with q covariates) is derived in a backfitting-type procedure:

1. Select the best FP for the time-varying effect of covariate X1 with time-constant ef-
fects for all other covariates. If the time-varying effect is significant (according to the
likelihood ratio test), keep the FP powers fixed.

2. Repeat this procedure for all other covariates Xi, i = 2, . . . , q: Select the best FP for
Xi while the FP powers for covariates X j, j = 1, . . . , i− 1, are kept fixed and assuming
time-constant effects for all Xk, k = i + 1, . . . , q.

3. Update the FPs for each Xi, i = 1, . . . , q, in turn, fixing the FP powers of all other
covariates.

4. Repeat (3.) until the FP powers do not change any more.

This reveals another major difference to the FPT algorithm. While in the FPT algorithm the
FP powers for time-varying effects remain fix once they have been estimated, the above
algorithm enables updating of FPs. The order of the covariates should be irrelevant for
independent covariates. In case of dependent covariates, or to assure reproducibility, the
order of covariates may be fixed with respect to the p values of a full PH model.

Berger et al. (2003) investigate the test on time-varying effects in a simulation study. The
results are promising, with high power for detecting time variation in the investigated settings.
Comparison to standard tests shows a superiority of the FP test procedure. However, the
functional form of time-varying effects is not investigated and may be completely wrong.
As Berger et al. (2003) denote this model by “Dynamic Cox model”, we will in the sequel use
the same term.

2.5.3 Empirical Bayes model

An empirical Bayes approach based on structured additive regression is proposed by Kneib
and Fahrmeir (2007). This approach simultaneously estimates the regression and variance
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parameters using iteratively weighted least squares (IWLS) and restricted maximum likeli-
hood (REML), respectively. Time-varying effects are modelled through cubic Bayesian pe-
nalised B-splines (P-splines) with second order random walk penalty.

The posterior mode estimates can in a frequentist setting be interpreted as penalised like-
lihood estimates. The penalisation of regression coefficients in the frequentist framework
can from a Bayesian viewpoint be seen as specification of a prior for these coefficients. Fur-
thermore, the variance parameters in the Bayesian approach are equivalent to the inverse
smoothing parameters in a frequentist setting.

Model specification and priors

The empirical Bayes approach estimates the extended Cox model

λi(t|X) = exp(ηi(t)), i = 1, . . . , n,

where ηi(t) is a structured additive predictor which partitions the covariates with respect to
time-constant and time-varying effects and n is the number of observations. Thus,

ηi(t) = β0(t) +
qtv

∑
j=1

xtv
i jβ j(t) + xconst

i
T
α, (2.7)

where β0(t) = log(λ0(t)) is the log baseline hazard, β j(t) are the time-varying effects of
covariates xtv

j and α contains the time-constant effects of the covariates in xconst.

To derive a matrix notation of (2.7), the predictor vector is defined as η = (η1, . . . , ηn)T

where ηi = ηi(ti) is the value of predictor (2.7) at the observed survival time ti, i = 1, . . . , n.

Similarly, β j = (β j(t1), . . . ,β j(tn))T and β∗j = diag(xtv
1 j, . . . , xtv

n j)β j are the vectors of evalua-
tions of β j(t) and β j(t)xtv

j , respectively. The latter can be expressed as the matrix product
of an appropriately defined design matrix Z j and a vector γ j of regression coefficients

β∗j = Z jγ j.

Hence, the predictor vector is equal to

η = Z1γ1 + . . . + Zqtvγqtv + Xconstα. (2.8)

The fixed effects parameters α are assumed to follow a non-informative prior p(α) ∝ const.
For random effects γ1, . . . ,γL Gaussian priors

p(γ j|τ2
j ) ∝ exp

(
− 1

2τ2
j
γT

j Pjγ j

)
(2.9)
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are assumed, where Pj is a penalty matrix that penalises too abrupt jumps between neigh-
bouring parameters and τ2

j corresponds to the inverse smoothing parameter.

Modelling of time-varying effects

The unknown smooth functions β j are modelled through P-splines, i.e. penalised B-splines.
Hence, β j is estimated by a polynomial spline of degree p = 3 defined on a set of M + 1
knots tmin = κ0 < κ1 < . . . < κM−1 < κM = tmax. The spline can then be written in terms of
a linear combination of p + M B-spline basis functions Bm, i.e.

β j(t) =
p+M

∑
m=1

γ jmBm(t).

Thus, the design matrices Z j in (2.8) would be defined by Z j[i, m] = xtv
i j Bm(t).

The number of knots is an essential choice. Here, the proposal of Eilers and Marx (1996)
for non-linear functional forms of covariates is adopted to time-varying effects. They use a
moderately large number (20 to 40) of equidistant knots, to obtain sufficient flexibility and
impose a difference penalty to ensure smoothness of underlying functions. The Empirical
Bayes approach uses the stochastic analogue of a second order difference penalty, a second
order random walk (Kneib, 2006, pp. 32-39).
For simplicity, assume that κm are equidistant knots. For each κm, one parameter γ jm is
estimated using random walk priors. Second order random walks are

γ jm = 2γ j,m−1 −γ j,m−2 + u jm, m = 3, . . . , p + M (2.10)

with Gaussian errors u jm ∼ N(0, τ2
j ) and diffuse priors p(γ j1) and p(γ j2) ∝ const. This

second order random walk acts as a smoothness prior penalising deviations from the linear
trend 2γ j,m−1 − γ j,m−2. The precision matrix of the joint distribution of γ j is then of the form
Pj = DTD, where D is a second order difference matrix

D =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

 .

In case of non-equally spaced survival times, the random walks must be modified to account
for non-equal distances (for details see Kneib, 2006, p. 37).

Hence, the prior (2.9) corresponds to the difference penalty ν jγ
T
j Pjγ j with smoothing param-

eters ν j = 1/(2τ2
j ) in a penalised log-likelihood setting.
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Reparametrisation and estimation

In most cases, the precision matrices Pj will be rank-deficient. Therefore, the random effect
priors are partially improper. As standard mixed models require proper random effects priors,
all vectors of regression coefficients γ j are reparametrised into an unpenalised part (fixed
effects) and a penalised part (random effects)

γ j = Zunp
j γ

unp
j + Zpen

j γ
pen
j . (2.11)

That is, γunp
j represents the part of γ j that is not penalised by Pj and γpen

j represents the
deviations of the parameters γ j from the nullspace of Pj. From the general prior (2.9) for γ j,
it follows that

p(γunp
j ) ∝ const

and
γ

pen
j ∼ N(0, τ2

j Ik j),

where k j is the rank of the precision matrix Pj.

By defining the matrices Ũ j = Z jZ
unp
j and Z̃ j = Z jZ

pen
j , the predictor (2.8) can be rewritten

as

η =
qtv

∑
j=1

Z jγ j + Xconstα =
qtv

∑
j=1

(Ũ jγ
unp
j + Z̃ jγ

pen
j ) + Xconstα = Ũγunp + Z̃γpen,

with Z̃ = (Z̃1Z̃2 · · · Z̃qtv), Ũ = (Ũ1Ũ2 · · · Ũqtv Xconst), γpen = ((γpen
1 )T , . . . , (γpen

qtv )T)T and
γunp = ((γunp

1 )T , . . . , (γunp
qtv )T ,αT)T. This is a generalised linear mixed model (GLMM) with

fixed effects γunp and random effects γpen ∼ N(0, Σ) where Σ = blockdiag(τ2
1 Ik1 , . . . , τ2

qtv Ikqtv ).

Thus, GLMM methodology for simultaneous estimation of the time-varying effects β j(t) and
the variance parameters τ2

j can be applied. The estimation procedure iteratively updates

(i) the regression coefficients γ̂unp and γ̂pen given the current variance parameters using
iteratively weighted least squares via a Newton-Raphson step and

(ii) the variance parameters given the current regression coefficients using restricted max-
imum likelihood via a Fisher scoring step

until convergence.

Multivariable model building and properties

The selection of time-varying effects is carried out according to the proposal of Hofner et al.
(2010). For sole selection of time-varying effects (without variable selection and selection
of non-linear effects), their proposal corresponds to a forward selection algorithm based on
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the conditional AIC (AICc), which is composed of the conditional likelihood and the effective
degrees of freedom as a complexity measure (Hofner et al., 2010). In the first iteration, all
possible models with one time-varying effect are fitted. The best model in terms of the AICc

is compared to the PH model. If it is better, the time-varying effect is kept and one further
time-varying effect is added for each of the remaining covariates in turn. The best of these
models is then compared to the best model of the previous iteration. The procedure stops, if
no further improvement in terms of AICc is achieved. Hofner et al. (2010) also investigate the
performance of the proposed model building strategy in combination with further modelling
alternatives.

2.5.4 Semiparametric Extended Cox model

The Semiparametric Extended Cox model (Martinussen et al., 2002; Scheike and Marti-
nussen, 2004; Martinussen and Scheike, 2006), as the authors name it, is based on cu-
mulative parameter functions. Asymptotic properties of the predictors have been developed
using the martingale structure of the model.

The intensity of a fully non-parametric model, where all covariate effects are allowed to vary
with time, is

λ(t|X) = Y(t)λ0(t) exp

(
q

∑
i=1

Xi(t)βi(t)

)
, (2.12)

where Y(t) is the at risk process. Estimation and tests are based on the cumulative regres-
sion functions

Bi(t) =
∫ t

0
βi(s)ds,

as they converge at a faster rate than βi(t) and lead to a uniform asymptotic description
of the estimator which is necessary for hypothesis testing. Furthermore hypothesis testing
about βi(t) can also be formulated in terms of Bi(t).

Selection and modelling of time-varying effects

The test on a time-varying effect for covariate Xi is based on the hypothesis H0 : βi(t) = γi,
or equivalently H0 : Bi(t) = γit. Test statistics for this hypothesis are based on the test
process √

n
(

B̂i(t)− γ̂it
)

,

where B̂i(t) is an estimator for Bi(t) and γ̂i is computed under the null hypothesis. Under
the null, this process converges to a mean-zero Gaussian process. However, its limiting
distribution is complicated and the distribution of the test statistics need to be simulated.
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Scheike and Martinussen (2004) propose two test statistics, a Kolmogorov-Smirnov type
test

TS =
√

n sup
t∈[0,τ ]

|B̂i(t)− B̂i(τ)
t
τ
|

and a Cramér-von Mises type test

TI = n
∫ τ

0
(B̂i(t)− B̂i(τ)

t
τ

)2dt.

Both test statistics are based on the idea that B̂i(τ) t
τ

is an estimate of the underlying con-
stant effect under the null, i.e. B̂i(τ) t

τ
= γ̂iτ

t
τ

= γ̂it. A drawback of these tests is their
dependence on the choice of the interval [0, τ ] which defines the observation period of inter-
est for the test. Furthermore, the supremum tends to be large at places with large variation.
Yet, looking at places with small variation is sometimes more interesting. Modified versions
of the above test statistics have been proposed which take the variance into account. These
test statistics, though, may show erratic behaviour at the start and end of the time interval,
because the test statistic, which is nearly zero, is divided by a standard error that is almost
zero. In such cases, a third version ignoring the first and last two jumps can be used.

For calculation of p values a large number of resampling processes (e.g. 1000) are gener-
ated under the null. Then the test statistics for these resampled processes ∆̂i(t)− ∆̂i(τ) t

τ

and the test process B̂i(t)− B̂i(τ) t
τ

are calculated as

Ttest =
√

n sup
t∈[0,τ ]

|B̂i(t)− B̂i(τ)
t
τ
|

and
Tresampled =

√
n sup

t∈[0,τ ]
|∆̂i(t)− ∆̂i(τ)

t
τ
|

with the p value being equal to the probability

P(Tresampled ≥ Ttest).

Multivariable model building

In multivariable analyses, Scheike and Martinussen (2004) recommend (for testing purposes
and not too many covariates) to start with the non-parametric model (2.12) and then simplify
it in a backward elimination manner to a semiparametric model, where only some covariate
effects vary with time while others are assumed to be constant:

λ(t|X) = Y(t)λ0(t) exp

(
qtv

∑
i=1

Xtv
i (t)βi(t) +

qconst

∑
j=1

Xconst
j (t)γ j

)
.
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Hence, starting with the non-parametric model, where all effects are allowed to vary in time,
p values for H0 : Bi(t) = γit are calculated for each of the time-varying effects. If the
largest p value pmax is smaller than a nominal significance level α, the current model is
accepted. If pmax > α, the corresponding effect is assumed to be constant and the p values
are calculated for the model with one time-varying effect less. This procedure stops, when
pmax ≤ α or when all effects have been set to constant.

Estimation procedure

The likelihood based estimation procedure for βi(t) is based on finding a solution to the
score equation Xtv

i (t) (dN(t)− λ(t|X)dt), the first derivative of the log-likelihood with re-
spect to βi(t). This has no solution, as the first term represents a pure jump process while
the second is absolutely continuous. To obtain a solution, the cumulative parameter func-
tions Bi(t) are estimated and smoothness of the underlying coefficients is introduced through
the estimation of βi(t), for which a kernel estimator

β̂i(t) =
∫

b−1K
(

s− t
b

)
dB̂i(s)

is used with positive bandwidth b and a uniformly continuous kernel K with support [-1,1],
satisfying

∫
K(s)ds = 1 and

∫
sK(s)ds = 0. An iteration procedure for estimating the ef-

fects γ j and βi(t) is constructed based on initial estimates and iterated until convergence
according to the following scheme. For iteration r

1. Compute the Breslow estimator of the cumulative baseline hazard based on prelimi-
nary estimates β̂r

i (t) and γ̂r
j and smooth this estimate to obtain λ̂r

0(t).

2. Estimate γ̂r+1
j based on the score equation using a Newton-Raphson algorithm.

3. Use the estimates γ̂r+1
j to calculate B̂r+1

i (t) based on the score equations using a
Newton-Raphson algorithm.

4. Smooth B̂r+1
i (t) to obtain β̂r+1

i (t) and return to 1.

Properties

This approach leads to efficient estimates of γ j and Bi(t) (Scheike and Martinussen, 2004).
Furthermore, the random vector

√
n
(
γ̂ j −γ j

)
is asymptotically normal with mean zero and

√
n
(

B̂i(t)− Bi(t)
)

converges towards a mean zero Gaussian process, both with variances/
covariances that can be consistently estimated.

To investigate the finite sample properties of the test statistics, Scheike and Martinussen
(2004) conduct a small simulation study based on two covariates, one time-varying effect
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and several sample sizes and correlation levels. They show that the procedure performs
quite well in terms of type I error and power.

The complete approach, though, was mainly developed for testing and leads to an algorithm
that is comparatively easy to study theoretically, but was not intended for estimating the time-
varying effects βi(t). When the interest lies in the shape of βi(t) rather than the mere test
result, an additional transformation is required by the user.

Technical remarks

Within the estimation algorithm, a simple kernel smoother with global bandwidth is used to
obtain β̂i(t). This can be improved by a local approach. Hence, we use the local polynomial
regression approach (Loader, 1999) implemented in the R package locfit (Loader, 2007)
with quadratic polynomials, tricube weight function and a nearest neighbour fraction of 0.7
(the default setting) to smooth the final estimate. The first derivative is provided as a local
slope estimate.

2.5.5 Reduced Rank model

In the Reduced Rank model (Perperoglou et al., 2006a,b), time-varying effects are modelled
as covariate by time function interactions. The main idea of this approach is to reduce the
number of parameters in order to obtain more stable and parsimonious models depending
on the rank of the model.

The full rank model is identical to the Cox non-PH model

λ(t|X) = λ0(t) exp
(

XΘFT(t)
)

. (2.13)

The row vector F(t) = ( f1(t), . . . , fs(t)) contains the (pre-specified) time functions. The
structure matrix Θ is composed of the regression coefficients of all covariate by time function
interactions. For q covariates and s time functions, Θ is of dimension q× s.

Estimation procedure

Model (2.13) can be estimated by standard software for time-dependent covariates by con-
sidering Xi f j(t) as time-dependent covariates. This estimation, though, can be unstable for
many covariates and/or time functions. To avoid overfitting and instability, a rank restriction
is put on the structure matrix Θ.

The idea behind this is that Θ can be factorised as Θ = BΓ T in different ways, with B being
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a q× r matrix and Γ a s× r matrix. Thus the rank r model is

λ(t|X) = λ0(t) exp(XBΓ T FT(t))

= λ0(t) exp

(
r

∑
k=1

(Xβk)(F(t)γk)

)

where βk is the kth column of B and γk the kth column of Γ . Thus, the original set of
parameters is now reduced to a set of r linear combinations of time-functions F(t)γk and r
linear combinations of covariates Xβk, k = 1, . . . , r.

This model is then estimated in an iterative procedure using the partial log-likelihood

PL(β,γ) =
D

∑
i=1

r

∑
k=1

(Xiβk)(Fiγk)−
D

∑
i=1

ln

{
∑

j∈R(ti)
exp

( r

∑
k=1

(X jβk)(Fiγk)
)}

,

where Xi is the covariate vector of the individual with an event at time ti, Fi the row vector of
time functions at time ti and R(ti) the risk set at ti.

The estimation procedure uses a Newton-Raphson algorithm and alternates between esti-
mation of the β’s and the γ’s. It starts with the estimation of the γ’s with given initial values
for the r β vectors. For example, the estimates β̃ from a simple Cox model can be used as
initial values for β1. If r > 1, a random perturbation of the β̃’s can be used as initial values
for β2, . . . ,βr.
The estimated effect of covariate Xi is then given by

β̂i(t) =
r

∑
k=1
β̂k

(
s

∑
l=1
γ̂lk fl(t)

)
.

Model parameters and properties

The approach strongly depends on the choice of the rank r. To determine the optimal rank,
Perperoglou et al. (2006b) propose a forward-type algorithm. This starts by fitting a rank 1
model and then increases the rank up to the maximum rank r = min(q, s). The optimal rank
is chosen based on the AIC.

For the time functions F(t) = ( f1(t), . . . , fs(t)) many choices are possible. Perperoglou et al.
(2006b) propose to use B-splines with interior knots placed at convenient positions, ensuring
a sufficient number of events in each interval. Any choice of F(t) should meet the conditions
f1(0) = 1 and fk(0) = 0 for k = 2, . . . , s. Furthermore, F(t) should include the constant to
assure that the Reduced Rank model also contains the basic PH model, e.g. f1(t) = 1.

The approach does not include selection of time-varying effects. An estimated effect for
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covariate Xi can be time-constant only in the full rank model if f1(t) is set to f1(t) = 1 and
γ̂ j2 = . . . = γ̂ js = 0.

Perperoglou et al. (2006a) investigate the speed of their algorithm in a small simulation
study with time-constant effects, but, to our knowledge, do not provide simulation studies on
time-varying effects.

2.6 Predictions

To evaluate the prediction performance of approaches, predicted survival probabilities are
required. However, information on evaluation of predictions for models allowing for time-
varying effects is rare. Hence, this section presents theoretical considerations on the cal-
culation of predicted survival probabilities for the approaches introduced in Sections 2.5.1-
2.5.5.

2.6.1 FPT and Dynamic Cox model

To obtain predicted survival probabilities for both FP models, the baseline hazard λ0(t) has
to be estimated. As Therneau and Grambsch (2000, chap. 10.2.4) and Kalbfleisch and
Prentice (2002, chap. 6.4.1) state, the Breslow estimate is also applicable to time-dependent
covariates, which is equivalent to our problem, as mentioned in Section 2.5.1. However, for
time-varying effects it is

S(t|X) = exp
{
−
∫ t

0
λ0(s) exp (Xβ(s)) ds

}
6= exp

{
−
∫ t

0
λ0(s)ds exp (Xβ(s))

}
.

The cumulative baseline hazard for the FP models is estimated by

Ĥ0(t) =

Ĥ?
0(t(k)) for t(k) ≤ t < t(k+1)

Ĥ?
0(t(ne)) for t ≥ t(ne)

with Ĥ?
0(t(k)) being the Breslow estimate of the cumulative baseline hazard as defined in

(2.3).

Since Ĥ0(t) is a step-function with jumps at event times t(k), k = 1, . . . , ne (with ne the
number of distinct event times), a derivative of Ĥ0(t) is

λ̂0(t(k)) =
Ĥ0(t(k+1))− Ĥ0(t(k))

∆k
, with ∆i = t(k+1) − t(k).
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Taking into account that λ̂0(t) (and thus λ̂0(t) exp
(
∑

q
i=1 Xiβ̂i(t)

)
) is a step function, the

estimate for (2.4) reduces to

Ŝ(t|X) = exp

{
−
∫ t

0
λ̂0(s) exp

(
q

∑
i=1

Xiβ̂i(s)

)
ds

}

= exp

− ∑
t(k)≤t

λ̂0(t(k)) exp

(
q

∑
i=1

Xiβ̂i(t(k))

)
∆k


= exp

− ∑
t(k)≤t

Ĥ0(t(k+1))− Ĥ0(t(k))
∆k

exp

(
q

∑
i=1

Xiβ̂i(t(k))

)
∆k


= exp

− ∑
t(k)≤t

(
Ĥ0(t(k+1))− Ĥ0(t(k))

)
exp

(
q

∑
i=1

Xiβ̂(t(k))

)
The survival probabilities for new time points t? can then be calculated by

S̃(t?|X) =

1 for t? < t(1)

Ŝ(t(k)|X) for t(k) ≤ t? < t(k+1)

2.6.2 Empirical Bayes model

For the Empirical Bayes model, information on baseline hazard and time-varying effects is
available only at a finite number of time points. Hence, the predictor

η(t) = β0(t) +
qtv

∑
i=1

Xtv
j β j(t) +

qconst

∑
j=1

Xconst
j α

reduces to a step function with β0(t) being the log baseline hazard. The predicted survival
probabilities can be calculated using the numerical integral without loosing accuracy, giving:

Ŝ(t|X) = exp

− ∑
t(k)≤t

exp (η̂(t))

 .

The survival function is then defined as

S̃(t?|X) =

1 for t? < t(1)

Ŝ(t(k)|X) for t(k) ≤ t? < t(k+1)
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Technical remarks: BayesX estimates the full likelihood and thus provides estimates
for the log baseline hazard log(λ0(t)) and an additional constant offset α0, i.e. β̂0(t) =

ˆlog(λ0(t)) + α̂0. The baseline hazard and time-varying effects are estimated at all distinct
survival times (event and censoring times).

2.6.3 Semiparametric Extended Cox model

The survival function for the Semiparametric Extended Cox model is given as

S(t|X) = exp

{
−
∫ t

0
λ0(t) exp

(
qtv

∑
i=1

Xtv
i (t)βi(t) +

qconst

∑
j=1

Xconst
j (t)γ j

)
ds

}
(2.14)

along the lines of Martinussen and Scheike (2006, p. 226).

As the cumulative regression functions are available only for a finite number of time points k,
k = 1, . . . , ne, the integral in (2.14) can be substituted by a numerical integral without loosing
accuracy, giving the estimator:

Ŝ(t|X) = exp

− ∑
t(k)≤t

λ̂0(t(k)) exp

(
qtv

∑
i=1

Xtv
i (t)β̂i(t(k)) +

qconst

∑
j=1

Xconst
j (t)γ̂ j

)(
t(k+1) − t(k)

) .

The survival probabilities for new time points t? are then calculated as

S̃(t?|X) =

1 for t? < t(1)

Ŝ(t(k)|X) for t(k) ≤ t? < t(k+1)

Technical remarks: The timecox function only fits the reparametrised model

λ(t|X) = exp

(
β0(t) +

qtv

∑
i=1

Xtv
i (t)βi(t(k)) +

qconst

∑
j=1

Xconst
j (t)γ j

)
, (2.15)

providing cumulative regression functions for the log baseline hazard β0(t) = log(λ0(t))
and the time-varying effects βi(t), estimated at all distinct event times.

The estimated cumulative effects must be smoothed to obtain the estimates for β0(t) and
βi(t). For this smoothing step, though, numerous different possibilities exist. Here a local
polynomial regression will be used for this purpose.
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2.6.4 Reduced rank model

For the Reduced Rank model, the Breslow estimator of the cumulative baseline hazard can
be calculated as

Ĥ0(t) = ∑
t(k)≤t

dk

∑ j∈R(t(k)) exp
(

X jΘ̂FT(t(k))
)

as outlined in Perperoglou et al. (2006a). Hence, an estimate for the baseline hazard is
given by

λ̂0(t(k)) =
1

∑ j∈R(t(k)) exp
(

X jΘ̂FT(t(k))
)

The survival probabilities can be estimated by a numerical integral with the intervals being
defined by the event times t(k), k = 1, . . . , ne:

Ŝ(t|X) = exp

− ∑
t(k)≤t

λ0(t(k)) exp
(

X jΘ̂FT(t(k))
) .

The predicted survival probabilities for new time points t? are obtained by

S̃(t?|X) =

1 for t? < t(1)

Ŝ(t(k)|X) for t(k) ≤ t? < t(k+1)

Technical remarks: The coxvc package offers the function calc.h0 to calculate the
estimated cumulative baseline hazard Ĥ0(t).



Chapter 3

Assessment of time-varying effects

When assessing Cox models with time-varying effects, our interest lies in (i) the perfor-
mance of the complete (multivariable) model and (ii) the fit of a selected time-varying effect,
i.e. whether it adequately reflects the true effect or not. This chapter shortly presents two
methods addressing these issues.

3.1 Prediction error curves

Prediction error curves (Gerds and Schumacher, 2007) are used to assess and compare
prediction rules. Because resampling methods are used, the prediction rules can be as-
sessed in the same data they are developed. Due to its time-dependency, the prediction
error is also applicable to models with time-varying effects.

Let Qn = {X1, . . . , Xn} be survival data of n individuals with Xi = (T̃i, ∆i, Zi), where T̃i =
min(Ti, Ci) is composed of the event time Ti and censoring time Ci, ∆i = I(Ti ≤ Ci) is
the event indicator and Zi a q-dimensional covariate vector. Additionally, Yi(t) = I(Ti > t)
is the event status, rn(t|Zi) the predicted survival probability for individual i at time t and
rn = r(Qn) the prediction rule trained on the data Qn. The true prediction error of a prediction
rule r at time t is defined as the expectation of the process of squared residuals

Err(t; r, Qn) = E{Y(t)− rn(t|Z)}2.

It measures how well r predicts the individual event status, given Qn (where Y and Z are
replicates that are not in the sample). In practical applications, usually only time points
before a certain time τ can be used due to censoring, where τ is chosen such that

G(τ , z) = P(∆i = 1|T̃i = τ , Zi = z) > 0,

31
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e.g. τ could be a time just before the maximum on study time.

The apparent error rate is a measure of the cumulative prediction error over [0, τ ]:

err(t; rn, Ĝn) =
1
n

n

∑
i=1
{Yi(t)− rn(t|Zi)}2W(t, Ĝn, Xi)

with weights W(t, Ĝn, Xi) = I(T̃≤t)∆i
Ĝn(T̃i−|Zi)

+ I(T̃i>t)
Ĝn(t|Zi)

. Because the apparent error evaluates the
prediction rule on the training set, it may result in a seriously negative biased estimate for
the true prediction error.

Exactly the opposite direction of bias can be observed for the bootstrap based estimate of
prediction error. When bootstrap samples Q?

1, . . . , Q?
B of size n are drawn with replacement

from the data Qn, the bootstrap cross-validation estimate is obtained as

ÊrrB0(t; r) = B−1
B

∑
b=1

n−1
∑

i:Xi∈Q?
b

{Yi(t)− r?
b(t|Zi)}2W(t, Ĝn, Xi)

where Q0
b = {Xi : Xi /∈ Q?

b} is the out-of-bag sample and r?
b is trained on Q?

b .

To overcome the bias problems, Efron (1983) proposes to use a linear combination of the
downward biased apparent error and the upward biased bootstrap cross-validation estimator

Êrrω(t) = {1−ω(t)}err(t; rn, Ĝn) +ω(t)ÊrrB0(t; r)

with weight ω(t) = 0.632 = P(Xi ∈ Q?
b). This choice reduces the bias (Efron, 1983) and is

motivated by the fact that bootstrap samples are supported on approximately 0.632n of the
original data points. This estimator can be further improved by choosingω depending on the
prediction rule. For this purpose, Efron and Tibshirani (1997) introduce the no-information
error rate

NoIn f (t; rn) = n−2
n

∑
j=1

n

∑
i=1
{Yi(t)− rn(t|Z j)}2W(t, Ĝn, Xi),

which assesses the performance of r in a situation where the survival status is independent
of the covariates, i.e. where the Zi are reallocated systematically on Yj for all j = 1, . . . , n.
This no-information error rate also contributes to the weightsω.
A specific adaptation of the estimator for survival data is proposed by Gerds and Schu-
macher (2007) with

ω?(t) =


1 if NoIn f (t; rn) ≤ ÊrrB0(t; rn)

0.632 if NoIn f (t; rn) ≤ err(t; rn) or ÊrrB0(t; r) ≤ err(t; rn)
0.632

1−0.368R̂(t)
otherwise
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β1(t)

β2(t)

D̃i

t(i) t(i+1)

D̃j

t(j) t(j+1)

Figure 3.1: Scheme for calculating the area between curves of time-varying effects (ABC-
time).

and the relative overfitting rate

R̂(t) =
ÊrrB0(t; r)− err(t; rn, Ĝn)
NoIn f (t; rn)− err(t; r, Ĝn)

.

Hence, the improved bootstrap 0.632+ estimator is given by

Êrrω?(t) = {1−ω?(t)}err(t; rn, Ĝn) +ω?(t)ÊrrB0(t; r).

As a summary measure of prediction error, the integrated prediction error (IPEC) can be
calculated using the Riemann integral implemented in the R package peperr (Porzelius
and Binder, 2009). The IPEC is presented as the difference to the Kaplan-Meier estimate
(dIPEC) following Porzelius et al. (2010).

3.2 Area between curves of time-varying effects (ABCtime)

To measure the distance between time-varying effects, we adapt an approach proposed by
Govindarajulu et al. (2007) to calculate the area between smoothed curves of exposure.
The area between curves for time-varying effects (ABCtime) should be applicable to various
types of time-varying effects. This aim requires an adaptation of the original approach.

The ABCtime is based on weighted numeric integration. The area under a curve is calcu-
lated using 500 successive, non-overlapping rectangles with equal width. The area between
two curves β1(t) and β2(t) is determined as the difference D̃s of pairs of rectangles as
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sketched in Figure 3.1. Only the absolute difference between the two curves is consid-
ered, ignoring the sign. To determine the height of rectangles, Govindarajulu et al. (2007)
use the right endpoint of intervals. For ABCtime, neither the right endpoint of intervals nor
the left endpoint seem very suitable, as both could introduce systematic bias if left- and
right-continuous step functions are compared. Instead, we prefer the midpoint of intervals
to determine the function value, in order to achieve adequate applicability for all types of
time-varying effects.

To account for the varying precision of estimates across the range of exposure, the area
between curves is calculated as a weighted sum. Govindarajulu et al. (2007) use bootstrap
based weights which can be very time-consuming. Therefore, we use the less computer-
intensive logrank like weights which upweight time points where many patients are at risk
and decrease for later time points, with less patients at risk:

w(t(s)) =
R(t(s))

∑
S
i=1 R(t(i))

with S being the number of intervals (here S = 500). Other choices of weights are possible.
Besides equal weights, weights based on the inverse variance of the reference (or true)
function or the inverse mean variance over competitive approaches could be used.

The ABCtime is then calculated as the weighted sum of rectangles D̃s

̂ABCtime =
∑

S
s=1 w(t(s))D̃s

∑
S
s=1 w(t(s))

.

Interpretation of the absolute value of ABCtime is not straight-forward. Therefore, we calcu-
late the percentage of ABCtime on the weighted area under the reference function (pABC-
time). The weights for this area under the reference function are equivalent to the weights
w(t(s)) for the area between the curves. The reference function may, for example, be the true
time-varying effect in simulation studies or piecewise constant effects or smoothed Schoen-
feld residuals in real-life applications. An pABCtime value of zero means that the effect under
investigation is in perfect agreement with the reference.

As pABCtime has no upper bound, interpretation of a single value for one time-varying effect
may provide limited information on the agreement. For comparison of several alternatives,
though, pABCtime is a simple tool for identification of the best effect, i.e. the effect that is
most similar to the reference function.



Chapter 4

Comparison of different approaches

In this chapter, the five approaches introduced in Section 2.5 are compared in a prognostic
factor study, the Rotterdam breast cancer series. However, conclusions about selected
effects are somewhat limited in real data sets, because the true shape is unknown. To
obtain some more detailed insights, all approaches are additionally applied to a simulated
data set.

4.1 The Rotterdam breast cancer series

4.1.1 The data

The Rotterdam breast cancer series includes data on patients treated at the Erasmus MC
Daniel den Hoed Cancer Center for primary breast cancer between 1978 and 1993 (Foekens
et al., 2000; Sauerbrei et al., 2007).
Data from 2982 patients are available for analysis, with the follow-up time ranging from
1 to 231 months and a median follow-up time of 107 months (estimated with the reverse
Kaplan-Meier method). The final endpoint is event-free survival time (EFS) which is defined
as time from primary surgery to the first occurrence of locoregional or distant recurrence,
contralateral tumour, secondary tumour or death from breast cancer. Times to death from
other causes are treated as censored, resulting in 1518 events for EFS.

The data set contains the covariates age, menopausal status, tumour size, tumour grade,
number of positive lymph nodes, progesterone receptor, oestrogen receptor, hormonal ther-
apy and chemotherapy (see Table 4.1). We stick to the proposal of Sauerbrei et al. (2007)
to modify some of the variables. For tumour grade, they collapse grades 1 and 2 and use
MICE (van Buuren et al., 1999) to replace missing values. The variable tumour size is split

35
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Covariate Code Median (min, max) or percent

Age (years) X1 54 (24, 90)
Menopausal status X2 44% pre, 56% post
Tumour size X3

> 20mm X3a 47% no, 53% yes
> 50mm X3b 90% no, 10% yes

Tumour grade X4 2% 1, 25% 2, 73% 3
Grade 1 and 2 collapsed X4b 27% 2, 73% 3

No. of positive lymph nodes X5 1 (0, 34)
transformed to exp(−0.12X5) X5e

Progesterone receptor X6 41 (0, 5004)
Oestrogen receptor X7 61 (0, 3275)
Hormonal therapy X8 89% no, 11% yes
Chemotherapy X9 81% no, 19% yes

Table 4.1: Covariates in the Rotterdam breast cancer series and their distribution.

into two dummy variables for tumour size >20mm and tumour size >50mm. Furthermore,
the preliminary transformation X5e = exp(-0.12X5) is applied as proposed by Sauerbrei and
Royston (1999). This modified version of the data is available on http://www.imbi.

uni-freiburg.de/biom/Royston-Sauerbrei-book/index.html#datasets.
Since our focus lies on investigation of approaches for time-varying effects and not on med-
ical questions, we follow Sauerbrei et al. (2007) and consider the treatment variables in the
same way as the prognostic factors.

The Rotterdam breast cancer series contains continuous and binary variables. For con-
tinuous covariates, estimating the baseline at value zero is sometimes not sensible. For
variables like age, for example, estimation of baseline hazard and prediction at the mean co-
variate value is more suitable. Some prediction routines, as that for coxph in R even centre
all variables around their mean by default. To enable better interpretability and comparability
of all approaches, all variables of the Rotterdam breast cancer series are centred around
their mean prior to analysing the data set.

4.1.2 Selection of a time-fixed model

Mismodelling the data by omitting important variables or erroneously assuming linearity for
continuous covariates also influences the selection of time-varying effects. Most methods
for assessing time-varying effects focus on this aspect only and take a time-fixed model as
their starting point which may already include non-linear functional forms. We consider the
first two steps of the MFPT approach as introduced in Section 2.2 as a sensible approach
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Step 1 Step 2

Variable β̂ SE β̂ SE

X1 -0.013 0.002 -0.013 0.002
X3a 0.288 0.057 0.249 0.059
X3b - - 0.171 0.080
X4b 0.390 0.064 0.354 0.065
X2

5e -1.742 0.083 -1.710 0.085
log(X6) - - -0.032 0.012
X8 -0.387 0.085 -0.390 0.085
X9 -0.456 0.073 -0.444 0.073

Table 4.2: Selection of covariates and non-linear covariate effects in the Rotterdam breast
cancer series (variables adjusted by their mean) using the first two steps of the MFPT algo-
rithm.

to derive such a time-fixed model. However, in general any prespecified model may be
used as a starting point for investigating time-varying effects (Royston and Sauerbrei, 2008,
chap. 11).

In the first step of the MFPT procedure, six covariates are selected (first column of Table 4.2),
one of them with a non-linear functional form. The short-term analysis in step 2 adds two
further covariates, again one of them with a non-linear transformation. Hence, the final
model under the PH assumption consists of eight covariates as shown in the second column
of Table 4.2. This model is the starting point for the following analysis of time-varying effects
and builds a common basis for all five approaches under investigation.

We are aware that basing inference on this model, i.e. assuming that the model is given a
priori, ignores model selection uncertainty of selected components such as included vari-
ables and non-linear effects. Focusing on a single model neglects that there usually exist
other equally appropriate models. Different choices of the final PH model may also affect
the analysis of time-varying effects. However, to ensure comparability of all approaches with
respect to time-varying effects, this decision is necessary. As applied data analysis always
requires decisions on model building strategies, we accept that all inference on time-varying
effects is conditional on this decision of the final PH model.

4.1.3 Selection of time-varying effects

For all of the approaches under investigation several options must be set which may have
a strong influence on the results. In the sequel, we give some information on these options
and on the selection procedures.
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FPT model

The FPT algorithm is provided as an add-on function in Stata (StataCorp, 2007) written
by Patrick Royston and is available at http://www.imbi.uni-freiburg.de/biom/
Royston-Sauerbrei-book/index.html#progs. From a technical side, a potential
drawback of this method is the need for a split at each event time to get the correct risk
sets for estimation of time-varying effects. For medium-sized data sets as the Rotterdam
example, such an enlargement of the data is unproblematic. For extremely large data sets,
though, technical problems may occur which require categorisation of survival times as dis-
cussed in Appendix B.

The results of the FPT algorithm with nominal significance level α = 0.01 for selection of
time-varying effects are shown in Table 4.3. In each iteration of the procedure, the deviance
difference between the model with time-varying effect for the covariate under investigation
is compared to the model with time-constant effect for the same covariate. In iteration 1,
log(X6) has the largest deviance difference for the best FP2 compared to constant effect.
The deviance difference of 83.218 corresponds to a p value < 0.0001. Thus, the first test of
the hierarchical test procedure (best FP2 vs. constant effect) is significant. The following test
on the best FP2 vs. default log(t) is not significant (p = 0.1160). Consequently, the default
transformation is used as basis for the time-varying effect. In the same way the default
transformation is selected for X2

5e, X9 and X8 in iterations 2 to 4. In iteration 5, the largest
deviance difference is observed for X1, which is not significant (p = 0.0426). Consequently
the algorithm stops and the final model includes time-varying effects for X2

5e, log(X6), X8 and
X9.

The decision for X2
5e in iteration 2 is close (dev = 17.419). X3a has an only marginally

smaller deviance difference of 17.396 with identical p-value. This close decision influences
all following selection steps. If X3a would have been selected instead of X2

5e, the selection
procedure would stop in iteration 3, because the smallest p value (p = 0.0222 for X9) is
not significant at the 1% level. Hence, the final model would include time-varying effects for
log(X6) and X3a only.

The standard FPT algorithm uses log(t) as default transformation of time. When omitting
the use of a default transformation, the FPT algorithm selects time-varying effects for the
same covariates, because this decision is independent of the default function. Yet, the se-
lected FP transformations change. In the Rotterdam data, decisions in the first two iterations
are identical to those shown in Table 4.3, because for both X2

5e and log(X6) the log trans-
formation is the best FP1 transformation. In iteration 3, though, the best FP1 power -0.5 is
chosen for X9. Hence, deviances and p values of all consecutive iterations change slightly.
In the fourth iteration, the time-varying effect for X8 is selected with the best FP1 power 0.5.
Consequently, the coefficients of the final model differ slightly from those derived with default
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best FP2 best FP1 default p values of test vs. best FP2

Variable powers deviance power deviance deviance constant default best FP1

Iteration 1
X1 0.5 0.5 9.450 -1 3.654 1.131 0.0508 0.0399 0.0551
X3a -2 0 26.295 0.5 25.241 24.863 0.0000 0.6981 0.5903
X3b -2 -0.5 13.383 0 12.189 12.189 0.0095 0.7546 0.5507
X4b -2 2 7.748 -1 6.668 5.115 0.1013 0.4518 0.5824
X2

5e -2 -1 21.071 0 18.694 18.694 0.0003 0.4980 0.3047
log(X6)log(X6)log(X6) 1 2 83.218 0 77.307 77.307 0.0000 0.1160 0.0521
X8 -1 -1 6.453 -2 3.200 0.349 0.1678 0.1067 0.1966
X9 0.5 0.5 12.310 -1 7.648 4.600 0.0152 0.0524 0.0972

Iteration 2
X1 0.5 0.5 9.937 -1 3.920 1.330 0.0415 0.0350 0.0494
X3a -2 0 17.396 0.5 16.369 15.982 0.0016 0.7024 0.5983
X3b -2 -0.5 10.286 0 8.920 8.920 0.0359 0.7135 0.5051
X4b -2 -2 2.821 -2 2.677 0.481 0.5882 0.5049 0.9304
X2

5eX2
5eX2
5e -2 -1 17.419 0 14.268 14.268 0.0016 0.3689 0.2069

X8 -1 -1 7.306 -2 2.158 1.327 0.1206 0.1126 0.0762
X9 0.5 0.5 10.810 -1 5.931 3.102 0.0288 0.0524 0.0872

Iteration 3
X1 0.5 0.5 8.755 3 2.658 0.471 0.0675 0.0405 0.0474
X3a -2 0 10.113 0.5 9.247 8.569 0.0386 0.6722 0.6486
X3b -2 -0.5 5.461 0 4.167 4.167 0.2432 0.7306 0.5237
X4b -2 -1 2.451 -2 2.095 0.138 0.6534 0.5101 0.8370
X8 -1 -1 10.887 0.5 5.187 4.535 0.0279 0.0957 0.0578
X9X9X9 0.5 0.5 14.077 -0.5 10.377 7.740 0.0071 0.0963 0.1572

Iteration 4
X1 0.5 0.5 8.790 3 6.057 0.399 0.0666 0.0386 0.2550
X3a -2 0 9.948 0.5 9.096 8.272 0.0413 0.6424 0.6532
X3b -2 -0.5 5.404 0 4.105 4.105 0.2483 0.7292 0.5221
X4b -2 -1 2.478 -2 2.107 0.130 0.6486 0.5033 0.8307
X8X8X8 -1 -1 13.378 0.5 7.407 6.985 0.0096 0.0940 0.0505

Iteration 5
X1 0.5 0.5 9.873 3 6.375 0.146 0.0426 0.0210 0.1740
X3a -2 0 9.710 0.5 8.823 7.972 0.0456 0.6283 0.6416
X3b -2 -1 5.053 0 3.736 3.736 0.2819 0.7251 0.5176
X4b -2 -1 2.587 -2 2.281 0.195 0.6292 0.4953 0.8580

Table 4.3: Forward selection based on deviance differences for FPT in the Rotterdam breast
cancer series. Covariates for which time-varying effects are selected are in bold.

time-transformation. However, selected time-varying effects for X2
5e and log(X6) are virtually

identical. For X8 and X9, where a different functional form is selected, time-varying effects
are at least similar in shape (see Figure A.1 in the Appendix).
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Variable best power(s) p value

Iteration 1
X1X1X1 -1 <<<0.001
X3aX3aX3a 0 <<<0.001
X3b 0 0.105
X4b -2 0.101
X2

5eX2
5eX2
5e -0.5 0.006

log(X6)log(X6)log(X6) 0 <<<0.001
X8 1 2 0.039
X9 -2 -2 0.012

Iteration 2
X1 0.5 0.5 0.111
X3aX3aX3a 0.5 0.006
X3b 0 0.365
X4b -2 0.395
X2

5eX2
5eX2
5e -1 0.003

log(X6)log(X6)log(X6) 0 <<<0.001
X8 1 2 0.088
X9X9X9 -2 -2 0.008

Variable best power(s) p value

Iteration 3
X1 3 0.134
X3aX3aX3a 0.5 0.003
X3b 0 0.308
X4b -2 0.411
X2

5eX2
5eX2
5e -0.5 <<<0.001

log(X6)log(X6)log(X6) 0 <<<0.001
X8 1 2 0.012
X9X9X9 -2 -2 0.006

Iteration 4
X1 3 0.121
X3aX3aX3a 0.5 0.007
X3b 0 0.330
X4b -2 0.391
X2

5eX2
5eX2
5e -0.5 <<<0.001

log(X6)log(X6)log(X6) 0 <<<0.001
X8 1 2 0.012
X9X9X9 -2 -2 0.006

Table 4.4: Backfitting algorithm based on likelihood ratio tests for the Dynamic Cox model in
the Rotterdam breast cancer series. Covariates with significant time-varying effects are in
bold.

Dynamic Cox model

The Dynamic Cox model is available as an add-on library for S-Plus written by Ursula
Berger. In older S-Plus versions, the functions can easily be executed. For execution in
newer versions, updating of the functions would be needed.

Another major drawback of the program are potential technical problems due to the required
enlargement of the data. With data sets of more than a few hundred observations, i.e. dis-
tinct survival times, splitting at each event time fails. A possible solution to this problem is
categorisation of survival time, which is discussed in Appendix B in more detail. In the Rot-
terdam data, survival time is categorised into one month intervals to reduce the enlarged
data set to a manageable size.

For a nominal significance level of α = 0.01 for selection of time-varying effects, the backfit-
ting algorithm of the Dynamic Cox model stops after four iterations (see Table 4.4). Variable
log(X6) has a highly significant time-varying effect with power 0 in all iterations. The time-
varying effects of X3a and X2

5e also remain significant throughout all iterations. Their FP
powers, though, are subject to changes. The powers of X9, on the contrary, are stable over
all iterations, but are significant only from iteration 2 on. The opposite is observed for X1,



4.1 The Rotterdam breast cancer series 41

Variable AICc

Iteration 0
PH 9568.14

Iteration 1
X1 9561.94
X3a 9547.22
X3b 9559.76
X4b 9556.91
X2

5e 9554.57
log(X6)log(X6)log(X6) 9491.389491.389491.38
X8 9569.14
X9 9563.62

Iteration 2
X1 9485.18
X3aX3aX3a 9478.75
X3b 9485.77
X4b 9493.40
X2

5e 9482.30
X8 9491.10
X9 9488.04

Iteration 3
X1X1X1 9473.19
X3b 9477.40
X4b 9480.88
X2

5e 9475.70
X8 9477.72
X9 9475.21

Variable AICc

Iteration 4
X3b 9472.07
X4b 9475.30
X2

5eX2
5eX2
5e 9470.18

X8 9470.92
X9 9472.50

Iteration 5
X3b 9470.39
X4b 9472.32
X8X8X8 9465.97
X9 9466.72

Iteration 6
X3b 9466.31
X4b 9468.12
X9X9X9 9460.20

Iteration 7
X3b 9460.56
X4b 9462.29

Table 4.5: Forward selection procedure based on the AICc for the Empirical Bayes model in
the Rotterdam breast cancer series. Covariates for which time-varying effects are selected
are in bold.

which looses significance of the time-varying effect after iteration 1. In the final model it is
included with a constant effect, which is also the case for X3b, X4b and X8.

Empirical Bayes model

The Empirical Bayes model is fitted using remlreg in BayesX (Belitz et al., 2009). The
random effects priors for the time-varying effects are chosen as cubic P-splines with second
order random walk penalty and 20 equidistant knots, which is the default setting. For fixed
effects, diffuse priors are used.

As the approach does not automatically involve selection of time-varying effects, a manual
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forward selection type procedure comparing the models based on the AICc is applied follow-
ing Hofner et al. (2010). In the Rotterdam data this forward selection procedure stops after 7
iterations (see Table 4.5) with time-varying effects for X1, X3a, X2

5e, log(X6), X8 and X9. Thus,
it results in a quite complex model with six time-varying effects and two time-constant effects
for X3b and X4b.
Selection of time-varying effects based on BICc instead of AICc results in a more parsi-
monious model. With this criterion, the selection procedure stops in iteration three with
time-varying effects for log(X6) and X3a only.

Semiparametric Extended Cox model

The Semiparametric Extended Cox model is implemented in an R package (Scheike, 2009)
which is available on CRAN (http://cran.r-project.org/). The functions are easy
to use but require some specifications and further programming by the user. Selection of
time-varying effects is not included in the package and is in the sequel realised by the back-
ward elimination strategy proposed in Scheike and Martinussen (2004). The final cumulative
regression coefficients are smoothed using local polynomial regression with quadratic poly-
nomials, tricube weight function and a nearest neighbour fraction of 0.7 provided by the R

package locfit (Loader, 2007).

The choice of a suitable bandwidth for the kernel smoother used within the estimation pro-
cedure is also important. For the moment, we stick to the default value of 0.5. The influence
of the bandwidth is discussed in more detail in Section 6.8.

For testing on a single time-varying effect, we use the variance weighted Kolmogorov-
Smirnov type test (w = 1) with a nominal significance level of α = 0.01 in the backward
elimination procedure. In each step, the largest p value is considered. If it is larger than the
nominal significance level, the time-varying effect of the covariate is changed to a constant
effect.
Table 4.1 shows the results of the selection procedure. In iteration 1, the largest p value is
0.719 for X4b, which is not significant. In iterations 2 to 7, time-varying effects for covariates
X9, X8, X3b, X1, X2

5e and X3a are set to constant in the same way. The p value for log(X6) in
iteration 8 equals p = 0.000 and thus the time-varying effect is kept in the model and the
procedure stops.

The model fitting procedure provides estimates for the cumulative time-varying effects B(t).
The first derivative β̂(t) is obtained as a local slope estimate of a local polynomial regres-
sion on B̂(t). Both the estimated cumulative effect B̂(t) and the time-varying effect β̂(t) for
log(X6) are shown in Figure 4.2.

The selection of time-varying effects strongly depends on the test that is applied. The vari-
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Variable p value

Iteration 1
X1 0.361
X3a 0.142
X3b 0.489
X4bX4bX4b 0.719
X2

5e 0.302
log(X6) 0.004
X8 0.319
X9 0.432

Iteration 2
X1 0.330
X3a 0.081
X3b 0.416
X2

5e 0.324
log(X6) 0.001
X8 0.367
X9X9X9 0.422

Iteration 3
X1 0.260
X3a 0.114
X3b 0.335
X2

5e 0.183
log(X6) 0.000
X8X8X8 0.683

Variable p value

Iteration 4
X1 0.263
X3a 0.098
X3bX3bX3b 0.356
X2

5e 0.191
log(X6) 0.000

Iteration 5
X1X1X1 0.293
X3a 0.057
X2

5e 0.150
log(X6) 0.000

Iteration 6
X3a 0.041
X2

5eX2
5eX2
5e 0.204

log(X6) 0.000

Iteration 7
X3aX3aX3a 0.028
log(X6) 0.000

Iteration 8
log(X6) 0.000

Figure 4.1: Backward elimination based on the p value of the variance weighted Kolmogorov-
Smirnov type test for the Semiparametric Extended Cox model in the Rotterdam breast
cancer series. Covariates for which time-varying effects are eliminated from the model are
in bold.

Figure 4.2: Estimated cumulative regression function B̂(t) (—) and smoothed time-varying
effect β̂(t) (- -) of covariate log(X6). β̂(t) is obtained as the local slope estimate of a local
polynomial regression on B̂(t) with a nearest neighbour fraction of 0.7.
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ance weighted Kolmogorov-Smirnov type test with end points removed (w = 2) gives slightly
different p values and excludes time-varying effects in a different order, but results in an iden-
tical final model. The unweighted test (w = 0), though, results in a PH model without any
time-varying effects.

Reduced Rank model

The Reduced Rank approach is implemented in the R package coxvc (Perperoglou, 2005),
which requires several decisions that influence estimation results. These include decisions
on the choice of the optimal rank and the time functions for modelling of time-varying effects.

The optimal rank is chosen based on the AIC, following the recommendation of Perperoglou
et al. (2006b). The time functions are quadratic B-Splines with interior knots at the quartiles
of uncensored event times.
With these choices, the optimal model is of rank 3. As no selection of time-varying effects is
applied, all effects vary with time. Figure 4.3 gives an overview of all possible models of rank
1 to 6. The effect functions are relatively smooth for lower ranks, but become more wiggly
for larger ranks.

4.1.4 Investigation of the scaled Schoenfeld residuals

To get a first impression of the nature and extent of the time-varying behaviour of effects, we
use the PH test based on the scaled Schoenfeld residuals (Grambsch and Therneau, 1994)
for different functions of time.
The p values of PH tests (Table 4.6) indicate time-varying effects for X2

5e and log(X6), which
are significant at the 1% level, irrespective of the time transformation. Furthermore, there

p value

Variable t rank(t) log(t)
√

t

X1 0.1880 0.4744 0.5835 0.3179
X3a 0.00700.00700.0070 0.0183 0.0268 0.0108
X3b 0.3379 0.1531 0.1311 0.2136
X4b 0.9420 0.8956 0.8939 0.9711
X2

5e 0.00370.00370.0037 0.00050.00050.0005 0.00030.00030.0003 0.00090.00090.0009
log(X6) 0.00000.00000.0000 0.00000.00000.0000 0.00000.00000.0000 0.00000.00000.0000
X8 0.0396 0.00230.00230.0023 0.00790.00790.0079 0.0120
X9 0.0387 0.00200.00200.0020 0.00170.00170.0017 0.00790.00790.0079

Table 4.6: P values for test on PH for different time transformations in the Rotterdam breast
cancer series. Bold numbers mark significant time-varying effects at the 1% level.
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Rank 1: AIC=22197.24 Rank 2: AIC=22141.56

Rank 3: AIC=22141.02 Rank 4: AIC=22146.88

Rank 5: AIC=22152.72 Rank 6: AIC=22157.54

Figure 4.3: Estimated effects for different ranks of the Reduced Rank model in the Rotterdam
breast cancer series for covariates X1 (———), X3a (———), X3b (———), X4b (———), X2

5e (- -- -- -), log(X6) (- -- -- -),
X8 (- -- -- -) and X9 (- -- -- -). The rank 3 model has the smallest AIC and r = 3 is therefore chosen
as the optimal rank.
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is some evidence for time-varying effects of X8 and X9 which are significant (or close to
significant) for three of the tests.

In the sequel, we plot the smoothed scaled Schoenfeld residuals of the CoxPH model and
their 95% pointwise confidence intervals as reference functions together with the (time-
varying) effects estimated by the five competitive approaches and the CoxPH model. Other
choices for the reference function such as piecewise constant effects would also be possible.
Yet, due to the discretisation the latter approach is very sensitive to the number and posi-
tion of jump times and estimates may be extremely instable. To avoid these problems we
decide in favour of the smoothed Schoenfeld residuals. Although they also depend on the
choice of a suitable bandwidth, they provide a continuous representation of the time-varying
behaviour by smoothing over adjacent values. Hence, for not too small bandwidth, we deem
the smoothed Schoenfeld residuals a sensible method to reflect the general tendency of
(potential) time-varying effects. To obtain the smoothed curves and confidence intervals, the
loess smoother implemented in R with span 0.7 is applied.

4.1.5 Comparison of approaches

The models selected by the five approaches differ considerably in terms of the number and
shape of time-varying effects (Table 4.7). The only agreement is observed for log(X6),
which is modelled as time-varying by all approaches. While the Semiparametric Extended
Cox Model does not select any further time-varying effects, FPT and the Dynamic Cox Model
select four time-varying effects in total, the Empirical Bayes Model even six. The Reduced
Rank Model, which does not incorporate selection of time-varying effects, models the effects
of all eight covariates as time-varying.

Estimated effects

The estimated effects for the five different approaches are shown in Table 4.7. It is striking
that the time-constant effects of all non-PH models are relatively close to the CoxPH effects,
irrespective of the (time-varying) effects selected for the other covariates. Since not all ap-
proaches yield a functional form for time-varying effects, the selected effects are additionally
compared graphically. The smoothed Schoenfeld residuals and their 95% pointwise con-
fidence intervals are used to represent the ’raw’ data, i.e. the true time-varying pattern of
covariate effects. Furthermore, the CoxPH estimate is included in all figures representing
the standard analysis.

For most covariates, the 95% pointwise confidence intervals of the smoothed Schoenfeld
residuals are rather wide and cover all estimated effects, time-varying or not. Only X2

5e and
log(X6) show strong indications against time-constant effects. This fact is not discussed fur-
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Figure 4.4: Effects for X1 (left) and X3b (right) in the Rotterdam breast cancer series es-
timated by the CoxPH model (———), FPT (———), the Dynamic Cox model (- -- -- -), the Empirical
Bayes model (———), the Semiparametric Extended Cox model (———), the Reduced Rank model
(———) and the smoothed Schoenfeld residuals (———) with their 95% pointwise confidence inter-
vals (�).

ther for individual covariates.

The estimated effects for X1 are displayed in Figure 4.4 (left panel). FPT, the Semiparametric
Extended Cox model and the Dynamic Cox model estimate constant effects identical to the
CoxPH model. The Reduced Rank and Empirical Bayes model, on the contrary, give time-
varying effects with a clear minimum between 2 and 3 years and some further local extrema
which reflect the shape of the smoothed Schoenfeld residuals.
A similar behaviour is observed for the effect of X3b (Figure 4.4, right panel), where only the
Reduced Rank model estimates a time-varying effect whose shape resembles the smoothed
Schoenfeld residuals.

For X3a (Figure 4.5, left panel) the Reduced Rank, Dynamic Cox and Empirical Bayes mod-
els estimate decreasing effects which are close to linear. This trend is also reflected by the
smoothed Schoenfeld residuals. The estimates of the remaining models are time-constant.

For X4b, the Empirical Bayes model, FPT and the Semiparametric Extended Cox model esti-
mate time-constant effects close to the CoxPH effect (Figure 4.5, right panel). The smoothed
Schoenfeld residuals fluctuate around these constant effects with some local extrema espe-
cially at the beginning, a pattern that is closely followed by the Reduced Rank estimate.

The smoothed Schoenfeld residuals for X2
5e (Figure 4.6, left panel) indicate an increasing

effect. As the effect is negative, this means that the protective effect of X2
5e is strong initially

but diminishes in the first five years. All approaches but the Semiparametric Extended Cox
model detect this time-varying pattern. The Empirical Bayes estimate, though, is in the first
years considerably flatter than the other effects.
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Figure 4.5: Effects for X3a (left) and X4b (right) in the Rotterdam breast cancer series es-
timated by the CoxPH model (———), FPT (———), the Dynamic Cox model (- -- -- -), the Empirical
Bayes model (———), the Semiparametric Extended Cox model (———), the Reduced Rank model
(———) and the smoothed Schoenfeld residuals (———) with their 95% pointwise confidence inter-
vals (�).

Figure 4.6: Effects for X2
5e (left) and log(X6) (right) in the Rotterdam breast cancer series

estimated by the CoxPH model (———), FPT (———), the Dynamic Cox model (- -- -- -), the Empiri-
cal Bayes model (———), the Semiparametric Extended Cox model (———), the Reduced Rank
model (———) and the smoothed Schoenfeld residuals (———) with their 95% pointwise confidence
intervals (�).

A similarly strong time-varying pattern is observed for the effect of log(X6) (Figure 4.6,
right panel). The smoothed Schoenfeld residuals show a clearly increasing effect, which
crosses zero at about 3 years, i.e. the effect inverts. This is reflected by all estimated effects.
However, the Reduced Rank estimate again shows several local extrema, especially at the
beginning.

For X8 (Figure 4.7, left panel), the smoothed Schoenfeld residuals and their 95% pointwise
confidence intervals hint at a time-varying effect of increasing nature, which flattens off or
even decreases later in time. The effects estimated by FPT, the Reduced Rank model
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Figure 4.7: Effects for X8 (left) and X9 (right) in the Rotterdam breast cancer series estimated
by the CoxPH model (———), FPT (———), the Dynamic Cox model (- -- -- -), the Empirical Bayes model
(———), the Semiparametric Extended Cox model (———), the Reduced Rank model (———) and the
smoothed Schoenfeld residuals (———) with their 95% pointwise confidence intervals (�).

and the Empirical Bayes model describe a time-varying behaviour of this type, although the
Reduced Rank estimate shows even more local extrema than the smoothed Schoenfeld
residuals.

A similar pattern is observed for X9 (Figure 4.7, right panel), for which the smoothed Schoen-
feld residuals suggest an initial increase levelling off to a plateau near zero at about 2 years.
That is, the initially strong protective effect of X9 vanishes over time. Besides FPT, the Re-
duced Rank model, the Empirical Bayes model and the Dynamic Cox model also estimate
an increasing time-varying effect. Yet, the FP2 function selected by the latter shows an
artefact for very small times.

Summing up, the Semiparametric Extended Cox model, the Empirical Bayes model, the
Dynamic Cox model and the FPT model give flexible estimates in reasonable agreement with
the smoothed Schoenfeld residuals. Due to the missing selection of time-varying effects in
the Reduced Rank approach, all effects show a slightly time-varying behaviour, which might
also influence the estimates for stronger time-varying effects. Furthermore, most estimates
are rather wiggly, with several local extrema, which may result in overfitting of the data at
hand.

Prediction error curves

Although the presented models appear rather different in terms of selected effects, differ-
ences in the prediction error are less pronounced. The apparent error for the five ap-
proaches, the CoxPH model and the Kaplan-Meier estimate are shown in the left panel
of Figure 4.8. The apparent error of the FP models is only marginally better than that of the
CoxPH model. The other three approaches are even worse than the CoxPH model. Due to
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Figure 4.8: Apparent error (left) and Bootstrap .632+ estimate of prediction error (right) in the
Rotterdam breast cancer series for the Kaplan-Meier estimate (———), the CoxPH model (———),
FPT (———), the Dynamic Cox model (- -- -- -), the Empirical Bayes model (———), the Semiparametric
Extended Cox model (———) and the Reduced Rank model (———).

extremely long execution times, predictions for the Empirical Bayes model are restricted to
the 5% quantiles of uncensored event times. This restriction causes the jagged prediction
error curve.

Since the apparent error tends to underestimate the true prediction error, the bootstrap .632+
estimate of prediction error is estimated for all approaches but the Empirical Bayes model,
for which the manual selection procedure and the time-consuming computations are not
feasible for 50 bootstrap replications. The bootstrap .632+ error of the two FP approaches
is again similar but not better than the CoxPH model, while the Semiparametric Extended
Cox model has a slightly worse prediction error (Figure 4.8, right panel). The Reduced
Rank model shows an extremely large bootstrap .632+ error. As this approach does not
incorporate selection of time-varying effects, it estimates all effects as time-varying and con-
siderably overfits the data at hand. The resulting models are poorly transferable to new data
and result in an extremely poor bootstrap cross-validation error which also dominates the
bootstrap .632+ estimate.

4.2 A simulated data set

Conclusions about the estimated effects in the Rotterdam breast cancer series are limited,
as the true effects are unknown. Therefore, all five approaches are additionally applied to
a simulated data set. This data set contains 1000 observations with about 50% censoring
and five standard normal distributed covariates. Two of the covariates are provided with
time-varying effects while the others are constant. These effects correspond to those used
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in the multivariable simulation study (see Section 6.1.2):

βX1(t) = 0.32 +
1.42

exp(t)
− 0.02t0.7

βX2(t) = 0.1 + 0.8t0.3

βX3 = 0.3

βX4 = 0.5

βX5 = 0.7

The shape of these effects is shown in the subsequent Figures 4.9 and 4.10.

4.2.1 Selection of time-varying effects

The FPT approach selects time-varying effects for exactly X1 and X2 (see Table A.1 in the
Appendix for details). In the first iteration, all three tests of the hierarchical closed test pro-
cedure on the time-varying effect for X1 are significant. Consequently, the best FP2 function
(powers -1 and -1) is selected. The time-varying effect for X2 is the default log transforma-
tion. Without the default, power 0.5 would be selected for X2.
The Dynamic Cox model also starts with time-varying effects for X1 and X2 in its first iter-
ation, but adds a time-varying effect for X3 in iteration 2, leading to a model with one false
positive time-varying effect. The final time-varying effect for X1 is based on power -0.5, while
for both X2 and X3 a log transformation is selected (Table A.2).
The Empirical Bayes model even selects four time-varying effects for X1, X2, X3 and X4

(Table A.3), where the true time-varying effects for X1 and X2 are selected in the first two
iterations. With BICc, the forward selection procedure would stop in iteration four with three
time-varying effects for X1, X2 and X4.
Time-varying effects for the same covariates are selected by the Semiparametric Extended
Cox model with variance weighted Kolmogorov-Smirnov type test (Table A.4). The other
two test versions, though, select completely different models. The unweighted test (w = 0)
selects time-varying effects for X2 and X4, missing the strong time-varying effect for X1. On
the contrary, the weighted test with removed tails (w = 2), selects a rather complex model
with time-varying effects for X1, X2, X4 and X5. Although none of the three models is correct
in terms of selected time-varying effects, in this example the weighted test (w = 1) seems
to be the best alternative as it includes both time-varying effects with only one false positive
time-varying effect.
For the Reduced Rank model, estimated time-varying effects for all five covariates of mod-
els with rank one to three are subject to changes (especially for times larger 10), while for
larger ranks the effect estimates remain similar. The rank 3 model gives the best AIC in this
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Figure 4.9: Effects for X1 (left) and X2 (right) in a simulated data set. Shown are the true
effect (- -- -- -) and the effects estimated by the CoxPH model (———), FPT (———), the Dynamic Cox
model (- -- -- -), the Empirical Bayes model (———), the Semiparametric Extended Cox model (———)
and the Reduced Rank model (———).

example and seems to be a good compromise between flexibility and parsimony.

4.2.2 Comparison of approaches

A comparison of the selected models shows that only FPT is correct in terms of inclusion
of time-varying effects, while the remaining approaches tend to select more (false positive)
time-varying effects (Table 4.8). Like in the Rotterdam breast cancer series, estimated time-
constant effects of all approaches are quite similar, irrespective of the effects of the other
covariates in each model. Comparison to the true effects reveals that the time-constant
effects for X3 and X5 are underestimated, while estimates for X4 are reasonably close to the
true effect.

Estimated effects

Graphical comparison of true and estimated effects shows that all approaches recover the
strong initial decrease in the effect of X1 (Figure 4.9, left panel). The FP2 function selected
by the FPT approach shows an artefact at small times, while the FP1 effect estimated by
the Dynamic Cox model is similar in shape, but does not show this erratic behaviour. Both
estimated effects reflect the shape of the true effect, but show a slightly steeper decrease at
the beginning. The time-varying effects of the other three approaches are rather wiggly and
show some local extrema after the initial decrease.

The general shape of the increasing effect for X2 is also reflected by most of the approaches
(Figure 4.9, right panel). The curvature of both FP models mimics the true effect well. The
Reduced Rank model is in general of similar curvature, but produces a local minimum in the
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Figure 4.10: Effects for X3 (left), X4 (centre) and X5 (right) in a simulated data set. Shown
are the true effect (- -- -- -) and the effects estimated by the CoxPH model (———), FPT (———), the
Dynamic Cox model (- -- -- -), the Empirical Bayes model (———), the Semiparametric Extended
Cox model (———) and the Reduced Rank model (———).

first year. The Semiparametric Extended Cox model, on the contrary, shows the general
tendency but gives a rather ragged estimate. The effect estimated by the Empirical Bayes
model, though, is rather flat throughout and fails to recover the steep initial increase. Nev-
ertheless, all five effects considerably underestimate the size of the effect and perform quite
poor in this respect. This fact can be explained by a frailty effect and is discussed in more
detail in the simulation study on p. 97.

The estimated effects of X3 to X5 are depicted in Figure 4.10. In general, the estimated
effects tend to underestimate the true effect. For X3, only FPT and the Semiparametric
Extended Cox model estimate time-constant effects, the other three approaches select time-
varying effects of decreasing nature. For X4 on the contrary, the Empirical Bayes model, the
Reduced Rank and the Semiparametric Extended Cox model decide on increasing time-
varying effects. The latter is rather ragged for t > 8. However, the scale of the y axis is small
and consequently absolute differences between estimated effects are not very large. Finally,
the effect of X5 is correctly modelled as time-constant by all approaches but the Reduced
Rank model which shows a time-varying effect with a relatively strong initial decrease.

Prediction error curves

In this example, four of the approaches achieve a visible improvement in terms of the pre-
diction error over the CoxPH model (Figure 4.11). The Empirical Bayes model and both FP
models perform about equally well, while the Reduced Rank model shows a slightly larger
prediction error after time 6. Hence, in this simulated data set the true prediction error seems
rather unaffected by the missing selection of time-varying effects in the Reduced Rank ap-
proach.
Only the prediction error of the Semiparametric Extended Cox model is worse than that of
the CoxPH model. This seems surprising, as the effect estimates are inconspicuous. Yet,
the estimate of the cumulative baseline hazard severely differs from the true cumulative
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Figure 4.11: True prediction error in a simulated data set for the Kaplan-Meier estimate (———),
the CoxPH model (———), FPT (———), the Dynamic Cox model (- -- -- -), the Empirical Bayes model
(———), the Semiparametric Extended Cox model (———) and and the Reduced Rank model (———).

baseline hazard (see Figure A.3 in the Appendix), which is most likely the reason for the
inflated prediction error.

4.3 Summary and concluding remarks

4.3.1 Performance of approaches

Investigations in the two examples reveal that FPT is very good at detecting time-varying
effects, while the Reduced Rank approach results in far too complex models, as it does
not include selection of time-varying effects. The other three approaches show a tendency
towards false positive decisions in the selection process, but also some probably false neg-
ative decisions. In particular the Semiparametric Extended Cox model seems to miss an
important time-varying effect in the Rotterdam breast cancer series .

The time-varying effects estimated by the Reduced Rank model show many local extrema
and seem to overfit the data. The effect estimates of all other approaches seem to be rea-
sonably good. In the Rotterdam breast cancer series they reflect the general pattern of
the smoothed Schoenfeld residuals or select time-constant effects which are covered by
the 95% pointwise confidence intervals. In the simulated data set, on the contrary, all ap-
proaches underestimate the increasing time-varying effect, due to a frailty effect, but perform
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quite well in estimating the decreasing effect.

Although the selected models of all five approaches are rather different in terms of selected
(time-varying) effects, their prediction error is relatively similar. In the Rotterdam breast
cancer series, the two FP approaches show a prediction performance similar but not better
than the CoxPH model, while the Semiparametric Extended Cox model and the Empirical
Bayes model are slightly inferior. The Reduced Rank model with time-varying effects for
all eight covariates considerably overfits the data, which results in a considerably inflated
prediction error. Hence, the time-varying effects in the data seem to be not strong enough
to seriously influence the prediction performance if they are ignored.
In the simulated data set, the prediction performance of FPT, the Dynamic Cox model, the
Empirical Bayes model and the Reduced Rank model are similarly good and show a clear
improvement compared to the CoxPH model. Only the Semiparametric Extended Cox model
shows an inflated prediction error.

4.3.2 Practical applicability

Although evidence about the performance of the approaches in these two examples is some-
what limited, we gained valuable insights into their practical applicability and usability.

The FPT approach is easy to use. The standard class of FPs is very flexible, but can easily
be adjusted if required. The same applies for the default time transformation. Furthermore,
FPs provide simple functional forms that are intuitive and easy to interpret. One drawback of
the implementation, though, is the required enlargement of the data set, which may cause
problems with extremely large data sets but is of less consequence to the small and medium
sized data sets of common applications.

Although the Dynamic Cox model is equally flexible and easy to use, this approach suffers
from two severe drawbacks. First, the enlargement of data sets already causes problems
when the number of observations exceeds a few hundred. In these cases, categorisation
of survival times is necessary to analyse the data. Second, the algorithm has been imple-
mented in an older S-Plus version and is incompatible to current S-Plus versions.

The Empirical Bayes model is also a very flexible tool. This model can easily be applied
also by users less experienced in Bayesian modelling, as it does not require, for example,
decisions on the mixing of Markov chains. The splines depend, like all spline approaches, on
the number and position of knots, but the default settings in combination with penalisation
work pretty well in our examples. As Ruppert (2002) shows that their impact on the fit of
penalised splines is small, modification of the default settings may be rarely required in
practise. However, the implementation does not include automated selection of time-varying
effects and manual selection based on information criteria can be very time consuming in
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applications with many variables.

The cumulative time-varying effects B(t), on which the Semiparametric Extended Cox model
is based, provide asymptotic properties of tests but complicate investigation of β(t), as
transformation of the cumulative estimates is left to the user. Furthermore, the choice of the
bandwidth is critical (Cortese et al., 2010), especially considering a potential sensibility of
the tests to this decision.

The Reduced Rank model is theoretically a flexible tool for investigating time-varying effects.
Yet, the implemented algorithm unfortunately does not include selection of time-varying ef-
fects which may also be the reason for the extremely bad bootstrap prediction error in the
Rotterdam breast cancer series, as it limits transferability of selected models. In the simu-
lated data example, though, the true prediction error did not show the same effect. Another
potential drawback of the approach is that the choice of suitable time functions is left com-
pletely to the user. Usage of the recommended splines further introduces the typical problem
of finding a suitable number and position of knots.

4.3.3 Recommendations

These (limited) comparisons suggest that the Reduced Rank model and the Dynamic Cox
model are less suitable for practical applications due to the theoretical and technical reasons
mentioned above. The Semiparametric Extended Cox model is not the method of choice for
estimation of time-varying effects β(t) either, because of its drawbacks with respect to the
choice of a suitable bandwidth and its sensibility to the very same. Nevertheless, it is a
flexible nonparametric tool for testing the PH assumption with known asymptotic properties,
which may be of value when the interest lies on testing alone (depending still on a suitable
bandwidth). When the interest lies in the shape of time-varying effects, the FPT approach
or the Empirical Bayes approach seem to be preferable, as they provide flexible effects and
easy to use programs.



Chapter 5

Beyond a single model:
bootstrapping

5.1 Stability of FPT

To assess the stability of time-varying effects estimated by FPT, bootstrap resampling is
applied to the Rotterdam breast cancer series and results are compared to those obtained
for the original data.

To promote stability and to partly protect against overfitting, the FPT procedure utilises a de-
fault time transformation. Although this makes the approach less flexible in the time-varying
function selected, the default transformation log(t) allows modelling of short-term effects
and is a popular choice for modelling time-varying effects. To investigate the influence of
this default time transformation on the shape of estimated time-varying effects, an additional
version of FPT without the default time transformation is examined. This version differs only
in the testing procedure, where the second test (best FP2 vs. default FP) is omitted.

To explore (in-)stability of the estimated time-varying effects, we draw nB = 1000 bootstrap
samples of size 2982 with replacement from the original data. Time-varying effects are se-
lected at a nominal significance level of α = 0.01 and α = 0.157. The latter corresponds to
the asymptotic significance level of the AIC for the inclusion of one additional time-varying
effect. The effects estimated in the bootstrap samples are used to check the difference of se-
lected functional forms to the reference function (fitted in the original data) and to summarise
the variation among the bootstrap samples.

A large amount of bootstrap samples makes such investigations extremely computationally
intensive. Hence, we follow the proposal of Sauerbrei et al. (2007) to ’categorise’ survival
times in half-year periods up to year 15 and a final period >15 years for computational

59
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reasons. For details on categorisation of survival time see Appendix B.

The reference function

Since in a multivariable model the selected time-varying functions may depend on the se-
quence of time-varying effects entering the model, we will concentrate on the prognostic
index (PI) as a univariate summary of the underlying multivariable model. Application of the
first two steps of the MFPT procedure to the Rotterdam data as in Sauerbrei et al. (2007)
leads to a PI of

PI =− 0.013X1 + 0.249X3a + 0.171X3b + 0.354X4b

− 1.681X2
5e − 0.032 log(X6 + 1)− 0.389X8 − 0.443X9

in the final CoxPH model.

Categorising the survival times as described above, application of the FPT algorithm discov-
ers a logarithmically decreasing time-varying effect

β̂(t) = 1.335− 0.361 log(t)

for the PI for both significance levels and with / without default time transformation log(t).

Standardisation of effect estimates

Since the Cox model has no intercept term, the resulting time-varying function is standard-
ised to have mean zero when averaged over the empirical distribution of the categorised
time T. That is, the estimated time-varying effect in the original data (reference function)
β̂orig(t) is standardised to

β̃orig(t) = β̂orig(t)− 1
nT

nT

∑
i=1
β̂orig(ti),

where nT is the number of survival times, i.e. the number of observations in the original data
set.

In each bootstrap sample, FP powers (p1 and p2) and regression coefficients (β̂0, β̂1 and β̂2)
estimated by FPT are collected. With this information, the time-varying effects β̂(t) of the
bootstrap samples are recalculated for the same survival times as in the original analysis
to enable comparisons. These functions are then standardised in the same way as the
reference function. The estimated time-varying effect of the bth bootstrap replication β̂b(t)
is thus standardised to

β̃b(t) = β̂b(t)− 1
nT

nT

∑
i=1
β̂b(ti).
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We use Breiman’s bagged estimator (Breiman, 1996) as a summary of all standardised
bootstrap functions

β̂bag(t) =
1

nB

nB

∑
b=1
β̃b(t),

where nB is the number of bootstrap replications.

Measures of stability

To quantify the stability of time-varying effects, the total variation of bootstrap functions
around the reference function T , the within subset variance V and the squared deviation be-
tween bagged and reference curve D2 are applied, following Royston and Sauerbrei (2003).
The total variation of bootstrap functions around the reference function T can be decom-
posed into the within-subset variance V(t) and the squared deviation between the bagged
and reference curves D2(t):

1
nB

nB

∑
b=1

[β̃b(t)− β̃orig(t)]2 =
1

nB

nB

∑
b=1

[β̃b(t)− β̂bag(t)]2 + [β̂bag(t)− β̃orig(t)]2

T (t) = V(t) + D2(t)

A large D2(t) points to a difference in shape between the reference and bagged curves.
Large values of V(t), on the other hand, reflect a large random variation and other con-
tributions to variability of the individual bootstrap curves β̃b(t) around the bagged function
β̂bag(t). In practise, the summary measures of V and D2 are calculated by averaging over
the empirical distribution of time T in the original data as

V =
1

nT

nT

∑
i=1
V(ti) and D2 =

1
nT

nT

∑
i=1
D2(ti).

FP types

Fitted FPs are divided into different types according to the criteria in Table 5.1. For FP2
functions we distinguish between unimodal and monotonic curves. In most applications,
one would probably expect a monotonic behaviour of time-varying effects, such as a mono-
tonically decreasing effect of a prognostic factor over time (i.e. a diminishing influence of
the factor on survival). FP1 functions are always monotonic and are further subdivided into
linear, logarithmic and other FP1 functions and the sign of their coefficient β1.

The background for this classification is that a certain curve shape may be described almost
equally well by different FP functions. Furthermore, with bootstrap resampling, recovering
the general shape of the time-varying effect seems to be sufficient and exact re-selection of
the reference function fitted in the original data is not required. Hence, identical powers for
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FP type description form of β̂(t)

PH time-constant effect β̂(t) = β̂0
log + (-) log-transformation with positive (negative)

coefficient
β̂(t) = β̂0 + (−) β̂1 log(t)

lin + (-) linear transformation (p1 = 1) with positive
(negative) coefficient

β̂(t) = β̂0 + (−) β̂1t

other FP1 other FP1 transformations with p1 6∈ {0, 1} β̂(t) = β̂0 ± β̂1tp1

FP2 monotonic FP2 with different powers p1 6= p2 and
sign(β̂1β̂2)sign(p2) = sign(p1)

β̂(t) = β̂0 ± β̂1tp1 ± β̂2tp2

FP2 unimodal FP2 with different powers p1 6= p2 and
sign(β̂1β̂2)sign(p2) 6= sign(p1) or FP2
with equal powers p1 = p2

β̂(t) = β̂0 ± β̂1tp1 ± β̂2tp2 ,
β̂(t) = β̂0±β̂1tp±β̂2tp log(t)

FP with asymptote FP1s with p1 < 0 and FP2s with p1 < 0 and p2 < 0
FP w/o asymptote FP1s with p1 ≥ 0 and/or FP2s with p1 ≥ 0 and p2 ≥ 0

Table 5.1: Classification of time-varying effects into different FP types.

the time-varying effect in the original data and the effects selected in the bootstrap samples
are not necessarily required.

Stability of selected effects

To illustrate the (in-)stability of selected time-varying functions, the reference function se-
lected in the original data is plotted with its 95% pointwise analytical confidence intervals,
all curves selected in the 1000 bootstrap samples and their bagging estimate. Figure 5.1
shows the four settings for FPT with and without default time transformation log(t) and with
α = 0.01 and 0.157, respectively.

For significance level α = 0.01 and FPT with default time transformation (upper left panel),
nearly all time-varying effects selected in the bootstrap samples are close to the reference
effect. Only few functions show a different shape. This is not surprising, as the log transfor-
mation with negative coefficient, which describes a decreasing effect over time, is selected in
99% of the bootstrap samples (Table 5.2). In about half of these samples, it is the best FP1
function, while it is chosen as default time transformation in the other 50%. In these sam-
ples, FPT without default time transformation selects other FP1 functions instead. Without
the default time transformation, the amount of effects with different shape slightly increases
and leads to more variability. Most frequently FP1 functions with power 0.5 or -0.5 are se-
lected instead of the log function, as shown in Table 5.3. Both powers in combination with
negative and positive coefficients, respectively, result in similar curve shapes than the log
function. Figure 5.2 shows the fitted time-varying effects of two exemplary bootstrap sam-
ples, for which a log transformation is selected with default time transformation and powers
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Figure 5.1: Variation of estimated effects for the prognostic index in the Rotterdam breast
cancer series in bootstrap replications (———) and their bagging estimate (- -- -- -) in comparison to
the reference model (———) and its analytical 95% pointwise confidence intervals (· · ·· · ·· · ·) for FPT
with (left) and without (right) default transformation log(t) and significance levels α = 0.01
(top) and α = 0.157 (bottom).

significance level

α = 0.01 α = 0.157

with w/o with w/o
FP type default default default default

log - 99.0 49.5 85.5 43.3
lin - 0.0 2.4 1.4 1.8
other FP1 0.5 47.2 4.1 40.6
FP2 monotonic 0.5 0.9 8.8 13.2
FP2 unimodal 0.0 0.0 0.2 1.1

Table 5.2: Relative frequencies of FP types (in %) in bootstrap samples of the prognostic
index in the Rotterdam breast cancer series for FPT with and without default time transfor-
mation log(t) and different significance levels. FP types PH, log + and lin + have not been
selected at all.
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FP combinations relative frequency (in %)

with w/o α = 0.01 α = 0.157
default default

-2 -2 0.1
-2 1 -2 1 2.4
-2 2 -2 2 0.2 2.7
-1 -1 0.3 1.3

-1 3 -1 3 2.0
-0.5 -0.5 1.6
000 -2 1-2 1-2 1 2.12.12.1
000 -1-1-1 2.02.02.0 0.20.20.2
000 -1 3-1 3-1 3 0.30.30.3 1.01.01.0
000 -0.5-0.5-0.5 23.623.623.6 19.219.219.2
0 0 49.5 43.3
000 0.50.50.5 21.021.021.0 17.117.117.1
000 111 2.42.42.4 0.40.40.4

0.5 0.5 1.0
1 1 1.4

and 4 further
combinations with
frequency <1%

and 13 further
combinations with
frequency <1%

Table 5.3: FP powers selected by FPT with and without default time transformation in the
Rotterdam breast cancer series. Relative frequencies of FP combinations (in %) for different
significance levels. Bold rows indicate changes in selected FP transformations between the
two versions of the FPT algorithm.

Figure 5.2: Single time-varying effects selected by FPT with (———) and without (- -- -- -) default
time transformation log(t). Two exemplary bootstrap samples for which FPT without default
selects powers -0.5 (left) or 0.5 (right) instead of the default for significance level α = 0.01.

-0.5 (left panel) and 0.5 (right panel) without default transformation, respectively. The se-
lected time-varying effects are similar in shape, but differ slightly in their curvature.

For the larger significance level α = 0.157, Figure 5.1 shows an increased variability of
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T V D2

(as factors) (% of T ) (% of T )

Significance with w/o with w/o with w/o
level default default default default default default

0.01 1.00 2.79 99.26 98.19 0.74 1.81
0.157 3.15 4.77 94.29 92.44 5.71 7.56

Table 5.4: Stability measures for the variation of estimated time-varying effects of the prog-
nostic index in bootstrap samples of the Rotterdam breast cancer series. T is the total
variation of bootstrap functions around the reference function, V the within-subset variance
and D2 the squared deviation between bagged and reference curves. Given are the mag-
nitude of T relative to the scenario α = 0.01 with default time transformation (T = 0.0027)
and the proportion of V and D2 (in %) on the corresponding T .

effects selected in the bootstrap samples. Again a decreasing logarithmic function is still
the most frequently selected FP type, but other types, especially monotonic FP functions,
also gain importance. Without the default time transformation, about half of the selected log
transformations change to ’other FP1’. Although a visual comparison of effects estimated
in the bootstrap samples reveals few differences (bottom row of Figure 5.1), the variety of
concrete powers increases (Table 5.3).

The stability measures confirm the previous findings (Table 5.4). The variation measures
of selected curves show a considerable increase by factor 3 for the larger significance level
α = 0.157 compared toα = 0.01. While forα = 0.01 the difference in total variation between
effects estimated by FPT with and without default time-transformation is also nearly of factor
3, it reduces to 1.5 for α = 0.157. In all four settings, V explains the major proportion of
total variance with values of over 90%. For α = 0.157, the proportion of D2 on T increases
slightly, but even then does not exceed 8%. Hence, the total variation is due to the large
variation among the bootstrap effects (V) rather than the difference between the bagging
estimate and reference function (D2).

Summary

These bootstrap investigations indicate reasonable stability of time-varying effects estimated
by FPT. The variability increases with increasing significance level. However, especially with
the default time transformation log(t), the shape of time-varying effects is similar in most
replications. Even without the default, the shape of selected curves often remains similar,
as most of the alternatively selected FP transformations lead to similar curve shapes.
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5.2 BootstrapFPT

Model selection uncertainty

Although the bootstrap stability investigations in a univariate setting show promising results,
multivariable model building is more complex and may introduce larger variability of effects.
In many applications, the number of potential explanatory variables is large and so is the
set of candidate models. This model space extensively enlarges if several modelling alter-
natives such as in-/exclusion of covariates, non-linear effects and time-varying effects are
considered. Usually, variable selection methods are applied to select one final model. This
neglects that several models may fit the data equally well, which may differ in terms of se-
lected components. To overcome this problem and the model selection uncertainty due to
(potential) instability of the model building process, bootstrap based strategies such as boot-
strap model averaging (Buckland et al., 1997) have been proposed. Augustin et al. (2005)
extended this approach by adding a bootstrap based variable screening step based on parts
of a strategy suggested by Sauerbrei and Schumacher (1992).

The bootstrap variable screening step aims to eliminate variables with no or a negligible
effect. Hence, it repeats the variable selection procedure in a set of bootstrap samples
and eliminates all variables with a bootstrap selection frequency below a specified (small)
threshold. This variable screening step is followed by a second model building step, which
usually again includes variable selection (e.g. model averaging). Investigation of this ap-
proach shows that the bootstrap screening distinguishes between variables with and without
an effect, without harming statistical criteria of the final model averaging predictors (Hollän-
der et al., 2006; Buchholz et al., 2008; Sauerbrei et al., 2008).

Shepherd (2008) examines the application of bootstrap resampling when checking and cor-
recting for violations of the PH assumption. He shows that it is most important to apply
bootstrap based checking of the PH assumption, if the time-varying effect is borderline sig-
nificant. For highly significant or hardly significant time-varying effects, results are similar to
a single test on PH in the original data.

Bootstrap based selection of time-varying effects

Combining these concepts leads to a bootstrap based selection of time-varying effects which
accounts for model selection uncertainty by bootstrapping the selection of time-varying ef-
fects to evaluate their importance. Since we do not want to eliminate components with
negligible effect from our model as the variable screening procedures mentioned above, but
aim to select time-varying effects with a strong influence on survival, we adapt strategy B of
Sauerbrei and Schumacher (1992).
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A ’strong influence’ may be defined by a high selection frequency in bootstrap samples, or
alternatively by a large frequency of significant time-varying effects in the out-of-bag (oob)
samples. We decide in favour of the latter, as significance in the oob samples is a further
evidence for stability and reliability of the selected time-varying effect.

This selection procedure, termed BootstrapFPT, contains the following steps:

1. Sample nB bootstrap replications with replacement from the original data. Apply the
FPT algorithm for selection of time-varying effects to each bootstrap sample.

2. Refit the selected model in the oob observations with FP powers of time-varying as
selected in the bootstrap sample. The significance of each time-varying effect in the
oob sample is tested to evaluate its importance. The test is identical to the test on
significance of time-varying effects in the FPT algorithm, i.e. a likelihood ratio test
on the effect of this covariate being time-constant, leaving all other covariate effects
unchanged.

3. Time-varying effects are included in the final model, if they are significant in at least
k% of the oob samples.

Modelling of the final effects

Another important task is to determine the final form of a time-varying effect. Model aver-
aging techniques, which average over the complete risk score, are out of the question if the
time-varying effects are to be interpreted by their own. Instead, variablewise strategies are
required. We consider two possible strategies for final effect estimates:

(a) Determine the functional form of the final effect based on the most frequently selected
FP transformation of those effects that are significant in the oob sample, preferring
FP1 transformations if several transformations have equal frequencies. The effects of
all covariates are re-estimated with these powers in the original data.

(b) Use the pointwise mean over all effects that are significantly time-varying in the oob
sample, i.e. the bagged estimator (Breiman, 1996). Final time-constant effects are
defined as the mean over all time-constant effects.

Application to the Rotterdam breast cancer series

To assess the potential benefits from such a bootstrap based selection of time-varying ef-
fects, we apply the BootstrapFPT approach to the Rotterdam breast cancer series (Sec-
tion 4.1.1) and compare it to the standard FPT approach (both without default time transfor-
mation). The Rotterdam data is randomly split into a training set of size 1000 (498 events)
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BootstrapFPT

Standard FPT Selection frequency of
time-varying effects in

bootstrap samples

Frequency of effects
significant in oob samples

X1 time-constant 0.22 0.00
X3a time-varying 0.68 0.10
X3b time-constant 0.32 0.00
X4b time-constant 0.18 0.00
X2

5e time-constant 0.06 0.00
log(X6)log(X6)log(X6) time-varying 1.00 0.560.560.56
X8 time-constant 0.32 0.00
X9 time-constant 0.24 0.00

Table 5.5: Selection frequency of time-varying effects within the BootstrapFPT approach in
a subsample of the Rotterdam breast cancer series at significance level α = 0.01.

on which the BootstrapFPT and FPT models are fitted and a test set containing 1982 obser-
vations (1020 events), which is used for evaluation of the prediction error.

The significance level for tests on time-varying effects is chosen to be α = 0.01 for both
BootstrapFPT and FPT. Significance of effects in the oob samples within the BootstrapFPT
procedure is evaluated at the same significance level. A time-varying effect for a covariate
is included in the final model, if it is significant in at least k = 50% of nB = 50 oob samples.

The standard FPT approach selects time-varying effects for X3a and log(X6), both with
power -0.5 (Table 5.5). This model differs from the model presented in Section 4.1.3, where
time-varying effects for X2

5e, log(X6), X8 and X9 are selected. Yet, as already mentioned
there, the decision between X3a and X2

5e in the second iteration of the forward selection pro-
cedure is very close and influences the subsequent iterations. In the subsample used for
this analysis, the time-varying effect for X3a is more significant. This difference also clarifies
the potential benefit of bootstrap based selection of time-varying effects, which may help in
case of such close decisions.
The BootstrapFPT approach following the aforementioned strategy selects a time-varying
effect for log(X6) only. Although for each of the eight covariates a time-varying effect is
selected in the one or other bootstrap sample (Table 5.5), most of them are not significant in
the corresponding oob sample. Only X3a and log(X6) are significant in several oob samples,
but only the latter exceeds the selection level of k = 50%. Hence, the time-varying effect
for X3a seems to be present (as it is selected in the bootstrap samples), but not important
enough to be significant also in the oob samples. Consequently, evaluation of the signif-
icance of time-varying effects in the oob samples may help to verify that the time-varying
effect is strong enough to be important.
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Figure 5.3: Significant time-varying effects in the oob sample (———), and effect estimated by
the BootstrapFPT procedure using either the most frequent FP function (———) or the bagging
estimate (- -- -- -) as well as the FPT estimate (———) for the effect of log(X6) in a subsample of the
Rotterdam breast cancer series.

The final time-varying effect for log(X6) is determined according to both above definitions.
The frequency of FP transformations that are significant in the oob sample are

FP power(s) -0.5 0 -1 0 3
frequency of significant time-varying effects in oob samples 0.38 0.14 0.02 0.02

Hence, the most frequent FP power is -0.5. The estimated effect based on this power,
as well as the bagging estimate and all significant effects of the oob samples are given in
Figure 5.3. The most frequent effect based on strategy (a) is very similar to the estimate of
the standard FPT approach, while the bagging estimate of strategy (b) differs slightly.

To assess the performance of the BootstrapFPT procedure, the prediction error is calculated
in the test data. However, the gain in prediction performance is minor. Both the standard
FPT as well as the BootstrapFPT show only a slight improvement in prediction error relative
to the CoxPH model, with a marginal superiority of BootstrapFPT over FPT (Figure 5.4). The
choice of the final effect in the BootstrapFPT procedure, though, has a negligible impact on
the prediction performance in this data set. These results are confirmed by the integrated
prediction error (IPEC) over the first 10 years (Table 5.6) which is very similar for all methods.



70 5. Beyond a single model: bootstrapping

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

time (years)

pr
ed

ic
tio

n 
er

ro
r

Figure 5.4: Prediction error of the BootstrapFPT procedure using either the most frequent FP
function (———) or the bagging estimate (- -- -- -) and the standard FPT procedure (———) compared to
the CoxPH model (———) and the Kaplan-Meier estimate (———) in a subsample of the Rotterdam
breast cancer series.

BootstrapFPT with strategy

Kaplan-Meier estimate CoxPH model FPT (a) (b)

2.069 1.763 1.760 1.756 1.755

Table 5.6: IPEC of BootstrapFPT, standard FPT, CoxPH and the Kaplan-Meier estimate in a
subsample of the Rotterdam breast cancer series.

Concluding remarks

Of course, several alterations of the proposed strategy are possible. One alternative would
be to base the decision on inclusion of time-varying effects on the selection frequency in
the bootstrap samples rather than on the frequency of significance in the oob samples. In
that case a larger selection level, e.g. k = 75%, is suitable, as the selection frequency in
the bootstrap samples is far more optimistic than in the oob samples, which can easily be
seen from Table 5.5. In this example, though, a selection based on bootstrap samples with
k = 75% would yield virtually identical results to those based on the oob sample presented
above.

The bootstrap investigation in the previous section shows that selected effects are in general
rather stable, but estimates in some individual bootstrap samples may show deviant time-
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varying behaviour, caused by special patterns in the data such as a few extreme values
of event time. The FPT approach is, like several other methods, sensible to such extreme
values. Bootstrap based approaches may reduce the influence of extreme event times on
the selection and modelling of time-varying effects. A selection and modelling strategy as
described above seems to be a promising alternative to a test procedure based on a single
data set, but at the cost of increased computational effort. However, as FPT seems to give
rather stable results in large data sets, the benefits of bootstrap based model selection are
expected to be most pronounced in smaller samples, where computational complexity is less
severe. Yet, for reliable statements about the performance of this approach, more elaborate
investigations are required.





Chapter 6

Simulation study

The main aim of this simulation study is the assessment of properties of the FPT approach.
The selection procedure is evaluated in terms of type I and II error. However, the detection
of time-varying effects is only a small part of the story. Appropriate modelling of the time-
varying effect is a more important task. Hence, a special emphasis is placed on evaluating
the shape of selected effects. This includes extending the definition of a type II error ac-
cording to certain qualitative criteria. Estimated effects are further compared graphically to
the true effects and their similarity is quantified by ABCtime, a new measure developed to
quantify the distance between the two curves. The prediction performance of fitted models
is assessed by prediction error curves.

To put the results into context, the performance of FPT is compared to the standard CoxPH
model. For most of the four further approaches applied in Section 4, though, simulation stud-
ies are beyond the scope of this thesis, as the approaches or the corresponding programs
require substantial modifications and improvements before simulation studies are feasible.
The Empirical Bayes approach and the Dynamic Cox model are disregarded due to technical
reasons. While the former needs manual selection of time-varying effects and is extremely
time-consuming, the latter is implemented in an old S-Plus version and is not applicable to
larger data sets unless the survival times are categorised. The Reduced Rank approach, on
the contrary, is omitted for theoretical reasons. The missing selection of time-varying effects
results in far too complex models and limits practical applicability. Hence, the Semiparamet-
ric Extended Cox model is the only approach, which seems to be suitable for our simulation
study. However, application of this approach results in considerable problems, which lead
to its exclusion from the simulation study. Consequently, the simulation study focuses on
investigation of the properties of the FPT approach with the CoxPH model for comparison.

The structure of this chapter is as follows. The simulation design is introduced in Section 6.1,
followed by a description of the data generation algorithm (Section 6.2), a brief discussion
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of potential problems with extreme survival times (Section 6.3) and a summary of the as-
sessment criteria for estimated effects (Section 6.4). The results of the simulation study
for univariate and multivariable settings are presented in Sections 6.5 and 6.6, respectively.
The simulation study reveals potential convergence problems for some FP combinations,
which are briefly discussed in Section 6.7. Thereafter, we give details on the difficulties with
the Semiparametric Extended Cox model (Section 6.8) and end the chapter with a short
summary of all findings (Section 6.9).

6.1 Simulation design

6.1.1 Univariate settings

As in many other simulation studies, investigated effects and simulation parameters are
rather arbitrary. However, our aim is to design settings that are plausible in medical appli-
cations. More technically, effect functions should be chosen, which do not favour the FPT
approach over other approaches that are not based on FPs. Therefore, we use functions
that are included in the class of FPs as well as potentially realistic functions whose shape
is not exactly included in the FP class, i.e. FPs with slightly modified powers, and functional
forms not included in the class of FPs, which thus cannot be fully described by FPT. By using
such a mixture of functions we intend to have a good balance between enabling FPT to find
an effect that is close to the correct function, without giving it too much advantage over other
approaches. Furthermore, underlying functions will in reality rarely be an exact member of
the class of FPs and this simulation study can therefore investigate performance in real life
settings.
The development of an informative simulation design, though, is a difficult task. Especially
with time-varying effects, inter-dependencies between parameters can be large. For exam-
ple, the time scale and censoring patterns have a strong influence on whether effects of a
certain size and shape are detectable. Vice versa, the chosen effects influence the distribu-
tion of generated survival times. In addition, generated times are influenced by the baseline
hazard and the values of variables. Hence, parameter combinations need to be developed
that ensure sufficiently large event times to enable detection of time-varying patterns, in
combination with effects that are large enough to be detectable for the simulated survival
times.

(Time-varying) effects

The aforementioned considerations result in the following ten effect functions, which are
illustrated in Figure 6.1.
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(C) Constant effect: β(t) = 0.8

(Ls) Strong linearly decreasing effect: β(t) = 2− 0.18t

(Lw) Weak linearly decreasing effect: β(t) = 1− 0.09t

(Ds) Strong non-linearly decreasing effect: β(t) = 0.32 + 1.42
exp(t) − 0.02t0.7

(Dw) Weak non-linearly decreasing effect: β(t) = 0.2 + 0.8
exp(0.6t)

(Is) Early strong increasing effect: β(t) = 0.1 + 0.8t0.3

(Iw) Early weak increasing effect: β(t) = 6
1+exp(3−0.2t) − 0.2

(S) Step-like (sigmoid) effect: β(t) = 2
1+exp(6−2t)

(Bs) Bathtub effect with strong end: β(t) = 4
1+exp(1.2(t+0.5)) + 4

3(1.1+exp(10−t)) + 0.02

(Bw) Bathtub effect with weak end: β(t) = 1.5
1+exp(2.5t) + 4

1+exp(1.5(10−t)) + 0.02

These functions represent effects of different shape which are feasible in medical applica-
tions. The motivation for the linear decreasing effects (Ls) and (Lw) are prognostic factors
that have a strong effect initially which diminishes steadily over time. Such an effect has, for
example, been detected for the period of diagnosis in gastric cancer studies (Binquet et al.,
2009). (Ds) and (Dw) reflect effects that diminish strongly within a short time, as the effects
of tumour size in breast cancer, which is known to have a strong prognostic effect shortly
after surgery but after some years hardly influences prognosis anymore (Sauerbrei et al.,
2007). Other examples include the effects of prothrombin time in primary biliary cirrhosis
(Abrahamowicz et al., 1996) and the Karnofsky performance status in ovarian cancer stud-
ies (Verweij and van Houwelingen, 1995). Both classes, linear and non-linear decreasing
effects, are examined in a strong and weak version.
Increasing effects such as (Is) and (Iw) are imaginable, for example, for two therapies, where
therapy A looses its effect while therapy B gains in importance. (Is) and (Iw) are of completely
different shape. While effect (Iw) increases slowly over time, (Is) shows a strong increase
early in time, as also detected for the effect of diabetes on mortality after coronary artery
bypass graft surgery (Gao et al., 2006).
Prognostic factors or therapies that need a certain time to show a visible effect are accounted
for by effect (S) which has a sigmoid shape, increasing with some delay. This effect changes
rapidly over a limited time interval and is useful for assessing the performance of FPT in
a situation, where the true effect is too complex to be fully recovered by FPs of maximum
degree 2. The two bathtub-shaped effects (Bs) and (Bw) describe another complex pattern.
Such effects are found, for example, when following a population from birth. After an initial
medium sized effect due to infant diseases, the death rate stabilises and increases again
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(C) Constant effect (Ls, Lw) Strong (—) and weak (- -) linear
effects

(Ds, Dw) Strong (—) and weak (- -) de-
creasing effects

(Is, Iw) Early strong (—) and weak (- -)
increasing effect

(S) Step-like (sigmoid) effect (Bs, Bw) Bathtub-shaped effect with
strong (—) and weak (- -) end

Figure 6.1: Time-varying effects for the simulation study. For some function types a weak
and a strong effect is considered.
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due to natural ageing. Another possible explanation is a setting with composed endpoint,
where overall survival (or natural death) begins to dominate in the course of time. An ef-
fect of this type has, for example, been detected for age on overall survival in colon cancer
patients (Quantin et al., 1999).

Variables, sample sizes and simulation parameters

For the sake of completeness, all ten effects are investigated in combination with a binary
(P(X = 1) = 0.5) and a standard normal distributed variable. Furthermore, random censor-
ing is applied. We consider a moderate sample size of n = 1000 with light censoring to be
an important realistic setting. Therefore, all ten effects for both binary and normal variable
are investigated in this setting. Depending on the type I and II error in this setting, investiga-
tions are extended to high censoring or to no censoring and larger sample size (n = 3000).
The exact censoring rate depends on the baseline hazard and the specific effects. Run time
considerations lead to the decision that all scenarios with sample size n = 1000 are run in
1000 replications, while sample size n = 3000 is repeated only 100 times.

To enable the detection of time-varying effects, a sufficiently long follow-up is required. In
breast-cancer applications like our main example, the Rotterdam breast cancer series, 10
to 15 years seem to be a reasonable follow-up time. In combination with the size of time-
varying effects used for this simulation, we deem a similar time span to be quite reasonable.
The event and censoring times T and C as well as the censoring rate are controlled by the
baseline hazards λE and λC, respectively. In detail we choose

• λE = 0.2 and λC = 0.1 for light censoring,

• λE = 0.1 and λC = 0.2 for heavy censoring and

• λE = 0.3 for no censoring,

which give survival times mostly lying in [0, 10]. The median survival times, i.e. the time at
which half of the subjects have experienced an event, range between 0.8 and 6.7, depending
on the effect, censoring pattern and distribution of the variable. Similarly, the median follow-
up times according to the reverse Kaplan-Meier method (Altman et al., 1995) vary between
approximately 3.5 and 7.

For most scenarios, the simulated uncensored event times tend to be larger for normal
X than for binary variable. In addition, an increased number of extremely small times is
observed, which coincide with large values of X. The censoring rates differ between 20%
and 35% for light censoring and about 60% for heavy censoring, depending on the specific
scenario. Details on generated survival times, event and censoring distributions can be
found in Appendix C.1.
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Sample Cen- Average population effects

X size soring (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

binary 1000 heavy - - 0.76 - 0.95 - 1.24 0.68 0.54
1000 light 1.73 0.70 0.62 0.28 1.04 0.40 0.82 0.28 0.46
1000 no 1.84 0.80 0.43 0.37 1.22 0.28 - - -

normal 1000 heavy 0.91 0.44 0.70 0.19 0.79 - 0.48 0.01 0.44
1000 light 1.18 0.61 0.59 0.29 0.79 0.07 0.67 0.06 0.45
1000 no - - 0.43 - 0.77 0.11 - - -

Table 6.1: Average population effects for scenarios with time-varying effects in the simulation
study

The effect estimates presented in this chapter are not standardised. Since the Cox model
has no intercept term, effect estimates may possibly be subject to a shift on the y-axis.
However, for larger sample sizes as used in our simulation study this should have hardly
any influence on estimates. The simulation results show no peculiarities in this respect.
Furthermore, our investigation reflects the analysis of real studies.

Effect sizes

As the effect size of time-varying effects is difficult to judge, we calculate the average popu-
lation effects (Xu and O’Quigley, 2000), which coincide with the CoxPH estimates in a large
data set without censoring. These average effects (Table 6.1) give an impression of the
strength of the main effects for the different parameter settings. The variation of average
population effects is broad. Not surprising, the average population effects in scenarios with
decreasing effects are relatively large, but considerably smaller for the increasing effects.
For the binary variable, effect (Ls) is the by far strongest effect with an average population
effect of about 1.8, while the others range between 0.28 and 1.24, depending on the effect
and parameter settings. With standard normal variable, the average population effects for
the same parameter settings are in general considerably smaller. For scenarios (Iw) and
(Bs) they are even close to zero.
Due to this systematically different effect sizes, a joined consideration of settings with binary
and standard normal variable is not sensible. Hence, they are considered separately in the
sequel.

6.1.2 Multivariable settings

To evaluate the multivariable model building strategy of FPT, data are generated from a
multivariable setting with five binary variables with P(X = 1) = 0.5 and sample size 1000
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according to

λ(t|X) = λ0 exp (β1(t)X1 +β2(t)X2 +β3X3 +β4X4 +β5X5)

where β1(t) and β2(t) are identical to effects (Ds) and (Is) in the univariate setting, which
are deemed most relevant in practical applications, and β3 to β5 are constant:

β1(t) = 0.32 +
1.42

exp(t)
− 0.02t0.7 β2(t) = 0.1 + 0.8t0.3

β3 = 0.3 β4 = 0.5 β5 = 0.7

The baseline hazards are chosen to be λE = 0.1 without censoring, λE = 0.06 and λC = 0.1
for light censoring and λE = 0.03 and λC = 0.15 for heavy censoring. This corresponds to
on average 0%, 27% and 50% of censored observations, respectively. The median survival
times of these settings vary between 1 and 5 years, depending on the setting. Details on
median survival and follow-up times, as well as survival and censoring distributions can be
found in Appendix C.2.
Furthermore, we investigate these settings with uncorrelated variables as well as a correla-
tion between X1 and X4 of ρX1,X4 = 0.5. The correlation is introduced following Lunn and
Davies (1998).
Due to the increased runtime compared to the univariate settings, investigations are limited
to 100 simulation runs for each of the six settings.

6.2 Simulating survival data with time-varying effects

The literature on generation of survival data with time-varying effects is scarce. MacKenzie
and Abrahamowicz (2002) propose a permutational algorithm for generating survival data
with time-varying effects. The algorithm generates survival times, including censoring, si-
multaneously controlling for the marginal distributions of covariates Xi, censoring and event
times T as well as the (time-varying) hazard ratio. The main idea of this approach is to match
random pairs of T and independently generated Xi according to a permutational probability
law. The corresponding permutational probability is identical to the partial likelihood formula.
The method is shown to be asymptotically exact. It is very general and also applicable to
time-dependent covariates (Sylvestre and Abrahamowicz, 2008), but the permutational al-
gorithm is computationally expensive and also unnecessarily complex, if the interest lies in
time-varying effects only.
Berger et al. (2003) generate data from a logistic setting with specified probabilities of failure
and censoring at each time point. This method, though, gives more or less discrete survival
times. Recently, He et al. (2010) proposed another approach, which simulates data using
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a specified time grid, drawing survival times from the exponential distribution in each inter-
val. Their approach, though, requires approximation of continuous time-varying effects by
piecewise constant functions.

We use a simpler and more intuitive approach based on inversion of the cumulative hazard
function. Bender et al. (2005) describe this method for simulating survival data under the
PH assumption. In general, with time-varying effects the integral and the inverse distribution
function cannot be solved analytically any more. Hence, they are substituted by numeric
integration and inversion. The same concept is applied by Leemis et al. (1990) for gener-
ation of survival data with time-dependent covariates and by Beyersmann et al. (2009) for
competing risks data. Hofner et al. (2010) use a similar procedure for generating data with
time-varying effects.
The extended Cox model for non-linear and time-varying effects is

λ(t|X) = λ0(t) exp

(
q

∑
i=1

fi(Xi)βi(t)

)
,

where λ0(t) is the baseline hazard, Xi are the covariates which may be transformed by
functions fi(.) and βi(t) are the time-varying (or time-constant) effects.
The survival function of this model is

S(t|X) = exp(−
∫ t

0
λ(u|X)du) = exp(−

∫ t

0
λ0(u) exp(β(u) f (X))du) = 1− F(t|X)

and the distribution function

F(t|X) = 1− exp(−
∫ t

0
λ0(u) exp(β(u) f (X))du) = 1− exp(−Λ(t)).

Let T ∼ F, then U = F(T) ∼ U(0, 1). Therewith, survival times for the above hazard can be
generated as T = F−1(U):

U = F(T)

⇔ U = 1− exp(−Λ(T))

⇔ exp(−Λ(T)) = 1−U

⇔ −Λ(T) = ln(1−U)

⇔ T = Λ−1(− ln(1−U))

⇔ T = F−1(U)

where F−1(U) is calculated via numerical inversion, i.e. by solving U− F(T) = 0, i.e. Λ(T)+
ln(1−U) = 0. This algorithm allows exact generation of survival times with time-varying
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effects. The sole condition on the βi(t) is that the integral of the resulting hazard must be
finite.

6.3 Problems with extreme survival times

Complex approaches for modelling time-varying effects such as FP or spline based ap-
proaches may be sensible to extreme survival times. Extremely small or large survival times
may cause erroneous selection of a time-varying effect (type I error). For both FP and spline
transformations, this problem is already known from modelling functional forms of covari-
ates. Non-linear transformations fi(.) of extreme values of covariate Xi may magnify these
values, and thus their leverage, considerably. This can have a strong influence on the partial
likelihood

PL(β) =
ne

∏
j=1

∏
d j
k=1 exp

(
∑

q
i=1 fi(X ji)fi(X ji)fi(X ji)βi

)
{∑l∈R(t( j)) exp

(
∑

q
i=1 fi(Xli)fi(Xli)fi(Xli)βi

)
}d j

,

but directly affects this specific observation only, i.e. l = j. For time-varying effects, extreme
survival times have a direct influence on all observations l at risk at t( j), the event time of the
jth individual:

PL(β) =
ne

∏
j=1

∏
d j
k=1 exp

(
∑

q
i=1 X jiβi(t( j))βi(t( j))βi(t( j))

)
{∑l∈R(t( j)) exp

(
∑

q
i=1 Xliβi(t( j))βi(t( j))βi(t( j))

)
}d j

,

For this reason, the influence of extreme values is even larger in modelling time-varying
effects than in modelling non-linear effects. Yet, while with non-linear transformations of
covariates, problems due to extreme values likewise arise on both edges, with time-varying
effects problems are mainly restricted to extremely small times, i.e. to the left edge.

Such extreme values may also cause convergence problems. For modelling of functional
forms of covariates, Royston and Sauerbrei (2007) propose a robustness transformation to
reduce the leverage of extreme values. This transformation maps extreme values smoothly
to asymptotes, while transforming the bulk of points linearly. This concept can also be trans-
ferred to survival times. The disadvantage of this transformation is that time-varying effects
are estimated on a transformed time scale. Although re-transformation of effects is possible,
we believe that convergence problems may be informative. The set of fractional polynomial
powers is somewhat arbitrary. Although it turned out to be useful for the investigation of
non-linearity in FP transformations of covariates, some transformations may be less appro-
priate for transformation of survival times. Consequently, an investigation of convergence
problems of FPs may give further insight into the practical applicability of the standard set of
powers.

Since the simulation design assumes an exponentially distributed baseline hazard, a large
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number of extremely small survival times may be generated which can possibly cause con-
vergence problems. However, in most practical applications a very large amount of ex-
tremely small times is unlikely to occur because of in- and exclusion criteria of a study.
This is mimicked in our simulation study by the exclusion of survival times below a certain
threshold. We decide to drop all times smaller than 1

52 and re-simulate the times for these
subjects. The corresponding X values remain unchanged. This approach reduces conver-
gence problems that are typical for simulation studies, i.e. introduced by a disproportionately
large number of very small survival times, to a tolerable amount without suppressing them
completely. Thus, it enables conclusions about possibly inappropriate FP powers without
distorting simulation results.
Furthermore, as no realistic effect would increase to infinity and to avoid artefacts for ex-
tremely large times, artificial asymptotes are introduced to effects (Iw), (Bs) and (Bw) (Fig-
ure D.1).

6.4 Assessment criteria

To investigate the properties of the FPT approach, we consider the test procedure for selec-
tion of time-varying effects as well as the estimated effects themselves and the prediction
performance of the complete models. The test procedure is evaluated by means of type I
and II error. For tests on time-varying effects, a type I error is defined as rejection of the
null hypothesis of a time-constant effect, when it is actually true. Defining a type II error,
though, is more complex. The simplest definition is failure of rejection of the null hypothesis
(PH), when in fact a time-varying effect is present. This definition is a mere evaluation of
the test procedure on the presence of a time-varying effect and is very rough. Whenever a
time-varying effect is identified, even if the shape is severely different from the true shape,
it would be considered to be correct. However, recovery of the nature of the time-varying
effect is important as well, as a wrong shape of the selected time-varying effect would lead
to incorrect conclusions in practical applications. Hence, a more suitable definition of type
II error is required, which considers the shape of selected effects as well. To account for
this task, we additionally define a qualitative type II error based on certain qualitative criteria
concerning monotonicity, slope, extrema and/or inflection points. The basic idea is in anal-
ogy to Binder et al. (2010), who propose such criteria to compare functions in the context of
regression models. The qualitative criteria for the nine time-varying effects are summarised
in Table 6.2. This qualitative type II error simultaneously assesses the estimated effects, as
it specifies whether the estimated effect is of similar shape than the true effect. Furthermore,
shadow plots are used to represent the variation of estimated effects. These plots graph-
ically contrast the estimated (time-varying) effects of all simulation runs to the true effect,
together with their pointwise mean and 95% pointwise empirical confidence intervals. The
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Effect(s) Slope Extrema Inflection point

Ls negative, constant (SD < 0.0018) - -
Lw negative, constant (SD < 0.0009) - -
Ds negative, strictly increasing - -
Dw negative, strictly increasing - -
Is positive, strictly decreasing - -
Iw positive, increasing - -
S positive, increasing for < 2.5 and

decreasing for > 3.5
- exactly one

between 2.5 and
3.5

Bs increasing, negative for < 3, positive
for > 7

exactly one
between 3 and 7

-

Bw increasing, negative for < 3, positive
for > 7

exactly one
between 3 and 7

-

Table 6.2: Criteria for a qualitative type II error in the simulation study.

pointwise mean is calculated on truncated effects, i.e. the upper and lower extremes at each
time point are set to the 1% and 99% quantile. In settings with n = 3000, where only 100
simulation runs are executed, these quantiles are equivalent to the minimum and maximum.
Hence, in these settings, the 2% and 98% quantiles are used, which corresponds to truncat-
ing the minimum and maximum value at each time point. This helps to avoid a domination of
the mean by artefacts that occur in single simulation runs only. Yet, if artefacts occur more
frequently, i.e. in more than 1% of simulation runs, they are still reflected by the pointwise
mean.

The distance of estimated effects to the true effect is evaluated using pABCtime as intro-
duced in Section 3.2. pABCtime quantifies the weighted distance of estimated effects to
the true effect and is given in percent relative to the weighted area under the true effect.
Consequently, when comparing several approaches, the approach with the smallest value
of pABCtime is closest to the true effect and hence performs best. pABCtime is calculated
over the time interval [ 1

52 , 10]. The lower bound of 1
52 avoids the distortion of pABCtime by

artefacts at extremely small times and, since the same value has been used as the mini-
mum acceptable event time in the data generation algorithm, restricts comparison of effects
to the range of times on which they are estimated. The variation of pABCtime over simu-
lation runs is presented by boxplots, where boxes range from the 25% to the 75% quantile
and the whiskers extend to 1.5 times the interquartile range. To assess the improvement
due to incorporation of time-varying effects, we compare the (possibly time-varying) effects
estimated by FPT to estimates of a CoxPH model (mean CoxPH estimates per scenario are
given in Table D.1 in the Appendix).
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Measure Description

Type I error The true effect is constant, but a time-varying effect is selected.
Crude type II error The true effect is time-varying, but a time constant effect is

selected. Each time-varying effect, irrespective of its shape, is
considered to be ’correct’.

Qualitative type II error The true effect is time-varying, the selected effect is either
time-constant or time-varying, but of a different shape than the
true effect (according to the qualitative criteria in Table 6.2).

Shadow plots Graphical representation of all estimated effects, their
pointwise mean and 95% empirical confidence intervals.

pABCtime Quantitative measure to assess the difference to the true effect
as introduced in Chapter 3.2.

PEC / mPEC Prediction error curves (as pointwise mean over all simulation
runs) as introduced in Chapter 3.1.

IPEC / dIPEC Integrated prediction error (as difference to the Kaplan-Meier
estimate) as introduced in Chapter 3.1.

Table 6.3: Criteria for assessment of FPT in the simulation study.

Furthermore, the predictive ability of estimated models is assessed in terms of the ’true’ pre-
diction error in a reference data set containing 5000 uncensored observations. We evaluate
the mean prediction error curves (mPEC) as the pointwise mean over all simulation runs, as
well as the integrated prediction error (IPEC) based on the Riemann integral over the interval
[0, 10]. The IPEC is presented as the percentaged difference to the Kaplan-Meier estimate,
denoted by dIPEC, and the variation among simulation runs is visualised by boxplots. Neg-
ative values of dIPEC represent an improvement relative to the Kaplan-Meier estimate and
positive values a decline. The difference to the Kaplan-Meier estimate is chosen in order
to evaluate the gain in prediction performance caused by inclusion of covariate information,
taking the data at hand into account. To evaluate the additional gain due to incorporating
time-varying effects, the dIPEC of FPT is contrasted with that of the CoxPH model. As the
computation of prediction error curves for the FPT approach is very time consuming, we
reduce computational efforts by coarsening the estimate of the cumulative baseline hazard
Ĥ(t) to 5% quantiles of distinct event times. This leads to a considerable reduction in the
dimension of Ŝ(t|X) and speeds up computations.
An overview of all of these assessment criteria is given in Table 6.3.
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6.5 Properties of FPT in univariate settings

Estimation of FPT models is accomplished in Stata 10 (StataCorp, 2007). Time-varying
effects are selected at a significance level ofα = 0.01 with default time transformation log(t).
We start with examining the main scenario with sample size 1000 and light censoring. If the
crude type II error is worse than 20%, the more advantageous settings with larger effective
sample size (n = 1000 without censoring and n = 3000 with light censoring) are additionally
examined. For better type II error (< 20%), the investigation is extended to the setting with
heavy censoring. Beyond this, the influence of the sample size is investigated in more detail
for effects (C), (Ds) and (Is), which are deemed most important in practical applications.
For these effects, all four aforementioned settings are examined, as well as the additional
sample sizes 500 and 250 with light censoring, in order to assess small sample properties.
As mentioned before, the main effects are of systematically different sizes in settings with
binary and standard normal variable. Hence, the simulation study is split in two parts and
results for the binary and the standard normal variable are presented separately.

6.5.1 Part 1: Binary variable

In the sequel, we describe the results for binary covariate, subdivided into type I and II error,
estimated effects, their difference to the true effect and the prediction performance.

Type I error

The type I error for the constant effect (C) is marginally inflated with up to 1.4% for not too
small sample size (≥ 500). Only for n = 250 it increases to 3.7% (Table 6.4). Hence, for
not too small sample size, FPT holds the type I error well. Most of the erroneously selected
time-varying effects show a strong departure from PH mainly near zero, as can be seen in
Figure 6.2. For very small samples, this is also reflected by the pointwise mean over all
estimated effects. With increasing sample size this pattern vanishes soon and the mean
effect is virtually identical to the true effect. If constant effects are selected, estimates are
unbiased.

Type II error and modelling of time-varying effects

In the analysis of the different time-varying effects, the performance of FPT varies broadly
among different scenarios and parameter settings. For the linear decreasing effects (Ls) and
(Lw), for example, the power is extremely poor. The already large (crude) type II error for
moderate sample size 1000 even increases when considering the shape of selected effects,
indicating that incorrect functional forms are selected in more than 95% of simulation runs.
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Sample Cen- Effects

size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

Type I error Crude type II error

250 light 3.7 - - 58.2 - 89.1 - - - -
500 light 1.0 - - 18.6 - 82.5 - - - -

1000 heavy 1.3 - - 13.1 - 62.5 - 0.0 0.5 15.8
1000 light 1.41.41.4 74.574.574.5 73.573.573.5 0.80.80.8 54.154.154.1 48.748.748.7 27.927.927.9 0.00.00.0 1.31.31.3 1.11.11.1
1000 no 1.4 87.0 67.3 0.0 8.1 41.4 27.7 - - -
3000 light 0.0 20.0 21.0 0.0 0.0 1.0 0.0 - - -

Qualitative type II error

250 light - - 60.2 - 94.1 - - - -
500 light - - 19.6 - 84.9 - - - -

1000 heavy - - 15.4 - 65.1 - 100.0 74.7 74.5
1000 light 95.8 97.1 3.0 55.4 50.3 71.8 100.0 56.7 56.5
1000 no 97.6 95.3 3.8 8.6 42.7 71.5 - - -
3000 light 87.0 81.0 13.0 1.0 2.0 13.0 - - -

Table 6.4: Type I error of scenario (C) and crude and qualitative type II error of scenarios
(Ls) - (Bw) (in %) for significance level α = 0.01 with binary variable in a simulation study of
univariate scenarios.

Figure 6.2: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean (- -- -- -) and 95% empirical confidence intervals (· · ·· · ·· · ·) for sample sizes 250 (left)
and 1000 (right) with light censoring and binary X with constant effect (C).

Although the crude type II error for the larger sample size 3000 is acceptable, the qualitative
type II error deteriorates considerably. A closer look at the shape of selected effects shows
that most time-varying effects are log-like (FPs with powers -0.5, 0 or 0.5) rather than lin-
ear, which explains the large qualitative type II error. These functions, as well as the many
time-constant effects dominate the pointwise mean, which differs largely from the true effect
(Figure 6.3). Striking, however, is the increased crude type II error for (Ls) without censoring
compared to light censoring. In general, the power is expected to improve with increasing
effective sample size. In this setting, the survival probability is smaller for large times, com-
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Figure 6.3: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean over all estimated effects (- -- -- -) and 95% pointwise empirical confidence in-
tervals (· · ·· · ·· · ·) for binary variable with sample size 1000 and light censoring for effect (Ls).

Figure 6.4: Correct (left) and incorrect (right) functional forms according to the qualitative
type II error for effect (Ds) with binary variable, sample size 3000 and light censoring. Shown
are the true effect (———), estimated effects (———) and pointwise mean (- -- -- -).

pared to light censoring, caused by different baseline hazards. Although this does not seem
to have much impact in other scenarios, it may influence the detection of time-varying effects
in this scenario, where the power is already extremely poor in the main setting. Indeed, in
a small investigation of 100 simulation runs with baseline hazard λE identical to the setting
with light censoring, the crude type II error drops to 62%.
The strong non-linear decreasing effect (Ds) is considered as practically very important and
is therefore investigated in all parameter settings, including small sample sizes. The crude
type II error is extremely good to moderate for not too small sample size (≥ 500) and the
qualitative type II error is only slightly larger. The only exception is observed for the larger
sample size 3000, where the crude type II error of 0% increases to moderate 13%, when
considering the qualitative criteria. Most of the effects that do not meet the qualitative cri-
teria in this setting show either artefacts for extremely small times or a unimodal function
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(a) n = 250, light censoring (b) n = 500, light censoring

(c) n = 1000, light censoring (d) n = 3000, light censoring

Figure 6.5: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean (- -- -- -) and 95% pointwise empirical confidence intervals (· · ·· · ·· · ·) for effect (Ds)
and binary variable.

with a slight increase for large times (Figure 6.4) which may be caused by some extremely
large event times. In general, the variation of selected effects is relatively broad for smaller
effective sample size but decreases for moderate and large sample sizes (Figure 6.5). The
pointwise mean is reasonably close to the true effect in all parameter settings. For the
weaker effect (Dw), the power in the main parameter setting n =1000 with light censoring is
poor. For larger effective sample size, though, the power considerably improves and results
are analogue to the stronger pendant (Ds).
The performance of the FPT algorithm for effect (Is) strongly depends on the sample size.
It decreases from over 80% to merely 1% for increasing sample size. The qualitative type II
error is only marginally larger in all settings. Similarly, the variability of estimated effects
considerably decreases with increasing sample size (see Figure D.2 in the Appendix) and
the pointwise mean approaches the true effect. The power for the gently inclined effect (Iw)
is moderately poor (30%) for sample size 1000, but the qualitative type II error is with about
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Figure 6.6: Correct (left) and incorrect (right) functional forms according to the qualitative
type II error for effect (Iw) with binary variable, sample size 1000 and light censoring. Shown
are the true effect (———), estimated time-varying (———) and time-constant (boxplot) effects and
their pointwise mean (- -- -- -).

72% considerably larger. Most of these wrong shapes are log-like effects with a strong initial
increase as shown in Figure 6.6. For larger sample size, both the crude and qualitative type
II error considerably improve and the pointwise mean is close to the true effect.
The sigmoid effect (S) explores the limits of the FPT approach. Although a time-varying
effect is detected in each simulation run, none of the selected effects fulfils the qualitative
criteria. FPs of degree 2 are, although flexible per se, not flexible enough to describe this
complex pattern. The variety of shapes selected as a substitute for the true sigmoid effect is
manifold. Figure 6.7 gives an overview of the different types of selected FP functions. About
half of the effects are linear. Other frequent alternatives are log-like and quadratic functions,
or more complex FP2 functions based on powers 0, 2 or 3. Detailed information on selected
powers is given in Table D.2 in the Appendix.
Although the bathtub effects (Bs) and (Bw) are similarly complex, FPT shows better power in
these scenarios. The crude type II error is very small, except for (Bw) with heavy censoring,
where it is moderately large (15.8%). The qualitative type II error, on the contrary, increases.
This is not surprising, as bathtub shapes are not included in the current class of FPs. As
a consequence, the functions that are selected as substitutes is expected to vary broadly.
Functions satisfying the qualitative criteria are unimodal with a minimum between 3 and 7.
Most functions that do not meet these criteria are either monotonic or have an additional
plateau near zero before they begin to decrease (Figure 6.8). However, the pointwise mean
shows roughly the same shape than the true effect (Figure D.3).
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(a) FP1: linear (b) FP1: quadratic and cubic

(c) FP2: quadratic and cubic (d) FP1: log-like

(e) FP2: log-like (f) Shadow plot

Figure 6.7: Different shapes of estimated time-varying effects (———) for sigmoid effect (S) (———)
with binary variable, sample size 1000 and light censoring. Shown are the most frequent
FP types (Subfigures (a)-(e)) and the shadow plot of all selected effects (Subfigure (f)),
including the remaining 0.6% of different FP types, together with the pointwise mean (- -- -- -)
and 95% pointwise empirical confidence intervals (· · ·· · ·· · ·).
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Figure 6.8: Correct (left) and incorrect (right) functional forms according to the qualitative
type II error for effect (Bs) with binary variable, sample size 1000 and light censoring. Shown
are the true effect (———), estimated time-varying (———) and time-constant (boxplot) effects and
their pointwise mean (- -- -- -).

Difference of effects estimated by FPT to the true effects and comparison to CoxPH
estimates

For the constant effect (C), pABCtime of FPT and CoxPH is similar. This is self-evident, as
FPT is identical to a CoxPH model except for simulation runs with a type I error. The median
pABCtime of both approaches decreases from about 20% for the smallest sample size to
5% for the largest (see Table 6.5). Hence, estimated effects are very close to the true effect.
Analogously, the complete range of values decreases considerably with increasing sample
size. While for smaller sample size some very large values of pABCtime are observed, which
correspond to single time-varying effects (i.e. type I error), this peculiarity vanishes for larger
sample sizes.
For the linear decreasing effects (Ls) and (Lw), the crude type II error with moderate sample
size is large, hence differences in pABCtime between FPT and the CoxPH model are negli-
gible. For larger sample size, where the power increases, FPT improves to 12%, while the
median pABCtime for the CoxPH model remains at the same level of about 20% (Table 6.5).
For the non-linear decreasing effects (Ds) and (Dw), pABCtime clarifies the superiority of
FPT estimates over the time-constant CoxPH effects. The latter show pABCtime values
varying around 60% throughout (Table 6.5), while the FPT estimates are considerably better
for not too small sample size and improve further with increasing sample size. Figure 6.9
exemplarily shows the pABCtime with moderate sample size 1000 and light censoring. The
range of pABCtime of both approaches is nearly non-overlapping. The outliers of FPT, which
extend into the range of CoxPH values correspond mostly to simulation runs with crude type
II error, i.e. to time-constant effects.
For the strong increasing effect (Is), the crude type II error is quite large for small to moderate
sample size. Hence, both CoxPH and FPT yield a similar median pABCtime of about 24%,
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Sample Cen- Effects

Model size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

FPT 250 light 13.88 - - 54.27 - 24.96 - - - -
500 light 9.33 - - 20.39 - 23.99 - - - -

1000 heavy 8.12 - - 18.78 - 23.14 - 43.90 134.01 44.92
1000 light 6.25 20.44 20.37 15.22 62.88 23.04 49.80 45.45 96.96 34.15
1000 no 5.89 22.47 19.77 14.23 18.34 12.36 44.57 - - -
3000 light 4.27 11.65 11.30 12.59 12.97 6.03 21.50 - - -

CoxPH 250 light 13.53 - - 59.68 - 24.80 - - - -
500 light 9.30 - - 59.28 - 24.15 - - - -

1000 heavy 8.02 - - 58.05 - 23.55 - 118.16 149.44 93.16
1000 light 6.20 20.93 20.86 58.72 72.23 23.87 62.70 112.28 125.50 91.41
1000 no 5.79 22.69 20.53 60.02 58.31 24.57 59.73 - - -
3000 light 4.27 20.77 20.29 59.21 57.48 23.63 63.13 - - -

Table 6.5: Median pABCtime of effects estimated by FPT and the CoxPH model in univariate
settings with binary variable.

Figure 6.9: pABCtime of effects estimated by FPT and the CoxPH model for effect (Ds) with
binary variable, sample size 1000 and light censoring.

with some larger outliers for exceptional effects estimated by FPT. For increasing sample
size, though, FPT improves and reduces to about 7%. For the weak increasing effect (Iw),
differences to the true effect are larger. The median pABCtime of the CoxPH model is about
65% in all settings, while FPT decreases from 50% to 24% with increasing sample size.
Although the sigmoid effect (S) is not a member of the FP class and thus FPT is not capable
of describing the true shape correctly, it is clearly superior to the CoxPH model. The latter ei-
ther estimates an effect close to the lower plateau, differing considerably from the true effect
from about year 3 on, or vice versa an effect similar to the upper plateau, which is different
from the truth in the first three years. Alternatively, effect estimates may lie somewhere in
between the two plateaus, resulting in a large difference to the true effect over the complete
time period. None of these possibilities would be optimal. Hence, the sheer detection of the
increasing nature of the effect by FPT considerably improves the pABCtime to about 30-50%
compared to about 100% for the CoxPH model.
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For the bathtub effects (Bs) and (Bw), the time-varying effects selected by FPT are again
closer to the true effects in terms of pABCtime than the time-constant CoxPH effects. For
effect (Bs) with a strong late increase, distances to the true effect are in general relatively
large and so is the range of pABCtime (see Figure D.8 in the Appendix). For the effect (Bw)
with a stronger initial effect, estimates of both approaches are more similar to the true effect.
Simultaneously, the benefit of FPT compared to CoxPH is more pronounced for effect (Bw)
and even intensifies with increased sample size.

Prediction error

The mPEC and dIPEC of CoxPH and FPT for the constant effect (C) are virtually identi-
cal, except for some outlying values of dIPEC for FPT, which correspond to type I errors,
i.e. time-varying effects. The extent of this improvement in prediction error of FPT relative to
CoxPH depends on the specific scenarios and parameter settings. The median dIPEC over
the interval [0, 10] is given in Table 6.6. Additional information on the median dIPEC over
different (shorter) intervals for all scenarios is given in Table D.3 in the Appendix.
For the linear decreasing effects (Ls) and (Lw) and the weak non-linear decreasing effect
(Dw), the differences in dIPEC and mPEC between FPT and the CoxPH model are minor,
due to the relatively large crude type II error. For larger sample sizes, where the type II error
decreases, FPT improves slightly in terms of dIPEC, i.e. the amount of small dIPEC values
increases. For the strong non-linear decreasing effect (Ds), the improvement of FPT com-
pared to CoxPH increases. Differences between both approaches increase with increasing
sample size. With large sample size, the ranges of dIPEC values of both approaches are
non-overlapping.
For the strong increasing effect (Is), on the contrary, FPT is not able to improve the prediction

Sample Cen- Effects

Model size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

FPT 250 light -7.98 - - -7.52 - -11.99 - - - -
500 light -8.13 - - -7.98 - -12.18 - - - -

1000 heavy -8.20 - - -5.34 - -16.71 - -15.94 -0.07 -1.89
1000 light -8.19 -32.66 -8.93 -8.10 -1.76 -12.31 -1.25 -7.02 -0.30 -3.59
1000 no -7.78 -29.91 -9.09 -10.01 -1.97 -9.79 -0.79 - - -
3000 light -8.22 -32.75 -9.01 -8.14 -2.17 -12.43 -1.35 - - -

CoxPH 250 light -8.02 - - -7.31 -12.14 - - - -
500 light -8.15 - - -7.44 -12.27 - - - -

1000 heavy -8.21 - - -5.01 -16.76 - -14.06 0.04 -1.61
1000 light -8.20 -32.63 -8.89 -7.48 -1.82 -12.33 -1.16 -5.42 -0.25 -3.06
1000 no -7.79 -29.92 -9.07 -9.28 -1.90 -9.78 -0.74 - - -
3000 light -8.24 -32.71 -8.93 -7.52 -2.00 -12.38 -1.18 - - -

Table 6.6: Median differences in integrated prediction error (dIPEC) to the Kaplan-Meier
estimate (in %) over the interval [0,10] for FPT and CoxPH models in univariate settings with
binary variable.
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performance. For most settings, dIPEC and mPEC of FPT are similar to those of the CoxPH
model. Several largely positive outliers are observed for the dIPEC of FPT for small sample
sizes, which indicate an impairment compared to the Kaplan-Meier estimate in these sim-
ulation runs. This extremely bad prediction performance is caused by extraordinary effects
selected in the corresponding simulation runs. In settings with many such extreme dIPEC
values, simultaneously a marginally increased mPEC is observed for early times (see Fig-
ure 6.10). The proportion of such outliers, though, strongly reduces with increasing sample
size.
For the weak increasing effect (Iw), differences in dIPEC and mPEC between FPT, CoxPH
and the Kaplan-Meier estimate are negligible. In this scenario, a large proportion of events
occurs in the first few years, where the true effect is close to zero. Hence, an effect esti-
mate largely different from zero would cause an increased prediction error compared to the
Kaplan-Meier method. This is not the case here, as both CoxPH and FPT correctly model
the nearly absent effect in the relevant period where many individuals are at risk. Estimated
effects are either very small or, in the case of FPT, increase over time, which mimics the
shape of the true effect.
Very similar results are observed for the bathtub effect with weak initial effect and strong
late increase (Bs). As the relatively weak initial effect vanishes soon, the variable has hardly
any effect over a long time period, which results in a prediction performance that is only
marginally better than the Kaplan-Meier estimate. The second bathtub effect (Bw), on the
contrary, which has a strong initial effect and a weaker effect towards the end, shows a clear
improvement of the two regression models compared to the Kaplan-Meier estimate in the
relevant time period.
For the sigmoid effect (S), FPT is clearly superior to CoxPH in terms of dIPEC. For heavy
censoring, several largely positive outliers are observed for FPT (Figure 6.11, left), which
diminish for a smaller proportion of censoring. These bad predictions are again caused
by some exceptional effects selected in these simulation runs. They also explain the dis-
crepancy between the dIPEC, which is better for FPT than for CoxPH, and the mPEC which
shows a minor impairment of FPT over the first 4 years (Figure 6.11, right). Estimated effects
with artefacts, such as the log-like effects shown in Figure 6.7, may dominate the prediction
error in this region. Furthermore, the mean prediction error is more affected by these ex-
treme values than the quantiles shown for the dIPEC. The mean dIPEC of FPT (-14.33%)
also differs considerably from the median (-15.94%).
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Figure 6.10: Differences in integrated prediction error (dIPEC, left) to the Kaplan-Meier es-
timate (in %) over the interval [0,10] and mean prediction error curves (mPEC, right) as
pointwise mean over all 1000 simulation runs for the Kaplan-Meier estimate (———), CoxPH
model (———) and FPT (- -- -- -) model in the setting with n = 1000, heavy censoring and binary
variable for effect (Is).

Figure 6.11: Differences in integrated prediction error (dIPEC, left) to the Kaplan-Meier es-
timate (in %) over the interval [0,10] and mean prediction error curves (mPEC, right) as
pointwise mean over all 1000 simulation runs for the Kaplan-Meier estimate (———), CoxPH
model (———) and FPT (- -- -- -) model in the setting with n = 1000, heavy censoring and binary
variable for effect (S).
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6.5.2 Part 2: Standard normal variable

The second part of the univariate simulation study presents the results for standard normal
distributed variable.

Type I error

For scenario (C) with standard normal variable the type I error of the FPT algorithm is even
slightly too conservative with values of at most 1% (Table 6.7).

Type II error and modelling of time-varying effects

The type II error depends on the specific parameter settings, but is in general very good.
For the two linear decreasing effects (Ls) and (Lw), for example, the crude type II error is
extremely good, apart from effect (Lw) with heavy censoring. Due to a relatively large num-
ber of selected log-like and quadratic effects, the qualitative type II error is only moderate
to poor for the strong and weak effect, respectively. Yet, visualisation of selected effects
(Figure 6.12) reveals that most effects are at least close to linear. This is also reflected by
the pointwise mean, which is virtually identical to the true effect for the stronger effect (Ls)
and only slightly different for the weaker version (Lw).
The power for non-linear decreasing effects (Ds) and (Dw) is also extremely good. Crude
type II error rates hardly differ from zero and even the qualitative type II error is very good in

Sample Cen- Effects

size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

Type I error Crude type II error

250 light 0.8 - - 2.3 - 74.8 - - - -
500 light 0.5 - - 0.0 - 41.3 - - - -

1000 heavy 0.7 0.5 25.8 0.0 2.4 12.1 - 0.0 0.0 0.0
1000 light 0.70.70.7 0.00.00.0 0.50.50.5 0.00.00.0 0.30.30.3 6.96.96.9 56.656.656.6 0.00.00.0 0.10.10.1 0.00.00.0
1000 no 1.0 - - 0.0 - 2.5 57.7 - - -
3000 light 0.0 - - 0.0 - 0.0 1.0 - - -

Qualitative type II error

250 light - - 5.1 - 75.6 - - - -
500 light - - 4.6 - 43.4 - - - -

1000 heavy 28.7 84.1 5.2 3.1 16.3 - 100.0 23.4 14.0
1000 light 13.7 45.4 13.3 2.5 9.9 82.7 100.0 9.3 2.1
1000 no - - 23.9 - 32.7 92.6 - - -
3000 light - - 68.0 - 15.0 32.0 - - -

Table 6.7: Type I error of scenario (C) and crude and qualitative type II error of scenarios
(Ls) - (Bw) (in %) for significance levelα = 0.01 with standard normal variable in a simulation
study of univariate scenarios.
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Figure 6.12: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean over all estimated effects (- -- -- -) and 95% pointwise empirical confidence inter-
vals (· · ·· · ·· · ·) for standard normal variable with sample size 1000 and light censoring for effects
(Ls) (left) and (Lw) (right).

Figure 6.13: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean (- -- -- -) and 95% empirical confidence intervals (· · ·· · ·· · ·) for effect (Is) with standard
normal variable, sample sizes 1000 (left) and 3000 (right) and light censoring.

most settings. Surprisingly, it seems to be adversely affected by sample size. This is due to
the fact that for larger sample sizes an increased number of unimodal functions is selected.
However, these estimates are very similar to the true effect in the first ten years and the
pointwise mean is very similar to the true effect in all parameter settings.
For the early increasing effect (Is), the crude type II error is very good for moderate to large
sample size but increases considerably for small sample sizes. The qualitative type II error
is only marginally larger, except for the two largest effective sample sizes. In these settings,
several unimodal functions with minor decrease later in time are selected, which hardly differ
from the ’correct’ shape in the first 10 years. However, it is striking that nearly all estimated
effects underestimate the true effect (Figure 6.13). The underestimation of the time-varying
effect is paired with an overestimation of the baseline hazard. Hence, the resulting cumu-
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Figure 6.14: True (———) effect, estimated time-varying (———), pointwise mean (- -- -- -) and 95%
empirical confidence intervals (· · ·· · ·· · ·) for effects (Bs) (left) and (Bw) (right) with standard normal
variable, sample size 1000 and heavy censoring.

lative hazard functions are less affected by this phenomenon but still tend to underestimate
the true cumulative hazard (see Figure D.5 in the Appendix). This can be explained by a
frailty effect. Observations with large absolute X values relate to early events, i.e. the sub-
group of individuals at risk changes systematically over time. The upper edge with large
covariate values thins out faster than the lower edge (see Figure D.4 in the Appendix). After
these subjects with large X value experienced the event, the values of observations still at
risk are smaller and thus the observed effect at these time points may be reduced. A small
investigation on the impact of the variance of X (σ2 = 0.25, 0.5, 1, 2 and 4) based on one
data set each with n = 1000 reveals that the amount of underestimation increases with
increasing variance, caused by the frailty effect (Figures D.6 and D.7). The estimate of the
cumulative baseline hazard shows a trend in the opposite direction. The resulting cumulative
hazard functions show a slight tendency towards underestimation of the true hazard, but to
a lesser extent than the effect estimates suggest. Such deviations from the true effect are
not detected by the qualitative type II error, but ABCtime, which is applied in Section 6.5.2 is
designed to measure deviations of such nature.
For the gently inclined effect (Iw), the time-varying effect is overlooked in about half of the
simulation runs with sample size 1000 and only 10-20% of selected effects comply with the
qualitative criteria. For sample size 3000, error rates considerably improve. Again, a sys-
tematic underestimation of the true effect is observed. In this scenario, though, both the
poor power and the underestimation may also be explained by the extremely small average
population effect. The true effect is close to zero in the first years and begins to rise later
in time, where the risk set is considerably decreased. This naturally results in a decreased
power for detecting the time-varying effect.
For the sigmoid effect (S), results are analogue to those with binary variable. FPT detects the
time-varying effect in all simulation runs, but completely fails to describe the true functional
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form, as it is not a member of the FP class. The most frequent substitutes in this setting
are FP2 functions composed of powers 1, 2 and/or 3 (71.9%) or powers 0, 0.5 and/or -0.5
(25.4%). More details on selected FP combinations are given in Table D.2 in the Appendix.
For the bathtub effects (Bs) and (Bw), the crude and qualitative type II error of FPT are very
good. Only for the combination of effect (Bs) with heavy censoring it increases to moderate
23%, which is mainly due to an increased number of effects with an initial plateau (Fig-
ure 6.14, left). The pointwise mean for scenario (Bw) is even quite close to the true effect
(Figure 6.14, right).

Difference of effects estimated by FPT to the true effects and comparison to CoxPH
estimates

Analogue to the settings with binary variable, pABCtime for the constant effect (C) is vir-
tually identical for FPT and CoxPH effects, due to the very low amount of type I errors.
For the time-varying effects, FPT effects are in general closer to the true effect than the
time-constant CoxPH effects (Table 6.8). For example, the pABCtime of the CoxPH effects
remains relatively constant over all settings with median values around 25% for both linear
decreasing effects (Ls) and (Lw). Results for FPT in the same settings are considerably bet-
ter, with improved pABCtime for larger sample size. The same tendency is observed for the
non-linear decreasing effects (Ds) and (Dw). The difference between the CoxPH effects and
the true effects is in general rather large and remains relatively constant over all parameter
settings (see Table 6.8), while the range and median of pABCtime tends to decrease with
increasing sample size.
For the strong increasing effect (Is), the median pABCtime for the CoxPH model is again
relatively constant over all settings. Although the effects estimated by FPT tend to under-

Sample Cen- Effects

Model size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

FPT 250 light 7.96 - - 18.09 - 32.78 - - - -
500 light 5.50 - - 15.52 - 27.04 - - - -

1000 heavy 5.27 6.01 14.14 14.79 16.69 31.06 - 43.05 165.83 25.40
1000 light 4.05 4.33 9.21 14.32 43.36 22.05 85.77 32.98 86.77 16.66
1000 no 3.55 - - 14.55 - 22.90 63.26 - - -
3000 light 2.03 - - 10.16 - 21.22 83.22 - - -

CoxPH 250 light 7.87 - - 63.23 - 35.45 - - - -
500 light 5.50 - - 63.16 - 35.18 - - - -

1000 heavy 5.26 23.44 22.85 62.93 58.45 40.06 - 93.31 147.55 89.50
1000 light 4.02 26.68 24.63 62.72 78.51 35.26 87.73 92.63 86.72 92.35
1000 no 3.49 - - 62.69 - 35.67 65.24 - - -
3000 light 2.03 - - 62.47 - 34.65 86.97 - - -

Table 6.8: Median pABCtime of effects estimated by FPT and the CoxPH model in univariate
settings with standard normal variable.
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Figure 6.15: pABCtime of effects estimated by FPT and the CoxPH model for effect (Is) with
sample sizes 1000 (left) and 3000 (right), light censoring and standard normal variable.

estimate the true effects, their pABCtime is still better than for the CoxPH estimates and
decreases further with increasing sample size (Figure 6.15). For the weak increasing effect
(Iw), on the contrary, CoxPH and FPT are similar in terms of pABCtime in all settings.
The results for the sigmoid effect (S) show the gain in pABCtime by time-varying effects rela-
tive to time-constant effects, even if the true effect cannot be fully described by the estimated
effects (Figure D.9). The median pABCtime of 90% for the CoxPH effects is a clear contrast
to the 30-40% of FPT effects.
For the bathtub effects both FPT and CoxPH are not able to describe the true underlying
effect exactly and thus largely differ from the true effect either in the early or late time pe-
riod, where the effect differs from zero, or in the time period, where it has a plateau near
zero. This results in a large pABCtime for both approaches in scenario (Bs) and similarly
applies to the CoxPH model for scenario (Bw) with a stronger initial effect, where it gives a
median pABCtime of about 90%. FPT, though, is considerably closer to the true effect in this
scenario and further improves with smaller proportion of censoring (Table 6.8).

Prediction error

The prediction performance of FPT and CoxPH models in the settings with constant effect
(C) is virtually identical (Table 6.9). Results for scenarios with time-varying effects, though,
are intermingled. Detailed information on the median dIPEC over different intervals for all
scenarios is given in Table D.4 in the Appendix.
While the dIPEC over [0,10] in scenarios (Ls), (Lw) and (Dw) reveals a slight superiority of
FPT relative to CoxPH models, the mPEC is very similar, with only a minor advantage for
FPT at later times. For the stronger non-linear decreasing effect differences between both
approaches become more apparent. The improvement in mPEC is visible over the complete
time span (Figure 6.16) and remains relatively constant over all parameter settings, while
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Sample Cen- Effects

Model size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

FPT 250 light -25.05 - - -18.70 - -20.45 - - - -
500 light -25.17 - - -18.86 - -20.40 - - - -

1000 heavy -21.74 -70.51 -21.99 -15.46 -5.03 -18.73 - -16.55 -2.01 -5.48
1000 light -25.26 -70.35 -23.78 -18.97 -5.61 -20.36 -0.04 -10.98 -0.56 -8.89
1000 no -26.25 - - -21.57 - -21.95 -0.22 - - -
3000 light -25.28 - - -19.04 - -20.40 -0.12 - - -

CoxPH 250 light -25.05 - - -16.26 - -20.53 - - - -
500 light -25.17 - - -16.34 - -20.59 - - - -

1000 heavy -21.74 -69.48 -21.78 -13.48 -4.66 -18.56 - -7.99 -0.93 -2.96
1000 light -25.24 -68.66 -23.38 -16.41 -4.48 -20.65 -0.03 -6.37 0.08 -5.84
1000 no -26.25 - - -18.61 - -22.12 -0.23 - - -
3000 light -25.28 - - -16.41 - -20.68 -0.06 - - -

Table 6.9: Median differences in integrated prediction error (dIPEC) to the Kaplan-Meier
estimate (in %) over the interval [0,10] for FPT and CoxPH models in univariate settings with
standard normal variable.

Figure 6.16: Differences in integrated prediction error (dIPEC, left) to the Kaplan-Meier es-
timate (in %) over the interval [0,10] and mean prediction error curves (mPEC, right) as
pointwise mean over all 1000 simulation runs for the Kaplan-Meier estimate (———), CoxPH
model (———) and FPT (- -- -- -) model in the setting with n = 1000, heavy censoring and standard
normal variable for effect (Ds).

the dIPEC further improves with increasing sample size.
For the increasing effects (Is) and (Iw), on the contrary, differences in prediction error be-
tween FPT and CoxPH are negligible. For (Iw) this may be explained by the large variety
of time-varying effects estimated by FPT, which are not able to describe the true effect cor-
rectly and hence are not beneficial in terms of the prediction performance. Furthermore,
both CoxPH and FPT are similar to the Kaplan-Meier estimate. This result is not surpris-
ing, as the true effect is extremely small over the first years and increases only later in time,
where the risk set is considerably decreased. Hence, as the covariate indeed has hardly any
influence in the early years, the regression models cannot be expected to improve prediction
performance compared to the Kaplan-Meier estimate in this time period.
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Figure 6.17: Differences in integrated prediction error (dIPEC, left) to the Kaplan-Meier es-
timate (in %) over the interval [0,10] and mean prediction error curves (mPEC, right) as
pointwise mean over all 1000 simulation runs for the Kaplan-Meier estimate (———), CoxPH
model (———) and FPT (- -- -- -) model in the setting with n = 1000, heavy censoring and standard
normal variable for effect (S).

For the sigmoid effect (S), FPT shows an improvement in prediction error compared to
CoxPH. Although the median dIPEC of both approaches is rather small, i.e. the integrated
prediction error is relatively similar to the Kaplan-Meier estimate, the mPEC shows the dif-
ferences more explicitly (Figure 6.17). The true effect is nearly zero in the first years with a
steep increase around year 3. Hence, the Kaplan-Meier estimate is expected to perform rea-
sonably well early in time, where the covariate information indeed has hardly any influence
on survival. The mean CoxPH effect, though, is about 0.3 (see Table D.1 in the Appendix)
and hence considerably overestimates the true effect early in time, resulting in an inflated
prediction error in this period. From about year 3 on, the mPEC of the CoxPH models con-
siderably improves relative to the Kaplan-Meier estimate. Although the FPT models are not
able to describe the true effect correctly, they reproduce the increasing nature well enough
to give a similarly good prediction error than the Kaplan-Meier estimate for the early time
period with a considerably improved mPEC later on and hence yield the best prediction per-
formance throughout.
For the bathtub effect (Bw) with a strong initial effect, FPT again improves both the dIPEC
and mPEC compared to CoxPH and Kaplan-Meier. For the initially weaker effect (Bs) bene-
fits relative to the Kaplan-Meier estimate vanish.

6.5.3 Power of FP analysis

The hierarchical closed test procedure of FPT, which first tests FP2 vs. constant effect, may
have reduced power if the true effect is logarithmic or FP1, as the additional degrees of
freedom are wasted. Royston and Sauerbrei (2008, chap. 4.16) present a small simulation
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Crude (qualitative) type II error with
FPs of maximum degree

Effect X 2 1

(Ls) binary 74.5 (95.8) 72.0 (95.7)
(Is) binary 48.2 (50.3) 32.9 (36.2)
(Iw) normal 56.6 (82.7) 44.8 (71.9)

Table 6.10: Crude and qualitative type II error (in %) of FPT with maximum degree 1 and 2
in three scenarios with sample size 1000 and light censoring.

study in the framework of non-linear functional forms of covariates using a similar function
selection procedure. They show that if the true function is simple, i.e. similar to the default
or an FP1, the tests on more complex FPs loose power. Especially with weak effects and/or
small sample size, time-varying effects are more likely to be detected when restricting FPs to
maximum degree 1. However, this restriction involves the risk of overlooking or mismodelling
more complex or non-monotonic effects.

The improvement of power with increasing sample size is also observed for the FPT al-
gorithm (Tables 6.4 and 6.7). To check whether the poor power of some scenarios with
moderate sample size ascribes to the test on FP2, we restrict selection of FPs to maximum
degree 1 for three settings with a large crude type II error: (Ls) and (Is) with binary variable
and (Iw) with normal variable in the main setting. Effects (Ls) and (Is) are FPs of degree 1.
Although (Is) is not exactly included in the standard class of FPs, it is rather similar to power
0.5 or the default transformation log(t). The true form of effect (Iw) is more complex and not
a member of the FP class. Hence, at least the power of scenarios (Ls) and (Is) is expected
to improve when omitting the search for a possible improvement in fit by FP2 functions.

Table 6.10 contrasts the crude type II error for the restricted test procedure to the standard
FPT algorithm with maximum degree 2. The improvement for the linear effect (Ls), which
was supposed to benefit most from the restriction, is with a value of 2.5% surprisingly small.
The crude type II error of scenarios (Is) and (Iw), on the contrary, considerably improves. As
the qualitative type II error improves about the same amount, restriction to FP1 is not at the
expense of the functional form but improves the power in both aspects. Hence, consideration
of too complex functional forms may explain the poor power of some scenarios to a certain
extent, but seems not to be the prime reason.

6.5.4 Time transformation - the default

The FPT algorithm utilises a default time transformation in order to stabilise selected effects.
This default transformation is chosen as log(t), which is a plausible choice for short-term
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effects and is widely used in the analysis of time-varying effects. If the true effect is approxi-
mately logarithmic, this default should also control the qualitative type II error, as it helps to
avoid selection of a larger number of exceptional curve shapes caused by artefacts in the
data. However, if the underlying effect differs from this shape, the default transformation may
potentially inflate the qualitative type II error. The crude type II error, on the contrary, is not
affected by the choice of the default transformation, as it is based only on the test of the best
FP2 vs. constant effect.

To investigate the impact of the default transformation on the qualitative type II error, we
modify the FPT algorithm by omitting the second test, i.e. the test on FP2 vs. default log(t).
Hence, if the time-varying effect is significant (best FP2 vs. constant), but the indication for
the more complex FP2 is not strong enough, i.e. the test on the best FP2 vs. best FP1 is
not significant, then the best FP1 function is selected. This modified algorithm without the
default transformation is applied to selective scenarios with poor, moderate and good quali-
tative type II error or large difference between crude and qualitative type II error.
The linear effect (Ls) already has a poor crude type II error in combination with binary vari-
able, but worsens further in terms of qualitative type II error. As the true effect is not conform
with the steep initial decrease of the log function, the qualitative type II error is expected
to improve when omitting the default. The effects (Ds) and (Is) with good and moderately
worse type II error, on the contrary, are quite similar to the default and thus are expected to
hold the qualitative type II error or even to change for the worse. (Iw) and (Bs) have good to
moderate crude type II error rates with binary variable but considerably inflated qualitative
type II error. As both have little similarity to the log function, the qualitative type II error is
expected to improve without the default transformation.

The observed results do indeed point in these directions. Although the FP powers in general
change in a relatively large number of simulation runs when omitting the default transforma-
tion (Table 6.11), the gain in qualitative type II error differs widely (Table 6.12). Especially
the improvement for the linear effect is less pronounced than expected. Only half of the for-
mer default transformations selected with binary variable change to linear FPs (Table 6.11).
Hence, the gain in qualitative type II error is moderate (Table 6.12). Results for the setting
with standard normal variable even hardly change at all. Hence, the (relatively low) qualita-
tive type II error of FPT with default is not caused by the usage of the default transformation
log(t).
For the log-like effects (Ds) and (Is), the qualitative type II error even worsens. In most of the
simulation runs with changes in selected FPs, the alternatives are still log-like functions like
t0.5 and t−0.5. These powers are also very frequent with the bathtub effect (Bw), as well as a
larger amount of FP2 functions based on the same powers. The improvement in qualitative
type II error, though, is moderate in this scenario. The largest gain is observed for the gently
inclined effect (Iw), where the default log(t) is most frequently replaced by linear, quadratic,
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FP powers X binary X standard normal

p1 p2 (Ls) (Ds) (Is) (Iw) (Bw) (Ls) (Ds) (Is)

-1 -0.5 0.3 1.6
-0.5 0.3 8.1 3.4 0.1 12.6 0.3 17.3
-0.5 -0.5 0.2 0.1 2.4
0.5 7.4 8.3 17.3 7.0 0.2 0.1 0.5 7.2
0.5 0.5 0.1 1.9 0.3
0.5 1 0.6 2.9 3.0 0.8
0.5 2 0.1 1.3 0.1
0.5 3 0.2 1.2 0.2 0.2
1 7.4 6.9 16.3
1 1 0.7 5.1 1.0 0.7
2 0.7 1.4 13.1
3 0.1 0.7 5.5

and 2
further

FPs
<1%

and 6
further

FPs
<1%

and 3
further

FPs
<1%

and 2
further

FPs
<1%

and 6
further

FPs
<1%

and 3
further

FPs
<1%

and 8
further

FPs
<1%

∑ 16.3 19.8 30.5 42.2 25.9 0.1 11.3 28.2

Table 6.11: Frequency of FP powers (in %) selected as substitutes for the default trans-
formation log(t) in FPT without default transformation in the main setting with sample size
1000 and light censoring.

Qualitative type II error

with w/o
Effect X Crude type II error default default

(Ls) binary 74.5 95.8 88.4
(Ds) binary 0.8 3.0 6.2
(Is) binary 48.7 50.3 59.4
(Iw) binary 27.9 71.8 36.9
(Bw) binary 1.1 56.5 44.4

(Ls) normal 0.0 13.7 13.7
(Ds) normal 0.0 13.3 23.8
(Is) normal 6.9 9.9 12.9

Table 6.12: Crude and qualitative type II error (in %) of FPT with and without the default time
transformation in the main setting with sample size 1000 and light censoring.
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cubic or square-root transformations. In this scenario, the extremely large qualitative type II
error reduces to about the half.

This limited investigation indicates that for effects with shapes similar to logarithmic decay
or increase, the default transformation achieves its purpose of stabilising selected effect
functions as expected. However, if the true effect is of a different shape, use of the default
transformation may lead to a considerably inflated qualitative type II error.

6.6 Properties of FPT in multivariable settings

The investigation of the univariate settings shows promising results. This section further
explores the performance of FPT in multivariable model building based on a model with
five covariates, two of which have a time-varying effect. We investigate six different set-
tings, varying the proportion of censoring (no, light and heavy) and the correlation between
covariates (ρX1,X4 = 0 and 0.5).

6.6.1 Selection and modelling of time-varying effects

Investigation of type I and II error in these settings shows slightly larger error values in set-
tings with correlation between X1 and X4 (Table 6.13). However, considering the limited
precision of 100 simulation runs, the observed changes are considered to be of minor im-
portance.
For the constant effects of X3 to X5, type I error is slightly inflated (3%) in individual settings
which may be due to chance. Rolled into one, the type I error over all three variables and
six scenarios is 0.9%. The crude type II error rates for the time-varying effects of X1 and
X2 decrease with increasing sample size, which is conform to the results of the univariate

Cen- Type II error Type I error

ρX1,X4 soring X1 X2 X3 X4 X5

crude qual. crude qual.

0 heavy 7 8 32 32 2 0 0
light 2 5 26 26 1 0 0
no 0 3 13 15 1 1 0

0.5 heavy 9 10 34 36 1 2 1
light 1 7 22 24 0 1 1
no 0 5 14 16 2 3 0

Table 6.13: Type I and II error (in %) of FPT in multivariable settings.
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Figure 6.18: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean (- -- -- -) and 95% empirical confidence intervals (· · ·· · ·· · ·) for effects of X1 (left) and
X2 (right) in the multivariable setting with light censoring and ρX1 ,X4=0.5.

investigation. While the crude type II error for X1, i.e. effect (Ds), is similar to the univariate
settings, it decreases to about the half for effect (Is) of X2. It reaches an acceptable level
in the settings without censoring and moderately large values for light and heavy censoring.
The qualitative type II error of both effects increases only slightly compared to the crude type
II error, as also observed in the univariate investigation.
Looking at the selected effects themselves, a similar picture emerges. Estimated effects are
rather close to the true effect, as shown in Figure 6.18 for the two time-varying effects.

In multivariable models, the sequence in which time-varying effects are selected may also
influence the final model if the time-varying effects of two variables are approximately equally
significant, as observed for the Rotterdam breast cancer series (Section 4.1.3).
Considering the selection sequence of time-varying effects in the simulation study, some
changes can be observed between the investigated settings (Table D.5). The ’correct’ model
including time-varying effects for X1 and X2 is selected in the majority of simulation runs, but
its selection frequency decreases for correlated variables and larger proportion of censoring.
This is due to the decreasing proportion of the sequence X1X2. Simultaneously, the propor-
tion of X2X1 increases, although less strongly. With increasing proportion of censoring, the
proportion of simulation runs in which either of the two is selected increases. In most of
these cases, the time-varying effect of the other variable is not significant at the 1% level,
but at the 5% level. Furthermore, with no and heavy censoring the proportion of simulation
runs with selection sequence X1X2 in the settings with correlation is smaller than in settings
without correlation.
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Figure 6.19: pABCtime of effects selected by CoxPH and FPT relative to the true effect
function for X2 in the multivariable setting with heavy (left) and no (right) censoring and
ρX1,X4 = 0.

6.6.2 Difference of effects estimated by FPT to the true effect and comparison
to CoxPH

The distance to the true effect function in terms of pABCtime for effect (Ds) of X1 is ana-
logue to the results obtained for the univariate settings (for median pABCtime see Ta-
bles D.6 and D.7 in the Appendix). The pABCtime of both the CoxPH and FPT estimates
remain relatively stable over all settings with median values about 60% and 16%, respec-
tively. Hence, FPT is superior to CoxPH.
For the increasing effect (Is) of variable X2, CoxPH shows a median pABCtime of 25% over
all settings, which is similar to the univariate investigations. For FPT, the univariate set-
tings reveal a large range of pABCtime with a median value similar to CoxPH with light and
heavy censoring which improves without censoring. In the multivariable framework, varia-
tion of pABCtime is still large, but considerably smaller as compared to the univariate case.
Furthermore, median values decrease from about 12% for heavy censoring to 8% without
censoring (see Figure 6.19). Hence, for this effect FPT reveals its full strength in the multi-
variable setting.
For the three time-constant effects of X3 to X5, pABCtime of CoxPH and FPT are identical
with median values between 20% and 5%, depending on the size of the true effect.

6.6.3 Prediction error

The mean prediction error curve in all six scenarios is very similar, with FPT performing
slightly better than CoxPH, especially for early times (Figure 6.20). The difference in IPEC
to the Kaplan-Meier estimate for both approaches varies between 20% and 30%, depending
on the specific parameter setting. Improvement with respect to the Kaplan-Meier estimate
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Figure 6.20: Differences in integrated prediction error (dIPEC, left) to the Kaplan-Meier esti-
mate (in %) and mean prediction error curves (mPEC, right) as pointwise mean over all 100
simulation runs for the Kaplan-Meier estimate (—), CoxPH (—) and FPT (−−−−−−) in the setting
with light censoring and ρX1,X4 = 0.5.

ρX1,X4 Censoring FPT CoxPH

0 heavy -23.63 -23.07
0 light -25.84 -24.83
0 no -26.21 -24.76

0.5 heavy -27.13 -26.47
0.5 light -30.40 -29.16
0.5 no -30.88 -29.23

Table 6.14: Median difference (in %) of IPEC over [0,10] to the Kaplan-Meier estimate
(dIPEC) for FPT and CoxPH in multivariable settings.

increases with decreasing proportion of censoring and with correlation. In terms of prediction
error, FPT is superior to CoxPH in all of the settings (Table 6.14).

6.7 Convergence problems

As already mentioned in Section 6.3, extreme survival times may cause convergence prob-
lems. For FPT, convergence problems are observed only for single FP combinations within
the selection procedure. To investigate whether these problems distort the estimated effects,
we recorded all convergence problems in the univariate simulation study. The percentage of
simulation runs in which at least one FP combination fails is given in Table 6.15. In most sim-
ulation settings, convergence problems are rare. For normal variable, where large covariate
values may intensify problems, non-convergence occurs in up to 30% in single parameter
settings.



110 6. Simulation study

Sample Cen- Effects

X soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

binary 1000 heavy 3.0 - - 7.0 - 6.9 - 15.3 4.8 6.7
1000 light 0.8 0.3 0.9 2.2 0.5 1.2 1.4 3.8 0.4 1.7
1000 no 0.2 0.2 3.7 0.4 0.3 0.4 0.1 - - -

normal 1000 heavy 0.9 0.0 0.2 2.7 1.0 0.2 - 12.1 8.3 7.1
1000 light 3.2 0.2 0.4 10.0 4.8 1.2 2.9 27.2 32.0 31.4
1000 no 8.9 - - 18.1 - 0.1 19.4 - - -

Table 6.15: Convergence problems (in %) in univariate settings.

Figure 6.21: Frequency of FP powers that fail to converge relative on all powers that fail.

This leads to the question whether these simulation runs result in systematically different
effect estimates than those without convergence problems. To explore this topic, we con-
trast estimated effect functions of simulation runs with and without convergence problems.
However, visual comparison does not reveal any systematic differences. The distance to
the true effect, measured by pABCtime, is inconspicuous in all settings, too. Hence, conver-
gence problems in single FP combinations seem to be unproblematic, as they do not affect
the estimated effects.
An investigation of the specific FPs, for which convergence problems occur, reveals that FP
combinations with powers -2, 2 and 3 most frequently cause problems (see Figure 6.21).
Hence, these powers may be less adequate for estimation of time-varying effects. Exclud-
ing these powers from the set of power terms would reduce convergence problems to a
minimum, but at the expense of considerably limited flexibility of effect estimates. Another
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possible solution is the restriction to FP1 functions, as FP2 functions appear more likely to
cause convergence problems. Such restrictions, though, are not advisable unless conver-
gence problems occur for a larger number of FPs in a single model, as single failures do not
seem to affect the final estimates.

6.8 Difficulties with the Semiparametric Extended Cox model

The Semiparametric Extended Cox model is executed in R-2.5.1 with package timereg,
version 1.2.4. This non-parametric approach is potentially more flexible in modelling time-
varying effects than parametric approaches such as FPT, and hence is believed to perform
better for complex time-varying patterns.
However, in our simulation study the approach turns out to be very sensitive to the choice
of the test statistic and the bandwidth and effect estimates tend to be instable especially at
larger times. None of these problems can be solved satisfactorily in the context of this in-
vestigation. As we cannot be sure to obtain reliable and comparable results, we exclude the
approach from the simulation study. Instead we report the problems evolving from different
choices of the above mentioned parameters.

6.8.1 Test statistics

The test on time-varying effects is implemented in three versions. The default version (w =
0) does not differentiate between regions with large and small variance. Large variances,
though, represent uncertainty in estimates and often correspond to few data support. In our
simulation study this is supposed to occur for large survival times, where observations are
rare. As we believe departure from PH in practical applications to be more relevant when
many patients are at risk, we prefer the alternative variance weighted test statistic (w = 1). A
third version of this test statistic additionally removes the end points on both edges (w = 2).
The choice of the test statistic, i.e. the weighting scheme, appears to have large influence
on test decisions as shown in Section 4.2, where application of the three test statistics in a
multivariable analysis results in three different models.

6.8.2 Impact of the bandwidth

Another important parameter of the approach is the bandwidth of the kernel smoother. As
for all smoothing methods, the specification of a suitable bandwidth for the kernel smoother
of the implemented routine is a challenging task, which is a great practical problem of the
method (Cortese et al., 2010). The default bandwidth of the implemented program is 50%
of the range of the considered observation period. Scheike and Martinussen (2004) give a
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formula for the asymptotic mean-squared error optimal bandwidth. Such plug-in methods,
though, are known to be questionable (see e.g. Loader, 1999, pp. 179-182 or Härdle, 1990,
p. 92). They depend on the unknown β′′(t), the second derivative of the time-varying effect
β(t), which itself must be estimated with a suitable bandwidth. Hence, the problem is sim-
ply moved from the estimation of β(t) to the estimation of β′′(t). Martinussen et al. (2002)
suggested to try different bandwidths, but do not give advice on situations where results be-
tween bandwidths differ largely. Scheike and Martinussen (2004), though, use the smallest
possible bandwidth for which the algorithm converges in the estimation of an initial estimate
for β′′(t). A similar choice seems also sensible for the estimation of β(t) in practical appli-
cations.
Varying the bandwidth of the estimation algorithm can lead to different conclusions about
time-varying effects, as pointed out in Section D.3 in the Appendix. The impact of the band-
width on the shape of final time-varying effects β̂(t) using locfit is even more pronounced.
The default bandwidth of 0.7, though, is deemed to be a sensible choice (Section D.3).

6.8.3 Invertibility problems

For default bandwidth, the estimation procedure issues invertibility warnings in several set-
tings. This suggests that there are some problems in identifying the effects or with stability.
If this happens rarely, it may not cause problems. If invertibility problems are more frequent,
as in our simulated data sets, they can cause problems.

For example, in our simulation study we observe a considerably inflated type I error of about
34% to 68% for a nominal significance level of 1%. Application of the unweighted test version
in the main setting with sample size 1000 and light censoring, results in type I error rates of
18% and 33% for binary and standard normal variable, respectively. This is in contrast to
the findings of Scheike and Martinussen (2004), who present a small simulation study with
two normal variables with mean 0 and standard deviation 2, one of which has a time-varying
effect. For the investigated sample sizes up to 800, they observe a type I error for the un-
weighted test that is only slightly larger than the nominal significance level of 5%.
The inflated type I error in our simulation study may be caused by the invertibility problems.
Spurious time-varying effects are introduced by instable estimates at regions, where data
gets sparse. Figure 6.22 (left panel) shows the estimated cumulative effect B̂(t) in a data
set with such a spurious time-varying effect. Shortly after time 10, estimates begin to desta-
bilise. At time 13.6, the last subject with covariate level X=1 experiences an event and the
estimation algorithm issues non-invertibility warnings for all subsequent event times. Due to
the large distances between events (indicated at the axis of abscissae), these instable steps
even gain in importance. The corresponding test process (Figure 6.22, right panel) shows
a large drop in the time period with rare events. This is caused mainly by the instability of
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Figure 6.22: Cumulative effect function (left) and test process (right) for a spurious time-
varying effect in scenario (C).

effects, but can lead to rejection of the null hypothesis of time-constant effect.

The invertibility problems occur mainly for larger times, where data gets sparse. Hence,
the global bandwidth may lead to empty neighbourhoods. The best solution to this problem
would possibly be a local smoothing approach within the estimation algorithm. In the context
of this work, we are limited to two other possible interventions:

(i) restricting the test and estimation period, or

(ii) increasing the bandwidth.

As the test statistics of the test on PH depend on the considered time interval [0, τ ], different
choices for τ may lead to different test decisions (Martinussen and Scheike, 2006, p. 123).
When restricting the time period under investigation to [0, 10], invertibility problems almost
disappear and type I error decreases to about 6% and 1% for binary and standard normal
variable, respectively. For the unweighted test, it is about 1.5-2% for both distributions.
Imagine the example in Figure 6.22 to be considered on [0, 10] only. As data support in this
period is sufficiently large, the reduction of invertibility problems is evident. Yet, as some
time-varying effects may not become apparent till later time points, these larger times can
be of particular interest. Furthermore, restriction of the test and estimation intervals results
in limited comparability to FPT.

Increasing the bandwidth is another possible solution, as it may avoid empty neighbour-
hoods. In our simulation study, this helps to reduce the type I error for most parameter
combinations. However, with binary variable, the variance weighted test statistic (w = 1)
still shows a considerably inflated type I error. These results emphasise the impact of the
chosen bandwidth on the test. Although the type I error reduces with larger bandwidth, the
estimation algorithm still issues a considerable amount of invertibility warnings. Hence, re-
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(Ls) (Is)

(S) (Bw)

Figure 6.23: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean (- -- -- -) and 95% empirical confidence intervals (· · ·· · ·· · ·) for the Semiparametric
Extended Cox model in scenarios (Ls), (Is), (S) and (Bw) with standard normal variable,
n = 1000 and light censoring.

liability of the results is questionable. Details on the type I error and the influence of the
bandwidth on estimated effects are given in the Appendix in Section D.3.

6.8.4 Flexibility of effect estimates

Despite these problems and critical choices, effect estimates are very flexible. To give an
impression of the potential flexibility, Figure 6.23 shows the estimated effects for scenarios
(Ls), (Is), (S) and (Bw). These plots show that the Semiparametric Extended Cox model
is flexible enough to describe also complex patterns. However, one should be aware of
possible locally extreme behaviour of estimates. This is unfavourable especially for simple
patterns such as linear time-varying effects (Figure 6.23, top left), where too wiggly esti-
mates may skew the underlying pattern.
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Consequently, the Semiparametric Extended Cox model is a flexible approach, but requires
its parameters to be chosen with care, which requires sufficient experience and effort. Fur-
thermore it is sensitive to peculiarities in the data, which may introduce problems in estima-
tion and stability of effects.

6.9 Summary

Summarising, FPT is shown to outperform a simple CoxPH model in nearly all investigated
settings. The test procedure approximately holds the nominal significance level in case of
PH. With time-varying effects, the performance strongly depends on the specific scenario
and parameter settings. In general, the power is adversely affected by sample size and the
proportion of censoring.
With binary variable, the test procedure has difficulties in detecting some time-varying pat-
terns such as the linear decreasing effects or the increasing effects, but shows reasonably
good power for most other scenarios. It is known that considering FPs of degree 2 may
reduce the power of the hierarchical closed test procedure, which might explain the poor
crude type II error in some of the scenarios. A small investigation on this issue shows am-
biguous results. While omitting the test on FP2 leads to a considerably improved power for
the increasing effects, but results for the linear decreasing effect hardly change.
For standard normal variable, using the same baseline settings and effects than with binary
variable, the performance of FPT is considerably better. In general, the power is extremely
good, except for some difficulties with the increasing effects. These good results may be
explained by the distributions of X and T. For extreme X values, often smaller values of T
are generated. As discussed in Section 6.3, the combination of extreme event times and a
(strong) time-varying effect may influence the likelihood considerably. Hence, these extreme
times help in identifying time-varying effects. The same rationale, though, explains con-
vergence problems for some FP combinations that may occur in situations with too many
extreme times. However, these convergence problems are shown to be unproblematic with
respect to final effect estimates. Simultaneously, an exclusive relation between large X
values and small event times may introduce frailty effects, resulting in a systematic underes-
timation of effect sizes as observed for the increasing effects.

Heterogeneity of selected functions decreases with increasing effective sample size. This is
also reflected in the qualitative type II error. The scenarios (Ls), (Lw), (Is) and (Iw), which
already have large crude type II error rates, necessarily show a large qualitative type II error.
Yet, even with normal variable, the qualitative type II error in these scenarios is moderate to
large. A possible source of inflated qualitative type II error is the choice of log(t) as a default
time transformation. A small investigation indicates that usage of the default transformation
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may lead to a considerably inflated qualitative type II error, if the true effect differs from the
logarithmic shape. For log-like effects, on the contrary, the default transformation achieves
its purpose of stabilising selected effect functions and controls the qualitative type II error.
Investigation of scenarios (Ls)/(Lw) and (Ds)/(Dw), which reflect similar time-varying pat-
terns, but different effect size, shows that the crude type II error and the shape of selected
functions are not affected by the strength of the effect, except for single parameter settings.
The improvement in ABCtime and prediction error relative to CoxPH, on the contrary, reduce
for the weaker effects.
The pointwise means of estimated effects are, for reasonable type II error rates, in most sce-
narios close to the true effects. The exceptions are the sigmoid and bathtub effects, where
FPT is not flexible enough to describe the complex patterns exactly. These effects explore
the limitations of the FPT approach, because they are no members of the FP class. Hence,
FPT is not able to describe them correctly. With sigmoid effect (S), for example, FPT detects
the presence of a time-varying effect in each simulation run, but similarly fails to describe
it each time. Correspondingly, this scenario shows the largest spectrum of selected curve
shapes. Yet, the gain relative to time-constant CoxPH effects is distinct. For the bathtub
effects, the performance of FPT is much better, although the gain relative to CoxPH is less
pronounced, due to the shape of the true effects.

In the presence of time-varying effects, FPT shows an improvement in terms of pABCtime as
well as prediction performance compared to CoxPH, if the crude type II error is not too large.
In parameter settings with large crude type II error, the prediction performance is naturally
similar to the CoxPH model.

The multivariate investigations show no convincing differences between settings with and
without correlation, despite of a slightly improved PEC in the settings with correlation. On
the covariate level, results for the decreasing effect (Ds) resemble those in the univariate
investigations, while the increasing effect (Is) even improves in terms of the type II error.
Hence, for the increasing effect, FPT reveals its full strength in the multivariable investigation
with improvement in pABCtime compared to CoxPH in all settings.



Chapter 7

Discussion

In the analysis of larger studies with long-term follow-up, standard techniques such as the
Cox model (Cox, 1972) may be inappropriate due to violation of the PH assumption caused
by time-varying effects. Ignoring the presence of these time-varying effects results in incor-
rect models with misleading effect estimates and possibly false conclusions thereof. How-
ever, beyond detecting the time-dependency of effects, appropriate modelling of their shape
is at least as important, because ’wrong’ shapes of time-varying effects can lead to false
conclusions just as well as erroneously assuming PH.

The literature on methods for testing and modelling of time-varying effects is broad. Some
basic ’traditional’ approaches are artificial time-dependent covariates or partitioning of the
time axis. The former has already been proposed by Cox (1972) in his original paper and
uses a pre-defined transformation of time which is the basis for testing on non-PH. Yet, this
method depends strongly on the choice of the time transformation. Partitioning of the time
axis, or piecewise constant effects, is another popular technique. It partitions the time-axis
into several time-intervals and estimates separate (time-constant) effects for each of these
intervals. However, this method is highly dependent on the number and position of intervals
and requires a sufficient amount of events in each interval.
Recently, Schemper et al. (2009) proposed average hazard ratios by weighted Cox regres-
sion for situations with very small sample size or high-dimensional data, where more com-
plex models incorporating time-varying effects may be less powerful.

Besides these approaches, some more advanced techniques have been proposed such as
splines and fractional polynomials. Several of the approaches have theoretical or technical
drawbacks, such as the absence of multivariable model building strategies or selection of
time-varying effects, missing supply of programs or poor usability. Furthermore, we are
not aware of larger simulation studies on properties of the approaches or comprehensive
comparisons of different techniques that could guide to appropriate tools for selection and
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modelling of time-varying effects.

One possible reason for the lack of simulation studies may be the complexity of such a task,
which already starts with the generation of appropriate data. The standard method for sim-
ulation of survival data under the PH assumption (see e.g. Bender et al., 2005) is in general
not applicable with time-varying effects, as the integral and inverse cannot be solved analyt-
ically any more.
Alternative proposals allowing for time-varying effects are rare and we deem none of them
optimal for various reasons. Hence, we generalised the inversion method (Bender et al.,
2005) which is simpler and more intuitive. This generalised algorithm is based on numer-
ical inversion and integration and thus allows the simulation of survival times for settings
including time-dependent components.

To give guidance on different techniques for modelling time-varying effects, we compared
five recent approaches based on promising techniques, such as splines and fractional poly-
nomials, including frequentist as well as Bayesian inference. As Hand (2001) notes: “It may
be possible for an expert to tune method A to achieve results superior to method B, but
what we really want to know is, whether someone untutored in the niceties of method A can
do this. Or does method B, presented as a black box and requiring no tuning, generally
outperform an untuned method A?” Therefore, we used the default settings for the different
parameters of the approaches when applying them to a real-life example and a simulated
data set to gain insights into the performance and usability of the approaches.

Since it does not include selection of time-varying effects, the Reduced Rank model con-
siderably overfits the data at hand and does not even convince in terms of the apparent
prediction error. The Dynamic Cox model, on the contrary, performs quite well with respect
to selecting and modelling time-varying effects as well as predicting survival probabilities.
Unfortunately, the implemented algorithm is not able to handle data sets exceeding a few
hundred observations without categorising survival time. Furthermore, it is implemented in
an older S-Plus version and is not compatible to current versions of the software, which
limits the practical applicability of the method. This approach can also be considered as a
special case of the FPT approach on which the main focus of this work lies.

The Semiparametric Extended Cox model is as a non-/semiparametric approach based on
cumulative regression functions very flexible in estimating even complex time-varying ef-
fects. Yet, the choice of the test statistic and the bandwidth for the kernel smoother has a
large impact on results. Especially the decision on the bandwidth is a great practical problem
(Cortese et al., 2010). As the implemented program provides only the final estimates of the
cumulative effect functions, an additional transformation is required by the user to obtain the
estimated time-varying effects. In our simulation study, we were forced to exclude this ap-
proach, as it showed severe instability, which could not be sufficiently repaired by adaptation
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of the smoothing parameters. These findings may be due to specific patterns in the data,
but demonstrate the need for a critical check of the derived model to exclude a distortion of
the algorithm by special patterns in the data or suboptimal parameter choices.

The Empirical Bayes model can easily be applied also by users less experienced in Bayesian
modelling, as it does not require decisions on the mixing of Markov chains and shows similar
performance than an equivalent full Bayes approach (Kneib and Fahrmeir, 2007). The spline
based technique for modelling of time-varying effects is very flexible and, as the smoothing
parameters are simultaneously estimated, does not require user based decisions on these
critical parameters. Furthermore, the default number and location of knots seem to work
pretty well in our examples. Yet, the approach can be rather time-consuming, especially
with a larger number of covariates. As it does not include automated selection strategies,
the candidate models are compared with respect to a goodness-of-fit criterion such as the
Akaike information criterion (AIC) or Bayesian information criterion (BIC). This fact makes
it difficult to evaluate the approach in simulation studies where automated selection proce-
dures are required.

The FPT approach is due to the limited class of FPs potentially less flexible than nonpara-
metric or spline based approaches. The global FP functions are likewise the weakness and
the strength of this approach. They provide concise formulae of the functional form of time-
varying effects, which are easy to interpret. The global nature also ensures estimates that
are mostly robust to locally extreme patterns in the data and thus helps to avoid overfitting
and allows better generalisability. The same characteristic, though, may let relevant local
patterns with rapid changes over a short time-period remain uncovered with FPs of maxi-
mum degree 2. Yet, FPs provide sufficient flexibility to describe a broad variety of functional
forms (Royston and Sauerbrei, 2008, chap. 4.5). Govindarajulu et al. (2007) even found that
FPs are least biased in some settings compared to several competitive smoothing methods
(e.g. splines) for fitting non-linear covariate effects. In a similar framework Holländer and
Schumacher (2006) show that FPs perform best in terms of type I error and mean abso-
lute error. Within the scope of time-varying effects, Ng’Andu (1997) shows that the time-
dependent covariate test, on which the FPT algorithm is based, is one of the best among
several alternative tests on the PH assumption.

However, all investigated approaches may show boundary artefacts in the estimated time-
varying effects. Kernel smoothers and splines of degree ≥2 are known to be prone to
extreme behaviour beyond the boundary knots, while the FPs may show artefacts due to
their global nature. For the latter especially the default transformation log(t) may show
artefacts towards zero. Being aware of this characteristic, analysts would not change their
interpretation of the effect. For example, a logarithmic decay of the effect (converging to
infinity for t ↓ 0) basically indicates a very strong initial effect that diminishes strongly within
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a short time.

To sum up, all approaches under investigation have their assets and drawbacks. As the
Empirical Bayes model, the Semiparametric Extended Cox model and FPT all perform quite
well in the examples and do not suffer from severe theoretical or technical problems, they
seem preferable. Yet, the Semiparametric Extended Cox model has been developed mainly
for testing purposes. With a special emphasis on the modelling of time-varying effects, this
approach may be less adequate. Furthermore, to our personal experience the Empirical
Bayes model and FPT are more user-friendly and less sensitive to parameters set by the
user. If the true effect shows considerable curvature within a short time-period, the global
functions of the FPT approach will likely be not flexible enough to describe this effect and the
spline-based Empirical Bayes model may be preferable. On the contrary, the latter approach
may be more prone to locally extreme behaviour in the data and may have some drawbacks
in interpretability and generalisability of estimated effects.

After thus exploring and comparing available proposals in examples, we turned to the second
focus of this work, the assessment of the properties of the FPT approach. We conducted
a large simulation study based on a variety of different time-varying effects, which are of
potential interest in medical applications. For the univariate settings, we simulated data for
ten different effects, up to four different sample sizes, varying proportion of censoring and
two distributions of the variable (binary and standard normal). The simulation study shows
that FPT approximately holds the nominal significance level in case of PH. The power, on
the contrary, strongly depends on the specific effect and parameter settings. In general,
it improves in settings with standard normal variable compared to binary variable and with
increasing sample size. The time-varying effects under investigation include members of
the FP class, similar functions and complex non-FP functions, which are useful for assess-
ing the performance of FPT in situations where the true effect is too complex to be fully
recovered. For the latter class of functions, the test on the presence of time-varying effects
performs extremely well. As expected, FPs of maximum degree 2 are not flexible enough
to describe such curvatures. FPs of higher degree could solve this problem, but at the cost
of much higher computational effort and increased model complexity which is not always
desirable. However, estimated effects show at least the general trend of the true effects in
most situations. For the non-linear decreasing effects which are similar to the default trans-
formation, FPT performs extremely good in terms of both testing and modelling. For other
shapes, it shows some difficulties. These results are mainly due to two characteristics of
the FPT algorithm: (i) the test on FP2 functions in the hierarchical closed test procedure
and (ii) the choice of log(t) as a default transformation. The test on FP2 functions implies
wasting degrees of freedom, if the true function is less complex. Restricting the algorithm to
FPs of maximum degree 1 improves the power for the increasing effects. Hence, if subject
matter knowledge suggests a simple monotone shape of the underlying effects, restricting
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the maximum complexity may improve the power of the algorithm. Yet, this restriction can
similarly lead to a loss in power if the true effect is more complex. Furthermore, the default
transformation log(t) was detected as a source of inflated qualitative type II error, if the true
effect differs from the logarithmic shape. For log-like effects, on the contrary, it achieves its
purpose of stabilising selected functions and controls the qualitative type II error.

The multivariable settings contain five variables, two of which have a time-varying effect,
and vary in the proportion of censoring and the correlation structure. In these settings, the
algorithm similarly holds the nominal significance level. While the results for the decreasing
time-varying effect are analogue to the univariate investigation, the power even improves
for the increasing effect. These results suggest that the algorithm reveals its full strength
particularly in multivariable analyses. Our investigations reveal no indication of a loss in
power for correlation between variables with and without a time-varying effect.

Summing up, the overall power of FPT is satisfactory and the algorithm performs well in
modelling most time-varying effects. Furthermore, it is shown to be superior to standard
CoxPH analyses in terms of ABCtime and prediction error in nearly all parameter settings,
even if the true effect is too complex to be fully described by FPs of maximum degree 2.
Although the individual effect estimates vary more or less, depending on the scenario, the
pointwise mean over all estimates is in most scenarios reasonably close to the true effect.

As a third aspect of this work, we investigated the stability of the FPT algorithm by using
bootstrap replications of the Rotterdam breast cancer series. Comfortingly, this revealed
stable mean estimates. Although the majority of selected effects in general is in good agree-
ment with the true effect (in the simulation study) and the reference effect in the original
data set (bootstrap investigation), individual effects may show deviant behaviour. This sug-
gests to base the selection and modelling of time-varying effects on bootstrap techniques
to account for model selection uncertainty. We proposed a modification of the FPT algo-
rithm, called BootstrapFPT, that selects time-varying effects only, if they are significant in
more than a pre-specified amount of bootstrap samples and/or out-of-bag samples. The
shape of the final time-varying effect may, for example, be chosen as the most frequently
selected FP transformation or the pointwise mean over all significant time-varying effects.
This strategy is in the style of bagging and model averaging techniques. For example, Sa-
banés Bové and Held (2010) recently proposed a model averaging approach to account for
model selection uncertainty for Bayesian FPs in modelling non-linear covariate effects in a
linear regression framework. They average over the set of possible models weighted by
the posterior model probabilities instead of relying on the model with the highest posterior
probability only. However, averaging the individual effects, rather than the complete model,
allows better interpretability of single effects. Although first results in the Rotterdam breast
cancer series are promising, the BootstrapFPT approach requires further investigation and
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fine-tuning to allow reliable conclusions about its performance.

This leads us to outstanding work and topics of interest warranting further research, such
as a potential improvement of the FPT approach by allowing for updating of FP functions in
analogy to Berger et al. (2003), who use a backfitting-type procedure. The FPT approach
utilises a forward selection approach for selecting time-varying effects in multivariable set-
tings. Once a time-varying effect has been selected, its FP powers remain fixed and are not
updated any more. The backfitting-type procedure of Berger et al. (2003), on the contrary,
iteratively updates the FP functions, adjusting for all other (potentially time-varying) effects,
until the selected FPs do not change any more. Such a modification may further improve
the FPT approach.
Another future goal is the extension of the simulation study to the complete MFPT algorithm
(Sauerbrei et al., 2007). This algorithm combines the MFP approach for selection of covari-
ates and functional forms of covariates with the FPT approach for modelling time-varying
effects. Such investigations are necessary to assess interactions between selection and
modelling of time-varying effects and inclusion of covariates and non-linear functional forms.
Mismodelling the latter issues can result in spurious time-varying effects. Hence, a good
model building strategy should address all three issues.
Among the five approaches under investigation, such an extension has been proposed only
for FPT, the Empirical Bayes model and the Semiparametric Extended Cox model. However,
with the latter the focus lies on mere testing, rather than modelling of a potential non-linear
effect. The Empirical Bayes model and FPT also tackle the modelling task. Yet, especially
with a large number of potential covariates, the model building procedure for the former may
become extremely time consuming, as it considers all three modelling variants simultane-
ously. The MFPT approach, on the contrary, uses a hierarchical structure dealing first with
variable selection and identification of non-linear effects before investigating time-varying ef-
fects, which gives a clear priority to non-linear effects. However, Binquet et al. (2008) argue
that such a step-wise procedure may lead to biased estimates and/or incorrect conclusions
and hence propose to consider both aspects simultaneously, as proposed by Abrahamowicz
and MacKenzie (2007). They state that a priori testing on log-linear effects may induce (i) an
increased number of spurious non-linear effects and/or (ii) incorrect exclusion of covariates
whose time-varying effects appear non-significant when ignoring the time-dependency. The
latter issue is directly addressed by step 2 of the MFPT algorithm, which restricts the inves-
tigation period to a short-term interval to add effects that have been overlooked for exactly
this reason. However, we cannot disprove the former claim theoretically. Investigation of this
point would be subject of the aforementioned simulation study.

Over all, investigation of time-varying effects is most important in large studies with long-
term follow-up and several covariates. In addition, other modelling issues such as selection
of covariates and non-linear covariate effects have to be addressed. This can be done, for
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example, by the first two steps of the MFPT algorithm. Yet, the focus of this thesis is on the
detection and modelling of time-varying effects for a given model.
The simulation study on properties of the FPT approach shows that the algorithm yields sat-
isfactory power for stronger time-varying effects. The pointwise means of effect estimates
are reasonably close to the true effects. Even if the time-varying effects are too complex to
be fully recovered by FPs, the performance of the FPT procedure is still superior to a stan-
dard CoxPH model, simply because of accounting for the general trend of the time-varying
effect. For several time-varying effects, a forward selection procedure is proposed which
may be further improved by bootstrap based selection techniques and/or a backfitting-type
algorithm. In a comparison of five recent approaches for modelling time-varying effects in
single examples, the only serious competitor to FPT in terms of selection and modelling
of time-varying effects as well as usability seems to be the Empirical Bayes model. Con-
sequently, we deem the FPT approach a promising, flexible and easy to use technique for
selection and modelling of time-varying effects with satisfactory properties.





Appendix A

Results of the comparison of
different approaches

This chapter includes supplementary material to the analyses of the Rotterdam breast can-
cer series and the simulated data example presented in Chapter 4.1.3.
Figure A.1 contrasts the time-varying effects selected by MFPT with and without default
time-transformation log(t) in the analysis of the Rotterdam breast cancer series. All sub-
sequent tables and figures give additional information about the selection procedures of the
five competitive approaches in a simulated data set as presented in Chapter 4.2.
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X2
5e: virtually identical functions log(X6): identical functions

X8: different function, shape differs slightly X9: different function, similar shape

Figure A.1: Comparison of the FPT algorithm with (———) and without (- -- -- -) default transforma-
tion log(t).
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best FP2 best FP1 default p values (test vs. best FP2)
Variable powers deviance power deviance deviance constant default best FP1

Iteration 1
X1X1X1 -1 -1 113.297 0 97.490 97.490 0.0000 0.0012 0.0004
X2 -2 0 22.610 0.5 18.624 15.851 0.0002 0.0800 0.1362
X3 -0.5 -0.5 7.420 -2 2.281 0.298 0.1153 0.0681 0.0766
X4 3 3 5.349 2 4.242 1.214 0.2533 0.2472 0.5748
X5 -1 3 9.311 -0.5 5.868 5.197 0.0538 0.2495 0.1788

Iteration 2
X2X2X2 -2 0 20.016 0.5 16.038 13.264 0.0005 0.0802 0.1368
X3 -0.5 -0.5 9.938 0.5 4.098 3.055 0.0415 0.0757 0.0539
X4 3 3 4.921 2 4.065 0.595 0.2955 0.2284 0.6520
X5 -0.5 3 16.278 -0.5 13.118 11.582 0.0027 0.1955 0.2060

Iteration 3
X3 1 2 10.144 0.5 4.670 3.637 0.0381 0.0894 0.0648
X4 3 3 6.613 2 5.644 1.600 0.1578 0.1708 0.6160
X5 -0.5 3 12.448 -0.5 9.868 7.719 0.0143 0.1927 0.2752

Table A.1: Forward selection based on deviance differences for FPT in a simulated data set.
Covariates for which time-varying effects are selected are in bold.

Variable best power(s) p value

Iteration 1
X1X1X1 -2 <<<0.001
X2X2X2 0 <<<0.001
X3 0 0.038
X4 2 0.035
X5 3 0.234

Iteration 2
X1X1X1 -0.5 <<<0.001
X2X2X2 0 <<<0.001
X3X3X3 0 0.007
X4 2 0.036
X5 -0.5 0.134

Variable best power(s) p value

Iteration 3
X1X1X1 -0.5 <<<0.001
X2X2X2 0 <<<0.001
X3X3X3 0 0.007
X4 2 0.036
X5 -0.5 0.134

Table A.2: Backfitting algorithm based on likelihood ratio tests for the Dynamic Cox model in
a simulated data set. Covariates with significant time-varying effects are in bold.
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Variable AICc

Iteration 0
PH 2767.53

Iteration 1
X1X1X1 2667.20
X2 2751.37
X3 2767.36
X4 2766.98
X5 2766.25

Iteration 2
X2X2X2 2654.99
X3 2663.29
X4 2667.26
X5 2666.08

Variable AICc

Iteration 3
X3X3X3 2650.93
X4 2651.90
X5 2655.80

Iteration 4
X4X4X4 2647.38
X5 2651.66

Iteration 5
X5 2648.79

Table A.3: Forward selection procedure based on the AICc for the Empirical Bayes model
in a simulated data set. Covariates for which time-varying effects are selected are in bold.

Variable p value

Iteration 1
X1 0.000
X2 0.000
X3X3X3 0.167
X4 0.001
X5 0.102

Iteration 2
X1 0.000
X2 0.000
X4 0.000
X5X5X5 0.011

Iteration 3
X1 0.000
X2 0.000
X4 0.000

Table A.4: Backward elimination based on p value of the variance weighted Kolmogorov-
Smirnov type test for the Semiparametric Extended Cox model in a simulated data set.
Covariates for which time-varying effects are eliminated from the model are in bold.
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(a) Rank 1: AIC=5536.64 (b) Rank 2: AIC=5443.81

(c) Rank 3: AIC=5439.60 (d) Rank 4: AIC=5444.55

(e) Rank 5: AIC=5447.94

Figure A.2: Estimated effects for different ranks of the Reduced Rank model in a simulated
data set for covariates X1 (———), X2 (———), X3 (———), X4 (———), X5 (———). The rank 3 model has the
smallest AIC and r = 3 is therefore chosen as the optimal rank.
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Figure A.3: True cumulative baseline hazard (———) and cumulative baseline estimated by the
Semiparametric Extended Cox model (———) in a simulated data example.



Appendix B

Categorisation of survival times1

Some methods for modelling time-varying effects, such as the FPT algorithm, require an
artificial enlargement of the data set for computational reasons. The observations under risk
are split into episodes at specified time points, ideally at each event time. As the investigation
of time-varying effects is most sensible with long-term follow-up and requires large data sets
in order to have some power to detect interaction with time, splitting at each event time may
cause technical problems. In the Rotterdam breast cancer series, for example, a split at
each event time would lead to more than 2.2 million data lines. To reduce the computational
effort, Sauerbrei et al. (2007) propose to ’categorise’ survival times in half-year periods up to
year 15 and a final period >15 years. This results in 31 distinct time points for categorised
survival time t and a manageable 35,698 data lines.

To investigate the influence of categorisation of survival time on the three steps of the MFPT
algorithm including variable selection, selection of functional forms and selection of time-
varying effects, we apply the algorithm to two data sets with survival times categorised in 1,
3, 6, 12 and 24 month intervals.

In the Rotterdam breast cancer series (with uncategorised survival time and variables not
centred around their mean), the final model derived by MFPT contains eight covariates,
including two non-linear and two time-varying effects. Models selected on the data with
survival time categorised in intervals up to 12 months are nearly identical (see Table B.1).
The binary variables X3a, X3b, X4, X8 and X9 and the continuous variables X1 (linear), X5e

(power 2) and X6 (power 0) are selected. For log(X6 + 1) and X3a a time-varying effect
of the type β(t) = β0 + β1 log(t) is also included. Minor exceptions from this model are
observed for 12 month categorisation (power 3 instead of 2 for X5e) and for categorisation
in 1 month intervals (time-varying effect of X3a excluded and replaced by two time-varying
effects for X5e and X9). The latter difference is a result of similar deviance differences for

1Large parts of this section match the manuscript Buchholz et al. (2009) submitted for publication.
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X3a (17.518, original time) and X5e (17.497, original time) in the second iteration of the third
step of the MFPT algorithm. Minor changes of the data result in a larger value for X5e. Even
for categorisation in 2 year intervals (only eight distinct event times), most parts of the model
are identical.

Using the model selected with MFPT in the original data, we compare the influence of cate-
gorisation on the eight estimated time-constant and the four time-varying (β0 and β1 for X3a

and log(X6 + 1)) coefficients. Altogether differences are small, but get larger with increas-
ing interval length. With exception of X3a, the relative difference is below 1% for coefficients
when using 1 month categorisation. Differences of the four time-varying coefficients are
between 2.2% and 4.2%. For half year intervals, differences are between 1.9% and 5.1%
(except for X3b with 12%) for time-constant coefficients and between 8.8% and 16.4% for the
time-varying coefficients. With 1 year intervals, the relative difference is below 10% for most
estimates, but large for some. For 2 year intervals, though, estimates differ severely. In gen-
eral, time-constant coefficients estimated with categorised survival time are closer to zero
than those for original time, that is the effects of factors are underestimated. On the con-
trary, most estimated time-varying coefficients show increased effect sizes. They also show
larger deviations from original time than the time-constant coefficients, because categorised
times are given by mean survival times within the categorisation intervals. That is, different
categorised survival times will be assigned to subjects for varying interval widths which has
a larger impact on time-varying than on time-constant effects. The time-varying effects for
X3a and log(X6 + 1) are shown in Figure B.1. As can easily be seen, the functions are quite
similar. For X3a, the functions all lie within the pointwise confidence intervals for the original
time. For log(X6 + 1), estimates for 1 to 6 month intervals lie within the confidence inter-
vals, while the estimated function for 12 month categorisation lies only slightly outside the
confidence interval up to approximately three years and inside it for later time points. The
function for 2 year intervals is not covered by the confidence interval up to approximately
four years.

For very large data sets, e.g. registry data with hundred thousands of observations and
many covariates, a split at each event time would produce an exploding number of records,
i.e. memory problems increase considerably, and the expanded data set may be too large
for the model to be fitted. This is the case for the Whitehall I study (Marmot et al., 1984), a
prospective, cross-sectional epidemiological cohort study assessing risk factors for death of
male British Civil Servants employed in London. This data set with 17,260 patients (2269
distinct event times) leads to 30,852,449 records for a split at each event time, requiring more
than 2.7 GB of memory. With data sets of such magnitude, even larger compute servers
with more than 4 gigabyte of RAM may fail to provide the required amount of memory unless
they use a 64-bit operating system. Thus, for very large data sets, powerful computers with
special system requirements are necessary, so that many data analysts may not be able to
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Table B.1: Rotterdam data. Influence of length of time interval on selection of variables and
transformations by using MFPT. For steps 1 and 2 the selected FP powers are given, “-”
marking variables that have not been selected. FP powers selected in step 1 are kept fixed
in step 2 (indicated by “∼”). For step 3 the FP powers of selected time-varying effects are
displayed, with “-” indicating that no time-varying effect was selected (constant effect). Fields
marked by · indicate, that the variable was not selected in steps 1 and 2 and is therefore no
candidate in step 3.

Original Interval length (months)

data 1 3 6 12 24

continuous factors

X1 Step 1 1 1 1 1 1 1
Step 2 ∼ ∼ ∼ ∼ ∼ ∼
Step 3 - - - - - -

X5e Step 1 2 2 2 2 3 3
Step 2 ∼ ∼ ∼ ∼ ∼ ∼
Step 3 - 0 - - - -

X6 Step 1 - - - - - -
Step 2 0 0 0 0 0 0
Step 3 0 0 0 0 0 0

X7 Step 1 - - - - - -
Step 2 - - - - - -
Step 3 · · · · · ·

binary factors

X2 Step 1 - - - - - -
Step 2 - - - - - -
Step 3 · · · · · ·

X3a Step 1 1 1 1 1 1 1
Step 2 ∼ ∼ ∼ ∼ ∼ ∼
Step 3 0 - 0 0 0 -

X3b Step 1 - - - - - -
Step 2 1 1 1 1 1 -
Step 3 - - - - - ·

X4 Step 1 1 1 1 1 1 1
Step 2 ∼ ∼ ∼ ∼ ∼ ∼
Step 3 - - - - - -

X8 Step 1 1 1 1 1 1 1
Step 2 ∼ ∼ ∼ ∼ ∼ ∼
Step 3 - - - - - -

X9 Step 1 1 1 1 1 1 1
Step 2 ∼ ∼ ∼ ∼ ∼ ∼
Step 3 - 0 - - - -



134 B. Categorisation of survival times

Figure B.1: Rotterdam data. Effect of different categorisation intervals on the estimated
functions of the two selected time-varying effects for X3a (left) and log(X6 +1) (right). Shown
are effects estimated in the original data (———) with pointwise 95% confidence intervals (———)
together with estimates based on categorised survival times in 1 (———), 3 (———), 6 (———), 12 (———),
and 24 (———) months.

fit the models with uncategorised survival time any more.

With respect to selected models and parameter estimates, the MFPT procedure gives similar
results for small categorisation intervals. Selected models are quite stable with differences
only for single factors. Estimated effects are also very similar and effect sizes tend to be
underestimated with categorised time. Even for moderately large data sets, such as the
Rotterdam breast cancer series, interval lengths of up to three or six months give accept-
able results with differences in estimated coefficients mainly below 5% for time-constant
effects. Intervals larger than six months are not advisable any more in this data set. For the
larger Whitehall data set, differences diminish (data not shown). Selected models are nearly
identical for all categorisation lengths. For time-constant effects, differences in estimated co-
efficients are negligible for smaller intervals. Up to three or six months, differences are below
1.5%, and even for 12 and 24 months most differences remain below 5%. Time-varying ef-
fects, though, are more affected by categorisation. However, functions are still very similar
for categorisations up to about three or six months. The results from these two data sets
indicate, that the influence of categorisation of survival time seems to decrease for increas-
ing sample size, and that the MFPT procedure is to some extent robust to categorisation.
Thus, we believe that for extremely large data sets, where categorisation of survival time
is required the most, categorisation in reasonably small intervals will allow an expansion of
the data without harming estimates too much. Based on our limited experience in these two
studies, we propose that about 50 to 100 distinct event times can give results with sufficient
precision.



Appendix C

Details on generated survival times

C.1 Univariate settings

The distribution of simulated survival times vary over the different parameter settings, de-
pending on the effect, the proportion of censoring and the distribution of the variable. The
median survival times range between 0.8 and 6.7 (Table C.1). For binary variable, it tends to
be smaller for decreasing effects, that have a strong effect initially. For normal variable, on
the contrary, the median survival time is relatively similar for the different effects and varies
only with varying proportion of censoring. With the chosen parameter settings for the base-
line hazards, median survival times increase with increasing proportion of censoring. The
median follow-up time (calculated by the reverse Kaplan-Meier method, Altman et al., 1995)
simultaneously decreases from light to heavy censoring (Table C.1).

Furthermore, for most scenarios, generated uncensored event times tend to be larger for
normal X, than for binary variable. To illustrate this, Figure C.1 shows several quantiles of
uncensored event times. The lines connect quantiles of uncensored event times of binary

Sample Cen- Effects

X size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

binary 1000 no 1.5 0.8 1.4 1.3 1.7 1.5 2.2 - - -
binary 1000 light 2.3 1.2 2.2 2.1 2.5 2.2 3.2 3.0 3.2 2.5
binary 1000 heavy 4.5 - - 5.0 - 3.9 - 4.4 6.6 5.8

normal 1000 no 2.2 - - 2.1 - 2.0 2.2 - - -
normal 1000 light 3.3 3.0 3.2 3.1 3.3 2.9 3.0 3.1 3.2 3.2
normal 1000 heavy 6.5 5.8 6.3 6.4 6.7 5.2 - 4.8 5.5 6.3

Table C.1: Median survival time (Kaplan-Meier method) in univariate settings of the simula-
tion study.

135



136 C. Details on generated survival times

Sample Cen- Effects

X size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

binary 1000 light 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9
binary 1000 heavy 3.5 3.5 - 3.5 - 3.5 - 3.5 3.5 3.5

normal 1000 light 7.0 7.0 7.0 7.0 7.0 7.0 6.9 7.0 6.9 6.9
normal 1000 heavy 3.5 3.5 3.5 3.5 3.5 3.5 - 3.5 3.5 3.5

Table C.2: Median follow-up time (reverse Kaplan-Meier method) in univariate settings of the
simulation study.

Figure C.1: Quantiles of event times for simulated data sets in the main setting (n = 1000,
light censoring). Lines link the quantile of event times for binary X with the corresponding
quantile of the same scenario with standard normal X.

and standard normal variables per effect. For most scenarios, generated uncensored event
times tend to be larger for normal X. This can be explained by the larger variation of standard
normal X values. The large majority of values scatters around zero, i.e. the impact of
the variable on survival is less pronounced, leading to generation of larger survival times.
Simultaneously, though, some extremely large values of X may occur. This leads to another
phenomenon that can be observed for scenarios with strong effect ((Ls), (Ds), (Is), (S) and
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Figure C.2: Density scatterplot of uncensored event times vs. values of the covariate X
(binary and standard normal) in scenario (Ds) with sample size 1000 and light censoring.

(Bw)). In addition to the general trend of increased event times for normal variable, an
increased number of very small times is generated. These occur mainly for large values of
X, as exemplarily shown in Figure C.2 for effect (Ds). The density scatter plot shows the
combinations of uncensored event times and X for both normal and binary variable. The
grey lines mark the 5%, 25%, 50%, 75% and 95% quantiles of uncensored event times,
respectively. It can easily be seen, that large values of X solely involve extremely small
event times. A strong effect even enforces this relationship. Small and moderate values of X
on the contrary, result in generation of larger event times. Hence, the more extreme values
of standard normal variables compared to binary X lead to more extreme event times on
both sides.

A different behaviour is observed for the scenarios with effects Iw and Bs, which increase
for larger event times. For these effects, event times for normal variable are smaller than for
binary X.
Changes in generated event times also affect the censoring rates. The censoring rates over
all data sets differ between 20% and 35%, depending on the specific scenario. As shown
in Table C.3, the smallest censoring rate of 20.3% for light censoring, is observed for the
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Sample Cens- Effects

X size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

binary 1000 light 25.8 20.3 25.6 25.6 27.9 24.8 30.2 27.9 31.0 27.9
binary 1000 heavy 57.0 - - 57.4 - - - 58.0 63.6 60.4

normal 1000 light 35.2 32.6 32.8 31.7 32.7 34.8 30.1 34.9 31.2 32.0
normal 1000 heavy 64.7 58.5 63.0 62.8 65.2 60.9 - 61.8 60.9 63.4

Table C.3: Censoring rate over simulated data sets per scenario (in %) in univariate settings.

combination of binary variable and strong linear decreasing effect (Ls), which corresponds
to a very strong average population effect of 1.73 (Table 6.1). The largest proportion of cen-
soring (35.2% and 64.7% for light and heavy censoring, respectively) occurs for constant
effect (C) and standard normal variable. In general, censoring rates are larger for standard
normal variables. This can be explained by the larger event times generated for these sce-
narios. Because the censoring times are unaffected by the effect and covariate values, the
proportion of censoring increases.

Figures C.3 and C.4 show the survival probabilities and the probabilities of not being cen-
sored (reverse Kaplan-Meier) for the different effects with sample size 1000 and light cen-
soring. The censoring distribution is identical in all scenarios, while the event distributions
change depending on the distribution of X and the effect. In general, survival probabilities
for standard normal variable tend to be larger than for binary X, as explained before. The
decrease in survival probability early in time, is more or less pronounced, depending on the
effect. Effects of same type, i.e. linear decreasing, non-linear decreasing, increasing or
bathtub, show very similar survival and censoring distributions.

For constant effect (C), the decrease is moderate (Figures C.3a and C.3b). Effects like (Ds)
and (Dw), which diminish quickly, or (Iw) which rises slowly, show larger survival probabilities
with a less pronounced initial decrease. Similar survival curves are observed for the bathtub
effects (Bs) and (Bw), which are comparable to the decreasing effects early in time. The
increase later in time has less influence on survival probability, which already is rather low.
A steeper increase than for the constant effect can be observed for the linear decreasing
effects (Ls) and (Lw) and the effect (Is), which rises quickly. The survival probability for the
sigmoid effect (S), initially shows a moderate decrease, but steadily falls to a low level due
to the sudden increase of the effect up to year five.
In general, with the current choices of baseline hazards, the survival probability tends to be
largest for scenarios with heavy censoring, followed by the data sets with light censoring.
Uncensored settings show the smallest survival probability. Survival and censoring distri-
butions are exemplarily shown for effects (C), (Ds) and (Is) with standard normal variable
(Figure C.5).
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(a) (C) X binary (b) (C) X normal

(c) (Ls) X binary (d) (Ls) X normal

(e) (Ds) X binary (f) (Ds) X normal

Figure C.3: Survival probability (———) and 1-censoring probability (———) for effects (C), (Ls) and
(Ds) (· · ·· · ·· · ·) with light censoring.
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(a) (Is) X binary (b) (Is) X normal

(c) (S) X binary (d) (S) X normal

(e) (Bw) X binary (f) (Bw) X normal

Figure C.4: Survival probability (———) and 1-censoring probability (———) for effects (Is), (S) and
(Bw) (· · ·· · ·· · ·) with sample size 1000 and light censoring.



C.1 Univariate settings 141

(a) (C) heavy censoring (b) (C) no censoring

(c) (Ds) heavy censoring (d) (Ds) no censoring

(e) (Is) heavy censoring (f) (Is) no censoring

Figure C.5: Survival probability (———) and 1-censoring probability (———) for effects (C) (· · ·· · ·· · ·, top),
(Ds) (· · ·· · ·· · ·, middle) and (Is) (· · ·· · ·· · ·, bottom) with heavy (left) and no (right) censoring and sample
size 1000 with standard normal variable.
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C.2 Multivariable settings

In the multivariable settings, median survival and follow-up time strongly depend on the pa-
rameter settings (Table C.4). With the current choices, it increases with larger proportion of
censoring, where light censoring corresponds to on average 27% of censoring and heavy
censoring to about 50%.
Survival and censoring distributions are virtually identical for settings with and without corre-
lation between X1 and X4. Kaplan-Meier and reverse Kaplan-Meier curves are exemplarily
shown for the uncorrelated settings in Figure C.6.

Median Median Mean proportion
ρX1,X4 Censoring survival time follow-up time of censoring

0 heavy 4.4 4.6 49.7
0 light 2.1 7.0 27.1
0 no 1.2 - 0.0

0.5 heavy 4.3 4.6 49.5
0.5 light 2.1 7.0 27.3
0.5 no 1.2 - 0.0

Table C.4: Median survival and follow-up time (Kaplan-Meier and reverse Kaplan-Meier
method) and mean proportion of censoring in multivariable settings.
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(a) heavy censoring

(b) light censoring

(c) no censoring

Figure C.6: Survival probability (———) and 1-censoring probability (———) in multivariable settings
without correlation.





Appendix D

Supplementary information on the
simulation study

Following are tables and figures with results of the simulation study as supplementary ma-
terial to the results presented in Chapter 6.

D.1 CoxPH

Sample Cen- Effects

X size soring (C) (Ls) (Lw) (Ds) (Dw) (Is) (Iw) (S) (Bs) (Bw)

binary 250 light 0.81 - - 0.78 - 1.01 - - - -
500 light 0.81 - - 0.77 - 1.01 - - - -

1000 heavy 0.80 - - 0.72 - 1.08 - 0.90 0.32 0.53
1000 light 0.80 1.78 0.80 0.76 0.52 1.01 0.33 0.69 0.24 0.52
1000 no 0.80 1.84 0.82 0.80 0.40 0.96 0.30 - - -
3000 light 0.80 1.77 0.81 0.76 0.39 1.01 0.34 - - -

normal 250 light 0.80 - - 0.76 - 0.76 - - - -
500 light 0.80 - - 0.75 - 0.76 - - - -

1000 heavy 0.79 1.67 0.81 0.77 0.38 0.67 0.32 -0.08 0.47
1000 light 0.80 1.53 0.75 0.75 0.51 0.76 0.04 0.36 0.06 0.49
1000 no 0.80 - - 0.71 - 0.79 0.11 - - -
3000 light 0.80 - - 0.75 - 0.77 0.04 - - -

Table D.1: Mean of effects estimated by CoxPH in univariate settings.
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D.2 FPT

D.2.1 Univariate settings

(Iw) Weak increasing effect (Bs, Bw) Bathtub-shaped effect with
strong (—) and weak (- -) end

Figure D.1: Time-varying effects with artificial asymptote.

frequency (in %)

FP powers X binary X standard normal

p1 p2 heavy censoring light censoring heavy censoring light censoring

0 16.0 0.6
0 0 0.7 0.6 8.3 14.6
0 0.5 0.1 0.9 7.6 9.7

0.5 16.8 2.0 2.5 0.8
0.5 0.5 0.1 0.3 1.4 0.3
1 48.4 59.9 14.4 1.9
1 1 0.3 1.9
1 2 0.4 22.0 58.3
1 3 4.8 5.1
2 1.8 21.5
2 2 5.1 1.2 37.5 6.6
2 3 4.0 3.9 0.8
3 3 2.8 8.2

and 11 further FPs with
frequency <1%

and 8 further FPs with
frequency <1%

and 3 further FPs with
frequency <1%

and 2 further FPs with
frequency <1%

Table D.2: FP powers of estimated time-varying effects for sigmoid effect (S) with binary and
standard normal variable.
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(a) n = 250, light censoring (b) n = 500, light censoring

(c) n = 1000, heavy censoring (d) n = 1000, light censoring

(e) n = 1000, no censoring (f) n = 3000, light censoring

Figure D.2: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean (- -- -- -) and 95% empirical confidence intervals (· · ·· · ·· · ·) for effect (Is).
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(a) (Bs) heavy censoring (b) (Bw) heavy censoring

(c) (Bs) light censoring (d) (Bw) light censoring

Figure D.3: True (———) effect, estimated time-varying (———) and time-constant (boxplot) effects,
pointwise mean (- -- -- -) and pointwise 95% empirical confidence intervals (· · ·· · ·· · ·) for effects (Bs)
(left) and (Bw) (right) for light (bottom) and heavy (top) censoring with sample size 1000 and
binary variable.
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Sample Cen- FPT CoxPH

size soring [0,2.5] [0,5] [0,7.5] [0,10] [0,2.5] [0,5] [0,7.5] [0,10]

(C) 250 light -5.95 -7.95 -8.26 -7.98 -5.96 -7.95 -8.26 -8.02
(C) 500 light -6.02 -8.08 -8.38 -8.13 -6.03 -8.07 -8.39 -8.15
(C) 1000 heavy -3.91 -6.20 -7.54 -8.20 -3.92 -6.21 -7.54 -8.21
(C) 1000 light -6.06 -8.12 -8.43 -8.19 -6.07 -8.12 -8.44 -8.20
(C) 1000 no -7.45 -8.50 -8.14 -7.78 -7.44 -8.49 -8.14 -7.79
(C) 3000 light -6.07 -8.15 -8.48 -8.22 -6.09 -8.15 -8.47 -8.24

(Ls) 1000 light -47.09 -43.10 -36.88 -32.66 -47.00 -43.04 -36.82 -32.63
(Ls) 1000 no -48.96 -38.82 -32.71 -29.91 -48.95 -38.80 -32.71 -29.92
(Ls) 3000 light -47.23 -43.22 -36.98 -32.75 -47.02 -43.10 -36.88 -32.71

(Lw) 1000 light -8.53 -10.03 -9.62 -8.93 -8.43 -9.99 -9.59 -8.89
(Lw) 1000 no -10.30 -10.55 -9.65 -9.09 -10.22 -10.51 -9.62 -9.07
(Lw) 3000 light -8.66 -10.11 -9.71 -9.01 -8.46 -10.02 -9.63 -8.93

(Ds) 250 light -11.56 -9.93 -8.43 -7.52 -10.91 -9.73 -8.24 -7.31
(Ds) 500 light -12.14 -10.34 -8.90 -7.98 -10.93 -9.79 -8.37 -7.44
(Ds) 1000 heavy -7.09 -6.65 -5.85 -5.34 -6.24 -6.32 -5.54 -5.01
(Ds) 1000 light -12.23 -10.44 -9.01 -8.10 -10.85 -9.80 -8.41 -7.48
(Ds) 1000 no -15.65 -12.53 -10.80 -10.01 -14.06 -11.69 -10.05 -9.28
(Ds) 3000 light -12.28 -10.49 -9.06 -8.14 -10.89 -9.84 -8.45 -7.52

(Dw) 1000 light -2.84 -2.41 -2.03 -1.76 -2.91 -2.51 -2.11 -1.82
(Dw) 1000 no -2.59 -2.44 -2.14 -1.97 -2.54 -2.42 -2.09 -1.90
(Dw) 3000 light -3.09 -2.72 -2.41 -2.17 -2.61 -2.51 -2.23 -2.00

(Is) 250 light -6.49 -11.38 -12.38 -11.99 -6.52 -11.40 -12.43 -12.14
(Is) 500 light -6.55 -11.52 -12.54 -12.18 -6.58 -11.53 -12.57 -12.27
(Is) 1000 heavy -4.42 -10.59 -14.79 -16.71 -4.47 -10.60 -14.78 -16.76
(Is) 1000 light -6.61 -11.60 -12.65 -12.31 -6.59 -11.57 -12.62 -12.33
(Is) 1000 no -7.73 -10.52 -10.30 -9.79 -7.66 -10.48 -10.28 -9.78
(Is) 3000 light -6.70 -11.69 -12.75 -12.43 -6.57 -11.60 -12.66 -12.38

(Iw) 1000 light -0.06 -0.36 -0.86 -1.25 -0.01 -0.29 -0.81 -1.16
(Iw) 1000 no -0.09 -0.44 -0.70 -0.79 0.00 -0.35 -0.64 -0.74
(Iw) 3000 light -0.13 -0.45 -0.93 -1.35 -0.02 -0.29 -0.82 -1.18

(S) 1000 heavy 0.02 -3.99 -12.15 -15.94 1.40 -2.97 -10.66 -14.06
(S) 1000 light 0.10 -3.25 -6.46 -7.02 2.02 -1.75 -4.78 -5.42

(Bs) 1000 heavy -0.51 -0.23 -0.10 -0.07 -0.63 -0.21 0.06 0.04
(Bs) 1000 light -0.73 -0.43 -0.33 -0.30 -0.70 -0.38 -0.26 -0.25

(Bw) 1000 heavy -3.97 -2.94 -2.22 -1.89 -3.34 -2.75 -2.01 -1.61
(Bw) 1000 light -6.71 -4.99 -4.06 -3.59 -5.54 -4.50 -3.56 -3.06

Table D.3: Median difference (%) of IPEC to the Kaplan-Meier estimate (dIPEC) over differ-
ent intervals [0,τ ] for FPT and CoxPH in univariate settings with binary X.
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Figure D.4: Relation between the values of the standard normal variable X and uncensored
event times for effect (Is) with sample size 3000 and light censoring.



D.2 FPT 151

(a) Estimated effects (b) Estimated cumulative baseline hazards

(c) Estimated cumulative hazard functions

Figure D.5: Estimated effects (top left) and cumulative baseline hazards (top right) and cu-
mulative hazard functions (bottom) for effect (Is) with standard normal variable, n = 3000
and light censoring. FPT considerably underestimates the effect size, but simultaneously
overestimates the cumulative baseline hazard. Shown are the true effect, cumulative base-
line hazard and cumulative hazard (———), respectively, together with the estimates of all sim-
ulation runs (———).
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(b) X ∼ N(0, 0.25)
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(c) X ∼ N(0, 0.5)
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(d) X ∼ N(0, 1)
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(e) X ∼ N(0, 2)
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(f) X ∼ N(0, 4)

Figure D.6: Relation between the values of the variable X and uncensored event times
for effect (Is) for different variances of X in one data set with sample size 1000 and light
censoring.
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(a) Estimated effects (b) Estimated cumulative baseline hazards

(c) Estimated cumulative hazards

Figure D.7: Estimated effects (top left), cumulative baseline hazards (top right) and cumula-
tive hazards (bottom) for effect (Is) with n = 1000 and light censoring with changing variance
of the covariate: X binary with P(X = 1) = 0.5 (———), X ∼ N(0, 0.25) (———), X ∼ N(0, 0.5)
(———), X ∼ N(0, 1) (———), X ∼ N(0, 2) (———), X ∼ N(0, 4) (———) and true effect, cumulative
baseline hazard and cumulative hazard (- -- -- -), respectively.
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Figure D.8: pABCtime of effects selected by CoxPH and FPT relative to the true effect
function for effect (Bw) with binary variable, sample size 1000 and heavy (left) or light (right)
censoring.

Figure D.9: pABCtime of effects selected by CoxPH and FPT relative to the true effect
function for effect (S) with binary variable, sample size 1000 and heavy (left) or light (right)
censoring.
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Sample Cen- FPT CoxPH

size soring [0,2.5] [0,5] [0,7.5] [0,10] [0,2.5] [0,5] [0,7.5] [0,10]

(C) 250 light -17.50 -22.54 -23.98 -25.05 -17.50 -22.53 -23.98 -25.05
(C) 500 light -17.59 -22.62 -24.08 -25.17 -17.59 -22.62 -24.07 -25.17
(C) 1000 heavy -11.56 -17.17 -20.31 -21.74 -11.57 -17.18 -20.32 -21.74
(C) 1000 light -17.65 -22.69 -24.16 -25.26 -17.65 -22.67 -24.13 -25.24
(C) 1000 no -21.27 -24.34 -25.81 -26.25 -21.27 -24.32 -25.81 -26.25
(C) 3000 light -17.67 -22.71 -24.18 -25.28 -17.68 -22.70 -24.16 -25.28

(Ls) 1000 heavy -79.24 -81.70 -77.25 -70.51 -78.66 -81.38 -76.94 -69.48
(Ls) 1000 light -86.86 -84.95 -78.25 -70.35 -84.92 -83.68 -77.32 -68.66

(Lw) 1000 heavy -17.96 -22.32 -23.17 -21.99 -17.75 -22.25 -23.12 -21.78
(Lw) 1000 light -24.19 -26.61 -25.55 -23.78 -23.49 -26.25 -25.30 -23.38

(Ds) 250 light -34.65 -25.97 -21.44 -18.70 -30.78 -24.11 -19.50 -16.26
(Ds) 500 light -34.80 -26.08 -21.59 -18.86 -30.89 -24.23 -19.60 -16.34
(Ds) 1000 heavy -26.31 -20.87 -17.64 -15.46 -23.02 -19.47 -16.17 -13.48
(Ds) 1000 light -34.87 -26.19 -21.68 -18.97 -30.78 -24.27 -19.69 -16.41
(Ds) 1000 no -39.18 -29.00 -24.05 -21.57 -33.93 -26.56 -21.59 -18.61
(Ds) 3000 light -34.95 -26.25 -21.75 -19.04 -30.83 -24.34 -19.74 -16.41

(Dw) 1000 heavy -6.62 -6.29 -5.60 -5.03 -5.30 -5.74 -5.24 -4.66
(Dw) 1000 light -9.85 -8.06 -6.57 -5.61 -9.51 -7.94 -6.04 -4.48

(Is) 250 light -13.04 -19.12 -20.55 -20.45 -13.02 -19.09 -20.56 -20.53
(Is) 500 light -13.13 -19.23 -20.62 -20.40 -13.07 -19.14 -20.61 -20.59
(Is) 1000 heavy -7.71 -15.09 -18.09 -18.73 -7.63 -14.74 -17.69 -18.56
(Is) 1000 light -12.78 -18.84 -20.35 -20.36 -13.12 -19.21 -20.66 -20.65
(Is) 1000 no -16.30 -20.90 -21.79 -21.95 -16.04 -20.74 -21.80 -22.12
(Is) 3000 light -13.36 -19.40 -20.71 -20.40 -13.13 -19.23 -20.69 -20.68

(Iw) 1000 light 0.06 0.04 -0.03 -0.04 0.13 0.07 0.01 -0.03
(Iw) 1000 no 0.08 -0.16 -0.23 -0.22 0.16 -0.10 -0.20 -0.23
(Iw) 3000 light -0.05 -0.04 -0.12 -0.12 0.15 0.08 -0.01 -0.06

(S) 1000 heavy -1.90 -6.19 -12.94 -16.55 3.90 -0.70 -5.50 -7.99
(S) 1000 light -0.36 -4.16 -8.42 -10.98 4.59 -0.27 -4.20 -6.37

(Bs) 1000 heavy -0.09 -0.68 -1.38 -2.01 0.15 -0.28 -0.69 -0.93
(Bs) 1000 light -1.41 -0.76 -0.58 -0.56 -0.56 -0.26 -0.03 0.08

(Bw) 1000 heavy -13.97 -9.49 -6.78 -5.48 -10.23 -7.71 -4.71 -2.96
(Bw) 1000 light -20.19 -13.72 -10.52 -8.89 -15.98 -11.66 -8.08 -5.84

Table D.4: Median difference (%) of IPEC to the Kaplan-Meier estimate (dIPEC) over differ-
ent intervals [0,τ ] for FPT and CoxPH in univariate settings with standard normal X.
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D.2.2 Multivariable settings

Selection No censoring Light censoring Heavy censoring

sequence ρX1 ,X4 = 0 ρX1 ,X4 = 0.5 ρX1 ,X4 = 0 ρX1 ,X4 = 0.5 ρX1 ,X4 = 0 ρX1 ,X4 = 0.5

PH - - - - 2 1
X1 13 14 26 22 29 32
X1X2X1X2X1X2 828282 757575 616161 646464 424242 363636
X1X2X3 1 2 - - 1 1
X1X2X4 1 3 - - - -
X1X3 - - - - 1 -
X1X4 - - - - - 1
X1X5X2 - - - 1 - -
X2 - - 1 - 5 7
X2X1X2X1X2X1 333 666 111111 121212 202020 202020
X2X1X5 - - - - - 1
X2X3 - - 1 - - -
X2X4 - - - - - 1
X4X2 - - - 1 - -

Table D.5: Selection sequence for time-varying effects in the FPT approach in multivariable
settings.

ρX1,X4 Censoring X1 X2 X3 X4 X5

0 heavy 18.41 11.90 17.78 10.71 8.27
0 light 15.52 9.74 17.81 9.43 7.51
0 no 15.28 7.92 14.17 8.78 7.04

0.5 heavy 19.96 12.02 22.27 17.72 8.84
0.5 light 14.94 9.03 20.49 12.98 7.12
0.5 no 16.32 8.06 14.42 10.23 6.48

Table D.6: Median pABCtime for FPT in multivariable settings.

ρX1,X4 Censoring X1 X2 X3 X4 X5

0 heavy 57.74 23.81 20.13 11.40 8.04
0 light 59.02 24.87 19.59 10.21 8.71
0 no 62.40 26.76 14.79 9.08 7.14

0.5 heavy 57.63 23.77 21.35 16.33 8.22
0.5 light 59.36 25.01 20.82 12.61 7.29
0.5 no 63.63 26.74 15.12 9.91 6.67

Table D.7: Median pABCtime for CoxPH in multivariable settings.
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D.3 Semiparametric Extended Cox model

To explore the impact of the bandwidth on invertibility problems in our simulation study, the
bandwidth is increased from the default 0.5 to 0.7, 0.9, 1 and 1.5. For binary variable and
unweighted test, a type I error of approximately 1% is observed for bandwidth 0.9 that de-
creases further for larger bandwidths. With weighted test statistic, though, even with a band-
width of 5, the type I error is with about 6% still considerably inflated. With normal variable,
both test statistics approximately hold the nominal significance level of 1% for bandwidth
1.5. These results emphasise the impact of the chosen bandwidth on the test process (Fig-
ure D.10) and thus on the test results.

Although the type I error seems more or less sensible for these choices of bandwidth, the
estimation algorithm still issues a considerable amount of invertibility warnings. Hence, reli-
ability of the results is questionable.

To evaluate the impact of the bandwidth on estimated effect, reconsider the simulated data
set with five standard normal variables used in Section 4.2. Varying the bandwidth of the es-
timation algorithm with test version w = 1 leads to different conclusions about time-varying
effects.

For a bandwidth of 0.4, i.e. 40% of the range of the observation period, the backward elimi-
nation algorithm selects time-varying effects for X1, X2, X4 and X5. Increasing the bandwidth
to 0.5, 0.6 or 0.7 results in time-varying effects for X1, X2 and X4, while for bandwidths 0.9
and 1 only the effect of X1 is assumed to be time-varying. Although 0.4 is the smallest
bandwidth, for which the algorithm converged, the results obtained with the default band-
width 0.5 appear to be more stable. Using this bandwidth, the model selection procedure
correctly detects the two time-varying effects for X1 and X2, but additionally selects one
false positive time-varying effects for X4. However, none of the other bandwidths results in
the correct model either. With varying bandwidths for a fixed model, that is investigating
estimated effects without considering the test on time-varying effects, the effect estimates
are virtually identical over the first 20 years, but differ largely for later times where data gets
sparse (Figure D.11).

The impact of the bandwidth for smoothing of the final estimate B̂(t), i.e. for the local
smoother locfit, on the shape of estimated time-varying effects β̂(t) is more pronounced
even early in time. Figure D.12 shows the smoothed effects β̂(t) for five different bandwidths
between 0.2 and 1.2. As expected, the small bandwidths result in rather wiggly curves, while
the larger ones oversmooth the effects and eliminate most of the curvature. The default
bandwidth 0.7, though, seems to be a good compromise between both extremes, reflecting
the slope of B̂(t) without including too much noise.
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(a) Bandwidth=0.5 (b) Bandwidth=0.7

(c) Bandwidth=0.9 (d) Bandwidth=1

(e) Bandwidth=1.5 (f) Bandwidth=5

Figure D.10: Test process for different bandwidths within the Semiparametric Extended Cox
algorithm in a univariate setting with constant effect (C). The test decision changes with
changing bandwidth. For bandwidths 0.9, 1.5 and 5, the test on PH correctly decides on a
constant effect, while for bandwidths 0.5, 0.7 and 1 it is false positive.
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(a) Overview of the complete time period (b) Detailed view up to t =20

Figure D.11: Cumulative effects obtained for different bandwidths within the Semiparametric
Extended Cox algorithm in the simulated data. Given are the cumulative time-varying effects
B̂(t) over the complete observed time period (left) and a detailed view on the period [0,20]
(right) with default bandwidth 0.5 (———) and bandwidths 0.4 (———), 0.6 (———), 0.7 (———), 0.8 (———),
0.9 (———) and 1.0 (———) for variable X1 of the simulated data set presented in Section 4.2 with
true effect function (Ds).

Figure D.12: Time-varying effects obtained for different bandwidths in the final smoothing
step of the Semiparametric Extended Cox model. Given are the cumulative time-varying
effect (———) and its smoothed derivatives β̂(t) with default bandwidth 0.7 (———) and bandwidths
0.2 (———), 0.5 (———), 0.9 (———) and 1.2 (———) for variable X1 of the simulated data set presented in
Section 4.2 with true effect function (Ds).
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