
1

HookScout: Proactive Binary-Centric

Hook Detection

Presenter: Lok Yan1

AFRL/RITA, Rome, NY 13441, USA

Heng Yin1, Pongsin Poosankam2,3, Steve Hanna2,

and Dawn Song2

3Carnegie Mellon

University

Pittsburgh, PA 15213

USA

1Syracuse University

Syracuse, NY 13104

USA

2UC Berkeley

Berkeley, CA 94720

USA

2

What is hook?

SSDT (System Service Descriptor Table)

NewZwOpenKey

ZwOpenKey

Install the address of NewZwOpenKeyExecution is redirected

• Malware registers its own function (i.e. hook) into the

target location

• Later, data in the hook site is loaded into EIP, and the

execution is redirected into malware’s own function.

an example of SSDT hooking

3

Hooking is an important attack vector

• malware often needs to install hooks to

implement illicit functionalities

– Rootkits want to intercept and tamper with critical

system states

– Network sniffers and stealth backdoors intercept

network stack

– Spyware, keyloggers and password thieves need to

know when sensitive info arrives

4

Hooking Techniques Are Evolving

• Old Technique: SSDT, IDT, IAT, EAT, etc.
– Defeated by many existing hook detection tools

• New trend: function pointers in kernel data structures
– IO completion routines

– APC queues

– Threads saved context

– Protocol Characteristics Structures

– Driver Object callback pointers

– Timers

– DPC kernel objects

– DPC scheduled from ISR

– IP Filter driver hook

– Exception handlers

– Data buffer callback routines

– TLS callback routines

– Plug and play notifications

– All kinds of WDM driver stuff

– Many more, …

5

Advantages of Function Pointer Hooking

• Attack space is vast

– ~20,000 function pointers in Windows kernel

• Hard to locate and validate

– ~7,000 in dynamically allocated memory regions

– Many of them in polymorphic data structures

– A polymorphic hash table in Windows kernel

6

Example: A polymorphic linked list

head

openopen

head

state

ioctlioctl

head

openopen

ObjListHead

FILE_OBJ FILE_OBJDEVICE_OBJ

7

Our Goal

• Given the binary distribution of an OS kernel,

automatically generate a hook detection

policy

– Locate function pointers

• Deal with polymorphic data structures

– Validate function pointers

• only 3% ever change in their lifetime (from our

analysis)

• Simple policy: check if constant function pointers ever

change

8

System Overview

Analysis Subsystem Detection Subsystem

9

Monitor Engine

• Goal: determine concrete memory layout

– For each static/dynamic memory object, determine primitive types for

each memory word

– Primitive types: NULL, FP, CFP, DATA

• Solution:

– Monitor memory objects

– Track function pointers

CFP

NULL

FP

DATA

DATA

Addr=e0012340h

Size = 20

10

Monitor Engine: Monitor Memory Objects

• Run the guest OS within TEMU

– TEMU: a whole-system binary analysis platform, based on QEMU

• For dynamic objects: Hook memory allocation/deallocation

routines

– ExAllocatePoolWithTag, ExFreePool

– RtlAllocateHeap, RtlFreeHeap

• For static objects: Hook module loading routine
– MmLoadSystemImage

Addr=e0012340h

Size = 20

11

CreateFile()

{

FILE_OBJ *f = malloc(sizeof(FILE_OBJ));

…

f->open = MyFileCreate;

InsertListTail(&f->link, &ObjListHead);

…

}

804d7200: call malloc
…

804d7230: mov [ebp-50h], 805d5141h

…

Addr=e0012340

Size = 40

Caller=804d7200

CFP

NULL

FP

DATA

DATA

DATA

Addr=e0012340

Size = 40

Caller=804d7200

Monitor Engine: Track Function Pointers

2. IDA Pro plugin processes Relocation and

Import Address Tables

3. Identifies and taints initial function pointers

2. IDA Pro plugin processes Relocation and

Import Address Tables

3. Identifies and taints initial function pointers

1. Hooked RtlAllocateHeap1. Hooked RtlAllocateHeap

“Concrete

Layout”

“Concrete

Layout”

12

Inference Engine

• Goal: Infer abstract memory layout

• Approach: context-sensitive abstraction

– Notion: Object creation context is the execution context

where an object is created (e.g., caller of malloc)

• Binary point of view: return addresses on the call stack

– Rationale: Objects created under the same context have the

same type

– Solution: Merge concrete layouts with the same context

into an abstract layout

13

Inference Engine: Context-Sensitive Type

Inference

Addr=e0012340

Size = 40

Caller=804d7200

Addr=e0032380

Size = 40

Caller=804d7200

+ =

Generalized Layout

caller=804d7200

CFP

NULL

FP

DATA

DATA

DATA

CFP

CFP

CFP

DATA

DATA

NULL

CFP

CFP

FP

DATA

DATA

DATA

ConcreteConcrete ConcreteConcrete AbstractAbstractConcreteConcrete ConcreteConcrete AbstractAbstractConcreteConcrete ConcreteConcrete

14

Detection Engine

• Goal:

– Enforce the hook detection policy on user’s machine

• Solution:

– Monitor memory objects

• Hook the same set of functions

– Apply the abstract layout

• Use the return addresses as the key to the abstract layout

• Implementation:

– Kernel module vs. Hypervisor

15

Detection Engine: go back to the example

head

openopen

head

state

ioctlioctl

head

openopen

ObjListHead

Abstract Layout

(caller=804d7200)

DATA

CFP

DATA

DATA

DATA

Abstract Layout

(caller=80500000)

DATA

DATA

DATA

DATA

DATA

CFP

FILE_OBJ FILE_OBJDEVICE_OBJ

16

Experimental Evaluation

• Aspects to Evaluate

– Attack Space

– Analysis subsystem: policy coverage

– Detection subsystem:

• realworld rootkits/performance/false alarms

• Experimental Setup

– Host machine: 3.0GHz CPU 4 GB RAM Ubuntu

– Guest machine: 512MB RAM Windows XP SP2

17

Evaluation: Attack Space

18

Evaluation: Function Pointer Lifetime Distribution

19

Evaluation: Policy Generation

Experimental Setup:

•Total of three 25 minute runs, a snapshot every 15 seconds

•Runs 1 and 2 used to generate abstract templates policy

•For each snapshot in Run 3

Coverage = Number of Function Pointers identified by Policy / Total

number of Function Pointers

•Level indicates context sensitivity, i.e. # of return addresses

Policy Generation Performance: 70 seconds / snapshot, ~4hours for 200

snapshots

20

Evaluation: Realworld Rootkit Detection

21

Evaluation: Performance of Detection Subsystem

* No false alarms were raised during the testing period

22

Limitations

• Coverage – what if people exploit the 5% that is not

covered?

• Detection Interval – is 5s or even 1s frequent

enough?

• Uncommon Proprietary Device Drivers – HookScout

utilizes QEMU and since other proprietary drivers are

never installed, they are not analyzed.

• Limited test cases for the dynamic analysis

• Kernel module can be subverted or mislead – A

hypervisor is preferable

23

Related Work

• Post-mortem Analysis

– K-Tracer

– PoKeR

• Proactive Defense –

Prevent Untrusted

Code Execution

– Livewire

– SecVisor

– Patagonix

• Proactive Defense -

Control Flow Integrity

– SBCFI

– Gibraltar

– SFPD

– HookMap

– HookSafe

24

Conclusion

• Function pointer hooking is a new trend

– Large attack space

– Hard to detect

– Without OS source code, even harder

• We developed HookScout

– Binary-centric: deal with OS binary code

– Context-sensitive: deal with type polymorphsim

– Proactive: detect attacks in advance

