Why Johnny Can’t Pentest:
An Analysis of Black-box
Web Vulnerability Scanners

Adam Doupé, Marco Cova and Giovanni Vigna

University of California, Santa Barbara
DIMVA 2010 - 7/8/10

Outline

» Introduction to black box web vulnerability
scanners

» Design of custom vulnerable website -
WackoPicko

» Results

» Analysis

Contributions

» Describe the design of a testing web
application

» ldentify a number of challenges that scanners
need to overcome when testing modern web

applications

» Test the performance of eleven real-world
scanners and identify areas that need further

work

ility

ion Vulnerab

Web Applicat
Scanners

Vulnerable Web Application -
WackoPicko: Design

» Authentication

» Upload Pictures

» Comment on Pictures
» “Purchase” Pictures

» Tag Search

» Guestbook

» Admin Area

Vulnerable Web Application -
WackoPicko: Publicly Accessible

» XSS
- Reflected, Stored, and Reflected behind JavaScript

» Session ID

» Weak Password

» Reflected SQL Injection
» Command Line Injection
» File Inclusion

» File Exposure

» Parameter Manipulation

Vulnerable Web Application -
WackoPicko: Authentication

Reflected XSS behind Flash
Stored SQL Injection
Directory Traversal
Multi-step Stored XSS
Forceful Browsing

Logic Flaw

vV Vv VvV vV VvV v

Crawling Challenges

» HTML Parsing

» Multi-Step Process / State
» Infinite Website

» Authentication

» Client-side Code
- Web Input Vector Extractor Teaser (WIVET)

Scanners

Name ——price
Acunetix $4,995 - $6,350
AppScan $12,550 - $32,500
Burp £125 ($190.82)
Grendel-Scan Open source
Hailstorm $10,000

Milescan $495 - $1,495
N-Stalker $899 - $6,299
NTOSpider $10,000

Paros Open source

w3af Open source

Webinspect

$6,000 - $30,000

Experiment

» Each scanner run four times:

- WackoPicko
- Initial - No configuration (point and click)
- Config - Given valid Username/Password
- Manual - Used proxy to thoroughly browse site.

- WIVET - Testing JavaScript capabilities

» Limitations

Results

Reflected Stored SQL Command File File XSS via XSS via
XSS XSS Injection line Inclusion Exposure JavaScript | Flash
Injection

el Manual Config
Scan
Hailstorm Config Config Manual
Milescan Manual Config
N-Stalker Manual -- Manual
NTOSpider
Manual
Manual

Webinspect

Results

100% 1
A
80% B False negatives
B Detection in MANUAL mode
60% - B Detection in CONFIG mode
[] Detection in INITIAL mode
40%
20%

0%

Acunetix
Appscan
Burp
Hailstorm
Milescan
N-Stalker
Paros

wiaf
Webinspect

NTOSpider

:
o
v

|
o
=
5
S

Missed Vulnerabilities

» Missed by all scanners
> Session ID
- Weak Password
- Parameter Manipulation
> Forceful Browsing
> Logic Flaw
» Will discuss later
- Stored SQL Injection
> Directory Traversal
> Stored XSS Behind Login

False Positives

» Ranged from O to 200+
> Average was ~25

» Why?
> Server Path Disclosure

» “Actual” False Positives

> Hailstorm
- XSS, 2 Code Injection
- NTOSpider
- 3 XSS
- w3af
- PHP eval() Injection

Measuring and Comparing
Detection Capabilities

» Strictly Dominates

Dominates Graph

Less
Dominant

Attack and Analysis Capabilities

» Default values

» XSS attacks

» Command-line Injection
» SQL Injection

» File Exposure

» Remote Code Execution

Crawling Capabilities

» Number of Accesses
- Range from ~50 per page to ~3,000 per page

> Hailstorm accessed vulnerable pages that required an
account on INITIAL scan!

» HTML

> Burp and N-Stalker
- <TEXTAREA>
> Milescan and Grendel-Scan
- POST
> Hailstorm
- No-Injection
o w3af
- No Default

Crawling Capabilities

» Uploading a Picture
- 2 Scanners uploaded without help

> 3 Scanners unable to upload one!

Crawling Capabilities - Client-side
Code

» WIVET

> 3 Scanners couldn’t complete
- Paros and Burp - <base>
- N-Stalker - Frame?
> Dynamic JavaScript
- Webinspect, Acunetix, NTOSpider, Hailstorm
> JavaScript library
> No Flash

Crawling Capabilities -
Authentication

» Created an account successfully

> 4 Scanners
- Hailstorm
- N-Stalker
- NTOSpider
- Weblnspect

Lessons Learned: Want to make
your own benchmark?
» Incorporate lots of logging in the application

» Two versions of the site
- No vulnerabilities
> All vulnerabilities
» Script running the tests
» Include:

> File upload forms
> AJAX
> Several JavaScript Ul Libraries

Conclusions

» Ability to crawl as important as detection
» Many vulnerabilities cannot be detected

» Cost not directly proportional to functionality

Questions?

Thanks!

