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Abstract

Random effects models are widely used in population pharmacokinetics and dose finding

studies. In such models the presence of correlated observations (due to shared random

effects and possibly residual serial correlation) usually makes the explicit determination of

optimal designs difficult. In this paper we develop a class of multiplicative algorithms for

the numerical calculation of optimal experimental designs in such situations. In particular

we demonstrate its application in a concrete example of a cross-over dose finding trial.

Additionally, we show that the methodology can be modified to determine optimal designs

where there exist some requirements regarding the minimal number of treatments for several

(in some cases all) experimental conditions.
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1 Introduction

The work presented in this paper is motivated by several practical problems encountered in

finding optimal designs for random effect models appearing both in population pharmakokinetic

trials [Sheiner et al. (1977)] and in dose finding trials [Ting (2006)]. For illustration we consider

a real case study which was recently analyzed by one of the authors. This was a dose finding

clinical trial with the objective of characterizing the dose response of an experimental drug given

under two different regimens, either once or twice daily. The study was therefore designed to

cover a range of once- and twice-daily doses. The selected dosing groups were: placebo (control),

12.5 once daily, 12.5 twice daily, 25 once daily, 25 twice daily, 50 once daily, 50 twice daily, and

100 once daily. The details of the trial are blinded and numbers are given unitless serving for

illustration purposes only. To improve efficiency a cross-over design was considered whereby each

patient was to receive one of the 8 treatments in each of two periods. Treatment was given for

four weeks in each period and efficacy measurements obtained at weekly intervals. A washout

period of 4 weeks was scheduled between the two treatment periods. While the actual analysis

integrated data from multiple visits within each treatment period, the simpler modeling approach

described in this paper focuses on the efficacy measurements obtained at endpoint, i.e. after four

weeks of treatment.

Previous data were available on the once-daily administration and suggested that the dose-

response curve could be appropriately described with an Emax function. Although it is not

uncommon for dose finding trials to be analyzed using standard statistical tools such as analysis

of covariance, it is more efficient to rely on model-based approaches to estimate dose response

[Bornkamp et al. (2007)]. While typically dose finding studies include a single mode of adminis-

tration, the Emax model is easily extended to account for dosing regimen and provide a unified

description of dose response. Two assumptions were made at this stage: 1. the maximal effect

(Emax) is identical for once- and twice-daily regimens; 2. the regimen affects drug potency

(ED50). The first assumption is reasonable based on pharmacological principles although it may

not appear to hold over the observed dose range. The second assumption effectively imposes a

shift in dose response for the twice-daily regimen relative to once-daily administration. Based

on those assumptions a reasonable model can be written as follows:

Yij = E0 + bi0 +
Emaxxij1
ED50

θxij2
+ xij1

+ εij i = 1, . . . , N, j = 1, 2,(1.1)

where the index i denotes subject and j treatment period, (xij1 is the total daily dose received

by subject i in period j (with values in {0, 12.5, 25, 50, 100}), and xij2 is the corresponding

indicator specifying whether the treatment was given once or twice daily, with values 0=once

daily and 1=twice daily). The model was parameterized in terms of E0 (intercept, corresponding
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to placebo effect), Emax (maximal drug effect above placebo), ED50 (drug potency), and θ

(potency modifier due to regimen). Further assumptions are that bi0 and εij are random terms

with normal distributions. A common assumption in such models is that conditionally on

random effects, εi1 and εi2 are independent, although this assumption can be relaxed with the

approach presented here.

Situations of this type are not unusual in dose finding studies and create challenging problems

in statistics. In particular the fact that the study under consideration includes more than one

observation per patient and the application of a random effect model requires advanced design

methodology for correlated and heteroscedastic data. Moreover, in many cases there exist ex-

perimental constraints such as fixed dose levels (due to available dose strengths), requirements

for certain dose levels or total sample size in the study, which must be taken into account in

design optimization. A challenging question in the present application was to determine optimal

treatment sequences and the number of patients that should be randomized to each of those

sequences. As pointed out by Pukelsheim (2006), Section 11.8, design problems for these situa-

tions result in the determination of optimal designs which have to satisfy several constraints for

the number of patients allocated to each experimental condition.

The present paper is devoted to the numerical construction of optimal designs in such situations.

Because optimal designs for these kinds of problems are rarely available analytically we concen-

trate on algorithmic approaches. The most common techniques are the Fedorov-Wynn and the

Simplex algorithm [see Fedorov (1972),Wynn (1972) or Mandal and Torsney (2006) and Harman

and Pronzato (2007) for some more recent references]. However, these algorithms either change

only single design points at a time, or are generic optimization methods which make no use of

the special properties of the optimization problems appearing in design theory.

As an alternative we discuss the application of multiplicative algorithms in the present context

which are particularly attractive for the determination of optimal designs on finite design spaces.

These methods were introduced by Titterington (1976) for the D-optimality criterion [see also

Silvey et al. (1978)] and are based on equivalence theorems, which characterize the optimum

designs by means of an inequality for the directional derivative [Kiefer and Wolfowitz (1960),

Pukelsheim (2006)]. In the recent literature multiplicative algorithms have found considerable

interest [Dette et al. (2008), Harman and Trnovska (2009), Yu (2010)]. However - to our best

knowledge - all authors only discuss very generic cases without consideration of the special

properties (random effects and heteroscedasticity) encountered in the dose finding experiment

discussed in the previous paragraph. In this paper we will demonstrate that this methodology

can also be modified to solve these challenging optimal design problems. Moreover, we illustrate

the methodology in several examples and determine optimal designs for the dose finding study
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example. In particular, we show that the initial designs considered for the study described at the

beginning of this section could be improved by the methodology developed in this paper. Ad-

ditionally we extend the methodology to determine optimal designs which guarantee a minimal

percentage of the observations at prespecified experimental conditions.

2 Optimal design problems and multiplicative algorithms

We consider a generic nonlinear random effects model, where m different observations are avail-

able on a number of N different patients each, and a vector of parameters is to be estimated.

This allows us to consider models in population pharmacokinetics, where commonly more than

one observation is available per patient, and other types of models such as the cross-over dose-

response model discussed in the introduction (with m = 2). To be precise, we define the model

under consideration as follows

Yij = η(xij, bi) + εij i = 1, . . . , N, j = 1, . . . ,m.(2.1)

Observations can be taken at measurement conditions xij, i = 1, . . . , N, j = 1, . . . ,m, selected

from a finite set X consisting of s different measurement settings. The parameters are assumed

to be random, which means that bi = (bi1, . . . , bik)
T represents a random effect of individual

i, i = 1, . . . , N . We assume that b1, . . . , bN are independent, identically, k-dimensional nor-

mally distributed with expectation θ ∈ Θ ⊂ Rk and covariance matrix Ω ∈ Rk×k, such that

the random effects b1, . . . , bN are independent of the errors ε1, . . . , εN . The parameter θ (or a

function of it) is the object of interest of the study. The function η : X ×Θ→ R is known, twice

continuously differentiable with respect to θ and the errors εi = (εi1, ..., εim)T for each individual

patient are assumed to be normally distributed with expectation 0 and variance Wi ∈ Rm×m,

i = 1, ..., N .

In our further considerations we will treat the set of all m observations on a single patient as

a single block. In other words, the effective measurement space is given by Xm and contains

r = sm measurement settings. In this case xi = (xi1, . . . , xim) ∈ Xm denotes the set of ex-

perimental conditions for the treatment of the i-th patient. In order to be specific we consider

the case of Maximum-Likelihood (ML)-estimation and start by constructing an information ma-

trix for the set xi = (xi1, . . . , xim) ∈ Xm of all measurement settings for the individual patient

i, i = 1, . . . , N . The information matrix in this case is asymptotically given by the Fisher infor-

mation matrix [Lehmann and Casella (1998)]. For a vector of normally distributed observations

Y i = (Yi1, . . . , Yim)T with expectation ηm(xi, bi) = (η(xi1, bi), . . . , η(xim, bi))
T and variance Vi
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this quantity is given by

(2.2) A(xi) =
∂ηm(xi, bi)

∂θ

T

V −1i

∂ηm(xi, bi)

∂θ
+

1

2


tr(V −1i

∂Vi
∂θ1

V −1i
∂Vi
∂θ1

) . . . tr(V −1i
∂Vi
∂θ1

V −1i
∂Vi
∂θk

)
...

...

tr(V −1i
∂Vi
∂θk

V −1i
∂Vi
∂θ1

) . . . tr(V −1i
∂Vi
∂θk

V −1i
∂Vi
∂θk

)

 .

[see e.g. Retout and Mentré (2003)] and simplifies to

A(xi) =
∂ηm(xi, bi)

∂θ

T

V −1i

∂ηm(xi, bi)

∂θ
.(2.3)

in the case where the variance Vi does not depend on the parameter θ, for example under the

assumption of homoscedasticity. Thus, the total information matrix for all N patients is given

by

M(x1, . . . ,xN) =
N∑
i=1

A(xi).(2.4)

In order to assess the effect of the random effects on the variance Vi of the observations on patient

i we use a first order Taylor approximation of the function η(xij, bi ), i.e.

Yij ≈ η(xij,θ) +
∂η(xij,θ)

∂θ
(bi − θ) + εij i = 1, . . . , N, j = 1, . . . ,m,(2.5)

and obtain

Vi = V ar(Yi) ≈
∂ηm(xi,θ)

∂θ
Ω
∂ηm(xi,θ)

∂θ

T

+Wi.(2.6)

Throughout this paper we will use the concept of approximate designs and consider designs

as probability measures on the (finite) design space, which is given by Xm = {x1, . . . ,xr} [see

Kiefer (1974)]. Consequently, a design can be specified by a vector of weights w = (w1, . . . , wr),

where the j-th component wj represents the relative proportion of total observations to be taken

at the point xj (j = 1, . . . , r). In practice a rounding procedure is applied to obtain integers

ni ≈ wiN with
∑n

j=1 ni = N , and the experimenter takes approximately ni observations at each

xi (i = 1, . . . , r) [see Pukelsheim and Rieder (1992) for more details and some references]. For

an approximate design w = (w1, . . . wr) the information matrix is given by

M(w) =
r∑
i=1

wiA(xi),(2.7)

and we will denote by M the space of all information matrices M(w) of the form (2.7).

Note that the information matrix in this situation, and thus any optimal design based on these
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matrices, will usually depend on the unknown model parameters. Optimal designs, which maxi-

mize an appropriate function of the information matrix, will thus be called locally optimal designs

[see Chernoff (1953)] and require an initial guess of the unknown parameters of the model. These

designs might be sensitive with respect to misspecification of the parameters. However, they form

of the basis of many more sophisticated design strategies such as sequential designs [see Chang

and Ying (2009)], Bayesian designs [Chaloner and Larntz (1989) or Haines (1995)] or standard-

ized maximin optimal designs [see Dette (1997) or Müller and Pázman (1998) among others].

Moreover, the main application of locally optimal designs consists in their use as benchmarks

for commonly used designs. Locally optimum designs for nonlinear models with fixed effects

have been discussed by numerous authors [see Ford et al. (1992), Biedermann et al. (2006),

López-Fidalgo and Wong (2002) among many others]. In contrast to the fixed effect case locally

optimal designs for nonlinear random effect models are rarely available in closed form. For some

numerical results we refer to the work of Mentré et al. (1997), Retout et al. (2002), Atkinson

(2008) or Dette and Holland-Letz (2009).

A (locally) optimal design for estimating the parameter θ maximizes an appropriate function

of the information matrix M(w) and numerous criteria have been proposed for this purpose in

the literature [see Silvey (1980), Pukelsheim (2006) or Randall et al. (2007)]. In the concrete

application described in the introduction the following criteria were suggested by the biostatistics

team. A main interest of the experiment consisted in a precise estimation of all parameters in

the model, and for that purpose the use of the D-optimality criterion was proposed, which

determines a design w maximizing the determinant of the information matrix

φD(w) = |M(w)|1/k.(2.8)

On the other hand, in the dose-finding study example we have θ = (θ1, . . . , θ4) =

(E0, Emax, ED50, θ) one might want to focus on the parameters θ3 and θ4, as this puts em-

phasis on potency estimation which is key to the comparison of the two dosing regimens. For

such cases the Ds criterion provides an interesting alternative to D-optimality, which determines

a design maximizing

φDs(w) = |M−1
III(w)|−1/s,(2.9)

where M−1
III(w) is the lower right s× s sub-matrix of M−1(w) (in our example we have s = 2) .

Finally, if specific functionals of the parameter, such that the area under the curve (AUC), the

minimum effective dose (MED) or the maximum of the curve are of interest, the c-optimality

criterion is used, which determines the design w such that the functional

φc(ξ) = (cTM−(w)c)−1(2.10)
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is maximal. Here c ∈ Rk denotes a given vector reflecting the specific interest (AUC, MED,

maximum of the curve etc.). Moreover, we assume that the vector c is estimable by the design

w , that is Range (c) ⊂ Range (M(w)) and for a k × k matrix A the matrix A− denotes a

generalized inverse of A.

In order to assess whether any given design is optimal for a given criterion φ we can use the

equivalence theory [see Pukelsheim (2006)] which provides precise conditions to check the opti-

mality of a given design. However, for a numerical construction it is usually more important to

define an appropriate stopping criterion, such that the algorithm terminates with a design with

a guaranteed efficiency

eff(w) =
φ(w)

φ(w∗)
,(2.11)

where w∗ denotes the optimal design maximizing the function φ.

Note that the efficiency cannot be calculated without knowledge of the optimal design. However,

we demonstrate in the following result that it is possible to present a lower bound for the efficiency

defined in (2.11). For the sake of transparency we present here the result for designs with non-

singular information matrices and differentiable information functions [see Pukelsheim (2006)].

For the general case we refer to Dette (1996) who discussed a more sophisticated bound for

singular information matrices and general (not necessarily differentiable) criteria . The proof of

the following result can be found in the appendix.

Theorem 2.1 Consider a design w with non-singular information matrix M(w) and assume

that the optimality criterion φ : M → R is differentiable at the point M(w) with gradient

∇φ(M(w)). Then the efficiency of the design w can be bounded from below by

eff(w) ≥
(

r
max
i=1

tr(∇φ(M(w))A(xi))

tr(∇φ(M(w))M(w))

)−1
.(2.12)

In the case of tr(∇φ(M(w))M(w)) = 0, we define this statement as eff(w) ≥ 0. In particular,

the design w is φ-optimal if and only if the right hand side of the inequality (2.12) is equal to 1

and in this case there is equality for all xi with wi > 0.

For the three optimality criteria φD, φDs and φc defined in (2.8) - (2.10) the derivatives appearing

in Theorem 2.1 can easily be calculated [see for example Pázman (1986)]. In particular we have

∇φD(M(w)) =
1

k
|M(w)|1/kM−1(w)(2.13)

∇φDs(M(w)) =
1

s
|M−1

III(w)|−1/s(M−1(w)− M̃−1(w))(2.14)

∇φc(M(w)) =
M−1(w)ccTM−1(w)

(cTM−1(w)c)2
(2.15)
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where

M̃−1(w) =

(
M−1

I (w) 0

0 0

)
and MI(w) is the upper left (k − s)× (k − s) sub-matrix of the matrix M(w). In the following

discussion these quantities will be used in the construction of multiplicative algorithms which

represent a very flexible tool to find optimal designs.

The first variant of this class of methods has been introduced by Titterington (1976) for the

D-optimality criterion. Dette et al. (2008) extended Titterington’s idea and proposed a class

of multiplicative algorithms for the determination of D-optimal designs. In the same paper it

is indicated that the methodology may be also applicable to other optimality criteria. A very

far reaching generalization has been given by Yu (2010), which allows the application of the

algorithm to a broad class of optimality criteria. To be precise, recall that the design space

is given by Xm = {x1, . . . ,xr}, with xi = (xi1, . . . , xim), i = 1, . . . , r, and that the design is

characterized by a vector w from the r-dimensional simplex W defined in (5.1). Let w0 be

an element of the set W which will be used as starting point for the algorithm. Furthermore,

for a vector w = (w1, . . . , wr) ∈ W let M(w) be the corresponding information matrix for the

parameter θ in model (2.1), A(xi) the information matrix of an individual measurement at the

point xi, i = 1, . . . , r and φ a differentiable information function to be maximized. As wi > 0 for

all i = 1, . . . , r, M(w) will be nonsingular for all w ∈ W .

We follow Yu (2010) and starting with the vector w 0 we define for q = 0, 1, . . . a vector of “new”

weights wq+1 = (wq+1
1 , . . . , wq+1

r ) ∈ W by

wq+1
i = wqi

dλi∑r
j=1w

q
jd
λ
j

i = 1, . . . , r,(2.16)

where λ ∈ (0, 1] denotes a calibration parameter and

di = di(w
q) = tr(∇φ(M(wq))A(xi)) i = 1, . . . , r.(2.17)

Yu (2010) proved the monotonicity of this algorithm for all λ ∈ (0, 1], that is

φ(M(wq+1) ≥ φ(M(wq); q = 0, 1, . . .

and in the case 0 < λ < 1 he proved that the sequences (wq)q∈N converges to the optimal

design w ∗ maximizing the function φ(M(w)) in the setW . Observing the representations of the

gradients in equations (2.13) - (2.15) and the Fisher information matrix given in (2.2) we can

apply these general principles to the problems discussed in the introduction.

8



3 Examples

3.1 A nonlinear population model

We start with an example from pharmakokinetics where we try to estimate the area under a

concentration curve (AUC) for the blood concentration of some medication at specified time

points after an intravenous injection. Situations like this are usually modeled by a random

effects population model [see Sheiner et al. (1977)]. We thus assume that the regression in model

(2.1) is given as an exponential elimination function, that is

η(x, bi) = bi1e
−bi2x,(3.1)

where the gradient is calculated as

∂η(x, bi)

∂θ
= (e−bi2x,−xbi1e−bi2x)T .

We further assume that two observations are available for each patient, i.e. this is a sparse

sampling situation. Because of the random effects model, the variance in this situation will be

dependent on the parameters. Consequently, the individual information matrix A(xi) requires

the full expression stated in (2.2).

We obtain for the element in the position (j, l) of the variance matrix Vi of observations on

patient i, i = 1, . . . , N :

[Vi]
2
j,l=1 ≈

∂η2(xi, θ)

∂θj

T

Ω
∂η2(xi, θ)

∂θl
+ σ2δjl.(3.2)

The derivatives of this expression are given by (q = 1, 2)

∂[Vi]
2
j,l=1

∂θq
≈ ∂2η2(xi, θ)

∂θj∂θq

T

Ω
∂η2(xi, θ)

∂θl
+
∂η2(xi, θ)

∂θj

T

Ω
∂2η2(xi, θ)

∂θl∂θq
(3.3)

We thus need the first and second derivative of the concentration function, which are easily

calculated.

The design space is given by X = (0, 0.1, 0.2, . . . , 3.0), with s = 31 potential measurement

settings. As both measurements on a single patients will be treated as a single experimental

unit, the effective design space is X 2. Removing one of the pairs (xi1, xi2) or (xi2, xi1) (because

they yield same experimental condition for the ith patient) as well as duplicate measurements

at an identical time point (which are not viable in practice), we get the modified design space

X̃ 2 = {(0, 0.1), (0, 0.2), . . . , (0, 3), (0.1, 0.2), . . . , (2.9, 3.0)} containing r = s ∗ (s − 1)/2 = 465
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elements.

For illustrative purposes we set θ1 = 46, θ2 = 1.7, assume that ε1, . . . , εn are independent iden-

tically distributed random variables and make the additional assumption that the population

variances are Ω = diag(1, 0.1). Note that in this case the correlation between different observa-

tions on the same patient is caused only by the common random effect.

We are trying to estimate the area under the concentration curve (AUC), which for the function

considered here is given by AUC = θ1
θ2

. This corresponds to a c-optimal design problem, where the

vector c given by the gradient of the quantity to be estimated, i.e. c = ( 1
θ2
,− θ1

θ22
). Consequently,

the coefficient di in the recursion (2.16) is given by

di = tr
(
−M

−1(w (i))ccTM−1(w (i))

(cTM−1(w (i))c)2
A(xi)

)
, i = 1, . . . , r.(3.4)

We begin with an equally spaced starting design w 0 with w 0
i = 1

465
for all i = 1, . . . , 465 and

do repeated iterations of algorithm (2.16) setting λ = 0.99. The weights obtained after 1000

iterations are shown in Figure 1 (left part). The right part of Figure 1 shows the lower bound

of the efficiency (see Theorem 2.1) of the design for each iteration, and we observe that good

efficiencies will be reached very quickly.

Figure 1: Left panel: Distribution of weights after 1000 iterations of the algorithm (2.16) in

the population model. Right panel: lower bound (2.12) for the efficiency of the design after each

iteration
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For the practical implementation of the design we approximate this design with the strict two

point design with weights 0.312 and 0.688 at the points (0.10, 1.20) and (1.40, 1.50), respectively,

which yields still an efficiency of at least 99.9%. This means that about a 31.8% of the patients

should be observed at the time points 0.1 and 1.2, and the rest at 1.4 and 1.5.

3.2 Optimal designs for a dose finding study

In our second example we construct optimal designs for the dose finding study which was de-

scribed in the introduction. The dose response curve for each dosing regimen is represented by

an Emax model, with two observations taken on each patient in a cross-over setup:

Yij = bi1 +
b2xij1

b3
b
xij2
4

+ xij1
+ εij i = 1, . . . , N, j = 1, 2(3.5)

The parameter bi1 is modeled as a random effect with expectation θ and variance ω, while the

other parameters are treated as fixed.

The experimental conditions xij consist of total daily dose (xij1) with values in

{0, 12.5, 25, 50, 100}), and an indicator specifying whether the treatment was given once (xij2 = 0)

or twice daily (xij2 = 1). Since regimen should not impact the placebo effect, the design space

is given by

X = {(0, 0), (12.5, 0), (25, 1), (25, 0), (50, 1), (50, 0), (100, 1), (100, 0)}

for one measurement, and X 2 for both measurements on one patient. ¿From an optimal de-

sign viewpoint it does not matter so much whether a patient receives dose 1 before dose 2, or

the opposite sequence and so the two sequences were considered interchangeably [Note: from

a practical viewpoint it might be desirable to randomize patients to both sequences, e.g. to

test for a period effect, but this issue is not considered here]. As a result the design space

effectively includes r = 36 combinations. A D-optimal design for ML-estimation was inves-

tigated, as well as a Ds-optimal design for the parameters θ3 and θ4. Three candidate de-

signs were initially under consideration. The first one (design 1) allocates 25% of the obser-

vations at {(0, 0), (12.5, 0)}, {(25, 1), (25, 0)}, {(50, 1), (50, 0)}, and {(100, 1), (100, 0)}, i.e. it

favors direct regimen comparisons for different total daily doses. The second (design 2) focused

on 8 basic sequences: {(0, 0), (50, 0)}, {(12.5, 0), (50, 1)}, {(0, 0), (100, 1)}, {(12.5, 0), (100, 0)},
{(25, 1), (50, 1)}, {(25, 0), (50, 0)}, {(25, 1), (100, 0)}, {(25, 0), (100, 1)}; i.e. it emphasized bal-

anced allocation of low and high doses within patients which was thought to improve dose-

response estimation from basic optimal principles (recall that the simple Emax model has opti-

mal doses at 0, ED50 and the highest possible dose). Finally the third design (design 3) was an

equally spaced design on all 28 possible combinations.
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Based on previous data it was possible to assign reasonable values to the parameters. First,

the question centered around the comparison to placebo, hence b1 was set to 0. Estimates

of Emax (b2 = 0.15) and ED50 (b3 = 15) were obtained for once-daily dosing. The potency

modifier (b4) could not be estimated from previous data but it was expected to be greater than

1 based on pharmacological principles. A value of 1.2 was used for illustration purposes in this

paper. For the variability parameter, it was known that the ratio of within- to between-subject

variability was approximately 2 to 1. Therefore, assuming total variance is 0.2252, the values

var{εij} = σ2 = 0.2252 ∗ 2/3 and ω = 0.2252 ∗ 1/3 were chosen.

We start with the D-optimal design, for which the gradient of the criterion is given by (2.13)

yielding

di =
1

k
tr(M(w)−1A(xi))|M(w)|1/k.

The formula for the information matrix A(xi) for any element of X̃ 2 has the same structure as in

the previous example, see equation (2.2). Again, we will need the first and second derivative of

the concentration function (3.5) to calculate the matrix Vi and its derivative given in equations

(3.2) and (3.3). We can then calculate A(xi), i = 1, . . . , r, M(w) and ∇φM(w) for any given

design w .

We again start with an equally spaced design w 0 and use algorithm (2.16). Results after 100

iterations are shown in Figure 2 (left part).

With an appropriate rounding we obtain a design, which advises the experimenter to take 18%,

20%, 10%, 27% and 25% of the observations at the experimental conditions {(0, 0), (12.5, 0)},
{(0, 0), (25, 1)}, {(0, 0), (100, 0)}, {(12.5, 0), (100, 1)} and {(25, 1), (100, 0)}, respectively. In the

right part of Figure 2 we observe that an efficiency close to 100% is reached very quickly. For

comparison, we calculated the the D-efficiencies of the three candidate designs initially proposed,

which are 73%, 80% and 78%. Therefore a substantial improvement could be achieved by the

application of optimal designs.

The situation for Ds-optimality is very similar. The only difference is the gradient which is

now given by (2.14). In this case the design found by the multiplicative algorithm is a four

point design and advices the experimenter to take 28%, 19%, 14% and 40% of the observa-

tions at the experimental conditions {(0, 0), (12.5, 0)}, {(12.5, 0), (25, 1)}, {(12.5, 0), (100, 1} and

{(25, 1), (100, 0)}, respectively. The efficiencies of the three candidate designs are 59%, 71% and

66%, so again a substantial improvement can be achieved by the application of optimal designs.
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Figure 2: Left panel: Distribution of weights after 100 iterations of the multiplicative algo-

rithm (2.16) in the dose finding cross-over model (3.5) with two observations per patient, for

D-optimality. Right panel: Lower bound (2.12) for the efficiency of the design after each itera-

tion

4 Multiplicative algorithm for designs with protected

runs

In many practical applications it is necessary to have at least a pre specified number of observa-

tions at certain experimental conditions. For example, in a dose finding study it is reasonable to

assign at least a certain proportion, say for example 10%, of the patients to the dose level most

likely to be used in the production run. In the example from the introduction, such a constraint

was in place, the direct comparison between dose level 50 in one and in two applications was

requested to be included with a minimum weight of 25%.

Similarly, if the experiment is conducted in two (or more) stages with N1 and N2 observations

in stage 1 and 2, respectively, it is common practice to use the information from the first stage

in experimental design of the second stage as well. A typical example for this situation are also

dose finding studies, where the initial trials will usually be done using small sample sizes (to

check toxicity and tolerance). The total information of the experiment is then given by

M(w) =
N1

N1 +N2

M(w1) +
N2

N1 +N2

M(w2),
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where w1 and w2 denote the approximate designs corresponding to the first and second stage,

respectively. It was pointed out in Pukelsheim (2006), chapter 11.5 and 11.6, that the determina-

tion of an optimal design w ∗2 for the second stage corresponds to the determination of an optimal

design w ∗ for the total experiment, where the class of designs under consideration consists of all

designs which have a minimum mass at the support point of the design w1, that is

w ≥ N1

N1 +N2

w1.(4.1)

In this section we will develop multiplicative algorithms for this type of problems. More precisely,

we can consider the situation where the optimal design w ∗ = (w∗1, . . . , w
∗
r) has to satisfy certain

constraints

a(xi) ≤ w∗i , i = 1, . . . , r.(4.2)

Here for each i = 1, . . . r the quantity a(xi) denotes a lower bound for the percentage of the

total which should at least be taken under experimental condition xi, i = 1, . . . , r (if there is

no restriction at xi we put a(xi) = 0). We will use the notation Ξ̃ ⊆ Ξ for the set of all designs

fulfilling these constraints and call these designs admissible in the following discussion. For the

inclusion of constraints of the type (4.2) let α =
∑r

i=1 a(xi) be the sum of all required weights

in an admissible design ξ. In the following we will introduce a “modified” design space which

includes only those designs fulfilling (4.2). To do so, we associate with the original design space

Xm a set X̃m = (ν1, . . . , νr). Each element νi of X̃m is itself a design on Xm, with weights

a(xj), j = 1, . . . , r for all points from the measurement range Xm and an additional weight

(1− α) for the point xi. The effective weights of a design νi ∈ X̃m are thus given by

νi(xj) =

{
a(xj) if j 6= i

a(xj) + (1− α) if j = i
.(4.3)

Thus, there is exactly one element in the “new” design space X̃m for each element of the given

design space Xm. Any design u = (u1, . . . , uq) on the “new” design space X̃m with q support

points and given weights u(νi), i = 1, . . . , q induces a design w on Xm, where the weights for

the point xs are given by

w(xs) = (1− α)us +

q∑
j=1

uja(xs) = (1− α)us + a(xs) ≥ a(xs).(4.4)

Thus, any such design will fulfill the constraints a(xi) ≤ wi, i = 1, . . . , r. Conversely, any

design on Xm satisfying (4.2) defines a design on X̃m. Note that the space of designs on X̃m
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retains the convexity of the original space of designs and contains all admissible designs (i.e. all

elements of Ξ̃). The information matrix for any element of X̃m is given by

A(νi) = (1− α)A(xi) +
r∑
j=1

a(xj)A(xj).(4.5)

On this modified design space we can now apply the multiplicative algorithm in exactly the same

way as described in Section 3.

We illustrate this idea by the calculation of D-optimal designs for the dose finding problem

described in the introduction. We assume that we have to take at least 25% of the observations

at the combination {(50, 0), (50, 1)} (alternative 1, actual constraint in the trial), or alternatively

10% each at the two combinations {(0, 0), (50, 0)} and {(100, 0), (100, 1)} (alternative 2). The

resulting designs for the remaining 75% respectively 80% of observations are the following:

Alternative 1:

ξ =

(
(0, 0), (12.5, 0) (0, 0), (25, 1) (0, 0), (100, 0) (12.5, 0), (100, 1) (25, 1), (100, 0)

0.15 0.19 0.08 0.19 0.14

)
.

Alternative 2:

ξ =

(
(0, 0), (25, 1) (0, 0), (25, 0) (12.5, 0), (100, 1) (25, 1), (100, 0)

0.25 0.12 0.17 0.26

)
.

As expected, the relatively noninformative point {(50, 0), (50, 1)} in alternative 1 changes very

little in the rest of the design, while in alternative 2 the center point is no longer needed due to

the already available information. In all cases, efficiencies of the designs after 200 iterations are

above 99.9%.

5 Appendix: Proof of Theorem 2.1

Let tr (∇φ(M(w))M(w)) 6= 0, consider the r-dimensional simplex

(5.1) W = {w : wi > 0,
r∑
i=1

wi = 1},

and define for matrices M(w1),M(w2),w1,w2 ∈ W the directional derivative

Dφ(w1,w2) =
∂

∂α
φ((1− α)M(w1) + αM(w2))

∣∣∣
α=0+

,
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then it is easy to see that

Dφ(w1,w2) = tr (∇φ(M(w1))(M(w2)−M(w1))).

Now the function

g(α) = φ((1− α)M(w1) + αM(w2))

is concave, which implies

φ(M(w2))− φ(M(w1)) = g(1)− g(0) ≤ g′(0) = Dφ(w1,w2)

= tr(∇φ(M(w1))(M(w2)−M(w1))).

Using positive homogenity of the information functions and interpreting −tr(∇φ(M(w1))M(w1))

as the directional derivative of w1 in the direction of 0, we obtain the identity

∇φ(M(w1)) = φ(M(w1))
∇φ(M(w1))

tr(∇φ(M(w1))M(w1))
.

Inserting this into the preceding statement yields

φ(M(w2))

φ(M(w1))
≤ tr(∇φ(M(w1))M(w2))

tr(∇φ(M(w1))M(w1))

for all w1,w2, and the assertion follows using w1 = w , w2 = w ∗ (i = 1, . . . , r) and from the

observation that for any vector of weights w̃ we have

tr(∇φ(M(w1))M(w̃)) ≤ r
max
i=1

(tr(∇φ(M(w1))A(xi))).
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