\(\Gamma \)-limits of convolution functionals

Luca Lussardi and Annibale Magni

Preprint 2010-11
November 2010
Abstract. We compute the Γ-limit of a sequence of non-local integral functionals depending on a regularization of the gradient term by means of a convolution kernel. In particular, as Γ-limit, we obtain free discontinuity functionals with linear growth and with anisotropic surface energy density.

Keywords: Free discontinuities, Γ-convergence, anisotropy.

2010 Mathematics Subject Classification: 49Q20, 49J45, 49M30.

1. Introduction

As it is well known, many variational problems which are recently under consideration, arising for instance from image segmentation, signal reconstruction, fracture mechanics and liquid crystals, involve a free discontinuity set (according to a terminology introduced in [19]). This means that the variable function u is required to be smooth outside a surface K, depending on u, and both u and K enter the structure of the functional, which takes the form given by

$$
\mathcal{F}(u, K) = \int_{\Omega \setminus K} \phi(|\nabla u|) \, dx + \int_{K \cap \Omega} \theta(|u^+ - u^-|, \nu_K) \, d\mathcal{H}^{n-1},
$$

being Ω an open subset of \mathbb{R}^n, K is a $(n-1)$-dimensional compact subset of \mathbb{R}^n, $|u^+ - u^-|$ the jump of u across K, ν_K the normal direction to K, while ϕ and θ given positive functions, whereas \mathcal{H}^{n-1} denotes the $n-1$-dimensional Hausdorff measure.
The classical weak formulation for such problems can be obtained considering K as the set of the discontinuities of u and thus working in the space of functions with bounded variation. More precisely, the aforementioned weak form of F takes on $BV(\Omega)$ the general form

\begin{equation}
F(u) = \int_{\Omega} \phi(|\nabla u|) \, dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1} + c_0 |Du|(\Omega),
\end{equation}

where $Du = \nabla u \mathcal{L}^n + (u^+ - u^-)\mathcal{H}^{n-1} + D^c u$ is the decomposition of the measure derivative of u in its absolutely continuous, jump and Cantor part, respectively, and S_u denotes the set of discontinuity points of u.

The main difficulty in the actual minimization of F comes from the surface integral

$$\int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1},$$

which makes it necessary to use suitable approximations guaranteeing the convergence of minimum points and naturally leads to Γ-convergence.

As pointed out in [10], it is not possible to obtain a variational approximation for F by the typical integral functionals

$$F_\varepsilon(u) = \int_{\Omega} f_\varepsilon(|\nabla u|) \, dx$$

developed on some Sobolev spaces. Indeed, when considering the lower semicontinuous envelopes of these functionals, we would be lead to a convex limit, which conflicts with the non-convexity of F.

Heuristic arguments suggest that, to get rid of the difficulty, we have to prevent that the effect of large gradients is concentrated on small regions. Several approximation methods fit this requirements. For instance in [7], [12], [24] the case where the functionals F_ε are restricted to finite elements spaces on regular triangulations of size ε is considered. In [1], [2], [23] the implicit constraint on the gradient through the addition of a higher order penalization is investigated. Moreover, it is important to mention the AMBROSIO & TORTORELLI approximation (see [4] and [5]) of the Mumford-Shah functional via elliptic functionals.

The study of non-local models, where the effect of a large gradient is spread onto a set of size ε, was first introduced by BRAIDES & DAL MASO in order to approximate the Mumford-Shah functional (see [10] and also [11], [13], [14], [15], [16]) by means of the family

\begin{equation}
F_\varepsilon(u) = \frac{1}{\varepsilon} \int_{\Omega} f\left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u|^2 \, dy\right) \, dx, \quad u \in H^1(\Omega),
\end{equation}

where, for instance, $f(t) = t \land 1/2$ and $B_{\varepsilon}(x)$ denotes the ball of centre x and radius ε. A variant of the method proposed in [10] has been used in [22] to deal with the approximation of a functional F of the form (1.1), with ϕ having linear growth and θ independent on the normal ν_u (see also [20] and [21]). More precisely, in [22] the Γ-limit of the family

$$F_\varepsilon(u) = \frac{1}{\varepsilon} \int_{\Omega} f\left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, dy\right) \, dx, \quad u \in W^{1,1}(\Omega),$$

for a suitable concave function f, is computed.

In [25] (see also [13]) the case of an anisotropic variant of (1.2) has been considered. In particular it is proven that the family

$$F_\varepsilon(u) = \frac{1}{\varepsilon} \int_{\Omega} f\left(\varepsilon |\nabla u| ^p \ast \rho_\varepsilon\right) dx, \quad u \in H^1(\Omega), \quad p > 1,$$

Γ-converges to an anisotropic version of the Mumford-Shah functional.

In this paper we investigate the Γ-convergence of the family

$$F_\varepsilon(u) = \frac{1}{\varepsilon} \int_{\Omega} f_\varepsilon\left(\varepsilon |\nabla u| \ast \rho_\varepsilon\right) dx, \quad u \in W^{1,1}(\Omega).$$

The main difficulty to overcome is the estimate from below for the lower Γ-limit in terms of the surface part, while the contribution arising from the volume and Cantor parts has been treated along the same line of the argument already exploited in [25]. The estimate from above has
been achieved by density and relaxation arguments. We prove that the Γ-limit, in the strong L^1-topology, is given by
\[F(u) = \int_{\Omega} \phi(|\nabla u|) \, dx + \int_{S_\#} \theta(|u^+ - u^-|, \nu_w) \, d\mathcal{H}^{n-1} + c_0 |D^c u| (\Omega), \]
where $c_0 = \lim_{t \to +\infty} \phi(t)/t$ and
\[\theta(s, \nu) = \inf \left\{ \liminf_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{Q_\nu} f(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) \, dx : (u_j) \in W_{\nu, \varepsilon}^0, \varepsilon_j \to 0^+ \right\}, \]
being $W_{\nu, \varepsilon}^0$ the space of all sequences on the cylinder Q_ν which converge, shrinking onto the interface, to the function that jumps from a to b around the origin (see paragraph 3.1 for details).

In section 7 we have been able to show that the method used in [22] to write the estimate θ works only if $\nu = 1$. Without loss of generality we can suppose $\nu = 1$. In the case $n > 1$ such an argument does not work. Let us briefly discuss the reason. Without loss of generality we can suppose $\nu = e_i$. Let $P_{\nu, \theta}$ be the orthogonal projection of C onto $\{x_1 = 0\}$. Denote by X the space of all functions $v \in W_{\nu, \theta}^{1,1}(\mathbb{R} \times P_{\nu, \theta})$ which are non-decreasing in the first variable and such that there exist $\xi_0 < \xi_1$ with $v(x) = 0$ if $x_1 < \xi_0$ and $v(x) = s$ if $x_1 > \xi_1$. Then, exploiting the same argument as in [22], we have $\theta(s, e_1) \geq \inf_X G$, where
\[G(v) = \int_{-\infty}^{+\infty} f \left(\int_{C(xe_1)} \partial_1 v(z) \rho(z - te_i) \, dz \right) \, dt. \]
The estimate $\theta(s, e_1) \geq \inf_X G$ turns out to be optimal if $\inf_X G = \inf_Y G$, where Y is the space of all functions $v \in X$ such that v depends only on the first variable. This is due to the fact that proving the inequality $\theta(s, e_1) \geq \inf_X G$ we lose control on all the derivatives $\partial_i v$ for any $i = 2, \ldots, n$. In the case $C = B_1$ and $\rho = \frac{1}{|C|} \chi_{B_1}$, treated in [22], one is able to prove that $\inf_X G = \inf_Y G$ computing directly $\inf_X G$ by a discretization argument (see Prop. 5.7 in [22]). In general, $\inf_X G = \inf_Y G$ does not hold. Indeed proceeding at first as in the proof of Prop. 5.6 in [22], one is able to show that for any $C \subset \mathbb{R}^2$ open, bounded, convex and symmetrical set (i.e. $C = -C$) and for $\rho = \frac{1}{|C|} \chi_C$, it holds
\begin{equation}
\inf_Y G = \int_{-h_1}^{h_1} f \left(\frac{s}{|C|} \mathcal{H}^1(C \cap \{z_1 = t\}) \right) \, dt.
\end{equation}
Now if C is the parallelogram $C = \{(x, y) \in \mathbb{R}^2 : -2 \leq y \leq 2, x - 1 \leq y \leq x + 1\}$ applying (1.3), we get
\[\inf_Y G' = 2f \left(\frac{2s}{|C|} \right) + 2 \int_0^2 f \left(\frac{sr}{|C|} \right) \, dr. \]
If we compute G on the function w given by
\[w(x, y) = \begin{cases} 0 & \text{if } y > x - 1 \\ s & \text{if } y \leq x - 1 \end{cases}, \]
(to do this we notice that the functional G makes sense also on $BV_{\text{loc}}(\mathbb{R} \times (-2, 2))$ writing $D_1 v$ instead of $\partial_1 v \, dz$) we obtain
\[G(w) = 2f \left(\frac{4s}{|C|} \right). \]
If f is strictly concave then
\[G(w) < 2f \left(\frac{2s}{|C|} \right) + 2f \left(\frac{2s}{|C|} \right) < 2f \left(\frac{2s}{|C|} \right) + 2 \int_0^2 f \left(\frac{sr}{|C|} \right) \, dr = \inf_Y G. \]
By a density argument we deduce that $\inf_X G < \inf_Y G$.

As a conclusion, it seems that for a generic anisotropic convolution kernel ρ_e the expression for θ can not be further simplified when $n > 1$.

2. Notation and preliminaries

We will denote by $L^p(\Omega)$ and by $W^{k,p}(\Omega)$, for $k \in \mathbb{N}, k \geq 1$, and for $1 \leq p \leq +\infty$, respectively the classical Lebesgue and Sobolev spaces on Ω. The Lebesgue measure of a measurable set $A \subset \mathbb{R}^n$ will be denoted by $|A|$, whereas the Hausdorff measure of A of dimension $m < n$ will be denoted by $\mathcal{H}^m(A)$. The ball centered in x with radius r will be denoted by $B_r(x)$, while B_r stands for $B_r(0)$; moreover, we will use the notation S^{n-1}_x for the boundary of B_1 in \mathbb{R}^n. The volume of the unit ball in \mathbb{R}^n will be denoted by ω_n, with the convention $\omega_0 = 1$. Finally $\mathcal{A}(\Omega)$ denotes the set of all open subsets of Ω.

2.1. Functions of bounded variation. For a thorough treatment of BV functions we refer the reader to [3]. Let Ω be an open subset of \mathbb{R}^n. We recall that the space $BV(\Omega)$ of real functions of bounded variation is the space of the functions $u \in L^1(\Omega)$ whose distributional derivative is representable by a measure in Ω, i.e.

$$
\int_\Omega u \frac{\partial \varphi}{\partial x_i} \, dx = -\int_\Omega \varphi \, Du(u), \quad \forall \varphi \in C^\infty_0(\Omega), \forall i = 1, \ldots, n,
$$

for some \mathbb{R}^n-valued measure $Du = (D_1u, \ldots, D_nu)$ on Ω. We say that u has approximate limit at $x \in \Omega$ if there exists $z \in \mathbb{R}$ such that

$$
\lim_{r \to 0^+} \frac{1}{\|B_r(x)\|} \int_{B_r(x)} |u(y) - z| \, dy = 0.
$$

The set S_a where this property fails is called approximate discontinuity set of u. The vector z is uniquely determined for any point $x \in \Omega \setminus S_a$ and is called the approximate limit of u at x and denoted by $\hat{u}(x)$. We say that x is an approximate jump point of the function $u \in BV(\Omega)$ if there exist $a, b \in \mathbb{R}$ and $\nu \in S^{n-1}$ such that $a \neq b$ and

$$
\lim_{r \to 0^+} \frac{1}{\|B_r^+(x, \nu)\|} \int_{B_r^+(x, \nu)} |u(y) - a| \, dy = 0, \quad \lim_{r \to 0^+} \frac{1}{\|B_r^-(x, \nu)\|} \int_{B_r^-(x, \nu)} |u(y) - b| \, dy = 0,
$$

(2.1)

where $B_r^+(x, \nu) = \{y \in B_r(x) : \langle y - x, \nu \rangle > 0\}$ and $B_r^-(x, \nu) = \{y \in B_r(x) : \langle y - x, \nu \rangle < 0\}$. The set of approximate jump points of u is denoted by J_u. The triplet (a, b, ν), which turns out to be uniquely determined up to a permutation of a and b and a change of sign of ν, is usually denoted by $(u^+, u^-, \nu_u(x))$. On $\Omega \setminus S_a$ we set $u^+ = u^- = \hat{u}$. It turns out that for any $u \in BV(\Omega)$ the set S_a is countably $(n-1)$-rectifiable and $\mathcal{H}^{n-1}(S_a \setminus J_u) = 0$. Moreover, \(Du = B^+ u - B^- u \) and $\nu_u(x)$ gives the approximate normal direction to S_a for \mathcal{H}^{n-1}-a.e. $x \in S_a$.

For a function $u \in BV(\Omega)$ let $Du = D^+ u + D^- u$ be the Lebesgue decomposition of Du into absolutely continuous and singular part. We denote by ∇u the density of $D^+ u$; the measures $D^+ u := D^+ u \ll J_u$ and $D^- u := D^- u \ll (\Omega \setminus S_a)$ are called the jump part and the Cantor part of the derivative, respectively. It holds $Du = \nabla u \mathcal{L}^n + (u^+ - u^-)\nu_u \mathcal{H}^{n-1} \ll J_u + D^- u$. Let us recall the following important compactness Theorem in BV (see Th.3.23 and Prop.3.21 in [3]):

Theorem 2.1. Let Ω be a bounded open subset of \mathbb{R}^n with Lipschitz boundary. Every sequence (u_k) in $BV(\Omega)$ which is bounded in $BV(\Omega)$ admits a subsequence converging in $L^1(\Omega)$ to a function $u \in BV(\Omega)$.

We say that a function $u \in BV(\Omega)$ is a special function of bounded variation, and we write $u \in SBV(\Omega)$, if $|Du(\Omega)| = 0$. We say that a function $u \in L^1(\Omega)$ is a generalization of bounded variation, and we write $u \in GBV(\Omega)$, if $Du := (-T) \vee u \wedge T$ belongs to $BV(\Omega)$ for every $T \geq 0$. If $u \in GBV(\Omega)$, the function ∇u given by

$$
\nabla u = \nabla u^+ \quad \text{a.e. on } \{|u| \leq T\}
$$

(2.2)

turns out to be well-defined. Moreover, the set function $T \mapsto S_{u^+}$ is monotone increasing; therefore, if we set $S_u = \bigcup_{T \geq 0} J_{u^+}$, for \mathcal{H}^n-a.e. $x \in S_u$ we can consider the functions of T given by $(u^+)^-(x)$, $(u^+)^+(x)$, $\nu_{u^+}(x)$. It turns out that

$$
\nu_u(x) = \lim_{T \to +\infty} \nu_{u^+}(x), \quad u^+(x) = \lim_{T \to +\infty} (u^+)^+(x), \quad \nu_u(x) = \lim_{T \to +\infty} \nu_{u^+}(x)
$$

(2.3)
are well-defined for \mathcal{H}^{n-1}-a.e. $x \in S_u$. Finally, for a function $u \in GBV(\Omega)$, let $|D^\varepsilon u|$ be the supremum, in the sense of measures, of $|D^\varepsilon u|^T$ for $T > 0$. It can be proved that for any Borel subset B of Ω

$$|D^\varepsilon u|(B) = \lim_{T \to +\infty} |D^\varepsilon u|^T|(B).$$

2.2. Slicing. In order to obtain the estimate from below of the lower Γ-limit (see next paragraph) we need some basic properties of one-dimensional sections of BV-functions. We first introduce some notation. Let $\xi \in S^{n-1}$, and let ξ^\perp be the vector subspace orthogonal to ξ. If $y \in \xi^\perp$ and $E \subseteq \mathbb{R}^n$ we set $E_{\xi,y} = \{ t \in \mathbb{R} : y + t\xi \in E \}$. Moreover, for any given function $u : \Omega \to \mathbb{R}$ we define $u_{\xi,y} : \Omega_{\xi,y} \to \mathbb{R}$ by $u_{\xi,y}(t) = u(y + t\xi)$. For the results collected in the following Theorem see [3], section 3.11.

Theorem 2.2. Let $u \in BV(\Omega)$. Then $u_{\xi,y} \in BV(\Omega_{\xi,y})$ for every $\xi \in S^{n-1}$ and for \mathcal{H}^{n-1}-a.e. $y \in \xi^\perp$. For such values of y we have $u_{\xi,y}'(t) = \langle \nabla u(y + t\xi), \xi \rangle$ for a.e. $t \in \Omega_{\xi,y}$ and $J_{u_{\xi,y}} = (J_u)_{\xi,y}$, where $u_{\xi,y}'$ denotes the absolutely continuous part of the measure derivative of $u_{\xi,y}$. Moreover, for every open subset A of Ω we have

$$\int_{\xi^\perp} |D^\varepsilon u_{\xi,y}|(A_{\xi,y})d\mathcal{H}^{n-1}(y) = |\langle D^\varepsilon u, \xi \rangle|(A).$$

2.3. Γ-convergence. For the general theory see [9] and [18]. Let (X,d) be a metric space. Let (\mathcal{F}_j) be a sequence of functions $X \to \overline{\mathbb{R}}$. We say that (\mathcal{F}_j) Γ-converges, as $j \to +\infty$, to $\mathcal{F} : X \to \overline{\mathbb{R}}$, if for all $u \in X$ we have:

a) For every sequence (u_j) converging to u it holds

$$\mathcal{F}(u) \leq \liminf_{j \to +\infty} \mathcal{F}_j(u_j).$$

b) There exists a sequence (u_j) converging to u such that

$$\mathcal{F}(u) \geq \limsup_{j \to +\infty} \mathcal{F}_j(u_j).$$

The lower and upper Γ-limits of (\mathcal{F}_j) in $u \in X$ are defined as

$$\mathcal{F}'(u) = \inf \{ \liminf_{j \to +\infty} \mathcal{F}_j(u_j) : u_j \to u \}, \quad \mathcal{F}''(u) = \inf \{ \limsup_{j \to +\infty} \mathcal{F}_j(u_j) : u_j \to u \}$$

respectively. We extend this definition of convergence of families depending on a real parameter. Given a family $(\mathcal{F}_{\varepsilon})_{\varepsilon > 0}$ of functions $X \to \overline{\mathbb{R}}$, we say that it Γ-converges, as $\varepsilon \to 0$, to $\mathcal{F} : X \to \overline{\mathbb{R}}$ if for every positive infinitesimal sequence (ε_j) the sequence $(\mathcal{F}_{\varepsilon_j})$ Γ-converges to \mathcal{F}. If we define the lower and upper Γ-limits of $(\mathcal{F}_{\varepsilon})$ as

$$\mathcal{F}'(u) = \inf \{ \liminf_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(u_{\varepsilon}) : u_{\varepsilon} \to u \}, \quad \mathcal{F}''(u) = \inf \{ \limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(u_{\varepsilon}) : u_{\varepsilon} \to u \}$$

respectively, then $(\mathcal{F}_{\varepsilon})$ Γ-converges to \mathcal{F} in u if and only if $\mathcal{F}'(u) = \mathcal{F}''(u) = \mathcal{F}(u)$. It turns out that both \mathcal{F}' and \mathcal{F}'' are lower semicontinuous on X. In the estimate of \mathcal{F}' we shall use the following immediate consequence of the definition:

$$\mathcal{F}'(u) = \inf \{ \liminf_{j \to +\infty} \mathcal{F}_{\varepsilon_j}(u_j) : \varepsilon_j \to 0^+, \ u_j \to u \}.$$

It turns out that the infimum is attained.

An important consequence of the definition of Γ-convergence is the following result about the convergence of minimizers (see, e.g., [18], Cor. 7.20):

Theorem 2.3. Let $\mathcal{F}_j : X \to \overline{\mathbb{R}}$ be a sequence of functions which Γ-converges to some $\mathcal{F} : X \to \overline{\mathbb{R}}$; assume that $\inf_{v \in X} \mathcal{F}_j(v) > -\infty$ for every j. Let (σ_j) be a positive infinitesimal sequence, and for every j let $u_j \in X$ be a σ_j-minimizer of \mathcal{F}_j, i.e.

$$\mathcal{F}_j(u_j) \leq \inf_{v \in X} \mathcal{F}_j(v) + \sigma_j.$$

Assume that $u_j \to u$ for some $u \in X$. Then u is a minimum point of \mathcal{F}, and

$$\mathcal{F}(u) = \lim_{j \to +\infty} \mathcal{F}_j(u_j).$$
Remark 2.4. The following property is a direct consequence of the definition of Γ-convergence:
if $\mathcal{F}_e \Gamma \rightarrow \mathcal{F}$ then $\mathcal{F}_e + \mathcal{G} \Gamma \rightarrow \mathcal{F} + \mathcal{G}$ whenever $\mathcal{G} : X \rightarrow \mathbb{R}$ is continuous.

2.4. Supremum of measures. In order to prove the Γ-liminf inequality we recall the following useful tool, which can be found in [8].

Lemma 2.5. Let Ω be an open subset of \mathbb{R}^n and denote by $\mathcal{A}(\Omega)$ the family of its open subsets. Let λ be a positive Borel measure on Ω, and $\mu : \mathcal{A}(\Omega) \rightarrow [0, +\infty)$ a set function which is superadditive on open sets with disjoint compact closures, i.e. if $A, B \subset \subset \Omega$ and $\overline{A} \cap \overline{B} = \emptyset$, then

$$\mu(A \cup B) \geq \mu(A) + \mu(B).$$

Let $(\psi_i)_{i \in I}$ be a family of positive Borel functions. Suppose that

$$\mu(A) \geq \int_A \psi_i \, d\lambda \quad \text{for every } A \in \mathcal{A}(\Omega) \text{ and } i \in I.$$

Then

$$\mu(A) \geq \int_{A^c} \sup_i \psi_i \, d\lambda \quad \text{for every } A \in \mathcal{A}(\Omega).$$

2.5. A density result. The right bound for the upper Γ-limit from above will be first obtained for a suitable dense subset of $\text{SBV}(\Omega)$. More precisely, let $W(\Omega)$ be the space of all functions $w \in \text{SBV}(\Omega)$ such that

(a) $\mathcal{H}^{n-1}(S_w \setminus S_u) = 0$;

(b) S_w is the intersection of Ω with the union of a finite member of $(n - 1)$-dimensional simplexes;

(c) $w \in W^{k, \infty}(\Omega \setminus S_w)$ for every $k \in \mathbb{N}$.

Theorem 2.6. in [17] gives us the density property of $W(\Omega)$ we need; here

$$\text{SBV}^2(\Omega) = \{u \in \text{SBV}(\Omega) : |\nabla u| \in L^2(\Omega), \mathcal{H}^{n-1}(S_u) < +\infty\}.$$

Theorem 2.6. Assume that $\partial \Omega$ is Lipschitz. Let $u \in \text{SBV}^2(\Omega) \cap L^\infty(\Omega)$. Then there exists a sequence (w_n) in $W(\Omega)$ such that $w_n \rightarrow u$ strongly in $L^1(\Omega)$, $\nabla w_n \rightarrow \nabla u$ strongly in $L^2(\Omega, \mathbb{R}^n)$, with $\limsup_{n \rightarrow +\infty} \|w_n\|_{L^\infty} \leq \|u\|_{L^\infty}$ and such that

$$\limsup_{n \rightarrow +\infty} \int_{S_{w_n}} \psi(w_n^+, \nu_{w_n}) \, d\mathcal{H}^{n-1} \leq \int_{S_u} \psi(u^+, \nu_u) \, d\mathcal{H}^{n-1}$$

for every upper semicontinuous function ψ such that $\psi(a, b, \nu) = \psi(b, a, -\nu)$ whenever $a, b \in \mathbb{R}$ and $\nu \in S^{n-1}$.

2.6. A relaxation result. To conclude this section we prove a relaxation result which will be used in the sequel. Recall that given X be a topological space and $\mathcal{F} : X \rightarrow \mathbb{R} \cup \{+\infty\}$, the relaxed functional of \mathcal{F}, denoted by $\overline{\mathcal{F}}$, is the largest lower semicontinuous functional which is smaller than \mathcal{F}.

Theorem 2.7. Let $\phi : [0, +\infty) \rightarrow [0, +\infty)$ be a convex, non-decreasing and lower semicontinuous function with $\phi(0) = 0$ and with

$$\lim_{t \rightarrow +\infty} \frac{\phi(t)}{t} = c \in (0, +\infty).$$

Let $\theta : [0, +\infty) \times S^{n-1} \rightarrow [0, +\infty)$ be a lower semicontinuous function such that $\theta(s, \nu) \leq c\, s$ for any $(s, \nu) \in [0, +\infty) \times S^{n-1}$, for some $c > 0$. For any $A \in \mathcal{A}(\Omega)$ let

$$\mathcal{F}(u, A) = \begin{cases} \int_A \phi(|\nabla u|) \, dx + \int_{S_u \cap A} \theta(|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1} & \text{if } u \in \text{SBV}^2(\Omega) \cap L^\infty(\Omega) \\ +\infty & \text{otherwise in } L^1(\Omega). \end{cases}$$

Then the relaxed functional of \mathcal{F} with respect to the strong L^1-topology satisfies

$$\overline{\mathcal{F}}(u) \leq \int_\Omega \phi(|\nabla u|) \, dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1} + c|D^c u|(\Omega)$$
for any \(u \in BV(\Omega) \).

Proof. Combining a standard convolution argument with a well known relaxation result (see, for instance, Th. 5.47 in [3]) we can say that the relaxed functional of

\[
G(u, A) = \begin{cases}
\int_A \phi(|\nabla u|) \, dx & \text{if } u \in C^1(\Omega) \\
+\infty & \text{otherwise in } L^1(\Omega)
\end{cases}
\]

is given by

\[
\overline{G}(u, A) = \begin{cases}
\int_A \phi(|\nabla u|) \, dx + c|D^u u|(A) & \text{if } u \in BV(\Omega) \\
+\infty & \text{otherwise in } L^1(\Omega).
\end{cases}
\]

Since \(C^1(\Omega) \subseteq SBV^2(\Omega) \cap L^\infty(\Omega) \) then we get \(F(u, A) \leq G(u, A) \). Hence for any \(A \in A(\Omega) \) and for any \(u \in BV(\Omega) \)

\[
F(u, A) \leq \int_A \phi(|\nabla u|) \, dx + c|D^u u|(A).
\]

We can now conclude using the fact that for every \(u \in BV(\Omega) \) the set function \(F(u, \cdot) \) is the trace on \(A(\Omega) \) of a regular Borel measure \(\mu \). This can be proven exactly along the same line of Prop. 3.3 in [6]. Hence

\[
F(u) = \mu(\Omega) = \mu(\Omega \setminus S_u) + \mu(\Omega \cap S_u) \\
\leq \int_\Omega \phi(|\nabla u|) \, dx + c|D^u u|(\Omega) + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1}
\]

which is what we wanted to prove. \(\square \)

3. Statement of the main results

Let \(\Omega \subset \mathbb{R}^n \) be a bounded open set with Lipschitz boundary. Let \(\phi : [0, +\infty) \to [0, +\infty) \) be a convex and non-decreasing function with \(\phi(0) = 0 \) and

\[
(3.1) \quad \lim_{t \to +\infty} \frac{\phi(t)}{t} = c_0 \in (0, +\infty).
\]

For any \(\varepsilon > 0 \) let \(f_\varepsilon : [0, +\infty) \to [0, +\infty) \) be such that:

A1) \(f_\varepsilon \) is non-decreasing, continuous, with \(f_\varepsilon(0) = 0 \).

A2) It holds

\[
\lim_{(\varepsilon, t) \to (0, 0)} \frac{f_\varepsilon(t)}{\varepsilon \phi\left(\frac{t}{\varepsilon}\right)} = 1.
\]

A3) \(f_\varepsilon \) converges uniformly on the compact subsets of \([0, +\infty) \) to a concave function \(f \).

Example 3.1. Given \(f \) and \(\phi \) as above, a possible choice for \(f_\varepsilon \) satisfying A1-A3 is given by

\[
f_\varepsilon(t) = \begin{cases}
\varepsilon \phi\left(\frac{t}{\varepsilon}\right) & \text{if } 0 \leq t \leq t_\varepsilon \\
f(t - t_\varepsilon) + \varepsilon \phi\left(\frac{t_\varepsilon}{\varepsilon}\right) & \text{if } t > t_\varepsilon
\end{cases}
\]

where \(t_\varepsilon \to 0 \), and \(t_\varepsilon/\varepsilon \to +\infty \). The only non-trivial assumption to verify is A2. Since \(\varepsilon / t \phi(t/\varepsilon) \to c_0 \) as \((\varepsilon, t) \to (0, 0) \), with \(t \geq t_\varepsilon \), the check amounts to verify that

\[
\lim_{(\varepsilon, t) \to (0, 0)} \frac{f(t - t_\varepsilon) + \varepsilon \phi\left(\frac{t_\varepsilon}{\varepsilon}\right)}{t} = c_0.
\]

This follows immediately from \(f(t - t_\varepsilon)/(t - t_\varepsilon) \to c_0 \) and \(\varepsilon / t \phi(t_\varepsilon/\varepsilon) \to c_0 \) as \((\varepsilon, t) \to (0, 0) \), and \(t \geq t_\varepsilon \).
Let $C \subset \mathbb{R}^n$ be open, bounded, and connected with $0 \in C$. Let $\rho: C \to (0, +\infty)$ be a continuous and bounded convolution kernel with

$$\int_C \rho \, dx = 1.$$

For any $\varepsilon > 0$ and for any $x \in \mathbb{R}^n$ we will denote by $C_\varepsilon(x)$ the set $x + \varepsilon C$. For any $x \in \varepsilon C$ let

$$\rho_\varepsilon(x) = \frac{1}{\varepsilon^n} \rho \left(\frac{x}{\varepsilon} \right).$$

We consider the family $(F_\varepsilon)_{\varepsilon > 0}$ of functionals $L^1(\Omega) \to [0, +\infty]$ defined by

$$F_\varepsilon(u) = \begin{cases} \frac{1}{\varepsilon} \int_\Omega f_\varepsilon(\varepsilon |\nabla u|) \rho_\varepsilon \, dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise in } L^1(\Omega) \end{cases}$$

where, for any $x \in \Omega$,

$$(3.3) \quad |\nabla u| \rho_\varepsilon(x) = \int_{C_\varepsilon(x) \cap \Omega} |\nabla u(y)| \rho_\varepsilon(y - x) \, dy$$

is a regularization by convolution of $|\nabla u|$ by means of the kernel ρ_ε.

Remark 3.2. Notice that with the choice $C = B_1$ and $\rho = \frac{1}{\varepsilon_n} \chi_{B_1}$, we get

$$|\nabla u| \rho_\varepsilon(x) = \int_{B_\varepsilon(x) \cap \Omega} |\nabla u| \, dy$$

and thus the family $(F_\varepsilon)_{\varepsilon > 0}$ reduces to the case already investigated in [20], [21] and [22].

In order to prove the Γ-convergence of F_ε it is convenient to introduce a localized version of F_ε: more precisely, for each $A \in \mathcal{A}(\Omega)$ we set

$$F_\varepsilon(u, A) = \begin{cases} \frac{1}{\varepsilon} \int_A f_\varepsilon(\varepsilon |\nabla u|) \rho_\varepsilon \, dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise in } L^1(\Omega) \end{cases}$$

(3.4)

Clearly, $F_\varepsilon(\cdot, \Omega)$ coincides with the functional F_ε defined in (3.2). The lower and upper Γ-limits of $(F_\varepsilon(\cdot, A))$ will be denoted by $F(\cdot, A)$ and $F^*(\cdot, A)$, respectively.

3.1. **The anisotropy.** In this paragraph we define the surface density

$$\theta: [0, +\infty) \times S^{n-1} \to [0, +\infty)$$

which will appear in the expression of the Γ-limit of F_ε.

Given $\nu \in S^{n-1}$ and $a, b \in \mathbb{R}$ let us denote by $u^\nu_{a,b}$ the function $\mathbb{R}^n \to \mathbb{R}$ given by

$$u^\nu_{a,b}(x) = \begin{cases} a & \text{if } \langle x, \nu \rangle < 0 \\ b & \text{if } \langle x, \nu \rangle \geq 0. \end{cases}$$

For any $x \in \mathbb{R}^n$ and any $\nu \in S^{n-1}$ let $P^\nu_{\perp}(x)$ be the orthogonal projection of x onto the subspace $\nu^\perp = \{ x \in \mathbb{R}^n : \langle x, \nu \rangle = 0 \}$. We define the cylinder

$$Q_\nu = \{ x \in \mathbb{R}^n : |\langle x, \nu \rangle| \leq 1, P^\nu_{\perp}(x) \in B_1 \cap \nu^\perp \}.$$

Given $\Omega' \subset \mathbb{R}^n$ with $Q_\nu \subset \subset \Omega'$ denote by $W^a_{\nu,b}$ the space of all sequences (u_j) in $W^{1,1}_{loc}(\Omega')$ such that $u_j \to u^\nu_{a,b}$ in $L^1(\Omega')$, and such that there exist two positive infinitesimal sequences (a_j, b_j) with $u_j(x) = a$ if $\langle x, \nu \rangle < -a_j$ and $u_j = b$ if $\langle x, \nu \rangle > b_j$. Let

$$\theta(s, \nu) = \frac{1}{\omega_{n-1}} \inf \left\{ \liminf_{\varepsilon \to +\infty} \frac{1}{\varepsilon} \int_{Q_\nu} f(\varepsilon |\nabla u_j| + \rho_\varepsilon) \, dx : (u_j) \in W^a_{\nu,b}, \varepsilon \to 0^+ \right\}.$$

(3.5)

Notice that $\theta(s, \nu)$ does not depend on the choice of Ω'. Let us collect some easy properties of θ which immediately descend from the definition.
Lemma 3.3. The following properties hold:

\begin{equation}
\theta(s, \nu) = \theta(s, -\nu), \quad \forall s \geq 0, \quad \forall \nu \in S^{-n}_{1}.
\end{equation}

\begin{equation}
\inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_{j}} \int_{Q_{\varepsilon}} f(\varepsilon_{j} |\nabla u_{j}| \ast \rho_{\varepsilon_{j}}) \, dx : (u_{j}) \in W^{0,s}_{\nu}, \varepsilon_{j} \to 0^{+} \right\}
\end{equation}

\begin{equation}
\inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_{j}} \int_{Q_{\varepsilon}} f(\varepsilon_{j} |\nabla u_{j}| \ast \rho_{\varepsilon_{j}}) \, dx : (u_{j}) \in W^{0,s}_{\nu}, \varepsilon_{j} \to 0^{+} \right\}
\end{equation}

Moreover, for any \(x_{0} \in \mathbb{R}^{n} \), \(\nu \in S^{-n}_{1} \) and \(s \geq 0 \) we have

\begin{equation}
\theta(s, \nu) = \frac{1}{\omega_{n-1}} \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_{j}} \int_{Q_{\varepsilon}} f(\varepsilon_{j} |\nabla u_{j}| \ast \rho_{\varepsilon_{j}}) \, dx : (u_{j}(\cdot - x_{0})) \in W^{0,s}_{\nu}, \varepsilon_{j} \to 0^{+} \right\}.
\end{equation}

3.2. Main results. We are now in position to state the main result of the paper.

Theorem 3.4. Let \(F_{\varepsilon} \) be as in (3.2), with \(f_{\varepsilon} \) satisfying conditions A1-A3. Then \(F_{\varepsilon} \Gamma \)-converges, with respect to the strong \(L^{1} \)-topology, as \(\varepsilon \to 0 \), to \(F : L^{1}(\Omega) \to [0, +\infty] \) given by

\[
F(u) = \begin{cases}
\int_{\Omega} \phi(|\nabla u|) \, dx + \int_{S_{u}} \theta(|u^{+} - u^{-}|, \nu_{u}) \, d\mathcal{H}^{n-1} + c_{0} |D^{c} u|_{\Omega} & \text{if } u \in \text{GBV}(\Omega) \\
+\infty & \text{otherwise in } L^{1}(\Omega).
\end{cases}
\]

Remark 3.5. Notice that for any \(u \in \text{GBV}(\Omega) \) the expression \(\theta(|u^{+} - u^{-}|, \nu_{u}) \) turns out to be well defined \(\mathcal{H}^{n-1} \)-a.e. \(x \in S_{u} \), since (3.7) holds.

The proof of Theorem 3.4 will descend combining Proposition 5.10 (the \(\Gamma \)-liminf inequality) with Proposition 6.3 (the \(\Gamma \)-limsup inequality).

As a typical consequence of a \(\Gamma \)-convergence result, we are able to prove a result of convergence of minimas by means of the following compactness result for equibounded (in energy) sequences, which will be proved in §4.

Theorem 3.6. Let \((\varepsilon_{j}) \) be a positive infinitesimal sequence, and let \((u_{j}) \) be a sequence in \(L^{1}(\Omega) \) such that \(||u_{j}||_{\infty} \leq M \), and such that \(F_{\varepsilon_{j}}(u_{j}) \leq M \) for some positive constant \(M \) independent of \(j \). Then the sequence \((u_{j}) \) converges, up to a subsequence, in \(L^{1}(\Omega) \) to a function \(u \in \text{BV}(\Omega) \).

Theorem 3.7. Let \((\varepsilon_{j}) \) be a positive infinitesimal sequence and let \(g \in L^{\infty}(\Omega) \). For every \(u \in L^{1}(\Omega) \) and \(j \in \mathbb{N} \) let

\[
\mathcal{I}_{j}(u) = F_{\varepsilon_{j}}(u) + \int_{\Omega} |u - g| \, dx, \quad \mathcal{I}(u) = F(u) + \int_{\Omega} |u - g| \, dx.
\]

For every \(j \) let \(u_{j} \in L^{1}(\Omega) \) be such that

\[
\mathcal{I}_{j}(u_{j}) \leq \inf_{L^{1}(\Omega)} \mathcal{I}_{j} + \varepsilon_{j}.
\]

Then the sequence \((u_{j}) \) converges, up to a subsequence, to a minimizer of \(\mathcal{I} \) in \(L^{1}(\Omega) \).

Proof. Since \(g \in L^{\infty}(\Omega) \) and since \(F_{\varepsilon_{j}} \) decreases by truncation, we can assume that \((u_{j}) \) is equibounded in \(L^{\infty}(\Omega) \); for instance \(||u_{j}||_{\infty} \leq ||g||_{\infty} \). Applying Theorem 3.6 there exists \(u \in \text{BV}(\Omega) \) such that (up to a subsequence) \(u_{j} \to u \) in \(L^{1}(\Omega) \). By Theorem 2.3, since \((\mathcal{I}_{j}) \Gamma \)-converges to \(\mathcal{I} \) (see Th. 3.4 and Remark 2.4), \(u \) is a minimum point of \(\mathcal{I} \) on \(L^{1}(\Omega) \). \(\Box \)
4. Compactness

In this section we prove Theorem 3.6. Let us first recall a useful technical Lemma which can be found in [10], Prop. 4.1. Actually such a Proposition has been proved for $|\nabla u|^2$, but, up to simple modifications, the same proof works for $|\nabla u|$.

For every $A \in \mathcal{A}(\Omega)$ and $\sigma > 0$ we set

$A_\sigma = \{ x \in A : d(x, \partial A) > \sigma \}.

Lemma 4.1. Let $g : [0, +\infty) \to [0, +\infty)$ be a non-decreasing continuous function such that

$$\lim_{t \to 0} \frac{g(t)}{t} = c$$

for some $c > 0$. Let $A \in \mathcal{A}(\Omega)$ with $A \subset \subset \Omega$, and let $u \in W^{1,1}(\Omega) \cap L^\infty(\Omega)$. For any $\delta > 0$ and for any $\varepsilon > 0$ sufficiently small, there exists a function $v \in SBV(A) \cap L^\infty(A)$ such that

$$\begin{align*}
(1 - \delta) \int_A |\nabla u| \, dx &\leq \frac{1}{\varepsilon} \int_A g \left(\varepsilon \int_{B_r(x)} |\nabla u| \, dy \right) \, dx, \\
\mathcal{H}^{n-1}(S_v \cap A_{\delta_{\varepsilon}}) &\leq c' \frac{\|v\|_{L^\infty(A)}}{\|u\|_{L^\infty(A)}} \int_A g \left(\varepsilon \int_{B_r(x)} |\nabla u| \, dy \right) \, dx,
\end{align*}$$

where c' is a constant depending only on n, δ and g.

Proof of Theorem 3.6. Let $A \in \mathcal{A}(\Omega)$ with $A \subset \subset \Omega$ and ∂A smooth. Let $r > 0$ such that $B_r \subset C$, and let $m = \inf_{B_r} \rho > 0$. Then for any $x \in A$ we have $B_{r \varepsilon_j}(x) \subset C_{\varepsilon_j}(x)$ and thus for j sufficiently large,

$$|\nabla u_j|*\rho_{\varepsilon_j}(x) = \int_{C_{\varepsilon_j}(x)} |\nabla u_j(y)| \rho_{\varepsilon_j}(y - x) \, dy \geq \frac{m}{\varepsilon_j} \int_{B_{r \varepsilon_j}(x)} |\nabla u_j(y)| \, dy$$

$$= m \varepsilon_j \omega_n \int_{B_{r \varepsilon_j}(x)} |\nabla u_j(y)| \, dy$$

for any $x \in A$. Fix $\delta > 0$. By A2 there exist $t_\delta > 0$ and j_δ such that $f_{\varepsilon_j}(t) \geq (1 - \delta) \varepsilon_j \phi(t/\varepsilon_j)$ for any $t \in [0, t_\delta]$ and $j > j_\delta$. Let $\alpha, \beta \in \mathbb{R}$, with $\alpha > 0$ and $\beta < 0$, be such that $\phi(t) \geq \alpha t + \beta$ everywhere. Then, since f_{ε_j} is non-decreasing, we have $f_{\varepsilon_j}(t) \geq g_{\varepsilon_j}(t)$ for any $t \geq 0$, being

$$g_{\varepsilon_j}(t) = \begin{cases} (1 - \delta) \alpha t + \varepsilon_j \beta & \text{if } t \in [0, t_\delta] \\ (1 - \delta) \alpha t_\delta + \varepsilon_j \beta & \text{if } t > t_\delta. \end{cases}$$

Therefore, letting $h_\delta(t) = g_{\varepsilon_j}(t) - \varepsilon_j \beta$, we have

$$\begin{align*}
\mathcal{F}_{\varepsilon_j}(u_j, A) &\geq \frac{1}{\varepsilon_j} \int_A h_\delta(|\nabla u_j|*\rho_{\varepsilon_j}) \, dx + \beta |A| \\
&\geq \frac{1}{\varepsilon_j} \int_A h_\delta \left(m \varepsilon_j \omega_n \int_{B_{r \varepsilon_j}(x)} |\nabla u_j| \, dy \right) \, dx + \beta |A|.
\end{align*}$$

(4.1)

Let $\eta_j = r \varepsilon_j$ and $g_{\delta, m, r}(t) = \frac{\eta_j}{t} g_{\delta, m, r}(\eta_j \int_{B_{r \varepsilon_j}(x)} |\nabla u_j| \, dy) \, dx$. Notice that, by construction,

$$\lim_{t \to 0} \frac{g_{\delta, m, r}(t)}{t}$$

exists and is finite. Then inequality (4.1) becomes

$$\mathcal{F}_{\varepsilon_j}(u_j, A) - \beta |A| \geq \frac{1}{\eta_j} \int_\Omega g_{\delta, m, r}\left(\eta_j \int_{B_{r \varepsilon_j}(x)} |\nabla u_j| \, dy \right) \, dx.$$
Applying Lemma 4.1 we find a sequence \((v_j)\) in \(SBV(A)\) and a constant \(C\) independent of \(A\) such that \(\|v_j\|_{SBV(A)} \leq C\) and \(\|v_j\|_{L^\infty(A)} \leq C\). Moreover,
(4.2) \(\|v_j - u_j\|_{L^1(A)} \to 0\).

Hence, by Theorem 2.1, the sequence \((v_j)\) converges, up to a subsequence not relabeled, to some \(u \in BV(A)\), with \(\|u\|_{BV(A)} \leq C\). By (4.2) also \(u_j\) converges to \(u\) in \(L^1(A)\). The arbitrariness of \(A\) and a diagonal argument allow to find a subsequence \((u_{j_k})\) which converges in \(L^1_{loc}(\Omega)\) to a function \(u \in BV_{loc}(\Omega)\), and the uniform bound of \(\|u_j\|_{L^\infty(\Omega)}\) implies the convergence is strong in \(L^1(\Omega)\).

\[\square\]

5. The \(\Gamma\)-liminf inequality

In this section we will prove that for any \(u \in L^1(\Omega)\) the inequality
\[\mathcal{F}(u) \leq \liminf_{j \to +\infty} \mathcal{F}_\varepsilon(u_j)\]
holds for any \(u_j \to u\) in \(L^1(\Omega)\). First we will investigate two particular situations.

5.1. A preliminary estimate from below in terms of the volume and Cantor parts. In this paragraph we will take into account a simpler family of functionals. Let \(\alpha, \beta > 0\) and let \(g: [0, +\infty) \to [0, +\infty)\) given by \(g(t) = \alpha t \wedge \beta\). Let
\(G_\varepsilon : L^1(\Omega) \times A(\Omega) \to [0, +\infty]\)
be defined by
\[G_\varepsilon(u, A) = \begin{cases} \frac{1}{\varepsilon} \int_A g(|\nabla u| * \rho_\varepsilon) \, dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise in } L^1(\Omega). \end{cases}\]

We wish to estimate from below the lower \(\Gamma\)-limit \(G'(\cdot, A)\) in terms of the volume and the Cantor parts of \(Du\). To this sake, we apply a slicing procedure, so that at first we will establish a suitable one-dimensional inequality. The idea of the proof is the same as in [25], where the superlinear growth case is treated.

Let \(m \in \mathbb{N}\) odd, let \(A\) be an open interval in \(\mathbb{R}\), and let \((\varepsilon_j)\) be a positive infinitesimal sequence. Let
\(A_j = \{x \in \varepsilon_j \mathbb{Z} : x \in A\}\)
for any \(j \in \mathbb{N}\) and for any \(x \in A_j\) we define the interval
\(I_j(x) = \left[x - \frac{m \varepsilon_j}{2}, x + \frac{m \varepsilon_j}{2} \right].\)

\[\text{Lemma 5.1. Let } \alpha', \beta' > 0 \text{ and let } h_j : [0, +\infty) \to [0, +\infty) \text{ given by } h_j(t) = \alpha' t \wedge \frac{\beta'}{\varepsilon_j}. \text{ Let } u \in BV(A) \text{ and let } u_j \to u \text{ in } L^1(A) \text{ with } u_j \in W^{1,1}(A) \text{ for any } j \in \mathbb{N}. \text{ Then}\]
\[\liminf_{j \to +\infty} \varepsilon_j \sum_{x \in A_j} h_j \left(\frac{1}{I_j(x)} \left| u_j' \right| \, dy \right) \geq \alpha' \int_A \left| u' \right| \, dy + \alpha' |D^s u|(A).\]

\[\text{Proof. For any } j \in \mathbb{N} \text{ and } i = 0, \ldots, m - 1 \text{ let } A_j^i = (i \varepsilon_j + m \varepsilon_j, i \varepsilon_j] \cap A. \text{ Obviously } A_j \text{ is the disjoint union of } A_j^i \text{ for } i \in \{0, \ldots, m - 1\}. \text{ Then}\]
\[\sum_{x \in A_j} h_j \left(\frac{1}{I_j(x)} \left| u_j' \right| \, dy \right) \geq \frac{1}{m} \sum_{i=0}^{m-1} \sum_{x \in A_j^i} mh_j \left(\frac{1}{I_j(x)} \left| u_j' \right| \, dy \right).\]

Now let
\(\overline{A}_j^i = \left\{ x \in A_j^i : \frac{1}{I_j(x)} \left| u_j' \right| \, dx \leq \frac{\beta'}{\alpha' \varepsilon_j} \right\}\)
and let \(v_j \in SBV(A)\) given by
\[v_j(x) = \begin{cases} u_j(x) & \text{if } x \in \bigcup_{y \in \overline{A}_j^i} I_j(y) \\ 0 & \text{otherwise in } A. \end{cases}\]
Hence
\[
\sum_{x \in A_j} m\varepsilon_j h_j \left(\int_{I_j(x)} |u'_j| \, dy \right) \geq \sum_{x \in \overline{A_j}} m\varepsilon_j h_j \left(\int_{I_j(x)} |u'_j| \, dy \right) = \alpha' \sum_{x \in \overline{A_j}} \int_{I_j(x)} |u'_j| \, dy
\]
\[= \alpha' \int_A |v'_j| \, dy.\]
Observe that since we can suppose, without loss of generality, that
\[
\varepsilon_j \sum_{x \in A_j} h_j \left(\int_{I_j(x)} |u'_j| \, dy \right) \leq M
\]
for some $M \geq 0$, we deduce that
\[
M \geq \varepsilon_j \sum_{x \in A_j \setminus \bigcup_{i=0}^{m-1} \overline{A_j}} h_j \left(\int_{I_j(x)} |u'_j| \, dy \right) = \varepsilon_j \beta \varepsilon_j \left(A_j \setminus \bigcup_{i=0}^{m-1} A_j \right)
\]
from which necessarily we have
\[
\varepsilon_j \beta \varepsilon_j \left(A_j \setminus \bigcup_{i=0}^{m-1} A_j \right) \to 0, \quad \text{as } j \to +\infty.
\]
This implies that $||u_j - v_j||_{L^1(A)} \to 0$ as $j \to +\infty$. Therefore, $v_j \to u$ in $L^1(A)$. Finally, by the superadditivity of the limit inf and by the lower semicontinuity of the total variation, we get
\[
\liminf_{j \to +\infty} \varepsilon_j \sum_{x \in A_j} h_j \left(\int_{I_j(x)} |u'_j| \, dy \right) \geq \frac{1}{m} \sum_{i=0}^{m-1} \liminf_{j \to +\infty} \sum_{x \in \overline{A_j}} m\varepsilon_j h_j \left(\int_{I_j(x)} |u'_j| \, dy \right)
\]
\[\geq \alpha' \liminf_{j \to +\infty} \int_A |v'_j| \, dy \geq \alpha' |Du| (A)
\]
\[\geq \alpha' \int_A |u'| \, dy + \alpha' |D^c u| (A)
\]
which ends the proof.

Now, by applying the slicing Theorem 2.2, we will reduce the n-dimensional inequality to the one-dimensional inequality 5.1. Fix $\xi \in S^n$ and $\delta \in (0, 1)$; consider an orthonormal basis $\{e_i\}$ with $e_n = \xi$. Let
\[
Q^\xi_\delta = \left\{ x \in \mathbb{R}^n : |\langle x, e_i \rangle| \leq \frac{\delta}{2}, \quad i = 1, \ldots, n \right\}, \quad Q^\xi_\delta (x) = x + Q^\xi_\delta
\]
and the lattice $\mathbb{Z}^\xi_\delta = \{ x \in \mathbb{R}^n : \langle x, e_i \rangle \in \delta \mathbb{Z}, \quad i = 1, \ldots, n \}$. In what follows we will denote by $g_j(t) = \frac{1}{\varepsilon_j} g(\varepsilon_j t)$; in particular it holds $g_j(t) = \alpha t \wedge \frac{\beta}{\varepsilon_j}$ and
\[
G_{\varepsilon_j}(u, A) = \int_A g_j(|\nabla u| \ast \rho_{\varepsilon_j}) \, dx, \quad u \in W^{1,1}(\Omega).
\]
Finally fix $A \in \mathcal{A}(\Omega)$ and let $A^\xi_\delta = \{ x \in Z^\xi_\delta : Q^\xi_\delta (x) \subset A \}$. The following Lemma is a standard easy application of the mean value Theorem (see also Lemma 4.2 in [10]).

Lemma 5.2. Let $u \in W^{1,1}(\Omega)$. Then there exists $\tau \in Q^\xi_\delta$ such that
\[
G_{\varepsilon_j}(u, A) \geq \sum_{x \in A^\xi_\delta} \delta^n g_j(|\nabla u| \ast \rho_{\varepsilon_j} (x + \tau)).
\]

Proof. We have
\[
G_{\varepsilon_j}(u, A) \geq \sum_{x \in A^\xi_\delta} \int_{Q^\xi_\delta (x)} g_j(|\nabla u| \ast \rho_{\varepsilon_j} (y)) \, dy = \int_{Q^\xi_\delta} \sum_{x \in A^\xi_\delta} g_j(|\nabla u| \ast \rho_{\varepsilon_j} (y + x)) \, dy.
\]
Applying the mean value Theorem we get
\[
\int_{Q^c_{\Delta_i}} \sum_{x \in A_i^c} g_j(|\nabla u| \ast \rho_{\varepsilon_j}(y + x)) \, dy = \sum_{x \in A_i^c} g_j(|\nabla u| \ast \rho_{\varepsilon_j}(\tau + x))
\]
for some \(\tau \in Q^c_{\Delta_i} \), which concludes the proof.

We are in position to apply the slicing procedure.

Proposition 5.3. Let \(u \in BV(\Omega) \) and \(A \in A(\Omega) \). Then
\[
G'(u, A) \geq \alpha \int_A |\nabla u| \, dx \quad \text{and} \quad G'(u, A) = \alpha |D^\prime u|(A).
\]

Proof. Fix \(\xi \in \mathbb{S}^{n-1} \). For any \(\eta > 0 \) let \(P^\xi_{\eta} \) be the union of the squares \(Q^\xi_{\eta_j}(y_i) \subset C \) with \(y_i \in Z^\xi_{\eta_j} \) for \(i = 1, \ldots, m \), for some \(m \in \mathbb{N} \) depending on \(\eta \) and \(\xi \). Let \(\rho_\eta \) be a non-negative constant function on the squares \(Q^\xi_{\eta_j}(y_i) \) with \(0 < \rho_\eta \leq \rho \) and such that
\[
c_n = \int_C \rho_\eta \, dx \to 1, \quad \text{as} \ \eta \to 0.
\]
Let \(c_\varepsilon = \rho_\eta(y_i) \); then we can rewrite \(c_n \) as \(c_n = \sum_{i=1}^m c_i \eta^n \). Let \(P^\xi_{\eta_j} \) be the union of the squares \(Q^\xi_{\eta_j}(y_i) \subset C_{\varepsilon_j} \), with \(y_i \in Z^\xi_{\eta_j} \) for \(i = 1, \ldots, m \). Let \(A_j = A_j^\xi \); applying Lemma 5.2, since we can suppose, without loss of generality, that \(u_j \in W^{1,1}(\Omega) \), there exists \(\tau_j \in Q^\xi_{\eta_j} \) such that
\[
G_{\varepsilon_j}(u_j, A) \geq \sum_{x \in A_j^c} (\eta \varepsilon_j)^n g_j(|\nabla u_j| \ast \rho_{\varepsilon_j}(x + \tau_j)).
\]
Let \(B \subset A \), and, for any \(j \) sufficiently large, let \(v_j(y) = u_j(y + \tau_j) \). Then we get \(v_j \in W^{1,1}(B) \) and \(v_j \to u \) in \(L^1(B) \). Thus
\[
G_{\varepsilon_j}(u_j, A) \geq \sum_{x \in B_j^c} (\eta \varepsilon_j)^n g(|\nabla v_j| \ast \rho_{\varepsilon_j}(x))
\]
being \(B_j^c = \{ x \in Z^\xi_{\eta_j} : Q^\xi_{\eta_j} \subset B \} \). Now, for each \(x \in B_j^c \), we estimate the term \(|\nabla v_j| \ast \rho_{\varepsilon_j}(x); \) we have, for \(j \) large enough,
\[
|\nabla v_j| \ast \rho_{\varepsilon_j}(x) = \int_{C_{\varepsilon_j}} |\nabla v_j(y + x)| \rho_{\varepsilon_j}(y) \, dy \geq \frac{1}{\varepsilon_j^n} \int_{P^\xi_{\eta_j}} |\nabla v_j(y + x)| \rho_{\varepsilon_j}(y) \, dy \geq \frac{1}{\varepsilon_j^n} \sum_{i=1}^m c_i \int_{Q^\xi_{\eta_j}(y_i)} |\nabla v_j(y + x)| \, dy = \sum_{i=1}^m |c_i \eta^n| \int_{Q^\xi_{\eta_j}(y_i)} |\nabla v_j(y + x)| \, dy.
\]
Since \(\sum_{i=1}^m \frac{c_i \eta^n}{c_n} = 1 \) and since \(g_j \) is concave we get, for every \(x \in B_j^c \),
\[
g_j(|\nabla v_j| \ast \rho_{\varepsilon_j}(x)) \geq \sum_{i=1}^m \frac{c_i \eta^n}{c_n} g_j \left(\frac{1}{\varepsilon_j} \int_{Q^\xi_{\eta_j}(y_i)} |\nabla v_j(y + x)| \, dy \right).
\]
Thus, reordering the terms, we deduce that
\[
G_{\varepsilon_j}(u_j, A) \geq \sum_{x \in D_j^c} (\eta \varepsilon_j)^n g_j \left(\frac{1}{\varepsilon_j} \int_{Q^\xi_{\eta_j}(x)} |\nabla v_j| \, dz \right)
\]
for any \(D \subset B \) and \(j \) sufficiently large, being, as usual, \(D_j^c = \{ x \in Z^\xi_{\eta_j} : Q^\xi_{\eta_j} \subset D \} \). For convenience we can suppose \(\nabla v_j = 0 \) on
\[
\mathbb{R}^n \setminus \bigcup_{Q^\xi_{\eta_j} \subset D} Q^\xi_{\eta_j},
\]
Let \(\langle \xi \rangle \) be the one-dimensional space generated by \(\xi \). Let us denote by \(Z_{\eta \xi_j}^j \) and by \(Z_{\eta \xi_j}^j \) the orthogonal projections of \(Z_{\eta \xi_j}^j \) respectively on \(\langle \xi \rangle \) and \(\xi^\perp \). Then

\[
G_{\xi_j}(u_j, A) \geq \sum_{x \in Z_{\eta \xi_j}^j} (\eta_{\xi_j})^n g_j \left(c_n \int_{Q_{\eta \xi_j}^j(x)} |\nabla v_j| \, dz \right)
\]

\[
\geq \sum_{x \in Z_{\eta \xi_j}^j} \sum_{x_\perp \in Z_{\eta \xi_j}^j} (\eta_{\xi_j})^n \left(c_n \int_{Q_{\eta \xi_j}^j(x_\perp + x_\parallel)} |\nabla v_j| \, dz \right)
\]

where \(x = x_\parallel + x_\perp \) turns out to be the unique decomposition of any \(x \in Z_{\eta \xi_j}^j \), with \(x_\parallel \in Z_{\eta \xi_j}^j \) and \(x_\perp \in Z_{\eta \xi_j}^j \). Moreover, denoting by \(Q_{\eta \xi_j}^j \), and by \(Q_{\eta \xi_j}^j \), the projections of \(Q_{\eta \xi_j}^j \), respectively on \(\langle \xi \rangle \) and on \(\xi^\perp \), applying Jensen's inequality we deduce that

\[
G_{\xi_j}(u_j, A) \geq \sum_{x_\perp \in Z_{\eta \xi_j}^j} \sum_{x_\parallel \in Z_{\eta \xi_j}^j} (\eta_{\xi_j})^n g_j \left(c_n \int_{Q_{\eta \xi_j}^j(x_\perp)} \int_{Q_{\eta \xi_j}^j(x_\parallel)} |\nabla v_j| \, dz \, dz \right)
\]

\[
\geq \sum_{x_\perp \in Z_{\eta \xi_j}^j} \sum_{x_\parallel \in Z_{\eta \xi_j}^j} (\eta_{\xi_j})^n \left(c_n \int_{Q_{\eta \xi_j}^j(x_\perp)} \int_{Q_{\eta \xi_j}^j(x_\parallel)} |\nabla v_j| \, dz \right)
\]

For any \(\sigma > 0 \) small let \(D_{\sigma \xi_j} = \{ x \in D : d(x, \partial D) > \sigma \} \) and \(D_{\sigma \xi_j}^\perp = \{ x \in D_{\sigma \xi_j} : x = x_\perp + x_\parallel \xi_j, x_\parallel \in \mathbb{R} \} \), for \(x_\perp \in \xi^\perp \). For \(j \) sufficiently large, \(v_j(x_\perp + \cdot) \in W^{1,1}(D_{\sigma \xi_j}^\perp) \). Furthermore, \(v_j \rightarrow u \) in \(L^1(D_{\sigma \xi_j}^\perp) \) for a.e. \(x_\perp \in \xi^\perp \). Let \(h_j(t) = g_j(c_n t) \); then, by the very definition of \(g \), it is easy to see that \(h_j(t) = \alpha c_n t \, \beta' \). We are in position to apply Lemma 5.1 with choice \(\alpha' = \alpha c_n \) and \(\beta' = \beta \). Thus

\[
\liminf_{j \rightarrow +\infty} \sum_{x_\parallel \in Z_{\eta \xi_j}^j} \eta_{\xi_j} g_j \left(c_n \int_{Q_{\eta \xi_j}^j(x_\parallel)} |\nabla v_j(z_\perp + z_\parallel), \xi_j| \, dz \right)
\]

\[
= \liminf_{j \rightarrow +\infty} \sum_{x_\parallel \in Z_{\eta \xi_j}^j} \eta_{\xi_j} h_j \left(\int_{Q_{\eta \xi_j}^j(z_\parallel)} |\nabla v_j(z_\perp + z_\parallel), \xi_j| \, dz \right)
\]

\[
\geq \alpha c_n \int_{D_{\sigma \xi_j}^\perp} |\nabla u(z_\perp + z_\parallel), \xi_j| \, dz + \alpha c_n |(D^{\sigma \xi_j} u(z_\perp + \cdot), \xi_j)(D_{\sigma \xi_j}^\perp)|.
\]

Taking into account Theorem 2.2 and Fatou's Lemma we conclude that

\[
\liminf_{j \rightarrow +\infty} G_{\xi_j}(u_j, A) \geq c_\alpha \int_{D_{\sigma \xi_j}^\perp} |\nabla u(z), \xi_j| \, dz + c_\alpha |(D^{\sigma \xi_j} u, \xi_j)(D_{\sigma \xi_j}^\perp)|.
\]

Since \(c_\alpha \rightarrow 1 \) as \(\eta \rightarrow 0 \), let \(\sigma \rightarrow 0 \) and \(D \not\sim A \). Then

\[
\left(5.2\right) \quad G'(u, A) \geq \alpha \int_{A} |\nabla u(z), \xi_j| \, dz \quad \text{and} \quad G'(u, A) \geq \alpha |(D^{\sigma \xi_j} u, \xi_j)(A)|
\]

for any \(\xi \in S^{n-1} \). From the first inequality, using the superadditivity of \(G' \) and Lemma 2.5 we easily deduce that

\[
G'(u, A) \geq \alpha \int_{A} |\nabla u| \, dz.
\]
Now if \(\psi = \langle \frac{dD^xu}{d|D^xu|}, \xi \rangle \) the second inequality in (5.2) can be rewritten as

\[
G'(u, A) \geq \alpha \int_A |\psi| \, d|D^xu|.
\]

Another application of Lemma 2.5 yields

\[
G'(u, A) \geq \alpha \int_{\xi \in \mathbb{S}^{n-1}} |\psi| \, d|D^xu| \geq \alpha \int_A |\psi| \, d|D^xu| = \alpha |D^xu|(A).
\]

This concludes the proof. \(\square \)

5.2. A preliminary estimate in terms of the surface part. In this section we will consider the family of functionals \(L^1(\Omega) \times \mathcal{A}(\Omega) \rightarrow [0, +\infty] \) given by

\[
E_c(u, A) = \begin{cases}
\frac{1}{\varepsilon} \int_A h(\varepsilon|\nabla u| * \rho_c) \, dx & \text{if } u \in W^{1,1}(\Omega) \\
+\infty & \text{otherwise in } L^1(\Omega)
\end{cases}
\]

where \(h: [0, +\infty) \rightarrow [0, +\infty) \) is a non-decreasing concave function with \(h(0) = 0 \) and with

\[
\lim_{t \to 0} \frac{h(t)}{t} = c' > 0.
\]

The aim of this section is to estimate from below the lower \(\Gamma \)-limit of \(E_c \) in terms of a surface integral; to do this the main idea, as in [22], is to estimate from below the Radon-Nikodym derivative of the lower \(\Gamma \)-limit \(E' \) with respect to the Hausdorff measure \(|H^\alpha| \) by means of a blow-up argument around a jump point; then the result follows applying Besicovitch’s Differentiation Theorem in a standard way.

Given \(x_0 \in \mathbb{R}^n, \nu \in \mathbb{S}^{n-1} \) and \(a, b \in \mathbb{R} \), when considering \(E' \) for the blow up \(u_{x_0}^{\nu,a,b} = u_{\nu}^{a,b}(\cdot - x_0) \) (see paragraph 3.1 for the definition of \(u_{\nu}^{a,b} \) on a unit ball \(B_1 \) as below (or on a cylinder \(Q_\nu \) as in the sequel), we will assume as \(\Omega \) any set \(\Omega' \) strictly containing \(B_1 \) (or \(Q_\nu \)): the lower \(\Gamma \)-limit of \(E_c(\cdot, A) \) does not change by replacing \(\Omega \) with any \(\Omega' \supseteq A \).

For every \(A \in \mathcal{A}(\Omega) \) let \(\mathcal{E}_c^+(\cdot, A) \) be the inner regular envelope of \(\mathcal{E}_c \), i.e.

\[
\mathcal{E}_c^+(\cdot, A) = \sup \{ \mathcal{E}_c(\cdot, B) : B \in \mathcal{A}(\Omega), B \subset \subset A \}.
\]

Proposition 5.4. Let \(u \in BV(\Omega) \) and let \(x_0 \in J_u \). Then

\[
\liminf_{\rho \to 0} \frac{\mathcal{E}_c^+(u, B_\rho(x_0))}{\rho^{n-1}} \geq \mathcal{E}_c^+(u_{x_0}^{\nu,a_+}(x_0), u_{x_0}^{a_-}(x_0), B_1(x_0)).
\]

Proof. Let \(\delta \in (0, 1) \). Then \(\mathcal{E}_c^+(u, B_\rho(x_0)) \geq \mathcal{E}_c^+(u, B_{\delta \rho}(x_0)) \) for every \(\rho > 0 \). Thus

\[
\liminf_{\rho \to 0} \frac{\mathcal{E}_c^+(u, B_\rho(x_0))}{\rho^{n-1}} \geq \delta^{n-1} \liminf_{\rho \to 0} \frac{\mathcal{E}_c^+(u, B_{\delta \rho}(x_0))}{\rho^{n-1}}.
\]

Let us now estimate the lower limit in the right-hand side. Without loss of generality we can assume \(x_0 = 0 \); moreover, for the sake of simplicity, we will denote by \(u_0 \) the function \(u_{0}^{\nu,a_+}(0), u_{0}^{a_-}(0), u_{0}^{\nu,a_-}(0) \).

Let \((\rho_k) \) be a decreasing infinitesimal sequence; for every \(k \in \mathbb{N} \) there exists \(u_j \in W^{1,1}(\Omega) \) such that \(u_j \rightarrow u \) in \(L^1(\Omega) \) and

\[
\liminf_{j \to +\infty} \mathcal{E}_c(u_j, B_{\rho_k}) \leq \mathcal{E}_c(u, B_{\rho_k}) + \frac{\rho_k^{n-1}}{2k}.
\]

Let \(j = j(k) \) be such that \(\varepsilon_j \rho_k \leq 1/k \) and

\[
\mathcal{E}_c(u_j, B_{\rho_k}) \leq \mathcal{E}_c(u, B_{\rho_k}) + \frac{\rho_k^{n-1}}{k},
\]

\[\|u_j - u\|_{L^1(\Omega)} \leq \frac{1}{k} \] and such that

\[
\int_{B_2} |u_j(r_k x) - u(r_k x)| \, dx \leq \frac{1}{k}.
\]
Let \(v_k = u_{j(k)} \). We can suppose that the sequence \(j(k) \) is increasing, and we set \(\sigma_k = \varepsilon_{j(k)} \). Hence, \(v_k \to u \) in \(L^1(\Omega) \),

\[
\mathcal{E}_{\sigma_k}(v_k, B_{r_k}) \leq \mathcal{E}'(u, B_{r_k}) + \frac{r_k^{n-1}}{k}
\]
and

\[
\int_{B_2} |v_k(r_k x) - u(r_k x)| \, dx \leq \frac{1}{k}.
\]

Inequality (5.4) gives

\[
\liminf_{k \to +\infty} \frac{\mathcal{E}'(u, B_{r_k})}{r_k^{n-1}} \geq \liminf_{k \to +\infty} \frac{\mathcal{E}_{\sigma_k}(v_k, B_{r_k})}{r_k^{n-1}}
\]
while from (5.5) we get

\[
\int_{B_2} |v_k(r_k x) - u_0(r_k x)| \, dx \leq \frac{1}{k} + \int_{B_2} |v(r_k x) - u_0(r_k x)| \, dx \to 0
\]
as \(k \to +\infty \). Let \(w_k(t) = v_k(r_k t) \). Then \(w_k \to w_0 \) in \(L^1(B_2) \); moreover, for every \(x \in B_{r_k} \) we have, setting \(y = r_k t \) and observing that \(|\nabla w_k(t)| = r_k |\nabla v_k(r_k t)| \),

\[
|\nabla v_k| \ast \rho_{\sigma_k}(x) = \int_{C_{\sigma_k}(x)} |\nabla v_k(y)| \rho_{\sigma_k}(y - x) \, dy = \frac{1}{\sigma_k^n} \int_{C_{\sigma_k}(x)} |\nabla v_k(y)| \rho\left(\frac{y - x}{\sigma_k}\right) \, dy
\]

\[
= \frac{r_k^{n-1}}{\sigma_k^n} \int_{C_{\sigma_k/r_k}(x/r_k)} |\nabla w_k(t)| \rho\left(\frac{t}{\sigma_k/r_k} - \frac{x}{\sigma_k}\right) \, dt.
\]

Therefore, setting \(x = r_k z \), we obtain

\[
\frac{\mathcal{E}_{\sigma_k}(v_k, B_{r_k})}{r_k^{n-1}} = \frac{1}{r_k^{n-1} \sigma_k} \int_{B_{r_k}} h(\sigma_k |\nabla v_k| \ast \rho_{\sigma_k}(x)) \, dx
\]

\[
= \frac{1}{r_k^{n-1} \sigma_k} \int_{B_{r_k}} h\left(\frac{r_k^{n-1}}{\sigma_k^{n-1}} \int_{C_{\sigma_k/r_k}(x/r_k)} |\nabla w_k(t)| \rho\left(\frac{t}{\sigma_k/r_k} - \frac{x}{\sigma_k}\right) \, dt\right) \, dx
\]

\[
= \frac{1}{\sigma_k/r_k} \int_{B_1} h\left(\frac{r_k^{n-1}}{\sigma_k} \int_{C_{\sigma_k}(z)} |\nabla w_k(t)| \rho\left(\frac{t}{\sigma_k/r_k} - \frac{x}{\sigma_k}\right) \, dt\right) \, dz
\]

\[
= \frac{1}{\sigma_k/r_k} \int_{B_1} h\left(\frac{r_k^{n-1}}{\sigma_k} |\nabla w_k| \ast \rho_{\sigma_k/r_k}(z)\right) \, dz.
\]

Since \(\sigma_k/r_k \to 0 \), and \(w_k \to w_0 \) in \(L^1(B_2) \), by the arbitrariness of \(\sigma_k \) and the definition of \(\mathcal{E}' \), we conclude combining (5.3) with the arbitrariness of \(\delta \in (0,1) \).

Now we estimate from below \(\mathcal{E}'(u_{\varepsilon}^{a,b}, B_1(x_0)) \). Without loss of generality, we can assume \(x_0 = 0 \) and \(\nu = e_1 \); we will denote, for the sake of simplicity, by \(u_{\varepsilon}^{a,b} \) the function \(u_{\varepsilon}^{a,b} \). In order to estimate from below \(\mathcal{E}'(u_{\varepsilon}^{a,b}, B_1) \) first we need to consider the problem on a suitable cylinder.

Recall that (see paragraph 3.1) \(Q_{e_1} = \{ x \in \mathbb{R}^n : |x_1| < 1, P_{e_1}^c(x) \in B_1 \cap e_1^c \} \), being \(P_{e_1}(x) \) the orthogonal projection of \(x \) onto the subspace \(e_1^c \); for simplicity of notation we will use \(Q \) instead of \(Q_{e_1} \).

Lemma 5.5. For any \(A \) open subset of \(Q \) there exist a positive infinitesimal sequence \((\varepsilon_j) \) and a sequence \(u_j \) in \(W^{1,1}(\Omega') \) converging to \(u_{\varepsilon}^{a,b} \) in \(L^1(\Omega') \) such that

\[
\lim_{j \to +\infty} \mathcal{E}_{\varepsilon_j}(u_j, A) = \mathcal{E}'(u_{\varepsilon}^{a,b}, A)
\]
and such that

\[
u_j(x) = a, \quad \text{if } x_1 \leq -a_j \quad \text{and} \quad u_j(x) = b, \quad \text{if } x_1 \geq b_j
\]
for some positive infinitesimal sequences \((a_j) \) and \((b_j) \).
Proof. We divide the proof in two steps.

Step 1. Fix \(A \in \mathcal{A}(Q) \) with \(A \subset Q, \varepsilon, \sigma > 0 \) sufficiently small. Let \(\varphi \) given by

\[
\varphi(x) = \begin{cases}
0 & x_1 \leq -2\varepsilon - \sigma \\
\text{affine} & -2\varepsilon - \sigma < x_1 < -2\varepsilon \\
1 & x_1 \geq -2\varepsilon.
\end{cases}
\]

Obviously we have \(|\nabla \varphi| \leq \frac{1}{\varepsilon} \). Let

\[
A_\varepsilon = \{x \in \mathbb{R}^n : x_1 < -2\varepsilon - k_1 \varepsilon - \sigma\}, \quad B_\varepsilon = \{x \in \mathbb{R}^n : x_1 > -2\varepsilon + \varepsilon k_2\}
\]

\[
S_\varepsilon = \{x \in \mathbb{R}^n : -2\varepsilon - \varepsilon k_1 - \sigma < x_1 < -2\varepsilon + \varepsilon k_2\}
\]

where \(k_1 = \sup_{x \in C} \langle x, e_1 \rangle \) and \(k_2 = -\inf_{x \in C} \langle x, e_1 \rangle \). Let \(u_1, u_2 \in W^{1,1}(\Omega') \) and \(v = \varphi u_1 + (1 - \varphi) u_2 \).

Then

\[
E_\varepsilon(v, A) = \frac{1}{\varepsilon} \int_{A \cap A_\varepsilon} h(\varepsilon |\nabla u_1| * \rho_\varepsilon) \, dx + \frac{1}{\varepsilon} \int_{A \cap B_\varepsilon} h(\varepsilon |\nabla u_1| * \rho_\varepsilon) \, dx + \frac{1}{\varepsilon} \int_{A \cap A_\varepsilon} h(\varepsilon |\nabla v| * \rho_\varepsilon) \, dx.
\]

Taking into account the subadditivity of \(h \) we get

\[
\frac{1}{\varepsilon} \int_{A \cap S_\varepsilon} h(\varepsilon |\nabla v| * \rho_\varepsilon) \, dx \leq \frac{1}{\varepsilon} \int_{A \cap S_\varepsilon} h(\varepsilon |\nabla u_1|) * \rho_\varepsilon \, dx + \frac{1}{\varepsilon} \int_{A \cap S_\varepsilon} h(\varepsilon (1 - \varphi)|\nabla u_2|) * \rho_\varepsilon \, dx + \frac{1}{\varepsilon} \int_{A \cap S_\varepsilon} h(\varepsilon |\nabla \varphi| |u_1 - u_2|) * \rho_\varepsilon) \, dx.
\]

Then

\[
E_\varepsilon(v, A) \leq E_\varepsilon(u_1, A \cap (B_\varepsilon \cup S_\varepsilon)) + E_\varepsilon(u_2, A \cap (A_\varepsilon \cup S_\varepsilon)) + \frac{c'}{\sigma} \int_{A \cap S_\varepsilon} |u_1 - u_2| * \rho_\varepsilon \, dx
\]

where we have used \(h(t) \leq c't \) for each \(t \geq 0 \).

Step 2. Now let \((\varepsilon_j) \) be a positive infinitesimal sequence and let \((v_j) \) be a sequence in \(W^{1,1}(\Omega') \) such that \(v_j \to v^{a,b} \) in \(L^1(\Omega') \) and

\[
\lim_{j \to +\infty} E_{\varepsilon_j}(v_j, A) = E'(v^{a,b}, A).
\]

Choosing \(u_1 = v_j \) and \(u_2 = a \) we have, since \(E_{\varepsilon_j}(u_2, A) = 0 \),

\[
E_{\varepsilon_j}(\varphi v_j + (1 - \varphi) u_2, A) \leq E_{\varepsilon_j}(v_j, A) + \frac{c'}{\sigma} \int_{\{x_1 < 0\}} |v_j - u_2| * \rho_{\varepsilon_j} \, dx.
\]

By standard properties of the convolution,

\[
\int_{\{x_1 < 0\}} |v_j - u_2| * \rho_{\varepsilon_j} \, dx \leq ||v_j - u_2||_{L^1(\{x_1 < 0\})} \to 0
\]

as \(j \to +\infty \). Therefore, by a diagonal argument, if \(\sigma_h \to 0 \) we can find \(j_h \to +\infty \) be such that

\[
\lim_{h \to +\infty} \frac{1}{\sigma_h} \int_{\{x_1 < 0\}} |v_{j_h} - u_2| * \rho_{\varepsilon_{j_h}} \, dx = 0.
\]

Thus

\[
\limsup_{h \to +\infty} E_{\varepsilon_{j_h}}(\varphi v_{j_h} + (1 - \varphi) u_2, A) \leq \limsup_{h \to +\infty} E_{\varepsilon_{j_h}}(v_{j_h}, A) = E'(v^{a,b}, A).
\]

Setting

\[
u_{j_h} = \begin{cases} a & x_1 \leq -2\varepsilon_{j_h} - \sigma_h \\
v_{j_h} & x_1 \geq 0
\end{cases}
\]

we easily have \(u_{j_h} \to v^{a,b} \) in \(L^1(\Omega') \) and \(u_{j_h} = a \) for \(x_1 \leq -a_j \) for a suitable positive infinitesimal sequence \((a_j) \). With the same argument one can prove that \(u_{j_h} = b \) for \(x_1 \geq b_j \) for another suitable positive infinitesimal sequence \((b_j) \). Thus \((u_{j_h}) \) is optimal and (5.7) hold.

\[\square\]

Proposition 5.6. We have \(E'(v^{a,b}, B_1) \geq E'(u^{a,b}, Q) \).
Proof. Fix $\delta \in (0, 1)$. Let (u_j) be given by the previous Lemma, applied with $A = B_1$. Then $u_j(x) = a$ if $x_1 \leq -a_j$, and $u_j(x) = b$ if $x_1 \geq b_j$, where (a_j) and (b_j) are suitable positive infinitesimal sequences. Let $S_j = (-a_j, b_j) \times \mathbb{R}^{n-1}$. For j sufficiently large, we have $\delta Q \cap S_j \subset B_1$, from which $\mathcal{E}_{\varepsilon_j}(u_j, \delta Q \cap B_1) = \mathcal{E}_{\varepsilon_j}(u_j, \delta Q)$. Then

$$(5.8) \quad \mathcal{E}_{\varepsilon_j}(u_j, B_1) \geq \mathcal{E}_{\varepsilon_j}(u_j, B_1 \cap \delta Q) = \mathcal{E}_{\varepsilon_j}(u_j, \delta Q).$$

Let $v_j(x) = u_j(\delta x)$. Then by a simple scaling argument we have $\mathcal{E}_{\varepsilon_j}(u_j, \delta Q) = \delta^{-1}\mathcal{E}_{\varepsilon_j/\delta}(v_j, Q)$. Passing to the limit in (5.8) we get

$$\mathcal{E}'(u, B_1) \geq \delta^{-1}\liminf_{j \to +\infty} \mathcal{E}_{\varepsilon_j/\delta}(v_j, Q) \geq \delta^{-1}\mathcal{E}'(u, B_1).$$

We conclude by taking the limit as $\delta \to 1^-$. \qed

Now, by an application of the Besicovitch’s Differentiation Theorem, we are able to prove the correct estimate from below for the lower Γ-limit of $\mathcal{E}_{\varepsilon_j}$. In order to apply such a Theorem, let us consider the set function $\mathcal{E}'_\varepsilon(u, \cdot)$. It is well known that an increasing set function $\alpha : \mathcal{A}(\Omega) \to [0, +\infty]$ which satisfies $\alpha(\emptyset) = 0$, which is subadditive, superadditive and inner regular, can be extended to a Borel measure on Ω (for instance see [18], Th.14.23). This result can be applied to $\mathcal{E}'_\varepsilon(u, \cdot)$, the subadditivity of $\mathcal{E}'_\varepsilon(u, \cdot)$ being the only condition which is not easy to prove, but it can be recovered as in the proof of Prop.4.3 and Th.4.6 of [13]; these results are established in the case $p > 1$, but the same arguments work if $p = 1$.

Denote by μ_u the Borel measure on Ω which extends $\mathcal{E}'_\varepsilon(u, \cdot)$.

Lemma 5.7. Let $u \in BV(\Omega)$. Then μ_u is a finite measure.

Proof. Let (u_h) be a sequence in $L^1(\Omega)$ converging weakly* converging to u in $BV(\Omega)$. By definition

$$|Du_h| \ast \rho_\varepsilon(x) = \int_{C_\varepsilon(x) \cap \Omega} \rho_\varepsilon(x - y) \, d|Du_h|(y).$$

Since $Du_h \rightharpoonup Du$ as measures, by Fatou’s Lemma and taking into account that f is non-decreasing and continuous, we get

$$(5.9) \quad \liminf_{h \to +\infty} \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon|Du_h| \ast \rho_\varepsilon) \, dx \geq \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon \liminf_{h \to +\infty} |Du_h| \ast \rho_\varepsilon) \, dx \geq \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon|Du| \ast \rho_\varepsilon) \, dx.$$

Now let $u \in BV(\Omega)$ and let (u_h) be a sequence in $L^1(\Omega)$ strictly converging to u. In particular, $|Du_h| \to |Du|$ weakly* as measures (see, for instance, Prop.3.15 in [3]). Note that that Du vanishes on the sets with finite \mathcal{H}^{n-1} measure. Moreover, if S is σ-finite with respect to \mathcal{H}^{n-1}, then $(x \in \Omega : \mathcal{H}^{n-1}(S \cap \partial C_\varepsilon(x)) > 0)$ is at most countable. Then (see, for instance, Prop.1.62 in [3]), we have

$$\lim_{h \to +\infty} |Du_h| \ast \rho_\varepsilon(x) = |Du| \ast \rho_\varepsilon(x), \quad \text{a.e. } x \in \Omega.$$

Applying the Dominated Convergence Theorem, we obtain

$$(5.10) \quad \lim_{h \to +\infty} \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon|Du_h| \ast \rho_\varepsilon) \, dx = \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon|Du| \ast \rho_\varepsilon) \, dx.$$

Combining (5.9) with (5.10) and taking into account that \mathcal{E}'_ε is lower semicontinuous, we have

$$\mathcal{E}'_\varepsilon(u) \leq \limsup_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon|Du| \ast \rho_\varepsilon) \, dx.$$

Notice that there exists $\gamma > 0$ such that $|C_\varepsilon(x) \cap \Omega| \leq \gamma \varepsilon^n$ for any $x \in \Omega$. Denoting by $M = \sup_C \rho$ and taking into Fubini’s Theorem, we get that for sufficiently small ε,

$$\int_{\Omega} h(\varepsilon|Du| \ast \rho_\varepsilon) \, dx \leq c' \int_{C_\varepsilon(x) \cap \Omega} \rho_\varepsilon(x - y) \, d|Du|(y) \, dx = c' \int_{\Omega} \int_{C_\varepsilon(x) \cap \Omega} \rho_\varepsilon(x - y) \, d|Du|(y) \, dx \leq c' M \int_{\Omega} \int_{C_\varepsilon(x) \cap \Omega} \frac{|C_\varepsilon(x) \cap \Omega|}{\varepsilon^n} \, d|Du|(y) \leq c' M \gamma |Du|(\Omega)$$

and this yields the conclusion. \qed
Lemma 5.9. Let \(\lambda \) be as in Lemma 2.5. Let \(\lambda_1, \lambda_2 \) be mutually singular Borel measures, and \(\psi_1, \psi_2 \) positive Borel functions. Assume that

\[
\mu(A) \geq \int_A \psi_1 \, d\lambda_1 + \int_A \psi_2 \, d\lambda_2
\]

for every \(A \in \mathcal{A}(\Omega) \) and \(i = 1, 2 \). Then it holds

\[
\mu(A) \geq \int_A \psi_1 \, d\lambda_i
\]

for every \(A \in \mathcal{A}(\Omega) \).
Proof. Let $E \subseteq \Omega$ be such that $\lambda_1(\Omega \setminus E) = 0$ and $\lambda_2(E) = 0$. Then we can suppose that $\psi_1 = 0$ on $\Omega \setminus E$ and $\psi_2 = 0$ on E. Then $\max\{\psi_1, \psi_2\} = \psi_1 + \psi_2$. We conclude by applying the Lemma 2.5 with the choice $\lambda = \lambda_1 + \lambda_2$. \qed

Proposition 5.10. Let $u \in L^1(\Omega)$ and $A \in A(\Omega)$. Then

$$F(u, A) \geq \int_A \phi(|\nabla u|) \, dx + \int_{S_u \cap A} \theta(|u^+ - u^-|, \nu_u) \, dH^{n-1} + c_0|D^c u|(A).$$

Proof. First notice that we can suppose $u \in GBV(\Omega)$. Indeed, if $(F_{\varepsilon_j}(u_j))$ is bounded and $u_j \to u$ in $L^1(\Omega)$ then $u \in GBV(\Omega)$: it suffices to apply Theorem 3.6 to $u_j^T = -T \vee u_j \wedge T$, hence we get $u^T \in BV(\Omega)$ which means $u \in GBV(\Omega)$.

Now the key point of the proof is the construction of a suitable family of functions below f_{ε_j}.

Step 1. Let $\delta \in (0, 1)$. We claim that there exists $t_\delta > 0$ and for any $h \in \mathbb{N}$ and for any $\varepsilon > 0$ there exist $c_h^\delta > 0$, $d_h^\delta < 0$ and g_h^δ: $[t_\delta, +\infty) \to \mathbb{R}$ such that if we let

$$f_{\varepsilon, \delta}(t) = \begin{cases} c_h^\delta t + \varepsilon d_h^\delta & \text{if } t \in [0, t_\delta] \\ c_h^\delta t_\delta + \varepsilon d_h^\delta + g_h^\delta(t) & \text{if } t > t_\delta \end{cases}$$

we have:

(5.11) $\sup_h (c_h^\delta t + d_h^\delta) = (1 - \delta)\phi(t), \quad \forall t \geq 0.$

(5.12) $f_{\varepsilon, \delta}(t) \geq f_{\varepsilon, \delta}(t), \quad \forall t \geq 0, \quad \forall h \in \mathbb{N}$, for ε sufficiently small.

(5.13) $f_{\varepsilon, \delta}$ is continuous, non-decreasing and concave for any $\varepsilon > 0$ and any $h \in \mathbb{N}$.

(5.14) $f_{\varepsilon, \delta} - \varepsilon d_h^\delta$ converges to $(1 - \delta)f$ uniformly on compact sets of $[0, +\infty)$ as $h \to +\infty$.

First of all we point out that

$$\lim_{t \to 0} \frac{f(t)}{t} = c_0.$$

Indeed, by A2 for any $\sigma \in (0, 1)$ there exist $t_\sigma, \varepsilon_\sigma > 0$ such that $f_{\varepsilon, \sigma}(t) \leq (1 + \sigma)\varepsilon \phi(t/\varepsilon)$ for each $t \in [0, t_\sigma]$ and for each $\varepsilon \in (0, \varepsilon_\sigma]$. Since $\phi(s) \leq c_0 s$ for any $s \geq 0$, we have $f_{\varepsilon, \sigma}(t)/t \leq (1 + \sigma)c_0$. By A3 the previous inequality reduces to $f(t)/t \leq (1 + \sigma)c_0$. On the other hand there exist $t'_\varepsilon, \varepsilon'_\varepsilon > 0$ such that $f_{\varepsilon, \sigma}(t) \geq (1 - \sigma)\varepsilon \phi(t/\varepsilon)$ for each $t \in [0, t'_\varepsilon]$ and for each $\varepsilon \in (0, \varepsilon'_\varepsilon]$. Since $\phi(s) \geq c_0 s - q$, for a suitable $q > 0$, we have $f_{\varepsilon, \sigma}(t)/t \geq (1 - \sigma)(c_0 t - q)$. We thus get $f(t)/t \geq (1 - \sigma)c_0$. By the arbitrariness of $\sigma > 0$ we have (5.15).

Formula (5.15) is useful in order to construct the family $(f_{\varepsilon, \delta})$ as follows. By A2 there exists $t_\delta > 0$ such that $f_{\varepsilon, \sigma}(t) \geq (1 - \delta)\phi(t/\varepsilon)$ for each $t \in [0, t_\delta]$ and for each ε sufficiently small. Fix $h \in \mathbb{N}$ with $h > 0$ and let $(\ell_h)_{h \in \mathbb{N}}$ be a family of affine functions such that $\sup_h \ell_h(t) = \phi(t)$ for any $t \geq 0$ (recall that ϕ is convex); we let $\ell_h(t) = c_h t + d_h$. Let $c_h^\delta = (1 - \delta)c_h$ and $d_h^\delta = (1 - \delta)d_h$.

Then (5.11) holds and we obtain $f_{\varepsilon, \delta}(t) \geq c_h^\delta t + \varepsilon d_h^\delta$ for all $t \in [0, t_\delta]$. Now it is easy to conclude the construction of $f_{\varepsilon, \delta}$ in such a way (5.12), (5.13) and (5.14) hold: for instance connecting the graphic of the affine piece with a suitable rotation and truncation of the graph of f (see also (5.15)).

Step 2. Let $\delta \in (0, 1)$ and let (f_{ε_j}) be the family constructed in step 1. Let $\psi_{\varepsilon_j} = f_{\varepsilon_j}^h - \varepsilon_j d_h^\delta$. Then we get

$$F_{\varepsilon_j}(u, A) \geq \frac{1}{\varepsilon_j} \int_{A'} \psi_{\varepsilon_j}^h (\varepsilon_j |\nabla u| \ast \rho_{\varepsilon_j}(x)) \, dx + \frac{1}{\varepsilon_j} \int_{A''} \psi_{\varepsilon_j}^h (\varepsilon_j |\nabla u| \ast \rho_{\varepsilon_j}(x)) \, dx + d_h^\delta |A'| + \delta d_h^\delta.$$
In particular we get
\[
F_{\varepsilon_j}(u, A) \geq \frac{1}{\varepsilon_j} \int_{A'} \psi_h^\varepsilon_j (\varepsilon_j |\nabla u| * \rho_{\varepsilon_j} (x)) \, dx + d_h^\varepsilon |A'|
\]
Notice that \(\psi_h^\varepsilon \) is linear in \([0, t_3]\). Applying Proposition 5.3 with the choice \(g = \psi_h^\varepsilon \land \psi_h^\varepsilon (t_3) \) we obtain
\[
F'(u, A) \geq c_h^\varepsilon \int_{A'} |\nabla u| \, dx + c_h^\varepsilon |D^c u| (A) + d_h^\varepsilon |A'| = (1 - \delta) \int_{A'} \ell_h(|\nabla u|) \, dx + (1 - \delta) c_h |D^c u|(A')
\]
Since \(F'(u, \cdot) \) is a superadditive function on open sets of \(\Omega \) with disjoint compact closures, by applying Lemma 2.5 and (5.11) we get, by the arbitrariness of \(A' \) and \(\delta \),
\[
F'(u, A) \geq \int_A \phi(|\nabla u|) \, dx + c_0 |D^c u| (A).
\]
Now (5.17) implies also
\[
F_{\varepsilon_j}(u, A) \geq \frac{1}{\varepsilon_j} \int_{A'} \psi_h^\varepsilon_j (\varepsilon_j |\nabla u| * \rho_{\varepsilon_j} (x)) \, dx.
\]
Applying now Proposition 5.8 with the choice \(h = \psi_h^\varepsilon \) we deduce that
\[
F'(u, A) \geq \int_{S_n \cap A'} \theta_h^\varepsilon (|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1},
\]
being
\[
\theta_h^\varepsilon (s, \nu) = \frac{1}{\omega_{n-1}} \inf \left\{ \lim \inf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_u} \psi_h^\varepsilon (\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) \, dx : (u_j) \in W^{1, \infty}_0 (\Omega), \varepsilon_j \to 0^+ \right\}.
\]
Using (5.14) and the arbitrariness of \(\delta \), it follows that \(\theta_h^\varepsilon \to \theta \) as \(h \to +\infty \) and \(\delta \to 0 \). Applying once more Lemma 2.5, by the arbitrariness of \(A'' \), we have
\[
F'(u, A) \geq \int_{S_n \cap A'} \theta (|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1}.
\]
Applying Lemma 5.9 choosing \(\lambda_1 = L^n, \lambda_2 = \mathcal{H}^{n-1} \subseteq J_u, \lambda_3 = |D^c u| \) and taking into account (5.18) and (5.19), we immediately obtain \(F'(u) \geq F(u) \) for any \(u \in BV(\Omega) \).

Let us now consider the case \(u \in GBV(\Omega) \). Let \((u_j) \) be a sequence in \(W^{1,1}_0 (\Omega) \) converging to \(u \) in \(L^1 (\Omega) \) and such that
\[
\lim_{j \to +\infty} F_{\varepsilon_j}(u_j) = F'(u).
\]
Define \(u_j^T = (-T) \lor u_j \land T \), and \(u^T = (-T) \lor u \land T \). Since \(u_j^T \to u^T \) in \(L^1 (\Omega) \), and \(u^T \in BV(\Omega) \), we have
\[
F'(u) = \lim_{j \to +\infty} F_{\varepsilon_j}(u_j) \geq \liminf_{j \to +\infty} F_{\varepsilon_j}(u_j^T) \geq F(u^T).
\]
Applying (2.2), (2.3) and (2.4) and taking into account the continuity of \(\theta \) we obtain
\[
\lim_{T \to +\infty} \left(\int_{\Omega} \phi(|\nabla u^T|) \, dx + \int_{S_n T} \theta (|u^T|^+, \nu_{u^T}) \, d\mathcal{H}^{n-1} + c_0 |D^c u^T|(\Omega) \right) = F(u)
\]
so we are done. \(\square \)

6. The \(\Gamma \)-limsup inequality

In this section we will prove that \(F''(u) \leq F(u) \) for any \(u \in L^1 (\Omega) \); since, by definition, \(F(u) = +\infty \) for any \(u \in L^1 (\Omega) \setminus GBV(\Omega) \), it is sufficient to consider the case \(u \in GBV(\Omega) \).

Lemma 6.1. Let \((\varepsilon_j) \) be a positive infinitesimal sequence, \(\nu \in S^{n-1} \) and \(s \geq 0 \). Let \((u_j) \in W^{0,s}_\nu \) be such that
\[
\omega_{n-s} \theta (s, \nu) = \lim_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_{\nu}} f(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) \, dx.
\]
Then for any \(r > 0 \) there exists a positive infinitesimal sequence \(\sigma_j \) and \((v_j) \in W_\nu^{0,\ast} \) such that for any \(\sigma > 0 \) it holds
\[
\omega_{n−1} r^{n−1} \theta(s, \nu) = \lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{Q_r^\nu} f(\sigma_j |\nabla v_j| \ast \rho_{\sigma_j}) \, dx,
\]
where \(Q_r^\nu = \{ x \in Q_\nu : |(x, \nu)| < \sigma \} \).

Proof. Let \(\sigma_j = r \varepsilon_j \) and \(v_j(x) = u_j(rx) \). Then by the change of variables \(x = rz \) and \(y = rt \) we get
\[
\frac{1}{\sigma_j} \int_{Q_r^\nu} f(\sigma_j |\nabla v_j| \ast \rho_{\sigma_j}) \, dx = \frac{r^n}{\sigma_j} \int_{Q_\nu} f \left(\frac{\sigma_j}{r} \int_{C_{\sigma_j/r}} |\nabla v_j(rz - rt)| \rho_{\sigma_j/r}(t) \, dt \right) \, dz
\]
\[
= \frac{r^{n−1}}{\varepsilon_j} \int_{Q_\nu} f \left(\varepsilon_j \int_{C_{\sigma_j}} |\nabla u_j(z - t)| \rho_{\sigma_j}(t) \, dt \right) \, dz.
\]
Passing to the limit as \(j \to +\infty \) we get
\[
\lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{Q_r^\nu} f(\sigma_j |\nabla v_j| \ast \rho_{\sigma_j}) \, dx = r^{n−1} \theta(s, \nu).
\]
Since the transition set of the optimal sequence \((u_j) \) shrinks onto the interface (see (5.7) or the definition of \(W_\nu^{0,\ast} \)) we deduce that
\[
\lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{Q_r^\nu} f(\sigma_j |\nabla v_j| \ast \rho_{\sigma_j}) \, dx = \lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{Q_r^\nu} f(\sigma_j |\nabla v_j| \ast \rho_{\sigma_j}) \, dx
\]
for any \(\sigma > 0 \), hence we conclude. \(\square \)

Proposition 6.2. For any \(u \in W(\Omega) \) it holds \(\mathcal{F}'(u) \leq \mathcal{F}(u) \).

Proof. By the very definition of \(W(\Omega) \) (see paragraph 2.5) the set \(S_u \) is contained in the union of a finite collection \(K_1, \ldots, K_m \) of \((n−1)\)-dimensional simplexes; it will not be restrictive to assume \(m = 1 \) and \(K = K_1 \subseteq \{ x \in \mathbb{R}^n : x_1 = 0 \} \). Fix \(h \in \mathbb{N}, h \geq 1 \). Let \(\Omega_h = \{ x \in \Omega : d(x, K) > 1/h \} \). Let \(S \) be the relative boundary of \(K \); obviously it holds \(\mathcal{H}^{n−1}(S) = 0 \). Let \(K_h = \{ x \in K : d(x, S) > 1/h \} \). Let \(k \in \mathbb{N}, k \geq 1, x_1, \ldots, x_k \in K_h \) and \(r \geq 0 \) be such that \(B_r(x_i) \) are pairwise disjoint, \(B_r(x_i) \cap \{ x_1 = 0 \} \subseteq K_h \) for any \(i = 1, \ldots, k \) and
\[
\mathcal{H}^{n−1} \left(K_h \setminus \left(\bigcup_{i=1}^k B_r(x_i) \cap \{ x_1 = 0 \} \right) \right) < \frac{1}{h}.
\]
Let \(Q_h = \{ x \in rQ_{e_1} : |x_1| < 1/h \} \) and \(Q_h(x) = x + Q_h \) for any \(x \in \mathbb{R}^n \).

Moreover, let \(Q_h^+ = Q_h \cap \{ x_1 > 0 \} \) and \(Q_h^- = Q_h \cap \{ x_1 < 0 \} \). At this point we divide the proof in two steps.

Step 1. Take a function \(v \in W(\Omega) \) with \(S_u \subseteq K \) and such that \(v \) is constant in any \(x_i + Q_h^+ \) and in any \(x_i + Q_h^- \). Denote by \(v_i^+ \) the value of \(v \) in \(x_i + Q_h^+ \) and by \(v_i^- \) the value of \(v \) in \(x_i + Q_h^- \).

We claim that
\[
\mathcal{F}'(v) \leq \int_{\Omega} \phi(|\nabla v|) \, dx + \sum_{i=1}^k \int_{K \cap B_r(x_i)} \theta(|v_i^+ - v_i^-|, e_1) \, d\mathcal{H}^{n−1} + c |Dv|(\Omega_h'),
\]
for some \(c > 0 \), where
\[
\Omega_h' = \Omega \setminus \left(\Omega_h \cup \bigcup_{i=1}^k (x_i + Q_h) \right).
\]
Let \((\varepsilon_j) \) be a positive infinitesimal sequence and let \(\delta \in (0, 1) \). Accordingly to Lemma 6.1, let us define \(v_j \in W(\Omega) \) be such that we have
\[
\lim_{j \to +\infty} \mathcal{F}_{\sigma_j}(v_j, x_i + \delta Q_h) = (\delta r)^{n−1} \theta(|v_i^+ - v_i^-|, e_1),
\]
where \(\sigma_j = r \varepsilon_j \). Otherwise in \(\Omega \) we set \(v_j = v \). Then, using the same argument as in the proof of Lemma 5.7, we deduce that

\[
\frac{1}{\sigma_j} \int_{\Omega} f_{\sigma_j}(\sigma_j|\nabla v_j| \ast \rho_{\sigma_j}) \, dx \leq F_{\sigma_j}(v, \Omega_h) + \sum_{i=1}^{k} f_{\sigma_j}(v_j, x_i + \delta Q_h) + c|Dv|(\Omega_{h, \delta}'),
\]

being

\[
\Omega_{h, \delta}' = \Omega \setminus \left(\Omega_h \cup \bigcup_{i=1}^{k} (x_i + \delta Q_h) \right).
\]

The first term on the right-hand side of (6.4) is given by

\[
\frac{1}{\sigma_j} \int_{\Omega_h} f_{\sigma_j}(\sigma_j|\nabla v| \ast \rho_{\sigma_j}) \, dx.
\]

By standard properties of the convolution we have \(|\nabla v| \ast \rho_{\sigma_j} \to |\nabla v| \) in \(L^1(\Omega) \) and a.e. in \(\Omega \). From A2 we deduce that

\[
\lim_{\varepsilon \to 0} \frac{f_{\varepsilon}(t\varepsilon)}{\varepsilon} = \phi(t)
\]

whenever \(t\varepsilon \to t \), for each \(t \geq 0 \). By the Dominated Convergence Theorem we get

\[
\lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{\Omega_h} f_{\sigma_j}(\sigma_j|\nabla v| \ast \rho_{\sigma_j}) \, dx = \int_{\Omega_h} \phi(|\nabla v|) \, dx \leq \int_{\Omega} \phi(|\nabla v|) \, dx.
\]

Passing to the limsup in (6.4), using (6.3) and using the arbitrariness of \(\delta \in (0, 1) \) we get (6.2).

Step 2. For any \(i = 1, \ldots, k \) let

\[
u_i^+ = \int_{B_r(x_i) \cap K} u^+-d\mathcal{H}^{n-1}, \quad \nu_i^- = \int_{B_r(x_i) \cap K} u^- d\mathcal{H}^{n-1}
\]

and

\[
u_i(x) = \begin{cases}
\nu_i^+ & \text{if } (x_i)_1 - x_1 > 0 \\
\nu_i^- & \text{if } (x_i)_1 - x_1 \leq 0
\end{cases}, \quad x \in B_r(x_i).
\]

For any \(h \in \mathbb{N}, \ h \geq 1 \), let \(u_h = u_i \) on \(Q_h(x_i) \) and \(u_h = u \) otherwise in \(\Omega \). Applying step 1 with the choice \(v = u_h \) we get

\[
\mathcal{F}'(u_h) \leq \int_{\Omega} \phi(|\nabla u|) \, dx + \sum_{i=1}^{k} \int_{K \cap B_r(x_i)} \theta(|u_i^+ - u_i^-|, e_1) \, d\mathcal{H}^{n-1} + c|Du|(\Omega_{h, \delta}') \]

Now \(|\Omega_{h, \delta}'| \to 0 \). Furthermore, taking into account (6.1) we deduce that \(\mathcal{H}^{n-1}(S_u \cap \Omega_{h, \delta}') \to 0 \) as \(h, k \to +\infty \). Hence \(|Du|(\Omega_{h, \delta}') \to 0 \) as \(h, k \to +\infty \). Exploiting the uniform continuity of the traces of \(u \) and the continuity of \(\theta \), we also get

\[
\sum_{i=1}^{k} \int_{K \cap B_r(x_i)} \theta(|u_i^+ - u_i^-|, e_1) \, d\mathcal{H}^{n-1} \xrightarrow{h,k \to +\infty} \int_{S_u} \theta(|u^+ - u^-|, e_1) \, d\mathcal{H}^{n-1}
\]

and the lower semicontinuity of \(\mathcal{F}' \) yields the conclusion. \(\square \)

Proposition 6.3. Let \(u \in GBV(\Omega) \). Then it holds \(\mathcal{F}'(u) \leq \mathcal{F}(u) \).

Proof. First let \(u \in SBV^2(\Omega) \cap L^\infty(\Omega) \). We can apply Theorem 2.6, choosing

\[
\psi(a, b, \nu) = \theta(|a - b|, \nu)
\]

(see (3.6) and (3.7)). Then there exists a sequence \(w_j \to u \) in \(L^1(\Omega) \), with \(w_j \in \mathcal{W}(\Omega) \), such that \(\nabla w_j \to \nabla u \) strongly in \(L^2(\Omega, \mathbb{R}^n) \) and

\[
\limsup_{j \to +\infty} \int_{S_{w_j}} \theta(|w_j^+ - w_j^-|, \nu_{w_j}) \, d\mathcal{H}^{n-1} \leq \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, d\mathcal{H}^{n-1}.
\]
By the lower semicontinuity of F'' and by Proposition 6.2 we deduce that, applying the Dominated Convergence Theorem and (6.6),

$$F''(u) \leq \liminf_{j \to +\infty} F''(w_j) \leq \int_\Omega \phi(|\nabla u|) \, dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, dH^{n-1}.$$

Using relaxation Theorem 2.7 we get

$$F''(u) \leq \int_\Omega \phi(|\nabla u|) \, dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, dH^{n-1} + c_0 |D^2 u|(\Omega)$$

for each $u \in BV(\Omega)$. Finally, let $u \in GBV(\Omega)$ and, for any $T > 0$, $u^T = -T \vee u \wedge T$. Then $u^T \in BV(\Omega)$ for each $T > 0$ and $u^T \to u$ in $L^1(\Omega)$ as $T \to +\infty$. Taking into account (2.2), (2.3) and (2.4) we obtain, exploiting again the lower semicontinuity of F'' and the continuity of θ,

$$F''(u) \leq \limsup_{T \to +\infty} \left(\int_\Omega \phi(|\nabla u^T|) \, dx + \int_{S_u} \theta(|(u^T)^+ - (u^T)^-|, \nu_{u^T}) \, dH^{n-1} + c_0 |D^2 u^T|(\Omega) \right)$$

$$= \int_\Omega \phi(|\nabla u|) \, dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, dH^{n-1} + c_0 |D^2 u|(\Omega)$$

which is what we wanted to prove. \square

7. Computation of θ in the one-dimensional case

In this section we are able to give an explicit formula for θ if $n=1$ along the same line of the discretization argument used in [22].

Let $n=1$, then we can set $\Omega = (a, b)$, $C = I$ to be an open interval around 0, $\rho: I \to (0, +\infty)$ continuous and bounded with

$$\int_I \rho \, dt = 1.$$

For any $\varepsilon > 0$ let $\rho_\varepsilon(t) = 1/\varepsilon \rho(t/\varepsilon)$ and $I_\varepsilon(x) = x + \varepsilon I$.

Theorem 7.1. It holds

$$\theta(s) = \int_{-\infty}^{+\infty} f(s \rho(t)) \, dt.$$

Proof. In the one-dimensional setting the expression for θ given by (3.5) reads

$$\theta(s) = \inf \left\{ \liminf_{j \to +\infty} \int_{-1}^1 f(\varepsilon_j |w_j'| \ast \rho_{\varepsilon_j}) \, dt : (u_j) \in W^{0,s}, \varepsilon_j \to 0^+ \right\},$$

being $W^{0,s}$ the space of all sequences (u_j) in $W^{1,1}_{loc}(\Omega')$, $(-1, 1) \subset \Omega'$, such that $u_j \to sx_{(0, +\infty)}$ in $L^1(\Omega')$, and such that there exist two positive infinitesimal sequences $(a_j), (b_j)$ with $u_j(t) = 0$ if $t < -a_j$ and $u_j = s$ if $t > b_j$. Let $(u_j) \in W^{0,s}$ and

$$v_j(t) = \int_{-1}^t (w_j(r))^+ \, dr.$$

Moreover, let $w_j = 0 \vee v_j \wedge s$. Then $(w_j) \in W^{0,s}$ and by the change of variables $y = \varepsilon_j z$ and $t = \varepsilon_j r$ we get:

$$\frac{1}{\varepsilon_j} \int_{-1}^1 f(\varepsilon_j |w'_j| \ast \rho_{\varepsilon_j}) \, dt \geq \frac{1}{\varepsilon_j} \int_{-1}^1 f \left(\int_{I_{\varepsilon_j}} w'_j(t + y) \rho \left(\frac{y}{\varepsilon_j} \right) \right) \, dt$$

$$= \frac{1}{\varepsilon_j} \int_{-1}^1 f \left(\varepsilon_j \int_{I} w'_j(t + \varepsilon_j z) \rho(z) \right) \, dt = \int_{-1/\varepsilon_j}^{1/\varepsilon_j} f \left(\varepsilon_j \int_{I} w'_j(\varepsilon_j r + \varepsilon_j z) \rho(z) \right) \, dr$$

$$= \int_{-1/\varepsilon_j}^{1/\varepsilon_j} f \left(\int_{I} \tilde{w}'(r + z) \rho(z) \right) \, dr,$$

where $w_j(x) = \int_{-1}^x \tilde{w}'(r + z) \rho(z) \, dr$.
We define X where $\tilde{w}_j(t) = w_j(\varepsilon_j t)$. Since $(w_j) \in W^{0,s}$ then the previous inequality becomes
\[
\frac{1}{\varepsilon_j} \int_{t-1}^{1} f(\varepsilon_j |w'_j| \rho_{\varepsilon_j}) \, dt \geq \int_{-\infty}^{+\infty} f\left(\int_{I(t)} \tilde{w}'_j(t + z) \rho(z) \, dz\right) \, dt.
\]
Denoting by X the space of all functions $v \in W^{1,1}_{loc}(\mathbb{R})$ which are non-decreasing and such that there exist $\xi_0 < \xi_1$ with $v(t) = 0$ if $t < t_0$ and $v = s$ if $t > t_1$, we are led to solve the minimization problem $\inf_X G$, being
\[
G(v) = \int_{-\infty}^{+\infty} f\left(\int_{I(t)} v'(x) \rho(x - t) \, dx\right) \, dt, \quad v \in X.
\]
By a simple regularization argument it is not restrictive to assume $f \in C^2(0, +\infty)$ and f strictly concave. For each $k \in \mathbb{N}$, with $k \geq 1$, we now consider a discrete version G_k of G defined on the space of the functions on \mathbb{R} which are constant on each interval of the form
\[
J_k^i = \left[\frac{i}{k}, \frac{i+1}{k}\right), \quad i \in \mathbb{Z}.
\]
We define X_k as the set of the functions $v : \mathbb{R} \to [0, s]$, such that:
\begin{itemize}
 \item[a)] v is constant on any J_k^i; denote by v^i the value of v on J_k^i.
 \item[b)] $v^i \leq v^{i+1}$ for any $i \in \mathbb{Z}$.
 \item[c)] $v^i = 0$ if $i < i_0$ and $v^i = s$ if $i > i_1$ for some $i_0 < i_1$.
\end{itemize}
Let $I^k = \{i \in \mathbb{Z} : J_k^i \subset I\}$. Finally, let $G_k : X_k \to \mathbb{R}$ be defined by
\[
G_k(v) = \frac{1}{k} \sum_{i \in I^k} f\left(\sum_{h \in I^k} (v^{i+h+1} - v^{i+h}) \rho_h^k\right), \quad \rho_h^k = \int_{J_k^i} \rho(z) \, dz.
\]
Obviously G_k admit minimizers on X_k. We claim that each minimizer of G_k on X_k takes only the values 0 and s.

Let v be a minimizer of G_k on X_k. Suppose, by contradiction, that there exists $i_0 \in \mathbb{Z}$ with $v^{i_0} = c \in (0, s)$. We can assume that for a suitable $r \in \mathbb{N}$ it holds
\[
v^{i_0-r} < c, \quad c = v^{i_0} = v^{i_0+1} = \cdots = v^{i_0+r}, \quad v^{i_0+r+1} > c.
\]
Given $t \in \mathbb{R}$ sufficiently small, we define $v_t \in X_k$ letting $v_t^{i_0+l} = c + t$, if $0 \leq l \leq r$, and $v_t = v$ otherwise. It is easy to see that for some $\alpha_t^k, \beta_t^k \neq 0$ which do not depend on t, we have
\[
G_k(v_t) = \frac{1}{k} \sum_{i \in J} f(\alpha_t^k t + \beta_t^k)
\]
for some finite set $J \subset \mathbb{Z}$. The function $t \mapsto G_k(v_t)$ is twice continuously differentiable in $t = 0$, due to the smoothness of f and we have
\[
\frac{d^2}{dt^2} G_k(v_t) \big|_{t=0} = \frac{1}{k} \sum_{i \in J} f''(\alpha_t^k)(\beta_t^k)^2 < 0
\]
by the strict concavity of f. This contradicts the fact that v is a minimizer for G_k on X_k.

Since G_k is invariant under translation, we have already shown that
\[
\min_{X_k} G_k = G_k(\hat{v})
\]
where $v = s\chi_{(0, +\infty)}$. Since
\[
G_k(\hat{v}) = \frac{1}{k} \sum_{i \in \mathbb{Z}} f(s\rho_i^k),
\]
by the definition of the Riemann integral as the limit of the Riemann sums, we deduce that
\[
\liminf_{k \to +\infty} \min_{X_k} G_k \geq \int_{-\infty}^{+\infty} f(s\rho(t)) \, dt.
\]
Given $\sigma > 0$ let $v_{\sigma} \in X$ be such that $\inf_X G \geq G(v_{\sigma}) - \sigma$. Let $w_\sigma : \mathbb{R} \to [0, s]$ given by

$$w_\sigma(t) = w_\sigma^k(t) = \int_{J_k^I} v_{\sigma}(r) \, dr, \quad t \in J_k^I.$$

Notice that $w_\sigma \in X_k$. Let k be sufficiently large such that $G(v_\sigma) \geq G_k(w_\sigma) - \sigma$. Hence

$$G(v_{\sigma}) \geq \liminf_{k \to +\infty} G_k - \sigma \geq \int_{-\infty}^{+\infty} f(s\rho(t)) \, dt - \sigma.$$

By the arbitrariness of $\sigma > 0$ we obtain

$$\theta(s) \geq \inf_X G \geq \int_{-\infty}^{+\infty} f(s\rho(t)) \, dt.$$

If we let

$$w_j(t) = \begin{cases} 0 & \text{if } t \leq -\varepsilon_j \\ \frac{s}{\varepsilon_j} t + s & \text{if } t \in (-\varepsilon_j, 0) \\ s & \text{if } t \geq 0 \end{cases}$$

for $\varepsilon_j \to 0^+$, we have $(w_j) \in W^{0,s}$ and a straightforward computation shows that

$$\lim_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{-\varepsilon_j}^{1} f(\varepsilon_j |u_j'| \ast \rho_{\varepsilon_j}) \, dt = \int_{-\infty}^{+\infty} f(s\rho(t)) \, dt$$

and this yields the conclusion. \hfill \Box

Remark 7.2. Observe that when $I = (-1, 1)$ and $\rho = \frac{1}{2} \chi_{[-1,1]}$ we get

$$\theta(s) = 2f\left(\frac{s}{2}\right).$$

Hence we recover the case investigated in [21].

References

(Luca Lussardi) Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund (Germany). E-mail address: luca.lussardi@math.tu-dortmund.de

(Annibale Magni) Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund (Germany). E-mail address: annibale.magni@math.tu-dortmund.de
2010-11 Luca Lussardi and Annibale Magni
Γ-limits of convolution functionals

2010-10 Patrick W. Dondl, Luca Mugnai, and Matthias Röger
Confined elastic curves

2010-09 Matthias Röger and Hendrik Weber
Tightness for a stochastic Allen–Cahn equation

2010-08 Michael Voit
Multidimensional Heisenberg convolutions and product formulas for multivariate Laguerre polynomials

2010-07 Ben Schweizer
Instability of gravity wetting fronts for Richards equations with hysteresis

2010-06 Lorenz J. Schwachhöfer
Holonomy Groups and Algebras

2010-05 Agnes Lamacz
Dispersive effective models for waves in heterogeneous media

2010-04 Ben Schweizer and Marco Veneroni
Periodic homogenization of Prandtl-Reuss plasticity equations in arbitrary dimension

2010-03 Holger Dette and Karl Friedrich Siburg and Pavel A. Stoimenov
A copula-based nonparametric measure of regression dependence

2010-02 René L. Schilling and Alexander Schnurr
The Symbol Associated with the Solution of a Stochastic Differential Equation

2010-01 Henryk Zähle
Rates of almost sure convergence of plug-in estimates for distortion risk measures

2009-16 Lorenz J. Schwachhöfer
Nonnegative curvature on disk bundles

2009-15 Iuliu Pop and Ben Schweizer
Regularization schemes for degenerate Richards equations and outflow conditions

2009-14 Guy Bouchitté and Ben Schweizer
Cloaking of small objects by anomalous localized resonance

2009-13 Tom Krantz, Lorenz J. Schwachhöfer
Extrinsically Immersed Symplectic Symmetric Spaces

2009-12 Alexander Kaplun
Continuous time Ehrenfest process in term structure modelling

2009-11 Henryk Zähle
Ein aktuarielles Modell für die Portabilität der Alterungsrückstellungen in der PKV

2009-10 Andreas Neuenkirch and Henryk Zähle
Asymptotic error distribution of the Euler method for SDEs with non-Lipschitz coefficients
2009-09 Karl Friedrich Siburg, Pavel A. Stoimenov
Regression dependence

2009-08 Wilfried Hazod
Continuous convolution hemigroups integrating a sub-multiplicative function

2009-07 Sergio Conti and Ben Schweizer
On optimal metrics preventing mass transfer

2009-06 Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg
Billiards in ideal hyperbolic polygons

2009-05 Ludwig Danzer
Quasiperiodic Tilings - Substitution Versus Inflation

2009-04 Flavius Giaş
Direct simulation of the infinitesimal dynamics of semi-discrete approximations for convection-diffusion-reaction problems

2009-03 Franz Kalhoff and Victor Pambuccian
Existential definability of parallelism in terms of betweenness in Archimedean ordered affine geometry

2009-02 Fulvia Buzzi, Michael Lenzinger and Ben Schweizer
Interface conditions for degenerate two-phase flow equations in one space dimension

2009-01 Henryk Zähle
Approximation of SDEs by population-size-dependent Galton-Watson processes

2008-25 Winfried Hazod
Mehler semigroups, Ornstein-Uhlenbeck processes and background driving Lévy processes on locally compact groups and on hypergroups

2008-24 Karl Friedrich Siburg, Pavel A. Stoimenov
Symmetry of functions and exchangeability of random variables

2008-23 Ina Kirsten Voigt
Voronoi Cells of Discrete Point Sets

2008-22 Michael Lenzinger and Ben Schweizer
Effective reaction rates of a thin catalyst layer

2008-21 Michael Voit
Bessel convolutions on matrix cones: Algebraic properties and random walks

2008-20 Margit Rösler and Michael Voit
Limit theorems for radial random walks on $p \times q$-matrices as p tends to infinity