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ABSTRACT 

 
This study introduces a new approach to speed up the protein classification process. The basic 
idea is rewriting the sequences of each family by using the most significant pairs, where the 
total number of the pairs that can be appeared in the protein sequences is 400 different pairs. 
The sequence length could be reduced to 0.86, 0.91 and 0.95 by using the most 100, 200 and 
300 significant pairs, respectively. The average time reduction is 0.53 %, 0.33 % and 0.22 % 
for 100, 200, and 300 pairs, respectively. In the three cases the suggested procedure can be 
adopted to speed up the testing time. However to get identical classification rate to the previ-
ous profile HMM, 300 pairs at least must be used. 
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INTRODUCTION 
 

Proteins have many important structures 
and functions, e.g., enzymes, antibodies, 
hormones, transport, molecules, hair, skin, 
muscle, tendons, cartilage, claws, nails, 
horns, hooves and feathers are all made of 
proteins. They are built from 20 amino ac-
ids and have a common chemical core of 
two functional groups, a carboxylic acid 
and an amino group. The enormous diver-
sity of protein is due to the many ways in 
which amino acids can be combined, e.g., 
20500 sequences can be formed by using a 
chain consists of 500 amino acids. Protein 
sequence classification is an important 
problem in biological sciences for annota-
tion new protein sequence, detecting close 
evolutionary relationships among sequences 
or discovering new drug (Sabouri et al., 
2010). In this paper, we should distinguish 
between four terms: family, domain, repeat 
and motifs. The family is a collection of 
related proteins, but the domain is a struc-

tural unit which can be found in multiple 
protein contexts, while the repeat is a short 
unit which is unstable in isolation but forms 
a stable structure when multiple copies are 
present, and the motifs is short unit found 
outside globular domains. Two main prob-
lems that make protein classification a dif-
ficult task: the first problem is that the num-
ber of possible protein is extremely large; 
the second problem is that the stability of 
the protein is not fully understood. More-
over, exploring the proteins by using the 
laboratory techniques such as spectroscopy 
and far ultraviolet are time consuming and 
expensive. On the other hand, much pro-
gress is being made by using the computa-
tional and statistical aspects. Profile Hidden 
Markov models (Profile-HMMs) are a 
widely used probabilistic modeling method 
for protein families that provides a prob-
abilistic measurement (score) of how well 
an unknown sequence fits to a family 
(Rahman et al., 2009). A good target to test 
the performance of a new classification 
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method is G-Protein Coupled Receptor 
(GPCR) for two reasons: first GPCRs are a 
large and diverse family of proteins with 
over 360 identified subfamilies. Second 
GPCRs are transmembrane proteins which 
initiate via G-proteins some of the impor-
tant signaling pathways in a cell and are 
involved in various physiological processes. 
Thus, computational prediction and classi-
fication of GPCRs can supply significant 
information for the development of novel 
drugs in pharmaceutical industry. 

Various approaches have been developed 
for solving the protein classification prob-
lem. Most of them are based on appropri-
ately modeling protein families, either di-
rectly or indirectly. Direct modeling tech-
niques use a set of sequences to build and 
train a model that characterizes the family 
of interest e.g., Profile Hidden Markov mo-
dels. Indirect techniques use direct models 
as a preprocessing tool in order to extract 
useful sequence features. In this way, se-
quences of variable length are transformed 
into fixed-length input vectors that are sub-
sequently used for training discriminative 
models, such as BLAST, Support Vector 
Machines, decision trees, and Naїve Bayes 
classifier, and neural networks (Blekas et 
al., 2005; Gao & Wang, 2006). Papasaikas 
et al. (2003) presented a new method based 
on a probabilistic approach that exploits 
highly discriminative profile Hidden Mar-
kov Models, excised from low entropy re-
gions of multiple sequence alignments, to 
derive potent family signatures. A best-
guess family membership is depicted, al-
lowing GPCRs' classification at a family 
level, solely using primary structure infor-
mation. Blekas et al. (2005) considered two 
alternative ways for identifying the motifs 
to be used for feature generation and pro-
vide a comparative evaluation of the two 
schemes. They also evaluate the impact of 
the incorporation of background features 
(2-grams) on the performance of the neural 
system. Moriyama and Kim (2005) intro-
duced a set of new methods that can clas-
sify protein family sharing very weak simi-
larity. They described an algorithm that 
combines strengths from various protein 

classification methods to obtain an opti-
mum power for protein classifications. Er-
güner et al. (2006) developed a novel 
method for obtaining class specific features, 
based on the existence of activating ligand 
specific patterns, and utilized for a majority 
voting classification. Exploiting the fact 
there is a non-promiscuous relationship 
between the specific binding of GPCRs into 
their ligands and their functional classifica-
tion. Benkrid et al. (2008) described the 
acceleration of the Viterbi decoding process 
by means of parallelizing the algorithm and 
mapping it to a systolic array. The concur-
rency of the array's processing elements is 
realized by implementing the engine on off-
the-self FPGA hardware. Mathkour et al. 
(2010) proposed an integrated approach for 
the prediction of tri-nucleotide base pat-
terns in DNA strands leading to transcrip-
tion of peptide regions in genomic se-
quences. The approach comprises of pre-
processing of data, transcription engine and 
post processing of output. The task has 
been carried out using series of filters that 
purify the raw data and assign weights to 
bases for further feeding to central engine. 

 
MATERIALS AND METHODS 

Data collection and preprocessing 
In order to test the suggested proce-

dures, G-Protein Coupled Receptor 
(GPCR) classification task was selected. 
GPCR is one of the current focus areas of 
pharmaceutical research. In addition to the 
biological importance of their functional 
roles, their interaction with more than 50 % 
of prescription drugs have led GPCRs to be 
an excellent potential therapeutic target 
class for drug design. GPCR is organized 
into a hierarchy of classes, Level 1, Level 2 
and types. GPCR Level 1 consists of six 
different families: Class A, Class B, Class 
C, Class D, Class E, and Class Z. 
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Table 1: Level 1 of GPCR families and their Pfam code 

Class Name Code Number Average Length 
Class A 7tm_1 PF00001 1160 216.2 
Class B 7tm_2 PF00002 1317 219.1 
Class C 7tm_3 PF00003 941 218.3 
Class D STE3 PF02076 239 233.8 
Class E Dicty_CAR PF05462 93 208.3 
Class Z Bac_rhodopsin PF01036 1000 145.8 

Total   4750 203.32 
 

Table 2: Random protein families with variant length 

Family Name Number Average 
Length Description 

Glucan_synthase 319 600.80 1,3-beta-glucan synthase component 
Herpes_MCP 116 1090.10 Herpes virus major capsid protein 
HOOK 150 517.90 HOOK protein 
IpgD 70 507.50 Enterobacterial virulence protein IpgD 
Med5 69 706.20 Mediator complex subunit Med5 
Med23 68 750.10 Mediator complex subunit 23 
Nrap 198 642.00 Nrap protein 
OPT 1097 533.30 OPT oligopeptide transporter protein 
Penicil amidase 694 686.50 Penicillin amidase 
Reovirus_L2 33 1142.60 Reovirus core-spike protein lambda-2 
Total 2814 624.5  
 
Table 3: The most 15 significant pairs 

Pair LL EL DE EV LF IG VP FD IF EP Fl NL PE FE KE 
Freq. 15 13 12 10 10 9 9 8 8 7 7 7 7 6 6 

 
 
Each family consists of many subfami-

lies, for example Class A consists of amine, 
peptide, hormone, and rhodopsin. Amine 
protein is classified into seven subfamilies: 
muscarinic, adrenoceptors, dopamine, his-
tamine, serotonin, octopamine, and trace 
amine. 

For our experimental study three real 
datasets were sampled. The first dataset is 
GPCR Level 1 families from www.gpcr.org/, 
which is a large collection of G-protein 
coupled receptors families, summarized in 
Table 1. The second dataset is a random 
family from http://pfam.sanger.ac.uk/, 
summarized in Table 2. The third dataset 
consists of 4000 random protein sequences 
collected randomly from www.ncbi.nlm.nih.gov. 

Profile HMM 
A general Markov model is stochastic 

process in which Si depends on the past 
(past time, past locations or past states) ran-
dom variables {Sj } where j=i-1, i-2,...,1: 
 
Pr(Sn\Sn-1, Sn-2, …,  S1) 
 

If n is large, then we have to collect a 
big number of the observation. Therefore, 
we have to approximate the general 
Markov model by using the first-order 
Markov model such as: 
 
Pr(Sn\Sn-1, Sn-2, …,  S1) ≈  Pr(Sn\Sn-1) 
 
And the probability of a certain sequence 
{S1, S2, …, Sn} is 
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Pr{S1,S2,...,Sn} = ∏
=

n

i 1
Pr(S1|Si-1) 

Unfortunately, the Markov model is not 
good enough to express the stochastic fea-
tures of bioinformatic problems; the reason 
is that the relative frequencies of the state 
transitions in the data are used as state tran-
sition probabilities, which are different from 
real sequences. Hidden Markov Model 
(HMM) is more popular in modeling bioin-
formatic problems. HMM is represented by 
a set of parameters =Θ {A, B, π}: 
 
S: The set of (hidden) states {S1, S2, ...,Sn}. 
O: The set of observations {O1, O2, ...,Om). 
π (i): The initial state probability of the 
state 

Si 
A: The probability transition matrix aij, 

where aij=Pr(state Sj at time t+l| state Si 
at time t) 

B: The probability output matrix bjk, where 
bjk=Pr(producing the observation Ok at 
time t| in state Sj at time t). 

 
Three main issues are associated with 

HMM: 

1- Learning Problem: Given some train-
ing observation sequences O={O1, O2, 
...,Om}, and a HMM structure, determine 
HMM parameters Θ  ={A, B, π} that 
best fit training data, and maximize 
Pr(O\Θ ). Unfortunately, there is no fea-
sible direct (optimal) solution, Baum-
Welch algorithm is a good approxima-
tion solution for this problem. 

2- Evaluation Problem: Given HMM 
Θ={A, B, π} and the observation se-
quences O={O1, O2, ..., Om}, calculate 
the probability that model Θ  has gener-
ated sequence O. The complexity of 
finding the all paths is O(nm) which is 
unfeasible. Therefore, an approximation 
solution can be calculated by using 
Forward-Backward algorithm. 

3- Decoding Problem: Given the HMM 
={A, B, π} and the observation se-
quences O={O1, O2, ...,Om}, calculate 

the most likely sequence of hidden 
states Si that produce this observation 
sequence. Viterbi algorithm is an effi-
cient solution for this problem. 
 
Profile HMM is a special HMM struc-

ture, a typical profile HMM architecture is 
shown in Figure 1. In addition to start and 
end state, there are three classes of states: 
the match states, the delete states and the 
insert states with S={start, m1,  m2,…, mn, 
i1 , i2,…, in+1, d1, d2,…dn, end}, where n is 
the length of the model, typically equal to 
the average length of the sequences in the 
family. Once a profile HMM has been suc-
cessfully trained on a family of sequences, 
it represents a model of the entire family 
and can be used for recognition, searching, 
multi-alignment, or classification tasks. 

 
Figure 1: Profile HMM architecture 

The proposed method  
A protein sequence is made from vari-

ous combinations of 20 amino acids, Let 
Seq be a protein sequence then Seq ∈  Σn, 
where Σ={A, C, D, E, F, G, H, I, K, L, M, 
N, P, Q, R, S, T, V, W, Y}. However, we 
can represent Seq as following: 

Seq∈
⎩
⎨
⎧

Σ×Σ×Σ
Σ×Σ

− oddisn
evenisn

n

n

2/)1(

2/

)(
)(

 

To reduce the length of the protein se-
quences, we can rewrite the sequences of 
each family by using the most significant 
pairs. The total number of the pairs that can 
be appeared in the protein sequences is 400 
different pairs i.e., ΣxΣ={AA, AC, AD, 
AE, AF, ..., CA, CC, CD, ..., YY} and 
|ΣxΣ|= 400. The significant pairs can be 
found by counting the frequencies of the 
pairs in the whole family. For example; 
consider the first 10 seed sequences of the 
family AgrD (PF05931): 
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Seq1: 
MKLVNLLLSSTTSFLQMVGNRQKA
KTCTVLYDEPEVPKELTQELE 

Seq2: 
KKLLNKVIELLVDFFNSIGYRAAYIN 
CDFLLDEAEVPKELTQLHE 

Seq3: 
NTLFNLFFDFITGILKNIGNIAAYSTC 
DFIMDEVEVPKELTQLHE 

Seq4: 
TVLVDLIIKLFTFLLQSIGTIASFTPCT 
TYFDEPEVPEELTNAK 

Seq5: 
MQIFDLLFKVISFIFEKIGFLAGYRTC 
NTYFDEPEVPKELFETYQ 

Seq6: 
MQIINLLFKVITAVFEKIGFIAGYSTC 
SYYFDEPEVPKELLEIYK 

Seq7: 
MRILEVLFNLITNLFQSIGTFARIPTS 
TGFFDEPEIPAELLEEEK 

Seq8: 
MDILNGIFKFFAFIFEQIGNIAKYNPC 
VGYFDEPEVPSELLDEQK 

Seq9: 
MELLNGIFKLFAFIFEKIGNLA-
KYYPCFGYFDESEVPQELLDEDK 

Seq10: 
MDLLNGIFKLFAFIFEKIGNLAKYNP 
CLGFLDEPTVPKELLEEDK 

 
The most 15 significant pairs are given 

in Table 3. If we re-encode the first 3 se-
quences by using the most 15 significant 
pairs then the sequences can be written as 
following: 

Seq1:   NLLLDEPEVPKELEL 
Seq2:   LLELLIGLLDEEVPKEL 
Seq3:   LFNLFFDFIIGFIDEVEVPKEL 

While if we use the most 100 significant 
pairs then the sequences can be written as 
following: 
 
Seq1: 

KLVNLLLSTTSFLQVGNQKAKTCTV
LDEPEVPKELTQELE 

Seq2: 
KLLNKVIELLVDFFNSIGYRAAYINC 
DFLLDEAEVPKELTQLHE 

Seq3: 
NTLFNLFFDFITGILNIGNIAAYSTCD 
FIMDEVEVPKELTQLHE 

 
And if we use the most 200 significant 

pairs then the sequences can be written as 
following: 
 
Seq1: 

MKLVNLLLSSTTSFLQMVGNRQKA
KTCTVLYDEPEVPKELTQELE 

Seq2: 
KKLLNKVIELLVDFFNSIGYRAAYIN 
CDFLLDEAEVPKELTQLHE 

Seq3: 
NTLFNLFFDFITGILKNIGNIAAYSTC 
DFIMDEVEVPKELTQLHE 

 
The average of the reduction by using 

the most 15, 100 and 200 significant pairs 
are 0.39, 0.86 and 0.91, respectively. 

Let α
iArrFreq  = ),( αλθ seed

i  be an array 
contains the most significant α  pairs of the 
seed sequences of the protein family iλ  
(seed sequences are a set of sequences that 
have been manually checked by experts 
such as Pfam seed). Algorithm 1 illustrates 
the main steps to train the HMM by using 
the proposed frequency array. Algorithm 2 
can be used to determine whether a protein 
sequence belongs to the family iλ  or not.  
 
Algorithm 1: Train Profile HMM 
Input: α

iArrFreq and iλ . 
Output: Trained Profile HMM 
1- =β Encode ( iλ , α

iArrFreq ). // Encodes 
the family iλ by using the pairs in 

α
iArrFreq . 

2- δ =MultiAlign( β ).  // Multi Alignment 
the sequences in β . 

3- =ψ hmmprofestimate (size (δ ),δ ).  // 
Estimates the HMM parameters for the 
aligned sequences inδ . 

 
Algorithm 2: Test a sequence 
Input: An unknown sequence x, HMM 

parameters ψ  generated from the 
family iλ and α

iArrFreq . 
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Output: if x belongs to iλ  then “yes” else 
“no”. 

1- =µ Encode (x, α
iArrFreq ). // Encodes 

the sequence x by using the pairs in 
α
iArrFreq . 

2- v = hmmprofalign(ψ ,  x ).   //  Returns 
the score for the optimal alignment of the 
query sequence. Scores are computed 
using log-odd ratios for emission proba-
bilities. 

3- If v >O return “yes” else return “no”.  
 

RESULTS AND DISCUSSION 
 

Several experiments were conducted to 
evaluate the proposed method. The classifi-
cation accuracy was measured by counting 
the true positives (TP), false positives (FP), 
true negatives (TN) and false negatives 
(FN). The accuracy rate is defined as the 
proportion of correct predictions and is gi-
ven by: 

 

Table 4: Testing time and recognition rate of the family 7tm_1 

α =100 α =200 α =300 Previous  No. Avg. 
Len. T S T S T S T S 

Positive 
Sequences 1000 216.8 63 0.19 97.2 .28 95.1 0.32 95.1 0.41 

Negative Ran-
dom Families 2814 624.5 65 0.31 97 0.42 96.9 0.49 96.9 0.61 

Negative  
Random 

Sequences 
4000 1123 62 0.51 96.8 0.74 98 0.86 98 1.15 

Negative 
GPCRs 3590 199.1 63 0.14 97 0.21 98 0.27 98 0.35 

Avg. & Rate 11404 629.7 63.1 0.31 97 0.45 97.5 0.53 97.5 0.70 

Table 5: Testing time and recognition rate of the family 7tm_2 

α =100 α =200 α =300 Previous  No. Avg. 
Len. T S T S T S T S 

Positive 
Sequences 1317 219.1 59 0.15 89 0.17 92.4 .20 92.4 .24 

Negative Ran-
dom Families 2814 624.5 60 0.33 95.7 0.52 96.5 0.6 96.5 .7 

Negative  
Random 

Sequences 
4000 1123 60 0.51 95.2 0.70 97 0.69 97 1.0 

Negative 
GPCRs 3273 196.6 61 0.16 95 0.20 97 0.24 97 0.32 

Avg. & Rate 11404 629.7 60.2 0.32 94.7 0.43 96.5 0.48 96.5 0.64 

Table 6: Testing time and recognition rate of the family 7tm_3 

α =100 α =200 α =300 Previous  No. Avg. 
Len. T S T S T S T S 

Positive 
Sequences 941 218.3 60 0.16 92.1 0.24 93.9 0.3 93.9 0.40 

Negative Ran-
dom Families 2814 624.5 64 0.3 97 0.41 98.2 0.5 98.2 0.65 

Negative  
Random 

Sequences 
4000 1123 63 0.49 97 0.76 97.6 0.9 97.6 1.0 

Negative 
GPCRs 3649 199.0 64 0.14 97 0.17 98.3 0.22 98.3 0.35 

Avg. & Rate 11404 629.7 63.3 0.30 96.6 0.44 97.6 0.53 97.6 0.65 
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Accuracy Rate
FNFPTNTP

TNTP
+++

+
=  

 
TP is the number of actual GPCRs that 

are predicted as GPCRs, FP is the number 
of actual non-GPCRs that are predicted as 
GPCRs, TN is the number of actual non-
GPCRs that are predicted as non-GPCRs, 
and FN is the number of actual GPCRs that 
are predicted as non-GPCRs. Profile HMM 
in Algorithm 1 was trained by using three 
different GPCR families i.e. 7tm_1, 7tm_2 
and 7tm_3, where the seed size was 50 and 
three α  values were used, i.e. α =100, 
α =200, α =300. The results were compa-
red with the previous profile HMM appro-
ach. In tables 3-5 two main sets were used, 
the first were positive sequences which be-
long to the trained family and the second 
were negative sequences which are divided 
into three subsets, i.e. negative random fa-
milies from Table 2, negative random se-
quences, and negative GPCRs which belong 
to the rest of GPCR. T denotes to true posi-
tive or true negative, S denotes to the te-
sting time in seconds per sequence.  

In Table 4, the seed sequences of the 
family 7tm_1 were used to train Algorithm 
1 (50 sequences). 1000 positive sequences 
and 10404 negative sequences were used 
for testing. The positive sequences belong 
to the family 7tm_1. It can be noticed that 
the average time reduction are 0.55 %, 
0.35 % and 0.24 % for α =100, α =200, 
α =300, respectively. In Table 5 the seed 
sequences from family 7tm_2 were used to 
train Algorithm 1 (50 sequences). 1317 
positive sequences and 10087 negative se-
quences were used for testing. The average 
testing time reduction are 0.50 %, 0.32 % 
and 0.25 % for α =100, α =200, α =300, 
respectively. In Table 6 the seed sequences 
from family 7tm_3 were used to train algo-
rithm 1 (50 sequences). 941 positive se-
quences and 10463 negative sequences we-
re used for testing The average time reduc-
tion are 0.53 %, 0.32 % and 0.18 % for 
α =100, α =200, α =300, respectively. We 
can conclude that, in the three cases the 
suggested procedure can be adopted to 

speed up the testing time. However to get 
identical classification rate to the previous 
profile HMM, α =300 must be used. 
 

CONCLUSION 
 

A large amount of new protein sequences 
are being accumulated in various databases. 
An important task for researchers in bioin-
formatics is to classify these proteins in 
families based on their structural and func-
tional properties. Although laboratory expe-
riments are the most reliable, they are not 
cost and time effective. To automate the 
process, computation methods have been 
extensively used. In this study a new appro-
ach to speed up the protein classification 
process was introduced. The first step of the 
suggested procedure is counting the fre-
quency of the amino acid pairs of a protein 
family, and then rewriting the seed sequen-
ces by using the most significant pairs, mul-
ti-alignment and estimating the profile-
HMM parameters of the modified sequen-
ces. In order to classify a protein sequence, 
we must rewrite the test sequence by using 
the same pairs. The test sequence is classi-
fied according to the score of the profile-
HMM. The suggested procedure can be 
adopted to speed up the testing time from 
0.22 % - 0.53 % by using the most 100-300 
significant pairs.  
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