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Abstract

Aproximating a sum without computing the summands is a classic problem in statistics and machine
learning. The problem is defined as follows: Assume Z is the sum of n numbers, Z1, · · · , Zn i.e.,
Z = Z1 + · · ·+ Zn. The goal is to estimate Z without computing all the n summands but few.

According to the uniform sampling we choose a number Zi with probability 1
n and assign the weight

n to Zi. The number nZi will be our estimation for Z. We see that the expectation of the random
variable nZi is Z but the variance of nZi can be large. The reason is if the number of large numbers
is few, then the probability that the random sample does not take one of them will be high and if this
happens the variance of nZi will be large.

Using non-uniform sampling we can bound the variance in terms of the expectation and therefore es-
timate Z within factor (1±ε) as follows: Having n probabilities ri ≥ 1

γ
Zi
Z for 1 ≤ i ≤ n corresponding

to the numbers Z1, · · · , Zn we take a sample set A = {a1, · · · , aj, · · · , as} ⊆ [n] of indices according
to the probabilities ri and assign a weight of w(Zaj) =

1
s·raj

to a sampled number Zaj for 1 ≤ j ≤ s.
We then use the concentration bounds to show that for s = O(γ2ε−2 log(1/δ)) the probability that the
estimator X =

∑
aj∈Aw(Zaj) · Zaj deviates from Z by more than εZ is at most δ.

In this thesis we study applications of this estimator in high dimensional clustering and streaming.
In particular, for the k-means and the j-subspace problems we get unbiased estimators that can (1± ε)-
approximate the cost of the point set to an arbitrary center set. We then use these estimators to get
coresets, linear time (1+ ε)-approximation and insertion only streaming algorithms.

In the turnstile streaming model we are given a vector a of length n where the i-th coordinate is
represented by ai and a stream S as m = poly(n,M) updates of the form (i, x), where i ∈ [n] and
x ∈ {−M,−M + 1, . . . ,M − 1,M}, indicating that the i-th coordinate ai of a should be incremented
by x. Let Zi = |ai|

p for p ∈ [0, 2], 1 ≤ i ≤ n and Z = Fp(a) =
∑n
i=1 |ai|

p. In this model finding
n probabilities ri ≥ 1

γ
Zi
Z using one pass and polylog space was known to be an open problem in the

streaming community [CMI05]. We give a 1-pass poly(ε−1 logn)-space algorithm called Lp-sampler
that samples according to probabilities ri for γ = (1±ε), p ∈ [0, 2]. We show that the Lp-sampler leads
to many improvements and a unification of well-studied streaming problems, including cascaded norms,
heavy hitters, and moment estimation. In particular, as for the moment estimation using O(n1−2/kε−2)
L2-samplers in parallel for k > 2 we can (1 ± ε)-estimate Fk(a) =

∑n
i=1 |ai|

k using optimal space
n1−2/k · poly(ε−1 logn). This algorithm is the first that does not use Nisan’s pseudorandom generator
as a subroutine, potentially making it more practical.
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Chapter 1

Introduction

U niform sampling is a classic method in computer science to reduce the complexity of the
input data of an algorithm. It is usually used when the size of the input of our algorithm is large
and the time complexity of the algorithm is polynomially dependent on this size. In this setting
running the algorithm on the input will be very time consuming and we need to figure out how
to reduce the running time of the algorithm which might be a very challenging task.

Uniform sampling is a way to detour this problem by reducing the size of the input. First we
sample a small subset of the input uniformly at random. Then we run our algorithm on this small
subset. At the end we prove that the solution for the sampled set is a fairly good approximation
for the entire input.

Let us consider the k-median problem in the 2-dimensional Euclidean plane as an example. In
this problem, we are given a set P of n points in the plane where the diameter of P is upper
bounded by some function of

√
n. Such an upper bound on the diameter of P is necessary in

our setting. The goal is to report k points so-called centers in this plane such that the sum of
distances of points in P to their nearest centers is minimized. The fastest approximation algo-
rithm for the k-median due to Jain and Vazirani [JV01] has running time O(n2 logn). However
even this fast algorithm for point sets of size n when n is very large is very slow and remains
only theoretically interesting not practically.

Ideally we would like to have an algorithm with running time linear in n. This is due to the fact
that any algorithm for this problem needs to read the whole point set and bring it to the memory
which takes Ω(n). Uniform sampling is a way to achieve a running time very near to this time.
We take a sample set S ⊆ P of size |S| = O(

√
n) u.a.r and run Jain and Vazirani’s algorithm on

S to report a set C of k centers. We then show that C is a fairly good solution for the point set
P. Since |S| = O(

√
n) and the running time of the approximation algorithm is O(n2 logn), the

total running time will be O(n logn).

One issue with considering uniform random sampling as a ubiquitous tool for massive data
sets is that in some scenarios a small subset of the data set carries more information than
the rest. Since this subset is small if we take a uniform sampling over the data set with high
probability we do not hit this subset. Therefore the solution of the sampled set is not a good
solution for the entire data set.

1



2 CHAPTER 1. INTRODUCTION

In this thesis we look at non-uniform sampling as our candidate methodology for such sce-
narios. First, we assign higher probabilities to the more important elements (i.e., those which
carry more information) and lower probabilities to the rest and then sample the data accord-
ing to these probabilities. In this way, we can prove that with a reasonable probability there
are enough samples from the more important elements inside the sample set; therefore the
solution of the sample set is a good solution for the entire data set.

Next we explore a typical example of massive data set scenarios where we need to take non-
uniform sampling.

1.1 A massive data set scenario

Massive data set is the broad class of applications where as input we have a huge amount of
data or objects each one being characterized by many features. Some applications where we
see massive data sets are:

• WWW [PRTV00], where objects are web documents and features are terms in the web
documents,

• Click-stream network [FKK+00], where objects are web users and features are URLs that
one user follows by clicking hypertexts,

• Citation networks [New04], where objects are authors and features are typical keywords
in their publications,

• Ecological networks [AB02], where objects are species and features are predator-prey
relationships,

• Biological networks [BO04], where objects are people and features are genes,

• Recommendation Systems [DKR02], where objects are customers and features are goods.

According to classical information retrieval we can represent each one of these examples as an
object-feature matrix, where rows correspond to objects and columns correspond to features.
In Figure 1.1, left picture we see a document-term matrix built upon a small part of WWW
crawled and studied in [CKVW06]. As we observe this matrix is very sparse and seems to
be meaningless, a phenomenon that happens very often in massive data set scenarios. By
looking at such huge object-feature matrices the following natural questions come into our
mind:

(1) How can we extract some well-structured patterns from an object-feature matrix? And
how can we cluster objects into subsets (clusters) according to these extracted features?

(2) If we do not have enough space to store a whole object-feature matrix, can we find a
compact representation of the matrix and then extract patterns by just seeing the entries
of the matrix as a stream?



March 15, 2011, 16:42 3

In order to formulate these questions we focus on the WWW application and its object-feature
matrix known as the document-term matrix as our test case.

1.1.1 Formulation of the first question: Clustering problems

Latent semantic indexing (LSI) [DDL+90] is the known model in information retrieval to formu-
late the first question. According to LSI, we think of k ideal documents c1, · · · , ci, · · · , ck each
one describes one topic or pattern. A cluster Ci then would be all documents which are more
related to the topic or better to say more similar to the pattern of the topic described by the
ideal document ci than the other topics. In this way documents in the same cluster are sim-
ilar to each other with respect to a given similarity measure, whereas documents in different
clusters are dissimilar.

Geometrically, each document including ideal ones is a vector in d-dimensional Euclidean
space Rd where d is the number of terms or columns of the document-term matrix. We assume
that the vectors corresponding to the ideal documents c1, · · · , ck are orthonormal basis of a k-
dimensional linear subspace F, i.e., they are orthonormal and span F. This means that topics
are independent of each other. Although this assumption is unrealistic, we make it to here to
simplify the discussion. Note that the end point of the vector which corresponds to an ideal
document ci is usually called the center ci.

The similarity of two documents is measured using cosine similarity measure where two docu-
ments are similar if the cosine of the angle between their vectors is greater than some threshold
τ. Using the cosine similarity measure, clustering web documents is defined as follows: all doc-
uments for which the cosine of their angles with ci is greater than the cosine of their angles
with cj6=i are assigned to the cluster Ci. See the middle picture in Figure 1.1.

The cosine similarity measure is close to the Euclidean distance in Rd. In fact, if we assume a
vector x is normalized so that xTx = 1 we get that ||x − proj(x, ci)||22 = 1 − cos2(∠(x, ci)) where
proj(x, ci) is the projection of the end point of the vector x onto ci and || · ||2 is the Euclidean
distance. So we can reformulate the clustering web documents as assigning a vector to an
ideal document ci when ||x− proj(x, ci)||22 is smaller than ||x− proj(x, cj6=i)||22 for any j.

However, since we do not know the ideal documents ci (which are vectors in Rd) in advance,
we define a global objective function to minimize the cost of clustering web documents where
the minimization will be over all subsets of k vectors in Rd such that each two of these vectors
are orthogonal.

Thus the first formulation of the first question would be: Given a set of vectors in Rd and k,
find k orthogonal vectors {c1, · · · , ck} ⊆ Rd subject to the constraint that the sum of squared
distances of each vector to its nearest vector in {c1, · · · , ck} is minimum, where the distance of
two vectors is the Euclidean distance between their end points, i.e., the length of the vector
difference of the two vectors. We call this formulation k-orthogonal topics. Note that we put
the restriction of finding k orthogonal vectors corresponding to the ideal documents c1, · · · , ck
mainly because for the simplicity of exposition we assume that the topics are independent of
each other.
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A relaxation of this problem where the k vectors corresponding to the ideal documents do not
need to be orthogonal is known as the k-means problem. In Chapter 5 we give an algorithm
for the k-means problem such that in time O(ndk+d · (k/ε)O(1)+ 2Õ(k/ε)) returns a set C ⊆ Rd
of k centers which is (1 + ε)-approximation to the optimal k-means cluster centers. The right
picture in Figure 1.1 depicts clustering web documents according to the k-means clustering.

c1

c2

pj

pk

cos(pj , c1) ≥ τ

pj

pk

c1

c2

basis of k-dimensional linear subspace

Raw document-term matrix
centers in k-means

Topics are considered as an orthonormal Topics are considered as

Topics (=patterns) are hidden

Fig. 1.1: Extracting well-structured patterns from a document-term matrix.

Although the k-means clustering is a good starting point to approximately extract patterns and
cluster web documents, it can easily run into a problem known as the curse of dimensionality.
In particular since the term-document matrix is a sparse matrix, i.e., not each document con-
tains all the terms, we are expecting that all distances in full dimensional spaces become the
same (i.e., tend to zero) and therefore clustering in full dimension would be meaningless.

Principal component analysis (PCA) [Pea01] is a basic technique in machine learning that
addresses this problem. In PCA and in order to shave meaningless dimensions or terms we
project orthogonally the rows of the term-document matrix onto a lower dimensional linear
subspace of dimension k so-called principal subspace such that the variance of the projected
vectors (i.e., rows) is maximized. In this way we are hoping that each cluster is totally separated
from the rest of the clusters and can be extracted easily.

The PCA uses the basic Singular Value Decomposition (SVD) [GL96] to find the principal
subspace. Let n, d denote the number of rows and columns of the document-term matrix
respectively. The SVD in timeO(min(nd2, n2d)) and usingO(logn) passes over the document-
term matrix obtains an orthonormal basis of rank d for the document-term matrix in which the
singular vectors of this basis are being sorted descending according to the singular values.

Recall that we assume that the vectors corresponding to the ideal documents c1, · · · , ck are
orthonormal basis of a k-dimensional linear subspace. Using SVD (see for example, Page
561 of Chapter 12 of [Bis06]) we can show that the span of the first k singular vectors which
correspond to the top k singular values contains the principal subspace and the best choice
for c1, · · · , ck would be these first k singular vectors.

As an example we can consider the first, second and third pictures in Figure 1.2. The first
picture shows projection onto a line that maximizes the variance of vectors (their end points
are only shown). The second picture shows how PCA better clusters real data (Page 568
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[Bis06] ).

The third example shows projection onto a plane that maximizes the variance of vectors. The
last picture of Figure 1.2 unravels topics and clusters found using PCA for the raw document-
term matrix of Figure 1.1, see [CKVW06] for further discussion and examples.

u1

pj

proj(pj) = uT
1 · pj

u1

pj

u2pk

Patterns found in

document-term matrix

minimizing the sum-of-squares of the projection erros onto a 1-dimensional subspace

Maximizing the variance

using a 2-dimensional subspace

Maximizing the variance using a 1-dimensional subspace is the same as

Fig. 1.2: Shaving the meaningless terms using the dimensionality reduction of principal component
analysis. For further reading see Page 561 of Chapter 12 of [Bis06] and [CKVW06].

It is known in machine learning (see Chapter 12 of [Bis06]) that the problem of maximizing the
variance of projected vectors is equivalent to the problem of minimizing the average projection
cost defined as the sum of squared distances between the vectors and their projections onto
the principal subspace. In fact, the latter problem can be seen as the problem of finding the
d − k singular vectors corresponding to the d − k smallest singular values of the document-
term matrix. The relation between these two problems is demonstrated via examples in the
first three pictures of Figure 1.2.

Thus we end up with a new formulation of the first question which is defined as follows: Given
a set of vectors in Rd and k, find a k-dimensional linear subspace in Rd such that the sum
of squared distances of each vector to this subspace is minimum, where the distance of one
vector to a subspace is the Euclidean distance between the end point of the vector and its
projection on the subspace. We call this problem subspace problem.

Interestingly, as for the comparison between the k-means problem and the subspace problem,
Drineas at al. [DFK+04] show that the k-means problem is NP-hard even for k = 2. On the
other hand as we explained in the above the subspace problem can be solved exactly using
SVD. It is simple to see that the cost of clustering according to k-means clustering is an upper
bound to the cost of the subspace problem. On the other hand Drineas at al. in [DFK+04] show
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that the exact solution to subspace problem gives 2-approximation for the k-means problem.

So it seems SVD which solves the second formulation of the first question namely the subspace
problem efficiently is a good option to use. Unfortunately this is not as easy as it seems. There
are two issues with using SVD to solve the subspace problem:

• First, its running time which is O(min(nd2, n2d)),

• Second, O(logn) passes that it needs to have over the whole document-term matrix.

We deal with the second issue in the next section.

For massive data sets we usually assume that n, d are very large numbers and k is constant;
thus the quadratic dependency to n or d in the running time of SVD is one of the drawbacks
of applying SVD to massive data set scenarios. In this thesis we mainly consider a variant of
the subspace problem endowed with sum of distances not sum of squared distances as our
measure. This is due to the fact that the sum of distances is more robust against outliers than
sum of squared distances. For this problem in Chapter 6 we give an algorithm such that in
time O(nd · poly(k/ε) + (n + d) · 2poly(k/ε)) returns a k-dimensional linear subspace C ⊆ Rd
which is (1 + ε)-approximation to the optimal k-dimensional linear subspace. For constant k,
this algorithm has linear dependency to n, d instead of quadratic dependency that we see in
SVD.

Now we justify why we need non-uniform sampling instead of uniform sampling for this sce-
nario. From now on we assume that each vector in Rd is represented with its end point. Let
us assume we are given a point set P = {p1, · · · , pn} ⊂ Rd and a center set C ⊆ Rd which
can be k points in the k-means problem or a j-dimensional linear subspace represented as a
span of k points in Rd in the subspace problem. We can see the distances of points to C as
an n-dimensional vector a where the i-th coordinate ai stores distp(pi, C) for p ∈ [0, 2]. Here
distp(pi, C) is the p-th power of the distance of ith point pi ∈ P to the nearest center in C.

In order to approximate the p-th norm of a, i.e., ||a||pp =
∑n
i=1 |a|

p =
∑n
i=1 distp(pi, C) within

factor (1 + ε), we can use uniform sampling to sample s coordinates for some constant s and
assign a weight of n/s to each sampled coordinate. However, this might be a problem when
we have few coordinates of large absolute value, since uniform sampling does not hit them and
therefore the estimator obtained using uniform random samples can be very far from the p-th
norm of a. On the other hand if we do random sampling such that the probability of sampling
the i-th coordinate depends on |ai|

p, then we can prove that with enough probability we will
have enough samples from coordinates of large absolute value that in turn helps us to get
(1+ ε)-estimator to ||a||

p
p.



March 15, 2011, 16:42 7

1.2 Formulation of the second question: Sampling in data streams

The second issue with SVD is exactly the second question that we posed in the beginning
of this chapter. The SVD needs O(logn) passes over the document-term matrix to solve the
subspace problem which may not always be possible. Also term-document matrices are in
general huge and sparse and we cannot store them in the main memory.

Let us consider the following dynamic scenario. A search engine periodically runs its crawlers
to download a subset of web pages. Building upon its previous crawls, the search engine has
already constructed a document-term matrix, but since this matrix is sparse and huge, the
search engine has stored for each row i of the matrix a compact representation containing
some of the i’s entries.

During the next run of crawlers, when a crawler is responsible to download a modified version
of a document i, it reads the document from the beginning till the end and applies the up-
dates (i.e., insertion or deletion of occurrences of terms) to the underlying row i of the matrix.
However, since we do not store all entries of row i this will be a problem.

We model this scenario as a stream of updates of an d-dimensional vector a corresponding to
the row i and we would like to devise a streaming algorithm which maintain entries conveying
more information than the other entries in this vector. Here the claim is if we can maintain this
type of entries we should be able to have a compact representation of a from which we can
retrieve a approximately. However we do not know in advance which entries conveying more
information. Therefore we consider this heuristic that those entries conveying more information
are those that have greater absolute values than the others. We call them heavy hitters and
our goal would be to maintain them as we see updates to the underlying vector a.

We can think of this problem as follows: Given an n-dimensional vector a as a stream of m
updates to a form = nO(1) we would like to approximate its p-th norm, i.e., ||a||pp =

∑n
i=1 |ai|

p for
p ∈ [0, 2] within factor (1 + ε) using sample coordinates. Note that these sampled coordinates
are mostly chosen from heavy hitters of a as otherwise we cannot approximate the p-th norm
of a within factor (1+ε). So we came up with a formulation for the second problem which once
again needs non-uniform sampling.

1.3 Approximating a sum without computing all the summands

In general both formulations that we discussed in the above are special cases of the basic
problem approximating a sum without computing all the summands which is formally defined
as follows:

Definition 1 (Approximating a sum without computing all the summands) Let 0 < ε < 1.
Let δ > 0. Assume Z is the sum of n numbers, Z1, · · · , Zn i.e., Z = Z1 + · · · + Zn. Find an
estimator X = X1 + · · ·+ Xs for s << n such that

Pr[(1− ε)Z ≤ X ≤ (1+ ε)Z] ≥ 1− δ,



8 CHAPTER 1. INTRODUCTION

under the restriction that each Xj for 1 ≤ j ≤ s depends only on one of the summands of Z.

In Chapter 3 we see that for s ≥ O(ε−2 log(1/δ)) we can get such an estimator X.

For the formulation of the first question, given a point set P = {p1, · · · , pn} ⊂ Rd and a center
set C which can be k points or a j-dimensional linear subspace in Rd, we set Zi = distp(pi, C),
where distp(pi, C) is the p-th power of the distance of ith point pi ∈ P to the nearest center in
C.

For the formulation of the second question, given an n-dimensional vector a, we set Zi = |ai|
p,

Z = ||a||
p
p =
∑n
i=1 |ai|

p for p ∈ [0, 2].

1.4 Thesis Roadmap

Besides the introduction this thesis includes 7 more chapters:

• Chapter 2: Preliminaries, in which we give some known concentration bounds, the def-
initions of independent random variables and the k-means and the subspace clustering
problems. We also introduce the merge and reduce method and the turnstile streaming
model.

• Chapter 3: Overview, where we solve the problem of approximating a sum without com-
puting all the summands and show that the k-means and the subspace clustering prob-
lems can be cast to this problem. We then give an overview of the way that we implement
Lp-sampler using O(logn) passes and 1 pass.

• Chapter 4: Related Works, in which we survey the known results about random linear
combination, random linear combination in data stream so called sketching, and core-
sets. We then explain the way that we can solve the k-means and subspace clustering
problems using random linear combination. For the sketching section we compare known
results with our results; but for the rest we only mention the known results and one can
compare them by reading the overview chapter 3.

• Chapter 5:The k-Means Clustering, in which we give a full proof of the coreset construc-
tion for the k-means problem. We also obtain linear time (1+ε)-approximation and 1-pass
streaming algorithms for this problem.

• Chapter 6: The Subspace Clustering, in this chapter we extend the idea of non-uniform
sampling from the k-means problem to the subspace clustering. We also give linear time
(1+ ε)-approximation and 1-pass streaming algorithms for this problem.

• Chapter 7: O(logn)-Pass Lp-Sampler, in this chapter we show an O(logn)-pass imple-
mentation of Lp-sampler.

• Chapter 8: 1-Pass Lp-Sampler, in which we show how to reduce the number of passes
from O(logn) to just 1 pass.
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• Chapter 9: Applications of the Lp-Sampler, in this final chapter we give some appli-
cations of Lp-sampler including moment estimation, cascaded norms, heavy hitter and
block heavy hitters.
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Chapter 2

Preliminaries

We frequently use the following concentration bounds in the following chapters of this thesis.
The proofs of these concentration bounds can be found in any textbook on the probabilistic
method for example in [MR95] besides the original papers.

2.1 Concentration Bounds

Lemma 2 (Chebysev’s Inequality) [AS00] Let X denote a random variable with the expecta-
tion E[X] and the finite variance Var[X]. For the real number K > 0 we get

Pr[|X− E[X]| ≥ K] ≤ Var[X]
K2

.

The proof can be found in Page 41 (Theorem 4.1.1) of [AS00].

Lemma 3 (Chernoff Bound) [Che52] Let Y1, · · · , Ym denote m identically distributed and in-
dependent random variables such that E[Yi] = p for 1 ≤ i ≤ n for a fixed 0 ≤ p ≤ 1. Let
0 < t < 1, t ≥ p. For Y =

∑m
i=1 Yi it holds that

Pr[Y ≥ t ·m] ≤
[(p
t

)t
·
(
1− p

1− t

)(1−t)
]m
.

Lemma 4 (Additive Hoeffding Inequality) [Hoe63] Let Y1, · · · , Ym denotem independent ran-
dom variables such that 1 ≤ Yi ≤M for 1 ≤ i ≤ n. Then for Y =

∑m
i=1 Yi and t > 0 we get

Pr[|Y − E[Y]| ≥ t] ≤ 2 exp
(
−
mt2

3M2

)
.

11
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Lemma 5 (Multiplicative Hoeffding Inequality) [Hoe63] Let Z1, · · · , Zm denote m indepen-
dent random variables such that 0 ≤ Zi ≤ 1 for 1 ≤ i ≤ m. Then for Z =

∑m
i=1 Zi and 0 < ε < 1

we get

Pr[|Z− E[Z]| ≥ εE[Z]] ≤ 2 exp
(
−

E[Z] ·min(ε, ε2)
3

)
.

2.2 Independent Random Variables

Consider a set of n random variables indexed by a set U, i.e., {Yx : x ∈ U} with |U| = n, that
take on values from a set T , (i.e., Yx ∈ T ). Let D : TU → [0, 1] denote their joint distribution
function, i.e., Pr[Y1 = α1 ∧ · · ·∧ Yn = αn] = D(α1, · · · , αn) for αi ∈ T .

For finite t = |T |, a uniform distribution (i.e., D(α1, · · · , αn) = 1/tn) assigns Pr[Yx = αx] = 1/t,
for all x ∈ U,αx ∈ T . If this distribution satisfies, for all x 6= y ∈ U and for α,β ∈ T ,

Pr[Yx = α∧ Yy = β] = Pr[Yx = α] · Pr[Yy = β] = 1/t2,

then we refer to this distribution as pairwise independent.

In general, we say the random variables Yx for x ∈ U are d-wise independent if, for all d indexes
x1, · · · , xd ∈ U and for all α1, · · · , αd ∈ T , we have

Pr[Yx1 = α1 ∧ · · ·∧ Yxd = αd] = Pr[Yx1 = α1] · · ·Pr[Yxd = αd] = 1/t
d.

The following lemma shows that small sample spaces with arbitrary n d-wise independent
random variables in them can be constructed usingO(logn) bit space. This helps us to develop
streaming algorithms for those problems which need d-wise independent random variables. To
implement this construction we only need an irreducible polynomial of degree k, where 2k is
the smallest power of 2 greater than n. The construction can be from any linear error correcting
code with appropriate parameters.

Lemma 6 (Theorem 15.2.1 of [AS00]) Let n = 2k − 1, d = 2t + 1. Assume that the field
F = GF(2k) is represented as a k-dimensional vector overGF(2). Then there exists a symmetric
probability spaceΩ of size 2(n+1)t and d-wise independent random variables Y1, · · · , Yn over
Ω each of which takes the values 0 and 1 with probability 1/2.

Moreover, the space and the variables can be explicitly constructed.

In Theorem 70 of Chapter 8 we use the following concentration bound for d-wise independent
random variables.

Theorem 7 (Lemma 2.3 of [BR94]) Let Xi ∈ [0, 1], 1 ≤ i ≤ n, be d-wise independent for d ≥ 4
an even integer, X =

∑n
i=1 Xi, and A > 0. Then Pr[|X− E[X]| ≥ A] ≤ 8

(
dE[X]+d2

A2

)d/2
.
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Definition 8 A family of functions H ⊆ [N] → [N] is called (ε, s)-min-wise independent if for
any X ⊆ [N] with |X| ≤ s, and any x ∈ [N] \ X, we have

Prh∈H[h(x) < minh(X)] = (1± ε) · 1

|X|+ 1
.

Indyk in [Ind99] shows that any (c ′ log 1/ε)-wise independent family of functions is (ε, s)-min-
wise independent. This allows us to use the construction of Lemma 6 to implement (ε, s)-min-
wise independent family of functions in data stream as we do it in Algorithm Sample-Extraction
and Lemma 80 In Section 8.1.

Theorem 9 ([Ind99]) There exist constants c, c ′ > 1 such that for any ε > 0 and s ≤ εN/c, any
(c ′ log 1/ε)-wise independent family of functions is (ε, s)-min-wise independent.

2.3 The k-Means Problem

A set of points P in Rd is weighted, if each point p ∈ P is associated with a weight wp > 0. We
define w(P) =

∑
p∈Pwp to be the total weight of P. We consider an (unweighted) set of points

P ⊂ Rd as a weighted set with wp = 1, for each p ∈ P.

For two points p, q ∈ Rd we use dist(p, q) = ||p−q||2 to denote the Euclidean distance between
p and q. The dist2(p, q) = (dist(p, q))2 will denote the square of the Euclidean distance. We
generalize these definitions to sets: Given a point p ∈ Rd and a set of points Q ⊆ Rd we
define dist(v,Q) = minq∈Q dist(v, q) and dist2(v,Q) = minq∈Q dist2(v, q). Further, we define the
distance between two sets Q,R ⊆ Rd as dist(Q,R) = minq∈Q dist(q, R).

Given a point set Q and a center set C = {c1, · · · , ck} both in Rd, we define

cost(Q,C) =
∑
q∈Q

wq · dist2(q,C).

We define the contribution of a point p to a center set C as wp · dist2(p,C).

The k-means problem is defined as follows:

Definition 10 (The k-means clustering) Given a set P = {p1, · · · , pn} of points in the Rd the
k-means problem is to find a set of k centers C∗ ⊆ Rd such that cost(P,C∗) is minimized.

The point µP(P) =
∑
p∈P p

|P|
is the centroid of P. For the 1-means problem the centroid is known

to be the optimal cluster center, i.e. OPT (P, 1) = ∑p∈P dist2(p, µP(P)) where OPT (P, 1) is the
optimal 1-mean cost of P. Inaba and et. al [IKI94] showed that if we draw a random sample
U of size 2/ε with constant probability the centroid of U is with constant probability a (1 + ε)-
approximation for the centroid of point set P, that is,

cost(P, µP(U)) ≤ (1+ ε)cost(P, µP(P)).
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This implies that (see also [KSS04, KSS05])

Corollary 11 Let P be a set of points in Rd. Then there exists a set U ⊆ P of size 2/ε, such
that

cost(P, µP(U)) ≤ (1+ ε)cost(P, µP(P)) .

Given an integer k ≥ 1, we denote by

OPT (P, k) = min
|K|=k,K⊆Rd

cost(P, K),

the optimal k-means cost of P. A set C ⊂ Rd, |C| = k, is a β-approximation for an optimal
k-means solution of P, if cost(P,C) ≤ β · OPT (P, k) for some constant β.

A set T ⊆ IRd is a (k, ε)-approximate centroid set for P, if there exists a subset Cε ⊆ T of size
k such that cost(P,Cε) ≤ (1+ ε) · OPT (P, k). By Corollary 11 the set of subsets of P each one
of size 2/ε points (with repetitions) is a (k, ε)-approximate centroid set for P. The size of this
(k, ε)-approximate centroid set of P is O(n2/ε).

Definition 12 (Weak (k, ε)-coreset) Let P be a (possibly) weighted set in Rd. A pair (S, T ),
S ⊆ P, is called a weak (k, ε)-coreset, if T is a (k, ε)-approximate centroid set for P and

|cost(S, K) − cost(P, K)| ≤ ε · cost(P, K),

for any set K ⊆ T with |K| = k.

Definition 13 (Strong (k, ε)-coreset) Let P be a (possibly) weighted set in Rd. A set S, S ⊆ P,
is called a strong (k, ε)-coreset, if

|cost(S, K) − cost(P, K)| ≤ ε · cost(P, K),

for any set K ⊆ Rd with |K| = k.

Definition 14 (Linear time (1+ ε)-approximation algorithm for the k-means) Given a set P
of n points in the Rd and a parameter ε > 0, an algorithm is called a linear time (1 + ε)-
approximation algorithm for the k-means clustering problem if whenever we invoke it on P it
returns a set Cε ⊂ Rd of k centers such that

cost(P,Cε) ≤ (1+ ε) · OPT (P, k).

Moreover, the running time of a linear time (1 + ε)-approximation algorithm is required to be
linear in n · d for every fixed ε, k.

As an example assume we can compute a weak (k, ε)-coreset (S, T ) for the k-means problem
in timeO(nd·poly(|S|)). A linear time (1+ε)-approximation algorithm for the k-means would be
to compute the cost of S to each subset C ⊆ T of size k and report the one with minimum cost.
The running time of this linear time (1 + ε)-approximation algorithm will be O(nd · poly(|S|) +
d · |S| · T ) where d is because we are in Rd.
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2.4 The Subspace Problem

The Euclidean distance of a point r ∈ Rd to a j-subspace C ⊆ Rd is dist(r, C) := infc∈C ‖r− c‖2.
The C is called a center. We let cost(P,C) =

∑
r∈Pw(r) · dist(r, C) to be the weighted sum of

distances from the points of P to C where w(r) is the weight of r in P. We allow weights to be
negative in the subspace problem. Note that points with negative weights are also assigned to
their closest (and not farthest) point r ∈ C. For a j-dimensional linear subspace or j-subspace
for short, C, we define proj(r, C) to be the closest point to r in C. We further define the weight
of proj(r, C) as w(proj(r, C)) = w(r). Similarly, proj(P,C) = {proj(r, C) | r ∈ P}.

We should mention that in comparison to the k-means problem where we consider the sum
of squared distances as our measure, for the j-subspace problem we consider the sum of
distances.

Definition 15 (The j-subspace problem) Given a set P = {p1, · · · , pn} ⊂ Rd of n points, find
a j-subspace C∗ ⊆ Rd such that cost(P,C∗) is minimized.

We define approximate centroid set and linear time (1 + ε)-approximation algorithm for the
j-subspace problem in the same line of the k-means problem.

Definition 16 ((j, ε)-approximate centroid set) A set T of j-subspaces in Rd is called a (j, ε)-
approximate centroid set for P, if there exists a j-subspace Cε ∈ T such that

cost(P,Cε) ≤ (1+ ε) · min
j-subspace C⊂Rd

cost(P,C).

Definition 17 (Linear time (1+ ε)-approximation algorithm for the j-subspace problem )
Given a set P of n weighted points in Rd, and j ≥ 0, 1 > ε > 0, an algorithm is called a linear
time (1+ ε)-approximation algorithm for the j-subspace problem if whenever we invoke it on P
it returns a set Cε ∈ Rd of k centers such that

cost(P,Cε) ≤ (1+ ε) · min
j-subspace C⊂Rd

cost(P,C).

Moreover, the running time of a linear time (1 + ε)-approximation algorithm is required to be
linear in n · d for every fixed ε, j.

A strong coreset for the j-subspace problem is defined as follows:

Definition 18 (Strong coreset [AHPV04, HPM04]) Let P be a weighted point set in Rd, and
j ≥ 0, 1 > ε > 0. A weighted set of points Q is called a strong ε-coreset for the j-subspace
problem, if for every j-subspace C of Rd, we have

(1− ε) · cost(P,C) ≤ cost(Q,C) ≤ (1+ ε) · cost(P,C) .
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2.5 Streaming Models

In this thesis we mostly consider the insertion-only and the turnstile streaming models. We
define both models for an underlying n-dimensional vector a. The insertion-only model is
defined as follows:

2.5.1 Insertion-only Model

In the insertion-only streaming model we are given a stream S = (b1, · · · , bk, · · · , bm) of in-
dexes in [n] where bk ∈ [n], indicating that the bk-th coordinate abk of a n-dimensional vector
a should be incremented by 1.

Merge and Reduce Method

Merge and reduce method inspired by a complete binary tree is a generic method in computa-
tional geometry to implement non-streaming algorithms in the insertion-only streaming model.
Note that for geometric problems we usually consider the stream as a permutation of a point set
P ⊂ Rd of n points. We can think of a point pi ∈ P as the i-th coordinate of an n-dimensional
vector a.

For the k-means and the subspace problems, we use the merge and reduce method to main-
tain a coreset of the point set P in the insertion-only streaming model. Here we assume that we
have a coreset procedure that given a subset A ⊆ P of points generates a coreset for A. We
call this coreset procedure a merge operator. Let b, m0,m1, · · · ,mlogb n denote parameters
which will be determined later for each problem.

First we explain the offline variant of the merge and reduce method. Assume we are given a
point set P ⊂ Rd of size n, where n is known in advance. At the end of this section we deal with
the case when n is not known in advance.We construct a b-ary tree T of depth dep = logb n.
Let us assume level zero is the leaf level and level dep is the root of T . Starting from level
zero we have leaves c01, · · · , c0n/m0 each one has a bucket that can store points. We put the
first m0 points in c01, the second m0 points in c02 and so on up to the n/m0-th m0 points that we
store in c0n/m0 . We then apply the merge operator on buckets (or leaves) c0(r−1)b+1 up to c0rb for
1 ≤ r ≤ n/(m0b) and put new coreset points in c1r of sizem1 at level 1. Recursively and at level
i, for 1 ≤ i ≤ logb n we merge buckets (or children) ci−1(r−1)b+1 up to ci−1rb for 1 ≤ r ≤ n/(m0b

i−1)

(of node cir) and put new coreset points in cir of size mi at level i.

Now the streaming variant of this algorithm is as follows. Recall that since we are in the
insertion-only model, the insertion of points is allowed but the deletion is not allowed. Assume
the points are coming one by one and the result of the streaming algorithm should be correct
with probability ≥ 1− δ for 0 < δ < 1.

We put the firstm0 points in c01, the secondm0 points in c02 and so on up to the b-th chunk ofm0

points which we store in c0b. At this time and in level zero we have m0×b points in b full leaves
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and so we merge c01 up to c0b and put new points in c11 of size m1 at level 1 and deallocate the
space assigned to c01, · · · , c0b for new points. If we repeat this process for b times then we will
have b full buckets at level 1 and so we must merge c11 up to c1b and put new points in c21 of size
m2 at level 2 and deallocate the space assigned to c11, · · · , c1b for new points.

As long as we see new points we do the same iteration, store them into b buckets at level 0
and then merge them into one of the b buckets at level 1, and deallocate the space assigned
to the b buckets and so on. Therefore in each level i for 1 ≤ i ≤ logb n we have at most b
buckets each one of size mi and at each instance of time a union of all these buckets in all
levels will be a compact representation of the stream up to that time. The merge step in level i
w.l.o.g. at ci1 is dependent to the problem that we consider and will be explained when we give
the streaming algorithm for each problem.

If n is not known in advance. We start with some constant guess for n. If there are more
points in the stream, compute a new value for n ′ such that the coreset size doubles. Use the
streaming algorithm for the next n ′ points and keep the coreset for the first n points. Continue
until no more points are coming. Since the coreset size doubles in each step, the space for the
smaller coresets is at most the space for the largest one (by geometric progression). In order
to make sure that everything works with good probability, one chooses confidence probability
of δ/i2 for the i-th step. Since sum 1/i2 is constant, we get an overall error of O(δ).

2.5.2 Turnstile Model

In the turnstile model a stream S is given as m = poly(n,M) updates of the form (i, x), where
i ∈ [n] and x ∈ {−M,−M + 1, . . . ,M − 1,M}, indicating that the i-th coordinate ai of a should
be incremented by x.

2.5.3 Basic Problems in the Turnstile Model

Definition 19 (Approximating p-th Frequency Moment of a Stream) Let 0 < ε, δ ≤ 1. Given
a stream S as m = poly(n,M) updates of the form (i, x), where i ∈ [n] and x ∈ {−M,−M +
1, . . . ,M− 1,M}, find an (1± ε)-estimator F ′p(a) for Fp(a) = Fp(S) =

∑n
i=1 |ai|

p such that

Pr[|Fp(a) − F ′p(a)| ≤ ε · Fp(a)] ≥ 1− δ.

The space of every streaming algorithm which returns a (1 ± ε)-estimator F ′p(a) should be
sublinear in n.

Definition 20 (Heavy Hitter) Let p ∈ [0, 2]. The classical heavy hitters problem is to report all
coordinates i for which |ai| ≥ φ||a||p, where φ is an input parameter.

Definition 21 (Block Heavy Hitters ) The block heavy hitters problem is to report all rows ai

of an n × d matrix A for which ||ai||1 is at least a φ-fraction of the L1-norm ||A||1 of A (i.e.,
||A||1 =

∑n
j=1 ||a

j||1). These rows are called the block heavy hitters.
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The block heavy hitters are a crucial building block in the streaming algorithm of Andoni, Indyk,
and Kraughtgamer [AIK09] that constructs a small-size sketch for the Ulam metric under the
edit distance.

Definition 22 (Estimating Cascaded Norms) Let 0 < ε, δ ≤ 1. Let S be a stream of m =
poly(n,M) updates of the form (i, j, x) to items in a [n] × [d] matrix a, where i ∈ [n], j ∈ [d]
and x ∈ {−M,−M + 1, . . . ,M − 1,M}. The problem of estimating cascaded norms is to find a
(1± ε)-approximation to Fk(Fp)(a), where Fk(Fp)(a) means we first applying Fp to each row of
a, and then apply Fk to the resulting vector of values, i.e,

Fk(Fp)(a) =
∑
i∈[n]

(
∑
j∈[d]

|a[i, j]|p)k.

Finally we give the definition of Lp-sampler problem that we introduces in this thesis as a basic
primitive that gives a generic framework to solve all the aforementioned problems in the the
turnstile model.

Definition 23 (Lp-sampler) Given a stream S of m = poly(n,M) updates of the form (i, x),
where i ∈ [n] and x ∈ {−M,−M + 1, . . . ,M − 1,M}, indicating that the i-th coordinate ai of
a should be incremented by x, an Lp-sampler for p ∈ [0, 2] outputs the i-th coordinate with
probability in the interval

[
(1− ε)

|ai|
p

Fp(a)
− n−C, (1+ ε)

|ai|
p

Fp(a)
+ n−C

]
,

where Fp(a) =
∑n
i=1 |ai|

p and for an arbitrarily large constant C.



Chapter 3

Overview

At the end of Chapter 1 we motivated that both problems of clustering and sampling in data
streams can be seen as an n-dimensional vector a, where we need to find an (1±ε)-estimator
for its p-th norm ||a||

p
p =
∑n
i=1 |ai|

p. We saw when we let Z = ||a||
p
p and Zi = |ai|

p, this problem
will be the same as the problem of approximating a sum without computing all the summands
which we rephrase it here once again.

Definition 1: (Approximating a sum without computing all the summands) Let 0 < ε < 1.
Let δ > 0. Assume Z is the sum of n numbers, Z1, · · · , Zn i.e., Z = Z1 + · · · + Zn. Find an
estimator X = X1 + · · ·+ Xs for s << n such that

Pr[(1− ε)Z ≤ X ≤ (1+ ε)Z] ≥ 1− δ,

under the restriction that each Xj for 1 ≤ j ≤ s depends only on one of the summands of Z.

In this chapter we see that for s ≥ O(ε−2 log(1/δ)) we can get such an estimator X.

First we justify mathematically why uniform sampling is not a good candidate to solve this
problem. According to the uniform sampling we choose a number Zi with probability 1

n and
assign the weight n to Zi. The number nZi will be our estimation for Z. The expectation of this
random variable is

E[nZi] =
n∑
i=1

n · Zi ×
1

n
= Z.

However, the variance of nZi can be large.

Var(nZi) =

n∑
i=1

(n · Zi)2 ×
1

n
= n

n∑
i=1

Z2i ≤ 2n2 · Z2.

Therefore we are not able to apply the concentration bounds of Section 2.1 to sample few of
the summands and approximate Z. Intuitively, the reason is if the number of large numbers is
few, then the probability that the random sample does not take one of them will be high and if
this happens the variance of nZi will be large.

19
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Using non-uniform sampling we can bound the variance in terms of the expectation and there-
fore estimate Z within factor (1 ± ε) as follows: We assign n probabilities r1, · · · , rn to the
numbers Z1, · · · , Zn respectively such that ri ≥ qi

γ for qi = Zi
Z , 1 ≤ i ≤ n, and

∑n
i=1 ri = 1.

We take a sample set A = {a1, · · · , aj, · · · , as} ⊆ [n] of indexes according to the probabilities
ri and assign a weight of w(Zaj) =

1
s·raj

to a sampled number Zaj for 1 ≤ j ≤ s. Corresponding

to a sampled number Zaj we define a random variable Xj = w(Zaj) · Zaj . Let X =
∑s
j=1 Xj.

The following lemma shows that for s ≥ O(γ2
ε2

log(2/δ)) the estimator X approximates Z within
(1+ ε)-factor with probability ≥ 1− δ.

Lemma 24 Let 0 < ε < 1. Let δ > 0. Assume Z is the sum of n numbers, Z1, · · · , Zn i.e.,
Z = Z1 + · · · + Zn. Let X = X1 + · · · + Xs denote the estimator in which each random variable
Xj drawn according to the distribution given in the above. For s ≥ O(γ2

ε2
log(2/δ)) we have

Pr[(1− ε)Z ≤ X ≤ (1+ ε)Z] ≥ 1− δ.

We give two proofs for this lemma. The first proof uses additive Hoeffding inequality (Lemma
4) while the second proof uses Chebysev’s inequality (Lemma 2). We conduct a similar proof
to the first one to get estimators for the k-means problem in Chapter 5 and for the subspace
problem in Chapter 6. Section 9.1 shows an application of the second proof to estimate the
p-th norm ||a||

p
p of an n-dimensional vector a for p > 2.

Proof. [First proof using additive Hoeffding inequality (Lemma 4).] The expectation of the ran-
dom variable Xj is

E[Xj] =
n∑
i=1

Zi
sri
ri =

Z

s
.

So the expectation of the random variable X will be E[X] = sE[Xj] = Z. Now we compute an
upper bound for the random variable Xj as follows:

Xj ≤ max
j

Zaj
sraj

≤ qajZ
sraj

≤ γZ
s
.

We use the Hoeffding inequality to prove that for the claimed sample size, the random vari-
able X concentrates around its expectation which is Z. In order to apply additive Hoeffding
inequality, we set M = γZ, t = εZ, and m = s to get for s ≥ 3γ2

ε2
log(2/δ)

Pr[|X− Z| ≥ ε · Z] = Pr[|X− E[X]| ≥ ε · E[X]] ≤ 2 exp
(
−
sε2Z2

3γ2Z2

)

≤ 2 exp
(
−
sε2

3γ2

)

≤ δ.

ut
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Proof. [Second proof using Chebysev’s inequality (Lemma 2).] In order to use the concentration
bound of the Chebysev’s inequality we need to find the variance of the random variable Xj

Var[Xj] = E[X2j ] − (E[Xj])2 ≤ E[X2j ] =
n∑
i=1

(
Zi
sri

)2ri =

n∑
i=1

Z2i
s2ri

=

n∑
i=1

q2iZ
2

s2ri
≤ γZ

2

s2

n∑
i=1

qi

=
γZ2

s2
.

Since for independent random variables, the variance of their sum is the sum of their variances
we get Var[X] =

∑s
j=1 Var[Xj] ≤ γZ2

s = γ
s (E[X])

2. Now we can apply the Chebysev’s inequality
to get that for s ≥ 3γ

ε2

Pr[|X− Z| ≥ ε · Z] = Pr[|X− E[X]| ≥ ε · E[X]] ≤ Var[X]

(ε · E[X])2

=
γ
s (E[X])

2

ε2 · (E[X])2

=
γ

sε2

= 1/3.

Thus with a constant probability X is a (1 + ε)-approximation of Z. In order to increase the
probability of correctness to 1 − δ, we repeat the whole random experiment of X for m ≥
20 log(1/δ) times and take the median of them as an estimation of Z. The Chernoff bound
(Lemma 3) shows that the median of these experiments is a (1 + ε)-approximation of Z with
probability at least 1− δ.

Let Yi corresponds to the i-th experiment of X such that Yi = 1 if for the i-th experiment
|X − Z| > ε · Z which happens with probability at most 1/3; otherwise Yi = 0. Note that
Pr[Yi = 1] = p ≤ 1/3 and Pr[Yi = 0] = 1− p ≥ 2/3. Therefore E[Yi] = p ≤ 1/3. Let t = 1/2 and
Y =
∑m
i=1 Yi.

Pr[Y ≥ m/2] ≤
[(p
t

)t
·
(
1− p

1− t

)(1−t)
]m

≤
[
√
2/3 ·

√
2/3

1/2

]m

≤
[√
8/9
]m

≤ δ,

for m ≥ log√
9/8

(1/δ). By the relation between the logarithms we get m ≥ 20 log(1/δ). ut
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In this thesis, we study the applications of approximating a sum without computing all the
summands problem, i.e., Definition 1, in high dimensional geometric clustering and streaming
algorithms.

In the following sections, we give an overall view of the problems that we study in this thesis
and the way that we apply non-uniform sampling to solve these problems.

3.1 The k-Means Clustering

In Chapter 5 we study the k-means clustering problem in high dimensional Euclidean space
Rd. In this setting the time and the space complexity of algorithms are not allowed to be
exponentially dependent on the dimension of the space. We show that using non-uniform
sampling we can find a weak coreset for this problem. We then use the weak coreset to find
linear time (1 + ε)-approximation algorithm and insertion-only streaming algorithms for the k-
means problem.

Let C∗ denote the optimal cluster centers for the k-means problem. As a first step to get a
weak coreset, we would like to approximate cost(P,C∗) within factor (1 + ε) using a random
sample set S ⊆ P of small size. The first try would be to take S u.a.r and assign a weight of
|P|/n to each sample point. Then use the estimator cost(S,C∗) =

∑
s∈Sws · dist2(s, C∗) as an

approximation to cost(P,C∗).

Unfortunately, the variance of the random variable cost(S,C∗) can be arbitrarily large. As an
example, imagine that a point set P lies on a line and k = 1. Assume n−2 points are very near
to each other and two points say p1, p2 are located on the left and the right side of this cloud at
distance x. According to the paragraph above Corollary 11, the 1-mean center c of P must be
somewhere near to the 1-mean center of the cloud, therefore the sum of squared distances of
the cloud points to c is a small number say y. However we can choose x >>

√
y/2 to be an

arbitrarily large number.

x x
cp1 p2

Fig. 3.1: Uniform sampling cannot hit a small set of points which are far from the center.

Taking a sample set u.a.r. does not hit p1, p2 with high probability so the contribution of the
sample points to c will be very small in comparison to the contribution of p1, p2 to c which
is arbitrarily large. We use the non-uniform sampling framework that we developed in the
beginning of this chapter to bound the variance and therefore to find an (1± ε)-estimator.

Put Z = cost(P,C∗), Zi = dist2(pi, C∗), qi = Zi
Z , and ri =

dist2(pi,C∗)
cost(P,C∗) for 1 ≤ i ≤ n so γ = 1.

We take a sample set A = {a1, · · · , aj, · · · , as} ⊆ [n] of indexes according to the probabilities
ri and assign a weight of w(paj) =

1
s·raj

to a sampled point paj for 1 ≤ j ≤ s. Corresponding to

a sampled point paj we define a random variable Xj = w(paj)Zaj . Let X =
∑s
j=1 Xj.
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Lemma 24 shows that for the sample set S = {paj |aj ∈ A} of size O( 1
ε2

log(2/δ)) we get that

Pr[|cost(P,C∗) − cost(S,C∗)| ≤ ε · cost(P,C∗)] ≥ 1− δ.

Now we want to approximate an arbitrary set K ⊆ T of k centers. Let Cβ denote a β-
approximation cluster centers for the k-means problem. Fix a subset K ⊆ T of size k. Once
again we use the non-uniform sampling framework that we developed in the beginning of this
chapter.

Put Z = cost(P, K), Zi = dist2(pi, K), qi = Zi
Z , and ri =

dist2(pi,Cβ)
cost(P,Cβ)

for 1 ≤ i ≤ n. We take
a sample set A = {a1, · · · , aj, · · · , as} ⊆ [n] of indexes according to the probabilities ri and
assign a weight of w(paj) = 1

s·raj
to a sampled point paj for 1 ≤ j ≤ s. Corresponding to a

sampled point paj we define a random variable Xj = w(paj)Zaj . Let X =
∑s
j=1 Xj. Note that

here we do the random sampling according to the contributions of points to Cβ rather than C∗.

The explanation of the the above random process is as follows: we choose the points which
are further from the centers Cβ with higher probabilities than the points which are near to the
centers Cβ but they get lower weight than the near points. However there might be a problem
with this random process. Although the near points are chosen with lower probabilities, they get
high weights therefore if the contribution of very near points to Cβ is high (i.e., we have many
of them), one of them is chosen with constant probability and in this way this sample point
gets a very high weight. In order to fix this problem we partition the point set P to points which
are very near to the centers Cβ say Pnear and the rest P\Pnear. We then do the non-uniform
sampling according to the probabilities ri for P\Pnear and uniform sampling for Pnear.

Let S denote the union of samples from Pnear and P\Pnear. In Chapter 5 we show that for an
arbitrary set K ⊆ T of k centers we get

Pr[|cost(P, K) − cost(S, K)| ≤ ε · cost(P, K)] ≥ 1− δ.

This means that random sampling according to Cβ gives an unbiased estimator for a fixed
K ⊆ T of size k. Using a union bound we can get a weak (k, ε)-coreset.

Having a weak (k, ε)-coreset (S, T ), we can find a linear time (1+ ε)-approximation algorithm
and an insertion-only streaming algorithm for the k-means problem. In fact getting a linear
time (1+ ε)-approximation algorithm is fairly simple. We compute cost(S, K) for any set K ⊆ T
with |K| = k and report the center set with the minimum cost. Since every center set in T is
(1 + ε)-approximated we can get an approximation to the best center set in T which in turn
gives an approximation to C∗.

For the streaming algorithm, we maintain a weak (k, ε)-coreset (S, T ) for the point set P seen
as a stream using the merge and reduce method and at the end of the stream we extract the
center set in T with minimum cost as we explained for the linear time (1 + ε)-approximation
algorithm in the previous paragraph.
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3.2 The Subspace Clustering

In Chapter 6 we study the j-subspace problem which is the generalization of the k-means
clustering problem. Ideally we would like to adapt the framework that we developed in the
previous section using non-uniform sampling for the j-subspace problem as well. However
the fact that a center is now a j-subspace not a point makes the problem harder. In order to
explain the hardness of applying non-uniform sampling for the j-subspace problem we focus
on 1-mean and 1-subspace problems in the 2-dimensional Euclidean plane. Let c denote the
1-mean center of a point set P. Let L denote the optimal 1-subspace of P. What simplifies
applying non-uniform sampling for the 1-mean problem is that all the points that are at distance
x of c have the same effect on it. On the other hand, points which have the same distance from
the center line L may have different influences on L.

c

xp1

p2
p3

p4

L

Q

p1
p2

L′

x

Fig. 3.2: Non-uniform sampling cannot preserve the direction of Line L.

Let us consider the example on the right side of Figure 3.2. In this example, all points in the set
Q locating on the top and bottom sides of the dashed rectangle and the points p1, p2 have the
same distance to L. Let P = Q∪p1∪p2. Assume the maximum distance between two points on
the top side and the maximum distance between two points on the bottom side of the dashed
rectangle is small and p1, p2 are very far from Q. In this case, non-uniform sampling according
to the distance of points to L choose all its samples points from Q and the points p1, p2 are not
chosen. Now if we run an 1-subspace algorithm on the sample set S, it gives a solution like L ′

which is good for the point set Q but far from p1, p2. It is easy to adjust the distances so that
cost(P, L ′) >> cost(P, L).

Intuitively we need to preserve the direction of Line L and in parallel take sampling according
to the distance of points to L. In order to implement this intuition, for every point pi ∈ P we
project pi on L and on the position of the projection we put two points, one proj(pi, L) having
weight +1 and one proj(p−i , L) having weight −1, where p−i is the point pi with negative weight
−1. See Figure 3.3

Let us assume that Line L is a constant factor approximation line i.e., cost(P, L) ≤ β · OPT
for some constant β and L ′′ is an arbitrary line in Rd where OPT is the optimal cost of P with
respect to the 1-subspace problem. For L ′′ the above geometric intuition corresponds to the
following elementary formula

dist(pi, L ′′) = dist(pi, L ′′) + dist(proj(pi, L), L ′′) − dist(proj(p−i , L), L
′′)

= dist(pi, L ′′) − dist(proj(p−i , L), L
′′) + dist(proj(pi, L), L ′′).
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L

pi

proj(p−i , L)

proj(pi, L)

L′′

Fig. 3.3: Preserving the direction of L and in parallel taking sampling according to the distance of points
to L.

We consider two points pi and proj(p−i , L) as a pair and apply once again the non-uniform sam-
pling framework that we developed in the beginning of this chapter on the pairs (pi, proj(p−i , L))
for pi ∈ P as follows.

Put Z =
∑
pi∈P

(
dist(pi, L ′′) − dist(proj(p−i , L), L

′′)
)
, Zi = dist(pi, L ′′) − dist(proj(p−i , L), L

′′), qi =
Zi
Z , and ri =

dist(pi,L)
s·cost(P,L) for 1 ≤ i ≤ n. We take a sample set A = {a1, · · · , a`, · · · , as} ⊆ [n] of

indexes according to the probabilities ris and assign a weight of w(a`) = 1
s·ra`

to a sampled
pair (pa` , proj(p−a` , L)) for 1 ≤ ` ≤ s. Note that proj(p−a` , L) gets the same weight as pa` but
with the negative sign. Corresponding to a sampled pair (pa` , proj(p−a` , L)) we define a random
variable

X` = w(a`)Za` = w(a`)
(
dist(pa` , L

′′) − dist(proj(p−a` , L), L
′′)
)
.

Let X =
∑s
`=1 X`. Note that E[X`] = Z

s and E[X] = Z. By the triangle inequality we get

|dist(pa` , L
′′) − dist(proj(p−a` , L), L

′′)| ≤ dist(pa` , proj(p−a` , L)) = dist(pa` , L).

So we can get an upper bound of |X`| ≤ cost(P,L)
s ≤ β·OPT

s for the random variable |X`|. Note
that we upper bound |X`| by β·OPT

s not β·Z
s . Now similar to Example 1 we use the additive

Hoeffding with M = β · OPT , t = ε · OPT , and m = s to show that for the sample set
S1 = {(pa` , proj(p−a` , L))|a` ∈ A} of size O(β

2

ε2
log(2/δ)) we get

Pr
[
|Z− cost(S1, L ′′)| ≤ ε · β · OPT ≤ ε · β · cost(P, L ′′)

]
≥ 1− δ,

where cost(S1, L ′′) =
∑
a`∈Aw(a`)

(
dist(pa` , L

′′) − dist(proj(p−a` , L), L
′′)
)
.

In the general case of the j-subspace problem, the L, L ′′ are j-subspaces but the whole idea
of the projection is the same. In fact, the above idea develops a dimensionality reduction
technique for the j-subspace problem where we project the points onto a low-dimensional
subspace and approximate the difference between the projected points and the original point
set.

In order to obtain an unbiased estimator to approximate cost(P, L ′′) within (1+ε)-factor, we apply
our dimensionality reduction on proj(P, L) recursively using the fact that for points on an (i+ 1)-
dimensional space it suffices to estimate the weighted sum of distances to an i-dimensional
subspace even if one is interested in the sum of distance to a j-dimensional subspace.
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This recursion is applied until i = 0 and the points project to the origin. This way, we obtain a
small weighted sample set S = ∪ji=0Si such that for an arbitrary query j-space L ′′, we have

(1− ε) · cost(P, L ′′) ≤ cost(S, L ′′) ≤ (1+ ε) · cost(P, L ′′).

This result is then used to construct a strong coreset by showing that the approximation guar-
antee holds simultaneously for all solutions from a certain grid near the input points.

Using the unbiased estimator and a (j, ε)-approximate centroid set for the j-subspace problem
we get a weak coreset that helps us to get a linear time (1 + ε)-approximation algorithm for
j-subspace problem.

Using the merge and reduce method we maintain our coresets to obtain a streaming algorithm.
However, the presence of negative points makes the process of maintaining a coreset harder.
The problem is that the sum of the absolute weights of the coreset is about three times the size
of the input point set. If we now apply our coreset construction several times (as is required
during merge and reduce), we blow up the sum of absolute weights with each application by
a constant factor. This blow-up, together with the fact that we have to estimate the difference
between positively and negatively weighted points, cannot be controlled as well as in the case
of the merge and reduce approach, and requires taking larger sample sizes with every merge
step.

At the end we mention that although we apply the dimensionality reduction here in the context
of subspaces, we remark that this technique can be easily generalized. In fact,we can replace
the subspace by any closed set on which we can efficiently project points.

For example, we can easily extend the dimensionality reduction method to geometric clustering
problems where the centers are low dimensional objects. We can also use the technique for
any problem where we are trying to minimize the sum of distances to manifolds [BN03, BN04]
as it for example might occur in the context of kernel methods [BN03, BN04].

3.3 O(logn)-Pass Lp-Sampler

Think about Definition 1 once again. We would like to estimate a number Z = Z1 + · · · + Zn
without computing all the summands.

Having a probability distribution r1, · · · , rn where ri ≥ 1
γ
Zi
Z for some constant γ > 0 the idea

was to sample the summands according to ri. However, in some settings finding a reasonable
distribution ri can be very hard. As an example consider the setting of insertion-only streaming
model, see Section 2.5.1.

Recall that we have a vector a of length n where the i-th coordinate is represented by ai ≥ 0.
We set Zi = (ai)

p and Z = Fp(a) =
∑n
i=1(ai)

p for some p > 0. The Fp(a) is called the p-th
frequency moment of a. In the insertion-only streaming model as we defined in Section 2.5.1
we are given a stream S = (b1, · · · , bk, · · · , bm) of indexes in [n] where bk ∈ [n], indicating
that the bk-th coordinate abk of a should be incremented by 1. Our goal is again to estimate Z.
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In this setting sampling according to probabilities ri = (1 ± ε)ZiZ is a non-trivial task. However
we can still sample Zi’s according to ai∑n

i=1 ai
and estimate Z within factor (1 ± ε) using the

following known result due to Alon, Matias, and Szegedy [AMS96] which is weaker than the
distribution ri ≥ Zi

γZ = 1
γ

a
p
i∑n

i=1(ai)
p that we are interested in.

AMSSAMPLING

(1) For i = 1, · · · , s2 = 2 log(1/δ)

(a) For j = 1, · · · , s1 = 8pn1−1/p/ε2

i. Choose a random number bk of the stream S uniformly at random.
ii. Let bk = ` ∈ [n].
iii. Let r = |{q : q ≥ k, bq = `}| be the number of occurrences of ` among the

members of the stream S following bk (inclusive).
iv. Let Xi,j = m(rp − (r− 1)p).

(b) Let Yi =
∑s1
i=1 Xi,j
s1

.

(2) Output Y = median(Y1, · · · , Ys2) as an estimator to Z = Fp(a).

a

S = (b1, · · · , bk, · · · , bm)

abk ← abk + 1

Z = Fp(a) =
∑n
i=1(ai)

p

a1 abk an

Y1

Yi =
∑s1

j=1Xi,j

s1

Ys2

1 j s1

Xi,j

Y = med(Y1, · · · , Ys2)

Fig. 3.4: The streaming model on the left and AMS Sampling on the right.

Lemma 25 [AMS96] Let p > 0, 0 < ε < 1, δ > 0. Given a stream S = (b1, · · · , bk, · · · , bm)
of indexes in [n] where bk ∈ [n], indicating that the bk-th coordinate abk of a should be in-
cremented by 1, Algorithm AMSSampling using O(p log(1/δ)

ε2
n1−1/p(logn + logm)) memory bits

returns a number Y for which we have

Pr[|Z− Y| ≥ ε · Z] = Pr[|Fp(a) − Y| ≥ ε · Fp(a)] ≤ 1− δ.

Proof. [From [AMS96]] We prove the lemma in the same line of the second proof that we
had for Lemma 24 using Chebyshev’s inequality. Fix Xi,j. Let X = Xi,j. In order to apply
Chebyshev’s inequality we need to obtain the expectation and the variance of the random
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variable X. The expectation is

E[X] =
m

m
[(1p + (2p − 1p) + · · ·+ (mp

1 − (m1 − 1)
p)) + · · ·+

(1p + (2p − 1p) + · · ·+ (mp
n − (mn − 1)

p))]

=

n∑
i=1

(ai)
p = Fp(a).

To estimate the variance Var[X] = E[X2] − (E[X])2 of X we bound E[X2]

E[X2] =
m2

m
[(12p + (2p − 1p)2 + · · ·+ (mp

1 − (m1 − 1)
p)2) + · · ·+

(12p + (2p − 1p)2 + · · ·+ (mp
n − (mn − 1)

p)2)]

≤ m
2

m
[(k12p−1 + k2p−1(2p − 1p) + · · ·+ kmp−1

1 (mp
1 − (m1 − 1)

p)) + · · ·+

(k12p−1 + k2p−1(2p − 1p) + · · ·+ kmp−1
1 (mp

n − (mn − 1)
p))]

≤ mk[m2p−1
1 +m2p−1

2 + · · ·+m2p−1
n ]

= kmF2p−1(a) = kF1(a)F2p−1(a)

≤ kn1−1/p · (Fp(a))2,

where in the first inequality we use the fact that for any numbers a > b > 0 we have

ap − bp = (a− b)(ak−1 + ak−2b+ · · ·+ abk−2 + bk−1) ≤ (a− b) · · · kak−1

and for the last inequality we use the following claim.

Claim 26 [AMS96] For every n positive reals m1, · · · ,mn we have

(

n∑
i=1

mi)(

n∑
i=1

m
2p−1
i ) ≤ n1−1/p · (

n∑
i=1

m
p
i )
2.

We also have that E[Yi] = E[X] = Fp(a) and

Var[Yi] ≤ Var[X]/s1 ≤ E[X2]/s1 ≤ kF1(a)F2p−1(a)/s1 ≤ kn1−1/p · (Fp(a))2/s1.

Now we can apply Chebyshev’s inequality to get

Pr[|Yi − Fp(a)| ≥ ε · Fp(a)] ≤
Var[Yi]

ε2 · (Fp(a))2
≤ kn

1−1/p · (Fp(a))2
s1ε2 · (Fp(a))2

≤ 1/8.

It follows that the probability that a single Yi deviates from Fp(a) by more than ε · Fp(a) is at
most 1/8 and hence by standard Chernoff bound as we saw in the second proof of Lemma 24,
the probability that more than s2/2 of the variables Yi deviates by more than ε ·Fp(a) from Fp(a)
is at most δ. In case that this does not happen, the median of Yi supplies a good estimator to
the required quantity Fp(a), as needed. ut
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There are two issues with the above sampling process. The first issue is Algorithm AMSam-
pling cannot be extended to the turnstile model, see Section 2.5.2. In this model, known
(1 ± ε)-estimators for Z = Fp(a) are due to Alon, Matias, and Szegedy [AMS96] for integers
p ≤ 2 and Indyk and Woodruf [IW05] for p > 2. However, neither these two estimators nor the
estimator of AMSampling give a distribution ri that we are interested in.

The second issue with Algorithm AMSampling is it does not use the optimal space upper
bound. It has been shown in [BYJKS02, CKS03] that any algorithm that can estimate Z within
factor (1±ε) for p > 2 in the read only or turnstile streaming model needs a space lower bound
of Ω(n1−2/p) bits. The sampling of AMSSampling offers a space of O(p log(1/δ)

ε2
n1−1/p(logn +

logm)) memory bits which is far from the lower bound.

Interestingly enough, in Section 9.1 we show that if we can sample according to a distribution
1
γ ·

|ai|
q∑n

i=1 |ai|
q for q ∈ [0, 2], γ = (1 ± ε) we can (1 ± ε)-estimate Z =

∑n
i=1 Zi =

∑n
i=1 |ai|

p, for

p > 2 in the turnstile streaming model using a space of n1−2/p · poly(ε−1 logn) memory bits
which is optimal with respect to the term n1−2/p.

Thus our goal is to sample the coordinate i with probability ri = (1 ± ε) |ai|
p∑n

i=1 |ai|
p for p ∈ [0, 2].

In order to simplify the problem we relax a little bit the problem and allow that the ri have a very
small additive error n−C for an arbitrarily large constant C. We call this new problem Lp-sampler
which is defined formally as follows:

Definition 27 (Lp-sampler) Given a stream S of m = poly(n,M) updates of the form (i, x),
where i ∈ [n] and x ∈ {−M,−M + 1, . . . ,M − 1,M}, indicating that the i-th coordinate ai of
a should be incremented by x, an Lp-sampler for p ∈ [0, 2] outputs the i-th coordinate with
probability in the interval

[
(1− ε)

|ai|
p

Fp(a)
− n−C, (1+ ε)

|ai|
p

Fp(a)
+ n−C

]
,

where Fp(a) =
∑n
i=1 |ai|

p and for an arbitrarily large constant C.

In Chapter 7 we use the O(logn)-pass variant of the merge and reduce method to obtain
an O(logn)-pass Lp-sampler. The idea is as follows: Let Fp-Estimation be the optimal-space
algorithm for estimating the Fp-value of a vector due to Kane et al [KNW10]. Imagine we build
a binary tree on the vector a. Given a stream S corresponding to the vector a, we think of it as
two interleaved streams SL and SU, where SL consists of the subsequence of updates to the
first n/2 coordinates of the vector a, and SU the subsequences consisting of the updates to
the remaining coordinates. Denote the vector consisting of the lower n/2 coordinates of a by
aL, and the vector consisting of the upper n/2 coordinates of a by aU.

We run Fp-Estimation(SL, aL, η, δ) and Fp-Estimation(SU, aU, η, δ) independently and in parallel
with error parameter η = Θ(ε/ logn) and failure probability δ = n−C. Assuming both algorithms
succeed, we obtain numbers L,U with

L ∈ [(1− η)||aL||p, (1+ η)||a
L||p],

U ∈ [(1− η)||aU||p, (1+ η)||a
U||p].
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We then recurse on the lower n/2 coordinates with probability L/(L + U), and recurse on the
upper n/2 coordinates with probability U/(L + U). After logn recursive steps, an individual
coordinate i ∈ [n] will be sampled. Assuming Fp-Estimation never fails, fixing any i ∈ [n], the
probability that it is sampled is a telescoping product, putting it in the interval

[
(1− η)logn|ai|

p

Fp(a)
,
(1+ η)logn|ai|

p

Fp(a)

]
,

which is contained in the interval
[
(1− ε)|ai|

p

Fp(a)
,
(1+ ε)|ai|

p

Fp(a)

]

for sufficiently small η.

As non-uniform sampling had many applications in the k-means and the subspace problems,
we are expecting that the Lp-sampler also has a lot of applications which is in fact true. In
Chapter 9 we see that Lp-sampler leads to many improvements and a unification of well-studied
streaming problems.

3.4 1-Pass Lp-Sampler

In the previous section we gave an overview of how to implement the Lp-sampler usingO(logn)
passes. However in most applications of the turnstile model the number of passes over the data
is restricted to one and having O(logn) passes would be an unrealistic assumption. In order
to implement the Lp-sampler in one pass we depart from the merge and reduce method and
do it using the idea of finding heavy hitters in substreams that was first proposed by Indyk and
Woodruff [IW05].

We conceptually divide the coordinates into classes

St = {i | |ai| ∈ [ηt−1, ηt)},

where η = 1+Θ(ε). We say that a class St contributes if

|St|η
pt ≥ γFp(a),

where γ = poly(ε log−1 n) is a sufficiently small parameter.

Let h : [n] → [n] be a hash function with some amount of limited independence. We form
r = O(logn) substreams S0,S1, . . . ,Sr, where S0 denotes the input stream and Sj denotes the
stream of updates which pertain only to coordinates i for which h(i) ≤ n2−j. We say that such
an i is a survivor (with respect to a given Sj).

If St contributes, then there will be a substream Sj for which all survivors i in St are heavy hitters
with respect to the p-norm, that is, |ai|p ≥ γ ′||aj||pp, where aj denotes the vector a restricted to
the survivors in Sj, and γ ′ = poly(ε log−1 n). The heavy hitters in each substream can be found
with poly(ε−1 logn) space using known heavy hitter algorithms [CCFC02, GSS08], which work
for any p ∈ (0, 2], and even have a fast poly(ε−1 logn) update and reporting time [GSS08] in
the turnstile model. We call the algorithm of [GSS08] HeavyHitters.
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S : · · · , (i, x), · · ·

h(i) ≤ n2−j

h(i) ≤ n20

h(i) ≤ n2−1

h(i) ≤ n2− log n

S0

S1

Sj

Slog n

Fig. 3.5: Substreams shown as the percentage of the vector a which is preserved.

By zooming in on the appropriate substream and counting the number of survivors that are
heavy hitters, we can estimate |St| to within (1±Θ(ε)) for all St that contribute. Notice that here
we need the HeavyHitters algorithm to also provide (1 ± Θ(ε))-approximations to the values
|ai| for each heavy hitter i, which can be achieved by increasing the space by a poly(ε−1 logn)
factor. We also need the values |ai| to not be close to the value (1+Θ(ε))t−1, as otherwise we
might mis-classify i as belonging to St when in fact it belongs to St−1.

For St that do not contribute, we only obtain an estimate E for which

0 ≤ E ≤ (1+Θ(ε))|St|.

This sub-sampling approach is the basis of the algorithm of Indyk and David Woodruff [IW05]
for estimating frequency moments.

As observed by Jayram and Woodruff [JW09] this approach yields a 1-pass Θ(ε)-additive-error
Lp-sampler in the following way. We simply ignore the St that do not contribute, and let the s̃t
be our approximations to the set sizes |St| for contributing St. We sample a contributing St with
probability

s̃tη
pt∑

contributing St s̃tη
pt
.

Condition on the event that St is chosen, we output a heavy hitter found in the substream Sj
which is in St and minimizes hj. Note that this heavy hitter is one of the survivors of St and
is used to estimate |St| within factor (1 ± ε). Now we use Theorem 9 which says that if h is
sufficiently independent then it is also ε-min-wise independent, see Definition 8, to show that
the heavy hitter which minimizes h is a random element of St, up to a relative (1 ± ε)-error. It
is now straightforward to show that we output i with probability

(1±Θ(ε)) · |ai|
p

Fp(a)
.

The problem with the above approach is that it leads to an additive error rather than a relative
error.
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Indeed, items in non-contributing classes will never be sampled. This is problematic if the sam-
pling algorithm is to be used in a subroutine that performs more than poly(ε−1 logn) samples,
as some items that should be reported by an exact sampler will not be detected.

Our main novelty is the following idea. Suppose we force every class to contribute. If we
could do this, then we could try to apply the above sampling procedure to obtain a Lp-sampler.
To force each class to contribute, the idea is to inject new coordinates into the stream. That is,
let s = O(ε−1 logn) be the number of classes. For class St, we inject Θ(ε)Fp(a)/(s(1 + ε)pt))
coordinates i for which |ai| ∈ [ηt−1, ηt). It follows that Fp changes by at most a (1+Θ(ε)) factor.
Moreover, now |St|η

pt = Ω(εFp(a)/s) for all t, and so provided γ = O(ε/s) = O(ε2/ logn),
every class now contributes.

Notice that we do not know Fp(a) in advance, but it suffices to guess a (1+Θ(ε))-approximation
to it, and then verify our guess at the end of the stream by running an efficient Fp-approximation
algorithm in parallel, taking only poly(ε−1 logn) bits of space, e.g., the space optimal algorithm
of Kane et al [KNW10], or the earlier algorithms of Indyk [Ind06] and Li [Li08]. The number of
guesses we need is only O(ε−1 logn).

We now run the sampling algorithm above. If we obtain an injected coordinate, then we output
FAIL, otherwise we output the coordinate and its approximate value returned by HeavyHitters.
Notice that the injected items contribute at most an O(ε) mass to the Fp-value, so we output
FAIL with probability at mostO(ε). By repeating this procedure in parallel a logarithmic number
of times, at least one of our samples will not be an injected coordinate with probability at least
1− n−C for an arbitrarily large constant C > 0.



Chapter 4

Related Work

T his chapter surveys the known results about random linear combination 4.1, random linear
combination in data stream so called sketching 4.2, and coresets 4.3. We also explain the way
that we can solve the k-means and the subspace problems using random linear combination.
For the sketching section we compare known results with our results; but for the rest we only
mention the known results and one can compare them by reading the overview Chapter 3.

4.1 Johnson-Lindensrauss vs. non-uniform sampling

Let Zi = |ai|
p for p ∈ [0, 2], i ∈ [n]. In the previous chapter we explained how to solve the

problem of approximating a sum without computing the summands (see Definition 1) using
non-uniform sampling. A relaxed version of this problem can be solved using random linear
combination. In this relaxed version that we call estimating a sum we drop the restriction that
each estimator Xj for 1 ≤ j ≤ s depends only on one of the summands of Z and we are
also able to compute all the summands. However, the number of estimators s should still be
O(ε−2 log(1/δ)). This general problem is formally defined as follows:

Definition 28 (Estimating a Sum) Let 0 < ε < 1, δ > 0. Let p ∈ [0, 2]. Let a denote a n-
dimensional real vector. Assume Z is the sum of n numbers, Z1 = |a1|

p, · · · , Zn = |an|
p i.e.,

Z = Z1 + · · ·+ Zn. Find an estimator X = X1 + · · ·+ Xs for s ≥ O(ε−2 log(1/δ)) such that

Pr[(1− ε)Z ≤ X ≤ (1+ ε)Z] ≥ 1− δ.

Here we focus on p = 2; however the analysis for general p ∈ [0, 2] is the same. In the
previous chapter we solved this problem using non-uniform sampling, where we sampled the
number Zi using a probability which depends on the contribution of Zi to the sum Z. In this
chapter we want to solve this problem using the random linear combination offered by Johnson-
Lindenstrauss Lemma (see Theorem 32). The idea is as follows. We define a suitable prob-
ability distribution F on he set of all linear maps from Rn → Rs. Then we prove the following
statement which in fact states a dimensionality reduction for p = 2, i.e., Euclidean distance.

33
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Statement 29 (Dimensionality Reduction in `2) Let a denote an arbitrary vector in Rn. Let
T : Rn → Rs denote a random linear mapping drawn from a suitable probability distribution F
to be determined later. Let

X1 = |T(a)1|
2, · · · , Xs = |T(a)s|

2.

Then we have
Pr[(1− ε)Z ≤ X1 + · · ·+ Xs ≤ (1+ ε)Z] ≥ 1− δ.

The random linear map T is usually chosen as the orthogonal projection on a random s-
dimensional subspace of Rn. In particular, we define a s×nmatrixA and put the s orthonormal
vectors of this subspace as the s rows of S. In this way, T would be T(a) = Sa multiplied by√
n/s for proper scaling. What is interesting is that Indyk and Motwani [IM98] noted that the

orthogonality condition can be dropped and in their proof of Statement 29 they choose the en-
tries of S as independent random variables with the standard normal distribution N(0, 1) which
is much easier to generate.

Later Achlioptas [Ach03] showed that the entries of S can be chosen from a much more efficient
distribution. Namely he proved that the entries of S attain value 0 with probability 2/3 and values
+1 and −1 with probability 1/6 each. This setting is in fact 3 times faster the setting proposed
by Indyk and Motwani, since S is sparse, i.e., only about one third of the entries are nonzero.

An ingenious idea was further developed by Ailon and Chazelle [AC09] where they showed
that the entries of S attain value 0 with probability 1 − q and a value drawn from the normal
distribution with zero mean and variance 1/q with probability q where q = (logn)O(1)

n . An ob-
stacle they had to overcome was since now the matrix S is very sparse, with the fraction of
nonzero entries tending to 0, the estimator X1 + · · · + Xs is not concentrated around its mean
which is Z for some sparse vectors a like a = (1, 0, · · · , 0). Therefore, they premultiplied the
vector a by a random Fourier transform to distribute the mass of a over many coordinates of a.
In this way they were able to find a very sparse matrix S for the linear mapping T which can be
implemented efficiently since now in expectation only ε−2 · (logn)O(1) entries of S are non-zero.
See also [DKS10] and [KN10] for new results in this line of research.

Matousek [Mat08] shows that all these aforementioned distributions can be unified if we define
the entries of S as independent random variables with zero mean and unit variance, and a
subgaussian tail. See Figure 4.1 for a summary of all known distributions for the dimensionality
reduction in `2 and Johnson-Lindenstrauss Lemma.

Definition 30 (Subgaussian upper tail) Let Y be a real random variable with E[Y] = 0. We
say Y has a subgaussian upper tail if there exists a constant b > 0 such that for all λ > 0,

Pr[Y > λ] ≤ e−bλ2 .

We say that Y has a subgaussian upper tail up to λ0 if the previous bound holds for all λ ≤ λ0.
We say that Y has a subgaussian tail if both Y and −Y have subgaussian upper tails. Let
Y1, · · · , Yn be a sequence of random variables. We say that they have a uniform subgaussian
tail if all of them have subgaussian upper tails with the same constant b.

Now we are ready to prove Statement 29. The proof is due to Matousek [Mat08]. First we
rephrase the statement using matrix notations:
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Ref. Distribution Sparsity Independency Time to
Compute

[IM98] N(0, 1) Fully O(ε−2n)

[Ach03]
Pr(s[i,j]=1)=Pr(s[i,j]=-1)=1/6

Pr(s[i,j]=0)=2/3
2/3 Fully O(ε−2n)

[AMS96] Pr(s[i,j]=1)=Pr(s[i,j]=-1)=1/2 4-wise O(ε−2n)

[Mat08]
E[s[i,j]]=0, Var[s[i,j]]=1

Subgaussian Tail
Fully O(ε−2n)

[Mat08] Fully

Fully[AC09]
Pr(s[i,j]=N(0,q))=q
Pr(s[i,j]=0)=1-q

q = (log(n))O(1)/n

O(ε−2(log n)O(1)) O(ε−2(log n)O(1))

Pr(s[i, j] = −1/
√
q) = q/2

Pr(s[i, j] = 1/
√
q) = q/2

Pr(s[i,j]=0)=1-q , q = (log(n/ε))/n

O(ε−2(log n)) O(ε−2(log n))

Fig. 4.1: A summary of known distributions for the dimensionality reduction in `2 and Johnson-
Lindenstrauss Lemma. Time to compute is the time to multiply the random matrix and one vector a,
where the vector is in Rn. The Õ(·) in the Time to Compute hides a factor of log(2/δ). The s[i, j]
means for every entry i, j of random matrix S. The Sparsity measure means how many of entries of S
are non-zero in expectation.
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Theorem 31 (Dimensionality Reduction in `2: [Mat08]) Let a denote an arbitrary vector in
Rn. Let Zi = |a[i]|2 for i ∈ [n] and Z = Z1 + · · · + Zn. Let s = Cε−2 log(2/δ) where C is a
suitable constant. Let T : Rn → Rs denote a random linear mapping defined by

T(a)i =
1√
s

n∑
j=1

s[i, j] · a[j], i = 1, · · · , s,

where the s[i, j] are independent random variables with E[s[i, j]] = 0, Var[s[i, j]] = 1 and a
uniform subgaussian tail. Let X1 = |T(a)1|

2, · · · , Xs = |T(a)s|
2 and X = X1 + · · · + Xs. Then we

have
Pr[(1− ε)Z ≤ X ≤ (1+ ε)Z] ≥ 1− δ.

The beauty of the estimator given by Theorem 31 in comparison to the estimator given by non-
uniform sampling is, the random matrix S does not use any assumption or information of the
underlying vector a which means we can apply it to any arbitrary vector a ∈ Rn. For example,
we can prove the Johnson-Lindenstrauss Lemma which informally states that if we project a
point set P of size m onto a s-subspace spanned by the rows of S, where s = O(ε−2 logm)
then all distances between pairs of points will be approximated within factor (1+ ε).

Theorem 32 (Johnson-Lindenstrauss Lemma: [JL84]) Let 0 < ε ≤ 1/2. Let P = {p1, · · · , pm}
be a set of m points in Rn. Let s = Cε−2 logm, where C is sufficiently large constant. Then
linear mapping T : Rn → Rs of Theorem 31 with probability at least 1/2 fulfills

(1− ε)||pi − pj|| ≤ ||T(pi) − T(pj)|| ≤ (1+ ε)||pi − pj||

for all i, j ∈ [m], where || · || denotes the Euclidean distance.

Proof. For every i < j using linearity of T and Theorem 31 with a = pi − pj we get that T fails
to satisfy

(1− ε)||pi − pj|| ≤ ||T(pi) − T(pj)|| ≤ (1+ ε)||pi − pj||

with probability at most 1/m2. Thus the probability that any of the pairwise distances is dis-
torted by T by more than 1 ± ε is at most 1/2. Therefore, the random linear mapping T which
is instantiated by random matrix S works with probability at least 1/2. ut

In order to prove Theorem 31 we first prove the following lemmas.

Lemma 33 [Mat08] Let Y1, · · · , Yn be independent random variables, satisfying E[Yi] = 0, Var[Yi] =
1, and having a uniform subgaussian tail. Let α1, · · · , αn be real coefficients satisfying α21 +
· · ·+ α2n = 1. Then the sum

Y = α1Y1 + · · ·+ αnYn
has E[Y] = 0, Var[Y] = 1, and having a subgaussian tail.

Proof. We need the following Lemmas.
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Lemma 34 [Mat08] Let X be random variable with E[X] = 0. If E[euX] ≤ eCu2 for some constant
C and for all u > 0, then X has a subgaussian upper tail. If E[euX] ≤ eCu

2
holds for all

u ∈ (0, u0), then X has a subgaussian upper tail up to 2Cu0.

Proof. For all u ∈ (0, u0) and all t ≥ 0 and using the Markov inequality we have

Pr[X ≥ t] = Pr[euX ≥ eut]
≤ e−utE[euX]
≤ e−ut+Cu2

For t ≤ 2Cu0 we can set u = t/(2C), use the above estimate and obtain Pr[X ≥ t] ≤ e−t2/(4C).
ut

Lemma 35 [Mat08] If E[X] = 0, Var[X] = E[X2] = 1 and X has a subgaussian upper tail, then
E[euX] ≤ eCu2 for all u > 0 and some constant C.

Proof. Let F be the distribution function of X, that is, F(t) = Pr[X < t]. We have E[euX] =∫∞
−∞ eutdF(t). We split the integration into two subintegrals, corresponding to ut ≤ 1 and
u ≥ 1. For the first case we use this fact that for all x ≤ 1, ex ≤ 1+ x+ x2 to get∫ 1/u

−∞ eutdF(t) ≤
∫ 1/u
−∞(1+ ut+ u2t2)dF(t)

≤
∫∞
−∞(1+ ut+ u2t2)dF(t)

= 1+ utE[X] + u2E[X2] = 1+ u2.

For the second case we estimate the integral by sum as follows:∫∞
1/u

eutdF(t) ≤
∞∑
k=1

ek+1Pr[X ≥ k/u]

≤
∞∑
k=1

e2ke−bk
2/u2

≤
∞∑
k=1

ek(2−bk/u
2).

which is upper bounded by eO(u
2) by elementary calculus. Thus E[euX] ≤ eO(u2) as desired. ut

Using the above Lemmas we prove Lemma 33. First observe that by linearity of expectation
E[Y] = 0. Next, since the variance is additive for independent random variables we get

Var[Y] = α21Var[Y1] + · · ·+ α2nVar[Yn] = α21 + · · ·+ α2n = 1.
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By Lemma 35, E[euYi ] ≤ eCu2 so we get

E[euY ] ≤
n∏
i=1

E[euαiXi ] ≤ eCu2(α21+···+α2n) = eCu2 ,

Which proves that Y has a subgaussian upper tail using Lemma 34. ut

A pretty interesting distribution that satisfies the criteria of Lemma 33 is when all Yi have the
standard normal distribution. Then by the 2-stability of the normal distribution which is defined
below we get that Y has the standard normal distribution.

Definition 36 (Stable distributions) A distribution D over R is called p-stable, if there exists
p ≥ 0 such that for any n real numbers b1, · · · , bn and i.i.d. variables Y1, · · · , Yn with distribution
D, the random variable

∑
i bi ·Yi has the same distribution as the variable (

∑
i |bi|

p)1/pY, where
Y is a random variable with distribution D.

It is known that stable distributions exist for any p ∈ (0, 2]. In particular, a normal distribution
DG defined by the density function g(x) = 1√

2π
· e−x2/2 is 2-stable.

We also need the following lemma to prove Theorem 31.

Lemma 37 [Mat08] Let s ≥ 1. Let Y1, · · · , Ys be independent random variables, satisfying
E[Yi] = 0, Var[Yi] = 1, and having a uniform subgaussian tail. Then

U =
1√
s
(Y21 + · · ·+ Y2s − s)

has a subgaussian tail up to
√
k.

Proof. The proof of the following lemma is similar to the proof of Lemma 35 and we do not
give it here.

Lemma 38 [Mat08] Let Y denote a random variable for which we have E[Y] = 0, Var[Y] = 1

and Y has a subgassian tail. Then there are constants C,u0 such that for all u ∈ [0, u0] we
have E[eu(Y2−1)] ≤ eCu2 and E[eu(1−Y2)] ≤ eCu2 .

Having this lemma in our hands we prove Lemma 37.

For U = 1√
s
(Y21 + · · ·+ Y2s − s) and u ∈ [0, u0] and with the help of Lemma 38 we calculate

E[euU] = E[e
u√
s
(Y21+···+Y2s−s)]

= (E[e
u√
s
(Y2−1)

])s

= (eCu
2/s)s

= eCu
2

.

Lemma 34 then implies that U has a subgaussian upper tail up to C
√
s. The calculation for the

lower tail is identical. ut
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Finishing the proof of Theorem 31
Assume we normalize a so that a is now a unit vector, i.e., aT · a = Z = 1.

Recall that X1 = |T(a)1|
2, · · · , Xs = |T(a)s|

2 and X = X1 + · · ·+ Xs. Let

Y1 =

n∑
j=1

s[1, j] · a[j], · · · , Ys =
n∑
j=1

s[s, j] · a[j].

Then

X =
1

s
(Y21 + · · ·+ Y2s ) =

1√
s
· 1√
s
(Y21 + · · ·+ Y2s ).

The fact that we need to prove is that with probability ≥ 1− δ we have (1− ε)Z ≤ X ≤ (1+ ε)Z
which is equivalent to |X− 1| ≤ ε. This is equal to

|
1√
s
· 1√
s
(Y21 + · · ·+ Y2s ) − 1| ≤ ε

or

|
1√
s
(Y21 + · · ·+ Y2s − s)| ≤ ε ·

√
s.

Next for U = 1√
s
(Y21 + · · · + Y2s − s) and ε ≤ 1/2 since ε · √s is in the allowed range of Lemma

37 we get that
Pr[U ≥ ε ·

√
s] ≤ e−b(ε·

√
s)2 = e−bε

2·Cε−2 log(2/δ) ≤ δ/2.

The calculation showing that
Pr[U ≤ −ε ·

√
s] ≤ δ/2

is almost the same.

Remark 39 It is interesting to see where exactly we need the condition of being independent.
We observe that in the prove of Lemmas 33 and 37 we needed the variables to be fully inde-
pendent. Being fully independent in data streams is difficult to provide. This is due to the fact
that in order to have all random variables to be fully independent we need to store a matrix
of size O(sn) which is larger than the length of the vector a. However, in Section 4.2 we see
that if we can replace this being fully independent condition for entries of S with some limited
independency then we are able to store and maintain S implicitly in a space of O(logn) bits.

In Sections 3.1 and 3.2 we studied the k-means and the subspace clusterings as applications
of non-uniform sampling. Next we explain that these two problems can also be solved using
random linear combination or better to say dimensionality reduction offered by Theorem 31.
The k-means result is due to Ostrovsky and Rabani [OR02], and the subspace clustering result
is due to Sarlos [Sar06]. See Figure 4.2 for a comparison between random linear combination
and non-uniform sampling results in clustering.
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Johnson-Lindenstrauss Lemma

Non-uniform samlping

k-means j-subspace

O(d(n + k)k
2/ε4)

O(nkd+ d · (k/ε)O(1) + 2Õ(k/ε))

sum of distance : npoly(j/ε)
sum of squared distances : O(M j

ε + (n+ d)j
2

ε2 )

sum of distance :

O(nd · poly(j/ε) + (n+ d) · 2poly(j/ε))

[OR02]

[Here]

[Here]

[FMSW10]

[Sar06]

Fig. 4.2: A comparison between random linear combination and non-uniform sampling results in clus-
tering. HereM denote the number of non-zero entries of a matrix whose rows are points in P.

4.1.1 The k-Means Clustering [OR02]

We first consider the problem in the Hamming cube (Zd2 , Hd), where Zd2 is a d-dimensional
vector over field Z2 and Hd is the d-dimensional Hamming distance. Note that once again the
dimension d is not constant. The k-means algorithm (depicted in Figure 4.3) for k = 2 proceeds
as follows (see [OR02] for general k). Let P denote a point set of size n in the Hamming cube
(Zd2 , Hd). We first guess the distance ` between the two optimal centers a1, a2 (by enumerating
over all d possible values). We then project the data points into a space Zd

′
2 for d ′ = O(logn).

In this low-dimensional space, we enumerate over all 22d
′
possible locations for the projections

of the optimal projected cluster centers b1, b2.

Each choice induces a partition of the data set into two subsets. Each subset is associated
with a cluster center projection and contains all the points whose projections are closer to this
center’s projection than to the other center’s projection, ties broken arbitrarily. We check each
possible partition in the original space by computing the best cluster center for each subsets
and summing up the distances from the points to their assigned centers. Finally we output the
best partition over all guesses of ` and over all guesses of the cluster centers projections.

The projection in the above algorithm is done using a variation of Theorem 31. In particular, for
the current guess ` of distance between the two optimal centers a1, a2, we choose a random
matrix S of size d ′ × d where the entries of S are independent, identically distributed (i.i.d.)
random 0/1 variables with Pr[s[i, j] = 1] = ε2/` and Pr[s[i, j] = 0] = 1− ε2/`.
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(Zd
2 , Hd)

(Zd′
2 , Hd′)

Find the best centers in low-dimensional space

Partitions in the low-dimensional space are used in the original space

to find the centers in the original space.

a1 a2 b1
b2c2

c1

a1
a2

b1
b2

c1
c2

Fig. 4.3: k-means using JL-Lemma.

We then prove that for d ′ = O(ε−4 · logn) the linear mapping furnished by S is (ε, `/2, `/(2ε))-
distorted on P ∪ {a1, a2} which means that for every x, y ∈ P ∪ {a1, a2}

(1) if dist(x, y) < `/4, then dist′(Sx, Sy) < (1+ ε)α · `/4;

(2) if dist(x, y) > `/(2ε), then dist′(Sx, Sy) > (1− ε)α · `/(2ε);

(3) if `/4 ≤ dist(x, y) ≤ `/(2ε), then (1− ε)α · dist(x, y) ≤ dist′(Sx, Sy) ≤ (1+ ε)α · dist(x, y),

where dist is the d-dimensional Hamming distance, dist′ is the d ′-dimensional Hamming dis-
tance, and α is a scaling factor.

Intuitively, a (ε, `/2, `/(2ε))-distorted mapping approximately preserves distances between `/4
and `/(2ε), and further it doesn’t shrink large distances too much and does not expand small
distances too much.

Let ` denote the actual distance between the optimal centers a1, a2. For the projection step
where the probability of being one for the entries of S is ε2/`, the S gives a linear (ε, `/2, `/(2ε))-
distorted mapping on P ∪ {a1, a2}. Using this mapping we then prove that if for a point p ∈ P
we have that dist′(Sp,min{b1, b2}) ≤ dist′(Sp,min{Sa1, Sa2}), then dist(p,min{S−b1, S−b2}) ≤
(1 + ε) · dist(p,min{a1, a2}), where S− is the inverse of the mapping S. Since b1, b2 are the
optimal centers in Zd

′
2 , i.e.,∑
p∈P

dist′(Sp,min{b1, b2}) ≤
∑
p∈P

dist′(Sp,min{Sa1, Sa2})

we get that ∑
p∈P

dist(p,min{S−b1, S−b2}) ≤ (1+ ε)
∑
p∈P

dist(p,min{a1, a2}).
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On the other hand, since c1, c2 are the optimal centers in Zd2 for the partitions corresponding to
b1, b2 in Zd

′
2 ∑

p∈P
dist(p,min{c1, c2}) ≤

∑
p∈P

dist(p,min{S−b1, S−b2}).

Thus we prove that ∑
p∈P

dist(p,min{c1, c2}) ≤
∑
p∈P

dist(p,min{S−b1, S−b2})

≤ (1+ ε)
∑
p∈P

dist(p,min{a1, a2}).

For the general Euclidean space Rd we first project the data set into a Hamming cube (Zd
′
2 , Hd ′)

for d ′ = poly(n, d, ε−1) and then run the above algorithm on the projected data set.

Besides this result Ostrovsky and Rabani [OR02] found a generic framework using dimension-
ality reduction of Johnson-Lindenstrauss Lemma for the following problems:

• k-median in the Hamming cube:
Given a point set P in a Hamming cube Zd2 , find k centers in Zd2 such that the sum of
Hamming distances of points in P to these centers is minimum.

• k-median in Rd endowed with Manhattan distance:
Given a point set P in a Rd, find k centers in Rd such that the sum of || · ||1 distances of
points in P to these centers is minimum.

• k-median in Rd endowed with Euclidean distance:
Given a point set P in a Rd, find k centers in Rd such that the sum of || · ||2 distances of
points in P to these centers is minimum.

• k-means in Rd endowed with Euclidean distance:
Given a point set P in a Rd, find k centers in Rd such that the sum of squared || · ||2 dis-
tances of points in P to these centers is minimum.

Theorem 40 [OR02] For every δ > 0 and for every 0 < ε ≤ 1/8 the general scheme that we
sketched above in time O(d(n+ k)k

2/ε4) finds a solution for the problems of k-median in Ham-
ming cube, k-median in Rd endowed with Manhattan distance, k-median in Rd endowed with
Euclidean distance, and k-means in Rd endowed with Euclidean distance such that the value
of this solution is within a factor of (1+ 8ε)2 of the optimum, with probability at least 1− nδ.
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4.1.2 Subspace Clustering [Sar06]

It is known that a j-subspace that minimizes the sum of squared distances to a point set
P = {p1, · · · , pn} is spanned by the top j right singular vectors of its matrix A ∈ Rn×d, where the
rows p1, · · · , pn of this matrix correspond to the points in the point set P. The singular vectors
can be computed using singular value decomposition (SVD) in time O(min

{
nd2, n2d

}
). The

matrix obtained by projecting each point on this subspace then provides a matrix of low rank
that well-approximates the original matrix.

A sequence of papers on the one j-subspace that minimizes the sum of squared distances has
been initiated by the seminal work of Frieze, Kannan, and Vempala [FKV04, DRVW06, HP06,
DV06, Sar06, DV07]. This work has focused on obtaining approximation algorithms in time
O(nd · (j/ε)O(1)), because the running time of SVD is too large for massive data sets.

The strongest results obtained so far has been recently proved by Deshpande and Vempala in
[DV06, SV07] where they show that if we sample (4j/ε+ 2j log(j+ 1)) points from the point set
P or rows of A, interchangeably using 2(j + 1)(log(j + 1) + 1) passes in an adaptive manner
[DRVW06], then their span contains a (1 + ε)-approximation to the optimum j-subspace. The
running time and the space of this algorithm are

O

(
M(

j

ε
+ j2 log j) + (n+ d)

(
j2

ε2
+
j3 log j
ε

+ j4 log j
))

and (n+ d) · (j/ε+ j2 log j) respectively where M is the number of nonzero entries of A.

Later Deshpande and Varadarajan [DV07] extend some techniques that have been previously
proposed for the low rank matrix approximation, i.e. volume sampling and dimension reduction
[DRVW06, DV06], to the j-subspace problem endowed with the sum of distances measure
(i.e., the problem that we study in this thesis). In particular, they give a linear time (1 + ε)-
approximation algorithm for this problem in time

O(nd(j/ε)O(1) + nd(j)O(j
2) + (

logn

ε
)Õ(j

20/ε10)).

Very recently Sarlos [?] shows that random linear combination or better to say dimensionality
reduction offered by Theorem 31 can speed up the time to extract the j-subspace that min-
imizes the sum of squared distances. In particular, he gives a (1 + ε)-approximation to this
j-subspace using merely 2 passes, in time O

(
M j

ε + (n+ d) · j2
ε2

)
and using O((n + d) · j2

ε2
)

memory bits. We sketch the proof of his algorithm below:

Let Uk denote the optimal j-subspace for the sum of squared distance measure, i.e,

Uk = arg min
F:j-subspace ⊂Rd

∑
p∈P

dist2(p, F).

LetA denote a n×dmatrix for which the rows ofA correspond to the points of P. The sketching
algorithm that Sarlos proposed works as follows. We multiply A by a s × d random matrix S
with i.i.d. zero mean ±1 entries where s = Θ(j/ε). This gives the subspace Span

{
AST
}

of
dimension at most s in which there exists a j-subspace that (1 + ε)-approximates Uk. Recall
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that ST is the transpose matrix of S. Then, we project the rows of matrix A onto the subspace
spanned by the rows of AST . The multiplication and projection times are together O(Mj/ε).
Finally, we compute the best j-subspace inside Span

{
AST
}

using SVD in timeO((n+d)(j/ε)2).

Overall the time to extract a j-subspace is O(M(j/ε) + (n + d)(j/ε)2). Note that we need two
passes over the matrix A, where in the first pass we multiply A by S and at the end of first
pass we apply the gram-schmidt orthogonalization to find an orthonormal basis V of the span
of AST . During the second pass we project the rows of matrix A onto V and at the end of the
second pass we run one of the SVD algorithms (see [GL96]) to compute the best j-subspace
inside Span

{
AST
}
= Span {V}.

The space complexity of this algorithm is O((n+ d) j
2

ε2
) since we need to keep an orthonormal

basis of AST . Note that since the whole matrix S is of size O(sd) we can store S as well;
although S is fully independent here, but the space to do the whole computation is dominating
so we can store S. This model is in fact called semi-streaming model.

The proof boils down to showing that if we multiply each row p of the matrix A by S, the length
of the segment which connects p to the orthogonal projection of Sp on the Uk is (1 + ε)-
approximation of the length of p’s orthogonal projection on the Uk. See Figure 4.4.

Simplified view

p

wp

Swp

Ukp

UkS
TSwp

UkS
TSp

p

Swp

wp

UkpUkS
TSp

UkS
TSwp

Uk

Fig. 4.4: (1+ ε)-approximation to the best j-subspace using Johnson-Lindenstrauss Lemma.

Let the orthogonal projection of p on the Uk be Ukp. Set wp ∈ Rd−j such that wp = p − Ukp.
Thus wp is orthogonal to Uk. Note that ||wp||2 = ||p−Ukp||

2.

The multiplication of S by p changes wp into Swp. The orthogonal projection of Swp onto UkST

is UkSTSwp. Note that the span of UkST is the same as Uk since ST linearly combines the row
of Uk. The interesting part of the proof is now here where we prove that for the s × d random
matrix S if s = Θ(j/ε), then the Euclidean length of UkSTSwp is ε-fraction of the Euclidean
length of wp, i.e, ||UkSTSwp|| ≤ ε · ||wp||. Thus using Pythagorean Theorem we get

||UkS
TSp||2 = ||UkS

TSwp||
2 + ||wp||

2 ≤ (1+ ε)||wp||
2.
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4.2 Sketching vs. Lp-Sampling

Similar to Sections 3.3 and 3.4 where we discussed how to implement non-uniform samples in
the turnstile streaming model, we are also interested to implement random linear combination
of Theorem 31 in this model. Note that if we want to use Theorem 31 we need to store the
whole random matrix S which needs a space of O(sn) which is larger than the length of the
vector a. Recall that if we use S to approximately solve the j-subspace problem as we saw in
the previous section we need a space of O(ns2); so we are happy to keep S as well. However,
in general we would like to solve the problem of estimating a sum that we introduced in the
beginning of this chapter using a space smaller than n, thus keeping S is not what we are
looking for. The obstacle that we have with the implementation of this theorem in data stream
is that the entries of S are fully independent and thus we can not keep few of the entries of S
and retrieve the rest from those that we have, whenever that we need.

Interesting enough Alon, Matias, and Szegedy [AMS96] show that in order to approximate Z
in Theorem 31 within factor (1 + ε) using random linear combination we merely need that the
entries of S to be 4-wise independent and as we saw in Lemma 6 to implement n random
variables which are 4-wise independent we only need an irreducible polynomial of degree
O(logn) which can be stored in a space of O(logn). Here we give this prove which is known
as sketching or AMS-sketch. Figure 4.6 depicts the hierarchy of problems following up the
AMS-sketch. We explain the problems in this hierarchy later.

Theorem 41 Let a denote an arbitrary vector in Rn. Let Zi = |a[i]|2 for i ∈ [n] and Z =
Z1 + · · · + Zn. Let s1 = 16ε−2 and s2 = 2 log(1/δ). Let T : Rn → Rs1 denote a random linear
mapping defined by

T(a)i =

n∑
j=1

s[i, j] · a[j], i = 1, · · · , s1,

where the s[i, j] are 4-wise independent random variables with E[s[i, j]] = 0, Var[s[i, j]] =

E[(s[i, j])2] = 1. Let X1 = |T(a)1|
2, · · · , Xs1 = |T(a)s1 |

2 and X =
X1+···+Xs1

s1
. Then we have

Pr[(1− ε)Z ≤ X ≤ (1+ ε)Z] ≥ 7/8.

Further, if we repeat this random process for s2 times in parallel and take the median of these
trials, this median deviates from Z by more than εZ with probability at most δ.

Note that here we drop the condition of being a uniform subgaussian tail for the entries of S.

Proof. Similar to the second proof of Lemma 24 we compute the expectation and variance
of Xi and then use Chebyshev’s Inequality (see also Lemma 2) to bound the deviation of the
random variable X.
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Since the random variables s[i, j] for j ∈ [n] are pairwise independent we get

E[Xi] = E[|T(a)i|2]

= E[(
n∑
j=1

s[i, j] · a[j])2]

=

n∑
j=1

(a[j])2E[(s[i, j])2] + 2
n∑

1≤j<k≤n
a[j]a[k]E[s[i, j]]E[s[i, k]]

=

n∑
j=1

(a[j])2 = Z.

Similarly since the random variables s[i, j] for j ∈ [n] are 4-independent we get

E[(Xi)2] = E[|T(a)i|4]

=

n∑
j=1

(a[j])4 + 6

n∑
1≤j<k≤n

(a[j])2(a[k])2.

It follows that

Var[Xi] = E[(Xi)2] − (E[Xi])2 = 4
n∑

1≤j<k≤n
(a[j])2(a[k])2 ≤ 2Z2.

Therefore by Chebyshev’s Inequality we get that

Pr[|X− Z| ≥ ε · Z] ≤ Var[X]

(ε · Z)2 ≤
2Z2

s1ε2 · Z2
=
1

8
.

ut

4.2.1 Following up results by AMS-Sketch, Figure 4.6

Approximating the p-th Frequency Moment of a Stream

Alon, Matias, and Szegedy [AMS96] by Theorem 41 give an (1 ± ε)-estimator for Fp(a) for
p = 2 using a optimal space of O(ε−2 logn log(1/δ)) memory bits. Later, Indyk [Ind06] shows
that using pseudorandom generators (PRGs) and stable distributions we can find an AMS-
sketch for p ∈ [0, 2]. Very recently, Kane, Nelson and Woodruff [KNW10] prove that in order to
find an AMS-sketch for p ∈ [0, 2] we do not need to use PRGs and using O(logn)-wise hash
functions would be enough to produce the random matrix S.

For the case p > 2, it has been shown in [BYJKS02, CKS03] that any algorithm that can
estimate Fp(a) within factor (1 ± ε) in the read only or turnstile streaming model needs a
space lower bound of Ω(n1−2/p) bits. For p > 2, Indyk and Woodruf [IW05] give an (1 ±
ε)-estimator F ′p(a) using an optimal space of O(p log(1/δ)

ε2
n1−1/p(logn + logm)) memory bits.

However, they need pseudorandom generators (PRGs) to reduce the number of random bits
of their estimators. In Section 9.1 we give an optimal space estimator which does not need
PRGs, potentially making it more practical.
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Heavy Hitter and Block Heavy Hitter

Indyk and Woodruf algorithm [IW05] and our algorithm use known heavy hitter algorithms. All
known heavy hitters algorithms are in fact variants of AMS-sketch. For p = 1 heavy hitter prob-
lem is solved by the CountMin data structure of Cormode and Muthukrishnan [CM05b], and for
p = 2 by the CountSketch data structure by Charikar, Chen, and Farach-Colton [CCFC02]. In
Section 9.4 we give a heavy hitter algorithm for every p ∈ [0, 2].

A generalization of heavy hitter problem is called block heavy hitter problem which is introduced
in Section 21. In [ABI08], Andoni, DoBa, and Indyk devise a 1-pass algorithm for this problem
using poly(φ−1 logn) bits of space. In Section 9.4 we give a block heavy hitter algorithm for
every p ∈ [0, 2].

Estimating Cascaded Norms

In [JW09], Jayram and Woodruff give 1-pass algorithms for estimating cascaded moments of an
n×dmatrixA (see Definition 22). Namely, they show that for k ≥ 1 and p ≥ 2, the 1-pass space
complexity of outputting a (1±ε)-approximation to Fk(Fp)(A) is n1−2/(kp)d1−2/ppoly(ε−1 log(nd)).

They leave open the question of estimating Fk(Fp)(A) for k ≥ 1 and p < 2, though they prove
an Ω(n1−1/k) space lower bound for this problem. The only other work in this regime is due
to Cormode and Muthukrishnan [CM05b] who prove an n1/2poly(ε−1 log(nd)) upper bound for
estimating F2(F0)(A) assuming that all stream updates are positive.

In Section 9.3 we give a near-optimal n1−1/kpoly(ε−1 log(nd))-space 1-pass upper bound for
any k ≥ 1 and p ∈ [0, 2], which, together with the results of [JW09], closes the problem for
k ≥ 1 and any p ≥ 0, up to small factors. As our algorithm works in the general turnstile model,
this also improves the algorithm of [CM05b] for estimating F2(F0). The space complexity for all
regimes of k, p is depicted in Figure 4.5.
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?

k = p

p

k
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Fig. 4.5: Cascaded norms.
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Johnson-Lindenstrauss Lemma

Sketching
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p-stable + PRGs

space : O(ε−2 log n)
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Fig. 4.6: Sketching Hierarchy due to [JW09].
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4.3 Coresets

The concept of coreset for the first time was formalized for the L∞-shape fitting problems
by Agarwal, Har-peled, and Varadarajan [AHPV04]. Assume in order to encode the fitting
information for a given shape γ (for example, a j-subspace) for the points of P ⊂ Rd, we create
a point distp(P, γ) ⊂ Rn, where the ith coordinate is the p-th power of the distance of the i-th
point of P from γ.

A L∞-shape fitting problem is to find the shape γ that realizes minγ∈F ||dp(P, γ)||∞, where F
is the set of all shapes similar to γ in Rd. Agarwal, Har-peled, and Varadarajan formalize the
coreset for this problem as follows:

Definition 42 (Strong L∞-shape fitting-coreset) Let P be a (possibly) weighted set in Rd. A
set S, S ⊆ P, is called a strong L∞-shape fitting-coreset, if

|||distp(P, γ)||∞ − ||distp(S, γ)||∞| ≤ ε · ||distp(P, γ)||∞,
for any shape γ ∈ F .

Later Har-Peled and Mazumdar [HPM04] extend the coreset definition to the k-median and k-
means clustering problems and they use coresets to obtain fast algorithms for these problems.
Here we give a comprehensive survey of following up coresets for k-means and j-subspace
clustering problems. See also Figures 4.8 and 4.9.

4.3.1 Har-Peled and Mazumdar [HPM04]

The first step of this construction is to invoke the algorithm [MP04] which returns a set C of
k centers such that cost(P,C) ≤ β · OPT (P, k) for some constant β. Recall that OPT (P, k)
is the optimal k-means cost of P. Let Ci be the points of P having ci as their nearest center
in C. Let R =

√
cost(P,C)/(β · n) be a lower bound estimate of the average mean radius√

OPT (P, k)/n.

Next, we construct an appropriate exponential grid around each ci and snap the points of
P to those grids. Let Qi,j be an axis-parallel square with side length R2j centered at ci, for
i ∈ [k], j ∈ [2 log(βn)]. Let Vi,0 = Qi,0 and Vi,j = Qi,j − Qi,j−1. We then partition Vi,j into
a grid with side length rj = εR2j/(βd) and let Gi denote the resulting exponential grid for
Vi,0 · · · , Vi,[2 log(βn)].

Next, compute for every point of Ci, the grid cell that contains it. For every non-empty grid cell,
pick an arbitrary point of Ci inside it as a representative point for the coreset and assign it a
weight equal to the number of points of Ci in this grid cell. Let Si,j denote the resulting weighted
set for Vi,j. Let S = ∪ki=1 ∪

2 log(βn)
j=0 Si,j be our coreset.
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4.3.2 Har-Peled and Kushal [HPK05]

The first step of this construction is again to invoke the algorithm [MP04] which returns a set
C of k centers such that cost(P,C) ≤ β · OPT (P, k) for some constant β. Let Ci be the points
of P having ci as their nearest center in C. Around each of the points ci we place a fan Li of
lines passing through it, see Figure 4.7. This is done by taking a unit sphere centered at ci
and placing an ε/(3β)-net (see [AS00]) Ni on this sphere. For every p ∈ Ni we generate the
line spanning the segment cip. Note that |Ni| = O(ε−d). For each point p ∈ Ci let `i(p) be its
closest line in Li and let p ′ be the projection of p into `i(p).

Fig. 4.7: Fans around the centers in C.

Fix one `i,j ∈ Li for i ∈ [k], j ∈ [O(ε−d)]. Let P ′i,j be the projected points on `i,j. We scan the
points on the line `i,j from left to right and group them into batches with cumulative error equal to
Φi,j =

ε2·cost(P,C)
cβ·k2 for some constant c, where the cumulative error is

∑
p∈P ′i,j wp · dist(p, µP(P ′i,j)).

Let B = {B1, · · · , Bu} denote the resulting batches. It is straightforward to verify that u = |B| =
O(k2ε−2).

Fix a batch Bv for v ∈ [u] and set m̄ = Brv. Let the leftmost point of Bv be p` and the rightmost
point be pr. Next we set two points B`v and Brv. The point B`v is the leftmost extreme of Bv
and the point Brv is the rightmost extreme of Bv. For each point p ∈ Bv which is to the right of
µP(Bv) we assign a weight of dist(p,m̄)

dist(pr,m̄) to Brv. Similarly, for each point p ∈ Bv which is to the

left of µP(Bv) we assign a weight of dist(p,m̄)
dist(p`,m̄) to B`v. At the end we scale up the weights so that

wB`v +wBrv = |B|.

4.3.3 Frahling and Sohler [FS05]

Frahling and Sohler consider construction of coresets in the discrete space [∆]d = {1, · · · , ∆}d
instead of Rd. This allows them to maintain their coreset in the dynamic geometric streaming
model which consists of a sequence of m = max(n,∆)O(1) insertion and deletion operations of
points from the space [∆]d. Here we assume that n and ∆ are polynomially dependent to each
other.

The offline construction of their coreset for the k-means problem works as follows:
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We impose log∆ nested square grids G1, · · · , Glog∆ over the point space. The side length of
the grid cells in grid Gi is 2i. Our goal will be to identify for each grid Gi its heavy cells. A cell
in grid Gi is called heavy if it contains at least δOPT (P,k)

2i
points of P for δ < 1 that turns out to

be the reverse of the coreset size, see 4.8. As for OPT (P, k) we can replace it with a constant
factor approximation cost or its guesses.

We start the construction with the coarsest grid Glog∆. First, we identify every heavy cell in
Glog∆. Then we proceed similar to the process of building a quadtree. We subdivide every
heavy cell c into 2d equal size quadratic subcells. These subcells are in Glog∆−1. If none of
these subcells is heavy we mark c. Otherwise we recurse this process with all heavy subcells.
the recursion eventually stops because at some point a heavy cell is required to have more
than n points inside.

At the end of this recursive process we choose the center pc of every marked cell c to be its
representative point and assign a weight to pc which is equal to the number of points inside the
cell c. The set of centers of all marked would be our coreset.

4.3.4 Chen [Che06]

The first step of this construction is again to invoke the algorithm [MP04] which returns a set C
of k centers such that cost(P,C) ≤ β · OPT (P, k) for some constant β. Recall that OPT (P, k)
is the optimal k-means cost of P. Let Ci be the points of P having ci as their nearest center
in C. Let R =

√
cost(P,C)/(β · n) be a lower bound estimate of the average mean radius√

OPT (P, k)/n.

Next, we construct an O(logn) balls of exponentially growing radii around each ci and sample
uniformly at random the points of P inside each ring. Let ball(ci, R2j) be the ball centered at ci of
radius R2j for i ∈ [k], j ∈ [2 log(βn)]. Let Vi,0 = ball(ci, R) and Vi,j = ball(ci, R2j)−ball(ci, R2j−1)
be the jth ring set for the ith center. Let s = O(ck2dβ2ε−2 log(nd/(εδ)) · log logn) for small
enough number δ and large enough constant c. We then pick s samples from Vi,j independently
and uniformly (with replacement) and assign each point weight |Vi,j|/s. Let Si,j be the resulting
weighted sample set. Let S = ∪ki=1 ∪

2 log(βn)
j=0 Si,j be our coreset.

4.3.5 Feldman, Fiat, and Sharir [FFS06]

In the continuation of the coresets development in low-dimensional spaces, Feldman, Fiat,
and Sharir develop a coreset for the j-subspace problems using sum of distances and sum
of squared distances as measures. They realized that given a point set P on a line F we can
reduce the problem of finding a coreset for the j-subspace problem to the problem of finding a
coreset for a center which is a point somewhere in Rd, but now this center has a weight which
is some positive real number.
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As an example, see Figure 4.9 for the 1-subspace problem. Let F be a line where the points
of P are lying on it and let L be an arbitrary line. Let us assume that L and F are in a plane of
dimension 2 and they intersect at some point O. Our goal here is to find a coreset Q such that

(1− ε) · cost(P, L) ≤ cost(Q, L) ≤ (1+ ε) · cost(P, L).

Let p be a point of P. In this case we can have this fact that dist(p, L) = dist(p,O) · sin(αL),
where αL is the angle between L and F. This simple observation says for this special case
we can replace line L by point O, find a coreset for this point by using known coresets for this
problem and then multiply the cost of the coreset by sin(αL).

In general and when L and F are in Rd using Trigonometry, we can prove that there always
exists a point O ∈ Rd such that dist(p, L) = wL · dist(p,O), where wL is a positive real number
which depends on the line L and its position with respect to L.

See [FFS06] for the general setting when j ≥ 1 and points of P are in Rd.



March 15, 2011, 16:42 53

Ref. Problems Size
Streaming

Size

Streaming

Model
Dimension

[HPM04] O(kε−d log n)k-means, k-median O(kε−d log2d+2 n) Read-only Low

O(k3ε−d−1) O(kε−d log2d+2 n)[HPK05] Read-only Low

[FFS06]

Õ(dk2ε−2 log n) O(d2k2ε−2 log8 n) Read-only Highk-means, k-median

k-means, k-median

[FS05]
k-means, k-median
MaxWM, MaxTSP
MaxST, MaxCut

O(kε−d log n) O(k2ε−2d+6 log7 n)
Insertion and

Deletion model
Low

Here

Here

[Che06]

k-means (weak coreset)

k-means (strong coreset)

j-subspace O((j·log nε2 )j
2

) didn’t compute

O( kε5 )) O(k2 log
10 n
ε5 ) Read-only

High

High

Low

Read-onlyO(kd log lognε5 )) O(dk2 log
10 n
ε5 )

Fig. 4.8: The complexity measures of the known k-means and k-median coresets, where Õ(·) notation
hides log logn and log(1/(εδ)) terms. The coreset size is given only for the k-median problem.
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Fig. 4.9: An evolutionary process of known k-means and k-median coresets.



Chapter 5

k-Means Clustering

In Section 3.1 we gave an overview of the application of non-uniform sampling in the k-
means problem. In this chapter we explain the idea in details. First in Section 5.1 we give a
weak (k, ε)-coreset. We then use the weak coreset to find a linear time (1 + ε)-approximation
algorithm in Section 5.2 and to give a streaming algorithm in Section 5.3.

5.1 Weak (k, ε)-coreset Construction

The first step of our algorithm is similar to the coreset constructions in [HPM04] and [Che06].
We run the constant factor approximation algorithm for k-means clustering due to [MP04] that
in O(nkd) time returns k centers C = {c1, · · · , ck}. Let β denote the approximation factor of
this algorithm and let Ci denote the set of points from P that are nearer to ci than to any other
center in C (ties can be broken arbitrarily).

We partition each Ci into two sets Cin
i and Cout

i . The set Cin
i contains all points that are close

to ci, i.e. all points contained in a closed ball B(ci, ri) = {p ∈ Rd | dist(p, ci) ≤ ri} with center

ci and radius ri =
√

cost(Ci,ci)
ε·|Ci| ). Thus we have Cin

i = Ci
⋂
B(ci, ri). The set Cout

i contains the
remaining points of Ci, i.e. Cout

i = Ci \ B(ci, ri).

To construct the coreset we proceed differently for the points in Cin
i and Cout

i . From the sets Cin
i

we draw a set of sin
i points independently and uniformly at random. Then we assign to each

point the weight |Cin
i |/s

in
i . Let Sin

i denote the resulting weighted sample. From each set Cout
i we

draw a sample set Sout
i = {s1, · · · , ssout

i
} according to a non-uniform probability distribution. The

weights of the points will also be distributed non-uniformly.

We proceed for each cluster separately. The probability of choosing point q ∈ Cout
i is pq =

Pr[q ∈ Sout
i ] = dist2(q,ci)

cost(Cout
i ,ci)

. Each sample point q is assigned a weight wq =
cost(Cout

i ,ci)

sout
i dist2(q,ci)

, i.e. the
weight of a point depends on its distance to the center ci. The further a point is away from the
center, the smaller its weight.

55
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Finally, we set S =
⋃k
i=1

(
Sin
i ∪ Sout

i

)
and T will be the set of all centroids of combinations of

2/ε points from S (we allow repetition of points). We will show that for large enough sample
sizes, our construction indeed gives a weak coreset. We remark that the set T depends on the
choice of the set S.

Coreset(P)

(1) C = {c1, · · · , ck} = The k centers returned by the β-approximation algorithm [MP04].

(2) For i = 1 to k do

(a) Let ri =
√

cost(Ci,ci)
ε·|Ci| ).

(b) Cin
i = Ci

⋂
B(ci, ri) and Cout

i = Ci \ B(ci, ri).

(c) Let Sin
i denote a sample set taken u.a.r. from Cin

i , where each sample has the
weight of |Cin

i |/s
in
i .

(d) Pick sout
i points s1, · · · , ssout

i
i.i.d. from Cout

i such that

pq = Pr[q ∈ Sout
i ] =

dist2(q, ci)
cost(Cout

i , ci)
.

(e) For i = 1 to sout
i do: w(si) =

1

sout
i · psi

.

(3) S =
⋃k
i=1

(
Sin
i ∪ Sout

i

)
.

(4) T = The set of all centroids of combinations of 2/ε points from S (we allow repetition
of points).

(5) return S and T .

Analysis We first show that T is a (k, 6ε)-approximate centroid set, if the cost of any subset
K ⊆ T , |K| = k, and the cost of an optimal solution OPT are approximated within a factor of
(1± ε). Then we show that for an arbitrary set K of k centers

|cost(S, K) − cost(P, K)| ≤ ε · cost(P, K)

with probability 1 − λ for large enough sin
i and sout

i . This implies that with this probability T is a
(k, 6ε)-approximate centroid set. Finally, we show that for any subset of T of size k we get

|cost(S, K) − cost(P, K)| ≤ ε · cost(P, K)

Here, the difficulty is that the set T depends on the random process and hence there are de-
pendencies (this is, why we cannot immediately apply the previous result).
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T is a (k, ε)-approximate centroid set

Lemma 43 Let P ⊆ Rd be a point set and let 0 < ε < 1/2 and k ≥ 1. Let S ⊆ Rd be a weighted
point set, and let T be the set of all centroids of combinations (with repetition) of 2/ε points
from S. If we have

|cost(S, K) − cost(P, K)| ≤ ε · cost(P, K)

for every set K ⊆ T of k points and if

|cost(S,OPT ) − cost(P,OPT )| ≤ ε · cost(P,OPT )

for an optimal set OPT ⊆ Rd of k centers, then T is a (k, 6ε)-approximate centroid set.

Proof. Let OPT denote an optimal set of cluster centers and let O1, . . . , Ok be the induced
clustering. By Corollary 11 we know that for every cluster Oi the set T contains a (1 + ε)-
approximation. Since the cost of OPT is approximated within a factor of (1 ± ε) and we lose
at most another factor of (1 + ε) when we move each center to the nearest point from T , we
have a set K∗ of k centers in T with

cost(S, K∗) ≤ (1+ ε)2 · cost(P,O).

Since we also know that
cost(S, K∗) ≥ (1− ε)cost(P, K∗),

we know that
cost(P, K∗) ≤ (1+ ε)2/(1− ε) · cost(P,OPT ).

For ε ≤ 1/2 we can obtain that T is a (k, 6ε)-approximate centroid set. ut

Arbitrary centers are approximated within a factor (1±ε) The first step of our analysis will be
to show that for an arbitrary fixed set K = {k1, · · · , kl, · · · , kk} of k centers, the cost of S is a
(1± ε)-approximation of the cost of P. We will prove the following lemma.

Lemma 44 Given a point set P in IRd and a set K ⊆ Rd of k centers. Let ε, λ > 0 be parameters.
Then there is a constant c such that for sin

i , s
out
i ≥ c · ln(k/λ)

ε4
, 1 ≤ i ≤ k, the sample set

S =
⋃k
i=1

(
Sin
i ∪ Sout

i

)
computed by our algorithm satisfies |cost(S, K) − cost(P, K)| ≤ ε · cost(P, K)

with probability ≥ 1− λ.

Proof. We will assume ε ≤ 1/2.. Let Si = Sin
i ∪ Sout

i and let kl denote the nearest center from K

to B(ci, ri). The analysis will distinguish between the cases

(1) dist(kl, ci) ≥ ri + ri
ε = ri(1+ε)

ε , and

(2) dist(kl, ci) < ri + ri
ε = ri(1+ε)

ε .
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Case (1) Every point p ∈ B(ci, ri) has distance at least dist(B(ci, ri), kl) to the nearest center
from K. Since we are in case (1), it has distance at most dist(B(ci, ri), kl) + 2ri ≤ (1 + 2ε) ·
dist(B(ci, ri), kl) to the nearest center from K. By our construction we have that the sum of the
weights of the points in Sin

i is exactly |Cin
i |. Hence, we get

ci

ri

Cini

Couti

k`

≥ ri
ε

b(ci, ri)

Fig. 5.1: Case (1)

∣∣cost(Cin
i , K) − cost(Sin

i , K)
∣∣ ≤ |Cin

i |
((

(1+ 2ε) · dist(B(ci, ri), kl)
)2

− (dist((ci, ri), kl))2
)

≤ 8 · ε · |Cin
i | · dist2((ci, ri), kl)

≤ 8 · ε · cost(Cin
i , K) .

Next we consider the points from Cout
i . Let W =

∑
p∈Sout

i
wp be the random variable for the sum

of weights of points in Sout
i . In case (1) we will approximate the error for the outer points by the

sum of their contributions. We have

|cost(Cout
i , K) − cost(Sout

i , K)| ≤ cost(Cout
i , K) + cost(Sout

i , K)

≤
∑
q∈Cout

i

dist2(q, kl) +
∑
p∈Sout

i

wp · dist2(p, kl) .

Now we use the doubled triangle inequality, i.e. dist2(p, r) ≤ 2(dist2(p, q) + dist2(q, r)) for all
p, q, r ∈ Rd, to obtain ∑

q∈Cout
i

dist2(q, kl) +
∑
p∈Sout

i

wp · dist2(p, kl)

≤
∑
q∈Cout

i

2
(

dist2(q, ci) + dist2(ci, kl)
)

+
∑
p∈Sout

i

2wp

(
dist2(p, ci) + dist2(ci, kl)

)

≤
∑
q∈Cout

i

2
(
dist2(q, ci) + 2(r2i + dist2(B(ci, ri), kl))

)

+
∑
p∈Sout

i

2wp
(
dist2(p, ci) + 2(r2i + dist2(B(ci, ri), kl))

)
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≤
(
6cost(Ci, ci) + 4|Cout

i | · dist2(B(ci, ri), kl)
)

+
( ∑
p∈Sout

i

6wpdist2(p, ci) +
∑
p∈Sout

i

4wpdist2(B(ci, ri), kl)
)

≤
(
6r2iε · |Ci|+ 4ε · |Ci| · dist2(B(ci, ri), kl)

)

+
(
6cost(Cout

i , ci) + 4dist2(B(ci, ri), kl)
∑
p∈Sout

i

wp
)

≤
(
6r2iε · |Ci|+ 4ε · |Ci| · dist2(B(ci, ri), kl)

)

+
(
6 · cost(Ci, ci) + 4W · dist2(B(ci, ri), kl)

)

≤
(
6r2iε · |Ci|+ 4ε · |Ci| · dist2(B(ci, ri), kl)

)

+
(
6r2iε · |Ci|+ 4W · dist2(B(ci, ri), kl)

)

Since dist((ci, ri), kl) ≥ ri
ε implies r2i ≤ ε2 · dist2(B(ci, ri), kl) we have for ε ≤ 1/2:

≤ (2ε · |Ci| · dist2(Cin
i , kl) · (6ε2 + 2) + 4W · dist2((ci, ri), kl)

≤ 10ε · |Cin
i | · dist2(B(ci, ri), kl) + 4W · dist2(B(ci, ri), kl)

Next we show that W is at most ε · |Cin
i | with high probability.

Claim 45 Pr[W =
∑
p∈Sout

i
wp ≥ 4ε · |Cin

i |] ≤ 1− λ/k

Proof. Define the random variable Yj = wsj to be the weight of the jth sample point in Sout
i .

Hence W =
∑sout

i

j=1 Yj. The expected value E[Yj] of Yj is, by definition, E[Yj] =
∑
q∈Cout

i
pqwq =

|Cout
i |

sout
i
≤ ε|Ci|

sout
i

. We also have |Cin
i | ≥ (1 − ε)|Ci|. Hence, E[Yj] ≤ 2ε·|Cin

i |

sout
i

for ε ≤ 1/2. Thus,

E[W] ≤ 2ε · |Cin
i |. An upper bound for the weight of sample point q ∈ Cout

i is given by

wq =
cost(Cout

i , ci)

sout
i dist2(q, ci)

≤ cost(Cout
i , ci)

sout
i

cost(Ci,ci)
ε|Ci|

≤ ε|Ci|
sout
i

.

Since we have an upper bound for the random variables we can once again apply the frame-
work of Example 1 to find sout

i . In Example 1 we used additive Hoeffding inequality to get the
size of the sample set; however we can also use multiplicative Hoeffding inequality 5 to get a
similar bound for sout

i .

Define Zj =
Yj
ε|Ci|

sout
i

≤ 1. Let Z =
∑sout

i

j=1 Zj then E[Z] ≤ sout
i .



60 CHAPTER 5. K-MEANS CLUSTERING

By multiplicative Hoeffding we obtain:

Pr
[
|

sout
i∑
j=1

Yj − E[Y]| > ε|Ci|
]
= Pr

[
|Z− E[Z]| > sout

i

]

≤ Pr
[
|Z− E[Z]| >

sout
i

E[Z]
E[Z]

]

≤ 2 exp


−

E[Z] ·min
{(

sout
i

E[Z]

)
,
(
sout
i

E[Z]

)2}
3




= 2 exp
(
− sout

i /3
)
.

We choose sout
i ≥ 3 ln(2k/λ). This implies Pr[|Y − E[Y]| > ε|Ci|] ≤ λ/k. Hence, we get that

Pr[W > 4ε · |Cin
i |] ≤ λ/k. ut

It follows that∑
q∈Cout

i

cost(q, kl) +
∑
p∈Sout

i

wp · cost(p, kl) ≤ 26ε · |Cin
i | · dist2(B(ci, ri), kl) (5.1)

≤ 26εcost(Cin
i , K) (5.2)

with probability at least 1− λ/k.

Since
|cost(Cout

i , K) − cost(Sout
i , K)| ≤ cost(Cout

i , K) + cost(Sout
i , K)

this is an upper bound for the error of the outer points. Overall error for the sample set Sin
i ∪Sout

i

in case (1) would be

|cost(Sin
i ∪ Sout

i , K) − cost(Cin
i ∪ Cout

i , K)| ≤ 8εcost(Cin
i , K) + 26εcost(Cin

i , K)

≤ 34εcost(Cin
i , K).

Case (2)

Lemma 46 (Haussler [Hau92]) Let h(·) be a function defined on a set P, such that for all
p ∈ P, we have 0 ≤ h(p) ≤M, where M is a fixed constant. Let S = {p1, . . . , ps} be a multiset
of s samples drawn independently and identically from P, and let δ > 0 be a parameter. If
s ≥ (M2/2δ2) · ln (2/λ), then Pr

[ ∣∣∣h(P)|P|
− h(S)

|S |

∣∣∣ ≥ δ
]
≤ λ, where h(S) =∑s∈S h(s).

We want to apply Lemma 46 to analyze the error of the uniform sampling from Cin
i . Therefore,

let h(p) = dist2(p, K) for p ∈ Cin
i . Since Cin

i is contained in a ball of radius ri we get that

max
p∈P

h(p) ≤ (dist(Cin
i , K) + 2ri)

2 ≤ 2(dist2(Cin
i , K) + 4r

2
i ).
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Hence, we can use M = 2(dist2(Cin
i , K) + 4r

2
i ).

We define costavg(Cin
i , K) =

h(Cin
i )

|Cin
i |

, and costavg(Sin
i , K) =

h(Sin
i )

|Sin
i |

. Then we set δ = ξM. Thus, if

sin
i ≥ 1

2ξ2
· ln (4k/λ), then

Pr
[
|costavg(Cin

i , K) − costavg(Sin
i , K)| ≥ ξ2(dist2(Cin

i , K) + 4r
2
i )
]
≤ λ/2k.

As w(Cin
i ) = w(S

in
i ) we have with probability at least 1− λ/2k

|cost(Cin
i , K) − cost(Sin

i , K)| ≤ 2ξ|Cin
i |(dist2(Cin

i , K) + 4r
2
i )

It is easy to see that |Cin
i |dist2(Cin

i , K) ≤ cost(Cin
i , K) and summing this up for all sets Cin

i , for
i = 1, · · · , k, we have

|cost(∪iCin
i , K) − cost(∪iSin

i , K)| ≤ 2ξ
(∑

i

cost(Cin
i , K) +

∑
i

|Cin
i |4r

2
i

)
.

As ri =
√

cost(Ci,ci)
ε·|Ci| and Cin

i ≤ Ci, we have

|cost(∪iCin
i , K) − cost(∪iSin

i , K)| ≤ 2ξ

(∑
i

cost(Cin
i , K) +

∑
i

4
cost(Ci, ci)

ε

)

≤ 2ξ

(∑
i

cost(Cin
i , K) + 4

OPT (P, k)
βε

)
.

Recall that β is the approximation factor of the solution {c1, . . . , ck}. We set ξ = βε2/10. Then
we get

|cost(∪iCin
i , K) − cost(∪iSin

i , K)| ≤ ε
(∑

i

cost(Cin
i , K)

)
≤ ε · cost(P, K)

which holds with probability at least 1− λ/2 and for sin
i ≥ 50

β2ε4
ln(4k/λ).

Let costavg(Cout
i , K) =

cost(Cout
i ,K)

|Cout
i |

. Define the random variable Xj =
wsj
|Cout
i |
· dist2(sj, K) for the

average contribution of the jth sample point in Sout
i to the nearest center of K. The expected

value of E[Xj] is

E[Xj] =
∑
q∈Cout

i

pq ·
wq

|Cout
i |
· dist2(q, K)

=
1

sout
i · |Cout

i |

∑
q∈Cout

i

dist2(q, K)

=
costavg(Cout

i , K)

sout
i

.

We define costavg(Sout
i , K) =

1
|Cout
i |
·∑p∈Sout

i
wp · dist2(p, K) =

∑sout
i

j=1 Xj (notice that the averaging is
done by dividing by |Cout

i | and not by the sum of the weights of the points in Sout
i ).
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Hence, E[costavg(Sout
i , K)] =

∑sout
i

j=1 E[Xj] = costavg(Cout
i , K). For each q ∈ Cout

i we have

dist2(q, kl) ≤ 2
(

dist2(q, ci) + dist2(ci, kl)
)

≤ 2

(
dist2(q, ci) + (

ri(1+ ε)

ε
)2
)

≤ 4dist2(q, ci)
[
(1+ ε)2

ε2

]
.

Observe that each Xj satisfies

Xj =
wsj
|Cout
i |
· dist2(sj, K)

≤ wsj
|Cout
i |
· dist2(sj, kl) ≤

wsj
|Cout
i |
· 4dist2(sj, ci)

[
(1+ ε)2

ε2

]

≤ cost(Cout
i , ci)

dist2(sj, ci) · sout
i · |Cout

i |
· 4dist2(sj, ci)

[
(1+ ε)2

ε2

]

≤ 4

[
(1+ ε)2

ε2

]
· costavg(Cout

i , ci)

sout
i

.

Define random variable
Zj =

Xj

4
[
(1+ε)2

ε2

]
· costavg(Cout

i ,ci)

sout
i

≤ 1

and let Z =
∑sout

i

j=1 Zj. Applying Hoeffding bound we have

Pr[|costavg(Sout
i , K) − costavg(Cout

i , K)| ≥ ε · costavg(Cout
i , ci)]

= Pr[|
sout
i∑
j=1

Xj −

sout
i∑
j=1

E[Xj]| ≥ ε · costavg(Cout
i , ci)]

= Pr[|Z− E[Z]| ≥ ε3sout
i

4(1+ ε2)E[Z]
E[Z]]

≤ 2 exp


−

E[Z] ·min( ε3sout
i

4((1+ε)2)E[Z] ,
(

ε3sout
i

4((1+ε)2)E[Z]

)2
)

3




Choosing sout
i ≥

12((1+ε)2)
ε3

ln(4k/λ) gives

Pr[|costavg(Sout
i , K) − costavg(Cout

i , K)| ≥ ε · costavg(Cout
i , ci)] ≤ λ/(2k).

Multiplying by |Cout
i | gives

|cost(Sout
i , K) − cost(Cout

i , K)| ≤ ε · cost(Cout
i , ci)

with probability at least 1− λ/(2k).
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Now we can combine cases (a) and (b). Summing up over all sets Cin
i and Cout

i , for i = 1, · · · , k,
there exists a constant c ′ such that for sin

i , s
out
i ≥ c ′ ·

ln(k/λ)
ε4

:

|cost(S, K) − cost(P, K)| ≤ 34ε · cost(P,C) (5.3)

≤ 34εβ · cost(P,OPT ) (5.4)

≤ 34εβ · cost(P, K) (5.5)

with probability at least 1− λ and where S =
⋃k
i=1

{
Sin
i ∪ Sout

i

}
and OPT is an optimal solution

for P. Replacing ε by ε/(34β) gives Lemma 44.

ut

Centers from T are approximated within a factor (1 ± ε) Now we want to prove the following
lemma.

Lemma 47 Let P be a set of points in Rd and let 0 < ε, δ < 1/2 and k ≥ 1 be parameters. Let
S be a weighted set of points sampled from P according to our coreset construction using

sin
i , s

out
i ≥ c ·

k ln(k/δ)
ε5

· ln(k/ε · ln(1/δ))

for some large enough constant c. Let T be the set of centroids of subsets from S (with
repetition) of size 2/ε. Then with probability 1− δ we get

∀K ⊆ T , |K| = k : |cost(S, K) − cost(P, K)| ≤ ε · cost(P, K) .

Proof. Let N denote the set of centroids of all subsets from P of size 2/ε. We say that K ⊆ N
is well approximated, if

∣∣cost(S, K) − cost(P, K)
∣∣ ≤ ε · cost(P, K). We want to show that every set

K ⊆ T , |K| = k, is also well approximated. Recall that T ⊆ N consists of the centroids of all
subsets (with repetition) of size 2/ε of S. Wlog. we will assume that for each point p ∈ T there
is a unique multiset µ−1

P (p) of 2/ε points from S that generates p, i.e. µP(µ
−1
P (p)) = p.

p ∈ T

µ−1P(p)

|µ−1P(p)| = 2/ε

µP(µ−1
P(p)

)

Mapping

Fig. 5.2: µP(µ
−1
P (p)) = p
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We cannot directly apply Lemma 44 to show that K ⊆ T is well approximated, because K ⊆ T
imposes the condition that µ−1

P (K) ⊆ S, where µ−1
P (K) =

⋃
p∈K µ

−1
P (p).

Here and in the following we regard both µ−1
P (K) and S as (unweighted) multisets, i.e. we

replace each point p with weight wp by wp copies of p. We assume that all relations between
multisets take the multiplicity of points into account. For example, the expression µ−1

P (K) ⊆ S
implies that if µ−1

P (K) contains a point multiple times, it appears at least the same number of
times in S. Given δ > 0 we want to show that

Pr[∀K ⊆ T , |K| = k : K is well approximated ]

= 1− Pr[∃K ⊆ T , |K| = k : K is not well approximated ]

≥ 1− δ .

We use the fact that

Pr[∃K ⊆ T , |K| = k : K is not well approximated ] (5.6)

≤
∑

K⊆N ,|K|=k
Pr[K is not well approximated | µ−1

P (K) ⊆ S] · Pr[µ−1
P (K) ⊆ S] . (5.7)

We have

Pr[K is not well approximated | µ−1
P (K) ⊆ S]

≤ Pr[|cost(∪ki=1Sout
i , K) − cost(∪ki=1Cout

i , K)| > ε · cost(∪ki=1Cout
i , K) | µ

−1
P (K) ⊆ S]

+ Pr[|cost(∪ki=1Sin
i , K) − cost(∪ki=1Cin

i , K)| > ε · cost(∪ki=1Cin
i , K) | µ

−1
P (K) ⊆ S] .

The condition fixes 2k/ε points of the sample set. All remaining points are drawn at random
according to the specified distribution. Let us denote by Fin

i and Fin
out these random points, i.e.

Sin
i = Fin

i ∪
(
Cin
i ∩ µ−1

P (K)
)

and
Sout
i = Fout

i ∪
(
Cout
i ∩ µ−1

P (K)
)
.

We get

Pr[|cost(Sin
i , K) − cost(Cin

i , K)| > ε · cost(Cin
i , K) | µ

−1
P (K) ⊆ S] (5.8)

= Pr[|cost(Fin
i , K) + cost(Cin

i ∩ µ−1
P (K), K) − cost(Cin

i , K)| > ε · cost(Cin
i , K)] (5.9)

≤ Pr[|cost(Fin
i , K) − cost(Cin

i , K)| > ε · cost(Cin
i , K) − cost(Cin

i ∩ µ−1
P (K), K)] (5.10)

In a similar way we obtain

Pr[|cost(Sout
i , K) − cost(Cout

i , K)| > ε · cost(Cout
i , K) | µ

−1
P (K) ⊆ S] (5.11)

≤ Pr[|cost(Fout
i , K) − cost(Cout

i , K)| > ε · cost(Cout
i , K) − cost(Cout

i ∩ µ−1
P (K), K)] (5.12)
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After rescaling the weights of points in Fin
i by |Sin

i |/|F
in
i | we can apply the proof of Lemma 44. Let

Errin
i ,Errout

i denote the error bounds derived in the proof of Lemma 44. We distinguish between
cases (1) and (2). In case (1) we obtain by Lemma 44 for Errin

i = 8 · ε · cost(Cin
i , K,) and

|Fin
i | ≥ c ·

ln(k/λ)
ε4

λ/(2k)

≥ Pr
[∣∣ |S

in
i |

|Fin
i |
· cost(Fin

i , K) − cost(Cin
i , K)

∣∣ > Errin
i

]

= Pr
[∣∣cost(Fin

i , K) −
|Fin
i |

|Sin
i |

cost(Cin
i , K)

∣∣ > |Fin
i |

|Sin
i |
· Errin

i

]

≥ Pr
[∣∣cost(Fin

i , K) − cost(Cin
i , K)

∣∣ > |Fin
i |

|Sin
i |
· Errin

i + (1−
|Fin
i |

|Sin
i |
) · cost(Cin

i , K)
]

≥ Pr
[∣∣cost(Fin

i , K) − cost(Cin
i , K)

∣∣ > Errin
i + ε · cost(Cin

i , K)
]

Similarly, we obtain for Errout
i = 26ε · |Cin

i | · dist2(B(ci, ri), kl)

λ/(2k)

≥ Pr
[∣∣cost(Fout

i , K) − cost(Cout
i , K)

∣∣ > Errout
i + ε · cost(Cout

i , K)
]

In a similar way we can obtain bounds for case (2). Summing up over all clusters gives for
F =

⋃k
i=1(F

in
i ∪ Fout

i ):

Pr
[∣∣cost(F , K) − cost(P, K)

∣∣ ≤ 2ε · cost(P, K)
]
≤ λ . (5.13)

In Lemma (48) we prove cost(µ−1
P (K), K)K ≤ ε/2·cost(P, K). Then replacing ε by ε/4 in equation

(5.13) and combining it with equations (5.8) and (5.12) gives

Pr[K is not well approximated | µ−1
P (K) ⊆ S] ≤ λ .

Lemma 48 For sin
i , s

out
i ≥ ck

ε5
, where c ≥ 8, we have

cost(µ−1
P (K), K) ≤ ε/2 · cost(P, K) .

Proof. The analysis will again distinguish between the cases (1) dist(kl, ci) ≥ ri + ri
ε = ri(1+ε)

ε

and (2) dist(kl, ci) < ri + ri
ε = ri(1+ε)

ε . We will assume ε ≤ 1/2.

Case (1) First for Cin
i

cost(Cin
i ∩ µ−1

P (K), K)

≤ 2k

ε

|Cin
i |

sin
i

[
2
(
(2ri)

2 + dist2(B(ci, ri), kl)
)]

≤ 2k

ε

|Cin
i |
ck
ε5

[
2
(
4ε2dist2(B(ci, ri), kl) + dist2(B(ci, ri), kl)

)]

≤ ε4|Cin
i | · dist2(B(ci, ri), kl) ≤ ε4cost(Cin

i , K).
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Then for Cout
i

cost(Cout
i ∩ µ−1

P (K), K) ≤
∑

p∈Cout
i ∩µ−1

P (K)

wp · cost(p, kl)

≤
∑

p∈Cout
i ∩µ−1

P (K)

2wp · (dist2(p, ci) + dist2(ci, kl))

≤
∑

p∈Cout
i ∩µ−1

P (K)

2wp · (dist2(p, ci) + 2(r2i + dist2(B(ci, ri), kl)))

≤
∑

p∈Cout
i ∩µ−1

P (K)

2wp · (dist2(p, ci) + 2(dist2(p, ci) + dist2(B(ci, ri), kl)))

≤
∑

p∈Cout
i ∩µ−1

P (K)

2wp · (3dist2(p, ci) + 2dist2(B(ci, ri), kl))

≤ 6r2iε|C
in
i |+

∑
p∈Cout

i ∩µ−1
P (K)

4wp · dist2(B(ci, ri), kl)

≤ 6ε3|Cin
i |dist2(B(ci, ri), kl) +

∑
p∈Cout

i ∩µ−1
P (K)

4wp · dist2(B(ci, ri), kl)

≤ 2ε|Cin
i |dist2(B(ci, ri), kl)(3ε2 + 2)

≤ 6ε|Cin
i |dist2(B(ci, ri), kl) ≤ 6εcost(Cin

i , kl).

Case (2) Again first for Cin
i and having ri =

√
cost(Ci,ci)
ε.|Ci|

cost(Cin
i ∩ µ−1

P (K), K) ≤ 2k

ε

|Cin
i |

sin
i

(
ri(1+ ε)

ε

)2

≤ 2k

ε

|Cin
i |
ck
ε5

(
ri(1+ ε)

ε

)2
≤ ε2|Cin

i |r
2
i ≤ ε/6 · cost(Cin

i , ci).

Then for Cout
i

cost(Cout
i ∩ µ−1

P (K), K) ≤
∑

p∈Cout
i ∩µ−1

P (K)

wp · cost(p, kl)

≤
∑

p∈Cout
i ∩µ−1

P (K)

cost(Cout
i , ci)

ck
ε5
· dist2(p, ci)

·
[
2(dist2(p, ci) + dist2(ci, kl))

]

≤ ε4 · cost(Cout
i , ci) +

∑
p∈Cout

i ∩µ−1
P (K)

cost(Cout
i , ci)

ck
ε5
· dist2(p, ci)

· 2dist2(ci, kl)

≤ ε4 · cost(Cout
i , ci) +

∑
p∈Cout

i ∩µ−1
P (K)

cost(Cout
i , ci)

ck
ε5
· r2i

· 2(ri(1+ ε)
ε

)2

≤ ε4 · cost(Cout
i , ci) + ε

2 · cost(Cout
i , ci)

≤ 2ε2 · cost(Cout
i , ci).
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ut

Finally, replacing ε by ε/4 in equation (5.13) and combining it with equations (5.8)and (5.12)
gives

Pr[K is not well approximated | µ−1
P (K) ⊆ S] ≤ λ .

Plugging this into equation (5.7) we get

Pr[∃K ⊆ T , |K| = k : K is not well approximated ]

≤
∑

K⊆N ,|K|=k
Pr[K is not well approximated | µ−1

P (K) ⊆ S] · Pr[µ−1
P (K) ⊆ S]

≤ λ ·
∑

K⊆N ,|K|=k
Pr[µ−1

P (K) ⊆ S] ≤ λ · |S |2k/ε

It follows that for λ ≤ δ/|S |2k/ε we obtain the bound stated in the lemma. This is satisfied for

sin
i , s

out
i ≥ c ·

k ln(k/δ)
ε5

· ln(k/ε · ln(1/δ))

when c is a sufficiently large constant.

ut

The coreset Finally, we put things together.

Theorem 49 Given a set P of n points in Rd and parameters ε, λ > 0 and an appropriate
constant c > 0, if S is a weighted set of points obtained by our algorithm, i.e., Coreset, using

sin
i , s

out
i ≥ c ·

k ln(k/δ)
ε5

· ln(k/ε · ln(1/δ))

and T is the set of centroids of subsets of size 2/ε, then (S, T ) is a weak (k, ε)-coreset for
point set P with probability at least 1− δ.

Proof. We apply Lemma 44 to show that the cost of an optimal set of centers is preserved
upto a factor of (1±ε). Then we apply Lemma 47 to show that this is true for all sets of centers
from T . From Lemma 43 is follows that T is a (k, 6ε)-approximate centroid set with probability
1− δ+ λ. Replacing ε by ε/6, δ by δ/2 and λ by δ/2 we obtain the theorem. ut

5.2 A linear time (1+ ε)-approximation algorithm for the k-means

We obtain the following linear time (1 + ε)-approximation algorithm for k-Means clustering.
We first compute a weak (k, ε)-coreset S. Then we do exhaustive search over all subsets of
size k from T . We can slightly improve the running time of this approach using dimensionality
reduction. The idea is to use Johnson-Lindenstrauss Lemma (See Theorem 32) to map S to a
lower dimensional space. Recall that Johnson-Lindenstrauss Lemma is
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Johnson-Lindenstrauss Lemma: Theorem 32 Let 0 < ε ≤ 1/2. Let P = {p1, · · · , pn} be a set of
n points in Rd. Let t = O(ε−2 logn). Then there exists a linear mapping T : Rd → Rt such that
with probability at least 1/2 fulfills

(1− ε) · dist(pi, pj) ≤ dist(T(pi), T(pj)) ≤ (1+ ε) · dist(pi, pj)

for all i, j ∈ [n].

We choose the dimension of the target space in such a way that distances between the points
in S ∪ OPT ∪ T are approximated within factor of (1 + ε). Thus, t = O(log |T |/ε2). Since
JL-transform is a linear mapping, we know that the centroid of points is mapped to the centroid
of the mapped points. Since we may assume that the centroids of subsets of T of size k are
disjoint in the original space they also will be disjoint in the target space (since their mutual
distances are preserved upto a factor of (1 + ε)). Thus, a centroid of 2/ε points in the target
space corresponds to a unique point (the centroid of the points in the original space) and so
we can map a solution from the target space back to the original space. Finally, to obtain a
solution we do exhaustive search in the set of all subsets of T of size k and evaluate the cost
of each solution in the small target space of the JL-transform.

Linear Time (1+ ε)-Approximation Algorithm (P)

(1) Let S denote just the sampled set of size c·k2 ln2(k/(δε)
ε5

(without the centroid set) re-
turned by Coreset.

(2) Map the set S to the set S ′ inside the target space Rt where t = O(log |T |/ε2) using
Theorem 32.

(3) T = The set of all centroids of combinations of 2/ε points from S ′ (we allow repetition
of points).

(4) Let T k denote the set found by exhaustive search over all subsets of size k from T .

(5) Let O ′ denote an arbitrary set of size k in the target space Rt.

(6) For i = 1 to |T k| do

(a) If cost(P, T k[i]) < cost(P,O ′), where T k[i] denote the ith subset of size k from
T k,

(b) Then put O ′ = T k[i].

(7) Apply the inverse of JL-transform to find a set O ′′ of size k which mapped to O ′.

(8) return O ′′.

Theorem 50 Given a set P of n points in Rd and parameters ε, λ > 0 and an appropriate
constant c > 0, there exists a randomized algorithm that computes (1 + ε)-approximate k-
means clustering of P in time O(nkd+ d · (k/ε)O(1) + 2Õ(k/ε)) with probability at least 1− λ.
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5.3 Insertion-only Streaming Algorithm

In this section we explain a merge step in level i w.l.o.g. at ci1 and also set the parameters of the
merge and reduce method that we explained in Section 2.5.1. Put b = 2 then the depth of the
2-ary tree T is logn. Let N denote the set of centroids of all subsets from P of size 2/ε. For the
merge step in level i w.l.o.g. at ci1, we compute a weak (k, εi = ε/(ci

2))-coreset (ci1,N ∪OPT )
of its two children ci−11 , ci−12 via coreset construction of Lemma 44 and this should be a weak
(k, ε)-coreset with probability ≥ 1− λn for λn = λ/n2k/ε and for the n points received so far.

We put m0 = k
2ε−5 logn and mi = ck

ln(k/λn)
(εi)4

where λn = λ/n2k/ε is the confidence parameter
for the n points received so far, i is the level in which bucket size must be mi, εi = ε/(ci2) is
the error parameter at level i , and c is a large positive constant. Therefore the size of a bucket
at level i is mi = ck

ln(k/λn)
εi

= ck2 i
8 logn
ε5

ln(k/λ) which is at most mlogn = ck2 log9 n
ε5

ln(k/λ) at
level logn. Since we need to keep coresets for at most logn levels therefore the space that we
need to save all these coresets is at most O(k2 log10 n

ε5
ln(k/λ)) points.

To analyze the update time for k-means, observe that the amortized time dealing with buckets
at level 0 is constant; and for i = 2, . . . , log2 n, ci1 is constructed after every 2i−1m0 insertions
are made. Therefore the amortized time spent for an update is

logn∑
i=1

1

2i−1m0
·O(mi−1 · dk · log(n2k/ε/λ)) = O(dk2/ε log2 n).
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Chapter 6

Subspace Clustering

In this chapter we go further into the details of the idea that we explained in Section 3.2. In
particular, in Section 6.1 we give a general dimensionality reduction for a broad class of clus-
tering problems. We then apply this dimensionality reduction recursively to find an unbiased
estimator for the j-subspace clustering problem in Section 6.2. The following sections give
three applications of the unbiased estimator. In Section 6.3 we find the first strong coreset
for this problem. Section 6.4 shows how to get a fairly fast linear time (1 + ε)-approximation
algorithm using the estimator and a centorid set. In Section 6.5 we maintain the strong coreset
using the merge and reduce method.

6.1 Dimensionality Reduction for Clustering Problems

In this section we present a general dimensionality reduction technique for problems that in-
volve sums of distances as a quality measure. Our result is that for an arbitrary fixed subset
C ⊆ Rd, cost(P,C) can be approximated by a small weighted sample and the projection of P
onto a low dimensional subspace. This result can be immediately applied to obtain a dimen-
sionality reduction method for a large class of clustering problems, where the cluster centers
are objects contained in low-dimensional spaces. Examples include: k-median clustering, sub-
space problem under `1-error, variants of projective clustering and more specialized problems
where cluster centers are, for example, discs or curved surfaces.

For these type of problems, we suggest an algorithm that computes a low dimensional weighted
point set Q such that, with probability at least 1 − δ, for any fixed query center C, cost(Q,C)
approximates cost(P,C) to within a factor of 1 ± ε. The algorithm is a generalization of a
technique developed in Chapter 5 to compute coresets for the k-means clustering problem.
Recall that originally the idea goes back to Example 1 where we do non-uniform sampling
according to some prespecified probabilities.

The main new idea that allows us to handle any type of low dimensional center is the use
of points that are associated with negative weights. To obtain this result, we first define a
randomized algorithm DIMREDUCTION . For a given (low-dimensional) subspace C∗ and a

71
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parameter ε > 0, the algorithm DIMREDUCTION computes a weighted point set Q, such that
most of the points of Q lie on C∗, and for any fixed query center C we have E[cost(Q,C)] =
cost(P,C). Then we show that, with probability at least 1 − δ, the cost(Q,C) has an additive
error of at most ε · cost(P,C∗).

We can then apply this result to low dimensional clustering problems in two steps. First, we
observe that, if each center is a low dimensional object, i.e. is contained in a low dimensional
j-subspace, then k centers are contained in a (kj)-subspace and so clustering them is at least
as expensive as cost(P,C ′), where C ′ is a (kj)-subspace that minimizes cost(P,C ′). Thus, if
we compute an α-approximation C∗ for the (kj)-dimensional subspace approximation problem,
and replace ε by ε/α, we obtain the result outlined above.

DIMREDUCTION (P,C∗, δ, ε)

(1) Pick r =
⌈
2 log(2/δ)

ε2

⌉
points s1, . . . , sr i.i.d. from P, s.t. each p ∈ P is chosen with

probability Pr[p] = dist(p,C∗)

cost
(
P,C∗
) .

(2) For i← 1 to r do w(si)← 1

r · Pr[si]

(3) Return the multiset Q = proj(P,C∗) ∪ {s1, . . . , sr} ∪ {proj(s−1 , C
∗), . . . , proj(s−r , C

∗)},
where s−i is the point si with weight −w(si) and proj(s−i , C

∗) is the orthogonal pro-
jection of s−i onto C∗.

Analysis of Algorithm DIMREDUCTION . Let us fix an arbitrary set C. Our first step will be the
following technical lemma that shows that the expectation of the random variable cost(Q,C) is
cost(P,C). Let Xi denote the random variable for the sum of contributions of the sample points
si and proj(s−i , C) to C, i.e.

Xi = w(si) · dist(si, C) +w(s−i ) · dist(proj(s−i , C))

= w(si) ·
(
dist(si, C) − dist(proj(si, C∗), C)

)
.

Lemma 51 Let P be a set of points in Rd. Let ε > 0, 0 < δ ≤ 1, and Q be the weighted set that
is returned by the randomized algorithm DIMREDUCTION (P,C∗, δ, ε). Then

E[cost(Q,C)] = cost(P,C) .

Proof. We have

E[Xi] =
∑
p∈P

Pr[p] ·w(p)
(
dist(p,C) − dist(proj(p,C∗), C)

)

=
∑
p∈P

1

r

1

Pr[p]
· Pr[p]

(
dist(p,C) − dist(proj(p,C∗), C)

)

=
1

r
·
(
cost(P,C) − cost(proj(P,C∗), C)

)
.
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By linearity of expectation we have

E[
r∑
i=1

Xi] = cost(P,C) − cost(proj(P,C∗), C) .

Since algorithm DIMREDUCTION computes the union of proj(P,C∗) and the points si and s−i ,
we obtain

E[cost(Q,C)] = cost(proj(P,C∗), C) + E[
r∑
i=1

Xi]

= cost(P,C).

The lemma follows. ut

Our next step is to show that cost(Q,C) is sharply concentrated about its mean.

Theorem 52 Let P be a set of n points in Rd, and let C∗ be a j-subspace. Let 0 < δ, ε ≤ 1,
and Q be the weighted point set that is returned by the algorithm DIMREDUCTION (P,C∗, δ, ε).
Then for a fixed query set C ⊆ Rd we have

|cost
(
P,C) − cost

(
Q,C)| ≤ ε · cost(P,C∗),

with probability at least 1− δ. Moreover, only

r = O

(
log(1/δ)
ε2

)

points of Q are not contained in proj(P,C∗). This algorithm runs in O(ndj+ r) time.

Proof. Let P = {p1, . . . , pn} be a set of n points in Rd. We first prove the concentration bound
and then discuss the running time.

In order to apply additive Hoeffding inequality we need to determine the range of values Xi can
attain. By the triangle inequality we have

dist(si, C) ≤ dist(si, C∗) + dist(proj(si, C∗), C)

and
dist(proj(si, C∗), C) ≤ dist(si, C) + dist(si, C∗).

This implies
|dist(si, C) − dist(proj(si, C∗), C)| ≤ dist(si, C∗).

We then have

|Xi| =
∣∣w(si) ·

(
dist(si, C) − dist(proj(si, C∗), C)

)∣∣

≤ w(si) · dist(si, C∗) =
cost(P,C∗)

r
.
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Thus, −cost(P,C∗)/r ≤ Xi ≤ cost(P,C∗)/r. Using additive Hoeffding inequality and similar to
Example 1 we set M = cost(P,C∗), t = ε · cost(P,C∗),m = r to get the result.

In order to achieve the stated running time, we proceed as follows. We first compute in O(ndj)
time for each point p ∈ P its distance dist(p,C∗) to C∗ and store it. This can easily be done
by first computing an orthonormal basis of C∗. We sum these distances in order to obtain
cost(P,C∗) in O(n) time. From this we can also compute Pr[p] and w(p) for each p ∈ P, in
O(n) overall time. We let P be the array of probabilities p1, . . . , pn. It is well known that one
can obtain a set of r samples according to a distribution given as a length-n array in O(n + r)
time, see [Vos91]. ut

6.2 The Unbiased Estimator

In this section we show how to use Theorem 52 to obtain a small weighted set S that, with
probability at least 1 − δ, approximates the cost to an arbitrary fixed j-subspace, i.e., we show
that cost(S,C∗) is an unbiased estimator for cost(P,C∗). The first step of the algorithm is to
apply our dimensionality reduction procedure with a j-subspace C∗j that is, with probability at
least 2/3 an O(jj+1)-approximation to the optimal j-dimensional linear subspace with respect
to the `1-error. Such an approximation can be computed in O(ndj) time using the algorithm
APPROXIMATEVOLUMESAMPLING by Deshpande and Varadarajan [DV07]. Note that the suc-
cess probability can be amplified to 1 − δ in time O(ndj log(1/δ)). Once we have projected all
the points on C∗j , we apply the same procedure using a (j − 1)-dimensional linear subspace
C∗j−1. We continue this process until all the points are projected onto a 0-dimensional linear
subspace, i.e. the origin. As we will see, this procedure can be used to approximate the cost
of a fixed j-subspace C.

ADAPTIVESAMPLING (P, j, δ, ε)

(1) Pj+1 ← P.

(2) For i = j Downto 0

(a) C∗i ← APPROXIMATEVOLUMESAMPLING(Pi+1, i).

(b) Qi ← DIMREDUCTION (Pi+1, C
∗
i , δ, ε).

(c) Pi ← proj(Pi+1, C∗i ).

(d) Si ← Qi \Pi, where Si consists of the positively and negatively weighted sample
points.

(3) Return S =
⋃j
i=0 Si.

Note that P0 is the origin, and so cost(P0, C) = 0 for any j-subspace C. Let C∗i be an arbitrary
but fixed sequence of linear subspaces as used in the algorithm.
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Theorem 53 Let P be a set of n points in Rd, and ε ′, δ ′ > 0. Let C be an arbitrary j-dimensional
linear subspace. If we call algorithm ADAPTIVESAMPLING with the parameters δ = O(δ ′/(j+1))
and ε = ε ′/jc·j

2
for a large enough constant c, then we get

(1− ε ′) · cost(P,C) ≤ cost(S,C) ≤ (1+ ε ′) · cost(P,C),

with probability at least 1− δ ′. The running time of the algorithm is

O(ndj(j+ log(1/δ)) +
jO(j

2) log(1/δ ′)
ε ′2

).

Proof. Let C be an arbitrary j-subspace. We split the proof of Theorem 53 into two parts. The
first and easy part is to show that cost(S,C) is an unbiased estimator of cost(P,C). The hard
part is to prove that cost(S,C) is sharply concentrated.

We can apply Lemma 51 with C∗ = C∗i to obtain that for any 1 ≤ i ≤ j we have E[cost(Qi, C)] =
cost(Pi+1, C) and hence

E[cost(Si, C)] = cost(Pi+1, C) − cost(Pi, C) .

Therefore,

E[cost(S,C)] =
j∑
i=0

E[cost(Si, C)]

= cost(Pj+1, C) − cost(P0, C)

= cost(P,C) ,

where the last equality follows from Pj+1 = P and P0 being a set of n points at the origin.

Now we show that cost(S,C) is sharply concentrated. We have

∣∣E[cost(S,C)] − cost(S,C)
∣∣ ≤

j∑
i=0

∣∣E[cost(Si, C)] − cost(Si, C)
∣∣ .

The following observation was used in [FFS06] for j = 1, and generalized later in [FL07].

Lemma 54 Let C be a j-subspace, and L be an (i + 1)-subspace, such that i + 1 ≤ j. Then
there exists an i-subspace Ci, and a constant 0 < νL ≤ 1, such that for any p ∈ L we have
dist(p,C) = νL · dist(p,Ci) .

Let 0 ≤ i ≤ j. By substituting L = Span {Pi+1} in Lemma 54, there is an i-subspace Ci and a
constant νL, such that

∣∣E[cost(Si, C)] − cost(Si, C)
∣∣

=
∣∣cost(Pi+1, C) − cost(Pi, C) − cost(Si, C)

∣∣
= νL · |cost(Pi+1, Ci) − cost(Pi, Ci) − cost(Si, Ci)|

= νL · |cost(Pi+1, Ci) − cost(Qi, Ci)| .
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Here, the second equality follows from the fact that the solution computed by approximate
volume sampling is spanned by input points and so Pi, Si ⊆ Span {Pi+1}. We apply Theorem 52
with C = Ci and C∗ = C∗i to obtain

|cost(Pi+1, Ci) − cost(Qi, Ci)| ≤ ε · cost(Pi+1, C∗i ),

with probability at least 1− δ. By our choice of C∗i , we also have

cost(Pi+1, C∗i ) ≤ O(ii+1) · cost(Pi+1, Ci).

Combining the last three inequalities yields

|E[cost(Si, C)] − cost(Si, C)| ≤ νL · ε · cost(Pi+1, C∗i )

≤ O(νL · ε · ii+1) · cost(Pi+1, Ci)

= O(ε · ii+1) · cost(Pi+1, C) ,

with probability at least 1− δ. Hence,

∣∣E[cost(S,C)] − cost(S,C)
∣∣ ≤ O

(
j−1∑
i=0

ε · ii+1 · cost(Pi+1, C)

)

≤ O
(
j−1∑
i=0

ε · ii+1 · (i+ 1)i+2 · cost(Pi+2, C)

)

≤ O
(
j−1∑
i=0

ε · ii+1 · (i+ 1)i+2 · · · (j)j+1 · cost(Pj+1, C)

)

≤ ε · jO(j2) · cost(P,C),

with probability at least 1− j · δ. Note that the second and the third inequality is because when
we project Pi+1 onto C∗i to get Pi the sum of distances between a point in Pi+1 and its corre-
sponding point in Pi is an O(ii+1)-approximation of the optimal i-dimensional subspace of Pi+1
inside the (i+ 1)-subspace C∗i+1 since we are using the algorithm APPROXIMATEVOLUMESAM-
PLING(Pi+1, i) for this projection. Therefore, for our choice of δ and ε with probability at least
1− j · δ we get

∣∣E[cost(S,C)] − cost(S,C)
∣∣ ≤ ε · jO(j2) · cost(P,C).

Now we analyze the running time. Inside the i-th step of the loop in Step 2 we have the
following operations:

(1) We envoke the algorithm APPROXIMATEVOLUMESAMPLING(Pi+1, i) in Step 2a which takes
O(ndi). We repeat O(log(1/δ)) times the process to amplify the sucess probability.

(2) Similar to Theorem 52 the random sampling in Step 2b is done in time O(n + r) for
r =

⌈
2 log(2/δ)

ε2

⌉
where δ = O(δ ′/(j+ 1)) and ε = ε ′/jc·j

2
.

(3) The projection in Step 2c takes O(ndi).

The summation over j steps of the loop in Step 2 gives the stated running time. ut
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6.3 Coresets

As the first application of the unbiased estimator that we developed in the previous section, we
get a strong coreset in this section. In order to construct a coreset, we only have to run the
algorithm ADAPTIVESAMPLING using small enough δ. One can compute δ by discretizing the
space near the input points using a sufficiently fine grid. Then snapping a given subspace to
the nearest grid points will not change the cost of the subspace significantly. If a subspace
does not intersect the space near the input points, its cost will be high and the overall error can
be easily charged.

Theorem 55 Let P denote a set of n points in Rd, j ≥ 0, and 1 > ε ′, δ ′ > 0, d ≤ n. Let Q
be the weighted set that is returned by the algorithm ADAPTIVESAMPLING with the parameters
δ = 1

j · δ ′/(10nd)10dj and ε = ε ′/(j+ 1)c·j
2

for a large enough constant c. Then, with probability
at least 1 − δ ′ − 1/n2, Q is a strong ε-coreset. The size of the coreset in terms of the number
of (weighted) points saved is O(djO(j

2) · ε ′−2 logn).

The following algorithm returns a grid G ⊆ Span {P} and we first prove some auxiliary lem-
mas for this grid. The algorithm ADAPTIVESAMPLING gives an unbiased estimator for one
fixed j-subspace spanned by j-points of G. We replace δ ′ by δ = 1

j · δ ′/(10nd)10dj to prove
this estimator is an unbiased estimator for all j-subspaces spanned by j points in G. This
in turn gives the strong ε-coreset that we claimed in Theorem 55 when we invoke the algo-
rithm NET(P ∪ proj(P,C∗),M, ε ′), using M = 10 · cost(P,C∗)/ε, and ε ′ = ε · cost(P,C∗)/n10 as
we will see in the proof of Proposition 60.

NET (P,M, ε)

(1) G← ∅.
(2) For each p ∈ P Do

(a) Gp ← vertex set of a d-dimensional grid that is centered at p. The side length
of the grid is 2M, and the side length of each cell is ε/(2

√
d).

(b) G← G ∪Gp.

(3) Return G.

Lemma 56 Let P be a set of points in a subspace A of Rd. Let ε > 0, M > ε denote two
parameters. Let G ⊆ A denote the grid returned by Algorithm NET(P,M, ε) such that for every
point c ∈ A, if dist(c, P) ≤ 2M then dist(c,G) ≤ ε/2. Let C ⊆ A be a 1-subspace (i.e, a line
that intersects the origin of Rd), such that dist(p,C) ≤ M for every p ∈ P. Then there is a
1-subspace D that is spanned by a point in G, such that,

|dist(p,C) − dist(p,D)| ≤ ε,

for every p ∈ P.
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Proof. Let g be a point such that the angle between the lines C and Span {g} is minimized over
g ∈ G. Let D = Span {g}, and p ∈ P. We prove the lemma using the following case analysis: (i)
dist(p,D) ≥ dist(p,C), and (ii) dist(p,D) < dist(p,C).

(i) dist(p,D) ≥ dist(p,C): Let c = proj(p,C). We have dist(c, P) ≤ ‖c− p‖ = dist(p,C) ≤M. By
the assumption of the lemma, we thus have dist(c,G) ≤ ε. By the construction of D, we also
have dist(c,D) ≤ dist(c,G). Combining the last two inequalities yields dist(c,D) ≤ ε. Hence

dist(p,D) ≤ ‖p− c‖+ dist(c,D) ≤ dist(p,C) + ε.

O

p

D

C

q

q′

` r

B(r, ε/2)

g′q′′
A

Cone(o, |q`|)

H

Fig. 6.1: Case ii. dist(p,D) < dist(p,C)

(ii) dist(p,D) < dist(p,C): Let q = proj(p,D), and q ′ = proj(q,C). We can assume that
dist(q, q ′) > ε since otherwise by the triangle inequality, dist(p,C) ≤ dist(p, q) + dist(q, q ′) ≤
dist(p,D) + ε, and we are done.

Define ` = q+q ′

2 . Let C` denote the parallel line to C at `. Consider the cylinder with the axis
C` of radius ε/2. Let H1 denote a hyperplane at q ′ perpendicular to C. Let q ′ε denote a point
which is at distance ε from q on C, in the halfspace of H1 which does not contain O. Let H2
denote a hyperplane at q ′ε and perpendicular to C. The H1 and H2 cut the cylinder at two
surfaces and the volume in between these two hyperplanes and the cylinder can be packed
inside a hypercube A of side length ε.

Let r denote the center of A and let B(r, ε/2) denote a ball centered at r of radius ε/2. See
Figure 6.1.

We observe that

dist(p, r) ≤ dist(p, q) + dist(q, `) + dist(`, r).

We also have that dist(p, q) = dist(p,D) < dist(p,C) − ε otherwise we are done and nothing
left to prove. Therefore, dist(p, q) < M − ε. On the other hand dist(q, `) ≤ dist(p,C) ≤ M and
dist(`, r) = ε/2. Thus we get that

dist(p, r) ≤M− ε+M+ ε/2 ≤ 2M.
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Using M > ε, the assumption of lemma implies dist(r,G) < ε/2 which means that there is a
grid point g ′ ∈ G such that dist(r, g ′) < ε/2 and therefore g ′ ∈ B(r, ε). Now let us consider a
line which is perpendicular to C at q ′ and intersects Span {g ′} at q ′′. Such a line exists since
C and Span {g ′} intersects at o. Consider a cone with apex at o and axis C that touches `.
Note that the extension of the segment ¯q ′q ′′ intersects this cone at `. Let H be the hyperplane
which goes through g ′ and is perpendicular to C. Let ` ′ be the extension of ` that intersects
H. Consider the triangles ∆o`q ′′ and ∆o` ′g ′. Now we use the intercept theorem for these two
triangles. Recall that g ′ ∈ B(r, ε/2) and we have |q ′′`| ≤ |g ′` ′| ≤ |g ′r| ≤ ε/2 which means that

|q ′q ′′| ≤ |q ′`|+ |q ′′`| ≤ |qq ′|
2

+
ε

2
< |qq ′|.

Thus we obtain sin(∠(Span {g ′} , C)) = |q ′′q ′|
|oq ′| < sin(∠(Span {g} , C)) = |qq ′|

|oq ′| , contradicting the
choice of g. ut

The following is a generalization of the last lemma for j > 1.

Lemma 57 Let P be a set of points in a subspace A of Rd. Let ε > 0, M > ε denote two
parameters. Let G ⊆ A denote the grid returned by Algorithm NET(P,M, ε) such that for
every point c ∈ A, if dist(c, P) ≤ 2M then dist(c,G) ≤ ε/2. Let C be a j-subspace, such that
dist(p,C) ≤ M − (j − 1)ε for every p ∈ P. Then there is a j-subspace D that is spanned by j
points from G, such that

|dist(p,C) − dist(p,D)| ≤ jε,
for every p ∈ P.

Proof. The proof is by induction on j. The base case of j = 1 is furnished by substituting
A = Rd in Lemma 56. We now give a proof for the case j ≥ 2. Let e1, · · · , ej, ej+1, · · · , ed
denote an orthonormal set of Rd in which the first j of them are orthogonal unit vectors of
C. Let E denote the subspace that is spanned by e1, · · · , ej−1 and let E⊥ be the orthogonal
complement of E.

e1 e2, , , ej−1 , ej , ej+1 , ed,

C C⊥

E E⊥

⇓

e1 e2, , , ej−1 , e′j

T

Fig. 6.2: Orthonormal basis of Rd and its subspaces shown by their orthonormal bases

Fix p ∈ P. Assume that in this coordinate system the point p is shown as p = (p1 = pT ·
e1, · · · , pd = pT · ed). The key observation is that for any j-subspace T in Rd that contains
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e1, · · · , ej−1, we have
dist(p, T) = dist(proj(p, E⊥), proj(T, E⊥)).

In fact in this new coordinate system, we have proj(p, E⊥) = (pj, · · · , pd)T and for the j-
subspace T , proj(T, E⊥) is a 1-subspace ovT for vT = (eTj e

′
j , · · · , eTde ′j)T ∈ E⊥.

Let P ′ = proj(P, E⊥), and let c = (c1, · · · , cd) ∈ Rd be such that dist(c, P) ≤ 2M. Hence, there is
a point q = (q1, · · · , qd) ∈ P such that

‖q− c‖ = dist(c, P) ≤ 2M. (6.1)

Then by the assumption of this lemma we have that dist(c,G) ≤ ε/2. Assume that a point r ∈ G
is the nearest point in G to c, so we have ||c− r|| ≤ ε/2.

Let proj(q, E⊥) = q ′ = (qj, · · · , qd), proj(c, E⊥) = c ′ = (cj, · · · , cd), and proj(r, E⊥) = r ′ =
(rj, · · · , rd).

Hence,
∥∥q ′ − c ′

∥∥ ≤ ‖q− c‖ ≤ 2M,
∥∥c ′ − r ′

∥∥ ≤ ‖c− r‖ ≤ ε/2,
which means dist

(
c ′, proj(G,E⊥)

)
≤ ‖c ′ − r ′‖ ≤ ε/2.

From the previous paragraph, we conclude that for every c ′ ∈ E⊥, if dist(c ′, P ′) ≤ 2M then
dist
(
c ′, proj(G,C⊥)

)
≤ ε/2. Clearly, we also have dist(proj(p, E⊥), proj(C, E⊥)) = dist(p,C) ≤M.

Using this, we apply Lemma 56 while replacing A with E⊥, P with P ′, C with proj(C, E⊥) and G
with proj(G,E⊥).

We obtain that there is a 1-subspace D ⊆ E⊥ that is spanned by a point from proj(G,E⊥), such
that

|dist
(
proj(p, E⊥), proj(C, E⊥)

)
− dist

(
proj(p, E⊥), D

)
| ≤ ε.

Since dist
(
proj(p, E⊥), proj(C, E⊥)

)
= dist(p,C) by the definition of E⊥, the last inequality implies

|dist(p,C) − dist
(
proj(p, E⊥), D

)
| ≤ ε. (6.2)

Let F be the j-subspace of Rd that is spanned by D and e1, · · · , ej−1. Let D⊥ be the (d − 1)-
subspace that is the orthogonal complement of D in Rd. Since D ⊆ F, we have that proj(F,D⊥)
is a (j− 1)-subspace of Rd. We thus have

dist(proj(p, E⊥), D) = dist(proj(p,D⊥), proj(F,D⊥))

= dist(p, F).
(6.3)

Using (6.2), with the assumption of this lemma that dist(p,C) ≤M− (j− 1)ε, yields

dist(proj(p, E⊥), D) ≤ dist(p,C) + ε

≤M− (j− 2)ε.



March 15, 2011, 16:42 81

By the last inequality and (6.3), we get

dist(proj(p,D⊥), proj(F,D⊥)) ≤M− (j− 2)ε. (6.4)

Similar to the case P ′ = proj(P,C⊥) that was already proven, we can prove that for P ′′ =
proj(P,D⊥) and c ′′ ∈ D⊥, we have that if dist(c ′′, P ′′) ≤ 2M then dist(c ′′, proj(G,D⊥) ≤ ε/2.
Using this and (6.4), we apply this lemma inductively with C as proj(F,D⊥), G as proj(G,D⊥)
and P as P ′′ = proj(P,D⊥), to obtain a (j− 1)-subspace U that is spanned by j− 1 points from
proj(G,D⊥), such that

|dist(proj(p,D⊥), proj(F,D⊥)) − dist(proj(p,D⊥), U)| ≤ (j− 1)ε.

Hence,

|dist(p, F) − dist(proj(p,D⊥), U)| =

|dist(proj(p,D⊥), proj(F,D⊥)) − dist(proj(p,D⊥), U)|

≤ (j− 1)ε.

(6.5)

Let R be the j-subspace of Rd that is spanned by D and U. Hence, R is spanned by j points of
G. We have

|dist(p,C) − dist(p, R)|

= |dist(p,C) − dist(proj(p,D⊥), U)|

≤ |dist(p,C) − dist(p, F)|+ |dist(p, F) − dist(proj(p,D⊥), U)|.

By (6.3), we have dist(p, F) = dist(proj(p, E⊥), D). Together with the previous inequality, we
obtain

|dist(p,C) − dist(p, R)|

≤ |dist(p,C) − dist(proj(p, E⊥), D)|+ |dist(p, F) − dist(proj(p,D⊥), U)|.

Combining (6.2) and (6.5) in the last inequality proves the lemma. ut

Lemma 58 Let 0 < ε, δ ′ < 1, and P be a set of n points in Rd with d ≤ n. Let C∗ be
a j-subspace that is, with probability at least 2/3 an O(jj+1)-approximation to the optimal j-
dimensional linear subspace with respect to the `1-error. Let Q be the weighted set that is
returned by the algorithm DIMREDUCTION(P,C∗, δ, ε) with the parameter δ = δ ′/(10nd)10jd.
Then, with probability at least 1− δ ′ − 1/n2, for every j-subspace C ⊆ Rd we have (simultane-
ously)

|cost
(
P,C) − cost

(
Q,C)| ≤ ε · cost(P,C∗) + ε · cost(P,C).

The following two propositions prove the lemma.

Proposition 59 For every j-subspace C of Rd such that

cost(P,C) > 2cost(P,C∗)/ε,

we have
|cost(P,C) − cost(Q,C)| ≤ ε · cost(P,C).
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Proof. Let C be a j-subspace such that

cost(P,C) > 2cost(P,C∗)/ε.

Let S = Q \ proj(P,C∗). Hence,

|cost(P,C) − cost(Q,C)| = |cost(P,C) − cost(proj(P,C∗), C) − cost(S,C)|

≤ |cost(P,C) − cost(proj(P,C∗), C)|+ |cost(S,C)|.
(6.6)

We now bound each term in the right hand side of (6.6).

Let si denote the ith point of S, 1 ≤ i ≤ |S|. By the triangle inequality,

|dist(si, C) − dist(proj(si, C∗), C)| ≤ dist(si, C∗),

for every 1 ≤ i ≤ |S|. Hence,

|cost(S,C)| =

∣∣∣∣∣∣
∑

1≤i≤|S|
w(si)(dist(si, C) − dist(proj(si, C∗), C))

∣∣∣∣∣∣

≤
∑

1≤i≤|S|
w(si)|dist(si, C∗)| = cost(P,C∗).

Similarly,

|cost(P,C) − cost(proj(P,C∗), C)| =

∣∣∣∣∣∣
∑
p∈P

dist(p,C) −
∑
p∈P

dist(proj(p,C∗), C)

∣∣∣∣∣∣

≤
∑
p∈P

dist(p,C∗)

= cost(P,C∗).

Combining the last two inequalities in (6.6) yields

|cost(P,C) − cost(Q,C)| ≤ |cost(P,C) − cost(proj(P,C∗), C)|+ |cost(S,C)|

≤ 2cost(P,C∗) ≤ ε · cost(P,C).

ut

Proposition 60 Let 0 < ε < 1 and d ≤ n. With probability at least

1− δ ′ − 1/n2,

for every j-subspace C such that

cost(P,C) ≤ 2cost(P,C∗)/ε,

we have (simultaneously)

|cost(P,C) − cost(Q,C)| ≤ ε · cost(P,C) + εcost(P,C∗).
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Proof. Let G denote the set that is returned by the algorithm NET(P∪proj(P,C∗),M, ε ′), where
M = 10cost(P,C∗)/ε, and ε ′ = εcost(P,C∗)/n10. Note that G is used only for the proof of this
proposition.

By Theorem 52, for a fixed center D ∈ G we have

|cost(P,D) − cost(Q,D)| ≤ ε · cost(P,D)

≤ ε · cost(P,C) + ε · |cost(P,C) − cost(P,D)|,
(6.7)

with probability at least

1− δ ≥ 1− δ ′

(10nd)10jd
≥ 1− δ ′

|G|j
.

Using the union bound, (6.7) holds simultaneously for every j-subspace D that is spanned by j
points from G, with probability at least 1− δ ′.

Let p ∈ P. By the assumption of this claim, we have

dist(p,C) ≤ cost(P,C) ≤ 2cost(P,C∗)/ε,

and also

dist(proj(p,C∗), C) ≤ ‖proj(p,C∗) − p‖+ dist(p,C)

≤ dist(p,C∗) +
2cost(P,C∗)

ε

≤ 3cost(P,C∗)
ε

.

By the last two inequalities, for every p ∈ P ∪ proj(P,C∗) we have

dist(p,C) ≤ 3cost(P,C∗)
ε

≤ 10cost(P,C∗)
ε

−
cost(P,C∗)

ε

≤M− (j− 1)ε ′,

where in the last derivation we used the assumption j ≤ d ≤ n and 0 ≤ ε ≤ 1. By the
construction of G, for every c ∈ Rd, if dist(c, P) ≤ 2M, then dist(c,G) ≤ ε ′/2. Using this,
applying Lemma 57 with P ∪ proj(P,C∗) yields that there is a j-subspace D that is spanned by
j points from G, such that

|dist(p,C) − dist(p,D)| ≤ j · ε ′,

for every p ∈ P ∪ proj(P,C∗). Using the last equation with (6.7) yields

|cost(P,C) − cost(Q,C)|

≤ |cost(P,C) − cost(P,D)|+ |cost(P,D) − cost(Q,D)|+ |cost(Q,D) − cost(Q,C)|

≤ (1+ ε)|cost(P,C) − cost(P,D)|+ εcost(P,C) + |cost(Q,D) − cost(Q,C)|

≤ εcost(P,C) + 3
∑
p∈P∪Q

|w(p)| · |dist(p,C) − dist(p,D)|

≤ εcost(P,C) + 3jε ′
∑
p∈P∪Q

|w(p)|,

(6.8)
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with probability at least 1− δ ′.

Let s ∈ S be such that w(s) > 0. By the construction of S, we have

dist(s, C∗) ≥ cost(P,C∗)/(n2|S|)

with probability at least 1 − 1/(n2|S|). Hence, with probability at least 1 − 1/n2, for every s ∈ S
we have

|w(s)| =
cost(P,C∗)
|S|dist(s, C∗)

≤ n2.

Combining the last two equations with (6.8) yields

|cost(P,C) − cost(Q,C)| ≤ εcost(P,C) + 3jε ′
∑
p∈P∪Q

|w(p)|

≤ εcost(P,C) + εcost(P,C∗),

with probability at least 1− 1/n2 − δ ′, as desired. ut

Proof. [of Theorem 55] Let Pi, Si,Qi and C∗i denote the set that are defined in the ith iteration of
ADAPTIVESAMPLING, for every 0 ≤ i ≤ j. For every i, 0 ≤ i ≤ j, we have |Si| = O(log(1/δ)/ε2).
Hence,

|Q| =
⋃

0≤i≤j
Si = O

(
j log(1/δ)

ε2

)
≤ jO(j2) · log(1/δ ′)

ε ′2
.

This bounds the size of Q. For the correctness, let 0 ≤ i ≤ j.

Fix 0 ≤ i ≤ j. By the previous lemma and our choice of δ, we conclude that, with probability
at least 1 − δ ′/j − 1/n2, for any j-subspace C we have for our choice of ε (assuming c ′ large
enough)

|cost(Pi+1, C) − cost(Qi, C)| ≤ εcost(Pi+1, C) + εcost(Pi+1, C∗i )

≤ O( ε
′

jj+1
)cost(Pi+1, C) +O(

ε ′

jj+1
)cost(Pi+1, C∗i ).

By construction of C∗i , we have

cost(Pi+1, C∗i ) ≤ O(jj+1)min
C ′

cost(Pi+1, C ′)

≤ O(jj+1)cost(Pi+1, C).

Combining the last two inequalities yields

|cost(Pi+1, C) − cost(Qi, C)| ≤ O(
ε ′

jj+1
) · cost(Pi+1, C),

with probability at least 1− δ ′/j− 1/n2.
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Summing the last equation over all the j iterations of ADAPTIVESAMPLING yields

|cost(P,C) − cost(Q,C)| = |cost(P,C) − cost(
⋃

0≤i≤j
Si, C)|

= |
∑
0≤i≤j

(
cost(Pi+1, C) − cost(Pi, C) − cost(Si, C)

)
|

= |
∑
0≤i≤j

(
cost(Pi+1, C) − cost(Qi, C)

)
|

≤ O( ε
′

jj+1
)
∑
0≤i≤j

cost(Pi+1, C),

with probability at least 1− δ ′ − 1/n2.

By Lemma 54, there is an i-subspace Ci and a constant 0 < νL ≤ 1, such that for any p ∈ L
we have dist(p,C) = νL · dist(p,Ci). Hence,

|cost(Pi, C) − cost(Pi+1, C)| = νL · |cost(Pi, Ci) − cost(Pi+1, Ci)|.

We thus have

cost(Pi, C) ≤ cost(Pi+1, C) + cost(Pi, C) − cost(Pi+1, C)

≤ cost(Pi+1, C) + |cost(Pi, C) − cost(Pi+1, C)|

= cost(Pi+1, C) + νL · |cost(Pi, Ci) − cost(Pi+1, Ci)|

≤ cost(Pi+1, C) + νL · cost(Pi+1, C∗i )

≤ cost(Pi+1, C) + νL ·O(ii+1) · cost(Pi+1, Ci)

= cost(Pi+1, C) +O(ii+1) · cost(Pi+1, C)

= O(ii+1) · cost(Pi+1, C)

Hence,
cost(Pi+1, C) ≤ O(jj+1)cost(P,C)

for every 0 ≤ i ≤ j.
Combining the last inequalities together yields,

Pr[|cost(P,C) − cost(Q,C)| ≤ ε ′cost(P,C)] ≥ 1− δ ′ − 1/n2.

ut

6.4 A linear time (1 + ε)-approximation algorithm for the j-subspace
problem

In this section we show how to construct in O(nd · poly(j/ε) + (n + d) · 2poly(j/ε)) time, a small
set C of centroid solutions (i.e., j-subspaces) such that C contains a (1 + ε/3)-approximation
to the j-subspace problem, i.e., for the point set P, one of the j-subspaces in C is a (1 + ε/3)-
approximation to the optimal j-subspace. Given such a centroid set C, we run the algorithm
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Notation Meaning
C The set of centroid solutions (i.e., j-subspaces)
A The poly(j/ε)-subspace that contains a (1+ ε/6)-approximation
OPT The cost of an optimal subspace (not necessarily contained in A)
Ci A j-subspace which is a (1+ γ)i-approximation to the optimal j-subspace of P
Hi An i-subspace which is the span of i points from G≤i where Hi ⊆ Ci
H⊥i The orthogonal complement of the linear subspace Hi in Rd
C∗i The projection of Ci on H⊥i
Ni {p ∈ Pi+1 : dist(p,Ci) ≤ 2 · cost(P,Ci) · Pr[p]}
rl A point in Ni ⊆ H⊥i that has Pr[rl] > 0
q in case 1 proj(rl, C∗i )
q in case 2 A point in C∗i ∩ B(proj(rl, C∗i ), 5 · OPT · Pr[rl], A ∩H⊥i ) s.t.

dist(q, 0) ≥ 5 · OPT · Pr[rl]
q ′ A point in N (rl, 10 · OPT · Pr[rl], A ∩H⊥i , γ/20) s.t

dist(q, q ′) ≤ γ
2 · OPT · Pr[rl]

` Span {q}
` ′ Span {q ′}
C⊥i The orthogonal complement of ` in Ci
Li The orthogonal complement of C⊥i in Rd
Ci+1 A j-subspace which is the span of C⊥i and ` ′

N (p, R,A, γ) A γ-net of a ball B(p, R,A) in the subspace A with radius R centered at p

Table 6.1: Notation in Section 6.4.

ADAPTIVESAMPLING with parameters δ/|C| and ε/6. By the union bound it follows that every
C ∈ C is approximated by a factor of (1± ε/6) with probability at least 1 − δ. It follows that the
cost of the optimal centroid solution in C is a 1+O(ε)-approximation to the cost of the optimal
j-subspace of the original set of points P.

The intuition behind the algorithm and the analysis. The first step of the algorithm is to in-
voke approximate volume sampling due to Deshpande and Varadarajan [DV07] to obtain in
O(nd · poly(j/ε)) time, an Õ(j4 + (j/ε)3)-dimensional subspace A that contains a (1 + ε/6)-
approximation j-subspace. We use C0 to denote a linear j-dimensional subspace of A with

cost(P,C0) ≤ (1+ ε/6) · OPT .

Our centroid set C will consist of subspaces of A. Then the algorithm proceeds in j phases.
In phase i, the algorithm computes a set Gi of points in A. We define G≤i =

⋃
1≤l≤iGl. The

algorithm maintains, with probability at least 1 − i·δ
j , the invariant that i points from G≤i span

an i-subspace Hi such that there exists another j-subspace Ci, Hi ⊆ Ci ⊆ A, with

cost(P,Ci) ≤ (1+ ε/6) · (1+ γ)i · OPT
≤ (1+ ε/3) · OPT ,

where OPT is the cost of an optimal subspace (not necessarily contained in A) and γ =
ε/(12j) is an approximation parameter. The centroid set C will be the set of every j-tuples (i.e.,
subsets of size j) of G≤j.
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6.4.1 The algorithm.

In the following, we present our algorithm to compute the centroid set. We use H⊥i to denote
the orthogonal complement of a linear subspace Hi in Rd. We use N (p, R,A, γ) to denote a
γ-net of a ball B(p, R,A) in the subspace A with radius R centered at p, i.e. a set of points such
that for every point t ∈ B(p, R,A) there exists a point q in N (p, R,A, γ) with dist(t, q) ≤ γR. It
is easy to see that a γ-net of a ball B(p, R,A) of size O(

√
d ′/γd

′
) (See [AS00]) exists, where

d ′ is the dimension of A. The input to the algorithm is the point set P ′ = proj(P,A) in the space
A, an i-dimensional linear subspace Hi and the parameters i and γ. The algorithm is invoked
with i = 0 and Hi = C0 and j being the dimension of the subspace that is sought. Notice that
the algorithm can be carried out in the space A since Hi ⊆ A and so the projection of P ′ to H⊥i
will be inside A. Note, that although the algorithm doesn’t know the cost OPT of an optimal
solution, it is easy to compute the cost of an O(jj+1)-approximation using approximate volume
sampling. From this approximation we can generate O(j log j) guesses for OPT , one of which
includes a constant factor approximation.

CENTROIDSET (P ′, Hi, i, j, γ)

(1) if i = j then return Hi.

(2) Pi+1 ← proj(P ′, H⊥i ).

(3) Sample s = dlog(j/δ)e points r1, . . . , rs i.i.d. from Pi+1 s.t. each p ∈ Pi+1 is chosen
with probability Pr[p] = dist(p, 0)/

∑
q∈Pi+1 dist(q, 0)

(4) Gi+1 ← ⋃s
l=1N (rl, 10 · OPT · Pr[rl], A ∩H⊥i , γ/20).

(5) return
⋃
q∈Gi+1 CENTROIDSET(P ′,Span {Hi ∪ q} , i+ 1, j, γ).

6.4.2 Invariant of algorithm CENTROIDSET.

We will prove that the algorithm satisfies the following lemma.

Lemma 61 Let Ci ⊆ A be a subspace that contains Hi. Assume that Ci is a (1 + γ)i-
approximation to the optimal j-subspace of P. Then, with probability at least 1 − δ/j, there
is a j-subspace Ci+1 ⊆ A containing Hi and a point from Gi+1, such that Ci+1 is a (1 + γ)i+1

approximation to the optimal j-subspace of P.

Once the lemma is proved, we can apply it inductively to show that with probability at least 1−δ
we have a subspace Cj that is spanned by j points from G≤j and that has

cost(P,Cj) ≤ (1+ γ)j · cost(P,C0)

≤ (1+ ε/6) · (1+ γ)j · OPT
≤ (1+ ε/6) · (1+ ε/12) · OPT
≤ (1+ ε/3) · OPT .
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The running time of the algorithm is dominated by the projections in line 2, j of which are
carried out for each element of the centroid set. Since the input P ′ to the algorithm is in the
subspace A, its running time is n · 2poly(j/ε). To initialize the algorithm, we have to compute
space A and project all points on A. This can be done in O(nd · poly(j/ε)) time [DV07].

Finally, we run algorithm ADAPTIVESAMPLING to approximate the cost for every centroid solu-
tion generated by algorithm CENTROIDSET. For each centroid solution, we have to project all
points on its span. This can be done in O(d · 2poly(j/ε)) time, since the number of centroid solu-
tions is 2poly(j/ε) and the size of the sample is poly(j/ε). Thus we can summarize the result in
the following theorem setting δ = 1/6 in the approximate volume sampling and in our algorithm.

Theorem 62 Let P be a set of n points in Rd, 0 < ε < 1 and 1 ≤ j ≤ d. A (1+ε)-approximation
for the j-subspace approximation problem can be computed, with probability at least 2/3, in
time

O(nd · poly(j/ε) + (n+ d) · 2poly(j/ε)).

6.4.3 Overview of the proof of Lemma 61.

The basic idea of the proof follows earlier results of [SV07]. We show that by sampling with
probability proportional to the distance from the origin, we can find a point p whose distance to
the optimal solution is only a constant factor more than the weighted average distance (where
the weighting is done according to the distance from the origin). If we then consider a ball with
radius a constant times the average weighted distance and that is centered at p, then this ball
must intersect the projection of the current space Ci on H⊥i . If we now place a sufficiently fine
net on this ball, then there must be a point q of this net that is close to the projection. We can
then define a certain rotation of the current subspace to contain q to obtain the new subspace
Ci+1. This rotation increases the cost only slightly and Ci+1 contains Span {Hi ∪ {q}}.

6.4.4 The complete proof of Lemma 61.

We assume that there is a j-subspace Ci, Hi ⊆ Ci ⊆ A, with

cost(P,Ci) ≤ (1+ γ)i · cost(P,C0) ≤ (1+ ε/3) · OPT .

We use C∗i to denote the projection of Ci on H⊥i . Note that C∗i has j− i dimensions as Hi ⊆ Ci.
The idea is to find a point q from Gi+1 ⊆ H⊥i ∩A such that we can rotate C∗i in a certain way to
contain q and this rotation will not change the cost with respect to P significantly. Let

Ni = {p ∈ Pi+1 : dist(p,Ci) ≤ 2 · cost(P,Ci) · Pr[p]}.

Ni contains all points that are close to the subspace Ci, where closeness is defined relative
to the distance from the origin. We will first show that by sampling points with probability
proportional to their distance from the origin, we are likely to find a point from Ni.

Proposition 63
Pr[∃rl, 1 ≤ l ≤ s : rl ∈ Ni] ≥ 1− δ/j .
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Proof. We first prove by contradiction that the probability to sample a point from Ni is at least
1/2. Assume that ∑

p∈Pi+1\Ni
Pr[p] > 1/2.

Observe that cost(P,Ci) ≥ cost(P ′, Ci) since Ci ⊆ A and P ′ = proj(P,A). Further, cost(P ′, Ci) =
cost(Pi+1, Ci) since Pi+1 = proj(P ′, H⊥i ) and Hi ⊆ Ci. It follows that

cost(P,Ci) ≥ cost(P ′, Ci) = cost(Pi+1, Ci)

≥
∑

p∈Pi+1\Ni
dist(p,Ci)

> 2 · cost(P,Ci) ·
∑

p∈Pi+1\Ni
Pr[p]

> cost(P,Ci),

which is a contradiction. Hence,

Pr[rl ∈ Ni] =
∑
p∈Ni

Pr[p] ≥ 1/2.

It follows that

Pr[∃l, 1 ≤ l ≤ s : rl ∈ Ni] ≥ 1− (1− 1/2)s

≥ 1− δ/j.
ut

We now make a case distinction in order to prove Lemma 61.

Case 1: Points are on average much closer to Ci than to the origin.
We first consider the case that ∑

p∈Pi+1
dist(p, 0) ≥ 4

∑
p∈P

dist(p,Ci).

In this case, the points in Ni are much closer to Ci than to the origin. Note that this inequality
is defined in terms of cost(P,Ci) which is an upper bound for cost(Pi+1, Ci) since

cost(P,Ci) ≥ cost(P ′, Ci) = cost(Pi+1, Ci).

Now let rl be a point from Ni ⊆ H⊥i that has Pr[rl] > 0. Since Ci ⊆ A and

dist(rl, C∗i ) = dist(rl, Ci) ≤ 2 · cost(P,Ci) · Pr[rl]
≤ 2 · cost(P,Ci) · Pr[rl]

≤ 2 · (1+ ε/6) · (1+ γ)i · OPT · Pr[rl]
≤ 4 · OPT · Pr[rl]

for γ = ε/(12j) we get that B(rl, 10 · OPT · Pr[rl], A ∩H⊥i ) intersects C∗i . This also implies that
q := proj(rl, C∗i ) lies in B(rl, 10 · OPT · Pr[rl], A ∩H⊥i ). Hence, there is a point

q ′ ∈ N (rl, 10 · OPT · Pr[rl], A ∩H⊥i , γ/20)
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with dist(q, q ′) ≤ γ
2 · OPT · Pr[rl].

Let ` be the line through q and let ` ′ be the line through q ′. Let C⊥i denote the orthogonal
complement of ` in Ci. Define the subspace Ci+1 as the span of C⊥i and ` ′. Since q lies in C∗i
(and hence in H⊥i ) we have that C⊥i contains Hi. Hence, Ci+1 also contains Hi. It remains to
show that

cost(P,Ci+1) ≤ (1+ γ) · cost(P,Ci).

We have

cost(P,Ci+1) − cost(P,Ci) ≤
∑
p∈P

dist(proj(p,Ci), Ci+1) (6.9)

=
∑
p∈P

dist(proj(proj(p,A), Ci), Ci+1) (6.10)

=
∑
p∈P ′

dist(proj(p,Ci), Ci+1) (6.11)

=
∑
p∈Pi+1

dist(proj(p,Ci), Ci+1) (6.12)

where Step 6.10 follows from the fact that Ci ⊆ A and so proj(proj(p,A), Ci) = proj(p,Ci)
for all p ∈ Rd. In fact assume that the orthonormal of A is v1, · · · , v|A| and the orthonor-
mal of Ci is v1, · · · , vj. Then proj(p,A) is the first |A| coordinates p1, · · · , p|A| of p; therefore
proj(proj(p,A), Ci) the same as proj(p,Ci) is just the first j coordinates p1 · · · , pj. Step 6.12
follows from Hi ⊆ Ci, Ci+1.

Now define Li to be the orthogonal complement of C⊥i in Rd. Note that for any p ∈ Rd and
its projection p ′ = proj(p, Li) we have dist(p,Ci) = dist(p ′, Ci) and dist(p,Ci+1) = dist(p ′, Ci+1).
Further observe that Ci corresponds to the line ` in Li and Ci+1 corresponds to a line ` ′′ =
proj(` ′, Li). Define α to be the angle between ` and ` ′ and β the angle between ` and ` ′′. Since
the projection of q ′ onto Li shrinks the distance between this projection and q we have α ≥ β.
Then

dist(proj(p,Ci), Ci+1) = dist(proj(proj(p,Ci), Li), ` ′′)

= dist(proj(p, `), ` ′′).

This implies

dist(proj(p, `), ` ′′) = dist(proj(p, `), 0) · sinβ

≤ dist(p, 0) · sinα.

We need the following claim that the distance of q to the origin is not much smaller than the
distance of rl to the origin.

Proposition 64 If ∑
p∈Pi+1

dist(p, 0) ≥ 4
∑
p∈P

dist(p,Ci)

then
dist(q, 0) ≥ 1

2
dist(rl, 0).
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Proof. Since rl ∈ Ni we have

dist(rl, Ci) ≤ 2cost(P,Ci)
dist(rl, 0)∑

p∈Pi+1 dist(p, 0)
.

By our assumption we have ∑
p∈Pi+1

dist(p, 0) ≥ 4
∑
p∈P

dist(p,Ci),

which implies dist(rl, Ci) ≤ 1
2dist(rl, 0) by plugging in into the previous inequality. We further

have dist(rl, Ci) = dist(rl, C∗i ) and so

dist(q, 0) ≥ dist(rl, 0) − dist(rl, C∗i ) ≥
1

2
dist(rl, 0)

by the triangle inequality. ut

We get

sinα ≤ dist(q, q ′)
dist(q, 0)

≤ 1/2 · γ · OPT · Pr[rl]
1/2 · dist(rl, 0)

=
γ · OPT · dist(rl, 0)

dist(rl, 0) ·
∑
p∈Pi+1 dist(p, 0)

=
γ · OPT∑

p∈Pi+1 dist(p, 0)
.

The latter implies

cost(P,Ci+1) − cost(P,Ci) ≤
∑
p∈Pi+1

dist(p, 0) · sinα

≤ γ · OPT
≤ γ · cost(P,Ci)

which implies the lemma in Case 1.

Case 2: Points are on average much closer to the origin than to Ci.
Now we consider the case that ∑

p∈Pi+1
dist(p, 0) < 4

∑
p∈P

dist(p,Ci).

Let rl be a point from Pi+1 ⊆ H⊥i that is in Ni and that has Pr[rl] > 0. Since Ci ⊆ A and

dist(rl, C∗i ) = dist(rl, Ci) ≤ 2 · cost(P,Ci) · Pr[rl],

we know that B(rl, 10 · OPT · Pr[rl], A ∩ H⊥i ) intersects C∗i . This implies that proj(rl, C∗i ) lies
also in B(rl, 10 · OPT · Pr[rl], A ∩H⊥i ).
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In fact,
2 · cost(P,Ci) · Pr[rl] ≤ 5 · OPT · Pr[rl]

implies that

B(proj(rl, C∗i ), 5 · OPT · Pr[rl], A ∩H⊥i ) ⊆ B(rl, 10 · OPT · Pr[rl], A ∩H⊥i ).

Since C∗i ⊆ A ∩H⊥i we also have that there is a point

q ∈ C∗i ∩ B(proj(rl, C∗i ), 5 · OPT · Pr[rl], A ∩H⊥i )

with dist(q, 0) ≥ 5 · OPT · Pr[rl].

Now consider the set which is the intersection of

N (rl, 10 · OPT · Pr[rl], A ∩H⊥i , γ/20)

with
B(proj(rl, Ci), 5 · OPT · Pr[rl], A ∩H⊥i ),

which is a (γ/10)-net of

B(proj(rl, Ci), 5 · OPT · Pr[rl], A ∩H⊥i ).

Hence, there is a point

q ′ ∈ N (rl, 10 · OPT · Pr[rl], A ∩H⊥i , γ/20)

with dist(q, q ′) ≤ γ
10 · 5 · OPT · Pr[rl] ≤ γ · OPT · Pr[rl].

Let ` be the line through q and let ` ′ be the line through q ′. Let C⊥i denote the orthogonal
complement of ` in Ci. Define the subspace Ci+1 as the span of C⊥i and ` ′. Since q lies in C∗i
we have that C⊥i contains Hi. Hence, Ci+1 also contains Hi.

It remains to show that
cost(P,Ci+1) ≤ (1+ γ) · cost(P,Ci).

Now define Li to be the orthogonal complement of C⊥i . Note that for any p ∈ Rd and its
projection p ′ = proj(p, Li) we have dist(p,Ci) = dist(p ′, Ci) and dist(p,Ci+1) = dist(p ′, Ci+1).
Further observe that Ci corresponds to the line ` in Li and Ci+1 corresponds to a line ` ′′ =
proj(` ′, Li).

Define α to be the angle between ` and ` ′ and β the angle between ` and ` ′′. Note that α ≥ β.
Then

dist(proj(p,Ci), Ci+1) = dist(proj(proj(p,Ci), Li), ` ′′)

= dist(proj(p, `), ` ′′).

This implies

dist(proj(p, `), ` ′′) = dist(proj(p, `), 0) · sinβ

≤ dist(p, 0) · sinα.
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We have
sinα ≤ γ · OPT · Pr[rl]

5 · OPT · Pr[rl]
≤ γ
5
.

Similar to the first case it follows that

cost(P,Ci+1) − cost(P,Ci) ≤
∑
p∈Pi+1

dist(p, 0) · sinα

≤ γ
5
·
∑
p∈Pi+1

dist(p, 0).

Since we are in Case 2 we have∑
p∈Pi+1

dist(p, 0) < 4 · cost(P,Ci),

which implies

cost(P,Ci+1) − cost(P,Ci) ≤
γ

5
·
∑
p∈Pi+1

dist(p, 0)

≤ γ · cost(P,Ci).

This concludes the proof of Lemma 61.

6.5 Insertion-only Streaming Algorithm

Here we assume that we have the coreset procedure of Lemma 65 below that given a subset
A ⊆ P of points and a j-subspace C generates a weighted point set B so that

Pr[|cost(A,C) − cost(B,C| ≤ ε · cost(A,C)] ≥ 1− δ.

We call this coreset procedure a merge operator. Let b,m0,m1, · · · ,mlogb n denote parameters
which will be determined later.

Recall that the merge and reduce method works as follows: For the offline variant of the merge
and reduce method we assume that we are given a point set P ⊂ Rd of size n, where n is
known in advance. We construct a b-ary tree T of depth dep = logb n. Let us assume level
zero is the leaf level and level dep is the root of T .

Starting from level zero we have leaves c01, · · · , c0n/m0 each has a bucket that can store points.
We put the first m0 points in c01, the second m0 points in c02 and so on up to the n/m0-th m0

points that we store them in c0n/m0 . We then apply the merge operator on buckets (or leaves)
c0(r−1)b+1 up to c0rb for 1 ≤ r ≤ n/(m0b) and put new coreset points in c1r of size m1 at level 1.
Recursively and at level i, for 1 ≤ i ≤ logb n we merge buckets (or children) ci−1(r−1)b+1 up to ci−1rb
for 1 ≤ r ≤ n/(m0b

i−1) (of node cir) and put new coreset points in cir of size mi at level i.
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Now the streaming variant of this algorithm is in this way. Assume the points are coming one by
one and the result of the streaming algorithm should be correct coreset with probability ≥ 1−δ.

We put the firstm0 points in c01, the secondm0 points in c02 and so on up to the b-th chunk ofm0

points which we store in c0b. At this time and in level zero we have m0×b points in b full leaves
and so we merge c01 up to c0b and put new points in c11 of size m1 at level 1 and deallocate the
space assigned to c01, · · · , c0b for new points. If we repeat this process for b times then we will
have b full buckets at level 1 and so we must merge c11 up to c1b and put new points in c21 of size
m2 at level 2 and deallocate the space assigned to c11, · · · , c1b for new points.

As long as we see new points we do the same iteration, store them into b buckets at level 0
and then merge them into one of the b buckets at level 1, and deallocate the space assigned to
the b buckets and so on. Therefore in each level i for 1 ≤ i ≤ logb n we have at most b buckets
each one of size mi and at each instance of time a union of all these buckets in all levels will
be a snapshot of the stream up to that time.

If n is not known in advance, we start with some constant guess for n. If there are more
points in the stream, compute a new value for n ′ such that the coreset size doubles. Use the
streaming algorithm for the next n ′ points and keep the coreset for the first n points. Continue
until no more points are coming. Since the coreset size doubles in each step, the space for the
smaller coresets is at most the space for the largest one (by geometric progression). In order
to make sure that everything works with good probability, one chooses confidence probability
of δ

bi2
for the i-th step. Since the sum 1

bi2
is constant, we get an overall error of O(δ).

Now we explain a merge step in level i w.l.o.g. at ci1. We also set the parameters of the merge
and reduce method. First of all we know that for the subtree rooted at ci1 the original points are
in buckets or leaves c01, · · · , c0bi . For the simplicity we drop the index in ci1 and show it with ci.

Let P(ci) = c01 ∪ · · · ∪ c0bi . Assume that the optimal j-subspace to P(ci) is OPT (P(ci)). Here for
the simplicity of the representation we replace proj(p−, C) by p− where C is some j-subspace
in Rd. Therefore we can denote a weighted pair (p, proj(p−, C)) by a triple (p,wp, p

−) such that
p has a weight of wp and p− has a weight of −wp. For a set S of triples and a j-subspace C
we define

cost(S,C) =
∑

(p,wp,p−)∈S
wp · (dist(p,C) − dist(p−, C)).

Our main theorem in this section is

Theorem 65 Let P be a set of n points in Rd, j ≥ 0, and ε, δ > 0. In the read-only streaming
model we can maintain a set S ′′ of triples and a set Q of positively weighted points using
Õ(d(jε−2 · 2

√
logn)poly(j)) weighted points such that, with probability at least 1− δ,

∣∣cost(P,C) − cost(S ′′, C) − cost(Q,C)
∣∣ ≤ ε · cost(P,C),

for every j-subspace in Rd.
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Proof. [Overview of the proof of Theorem 65 ]
One merge step is done as follows: Assume we have a set A of positive points and a set B of
triples (p,wp, p

−) all in Rd. For A, we apply the algorithm of Lemma 52 to generate projected
positive points E and new triples F where the points in E and the points with negative weights
in F are on one O(j4)-subspace. Now we need to reduce the size of sets B, E, F. For the triples
in B ∪ F we use Lemma 67 (i.e., coreset of coreset ) to sample few of them. For the points in E
since E lies on a low-dimensional space we use the known low-dimensional coreset of Lemma
66 to reduce the size of E. ut

Lemma 66 (Low-dimensional Coreset) [FFS06] Given a point set P of size n inO(j4)-subspace
C∗, one can construct a strong coreset Q of size O(( j·logn

ε2
)j
2
), where each point in Q has a

positive weight, such that for any j-dimensional subspace C ⊆ Rd we have

|cost(P,C) − cost(Q,C)| ≤ ε · cost(P,C).

Lemma 67 (Coreset of Coreset) Let C denote a fixed subspace of dimension j in Rd. Let

S ′(ci) denote a set of triples for which we have |S ′(ci)| > 2(Õ(i·j))2

ε2
log(2/δ). Assume

∑
(p,wp,p−)∈S ′(ci)

|wp · dist(p, p−)| ≤ 2Õ(i·j) · cost(P(ci),OPT (P(ci))). (6.13)

Then one can find a sample set S ′′(ci) of triples of size s = 2(Õ(i·j))2

ε2
log(2/δ) such that

|cost(S ′(ci), C) − cost(S ′′(ci), C)| ≤ ε · cost(P(ci), C).

Proof. Let U =
∑

(p,wp,p−)∈S ′(ci)wp · dist(p, p−) and V = cost(P(ci),OPT (P(ci))). So by the

assumption of the lemma U ≤ 2Õ(i·j) · V.

We use the framework of Lemma 24 for the problem of approximating a sum without computing
all the summands that we introduced in Chapter 3.

Assume we number the triples in S ′(ci) from 1 to a = |S ′(ci)|, i.e.,

S ′(ci) = {(p1, wp1 , p
−
1 ), · · · , (pa, wpa , p−a )}.

Put Z = cost(S ′(ci), C), Zk = wpk(dist(pk, C) − dist(p−k , C)), qk = Zk
Z , and rk =

wpk ·dist(pk,p−k )
U for

1 ≤ k ≤ a. We take a sample set A = {a1, · · · , a`, · · · , as} ⊆ [a] of indexes according to the
probabilities rk and assign a weight of w(a`) =

wpa`
s·ra`

to a sampled triple (pa` , w(a`), p
−
a`
) for

1 ≤ ` ≤ s. Note that pa` gets the weight of w(a`) and p−a` gets the weight of −w(a`).

Corresponding to the sampled triple (pa` , w(a`), p
−
a`
) we define a random variable

X` =
Za`
s · ra`

=
wpa`
s · ra`

·
(
dist(pa` , C) − dist(p−a` , C)

)
.
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Let X =
∑s
`=1 X`. Note that E[X`] = Z

s and E[X] = Z. By the triangle inequality we get

|dist(pa` , C) − dist(p−a` , C)| ≤ dist(pa` , p
−
a`
).

So we can get an upper bound of

|X`| ≤
wpa`
s · ra`

·
∣∣dist(pa` , C) − dist(p−a` , C)

∣∣

≤
wpa`
s · ra`

· dist(pa` , p
−
a`
)

≤
wpa`

s · wp`dist(pa` ,p
−
a`

)

U

dist(pa` , p
−
a`
)

≤ U
s

≤ 2
Õ(i·j)V
s

,

for the random variable |X`|.

Now similar to Lemma 24 we use the additive Hoeffding 4 with M = 2Õ(i·j)V, t = εi · U, and
m = s to show that for the sample set S ′′(ci) = {(pa` , w(a`), p

−
a`
)|a` ∈ A} of size O( log(2/δ)

ε2i
) =

2(Õ(i·j))2

ε2
log(2/δ) we get that with probability at least 1− δ and for εi = ε

2Õ(i·j)

|cost(S ′(ci), C) − cost(S ′′(ci), C)| ≤ εi ·U ≤ εi2Õ(i·j) · V ≤ ε · cost(P(ci), C).

ut

Proof. [The complete proof of Theorem 65 ]
Let C denote a fixed subspace of dimension j in Rd.

First, we prove the theorem for i = 1. In order to merge the b buckets c01 up to c0b we run
the algorithm of Lemma 52 on P(c1) = ∪br=1c0r . For C∗ in Lemma 52 we use Lemma 8 in
[DV07] which gives a O(j4)-subspace with 2-approximation guarantee. We call this subspace
C∗(c1). Lemma 52 returns proj(P(c1), C∗(c1)) and S ′′(c1) which is a set of triples (p,wp, p

− =
proj(p−, C∗(c1))) of size O(log(1/δ) · ε−21 ) such that with probability at least 1− δ we get

|cost(P(c1), C) − cost(S ′′(c1), C) − cost(proj(P(c1), C∗(c1)), C)| ≤ ε1 · cost(P(c1), C∗(c1))

≤ 2ε1 · cost(P(c1), C).

Then we run the algorithm of Theorem 66 on proj(P(c1), C∗(c1)) to obtain a strong coreset
Q(c1) of size O(( j·logn

ε1
)j
2
) such that we have

|cost(proj(P(c1), C∗(c1)), C) − cost(Q(c1), C)| ≤ ε1 · cost(proj(P(c1), C∗(c1)), C)

≤ 3ε1 · cost(P(c1), C),
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where the last inequality is because

cost(proj(P(c1), C∗(c1)), C) ≤ cost(P(c1), C∗(c1))) + cost(P(c1), C) ≤ 3 · cost(P(c1), C). (6.14)

Applying the triangle inequality with probability at least 1− δ we get

|cost(P(c1), C) − cost(S ′′(c1), C) − cost(Q(c1), C)| ≤ 5ε1 · cost(P(c1), C).

From Equation 6.14 we get

cost(Q(c1), C) ≤ 3(1+ ε) · cost(P(c1), C).

SinceQ(c1) is a coreset for an arbitrary j-subspace C it also applies toOPT (P(c1)) the optimal
j-subspace of P(c1) for which we get

cost(Q(c1),OPT (P(c1))) ≤ 3(1+ ε) · cost(P(c1),OPT (P(c1))).

On the other hand, for the optimal j-subspace of Q(c1), i.e., OPT (Q(c1)) we have

cost(Q(c1),OPT (Q(c1))) ≤ cost(Q(c1),OPT (P(c1))) ≤ 3(1+ ε) · cost(P(c1),OPT (P(c1))).

Next, we prove the theorem for i > 1.

For the merge step assume that the buckets ci−1r for 1 ≤ r ≤ b consists of two sets Q(ci−1r ) and
S ′′(ci−1r ) where Q(ci−1r ) is a positively weighted point set and S ′′(ci−1r ) is a set of triples. Also
assume that

cost(∪br=1Q(ci−1r ), C) ≤ (3(1+ ε))i−1 · cost(∪br=1P(ci−1r ), C) = (3(1+ ε))i−1 · cost(P(ci), C)

as for the induction hypothesis.

Once again, since ∪br=1Q(ci−1r ) is a coreset for an arbitrary j-subspace C it also applies to
OPT (∪br=1P(ci−1r )) = OPT (P(ci)) the optimal j-subspace of P(ci) for which we get

cost(∪br=1Q(ci−1r ),OPT (P(ci))) ≤ (3(1+ ε))i−1 · cost(P(ci),OPT (P(ci))).

On the other hand, for the optimal j-subspace of ∪br=1Q(ci−1r ), i.e., OPT (∪br=1Q(ci−1r )) we have

cost(∪br=1Q(ci−1r ),OPT (∪br=1Q(ci−1r ))) ≤ cost(∪br=1Q(ci−1r ),OPT (P(ci)))
≤ (3(1+ ε))i−1 · cost(P(ci),OPT (P(ci))).

We run the algorithm of Lemma 52 on ∪br=1Q(ci−1r ) and for C∗ in Lemma 52 again we use
Lemma 8 in [DV07] which gives a O(j4)-subspace with 2-approximation guarantee of the
optimal j-subspace of ∪br=1Q(ci−1r ), i.e., OPT (∪br=1Q(ci−1r )). We call this subspace C∗(ci).
Lemma 52 returns proj(∪br=1Q(ci−1r ), C∗(ci)) and S(ci) which is a set of triples (p,wp, p

− =
proj(p−, C∗(ci))) of size O(log(1/δ) · ε−2i ) for which we have
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cost(proj(∪br=1Q(ci−1r ), C∗(ci)), C)

≤ cost(∪br=1Q(ci−1r ), C∗(ci)) + cost(∪br=1Q(ci−1r ), C)

≤ 2(3(1+ ε))i−1 · cost(P(ci),OPT (P(ci))) + (3(1+ ε))i−1 · cost(P(ci), C)

≤ 3i(1+ ε)i−1 · cost(P(ci), C).

Therefore with probability at least 1− δ we get

|cost(∪br=1Q(ci−1r ), C) − cost(S(ci), C) − cost(proj(∪br=1Q(ci−1r ), C∗(ci)), C)|

≤ εi · cost(∪br=1Q(ci−1r ), C∗(ci))

≤ 2εi · cost(∪br=1Q(ci−1r ),OPT (∪br=1Q(ci−1r )))

≤ 2εi · (3(1+ ε))i−1 · cost(P(ci),OPT (P(ci)))
≤ εi ·O(2Õ(i)) · cost(P(ci), C).

Then we run the algorithm of the theorem 66 on proj(∪br=1Q(ci−1r ), C∗(ci)) to obtain a strong
coreset Q(ci) of size O(( j·logn

εi
)j
2
) such that

|cost(proj(∪br=1Q(ci−1r ), C∗(ci)), C) − cost(Q(ci), C)|

≤ εi · cost(proj(∪br=1Q(ci−1r ), C∗(ci)), C)

≤ εi · 3i(1+ ε)i−1 · cost(P(ci), C)

≤ εi ·O(2Õ(i)) · cost(P(ci), C).

As for the next step of the induction we also obtain a bound on as follows cost(Q(ci), C) as-
suming εi ≤ ε

cost(Q(ci), C) ≤ cost(proj(∪br=1Q(ci−1r ), C∗(ci)), C) + εi ·O(2Õ(i)) · cost(P(ci), C)

≤ 3i(1+ ε)i−1 · cost(P(ci), C) + εi · 3i(1+ ε)i−1 · cost(P(ci), C)

≤ 3i(1+ ε)i−1(1+ εi) · cost(P(ci), C)

≤ (3(1+ ε))i · cost(P(ci), C).

Therefore we can apply the whole machinary for the next step of the induction.

Applying the triangle inequality with probaility at least 1− δ, we get

|cost(∪bm=1Q(ci−1m ), C) − cost(S(ci), C) − cost(Q(ci), C)| ≤ εi ·O(2Õ(i)) · cost(P(ci), C).

Let S ′(ci) denote the union of ∪br=1S ′′(ci−1r ) and S(ci) which is in fact a union set of old triples
and new triples. Here also the same as in the above one can inductively prove that

cost(S ′(ci), C) =
∑

(p,wp,p−)∈S ′(ci)
wp · (dist(p,C) − dist(p−, C)) ≤

∑
(p,wp,p−)∈S ′(ci)

wp · (dist(p, p−))

≤ O(2Õ(i)) · cost(P(ci),OPT (P(ci))).
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We put εi = ε

O(2Õ(i·j))
and use Lemma 67 for S ′(ci) to sample a set S ′′(ci) of triples of size

t = O( 2
(Õ(i·j))2

ε2
· log(2/δ)).

Thus the cost of two setsQ(ci) and S ′′(ci) to an arbitrary j-subspace C is an unbiased estimator
for cost(P(ci), C). We should note that during logb n level of tree T we generate new points,
but overall number of generated points is at most loglogb n

b (n) · n. Now let Z of size |Z| =

O((loglogb n
b n · n)10dj) denote all possible j-subspaces in Rd generated by Algorithm NET, in

Section 6.3. We replace δ by δ ′/|Z| in sample size t to show that a strong coreset can be
maintained in data stream.

At clogb n, we set Q = Q(clogb n) and S ′′ = S ′′(clogb n) to get the sets claimed in the theorem.

Now we explain the space complexity of the algorithm. Put b = 2
j2

γ . In this way, the depth
of the b-ary tree T is log

2j
2/γ n = γ/j2 · log2 n. We put m0 = Õ((j · logn/ε2)j

2
) and mi =

Õ(( j·logn
ε2i

)j
2

log(2/δn)) for 1 ≤ i ≤ dep = dlogb ne where δn = δ/(loglogb n
b (n) · n)10dj is the

confidence parameter for the n points received so far, i is the level in which bucket size must
be mi, εi = ε

O(2Õ(i·j))
is the error parameter at level i.

We can have at most b buckets in each level for at most γ/j2 · log2 n levels therefore the

space complexity of our streaming algorithm will be Õ(d · γ/j2 · log2 n · 2
j2

γ · ( j·nγ
ε2

)j
2
) weighted

points. We set γ = 1
j3·√logn to have the space complexity of Õ(d · 2O(j5·

√
logn)( j·n

γ

ε2
)j
2
)) =

Õ(d · 2O(j5·
√

logn)(j/ε2 · 2
logn

j4·
√

logn )j
2
) = Õ(d · (j/ε2)j2 · 2O(j5·

√
logn)) weighted points. ut
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Chapter 7

O(logn)-Pass Lp-Sampler

In this chapter we give the details of the O(logn)-Pass Lp-Sampler that we introduced in
Section 3.3. The following is our main theorem.

Theorem 68 Let C be an arbitrary constant. Let 0 < ε ≤ 1
12 . Let δ = O(n−C) and η = Θ( ε

logn).
For any p ∈ [0, 2], there is an O(logn)-pass Lp-sampler that uses O(ε−2 log4 n) bits of space.
The probability of outputting FAIL is less than n−C for any constant C > 0.

The Algorithm. Our algorithm is given below.

O(logn)-Pass-Lp-Sampler (Stream S, ε)

(1) Initialize a = [n], δ = O(n−C), η = Θ( ε
logn), and β = 1.

(2) In the first pass, compute F̃p(a) =Fp-Estimation(S, a, 2ε, δ).

(3) If F̃p(a) = 0, Output FAIL.

(4) For j = 1, 2, . . . , log2 n, in (j+ 1)-st pass do:

(a) Let aL be the first |a|/2 items of a, and let aU = a \ aL.

(b) Let SL and SU be the interleaved streams consisting of the subsequence of
updates to aL and aU respectively.

(c) L← Fp-Estimation(SL, aL, η, δ),
U← Fp-Estimation(SU, aU, η, δ)

(d) If L = U = 0, output FAIL.

(e) With probability L
L+U , assign a ← aL, S ← SL, and β ← β · L

L+U , else assign
a← aU, S ← SU and β← β · U

L+U .

(5) Let i be such that a = {i}. Compute ai in an extra pass. Let q = (1+ 2ε)|ai|
p/F̃p(a).

(6) If |β− q| > 12ε · q, then output FAIL otherwise output (i, ai).

101
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The Proof. In this algorithm, the routine Fp-Estimation F̃p(a) =Fp-Estimation(S, a, ε, δ) is the
optimal-space algorithm for estimating the Fp-value of a vector due to Kane et al [KNW10] in
which the stream S corresponds to the vector a with error parameter ε and failure probability
δ, i.e, it returns a value F̃p(a) for which

Pr[|F̃p(a) − Fp(a)| ≤ ε · Fp(a)] ≥ 1− δ,

where Fp(a) is the p-th frequency moment of a.

Let SuccessfulSubroutines be the event that none of the invocations of Fp-Estimation in the
above algorithm is failed in Steps 3 and 4d.

Assume that SuccessfulSubroutines occurs. Let GoodNormEstimation be the event that Fp(a)
is well-approximated by F̃p(a), i.e,

(1− 2ε)Fp(a) ≤ F̃p(a) ≤ (1+ 2ε)Fp(a).

By our choice of δ and a union bound, with probability at least 1− n−C, the events Successful-
Subroutines and GoodNormEstimation occur.

Lemma 69 Suppose event SuccessfulSubroutines occurs. Let 0 < ε ≤ 1/9 and η = Θ( ε
logn).

Then for all i, the probability that coordinate i is chosen in Step 5 is (1± 4ε)|ai|p/Fp(a), i.e,

(1− 4ε)|ai|
p/Fp(a) ≤ β = Pr[i chosen in Step 5 ] ≤ (1+ 4ε)|ai|

p/Fp(a).

Proof. Fix an i ∈ [n]. Then there is a unique sequence of assignments

a0 = [n], a1, a2, . . . , alog2 n = {i}

to the loop variable a, for which a = aj after iteration j of Step 4, that cause coordinate i to be
chosen in Step 5. For j ∈ {0, 1, . . . , log2 n}, let Ej be the event that a = aj after iteration j of Step
4. Then,

Pr[i chosen in step 4] = ∩log2 n
j=0 Pr[Ej | E1, . . . , Ej−1]

= ∩log2 n
j=1 Pr[Ej | Ej−1].

For any j assuming that η ≤ 1/2, we get

Pr[Ej | Ej−1] ≤
(1+ η)Fp(a

j)

(1− η)Fp(a
j−1
L ) + (1− η)Fp(a

j−1
U )

=
(1+ η)

(1− η)
· Fp(a

j)

Fp(aj−1)

= (1+
2η

(1− η)
) · Fp(a

j)

Fp(aj−1)

= (1+ 3η) · Fp(a
j)

Fp(aj−1)
,
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and

Pr[Ej | Ej−1] ≥
(1− η)Fp(a

j)

(1+ η)Fp(a
j−1
L ) + (1+ η)Fp(a

j−1
U )

=
(1− η)

(1+ η)
· Fp(a

j)

Fp(aj−1)

= (1−
2η

(1+ η)
) · Fp(a

j)

Fp(aj−1)

= (1− 3η) · Fp(a
j)

Fp(aj−1)
.

Hence,

Pr[i chosen in Step 5] ≤ (1+ 3η)log2 n
log2 n∏
j=1

Fp(a
j)

Fp(aj−1)

= (1+ 3η)log2 n
|ai|

p

Fp(a)
,

and

Pr[i chosen in Step 5] ≤ (1− 3η)log2 n
log2 n∏
j=1

Fp(a
j)

Fp(aj−1)

= (1− 3η)log2 n
|ai|

p

Fp(a)
.

Using the well known fact that (1+ t) ≤ et for all t ∈ R, we have

(1+ 3η)log2 n ≤ e3η log2 n ≤ e3ε ≤ 1+ 4ε,

where the last inequality follows by a Taylor expansion, i.e,

e3ε = 1+
3ε

1!
+

(3ε)2

2!
+

(3ε)3

3!
+ · · · ≤ 1+ 3ε+ ε

2
+
ε

2
≤ 1+ 4ε,

for ε ≤ 1/9.

For the other direction, we appeal to Proposition B.3, part 2, of [MR95], which states that for
all t, n ∈ R such that r ≥ 1 and |t| ≤ r,

et(1− t2/r) ≤ (1+ t/r)r.

Then
(1− 3η)log2 n = (1− (3η log2 n)/ log2 n)

log2 n.

Thus, setting t = −3η log2 n, and r = log2 n, applying this inequality for ε ≤ 1/9 and η = ε
logn

we have,

(1− 3η)log2 n ≥ e−3η log2 n(1− (−3η log2 n)
2/(log2 n))

≥ (1− 3ε)(1− 9ε2) = 1− 3ε− 9ε2 + 27ε3 ≥ 1− 4ε.
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Thus,
(1− 4ε)|ai|

p/Fp(a) ≤ β = Pr[i chosen in Step 5 ] ≤ (1+ 4ε)|ai|
p/Fp(a).

ut

Proof. [of Theorem (68)] Let C be an arbitrary constant that we have it in Theorem 68. Recall
that 0 < ε ≤ 1

12 . Event SuccessfulSubroutines occurs with probability at least 1−1/(nC). In this
case, by Lemma 69, O(logn)-Pass-Lp-Sampler never outputs FAIL in Step 4d, and for each
i ∈ [n], the probability that coordinate i is chosen in Step 5 is (1± 4ε)|ai|p/Fp(a).

Event GoodNormEstimation occurs with probability at least 1 − n−C. We condition on both
SuccessfulSubroutines and GoodNormEstimation occurring, which, by a union bound and our
choice of δ = O(n−C), happens with probability at least 1− n−C.

Since GoodNormEstimation occurs and Fp(a) > 0, the algorithm does not output FAIL in Step
3 and

(1− 2ε)Fp(a) ≤ F̃p(a) ≤ (1+ 2ε)Fp(a).

Notice that q = (1+2ε)|ai|
p

F̃p(a)
, and we have that

(1+ 2ε)|ai|
p

(1− 2ε)Fp(a)
≥ q ≥ (1+ 2ε)|ai|

p

(1+ 2ε)Fp(a)

which is
(1+ 8ε)

|ai|
p

Fp(a)
=

(1− 2ε)(1+ 8ε)

(1− 2ε)

|ai|
p

Fp(a)
≥ q ≥ |ai|

p

Fp(a)
.

Hence
|β− q| ≤ (4ε+ 8ε)

|ai|
p

Fp(a)
≤ 12ε · q.

So the algorithm does not output FAIL in step 6.

For the efficiency, the number of passes is always O(logn). The space used is dominated
by that of Fp-Estimation on a set of size at most n with the failure probability parameter δ =
O(n−C) and the relative error parameter η = Θ( ε

logn) for C which is an arbitrary constant that
we have it in Theorem 68. The space is O(ε−2 log4 n) since the space of Fp-Estimation is
O(η−2 logn · log(1/δ)) bits. ut



Chapter 8

1-Pass Lp-Sampler

Our goal in this chapter is to reduce the number of passes of the Lp-sampler from O(logn)
pass in the previous chapter to only one pass. The following is our main theorem.

Theorem 70 Let 0 < ε ≤ 1 and let C > 0 be an arbitrarily large constant. For any p ∈ [0, 2],
there is a 1-pass Lp-sampler that uses poly(ε−1 logn) bits of space. Ignoring an initial data
structure initialization stage (which doesn’t require looking at the stream), the update time of
the Lp-sampler is poly(ε−1 logn). There is also an n−C probability of failure of the algorithm, in
which case it can output anything.

We first describe the solution for p ∈ (0, 2] which is overviewed in Section 3.4. At the end of
this chapter in Section 8.2 we describe how to sample when p = 0, which is in fact simpler.

8.1 The Proof of Theorem 70 for p ∈ (0, 2]

Throughout we use an algorithm that we call HeavyHitters, which is given by the following
theorem. The algorithm has its roots in the CountSketch algorithm of Charikar et al [CCFC02],
but that algorithm did not have fast reporting time for streams in the turnstile model. This
property was later achieved by Ganguly et al [GSS08], building upon work of Cormode and
Muthukrishnan [CM05a].

Theorem 71 ([CCFC02, CM05a, GSS08]) Let 0 < δ < 1. Let a be a vector of length n initial-
ized to zero. Let S be a stream of m updates (i, x) to a, where i ∈ [n] and x ∈ {−M, · · · ,+M}.
There is an algorithm HeavyHitters(S, B, δ, ε) that, with probability at least 1 − δ, returns all
coordinates i (plus potentially some more coordinates) for which |ai|

2 ≥ F2(a)
B , together with an

approximation ãi such that |ai| ≤ |ãi| ≤ (1 + ε)|ai| and sign(ãi) = sign(ai). Here B is an input
parameter. The space complexity of HeavyHitters is B ·poly(ε−1 logn) log 1/δ. The update time
is poly(ε−1 logn), and the reporting time is poly(Bε−1 logn).
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Corollary 72 For any p ∈ (0, 2], with probability at least 1 − δ, the output of HeavyHitters also
contains all items i for which |ai|

p ≥ Fp(a)

Bp/2
.

Proof. For p ∈ (0, 2], if |ai|p ≥ Fp(a)

Bp/2
, then |ai|

2 ≥ (Fp(a))2/p

B , and, by monotonicity of norms

(see, e.g., [Fri04]), (Fp(a))2/p ≥ F2(a). Hence, |ai|2 ≥ F2(a)
B , as needed in order to be found by

HeavyHitters. ut

We start with the following definition of level sets, modified from that of [IW05, JW09]. We
should mention that another definition of level sets was also developed by Frahling and Sohler
in [FS05] for the problem of finding coresets for k-median and k-means problem in dynamic
geometric data streams which is a variant of the turnstile model.

Fix an η = 1 + Θ(ε). Let C ′ be a sufficiently large constant. We shall make the simplifying
assumption that all values |ai|, if non-zero, are integers of absolute value at least τ = C ′ε−1.
This is w.l.o.g., since for each update (i, x) in the input stream S, we can replace it with update
(i, τx). This will also change Fp by a factor of τp, but will not affect the distribution we are
trying to sample from. In the continuation we drop the vector (a) from Fp(a) and show it with
Fp whenever it is clear from context.

Definition 73 Let B ≥ 1 be a parameter. For 1 ≤ t ≤ Θ(ε−1 log ε−1), define St = {i ∈ [n] :
|ai| = t}, and forΩ(ε−1 log ε−1) ≤ t ≤ Cη logn, for some constant Cη that depends on η, define

St = {i ∈ [n] : |ai| ∈ [ηt−1, ηt)}.

Call a level t (1/B)-contributing if |St| · ηpt ≥ Fp
B . For a (1/B)-contributing level t, coordinates in

St will also be called (1/B)-contributing coordinates.

In the description of our algorithms, we assume that we have a value F ′p with Fp ≤ F ′p ≤
(1+Θ(ε))Fp. This is w.l.o.g., since the algorithm can guess each value in a set of O(ε−1 logn)
possible values, and use this as the estimate F ′p. In parallel, the algorithm runs theO(ε−2 logn)
space algorithm of [KNW10] to obtain a (1+Θ(ε))-approximation to Fp, and after processing the
stream knows which of its guesses is correct. This only changes the space by a poly(ε−1 logn)
factor.

We can assume that ||a||pp ≥ ε−2. Notice that if this were not the case, i.e., we had ||a||
p
p < ε

−2,
then since the entries of a are integers, the number ||a||0 of non-zero coordinates is at most
ε−2. In this case it is easy to obtain all non-zero coordinates i together with the exact values ai
in poly(ε−1 logn) bits of space using our L0-sampler in Section 8.2.

Indeed, if we run the L0-sampler O(ε−2 logn) times, the probability we obtain every non-zero
coordinate i together with its value ai is ≥ 1−n−C. As the space complexity of the L0-sampler
is poly(ε−1 logn), our resulting space is also poly(ε−1 logn). Given all the non-zero items
together with their values ai, it is then trivial to do Lp-sampling.
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Put T = Cη logn. We will perform the following transformation to the stream S, creating a new
input stream S ′. Say a t ∈ [T ] is growing if

ηpt ≤
ε4F ′p

5T 3 log2 n
.

StreamTransformation (S, p)

• S ′ ← S
• For each t ∈ [T ] for which t is growing:

(1) Allocate
⌈
εF ′p
5Tηpt

⌉
new coordinates.

(2) For each new coordinate j, prepend the pair (j, bηt−1/2c) to the stream S ′.

• Output the stream S ′.

Let a ′ denote the underlying vector of S ′, which is of length poly(n). We refer to each new
coordinate added by StreamTransformation as an injected coordinate (that is, a coordinate that
appears in a ′ but not in a is an injected coordinate). Notice that bηt−1/2c = bηt−1 · η1/2c.

Lemma 74 For growing t, the number of injected coordinates added is at least ε−3T 2 log2 n.

Proof. For growing t, the number of coordinates added is
⌈
εF ′p
5Tηpt

⌉
≥

εF ′p
5Tε4F ′p/(5T 3 log2 n)

= ε−3T 2 log2 n.

ut

Lemma 75 Fp(a) ≤ Fp(a ′) ≤ (1+ ε/2)Fp(a), for ε less than a sufficiently small constant.

Proof. The left inequality is obvious. For the right inequality, fix a growing t. Then the added
contribution of this level set to Fp is at most

dεF ′p/(5Tηpt)e · ηp(t−1/2).

By Lemma 74, dεF ′p/(5Tηpt)e ≥ ε−3T 2 log2 n, which in particular implies εF ′p/(5Tηpt) ≥ 1.
Hence,

dεF ′p/(5Tηpt)e · ηp(t−1/2) ≤ 2εηpt−p/2F ′p/(5Tηpt) ≤ 2εF ′p/(5T)
Hence, the added contribution is at most

2εF ′p/(5T) ≤ εFp(a)/(2T).

The lemma follows by summing over all t. ut
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Lemma 76 With respect to a ′, each growing t is ε/(40T)-contributing.

Proof. Each growing t contributes at least bηt−1/2cp · εF ′p
5Tηpt

≥ ηpt−p/2

2p · εF ′p
5Tηpt

to Fp(a ′), which is
at least

η−p/2εF ′p
5T2p

≥ η
−p/2εFp(a)

5T2p
≥ η

−p/2εFp(a
′)

5T2p(1+ ε
2 )
≥ εFp(a

′)
40T

,

where the second to last inequality follows from Lemma 75. ut

Recall that Let a ′ denote the underlying vector of S ′, which is of length poly(n). Note that S ′ is
the output of StreamTransformation. We start with the following assumption: for all i, if i ∈ St,
then |a ′i | ≤ ηt/(1 + βε) for a small constant β > 0. Intuitively, this is to ensure that the |a ′i | are
away from their upper boundaries, so that when HeavyHitters returns (1+Θ(ε))-approximations
to the |a ′i |, which are guaranteed to be at least |a ′i |, the i can be classified correctly into the
corresponding St. We note that for an injected coordinate j with value bηt−1/2c for some t, we
have bηt−1/2c ≤ ηt−1/2 = ηt

1+Θ(ε) , so this assumption already holds for the injected coordinates.
Later we show that this assumption is unnecessary for all coordinates.

We can consider the operation on stream S ′ as opposed to S, since StreamTransformation
can be implemented in poly(ε−1 logn) space in a preprocessing phase, i.e., without looking at
the pairs in S. The following is our main sampling algorithm.

Lp-Sampler(S ′, p)

(1) L ← HeavyHitters(S ′, A, n−C, ε/C), where A = (5T 3ε−4 log2 n)2/p. Let the ˜(a ′)i be
estimates of the a ′i for all i ∈ L.

(2) B = (6400 · 1600ε−3ηpT 3 log3 n)2/p.

(3) Independently, for z = 1, 2, . . . , C logn,

(a) Put {Lzj | all j} = ListHH(S ′, B).
(b) Put {s̃zt | growing t} =Set-Estimation({Lzj | all j}).

(4) For growing t, put s̃t = medianz s̃zt .

(5) {(xt, ˜(a ′)xt) | growing t} =Sample-Extraction(S ′, B).

(6) G =
∑
i∈L |

˜(a ′)i|
p +
∑T
t=1 s̃t · | ˜(a ′)xt |

p.

(7) Choose a sample u from the distribution:
Pr[u = i] =

| ˜(a ′)i|
p

G if i ∈ L;

Pr[u = xt] =
s̃t·| ˜(a ′)xt

|p

G .

(8) Repeat Steps (1-7) independently C logn times. If in all repetitions the sample u
returned is an injected coordinate, then report FAIL; else return (u, ˜(a ′)i) if i ∈ L, or
the value (u, ˜(a ′)xt). Do this from the first repetition for which the sample u obtained
is not an injected coordinate.
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ListHH(S ′, B)

(1) For j ∈ [log |a ′|], independently sample functions hj : [|a ′|] → [|a ′|] from a set of
pairwise independent hash functions.

(2) Let Sj be the restriction of S ′ to those pairs (i, x) for which hj(i) ≤ |a ′|2−j.

(3) Return, for each j ∈ [log |a ′|], Lj = HeavyHitters(Sj, B, 1/(C log |a ′|), ε/C).

Set-Estimation({Lj | all j})

(1) For growing t,

(a) Choose the largest j for which Lj contains at least 1600ε−2T 2 log2 n elements of
St. If there is such a j,

• S ′t = St ∩ Lj and j(t) = j.
• s̃t = 2j(t) · |S ′t|.

(2) Return s̃t for each t for which a j was found, and return 0 for the other growing t.

Sample-Extraction(S ′, B)

(1) D← C(ε−3T 4 log2 n)2, and E← C logn.

(2) For j ∈ [log(Cε−1|a ′|)],

(a) Independently sample gj : [Cε−1|a ′|] → [Cε−1|a ′|] from a (C log(ε−1|a ′|))-wise
independent family of hash functions.

(b) For e ∈ [E], independently sample fj,e : [Cε−1|a ′|]→ [D] from a D-wise indepen-
dent family.

(3) For j ∈ [log(Cε−1|a ′|)], d ∈ [D], and e ∈ [E],

(a) Let Sj,d,e be the restriction of S ′ to those pairs (i, x) for which gj(i) ≤
(Cε−1|a ′|)2−j and fj,e(i) = d.

(b) For B ′ = O(T 4ε−3 log2 n)2/p, Mj,d,e = HeavyHitters(Sj,d,e, B ′, n−C, ε/C).

(4) For growing t, choose the largest j = j(t) for which ∪d,eMj,d,e contains ≥
1600ε−2T 2 log2 n elements of St. If there is such a j:

• S ′′t = St ∩
(
∪d,eMj(t),d,e

)
.

• Let wt be the element of S ′′t that minimizes gj(t).

(5) Return (wt, ãw(t)) for those t for which a j(t) was found.

One of the subroutines that algorithm Lp-Sampler invokes is ListHH. This is an algorithm which
takes in the stream S ′ and a parameter B, sub-samples the stream at a logarithmic number of
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different rates, using independent hash functions hj : [|a ′|] → [|a ′|], and then invokes Heavy-
Hitters on the substream with B as an input parameter. Let C be a sufficiently large constant.
The ListHH algorithm is invoked C logn times in Step 3 of Lp-Sampler, once for each value of
z. Moreover, the Set-Estimation algorithm is also invoked for each value of z.

Let us fix a value of z in Step 3, and analyze the output of ListHH and Set-Estimation. For this
value of z, let Vj denote the set of coordinates i in a for which hj(i) ≤ |a ′|2−j in ListHH.

The Random Events. Define the events:

• E : for all growing t and all j ∈ [log |a ′|], |St ∩ Vj| ≤ 40|St|2−jT logn.

• F : for all growing t and all j ∈ [log |a ′|], if E[|St ∩ Vj|] ≥ 40ε−2T logn, then
|St ∩ Vj| ∈ [(1− ε)|St|2

−j, (1+ ε)|St|2
−j].

• G: for all j ∈ [log |a ′|], Fp(a ′(j)) ≤ 40 logn · 2−jFp(a ′), where a ′(j) is the restriction of a ′ to
the coordinates in Vj.

• H: all invocations of HeavyHitters by ListHH succeed.

Lemma 77
Pr[E ∧ F ∧ G ∧H] ≥ 9/10.

Proof. First for the event E , observe that E[|St ∩ Vj|] = |St|2
−j, and so by a Markov and a union

bound over all t and all j, we obtain

Pr[E ] ≥ 39/40.

To bound Pr[F ], fix a growing t and a j satisfying

E[|St ∩ Vj|] ≥ 40ε−2T logn.

Let It,jx be an indicator for the event that an x ∈ St is also in Vj.

Put It,j =
∑
x∈St I

t,j
x . Then

E[It,j] = |St|2
−j ≥ 40ε−2T logn.

Since hj is drawn from a pairwise-independent family, Var[It,j] ≤ E[It,j]. By Chebyshev’s in-
equality,

Pr[|It,j − E[It,j]| ≥ εE[It,j]] ≤ 1

ε2E[It,j]
≤ 1

ε2 · 40ε−2T logn
≤ 1

40T logn
.

By a union bound over growing t and the j satisfying E[|St∩Vj|] ≥ 40ε−2T logn, Pr[F ] ≥ 39/40.
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For the event G, for a fixed j, we have E[Fp(a ′(j))] = 2−jFp(a ′). By a Markov bound,

Pr[Fp(a ′) ≥ 40 logn · 2−jFp(a ′)] ≤
1

40 logn
.

By a union bound,
Pr[G] ≥ 39/40.

Finally for the eventH, as HeavyHitters is invoked log |a ′| times with error probability 1/(C log |a ′|),
for a sufficiently large constant C, we get that

Pr[H] ≥ 39/40.

By a union bound,
Pr[E ∧ F ∧ G ∧H] ≥ 9/10

as we want. ut

Lemma 78 Fix a z ∈ [C logn]. Then with probability at least 9/10, for all growing t, there is a
j = j(t) assigned to t by Set-Estimation, and also

s̃zt ∈ [(1− ε)|St|, (1+ ε)|St|].

Proof. We condition on E ,F ,G, and H jointly occuring. Fix a growing t. We first show there is
a j = j(t) assigned to t by Set-Estimation. By Lemma 74,

|St| ≥ ε−3T 2 log2 n.

It follows that, for small enough ε, there is a unique j∗ ≥ 0 for which

3200ε−2T 2 log2 n ≤ 2−j∗ |St| < 6400ε−2T 2 log2 n. (8.1)

Since St is growing, by Lemma 76,

|St| · ηpt ≥
εFp(a

′)
40T

.

Hence,

2−j
∗
|St|η

pt ≥ ε2
−j∗Fp(a

′)
40T

.

Since event G occurs,
Fp(a

′(j∗)) ≤ 40 logn · 2−j∗Fp(a ′),

and so

2−j
∗
|St|η

pt ≥ εFp(a
′(j∗))

1600T logn
. (8.2)
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Since 2−j
∗
|St| < 6400ε

−2T 2 log2 n by (8.1), we have

ηp(t−1) ≥ ε3Fp(a
′(j∗))

6400 · 1600ηpT 3 log3 n
.

Now we use the fact that event H occurs, and so HeavyHitters(Sj∗ , B, 1/(C log |a ′|), ε/C) suc-
ceeds in reporting a list Lzj∗ containing all i for which |a ′i |

p ≥ Fp
Bp/2

, where

B = (6400 · 1600ε−3ηpT 3 log3 n)2/p.

In particular, Lzj∗ contains Vj∗ ∩ St, and these coordinates i will be correctly classifed into St
given our assumption that the |a ′i | are away from their upper boundaries. Finally, notice that
E[|St∩Vj∗ |] = 2−j

∗
|St|, which is at least 3200ε−2T 2 log2 n by (8.1). Hence, since event F occurs,

|Vj∗ ∩ St| ≥ 3200(1− ε)ε−2T 2 log2 n ≥ 1600ε−2T 2 log2 n

for ε ≤ 1/2. It follows that t is assigned a value j(t) in Set-Estimation.

Now we show that
s̃zt ∈ [(1− ε)|St|, (1+ ε)|St|].

We must show that
2j(t)|S ′t| ∈ [(1− ε)|St|, (1+ ε)|St|],

for the j(t) assigned to t by Set-Estimation (which need not equal j∗), and where S ′t = St∩Lj(t).
Now j(t) is such that

|Lzj(t) ∩ St| ≥ 1600ε−2T 2 log2 n.

Since event E occurs,
|St ∩ Vj(t)| ≤ 40|St|2−j(t)T logn.

It follows that
|St|2

−j(t) = E[|St ∩ Vj(t)|] ≥ 40ε−2T logn.

But then since event F occurs, it follows that

|St ∩ Vj(t)| ∈ [(1− ε)|St|2
−j(t), (1+ ε)|St|2

−j(t)].

The same analysis above for j∗ in (8.2) shows that for j(t),

2−j(t)|St|η
pt ≥ εFp(a

′(j(t)))
1600T logn

.

Since we have shown that Lzj∗ contains at least 1600ε−2T 2 log2 n elements of St, we must nec-
essarily have j(t) ≥ j∗ since the Set-Estimation algorithm chooses the largest value of j for
which Lzj contains at least 1600ε−2T 2 log2 n elements of St. But then

2−j(t)|St| ≤ 2−j
∗
|St| < 6400ε

−2T 2 log2 n,
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and so

ηp(t−1) ≥ ε3Fp(a
′(j(t)))

6400 · 1600ηpT 3 log3 n
.

Since we are conditioning on event H occurring, HeavyHitters(Sj(t), B, 1/(C log |a ′|), ε/C) suc-
ceeds in reporting a list Lzj(t) containing Vj(t) ∩ St, and these coordinates i will be correctly
classified into St given that the |a ′i | are away from their upper boundaries. It follows that

|S ′t| = |Vj(t) ∩ St| ∈ [(1− ε)|St|2
−j(t), (1+ ε)|St|2

−j(t)].

Hence, s̃t ∈ [(1− ε)|St|, (1+ ε)|St|], as desired.

ut

Corollary 79 With probability ≥ 1− n−Θ(C), for an absolute constant hidden in the Θ(·),

s̃t = medianz s̃zt ∈ [(1− ε)|St|, (1+ ε)|St|].

We now turn to Steps 5 and beyond, which are based on the following Sample-Extraction
algorithm. Recall that the underlying vector is a ′ (the output of StreamTransformation) with
length |a ′| = poly(n). Let C > 0 be a sufficiently large constant.

The algorithm, like the ListHH algorithm, performs sub-sampling at a logarithmic number of
different rates. The first difference is that the functions gj used to do the sub-sampling are now
C log(ε−1|a ′|)-wise independent, and map [Cε−1|a ′|] to [Cε−1|a ′|]. This will allow us to apply
a theorem of Indyk [Ind99] which relates hash function families with limited independence to
ε-min-wise independent families, which we shall define in the analysis.

The second difference is that the surviving coordinates, for a given level of sub-sampling,
are further hashed into D buckets using a D-wise independent hash function. This second
bucketing operation is repeated independently E = C logn times. The ultimate goal of this
bucketization is to guarantee that in a sub-sampling level j for which items from St are extracted,
all surviving items from St are reported with very high probability. This requires showing that
the heavy items, i.e., those from ∪t ′≥tSt ′ in the substreams, are perfectly hashed into the D
buckets for some repetition e ∈ [E], with high probability. Given all surviving items from St,
which is the set of coordinates i satisfying gj(i) ≤ Cε−1|a ′|2−j, we can find the i ∈ St which
minimizes gj. Given that gj is from an ε-min-wise independent family, this i is a random element
of St, up to a small relative error.

Lemma 80 With probability 1 − n−Ω(C), for each growing t a pair (wt, aw(t)) is returned by
Sample-Extraction. Moreover, conditioned on returning a pair for St, for all α ∈ St we have

Pr[wt = α] = (1± ε) · 1
|St|
± n−Ω(C).

Proof. We let Uj be the set of coordinates for which gj(i) ≤ (Cε−1|a ′|)2−j, and a ′′(j) be the
vector a restricted to coordinates in Uj.
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Define the random events:

• E ′: for all growing t and j ∈ [log(Cε−1|a ′|)],

|St ∩Uj| ≤ 2|St|2−j +O(logn).

• F ′: for all growing t and j ∈ [log(Cε−1|a ′|)], if

E[|St ∩Uj|] ≥ ε−2 logn,

then
|St ∩Uj| ∈ [(1− ε)|St|2

−j, (1+ ε)|St|2
−j].

• H ′: all invocations of HeavyHitters by Sample-Extraction succeed.

We need the following proposition.

Proposition 81 Pr[E ′ ∧ F ′ ∧H ′] ≥ 1− n−Θ(C), for an absolute constant in the Θ(·).

Proof. Since gj is C log(ε−1|a ′|)-wise independent for sufficiently large C, one can use the
concentration bound of Theorem 7. We can assume log(ε−1|a ′|) = Θ(logn), as otherwise ε is
so small that we can just store the entire vector a ′ in poly(ε−1 logn) bits of space.

Suppose we set A = |St|2
−j +Θ(logn). Using the fact that E[|St ∩Uj|] = |St|2

−j and Theorem 7
for d = log(ε−1|a ′|) = Θ(logn),

Pr
[
|St ∩Uj|− |St|2

−j > |St|2
−j +Θ(logn)

]
≤ 8

(
dE[|St ∩Uj|] + d2

A2

)d/2

≤ 8
(
O(logn)|St|2−j +O(log2 n)

|St|22−2j +Θ(log2 n)

)C·Θ(logn)

.

Now, there are two cases: (1) |St|2−j ≤ logn, and (2) |St|2−j > logn. In both cases the RHS
has the form 8(C ′)C·Θ(logn) for a constant C ′ > 0, and so it can be bounded by n−Θ(C), which
upper bounds Pr[¬ E ′].

To upper bound Pr[¬ F ′], we set A = εE[|St ∩Uj|] = ε|St|2−j.

Then by Theorem 7,

Pr
[
||St ∩Uj|− |St|2

−j| ≥ ε|St|2−j
]
≤ 8

(
O(logn)|St|2−j +O(log2 n)

ε2|St|22−2j

)C·Ω(logn)

.

Using the premise of event F ′, namely, that |St|2−j ≥ ε−2 logn, the RHS can be bounded by
n−Θ(C), which upper bounds Pr[¬ F ′].
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Since HeavyHitters is invoked poly(ε−1 logn) times by Sample-Extraction with error parameter
n−C, by a union bound,

Pr[E ′ ∧ F ′ ∧H ′] ≥ 1− n−Θ(C),

for an absolute constant in the Θ(·). ut

We condition on these three events in the remainder of the proof of Lemma 80.

Fix a t that is growing. Below we will show that a j(t) is assigned to t in Step 4 of Sample-
Extraction. Next, we show that Sample-Extraction ensures that with probability ≥ 1−n−Θ(C), all
coordinates inUj(t)∩St are in S ′′t . This is stronger than the guarantee of Lemma 78, which could
only guarantee this with constant probability (or by minor modifications, 1−poly(ε log−1 n) prob-
ability). One obstacle is that there may be no concentration in the random variables Fp(a ′′(j)),
and if they are too large, then we cannot collect the heavy hitters in the corresponding sub-
stream. In the proof of Lemma 78 it sufficed to bound the Fp(a ′′(j)) using Markov’s inequality.
Here, we further partition the streams Sj into D pieces Sj,1, . . . ,Sj,D. We do this independently
E times, so that for all j,

∀e ∈ [E], Sj = ∪d∈[D]Sj,d,e.

Let a ′′(j, d, e) denote the restriction of the vector a ′′(j) to coordinates that go to the d-th bucket
in the e-th independent repetition.

Proposition 82 With probability ≥ 1 − n−Θ(C), a j(t) is assigned to t in Step 4 of Sample-
Extraction and all coordinates in Uj(t) ∩ St are in S ′′t , i.e.,

Pr[S ′′t = Uj(t) ∩ St] ≥ 1− n−Θ(C).

Proof. Fix a j ∈ [log(Cε−1|a ′|)]. By Lemma 74, the number of elements in level sets that are
not growing is at most O(ε−3T 3 log2 n) (recall there are T levels). Next, for a t ′ ≥ t that is
growing, since event E ′ occurs,

|St ′ ∩Uj| ≤ 2|St ′ |2−j +O(logn). (8.3)

Moreover, St ′ cannot be much larger than St, as otherwise St could not be ε/(40T)-contributing,
as per Lemma 76. That is,

|St|η
pt ≥ εFp(a ′)/(40T),

and since t ′ ≥ t all coordinates in St ′ have absolute value at least ηt−1. Then necessarily,

|S ′t| ≤ 40Tηpε−1|St|.

Combining this inequality with that of (8.3),

|St ′ ∩Uj| = O(Tε−1|St|2−j + logn),

and so
| ∪t ′≥t St ′ ∩Uj| = O(T 2ε−1|St|2−j + T logn).
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By Lemma 74,
|St| ≥ ε−3T 2 log2 n.

Hence, for small enough ε, there is a unique j∗ ≥ 0 for which

3200ε−2T 2 log2 n ≤ |St|2
−j∗ < 6400ε−2T 2 log2 n.

In the remainder of the proof we restrict our attention to those j for which j ≥ j∗. For such j,

| ∪t ′≥t St ′ ∩Uj| = O(ε−3T 4 log2 n).

Now, fix an e ∈ [E].

Since the fj,e are chosen from a D-wise independent family for D = C(ε−3T 4 log2 n)2, it follows
that for a sufficiently large constant C > 0, with probability ≥ 1/2, none of the items in ∪t ′≥tSt ′∩
Uj go to the same bucket (i.e., agree on the function fj,e).

We now show that conditioned on E ′∧F ′∧H ′ and assuming that the items in ∪t ′≥tSt ′ ∩Uj are
perfectly hashed, for each i ∈ Uj∩St, the coordinate i is returned by HeavyHitters(Sj,d,e, B, n−C, ε/C).

For this, we need a bound on Fp(a ′′(j, d, e)) for each bucket d ∈ [D] in an iteration e ∈ [E]
containing an element of St. Fix a d ∈ [D]. Since event E ′ occurs, the number yt ′ of items in a
growing t ′ < t that collide in the d-th bucket is O(|St ′ |2−j + logn).

Since St is ε/(40T)-contributing,

|St|η
pt ≥ εFp(a

′)
40T

,

and since
|St ′ |η

p(t ′−1) ≤ Fp(a ′),

we obtain the bound
|St ′ | ≤ 40Tε−1ηp|St|ηpt−pt

′
.

Since j ≥ j∗, we have
2−j|St| ≤ 2−j

∗
|St| = O(ε

−2T 2 log2 n),

and so we obtain yt ′ = O(T 3ε−3ηpt−pt
′
log2 n). It follows that the contribution to Fp(a ′′(j, d, e))

is at most
ηpt

′
yt ′ = O(T

3ε−3ηpt log2 n).

Hence, the total contribution from all t ′ < t to Fp(a ′′(j, d, e)) is at most

O(T 4ε−3ηpt log2 n).

But the contribution of the single item in St in this bucket to Fp(a ′′(j, d, e)) is at least ηpt−p.
Since HeavyHitters is invoked with parameter B ′ = O(T 4ε−3 log2 n)2/p, the single item in St
in this bucket will be returned, using the fact that event H ′ occurs, and thus HeavyHitters
succeeds.
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Since E = C logn, it follows that with probability ≥ 1 − n−Θ(C), there is a value of e for which
the items in ∪t ′≥tSt ′ ∩Uj are perfectly hashed, and hence with this probability

∪d,eMj,d,e = St ∩Uj,

for any j ≥ j∗. Now, notice that

E[|St ∩Uj∗ |] = |St|2
−j∗ ≥ 3200ε−2T 2 log2 n.

Hence, since event F ′ occurs,

|St ∩Uj∗ | ≥ (1− ε)E[|St ∩Uj∗ |] ≥ 1600ε−2T 2 log2 n.

This implies that in Step 4 of Sample-Extraction the value j∗ satisfies the criterion that ∪d,eMj∗,d,e

contains at least 1600ε−2T 2 log2 n elements of St. Since Sample-Extraction sets j(t) to be the
largest such j, the value t will be assigned a value j(t) ≥ j∗.

The above implies that
Pr[S ′′t = Uj(t) ∩ St] ≥ 1− n−Θ(C).

This concludes the proof of the proposition. ut

Now if S ′′t = Uj(t) ∩ St, then all coordinates i in St for which gj(i) ≤ (Cε−1|a ′|)2−j are in S ′′t , and
there are at least 1600ε−2T 2 log2 n ≥ 1 of them. In particular, we can find the coordinate i for
which

gj(i) = min
i ′∈St

gj(i
′).

Now we apply Theorem 9 which shows how to construct a family of (ε, s)-min-wise indepen-
dent hash functions (see Definition 8 for the definition of (ε, s)-min-wise independent hash
functions). In particular we apply this theorem with N = Cε−1|a ′| and s = |a ′|. Our family
of hash functions is also C log ε−1|a ′|-wise independent. Hence, for C > 0 a sufficiently large
constant, we have for all i ∈ St,

Pr[gj(i) = min
i ′∈St

gj(i
′)] = (1±Θ(ε)) · 1

|St|
.

This finishes the proof of Lemma 80. ut

Theorem 83 For any p ∈ [0, 2], the probability that Lp-Sampler(S ′, p) returns (i, (1± Θ(ε))ai)
is

(1± ε) |ai|
p

Fp(a)
± n−C

for an arbitrarily large constant C > 0. The space complexity is poly(ε−1 logn) bits. Ignoring
the time of StreamTransformation, which can be performed without looking at the data stream,
the update time is poly(ε−1 logn).

Proof. For p ∈ (0, 2], by Corollary 79 and Lemma 80, with probability at least 1− n−Θ(C),

s̃t ∈ [(1− ε)|St|, (1+ ε)|St|]
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and for each growing t a sample wt is returned with probability |St|
−1 ± n−Θ(C). We also

condition on the event that HeavyHitters succeeds in returning all coordinates not in growing
St in Step 1; this only adds an additional n−C to the error probability. It now follows that in Step
7,

Pr[u = i] = (1±Θ(ε)) |ai|
p

Fp
± n−Θ(C).

By Lemma 75, the total contribution of injected coordinates to Fp(a ′) is O(ε)Fp(a ′). Hence, in
Step 8, the probability that in C logn repetitions all samples are injected coordinates is at most
n−Θ(C). The statement of the theorem now follows by adjusting C and ε by constant factors. It
is also easy to see that the space of the overall algorithm is poly(ε−1 logn) bits. The update
time is dominated by that of the HeavyHitters subroutines, and is poly(ε−1 logn). ut

We now show how to remove the assumption that the |a ′i | are away from their boundaries.

Removing the assumption The above algorithm holds under the assumption that for all i, if
i ∈ St, then |a ′i | ≤ ηt/(1 + βε), for a small constant β > 0, allowing HeavyHitters to accurately
classify the coordinates that it finds. This assumption is easy to remove given an additional
pass, since one can compute the |ai| exactly and then perform classification. To achieve a
1-pass algorithm, we make the following observation.

We note that the guarantees of our algorithm do not change by more than a factor of ηp =
1 + Θ(ε) provided the classification of coordinates i into the level sets St is consistent. That
is, if coordinate i is returned by multiple HeavyHitters invocations, then each invocation must
classify it into the same level set St. Notice that consistency is easily enforced since the total
number of items returned, across all HeavyHitters invocations, is poly(ε−1 logn), and hence
the algorithm can simply remember a table indicating how previous coordinates returned were
classified.

This effectively takes the underlying vector a ′, and multiplies some coordinates by a value of
at most η (those that are mis-classified into their neighboring level set). Sampling from the
resulting vector is equivalent to sampling from a ′, up to a factor of η. We need consistency
for estimating the set sizes |St|, since we do not want to count one coordinate towards multiple
St. Notice that unlike the algorithm of Indyk and Woodruff [IW05], we do not have to worry
about some level sets no longer contributing because of mis-classification. This is because,
as argued earlier, all injected coordinates are not near their boundaries, by definition, so they
will still be correctly classified, and so all growing sets will still be poly(ε log−1 n)-contributing
(items from the non-growing sets do not undergo classification).

8.2 The Proof of Theorem 70 for p = 0

At this time we can work directly on the vector a, without introducing injected coordinates as
needed for Lp-sampling, p > 0. However, notice that to remove the assumption that ||a||pp >
ε−2 for the Lp-sampler of the revious section, the L0-Sampler is invoked on the vector a ′ of
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that section. We should mention that in [FIS05], Frahling, Indyk, and Sohler also develop
L0-sampler. They needed this subroutine to study geometric problems such as maintaining
approximate range spaces and costs of Euclidean spanning trees in the dynamic geometric
data streams. Although the space complexity of our algorithm is inferior to their algorithm, but
it gives a different solution for this basic problem.

Theorem 84 There exists a 1-pass algorithm L0-Sampler which, given a stream S of an un-
derlying vector a, outputs a random non-zero coordinate i together with the value ai, such that
for all non-zero ai, the probability that L0-Sampler outputs (i, ai) is

(1± ε) · 1

||a||0
± n−C

for an arbitrarily large constant C > 0. The space complexity is poly(ε−1 logn) bits, and the
update time is poly(ε−1 logn).

Proof. Let C > 0 be a sufficiently large constant. We first assume that ||a||0 ≥ C. W.l.o.g.,
Cε−1n is a power of 2. We choose C log(ε−1n) independent hash functions hj : [Cε−1n] →
[Cε−1n] from a family ofC log(ε−1n)-wise independent hash functions. For j = 0, . . . , log(Cε−1n),
we say that a coordinate i of a survives with respect to hj if hj(i) ≤ 2−j(Cε−1n). Let Sj be the
restriction of updates in S to coordinates that survive with respect to hj. Let a(j) denote the
restriction of the underlying vector a to coordinates that survive with respect to hj. On each Sj,
we run a poly(logn)-space L0-estimation algorithm to estimate a(j) up to a factor of (1 ± 1/3)
in the general turnstile model with error probability n−Θ(C), e.g., the algorithm of [KNW10].
Denote the resulting estimate Ej. Further, for each Sj choose C logn independent C3-wise
independent hash functions ψj,r : [n]→ [C3], for r ∈ [C logn]. We maintain the counters:

cj,r,d =
∑

` s.t. hj(`)≤2−jn and ψj,r(`)=d

a`.

We repeat the entire procedure in the previous paragraph C logn times in parallel. We find
some repetition for which there is a j for which Ej ∈ [C/16,C]. If there is no such j, then we
output the symbol FAIL. Otherwise, we arbitrarily choose one repetition for which such a j was
found.

From the counters cj,r,d, one can recover the list Lj of all coordinates i in a(j), together with
their values ai. This follows since for each fixed value of r, the at most 32 · Ej = 3C

2 survivors
with respect to hj are perfectly hashed with probability ≥ 2/3 (for large enough C). Hence, with
probability ≥ 1− n−Θ(C), for all survivors i we have,

ai = medianr cj,r,ψ(i).

If the list Lj does not contain at least (3/4)C/16 coordinates, then we output FAIL. Else, we find
the coordinate i in Lj which minimizes hj, and output (i, ai).

We can assume that all invocations of the L0-estimation succeed. Now, assuming that ||a||0 ≥
C, for each independent repetition, we claim that there exists a value of j for which Ej ∈

[
C
16 , C

]
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with constant probability. To show this, by the definition of Ej, it suffices to show that there
exists a value of j for which with constant probability,

||a(j)||0 ∈
[
4

3
· C
16
,
2

3
· C
]
=

[
C

12
,
8C

12

]

To see the latter, consider the unique value of j for which C
6 ≤ 2−j||a||0 <

C
3 . For each non-

zero coordinate i, let Xi be an indicator variable which is one iff i survives with respect to
hj. Let X =

∑
i Xi. Then E[X] = 2−j||a||0, and by pairwise-independence, Var[X] ≤ E[X]. By

Chebyshev’s inequality,

Pr[|X− E[X]| ≥ E[X]
2

] ≤ 4Var[X]
E2[X]

≤ 12
C
<
1

3
,

where the last inequality follows for large enough C. Hence, with probability 1−n−Ω(C), in some
repetition we will find a j for which Ej ∈ [C/16,C].

Finally, we appeal to Theorem 9. We apply the theorem with N = Cε−1n and s = n. Our family
of hash functions is also C log ε−1n-wise independent. Hence, for C > 0 a sufficiently large
constant, we have for all i such that ai 6= 0,

Pr[hj(i) = min
i ′ s.t. hj(i ′) 6=0

hj(i
′)] = (1± ε) · 1

||a||0
.

It remains to handle the case ||a||0 < C. We will in fact show how to solve the case ||a||0 ≤ 2C.
The idea is just to use the perfect hashing data structure described above. Namely, choose
C logn independent C3-wise independent hash functions ψj,r : [n]→ [C3], for r ∈ [C logn]. We
maintain the counters:

cr,d =
∑

` s.t. ψj,r(`)=d

a`.

As described above, with probability ≥ 1− n−Θ(C), for all i we have,

ai = medianr cr,ψ(i).

Hence, we can recover the vector a in this case, for which L0-sampling is trivial. In parallel
we run a poly(logn)-space L0-estimation algorithm which can distinguish between the cases
(1) ||a||0 ≤ C and (2) ||a||0 ≥ 2C with probability ≥ 1 − n−Θ(C). In the former case we run
the sampling algorithm based on perfect hashing just described. In the latter case we run
the sampling algorithm described previously. If C < ||a||0 < 2C, we can use either sampling
algorithm.

It can be easily checked that ur overall algorithm is 1-pass, the space is poly(ε−1 logn) bits,
and the time is poly(ε−1 logn).

ut



Chapter 9

Applications of the Lp-Sampler

Lp-sampler can be seen as a basic primitive in the turnstile model and we are expecting that
it has many applications. In this chapter we discuss some applications of Lp-sampler, including
an (1±ε)-estimator for Z = Fk(a) =

∑n
i=1 |ai|

k for k > 2 in Section 9.1, weighted sampling with
deletions in Section 9.2, cascaded norms in Section 9.3, and finally heavy hitters and block
heavy hitters in Section 9.2.

9.1 Moment Estimation

Recall that the problem of approximating k-th frequency moment of a stream is as follows. Let
0 < ε, δ ≤ 1. Given a stream S as m = poly(n,M) updates of the form (i, x), where i ∈ [n] and
x ∈ {−M,−M+ 1, . . . ,M− 1,M}, find an (1± ε)-estimator F ′k(a) for Fk(a) = Fp(S) =

∑n
i=1 |ai|

k

such that Pr[|Fk(a) − F ′k(a)| ≤ ε · Fk(a)] ≥ 1− δ.

In [CK04], Coppersmith and Kumar reduce the problem of estimating Fk of a vector (see Defini-
tion 19 ) to the problem of sampling according to F2. In particular Proposition 4.1 of that paper
states “If there is a black-box such that

(1) it uses Õ(1) space,

(2) it makes Õ(1) passes over the input,

(3) each invocation outputs a random variable Y such that Pr[Y = i] ∝ a2i ,

then there is a data stream algorithm for approximating F3 that uses Õ(n1/3) space and makes
Õ(1) passes over the input.” As the sampler of Theorem 70 satisfies these conditions, we
immediately obtain an alternative F3-estimation algorithm in optimal space (up to small factors).
This generalizes to arbitrary Fk, k > 2, and can be implemented in a single pass, giving an
alternative algorithm to that of Indyk and Woodruff [IW05]. Our algorithm is the first that does

121
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not use Nisan’s pseudorandom generator as a subroutine, potentially making it more practical.
Moreover, if we consider the two-party communication complexity of Lk-estimation, k > 2, we
can use an O(logn)-pass version of our sampler in Theorem 68 to improve the dependence
on ε and k of known algorithms [BGKS06, IW05].

For k > 2, the following is our Fk-estimation algorithm, which succeeds with probability at
least 3/4. To amplify the success probability to 1 − n−C, repeat the algorithm O(C logn)
times and take the median of the outputs. Inside the Fk-Estimation, we can use either 1-
pass L2-Sampler of Theorem 70 which gives a 1-pass n1−2/kpoly(ε−1 logn)-space algorithm
or use O(logn)-pass L2-sampler of Theorem 68 which gives an O(logn)-pass algorithm with
O(n1−2/kε−4 log4 n) bits of space. Depending whether we prefer the pass complexity or the
space complexity in terms of ε, logn we can choose the former algorithm or the latter one.

In what follows we will assume that the input parameter ε > 16/n, as otherwise we can com-
pute Fk exactly in O(log(n))/ε) bits of space by keeping a counter for each coordinate.

Fk-Estimation:

(1) Initialize ε ′′ = ε/8, and T = O(n1−2/k)/(ε ′′)2.

(2) Run an ε ′′-relative-error L2-Sampler algorithm 4T times in parallel, and let the first T
output values be ai1 , ai2 , . . . , aiT . If more than 3T of the outputs of L2-Sampler are
FAIL, then output FAIL.

(3) In parallel, run F2-Estimation([n], ε ′′, 1/8) of [KNW10]. Denote the output by F̃2.

(4) Output F̃2T ·
∑T
j=1 |aij |

k−2.

Theorem 85 For any k > 2 and ε < 1, instantiating Fk-Estimation with our 1-pass L2-Sampler
algorithm results in a (1 ± ε)-approximation to Fk with probability at least 3/4. The space
complexity is n1−2/k · poly(ε−1 logn) bits.

Proof. We condition on the event E that F2-Estimation succeeds, which occurs with probability
at least 7/8. We can thus assume that Fk 6= 0, since if Fk = 0 we will have F̃2 = 0 and we will
correctly output 0 in Step 4. In the remainder of the proof, assume that Fk ≥ 1.

We also condition on the event F that at most 3T of the outputs of L2-Sampler are FAIL. By
Theorem 70 and a Chernoff bound, event F occurs with probability 1− e−Ω(T).

For i ∈ [n], let qi be the probability that coordinate i is returned by an invocation of L2-Sampler,
given that L2-Sampler does not output FAIL. By Theorem 70, qi = (1± ε ′′)|ai|2/F2. So for any
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j ∈ [T ], we have

E[|aij |
k−2] =

n∑
i=1

qi|ai|
k−2

=

n∑
i=1

(
1± ε ′′

) |ai|2
F2
· |ai|k−2

=
(
1± ε ′′

) Fk
F2
.

Let Gj = |aij |
k−2, and G = F̃2

T ·
∑T
j=1Gj. Then E[Gj] = (1± ε ′′) FkF2 . Thus, since event E occurs,

E[G] = T(1± ε ′′)(1± ε ′′) FkF2TF2
= (1± ε/2)Fk, for sufficiently small ε. By independence of the Gj

and the fact that F̃2 ≤ 2F2,

Var[G] ≤ 4F
2
2

T 2

T∑
j=1

Var[Gj]

=
4F22
T 2
· T

n∑
i=1

qi|ai|
2k−4

≤ 4F
2
2

T

n∑
i=1

(
2|ai|

2

F2

)
|ai|

2k−4

= O

(
F2F2k−2
T

)
.

To bound F2F2k−2, we use Hölder’s inequality in the same way as previous work [AMS96, CK04,
IW05]. Namely,

n∑
i=1

|aibi| ≤
(

n∑
i=1

|ai|
p

)1/p( n∑
i=1

|bi|
q

)1/q

for any reals p, q with p, q > 1 and 1/p+1/q = 1. Taking ai = a2i , bi = 1, p = k/2, q = k/(k−2),
we have F2 ≤ F2/kk n1−2/k. Moreover, F1/(2k−2)2k−2 ≤ F1/kk using the fact that the Lk-norms of a vector
are non-increasing in k, and k ≤ 2k− 2 for k ≥ 2. So F2k−2 ≤ F2−2/kk . Taking the product of the
inequalities, F2F2k−2 ≤ n1−2/kF2k.

Thus, by our choice of T , Var[G] = O(ε2E2[G]). It follows by Chebyshev’s inequality that

Pr[|G− E[G]| >
ε

4
E[G]] ≤ 1/16,

for an appropriate choice of constant in the big-Oh defining T . In this case, for G we have

(1− ε)Fk ≤ (1− ε/4)(1− ε/2)Fk ≤ G ≤ (1+ ε/4)(1+ ε/2)Fk ≤ (1+ ε)Fk,

for sufficiently small ε.

It follows that with probability at least 7/8 − e−Θ(t) − 1/16 ≥ 3/4, the output of the algorithm is
a (1 ± ε)-approximation to Fk. The space complexity is dominated by Step 2 and is n1−2/k ·
poly(ε−1 logn). ut
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9.2 Weighted Sampling with Deletions

Cormode, Muthukrishnan, and Rozenbaum [CMI05] state that “A fundamental question that
arises is to design algorithms to maintain a uniform sample of the forward distribution under
both insertions and deletions or show that it is impossible.” Here, by forward distribution, the
authors mean to return a sample i with probability |ai|/||a||1, even if coordinate i undergoes
deletions in the stream. Setting p = 1 in Theorem 70 therefore resolves the main open question
of [CMI05] (up to a small relative error. As sampling in the presence of deletions is a useful
primitive, we expect this to have many more applications. For instance, if the support of the
underlying vector a is at most k, by applying Theorem 70 with p = 0 at most O(k logk) times,
with constant probability all k non-zero items will be found.

Also, in [FIS05], Frahling, Indyk, and Sohler study geometric problems such as maintaining
approximate range spaces and costs of Euclidean spanning trees. They need a routine which
given a pointset P undergoing multiple insertions and deletions, maintains a random element
from P. Applying Theorem 70 with p = 0 gives another solution to this problem. However, the
space complexity of our algorithm is inferior to their algorithm.

9.3 Cascaded Norms

Recall that the problem of cascaded norms is defined as follows. Let 0 < ε, δ ≤ 1. Let S be a
stream of m = poly(n,M) updates of the form (i, j, x) to items in a [n] × [d] matrix A, where
i ∈ [n], j ∈ [d] and x ∈ {−M,−M + 1, . . . ,M − 1,M}. The problem of estimating cascaded
norms is to find a (1± ε)-approximation to Fk(Fp)(A), where Fk(Fp)(a) means we first applying
Fp to each row of A, and then apply Fk to the resulting vector of values, i.e,

Fk(Fp)(A) =
∑
i∈[n]

(
∑
j∈[d]

|A[i, j]|p)k.

In [JW09], Jayram and Woodruff give 1-pass algorithms for estimating cascaded moments of
an n × d matrix A. Namely, they show that for k ≥ 1 and p ≥ 2, the 1-pass space complexity
of outputting a (1± ε)-approximation to Fk(Fp)(A) is n1−2/(kp)d1−2/ppoly(ε−1 log(nd)).

They leave open the question of estimating Fk(Fp)(A) for k ≥ 1 and p < 2, though they prove
an Ω(n1−1/k) space lower bound for this problem. The only other work in this regime is due
to Cormode and Muthukrishnan [CM05b] who prove an n1/2poly(ε−1 log(nd)) upper bound for
estimating F2(F0)(A) assuming that all stream updates are positive.

Theorem 70 implies a near-optimal n1−1/kpoly(ε−1 log(nd))-space 1-pass upper bound for any
k ≥ 1 and p ∈ [0, 2], which, together with the results of [JW09], closes the problem for k ≥ 1
and any p ≥ 0, up to small factors. As our algorithm works in the general turnstile model, this
also improves the algorithm of [CM05b] for estimating F2(F0).
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Fk(Fp)-Estimation(A, ε):

(1) Initialize T = n1−1/kpoly(ε−1 log(nd)).

(2) Run Lp-Sampler algorithm T times in parallel.

(3) Feed the row IDs of these samples into the 1-pass Fk-estimation algorithm given in
[JW09].

The 1-pass Fk-estimation algorithm given in [JW09] is similar to the n1−1/kpoly(ε−1 log(nd))-
space algorithm for estimating Fk of Lemma 25, but given a vector (b1, . . . , bn), it requires
only sampling n1−1/kpoly(ε−1 log(nd)) coordinate IDs i, rather than approximations to their
frequencies (the bi), where i is sampled with probability |bi|∑n

i=1 |bi|
. In our case, we run the

sampler on the matrix A, obtaining an entry in a given row i with probability

(1± ε)
∑d
j=1 |A[i, j]|

p∑n
i=1

∑d
j=1 |A[i, j]|

p
.

Thus, bi in the Fk subroutine is equal to

(1± ε)
d∑
j=1

|A[i, j]|p.

Theorem 86 For any p ∈ [0, 2], k ≥ 1, there is a 1-pass streaming algorithm which, with
probability ≥ 1− 1/poly(nd), outputs a (1± ε)-approximation to Fk(Fp)(A) using space

n1−1/kpoly(ε−1 log(nd)).

9.4 Heavy Hitters and Block Heavy Hitters

The classical heavy hitters problem is to report all coordinates i for which |ai| ≥ φ||a||p, where
φ is an input parameter. For p = 1 this is solved by the CountMin data structure of Cormode
and Muthukrishnan [CM05b], and for p = 2 by the CountSketch data structure by Charikar,
Chen, and Farach-Colton [CCFC02]. Notice that Theorem 70 immediately implies an algorithm
for every p ∈ [0, 2]. Indeed, run Lp-sampler of Theorem 70 O(φ−1 logφ−1) times in parallel.
Then with constant probability, the list of samples contains all heavy hitters, and using the
probabilities returned, one can ensure that if |ai|p ≤ (φ− ε)||a||pp, then i is not reported. Notice
that our algorithm works in the turnstile model.

Another immediate application is that of computing block heavy hitters, which is the problem of
reporting all rows ai of an n× d matrix A for which ||ai||1 is at least a φ fraction of the L1-norm
||A||1 of A (i.e., ||A||1 =

∑n
j=1 ||a

j||1). These rows are called the block heavy hitters, and are a
crucial building block in a streaming algorithm of Andoni, Indyk, and Kraughtgamer [AIK09] that
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constructs a small-size sketch for the Ulam metric under the edit distance. In [ABI08], Andoni,
DoBa, and Indyk devise a 1-pass algorithm for this problem using poly(φ−1 logn) bits of space.

Notice that if ai is a block heavy hitter, then if we sample a random entry of A proportional to
its absolute value, the probability it comes from row i is at least φ. Moreover, based on the
number of times an item from row j is sampled, one can detect if

||aj||1 ≤ (φ− ε)||A||1.

Hence, Theorem 70 immediately implies the main result of [ABI08]. It should be noted that the
proof of Theorem 70 does not rely on Nisan’s pseudorandom generator or go through p-stable
distributions, which could potentially make our block heavy hitters algorithm more practical
than that of [ABI08]. Moreover, Theorem 70 immediately gives the analogous result for every
Lp with p ∈ [0, 2].
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