Interactive Graph Drawing
with Constraints

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Technischen Universitat Dortmund
an der Fakultat fur Informatik
von

Karsten Klein

Dortmund

2011

Tag der miindlichen Priifung: 14.03.2011

Dekan:
Prof. Dr. Peter Buchholz

Gutachter:
Prof. Dr. Petra Mutzel, Technische Universitit Dortmund
Prof. Dr. Stephen G. Kobourov, University of Arizona

Abstract

This thesis investigates the requirements for graph drawing stemming from practical appli-
cations, and presents both theoretical as well as practical results and approaches to handle
them.

Many approaches to compute graph layouts in various drawing styles exist, but the re-
sults are often not sufficient for use in practice. Drawing conventions, graphical notation
standards, and user-defined requirements restrict the set of admissible drawings. These re-
strictions can be formalized as constraints for the layout computation. We investigate the
requirements and give an overview and categorization of the corresponding constraints.

Of main importance for the readability of a graph drawing is the number of edge cros-
sings. In case the graph is planar it should be drawn without crossings, otherwise we should
aim to use the minimum number of crossings possible. However, several types of constraints
may impose restrictions on the way the graph can be embedded in the plane. These restric-
tions may have a strong impact on crossing minimization. For two types of such constraints
we present specific solutions how to consider them in layout computation:

We introduce the class of so-called embedding constraints, which restrict the order of
the edges around a vertex. For embedding constraints we describe approaches for planari-
ty testing, embedding, and edge insertion with the minimum number of crossings. These
problems can be solved in linear time with our approaches.

The second constraint type that we tackle are clusters. Clusters describe a hierarchical
grouping of the graph’s vertices that has to be reflected in the drawing. The complexity of
the corresponding clustered planarity testing problem for clustered graphs is unknown so
far. We describe a technique to compute a maximum clustered planar subgraph of a clustered
graph. Our solution is based on an Integer Linear Program (ILP) formulation and includes
also the first practical clustered planarity test for general clustered graphs. The resulting
subgraph can be used within the first step of the planarization approach for clustered graphs.
In addition, we describe how to improve the performance for pure clustered planarity testing
by implying a branch-and-price approach.

Large and complex graphs nowadays arise in many application domains. These graphs
require interaction and navigation techniques to allow exploration of the underlying data.
The corresponding concepts are presented and solutions for three practical applications are
proposed: First, we describe Scaffold Hunter, a tool for the exploration of chemical space.
We show how to use a hierarchical classification of molecules for the visual navigation in
chemical space. The resulting visualization is embedded into an interactive environment that
allows visual analysis of chemical compound databases. Finally, two interactive visualiza-
tion approaches for two types of biological networks, protein-domain networks and residue
interaction networks, are presented.

ii

Kurzzusammenfassung

In zahlreichen Anwendungsgebieten werden Informationen als Graphen modelliert und mit-
hilfe dieser Graphen visualisiert. Eine iibersichtliche Darstellung hilft bei der Analyse und
unterstiitzt das Verstdndnis bei der Prisentation von Informationen mittels graph-basierter
Diagramme. Neben allgemeinen dsthetischen Kriterien bestehen fiir eine solche Darstellung
Anforderungen, die sich aus der Charakteristik der Daten, etablierten Darstellungskonventio-
nen und der konkreten Fragestellung ergeben. Zusétzlich ist hdufig eine individuelle Anpas-
sung der Darstellung durch den Anwender gewiinscht. Diese Anforderungen kénnen mithilfe
von Nebenbedingungen fiir die Berechnung eines Layouts formuliert werden. In dieser Ar-
beit untersuchen wir die Anforderungen aus der Praxis und beschreiben eine Zuordnung zu
Nebenbedingungen fiir die Layoutberechnung. Wir geben eine Ubersicht iiber den aktuellen
Stand der Behandlung von Nebenbedingungen beim Zeichnen von Graphen und kategorisie-
ren diese nach grundlegenden Eigenschaften.

Von besonderer Wichtigkeit fiir die Qualitédt einer Darstellung ist die Anzahl der Kreu-
zungen. Planare Graphen sollten kreuzungsfrei gezeichnet werden, bei nicht-planaren Gra-
phen sollte die minimale Anzahl Kreuzungen erreicht werden. Einige Nebenbedingungen
beschrinken jedoch die Moglichkeit, den Graph in die Ebene einzubetten. Dies kann star-
ke Auswirkungen auf das Ergebnis der Kreuzungsminimierung haben. Zwei wichtige Typen
solcher Nebenbedingungen werden in dieser Arbeit ndher untersucht. Mit den Embedding
Constraints filhren wir eine Klasse von Nebenbedingungen ein, welche die mogliche Rei-
henfolge der Kanten um einen Knoten beschrinken. Fiir diese Klasse priasentieren wir Li-
nearzeitalgorithmen fiir das Testen der Planaritit und das optimale Einfiigen von Kanten
unter Beachtung der Einbettungsbeschrinkungen. Der zweite Typ von Nebenbedingungen
sind Cluster, die eine hierarchische Gruppierung von Knoten vorgeben. Fiir das Testen der
Cluster-Planaritidt unter solchen Nebenbedingungen ist die Komplexitit bisher unbekannt.
Wir beschreiben ein Verfahren, um einen maximalen Cluster-planaren Untergraphen zu be-
rechnen. Wir nutzen dabei eine Formulierung als ganzzahliges lineares Programm sowie
einen Branch-and-Cut Ansatz zur Losung. Das Verfahren erlaubt auch die Bestimmung der
Cluster-Planaritit und stellt damit den ersten praktischen Ansatz zum Testen allgemeiner
Clustergraphen dar. Zusitzlich beschreiben wir eine Verbesserung fiir den Fall, dass ledig-
lich Cluster-Planaritit getestet werden muss, der maximale Cluster-planare Untergraph aber
nicht von Interesse ist. Fiir dieses Szenario geben wir eine vereinfachte Formulierung und
prasentieren ein Losungsverfahren, das auf einem Branch-and-Price Ansatz beruht.

In der Praxis miissen hdufig sehr groBe oder komplexe Graphen untersucht werden. Dazu
werden entsprechende Interaktions- und Navigationsmethoden benotigt. Wir beschreiben die
entsprechenden Konzepte und stellen Losungen fiir drei Anwendungsbereiche vor: Zunéchst
beschreiben wir Scaffold Hunter, eine Software zur Navigation im chemischen Strukturraum.
Scaffold Hunter benutzt eine hierarchische Klassifikation von Molekiilen als Grundlage fiir
die visuelle Navigation. Die Visualisierung ist eingebettet in eine interaktive Oberfliche die
eine visuelle Analyse von chemischen Strukturdatenbanken erlaubt. Fiir zwei Typen von
biologischen Netzwerken, Protein-Doménen Netzwerke und Residue-Interaktionsnetzwerke,
stellen wir Ansitze fiir die interaktive Visualisierung dar. Die entsprechenden Layoutverfah-
ren unterliegen einer Reihe von Nebenbedingungen fiir eine sinnvolle Darstellung.

iii

Acknowledgements

Many people supported me during the work on this thesis, and I would like to thank all
of them. My special thanks go to Petra Mutzel and Gunnar Klau for introducing me to
the field of Graph Drawing, working with them raised my interest in both the theoretical
and practical aspects of this field. Without their enthusiasm and advice, this work would
not have been possible. I would like to express my gratitude to Petra for the opportunity
to pursue my research in her research group at the Technische Universitit Dortmund. I
thank my colleagues at the Algorithm Engineering chair, especially my roommate Carsten
Gutwenger, for the good atmosphere and the interesting discussions. Collaboration of the
following people on the various results in this thesis is also gratefully acknowledged: Stefan
Wetzel for the work on Scaffold Hunter, and Mario Albrecht for the work on biological
networks. I thank both of them for sharing their biochemical knowledge. 1 also thank Nils,
Bernd, Carsten, Hoi-Ming, and Markus for proof reading parts of this work, and our secretary
Gundel Jankord for doing all the administrative work and for help in so many things. I
would like to thank Lars Hildebrand, Bernhard Steffen, Stephen Kobourov, and Petra Mutzel
for agreeing to serve as members of my defense committee. A special thank you goes to
Stephen for making it possible to attend my defense.

Thanks to all who gave permission to use their images or data in this thesis, they are
acknowledged individually where appropriate.

Finally, a big thank you goes to Andrea, Carsten, Martin, Monika, and Stefan for being
what they are - true friends.

v

CONTENTS

[Zusammenfassung|. L L e e
[Acknowledgements| L

(2.3 Embeddings and Planarity|00,
2.4 Graph Decomposition and SPQR-Trees|

B.

(3.1.1 LargeGraphs|,
(3.2 Application Areas|. L
[3.2.1 Life Sciences — Biology and Chemistry|

[3.2.3 Software and Hardware Engineering|
[3.2.4 Further Application Areas|
[3.2.5 General Requirements from Practical Applications|

. Automatic Graph Drawing|. L.

4.1 Evaluating the Quality of a Drawing|
4.1.1 LayoutCriteria
@.1.2 Drawing Styles| oo

4.2 Approaches|
4.2.1 Topology-Shape-Metrics|
4.2.2 Energy-Based Models and Local Search|

i1
il

Xiil

AN DN B W=

Contents

vi
4.2.3 Multlevel Paradigm| 70
4.2.4 Layered Layout|., 71
4.2.5 Projection Techniques| 72
4.3 Graph Drawing Tools and Libraries| 73
[Part I__Constraints| 75
._Overview and Classification| 77
[3.1 Constraints in Graph Drawing| 77
[5.1.1 Aspects of Constraint Handling and Constraint Characteristics| . . . 78
[5.1.2 History and Preliminary Work{ 81
1 lassification of Constraints| 94
[5.1.4 Constraints for Requirements from Practical Applications| 96
5.2 Constraint Handling|. o0, 99
[5.2.1 Layout Librariesand Tools| 102
B[22 ConstraintsinOGDH 103
6. Embedding Constraints 107
[6.1 ec-Constraints and ec-Planarity| 108
6.2 ec-Expansion| 109
[6.2.1 Construction of the ec-Expansion| 109
[6.2.2 ec-Expansion and ec-Planar Embeddings| 111
[6.3 ec-Planarity Testing|, 111
6.4 ec-EdgelInsertion| o oo 114
[6.4.1 ec-Edge Insertion Paths and ec-Traversing Costs| 114
[6.4.2 The Algorithm for Biconnected Graphs| 116
[6.4.3 Correctness and Optimality|. 119
[6.4.4 Generalization to Connected Graphs| 122
6.5 Conclusionand Future Workl 123
[7. Clustered Graph Drawings| 125
/.1 Problem Definition, Notations, and Previous Workl 126
[/.1.1 Clustered Planarity| 128
[7.1.2 Characterizations of C-Planar Graphs| 134
[/.1.3° Compound Graphs| 141
(/.2 The Maximum C-Planar Subgraph Problem| 142
[7.2.1 Problem Description and Related Work| 143
[7.2.2 Solving the MCPSP via an ILP and Branch-and-Cutf 143
[7.2.3 Computational Experiments and Discussion| 146
(724 Conclusionl 147
[/.3 A Pricing Scheme for Clustered Planarity Testing] 149
/.3.1 Motivation and BasicIdeal 149
(732 AnILP Formulationforthe CPPI 149

[7.3.3 Pruning the Search Space|. 151

Contents vii

[7.3.4 The Branch-Cut-And-Price Algorithm| 153
[7.3.5 Conclusion and Future Work] 156

(/.4 Linear Time Planarity Testing for C-connected Clustered Graphs| 156
[7.4.1 Clustered Planar Embeddings| 157
[7.4.2 Normal Forms of Clustered Planar Embeddings| 160
[7.4.3 Clustered Planarity Testing Algorithm| 165
[7.4.4 Computation of the Clustered Planar Embedding| 173
(745 Conclusion| 178

[Part Il Interactive Graph Drawing| 179
8. Interactionl 181
(8.1 Interaction Concepts| 182
(8.2 Navigation|. 190
[8.2.1 Goals for Navigation| 190
[8.2.2 Basic Concepts and State of the Art] 191

(8.3 Interactive Graph Layout| 193
B3I Animationl 195

9. Applications| 197
9.1 ScaffoldHunted o 197
I.1__ Motivation| 198

[9.1.2 Goals and Challenges|. 199
[9.1.3 Approaches and Use-Cases|. 200
[9.1.4 Interaction and Navigation Paradigm| 203
9.1.5 Layouts 205

0.1.6 Realization and Further Features| 207
[9.1.7 Impact and Related Approaches| 209

1 Evaluation an lookl 210

0.2 Protein-Domain Interaction Networksl 212
2.1 Problem TVIEW| © v v v v v i e e e e e e e e e e e e 212

[9.2.2 Domain Graph Definition and Construction| 214
[9.2.3 Domain Graph Visualization| 214
[9.2.4 Splicing Pattern Analysis Methods| 215
[9.2.5 Domain Graph Layout Requirements| 216
[9.2.6 Radial Layout Algorithm|. 217
[9.2.7 Interaction and Navigation Features| 219
[9.2.8 Alternative Layouts|. o oL 220
0.29 Conclusions|.o 221

9.3 Visualizing Residue Networks of Protein Structures| 223
I Motivation| 223

032 Realizationl oL 224
[9.3.3 Network Layoutf 225

[9.3.4 Network Approaches to Protein Structure Analysis| 226

viii Contents

9.3.5 ConcludingRemarks| 226

(10.Conclusion, Further Work, and General Remarks|. 229

Bibliography| 233

LIST OF FIGURES

(1.1 Two typical graph layouts from practice| 1
[2.1 Graph structure (left) and corresponding skeleton for S,P, and R case of the |

SPOQR tree definition.| o 12
[2.2 A graph G and its SPQR-tree (Q-nodes of R- and S-node omitted), 13
(3.1 Part of a human protein interaction network and a network that 1s composed |

of pathway substructures|, 17
[3.2 Human proteome and its binding interactions with a hairball visualization| . 21
(3.3 Example visualization of Cell Illustrator] 22
[3.4 Visualization of the amidohydrolase protein superfamily| 22
[3.5 A protein interaction network with gene expression data annotations| 23
[3.6 A metabolic pathway layout with additional data mapped onto1tf 25
3.7 KEGG style and MIM style signaling pathways| 26
(3.8 1Path global pathway map|. oo, 27
[3.9 SBGN representation of the glycolysis metabolic pathway| 28
[3.10 Visualizations of a protein interaction network and a reaction network| . . . 29
[(3.11 Alarge network alignment| 30
[3.12 Integrated network combining gene regulatory and metabolic information.| . 31
[3.13 The layout of a signaling network in Cerebral| 34
[3.14 Moreno’s sociogram and enron email graph| 37
[3.15 Visualization of a social network with a centrality-based layout) 38
[3.16 Visualization of a part of the IMDB movie database 39
13.17 Visualization of the Democratic Health Care Planl 40
[3.18 Visual clutter 1n social network layouts|. 41
13.19 Visualization of the citation flow between several scientific fieldsf 42
[3.20 A data flow diagram from stmulinklo o0 42
[3.21 A UML class diagram|., 43
[3.22 UML sequence and communication diagrams| 44
[3.23 Visualization of a database schema, drawn in orthogonal style using OGDFE/| 46
[3.24 Schematic of a terminal system| 0L, 47
[3.25 Complex attack graph visualization as visualized in|Noel and Jajodia [2004]].] 49
[3.26 BPMN example, showing the Nobel prize process model| 50
[3.27 Anevent-driven processchain| 51
[3.28 A business process model visualized as a clustered graph drawing| 52

4.1 Influence of embedding and external face on layout quality| 60

List of Figures

4.2 (a) Hierarchical, (b) orthogonal, and (c) straightline drawing styles.|. 64
4.3 A drawing 1n circular style, with an assignment to the circles based on the |

biconnected components of the graph.| 65
4.4 Orthogonal shape flow network|. 68
4.5 Multilevel layout for graph Sierpinski6|. 71
[5.1 Data flow diagram drawn with the KIELER platform| 82
[5.2 Force-directed compound graph layout 86
5.3 Twopathway drawings| Lo Lo 87
.4 Metromaplayoutl 88
[5.5 Biological networks drawn using the constrained layout approach| 90
5.6 Regulatory cellcycle] o oo 92
[5.7 Visualization of an endothehal signal transduction pathway| 93
[5.8 Transition diagram of a finite automaton| 100
[5.9 Screenhot of the Dunnart constraint-based diagram editor| 101
[5.10 Class diagram depicting the implementation of the constraint handling in |

OGDH e 104

[5.11 Use of a sequence constraint in the GDE editor. Four vertex sets have to be |

placed with fixed ordering in horizontal direction (colors reflect set affiliation).[105

[6.1 The hierarchical partitioning of edges imposed by an embedding constraint |

(a) and the corresponding constraint tree (b).|. 109
[6.2 ec-embedding expansion gadgets| L. 110
[6.3 Planarity 1ssues with embedding constraints| 112

(6.4 Proof of Lemmal6.5; £ = 1 and y; 1s a P-node (a), and y; 1s a P-node (b).] . 119
6.5 Proof of Lemmal6.5}, 1; is an S-node, L, = R, = {fi}, Ry = L, = {f2}]. 120

6.6 Proof of Lemmal6.5} jz; is an R-node, R, = {fi}, L, = {fo}] 121
(/.1 Clustered graphs| 127
(/.2 Clustered orthogonal drawings| 129
/.3 Non-c-planarc-graph| oo, 129
[/.4 Clustered graph representations|. 130
[/.5 A non-c-connected, but connected clustered graph|. 131
[/.6 An extrovert and almost connected c-graph| 132
(/.7 Illustration of the testgraph for cluster induced subgraphs that is used as input |

for the PQ-tree algorithm|o L. 135
[/.8 A c-connected clustered graph with the face weights of the Dahlhaus criterion| 137
[/.9 Dual graph weight criterion example|o, 138
[/.10 Two clustered graphs, one of them i1s completely connected| 139
(/.11 Illustration of the non-c-connected case for c-planarity testing| 141
[/.12 K3 3 structure modeled by replacing some edges by clusters.| 141
[/.13 Properties of the benchmark instances for the MCPSP|. 148
[/.14 Average running times of the branch-and-cut algorithm| 148

[/.15 A proper face of the skeleton 1n a P node, and the corresponding face in the |

pertinent graph after expansion| L L L. 159

List of Figures Xi
[7.16 Illustration of an axis and a dominating outer path in a pertinent graph .5, . 160
[7.17 Tustration of the outer path in a pertinent graph| 161
[/.18 Location of the poles of introverted and social nodes| 168
(8.1 Layoutpreservation|. 186
(9.1 Hierarchical classification using the scaffold tree approach| 199
[9.2 Interactive visual analysis of the correlation between chemical structure and |

biological activity| 200

9.3 Creation of a branch in the scaffold treef 201
(9.4 Filter dialogs in Scaffold Hunterf 202
9.5 Close-up view of shaded scaffold tree visualization with property bins| . . . 203
ree visualization with Scaffold Hunted 204

Level of il with semantic zoom|. 205
9.8 User interface of Scaffold Hunter 206
0.9 Scaffold Hunter: Detailondemand 206
[9.10 Layout algorithms 1n Scaffold Hunter] 208
[9.11 Graphical structure editor for substructure search.| 209
[9.12 Bad radial overview layout in Scaffold Huntery 211
[9.13 Example of a protein-domain network| 213
9.14 Aggregation of domain vertices|. 215
Q.15 Protemn network view| 216
[9.16 Intersection graph computed of two protein-domain networks|. 217
[9.17 Comparison of domain graph visualization|. 218
[9.18 Handling of protein-domainedges| 219
(9.19 Dynamic highlighting of a direct vertex neighborhood|. 220
[9.20 Alternative protein-domain network layouts| 221
[9.21 Protein structure representations| 224
[9.22 Simultaneous viewing and analyzing of the 3D protein structure of a protease |
and the corresponding residue interaction network m2Df 225

[9.23 Comparison of protein structures using residue interaction networks.| 227

Xii

List of Figures

Part |
BASICS

1. INTRODUCTION

In graph drawing, everything is said and done.

FALK SCHREIBER, 2005

In many application domains, lots of data is collected with only partial knowledge of
the data’s structure and the information it contains. Experimental data from biological pro-
cesses or telecommunication data is nowadays relatively easy collected and stored, but hard
to analyze and understand afterwards. Often, the data can be modeled in the form of a graph
or more general structures, as, e.g., clustered graphs. The structure of such a graph might
be given naturally by the inherent structure of the data, as in biological or social interaction
networks, or by modeling processes, as, e.g., workflows, or it might be derived using an
application-specific model.

Visualizing these graphs can greatly enhance the understanding of the underlying data, its
inherent structures and patterns, and may therefore support the knowledge discovery process
during analysis. As a consequence, graph-based diagrams are a widely used means for the
graphical representation of complex data. Many information systems today do not only dis-
play diagrams in order to represent information, but allow the user to model the underlying
data through interaction with the graphical interface. Modeling systems in such diverse areas
like Software Engineering, Bioinformatics, Database Design, and Business Process Mod-
eling using such interfaces have become standard tools for the development, maintenance
and documentation of commercial as well as scientific projects. New notation standards and

Call Center Application
90 Seats

Data Center Facility in India

(a) (b)

Figure 1.1: Graph layouts are used in a wide variety of applications. (a) shows a protein-protein interaction
network as visualized in |Stelzl et al.| [2005]], (b) shows the connection structure of a call center applica-
tion [Orion].

2 1. Introduction

methods in graphical modeling, such as BPMN | [a] for business process modeling, UML [b]
for software modeling, or SBGN [Novere et al., 2009] for modeling of biological networks,
led to an increasing importance of graph representations.

Graph visualization can be done for three main goals:

e Communication to convey existing knowledge, as for example by static text book
presentations.

¢ Visual exploration of unknown data, where interactive graph representations are often
used in combination with analytical methods, e.g., from statistics, and linked with
further visualizations like heat-maps, plots, etc.

e Modeling to create new data or modify data. The resulting visualizations can however
also be used for communication.

Due to the growing demand for clear and concise visualizations of increasingly complex
data models, automatic diagram layout is key to high quality representations and has become
an integral part of many software systems. The scientific field automatic graph drawing
deals with the computation of graph layouts in order to draw them in the form of diagrams
in the plane in a comprehensible and meaningful fashion. Besides the optimization of a
number of common aesthetic criteria, as for example the minimization of edge crossings,
the visualization for real-world purposes poses additional challenges. In many application
areas common representation conventions exist, and additional semantic annotations of the
graph objects have to be considered for visualization. In addition, established work-flows
and notation standards may impose requirements on the way a graph is laid out. Thus,
constraints for the computation of graph layouts arise that need to be respected in order to
achieve a meaningful and accepted visualization in the context of the application domain.

Whereas a large number of approaches exists to produce optimized graph drawings in
various drawing styles with respect to a small number of standard optimization criteria,
the incorporation of constraints is often done in a none-systematic fashion with ad-hoc ap-
proaches. Typically, existing layout methods are extended to cope with the most important
drawing constraints. The choice of the algorithm is mainly influenced by the availability of
code and the ease of adaption instead of the appropriateness and the quality of the final result.
As a result, the handling of constraints has not yet found its way into common application
software and is restricted mainly to research prototypes.

There are many general purpose diagramming software solutions, prominent examples
are Microsoft Visio, Eclipse GMF, and Sybase PowerDesigner, and an even larger number
of application specific tools that allow modeling with diagrams. Such tools often already in-
clude simple automatic layout facilities, but the results usually need to be improved manually
to a rather large extent for presentation or publication purposes. Whereas mainstream soft-
ware only provides simple automatic layout capabilities, state-of-the-art methods are mostly
implemented for open-source projects that allow extension by simple plugin mechanisms, as,
e.g., Cytoscape or Eclipse. Often, new methods are only implemented in tools that serve as
an experimentation platform for research groups and medium-term projects, which neither
have a significant number of active users nor are reliably maintained. Therefore the impact

1.1. Motivation 3

of such implementations is often small and there is a repeated effort to implement methods,
as they are not available in easy-to-use graph drawing libraries.

An additional difficulty arises from the fact that in practice the graph sizes may range
from just a few to millions of vertices, and due to the theoretical difficulty of the compu-
tational problems involved, efficient and suitable heuristics with acceptable quality have to
be found for different practical purposes. Fortunately, depending on the goal of the visual-
ization, the graph layout may not need to be concise for each part of the graph and display
region. During a drill-down navigation for example, only significant parts of the graph near
the navigation path have to be shown in detail, whereas the remaining parts can be repre-
sented as less accurate context information for navigation, or even be omitted. This raises
several questions about how the user can interact with the system, how the abstraction of the
data can be done to allow orientation, and how the change in the visualized data during nav-
igation can be managed so that graph layouts are both clear and preserve the user’s mental
map.

Within this thesis, we will focus on graph layouts in the plane for human consumption.
even though there are other important applications for automatic graph layout, as for example
electronic circuit design.

Beyond graph layouts and the underlying algorithmic foundations, there are many ad-
ditional aspects that need to be considered in order to provide adequate interactive graph
visualization techniques, as for example human perception and human-computer interaction
issues. Even though they are important, we will not address them here and focus on graph
layout computation. We refer the interested reader to the corresponding literature [Ware,
2004, |Chen, |2006]].

1.1 Motivation

Everybody attached to graph drawing, especially people getting direct feedback from prac-
titioners, knows, that there are two important problems for the practical application of the-
oretical results: First, there are often a number of requirements specified by the user and
the application that do not always fit in the standard approach that optimizes a small set of
aesthetic criteria. Second, automatic layout computation has to cope with the gap between
the optimization of layouts for graphs changing over time and the users’ wish for stability of
the layout in order to keep familiar with it.

Above a common base of standard criteria for aesthetical visualizations, the three main
reasons for graph drawing (as stated above) have their own requirements for graph represen-
tations and layout computation: Visual exploration requires fast responsive layout methods,
and should allow to detect patterns and symmetry. As a graph cannot be used to model all
aspects of a data set or system, graph representations often are embedded into a software
environment that combines several types of views on the data. The requirements for such
combinations may differ from a stand-alone graph drawing solution. Besides pure visual-
ization techniques, we may also need to integrate analysis and data mining techniques for
knowledge discovery processes.

In an interactive exploration scenario, due to the dynamic change in the data displayed

4 1. Introduction

and the short time the layout is used, the quality of a layout may still be acceptable even if
clearly suboptimal, as long as the user’s orientation is preserved and the layout computation
is reasonably fast. In contrast, for presentation purposes a ‘perfect’ view on a typically small
set of objects, that often has to fit a specific format or aspect ratio, is highly desirable.

As a modeling process can proceed over a longer period of time, where the graph model
and representation changes over time and is stored persistently, modeling needs stability in
subsequent applications of a layout algorithm, i.e., incremental layout capabilities. Estab-
lished drawing conventions and notation standards need to be respected to create accepted
visualizations that are readily understandable. In addition, the incorporation of user-defined
constraints has to be allowed, as the user might want to arrange at least parts of the graph
layout according to his preferences, and these changes have to be preserved.

In summary, depending on the application context, the task, and the data, quite different
requirements may define what makes a good visualization. However, by an investigation of
these requirements we can try to reduce them to a set of common standard constraints which
allow to draw graphs for a variety of drawing conventions and application tasks. The purpose
of this thesis is to collect and categorize requirements stemming from practical application
areas, to formalize them as layout constraints, to review the current state of the art in inter-
active graph drawing with constraints, and to discuss solutions for selected problems from
both theory and practice.

Efforts must be made to ensure that promising algorithms
discovered by the theory community are implemented,
tested and refined to the point where they can be usefully
applied in practice. [...] to increase the impact of theory
on key application areas.

AHO ET AL.|[[1997]]

1.2 Organization of this Thesis

This thesis is organized as follows. After giving some basic definitions and results from
graph theory and graph drawing in Chapter 2] Chapter[3|deals with the main application areas
for graph drawing and collects requirements that arise from the use of graph visualizations
in practice. In Chapter 4 we review graph drawing concepts with a focus on the evaluation
of layout quality.

Chapter [5 gives an extensive overview and a classification of constraints in graph draw-
ing and deals with their role and handling in automatic graph drawing. Chapter []introduces
embedding constraints which impose restrictions on the order of edges around a vertex. We
describe a linear time algorithm that tests if a graph given with a set of embedding con-
straints has a planar embedding that observes these constraints, and allows to compute such
an embedding in the positive case. We also give a linear time algorithm for the edge insertion
problem under embedding constraints. In Chapter[7] we examine a further important class
of constraints. In clustered graph drawings, a hierarchical grouping of the vertices needs
to be reflected. We review the state of the art and present approaches to tackle the clus-
tered planarity problem, a longstanding open problem in graph drawing. The computational

1.3. Corresponding Publications 5

complexity of this problem is still unknown. The maximum c-planar subgraph problem is
introduced, and a branch-and-cut approach to solve this problem is given. In addition, we
describe how to adapt this approach to obtain a branch-and-price approach for clustered pla-
narity testing. We then review a result by Dahlhaus, the first linear time clustered planarity
testing algorithm for c-connected graphs, and give a new description based on SPQR-trees.

In Chapter [§] we review interaction and navigation concepts. Chapter [0]introduces three
solutions for visual analysis of biological and chemical data. Scaffold Hunter is a tool for the
interactive exploration of chemical space that uses a hierarchical classification of chemical
molecules for navigation. RINalyzer allows the combined analysis of 2D and 3D protein
structures. DomainGraph uses an interactive visualization of protein-domain networks to
facilitate the investigation of the impact of alternative splicing events on protein function
and structure.

Finally, Chapter [I0] concludes by recapitulating the results presented in this thesis and
their impact on current research, and gives an outlook on future work.

1.3 Corresponding Publications

The results in this thesis have partially been published in conference proceedings, journals,
and technical reports. This section lists these publications with references to the correspond-
ing chapters of this thesis.

e The results on graph embedding and edge insertion with embedding constraints (see
Chapter[6)) were first published in the conference proceedings of Graph Drawing 2006
[Gutwenger et al., 2006] and an extended version then appeared in the Journal of
Graph Algorithms and Applications (Special Issue on Selected Papers from GD 2006)
[Gutwenger et al., [2008]].

e The results on the maximum c-planar subgraph computation (see Section[7.2)) appeared
in the conference proceedings of Graph Drawing 2008 [Chimani et al., | 2008al.

e The new description of the linear time c-planarity test (see Section is partially
based on the publication of Dahlhaus| [[1998]], and was published as a technical report
[Dahlhaus et al., 2006].

e A description of the interactive exploration tool Scaffold Hunter (see Section [9.1)),
together with a proof-of-concept study, was published in the journal Nature Chemical
Biology [Wetzel et al., [2009].

e The visualization approach for protein-domain networks (see Section was first
published in the conference proceedings of MediVisO8 [Emig et al., 2008b], an ex-
tended version appeared in the Journal of Integrative Bioinformatics [Emig et al.,
2008a].

e The approach for the representation and analysis of residue interaction networks (see
Section 0.3)) appeared in the journal Trends in Biochemical Sciences [Doncheva et al.,
2011]].

6 1. Introduction

1.4 Related Work

Two further published results are not described in detail here, but used in the sections on the
requirements in application areas (see Section [3.2) and on Scaffold Hunter (see Section[9.1)).

e In Albrecht et al.|[2009], we characterize the problems that arise in the visualization of
biological networks and formulate them as open graph drawing problems. In addition,
the problems are discussed and possible solutions are suggested. Some of these results
are used in the description of the requirements in application areas (see Section [3.2).

e In Klein et al.| [2011]], we describe an approach for efficient subgraph search in large
databases. The approach is well suited especially for chemical compound databases
and implemented as part of the Scaffold Hunter software (see Section[9.T]).

2. PRELIMINARIES AND NOTATION

In this section we will review the notations and main graph theoretic and mathematical con-
cepts that we will use in the remainder of this work. We use the mathematical model of a
graph for the representation of the structural properties of a diagram. For a comprehensive
overview on graph terminology and graph theory, see for example the textbooks by Jiinger
and Mutzel| [2003]] and [Diestel| [2010], as most of the notation here is derived from these
sources. The following two sections cover basic definitions concerning graphs and graph
drawings, Section [2.3] covers graph embeddings and planarity, Section [2.4] deals with con-
cepts and data structures for graph decomposition, Section shortly describes research
areas related to the topic of this thesis.

2.1 Graphs

An (undirected) graph is a pair of two disjoint finite sets G = (V, E), where V is the set of
vertices and F is the set of edges of G. An edge e € F is an unordered pair u, v of vertices
of G, its end-vertices. Vertices u and v then are said to be adjacent, and e and any of its
end-vertices are said to be incident. The degree of a vertex is the number of its incident
edges. If two or more edges have the same end-vertices, they are called multiple edges, and
if u = v, e is called self-loop. The number of vertices |V/| is denoted by n in the following,
the number of edges |E| by m. In a directed graph, an edge e is an ordered pair (u,v)
of vertices, e leaves u and enters v, it is directed from u to v and an outgoing (incoming)
edge of u (v). All graphs in the following will be regarded as undirected if not mentioned
otherwise. A hypergraph is a pair H = (V, E) of disjoint sets, where the elements of F are
non-empty subsets (of any cardinality) of V. A graph G’ = (V',) is a subgraph of graph
G = (V,E), and G a supergraph of G', if V' C V and E’ C E. We call G’ a spanning
subgraph of G if V' = V. An induced subgraph is a subgraph such that e = (v, w) € E’ for
v,weV' < e€FE.

A path from vertex v to vertex u in a graph G is an alternating sequence of vertices and
edges v = vy, e1,v1,€9,...,6k, v = u With k& > 0 such that v;_; and v; are adjacent to
e; fori = 1,..., k. A path is simple if all vertices are distinct. A non-empty graph G is
called connected if for each pair (u,v) of its vertices there is a path between u and v in
G (disconnected otherwise). A maximal connected subgraph of a graph G is a connected
component of GG. If there are three distinct vertices u, v, w such that w lies on every path
between v and v, then w is called a cut vertex. Obviously a cut vertex is a vertex whose
removal disconnects the graph. An edge e = (v, w) is called a bridge, if e lies on every path
between v and w. For an integer k > 0, G = (V, E) is called k-connected if |V'| > k and at
least k vertices have to be removed to make the resulting induced subgraph disconnected. A

8 2. Preliminaries and Notation

graph is called biconnected (triconnected) in the special case k = 2 (k = 3).

Weight functions wy : V' — R, wg — R may assign weights to the vertices or edges,
the respective graph then is called weighted graph.

The density §(G) of a graph G is defined as

|E]
i(G) = m
Sometimes alternatively the definition
2|E]
VIV =1)

is used to cover the relation between the number of edges and the maximum number of edges
possible.

A clustered graph imposes a hierarchical structure on the graph that allows to group
vertices together, e.g., to model compartments in biological networks or departments for
business processes. Feng et al. [[1995a] introduced the following clustered graph model:

Definition 2.1 (Clustered Graph). A clustered graph C' = (G, T') consists of an undirected
graph GG and a rooted tree 7" such that the leaves of 71" are exactly the vertices of G. Each
node v of T represents a cluster V(v) of the vertices of G that are leaves of the subtree
rooted at v. The tree T is called the inclusion tree of C' as it describes an inclusion relation
between clusters. The graph G is called the underlying graph of C'.

With graph objects we denote a graph’s vertices, edges and clusters in the following, and
if it is not ambiguous, also sometimes the corresponding graphical representations. We will
call a graph that is annotated by additional data such as weights or semantic information for
the graph objects a network.

2.2 Graph Drawings and Layouts

A layout or drawing of a graph G = (V, E) is a mapping of each vertex v € V to a dis-
tinct point p(v) in the plane and of each edge (u,v) € FE to a simple open curve with
endpoints p(u) and p(v) that does not pass through the image of any other vertex. If two
curves share an interior point p, we say that they cross each other or intersect at p. Note that
even though a graph and its drawing are fundamentally different things, and there may be
infinitely many different drawings for a graph, often the same terminology for graph objects
and their drawings are used. We may for example state that ‘two edges intersect’, where in
fact the drawings of the edges intersect. Besides the position, in practice graph objects may
have further geometric attributes, as for example size and shape. These are in practice often
considered by using a simplified representation that fits into the layout definition described
above, e.g. by replacing a 2-dimensional vertex by a rectangular representation made up of
four O-dimensional corner vertices and boundary edges, we can therefore stick to the simpli-
fied assumption that vertices are points. With graph representation or visualization we refer
to the graphical representation that also includes additional graphical attributes like color or
pattern.

2.3. Embeddings and Planarity 9

In the literature several terms are used quite often to denote that a drawing exhibits cer-
tain properties, or is similar in appearance to established visualizations. These terms are
sometimes used with conflicting meaning, we will therefore shortly explain what we mean
when we use them.

A drawing style is a set of characteristics that a drawing has to exhibit, for example an
orthogonal grid drawing restricts the vertices to integer positions and the routing of edges to
a sequence of vertical and horizontal segments. A drawing convention is a set of restrictions
emerging from widely accepted publications and typical practices in an application area or
community. It gives a partially and often informally defined, incomplete impression on how
a diagram for a certain type of graph should look like, derived from what is usual, e.g., by
textbook traditions. A drawing standard is a clearly defined notation, with rules how to draw
graphs or diagrams, often specified by an institution or consortium. Drawing standards may
evolve from conventions to standardize the use of graph representations in an application
area. Often standards are developed to better exchange and communicate information, and to
improve the readability by familiar drawing notations, well known examples are the Unified
Modeling Language (UML) and the Systems Biology Graphical Notation (SBGN).

2.3 Embeddings and Planarity

A drawing of a graph is planar if no two distinct edges intersect, and a graph is planar if it
admits a planar drawing. A planar drawing of a graph partitions the plane into topologically
connected regions called faces. The faces are bounded by the curves corresponding to the
edges, only a single face is unbounded, it is called external face. A face f is uniquely
described by the sequence of its boundary edges, and the degree deg(f) of f is defined as
the number of its boundary edges, where each edge that occurs twice on the boundary of
f 1is also counted twice. Two faces are adjacent if their boundaries share a common edge.
A planar graph with maximum vertex degree 4 is called 4-planar graph. A combinatorial
embedding 1" of a planar graph G is defined as a clockwise ordering of the incident edges for
each vertex of G with respect to a crossing-free drawing of GG in the plane. When in addition
the external face f; is fixed for I, (I, fy) is called planar embedding of G.

Two planar drawings D, and D, of a planar graph G realize the same planar embedding
of G, if and only if the two following conditions hold:

e The cycles of GG that bound the faces in D are the same cycles that bound the faces in
Ds.

e The external face in D; is bounded by the same cycle as the external face in Ds.

The dual graph I'* represents the adjacency relation between faces in an embedding I’
of G = (V, E) with face set F'. I'* = (V*, E*) is constructed as follows: V* = F and E*
contains an edge fi, fo for each edge e € E with e on the boundary of both f; and f,. In
case edge e is a bridge, i.e., only on the boundary of a single face f, I'* contains a self-loop
(f. f)-

Given a pair of planar graphs G, and G with V(G,) = V(Gy) = V, a simultaneous
embedding I' = (D1, Ds) of G and G+ is a pair of crossing free drawings D; and D, of Gy

10 2. Preliminaries and Notation

and G, respectively, such that for each vertex is mapped to the same point in the plane in D,
and Ds. If each edge e € E(G1) N E(G3) is represented with the same simple open Jordan
curve in Dy and D», I is a simultaneous embedding with fixed edges. 1f the edges of G,
and G, are represented with straight-line segments in D; and Dy, I is called simultaneous
geometric embedding.

2.4 Graph Decomposition and SPQR-Trees

Let G = (V, E) be a connected graph. A block of G is a maximal connected subgraph that
does not contain a cut vertex. From the definition we have that each block is either a maximal
biconnected subgraph, a bridge, or an isolated vertex. Different blocks of G share at most
one vertex, which then has to be a cut vertex of G.

The relationship between blocks and cut vertices of a connected graph is given by the
block-cutvertex tree, or BC-tree for short. It contains a vertex for each block and for each cut
vertex of (G, and these vertices are connected by an edge if the cut vertex is contained in the
block.

A slight generalization of the BC-tree is the block-vertex tree B of a connected graph G
(block tree for short). It represents the relation between the blocks and the vertices of G' and
contains a B-node for each block of (G and a V-node for each vertex of (G; a V-node v and a
B-node B are connected by an edge if and only if v € B. Two blocks that have a cut vertex
in common are therefore also connected in the block tree by a path over the cut vertex. The
representative of a vertex v of GG in block B is either v itself if v € B, or the first vertex
on the unique path from B to v in B. Whitney showed a helpful relation between the block
structure and the planarity of a graph:

Theorem 2.1. Whitney| [1932|] A graph G is planar if and only if each block of G is planar.

We shortly describe a graph decomposition based on SPQOR-trees, a data structure in-
troduced by [Di Battista and Tamassial [1996]]. They comprise a decomposition tree 7 of a
biconnected graph G according to its split pairs. A split pair of G is a pair of vertices that
is either connected by an edge or has the property that its removal increases the number
of connected components of GG (a separation pair). Alternatively, T is often described as
the decomposition of G into its triconnected components [Tutte, |1966] comprising serial,
parallel, and triconnected structures.

SPQR-trees can be efficiently implemented in linear time [|Gutwenger and Mutzel, [2001]]
and allow to represent all embeddings of a planar graph. This property can be used for
optimization over all planar embeddings, a method that we will apply for the algorithm in
Chapter [6] The decomposition allows us to compute a normal form embedding that will be
used for the clustered planarity test in chapter [7.4] Our description follows the one given
by Mutzel and Weiskircher| [1999].

Construction of SPQR-trees A split component of a split pair {u, v} is either an edge
(u,v) or a maximal subgraph C' of G such that {u, v} is not a split pair of C'. Let {s,t} be a
split pair of G. A maximal split pair {u,v} of G with respect to {s,t} is such that, for any
other split pair {u’, v'}, vertices u, v, s, and ¢ are in the same split component.

2.4. Graph Decomposition and SPQR-Trees 11

Let GG be a biconnected graph. The construction of an SPQR-tree 7 of G works re-
cursively starting at an arbitrary edge e of G that is called the reference edge of 7. The
SPQR-tree 7 of GG with respect to e is a rooted ordered tree whose nodes are of four types:
S, P, Q, and R. The end-nodes of e are used as the split pair associated with the first node
(root) of 7. Atevery node p of T, the graph is split into the split components of the split pair
p associated with that node, i.e., the maximal subgraphs of the original graph, for which p is
not a split pair. To make sure that the split components are biconnected, we add an edge to
them and continue by computing their SPQR-tree. The resulting trees are made subtrees of
the node used for splitting. Each node p of 7 has an associated st-graph, called the skeleton
of 11 (denoted with skeleton(p)).

Concepts and Elements of SPQR-trees The two vertices of the split pair p associated
with a node p are called the poles of nu. The skeleton associated with a split pair p is a
simplified version of the whole graph where some split components are replaced by single
edges.

The decomposition tree with respect to reference edge e is a rooted ordered tree whose
nodes are of four types that are defined by the structure and number of the split components
of its poles:

Trivial Case: Q-nodes are the leaves of the tree, there is one ()-node for each edge e in the
graph. The skeleton consists of the two poles that are connected by two edges, where
one edge represents the edge e and the other edge the rest of the graph.

Parallel Case: 1If the split pair {s, t} has at least three split components G, . . . , G, the root
of T is a P-node 11, whose skeleton consists of k parallel edges e = ey, . ..,), between
s and t.

Series Case: Otherwise, the split pair {s, ¢} has exactly two split components, one of them is
e, and the other one is denoted with G’. If G’ contains cut-vertices c1, . .., cx_1 (k > 2)
that partition G into its blocks G1, . . . , G, in this order from s to ¢, the root of 7 is an
S-node p, whose skeleton is the cycle eq, eq, . .., e, where eg = e, ¢y = s, ¢, = t, and
e; = (¢i—1,¢) (i = 1,...,k). The decomposition continues with the subgraphs G;,
where the poles are ¢; and ¢; 1.

Rigid Case: If none of the above cases applies, let {s1,%1},. .., {sk, tx} be the maximal split
pairs of G with respect to {s,t} (k > 1), and, fori = 1,...,k, let G; be the union
of all the split components of {s;,;} but the one containing e. The root of 7 is an
R-node, whose skeleton is obtained from G by replacing each subgraph G; with the
edge €; = (Si7 tz)

Except for the trivial case, i has children 1, . . ., tx, such that x; is the root of the SPQR-
tree of G; U e; with respectto e; (i = 1,. .., k). The endpoints of edge e; are called the poles
of node yi;. Edge e; is said to be the virtual edge of node p; in skeleton of 1 and of node y in
skeleton of ;. We call node u the pertinent node of e; in skeleton of 1i;, and p; the pertinent
node of e; in skeleton of p. The virtual edge of . in skeleton of y; is called the reference
edge of ;.

12 2. Preliminaries and Notation

Each edge e in a skeleton represents a subgraph of the original graph:

Let e be an edge in skeleton(u) and v the pertinent node of e. Deleting edge (1, V) in
T splits 7 into two connected components. Let 7, be the connected component containing
v. The expansion graph of e (denoted with expansion(e)) is the graph induced by the edges
that are represented by the Q-nodes in 7,,. We further introduce the notation expansion™ (e)
for the graph expansion(e) + e.

Replacing a skeleton edge e by its expansion graph is called expanding e. The pertinent
graph of a tree node y is the subgraph of the original graph that is represented by the subtree
rooted at y; it results from expanding all edges in skeleton(p) except for the reference edge
of u and is denoted with pertinent(1). Hence, if e is a skeleton edge and v its pertinent node,
then expansion™ (e) equals pertinent(v). If v is a vertex in G, a node in 7 whose skeleton
contains v is called an allocation node of v.

Let 1, be the root of 7 in the decomposition given above. We add a Q-node representing
the reference edge e and make it the parent of z,- so that it becomes the new root.

Figure shows the pertinent graph together with the corresponding skeleton for an S-,
P-, and R-node. We will omit the discussion of () nodes in the following because they are
not needed to code the embedding of the graph G.

- @ D -® O)
e AR ’ s 1') e ’CJ? ’
4 N 4 ’ / \ / ’ /LN ,
/I o // ,/ / “ ,I Il //
I [I f | | \ f 1 1
I [] v v | | I !
! y L O Y A \ 7R
\\ / » \\ \\ Vo | \\ ‘\ / \\
\ /) \ \ / \ \ \ \[/ \
@ @ @ @
(a) S-node (b) P-node (¢c) R-node

Figure 2.1: Graph structure (left) and corresponding skeleton for S,P, and R case of the SPQR tree definition.

If GG is biconnected and planar, its SPQR-tree 7 represents all combinatorial embeddings
of GG. In particular, a combinatorial embedding of GG uniquely defines a combinatorial em-
bedding of each skeleton in 7, and fixing the combinatorial embedding of each skeleton
uniquely defines a combinatorial embedding of G.

2.5 Related Research Areas

Besides its mathematical foundations and the practical application areas, graph drawing
plays a role in several related research areas concerned with visualization issues. We briefly
describe terms from these areas that are used in this thesis. Data Mining is defined as the
extraction of patterns or models from observed data with the help of statistical methods. It of-
ten is involved in a Knowledge Discovery process, which may be heavily supported by visual
data exploration. Information Visualization is concerned with the communication of abstract
data through the use of interactive visual interfaces [Warel 2004} Keim et al., [2006]. Its goal
is to display complex data in as much detail as possible without distracting the viewer. Visual

2.5. Related Research Areas 13

Q (Ref. edge)

R S
Figure 2.2: A graph G and its SPQR-tree (Q-nodes of R- and S-node omitted)

Analytics combines visualizations, data mining, and statistics by means of visual represen-
tations and interaction techniques in the analysis process of massive information volumes.
The aim is to get a deeper insight into the data by appropriate visualizations that allow the
human observer to ‘detect the expected and discover the unexpected’ [Thomas and Cook,
2005] Keim et al., [2008]].

Perceptional organization concerns the question how the information detected by the sen-
sory receptors are structured into the larger units of perceived objects and their interrelations,
including contextual information [Palmer, 1999]]. These processes are not yet completely un-
derstood, include the problem of subjective experience, and are still subject of ongoing basic
research. Nonetheless, a couple of general principles and lots of laws have been defined,
for example laws of grouping, e.g., similarity and proximity [Ellis, 1969]: Elements are per-
ceived as aggregated into groups if they are placed close to each other, or move in a similar
way during an animation. Though the theoretical treatment of such aspects seems to be far
away from graph drawing research, at least the most fundamental findings should be taken
into account for the evaluation of graph layouts and the development of new visualizations.
Considering perceptional laws for the development of graph visualizations may improve the
resulting layouts significantly. Instead of evaluating predefined layouts with respect to cer-
tain user tasks and predetermined aesthetical criteria, van Ham and Rogowitz| [2008]] there-
fore first asked users to rearrange vertices to best represent the structure, and then analyzed
the layouts created. In comparison to their force-directed automatic layout, they found that
human-created solutions contained significantly less edge crossings and did not value uni-

14 2. Preliminaries and Notation

form edge length as much as the algorithm did. As a main result they concluded that besides
minimization of edge crossings, human observers were very competent in identifying group
structures and preferred corresponding layouts that emphasize these structures by confining
them to edge-bounded regions, similar to classical clustered graph drawings.

3. GRAPHS, DATA AND DIMENSIONS

All models are wrong — some are useful.

GEORGE Box

The interactive visualization of graphs with constraints raises many interesting theoretical
questions, but it is mainly driven by requirements in practical applications. In order to de-
velop solutions that are useful in practice, one has to examine the characteristics of the data
and its semantics in application areas, the questions to be answered with the help of graph
visualizations, and how the graphs are modeled from the raw data. Although the focus of
this work is on the visualization of graphs that are given as input data, we will briefly discuss
some of the related aspects in this chapter. In addition, we describe representative descrip-
tions of the use of graph visualizations in important application areas.

3.1 Data Characteristics, Visualization Goals and their
Influence on the Value of Representations

Multidimensional data play an important role in practical applications and the task to model
a meaningful, perhaps also annotated, graph for visualization purposes is not trivial. The
graph’s topology can only represent a small part of the dimensions, often only a single di-
mension. For example, we can use the structural similarity of chemical molecules in visual-
izations of chemical compound databases to model a graph, where molecules are connected
when their similarity value lies beyond a certain threshold. However, an entry on such a
molecule in a typical biochemical database like PubChem| or ChEMBL contains dozens to
hundreds of properties, including chemical structure, biological activity, solubility, and many
more. In addition to the question which of the data dimensions are modeled as relations or
even vertices of the graph, selecting a meaningful visualization may be a difficult but cru-
cial task for the visual data analysis process. It can be difficult to assess the importance or
priority of the different dimensions for visualization, as the question to be asked during the
knowledge discovery process may be unknown at the time of the modeling. Even the order
in which the dimensions are arranged may play an important role for the understanding of
the data [[Ankerst et al., |1998]].

In order to prepare multidimensional data for visual data analysis, which typically incor-
porates 2D or 3D techniques, the data needs to be projected into lower dimensions. This
problem has been studied by many researchers and a large number of appropriate methods
exist, including Multidimensional Scaling (MDS), Principal Component Analysis (PCA),
and Self-Organizing Maps (SOM). An overview on data analysis and classification topics
can be found in Batagel;j et al. [2006].

16 3. Graphs, Data and Dimensions

In some areas, however, there are inherent entities and relations that admit modeling of
data as a graph, like social or biological network structures. As such a graph-based model
only captures part of the data, additional information has to be represented by other means
for visualization. These include graphical attributes like color or size and also supplementary
properties of the resulting graph representation. These secondary notation elements can be
modeled by constraints on the graph layout. Examples for such constraints are the alignment
of vertices to show their equal status, a fixed order of the edges around a vertex to model
a priority sorting, or an ordering of the vertices along the y-axis to represent a sequential
flow. In Figure vertex color and size are used to indicate additional information not
covered by the graph structure. Clearly, the choice of the correct visual cue for representation
is another challenge as some attributes are better suited than others depending on the type of
data, like size or length for quantitative data.

In order to visualize supplemental information and aspects that cannot be integrated into
the graph representation, graph drawing is often embedded into a context of information
visualization, where the goal is not just to convey structure-related information but also to
allow knowledge discovery based on additional data annotations. Graph-based visualizations
in such a case are complemented and linked with other graphical data representations in an
integrated fashion for visual analysis, as for example heatmaps, scatterplots, histograms, or
dendrograms. An important task then is to link all resulting representations in a way that
allows to perceive the data characteristics without significant loss of information due to the
modeling and representation process. Requirements for graph drawing in such a scenario
might differ from those for pure graph drawing representations, as the integrated graph view
might only need to represent specific aspects in the overall visualization.

As a general goal, we would like to produce ‘nice’ drawings of graphs, i.e., drawings that
are easy to read and convey well the represented information. Rules for a graph drawing to
effectively communicate the underlying information depend on the application area and the
graph instance, and are often difficult to define formally. When for example biologists have
to specify which information needs to be conveyed by the drawing of a protein interaction
network, the answer will vary from biologist to biologist and also differ strongly depending
on the task to be performed. Even if a complete specification can be given, it does not
automatically translate to a well-defined and clear visualization, and it is in general difficult
to incorporate all resulting rules in an algorithmic approach. The user should then be enabled
to adapt the optimization goals or the layout in an interactive environment.

Human postprocessing can help to improve the drawing and adapt it to additional re-
quirements not considered by the automatic layout approach, as long as the automatic layout
does not represent a local optimum far from an admissible drawing.

The dynamic nature of processes poses a further problem for a graph-based visualization.
Often, series of networks have to be visualized for an interactive analysis, where the networks
are either given as discrete states of a system or have to be aggregated, as an additional
challenge, from continuous streaming data. In such cases, it is not sufficient to be able to
create static representations that optimize the quality of each single drawing, as this could
disrupt the user’s mental map when switching from one step to the next. The representations
then need to be adjusted to allow a smooth transition that lets the user keep his orientation,
and at the same time allow to highlight the dynamic changes. Another aspect that needs to be

3.1. Data Characteristics and Visualization Goals 17

(a) (b)

Figure 3.1: (a) Part of a human protein interaction network. The protein vertices are given a shade gradient
according to their expression value; the vertex size corresponds to the number of interactions. The shades
and styles of the edges represent different interaction types; solid lines indicate protein-protein, and dashed
lines protein-DNA interactions. The graph was drawn with Cytoscape using its implementation of the
spring-embedder algorithm. (b) A network that is partitioned according to the pathway concept. It consists
of five pathways and their interrelations, drawn with KGML-ED [Klukas and Schreiber, 2007

taken into account is the size of the data and the resulting graphs under investigation, both to
consider efficiency aspects as well as perception issues when large numbers of objects have
to be visualized. An important question in this context concerns the goal of the application
workflow: The user might want to get an overview on the characteristics of the data set,
to drill down large data sets to a small number of entities, or to gain deeper insight in the
underlying relations, allowing for example hypotheses about formerly unknown processes.
Depending on these goals, the approach and the techniques used may differ largely.

3.1.1 Large Graphs

One of the few resources increasing faster than the speed of
computer hardware is the amount of data to be processed.

IEEE INFOVIS 2003 CALL-FOR-PAPERS

There is often a preeminent distinguishing feature between manually and automatically
generated data sets — size. Given the computational power of today’s computers and the auto-
mated processing capabilities in many areas, huge amounts of data can be generated quickly,
but are difficult to handle. Huge data sets nowadays arise in many different research fields
and are challenging not only because of the mere storage requirements, but more importantly
because it is usually non-trivial to efficiently access, analyze, and process them. In bioin-
formatics, a single high through-put experiment can result in thousands of datapoints; since

18 3. Graphs, Data and Dimensions

thousands of these experiments can be conducted per day, data sets with millions of entries
can be quickly accumulated for further analysis. The Stanford Microarray Database, e.g.,
contains around 2.5 billion spot data from about 75,000 experiments [Demeter et al., 2007].
Other fields of increasing importance are, among others, the analysis of the dynamics in large
telecommunication or computer networks, as well as social statistics and criminalistics.

Although we can improve both the theoretical and the practical performance of the graph
drawing methods and data structures by means of Algorithm Engineering (for an overview
on the topic see for example Mehlhorn and Sanders| [2008], (Chimani and Klein| [2010]),
most methods won’t be applicable to huge graphs due to the complexity of the underlying
theoretical problems. Many optimization problems in graph drawing are already hard to
solve in their most basic form, and respecting further drawing constraints poses an additional
challenge. This is not only a problem with regard to the algorithmic solution, but also the
implementation effort. As even heuristic solutions, e.g., compaction methods for orthogonal
graph drawing, are already quite involved, constraint handling has to be embedded into rather
sophisticated implementations.

When we are able to handle these requirements also within interactive tools, the question
how to visualize the data remains. Even though those graphs will typically show the char-
acteristics of the respective application area, and the corresponding drawings need to adhere
to appropriate drawing standards, large graphs pose specific problems that justify a separate
treatment. The most simple question related to this topic is: What if the number of vertices
is larger than the number of pixels that can be used for their visualization? Depending on the
task, the visualization of more than a few hundred or thousand vertices renders insight into
the structure infeasible in a single static visualization. Then additional navigation concepts
are needed to allow the user to orient within the data. Often practitioners would like to see
some kind of overall structure of the data under investigation, but at the same time be able
to focus on specific regions of interest in detail. This encourages the Overview-plus-Detail
paradigm, where for example subgraphs not in the focus can be aggregated to a single vertex
while preserving the overall structure by appropriate edge connections, see Section [8.2]for a
further discussion. As an example, in the biological network displayed in Figure [3.1(b)] in-
dividual pathways could be collapsed to show the structure of the inter-pathway relations or
to focus on a region of interest. Aggregation can be done based on a clustering of the graph
or the data, and in some applications a natural cluster structure is given or known in advance,
as, e.g., departments in a business process. In contrast, often first a clustering method has to
be applied to identify groups of closely related objects, see, e.g., Fraley and Raftery|[[1998]],
Gaertler [2004]]. However, an additional aspect of large data sets is that the graph or network
structure might not be known in advance, as the modeling of the relations may be given only
as a set of rules, e.g., using a similarity function. Therefore the characteristics of the overall
graph cannot be used for visualization and navigation purposes, as only parts of the graph
are dynamically created depending on the current focus, and it would be computationally
infeasible to analyze the structure in advance.

In correspondence to the emerging importance of the specific aspects of large graph han-
dling, several works in graph drawing and information visualization have been concerned
with related concepts and problems, including scalability issues, see for example |Kobourov
[2000], |Patrignani| [2001]], Munzner [2000]. We will discuss issues concerning the interac-

3.2. Application Areas 19

tion with and the navigation in large graphs in Chapter|[3]

3.2 Application Areas

Data from numerous application areas can be modeled as a graph for visualization. We
present selected areas that either already use graph visualization or have the potential to ben-
efit from tools that use graph drawing methods. We then shortly describe the corresponding
use cases and data, the modeling of the data to achieve a graph representation, and the re-
quirements for a meaningful drawing that supports the domain experts in analyzing the data.
As the need for visualization in life sciences currently is a driving force for much theoretical
and practical work in graph drawing, and the problems that occur cover a large part of the
relevant research questions, we focus on that area and its description takes a major part of
this section.

3.2.1 Life Sciences — Biology and Chemistry

A natural application of graph drawing can be found at the visualization of biological net-
works, where the relations of biological entities have to be understood and analyzed. The
use of graphical visualization and analysis tools is therefore already widespread in the biol-
ogy community. In stark contrast to that, the chemical community has only recently adopted
the use of such tools, even though the tasks and data are often closely related (see also the
discussion in Chapter [9).

In recent years, the development of high-throughput experimental techniques has led to
the generation of huge data sets in the life sciences. Since manual analysis of this data
is costly and time-consuming, biologists and chemists are turning more and more towards
computational methods that support data analysis. The information in experimental data sets
can often be either represented as networks or interpreted in the context of networks that
serve as models of the biological system under investigation. These models are used, for
example, to predict the behavior of the system and to guide further experiments.

Biology and chemistry often consider different aspects of the same goals and underly-
ing processes, and the research is often intermingled in a way that makes a clear separa-
tion difficult and sometimes even unnecessary from a theoretical, modeling point of view.
Nonetheless, the questions addressed, established representations and workflows may differ
to a large extent, therefore the respective visualization approaches and user interfaces have
to be especially tailored to allow an intuitive work on the data. Whereas in biology networks
arise naturally, and biological processes are modeled and thought of as networks, a graph-
based model of chemical data is much more uncommon. For the ultimate goal of creating an
‘ideal’ data representation and navigation approach, one has to realize that classical data rep-
resentations for a long time influenced the workflows and established a certain view on the
data. These representations cannot be simply replaced without compromising the user’s con-
fidence on the reliability of the representation and the subsequent hypotheses drawn out of it.
When the author visited a research department of a large chemical company, and tried to find
out which information could be used to aggregate and remove large numbers of molecules
early from a visual analysis process, a typical answer was ‘But I want to see all of them,

20 3. Graphs, Data and Dimensions

how could I otherwise know what the computer did and what I am missing afterwards?’. In
other words, introducing advanced visual analysis tools in chemistry is a long process where
established data representations, as, e.g., spread sheets, need to be provided in addition to
new ones to let users familiarize themselves with the new tools.

Biology

Biological research provides a broad range of data that can be visualized using graphs. Biolo-
gists aim at identifying and understanding complex interaction networks in a living organism
to discover the underlying organizational principles, and try to gain deeper insight into the
dynamic processes that actually take place. Such insight is needed to derive new hypotheses,
both about the specific behavior of actors (e.g., proteins, genes,...) as well as the architec-
ture and behavior of the overall system. The knowledge gain then can be used to propose
ways to influence the processes in a precise way with minimum side effects, e.g., to cure a
disease with a specifically designed drug. About a decade ago, the systems biology paradigm
became popular. Systems biology tries to put local biological information, e.g., protein in-
teractions in a cell, into the context of the entire system to understand how different levels
work together. For a detailed discussion of the biological background see for example Koch
et al.[[2011]).

Visual analytics of biological networks, i.e., the integration of interactive visualization
with analysis techniques, is getting more and more popular in the biology and bioinformat-
ics communities. It can be useful, e.g., to predict new functional substructures, like signaling
pathways, to identify previously unknown members of known pathways, or to identify new
network modules. Different network types occur in biology that lend themselves naturally
to a graph representation, including metabolic networks, signal-transduction networks, (pro-
tein) interaction networks and many more, see the description below for an overview.

Sometimes, however, drawings are used only to show the size or complexity of the data.
Biologists are therefore quite familiar with ‘hairball’ drawings of interaction networks; see
Figure[3.2] Such static drawings do not help much in understanding and analyzing the data,
which is reflected in the alternative term ‘confusiogram’ coined for them [Schwikowksi and
Ideker, 2007]]. Even at the time of writing, Lander| [2010] called the ‘hairball’ an ‘increas-
ingly familiar image in the biology literature’ and appoints it ‘the dominant icon of the sys-
tems biology era’. In an online comment to that, this view is supported by Uetz, the creator
of one of the first hairball representations (or at least of the most famous one) in biology lit-
erature [Schwikowski et al., 2000]. He states as a challenge for the interactive visualization
in biology: ‘What is still lacking today (to make hairballs more useful for biology) are com-
putational tools that allow users to zoom into a hairball, visualize the details of the nodes and
edges, and integrate all available information in a intuitive, user-friendly way. This would be
the ultimate understanding machine.’

Wheelock et al.| [2009] stress the importance of network-based analysis and the need to
cope with the dynamics of the system: ‘One important aspect of systems biology approaches
is to identify the biological pathways or networks that connect the differing elements of a
system, and examine how they evolve with temporal and environmental changes’. |Aloy and
Russell [2005] state that there is a need for the visualization of the information flow at physi-
ological time scales to reflect the dynamic nature of the system and to allow the visualization

3.2. Application Areas 21

Figure 3.2: Human proteome and its binding interactions with a hairball visualization, as given in |Lander
[2010], there credited to Nicolas Simonis and Marc Vidal.

of simulations. As another main challenge for high-quality layouts of biological networks
they identify the use of sub-cellular localization information, as for example information on
the location of proteins with regard to cellular compartments like nucleus and cytoplasm. In
other words, the identification of important subnetworks or patterns, their localization, and
the dynamic evolution of the relation structure are primary analysis goals.

We can therefore see the bare visualization of the network structure still as an impor-
tant task, but additional challenges occur due to the dynamics of such networks and the
annotations like localization information that need to be taken into account. Even semantic
annotations may be subject to change, e.g., the functional role and the interrelations of a
protein may change over time, depending on the environmental conditions, the location, or
the cell state. A further aspect currently often neglected in biological visualizations is that
biological network models are subject to uncertainty due to the noise in the experimental
data and the mathematical models used to generate network representations.

Biological networks are used to communicate many different types of data. This data can
be encoded in the structure of the network, the network layout, or as graphical or textual an-
notations. The data itself may be primary data (i.e., directly measured), secondary data (i.e.,
derived, inferred, or predicted), or a mixture of both. There is a large variety of biochemical
entities and values, e.g., gene sequences, transcripts, expression levels, proteins, metabolites,
concentration, or fluxes (of mass or information), and even though not all of them may be
in the focus of analysis at the same time, combining several of them may be desired to get
the bigger picture of the processes in an organism. Corresponding to this variety of data and
semantical information, biological visualizations are often enriched with multiple graphical
features to depict this information, see for example Figure [3.3] Categorization information
like the type of a biochemical entity or its functional annotation are often used to structure
graph representations, e.g., by grouping entities of the same function, or by aligning entities
of the same type.

22 3. Graphs, Data and Dimensions

gt it o petens cdopter ot adoplrpoeis (3
= - ?’anmmwm\g (i)
L (@5 e a2

Tl‘?)_& gr EGFR_dimer mrp EGFR_dimer Dok pEGH” CrbZp EGTE $641.G1b2 p- EGH Vo2 p-EGFE i
N 83 ——&?’-r;m S f \(Wi (17 |

=i i< — — e [- e 32
EGIR EGREGFR = 12 1}’ 1 'é&;'ﬁ T32 migratio
Jati ’ i l o
- J T W ,Ml_gium (idi) 1l %
e UMY oz LegpTI7 | “""'"" g
P "k’f{r"“ \12" &
|]
: (id)
e
.Em“%f% dcd2.GOP

Figure 3.3: Example visualization of Cell Tllustrator [Nagasaki et al.l [2010], which shows the use of many
different graphical features, like color, background color, vertex shape, additional icons, labels, and edge
style.

-

Figure 3.4: Visualization of the amidohydrolase protein superfamily (data from graph
kindly provided by Scooter Morris), layout generated with OGDF’s F'M? implementation. Color coding
is used to denote protein family annotations. Even though the algorithm does not consider semantic
grouping information, the families are represented well due to the dense internal relations.

The biological networks do not only vary regarding the type of data that they represent,
but also regarding their structure. Networks can range from very small, sparse graphs to
huge and very dense graphs; the amidohydrolase protein superfamily network in Figure [3.4]
for example contains about 1,000 vertices and over 50,000 edges. A further aspect that
therefore needs to be handled is the development of techniques to cope with large and dense
graphs. Databases like BioGRID| or [PDB| contain up to millions of entries, IntAct
contains over 250,000 binary interactions between over 50,000 proteins. Even
though not all of these interactions might be of interest at the same time, an overview on the
overall structure might be desired, complemented by a view for eventually large subsets with
several thousand objects for closer investigation.

In contrast to that, for same sparse and rather small networks, e.g., metabolic pathways,
drawing conventions have been established over time that help to express biological concepts
(see discussion below). For these types of networks, results of automatic layout methods

3.2. Application Areas 23

Spozz

Hmot
sz Kinetochore Srrc:l/_\,/

f‘ ; -
T P
LR
rsRiF=Tagh\ J

Nucleosome

rup~

Transcription Gene expression Poli2
amplitude correlation

T2 AN
e O — = R
Low High Low High

Figure 3.5: A protein interaction network with gene expression data annotations, laid out using a force di-
rected algorithm in Cytoscape [Merico et al., 2009]. Vertices represent proteins that are annotated as
being located on the chromosome by the Gene Ontology project [Ashburner, 2000], vertex color repre-
sents location categories, vertex size represents the amount of expression change during the cell cycle,
and edge thickness models correlation between transcript profiles. The authors manually added visual
cues to emphasize interesting regions (shading and arrows), and the labels have been placed manually.

need to resemble the main characteristics of these conventions in order to be accepted by the
biology community. We will shortly review the important network types that occur.

Types of biological networks. Protein interaction networks represent physical interac-
tions of proteins with each other or with other binding partners like DNA/RNA. The vertices
in such networks represent proteins or sets of proteins. The interaction edges are normally
undirected, but may be directed in case of heterogeneous networks (for example, protein-
protein and protein-DNA/RNA interactions), resulting in mixed graphs. Each vertex and
edge may be annotated with additional biological attributes like expression level, sub-cellular
localization, and the number of interaction partners. For an example of a protein interaction
network see Figure[3.5] The network paradigm can also be used to describe the topology and
dynamics of protein structures; see Section[9.3]

Gene-regulatory and signal-transduction networks both use sets of directed edges to convey
a flow of information. While gene regulation (regulation of gene expression) occurs exclu-
sively within a cell and represents a regulatory mechanism for the creation of gene products
(RNA or proteins), signal transduction refers to any process that transports external or inter-
nal stimuli via so-called signal cascades to specific cellular parts where a cell response (e.g.,
gene regulation) is triggered. While vertices in these networks represent molecular entities
(genes, gene products, or other molecules), edges represent a flow of information (regulation
or passing of a chemically encoded signal). See Figure [3.7|for signaling pathway diagrams.
Metabolic networks describe a network of chemical reactions, where substrate metabolites
are converted into product metabolites, catalyzed by enzymes. Such a network is a hyper-
graph that is usually represented as a bipartite graph G = (V] U V;, E). The vertex set is

24 3. Graphs, Data and Dimensions

partitioned into the set 1} of metabolite and enzyme vertices (enzymes catalyze the chemical
reactions converting metabolites) and the set V5 of reaction vertices.

The pathway concept tries to break the complexity of the reaction network in a living
system to focus on a specific product or function. A pathway is a subnetwork that can be
given through definition by established textbooks and databases (e.g., KEGG, BioCarta) or
just as the subnetwork between two substances; see Figure[3.6] Even though the reduction
to a pathway is helpful for the intuitive understanding, it represents an abstraction of the
real, dynamic situation in a living cell. A biological process can be highly dependent on
environmental conditions as temperature, concentration, and pressure, and during a process,
a dynamic change of the involved entities’ roles and of the network structure might occur.

There are no pathways, there is only one big
network.

LEROY HOOD

Pathways may consist of a main linear path, but can also contain cycles, producing the

chemicals that initiate them, or feedback loops that inhibit an earlier step. These components
and patterns are often drawn in a way that facilitates easy identification. Pathway graphs are
typically modest in size (< 100 vertices), sparse, directed, and acyclic. To avoid clutter and
edge crossings, vertices are often cloned, i.e., several vertices exist for the same biological
entity, and vertices may also represent whole other pathways.
Ontologies have become widely used in the life science community. Collaborative efforts
such as the Gene Ontology (GO) or the KEGG Ontology (KO) have developed vocabularies
to describe biological processes on different levels (e.g., participation of a gene product in
signaling networks) and help biologists to identify available knowledge concerning a spe-
cific area of research. These categories are already well established for use in the analysis
of biological processes. While the network structure of such ontologies can also be visual-
ized using directed graphs, it is more important that visualization approaches for biological
networks are able to integrate their information, preferably by graphical means, including
integration in layout computation, e.g., by grouping vertices having the same annotation.

Established Visualizations. There are large posters (e.g., Nicholsons and Michal
[2005]]’s pathway maps) and several projects that have created static graphical representa-
tions of metabolic networks and offer access to these graphs via web pages (e.g., KEGG, Bio-
Carta or BioCyc)). Most of them provide clickable maps most of which are semi-automatically
or manually created, and are enriched by highlighting enzymes ocurring in a specified or-
ganism. The open-source pathway database REACTOME [Croft et al.] provides interactive
pathway maps, also linked with additional data views. It uses an automatic layout and sup-
ports the new systems biology standard for graphical notation SBGN. Interactive electronic
molecular interaction maps (eMIMs) visualize molecular interaction networks based on a
clearly defined notation [Kohn et al., 2006, MIM], and allow the user to navigate through
them with links to molecular databases, references, and annotations. See Figure[3.7(b)|for an
example. Compared to the ‘organic’ looking style of manually drawn maps and the layouts
automatically created by many graph drawing methods, these maps have a rather technical

3.2. Application Areas 25

Figure 3.6: A part of the glycolysis/gluconeogenesis pathway with additional data mapped onto some ver-
tices [Albrecht et al), [2009]. Circles encode metabolites, rectangles represent enzymes catalyzing the
reaction, and rectangles with rounded corners denote other pathways. Time series data from two series
(day: red, night: blue) were mapped on some vertices which have been enlarged. Solid and dashed lines
represent reactions and connections to other pathways, respectively. The pathway data was derived from
KEGG, and the graph was drawn with VANTED [Junker et al., [2006] in a style similar to the KEGG
pathway picture.

appearance, close to a circuit diagram. This is both due to the consistent specification of sym-
bols for entities and relationships that resemble symbols for electronic circuit diagrams, and
the orthogonal edge routing common to such diagrams. The web-based tool iPath [Letunic
et al., 2008 for the visualization and analysis of metabolic and regulatory pathways provides
an interactive viewer that allows navigation through pathways based on a global map. This
map is constructed using a large number of KEGG pathways in combination, and gives an
overview of the complete metabolism in biological systems; see Figure[3.8] Even though the
main drawing characteristics are quite similar among the online resources, they differ largely
in the graphical notation used.

The availability of these representations has established a de facto standard for metabolic
network drawings that features near-orthogonal drawings where important paths are aligned,
relevant subgraphs are placed close to the center of the drawing, substances and products of
a reaction are clearly separated, and co-substances are placed out of the main path close to
the reaction. Manually generated metabolic pathway drawings often exhibit a small number
of crossings and bends, and the orthogonal edge routing is replaced by straight-line routing
if bends can be saved for short distance edges; see Figure In the last years, many
approaches considered the drawing of metabolic pathways, and a lot of layout algorithms try
to at least partially obey established drawing styles (e.g., |Karp and Paley| [1994a], Becker
and Rojas|[2001]], Goesmann et al. [2002], Schreiber [2002], Bourqui et al.|[2006], [Schreiber

26 3. Graphs, Data and Dimensions

&Pt dept minek

o[sTaT-mpt mRN

() (b)

Figure 3.7: (a) MAP Kinase signaling pathway provided by KEGG and (b) network part of the signaling
from EGF receptors in MIM style. Colors are used to distinguish interactions involved in different func-
tions. Both figures show a clustering of vertices due to cell compartments, which have a fixed left-to-right
(and top-down, respectively) order.

et al.|[2009]).

Several modeling schemes have been suggested for the representation of cellular signal-
ing networks. They can be divided into two classes, namely, the entity-relationship (ER)
scheme and the state transition scheme. The ER scheme (used by KEGG, SPIKE, Kohn’s
map) focuses on the regulatory effects maintained between different proteins within a signal-
ing network, while state transition schemes (used, e.g., in the tools CellDesigner, PATIKA,
ProMoT) regard different post-translational modified versions of a protein as separate en-
tities and seeks to trace transitions between these states. ER diagrams are much simpler,
having all states represented by only one protein entity, but at the price of not accounting
for possible temporal order constraints (such as, e.g., activation on A can only appear after
phosphorylation on B).

As can be seen from the differing representation of networks given here, the rules for ad-
missible drawings are not clearly defined and may differ at least slightly from user group to
user group and from task to task. Standardizing the representations could remedy the situa-
tion and help biologists to familiarize with a unified notation, saving them the efforts to cope
with several different notations. Recently, an attempt was made to unify the graphical rep-
resentation of biological networks and processes by adopting drawing standards from other
areas, leading to the SBGN (Systems Biology Graphical Notation) project [Novere et al.,
2009]). See Figure [3.9] for example visualizations using the new notational standard. The
authors of the first published standardization [Novere et al., 2009 compare their initiative
with the standardization of electronic circuit schematics, which lead to a big breakthrough

3.2. Application Areas 27

Biodegradation o
Xenobiotics

Figure 3.8: iPath global pathway map. Color coding is used to denote functional substructures.

in electronics. SBGN contains three orthogonal languages with their own set of symbols, se-
mantics and interpretation rules: The process description language that shows the temporal
courses of biochemical interactions, the entity relationship language that allows to see all the
relationships in which a given entity participates (regardless of the temporal aspects), and
the activity flow language that allows to see the flow of information between biochemical
entities.

Visualization Goals. In the following, we describe typical use-cases that can be facili-
tated by visual graph representations. In|Albrecht et al.| [2009], sketches of the underlying
modeling and drawing problems are given.

Visual comparison of biological networks. Conservation of biochemical function during evo-
lution results in structurally similar molecular subnetworks across different organisms and
species. Uncovering relevant similarities and differences or comparing networks in different
states (e.g., diseased vs. healthy), at different time points, or under various environmental
conditions (temperature, pressure, substrate concentrations, etc.) supports the biologist’s un-
derstanding of the processes, e.g., to identify disease-specific patterns. Given a set of graphs

28 3. Graphs, Data and Dimensions

Bomerse)
@ @ @ 5

o-
i ®
"LIQ A_V

(@) (b)

Figure 3.9: SBGN representation of the glycolysis metabolic pathway, using a process description diagram
(a), and of the effects of a depolarisation on the intracellular calcium, using an entity-relationship diagram

(b).

with a high degree of similarity between each other, the task is to compute a layout such
that the differences (or the similarities) are highlighted. Approaches for different types of
networks exist, including protein interaction [Sharan et al., 2005, [Sharan and Ideker, 2006]
and metabolic pathways [Forster et al., 2002, Schreiber, 2003]]; see Figure @

The visualization of larger graphs for comparison is a very challenging task, and probably
not possible without interaction methods that allow to show only subsets of the data at a time
and with abstraction of the data; see Figure [3.11]

Visual analysis of data correlation. Biologists frequently use correlation graphs as a means
for visually expressing and exploring complex forms of correlation within their data. Nor-
mally, the information contained in the data is mapped as annotation onto a graph that rep-
resents the pathways characterized by experimental data. Biologists are then interested in a
graphical representation that highlights the interrelation between the connectivity structure
of pairs/subsets of vertices in the original network and their correlation. An example for an
interesting correlation pattern would be a set of vertices that is closely connected within the
underlying graph but exhibits only weak correlation in the data or vice versa.

Integrated representation of multiple overlapping networks. Different types of biological
networks describe different functional aspects of the whole cell, tissue, or organism in ques-
tion. To get a deeper, system-wide understanding, these networks need to be combined. The
enzymes acting in metabolic networks for example are regulated and this regulation is de-
scribed by a regulatory network. It is thus becoming increasingly common to integrate these
different types of networks into joint networks. Figure [3.12|shows an example of integrating
a gene-regulatory network and a metabolic network. A good joint layout of these networks
should reveal the interaction between these networks, for example, how specific vertices of
the gene regulatory network activate or inactivate whole subnetworks of the metabolic net-
work. In order to simplify the identification of these subnetworks, mental map preservation
on the level of the metabolic network is helpful.

Visualization of sub-cellular localization. Cells consist of distinct compartments, sub-cel-
lular locations, separated from each other by membranes. Examples for these are the cytosol

3.2. Application Areas 29

B-D-GLUCCSE a-D-GLUCCSE

a-D-GLUCCSE
1-PHOSPHATE

TN

- — TTon
. X
@;1; o Yine=75 it o
s 3 b
p J— on B
(H = - T22B24-F01D1}) - HO oH
L 1 - e —
g - b-soRnrToL
G -
-
Wo—rc 0. On
o
It CHon
o H
D-FRUCTOSE

Figure 3.10: Visualizations of a protein interaction network (a) and a reaction network (b) that show the
differences and similarities between several organisms. Visualization is done using two different tech-
niques: separated and integrated layouts. The comparison of the protein interaction networks across
multiple species allows to identify conserved complexes and pathways, picture as published in |Sharan
et al.| [2005]. The BioPath tool provides a special pathway layout. Shown here is the reaction network
between maltose and D-fructose as visualized in |[Forster et al.| [2002]. A specific color scheme is used to
distinguish reactions occurring in different organisms.

(the inner space of cell), the nucleus, the mitochondria, or chloroplasts in plants. The mem-
branes enclosing a compartment separate parts of the biological networks as well. Different
partitions of the network will be localized in different sub-cellular locations and hence can-
not interact with each other directly. It is thus essential for an understanding of the network’s
function to integrate that spatial information into the layout of the network. The required
localization data is either already contained in data sets derived from experiments, can be
extracted from external sources, or can be predicted.

Visualization of multiple attributes. Often multiple attributes have to be considered when
analyzing biological data. One example is time-series data which is frequently collected
in order to better understand the dynamic behavior of a biological system. The combined
representation of such time-series data and a corresponding network should allow biologists
to gain new insights concerning the underlying system, for example, co-regulated sets and

30 3. Graphs, Data and Dimensions

Figure 3.11: A large alignment (more than 200 proteins per species) of three protein interaction networks
performed with the VANLO alignment tool [Brasch et al.,[2009]. Simulated annealing was used to com-
pute the layout, with a running time of less than 30 seconds.

their connection within the network. Such a combination can, for example, be achieved by
mapping the data onto the vertices of a network; see Figure 3.6 However, also complex
cases can occur, where multiple attributes of several hundred data sets need to be mapped,
and significant structural patterns of sets with similar data annotations have to be detected.
The simple use of small visualizations that replace the vertex representations is usually not
sufficient, because a visual comparison of such small graphics in a large graph is impossible.

Visualization of flows and paths in networks. The qualitative and quantitative distribution of
mass and signal flows (fluxes) within a network has to be analyzed under uncertainties of the
data. The flow of certain paths may change over time (time-series of measurements) and the
number of paths through the network is so big that not all of them can be displayed. Biol-
ogists are therefore only interested in the main paths through the network, i.e., those paths
which possess a statistically significant flow and that transport a considerable percentage of
the overall flow through the entire network. For directed graphs like metabolic networks, the
layout must reflect the hierarchical nature of the flow, preserve layouts for subnetworks from
textbook representations as closely as possibly, and at the same time emphasize the relevant
parts and paths of the network. The main paths may be placed at the center of the layout and
drawn as straight lines, and the distribution of the flow within the network has to be depicted,
e.g., by using edge width or color. If the dynamic change of the main flow over time also
needs to be visualized, smooth animations are required to preserve the user’s mental map.

Exploration of hierarchical networks. Biological networks often comprise several thousand
vertices and edges. To help exploring such large and complex structures the entire network

3.2. Application Areas 31

FH
B
()

.

bl
]
o

Figure 3.12: An example of an integrated network consisting of a part of the glycolysis network and a gene
regulatory network [Yeang and Vingron, 2006]]. Triangles represent metabolites, squares reaction flux,
and circles genes and enzymes. Color coding denotes regulation, increase (green) or decrease (red). The
edge style represents activation (solid) and inhibition (dashed), main paths are aligned.

is usually broken down in a hierarchical manner into pathways and sub-pathways. Biologists
commonly focus on (sub-)pathways in a region of interest and explore their relation to other
pathways. However, due to the many connections between different pathways often an ab-
stract overview-like picture of all pathways and their connections, as well as an interactive
navigation from a set of pathways to other connected or related pathways is desired. An ex-
ample of such a set of pathways is shown in Figure[3.1(b)] In order to allow the user to keep
his orientation during exploration of the network, the layout changes resulting from a user
interaction (e.g., selection of an additional pathway) should be small and also context in-
formation needs to be represented in an appropriate way. Expand-and-collapse mechanisms
therefore need to be incorporated into layout algorithms such that drawing conventions and
the mental map are preserved. These operations could be restricted to certain levels of ab-

32 3. Graphs, Data and Dimensions

straction, for example by only collapsing/expanding semantically meaningful substructures
like pathways. One of the main challenges is that layouts for such subnetworks, as well
as their relative position to each other, may be given. This layout information needs to be
preserved as closely as possible. As these networks are too large to be laid out nicely as a
whole, some overview graph or backbone could be defined by reduction or abstraction, cov-
ering the topologically or semantically relevant features of the network. The subsets, e.g.,
the pathways, do not need to be disjoint but may partially overlap. This poses an additional
challenge for the visualization problem: Either the duplicates are merged, which complicates
the task of mental map preservation, or it has to be clearly emphasized somehow that they
represent the same biological entity.

Several requirements from biological visualizations, as the representation of localization
information, are already handled by existing layout methods, e.g., using clustered drawings.
Only a few approaches so far are addressing the problem of dense and large graphs. As the
algorithms used for visualization are often not efficient enough, most approaches restrict the
graph exploration in an interactive fashion to a small subgraph plus some context specific
neighborhood (e.g., Huttenhower et al.|[2009])).

The layout algorithms applied lag behind the state of the art, as findings from graph
drawing, if not specifically developed with biological applications in mind, often do not make
their way into bioinformatics tools. Although a number of specifically adapted algorithms
exist [L1 and Kurata, 2005, | Kojima et al., 2010, Dogrusoz et al., 2006, Junker et al., 2006],
the broad use is based on standard algorithms, as in the Cytoscape network visualization
software [Killcoyne et al., 2009]. In a recent publication, even a random layout of a network
was shown in comparison to a force-directed one to illustrate the importance of applying
‘high quality’ layout algorithms, and vertex labels had still to be placed manually [Merico
et al., 2009].

There is huge number of special purpose tools in biology and bioinformatics for the
graph-based visualization of data, far more than can be mentioned here. They range from
fully-fledged stand-alone analysis tools over web-based applications to plugins for biolog-
ical software platforms. However, only few of them have a significant influence and are
reliably maintained and developed. The overwhelming number of projects that create new
tools, and the often short life cycle of tools and projects make it difficult to keep track of all
developments (however, this is also true for pure graph drawing projects, roughly half of the
software projects presented in the survey of Jiinger and Mutzel [2003] are not maintained
anymore). For surveys on graph-based analysis and visualization of biological networks and
corresponding tools see for example Aittokallio and Schwikowski [2006]], Suderman and
Hallett [2007], Pavlopoulos et al. [2008]. Suderman and Hallett| [2007]] give an excellent
overview on existing tools and the features they provide, with regard to the requirements of
biologists. As a main result, they state that single static network views are not sufficient.
Instead, visualization tools should provide a multitude of views of different types and lev-
els of detail, and allow dynamic navigation between linked views. As a further weakness
of existing tools, they identify the weak support for visual comparison of similar networks,
especially time-series. Since then a couple of tools integrated at least basic comparison func-
tionality, e.g., REACTOME allows to compare pathways between species. |Pavlopoulos et al.
[2008] provide a comparative review of network visualization tools, highlighting individual

3.2. Application Areas 33

strengths.

As most tools often focus on a specific task or type of data, there is no tool that can
be recommended as ‘the’ outstanding exploration tool. Many tools also lack capabilities re-
quired for real-world use by practitioners (exchange formats, database connections, access to
web resources, annotation interfaces, to name a few), and therefore do not have the necessary
supporting user community.

For many tools however, both visualization of and layout computation for large graphs is
a challenge. For the IntAct toolkit for example, a limitation to 300 binary interactions is im-
plemented to ‘avoid the complications related to data visualization of big networks’ [[Aranda
et al., 2010]. Besides the problem that many open-source tools do not have an efficient
memory handling architecture, this has two main reasons: First, there are often only stan-
dard layouts implemented which are not applicable for large graphs. Second, if a layout
specification adapted to the biological requirements is done, it is either overly complex or
the applied optimization technique is very slow in practice. Nonetheless, there are several
important, established tools and platforms that include specifically developed state-of-the-art
drawing algorithms and advanced visualization approaches. Many of these tools are created
by groups from the biology and bioinformatics community (e.g., Cell Designer, Cell Illus-
trator, CADlive), others have an origin in the graph drawing or information visualization
communities (e.g., VANTED, ProViz, Cerebral, Patika). VANTED (Visualization and Anal-
ysis of Networks containing Experimental Data) [Klukas and Schreiber, |2010] is of specific
interest from a graph drawing point of view as it provides a number of sophisticated lay-
out approaches for biological networks and was one of the first tools to support the SBGN.
Also Cell Illustrator features an advanced layout method, the grid layout described in |Ko-
jima et al.| [2010, 2008]. Cerebral (Cell Region-Based Rendering And Layout) facilitates
layout of and interaction with biological interaction networks using sub-cellular localization
annotation and vertex grouping according to functional annotation. Cerebral employs a sim-
ulated annealing approach for layout computation; according to the authors, it scales well to
several thousand vertices; see Figure [3.13] Note that in Barsky et al. [2008] it was explic-
itly stated that collaborating practitioners rated layout capabilities of several tools (Osprey,
Tulip, Cytoscape) as inappropriate for their needs because they did not allow to model both
the localization information and the functional grouping.

Requirements. Due to the large variety of different network types, annotations, and sci-
entific questions, a different handling of the networks and also differing layouts are prefer-
able, and there cannot be a distinct optimal representation. Based on the data and use-cases,
several key challenges for the graph representation can be identified:

e Integration of semantic and experimental data (and also derived analysis data), e.g.,
expression data, localization information, and (dynamic) flow information.

e Highlighting and handling of characteristic substructures, such as motifs and modules.

e Comparative visualization of networks, e.g., from different cell states, organisms, or
experimental data sets.

e Visualization of time series to show network changes over time.

34 3. Graphs, Data and Dimensions

A

Y At A S i ellular

LY96 HSPI0AAZ HSFS0B1 PIK3R3. r g

X C 7 v < D,
. k—s s \ A g N E2 Ve

2o lpl aNa, TR g o X 5 o ralbri S TRA J/,\FNAM Flasma membrans

SPACO—ILEST—- 1CAM - NQ1—SCHN A - B R -
b b pn S e A 5 T SAN TN 7 ‘

(el —— K. ~ e TR A

b mypeg § Wk \| [zaP70

DDBL-COC42 3 \TIRAP

MAP2KS 7 e MAPK7 ?

MAPIK2] P L VL g/ PRKCBL

SHel [LamMAR2Kg e LAY .

AT TYR2 PLCBL Cytoplasm
WAP3KS M AP e . e

f \ oL | pTeNLcald 5

7 ol
sTAT2/€UL1) | POLRZH

d - [) AP
MARBK3 MAFIKE /7 MAPKBIPL

o MKNK1 , ISCF3G | CEBPA
TAOK2 / F MAPKLL b

PPARC
}

Nucleus

A *
#—RPSERAS) S
DVRKIE RXRA

[liserine threanine &

Defansin Enzyme. | ; 7 >
\WXe o Dihydrogenassfie o kinase SR /o0 HsPR1
Proteaselh Voltage XDH: gl 5 100! a5l &
inhibitor gated | ~Enovme i 51008277} AN LRDD
THFSFLS I Sf-o PO ¥ >
il P N
DHA oy

sch1af ||

Enzyme ||

Hydrolase "
MHE)
compiex/ [
protei

i L10°} 0xidase
y oy |02 s / 1
rotein iFnE 1] NCF4
hormone -/
RE g
» prot

frotease . EDNI, pydroyiase | /LT

Enzyme: \ Y i SARE
Phospnotinase L cvPazed /Tran:ﬁs‘r;/zamn

\ Gl
/

Downstream genes

|
|

£

Enzyme: « M in \
Sthase case1 /o Anchor Structural L cell A
FasT AN [protein protein-_Protein surface J \
o ERBB2\-/ ‘coupled 8 cept 4|
\ receptor ENzyme: cpy g £ Pes WEE \
Complement, o Lipase 1COS 4 TGAZB \
ergiein E24 ALOX5 —“RE 1A —
crp - =
or | Growth DA
’ Todor REE (= i 7 repair
y Enzyme: - protein
UBEZM . TGMZ “HGF 3
Giytosidase -
Cytoskeletal Ge »
protein 4 REVIL : T
PPPSC KRT1S 8BC3 PERP

Figure 3.13: The layout of a signaling network in Cerebral, including sub-cellular localization information
through horizontal layers that represent cell compartments [Barsky et al., [2008|]. Highlighting is used to
visually emphasize the neighborhood of a selected vertex.

e Resemble established drawing styles as close as possible.

e Visualization of and navigation in huge networks, as the data sets stemming from
experiments and simulations are getting increasingly large.

e Consideration of uncertainty.

Each of those aspects, and the combination of several of them, are important and requested
by the biology community. They all pose a challenge for current graph drawing research.

For interaction networks, classifications regarding type, similarity, and function of the
involved actors have to be highlighted, e.g., by a grouping or a type-specific handling, to
make identification and group affiliation possible. For most tasks also the visualization of
localization or temporal information is a must. Clear separation of cell compartments and a
directed, aligned drawing of reactants to reflect the temporal order are required. For networks
that involve flow, e.g., signaling networks, the direction of the flow has to be respected, e.g.,
by a hierarchical drawing.

An extremely important task for which only a few methods exist is the comparison of
multiple networks. These networks need to be visualized such that differences and similar-
ities can be easily identified, e.g., by simultaneous drawings. However, existing approaches
produce cluttered drawings for many real-world instances.

Even though biologists are used to cluttered drawings, interaction techniques that allow to
visualize only relevant subsets of a graph at a time are needed. In a dynamic setting, collaps-
ing and expanding of substructures can increase the clarity of the presentation and support

3.2. Application Areas 35

the discovery process in large graphs. Specific patterns like motifs and functional complexes,
which may be identified by an analysis of the graph and experimental data, should be clearly
observable in visualizations for all types of biological networks, and similar subprocesses
should be drawn in a similar way. Many tools exist to derive the corresponding information
on modules and motifs from the network and the annotated data. Biologists are interested
in identifying the role of the actors involved in biological processes, and visualization can
support automated analysis, e.g., by highlighting key proteins or substructures. However, in
contrast to areas like social sciences, there is no established visual paradigm how to do that,
and as long as it is done, biologists don’t seem to care much if a vertex is placed in the cen-
ter or at the boundary of a drawing (however, important subgraph structures are frequently
placed close to the center).

Networks for which established drawing conventions exist, such as metabolic and sig-
naling pathways, have to be drawn in a way that adheres to these conventions. Conventions
for pathway drawings include drawing important cascades as aligned paths, and cycles in a
circular fashion. In addition, manual drawings often exhibit a certain symmetry, with a bal-
anced distribution of angles around a vertex, and the edge routing is often nearly orthogonal.
The placement of vertices and edges is restricted based on semantic information, e.g., the
arrangement of participants of a reaction is done to reflect their role and temporal order in
it: Substances and products of a reaction are clearly separated, and co-substances are placed
out of the main path close to the reaction. Functional and type similarity is often reflected by
aligning or grouping similar entities.

Chemistry

Although the use of graph structures in chemistry is not as obvious as in biology, they arise
in several applications, ranging from modeling molecules as graphs for use in database in-
dexing structures (see |Willett et al.| [1998]], Klein et al.|[2011]]), over the representation of
classification hierarchies (dendrograms), to network representations of property-based rela-
tions and similarities (see Section [0.1)). The goal for graph based visualization approaches
within the context of chemical projects is to enable the chemist to explore data, e.g., stem-
ming from large compound databases, in an intuitive visual fashion by navigating along
well-defined relations. Those relations can be based on structural identity or similarity of
the chemical compounds, and are modeled into the navigation approach to allow the expert
to either identify molecules with known specific properties or similar molecules that may be
promising candidates for further investigation.

Independent of the different definitions of chemical space as either the space of all en-
ergetically stable, synthesizable molecules, all small organic (carbon-based) molecules, or
simply all molecules that are potentially suitable for medical application, chemical space
is big. Only a small fraction of the enclosed molecules, however, is biologically relevant
and is therefore considered interesting enough for further investigation. Even though high
throughput methods allow to process large numbers of compounds, still only a small part of
the chemical space can be processed. Considering the effort in time and resources for ex-
perimental evaluation, navigation in chemical space should therefore reduce the complexity
to a manageable level and at the same time allow to explore only the most interesting areas
with respect to the task at hand. As a consequence, efficient and effective approaches for

36 3. Graphs, Data and Dimensions

classification are needed. Depending on the goal of the analysis, rules may be applied to
narrow down the set of compounds, e.g., by taking into account requirements for oral bio-
availability. Nonetheless, identification of suitable candidates for further investigation, e.g.
synthesis and experimental evaluation, involves expert knowledge and cannot be done in a
fully automatic fashion.

Compared to other application areas, especially biology, the support of the analysis work-
flows in chemistry by integrated tools that combine both advanced visualization and interac-
tion as well as analysis methods is rather weak even though the need for such tools has been
formulated quite often. In addition, information needed for the purpose of data analysis is
often spread across various data resources, making combination of the knowledge difficult.
Recently there have been a few attempts to establish new software to remedy the situation,
namely the tools Scaffold Hunter, Molwind, SARANEA, iPHACE and Scaffold Explorer
which aim at facilitating the visual navigation within chemical compound databases.

The very recent development in visualization and analysis tools shows both the potential
of and the need for more sophisticated integrated visual analytics software. Graph drawing
methods can mainly be used to allow the intuitive navigation in the data, where no compara-
ble methodologies existed so far.

Requirements. For network visualizations that are related to biochemical processes, the
requirements are similar to the ones given above for biological networks. Regarding other
graph-based visualizations, there are no established requirements so far, because their use is
just in the beginning.

3.2.2 Social Sciences

Graphs are used in social sciences to model relations between individuals or communities
and to represent the temporal change of those relations. Already in the 1930s Moreno, [1953]]
introduced sociograms to model social networks, using graphs where actors are modeled as
vertices and relations between them as edges or in the case of directed relations as arcs; see
Figure The resulting interaction graphs are then analyzed to detect structural and
behavioral patterns and key players, to show flows, and to derive rules that allow to describe
the dynamic development. An appropriate representation of the dynamics will help to detect
and interpret structural changes over time. Regarding the layout quality, Moreno wrote ‘the
fewer the number of lines crossing, the better the sociogram’. The analysis of social networks
is an important part in social sciences, as it can facilitate to identify the role of an individual
or group within a larger entity, e.g., of a person in a peer group or an organization in society.

According to Freeman| [2004], analysts try to uncover mainly two kinds of patterns: (1)
those that reveal subsets of actors that are organized into cohesive social groups, and (2)
those that reveal subsets of actors that occupy equivalent social positions, or roles. Auto-
matic social network layout methods should therefore strive for layouts that highlight such
structures. Typical further analysis tasks include the identification of hubs (important ac-
tors), common neighbors and neighborhood analysis, and path-finding. For some of these
tasks, graph representations compete with matrix representations, but have also been used in
a combined visualization approach [Henry and Fekete, 2007, Henry et al., 2007]] to combine

3.2. Application Areas 37

the strengths of graphs for path detection and the compact representation of dense subgraphs
in matrices.

The identification of communities within social networks is often modeled as a graph
clustering problem, and a visualization of the network then needs to reflect the correspond-
ing clustering result; see, e.g., Figure [3.16] An interactive visualization approach has to
allow aggregation of the detected communities, both to give a better structural overview and
to reduce complexity. However, groups in social networks may not always be disjoint, mak-
ing it difficult to apply the standard hierarchical clustering approaches. In order to identify
important actors, a filtering of less important parts, e.g., actors with a small degree of con-
nectivity, is also important and already realized in many analysis tools. An animated change
in the layout for filtering is not wanted in each case, as the original positions and distances
might be of interest for analysis.

Besides community detection, several network analysis measures and techniques are used
to gain further knowledge. Centrality analysis aims at identifying the most important actors
and is done by applying a centrality measure, like degree, betweenness and closeness central-
ity. Such measures can be used to derive distance or relative position information. In order to
allow a visual analysis of these values, layouts should reflect such measures; see Figure[3.15]
The need to represent distances has lead to the frequent use of radial and distance-based lay-
out methods. Also circular drawing conventions that allow to map levels of organization
have been proposed [Baur and Brandes, 2007, Baur et al.| 2009]; see Figure [3.14(b)l Baur
[2008]] distinguishes two types of drawings of graphs, general layouts and analytic visual-
izations. General graph layout techniques like force-directed or spectral layouts depend only
on the link structure of the network, and can be used to get an overview on the general graph
structure. Analytic visualization refers to drawings which express the exact results of an
automatic analysis, mapping them to corresponding vertex positions and edge routing.

SOCIOMETRIC GEOGRAPHY OF A COMMUNITY — MAP 1ii

(a) (b)

Figure 3.14: (a) Sociogram from Moreno’s classical publication [Morenol [1953]] (b) a visualization of
an email communication network that also takes institute affiliation into account to achieve a two level
layout [Baur et al., 2009]]. Both visualizations represent group structures, but the circular micro/macro
graph layout in (b) gives a better overview on the structure and is less cluttered.

38 3. Graphs, Data and Dimensions

Continental

Thyssen
Commerzbank

VIAG
§ Deutsche Barfke @ Linde man
BayerischelB @

e Daimler-Benz
Lufthansa
Deutsche Bahn @) Metaligesellschaft
Bankgesellschatt Berlin O BASF
% @

NordLB Beiersdol
Preussa; 0 @, Bayerische Vereinsbank @ Scherin
W

O W
Colonia []
Miinchner Riick (O) saverische Hypo
Degussa Vereinte
@ industrial ¢ .‘mm Onresuner Bank o
O financial Bayer
financial - financial @] (D6 Bank

Gerling Y Hoechst RaV Versicherung
financial - industrial Bilfingé¥ +Bérger Bosch AGIV

industrial - financial Wacker ‘)/. SI‘WMBO O\linluria
Buderus
industrial - industrial BMW‘/ Boach-Siamens
Figure 3.15: Visualization of a social network with a centrality-based layout, taken from the [Visone web
page. The network represents German capital ties in 1996. Typical for social interaction networks, central
actors need to be placed in the center of the drawing, and vertex positions reflect centrality values. Also

attributes such as vertex size, edge width, and color are used to reflect additional properties like importance
and type of actors.

A common visualization feature is the mapping of data annotations to graphical attributes
like size and color. Layout methods that do not take into account vertex sizes are therefore
not well suited for social network visualization. In addition, also the edge width may be used
to represent information; see Figure [3.19]

With the advent of modern telecommunication and internet technologies, there is an addi-
tional demand for the analysis of the corresponding information, and a wide variety of data is
suitable for graph-based visualization. Prominent examples are social network communities
on the internet, email and chat contacts, interaction graphs in criminalistics, citation relations
in scientific communities, and the relations in popular movie and actor databases. The over-
whelming number of online community services even lead to the term “YASNS — yet another
social networking service’ [Shirky, 2003]]. Whereas classical analysis typically had to cope
with small sets of actors, the data sets that are collected in modern applications are huge with
billions of entries, providing a new challenge for analysis and visualization methods. Social
network analysis tools therefore have to be capable both to layout and handle small as well
as huge networks properly, and need to provide navigation methods. Graph structures mod-
eled from such data may also include dense substructures (e.g., closely related communities
may form cliques), which need to be treated efficiently. There are three basic approaches to
visualize large data sets: Just start with a view on the whole network (e.g., SocialAction),
try to avoid clutter by reducing the view to a small focus set (e.g., Vizster [Heer and Boyd,
2003[] and TreePlus [Lee et al.,2006a]), or allow an aggregated view on the data (e.g., Pivot-
Graph [Wattenberg, |2006]). Without further methods to analyze and arrange a large network
on screen, a ‘whole network’ view clearly makes detection of patterns extremely difficult.

3.2. Application Areas 39

Figure 3.16: Visualization of a part of the IMDB movie database visualized with Tulip, taken from the project
webpage [Tulip]. The force-directed layout of a clustering result was improved by manual alignment.
In contrast to the visualizations in [3.18] the main focus is on an overview and the clear separation of
subgroups.

In addition to the pure relational structures, the data is often enriched with temporal
information, additional group structures (e.g., membership in organizations), and other sup-
plementary information, e.g., demographic data which can be exploited for analysis. The
dynamic behavior of social systems is an important aspect that needs to be represented, see,
e.g., Brandes and Corman| [2003] where a two-and-a-half dimensional stacking of subnet-
works was used to unroll the network evolution.

As the modeling and visualization of social relations as networks is an established ap-
proach for analysis, there is already a decent amount of research done for customized graph
layout methods, and also many interactive analysis tools have been implemented. Conse-
quently, the term “YASNAT — yet another social network analysis tool” was coined, showing
that there doesn’t seem to be a lack in tools, but none of them seems to be satisfactory for
a large range of practical purposes, such that they are interesting and flexible enough to
be maintained and extended over a longer period of time. Besides the support for graph
analysis and statistics in general purpose tools and libraries, several graphical exploration
tools tailored for social network analysis were developed, for example visone |Baur] [2008],
SocialAction, and vizster. The visone software provides dynamic layout and animation fa-
cilities, vizster uses a spring-embedder with a Barnes-Hut implementation, and maps con-
nectivity to spring strength.

Interactive web tools that allow to explore databases using featured static or dynamically
created maps are getting more and more popular. The NNDB Mapper for example is a tool to
visually track and explore the connections and activities between people from science, poli-
tics, business, and culture in the Notable Names DataBase, in order to document connections
that may not be obvious, but helpful to explain a person’s behavior. The implemented layout
and navigation methods are however often rather poor, see Figure [3.18(b)| for a visualization
using the NNDB mapper.

An intentional use of a bad social network visualization can be seen in Figure The
network shows the relations of institutions involved to the U.S. health care reform plan,

40 3. Graphs, Data and Dimensions

(a) Original (b) OGDF Orthogonal

Figure 3.17: Visualization of the Democratic Health Care Plan released by a republican politician, obviously
published to make the plan look overly complex and confusing, and an orthogonal layout of the same
graph structure (hyperedges modeled with dummy vertices (blue)) using OGDF.

and the cluttered layout is used to make the structures complex and difficult to understand.
Obviously, some design rules or constraints were used, like the alignment of the ‘president’
and the ‘U.S. Congress’ vertices on top of the drawing. However, it is not the application of
these constraints that makes the layout look so cluttered, as the intention was to create the
impression of an overly complicated and confusing system. The orthogonal drawing derived
using OGDF’s topology-shape-metric implementation shows that the graph structure alone
is rather simple. It needs only a single crossing, at the expense of more white space.

An interesting application of social network visualization is the analysis of citation graphs,
i.e., graphs that link scientific papers by citation relations. The visualization of citation
graphs can reveal interesting patterns and information about a research area. Citation graphs
show the impact of a research community to other communities and also the influence re-
ceived from other areas; see Figure Properties like connectivity, diameter, degree
distribution, cocitation, and community structure are useful indicators for the characteriza-
tion of the research activity [An et all 2004, Reid and Chen| 2007, White and McCain,
1998]]. Also the evolution of those aspects over time can be of interest. The Graphael system
allows the animated visualization of evolving graphs and was used for the interactive visual-
ization of topic, collaboration, and citation graphs [Erten et al.| [2003]. Its layout is computed
with a force-directed approach, based on a modification of the GRIP algorithm

Kobourov, 2002].

Requirements. As shown in McGrath et al.|[1997], the layout of social networks can
have a large impact on community detection and role perception, vertices closer to the cen-

ter are assigned a higher importance, and vertices close to each other perceived as a group.
Different layouts can highlight different features of a network [Blythe et al., 1995, McGrath

[1997], and may therefore be needed for visual analysis. [Huang et al|[2007]] summarize

for their user study that the usefulness of a drawing convention for social networks does not
only depend on the task, but also on the expertise of the viewer. With regard to the priority

3.2. Application Areas 41

(a) b)

Figure 3.18: Social network visualizations with a high level of visual clutter which makes it difficult to
derive any structural information. However, the right picture was created to display the density of the link
structure, whereas the left picture was created for visual analysis purposes. (a) Visualization of the enron
email communication, visualized using vizster. Colors indicate affiliation to closely related communities,
based on a hierarchical clustering algorithm. Courtesy of Jeffrey Heer. (b) Network visualization created
using the NNDB Mapper and showing 69 participants of the Bilderberg conference and their affiliations
to social institutions, companies, and governments [PSR].

of aesthetic criteria, standard criteria like edge crossings, uniform direction of edges, vertex
separation, and angular resolution showed relevant impact. However, while the number of
edge crossings had an impact in user performance, spatial layout features were a main cause
for misinterpretation of the data. Therefore the authors recommend not to distribute vertices
evenly, in contrast to the popularity of force-based layout methods in social sciences. Draw-
ing conventions preferred by the users did not always lead to improved task performance.
Hierarchical layouts for example, even though perceived by users as high in usability, did
not lead to high response accuracy, very likely due to angular resolution issues.

The positioning of actors in the center, or at a specific distance from it, and considering
relative distance values of vertices to each other are typical requirements in social science
visualizations. A requirement which is often neglected in graph drawing software is the need
to place vertex and edge labels. As labels occur frequently in social network maps, and can
often be of considerable lengths, bad placement can significantly deteriorate the quality and
usefulness of the visualization. Also the vertex size and the edge width are used as visual cues
and therefore need to be considered. Overlap removal techniques like the one of Gansner and
Hu! [2010] might help to cope with these requirements. Animation of the structural evolution
is already a widely used instrument. Highlighting of key actors and clusters supports the
analysis process. However, peripheral actors may also be of interest, as they could represent
connections to external networks. For navigation purposes, expand-and-collapse techniques
for substructures such as clusters can be used.

42 3. Graphs, Data and Dimensions

United Kingdom

Netherlands

Ecology & Evolution

Figure 3.19: (a) Visualization of the citation flow between several scientific fields, where edge width rep-
resents the amount of flow [Eigenfactor]]. (b) Flow Map Layout showing imports to Spain and France as
visualized in|Phan et al.|[2005]], the edge width represents the amount of flow. The layout tries to preserve
the relative positions of the vertices to each other, minimizes edge crossings, enforces vertex separation
by employing the force scan algorithm of Misue et al.|[1995]], and merges edge that share destinations by
applying a hierarchical clustering based on Euclidean distance.

h 4
nt T ot Acluator
in2 out2

Subsystem

Logging

Ramp

Figure 3.20: A data flow diagram from Simulink [Sponemann et al., [2010].

3.2.3 Software and Hardware Engineering

There is a large variety of graph applications in software engineering. Data flow and entity-
relationship diagrams are used in CASE tools to depict the architecture of a software system,
where relations between classes and modules in a program are modeled by a graph structure.
Requirements comparable to the ones in software development can also be found in hardware
development, as similar graphical modeling paradigms are used in modeling tools such as
LabVIEW and Simulink. They allow a model-based design of systems over a graphical
diagramming interface, employing state-charts and flow diagrams. See Figure [3.20] for an
example data flow diagram.

In general, different aspects of software systems like structure, behavior, and evolution,
can be covered by quite different types of diagrams. The Unified Modeling Language (UML)

3.2. Application Areas 43

Figure 3.21: A UML class diagram representing a part of the OGDF library, drawn with OGDF’s UML class
diagram orthogonal layout. Structural subunits, in this case inheritance hierarchies, are clearly separated
and drawn in a common direction. However, vertices are not aligned corresponding to the inheritance
depth.

was developed to standardize the modeling and representation of these aspects, and com-
prises a set of corresponding diagram types. Structure diagrams, as, e.g., the UML class
diagram, model a static structural view on the software and may contain abstract and imple-
mentation concepts; see Figure [3.21] Behavioral diagrams show the dynamic behavior of
the objects in a system, including methods, collaborations, activities, and state histories; see
Figure 3.22] The dynamic behavior of a system can be described as a series of changes to
the system over time b]. The UML visualization standard allows to freely exchange
software specifications and documentations and helps that these representations are readily
understood by everyone involved in software engineering, decreasing design and mainte-
nance time and effort. Going beyond the pure graphical notation, semantic information in
UML allows to also verify and even execute models. Regarding visualization, UML’s Dia-
gram Interchange specification aims to provide an exchange format for diagram layouts.

[Purchase et al.|[2001]] investigate the specific demands for the visualization of UML class
diagrams, identifying the most important aesthetics for human comprehension. As most of
the aesthetic criteria under investigation did not produce any significant results when consid-
ered alone, the authors assume that it is important to reflect semantical information, which is
not considered by generic layout algorithms. In class diagrams, edges have a specified type:
In the most basic case, they can be either associations or generalizations. Generalizations

44 3. Graphs, Data and Dimensions

interaction Online Bookshop J

AInventory

2.3 [order complete]
update_inventory()

2 [interested
view_book()
—

:Online
Bookshop

(a) (b)

Figure 3.22: (a) A UML sequence diagram that shows the message interchange between lifelines. (b)
A UML communication diagram [UML! [a]. UML communication diagrams also show message flow
between objects, but do not focus on the order of messages. The layout therefore has a less restricted
form.

are directed and constitute inheritance hierarchies, which are the most important substruc-
tures for these diagrams. These substructures should be clearly identifiable in a diagram.
There was only one criterion in the experiments of |Purchase et al.| [2001]] that significantly
influenced the task performance: the number of bends. Nonetheless the authors recommend
the use of bends to support the semantic grouping of closely related objects, for example
subclasses in an inheritance hierarchy.

Purchase et al.|[2000] and |[Eichelberger| [2003] state that there is no clear specification
for the readability of UML diagrams. Wong and Sun|[2006] suggest that corresponding rules
can be derived from perceptual principles. They survey and classify related criteria from
previous research and notation guidelines. Avoiding crossing lines is a rule often found in
Best Practice guidelines for UML modeling (e.g., Ambler [2005]). Sometimes also diagonal
and curved lines are noted to be unfavorable, whereas symmetry is promoted as it helps to
understand the structure better and allows to detect recurring patterns. Vertices should be
distributed well, with a lower bound on the distance to other vertices and edges. |[Poranen
et al.|[2003]] discuss characteristics of good layouts for sequence diagrams and define three
types of general constraints for sequence diagrams:

e Horizontal distance: Uniform horizontal distances between participants.
e Vertical distance: Uniform vertical distances between message arrows.
e Starting object: The object that starts communication is drawn to the left.

However they also give examples where these constraints should have smaller priority than

other goals, e.g., when vertical distances should reflect exact message starting times.
Several tasks have quite different requirements: High-level modeling uses relatively

small diagrams, which are manually edited in an incremental fashion, and often involves

3.2. Application Areas 45

user-defined layout constraints. Due to the lack of support for mental map preserving auto-
matic layout capabilities in today’s graphical software modeling tools, an often used mod-
eling guideline is ‘focus on content first, appearance second’. If interpreted to mean that
during the creation process, no time should be spent in rearranging the layout for readability
reasons, the guideline ignores the facts that readability might also help in the creation pro-
cess. During an iterative modeling process, readability is needed to understand and improve
the model, as software projects may grow and be modified over a longer period of time, and
are often developed by groups of developers at the same time. An incremental automatic
layout that respects user-defined constraints would therefore be a real improvement. Such
a diagram layout should be stable during the course of dynamic engineering or navigation
processes.

Regarding the behavior of software systems, flow of control and data and also temporal
aspects need to be visualized. For debugging and tuning purposes, hot spots and unused
code should be clearly identifiable. Sequence and communication diagrams are examples
for diagram types that allow to model the dynamic behavior of the software. They show
the message flow between objects and differ clearly in the visual representation; see Fig-
ure [3.22] UML sequence diagrams describe the dynamics of a system as the interaction
of participating objects with a temporally ordered sequence of exchanged messages. The
vertical dimension in a sequence diagram represents the flow of time from top to bottom,
vertical lifelines represent the interacting objects and are connected through horizontal mes-
sage arrows. WJacobs and Musial| [2003]] link program execution to a UML class diagram.
They modify the standard UML class diagram with a focus-and-context technique to pro-
vide access to both high level structural information and low level program details. Malloy
and Power| [2005]] combine class and call graph diagrams in an interactive profiling tool that
allows to show dynamic sequence and communication diagrams during program execution.

Besides specific semantic type information, packages are a main structural element in
software engineering to group model elements. Packages may be nested and can be applied
to model software packages and modules as in the JAVA and Modula languages, to distin-
guish namespaces as in C++, or just to represent the main parts in the organization of a
software project. Packages should be integrated into a navigation approach for visualization,
for example by using an expand-and-collapse mechanism. Use of packages is a major tool
for abstraction of increasingly large and complex software systems. Other techniques in-
volve a filtering based on a visibility status, and semantic zoom that hides object details with
different levels of detail for different parts of the graph. Even in the absence of such package
structures, both overview and detail visualizations for large software projects are needed.

Active software projects are subject to permanent dynamic changes, and the course of
development can be modeled as a graph to track the evolution of a software [Collberg et al.,
2003]. [Frishman and Tal [2004]] describe the use of a dynamic clustered graph represen-
tation for the visualization of mobile object frameworks, where objects are represented by
vertices, and machines are represented as clusters containing the objects that are currently
assigned to them. Edges between vertices represent logical relations between the objects,
and connections between cluster representatives model physical connections between ma-
chines. As the objects might migrate to remote hosts during application execution, and
machines (dis)connect to the network, the visualization needs to be dynamically updated. A

46 3. Graphs, Data and Dimensions

Figure 3.23: Visualization of a database schema, drawn in orthogonal style using OGDF.

nice example for an interactive graph-based software visualization is the web-based interac-
tive linux kernel map [Shulyupinf]. It allows to browse a top-down view of the linux kernel
with a clustering into different layers, functional levels, and electronics.

Even though the UML is a widely adopted notation standard, entity-relationship dia-
grams (ERDs) have been used already for a long time, especially for relational database
schema diagrams. Database schema diagrams show the structure and relationships of ta-
bles, views, and other database entities; see Figure @} Such non-UML diagrams are still
widely used and have specific drawing requirements. Orthogonal routing of the edges and
a crossing minimization are preferred, but clear depiction of the schema structure is more
important than a compact layout. Further layout rules include that directed edges are drawn
in a common direction and tables are aligned in columns. This makes important (primary)
tables better visible, which are typically not dependent on other tables. Edges should only
attach at either the left or right side of a vertex. As vertices are in general large columns,
automatic layout methods need to respect the size.

Electric circuit design and VLSI layout are examples for early uses of graph drawing
methods, and several techniques used were also adopted for graph drawing purposes, as for
example compaction heuristics. Layout diagrams do not have the goal of an ‘aesthetical’
graph representation, but represent the physical design. Constraints bound distances and
lengths, e.g., to avoid signal interference and timing problems. Hence, the layout computa-
tion is highly constrained. In addition, instances can be very large, therefore often only fast
heuristics can be used. Technical drawings like circuit diagrams are not meant to directly
reflect a physical layout, but mainly represent the circuit logic for human understanding;
see Figure [3.24] In a variety of application areas, such technical schematics are used for
hardware design, and a fully developed and established graphical notation exists that is sup-
ported by a variety of software systems, e.g., CAD systems. Layouts for these drawings have

3.2. Application Areas 47

Figure 3.24: Schematic of a terminal system. Objects have fixed ports for edge attachment and edges are
bundled to decrease clutter. Alignments of similar components and proximity of functionally related
components support the understanding and guide the user’s orientation even in a static visualization.

to reflect information like object size, minimum and maximum distances, allowed positions,
ports, or relative order. The edge routing is done exclusively in orthogonal style. Drawings
are also often organized in the direction of signal flow, e.g., from left to right.

Requirements. Several requirements stem from the nature of the depicted models: Ver-
tices often have prescribed shapes that denote their function or type, edges are directed and
possess fixed ports. Ports may either fix exact positions or only specify the vertex side at
which to connect. A source port may be connected to multiple target ports, thus creating a
hyperedge. These hyperedges then should not be visualized by several distinct edges, but
combined as, e.g., the generalizations leading to the same parent classes in Figure 3.21

The predominant drawing style for flow diagrams is orthogonal grid drawing; especially
for hardware development, nearly all tools require edges to be drawn orthogonally. As bends
in class diagrams may hamper readability, bend-minimizing drawing methods seem to be
well-suited for layout computation.

Semantic information may specify the main structures that have to be highlighted: In
order to clearly depict inheritance hierarchies in class diagrams, these have to be visually
separated, i.e., generalizations should not cross and subtrees of different hierarchies should
not be intermingled. In addition, all edges in inheritance hierarchies should point into the
same direction. Signal and data flow direction has to be respected, e.g., by left-to-right
drawings. The horizontal ordering of lifelines in sequence diagrams is not fixed and can
therefore be chosen such that the length of the message arrows is minimized.

Vertices may also contain other vertices in a hierarchical composition, like in package

48 3. Graphs, Data and Dimensions

structures, the visualization then has to draw the induced subgraph of the contained ver-
tices within the composite vertex. For large graphs, the decomposition can also be used for
abstraction and navigation purposes.

3.2.4 Further Application Areas

Out of the large number of application areas, we will shortly discuss a few further prominent
examples which are either interesting because of their additional requirements or because the
use of graph drawing is established with characteristic visualization conventions.

Security. Attack graphs model the security of a computer network and allow to identify
paths that enable an attacker to penetrate a secured network. Depending on the model used
and the analysis task, vertices in an attack graph represent states of a network, machines,
attack goals, or attacks, and edges represent exploits, show the order of attacks, or model
how the exploit of a condition can result in subsequent network conditions. Due to the
directed nature of the edges and the importance of paths that lead to a specific attack goal,
often hierarchical layouts are used to visualize attack graphs. |O’Hare et al. [2008]] emphasize
the value of alternate layouts for the analytic benefits of graph visualization, as it fosters the
recognition of fundamental underlying patterns that might otherwise be invisible. They also
stress the fact that incremental layouts are highly preferable, both due to performance and
orientation issues, to allow interactive navigation and exploration of attack graphs.

Attack graphs can be quite complex and therefore navigation methods, especially expand-
and-collapse mechanism are needed to handle them; see Figure Noel and Jajodia [2004]]
consider managing complexity in user interaction as the greatest challenge in making attack
graph analysis practical for real networks. A key concept for this goal is the dynamic ag-
gregation of subgraphs, for example according to protection domains (sets of machines with
unrestricted access to each other).

Homer et al.|[2008] propose techniques to group attack steps that share similar seman-
tics, and also rules to trim the graph by removing steps that are rated as omissible for the
understanding of the core security problems in a network. There are not only many tools to
generate and manage attack graphs automatically, the security community is also well aware
of the value of meaningful visualizations of these graphs. Several publications concerning
specific visualization approaches for attack graphs exist, and also libraries and methods from
the graph community are well known and used (e.g., Homer et al.| [2008] uses Graphviz,
O’Hare et al.|[2008]] uses yworks).

Business processes. Already for a long time, business processes have been visualized
as graphs, and a huge number of modeling tools exist that allow a graph-based process mod-
eling approach. Within business process management, workflow models represent real-world
business processes. Within the corresponding process graphs, vertices can represent actors,
entities, or activities and directed edges represent control flow. These models can be used
to document and communicate processes, and workflow management systems may even al-
low their machine-aided execution. Compared to other application areas, the visualization is
mostly used in a more static manner, but if automatic layout methods are used to improve the

3.2. Application Areas 49

Figure 3.25: Complex attack graph visualization as visualized in [Noel and Jajodia [2004]. A hierarchical
layout style is used for this overview visualization. It is extremely difficult to track single paths or to
identify relevant substructures.

visualization and subsequently the human understanding of the models, they need to allow at
least incremental drawing during the creation of a process model. Business process models
(BPM) are typically relatively small, such that they can be completely visualized on a single
page or on screen.

A main concern is the visualization of control flow, i.e., the execution order of activities.
This includes not only the order of the objects, but also an alignment of main flow paths.
Vertices in BPM visualizations are never allowed to overlap, and manually created draw-
ings nearly always show quite large and uniform vertex separation spacings. In addition,
orthogonal edge routing is often preferred.

The Business Process Modeling Notation [BPMN| a] provides a widely adopted standard
for the graphical notation of business processes; see Figure [3.26 for an example. Whereas
BPMN is mainly concerned with the graphical representation for human understanding, the
Business Process Execution Language [BPEL] allows execution and simulation. Models
in BPEL therefore often contain more details, as they have to include most aspects of a
process for simulation, including special cases. Another main visual language are Event-
driven Process Chains (EPC) [Scheer et al., 2005]; see Figure m for an example.

Business process visualization is highly constrained, but often up to a point that together
with the occurring classes of graphs makes the drawing easier. Pools, lanes, and subprocesses
can be used to separate different aspects of a process, such as organizations, functions, or
locations, e.g., to distinguish the internal part of a process from the customer part. A pool
represents a participant (e.g., a company) in a collaboration and may contain a corresponding
process (i.e., the process may not leave the pool). Message flow edges model the interaction
between pools. The pool can be further partitioned by lanes to show the departments or roles
responsible for the participants activities. The use of pools and lanes with a fixed geometric
order of subgraphs, the hierarchical structure due to the flow, and the need to align main

50 3. Graphs, Data and Dimensions

P 111 1

Nobel Committee for Medicine

_z
EE]
§2
gg
z
g
3

Nobel Assembly

Figure 3.26: BPMN example, showing the Nobel prize process model. Diagram taken from the BPMN
2.0 example document [BPMN| b]. The diagram uses aggregation of activities by pools based on the
groups involved, representation of control flow through ordering of vertices and edge direction, and also
alignment of task flow.

characteristic paths, combined with the often very sparse graphs, sometimes do not leave
much space for layout optimization. Semantics of the edges regarding different types of
flows should also be taken into account. For example, horizontal sequence flows and vertical
data and message flows with a small number of crossings for the message flows will improve
the readability and understanding of the model.

Business processes can also be hierarchically decomposed in subprocesses, such that
a top-level diagram only shows a rather abstract view on several processes that again can
contain subprocesses down to the level of a single task. Decomposed processes have their
own notational element, a ‘+’ mark, to indicate that there are subprocesses involved. These
can be visualized either by a separate diagram or by showing a thumbnail sketch in the parent
vertex. Subprocesses and pools may also directly be connected by edges attaching at their
boundaries.

Standard layout methods, even though applied in several tools, do not respect the com-
bination of these requirements well. The clustered orthogonal drawing in Figure [3.28]is a
nice representation of a process model with respect to the aggregation due to the department
structure. It does, however, not represent the flow by maximizing paths with common edge
direction. Depending on the task at hand, different visualizations of the same graph may
therefore be appropriate to highlight different characteristics of the business process, either
alternatively or simultaneously. Besides the use of standard graph layout methods in estab-
lished business process modeling tools, also attempts have been made by the graph drawing
community to provide interactive tools with layouts especially suited for the requirements,
e.g., Effinger et al.|[2009] present an interactive tool for BPMN.

3.2. Application Areas 51

[Company Goal

elongs tof jescribes efines|
Project Requirement Gapabilty SLA KPI
n n

creatod/extended in
influences/ieads describes

encormpasses
CIM n
Org. Element
B
roduot/Senvice:
PIM

groups

invokes/receives
BPEL Activity

PSM

WSDL Porttype

WSDL Specific UML Models

Figure 3.27: An event-driven process chain, using the typical orthogonal drawing style and clustering [Stein,
2008|. Three main layers can be identified, which are further subdivided by clusters.

3.2.5 General Requirements from Practical Applications

Although most practical applications have their own specific requirements for graph visu-
alization, there are requirements that are important in multiple areas. There are, however,
differences between tasks that cope mainly with empirical and experimental data, and tasks
that involve modeling. Empirical data sets like the ones from biology, chemistry, and so-
cial sciences, are often dense, large, and require navigation techniques and support for an-
alytical tasks like pattern finding or similarity search. Structures stemming from modeling
processes, like business process models or software architectures are rather modest in size
(although software projects can also grow over time to huge proportions). The application
areas that use modeling also specified modeling languages and standardized rules for vi-
sualization early, which allow better communication of both structure and semantics. As
an example, non-overlap is an often stated and much appreciated optimization goal in all
application areas, but visualizations in biology still often exhibit overlap, whereas this is ab-
solutely unacceptable in software engineering visualizations. A special role plays biology,
as there are traditional drawing conventions from textbooks which are well-established for
several diagram types (e.g., metabolic pathways), whereas for others there is no convention
at all (e.g., protein interaction networks). One could argue that the existing drawing conven-
tions in biology also stem from the manual creation of pathway drawings in the beginning,
which somehow resembles a modeling process, whereas protein interaction networks were
used to display raw experimental data.
The most frequent requirements are:

Grouping of Objects: The organization of objects in groups is a common pattern in many
application areas, either due to strong structural relationships in such groups (e.g., modules
in biological networks), semantic information (e.g., department structure in an organization),

52 3. Graphs, Data and Dimensions

ReCEVE
Payment

Enter Order,
Lines

Close Order| Ship
Lines Goods

customer | | Get Customer Create
Bxists fram System COrder

b - - - __ _ .
wertory 1 1

Pt final |

Goods in FGI |

Create Item all items Get ltems | Close
Demand available |] from Stock Jobs

Get item
[n]

\

\
Item
|
R |

z3
=
=1
=@
5w
g =
=]
=

Figure 3.28: A business process model visualized as a clustered graph drawing. Clusters represent depart-
ments.

or information on the spatial distribution (e.g., cell compartments or sub-cellular location).
An important requirement for the visualization is therefore that these groups are represented
such that the resulting communities are easy to detect. This is typically modeled in graph
drawing using hierarchical cluster structures, see Section [/l However, in practice several
group structures may be of interest at the same time, e.g., localization information and func-
tional categorization for proteins. In addition, organizational structures like the pools and
lanes in BPMN diagrams have a more restricted structure with regard to nesting and at the
same time impose constraints on the relative position. For example, the lanes of a pool
are stacked in one dimension and edges between lanes may pass through in-between lanes.
When the lanes are modeled by clusters, such crossings are not allowed in a clustered planar
drawing. Additional techniques therefore need to be applied to handle such a partitioning of
the drawing area well.

Reflection of hierarchies: A further requirement that occurs in many areas is that a (hierar-
chical) order of objects has to be reflected by the visualization, to represent the direction of
a flow or chronological order, such that the sequence of events can be easily traced by users.
This may also imply that either all or subsets of edges have to to be drawn monotonically
in the same direction. Several levels of flow may be present at the same time, e.g., data and
message flow.

Stability: Even though graph visualization can either be done for a static representation,
as for publication purposes, or for dynamic exploration, in both cases the graph changes

3.2. Application Areas 53

dynamically in an iterative creation or exploration process. A requirement that is therefore
nearly always stated by practitioners is the stability of the drawing after reapplication of the
layout algorithm, following a small change in the data or the layout algorithm parameters.
The author had many discussions with practitioners from several application areas, including
biology, chemistry, telecommunication, criminalistics, and software engineering, and also
observed discussions on this topic in online resources. Judging from the feedback given, lack
of stability is one of the most important reasons hindering the application of automatic graph
layout in application software. Users tend to apply small manual changes to an automatically
generated layout, and they demand from the system to preserve these changes, even when it
is not directly clear how to formally specify such a change with respect to the new layout.

Alignment: A very simple, yet effective way to organize objects in a diagram is alignment.
Alignment of objects is either a mandatory requirement as in the visualization of business
process models, a strongly recommended practice as in software diagrams, or just a help-
ful tool to arrange objects based on user preference. Alignments are used to increase the
readability, to highlight specific processes and flows, or to show membership to the same
substructure or organizational unit, as, e.g., activity regions (swim lanes) in UML activity
diagrams.

Navigation in large data sets: In application areas with a need to understand and communi-
cate large amounts of data, grouping structures can also be used for navigation purposes. An
expand-and-collapse mechanism based on the inherent structure of the data may both help to
gain a deeper understanding of the data and to keep the orientation.

Fast layouts for large graphs: Whereas static visualizations for presentation purposes are
no time-critical tasks, in many application areas interactive data exploration systems need
quick or even guaranteed response times. Efficient layout computation methods for real time
navigation in huge data-sets are therefore critical for the success of graph drawing in such
applications.

Highlighting: In addition to the standard task in graph drawing, the computation of a layout
to allow the understanding of the overall graph structure, many application areas require that
important players can be detected. Importance here may be based on structural properties,
e.g., large degree or centrality, but can also be derived purely by semantical annotations. As
the center of the drawing is a focus area, several application areas adopt the convention to
place important vertices there. However, several types of diagrams from graphical notations
have already fixed semantics for areas or dimensions of the drawing. In sequence diagrams
that use the vertical dimension to represent time an important message might not be simply
placed in the center. Besides single vertices, important substructures like biological motifs
or inheritance hierarchies also need to be clearly visualized.

Vertex sizes and non-overlap: Vertices may stand for different types of entities and need to
be represented accordingly. Images, labels, or data may be mapped onto them, therefore
vertices often need to be drawn with non-uniform sizes; see Figures [3.6/and As overlap
is often unacceptable in these cases, automatic graph drawing solutions have to take into
account shapes and sizes. These properties can also be exploited for layout improvement, for
example in orthogonal drawings bends may be saved at large vertices, where enough space
is available to route edges to adjacent vertices in parallel. Many current drawing methods,
especially the most popular force-directed methods, do not support such requirements well.

54 3. Graphs, Data and Dimensions

Attributes like vertex size or color may either be prescribed, e.g., to permit to inscribe a text
label of a vertex, or be used to model additional information, as, e.g., in Figures [3.1] and
3.3l Use of these attributes can also be the result of established visualization conventions,
narrowing the space for free mapping of data onto visual attributes, and making specifically
tailored software applications necessary.

Restricted embeddings: The order of the edges around a vertex might be restricted, e.g., to
separate incoming and outgoing edges, or to model fixed sides or ports for edge attachment
(e.g., in data flow diagrams). In addition, subgraphs may have to be separated, i.e., they are
not allowed to be nested in each other (e.g., inheritance hierarchies).

Visualization of dynamic processes: Due to the inherent temporal component of processes in
many applications, dynamic drawings are specifically important. Such applications include
the visualization of biological processes, monitoring and analysis of telecommunication net-
works, and also the analysis of changes over time for social networks.

Labeling: Nice placement of vertex and edge labels, or respecting them already for layout
computation, can improve the visualization quality significantly. This is especially imported
for social and biological network representations, however, only quite simple heuristics are
typically implemented, if any.

Important Notations and Languages: A number of drawing standards and notations from ap-
plication areas are important that need to be supported by automatic graph drawing tools to
be successful in the corresponding area. The Unified Modeling Language (UML) is in wide-
spread use in software engineering and business process modeling. The Business Process
Modeling Notation (BPMN) is the predominant notation for business process modeling. The
Systems Biology Graphical Notation (SBGN) is a relatively new graphical notation standard
for the modeling of biological processes [SBGN]. For the first time, the SBGN seems to be
a widely accepted approach for the standardization of biological network visualizations, and
despite the early status of standardization, the SBGN is already supported at least partially
by several of the important visualization tools. The notations described are mainly used in
software engineering, biology, and business process modeling. However, there is a wide-
spread use of further established modeling or notation languages, like Petri nets, in many
application areas. Even though notations help in standardizing the way in which diagrams
are visualized, they still leave much freedom in how to arrange objects in a diagram. Several
results indicate that the ability to create and to read diagrams differs largely between novices
and experts [Petrel |1995, 2010]. Experts seem to make much better use of ‘secondary nota-
tion’ (i.e., information that is not part of the formal syntax) for layout and perceptual cues
to improve reading and comprehension. Examples for secondary notation elements are clus-
tering and adjacency of functionally similar or related objects, use of white space, labeling,
etc. These elements are used to improve the layout quality by emphasizing important infor-
mation. High-quality automatic layouts therefore allow to make the value of graphics use
independent on the individual style and skill of the diagram creator. This however includes
the challenge to avoid misleading use of visual cues that might suggest relations that are not
present in the data, e.g., by incorrectly showing symmetry or grouping.

Respecting the semantics of the graph objects is an aspect that is wished by practitioners,
but often only partially achieved by graph layout solutions. This is often due to the fact
that simple standard layout algorithms are implemented by non-experts in graph drawing as

3.2. Application Areas 55

simple extensions to existing applications over and over again. The situation is similar to the
demand for GUI development tools, where several established toolkits exist (Tcl/Tk, Qt) and
components are even part of programming languages (Java). Only in a few cases, users need
to develop GUI components from scratch on their own. For graph layout however, the first
attempt made is often to implement a simple spring embedder variant instead of using state-
of-the-art implementations. If systems for use in application areas are implemented by graph
drawing experts, they provide sophisticated graph drawing solutions, but lack support from
a sufficient user community. They are often only maintained adequately for a short time,
and do not provide the necessary interfaces, exchange formats, and interactions for use in
the respective application areas. One could recommend to provide implementations for large
open-source projects that are maintained and extended over longer periods. However, instead
of providing implementations of state-of-the-art methods for a specific software, a much
better solution would be to provide stable and easy-to-use interfaces to well-documented
graph drawing libraries, such that practitioners might start to employ graph drawing software
in their own projects. A difficulty arises in the fact that the specifications of network models,
notations, and drawing requirements are often not formalized and therefore both practitioners
and the graph drawing community are not able to easily define a useful mapping to drawing
styles, methods, parameters, and constraints. Maybe this can only be remedied by adopting
clearly defined and documented notations and exchange formats and by promoting them in
application areas. A mapping of graphical features and requirements from notation standards
like UML or SBGN must then be given such that practitioners are able to implement their
own solutions, using graph drawing libraries as a black box.

Another important aspect for the acceptance of graph drawing software in practice is the
evaluation of systems and solutions, e.g., by user studies. Such studies can be of great help
to make sure that the solutions are well designed for practical purposes. Nonetheless, such
evaluations are rarely done (or at least published), perhaps because it is difficult to design
and conduct reasonable experiments.

56

3. Graphs, Data and Dimensions

4. AUTOMATIC GRAPH DRAWING

Graph Drawing is the art to produce a picture of a graph.

WWW.GRAPHDRAWING.DE

As we have already seen, graph drawing is an important technique when information has
to be visualized for human users. The field of automatic graph drawing is concerned with the
automatic, i.e., computer-based, generation of graph representations. It investigates suitable
and efficient optimization models, the necessary mathematical methods and data structures,
and the corresponding algorithmic aspects.

In this section we will give an overview of the current state of the art in automatic graphic
drawing, including the evaluation of the quality of a drawing, optimization goals, and estab-
lished drawing styles. Even though it is not the focus of our work, we will also shortly
discuss existing general approaches and computational methods, as their characteristics are
important in the context of both interactivity and the incorporation of constraints.

Due to the broad range of applications, and the variety of methods applied in automatic
graph drawing, graph drawing research has impact on many different disciplines and at the
same time is influenced by both problems and results stemming from application and re-
search areas. The topics handled include the basic graph theoretical and algorithmic prob-
lems, algorithm engineering to ensure applicability of the concepts in practice by providing
adequate data structures and implementations, and also adaptions with respect to different
fields of application. In addition, human-computer interaction issues have to be considered
when it comes to the development of appropriate representation concepts and their evalua-
tion. Even though the handling of constraints for graph drawing and especially the aspects
of interactive graph drawing in end-user software system are also related to fields outside
computer science, as for example psychology, we will focus here on the algorithmic and
computational aspects of automatic graph drawing. Therefore we will not elaborate on the
cognitive or perceptional aspects, and only describe them briefly when needed, for exam-
ple as a motivation for optimization goals and evaluation criteria. These aspects are treated
in the field of human-computer interaction that is concerned with the design, evaluation
and implementation of interactive computer systems for human use. For an overview, see,
e.g., Shneiderman and Plaisant [2009], for a discussion of perception principles in the context
of network visualization; see, e.g., Nesbitt and Friedrich [2002].

Layout computation can be thought of as some kind of optimization process that tries
to achieve a layout that is as close as possible to the optimum with regard to predefined
quality criteria. Many of the problems that have to be solved for that purpose are difficult
in a mathematical sense, i.e., NP-complete, and some of the criteria are contradicting or at
least difficult to solve in conjunction. On the one hand, appropriate (heuristic) mathematical
and combinatorial methods have to be applied, while on the other hand, approaches that

58 4. Automatic Graph Drawing

achieve a balanced optimization of the quality criteria are needed. In common graph drawing
approaches, a wide variety of methods is used, including flow-based methods, (integer) linear
programming, but also heuristics like local search methods.

There are two main approaches to compute a graph layout. The first one directly defines
a cost function that is minimized in an iterative process and combines all optimization goals.
This approach is taken for example in force-directed algorithms, which model the drawing
problem as a system of interacting physical objects, and then apply an algorithm to approxi-
mately compute an equilibrium state of the system with low energy. The general assumption
is that low energy states correspond to readable layouts. The second approach defines a pri-
ority order of optimization criteria and then optimizes them one by one, either exactly or
heuristically, where the output of one optimization step is used as input for the next. This
approach is taken for example for orthogonal drawings within the topology-shape-metrics
paradigm, where first crossings are minimized and a planarized embedded representation
is computed, then the bends are minimized and finally a minimization of edge lengths or
area is performed. The complexity of realizing further optimization goals, e.g., user-defined
constraints, depends on the optimization approach taken. It is conceptually simple to add
constraints to the cost function of the first approach, but it may be difficult to specify a com-
putation method that allows to efficiently compute satisfying results, e.g., due to convergence
issues. On the other hand it is not always straightforward how to add additional requirements
to the second approach. The alignment of vertices to the topology-shape-metrics approach,
for example, has to be expressed as a goal for the first two phases, such that the resulting
shape allows to compute edge lengths in the third phase that guarantee alignment.

In order to assess the usefulness of graph drawing methods, the quality of the resulting
layouts need to be evaluated. Central questions therefore are: Can you model layout quality
by an optimization function? And how can this function be algorithmically optimized? Some
criteria that are easy to state may be difficult to cover with a single value or number, as for
example the symmetry, and even if it is possible, as for the number of crossings, they may
be either be difficult to compute or to optimize. We discuss the question of layout quality in
the next section, and give a short overview on drawing styles and algorithmic approaches in

Section

4.1 Evaluating the Quality of a Drawing

As the goal of graph drawing is to present graphs as lucid as possible to allow to understand
the structure of the underlying data, the question arises how to define a good drawing. In
their classical paper on the visualization of Entity-Relationship (ER) diagrams, Batini et al.
[1984]] state

It is a hopeless matter to define formally what is a pleasant ER diagram and what
is not.

Moreover, Sugiyama and Misue| [[1991] already state that ‘readability depends upon the
problems being studied and, more intrinsically, on the drawing’s audience’. In addition,
graphs can vary in a variety of structural properties, and also semantic information might
have to be considered for the quality evaluation. Obviously it is therefore not an easy task

4.1. Evaluating the Quality of a Drawing 59

to determine suitable criteria that allow to conduct a useful evaluation. Fortunately, we do
not need to give up, as there are still ways to distinguish good and bad layouts. Looking at
Figures .1 and £.5] each of which shows two different drawings of a graph, most observers
will identify the drawings to the right as the clearly better ones. As can be seen in the follow-
ing discussion, we can also identify formal criteria that can be measured to judge the quality
of a drawing, i.e., how well it allows to transport the underlying information. In addition,
at least some aesthetics seem to be not just based on subjective judgment, but also human
perception follows some general rules based on the structure of the visual communication
channel. There is a lot of research done in multiple disciplines, including graph drawing,
human-computer interaction, and psychology, that is concerned with this question, and there
is an agreement on several criteria that are considered to be important for the quality of a
drawing. The most prominent of those criteria are the number of edge crossings, the number
of edge bends, vertex and vertex-edge occlusion (sometimes also called edge tunneling), and
also the angular resolution. Purchase et al.|[1995] performed empirical experiments that val-
idate the justification of criteria like bend number, crossing number, and symmetry for the
readability and understanding of graph drawings.

Clearly, the importance of these criteria for the insight gained by the human observer
again depends on the specific graph instance, the individual observer, the application area,
the drawing style, and the task at hand. The value of a drawing in a sequence of drawings
stemming from a time-series animation might be optimal to reflect the change and at the
same time be sufficiently readable, but might not be acceptable in a static context. Similarly,
in interactive systems the user might gain a mental map of the graph structure, and the con-
servation of this map during navigation or animation will be more important for orientation
than the optimization of fixed aesthetic criteria. Therefore there probably is no global quality
function that fits all uses.

The goals of revealing information and creating aesthetically pleasing layouts at the same
time may lead to contradicting optimization criteria. As a simple example, representing com-
munity structures by grouping vertices and adapting distances to reflect group connectivity
is opposed to the goal of uniform edge lengths. [Kamada and Kawai [[1989] state that the
number of edge crossings is an important requirement in drawing graphs, but may not be
a good quality criterion because it interferes with the goal of a uniform distribution of the
vertices and edges in many cases. As an alternative, they proposed to focus on the balance
of the drawing instead, i.e., to achieve a uniform distribution of the vertices and edges and
to display the symmetric structures within the given graph also by symmetric pictures. In a
recent publication, alsoHuang et al.|[2010] suggest that is often better to make compromises
between aesthetics, instead of trying to satisfy one or two of them to the fullest.

Coleman|[1993]] asks for a ‘fair tradeoff’ between the criteria such that the decline in the
value of one criterion can be traded for a reasonable improvement of the remaining criteria
with respect to the perceived quality of the drawings: ‘Care needs to be taken to choose
aesthetic functions of comparable strength so that none is washed out by the others’. A
combination of such aesthetic functions then can be used to compare two different drawings
produced by different algorithms (or algorithm settings) to decide which algorithm’s results
better conform to the chosen aesthetics, or to guide the optimization process of an algorithm,
e.g., to select the next candidate in an iterative local search approach.

60 4. Automatic Graph Drawing

0—

(a) (b)

Figure 4.1: Embedding and external face selection can have an extreme effect on the clarity of a graph
visualization. In this case, it is relatively easy to derive the criteria that lead to the improved representation
in (b), minimum depth and maximum external face.

When we cannot combine aesthetics criteria in a single value, but have same kind of
pareto frontier of maximal elements with respect to the set of criteria, the user may be al-
lowed to guide the optimization and to select the ‘best’, i.e., most suitable result [do Nasci-
mento and Eades|, 2002, Biedl et al., [1998]].

4.1.1 Layout Criteria

In their seminal paper on methods for layered drawing of hierarchical structures, |Sugiyama
et al. [1981]] identify a couple of what they call ‘readability elements’. They state that, even
though readability may also substantially depend on the audience and on the problem stud-
ied, some common aspects of readability may be captured by such elements. In|[Sugiyama
and Misue| [1991]] this concept is extended by classifying those elements into drawing con-
ventions and drawing rules, where the former comprise the fundamental constraints that need
to be strictly observed, whereas the latter contain the objectives that only need to be satisfied
as much as possible. As they discuss hierarchical structures and compounds, the drawing
conventions are mainly concerned with specific corresponding aspects. The most simple one
demands that vertices have to be drawn as rectangles, other demand the hierarchical layout
of vertices, the downward drawing of adjacency edges, and the representation of inclusion
relations between vertices by the inclusion of the corresponding rectangles. As structural
drawing rules Sugiyama and Misue| define elements that address the minimization of edge
crossings, ‘straightness’ of lines (minimization of bends), and closeness of adjacent nodes,
which should support the traceability of paths. They also specify an order on the rules to ex-
press a priority, where closeness is most important, followed by edge crossings, edge-vertex
crossings, and line straightness. As a minor geometric feature, they demand that ingoing
and outgoing edges at a vertex are arranged in a balanced way. Also in the ground-breaking

4.1. Evaluating the Quality of a Drawing 61

paper describing the topology-shape-metrics approach [Batini et al., [1986], a taxonomy of
aesthetics is given, including as general criteria a small number of edge crossings, a small
area, small total edge length, and a small number of bends. Coleman and Parker| [1996]
propose to model graph layout as a multi-objective optimization problem for their Aesthetic
Graph Layout approach (AGLO), and give a list of 19 standard aesthetics, including reason-
able vertex distances, edge length, angular resolution, and also rules for the visualization of
(ordered) trees. For the combination of those aesthetics, they state that they ‘rely on intuition
and experimentation’ and propose an additive model.

Dunne and Shneiderman| [2009] propose the use of the term readability metric instead of
aesthetics to underline the fact that they are mainly interested in how well a drawing com-
municates the underlying data, and not in how visually pleasing it is. They admit, however,
that some of the most informative visualizations also are the most beautiful. Even though
adherence to a set of readability metrics alone does not guarantee that the resulting drawing
is also understandable, as the metrics may not be well suited for the task, or fail to support the
intended impact, it should at least improve the information communication. As requirements
for readable drawings, Dunne and Shneiderman| propose what they call NetViz Nirvana:

(a) Every vertex is visible.
(b) For each vertex you can count its degree.
(c) For each edge you can follow it from source to destination.

(d) Clusters and outliers are identifiable.

Obviously, these requirements resemble some of the well-known aesthetic criteria, as ver-
tex overlap minimization, maximization of the angular resolution, and grouping of strongly
related sets of vertices. Based on the ideas of [Purchase| [2002], Dunne and Shneiderman
propose readability metrics that are scaled to a continuous scale from [0, 1] to allow the as-
signment of clearly defined readability requirements. In addition, they distinguish between
global metrics and, similar to Herman et al.|[2000], individual metrics for vertices and edges.
Their main metrics are:

e Vertex Occlusion: Measures the uniquely distinguishable items in the drawing (an
item is either a vertex or a connected mass of overlapping vertices), where a value
of 1 indicates that every vertex is uniquely distinguishable from its neighbors, and a
value of 0 that all vertices create one connected mass. An individual vertex metric is
proportional to the ratio of the vertex’ representation area obscured by other vertices.

e Edge Crossings: Measures a scaling of the number of crossings against an approxi-
mation of the upper bound of the number of possible crossings. A vertex metric only
considers the incident edges, an edge metric a single edge.

e Edge Crossing Angle: Measures the average deviation of edge crossing angles from
the ideal angle of 70 degrees [Huang et al., 2008]].

e Edge Tunneling: Measures the number edge occlusions by vertices compared to an
upper bound.

62 4. Automatic Graph Drawing

In addition, they briefly mention a couple of further metrics, including edge bends, angular
resolution, and path continuity, which was backed as an important quality criterion by ex-
perimental studies [Huang et al., 2008} [Ware et al., 2002] (continuity is the deviation of the
angles between incoming and outgoing edges at the vertices on a path).

Summarizing the discussion above, we can derive three basic principles for readability in
graph drawing:

e Vertices connected by an edge should be drawn near to each other to show the relation
between them.

e Vertex separation: Vertices should not be drawn too close to each other, in particular
they should not overlap. Putting vertices on a grid, or at least maintaining a minimum
separation distance, avoids misinterpretations that come from a visual clustering of
vertices, perceived as groups of related vertices. As this may conflict with another
aesthetic, the grouping of vertices that are indeed related, Bennett et al. [2007]] suggest
that the distance between vertices in a cluster should be equal, and the number of
different distance levels should be minimized.

e The number of edge crossings should be minimized.
A couple of criteria are either derived from that or added to further improve the readability:
e Minimize the number of bends.
e Minimize the total and the maximum edge length.
e Minimize the area.

e Achieve good angular resolution: The maximization of the smallest angle between
incident edges at each vertex helps to visually separate the edges.

e Achieve uniform edge length.
e Distribute vertices evenly.
e Reflect symmetry.

Clearly even if each criterion is reasonable, they may conflict with each other and an
improvement in one of them does not automatically translate to an improvement in the overall
drawing quality. Minimizing the area for example can be done by drawing vertices close
together, making the diagram harder to read.

Although several criteria seem to be good quality indicators in general, this is not nec-
essarily true for any application area or graph instance. The evaluation criteria stated above
are somehow generic and do not assess how well the layout reflects the conventions from an
application area. When we have semantical or structural information in addition to the pure
graph structure, as for example a hierarchy or a clustering on the graph’s vertices, this infor-
mation has to be reflected in the drawing of the graph. An evaluation of the drawing then also
has to take into account how well the drawing represents the additional information. When

4.1. Evaluating the Quality of a Drawing 63

trying to cover the quality of a drawing with a combination of quality criteria, it is there-
fore important to again assess the usefulness of those criteria and the way of combination
by empirical evaluation. Unfortunately, as such evaluations are relatively difficult to con-
duct, the impact of automatic graph drawing results in applications is only rarely assessed.
Purchase et al.| [2001] test the influence of several aesthetic criteria on the task performance
for UML class diagrams. They consider the bend number, vertex distribution, edge length
variation, direction of flow, orthogonality, edge lengths, and symmetry. A low and a high
effect version of several diagrams was created for each aesthetic criterion, and the difference
in task performance was measured. Besides bend number none of the criteria had a signifi-
cant impact, although all of them are regarded as valuable and established aesthetic criteria
for layout quality. Note that the pure task performance in such experiments might be differ-
ent to the cognitive load associated with it, an aspect that was investigated by Huang et al.
[2009]]. Another experimental evaluation of layout aesthetics for UML diagrams Purchase
et al.| [2000] shows that edge crossing reduction is a very important aesthetic criterion, and
that orthogonality is highly preferred. However, this is only the case as long as the number
of bends is relatively small.

When quality criteria are integrated into an algorithmic approach, there often is still much
freedom in the way they are handled. Such an approach therefore may be parameterized,
e.g., to influence the weighting factors of different criteria within an objective function. This
gives the user some influence to adapt the layout results to his personal preferences, or to
tune the algorithm with regard to specific classes of graphs or instances. As a drawback,
it leaves the user with the task of optimizing the settings within parameter space (which
possibly might by huge). Especially for end-user applications, it might therefore be helpful
to reduce the possible settings, either by only allowing a few discrete steps, or by providing
some predefined settings that proved to be reasonable for large classes of graphs.

Put together, a nearly undisputed criterion is the minimization of edge crossings, which is
not only stated very often, but also thoroughly validated by experiments. A further important
criterion is the visibility of vertices, i.e. the avoidance of vertex overlap. Most other criteria
seem to be more or less important for layout quality, depending on several factors like data,
application, task, and user. However none of these criteria should be considered to have a
value independent of the others, and even edge crossings might be acceptable if several other
criteria are thereby improved considerably. Ware et al. [2002] even argue that crossing mini-
mization may sometimes violate the perceptional law of good continuity, which is related to
the perception of paths. Judging from their experiments, they propose that crossings should
not be avoided if this introduces increases ‘bendiness’ of the drawing, and that crossing mini-
mization should have higher priority for ‘relevant’ edges. However, crossing minimization is
backed as the main quality metric for UML diagrams and sociograms in user studies [Huang
et al.| 2006, Purchase et al., [2000].

4.1.2 Drawing Styles

There is a large number of requirements on how a diagram should look like in different
application areas, and also different algorithmic solutions lead to drawings with specific
characteristics, therefore various drawing styles have emerged up till now. In applications
and publications often method and style names are used interchangeably, even though there

64 4. Automatic Graph Drawing

(a) (b) (c)

Figure 4.2: (a) Hierarchical, (b) orthogonal, and (c) straightline drawing styles.

is no one-to-one correspondence. We briefly describe the most common layout styles in the
following. Each of these established layout styles has a couple of application areas where it
is preferred as the layout standard over the others.

Hierarchical drawings: Hierarchical drawings model a (partial) ordering of the vertices
given by the edge directions. The order of the vertex representations in the drawing with
respect to the y-coordinate then has to correspond to this ordering. See Figure Such
a layout can be used to reflect a sequence of process steps or the flow of a commodity.
Sugiyama et al., who pioneered the most popular hierarchical drawing approach, motivate
the use of a hierarchical drawing style with two arguments: They claim that hierarchical
drawings attain effective regularities which help humans to grasp structures, and that the
drawing algorithm can be made simpler than others. Clearly, the second argument is a bit
elastic, as non-hierarchical drawings can be achieved with relatively simple algorithms, and
on the other hand the intrinsic problems for high-quality hierarchical drawing algorithms
can be quite involved. For example, the minimization of crossings for layered hierarchical
drawings (see below) is NP-hard.

Orthogonal Drawings: Orthogonal graph drawings restrict an edge representation to a se-
quence of horizontal and vertical segments. See Figure {.2(b)] This is often favorable for
technical drawings like electronic circuit schematics. Each of the main optimization goals
for orthogonal drawings, crossing minimization, bend minimization, and total edge length
minimization, is NP-complete. Therefore, they are often optimized heuristically and also
separately, as in the topology-shape-metrics approach (TSM) [Tamassia, |1987]. First, in
a planarization step an embedded planar graph is constructed by replacing crossings with
dummy vertices, making the subsequent bend minimization polynomial-time feasible. For
4-planar graphs, an orthogonal drawing guarantees good lower bounds for the aesthetic cri-
terion of angular resolution. Due to the time requirements of the steps, the TSM approach
is not suited for huge graphs. In addition, the resulting layouts for large graphs are some-
times rather poor with respect to the quality, especially regarding the efficient use of drawing
space. Often, large unused areas are enclosed by paths, and edges are routed close together
in channels, making it difficult to derive the overall structure of the graph.

Straight-line Drawings: In straight-line drawings, the layout is determined solely by the
position of the vertices. See Figure Wagner [1936] was the first to show that every
planar graph has a straight-line embedding. Tutte| [1963] showed that every triconnected

4.1. Evaluating the Quality of a Drawing 65

Figure 4.3: A drawing in circular style, with an assignment to the circles based on the biconnected compo-
nents of the graph.

planar graph has a convex embedding. Planar straight-line drawings may need Q(n?) area
and the minimum angle between adjacent edges may be very small in straight-line drawings.
There are several techniques that can lead to quite different straight-line drawings. Examples
include convex representations, where planar graphs are drawn such that faces are drawn as
convex polygons. Force-directed methods in contrast try to achieve a good distribution of
the vertices on the drawing region and nearly uniform edge lengths.

Circular: In circular drawings the vertices are placed on one or more circles, see Figure
Assignment to a circle may be used to emphasize group structures, for example to visualize
network topologies or interaction networks. Care has be taken to minimize the crossings
in such a drawing by assigning an appropriate vertex order. Also the exact positions of the
vertices can be chosen such that the overall edge length is improved [Gansner and Koren,
2007]], and also the appropriate placement of the circles can help to reduce clutter in the
drawing.

Radial Layout: In a radial graph layout one vertex has the focus and is placed at the center of
the layout. All other vertices are laid out on concentric circles around it depending on their
distance from the focus vertex in a spanning tree of the graph. A first practical radial drawing
approach was proposed in Eades| [1992]]. Typically, the angular width that is assigned to a
vertex v is given by the ratio of the number of leaves in the subtree rooted at v to the total
number of leaves in the tree. This is only a heuristic assignment because it does not respect
the level on which the leaves reside. Inner level leaves may allocate more space than outer
level leaves. Also, the size of the vertices is not used in the width assignment. Vertices within
the subtrees should be placed within a convex wedge of the assigned angular width to avoid
edge-circle crossings. The constant distance between adjacent radii may lead to problems if
the numbers of objects on each level differ significantly. See Section[9.1]for an application
using radial layouts.

Combinations: As some layout styles are clearly better than others for the visualization of

66 4. Automatic Graph Drawing

specific types of graph structures, several approaches try to combine several styles within the
same drawing. Bertault and Miller described a basic version of this approach within their
Compound Graph drawing approach [Bertault and Miller, [1999]. There, for each internal
node v of the compound inclusion tree, a suitable algorithm could be chosen by a so-called
mode function to draw the subgraph induced by the children of v. TopoLayout [Archam-
bault et al., 2007] uses a recursive decomposition of the graph and applies special drawing
methods to detected subgraphs of a certain type. As such an approach directly exploits the
corresponding characteristics of those subgraphs, these can be reflected in the drawing and
allow to improve the display of symmetries and to highlight isomorphic subgraphs.

4.2 Approaches

In this section we overview the most common state-of-the-art approaches for graph drawing.
With approaches we denote general drawing techniques which constitute the framework of
an algorithmic graph drawing solution. Individual steps of these approaches may be realized
by implementing different methods and algorithms.

Coleman and Parker [1996] propose a list of goals that a good graph layout algorithm in
their opinion should strive for:

e Generality — be able to lay out different classes of graphs.
e Flexibility — be able to use different layout styles.
e Transparency — it should be clear what the algorithm sets out to achieve.

e Competence — be able to produce satisfying results for the class of graphs it was de-
signed for.

e Speed — be sufficiently fast for the intended purpose.

Whereas the requests for speed and competence are undisputable, it is unclear why a
generic layout method should be preferred over a high-quality method for a specific class of
graphs. When an algorithm designed for a specific class of graphs achieves better results for
such graphs than a general ‘all purpose’ approach, users might prefer the restricted algorithm,
and drop the generality and flexibility requests. And even if we want to provide flexibility
for the user, we could try to hide the corresponding methods underneath a uniform user
interface. A basic question in this context is: Does the user need to understand the workings
of the layout method? In a generic and flexible approach, the user has control over the
behavior of the algorithm by adding or deleting aesthetics and changing the way they are
combined and optimized. However, he should not be forced to experiment, and as many
users will not be graph drawing experts, they will have difficulties in tuning a graph drawing
method to give satisfying results.

As a consequence, dedicated layout computation approaches for specific drawing styles
or graph classes have been developed that achieve high-quality drawings in reasonable time,
including the classical approaches for hierarchical [Sugiyama et al., [1981] and orthogonal

4.2. Approaches 67

drawings [Tamassia et al., |[1988]], force-directed methods, and algorithms for trees [Buch-
heim et al., 2002]. However, recently several algorithmic solutions where presented that
allow to incorporate drawing style constraints in a flexible yet efficient approach [Schreiber
et al., 2009, Brandes and Pich, 2009b].

Often drawing approaches have preconditions that need to be satisfied by the input graph.
A large number of drawing algorithms only accept planar graphs and would therefore ex-
clude a huge class of graphs from being processed. The planarization approach [Batini
et al.,|1984] transfers non-planar graphs into planar representations. First, a planar subgraph
with as many edges as possible is computed, then the remaining edges are inserted with
the least number of crossings possible (the edge insertion problem). Each crossing that is
created is replaced by a dummy vertex, such that a planarized representation of the input
graph is obtained. The resulting planar graph can then be drawn using planar drawing al-
gorithms, and the final drawing can be interpreted as a drawing of the original graph. The
decision which edges cross clearly restricts the potential drawings, and the virtual vertices
both may lead to an increased running time and a result far from the optimum. In addition,
the minimization of crossings is an NP-hard problem [[Garey and Johnson, 1983]], and at least
for larger instances, heuristics have to be applied. Nonetheless, both crossing minimization
heuristics and methods based on planarization approaches have proven to be successful in
practice [Gutwenger and Mutzel, 2004].

In general, declarative and algorithmic (sometimes called imperative or constructive) ap-
proaches can be distinguished. A declarative approach declares a relation, i.e., tells us ‘what
is’, for example by declaration of specific geometric constraints. In contrast, an algorith-
mic approach states ‘how to’ do something, for example by giving the exact specification of
steps that lead to a drawing with prescribed characteristics, modeled by a cost function to be
optimized. Declarative approaches in Graph Drawing often resort to general solution tech-
niques, and are therefore slower than algorithmic approaches, but allow to directly express
aesthetic criteria. Algorithmic approaches are by far the dominating type of approaches in
graph drawing, at least partially because of the lack of efficient constraint solvers available
for a long time. Declarative approaches, however, seem to gain more and more attention in
recent years. As both approaches lack certain qualities, there have been attempts to combine
both in an integrated approach [Lin and Eades|, 1995, Frick et al.,|1996]]. Typically either the
flexibility and ease of declarative approaches is searched, applying, e.g., constraint-solving
systems, or particularly efficient solutions are needed and therefore pure algorithmic ap-
proaches are used. Constraint-based methods seem to be suited well for easy addition of
additional drawing constraints without large implementation and algorithmic difficulties, but
the main concerns here are the efficiency of the resulting approach and a reasonable conflict-
solving to guarantee a certain quality of the computed drawings.

4.2.1 Topology-Shape-Metrics

For orthogonal graph drawings, there is one dominating computation paradigm, the so-called
topology-shape-metrics (TSM) approach. This approach separates the optimization of the
main optimization criteria crossings, bends, and total edge length (or area), by using sepa-
rate steps for each. A priority is imposed by first minimizing the number of crossings, then
the number of bends, and finally the edge length. Each step leads to a representation of the

68 4. Automatic Graph Drawing

Figure 4.4: A flow network for the orthogonal shape computation step. Network nodes are depicted as green,
rounded rectangles, black arrows depict network arcs for edge bends, blue, stippled arrows depict network
arcs for angles between edges. Only arcs with positive flow are shown.

graph that is taken as input for the subsequent step. The topology step computes a planar
embedding of (G, for which the shape step computes an orthogonal representation, i.e., a
specification of angles and bends for the edges of . Finally, this representation is used to
compute edge lengths in the metrics step, leading to an orthogonal drawing of G. Compared
to other approaches for orthogonal drawings, this approach in general leads to much better
results due to a much smaller number of edge crossings. The implementation of the TSM
approach involves some non-trivial issues. In case the input graph is not planar, it first has
to be planarized. While bend minimization is NP-complete in the general case, the fixed
embedding of this representation allows bend minimization in polynomial time in the fol-
lowing shape step. This is typically achieved by applying flow-based methods as described
in Tamassia [[1987]. Each vertex is represented by a source node n, with an outgoing flow
of 4 units, where each unit represents an angle of 7/2, and each face is represented by a sink
node ny. For each edge e incident to a vertex, the network contains an arc from n, to ny,
the node representing the face to the right of e in the given embedding. Face nodes of faces
adjacent to a common edge are connected by bidirectional arcs for each such edge. The sink
nodes have a demand of 2 - size(f) — 4 for all inner faces, where size(f) is the number
of angles in the face, and of 2 - size(f) + 4 for the fixed outer face. Flow on arcs between
faces models bends on the edges, and flow from vertex nodes to faces models angles of
edges at the vertices. See Figure [4.4]for an example flow network. Flow based methods are
well-established techniques for graph drawing and can also be used to efficiently compute
compact drawings within the shape step.

Even though TSM is especially designed for the computation of orthogonal layouts, the
resulting layout characteristics may differ significantly depending on the choice of the meth-
ods for the three steps, allowing different orthogonal drawing models to be realized. Models
that allow large vertices in order to minimize the bend number can be realized with rather
basic implementation effort, whereas models that guarantee prescribed or uniform vertex
size, are much harder to realize [FoBBmeier and Kautmann, (1996, Eiglsperger et al., 2004].
The Kandinsky model [FoBmeier and Kautmann, |1996], for example, needs a sophisticated
treatment of the shape step in order to guarantee uniform vertex sizes in a consistent orthog-
onal drawing. It requires all but one outgoing edge per vertex side to bend. A restriction to

4.2. Approaches 69

the case where all but one edge bend to the same direction, and from at least deg(v) sides
edges emanate, the so-called simple Kandinsky model [Bertolazzi et al., 2000], simplifies the
treatment and allows to use standard techniques for computation.

Respecting prescribed vertex sizes, on the other hand, requires a specific treatment in
the metrics step, as the standard compaction algorithms suitable for the metrics computa-
tion typically only work on 4-degree graphs with O-dimensional vertices. A considerable
amount of work has been published concerned with the integration of constraints within the
topology-shape-metrics approach. As edge bends and edge lengths are optimization goals
for orthogonal drawings, most methods for the realization of the corresponding steps allow
to integrate constraints on them quite naturally. Fixing of angles in the shape step or bound-
ing the number of bends on an edge can be easily specified in the flow techniques applied
for shape calculation. It is however difficult to satisfy additional constraints stemming from
the semantics or established drawing conventions. The three steps are processed indepen-
dently in a given order, but constraints may have to be considered in each of them, requiring
a transfer of constraint information across the different step implementations.

4.2.2 Energy-Based Models and Local Search

Energy-based drawing methods constitute the most common drawing approach for undi-
rected graphs. They are often preferred over alternative methods because they are reason-
ably fast, allow straight-forward extensions for a large number of drawing constraints, and
are relatively easy to implement. The basic underlying idea of energy-based methods is that
the graph is modeled as a system of objects that contribute to the overall energy of the sys-
tem, and an energy-minimized state of the system corresponds to a nice drawing of the graph.
In order to achieve such an optimum, an energy function is minimized. There are various
models and realizations for this approach, and the flexibility in the definition of the energy
model and objective function allows a wide range of both optimization methods and appli-
cations. An important advantage of energy-based methods, based on the iterative nature of
the numerical methods to compute the layout, is that they allow an animation of the change
from a given layout to a new one, as they permit to use a given drawing as input. A disadvan-
tage is that the computation may end in a local energy minimum far from the optimum; see
Figure There is a wealth of publications concerning energy-based layout methods;
see D1 Battista et al.|[1999b], [Kaufmann and Wagner [2001] for an overview.

A special case are force-directed models, where the graph objects are modeled as phys-
ical objects that mutually exert forces on each other. A force equilibrium should represent
an acceptable drawing with respect to the modeled aesthetic criteria, uniform edge length
and uniform vertex distribution. In the most simple model, unconnected vertices repel each
other, and vertices linked by edges attract each other as if they were connected by a physical
spring, explaining the alternative term ‘spring embedder algorithm’. Force-directed meth-
ods are most suitable for undirected, sparse graphs such as free trees. Already Tutte [1963]]
used such an approach in one of the earliest graph drawing methods, based on barycentric
representations that are obtained by solving a system of linear equations.

Force-directed drawing methods have a long history; the first mentioning of force-directed
methods is commonly credited to the area of printed circuit board design, where a system of
elastic leads and repulsive forces was described for the construction of circuit board draw-

70 4. Automatic Graph Drawing

ings [Fisk and Isett, [1965]. The much better known classical spring embedder approach
was introduced by [Eades in 1984. It models vertices as steel rings and edges as springs,
such that the mechanical forces exerted by the springs in a given layout define the energy
of the system. A minimization of the overall system energy is associated with a layout that
optimizes the Euclidean distances between the vertices with respect to the ideal distance.
Several variations where proposed that tried to improve the practical running time [Frick
et al., 1995, Fruchterman and Reingold, |1991, Tunkelang, 1994]. Another important concept
for the practical improvement of energy-based methods is the approximation of the forces to
speed up the force calculation. Typically, the repulsive forces are computed approximately
whereas the attraction forces are computed exactly [Hachul and Jinger, 2004, Quigley and
Eades, 2000]]. This involves the application of space decomposition structures, as for exam-
ple quad trees, for geometric clustering, as well as efficient approximation schemes, as for
example the multipole method.

The energy-based approach by Kamada and Kawai [1989] uses the shortest graph-theoretic
paths as ideal pairwise distance values and subsequently tries to obtain a drawing that min-
imizes the overall difference between ideal and current distances in an iterative process.
Kamada and Kawai| propose to use a two-dimensional Newton-Raphson method to solve
the resulting system of non-linear equations in a process that moves one vertex at a time to
achieve a local energy minimum. As the cost function involves the all-pairs shortest-path
values, the complexity is at least O(V?2logV + V E) or V? for weighted graphs, depending
on the algorithm used, and O(V?) for the unweighted variant. Later on, stress majorization
was introduced as an alternative and improved solution method [[Gansner et al., [2004].

4.2.3 Multilevel Paradigm

The multilevel paradigm is a generic approach to handle large datasets by reducing the com-
plexity over a number of hierarchically ordered levels. It is well suited for graph algorithms
and can be used to improve the layout computation especially for energy-based layout meth-
ods, regarding both the layout quality and computation time. The first use of the multi-
level approach is commonly credited to Barnard and Simon [1994], where it was used to
speedup the recursive spectral bisection (RSB) algorithm. In the context of graph parti-
tioning, Karypis and Kumar showed that the quality of the multilevel approach can also be
theoretically analyzed and verified [Karypis and Kumar, [1995].

The main idea is to construct a sequence of increasingly smaller graph representations
(‘coarsening levels’) that still conserve the global structure of the input graph G approxi-
mately, and then compute a sequence of approximate solutions, starting with the smallest
representation. Intermediate results can then be used on the subsequent level to speed up
the computation and to guarantee a certain quality. The graph representations are typically
created by series of graph contractions, where a set of vertices is collapsed to a single repre-
sentative on the next, smaller level.

Walshaw| [2003]] and, independently, Harel and Koren| [2002]] and Gajer et al.| [2000],
introduced the multilevel paradigm in the field of graph drawing, after a closely related con-
cept, the multi-scale method, was proposed by |Hadany and Harel| [2001]. In the FADE
paradigm |Quigley and Eades| [2000]], a geometric clustering (typically by recursive space de-
composition) of the vertex locations is performed. This process, along with implied edge cre-

4.2. Approaches 71

(a) (b)

Figure 4.5: Bad layout for graph Sierpinski6 resulting from random placement and random coarsening in a
multilevel approach (a) and alternative layout achieved by using solar placer and edge cover merger (b).

ation, constructs a hierarchical compound graph. The hierarchical compound graph, which
includes the decomposition tree, is used to approximate the non-edge forces in the force di-
rected graph drawing algorithm. After computing the forces, the underlying graph layout
is updated, and this in turn requires the recomputation of the hierarchical compound graph,
which was constructed on the previous vertex locations. This iterative process improves the
quality of the graph drawing and the hierarchical compound graph, and can also be used for
multilevel viewing of large graphs at different levels of abstraction.

Multilevel approaches can help to overcome local minima and slow convergence prob-
lems by improving the unfolding process due to a good coarsening and subsequent place-
ment. As the input layout is not reused, its quality does not influence the result. Multilevel
methods can cope even with very large graphs. However, it may still happen that the resulting
multilevel layout represents a local minimum far from the optimum; see Figure

Hachul and Jiinger| [2007] presented an experimental study of multilevel layout algo-
rithms for large graphs, including energy-based and algebraic approaches. Frishman and Tal
[2007]] and Godiyal et al. [2009] investigated the use of the GPU for multilevel layout com-
putation, and Archambault et al.| [2007] described a multilevel algorithm that draws graphs
based on the topological features they contain. Bartel et al.|[2010] presented an experimental
comparison of multilevel layout methods within a modular multilevel framework.

4.2.4 Layered Layout

Sugiyama et al.|[1981] proposed a method to draw a graph in a hierarchical style by assign-
ing a layer to each vertex based on a topological numbering. The vertices are then drawn
on horizontal parallel lines representing the layers. The topological numbering guarantees
that for each directed edge (u, v) the y-coordinate of u is bigger than the one of v. As this is
only possible for acyclic digraphs, in case of cycles a preprocessing is needed that reverses a
minimal number of edges to make the graph acyclic. This feedback arc set problem is known

72 4. Automatic Graph Drawing

to be NP-hard, therefore heuristic are applied in most approaches. In a subsequent step, the
crossing minimization, the vertices on each layer are ordered to minimize the edge crossings,
which is also an NP-hard problem. In a final step geometric coordinates are assigned ac-
cording to layer assignment and vertex order. Coordinates are computed to draw edges that
span more than one layer close to vertical lines. These steps can be realized in several ways
to optimize different drawing properties, as the height and width of the drawing, and vertical
extent of the edges.

4.2.5 Projection Techniques

A projection p works as a function from a higher m-dimensional space A to a d-dimensional
space B, where d € {1,2,3}. The goal is to preserve the distances as well as possible, i.e.,
to minimize the difference between the dissimilarity o of two data points x,y € A and the
distance of their projection points p(x), p(v) € B

16(z, y) — d(p(z),p(y))l| Vz,ye A

where d is the Euclidean distance. Projection techniques can be used to visualize dissimilar-
ities of objects by producing a graphical representation from given data annotations. Given
for example distances between geographical locations by travel time tables, one could try to
reconstruct the positions of the locations on the map up to rotation and translation.

Multidimensional Scaling

Multidimensional scaling (MDS) is a technique that allows to map high-dimensional data
into a low-dimensional space by a non-linear projection, where the distances are aimed to
correspond to the dissimilarity of the data points. In the realm of graph drawing it can be
used for the visualization of datasets in two- or three-dimensional space. The distances of
the data points in the drawing are calculated such that they approximate given dissimilarity
values between pairs of data points as close as possible. The dissimilarity may be given as
the geometric relationship between the n data points in the m-dimensional space A defined
by the m-dimensional data vectors. For example, in classical MDS a Euclidean distance
matrix can be given as dissimilarity measure and when graphs have to be visualized, the
graph-theoretic distance, i.e., shortest path values, might be of interest. MDS can be helpful
to reveal relationships between the input data points. There are a number of methods that
can be used to carry out multidimensional scaling. An example is the so-called ‘Sammon’s
Mapping’ that uses an iterative nonlinear optimization (gradient) to minimize the error func-
tion defined by the distance differences. Elements of a cluster in the input space are mapped
to positions close to each other. This minimization can be done by using the steepest descent
procedure as proposed in the original publication. A much better optimization performance
is achieved by using stress majorization. Stress majorization is a method that was already
known for a long time for multidimensional scaling. In graph drawing, stress is a measure
how far the distances in a given drawing differ from the ideal distances, such as graph-
theoretic distances. While Kamada and Kawai already used such an energy function in their
drawing approach [Kamada and Kawail 1989], Gansner et al. [2004] formally introduced

4.3. Graph Drawing Tools and Libraries 73

the stress majorization approach for graph drawing. The majorization approach minimizes
the stress function by iteratively minimizing a simple majorizing function, i.e., a function
that approximates and bounds the stress function from above. Due to some favorable prop-
erties as guaranteed monotonic decrease of stress, stress majorization shows a better rate of
convergence compared to other optimization methods like gradient descent.

This method allows to incorporate additional constraints into the optimization process,
and consequently, a number of extensions to the basic approach were presented; see Sec-
tion5.1.21

The stress function for a position vector p is the sum of squared residuals

a(p) =Y wii(llpi — pjll — dis)?

1<j

where w;; is a normalization constant. For use in graph drawing and multidimensional
scaling, this constant is set to d;;* with @ = 2 in the approach of Kamada and Kawai, and
a = 0 or @ = 1 in MDS approaches. It can however also be used as a weight related to the
input dissimilarity when set to d;;.

A problem that arises here is that several classes of constraints are more difficult to model
within this approach as compared to the classical energy-based methods, as only the dis-
tances are used for optimization. Brandes and Pich| try to overcome this problem for radial
constraints, which can be expressed by the distance to a center, by using an iterative pro-
cess that uses a convex combination of standard distance and radial distance. Increasing
the influence of the radial distance in a linear fashion during the process, the vertices are
projected on concentric circles in the final stages. |Brandes and Pichl [2009a] presented a
study on distance-based graph drawing, comparing multidimensional scaling methods with
algebraic and multilevel approaches. Their experiments show that for the representation
of graph-theoretic distances by Euclidean distances, stress minimizing approaches perform
better than force-directed placement, but achieve poor results for certain classes, such like
small-world graphs.

As non-linear methods like MDS derive their results in an iterative optimization process,
the process can be animated and a stop criterion can be used to abort the optimization when
the solution quality seems to be satisfactory.

4.3 Graph Drawing Tools and Libraries

There is a wide variety of software tools and libraries dedicated for graph visualization. They
differ in the range of layout methods provided, the intended audience and the application
areas they focus on. At one end of the user spectrum there are end users that are interested
purely in knowledge discovery or presentation regarding the underlying data. The other end
consists of experts that also would like to learn about the algorithms used and to play around
with the features and parameters of the methods used. Libraries of the latter category contain
state-of-the-art layout methods and often allow to specify additional drawing constraints,
amongst others GDToolkit, Graphviz, OGDF, Tulip, and Pajek. We refer the reader to an
excellent online resource on existing graph drawing tools and libraries that allows to select
an appropriate software based on the required features: The Graph Visualization Software

74 4. Automatic Graph Drawing

References [GVSR] is a collection of existing graph layout and visualization software, its
web interface allows to comfortably browse and compare libraries, viewers, and editors.

We will shortly describe OGDF in Section[5.2.2] as some of the solution in this work are
implemented within OGDF.

Part Il
CONSTRAINTS

5. OVERVIEW AND CLASSIFICATION

In constraints lies the key: ‘good’ secondary notation
involves disciplined and appropriate application of con-
straints to the available freedoms of presentation.

MARIAN PETRE

In order to improve the readability of a graph drawing, or to adjust it to personal pref-
erences or drawing conventions, constraints that restrict the solution space to admissible
drawings can be defined that need to be observed by an automatic layout algorithm. Aspects
that have to be considered for constraint handling include the specification of constraints,
their visual representation in user interfaces, the complexity of the underlying computational
problems, and their algorithmic treatment. A huge number of publications in several scien-
tific areas study graph drawing constraints with regard to their theoretical and algorithmic
treatment, their handling in software libraries and end-user applications, and their influence
on the human perception and the readability of the drawing.

This chapter gives an extensive overview and a classification of drawing constraints and
deals with their role and handling in automatic graph drawing. In Chapters [6|and[7] theoreti-
cal results regarding two important constraints, cluster and embedding constraints, are given,
and a description of practical approaches for the visualization of biological and chemical data
using several drawing constraints follows in Chapter 9]

5.1 Constraints in Graph Drawing

Typical user requests and application-inherent constraints for drawings in real life appli-
cations cannot be adequately modeled solely by graph structures, and thus also cannot be
directly taken into account by graph drawing methods without a special treatment.

Graph drawing first was mainly concerned with how to produce nice or aesthetically
pleasing drawings of graphs. Graph drawing methods then were used as the basis for auto-
matic diagram layout computation, and different drawing styles were developed to cover the
most basic aesthetical requirements from different application areas. Requirements in dia-
gram layout computation include however not only purely aesthetical criteria, but also user
preferences, semantic requirements, and rules for the layout arising from the conventions in
the respective application area. When for example flow is modeled by a directed and acyclic
graph, a drawing that reflects those properties by drawing all edges oriented in the same di-
rection is preferable. In addition, restrictions may simply represent technical necessities, as
for example the visual resolution that can be handled by the display device, resulting in a
lower bound on the angle between adjacent edges (angular resolution) or on the distance be-
tween vertices and non-incident edges. Constraints specify or restrict the drawing of a graph

78 5. Overview and Classification

to improve readability and comparability of drawings, to adhere to an established drawing
convention, or to keep the user’s orientation by preserving the mental map in an interactive
drawing environment. In this most simplistic definition, a constraint restricts the layout prop-
erties of one or more graph objects. We could define a constraint of type alignment to restrict
a subset of the vertices of a graph to lie on a specified line, or restrict each edge of a graph
to be drawn as a sequence of horizontal and vertical segments. However, the term constraint
is often used just to specify additional restrictions with respect to a certain drawing style, or
even within a computational approach for a drawing style. For practical approaches we will
therefore always have some kind of restriction in the sense of constraints either added within
a specific drawing approach or to a method. Tamassia et al.|[1988]] consider constraints in
this sense as additional input to the drawing problem, which represent semantic requirements
associated with the specific graph and application domain. This however implies a defini-
tion of ‘constraint’ that is dependent on a drawing approach and the application context,
which is not adequate for a general discussion of constraints. General requirements stem-
ming from drawing styles are constraints even if they are not handled individually within
a specific drawing approach. Therefore it seems to be justified to see every restriction of
drawing properties as a constraint. When it comes to practical solution approaches, however,
we often have some assumption on a basic drawing style besides specific instance-dependent
constraints. It is therefore reasonable to speak of ‘adding constraint = to drawing approach
y’ instead of talking about a combination of constraints x and y. Thus we will also catego-
rize existing constraint satisfaction methods depending on either established drawing styles
or approaches. With such a model, we have constraints, which we can classify according to
the type of restriction that they specify, and results and methods that treat such constraint in
a specific context, e.g., a given drawing style or computational approach. We will therefore
stick to the definition of a constraint as a restriction of the drawing for the general discus-
sion, but nonetheless for the discussion of practical issues only consider constraints within a
context of a given application or drawing approach.

5.1.1 Aspects of Constraint Handling and Constraint Characteristics

We use the term constraint to denote restrictions on the set of admissible layouts, whereas
aesthetics are connected to the quality of the layout as described in Section[d.1] Clearly, con-
straints and aesthetic criteria can be integrated and optimized in a computational approach
in a similar way, as long as they can be defined and specified in a formal sense. An example
for such a formal specification is the minimization of the number of crossings, compared to
the informal requirement that a drawing should not be cluttered, which is also an aesthetical
requirement, but cannot directly be transferred into an optimization goal for layout compu-
tation. Similar to the situation for aesthetics, often a combination of several constraints has
to respected, and appropriate priorities have to be chosen, as some of the constraints may
also be conflicting. As there may be different approaches to the understanding of data by
visualization, and also because personal preferences can greatly differ, it it difficult to design
a constrained drawing approach that fits the demands of all users.

With our general definition of constraints, a drawing convention from a graph drawing
viewpoint is just a combination of a number of constraints. From a practical point of view,
a drawing convention might also include additional rules for the graphical representation

5.1. Constraints in Graph Drawing 79

of graph objects, as for example a specific style for edges of a certain type etc. In this
work, the term constraints does not denote drawing conventions that determine the graphical
representation of the graph objects with respect to attributes like color, line style etc., as they
are not significant for the layout of the graph. Note, however, that some graphical properties
may have an impact on the admissible layouts. Flow in technical drawings or biological
networks, e.g., might be represented using the thickness of the corresponding edge, and in
order to provide the space needed we have to specify a corresponding constraint, as most
drawing algorithms only consider the edge representations as hairlines.

In discussions concerned with the way graph drawings should look like, several terms are
used to describe characteristics of drawing constraints, with sometimes overlapping mean-
ings. These terms are either used to classify the goals associated with constraints, to specify
the motivation behind their use, or to describe which properties they influence. We will first
give examples of these characterizations that show the different facets of constraints and their
handling.

A basic distinction that can be made, especially for interactive drawing systems, is to dis-
tinguish between system- and user-defined constraints. Even though this distinction does not
directly affect the computational treatment, it may be of importance for the representation
and handling of constraints. In order to allow a user to adapt a drawing to his own prefer-
ences, there must be a way to specify and modify constraints, optionally also with a graphical
representation that helps the user to keep track of the specified constraints. User-defined con-
straints are also needed to address the problem that it is often impossible to formally specify
in advance which characteristics define a suitable drawing for several applications. Espe-
cially in a data exploration scenario, where new hypotheses are generated on the fly and have
to be reflected by the layout, an accordingly tailored drawing method cannot be derived in
advance. Clearly, for a theoretical treatment it is of no interest if the constraint was derived
automatically, pre-specified, or given by the user.

A second aspect concerns the goal of the constraint: Aesthetic constraints are constraints
that are applied only to improve the readability of a drawing and may be dropped in exchange
for other constraints if those help to achieve a better drawing quality. Also concerned with the
quality of the information transfer are semantic constraints, but these are required due to the
application-specific role of the associated objects and cannot be dropped without affecting
the quality of the drawing. Examples for such a constraint are that generalization edges
in UML class diagrams should not cross each other, and an assignment of specific vertex
sides to ingoing and outgoing flow edges, where an attachment of an output edge at an input
side then clearly violates the semantic requirements. From an algorithmic viewpoint, the
semantic information can be analyzed in a preprocessing step, such that the semantic nature
of the constraint is not relevant for the layout computation, but they are intuitive and helpful
also for the user’s constraint management. In most cases, a drawing constraint defined by
the user is meant to be satisfied permanently, not just at the time of definition. On the other
hand, a constraint may only be reasonable in a specific state, e.g., for a fixed layout, and
therefore does not need to be persistently satisfied. This is often the case for purely aesthetic
constraints, whereas semantics based constraints need to be respected permanently.

The extent of the affected part of the graph is a further criterion for distinction of con-
straints. A global constraint may restrict properties of the whole drawing, as, e.g., a given

80 5. Overview and Classification

aspect ratio, and a local constraint just restricts graph objects, e.g., by fixing a vertex posi-
tion. The latter case is also an example for absolute constraints, whereas relative constraints
specify a requirement concerning the drawing of a part of the graph only in relation to the
rest of the graph G (or a part of it). Cluster constraints for example specify that the drawing
of a cluster lies within a region r that does not intersect with the region of another cluster,
i.e., the drawing of G is outside r. Badros| [2000] gives as a corresponding definition ‘A
constraint is a relation that we would like to maintain’. Note that in the case of a local con-
straint, we can still ask for the constraint to hold, e.g., for each graph object, which may
lead to conflicts even though each single constraint may be feasible alone. We cannot, for
example, require each edge of a triangle to be bend-free in an orthogonal drawing without a
conflict.

An additional issue is the question if a constraint is valid for all layouts or depending on
the input instance [Poranen et al., 2003]]. An example for the former type is the placement of
the starting object in a sequence diagram to the left of the drawing, for the latter a placement
of a selected vertex subset close to the center. Note that this global constraint is also a
semantic constraint, as it implies that a special role is assigned to graph objects.

A constraint may have an impact on different characteristics of the drawing, as for ex-
ample the geometry or the topology, and these characteristics can also be used to classify
constraints. Closely related to this classification is the question what has to be done dur-
ing an algorithmic approach to achieve these characteristics, we can for example specify
constraints on the embedding to achieve a certain topology of the resulting drawing.

The final characteristic of a constraint we mention here is concerned with the question
whether it has to be satisfied exactly or can be weakened to allow the satisfaction of other
constraints or aesthetical requirements. Constraints in the former class are called strict con-
straints, constraints in the latter class are called soft constraints. Obviously, this is not a
fixed property of the constraint itself, but dependent on the application context and the user’s
preferences. Priority values for the constraints can be used to solve conflicts, and to decide
during computation to which extent soft constraints have to be satisfied.

We might ask how local constraints like ‘do not let this edge cross any other edge’ and
global optimization goals like ‘crossing minimization’ are related. Both consider edge cross-
ings, and if we treat the former constraint as a soft constraint, we could also see it as a
crossing minimization on a single edge. We can always avoid crossings on a single edge,
but if we demand this for all edges, the constraints are in conflict for non-planar graphs. In
this context, crossing minimization then gives us a global prioritization criterion for a set
of crossing constraints, one for each edge. We allow a crossing on an edge if it helps us
to achieve the minimum number of overall crossings. We could therefore also understand
crossing minimization as a weak global constraint that we try to respect the best we can.

Note that due to the overlap of the characteristics given above no categorization can
include all those aspects with a strict separation and be at the same time unambiguous. A
categorization of constraints therefore will always be somewhat subjective and represent only
an abstraction of the real constraint topology.

5.1. Constraints in Graph Drawing 81

5.1.2 History and Preliminary Work

A large amount of work concerning constraints has been published in the scientific literature,
including surveys [Tamassia, [1998]], general frameworks [He and Marriott, 1998, Kamada
and Kawai, 1991]], and a huge number of approaches to integrate constraints into existing
drawing methods. However, the term constraint is not always used consistently. This section
gives an overview on the history, the main concepts, and most relevant results.

The use of constraints in graphical systems was already introduced in the early 1960s
with the drawing editor SketchPad, an interactive drawing system with a graphical user in-
terface (partially operated using a light-pen). It allowed to specify geometric constraints and
can be seen as a predecessor of today’s CAD systems [Sutherland, [1964]]. In the seminal
paper by [Batini et al.| [1986] that describes a layout approach for data flow diagrams, the
authors distinguish between aesthetics and constraints. Constraints are defined as additional
semantic information provided to a drawing algorithm. Sugiyama and Misue| [[1991]] define
what they call drawing rules, drawing conventions, and readability elements that are modeled
as constraints and objectives for their multi-stage multi-objective problem for layered graph
drawing (see Section[d.1.T].

While these approaches can be seen as applications of constraints for the definition of,
or within, a drawing style, Bohringer and Paulisch [1990]] were among the first to explicitly
address the problem of user-specified constraints and give a general mechanism to extend
layout methods with constraints. Their approach is restricted to linear equations and the di-
mensions have to be treated independently of each other. Within their approach, the set of
constraints is maintained by a constraint manager that also keeps the constraint set consis-
tent by dropping inconsistent constraints. The approach allows absolute positioning within
a fixed coordinate system, relative positioning of vertices in relation to other vertices (‘A is
on top of B”), and cluster constraints to group vertices together. They provide an exemplary
description of the integration into Sugiyama’s layout algorithm, whose drawing rules are
quite close to the structural constraints allowed in their approach. Even though they promise
a general mechanism, this description shows that already for such a related algorithm con-
siderable work has to be done to adapt the system, and no general interface or approach is
given to do this for other layout algorithms. Instead of integrating constraints, this approach
is closer to a constraint solving system that allows to simulate drawing styles which can be
expressed by the linear constraints.

Kamada and Kawail [1991] proposed a model for a constraint-based layout framework
already in 1991, and developed a number of prototype systems (TRIP, IMAGE) based on this
model. In constraint-based systems, a declarative approach is taken where relations between
variables are stated in the form of constraints, specifying the properties of a solution to be
found. The constraint set is then solved by a value assignment such that the solution is
consistent with the maximum number of constraints. He and Marriott [[1998]] describe the
constrained graph layout model, a general framework that allows to implement constraint-
respecting layout modules for different layout styles.

D1 Battista et al.| [1999b] distinguish drawing conventions, aesthetics, and constraints,
where drawing conventions are defined as rules that a drawing must satisfy to be admissi-
ble, for example orthogonal edge routing. In their terminology, aesthetics specify graphics
properties that only have to be applied as much as possible. Constraints are restricted in |D1

82 5. Overview and Classification

TEYCLE

t
VehicleDynamic MASSE —

Vehiclespeed

F‘_”I*

Figure 5.1: Data flow diagram drawn with the KIELER platform [Spénemann et al., 2010]. Upward con-
straints are realized by adapting the hierarchical drawing approach of [Sugiyama et al.| [1981]] to depict
the flow direction. The adaption takes special care of the port constraints which have to be respected to
conform to the drawing conventions for data flow diagrams.

Battista et al.| [1999b]] to subgraphs or subdrawings, as for example highlighting of an im-
portant path in a drawing of a process diagram by aligning the edges. If the number of bends
in the drawing should be minimized, this would be an aesthetical requirement, whereas the
condition that a specific edge should not be bent would be a constraint.

Many practical applications have constraints on the drawings that restrict the set of ad-
missible planar embeddings. We call fopological constraints drawing constraints that impose
a restriction on the embedding of the graph by definition, as opposed to constraints that influ-
ence the embedding only indirectly due to the restriction of other layout parameters. Several
quite different approaches have been taken concerning topological constraints.

The most simple case to restrict the order of edges around a vertex is bimodality: For
an embedding of a directed graph, the circular list of edges around each vertex has to be
partitioned into incoming and outgoing edges. A planar directed graph is bimodally planar
if it has a bimodal embedding that is planar. This property can be tested in linear time
[Bertolazzi et al., 2002]. Buchheim et al.| [2006] adapt the planarization approach and the
exact crossing minimization to consider bimodality. A typical example how topological
constraints can be motivated from practice are drawings of database schemata [D1 Battista
et al., 2004, 2002]]. Table attributes are arranged from top to bottom within a rectangular
vertex representing a table, and links connecting attributes may attach either at the right
or the left side of the corresponding graphical table representation, but not at the top or
the bottom. Another area of application are data flow diagrams, which represent data flow
models that arise for example in software and hardware development tools. Each edge in
such a diagram represents a data path with specified source and target ports. Ports restrict
the embedding but may also influence and complicate further aspects of layout generation, as
for example bend minimization and edge routing for orthogonal drawings. Sponemann et al.
[2010]] proposed an approach based on the Sugiyama framework to support port constraints
in hierarchical drawings of data flow diagrams. See Figure [5.1] for a drawing computed by
their implementation, which gives a clear improvement upon previously known results.

We present a representation for a large class of topological constraints together with an

5.1. Constraints in Graph Drawing 33

algorithm for constrained planarity testing and edge insertion in Section [6]

The integer linear programming approach of Eiglsperger et al.| [2000] considers side and
port constraints in the shape computation phase of orthogonal graph drawing. Although such
an ILP-based solution is really flexible, it is only practicable for a very small number of con-
straints, as it is also extremely slow. Bertault [2000] presents an approach to preserve the
topology of a drawing within a force-directed method. By restricting the vertex movement
to wedge-shaped zones around a vertex the edge-crossing properties of the initial drawing
are preserved. Dornheim| [2002] studies the problem of computing embeddings satisfying
a special class of topological constraints, These constraints consist of a cycle together with
two sets of edges that have to be embedded inside or outside the cycle, respectively. See
Figure for an example. Buchheim et al.| [2006]] describe how to adapt the planarization
approach for directed graphs when incoming and outgoing edges have to appear consecu-
tively around each vertex. [Eiglsperger et al.|[2003] and |Gutwenger et al.| [2001] consider
mixed-upward drawings where only a subset of the edges is directed and builds a forest. Di-
rected edges should not cross each other and the embedding has to assure that directed trees
are not intermingled. |Gutwenger et al.| [2008]] describe a class of embedding constraints that
allow to restrict the order of incident edges around a vertex based on a constraint hierar-
chy, see Section [6] [Harrigan and Healy [2007]] investigate the planarity testing problem for
leveled graphs, i.e., where vertices have prescribed y coordinates, under these embedding
constraints. In the last years, the stress majorization methods has gained increased attraction
for the integration of constraints. The basic method has been extended to allow hierarchical
drawings [Dwyer and Koren, [2005], radial drawings [Brandes and Pich, |[2009b]], vertex over-
lap removal [Gansner and Hu, [2010]], and also topology preservation [Dwyer et al., [2009].
Dwyer et al.|[2009] use topology preservation to achieve stability, meaning that for a hori-
zontal and vertical sweepline scan the order of the graph objects does not change. Recently,
Angelini et al.| [2010a] presented a linear-time algorithm to test if a given embedding of a
subgraph of GG can be extended to an embedding of the entire graph GG. Preservation of the
embedding is easy to maintain for planarization-based methods, nonetheless the quality of
the resulting drawing after a few insertion operations may quickly deteriorate. As energy-
based methods typically do not care about an embedding, but mainly consider the vertex
positions, it is more difficult to add a corresponding functionality.

Eiglsperger et al. [2004]] show how to incorporate constraints that stem from drawing
conventions for UML class diagrams into orthogonal drawing algorithms. These constraints
affect each of the three steps of the TSM approach. First, the planarization has to take into
account the inheritance hierarchies. Crossings between generalization edges are not allowed,
and an embedding needs to be chosen that avoids that inheritance hierarchies are intermin-
gled or nested. Second, the shape computation is restricted as bends on the generalizations
are not allowed and hierarchies should be oriented in the same directions. Even though these
restriction seem to be easily satisfiable, the implementation is quite complex. In addition,
the constraints may lead to worst-case drawings if not additional measures are taken to avoid
them: The inheritance hierarchies are rigid structures and as the main priority is on crossing
reduction, edges might be routed around the whole drawing to avoid crossings, leading to
very long edges with a large number of bends. Siebenhaller| [2009]] tackles a combination of
constraints, including a specific type of port constraints, within the TSM approach.

84 5. Overview and Classification

Simultaneous embedding problems cope with the layout of several graphs on a shared
vertex set. Variants include simultaneous embedding with fixed edges (where common edges
between graphs share the same Jordan curve in the simultaneous drawing), simultaneous ge-
ometric embedding (where shared vertices need to be drawn on the same position), and
colored simultaneous embedding (where the restriction is relaxed to allow a vertex to be
mapped to a subset of points). Obviously, this is not a problem that is only concerned with
the topology of the layout, but also with the geometry. There is a broad range of important ap-
plications, including the visualization of biological networks to compare them across species
or cell states, or to highlight temporal changes. Due to the increasing need for such drawings
in practice, research on this topic has been enforced in recent years. Unfortunately, several
related problems have been found to be computationally hard. [Estrella-Balderrama et al.
[2007]] proved that determining whether two planar graphs admit a geometric simultaneous
embedding is an NP-hard problem. (Chimani et al. [2008b] extend the crossing number prob-
lem to simultaneous graphs and show NP-completeness for this problem. There are however
also positive results: Erten and Kobourov| [2005] present a linear time algorithm to embed
any pair of planar graphs on the grid with at most three bends per edge, and at most one
bend ore edge in the case of trees. Bral et al. [2007] show the existence of simultaneous em-
beddings for pairs of paths, cycles, and caterpillars, and give counter-examples for general
planar graphs, outer-planar graphs, and triples of paths. [Fowler et al. [2008] show how to
decide in linear time whether a pair of biconnected outer-planar graphs has a simultaneous
embedding with fixed edges. Brandes et al.| [2007] study colored simultaneous embeddings
and show positive and negative results for several basic cases. [Frati et al. [2009]] investigate
constrained simultaneous embeddings, where the combinatorial embedding of the graphs
is fixed. [Estrella-Balderrama et al.| [2010] describe GraphSET, a tool especially designed
for simultaneous graph drawing that allows to both study theoretical problems as well as to
produce simultaneous drawings.

In order to allow control over the orientation of the edges in the drawing, Sugiyama
and Misue, [1995] propose an extension to Eades’ spring model that uses magnetic springs
and magnetic fields. One of the goals is to draw edges of different type with a different
pre-specified orientation. By combining three standard magnetic fields — polar, parallel, and
concentric — they model a rotational force on the edges and for example manage to draw
graphs with nearly orthogonal edge routings. In contrast to other force-directed methods, the
magnetic force approach is therefore also able to cope with edge directions, where, e.g., an
upward parallel magnetic force field can lead to drawings where edges tend to point upward.

Often, prescribed vertex sizes and edge lengths need to be considered. When all distances
are given exactly, distance-based graph drawing can be applied [Brandes and Pich, [2009a].
Force-directed algorithms often allow to set a zero energy length of the edge, such that the
algorithm tries to achieve this length as close as possible, but often have problems avoiding
vertex overlaps. However, a near-optimal reflection of pairwise distances in a graph-based
map may not necessarily be the best way to transport the information, as empirical evidence
suggests that there is a ‘route effect’ which leads to an underestimation of distances for con-
nected vertices — there is some kind of spatial distortion in perception and memory [Tver-
sky, 1992, Klippel et al., 2004]. |Di Battista et al.|[1999a] describe how to respect prescribed
vertex sizes in the Simple-Kandinsky drawing style, Friedrich and Schreiber [2004] show

5.1. Constraints in Graph Drawing 85

how to do this in the hierarchical drawing approach, and [Hong and Mader [2008] give a
corresponding approach for straight-line drawings.

Approaches for several drawing styles aim at the representation of hierarchical clustering
structures: (Wang and Miyamoto| [[1995] extend the force-directed layout approach to allow
a clustering of vertices. They construct a meta-graph by collapsing clusters, meta-vertices
that represent clusters then are assigned a rectangular region to accommodate the cluster
subgraph. During the iterative force calculation, weights are shifted from forces between
vertices of different clusters towards forces between met-vertices, such that the relative posi-
tions between vertices in the same cluster are more and more preserved. [Eades and Huang,
2000] use a virtual vertex for each cluster within a force-directed approach. Cluster vertices
are connected to the corresponding virtual vertex to keep them close to the cluster center,
and repelling forces between virtual vertices and vertices of other clusters are used to keep
clusters separated. (Genc and Dogrusoz| [2003] and |Dogrusoz et al.| [2004, 2009] use a
force-directed compound graph layout (i.e., with a multi-level nesting of subgraphs) for bio-
logical pathway visualization that takes into account localization information. They apply a
gravitational force to restrict vertices to compartments in the drawing. Their approach takes
into account vertex sizes and and arranges vertices with respect to their role within a reac-
tion. See Figure for an example layout. Eades and Feng [1997] propose a method to
compute orthogonal grid drawings for clustered graphs, and |D1 Battista et al. [2001]] show
how to extend the planarization approach for orthogonal graph drawing to integrate cluster
structures. Bourqui et al.|[2007]] are the first to attack the clustered drawing problem with a
multilevel drawing approach. See Chapter [7for further results and an in-depth discussion of
cluster-related topics.

Already in 1994 Karp and Paley discussed the representation of metabolic pathways
and proposed a drawing approach that uses different layout methods for different pathway
topologies [Karp and Paley, 1994a,b|]. Biologically relevant topologies such as linear, cyclic
and branching pathways are identified and used as the backbone of the layout. Becker and
Rojas| [2001] proposed an approach that allows to draw pathways in a way that highlights
two main properties of established pathway visualizations: Cycles are detected and drawn
in a cyclic fashion, and main paths are drawn in an aligned fashion to capture the flow of
reactions. See Figure Also Bourqui et al.|[2006] try to respect drawing conventions
for metabolic pathways by highlighting cycle and cascade substructures. They perform a de-
composition based on a clustering approach, which leads to what they call a ‘quotient graph’.
This structure is then drawn using the mixed model layout and the substructures are drawn
using hierarchical and circular methods. Brandes et al. [2004]] propose a method for visual-
1zing a set of related metabolic pathways across organisms using two-and-a-half dimensional
graph visualization with the aim to visually analyze the (dis)similarities. Two-dimensional
graph visualizations of each pathway are stacked on top of each other in an ordering based
on the Hamming distances of the underlying graphs. The layouts are determined by a global
layout of the union of all pathway graphs using a variant of the Sugiyama algorithm. See
Figure A similar approach is also used to visualize the dynamics of social discourse
networks [Brandes and Corman), 2003]].

Nollenburg and Wolff] [2005] investigate the metro map layout problem, a problem that
at first seems to be quite easy to solve as already a large part of the layout is fixed: Given a

86 5. Overview and Classification

.
3

<

ER | ERM i
|

1} [I |
i P ' I
7 1
i 1 ' |
' / ' i o '
i [I e o e
Nechear Memibvand | f L
P)
1 l !
[|
'
'

Nucheuss

Figure 5.2: A compound graph layout obtained by the force-directed approach of |D0gruséz et al.| |]2009|].

planar graph GG of maximum degree 8, a fixed embedding of (G, and a fixed location for each
vertex, and a line cover, i.e., a set of paths and cycles of G that covers the edges of G (the
metro lines), find a nice drawing of GG. In order to achieve ‘metro map’ like drawings, they
specify ‘nice’ using the following constraints:

e Respect the given topology (x).

e All edges must be octilinear line segments (%).

e Each edge has a minimum length (x).

e Each edge has a minimum distance from each non-incident edge (*).
e Each metro line should have few bends.

e The total edge length should be small.

e The relative position of a pair of vertices (u,v) should be similar to the one defined
by the input positions. The relative position here is defined as the angle between the
x-axis in positive direction and a line through the two layout positions.

5.1. Constraints in Graph Drawing 87

(ST

aaaaaaaa

(a) (b)

Figure 5.3: (a) A pathway drawn using the algorithm of Becker and Rojas. Circular drawing and alignment
is used to highlight the main structures. (b) 2 1/2 D drawing of related pathways in WilmaScope using the
algorithm of [Brandes et al.| (picture from |Brandes et al.| [2004]).

Constraints marked with a (%) are strict constraints, that guarantee a planar, octilinear
and embedding preserving drawing, whereas the remaining constraints are soft constraints
and can be seen as aesthetic optimization goals. For example, path-continuity is preferred
for metro maps, as metro lines should not bend too often. Nollenburg and Woltf) [2005,
2010] present a mixed-integer linear program (MILP) that finds a drawing which satisfies
the strict constraints, if one exists and optimizes a weighted sum of costs corresponding
to the soft constraints. The approach achieves better results than previous approaches with
the drawback of significantly higher running time. See Figure [5.4] for an example layout.
However, as metro map layouts are static and do not need to be computed very often, the
running time of several minutes is still reasonable. We can not hope to find a general efficient
solution for the problem, as |[Nollenburg| [2005] shows that the metro map problem is NP-
complete.

When incorporating constraints into an existing layout approach, several problems might
occur. First of all, the optimization process might be well suited to solve the original prob-
lem, but the adaption can lead to results that are far from acceptable layouts. That is, local
minima of the objective function may represent ‘in between’ solutions that are not satisfac-
tory in any of the aspects. In addition, adding constraints in such a way often clutters even
elegant algorithmic solutions and the corresponding implementations. The alternative ap-
proach of constraint-based layout in the original realization had several drawbacks regarding
flexibility and performance, but a series of results in the previous years showed significant
improvements due to customized constraint solving techniques. We will describe advances
for this approach and an alternative approach for constraint integration, the iterative compu-

88 5. Overview and Classification

Figure 5.4: A metro map layout of the London underground network obtained by the mixed-integer pro-
gramming approach of [Nollenburg and Wolff| [2010].

tation of grid-based layouts, in more detail.

Constraint-Based Layout. |[Kamada and Kawail [1991]] introduced a constraint-based
object layout system called COOL that includes a linear constraint solver which is able
to solve geometric constraints. These constraints are divided into rigid constraints, which
have to be satisfied exactly, and pliable constraints, which can be satisfied approximately.
COOL applies a least squares approximation for this purpose. Within the TRIP prototype
system [Takahashi et al.l [1998], constrained layout generation is done in two steps. First,
the layout algorithm of [Kamada and Kawai [1989] is used to generate an initial, uncon-
strained layout, which is translated into linear constraints for the graph objects’ positions.
These constraints then are solved together with the geometric constraints using COOL’s con-
straint solver. [He and Marriott [1998]] introduce the constrained graph layout model aiming
at the use in interactive applications. The two main drawbacks of the classical graph layout
model that they try to overcome are: a) Lack of stability in a dynamic drawing scenario, b)
Restrictions on the graph layout due to fixed layout aesthetics, hindering the integration of
constraints which express the underlying semantics of the graph objects. The input for the
graph layout module in constrained graph layout consists of the graph, a set of constraints
over the x and y positions of the vertices, and a partial assignment of suggested values for
the vertex coordinates. The graph layout module computes an assignment of vertex coordi-
nates which is feasible, i.e., satisfies the constraints, gives a good layout, and assigns values
which are as close as possible to the suggested values. Whereas the constraints model addi-
tional semantic information about the graph, the specification of suggested values allows the
layout module to preserve the previous layout of the graph. Different graph layout modules
may allow different classes of constraints and also embody different layout algorithms and
aesthetic criteria. |He and Marriott present several exemplary constrained layout modules,
all of which allow general linear arithmetic constraints, with modifications of the cost func-
tion from |Kamada and Kawai| [[1989] as objective function. They apply an active set method

5.1. Constraints in Graph Drawing 89

for optimization, and quadratic programming for their tree layout modules, and test their
approach on several small graphs.

In Dwyer and Koren [2005] constraint programming techniques are combined with
force-directed placement to draw directed graphs in a hierarchical fashion. The resulting
Di1G-CoLA approach aims at representing hierarchies while preserving the aesthetic prop-
erties achieved by force-directed placement, including uniformity of edge lengths, better
representation of cycles and symmetry, and balanced aspect ratio. The linear separation con-
straints imposed by the given hierarchy information are integrated using convex quadratic
programming in a stress majorization approach, which can be solved efficiently using any
standard solver. As an application they show how to apply their approach for directed mul-
tidimensional scaling. DIG-COLA is implemented for the Graphviz library. As a generic
standard solver was used to solve the quadratic problem, the approach was relatively slow in
practice.

In an attempt to speed up the solving for the special case of stress majorization with
orthogonal ordering constraints, |Dwyer et al. [2005] propose an iterative gradient-projection
algorithm especially adapted for their problem formulation: In each step, a projection is
performed that projects the result of the move onto the feasible region to satisfy the ordering
constraints. As this projection can be performed in O(mn + nlogn), with m the number
of ordering levels and n the number of variables, this can be done fast in practice, as the
running time in each iteration is dominated by the O(n?) complexity of the stress function.

Dwyer et al.| [2006a] extend force-directed layout with separation constraints (IPsep-
CoLa). A gradient projection method is used to solve a one-dimensional quadratic objective
subject to the separation constraints for that dimension. In order to overcome convergence
issues with this solution, and to achieve an speed-up, Dwyer and Marriott| [2007]] propose
a scaling technique. Dwyer et al.| [2009]] show how to preserve the topology of a drawing
during an improvement of path lengths, based on a gradient projection approach. Further
constraints like vertex overlap, alignment and edge direction remain satisfied.

Dwyer [2009] describes a technique for constrained graph layout that improves on pre-
vious approaches in terms of performance and the flexibility of the supported constraints.
The technique combines a force-directed layout approach with a simple constraint relaxation
scheme, supporting separation constraints over Euclidean distance or distance projected on
an arbitrary direction vector. Dwyer [2009] shows how to model three interesting constraint
types with his approach, linear alignment with arbitrary orientation, circular constraints, and
non-overlap for vertices or even clusters with arbitrary convex hulls. See Figure The
underlying force-directed layout approach uses a multipole-based force approximation, lead-
ing to an overall running time of O(nlogn + m + ¢) per iteration, where ¢ is the number of
constraints. Dwyer and Robertson| [2009] show how also non-linear constraints, e.g., circu-
lar drawing constraints, can be satisfied within this approach using a combination of several
projection techniques.

Schreiber et al.| [2009] describe a very elegant solution to biological network visualiza-
tion problems. They propose a generic layout algorithm that aims at the visualization of
different biological network types. The algorithm is based on the constrained graph layout
approach from Dwyer et al.| [2006a], where placement constraints are part of the optimiza-
tion. In Schreiber et al. [2009] the constraints are further restricted to separation constraints

90 5. Overview and Classification

(a) (b)

Figure 5.5: (a) A metabolic pathway drawn by the constrained layout approach of[Dwyer [2009]. Downward
edge direction is achieved by oriented distance constraints, and the circular style of the cycle is achieved
by a system of rigid distance constraints for the cycle’s vertices. (b) Drawing of a gene regulatory network
generated by the constrained layout approach of [Schreiber et al.| [2009]. The layout resembles a layered
Sugiyama style drawing. Two bi-fan motifs are drawn similarly using equality separation constraints that
fix a precomputed layout (highlighted by background color).

of the form u + g < (=)v, enforcing a gap g between u and v in either = or y direction.
This restriction preserves computational efficiency while allowing enough flexibility for a
wide variety of layout styles for different biological networks, see Figure The sep-
aration constraints allow to handle vertex alignment and orthogonal ordering, non-overlap,
enforcement of edge directions, and draw occurrences of network motifs in a similar way.

Even though the constraint-based approach seems to be flexible and efficient, it is not yet
used frequently in practical implementations. [Wybrow et al.| [2008] see the lack of usability
studies that investigate the value of constraint-based systems as a main obstacle for the wide-
spread use.

Grid-based layout. In grid layout algorithms, vertices constituting the graph are mapped
to grid points which satisfy their biological localization information, and are arranged to
minimize a cost function defined over all possible mappings to penalize edge-edge cross-
ings, vertex-edge crossings, and distance between vertices. Since finding the layout with
the minimal cost is NP-hard, grid layout algorithms employ heuristics that move the vertices
iteratively to a new position, applying the change that creates the largest cost reduction.

In order to overcome what they identify as the drawbacks related to force-directed meth-
ods, |Li and Kurata [2005] propose a grid layout method for biochemical networks. They
identify as major problems that

e little information about the network topological structure can be gained,

5.1. Constraints in Graph Drawing 91

e cluster structures cannot be displayed clearly, and

e distances between vertices are not well proportioned, as dominant repulsive interac-
tions make the distribution of vertices scattered, while the minimal distance between
vertices is often too short compared with the drawing area size. This makes it difficult
to obtain compact layouts.

Their algorithm, too, treats vertices as interacting particles, but places them on a square
grid. A cost function is used based on the topological network structure, such that closely
related vertices attract each other and less related vertices repel each other, and a local search
method is employed to optimize the layout. Due to the grid placement, vertices cannot be
placed too close to each other and each vertex has a finite number of potential positions on the
grid points. A Manhattan distance metric is used to decrease the computational demand, and
the cost function is the sum over all weighted pairwise distances. The weights derived from
the number of short paths between a pair of vertices — the more short paths exist, the stronger
is the attraction between these vertices. For the global optimization they use a simulated
annealing approach, where first a neighboring layout is computed by perturbing the current
layout, i.e., placing some vertices based on given perturbation rate on vacant grid positions.
Afterwards, this layout is improved by applying a steepest descent local minimization that
checks for each vertex and each vacant position if moving the vertex would improve the
current objective value, and repositions the vertex in that case. This process is repeated until
no improvement is possible with that method. The computation could be done in a straight-
forward fashion with a huge computational effort of n(m — n) times the objective function
evaluation (O(n?)), where m is the number of grid points. The authors therefore suggest to
keep a cost change matrix in memory, as the largest part will stay constant during a single
vertex move, requiring O(mn) additional space.

As a result, the grid layout algorithm by |L1 and Kurata [2005]] focuses on the display of
cluster structures, defined by strong interrelations between vertices, and on a uniform vertex
distribution in a straightline drawing. The algorithm is implemented for the tool CADLIVE.
Even though the layout already gives an acceptable overview of the overall structure with
respect to the clusters, a closeup shows the problems with vertex-edge crossings and small
angular resolution, see Figure[5.6

The main limitations of their algorithm that they state themselves are edge crossings
and slow computation time. The performance does not allow to layout mid-sizes graphs in
reasonable time or to use the method in an interactive fashion. In addition, it is not well
suited for metabolic pathways that need specific vertex sizes, edge labels, and highlighting
of the main paths.

The main use of cluster structures in [Li and Kuratal [2005] is the grouping of closely
related vertices, as these often form a functional module in the biochemical networks un-
der consideration. Even though their main criticism of standard force-directed methods is
based on the fact that non-adjacent vertices are not drawn closely together, they base clus-
ter attraction on the adjacency relations. However, already in |Dogrusoz et al.| [2004] ideas
like gravitational forces have been used successfully to model such clusters in force-directed
methods, and the quadratic running time proved sufficient for interactive use with medium-
sized graphs. Also vertex distances can be directly incorporated into such approaches, e.g.,

92 5. Overview and Classification

Figure 5.6: Regulatory cell cycle, picture taken from the CADlive homepage, and originally published in Li
and Kurata [2005]).

by using distance-based methods.

Kato et al. [2005] adapt the cost function of [Li and Kuratal [2005]] to consider edge cross-
ings, vertex-edge overlap, and cellular compartments, clearly with a trade-off in running
time. However, their modeling of cellular compartments reduces the number of potential
new positions for a vertex and therefore speeds up the computation in practice. Their algo-
rithm is implemented in the tool Cell Illustrator.

Resorting to the argument of |Li and Kuratal also Kojima et al.| [2007] claim that force-
directed algorithms may not be suitable for compact layouts of complex biological pathways.
They add that torus-shaped regions like the plasma membrane cannot be handled well as re-
gional constraints in these force-directed algorithms, and therefore also apply a grid-based
layout for the visualization of biological pathways. In a series of algorithmic improvements,
Kojima et al.| [2007, 2008, |2010] presented a grid layout method that takes into account local-
ization information and tries to reduce crossings. They define a cost function that includes the
attraction and repulsion forces known from the spring embedder approach, extended by edge-
edge and edge-vertex crossing costs. Their iterative approach moves a vertex in each step in
a greedy manner to a new grid position, with calculation time O(|E|? - min(h, w) + hw),
where h and w denote the grid dimensions. This is clearly much too slow for interactive vi-
sualizations. Furthermore they note that it is difficult to select parameters for their algorithm
correctly and that it is not possible to capture the reaction flow, as, e.g., in signaling net-
works. Besides localization information, the grid layout approach can also model alignment
constraints into the costs such that vertices with the same biological attributes are aligned

5.1. Constraints in Graph Drawing 93

o L 4 Y
L] 11 T L2 .
<3 X L G
i i
. L. L] E]
s N -2 ' .
¥ T 4% A)
Y<® TP 7% - [
1] L] L] L] . T 1] g
4 P Y.
.
=7
P
5
o % o
¥ ¥ Ny
" % | St
P o
§ B ¢
" [
» o w i _ o
Vi g AN § §
0 % - £ - “
0 1 2l i 4 SR
N3 - 3 - ~
s § i § 4 i
4 -
& - i
o0 . 4
; 5 e . o "
_ T f - ‘
] _" ¢ 7 1] 1
- o W F B
P wR
0 § 4 s 4
1 AT H i i
7 ~C BR S
4 . 4
»
o o
') T/
N N\ P
?’44(’,4,.(‘,- = —
g g
T g
N ¢ .
T ? g 0%
& 9 -
| - 288 L WYZ 1418 - -
/ = A . AR ks
: t:; s L%) a
T T ‘a
| 1) .
I %
TH o .
L 4 i % e
+Y ¥ ¢ ©¥o gy °
<ot 1og 3
3 .
bl ¥ 5%
\ A AR AT
o s
\ i '
: > s N
e \ 7 - r: b (',_ -
& = e
T A TUEATT
{ e W e 3 2 .ﬁfv A
% .o b ' -~ B Prs
' . IR i
. AL s] /) e
S < T STl
Y o - S B
¢ i RN .
— P | e R
T T * 3 1 “_j
| \ 7z { -
. g I 4 § 7
¢ P - -
T ¢ § [

|

+

-
a o
L
@
oo i
¢

Figure 5.7: Visualization of an endothelial signal transduction pathway as given in [Kojima et al.|[2007],
manually created (upper) and using the grid layout algorithm (lower). The manual layout facilitates the
recognition of patterns and substructures better as it draws similar substructures in a similar way. It also
exhibits less crossings, both between edges and of the mitochondria representation (pink). Alignment in
two dimensions and grouping of vertices is used, also on a level below the compartment level, to show
relations between similar or functionally related vertices.

94 5. Overview and Classification

vertically with a higher probability. Figure shows a layout obtained with this approach
compared to a manually created layout of the same graph.

5.1.3 Classification of Constraints

As there are many aspects associated with graph drawing constraints, there are different
ways to classify constraints and the resulting categories do not always allow unambiguous
assignment of specific constraints to a single category. Depending on which aspect is in the
focus of research, some categories might be more important then others.

From the discussion above, we can distinguish two main groups of constraint charac-
teristics: Characteristics that are dependent on the application, task, or user preference, and
characteristics that are independent constraint properties. The first group includes strict-
ness, priority, the classification into aesthetic or semantic constraints, the motivation for a
constraint, and the general validity for all instances. Independent characteristics are

e Type: the drawing properties restricted by the constraint.
e Extent: the distinction of global and local constraints.
e Quality: the distinction of absolute and relative constraints.

These three characteristics answer the questions what is constrained, where it is constrained,
and how it is constrained. Each one has consequences regarding the algorithmic processing
of the constraint, its computational complexity, the resulting drawings, and may also influ-
ence the way the constraint can be represented in the user interface. We will classify the
constraints based on these characteristics.

For the constraint type, we use as the three main classes geometry, topology, and routing.
Clearly, more than one drawing property may be restricted at the same time by a constraint,
e.g., the constraint may determine both the topology and the geometry. Constraints that only
determine a single property of the drawing may also have side effects that will influence an-
other property. For example, in order to satisfy a specified geometric ordering of the vertices
in x-direction, a corresponding embedding might be needed to allow a planar drawing, even
though not explicitly stated by the constraint.

We state the most relevant constraints in the following and categorize them according to
the criteria above. The list of constraints is partitioned according to the type, and extent and
quality are given in parentheses (L=local, G=global, A=absolute, R=relative).

Geometric constraints. Since a graph layout specifies the geometric position of graph
objects, geometric constraints are a natural class of restrictions. These include for example
the fixing of a vertex to a specific position, but also a geometric relation of graph objects to
each other, like ‘A is below C’ or ‘A has distance 7 to B’. A classical area where geometric
constraints are necessary to guarantee correctness of the final layout is VLSI Design, where
for example minimum and maximum distances between objects are defined to avoid signal
interference and timing issues. Note that in the CAD domain these constraints are sometimes
called ‘numerical constraints’, whereas geometric constraints are restricted to relations like
parallelism, concentricity, collinearity, tangency, or perpendicularity. The latter constraints

5.1. Constraints in Graph Drawing 95

can be used to derive a drawing that conforms to the requirements from a given sketch that
is only topologically correct.

Geometric constraints include:

Position (L;A,R): A constraint that restricts a vertex to stay in a given topologically con-
nected region, including point, line, or circle. An absolute version assigns a vertex to a fixed
region, whereas relative versions may require vertices to lie in the same, but not in a fixed,
region. A special variant is the point set embedding, where a planar graph G together with
n points in the plane is given and a planar drawing of G is required that maps each of the
vertices of GG to a distinct given point. The problem might be further restricted by giving the
mapping of the vertices to the points as input, or by requiring a straight-line drawing, see,
e.g., Giacomo et al. [2008]], Binucci et al.|[2010]. The position may also be required to be
relative to the drawing area, e.g., to place a vertex in the center of the drawing.

Ordering (L;R): A constraint that specifies an ordering of the positions of vertices or vertex
sets in a given direction, e.g., an orthogonal ordering in x-direction.

Fartition (L;A): The drawing area (or parts of the drawing area) is partitioned into regions
of prescribed shape (e.g. rectangles, such as lanes in process diagrams) and relative position,
and vertices can be assigned to one of the partition cells.

Distance (L;R): Restricts the distance between vertices or sets of vertices. We may specify
exact, minimum, or maximum distances, and also require the same relative distances between
pairs of vertices to distribute vertices evenly.

Alignment (L;A,R) Restricts a set of vertices to lie on a common line. It has two parame-
ters, the slope s and the y-intercept ¢, and several variations: In case both s and ¢ are fixed,
this is just the positioning constraint from above. Free s or ¢ values lead to a relative con-
straint. Often, only horizontal or vertical lines are required. We can also model parallel lines
by requiring the same (unspecified) slope for these lines with a relative constraint on the
corresponding vertex sets. A soft variant of this constraint allows to aim for a layout that
preserves similar relative positions of vertex pairs, modeled by the angle between x-axis and
a line through these vertices.

Vertex size (L;A): Size values for the vertices are prescribed and need to be preserved in the
drawing. Even though the main goal here is non-overlap, which might simply be achieved
by sufficient scaling, the vertex sizes should be taken into account during layout computation
to avoid large drawing area with unused spaces.

Shapes (L;R): Requires a set of vertices to be drawn in a specific shape, e.g., a circle as
in [Dwyer and Robertson, [2009]. Isomorphic parts can be drawn in the same way to show
symmetries or allow to recognize similar parts, e.g., specific subnetworks with known func-
tionality in biological networks. Note that this is not a positioning constraint as the circle is
not given, the vertices only need to have the same, but arbitrary, distance to an unspecified
common center position.

Proximity (L;R): Put (similar) objects close to another. In contrast to distance constraints,
this requires that the remaining (dissimilar) objects are far apart, otherwise the distance may
be misleading.

Area and aspect ratio (G;A): A constraint that confines the drawing to be contained in a page
or screen format.

96 5. Overview and Classification

Topological constraints. Topological constraints restrict the topology of the drawing,
e.g., by fixing the order of edges around a vertex. For planar graphs, the topology is given
by a planar embedding of the graph. Main topological constraints are:

(Adjacent) edge order (L;A): Restricts the order of the edges around a vertex (clockwise or
up to mirroring), e.g., due to assigned ports or attachment sides.

Fartial embedding (G,L;A,R): Fixes the embedding of a subgraph, as, e.g., discussed in
Angelini et al. [2010a]. The global variant fixes the topology, as, e.g., in Bertault [2000],
Chimani et al.| [2005]], Dwyer et al.|[2009]. Several isomorphic subgraphs might be assigned
the same embedding.

Restrict crossings (L;A): Forbid crossings on an edge (or in subsets of edges), or bound their
number.

Embedding depth (L;A): Place a vertex on the outer boundary or at any other embedding
depth.

Cluster (L;R): Place vertices in common, disjoint regions. A constraint that restricts both
the geometry as well as the topology of the drawing. In a drawing of a graph with a given
clustering structure, the clusters should be drawn as simple regions, for instance bounded
by a rectangle that only contains vertices of the respective cluster. In order to facilitate
understanding of such a drawing, the number of edges crossing these regions or other edges
should be minimized. An important combinatorial problem then is clustered planarity of
a clustered graph, i.e., to decide if a clustered graph can be drawn without any edge-edge
or edge-region crossings, see Section [/| for a discussion. Cluster constraints are integrated
in a number of drawing approaches, approaches based on force-directed methods typically
only satisfy the region confining aspect of cluster constraints. There are also attempts to
allow a more flexible way to represent the clusters, as for example polygonal-shaped clusters
[BioGRID].

Routing constraints. Routing constraints cover aspects of edge routing, as, e.g., restric-
tions regarding bends or the edge orientation.

Restrict bends (L;A): Forbid bends on an edge or bound their number.

Edge orientation (G,L;A,R): Sets of edges (or all edges) have to be oriented in a prescribed
direction, i.e., drawn as a curve that is monotonically nondecreasing in the orientation di-
rection. Note that the edge orientation then implies the ordering of start and end vertex in
the orientation direction, but the converse is only true for straight-line drawings. Upward
drawings restrict all edges to be drawn monotonically in the same direction.

Angle (L;A): Specify the angle between two consecutive edges incident to a vertex, or be-
tween two edge segments at a crossing. This constraint also has geometric character.
Attachment (L,A): Specify an attachment point for an edge at one of the end-vertices. This
constraint also has geometric character and is also a part of port constraints.

5.1.4 Constraints for Requirements from Practical Applications

We come back here to the requirements from practical applications that were given in Sec-
tion [3.2.5] and briefly describe a mapping of those requirements to the constraints described

5.1. Constraints in Graph Drawing

97

Drawing Style | Proposed by Constraint types
geometric topological routing
Orthogonal [D1 Battista et al., [1999al] vertex size
[Eades and Fengl [1997] cluster
[Eiglsperger et al,[2000] upward, edge direc-
tion, side and port con-
straints
[Eiglsperger et al.,[2004]] restrict cross- | restrict bends
ings
[Siebenhaller, [2009]] port con-
straints
[Wiese and Kaufmann, | vertex size
1993
Hierarchical [Bohringer and Paulisch) | linear eq.
1990]
[Friedrich and Schreiber, | vertex size
2004
[Spénemann et al.} 2010] adjacent edge | attachment
order
[Harrigan and Healy, edge order
Radial [Brandes and Pich|, 2009b] position, distance
Straight-line [Li and Kuratal [2003]], cluster
jima et al} [2007, [2008,
2010], [Kato et al., 2005]
[Brandes and Pich}, 2009b] position (radial), dis-
tance
[Brandes and Schlieper, | distance angle
2006]
[Brandes et al., 2000D] angle
[Gansner and Hul 2010] distance
[Fruchterman and Reingold, | area
1991]
| L] | orient., vertex size
| L] | ordering, orient., vertex
size
| | | align., orient., shape,
[2009] vertex size
| L] | align., distance, vertex
size
[L] | vertex size partial emb.
[q | align., distance, order-
ing, shapes
[Hong and Mader}, 2008] vertex size
[Takahashi et al., [1998]] linear eq.
[Wang and Miyamoto, | cluster, linear eq., ver-
1995]] tex size
[Dogrusdz et al.,2004] cluster
[2000] partial emb.
General [Dornheim, [2002], partial emb.
gelini et al., 20104]
[Gutwenger et all, [2008], | edge order
[Harrigan and Healy], 2007
[Di Battista et al., 2001], cluster

Tab. 5.1: A selection of representative solutions concerning constraint integration for specific drawing styles.
The row labeled with ‘General’ denotes planarity testing and embedding approaches. References in
color denote approaches using the constraint-based approach.

98 5. Overview and Classification

in this section. This is not in each case a 1-to-1 mapping, as requirements from practice may
involve the combination of multiple basic constraints.

Grouping of objects: In several application domains it is necessary to draw graphs so that
vertices are organized into groups. Lanes, compartments, and packages for example confine
objects to closed disjoint regions in the drawing. Grouping of vertices can be modeled using
clustering, and visualized using clustered drawings. Even though it does not directly make
any difference for graph drawing if the clusters were computed based on a similarity measure
or the graph structure, or were given as predefined groups, it may influence the performance
of some layout algorithms (e.g., force-directed methods), as they may assume or rely on
strong connectivity within a cluster compared to the connectivity with the exterior. Methods
for clustered orthogonal drawings, while perfectly placing clusters in disjoint regions, may
fail to place the vertices of a cluster in close proximity, see Figure [7.1] Sometimes the
regions or their relative position may be specified in advance, as for the lanes in BPMN
pools. Then additional partitioning, (relative) position, and distance constraints are needed
to achieve a satisfying layout. Clustered drawing methods are well studied and implemented
in practical tools. They however do not always work well when additional constraints have
to be integrated.

Reflection of hierarchies: Restricting the edge direction was one of the earliest constraints
handled in automatic graph drawing, and for directed graph drawing, the approach of Sugiyama
et al.|[1981]] is the most widely used and accepted method. Recent advances in constrained
based layout show that this constraint can also easily be satisfied in these more flexible ap-
proaches.

Stability: Depending on the application and the type of diagram, quite different requirements
for stability occur, and several approaches exist to express them with appropriate metrics.
Typically no single constraint type is sufficient to cover the corresponding issues, we discuss
this topic in more depth in Chapter 8.1

Alignment: An alignment can simply be expressed by a geometric constraint that restricts
the involved graph objects to the same x or y coordinate, or more general to a line with a
fixed slope. Alignments can occur as absolute constraints, where the coordinate is fixed or
the common line runs through a fixed point. In the relative version, the line may move as
long as the slope is preserved. Although this constraint is a trivial task for constrained based
methods, it needs a bit more work in energy-based methods, as long as the coordinate is not
fixed. One way to realize an alignment for energy-based methods is to use an additional
force that represents the projection onto a common line and forces the vertices to move
in that direction. For layout methods that follow the topology-shape-metrics approach, an
alignment is much more difficult to achieve as long as the vertices are not lying consecutively
on a path.

Highlighting: For this requirement, quite different approaches are needed. Placing impor-
tant players in specific areas may require position and embedding depth constraints. These
constraints can help to place a vertex in the center of the drawing, or at the deepest level or
outer boundary of the embedding. When substructures need to be highlighted, this can be
done by shape, partial embedding, and alignment constraints. As these constraints do not
necessarily avoid overlap or nesting between substructures, they can be further supported by
clustering and crossing restrictions. Even then the result might not be as expected: For the

5.2. Constraint Handling 99

main path of a pathway for example, it is not enough to align the vertices and avoid crossings
of the connecting path. We also need to assure that the edges are routed accordingly, that is
we have to apply appropriate angle and bend restriction constraints.

Vertex sizes: This requirement directly matches the corresponding type of constraint.
Restricted embeddings: Restricted embeddings like bimodal embeddings or embeddings that
need to respect port or side constraints can be modeled by topological constraints such as
edge order and partial embedding.

5.2 Constraint Handling

Even though over-constrained, but consistent, systems may lead to a reduced number of so-
lutions, the addition of constraints to layout computation will in general require additional
computational effort for the solution of the layout problem. Depending on the types of
constraints and the layout methods used, combining several constraints may render the op-
timization process for practical graph sizes infeasible. Nonetheless, as we have seen above,
successful implementations of layout methods that respect combinations of constraints for
specific drawing standards in application areas exist and are applicable for practical work.

When judging the potential of supporting a constraint within a drawing approach, both
the effort to include it in the model and implementation as well as the computational ef-
fort have to be considered. Several graph drawing approaches quite naturally support con-
straints that are either concerned with parameters that are part of the optimization goals, or
can easily be modeled into the established computational solution methods used. Thus, a
limited constraint-satisfaction capability is achievable also within the algorithmic drawing
approach. Examples include the restriction of bend and angle values and also vertex sizes
in the topology-shape-metrics approach. Non-uniform vertex sizes can be modeled naturally
with a non-overlap guarantee in the topology-shape-metrics approach due to the compaction
phase which computes a grid drawing. Due to the bend and angle computation in the shape
phase, corresponding constraints can be integrated quite easily. Differing vertex sizes and
fixed angles may pose a problem for other approaches, for example energy-based methods,
where often specific overlap removal routines are used in a post-processing step [Gansner
and Hu, [2010]. Such an overlap effect is even exploited in the Graphael system [Erten et al.,
2003]] for the visualization of temporal changes, where corresponding vertices of different
time slices are connected by an edge and the repulsion forces between these vertices are
omitted, such that these vertices stay close to an initial position throughout the evolution of
the graph. What makes the use of energy-based models so attractive in many different ap-
plications, is that they can easily be extended to include many common drawing constraints.
Some classes of constraints can be added just by adding a force or by extending the objective
function with a term. The major disadvantage is that the constraints may only be satisfied
approximately, especially when several constraints have to be satisfied at the same time. De-
pending on the method used to compute the drawing, priorities may be modeled by defining
cost factors in the objective function.

For some constraint-based approaches the use of generic constraint solvers was proposed,
for others efficient solving techniques were presented, e.g.,|Dwyer and Robertson|[2009]. As
constraint solving is a research field on its own, a lot of general constraint solving techniques

100 5. Overview and Classification

Figure 5.8: Transition diagram of a finite automaton as given in|Dornheim|[2002]. The automaton accepts the
language a(cde)*bz + f(hij)*gz)* and the embedding is chosen to reflect the structure of the expression.
Such constraints on the embedding can be handled with the embedding constraints of [Dornheim)| [2002]
and |Gutwenger et al.|[20006].

and solvers exist, and we will not elaborate on this topic here.

Even when a single type of constraint can be respected efficiently, respecting combina-
tions of several constraints may be difficult. Moreover, for some constraint types already
negative results are known: Dornheim| [2002] considers topological constraints given as
triples (C;, In;, Out;), where C; is a cycle of the input graph and In; and Out; are dis-
joint sets of edges that have to be drawn inside and outside of C;, respectively. He shows
that the corresponding T-planarity problem, which asks if a graph has a planar embedding
respecting these constraints, is NP-complete. Brandes and Pampel [2008|] show that it is
NP-hard to preserve the orthogonal ordering for the rectilinear and the equal-edge-length
drawing models. This implies that bend-minimum orthogonal layout is hard under ordering
constraints. The ordering preservation is of interest in practice, e.g., when an initial, partially
manually generated drawing (sketch) should be simplified or beautified, or when dynamic
graph changes require redrawing.

When the angular resolution has to be optimized, one could suppose that the efficient
computation of orthogonal shapes, as, e.g., by using the prevalent flow network technique
[Tamassia, 1987]], can be extended to other resolution models, where angles between edges
are multiples of 180/k, e.g., octi-linearity for k& = 4. However Bodlaender and Tel| [2004]
show that the realizability of orthogonal drawings, given a precomputed shape, is an excep-
tion. Instead, a k-gonal representation does not suffice for the existence of a corresponding
planar layout, as it may require crossings. |Brandes and Schlieper| [2006] show that planar
straightline realizability for trees with prescribed angles can be done in linear time, whereas
in general the problem is NP-hard [Garg, |1998].

There are two additional important aspects when constraints need to be handled in graph
drawing: the user interface and the internal implementation issues. Without an easy-to-use
interface for the specification and representation of constraints, constraint handling will not
help much in supporting the user in accomplishing his visualization goal. This includes
both the issues with constraint handling over a graphical user interface, as in graph draw-
ing editors, and also the mechanisms to provide a programmatic interface. In the former

5.2. Constraint Handling 101

Lo LES— mae W - == *

Figure 5.9: Screenhot of the Dunnart constraint-based diagram editor. The user gets a visual feedback on the
defined constraints. In this case fixing of a vertex position is indicated by a lock, vertical alignment by a
blue dashed line through the two involved vertices, and vertex separation by distance markers connected
to each involved vertex by a blue dashed line.

case, a graphical representation and a constraint specification interface must be given, in
the latter a system that supports definition of constraints, e.g., by parsing a constraint rule
XML database, must be implemented. However, graphical representations for active con-
straints that help the user to keep track of the constraint status can also easily lead to a
cluttered drawing. Such representations were implemented in the experimental constraint
layout software GLIDE [Ryall, 2001]] and also in the constraint-based network authoring
tool Dunnart [Dwyer et al.l 2008], see Figure[5.9] There are however no systematic studies
so far that investigate the value of representation concepts, and on their influence on user
performance (including the resulting layout quality). Wybrow et al.| [2008]] provide first re-
sults in this direction. They investigate user behavior with the Dunnart tool, and also give
a discussion of issues regarding both the constraint representation and the feedback during
direct manipulation by the user. An interesting question in the context of multiple possible
solutions is which one should be chosen. Biedl et al. [1998] redirect this question to the user
and propose several layout solutions in parallel.

Overall, there needs to be a thorough concept to handle constraints both on an imple-
mentation and an algorithmic level. In graph drawing libraries for example, appropriate
interfaces and process definitions are needed to allow a consistent and easily understandable
modeling of constraints and the respective transformation into code. In the following, we
will first give an overview on current graph drawing libraries that facilitate the specifications
constraints and then describe a concept for constraint handling for OGDF.

102 5. Overview and Classification

5.2.1 Layout Libraries and Tools

Handling constraints has been part of the graph drawing research for a long time, and many
tools and systems have been built. Several tools also include interactive capabilities to allow
the user to define and manage the drawing constraints. Although there has already been an
impressive amount of work for the integration of constraint both in theory and practice, most
of the developed approaches led to prototypical implementations that are no longer available
or maintained. We shortly describe important concepts of older systems and summarize the
current state-of-the-art.

Already in 1993, |Dengler et al. proposed a system with a constraint-driven layout. The
constraints are inferred automatically to satisfy good layout design rules, and their algorithm
tries to satisfy as many of them as possible.

Kosak et al.|[[1994]] proposed a straight-line drawing approach based on so-called visual
organizatorial features (VOFs). |Kosak et al.| distinguish between syntactic validity, percep-
tual organization, and aesthetic optimality as categories for layout consideration. As a means
to describe a diagram’s desired topology and perceptual organization they propose VOFs, a
set of basic rules to arrange vertices with respect to several constraints:

e horizontal and vertical alignment

e axial and radial symmetries

e various shape motifs (T, hub)

e left-to-right or top-to-bottom sequential placement
e simple vertex proximity

e horizontal and vertical alignment: Draw a set of vertices at the same x or at the same
y coordinate.

The layout task then was formulated as a constrained optimization problem, using a
symbolic description of the desired topology and organization. Their rule-based approach
leads to problems due to the local nature of the rules, inconsistencies, and interacting VOFs,
therefore also an alternative genetic algorithm is given. Even though they claim that this
approach works well and is easily extendable to further layout rules, it is much too slow for
interactive layout generation. The concept reflected the assumption that human layout design
could be captured using a set of sublayout pattern rules, and that perceptional organization
should have priority over syntactic aesthetic considerations.

In case a tool allows the user to define his own constraints, the user needs some guid-
ance during the diagram editing process. Active constraints and also defined, but violated,
constraints need to be represented in a way that allows the user to control the overall view
with respect to valid drawing results. Otherwise, the user would have to start an evaluation
by an explicit request, and as a result the given drawing may change significantly in order to
conform to given diagram style rules.

A layout approached based on VOFs was later realized in the GLIDE diagram editor
[Ryall, 2001]]. GLIDE’s layout computation is based on the spring-embedder model, and did

5.2. Constraint Handling 103

not apply constraint solving techniques, but introduced additional springs to satisfy simple
linear constraints approximately. There are also many graph drawing systems that are ca-
pable of handling clustered structures, for example Polyphemus, a system for exploring and
visualizing Computer Networks, using the GDToolkit [GDT].

The GDToolKit allows user-defined drawing constraints to be specified over particular
API methods for the implemented layout algorithms. A user could for example avoid cross-
ings on an edge e of graph ug by calling ug.new_constraint_uncrossable_edge(e) before
a planarization step. GDToolkit allows to restrict embeddings, the angles and bends in or-
thogonal drawings, and also the edge direction (upward drawings).

Adaptagrams [Dwyer and Wybrow] is a library of tools and reusable code for adaptive
diagramming applications, for example graph drawing and chart layout tools. The Adap-
tagrams repository includes a solver for the quadratic programming problem in which the
squared differences between a placement vector and some ideal placement are minimized
subject to a set of separation constraints. In addition, a library for constraint graph layout
is included that provides force-directed layout using the stress-majorization method sub-
ject to separation constraints. Non-overlapping vertex and cluster requirements as well as
directed graph layout and topology preservation can be handled. Adaptagram’s libavoid li-
brary provides and object-avoiding connector routing for use in interactive diagram editors.
Adaptagrams currently contains the most flexible and advanced methods for constraint graph
layout. Dunnart [Dwyer et al., 2008] is a constraint-based diagram editor that dynamically
maintains the user-defined constraints during diagram editing, including the features pro-
vided by the Adaptagrams libary. Active constraints are graphically represented to support
the user’s editing.

5.2.2 Constraints in OGDF

The Open Graph Drawing Framework (OGDF) [[OGDEF] is a open-source software library
for the automatic layout of graphs. It contains various sophisticated algorithms and data
structures for drawing graphs which cannot be found in any other software. OGDF provides
a wide range of graph drawing algorithms that allow to reuse and replace particular algorithm
phases by using a dedicated module mechanism. The focus is on planarization methods and
orthogonal layout, but also many classical layout algorithms like hierarchical and force-
directed methods are contained in the library. Clustered graphs and hypergraphs as well as
further drawing constraints motivated by practical applications are supported. The library is
available under the GNU General Public License. The OGDF also provides an XML-based
graph storage format called OGML. OGML is developed to allow both a structured human
readable, and also easy to parse and validate format, combined with the flexibility to add
application specific data.

The concept for constraint integration in OGDF tries to achieve maximum flexibility
in constraint definition and at the same time independence from specific algorithm imple-
mentations. We tried to keep constraint handling and the respective interfaces simple, but
also ensured that the set of supported constraints can easily be extended. Whereas often
specification of constraints is part of the interface of a layout algorithm’s implementation,
we follow an approach that allows to specify and store constraints independent of a spe-
cific layout algorithm. Parts of the concept were developed and implemented by a stu-

104 5. Overview and Classification

Constraint
~m_priority - int
- m_pGraph : Graph
~typelD :int GraphConstraints
- listit : Listiterator<Constraint > “m_pGraph : Graph
- m_Status - int - m_Constraints : List<Constraint +>
+ loadi) + addConstraint(c : Constraint)
+savel) + removeConstraint(c : Constraint)
+ userEnable() + numberOfConstraints() : int
+ userDisable() + getConstraintsOfType() : List<Constraint *>
+ nodeDeleted(v - node)
+ isvalid() - bool
+ edgeDeleted(e -)

ConstraintManager
- m_Sets - HashMap
+ registerGraph(g : Graph)
+ unregisterGraph(g : Graph)
+ getConstraintSetForGraph(g : Graph) : GraphConstraints
+ createlnstanceByName(ConstraintType - string)

AnchorConstraint AlignmentConstraint
“m_soft - bool “m_angle - double

- m_Node : node - m_nodes : List<node>

- m_XPasition : double “insertode(node - node)
- m_YPosition : double + removeNode(node : node)
+ contains(v - node) : bool

Sequence Constraint
“m_nodeGets - ist<NodeSet>
- m_horizental : bool
+ insertiode(setindex - int, node - node)
+ removeNode(v : node)
+ insertSet{newindex - int, newNodeSet : NodeSet)
+ removeSet(index : int)
+ containsNode(setindex : int, v : node)

Figure 5.10: Class diagram depicting the implementation of the constraint handling in OGDF

dent project group under the joint supervision of Markus Chimani, Carsten Gutwenger, and
Karsten Klein [PG478]]. Adding constraint handling to OGDF includes the development of
a constraint handling framework to specify, represent, and store constraints, as well as the
implementation of algorithms that can cope with them.

Architecture. Figure shows OGDF’s main constraint handling classes. Class Con—
straint is the base class for all implementations of constraint types. It stores a priority
that defines how important the constraint is such that for example in case of contradicting
constraints that cannot be satisfied simultaneously, less important constraints can be ignored.
The validity status of a constraint may also be checked, as the constraint may be temporarily
disabled by the user or the system (e.g., as a result of a consistency check). Even though the
validity is returned using a boolean value, internally an integer value is used to store the rea-
son for invalidity on a finer level, to indicate, e.g., syntactical incorrectness or just inactivity.
Class ConstraintManager is the central class that manages all defined constraints for
all existing graphs. It creates constraint instances during the load process and stores a set
of GraphConstraints. An instance of class GraphConstraints stores a list of all
constraints defined for a single graph instance, and allows to modify it by adding or deleting
or adding constraints.

The interface for a layout algorithm now simply is extended as follows: In addition to an
instance of class GraphAttributes, which keeps a graph attributes, as the vertex coor-
dinates, an instance of class GraphConstraints is passed that contains the constraints
defined for the graph. As an algorithm might not support all possible constraints, it can filter
the constraints by calling the method getConstraintsOfType (int Constraint-
Type) to obtain the supported constraints.

5.2. Constraint Handling 105

xR

4 j of?

Figure 5.11: Use of a sequence constraint in the GDE editor. Four vertex sets have to be placed with fixed
ordering in horizontal direction (colors reflect set affiliation).

Storing Constraints. Constraints specified within the OGDF can be stored using the
OGML. Even though a solution that defines specific constraints as fixed elements of the
OGML XML schema seems to provide maximum readability and allows to validate against
the schema, we decided to implemented a different approach. First of all, with such a
schema-based definition the OGML schema and the parser would have to be adapted often
for new or changed constraint definitions, and a dependency of the constraints on the OGML
would be created. Instead, we decided to keep maximum flexibility and independence by
introducing only a generic constraint element. Constraint properties and affected graph ob-
jects are defined using a toolkit of basic data types together with a composed element that
allows complex compositions of basic data elements. This concept allows to easily represent
objects, object sets, and also inclusion relations, as in hierarchical cluster structures. See
listing [9] for an example of an alignment constraint. The data that has to be stored may vary
largely from constraint type to constraint type, which would make a common serialization
mechanism quite complex and difficult to maintain and extend. Therefore each constraint
class in OGDF has to implement its own serialization method.
The basic data types consist of the following types:

e int for integer values

e num for floating point values
e bool for boolean values

e string for string values

e nodeRef for node references

e edgeRef for edge references

106 5. Overview and Classification

labelRef for label references

<num name=’’angle’’ value="’45""/>
<composed name=’’NodeSet’ ’>
<nodeRef idRef=""n01""/>

<nodeRef idRef=’’n23’’/>
<composed/>
</constraint>

1
2
3
4
5
6
7
8

<constraint id=’’c03’’ name=’’Alignmentl’’ type="’"Alignment’’>

Listing 5.1: Example of an alignment constraint representation in OGML, consisting of a angle

specification and a composed element that contains the affected vertices.

As node elements in OGML can contain other node elements, compound and cluster

constraints can simply be represented by inclusion, see listing[12]

I ...

2l <node id=’’n01"">
3|<node id=""n01_1"">
4 <label>

5 <content>

6 Keep it short and
7 </content>

8 </label>

9/ </node>

0| </node>

1| .

—_ —

Listing 5.2: Example of node inclusion to represent compound hierarchies.

When an OGML file is loaded that contains constraint definitions, the constraint manager
creates an instance for the defined constraint type and passes it the corresponding part of
the parse tree. The constraint instance then loads the related information, including the

information on the affected graph objects.

Algorithms. As a proof of concept, a force-directed algorithm (based on the spring em-
bedder approach) was extended to respect Alignment, Anchor, and Sequence constraints.
See Figure [5.11] for an example layout with a sequence constraint applied that forces vertex

sets to a fixed placement order with respect to the horizontal axis.

6. EMBEDDING CONSTRAINTS

In many application domains where information visualization is based on graph represen-
tations, graph drawings for specific diagram types are only valid if they adhere to certain
restrictions of the graph’s embedding. In database diagrams, for example, links between at-
tributes should enter the tables only at the left or right side of the corresponding attributes,
the placement of reactants in chemical reactions or biological pathways should reflect their
role within the displayed reactions, and in UML class diagrams, generalization edges should
leave a class object at the top and enter a base class object at the bottom. Even more important
is the possibility to use such drawing restrictions in order to express the user’s preferences
and to guide the layout phase.

In this chapter, we consider restrictions on the allowed order of incident edges around a
vertex, for example, to specify groups of edges that have to appear consecutively around the
vertex or that have a fixed clockwise order in any admissible embedding. Such constraints
may occur in the form of side constraints, where incident edges are assigned to the four sides
of a rectangular vertex, or port constraints where edges have prescribed attachment points
at a vertex. Our first contribution is the introduction of an embedding constraint model in
Section In particular, we introduce three types of constraints which may be arbitrarily
nested: grouping, oriented (prescribed clockwise order), and mirror constraints (prescribed
reversible order). We call a planar embedding that fulfills the given set of constraints an
ec-planar embedding.

An important optimization goal for the computation of graph layouts is the minimiza-
tion of crossings. The problem of minimizing the number of crossings in a drawing is NP-
hard [Garey and Johnson, [1983]] and no practically efficient method exists so far. In practice,
the problem is attacked via the planarization approach [Batini et al., |1984]] which first deletes
a number of edges until the remaining graph is planar and then carefully reinserts them (it-
eratively) so that the number of crossings is minimized, see for example Gutwenger and
Mutzel [2004]]. This chapter deals with the integration of the embedding constraint concept
into the planarization approach. The first step of this approach can be solved by successive
ec-planarity testing. Our second contribution therefore is a linear time algorithm for testing
if a graph with a set of embedding constraints is ec-planar, see Section The main chal-
lenge is to incorporate oriented constraints, where a given clockwise order of (groups of)
incident edges needs to be satisfied. Furthermore, we characterize all possible ec-planar em-
beddings using BC- and SPQR-trees, which also yields a linear time algorithm for computing
an ec-planar embedding.

The second step of the planarization approach can be tackled by repeatedly solving the
optimal edge insertion problem: This problem asks for inserting an edge e = (v, w) into a
planar graph so that all crossings involve e and their number is minimized. Alternatively,
the problem can be stated as finding an embedding of a planar graph GG where the given

108 6. Embedding Constraints

edge can be inserted with the minimum number of crossings. This problem has been solved
in linear time using the SPQR-tree data structure [Gutwenger et al., 2005[]. The algorithm
essentially computes a shortest path ¥ between those nodes in the SPQR-tree 7 of G whose
skeletons contain v and w, respectively. The optimal insertion path is then constructed by
simply concatenating locally optimal insertion paths of the tree nodes on W.

However, if embedding constraints have to be observed, i.e., restrictions on the order
of the edges around the vertices of GG are given, locally optimal solutions need not lead to
globally optimal solutions and the greedy approach cannot be applied anymore. The best
local decision now depends on the decisions for other parts of the edge insertion path. Our
third contribution is thus a new linear time algorithm to solve the optimal ec-edge insertion
problem (see Section [6.4): Given an ec-planar graph G with an additional edge e and a
set of embedding constraints C' for the graph G + e, our algorithm computes an ec-planar
embedding of GG together with a crossing minimal edge insertion path for e that observes C'.

There is not much previous work concerning constraints on the admissible embeddings
of a graph, see Section [5.1.2] for a description. On the other hand, linear time algorithms
for planarity testing and embedding are long since known; see Hopcroft and Tarjan| [[1974],
Booth and Lueker [1976], Chiba et al. [1985]], Mehlhorn and Mutzel [1996]], Boyer and
Myrvold| [2004].

This chapter is organized as follows. Section formally defines the embedding con-
straint model. The first part of the ec-planarity test consists of transforming the input graph
into an ec-expansion which is described in Section[6.2} the characterization of ec-planar em-
beddings and the ec-planarity test itself is then presented in Section [0.3] Section [6.4] covers
the linear time algorithm for solving the ec-edge insertion problem. Finally, we conclude the
chapter with remarks on open problems.

6.1 ec-Constraints and ec-Planarity

Let G = (V, E) be a graph. An embedding constraint specifies the admissible clockwise
order of the edges incident to a vertex in a combinatorial embedding of G. In this chapter,
we consider the case where a vertex has at most one embedding constraint and either all or
none of the edges incident to a vertex are subject to embedding constraints.

An embedding constraint at a vertex v € V' is arooted, ordered tree 7}, such that its leaves
are exactly the edges incident to v. The inner nodes of 7;,, also called constraint-nodes or
c-nodes for short, are of three types: oc-nodes (oriented constraint-nodes), mc-nodes (mirror
constraint-nodes), and gc-nodes (grouping constraint-nodes). Since 7, is an ordered tree, it
imposes an order on its leaves and thus on the edges incident to v. We consider this order as
a cyclic order and represent all admissible cyclic, clockwise orders of the edges incident to
v by defining how the order of the children of c-nodes in 7}, can be changed:

gc-node: The order of children may be arbitrarily permuted.
mc-node: The order of children may be reversed.

oc-node: The order of children is fixed.

6.2. ec-Expansion 109

(a) Partitioning of edges. (b) Constraint tree.

Figure 6.1: The hierarchical partitioning of edges imposed by an embedding constraint (a) and the corre-
sponding constraint tree (b).

Figure [6.1] shows an example for an embedding constraint. A c-node with a single child is
obviously redundant, therefore we demand that each c-node has at least two children. While
gc- and mc-nodes alone resemble the concept of PQ-trees Booth and Lueker [1976]], the
additional concept of oc-nodes is necessary to model constraints that arise in many practical
applications, and that complicate planarity testing.

Let C be a set of embedding constraints at distinct vertices of G. A combinatorial em-
bedding I' of G observes the embedding constraints in C, if for each embedding constraint
T, € C, the cyclic clockwise order of the edges around v in I' is admissible with respect to
T,. A planar embedding observing the embedding constraints in C' is an ec-planar embed-
ding with respect to C, and (G, C) is ec-planar, if there exists an ec-planar embedding of G
with respect to C'.

6.2 ec-Expansion

A basic building block of the ec-planarity test is a structural transformation applied to a given
graph GG with embedding constraints C'. For each embedding constraint 7,, at vertex v, this
transformation expands v according to the structure of 7;. We call the resulting graph the
ec-expansion E(G,C') of G with respect to C. The details of this transformation are given
below.

6.2.1 Construction of the ec-Expansion

The ec-expansion E(G,C') of G with respect to C' is constructed as follows. Let T, € C
be an embedding constraint and 77 the subgraph obtained from 7;, by omitting its leaves.
Recall that the leaves of T;, are exactly the edges incident to v. We replace v in G by the tree
T! and connect the edges incident with v with the parents of the corresponding leaves. This
transformation introduces a vertex in GG for every c-node in 7,,. Each vertex u corresponding

110 6. Embedding Constraints

(a) Wheel gadget. (b) Vertex expansion.

Figure 6.2: Expansion gadgets: (a) a wheel gadget replacing a vertex with degree 4; (b) vertex expansion
according to the constraint tree in Figure @b) (the thick hollow vertex is the root).

to an oc- or mc-node is further replaced by a wheel gadget which is a wheel graph with
2d spokes, were eq, ..., eq are the edges incident to u. Then, the respective wheel gadget
consists of a cycle x1,y1, . .., 24, yq of length 2d and a vertex, called hub, incident to every
vertex on the cycle; see Figure [6.2]@). The vertex u is replaced by this wheel gadget, such
that e; is connected to z; for 1 < ¢ < d. According to the type of the expanded c-node,
we distinguish between O-hubs (oc-nodes) and M-hubs (mc-nodes). We refer to the edges
introduced during the ec-expansion as expansion edges. Figure [6.2b) shows the expansion
of a vertex according to the constraint tree shown in Fig[6.1|(b).

The purpose of the wheel gadgets is to model the fixed order of the children of the cor-
responding c-node. Since a wheel gadget is a triconnected graph, it admits only two com-
binatorial embeddings that are mirror images of each other. The order in which non-gadget
edges are attached to the wheel cycle is either the order given by the corresponding c-node,
or the reverse order. Every face adjacent to the hub is a triangle. We call these faces inner
wheel gadget faces.

Lemma 6.1. Let G = (V, E) be a graph with embedding constraints C. Then, its ec-
expansion E(G,C) has size O(|V'| + | E|) and can be constructed in time O(|V'| + |E|).

Proof. Consider an embedding constraint 7;, € C'. Since the leaves of 7}, are in one-to-
one correspondence to the edges incident to v and each c-node has at least two children,
the size of T, is linear in deg(v). We replace each oc- and mc-node p by a wheel gadget
with 4deg(u) edges. Thus, the expansion of vertex v creates O(deg(v)) edges, and the
total number of additional edges in E(G,C) is bounded by >, ., O(deg(v)) = O(|E|).
Therefore, the size of the expansion graph is O(|V'| + | E/|), and the expansion can obviously
be computed in O(|E(G, C)|) = O(|V| + | E|) time. O

6.3. ec-Planarity Testing 111

6.2.2 ec-Expansion and ec-Planar Embeddings

In this section we discuss the relationship between planar embeddings of the ec-expansion
E(G, C) and ec-planar embeddings of (G, C'). Though the ec-expansion serves as a tool for
modeling the embedding constraints in C, a planar embedding of E(G, C') needs to fulfill
certain conditions in order to induce an ec-planar embedding of GG with respect to C'. We call
a planar embedding I' of E(G, C) ec-planar if

(a) the external face of I' does not contain a hub;

(b) every face incident to a hub is a triangle consisting solely of edges of the corresponding
wheel gadget; and

(c) each O-hub h is oriented correctly, i.e., the cyclic, clockwise order of the edges around
h in I" corresponds to the order specified by the corresponding oc-node.

Let I" be an ec-planar embedding of E(G,C). We obtain an ec-planar embedding of
(G, C) as follows. For each vertex v with corresponding embedding constraint in C, there
is a connected subgraph G, in E(G, C) resulting from expanding v. Let G, C E(G,CO)
be the graph induced by the vertices not contained in (G,. The conditions above assure that
the planar embedding I', of GG, induced by I is such that G, lies in the external face of T',,.
The edges that connect G,, to G, correspond to the edges incident to v in G. Their cyclic
clockwise order around G, is admissible with respect to 7, since the wheel gadgets fix the
order of the edges specified by oc- and mc-nodes, and O-hubs are oriented correctly. We
shrink G, to a single vertex by contracting all edges in G, while preserving the embedding,
thus resulting in an admissible order of the edges around v.

If we have an ec-planar embedding of (G, C'), then the edges around each vertex v are
ordered such that the constraints in 7, are fulfilled. It is easy to see that we can replace each
such vertex v by the expansion graph corresponding to 7}, in such a way that we obtain an
ec-planar embedding of E(G, C'). Thus, we get the following result:

Lemma 6.2. Let G be a graph with embedding constraints C. Then, (G, C') is ec-planar if
and only if E(G, C) is ec-planar. Moreover, every ec-planar embedding of E(G, C') induces
an ec-planar embedding of (G, C).

6.3 ec-Planarity Testing

It is well-known that planarity testing can be reduced to biconnected graphs, i.e., it is suf-
ficient to test the blocks of a graph independently. However, adding embedding constraints
complicates this task. Let G be a graph with embedding constraints C'. Consider a cut vertex
¢ in G that connects two blocks BC; and BC, via the edge sets S; and S, respectively; see
Figure[6.3[(a). If these edge sets are subject to embedding constraints that force the edges in
Sy and S to be intermixed as in Figure [6.3(a), then the given graph is not ec-planar even
if its blocks are ec-planar. We solve this problem by first applying the ec-expansion to the
graph. This replaces the cut vertex ¢ by a wheel gadget so that ¢ does not separate BC'; and
BC; anymore; see Figure [6.3(b).

112 6. Embedding Constraints

\Cut vertex

(b)

Figure 6.3: A crossing is needed between edges of two blocks due to embedding constraints (a). The
expansion using a wheel gadget merges the two blocks into a single one (b).

By Lemma we know that it is sufficient to test the ec-expansion F(G, C') for ec-
planarity. In contrast to the graph G itself, the following lemma shows that we can test the
blocks of E(G, (') separately.

Lemma 6.3. E(G,C) is ec-planar if and only if every block of E(G, C') is ec-planar.

Proof. If E(G,C) is ec-planar, then there is an ec-planar embedding of E(G,), and this
embedding implies an ec-planar embedding for each block of E(G, C).

Suppose now that each block of F(G,C) is ec-planar. Consider a wheel gadget ¢ in
E(G,C). Since ¥ is triconnected, ¢ is completely contained in a single block B of F (G, C').
For each edge (u,v) € ¢, the pair {u, v} is not a separation pair in B by construction, hence
every inner wheel face of ¢ is also a face in every planar embedding of B. Moreover, the
hub of ¢ is not a cut vertex of E(G, C), since all its incident edges are in B.

We construct an ec-planar embedding of F (G, C') as follows. We start with an arbitrary
block B of E(G,C). Let I1 be an ec-planar embedding of B. In particular, the external face
of II is not an inner wheel face of a wheel gadget. We add the remaining blocks successively
to II. Let B’ be another block of E(G, (') that shares a vertex ¢ with B, and let II' be an
ec-embedding of B’. We pick faces f € Il and f’ € II’ that are adjacent to ¢ and not inner
wheel faces of a wheel gadget. This is possible, since the only vertices adjacent solely to
inner wheel faces are the O- and M-hubs. Then, we insert IT" with f’ as external face into the
face f of II. This results in an ec-planar embedding of B U B’. We can add the remaining
blocks (if any) in the same way, resulting in an ec-planar embedding of F (G, C). [

If we can characterize all ec-planar embeddings of the blocks of E(G, C'), the construc-
tion in the proof of Lemmal6.3] also shows us how to enumerate all ec-planar embeddings of
E(G, C) by traversing its BC-tree. In the following, we devise such a characterization. Let
B be ablock of E(G,C) and T its SPQR-tree.

Observation 6.1. Every wheel gadget ¢4 is completely contained within the skeleton of an
R-node. In particular, the hub of & occurs only in the skeleton of a single R-node.

Proof. ¢ is triconnected, and for each edge (u,v) € ¥, the pair {u, v} is not a separation
pair in B by construction. Therefore, all edges of ¢ occur in the same skeleton graph, which

6.3. ec-Planarity Testing 113

must be the skeleton of an R-node p. The hub h of ¢ is only incident to edges of ¢ and no
other edge of B, hence h occurs only in skeleton (). O

If B is planar, then the skeleton of an R-node is a triconnected planar graph, thus having
exactly two planar embeddings which are mirror images of each other. We call two O-hubs
contained in the same skeleton S conflicting if none of the two planar embeddings of S
orients both O-hubs correctly. The following theorem gives us an easy to check condition
for ec-planarity and characterizes all possible ec-planar embeddings:

Theorem 6.1. Let G be a graph with embedding constraints C. Let B be a block of E(G, C)
and T its SPQR-tree. Then, the following holds:

(a) B is ec-planar if and only if B is planar and no skeleton of an R-node of T contains
conflicting O-hubs.

(b) If B is ec-planar, then the embeddings of the skeletons of T induce an ec-planar em-
bedding of B if and only if each O-hub in the skeleton of an R-node is oriented cor-
rectly.

Proof. 1If B admits an ec-planar embedding, then this embedding induces embeddings of the
skeletons of 7 such that every O-hub in the skeleton of an R-node is oriented correctly. In
particular, no R-node skeleton contains conflicting O-hubs.

Suppose now that B is planar and no R-node skeleton contains conflicting O-hubs. For
each R-node skeleton containing at least one O-hub, we can chose planar embeddings such
that all O-hubs are oriented correctly within the skeletons. We have to show that the em-
beddings of the skeletons induce an ec-planar embedding of B, even if we chose arbitrary
embeddings for the remaining skeletons. This holds, since every such embedding II has the
property that each O-hub is oriented correctly because wheel gadgets are completely con-
tained within R-node skeletons by Observation [6.1] and inner wheel faces are preserved. We
can pick any face of II as external face which is not an inner wheel face (such a face always
exists) and obtain an ec-planar embedding of B. [

Function ISECPLANAR depicted in Algorithm applies Theorem and devises a
linear time ec-planarity test, which can easily be extended so that it computes an ec-planar
embedding as well.

Theorem 6.2. Let G = (V, E) be a graph with embedding constraints C. Then, the function
ISECPLANAR tests (G, C') for ec-planarity in time O(|V| + |E|). Moreover, if (G,C) is
ec-planar, an ec-planar embedding of (G, C) can also be computed in time O(|V'| + |E|).

Proof. By Lemma and it is sufficient to test every block of E(G, C') for ec-planarity.
Hence, the correctness of ISECPLANAR follows from Theorem [6.1}

Constructing the ec-expansion (Lemma and testing planarity [Hopcroft and Tarjan,
1974] can be done in linear time. For each block B of E (G, ('), we construct its SPQR-tree,
which requires linear time in the size of B; see|Gutwenger and Mutzel [2001]]. The check for
conflicting O-hubs is easy to implement: For each R-node skeleton S, we compute a planar
embedding of S. If this embedding contains both correctly as well as incorrectly oriented

114 6. Embedding Constraints

function ISECPLANAR(Graph G, Constraints ') : bool
Construct ec-expansion E of (G, C).

if £ is not planar then return false

1:

2

3

4 for each block B of £ do

5: Construct SPQR-tree 7 of B.
6 for each R-node ;1 € T do

7 if skeleton () contains two conflicting O-hubs then
8 return false

9: end if
10: end for
11: end for

12: return true
13: end function

Algorithm 6.1: Ec-planarity testing.

O-hubs, then there is a conflict, otherwise not. Since the total size of skeleton graphs is linear
in the size of B and a planar embedding can be found in linear time (see, e.g., Chiba et al.
[19835]]), we need linear running time for each block. Hence, the total running time is linear
in the size of E(G, C') which is O(]V| + |E|) by Lemma6.1]

In order to find an ec-planar embedding of G, we just have to compute embeddings of
the skeleton graphs for each block as described in Theorem[6.T|and combine the embeddings
as described in the proof of Lemma[6.3] [

6.4 ec-Edge Insertion

We now solve the following ec-edge insertion problem:

EC-EDGE INSERTION PROBLEM

Instance: | an ec-planar graph G = (V, E), two distinct vertices u, v €
V, a set of embedding constraints C' for G + (u, v)

Solution: | an ec-planar embedding II of (G, C') and an ec-edge inser-
tion path p for (u, v)

Minimize: | the length of p

6.4.1 ec-Edge Insertion Paths and ec-Traversing Costs

We first generalize the terms insertion path and traversing costs introduced in |Gutwenger
et al.|[2005]]. Intuitively, the edges in an insertion path are the edges we need to cross when
inserting an edge (z,y) into an embedding. Let G + (x,y) be a graph with embedding
constraints C. An ec-edge insertion path for (z,y) in an ec-planar embedding II of G is a
sequence of edges eq, .. ., e, of G satisfying the following conditions:

6.4. ec-Edge Insertion 115

(1) Thereis a face f, € Il withz,e; € f,, aface f, € Il with e,y € f,, and faces f; € II
with €;, €ir1 € fz forl <i<k.

(2) The edge order around z and y is admissible with respect to C' if (z,y) leaves = via
face f, and enters y via face f,.

Finding a shortest ec-insertion path in a fixed embedding II is easy: We only need to identify
the set of faces F, incident to = where the insertion path may start, and F), incident to y
where it may end, and then find a shortest path in the dual graph of II connecting a face in
F, with a face in F,.

We are interested in the shortest possible ec-insertion path among all ec-planar embed-
dings of G, which we also call an optimal ec-insertion path in GG. In particular, we need to
identify the required ec-planar embedding of GG. In order to represent all ec-planar embed-
dings of GG, we apply Lemma and use its ec-expansion instead. More precisely, we use
the subgraph K = E(G + (z,y),C) \ e, where e = (v, w) is the edge of E(G + (x,y),C)
connecting the expansion of x with the expansion of y. An ec-insertion path in an ec-planar
embedding of K is defined as before with the only difference that we replace the second
condition with

(2"). e1,...,ex contains no expansion edge of K.

It is easy to see that we can also use this definition for a subgraph B of K and two distinct
vertices of B that are not hubs.

We adapt the notion of traversing costs defined in Gutwenger et al. [2005]] to ec-planarity.
Let e be a skeleton edge, and let IT be an arbitrary ec-embedding of the graph expansion™ ()
with dual graph IT*, in which all edges corresponding to gadget edges have length co and the
other edges have length 1. Let f; and f; be the two faces in II separated by e. We denote
with P(II*, e) the length of the shortest path in IT* that connects f; and f, and does not use
the dual edge of e. Hence, we have P(II*,e) € NU {co}.

The following lemma follows analogously to the result shown in Gutwenger et al.|[2005].

Lemma 6.4. Let ;1 be a node in T and e an edge in skeleton(p). Then, P(I1*, e) is indepen-
dent of the ec-embedding 11 of expansion™ (e).

Proof. Let m be the number of edges in G, := expansion™ (¢) and G', be the graph obtained
from G, by replacing each gadget edge with m + 1 parallel edges. Then, each embedding
IT of GG, corresponds to an embedding II' of G, and P(II*, e) is oo if and only if the corre-
sponding path in IT" is longer than m. Lemma 1 in Gutwenger et al.|[2005] shows that for the
general case, i.e., without embedding constraints, P(I1*, e) is independent of the embedding
I1. Applying this lemma and observing that the ec-embeddings of G, are a non-empty subset
of the embeddings of G, yields the lemma. [

Thus, we define the ec-traversing costs c(e) of a skeleton edge e as P(I1*,e) for an
arbitrary ec-embedding IT of expansion™ (e).

116 6. Embedding Constraints

6.4.2 The Algorithm for Biconnected Graphs

The hard part is to find an ec-insertion path in a block B of K. Our task is to compute an
optimal ec-insertion path between two nodes v, w of B. The function OPTIMALECBLOCK-
INSERTER shown in Algorithm and solves this problem. In this algorithms, we use
the notation min; ,, A which returns a tuple in the set A of n-tuples whose ¢-th component is
minimal among all tuples in A.

The function OPTIMALECBLOCKINSERTER is called with a block B of an ec-planar ec-
expansion and two distinct vertices v and w of B. Since we assume that 53 contains all gadget
edges, we do not need to pass further constraint information for the edge (v, w). In particular,
using any insertion path in any ec-planar embedding of B that connects v and w and does not
cross a gadget edge yields an ec-embedded planarization of B U (v, w). Hence, we look for
an ec-embedding of B that allows the insertion of the edge (v, w) with the minimum number
of crossings.

First, we compute the SPQR-tree 7 of B and embed the skeletons such that they imply
an ec-embedding of B, i.e, the R-node skeletons are embedded correctly. Then, the shortest
path Y := pq, ..., ux between an allocation node j; of v and iy, of w is identified. In order
to achieve a consistent orientation, we root 7 such that T is a descending path in the tree,
i.e., u; is the parent of y; 1 for« = 2, ..., k. Note that the rooting of the SPQR-tree implies
a direction of the skeleton edges: the edges in a skeleton with reference edge e, = (s,1)
are directed such that the skeleton is a planar st-graph; see, e.g., D1 Battista and Tamassia
[1996]. This direction is necessary in order to identify the left and the right face of an edge.

The algorithm traverses the path Y from p; to p;_; and iteratively computes the lengths
of the shortest ec-insertion paths that start from v and leave the pertinent graph P; of y; to
the left or to the right, respectively, where all ec-embeddings of P; are considered. Here,
left and right refer to the direction of the reference edge of 1;. These lengths are maintained
in the variables)\, and A,. Finally, when node i is considered, this information is used to
determine a shortest insertion path ending at w.

For each node ;, the following information is computed:

e ¢} (resp. ¢.) indicates if the shortest ec-insertion path leaving P; to the left (right) uses
the shortest ec-insertion path that leaves P,_; to the left (in this case the value is /) or
to the right (the value is 7).

o A/ (resp. A?) is the subpath that is appended to the path leaving P;_; when leaving P
to the left (right).

These values are used solely for the purpose of creating the optimal ec-insertion path at the
end of the function. If s € {/,r} denotes a side, we denote with s the other side, i.e., (=r
and vice versa.

The body of the for-loop starts by expanding all edges of the skeleton S; of yu; except
for edges representing v or w. The resulting graph is called G;. If 1 < ¢ < k, then G; will
contain two virtual edges e, (representing v) and e,, (representing w). Note that we obtain
P; (plus reference edge) by replacing e, with P;_;.

We distinguish according to the type of ;. If 14; is a P-node, then the optimal ec-insertion
path leaving P;_; to the left (right) is also an optimal ec-insertion path leaving P; to the left

6.4. ec-Edge Insertion 117

function OPTIMALECBLOCKINSERTER(Block B of K, vertex v, vertex w)
Construct SPQR-tree 7 of B such that the embeddings of the
skeletons imply a feasible embedding of B.

Find the shortest path i1, ..., in 7 between an allocation node

w1 of v and py of w.
Root 7 such that y; becomes the parent of py_q (if & > 1).

A=A =0 > length of shortest insertion path leaving to the left/right
fori=1,..., kdo

let S; = skeleton(p;)

let G&; be the graph obtained from S; by replacing each edge not

representing v or w with its expansion graph, and let II; be the

embedding of G; induced by the embeddings of the skeletons of
T.

> P Ir indicates which insertion path of ;1 is chosen;
> Al J» denotes the subpath within S; when leaving left/right.
if 11; is a P-node then

(%, AY) := (L, €); (L, AL) := (r,€) > No crossings required.
else > S- or R-node.
if i = 1 then
L, := R, := the set of adjacent faces of the copy of v in 5;
else

let e, be the representative of v in .S;
L, := { the left face of e, }
R, := { the right face of e, }

end if
if - = k then

L, := R,, := the set of adjacent faces of the copy of w in 5;
else

let e, be the representative of w in .S;
L, := { the left face of e,, }
R,, := { the right face of ¢, }

end if

> Compute shortest ec-insertion paths (from l/r to l/r) within G;.
> Note: pe. = pu and p,. = pifi € {1,k}.

per := SHORTESTECINSPATH(IL;, L, L)

pee = SHORTESTECINSPATH(IL;, L, Ry)

Prr := SHORTESTECINSPATH(II;, R, Ly,)

pre := SHORTESTECINSPATH(IL;, R,, R,,)

> Continued on next page. . .

Algorithm 6.2: Computation of an optimal ec-insertion path (biconnected case).

118 6. Embedding Constraints

> Collect possible solutions.
Ag = { (Mo + |peel, £, pee), (Ar 4 |Prel, 7, pre) }
AT = { ()\Z + ‘p£r|> E;pér), (/\r + |pr'r|7 Tapm") }
if 1¢; is an R-node that can be mirrored then
Ap =N UL O+ el 6,05,), N+ |per]s 705)
AT = AT U { (Af + |p7'£|7€7p:£>> (/\7" + |p€€‘7 TJQZE) }
end if

> Pick best solution.
()\g, QS%, Az) = min173 Ag
(Ar, @b, AL) := min; 5 A,
end if
end for

> Build final ec-insertion path. Note: \y =)\, always holds here!

Sp =1 > Start with empty path.

for : := k downto 1 do > Collect path backward.
pi = A5 sim1 = ¢,

end for

return p; +--- + pi
end function

Algorithm 6.3: Function OPTIMALECBLOCKINSERTER (part 2).

(right); we just need to permute the parallel edges in .S; such that e, is the leftmost (rightmost)
edge. Otherwise, we have four possibilities for extending an ec-insertion path leaving F;.
Such a path may start in a face left or right of e,, and may end in a face left or right of
.. In addition, we have to consider two special cases: if ¢ = 1 then G; contains v and the
ec-insertion path may start in any face adjacent to v; if ¢ = k then G, contains w and the
ec-insertion path may end in any face adjacent to w. We compute the (at most) four possible
shortest ec-insertion paths using the function SHORTESTECINSPATH(II, F§, F}). Here II is
an ec-embedding of an ec-expansion, F are the faces where the insertion path may start,
and F} are the faces where it may end. The ec-insertion path is found using a breadth-first
search (BFS) in the dual graph of I1, where edges corresponding to gadget edges are removed
(which means that it is forbidden to cross their primal counterparts). We call these shortest
ec-insertion paths pg, per, pre, prr» Where pyp stands for the path starting in a face in L, and
ending in a face in R,, etc. We have two choices for a shortest ec-insertion path leaving P,
to the left if we consider only the given embedding of the skeleton of 1;:

e We leave P,_; to the left (or start at v if + = 1) and end in a face in R,, (i.e., we enter
e, from right). This path has length A, + |pg|.

e We leave P,_; to the right (or start at v if 7 = 1) and end in a face in R, (i.e., we enter
e, from left). This path has length A\, + [p,.|.

For the shortest ec-insertion path leaving F; to the right, we have two similar cases. Further
choices are possible if j; is an R-node that can be mirrored. We could mirror the embedding

6.4. ec-Edge Insertion 119

w
(@) (b)
Figure 6.4: Proof of Lemma k =1 and p is a P-node (a), and p; is a P-node (b).

of S;, expand the skeleton edges as before such that we obtain an embedding I1;, and compute
the four paths in 11, again. Notice that I; is not simply the mirror image of 1I;. However,
this is not necessary. We observe that, e.g., the path py, is obtained from p,,. by reversing the
subsequences of edges that have been created by expanding a common skeleton edge of 5;.
We call this path p7,.. A similar argumentation holds for py,, pr¢, Drr. It follows that we have
at most four possible choices for leaving P; to the left and to the right, respectively. Among
all possible choices, we pick the shortest one.

After processing all nodes p;, it is easy to reconstruct the best ec-insertion path from v to
w using ¢}, and A}, . Notice that A, = A, holds at the end, since L}, = R;.

6.4.3 Correctness and Optimality

Lemma 6.5. There exists an ec-embedding 11 of B such that p, + - - - + py. is an ec-insertion
path for v and w in B with respect to 11.

Proof. Consider the path T = p4, . . ., i, computed by the algorithm. By construction of T,
the skeleton of 11 contains v, the skeleton of j; contains w, and, foreach j =2,.... k — 1,
the skeleton of /1; contains neither v nor w. Moreover, T does not contain a Q-node.

First, we prove the lemma for the case where T consists of a single node ;. In this case,
the skeleton of y; contains both v and w. We distinguish two cases according to the type of

M

(1) py is a P-node. Let II be an arbitrary ec-embedding of B. Since v and w share a
common face in II, the empty path returned by the algorithm is an ec-insertion path
for v and w in B with respect to II; see Figure [6.4[a).

(2) p1 is an S- or an R-node. In this case the graph G; constructed by the algorithm is
the original block B, since all skeleton edges are expanded. Moreover, 11; is an ec-
embedding of B, and p;. = py and p,, = p,¢ are ec-insertion paths in B with respect
to IT;. We do not need to consider the case where the embedding of the skeleton can
be mirrored, since this will not yield a shorter path. Hence, p; is either py, or p,,. and
thus an ec-insertion path in B with respect to II;.

Assume now that £ > 1. For¢ = 1,..., k, we denote with H; the pertinent graph of y;,
with r; the reference edge of ; in H;, and, for 1 < 4, with e; the edge in skeleton(y;) whose
pertinent node is ;1. Recall that s; € {¢,r} is the side of H; where the computed insertion

120

6. Embedding Constraints

Figure 6.5: Proof of Lemmaﬁ; i is an S-node, L, = Ry, = {f1}, Ry = Ly = {fa}.

path shall leave. We show by induction over : that, for 1 < i < k, there is an embedding I';
of H; such that p; + - - - + p; is an ec-insertion path leaving H; at side s;. The embeddings
I'y,..., 'y are iteratively constructed during the proof. For our convenience, we denote
with I';” the embedding of H; — r; induced by I;.

1 = 1. Consider the different types for node f;:

ey
2)

1<i<k.

&)

2)

11 is a P-node. This case does not apply, since 5 is not an allocation node of v.

(1 is an S- or an R-node. In this case, G; = H;, and p; is a path leaving either
IT; or the mirror image of II; to side s;. Hence, we set I'; to II; or its mirror
image, respectively.

We distinguish again between the types of 1;.

1; is a P-node. In this case, p; = ¢, i.e., no further edges need to be crossed.
The embedding I'; is obtained as follows. If s; = ¢, we permute the edges in
skeleton(yi;) such that e; is to the right of r;; otherwise, we permute the edges
such that e; is to the left of r;,. Then, we replace e; by I';_,, and the remaining
edges e # r; in skeleton(p;) by an arbitrary embedding of expansion(e); see

Figure [6.4(b).

(i is an S- or an R-node. In this case, p; is either p,, s, or ps,_,5,; the latter case
corresponds to mirroring the embedding of skeleton(1;) before.

We first consider the case in which p; is set to ps, _,s,, 1.€., an ec-insertion path in
the embedding II; that starts in a face at side s;_; of e; and ends in a face at side
5; of edge r;. We obtain I'; by replacing e; by I';” in II;; see Figure Since the
ec-insertion path p; + --- + p;_; leaves I';” to the side s,_;, py + -+ 4 p; is an
ec-insertion path leaving I'; to the side s;.

Finally, assume that p;, = p;, 5. Let 1:[1- be the embedding that we obtain by
first mirroring the embedding of skelefon(;) and then expanding and embedding
each skeleton edge not representing v or w as before. We observe that p; is an
ec-insertion path in ﬁ,- that starts in a face at side s;_; of ¢; and ends in a face
at side §; of edge 7;; see Figure [6.6] With the same argumentation as above, we
obtain T'; by replacing e; with I';_, in II;.

6.4. ec-Edge Insertion 121

.

RIS gt
.

~
A

Figure 6.6: Proof of Lemmaﬁ; w; is an R-node, R, = {f1}, L, = {fa}-

To conclude the proof, we consider the node p;. We know that p;, is either an S- or an
R-node, and we may assume that p; = ps, ,s,, since pg. = pge and p,, = p,¢ holds for ¢ = k.
Hence, py is an ec-insertion path in II; that starts in a face at side s; ; of e¢; and ends in a
face adjacent to the copy of w in G},. We obtain II by replacing e;, with I',_; in IIj, and thus
p1 + - -+ + pi 1s an ec-insertion path for v and w in II. O

Lemma 6.6. Let I1' be an arbitrary ec-embedding of B and let p' be a shortest ec-insertion
path for v and w in B with respect to II'. Then [p'| > |p1 + - -+ + pxl-

Proof. Let G;, S;, and s; be as defined in OPTIMALECBLOCKINSERTER, and let A} and A’
be the value of)\, and \,, respectively, after the i-th iteration of the for-loop. For: =1, ...k,
we denote with H; the pertinent graph of 1;. Observe, that IT" induces embeddings of GG; and
S;. Accordingly, we denote the induced embedding of G; with II}, and of S; with X/.

Since p’ is a shortest ec-insertion path, it does not visit a face twice. Therefore, we can
subdivide p into p’ = p} + - - - + p). such that p} contains exactly the edges of p’ that are in
G,, for 1 <4 < k. This follows from the fact that H; shares only two vertices with the rest
of the graph and p’ does not visit a face twice. For 1 < i < k, we denote with s; € {¢,r} the
side at which the ec-insertion path p| + - - - + p leaves H; in IT'.

We show by induction over i that)‘ig < |py+---+ P

i = 1. If K = 1, then G; = B and the proposition follows immediately, so assume k£ > 1. If
p is not an R-node, then Ay = 0 and the proposition follows immediately. Otherwise,
the algorithm also computes the shortest ec-insertion path leaving at side s} in X,
where the costs of the edges are their traversing costs. Since the traversing costs are
independent of the embedding by Lemma we get)\;/1 < |p].

1 <7 < k. Assume now that /\i,_ < |p} +---+pf| for 1 < j < i. We distinguish two cases:
J

(1) u; is a P-node. In this case, we have s, ; = s, since p; + --- + py does not
contain an edge of H;_;. This yields

N =N S Pl S P L

(2) p; is an S- or an R-node. Observe that p, is an ec-insertion path in I1; starting in
the face at side s; of the edge representing v and ending in a face at side 5, of
the edge representing w if ¢ < k, or a face adjacent to w otherwise. This implies

122 6. Embedding Constraints

function OPTIMALECINSERTER(ec-expansion GG, vertex v, vertex w)
Compute the block-vertex tree B of G
Find the path v, By, ¢y, ..., Bx_1, ck—1, Bg, w from v to w in B.
fori;:=1,...,kdo
let x; and y; be the representatives of v and w in B;
pi := OPTIMALECBLOCKINSERTER(DB;, x;, ¥;)
end for

return p; + - - - + pi
end function

Algorithm 6.4: Computation of an optimal ec-insertion path.

an ec-insertion path in X}, where the costs of a skeleton edge are its traversing
costs. On the other hand, the algorithm computes a shortest ec-insertion path in
3%, since the traversing costs of a skeleton edge are independent of the embedding
by Lemma Thus, we get Ay — Ay < |pj], and hence

A < Ag_ +pil < i+ + ol
Finally, we get |p; + - - - 4+ px| = AL, < |p/| and the lemma holds. O

Theorem 6.3. Let B = (V, E) be a block of K and let v and w be two distinct vertices of B.
Then, function OPTIMALECBLOCKINSERTER computes an optimal ec-insertion path for v
and w in B in time O(|E)).

Proof. The correctness and optimality of the algorithm follows from Lemma[6.5]and Lemma
Constructing the SPQR-tree and embedding the skeleton graphs takes time O(|E|);
see (Gutwenger and Mutzel [2001], Hopcroft and Tarjan [1973a], (Chiba et al. [1985]. Let
G; = (V;, E;) be the graph considered in each iteration of the for-loop. Then, each iteration
takes time O(|E;|), since SHORTESTECINSPATH takes only time linear in the size of G; by
applying BFS. Moreover, the set E; consists of some edges E. of GG plus at most two virtual
edges (the representatives of v and w). Thus, |E}| + - - - + | Ex| = O(| E]), and hence we get
a total running time of O(|E)). O

6.4.4 Generalization to Connected Graphs

The edge insertion algorithm can easily be generalized to connected graphs by using the
same technique as inGutwenger et al.|[2005] for the unconstrained case; see Algorithm [6.4]
For each block B; on the path from v to w in the block-vertex tree BB of (G, we compute the
optimal ec-edge insertion path p; between the representatives of v and w with a correspond-
ing ec-planar embedding II;. Then, we concatenate these ec-edge insertion paths building
the optimal ec-edge insertion path for v and w.

The correctness proof in |(Gutwenger et al.| [2005] uses induction over the number of
blocks on the path from v to w in B. We briefly recall this proof. Let By,..., By be the
blocks on this path and let H; be the union of the blocks B; to B;. Let II; be an embedding

6.5. Conclusion and Future Work 123

of B; such that p; is an optimal edge insertion path for the representatives x; and y; in B;
with respect to II;. Let ¥; denote the concatenation p; + - - - + p;.

An embedding I'; for H; with an optimal edge insertion path W, can be iteratively con-
structed by combining the embedding I';_; for H;_; and the embedding II; for block B;.
Both y;_; and z; denote the same vertex in GG and there exist optimal edge insertion paths
W, 4 for v; and y;_1 as well as p; for x; and y;. Therefore there is a face f € I';_; that
contains ¥; 1 and either v, if ¥;_; is empty or the last edge in W; ;. Similarly, there is a face
f' € TI; that contains x; and either y; if p; is empty or the first edge in p;. We can directly
concatenate the two paths if both faces coincide. This can be achieved by choosing f as the
external face of I';_; and placing this embedding of H; ; into face f’ of II;. Then V; is an
optimal ec-insertion path for v; and y; in H; with respect to I';.

We need to show that—under the presence of embedding constraints—ec-planarity is
preserved, i.e., I'; is still an ec-planar embedding. The only critical aspect in each step is the
selection of f as the external face; but this does not change the clockwise order of the edges
around the vertices of G. Furthermore, we ensure in the computation of the ec-edge insertion
paths p; that we do not cross any expansion edges. Hence, we know that the paths W,_; and
p; do not start or end in a face containing a hub. Therefore, the ec-planarity conditions are
still fulfilled and I, is ec-planar.

It is obvious that p; + - - - + pj 1s an ec-edge insertion path for v and w with respect to
an embedding II that results from inserting the remaining blocks not contained in Hj, (as
shown in the proof of Lemma into I';,. The length of the computed ec-edge insertion
path is obviously minimal, since a shorter path would imply that there exists a shorter path
within a block. The block-vertex tree of a graph can be constructed in linear time and the
running time of OPTIMALECBLOCKINSERTER(B;, ;,¥;) is linear in the size of the block
B; (Theorem [6.3)), thus yielding linear running time for OPTIMALECINSERTER.

Together with Lemmal6.1] we obtain the following result:

Theorem 6.4. Let G = (V, E) be a graph with embedding constraints C and e = (v,w) € E
such that G — e is ec-planar. Then, we can compute an optimal ec-edge insertion path for
(v,w)in G —ein O(|V| + |E]) time.

6.5 Conclusion and Future Work

We introduced a flexible concept of embedding constraints which allows us to model a wide
range of constraints on the order of edges incident to a vertex. We presented a linear time
algorithm for testing ec-planarity, as well as a characterization of all possible ec-embeddings.
The latter is particularly important for developing algorithms that optimize over the set of
all ec-planar embeddings. We showed that optimal edge insertion can still be performed in
linear time when embedding constraints have to be respected. In order to devise practically
successful graph drawing algorithms, the following problems should be considered in the
future:

e Develop faster algorithms for finding ec-planar subgraphs.

e Solve the so-called orientation problem for orthogonal graph drawing, e.g., allow us to
fix some edges to attach only at the top side of a rectangular vertex. The problem arises

124

6. Embedding Constraints

when angles are assigned at each vertex between adjacent edges to fix the assignment
to the vertex’s sides, e.g., in network flow based drawing approaches. The vertices then
need to be oriented such that the edges that are assigned to the same sides at different
vertices are aligned.

In some applications, only a subset of the edges is subject to embedding constraints at
a vertex v, 1.e., some edges can attach at arbitrary positions. Hence, we wish to extend
the concept of embedding constraints for so-called free edges that are not contained in
the tree T,,.

7. CLUSTERED GRAPH DRAWINGS

The Milky Way is nothing else but a mass of innumerable
stars planted together in clusters.

GALILEO GALILEI

Clusters are a means to organize data in groups of similar objects, where the organization
structure is typically given by a hierarchical inclusion relation. A suitable clustering fosters
the understanding of the underlying data and helps to gain better insight in the inherent
structure. As we have seen in Section [3.2] use of clustering is common in several application
domains, were it is used to allow to identify families of closely related objects, e.g., to
classify proteins. Graphs that represent the corresponding data can also be organized in such
a way by a clustering of the vertices, where the inclusion hierarchy is described by a tree
whose leaves are the graph’s vertices. The resulting structure can be visualized by grouping
the vertices of a cluster in a common, usually rectangular, region. In addition, the cluster
structure can also be used for navigation purposes, e.g., by only visualizing representatives
for each cluster, such that also large graphs can be handled. Navigation within this structure
then has to be realized transparently such that the user keeps his orientation, see Section[9.]
for a corresponding application. Drawing clustered graphs is not only a prevalent problem in
practical applications of graph drawing, but also in graph theory, since the occurring graph
theoretical problems are in particular challenging, even in simplified special cases.

There are several matters associated with clustered graphs that are interesting from a
graph drawing point of view. A major topic is the algorithmic treatment of planarity issues,
as the grouping of vertices in a common region might lead to a large number of unneces-
sary crossings when no special care is taken. A further issue is the navigation in clustered
data and the interaction with the respective representations, including the representation and
handling of the clusters and the cluster structure in practical tools. Besides the use of a
corresponding layout to highlight cluster affiliation, also graphical attributes can be used to
distinguish clusters. In this chapter, we will focus on clusters as constraints in the layout
restricting sense, and discuss the resulting aspects regarding planarity issues. Section|/.1|in-
troduces the basic concepts of clustered drawings, and presents the main existing approaches
and results. In Section we describe an ILP-based approach to compute the maximum
c-planar subgraph, which includes the first practical c-planarity test for non-c-connected
graphs. Section describes a branch-and-price approach for c-planarity testing. A major
result in clustered planarity research was the development of a linear time c-planarity test-
ing algorithm for c-connected clustered graphs by Dahlhaus| [1998]]. The description from
the original publication is difficult to read, as it omits some explanations and proofs that
are helpful for the understanding, and also uses the unusual characterization of a graph de-
composition by graph grammars. We give a new, hopefully clearer, description that uses

126 7. Clustered Graph Drawings

SPQR-trees for decomposition in Section

7.1 Problem Definition, Notations, and Previous Work
Feng et al.|[1995a] introduced the clustered graph model as follows:

Definition 7.1 (Clustered Graph). A clustered graph C' = (G, T, r) — or c-graph for short —
consists of

e an (undirected) graph G = (V, E),
e arooted tree 7', and
e an inner vertex r of 1" (the root) such that

e the set of leaves of 7' is exactly V.

Each vertex v of 7" represents a cluster of the vertices V' (v) of G that are leaves of the
subtree rooted at v, and V() induces a subgraph G(v) of G. We call the inner tree vertices
of T" nodes to distinguish inner tree vertices from the vertices of the underlying graph. As
the ancestor relation of the nodes in 7' describes an inclusion relation between the clusters,
T is called inclusion tree of C, G is called the underlying graph of C. A sub-cluster of node
v is a node in the subtree rooted at v. An edge between a vertex of V(v) and a vertex of
V' — V(v) is called outgoing edge and is incident to v.

Suppose that C; = (G1,T}) and Cy = (G, T5) are two clustered graphs, 7} is a subtree
of Ty, and for each node v of Tj, G1(v) is a subgraph of G5(v). Then we say C is a
sub-clustered graph of Cy, and C} is a super-clustered graph of (1.

A drawing of a clustered graph should reflect the inclusion relation such that the subgraph
induced by a cluster v is drawn inside a simple closed region that does not contain parts of
clusters that are not descendants of v. Feng et al. [1995a] define a clustered graph drawing
as follows:

Definition 7.2 (Clustered Graph Drawing). A drawing of a clustered graph C' = (G, T) is a
representation of the clustered graph in the plane. Each vertex of (G is represented by a point.
Each edge of G is represented by a simple curve between the drawings of its endpoints. For
each node v of T, the cluster V' (v) is drawn as a simple closed region R(v) defined by a
simple closed curve in the plane such that:

(1) the regions for all sub-clusters of R(v) are completely contained in the interior of
R(v);

(2) the regions for all other clusters are completely contained in the exterior of R(v);

(3) if there is an edge e between two vertices of V' (v) then the drawing of e is completely
contained in R(v).

7.1. Problem Definition, Notations, and Previous Work 127

N ;

\ 6 5
(a) Force-directed Drawing (b) Cluster Tree (c) Clustered Orthogonal
Drawing

Figure 7.1: A force-directed layout of the underlying graph of a clustered graph C, the cluster tree, and a
corresponding clustered orthogonal drawing. The blue and the red cluster are not connected, therefore C'
is not c-connected.

Cornelsen and Wagner| [2006]] decouple the pure representation of a clustered graph C,
which might just be given by a drawing of the underlying graph, and the fact that the inclu-
sion relation is reflected by the drawing by defining an inclusion representation of the inclu-
sion tree 71" as follows: Each node of 7' is represented by a simple closed region bounded by
a simple closed curve. The drawing of a node or leaf v of T' is contained in the interior of
the region representing a node 4 if and only if p is contained in the path from v to r in 7.
The drawings of two nodes v and y are disjoint if neither p is contained in the path from v
to 7 nor v is contained in the path from g to r in 7.

Defining the inclusion representation has the advantage that we can call a drawing of
the underlying graph a drawing of the c-graph, and denote specific clustered drawings (re-
flecting the inclusion relation) by saying that the drawing is an inclusion representation.
Otherwise, we would have to distinguish between a drawing of C' and a representation of C'
in the plane which does not need to be a drawing of the clustered graph. We therefore adopt
this terminology in the following. Obviously, the definitions only cover the layout aspects
of the representation, and in practical applications also graphical attributes like shape and
color might be important for the distinction of clusters. Even though it is sufficient for the
theoretical treatment of clusters to restrict a vertex representation to a point, in most practi-
cal applications vertices have graphical representations that are more complex than a single
point. Practical cluster drawing approaches therefore need to treat the vertices accordingly.

Several algorithms for drawing c-graphs have been proposed, including force-directed
methods [Eades and Huang, 2000, planar straight-line ‘convex drawings’ where each cluster
is represented by a convex polygon [Eades et al., 1999a, Nagamochi and Kuroya, 2007, Hong
and Nagamochi, 2010], and orthogonal grid style drawings [Eades et al., [1999b, D1 Battista
et al.,[2001]. In Feng et al.|[1995b] an exponential lower area bound for straight-line convex
planar drawings of c-graphs is shown.

A cluster v is called a connected cluster if G(v) is connected. A c-graph C'is c-connected

128 7. Clustered Graph Drawings

if each cluster v of C' is connected. Note that authors dealing with clustered graphs some-
times call such a c-graph connected, whereas we will reserve the term connected to the
underlying graph. A chunk is the set of vertices of a connected component of a cluster v,
1.e., in case v is connected, it has a single chunk, otherwise it consists of a set of chunks
Uiy Vg, k> 1.

A c-graph C = (G, T) is completely connected if and only if for each inner node v of T’
both G(v) and G(V \ V(v)) are connected. See Figure [7.10|

Cornelsen and Wagner state the equivalence of the following characterizations, showing
the relation of complete connectivity with the selection of the inclusion tree root:

When (G, T,) is a clustered graph, the following statements are equivalent:

e (G,T,r)is completely connected
e (G,T,v) is c-connected for every inner node v of T’
e (G,T,v) is completely connected for every inner node v of 7.

These statements can easily be seen as follows: Clearly, when we change the root of the
inclusion tree from r to v, we change the situation in the nodes on the path from v to 7.
When (G, T, r) is completely connected, for each node j along the path its former parent
cluster now contains the former complement of G(u) as induced subgraph. The old root
node, which did not have a parent node, also has only the empty graph as complement. For
all other nodes the induced subgraph stays the same.

When (G, T, r) was completely connected before the root change, all the complements
and therefore now all induced subgraphs have to be connected, and the unchanged nodes
also still have connected induced subgraphs. For the reverse direction, if (G,T,v) is c-
connected for every inner node v of 7', we can see that by changing the root for each v,
also each complement in the original setting with 7 as root needs to be connected to give
c-connectivity, therefore (G, T, r) is completely connected. With a similar argument we can
see that (G, T, v) has to be completely connected for each v.

We can observe that there are several aspects of a layout that allow to identify groups of
vertices that belong together: Vertices of a distinct group should be drawn ‘close’ together,
and parts of a cluster should not be separated by parts of other clusters, e.g., enclosed in
cycles. Note that the definition of a clustered drawing assures the latter condition, but vertices
do need to be drawn close together in such a drawing, see Figure In Figure the
blue vertices are visually separated by the brown and red vertices, such that only the vertex
color allows to identify vertices that belong together.

7.1.1 Clustered Planarity

When dealing with general graphs, the concept of planarity plays a central role and the
minimization of crossings in a drawing of a (possibly non-planar) graph is an important
task. Similar to this, clustered graphs should also be drawn with the smallest number of
edge crossings possible. Due to the characteristics of clustered graph drawings, there are
additional issues to consider and the planarity concept needs to be extended accordingly.

7.1. Problem Definition, Notations, and Previous Work 129

B A B

=
[a] i (4] i

(a) (b)

Figure 7.2: (a) Clustered orthogonal drawing showing large inner-cluster distance between vertices in cluster
A. Clearly the large inner-cluster distance is not in conformance with grouping perception rules. With a
simple update, we can improve upon the automatic layout by inserting an additional bend (b).

Figure 7.3: Classical example by [Feng et al. [1995a] of a planar, but non-c-planar c-graph, where clusters
are defined by the triangle structures. In the left drawing, regions of the clusters are not disjoint, in the
right drawing the regions are drawn disjoint, but then an edge crossing has to occur.

The drawings of an edge e and a region R(v) in a drawing of a clustered graph have an
edge-region crossing if the drawing of e crosses the boundary of R more than once. Even
when no edge crossings occur, a drawing might contain such edge-region crossings either
because an edge might cross through a non-connected cluster, or because an edge might
leave the cluster region first and then enter it again.

The following definition extends the standard planarity concept accordingly:

Definition 7.3 (C-Planar Drawing (Cornelsen and Wagner| [2006])). A c-planar drawing of
a clustered graph (G, T, r) consists of

e a planar drawing of the underlying graph G

e an inclusion representation of the rooted tree (7',) such that

130 7. Clustered Graph Drawings

(a) (b)

Figure 7.4: Non-c-planar drawings of two clustered graphs. Colors and boundaries represent clusters. (a)
Green vertices are children of the root cluster and two cluster regions cross, but none of them is enclosing
the other. As the regions are not disjoint, the drawing is not an inclusion representation. Making both
clusters connected by adding an edge results in a non-planar graph, i.e., the c-graph is non-c-planar.
(b) Green and black vertices mark sibling cluster in the cluster tree, and the black cluster is completely
enclosed by the green one. The c-graph, however, is c-planar.

e cach edge crosses the boundary of the drawing of a node of 7" at most once.

The three conditions forbid crossings between edges, between edges and regions, as well
as between regions. A clustered graph is called c-planar, if it admits a c-planar drawing.
Figure[7.1(c)|shows an example of a c-planar drawing, note that the embedding of the graph
in also allows a c-planar drawing although the blue cluster seems to be split.

See Figure|/.4|for non-c-planar drawings of clustered graphs even though they are planar
and do not contain edge-region crossings.

The complexity of recognizing c-planarity for general clustered graphs is a long-standing
open problem in graph drawing. Though it is yet unknown if this problem is solvable in
polynomial time, several special classes of clustered graphs can be recognized in polynomial
time. We can distinguish the following main cases:

Completely connected. If the graph is completely connected, then c-planarity is equal
to simple planarity of the underlying graph [[Cornelsen and Wagner, [2006].

C-connected. When each cluster is connected, c-planarity can be tested in linear time
[Dahlhaus) [1998]]. See also Section|/.4

Non-c-connected. There are several problem cases known where c-graphs can be tested
in polynomial time. They restrict the graph structure, the clustering structure, or its interplay
with the structure of the underlying graph. Note that also the underlying graph does not
need to be connected in this case. Some problems concerning the concepts of ‘face’ and
‘embedding’ occur when clusters do not have to be connected. If G is planar and connected,
we can speak of the embedding of G, giving us corresponding faces. But the embedding
of G still may allow some freedom in the order of the outgoing edges around a cluster.
Figure shows an example where alternative routings of an edge are given that cross

7.1. Problem Definition, Notations, and Previous Work 131

a cluster boundary. Even though the c-graph is c-planar, given a fixed embedding of the
underlying graph that allows a c-planar drawing, c-planarity depends on the edge order at
the cluster boundary.

Figure 7.5: A non-c-connected, but connected clustered graph for which the embedding of the underlying
graph still allows c-planar and non-c-planar drawings by changing the order of the edges incident to a
cluster. Alternative drawings for an edge are drawn in red.

In case C' is c-planar, an embedding of C'is therefore given by an embedding of G plus
the circular ordering of edges crossing the boundary of the region of each cluster. A planar
embedding of G is called a c-planar embedding of G and C' if it can be extended to an
embedding of C' that allows a c-planar drawing.

We summarize the known results on c-planarity testing and embedding in the following.

Previous Results |[Feng et al. [1995a]] gave the first c-planarity test for c-connected c-
graphs that runs in O(n?) time and is based on PQ-trees. Using the embedding algorithm
by (Chiba et al.| [1985]], their algorithm is also able to return a c-planar embedding within the
same time bounds in case the c-graph is c-planar.

A related problem, where the input is given by a replacement system, was studied by
Lengauer [1986] already in 1986. Lengauer gave a linear time algorithm concerning the input
size of the problem, which is not necessarily in the order of the size of the graph. The first
linear time algorithm for testing if a c-connected clustered graph is c-planar was presented by
Dahlhaus| [1998]]. Re-interpretations of Dahlhaus’ graph grammar based algorithm in terms
of SPQR trees can be found in|Dahlhaus et al.|[2006], |Cortese et al.| [2006alb]].

In the following years, there have been many attempts to advance on the way to a solution
for the generic problem, including non-c-connected graphs, by examining restricted classes
of clustered graphs, either by a specific characterization of the clustering and graph structure
allowed, or by the size of the constituting components.

The class of so called almost c-connected c-graphs was introduced by |Gutwenger et al.
[2002]. They consider clustered graphs where either all nodes in the cluster tree 7' that cor-
respond to non-c-connected clusters, lie on the same path in 7' starting at the root, or where
alternatively for each non-c-connected cluster its super-cluster and all its siblings in 7" are
connected. They use a connectivity augmentation approach based on graph decomposition

132 7. Clustered Graph Drawings

'
-

m smEm

() (b)

Figure 7.6: (a) Example of a c-graph that is both extrovert and almost c-connected. (b) A c-planar drawing
of a c-graph where cluster A is enclosed within a cycle of the root cluster.

with S PQ) R-trees. A quadratic time algorithm for c-planarity testing and embedding is given
that extends the test of Feng et al. [1995a] with a subgraph induced planar connectivity aug-
mentation. For a graph G = (V| E), such an augmentation is defined on a set of vertices
W C V as aset of additional edges F' connecting vertices in W such that G’ = (V, E U F))
is planar and the subgraph of G’ induced by W is connected. The algorithm first splits non-
c-connected clusters to achieve a c-connected c-graph that can be tested for c-planarity. In
the positive case the algorithm tries to compute a planar augmentation in the resulting repre-
sentative graph for each non-connected cluster. If none exists, the c-graph is not c-planar.

An algorithm for testing c-planarity of so called extrovert clustered graphs, where dis-
connected clusters need to fulfill a special connectivity property, was given by|Goodrich et al.
[2005]]. A chunk v; of a non-connected cluster v is called extrovert, if the parent cluster y
of v is connected and v; has at least one outgoing edge that also leaves the parent cluster .
If each chunk of a non-connected cluster is extrovert, the cluster is called extrovert, and a
c-graph is called extrovert when all of its clusters are either connected or extrovert. A test-
ing and embedding algorithm for this class of c-graphs was presented with O(n?) running
time. Later, this result was improved by Sun and Zhang [2008], who presented an O(n?)
testing algorithm for extrovert c-graphs. As a special case, the classes of extrovert and al-
most c-connected c-graphs include c-connected clustered graphs. Neither of the two classes
however includes the other.

Cortese et al.| [2004] considered c-planarity testing of c-graphs where the underlying
graph is a cycle. They give a efficient algorithm for graphs that at each level of the inclusion
tree have a cycle structure, showing that in this case c-planarity can be tested in time O(Ln),
where L is the depth of the cluster tree.

Cornelsen and Wagner [2006] studied completely connected clustered graphs. They
show that such a clustered graph is c-planar if and only if the underlying graph is planar;
see Section Even though explicitly stated for the first time in Cornelsen and Wagner
[2006]], this result already follows from a result in Gutwenger et al.| [2002]]. We use this

7.1. Problem Definition, Notations, and Previous Work 133

relation in a practical c-planarity testing approach by checking all possible extensions of the
c-graph to a completely connected planar graph, as described in Section

When a c-graph is found not to be c-planar, we would like to draw the graph with the
smallest number of edge crossings possible. D1 Battista et al.| [2001] described a planariza-
tion based method for crossing minimization: In a first phase a small number of edges is
deleted from the clustered graph C' = (G, T) such that a c-planar graph C” is left. In the
second phase, the deleted edges are re-inserted successively into a c-planar embedding of
C' such that only a small number of crossings is produced. This planarization step needs
O(mz + m2c+ mnc) time, where n, m, and ¢ are the number of vertices, edges, and clusters
of C, respectively, and z is the number of crossings. The authors also adapt the topology-
shape-metrics approach to derive an orthogonal drawing algorithm for clustered graphs. Our
result from Section [7.2.2] can be used as the first phase within this approach, as it computes
a maximum c-planar subgraph.

In several publications, the complexity of the problem is reduced by limiting the size
of certain cluster related properties of the input graph, including the number of connected
components per cluster [Jelinek et al., 2008a]], the cluster size [Jelinkova et al., 2009] for
special classes of graphs, or the number of outgoing edges per cluster [Jelinek et al.,|2008b]].
Jelinkova et al.| [2009]] investigated small clusters in Eulerian graphs and cycles. They restrict
the clusters to have size at most three and achieve a testing algorithm with running time of
O(|C|? + n) for triconnected planar graphs, and of O(|C|> + n) for cycles, where C is the
number of clusters. They generalize the latter result for a special class of Eulerian graphs,
so-called k-Rib-Eulerian graphs, leading to a running time of O(3* - k - n3). The constant
k defines the number of vertices of a triconnected planar graph that is used to obtain the
k-Rib-Eulerian graph by multiplying and then subdividing some edges. D1 Battista and Frati
[2009] discussed the problem of clustered planarity in the setting of a fixed embedding, and
give a first result for c-graphs with a flat cluster hierarchy, i.e., the length of any path from
the root to a leaf of 7" is two. They show that for embedded flat clustered graphs with at most
five vertices per face c-planarity can be tested in linear space and time.

Didimo et al.| [2008]] investigate c-graphs with overlapping clusters (oc-graphs), replac-
ing the inclusion tree by an acyclic digraph such that clusters may share vertices. They
investigate the overlapping clustered planarity problem (oc-planarity) and give polynomial
time oc-planarity tests for several classes of oc-graphs.

Angelini et al.| [2010b] introduced the split-c-planarity problem that, given a clustered
graph C, asks if C' can be made c-planar by performing at most % cluster splits (that is,
replacing a cluster by two clusters). Testing c-planarity is the special case of split-c-planarity
with & = 0, i.e., when no splits are allowed. They show that split-c-planarity is NP-complete
even for £ = 1. In|Gutwenger et al. [2002], simply the maximum number of splittings is
performed to achieve cluster connectivity during the testing algorithm.

There are also approaches for the clustering of edges, where the goal is to increase the
readability of given drawings by computing channels for the bundled routing of edges [Cui
et al., 2008, |Gansner and Koren, 2007, Nachmanson et al., 2011]]. Such approaches try
to avoid visual clutter in drawings of dense graphs, caused by the large number of edges
and their mutual crossings. The vertex positions are already given as input, whereas the
clustering of the edges (in contrast to the vertex clustering discussed here) is not input or

134 7. Clustered Graph Drawings

based on underlying semantics, but computed purely based on geometric properties of the
given drawing.

7.1.2 Characterizations of C-Planar Graphs

The characterizations of this section give insight into the relations between graph structure,
inclusion relation and c-planarity for several classes of c-graphs and are the base for the
existing c-planarity testing algorithms. Even though some characterizations only consider
c-connected c-graphs, fundamental results show that non-c-connected c-graphs can be aug-
mented without losing the c-planarity property, and the construction of such an augmentation
is part of several algorithms. In the following, let C' = (G, T') be a clustered graph.

In case that G is not even connected, more problems arise as we are not allowed to treat
the different connected components separately. Components that cross cluster boundaries
might influence the c-planarity property and we have to consider them for testing, as can be
seen in the simple example of a K33 structure where edges are replaced by clusters such
that connected components contain only a single edge; see Figure A trivial case occurs
when a connected component cc is completely contained in a single cluster c, i.e., does not
cross a cluster boundary. We can then safely treat cc separately for testing, and also insert a
drawing of it within ¢’s region in a drawing of C'\cc.

Feng et al.|[1995a] gave the following characterization of c-planar c-graphs:

Theorem 7.1 (External face [Feng et al.. 1995a]). A c-connected clustered graph C' =
(G, T) is c-planar if and only if graph G is planar and there exists a planar drawing D
of G, such that for each node v of T, all the vertices and edges of G — G(v) are in the
external face of the drawing of G(v).

This characterization is used in their testing algorithm for c-connected c-graphs by check-
ing for each cluster in the inclusion tree in a bottom-up fashion whether it can be drawn pla-
nar with the outgoing edges in the external face of the drawing. The cluster then is replaced
in G by a representative graph that models all possible orderings of the outgoing edges for
further testing. The main idea is that the connectivity of each subgraph induced by a cluster
v can be used to construct a biconnected graph that includes all outgoing edges of v, con-
nected to a new virtual vertex; see Figure Then the planarity test based on PQ-trees can
be used for the resulting graph and, in the case of planarity, the subgraph can be replaced
by a construction based on the resulting P(Q)-tree that reflects the possible orderings of the
outgoing edges around the boundary of v. The P(Q)-tree data structure can be used to check
c-planarity of an n-vertex, connected clustered graph in O(n?) time. |Feng et al.|[1995a] also
describe an extension that computes a c-planar embedding of the given graph in the same
asymptotic time.

From the fact that there exist planar drawings of trees and every planar drawing of a tree
has only a single face, it is immediately clear from Theorem that this simple case of a
c-connected graph is c-planar:

Lemma 7.1. A c-connected clustered graph whose underlying graph is a tree, is c-planar.

7.1. Problem Definition, Notations, and Previous Work 135

Figure 7.7: Tlustration of the testgraph for cluster induced subgraphs that is used as input for the PQ-tree
algorithm. The virtual vertex that connects all outgoing edges is colored red.

The following result states that we can extend each c-planar clustered graph to a c-
connected c-planar graph, i.e., no aspect of c-planarity is hidden in the non-connectivity
of the clusters.

Theorem 7.2 (Sub-clustered graph [Feng et al., |1995al]). A clustered graph C = (G,T) is
c-planar if and only if it is a sub-clustered graph of a c-connected and c-planar clustered
graph.

Even though this motivates the intuitive idea of connecting each cluster before testing for
c-planarity, there are no characterizations known for the general case how to do this without
possibly destroying the c-planarity property. An interesting question therefore is how to
characterize the edges that would cause non-c-planarity, or alternatively the edges that are
safe for addition. Gutwenger et al.| [2002] give a characterization for a restricted subproblem,
using a subgraph induced planar augmentation to augment cluster induced subgraphs in a
planar way to achieve connectivity. Note that if G(v) is connected, the boundary of its
external face in any planar drawing of G(v) consists of a connected cycle.

Clearly, each c-planar drawing of a c-graph C' corresponds to at least one c-connected
c-planar extension of (', as we can connect components of a non-connected cluster in a
tree-like fashion within the region R(C).

The problem of c-planar augmentation for a cluster in the general case is closely related
to the problem of characterizing all possible orderings of the outgoing edges. This has been
done by [Feng et al.| for connected clustered graphs using PQ-trees and wheel graphs, and
in the case of almost c-planar c-graphs a planar augmentation suffices. In the general case
however, a planar augmentation might restrict the edge order around the vertex.

Given a fixed c-planar embedding of a c-graph, we can even further augment it to obtain
a triangulation without destroying c-planarity:

Lemma 7.2 (Triangulation [Jinger et al., 2002]). Let C' = (G, T') be a c-planar embedded c-
connected c-graph. C can be triangulated without loosing the c-planar embedding in linear
time concerning the number of vertices of G. The triangulated underlying graph G does not
contain multiple edges.

136 7. Clustered Graph Drawings

Non-adjacent vertices in a triangulation do not share a common face, therefore vertices
from different chunks of a non-connected cluster will lie in separate faces, making it impos-
sible due to the triangulation to achieve a c-planar drawing. This is similar to the situation
depicted in Figure Cornelsen and Wagner| [2006]] explicitly state an interesting con-
sequence:

Theorem 7.3 (Complete augmentation [Cornelsen and Wagner, 2006(]). Every c-planar clus-
tered graph is a subgraph of a c-planar completely connected clustered graph.

Lemma 7.3 ([Feng, 1997]]). Let C = (G, T') be a clustered graph where G is a triangulation.
Then C'is c-planar only if C' is c-connected.

Obviously it is not necessary for vertices of a cluster v to lie on the external face f of the
drawing of G(v), as long as they do not have outgoing edges, which would lead to crossings.
All that is necessary is that they are not enclosed by cycles from other clusters that separate
them from f. Analogously, the vertices of v on the external face of v’s drawing do not need to
be incident to the external face of the parent cluster p, the drawing of v might be completely
enclosed by a cycle of p. It suffices that the chunks of v are adjacent to the external face
with respect to their level in the inclusion tree, i.e., when all edges passing clusters that lie
on the path between v and the root of the cluster tree are removed. For instance, vertices of
a cluster that is a child of the root cluster do not need to lie on the external face of G, as long
as there is a curve to the external face crossing only edges that have at least one end-vertex
belonging to the root cluster. For example, the cluster vertices of cluster A in Figure
are enclosed in inner faces of the root cluster,

Dahlhaus|[1998]] gives a corresponding characterization for clustered planar embeddings
of c-connected c-graphs based on a weight criterion on the dual graph. The weight function
models the inclusion relation such that an enclosing cycle in the embedding can be detected.
Observe that in a c-planar embedding I" of a c-connected clustered graph C' = (G, T'), clus-
ters appear as connected areas without holes. That is, for a cluster v there may not be any
parts of a cluster 2/, that is not a descendant of v in the inclusion tree, enclosed by a cycle K
consisting only of edges in v. If such an inclusion occurs in a planar embedding I" of G, i.e.,
if a hole exists and therefore I is not c-planar, there has to be some path connecting vertices
in 2/ to vertices on K since G is connected. Due to the c-connectivity of the clustered graph,
at least one of the edges on the path has to pass through the least common ancestor of v
and ¢/ in the cluster tree. This property is exploited to characterize correct embeddings of
c-planar graphs.

The weight function is defined as follows: Let weight(c) of a cluster ¢ be the number of
vertices in ¢, i.e., the weight may only increase on a path from a leaf to the root of the cluster
tree 7. For any edge e = (v, w), let w;,(e) be the weight of the smallest cluster ¢ € C'
that contains v and w. This cluster is just the least common ancestor of v and w in 7', which
is the highest cluster whose region a drawing of e has to touch in a c-planar drawing. The
weight of a face f, weight(f), is the maximum weight of an edge that belongs to the face cycle
of f. A face f therefore has as weight the maximum weight of the clusters whose regions
share some part with f, i.e., the weight of the least common ancestor of the vertices on the
face boundary in 7". We interpret the weights of the faces and edges of GG as weights of the
vertices and edges of the dual graph G’ of I" and GG. A hole in a cluster then corresponds to a

7.1. Problem Definition, Notations, and Previous Work 137

(a) A clustered planar embedding (b) and its dual graph

Figure 7.8: A c-connected clustered graph with the face weights of the Dahlhaus criterion, circles denote
clusters.

cycle of edges with weight at most — 1 that encloses a subgraph with weight at least . See
Figure

A clustered planar embedding now can be characterized as follows: For each ¢, let F; be
the set of faces f of I" with weight(f) > i and E; be the set of edges e of G with w;.,(e) > i.
Let E! be the set of edges in G’ corresponding to the edges in F;. Then (F}, E!) represents
a subgraph of G’. See Figure for an example. Note that there cannot be any edges
e = (f1, fo) with weight k, where k > weight(f1) or k > weight(f).

Theorem 7.4 (Clustered Planar Embeddings [Dahlhaus, [1998]]). A planar embedding T" of
G = (V, E) is a clustered planar embedding of G and C' = (G, T) if and only if for each i
with F; # 0, (F}, E!) is a connected subgraph of the dual graph of T and a face of maximum
weight is selected as external face.

The theorem’s condition guarantees that the drawing of each cluster does not have a
hole, ensuring an inclusion representation. As I is a planar embedding of (G, and due to the
c-connectivity, an edge cannot cross the boundary of a cluster twice, I' allows a clustered
planar drawing and is therefore a clustered planar embedding.

The result of Lemma[7.T|can easily be shown using Dahlhaus’ criterion, as there is only a
single face in the dual graph of a tree’s embedding. See Section[7.4]for a detailed description
of a linear time c-planarity testing algorithm for c-connected graphs based on this criterion.
Whereas c-connected clustered graphs with tree structure can easily be seen to be c-planar,
this is not true for the arbitrary case. We can simply extend the drawing of the clustered K33 3
structure with single edge components of Figure to have an underlying tree, and the
resulting c-graph is not c-planar. We can even restrict the extension to a path, resulting in a
connected c-graph with non-connected clusters that is not c-planar; see Figure|/.12(a

Cornelsen and Wagner [2006]] showed that in case the c-graph is completely connected,
c-planarity can even be reduced to simple planarity:

Theorem 7.5 (Completely connected [Cornelsen and Wagner, 2006]]). Let C' = (G,T') be a
completely connected clustered graph. Then

138 7. Clustered Graph Drawings

=G
o

Q)
w w

(a) Non c-planar embedding, thick (b) and its dual graph
edges denote a cluster enclosing
cycle

Figure 7.9: The same graph as in Fig. with an embedding where one child cluster of the root cluster is
enclosed by the other. The embedding is therefore not clustered planar, the dual graph is not connected
for weights > 10.

C'is c-planar < G is planar

When each cluster of C'is connected, in a planar drawing of the underlying graph a cluster
c might not be split into several components by external edges, as otherwise a crossing would
occur. When also the complement of ¢ has to be connected, i.e., C'is completely connected, it
has to be drawn in the same face of a planar drawing of ¢, which can be chosen as the external
face. The c-planarity then immediately follows from Theorem[7.1] Theorems and[7.5]are
related to the criteria of Dahlhaus for the same reason: It is not allowed to enclose a cluster
c or parts of it by a cycle of edges belonging to another cluster ¢, if ¢ is not an ancestor of ¢
in the inclusion tree, as otherwise there would be a hole in . If ¢ and G \ ¢ are connected, in
any planar drawing of G, G \ ¢ lies in a single face of the drawing of G/(¢). In order to avoid
holes in clusters in a c-planar drawing, this face has to be the external face.

Goodrich et al.| [2005] call an embedding I' of a cluster or a chunk of a cluster v simple
when it is in conformance with the criterion of Theorem i.e., outgoing edges are drawn
in the external face of v. A cluster v with &k chunks is called connectable when k — 1 edges
(‘bridges’) can be drawn in I" such that the chunks are connected to a single component with-
out introducing any edge crossings (a planar augmentation). Sibling non-connected clusters
in an extrovert c-graph are called conflicting in I, if each of them is connectable, but there is
no way to connect all of them at the same time without introducing crossings.

Theorem 7.6 (Extrovert [Goodrich et al., 2005]). An extrovert c-graph C' = (G,T) is c-
planar < G is planar and there exists a planar embedding D(G) of G such that, each
chunk of a cluster is simple; each extrovert cluster is connectable; and no sibling extrovert
clusters conflict.

Obviously Theorem [7.6] just combines the augmentation property of Theorem [7.2] with
the c-planarity criterion of Theorem Similar to Gutwenger et al.| [2002], the parent

7.1. Problem Definition, Notations, and Previous Work 139

cluster of a disconnected cluster for extrovert c-graphs always has to be connected.

B
C
E] Cs]
D A
L
(a) Completely connected (b) Not completely connected

Figure 7.10: Two clustered graphs. (a) The graph is completely connected. (b) Schema of a not completely
connected c-graph C' that has a large triconnected component (gray) which constitutes a child cluster ¢ of
the root cluster . Three other child clusters ¢y, co, c3 of are inscribed in different faces of the drawing
of ¢. C cannot be drawn c-planar as ¢y, c2, c3 cannot be drawn in the same face of a planar drawing of
the underlying graph of ¢, and any attempt to achieve connectivity for the complement of c leads to a
non-planar graph.

The following result shows that in case a c-graph is c-planar, we can even change the root
of the inclusion tree 7' to any cluster v of 7" and the resulting c-graph is still c-planar.

Lemma 7.4 ([Cornelsen and Wagner, 2006]). Let (G,T,r) be a c-planar clustered graph
and v a node of T. Then (G, T, v) is c-planar.

Given a completely connected c-planar c-graph C' = (G, T', r) together with a fixed em-
bedding for G, they investigate the interplay between external face and tree root r. Fixing the
external face, they give a characterization which node can be chosen as root and vice versa.
Obviously, a node v is rootable for a fixed external face f,, due to complete connectivity, if
it has at least one vertex incident to fy. The vertex cannot be separated by an unconnected
cluster, i.e. there is no enclosing cycle and if there is no such vertex, the cluster would be
enclosed in a cycle such that the embedding of G is not c-planar.

They also show that for any planar embedding and external face a cluster can be chosen
as root node such that the embedding is c-planar.

In case we have a non c-planar c-graph, we would like to identify a large subgraph that is
c-planar, e.g., for use in a planarization approach. From Lemma|[7.5]it immediately follows
that we do not need to destroy c-connectivity to compute a c-planar subgraph.

Lemma 7.5 (C-planar subgraph [Di Battista et al., 2001]). Let C' = (G, T') be a connected
clustered graph. Then there exists a c-planar connected clustered subgraph of C.

Such a subgraph can be constructed by a bottom-up visit of the cluster tree that combines
spanning trees for the already processed clusters [D1 Battista et al., 2001].

Clearly, also a maximum c-planar subgraph has to be c-connected, otherwise we could
simply augment it with additional edges in contradiction to the maximality.

The criterion of |[Feng et al.|[1995a]] uses PQ-trees to represent the admissible embeddings
of cluster-induced subgraphs, as it is necessary to consider them for c-planarity checking. If

140 7. Clustered Graph Drawings

we would try to simplify c-planarity testing by collapsing a cluster ¢, such that a vertex
representative is inserted into the graph instead, the restrictions on the order of the outgoing
edges are relaxed that may be imposed by the cluster’s topology. In order to achieve a planar
drawing, an order of the edges around the cluster might be necessary that leads to non-
planarity when the cluster is fully expanded. For standard planarity testing there are several
simple reduction techniques allowed that could reduce the input instance size. Vertices of
degree 1 do not matter for planarity and also chains of degree 2 vertices can be replaced by
a single edge without changing the planarity status. These reduction can also be applied for
c-planarity testing as long as clusters have to be connected. However, in case the clusters do
not need to be connected, vertices of degree 1 or 2 can be part of a non-connected cluster,
and removing them might impact the c-planarity status.

Cortese et al.| [2004] consider c-planarity testing on clustered graphs where the under-
lying graph and the induced cluster structure on each level of the inclusion tree is a cycle.
That is, the define the graph G' the graph whose vertices are the nodes of T at distance [
from the root, where an edge (1, /) exists if and only if an edge of G exists incident to both
1 and v. To simulate the closed regions containing the clusters, they add edges to the cy-
cle to make the cluster connected (which is always possible without losing the c-planarity
property). Such a set of edges is called saturator.

Theorem 7.7 (Saturator [Cortese et al.,[2004])). A c-planar 3-cluster cycle admits a saturator
that is the collection of three disjoint paths.

Theorem 7.8 ([Cortese et al., [2004]]). Given an n-vertex clustered graph C(G,T), such that
T has depth L and, for | > 0, G' is a cycle, there exists an algorithm to test if C is c-planar
in O(Ln) time.

For the restricted case of a cycle graph G, Cortese et al.| [2004] gave the most simple
example of a situation where no c-planar augmentation is possible, a 3-cluster cycle with six
vertices, where representatives of the clusters appear alternately on the cycle.

Note that analyzing the faces is in general not sufficient, as we do not know if we need to
connect components of a cluster in a particular face. In case we just connect all components
in all faces, we might introduce cycles that enclose parts of other clusters, leading to a non-
c-planar drawing. However some connections might be unnecessary, as we might already
have created a connecting path between these components due to other augmentation edges.

As we have seen in Theorems and when each cluster of a clustered graph is
connected, we can use the standard definition of a graph embedding to test c-planarity.

When clusters are allowed to be disconnected, the situation is far more difficult. A close
relation between vertices may simply be modeled by clusters instead of edges, as in the
example of Figure where the structure of the non-planar graph K35 is modeled by a
c-graph. Clearly, this c-graph is non-c-planar even though the underlying graph is a set of
planar connected components consisting of single edges. In this specific case, there is a
unique augmentation to a c-connected graph, which would make the underlying graph non-
planar, but for arbitrary graphs it might not be obvious if there is a c-planarity preserving
augmentation; see Figure In order to search for violations of c-planarity, the simple
check for an enclosing cycle in an embedding of the underlying graph is also not possible
in such a case. Instead of an edge, also two non-adjacent vertices that belong to the same,

7.1. Problem Definition, Notations, and Previous Work 141

(a) (b)

Figure 7.11: Illustration of non-c-connected case: There are multiple positions allowed for components with
outgoing edges to be nested in other components. If we use a simple augmentation to make the cluster
connected, we might restrict the possible order of edges around the cluster, leading to a non-c-planar
c-connected graph.

(a) A path structure (b) Single edge components

Figure 7.12: Kj 3 structure modeled by replacing some edges by clusters.

non-connected cluster may be part of the enclosure. This does not lead to a cycle of smaller
wight in the dual graph, and we can therefore not apply the criterion of Theorem[7.4] When
the underlying graph is not connected, a subgraph may even be inscribed into an enclosing
cycle without losing dual graph connectivity (even though the dual graph is not formally
defined in this case, due to the drawing we have a topology that can by modeled by a graph
that corresponds to the dual graph in the connected case). For example, if we remove the red
edge in Figure[7.9] the ‘dual’ graph is connected even though the drawing is still not c-planar,
as the weight of the blue triangle face is three instead of 10. As the induced subgraph is not
connected, we can also not apply the modeling of [Feng et al.|[[1995a]] that uses the PQ-tree
structure.

7.1.3 Compound Graphs

Sugiyama and Misue| [[1991] introduced a graph model that is more powerful than the clus-

142 7. Clustered Graph Drawings

tered graph model, as the inclusion relation is directly modeled on the vertices instead of
introducing clusters. This allows to have edges between groups of vertices by connecting the
enclosing vertices.

Compound graphs have several important applications, for example in the static analysis
of program code. In interprocedural control flow diagrams that represent the control flow in
programs (see, e.g., Sander [1999]), the vertices of each module should be grouped together.
Also in hardware design compound graphs can be used to model circuit diagrams, where the
elements of each module should be surrounded by rectangles indicating its borders.

Formally, Sugiyama and Misue| define a compound digraph as a triple D = (V, E,| F),
where V' is a set of vertices, E a set of directed inclusion edges such that v includes v <=
(u,v) € E, and F' a set as adjacency edges as in the standard graph concept. Sugiyama
and Misue| give a hierarchical drawing algorithm for a restricted class of compound graphs,
where the inclusion relations form a tree, and there are no adjacency relations between a pair
of vertices (u, v) such that u is the ancestor of v or vice versa.

Compound-Compound edges can easily be modeled in a clustered graph scenario in the
case were adjacency inbetween ancestors in the inclusion tree is forbidden (e.g., to avoid
cycles in hierarchical graph drawing, where by convention edges are drawn from the bottom
of one node to the top of the other). Then, the edges always leave a compound v to a
compound on the path from v to the root of the inclusion tree, and can be modeled by a
connecting edge between otherwise isolated vertices inside the corresponding compounds.
Edges between a node v and its descendant 7 would stay inside of the cluster that is higher
in the hierarchy. Such an edge therefore would not model the restriction that the region
of 7 in a drawing must not be completely enclosed as we need to route an edge from v’s
boundary to 7’s boundary. But in this case the compound adjacency edge can be modeled by
an edge connecting a new vertex in the 7 compound and a new vertex in the parent of the v
compound.

Here we can see an interesting connection to our ec-embedding constraint model: If we
allow free edges at vertices with embedding constraints, then ec-planarity testing is similar to
a special case of compound graph planarity. In order to check ec-planarity with free edges,
we first detach these edges from their end vertices, introducing a new end vertex for each
detached end. Note that an edge ¢ = (u,v) may be a free edge at one or both end vertices
and has to be detached only from a vertex v when it is free at v. We then conduct the ec-
expansion for the constrained edges as usual. To guarantee that a free edge can be routed
such that it connects the replacement regions of u and v, we enclose the new end vertices
with the respective replacement structure by a (non-connected) cluster. Hence, the free edges
are modeled similar to the compound connection edges above, and c-planarity testing for the
resulting c-graph of depth 1 can be used within the ec-planarity test for the original graph.

7.2 The Maximum C-Planar Subgraph Problem

In this section, we introduce an approach to solve the general clustered planarity problem
using integer linear programming (ILP) techniques. We give an ILP formulation that also
includes the natural generalization of c-planarity testing—the Maximum C-Planar Subgraph
Problem (MCPSP)—and solve this ILP with a branch-and-cut algorithm. Given a clustered

7.2. The Maximum C-Planar Subgraph Problem 143

graph C' = (G, T), the maximum c-planar subgraph problem asks for a c-planar subgraph
of C' with a maximum number of edges. Our computational results show that this approach
is already successful for many clustered graphs of small to medium size and thus can be
the foundation of a practically efficient algorithm that integrates further sophisticated ILP
techniques. Our solution to the MCPSP is also suitable for the first phase of the planarization
approach for c-graphs.

The formulation uses the result by Cornelsen and Wagner| [2006] which shows that each
c-planar clustered graph is a subgraph of a c-planar completely connected clustered graph.
We present a branch-and-cut algorithm based on the LP-relaxation of our ILP formulation.
In order to experimentally evaluate our approach, we introduce a benchmark set of clustered
graphs.

This section is organized as follows. After stating the problem description, Section
describes our ILP formulation for the MCPSP and a branch-and-cut algorithm based on the
LP-relaxation of the ILP. An experimental evaluation of this algorithm with new benchmark
instances is given in Section Section concludes with an outlook on future work.

7.2.1 Problem Description and Related Work

Definition 7.4 (Maximum C-planar Subgraph Problem). Given a clustered graph C' = (G =
(V, E),T) find a c-planar clustered graph C' = (G’ = (V, E’),T) with E' C E such that £’
has maximum cardinality.

This problem generalizes the problem of c-planarity testing, for which no polynomial
time algorithm is known, as well as the Maximum Planar Subgraph Problem (MPSP), which
is known to be NP-hard [Liu and Geldmacher, [1977], in a natural way. Obviously, the
MCPSP is therefore also NP-hard. Each instance graph GG of the MPSP can easily be trans-
formed to an instance of the MCPSP by constructing a clustered graph C' = (G, T") where T’
contains only the root cluster.

Our approach is based on two results of |Cornelsen and Wagner [2006]]: Theorem
and These results show that it is sufficient to test the graph G for planarity, if the
clustered graph (G, T) is completely connected, and that every c-planar clustered graph is a
subgraph of a c-planar completely connected clustered graph. This fact can be used to test a
given clustered graph for c-planarity by augmenting it (in the correct way) to a completely
connected graph. In order to compute the maximum c-planar subgraph, we therefore may
have to remove edges from the input graph as well as to add edges to achieve a completely
connected c-planar graph.

7.2.2 Solving the MCPSP via an ILP and Branch-and-Cut

Throughout this section let C' = (G = (V, E), T') be the given clustered graph with edge set
E, and let F' denote the complement of F (i.e., the potential edges for augmentation). For a
cluster v in C' let () denote the edge set induced by the vertices V() in cluster v, and let
E(v) denote the edge set induced by the vertices in V' (v) = V' \ V(v).

Our approach is based on the idea of constructing a completely connected clustered sub-
graph C' = (G' = (V, E'),T) of the (complete) clustered graph C* = ((V,E U F),T)

144 7. Clustered Graph Drawings

such that G’ is planar. By Theorem such a graph C” induces a c-planar subgraph
CIE'] = (V,E' N E),T) of C. In order to guarantee that C'[E’] contains a maximum
number of edges from E—and thus solves the MCPSP—we assign costs to the edges such
that the original edges from E are preferred over all the edges from F. If C' is c-planar,
then E’ will contain all edges of C'. Hence, our algorithm is also able to test c-planarity of a
general clustered graph.

Corollary 7.1. C[E'] is a maximum c-planar subgraph of C' if and only if it is the largest
subgraph with the property that there exists a completely connected clustered graph C" such
that (a) C[E'] is its subgraph and (b) the underlying graph of C' is planar. If C[E'] = C, C
is c-planar.

The ILP Formulation

Based on the above theoretical results, we can formulate an integer linear program to model
the MCPSP as follows. We define the variables

r. € {0,1} VeeFE (7.1)
yr€{0,1} VfeF (7.2)

which are 1 if the corresponding edge is contained in the solution graph, and O otherwise.
As objective function we use:

maXer — Sny (7.3)

eclb fer

We want to maximize the number of original edges in the solution and use as few augment-
ing edges as possible to obtain a completely connected clustered graph. In order for the
latter criterion to not interfere with the main optimization goal, we restrict its influence by
multiplying the corresponding variables by a small constant : we know that we will not re-
quire more than 3n non-edges due to Euler’s formula, otherwise the graph will not be planar.
Choosing ¢ := % therefore guarantees that the second term in does not grow larger than
0.1.

We have two sets of constraints: the first set guarantees that the clustered graph C” in-
duced by the edge set £’ is completely connected. The second set ensures planarity of C".

Connectivity Constraints. A completely connected clustered graph C" = (G' = (V, E'),
T') has the property, that for each cluster v, the induced graphs G'[V/(v)] and G'[V (7)] are
connected. A graph G = (V, E) is connected if and only if it contains a path between all
pairs of its vertices. A cut set (W|A) with W C V and A C E in the graph G = (V, E)
is defined as the set of edges restricted to A which are incident to exactly one vertex of .
In a connected graph G = (V| E), we clearly have |(W|E)| > 1 for any cut set (W|E)
with) # W C Vand W # V. For a vertex set N C V in G = (V, E), we define

7.2. The Maximum C-Planar Subgraph Problem 145

P(N) = {W |0 c W C NA2W| < |N|}. We can then define the connectedness
constraints as:

> + > yf >1 VYveT, YW eP(V({) (7.4)
ee(W|E(v)) e(W|F(v

d>oooa + Z yr>1 YveT, YW ePV(p) (1.5)
ec(W|E(?)) e(W|F(v))

While the constraints (7.4) guarantee the c-connectivity, the constraints ([/.5]) guarantee the
connectedness of the cluster complements, and the combination therefore ensures complete
connectivity.

Kuratowski Constraints. Based on Theorem it is sufficient to achieve planarity
of the underlying graph G’, if the considered clustered graph C' = (G’,T') is completely
connected, to guarantee c-planarity. We use Kuratowski constraints as introduced for the
maximum planar subgraph problem [Jiinger and Mutzel, 1996]) to guarantee planarity of the
solution graph. These constraints are based on Kuratowski’s theorem [Kuratowski, 1930]
which states that a graph is planar if and only if it does not contain a subdivision of K5 or
K3 5. We call these subdivisions Kuratowski subdivisions and represent them by their edge
set. Let H be a non-planar graph, thus containing some Kuratowski subdivision with edge set
K. Any planar subgraph H’ will not contain all edges of K, as this would be contradictory
to the planarity of H'.

Let /C be the set of all Kuratowski subdivisions in the (complete) graph (V, E U F'). We
can formulate the Kuratowski constraints as

e+ y<|K|-1 VK€K (7.6)

eeK eeK

The constraints model the requirement that we are not allowed to select all edges of any
Kuratowski subdivision, i.e., at least one of them will be eliminated for the solution graph.
From the discussion above we have the following theorem:

Theorem 7.9. Let C' = (G = (V, E),T) be a clustered graph, C* = (V,EU F),T), and
the variables and constraints as defined above.

e Then any feasible solution of the inequality system consisting of the constraints ([7.1)),
, and to ([7.6)) corresponds to a completely connected c-planar subgraph of
C* and vice versa:

e any completely connected c-planar subgraph of C* fulfills the constraints (7.1), (7.2),

and ([74) to (7.6);
e the objective function and the constraints ([7.1), (7-2), and to ([7.6) are a

correct integer linear programming formulation for the maximum c-planar subgraph
problem for C = (G,T). An optimum solution to the MCPSP is given by the edges
corresponding to the variables x. with x. = 1 in the optimum solution of the ILP; and

o ifx, = 1foralle € E, then C is c-planar.

146 7. Clustered Graph Drawings

The Branch-And-Cut Algorithm

Both constraint sets contain an exponential number of constraints and hence it is not practi-
cable to generate all constraints in advance. We therefore solve the ILP within a branch-and-
cut framework: We start with a small subset of constraints, drop the integrality constraints,
and apply cutting-plane algorithms to add additional constraints as required. The problem
to identify necessary additional constraints after obtaining a fractional solution, i.e., after
solving the partial LP-relaxation, is called the separation problem.

Separation Routines. Separating the connectivity constraints can be done in polyno-
mial time by computing minimum cuts in the graph, using the fractional solution as edge
capacities. So far no polynomial time algorithm for the Kuratowski constraint separation
is known. Hence, we resort to a heuristic separation routine, similar to the ones described
in Jiinger and Mutzel [1996] for the MPSP. Note that we separate all cut constraints be-
fore separating any Kuratowski constraints. Hence we have a connected subgraph, which
uses few augmentation edges due to their negative coefficient in the objective function. The
separation heuristic rounds the fractional solution to an integer solution. We call the result-
ing subgraph the support graph S. We then try to identify Kuratowski subdivisions in .S.
Traditional planarity testing algorithms extract a single such subgraph as a witness for non-
planarity. To obtain multiple, say k, subdivisions, one has to run the planarity test k times,
resulting in an overall runtime of O(kn). We use an extended test algorithm presented in Chi-
mani et al. [2007]], which is able to separate multiple different subdivisions in linear time (in
the size of the output). For each subdivision K obtained by this procedure, we can then test
whether the current fractional solution violates the corresponding constraint induced by K&,
and add it to the ILP in this case.

Branching and Primal Heuristic. If we have a fractional solution, but cannot find any
violated constraints, we have to resort to branching, as in any branch-and-cut algorithm. In
this situation, good adaptive LP-based heuristics become crucial, to be able to prune nodes in
the branch-and-bound tree early. Our heuristic works as follows: In a first step, we compute
a spanning tree recursively for each cluster in a bottom-up scheme on 7. Let ¢ be the current
cluster, and H the complete graph on the vertices V' (v) U children(v), i.e., the set of all
vertices and subclusters directly in v. We compute the minimum spanning tree of /, using
the fractional values as the negative weight of the corresponding edges. Merging all these
minimum spanning trees, we obtain a spanning tree R for C*, which is by construction c-
connected and c-planar. After sorting the remaining edges based on their fractional value,
we iteratively try to add them to R in decreasing order. This can be done in polynomial time,
since planarity testing of a c-connected clustered graph is polynomial. We obtain a maximal
c-connected, c-planar subgraph R of C* that also implies a c-planar subgraph of C'.

7.2.3 Computational Experiments and Discussion

In this section we report the results of our experimental evaluation and specify the experi-
mental settings. The main intention is to show the feasibility of our approach, as no speed-up
techniques like strong heuristics, preprocessing, and column generation are used.

7.2. The Maximum C-Planar Subgraph Problem 147

Benchmark Set and Experimental Setting

We created a benchmark set based on the Rome graph library [Di Battista et al., [1997] by
generating cluster hierarchies on top of each graph of the library. The library contains planar
and non-planar graphs; key properties are shown in Table[7.13]top).

We create a cluster structure by randomly picking vertices in a cluster v, starting with the
root cluster, and after each pick, a random decision is made if a new cluster is generated with
the vertices picked so far, up to a maximum number of 9 clusters. We restrict the maximum
cluster tree depth to two levels (in addition to the root cluster), the number of edges to 30,
and divide the created clustered graphs into two groups depending on the planarity of the
underlying graph. The benchmark set can be found online [Klein, 2008]].

We implemented our approach as a module within the Open Graph Drawing Framework
[OGDF] using the branch-and-cut framework ABACUS [Jiinger and Thienel, 2000] with
CPLEX as LP-solver and run the approach on each graph in our benchmark set. The experi-
ments were run on a 2.33GHz Intel Xeon machine with 2GB RAM per process, and we set a
limit of 30 minutes CPU time and return the best solution if the computation of the optimal
solution exceeds the limit.

In addition to solving the MCPSP, we also experimented with a variant where only c-
planarity is tested; in this case no maximum c-planar subgraph needs to be computed and
subproblems are pruned as soon as their dual bound proves that an original edge would have
to be deleted.

Results and Discussion

Figure shows the running times required by our approach, relative to the graph size; the
table on the bottom of Figure summarizes the runtime performance of the instances,
depending on the planarity of the underlying graph. We see that restricting the computation
to pure c-planarity testing by pruning leads to decreases in the overall average computation
time, but does not necessarily speed up the computation for each instance, because subprob-
lems containing the maximum c-planar subgraph may be pruned, which extends the search
in the branch tree.

Our main observation is that the performance on most of the test graphs is promising:
only 2 non-planar and 17 planar graphs could not be solved within the time limit; the 95%-
percentile shows that long running cases are extremely rare. The average running time of the
c-connected clustered graphs is below 0.02 seconds, indicating that the ILP performs well on
this polynomial time solvable class. We therefore conjecture that the ILP may be useful as
a tool when developing c-planarity tests for special graph classes, as the ILP may give hints
on the classes’ hardness.

7.2.4 Conclusion

We introduced the maximum c-planar subgraph problem and presented an ILP-formulation
together with a branch-and-cut approach to solve it to optimality. An experimental evalua-
tion showed the general feasability of our concept. Our approach can be used for small to
medium sized clustered graphs with a limited number of clusters. The results show that the

148

7. Clustered Graph Drawings

compl. Clusters Vertices | Edges
#inst. | c-plan. c-con. con. | min avg max | max max
Planar graphs 1815 | 1494 25 2 3 4 9 29 30
Non-planar graphs 116 0 3 0 3 52 9 26 30
Running time (sec)
min avg 95% max
P-Sub 0.01 49 9.6 1460.9
NP-Sub 0.01 40.9 18.7 1456.5
P-CPI 0.01 43 6.1 249.9

Figure 7.13: (top) Properties of the benchmark instances. (bottom) Average runtime performance of the
branch-and-cut algorithm. P-Sub and NP-Sub are running times for solving the MCPSP on the (non-
)planar graphs, respectively. P-CPI denotes the runtime for the c-planarity test on the instances with
underlying planar graphs. 95% denotes the 95%-percentile.

1000

100

10

running time/sec

0.1

0.01

0.001

-
Pt

.
~

e’

20

Number of Edges

25

30

Figure 7.14: Average running time of the branch-and-cut algorithm for the planar (P-Sub) and non-planar
(NP-Sub) instances and for the c-planarity test shortcut (P-CPl). Note that the y-axis uses log scale.

number of chunks has a large influence on the efficiency of our branch-and-cut approach.
We believe that our branch-and-cut approach can be improved to also cope with harder in-
stances, especially by using stronger heuristics and preprocessing to reduce the search space.
The results on the c-connected graphs encourage a closer investigation of the behavior of
our approach for other polynomial time solvable classes, especially with regard to the level

7.3. A Pricing Scheme for Clustered Planarity Testing 149

of c-connectivity of clustered graphs. In addition, it would be worthwhile to analyze the
algorithm’s behavior with regard to added constraints as well as added and deleted edges for
larger benchmark sets. As most of the introduced variables will not be needed during com-
putation, we can use column generation instead of adding all possible variables in advance.

7.3 A Pricing Scheme for Clustered Planarity Testing

In this section we present a branch-cut-and-price approach for the c-planarity testing problem
for arbitrary clustered graphs. Our approach is based on the integer linear programming (ILP)
formulation from Section [/.2and improves its results for the case of pure c-planarity testing
instead of the search for a maximum c-planar subgraph.

7.3.1 Motivation and Basic Idea

The branch-and-cut approach presented in the previous section allows a flexible computation
of a maximum c-planar subgraph. The flexibility is needed to allow deletion of edges that
hinder c-planarity of the completely connected extension of the input graph. When only
c-planarity testing is needed, we can reduce the flexibility, allowing us to also drastically
reduce the search space. Clearly, if the underlying graph G is not planar, the clustered graph
C' cannot be c-planar. This can be checked by a simple planarity test prior to c-planarity
testing, we therefore assume that the underlying graph is planar in the following.

First of all, we do not need to introduce variables for the original edges of the graph,
as all of them need to be part of a feasible solution. We only add variables for potential
augmentation edges, which might be necessary to achieve complete connectivity. The overall
algorithmic idea then is the same as for the MCPSP — try to construct a planar and completely
connected extension of the input graph corresponding to the requirements of Theorem
But in fact we can even do better—we know that typically only a small number of variables
will be needed to achieve this, and we therefore apply a pricing scheme, hoping that we will
only generate a small subset of the potential variables until we find a solution or decide that
none exists. We can apply our knowledge of the clustered graph structure to prefer certain
connection edges over others or to decide that an edge might never help us in obtaining a
solution.

The description of our approach is organized as follows. We first describe our ILP for-
mulation for the CPP, and then discuss the branch-cut-and-price algorithm based on the LP-
relaxation of the ILP. We conclude with an outlook on future work.

7.3.2 An ILP Formulation for the CPP

Throughout this section, let C' = (G = (V, E), T') be the given clustered graph with edge set
E, and let F' denote the complement of E (i.e., the potential augmentation edges not in £).
For a cluster v in C' let E(v) denote the edge set induced by the vertices V' (v) in cluster v,
let £(7) denote the edge set induced by the vertices in V' (v) = V' \ V(v), and F(v) denote
the potential augmentation edges in v (also called non-edges in the following).

150 7. Clustered Graph Drawings

If C is c-planar, there exists a (possibly empty) augmenting edge set F4 C F' such that
Ca = (Ga = (V,E U Fy),T) is c-planar and completely connected. Our approach is
based on the idea of constructing a completely connected clustered subgraph C' = (G’ =
(V,E'),T) of the (complete) clustered graph C* = ((V, E U F'),T) such that £ C E’ and
G’ is planar. By Theorem [7.5]such a graph C" is c-planar, contains C' as a c-planar subgraph
and we have Fy = E' \ E.

If C' is not c-planar, then no such augmenting edge set F4 exists and the problem of
constructing C” is infeasible. Hence, our algorithm is able to test c-planarity of an arbitrary
clustered graph by either finding a valid solution for this c-planar complete connectivity
augmenting edge set problem or proving infeasibility of our formulation.

Variables and Objective Function. Based on the above theoretical results, we can
formulate an integer linear program as follows. We define the variables

ye €{0,1} VeeF (7.7)

that are 1 if the corresponding non-edge is contained in F4, and O otherwise. Although
we have a pure decision problem where the number of additional non-edges (which are
necessary to obtain a completely connected clustered graph) is not decisive, we try to keep
the set of non-edges as small as possible to minimize the computational effort during the
optimization. As our objective function we use:

min Z Ye (7.8)

Similar to the branch-and-cut approach for the MCPSP, we have two sets of constraints
according to the requirements of Theorem[7.5} the first set guarantees that the clustered graph
(" induced by the edge set £’ is completely connected. The second set uses Kuratowski
constraints to guarantee planarity of C’. The difference in the problem formulation allows
us, however, to use simplified versions of the constraints compared to the formulation for the
MCPSP.

Connectivity Constraints. As for the MCPSP, we try to achieve connectivity by requir-
ing a lower bound on the minimum cut for the graph. Yet, for the pure c-planarity testing,
we can restrict the selection of cut sets that need to be considered. As the edges of G have
to be part of the solution, we only need to assure connectivity between cluster-induced con-
nected components (chunks) of C'. Let CC(IV) denote the set of connected components of
the subgraph of GG induced by some vertex set N, and V' (S..) denote the set of vertices in
some S. C CC(N). We define P.(N) :={S. |0 C S. C CC(N) A2|S,| < |CC(N)|}.
We can then define the connectivity constraints as:

> ge>1 VveT VS . €P(V(v) (7.9)
ee(V(50)IF(w)
Y w1l VreT VS.ePV(D) (7.10)

ee(V(Se)|F(7))

7.3. A Pricing Scheme for Clustered Planarity Testing 151

The constraints guarantee the connectivity within the cluster v, as they require an out-
going edge of each proper subset of chunks that connects the set to the other chunks. The
constraints ([7.10) ensure the connectivity outside of v.

Kuratowski Constraints. As our input is planar, only the addition of non-edges may
create Kuratowski subdivisions. We use the Kuratowski constraints to forbid at least one of
the involved augmentation edges for the edge set K of each Kuratowski subdivision found.
Let K be the set of all Kuratowski subdivisions in the (complete) graph (V, E U F') and let
Kp := K N F be the set of non-edges of a Kuratowski subdivision edge set K € K. We can
formulate the Kuratowski constraints as

Y e <I|Kpl-1 VK€K (7.11)

eeKp
From the discussion above we have the following theorem.

Theorem 7.10. Let C = (G = (V, E),T) be a clustered graph, C* = (V,EUF),T), F
and the variables and constraints as defined above.

e Any feasible solution of the inequality system consisting of the constraints ((7.7), (7-9)-
corresponds to an augmenting edge set F such that Cy = (G4 = (V,E U
F4),T) represents a completely connected c-planar subgraph of C*; and vice versa:

e any completely connected c-planar subgraph C' = (G = (V, E'),T) of C* with E C
FE' satisfies the constraints (7.7), (7.9)— ; and

e the objective function ([7.8) and the constraints (7.7), and (7.9) to (7-11)) are a correct
integer linear programming formulation for the minimum c-planar complete connec-
tivity augmenting edge set problem for C = (G, T). Clustered planarity of C' is then
equivalent to the existence of a feasible solution, and the edges corresponding to the
variables vy, with y. = 1 in the optimum solution of the ILP define a minimum augment-
ing edge set F for C' such that the resulting clustered graph is completely connected.

7.3.3 Pruning the Search Space

Focusing on pure c-planarity testing instead of maximum c-planar subgraph computation,
we can establish some restrictions on the set of variables for the edges to be added and also
on the constraints that we need compared to the approach from Section [7.2] Keeping the
number of variables and constraints low may reduce the complexity of our optimization and
therefore speed up the optimization process. Compared to the MCPSP approach, we first
discard the variables for the original edges. In addition, not all of the potential edges have to
be regarded as candidates for complete connectivity, and some of the constraints described
above may be obsolete due to the specific structure of the given clustered graph. Some edges
may not be needed in any case, and some might always be necessary. allow a simple decision
if an edge or constraint is needed, and use such categorizations obtained by a preprocessing
step to further reduce the number of possible variables.

152 7. Clustered Graph Drawings

Note that the restricted set of edges for the connectivity constraints above can still be
much larger than necessary in practice, as it may contain edges that will definitely never be
part of a solution. For example, if we have a large triconnected chunk ¢c that has an outgoing
edge leaving the cluster, the embedding (up to mirroring) and the external face of the chunk
are fixed. A vertex tc that is not adjacent to this external face cannot be used to connect
chunks without introducing crossings. In general, when we have sets of augmentation edges
that connect two chunks, we may exploit the similarity of the edges with respect to planarity
issues: For sets of edges that, in combination with all possible augmentation sets, are equiv-
alent with respect to the creation of Kuratowski subdivisions, the restriction of the order of
outgoing edges of a cluster, and the connectivity obtained, we only need to consider a sin-
gle representative. Clearly we cannot expect to find a full specification of these equivalence
classes, but may already benefit from simple cases.

A first classification uses the concept of so-called bags. Bags describe the structural
situation within a cluster c on a finer level compared to just the graph topology. A bag is a
maximum set of chunks that are connected by subclusters.

Definition 7.5 (Bag). Given a clustered graph C' = (G = (V, E),T) and a cluster v of C, a
bag is a maximum set b of chunks ch; in v, such that for each pair chs, ch; € b there exists
a sequence chy = chy,...,chy = ch; such that for ch;,ch; 1,1 < 1 < k, there exists a
subcluster ' of v that contains vertices of both ch; and ch; ;.

Note that also a single chunk may constitute a bag. The set of sub-clusters is called
bonding clusters of b. Let the collapse graph of a bag b of v be the graph that is obtained by
collapsing each chunk in b to a vertex and connecting each pair of those vertices if and only
if there exists a sub-cluster ¢/ that contains vertices of both corresponding chunks. A bag in
v is called leashed if it contains an extrovert vertex with respect to v.

The idea behind the bag concept is the following: due to the sub-cluster connectivity
constraints, we already know that the bag will be augmented to a connected component of
v’s induced subgraph. Let us have a look at the situation after connecting disconnected
sub-clusters of v via augmenting edges: When two or more chunks are connected via sub-
clusters, the induced subgraph consisting of those chunks will be connected after the clusters’
induced subgraphs are connected. Therefore no additional connection between those chunks
is needed when we want to achieve connectivity for v. If a cluster v contains a single bag,
we do not need any connectivity constraints for v, otherwise we can restrict the connectivity
constraints to the connection between the bags in v. Note that this does not allow to omit the
remaining variables, as we still may need them to obtain complete connectivity: When a bag
b consists of more than a single chunk, we might want to reduce the variables to the vertex
pairs of each bonding cluster of b. However, as we also need to assure that the complement
of each cluster is connected, we might need to add an edge outside of the bonding clusters.
If for example two chunks are connected via a sub-cluster v/, we need a path connecting the
subgraphs that remain after the removal of +/. In other words, we can only safely restrict the
edge addition between chunks to the vertex pairs in bonding clusters if there are at least two
disjoint paths between the chunks’ representatives in the collapse graph.

Consider a bag b that is not leashed. Neither does it restrict the embedding of C'\b, nor
is its embedding restricted by C'\b. We can therefore safely remove b from v and treat it
separately.

7.3. A Pricing Scheme for Clustered Planarity Testing 153

7.3.4 The Branch-Cut-And-Price Algorithm

Both our two constraint sets contain an exponential number of constraints, and similar to
the MCPSP we can solve the ILP with a branch-and-cut approach. Although the number
of variables is quadratic in the number of vertices of the clustered graph C, only a linear
number of them can be part of the solution. Otherwise the resulting graph will not be planar.
We expect that only a small number of the non-edges will be needed to obtain a completely
connected graph and hence use column generation to add variables only when required.

Adding constraints in the separation step, or fixing variables in the branching step, may
result in an infeasible system of inequalities. This may either be the case when the graph is
non-c-planar, i.e., no feasible solution can be found, or when necessary variables are not in
the set of currently active variables. We need to efficiently decide which case applies and
in the latter case, find a small set of variables that can be added to obtain feasibility again.
Depending on the reason that caused the infeasibility, we apply different pricing methods
that take advantage of problem-specific information. These methods are embedded into a
branch-cut-and-price framework that is presented in the following section. Note that we
do have a very specific setting here: Pricing is not needed to improve a feasible solution.
Instead we add variables to make the system feasible. If at a certain point of the computation
we obtain a valid solution, we can stop as we have found an augmentation that makes the
input graph completely connected while preserving planarity.

Branch-Cut-and-Price Framework. In the following, we describe how the different
steps of our approach work. The framework is depicted in Figure In each iteration, we
solve the relaxation of the current subproblem. If the subproblem is infeasible, we need to
select variables to activate. We distinguish the following cases for pricing:

KuratowskiPricing: We add a Kuratowski constraint, and the system becomes infeasible.
Then none of the involved edges can be deselected to satisfy the Kuratowski constraint (i.e.,
set the corresponding variable to 0) without violating a connectivity cut. For each edge in
the Kuratowski subdivision we detect the set of connectivity cuts that become violated by
setting the corresponding variable to 0. Then we activate variables that satisfy as many cuts
as possible. We can apply several strategies here, e.g., either resolve after adding the first
variable or after achieving a good cover of the violated cuts. As we are solving a linear
program, we can also exploit the slack values of the cuts. When y, is the variable we set
to zero, we will only violate those with slack — value(y;) < 1, and may repair strongly
violated cuts first.

CutPricing: The system is infeasible due to a newly added cut constraint. We have to
add a corresponding variable. If we cannot find a variable, Kuratowski constraints prevent
addition of further variables and the current subproblem is indeed infeasible.

When the subproblem is feasible, we try to separate new constraints, see below.

Finding a Feasible Initial Solution. We start with a formulation that contains con-
straints to assure that each chunk of a cluster has to be connected to the remaining chunks in
the same cluster. Therefore we can easily find a first feasible variable set by adding edges to
satisfy the constraints.

154

7. Clustered Graph Drawings

Require: Clustered graph C' = (G, T)

Ensure: Returns frue if the clustered graph is clustered planar, and false otherwise
1: Find edges E’ whose addition would make C' completely cluster connected
2: Subproblem s = ({y. | e € E'},0,0)
3: Queue @ = (s)

4. while () not empty do > Main loop
5: Extract a subproblem s = (Y, Cact, Cerit)
6: loop > Solve subproblem
7: Solve LP on variables Y,.; with constraints C',.; — solution ¥
8: if infeasible then > Identify neccessary variables
9: if C.,;; contains cut-constraints then
10: Identify new variables Y., (CutPricing)
11: else > Cit contains Kuratowksi constraints
12: Identify new variables Y., (KuratowskiPricing)
13: end if
14: if Y., # () then
15: Yact = Yact U Ynew
16: continue > Resolve subproblem
17: end if
18: break > Subproblem is indeed infeasible. Try next.
19: else > Identify neccessary constraints
20: Find violated connectivity constraints (7.9), — Chew
21: if Ccry = () then
22: Find violated Kuratowski constraints (7.11) — Ciew
23: end if
24: if Cery # () then
25: Ccrit = C’new
26: Cact = Oact U C’crit
27: continue > Resolve subproblem
28: else if 7 is integral then
29: return true > c-Planar!
30: end if
31: end if
32: Identify a variable y. to branch on > We need to branch
33: Ceuit = {c € Cyet | cis a cut-constraint using y. }
34: quSh((}/;).Ct7 Cact U {ye = 0}7 C(crit))
35: Ceuit = {¢ € Chaet | ¢ is a Kuratowski-constraint using v, }
36: QPUSh((Y;ucta Cact U {ye = 1}7 Ccrit>)
37: break > Tackle next subproblem
38: end loop

39: end while
40: return false > Not c-planar!

Algorithm 7.1: Testing c-planarity

7.3. A Pricing Scheme for Clustered Planarity Testing 155

Separation Routines. When we have a feasible subproblem, we try to separate new
constraints. The basic strategy for separation is similar to the MCPSP case. We first try
to obtain new connectivity constraints. Separating the connectivity constraints can be done
in polynomial time using a minimum cut algorithm. If no violated connectivity constraints
can be found, we resort to Kuratowski separation. The violated constraints are added to our
problem and we continue. If no constraints are violated and the solution is integral, we have
found a valid solution and can terminate. Otherwise, we need to branch. Adding connectivity
or planarity constraints may render the inequality system infeasible under the current set of
variables. Edges that may be needed for a valid solution might not be represented in the set
of active variables. We then need to efficiently identify variables that can be added to obtain
feasibility again if possible.

Compared to the MCPSP, we can strengthen our constraints by using specific informa-
tion on the relation of the Kuratowski subdivision paths and the cluster connection edges.
As a basic example, consider the case where chunks in a cluster all lie on a single path of
a Kuratowski subdivision, and do not contain a Kuratowski minor vertex. Even though we
could add a Kuratowski constraint that contains the connection edges between the chunks,
we can use the information to achieve a stronger result. We know that these chunks will be
connected in any completely connected augmentation, so we do not need to care about the
connectivity edges. In order to achieve a planar augmentation, some edge in the remainder of
the Kuratowski subdivision needs to be deleted. We therefore discard the chunk connection
edges from our Kuratowski constraint and get a stronger constraint, as we prevent any con-
struction that involves the remainder of the Kuratowski subdivision, but uses an alternative
path that involves the chunks.

Branching. If we have a fractional solution, but cannot find any violated constraints,
we have to resort to branching, as in any branch-and-cut algorithm. Fixing a variable in the
branching step may render some of the inequalities (in which the variable is involved) invalid.
We call these constraints critical constraints after branching and denote the set of critical
constraints with C,,.;;. In case we fix a variable to 0, some of the already added cut constraints
may become violated, and if we fix a variable to 1, Kuratowski constraints may become
violated. In the latter case, the system may become infeasible if the violated constraints
cannot be repaired due to cut constraints that prevent variables from being deselected. In
both cases of infeasibility we therefore arrive in a situation similar to our CutPricing and
KuratowskiPricing and may proceed accordingly.

We can however improve the performance by using the information that the infeasibility
arises from a branching step: If we make the current formulation infeasible by fixing a
variable to 0, we can try to reobtain feasibility by adding a currently inactive variable. If
a valid solution is still possible, such a variable always exists and can be found as follows:
Let S,. be the set of constraints that become violated if variable . is set to 0. Clearly,
Sve € {Cuts k : coeff(k,y.) = 1} and for k € S,. we have lhs(k) — val(y.) < 1 before
fixing y.. S,. cannot contain Kuratowski constraints, because otherwise these constraints
would be violated for any value of y. and no valid solution would be possible. We would
like to find a variable that allows to make as many constraints as possible valid again and
therefore search for a y that maximizes), o coeff(k,y). We add y to the set of active

156 7. Clustered Graph Drawings

variables and remove all constraints k£ with coeff(k,y) = 1 from S,.. We do this iteratively
until all constraints of C,,.;; are satisfied or the LP is proven to be infeasible.

7.3.5 Conclusion and Future Work

We presented a Branch-Cut-and-Price approach for the clustered planarity testing problem.
This approach improves upon our formulation for the maximum c-planar subgraph problem
when only c-planarity testing is needed. Our approach will be implemented in OGDF to
test the practical performance. A direction of further research is to establish strong general
rules to reduce the number of possible variables. Examples are rules to find vertices that are
never involved in a planar augmentation and can be left out, and sets of vertices and edges
that are equivalent for the solution of the problem and therefore can be modeled by a single
representative.

7.4 Linear Time Planarity Testing for C-connected Clustered
Graphs

In this section we present a linear time algorithm for testing clustered planarity of a c-
connected c-graph C' = (G, T'), and for computing a clustered planar embedding for C'. The
algorithm resembles the algorithm of Dahlhaus| [[1998]], but we give a modified version that
uses a decomposition of the input graph based on SPQR-trees instead of graph grammars.

Let us first recall the basic ideas from Dahlhaus| [[1998]]. Whereas the algorithm by Feng
et al. [1995a] checks planarity of a c-connected c-graph by representing all possible orderings
of the outgoing edges of a cluster with the help of the PQ-tree structure, Dahlhaus takes a
different approach. Instead of modeling the freedom in the order of edges, it fixes a canonical
embedding, the normal form embedding and checks this embedding for c-planarity. A main
component of the c-planarity test is the criterion from Theorem [7.4| which states that a fixed
embedding I" of G is a c-planar embedding when there is no enclosing cycle for a cluster v
of T', and the external face is selected correctly. Note that due to the c-connectivity, v can
only either be not enclosed, or completely enclosed, it is not possible in a planar embedding
that parts of v are separated from each other.

The idea of the algorithm now is as follows: We apply an approach based on graph
decomposition that uses SPQR-trees together with the fixed embedding criterion for testing
clustered planarity of a c-connected c-graph. First we define a normal form for clustered
planar embeddings and show how to compute such an embedding for the input graph in
linear time. Then we show that c-planarity of C'is equivalent to clustered planarity of any
of its normal form embeddings. The final step then is to apply the testing criterion to the
computed normal form embedding in order to test clustered planarity of the input graph. As
the graph decomposition based on SPQR-trees only works for biconnected graphs, we give
an extension of the approach to general connected graphs.

The combinatorial characterization of clustered planar embeddings is given in Section
where the main components of this characterization are also extended to be used within
skeletons of SPQR-trees. A normal form of clustered planar embeddings is presented in
Section The clustered planarity test for biconnected graphs is described in Sections

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 157

7.4.3]and [7.4.4] the computation of a clustered planar embedding is given in Section
Section[7.4.4] deals with the time complexity of our approach, and Section [7.4.4] presents the
extension to general connected graphs.

7.4.1 Clustered Planar Embeddings

In this section we give a combinatorial characterization of c-planar embeddings based on
a weighting criterion on the dual graph. The combinatorial characterization allows us to
judge if a fixed embedding is a clustered planar embedding. But in order to check clustered
planarity efficiently we have to consider all possible embeddings without enumerating them.
We will exploit the fact that SPQR-trees can be used to represent all possible combinatorial
embeddings of a planar biconnected graph. Therefore we also discuss how to extend the
notion of an edge and face weight to embeddings of the skeletons in SPQR-trees.

Combinatorial Characterization

In a c-planar embedding I" of a c-connected clustered graph C' = (G, T), clusters appear as
connected areas without holes. Recall the characterization of such a hole as a cluster part
enclosed by a cycle of edges from another cluster that is not an ancestor. As we have seen,
such a cycle can be detected for a given embedding using a weight function w.,() on the
faces and edges.

We first restate Theorem [7.4|together with a proof:

Let weight(c) of a cluster ¢ be the number of nodes in ¢, for any edge e = (v, w), let
wieq(€) be the weight of the smallest cluster ¢ € C' that contains v and w, and the weight
of a face f, wiq(f), is the maximum weight of an edge that belongs to the face cycle of f.
We interpret the weights of the faces and edges of G as weights of the nodes and edges of
the dual graph G’ of I' and G. A clustered planar embedding now can be characterized as
follows: For each i, let F; be the set of faces f of I' with w;.,(f) > ¢ and E; be the set of
edges e of G with wy.,(e) > i. Let E! be the set of edges in G’ corresponding to the edges in
E;. Then (F;, E!) represents a subgraph of G.

Theorem (Clustered Planar Embeddings). A planar embedding T of G = (V, E) is a clus-
tered planar embedding of G and C = (G, T) if and only if for each i with F; # 0, (F;, E!)
is a connected subgraph of the dual graph of I and a face of maximum weight is taken as
external face.

Proof. Suppose (F;, E;) is not connected. Then at most one of its components C; can contain
the vertex representing the external face. Let us w.l.0.g. assume that C'; does not contain the
external face. The faces in F; have an outer cycle Z in GG. The edges of Z are represented in
G’ by edges that leave ;. Because (' is a connected component of the subgraph consisting
of edges with weight at least i, the edges on Z are of weight at most ¢ — 1. Therefore the
vertices that appear on Z are in a common cluster c of weight at most ¢ — 1. On the other hand
each f € (] is of weight at least ¢ and therefore contains at least one edge e with weight
> 4. But then the vertices incident to e cannot be in ¢, i.e., Z encloses vertices that are not in
c and c has a hole. Using the same reasoning, we can show that a face of maximum weight
needs to be chosen as external face. If a face that has not maximum weight is chosen as the

158 7. Clustered Graph Drawings

external face, then the outer cycle is in a common cluster that is not of maximum weight and
therefore the outer cycle surrounds faces of larger weight and ¢ has therefore a hole. Vice
versa, suppose the cluster ¢ of weight ¢ — 1 has a hole with vertex set H and let Z be the
innermost cycle of c that surrounds H. Then all inner faces f that share an edge with Z are
of weight at least 2. All these faces f can reach the external face (of maximum weight) only
through edges of Z. Therefore the external face and the inner faces of Z sharing an edge
with Z are in different connected components of (F;, E;). O

Weight Property for SPQR-Trees

We use SPQR-trees to represent all possible embeddings and need to apply the weight func-
tion wy, () to detect forbidden cycles. Therefore we give an extension of the weight property
to the faces and edges of the skeletons in the SPQR-tree. The extension will then be used in
Section to compute a normal form embedding. We start our graph decomposition by
selecting an edge with maximum weight as the reference edge; this edge will later define the
external face.

Correlation of Faces in Skeletons and Pertinent Graphs. Faces in an embedding
of the skeleton of a tree node u correspond to faces in the corresponding embedding of the
pertinent graph of p in the following way. Let G be the given graph and .S, denote the
pertinent graph associated with p, that is, S), is a subgraph of G. If p is for example the @)
node associated with the reference edge, then S, is the whole graph G. We say that f is
a face of S, if all its boundary edges belong to S,,. We call f a proper face of S, if it is
a face of S, but not of any S,/, such that 1’ is a child of y in the SPQR-tree. This means
that there has to be a face in the embedded skeleton of x that can be identified with f up
to replacement of border edges as follows. Let f be a proper face of S, 1’ a child node of
p, such that .S, contains boundary edges of f, and v and w be the poles of '. Then the
boundary edges of f that belong to S, form a sub-path p, of the face cycle of f starting at
v and ending at w (see Figure [7.15]). Replacing each p, by the (virtual) edge between the
split pair of y’ defines a face f’ of the embedded skeleton of ;. We call such a face a proper
face of a skeleton to show the correlation to proper faces of the pertinent graphs. Let Sk,
denote the skeleton graph of node y in the following. The proper faces of Sk, are exactly
the faces that are different from the external face, i.e., the faces that are not adjacent to the
virtual edge connecting the poles of L.

Weights in the SPQR-tree. We would like to associate weights of faces of the embed-
ding of G with weights of corresponding faces (as described above) in the skeletons of the
SPQR-tree. Recall that the weight of a face f of GG (and thus also of a proper face of some
S,,) is the maximum weight of a boundary edge of f. Therefore we would also like to give
skeleton edges in the SPQR-tree weights such that the weight of a face in a skeleton can be
defined too as the maximum weight of the boundary (skeleton) edges and is equal to the face
weight of the corresponding proper face in the pertinent graph.

Let g1,..., g, be the boundary edges of a proper skeleton face f, of a node y and let
f be the corresponding proper face of S,,. For each g; = (v;,w;) we consider a path p; in

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 159

(a) Skeleton (b) Pertinent graph

Figure 7.15: A proper face of the skeleton in a P node, and the corresponding face in the pertinent graph
after expansion. The dashed and the dotted line denote the two sub-paths belonging to child nodes.

S,, from v; to w; such that the maximum weight of an edge on p; is minimized (i.e., a path
whose vertices have the smallest least common ancestor in the cluster tree 7"). We call these
skeleton edge weights axis weights, denoted by aw,,, and the paths p; with maximum edge
weight equal to the axis weight axis. The concatenation of the paths p; forms a cycle C' of G
that separates f from the external face of G.

Lemma 7.6. The weight of any proper face f of S, in a clustered planar embedding I' is the
maximum axis weight of a boundary edge of the corresponding proper face f, of Sk,.

Proof. 1f I' is a clustered planar embedding and C' is the cycle formed by the concatenation
of the axes p; of the boundary edges around f,, then by Theorem the maximum weight
of an edge of C' and therefore the maximum axis weight aw,,,, of a boundary edge cannot
be less than the weight of f, otherwise C' would be included in a cluster ¢ of size aw,y,,, and
enclose vertices that are not in c. On the other hand, the maximum weight of an edge e of
C, contained in a path p;, cannot exceed the weight of f, because then there would be a path
on the boundary of f connecting v; and w; with maximum weight less then the weight of e,
contradicting the definition of the axis weight. 0

We associate the axis weights of the boundary edges of face f, with the corresponding
pertinent nodes adjacent to y in the SPQR-tree. Let aw,, denote the axis weight of a node 1
in the following, let max,, be the maximum weight of an edge in S, and for a face f, in the
skeleton let awy, denote the maximum axis weight of a boundary edge of f,,.

The boundary edges of the external face of the graph S, can be split into two paths p/
and p} connecting the poles of p. We call these paths the outer paths of S,. The weight
mazx, cannot appear exclusively in the interior of the pertinent graphs of the nodes in the
SPQR-tree, there has to be an edge of weight max, on one of the outer paths, otherwise a
face of weight max, would be separated by the outer paths from the external face. This fact
will be used to obtain a unique normal form embedding in Section

An outer path of S, containing an edge of weight max, is called a dominating outer
path. Figure illustrates some of the terms from this section.

160 7. Clustered Graph Drawings

_— Dominating outer path
Axis)

Outer path—— § {
1]~ Edge with maximum

Edge with minimum weight

maximum weight

Figure 7.16: Illustration of an axis and a dominating outer path in a pertinent graph S,,.

7.4.2 Normal Forms of Clustered Planar Embeddings

In this section we develop a normal form of clustered planar embeddings which has some
special properties that we can exploit later on to check clustered planarity. We use the idea to
swap subgraphs at poles to transform given clustered planar embeddings into a corresponding
normal form. We then show how to convert a clustered planar embedding into a normal form
that is unique if we have determined a dominating outer path for each pertinent graph .S,.
If both outer paths of a pertinent graph are dominating, we select one of them arbitrarily as
the dominating outer path. The main result of this section is that a clustered graph has a
clustered planar embedding iff any of its normal form embeddings is clustered planar.

Characterization of Normal Forms

First, we discuss properties of clustered planar embeddings regarding the dominating outer
paths of subgraphs, then we give a characterization of a normal form of clustered planar
embeddings based on these properties.

Characteristics of clustered planar embeddings regarding the weight property.
Suppose f, is a proper face of the skeleton of a node j in the SPQR-tree and f is the
corresponding proper face of S,,. If e is a boundary edge of f, and v is the pertinent node
of e, then one of the outer paths of S, is a sub-path of the cycle of the boundary edges of f;
see Figure The dominating outer path of S, can only belong to f in a clustered planar
embedding, if the weight of f, and therefore aw s is at least as large as max,, which is a
weight on the dominating outer path. Otherwise the dominating path would be separated and
there would be a hole in the cluster. The reverse conclusion allows a swapping of pertinent
graphs in the embedding:

Lemma 7.7. Let I' be a clustered planar embedding and let 1. and v be two nodes in the
SPQR-tree, where |1 is the parent of v. Suppose an outer path of the pertinent graph S,
belongs to the boundary of a proper face f of S, and the weight of f is at least max,. Then
I" can be converted into a clustered planar embedding I',, such that the dominating outer
path of S, belongs to the boundary of f.

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 161

(a) Skeleton of node p (b) Pertinent graph of 1

Figure 7.17: The outer path (dashed line) of the pertinent graph of a skeleton edge e that lies on the boundary
of a proper face f,, of node y is a part of the boundary of the corresponding face f in the pertinent graph
of .

Proof. The result is trivial if the dominating outer path of S, already belongs to the boundary
of f. Otherwise we want to swap .S, and show that the resulting embedding is still clustered
planar. We assume that in I, the dominating outer path of .S, does not belong to the boundary
of f but to the boundary of another face f’ of G and I'. Then f’ also has a weight of at least
max,. All faces that belong to S, have a weight of at most max,,. Let the sets F; of faces be
defined as in Theorem[7.4] Recall that by Theorem[7.4] each F; is connected in the dual graph
of G’ and I'. Denote the set of proper faces in S, that are in F; by F; . Then F; , can only be
non-empty if ¢ < maz,. Since F; is connected and f and f’ are the only faces not belonging
to S, that share boundary edges with S, we can leave F;, only through f or f’, i.e., the
connected components of F; , are adjacent with f or f’ (i.e., share boundary edges). When
we swap 5, the connected components of F;, adjacent with f become adjacent with f’ and
vice versa. Therefore F; remains connected and the embedding I', we obtain by swapping S5,
is also a clustered planar embedding by Theorem and the dominating outer path of S,
belongs to the boundary of f.]

We can use the swapping to construct an embedding that takes into account the dominat-
ing outer paths. For the P- and S-nodes of the SPQR-tree, we can even give a more specific
characterization. First we discuss the S-node case.

Corollary 7.2. Suppose |1 is a S-node with children vy, . . . , vy, in the SPQR-tree representing
the clustered planar embedding I'. Then I' can be converted into a clustered planar embed-
ding I, such that the dominating outer path of S, is the concatenation of the dominating
outer paths of S,,.

Proof. Let p be the dominating outer path of S, and let p; be the sub-path of p in S,,. Let
f be the face of G and I" having p on its boundary. Note that f does not belong to S,,. The
weight of f is at least max,. Each p; belongs to the boundary of f and max,, is at most
mazx,, and therefore at most the weight of f. Due to Lemma(7.7] either p; ist the dominating
path of S,, or we can swap 5,,, replacing p; by the dominating outer path of S,,,.]

162 7. Clustered Graph Drawings

Next we consider the case of a P-node, which is slightly more difficult than the serial
case. First we show that in a clustered planar embedding, there has to be a particular order of
the parallel edges with respect to their axis and maximum weights, because there must not
be any cycles of smaller weight around edges of higher weight. Therefore there may not be
any local maximum of the axis weights besides the weights of the first and/or last edge in the
edge sequence.

Lemma 7.8. Let i1 be a P-node with children vy, . . ., vy in the SPQR-tree representing the
clustered embedding I', and let the skeleton edges e; corresponding to the child nodes appear
in the sequence ey, ... e, in I'. Then the sequence of the axis weights of the e; splits into
a decreasing sequence awe,, . . ., aw,, and an increasing sequence awe, ., - . . , QW,,, where
one of the sequences might be empty. Moreover, for i < [, max., < aw,,_, and, fori > I,
mazxe, < aWe, .

Proof. If the axis weights would not split into a decreasing and an increasing sequence, there
would be positions ¢ < j < [such that aw,; > aw,,, aw,. The concatenation of the axes
of Spert(e;) and Spers(e,) Would form a cycle of maximum edge weight < aw,, that separates
an edge and therefore also a face of weight aw,; from the external face, contradicting The-
orem To prove the second statement, we first consider the case ¢ < [, i.e., e; is not the
last edge in the decreasing subsequence. If maz., > aw,,_, then the axes of Spe,(, ,) and
Spert(e;1,) Which both have a maximum weight < maz., separate an edge and therefore a
face of weight > max., from the external face contradicting Theorem For symmetry
reasons, we also have max., < aw,, , fori > [+ 1. We consider the position / and observe
that maz., < aw,,, or maz., < aw,,_,, for the same reasons as above. In the first case, we
consider aw,,, . .., aw,,_, as the decreasing and aw,,, . . ., aw,, as the increasing sequence.
In the second case, we check whether maz., , < aw,,,. If this is not the case, for symmetry
reasons, we put e;, 1 into the decreasing sequence. [

Letey,...,er and [be as in the previous Lemma. Then ey, . . ., ¢; is called the decreasing
sequence and €)1, . .., ey is called the increasing sequence of eq, . . . , €.

We now provide a method to convert the clustered planar embedding I" into a clustered
planar embedding I',. such that the maximum weight of the non-dominating outer path of .S,
is minimized.

Assume that e; and e; belong both to the decreasing subsequence or both to the increasing
subsequence. Then either aw,, < maz., < aw,; or vice versa.

Now assume that e; and e; are any parallel edges in Sk,,. We say that e; and e; overlap
if neither aw,, < max,, < awe, nor aw,; < mazx.; < aw,,. That means if e; and e; overlap
then they cannot both belong to the increasing or the decreasing subsequence. The overlap
graph of 1, denoted by O, consists of the vertex set {ej,...,e; } and the edges (e;, ¢;)
such that e; and e; overlap. Connected components of O,, are called overlap components of
. Observe that e; and e; belong to the same subsequence if they can be joined by a path
of the overlap graph of even length and that e; belongs to the decreasing and e; belongs to
the increasing subsequence (or vice versa) if they can be joined by an odd length path of the
overlap graph, just because subsequence membership alternates along a path in an overlap
component.

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 163

From our observations it follows that if we fix for one edge e; in a overlap component C'
of 1 that it belongs to the increasing subsequence then we also know for each e; of C' whether
it belongs to the increasing or to the decreasing subsequence of ey, . . . , e, independent of the
particular clustered planar embedding. We extend the notions of maximum weight and axis
weight to overlap components. Let max ¢ denote the maximum maz,., with e; € C' and awe
the minimum aw,, with e; € C.

Lemma 7.9. If C and C' are different overlap components of i then either awc < mazrc <
awer or awer < maxrcr < awe.

Proof. Two edges e; and e; overlap if and only if the open intervals (aw.,, maz.,) and
(aw,,, max.,) intersect or if for one of them, say e;, aw., = maz,,, aw,, € (aw.,;, max,).
For any overlap component C, the union of the intervals (aw,,, maz,,) with e; € C is
(awe, mazc): The union of the intervals (aw,,, mazx.,) with e; € C'is a union of open inter-
vals (a,b) with a > awe and b < maxc. We only have to show that each z € (awc, mazc)
belongs to some (aw,,, maz.,) with e; € C. Assume this is not the case. Then we can
partition the e; € C into small e; where (aw,,, mazx.,) C (awc,x) and large e; where
(aw,,, maz.,) C (x,max.,). No small e; overlaps with a large e; and there are small and
large e;. Therefore C' is not connected in the overlap graph which is a contradiction. As
a consequence, the intervals (awc, mazxc) and (awer, maze:) must be disjoint. If for one
of the overlap components, say for C, awc = maxc, then aw(C) ¢ (awer, maxer). This
proves the Lemma. O

Lemma 7.10. A clustered planar embedding I' can be converted into a clustered planar
embedding "' with the following property: If i is a P-node with children vy, . .., v} in the
SPQR-tree representing I', and the subgraphs S, appear in this sequence in 1", then for
each overlap component C of i, the e; € C with max., = maxc appears in the increasing
subsequence of e1, . . ., ex, where e; is the skeleton edge corresponding to node v;.

Proof. Let C' be an overlap component. Assume that the e; with maz., = mazc belongs
to the decreasing subsequence of ey, . .., e;. Let C< be the union of overlap components C"
with maxzcr < maxc and let g; be the largest index, such that g; € C<. Note that aw,, ,
and aw,,, are at least maxc. Therefore also the weights of the face f; consisting of an
outer path of S,e.¢(c;) and an outer path of Sjc,4(c,,,) and of the face f; ; consisting of an
outer path of Sp.,+, ,) and an outer path of Sy.,(,) are at least maxc because the (axis)
weight of the corresponding faces ffL and ffb_l in Sk, are at least aw,, ,. We can view C<
as a component G, and set S¢ = Up,cc. Speri(e;) (the edges in the pertinent graphs of the
skeleton edges in C'<). The outer paths of S¢ are the outer paths of Sper(c;) and Spers(c;) that
belong to f;_; and f;. The dominating outer path of C'is the outer path belonging to Spe,(c,)-
We can swap H¢ and the resulting planar embedding is still clustered planar by Lemma|/.7
The maximum weight edge e; of C' now belongs to the increasing subsequence. We have to
do this with every overlap component.

While swapping C<, also all C’ with maz(C") < max(C') are swapped. Therefore we
start with the overlap component C' with maz¢ maximal. If max - belongs to the decreasing
sequence we only reverse the enumeration e, . .., e;. Then we put the overlap component
with the second largest maximum weight into the right position as explained above, and we
continue with the overlap component with the third largest maximum weight and so on. [

164 7. Clustered Graph Drawings

The Normal Form Embedding

Using the results from Section we can state the following Theorem:

Theorem 7.11. Each clustered planar embedding 1" can be converted into a clustered planar
embedding Iy that satisfies the following conditions: Let 1 be a node in the SPOR tree that
represents the embedding I'y;.

(1) If p is an S-node with children v, . .., vy, then the dominating path of S, is the con-
catenation of the dominating paths of the subgraphs S,,,.

(2) If v is a P-node with children v, . . ., vy, where in I'y the S,, appear in the given se-
quence from 1 to k, then either the maximum weight mazx,, of each overlap component
appears in the decreasing subsequence of eq, . . . , e where v; is the pertinent node of
skeleton edge e; or the maximum weight of each overlap component appears in the
increasing subsequence of €1, . . ., €.

(3) If e is a skeleton edge of |1 then one of the following two conditions is satisfied:

e cisaninner edge of Sk, (i.e., the outer paths of Spe(c) are not on an outer path
of S,.), and for the proper faces fi and fo of S, that contain the outer paths of
Spert(e) (L.e., the corresponding proper faces f| and f; in Sk, share e as their
boundary edge), the dominating outer path of Spe,(c) is at the boundary of the f;
that has the larger weight.

e c is not an inner edge of Sk, (i.e., the outer path of S,, contains an outer path of
Spert(e)) [is the proper face of S, that shares an outer path with Spe,c) (i.e.,
the corresponding proper face [’ of Sk, is the only proper face of Sk, that has e
as boundary edge), and the dominating outer path of Sye,i(c) is on the boundary
of [if and only if max, < weight(f).

We call the embedding I, a normal form embedding.

Construction of a Unique Normal Form Embedding

In order to have a unique normal form embedding that is independent from the given particu-
lar embedding I, regardless whether it is clustered planar or not, we introduce the following
rules that make our decisions well-defined:

(1) If both outer paths of S, are dominating, we select one of them as the dominating outer
path.

(2) We sort the faces of G with respect to the axis weight of the corresponding face in
some skeleton to obtain a sequence fi, ..., fr and if we have to select one of the faces
fi and f; of maximum weight, we select the one with maximum index.

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 165

(3) We sort the nodes of the SPQR-tree in the first priority by their axis weight and in the
second priority by their maximum weight to obtain a sequence fiy, . . ., j;. Note that if
i 1s a P-node with skeleton edges e, . . ., ex, then we can construct a normal form em-
bedding such that the decreasing/increasing subsequence is also decreasing/increasing
with respect to the index in the sorted list.

We construct I',, s bottom up. The embedding of each Q-node is uniquely determined. For
S- and R-nodes, the embeddings are uniquely determined up to reversal. For P-nodes, there
is only one sequence e, . .., e such that for each overlap component C, max(C') appears
in the increasing subsequence when the decision rules are applied. If the embedding of the
skeleton of each child node v of a node p in the SPQR-tree is uniquely determined up to
reversal, then the dominating outer path of each .S, is uniquely determined by our decision
rules. Therefore also the embedding of S, is uniquely determined up to reversal when we
apply the decision rules.

Note that the construction of I',,; is independent of any particular embedding I'. We can
convert any embedding I' to I',; and if I" is a clustered planar embedding, we can convert
it to the clustered planar embedding I',,;. Vice versa, we can reverse the conversion, and if
I' is also a normal form embedding then clustered planarity is preserved. We therefore get
the following result:

Theorem 7.12. A graph G and a clustering C' have a clustered planar embedding if and
only if any normal form embedding of G and C'is clustered planar.

7.4.3 Clustered Planarity Testing Algorithm

In Sections[7.4.3|and[7.4.4 we describe the clustered planarity testing algorithm that is based
on the concepts introduced in the previous sections. Section [/.4.3| states how the axis and
maximum weights as well as the dominating outer paths and also the skeleton embeddings
can be determined. Section [7.4.4] shows how to compute the normal form embedding and
how to apply Theorem efficiently. We first consider the case where the whole graph is
biconnected and then give a sketch of the algorithm for the general case of connected graphs.

Overview

The main steps of the clustered planarity testing algorithm are as follows:

(1) First we compute an SPQR-tree for the given graph and determine the axis weights and
the maximum weights of the skeleton edges, which are independent of the embeddings
of the skeletons.

(2) We determine embeddings for the skeletons Sk, of the SPQR-tree according to the
rules of our normal form embedding.

(3) We determine the (axis) weights of the proper faces of each Sk, depending on the
computed embedding of the skeleton.

166 7. Clustered Graph Drawings

(4) We determine the dominating outer paths of the skeletons, which are projections of the
dominating outer paths of the subgraphs S, to Sk,. Note that each path of S, joining
two vertices of Sk, projects to a path of Sk,,.

(5) For each node p with child node v in the SPQR-tree, we determine how S, has to be
embedded relative to .S, to get a normal form embedding. This relative embedding of
1 and v depends only on the skeletons of y and v and the axis and maximum weights
of their edges.

(6) We merge the relative embeddings into one embedding I' that is a normal form em-
bedding.

(7) We check that I is a clustered planar embedding using Theorem[7.4]

Assignment of Axis and Maximum Weights for the Skeleton Edges

The maximum weights can be assigned as follows: For each leaf-node (Q-node) 1 with edge
e, we just assign mazx,, := wj.q(()e). If 41 is a node with children v4, . . ., 1 in the SPQR-tree
(not a leaf), then max,, := max(max,,, ..., max,,). This can be done in linear time with
respect to the size of the tree and therefore also in linear time with respect to the size of the
graph G.

The axis weights are more difficult to compute. We use a minimum spanning tree with
respect to the weights of the edges and take care that we do not lose our linear time bound.
The edges of G can be divided into two classes depending on their position in the spanning
tree and the class types can then be used to derive the axis weights.

First we compute a minimum spanning tree 75 of the whole graph G with respect to the
edge weights in linear time using the following result:

Lemma 7.11. Given a clustered graph C' = (G, T), a spanning tree Ts of G is a minimum
spanning tree of G with respect to the edge weights if and only if for each cluster c of C, T’s
restricted to c is a single tree (not a forest).

Proof. First we show that any spanning tree where some cluster of C' does not induce a
subtree is not a minimum spanning tree, i.e., for every minimum spanning tree, each cluster
induces a subtree. Let S be Tg restricted to ¢. We assume that S is not a tree, i.e., S is not
connected. Since G restricted to ¢ is connected, we can find two connected components S;
and S, of S, such that there is an edge (u, v) of G that joins a vertex u of S; with a vertex
v of Sy. There is also a path p from a vertex u’ in S; to a vertex v’ in Sy such that all inner
vertices of p do belong to T but not to Sy or Sy. Let (v/,z) be the first edge of p. z is
also not in ¢, otherwise = would belong to S;. Therefore the weight of (u/, x) is greater than
the size of ¢. On the other hand, the weight of (u,v) is at most the size of ¢. Therefore, if
we replace in T the edge (v, z) by (u,v), we still get a tree, and the sum of the weights
decreases. Vice versa, we show that all spanning trees with the property that each cluster
induces a subtree have the same weight sum. Note that Ts remains a tree if we shrink any
cluster to a vertex, because any cluster induces a subtree. Let c be a cluster and ¢4, . . ., ¢x be
its child clusters. Then the number of edges (u, v) of T, such that c is the smallest cluster

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 167

containing v and v is k — 1. The sum of the edge weights of these edges (u, v) is therefore
(k —1)|c|. Let k. be the number of child clusters of the cluster ¢. Then the weight sum of Ts
is therefore) | . (k. — 1)|c|. This is true for every Ts such that each cluster ¢ € C' induces
a subtree. [l

Using Lemma|/.11}, we determine 7 in linear time as follows:

For each cluster ¢, let F, be the set of edges e € E such that c is the smallest cluster
containing both end vertices of e. We contract the child cluster of c, i.e., we replace each
edge e = wv of E. by c,c, where ¢, and ¢, are the child clusters of ¢ that contain v and v
respectively. For each cluster ¢, we compute a spanning tree 7. of .. Note that all edges
in E, have the same weight. Now the tree 7" arises from 7. by replacing each edge c,c, of
T. by one edge uv. Then the union of all 7 is a minimum spanning tree 7, i.e., a spanning
tree, such that each cluster induces a subtree.

Next we root T’s at the vertex = where x is one of the two vertices of the reference edge.
Now consider any inner node ;. of the SPQR-tree with poles u and v and pertinent graph .S,,.
We divide the inner nodes into two classes depending on the position of their poles within
the spanning tree.

Introverted nodes are nodes whose poles are on a single path from the root to a leaf of
the spanning tree, i.e., the parent of u or the parent of v in T’s is in .S,,; see Figure

Social nodes are nodes whose poles are in two different paths from the root to a leaf of
T, i.e., the parents of u and of v in Ts are not in .S,,.

Observe that for a social node p the spanning tree T’ restricted to S, splits into two trees
T’y with root u and T}y with root v. Any path of S, from u to v contains an edge e of G with
one vertex in T} and the other vertex in T)). We call such an edge a connecting edge of S,,.

No we can easily derive the axis weights from the type of the node as follows:

Lemma 7.12. If i is an introverted node of the SPQR-tree with poles u and v, then the axis
weight aw,, of (v is the maximum weight of an edge on the unique path from u to v in Ts. If
(is a social node, then aw,, is the minimum weight of a connecting edge of S,,.

Proof. Consider the smallest cluster ¢ that contains v and v and that remains connected if
we restrict it to S,,. We use the fact that aw),, is the size of c. This follows from the following
observations:

e If there is a path from u to v in S, with maximum weight w then u and v are in
a connected component of a cluster ¢ of size w restricted to S,. Since clusters are
connected in G and v and v separate .S, from the rest of the graph, G restricted to S,
Uc is connected.

e If S, U cis connected and contains u and v, then there is a path from u to v using only
vertices in .S, U c. Such a path has maximum weight < |c|.

From Lemma [7.11| we know that the unique path from u to v in T solely consists of
vertices of c if y is introverted. Therefore the maximum weight on this path is at most |c|,
i.e., the axis weight aw,,. If the maximum weight would be less, this path would contradict
the definition of the axis weight.

168 7. Clustered Graph Drawings

If 41 is social then the weight of any connecting edge of S, cannot be smaller than the
axis weight of y. But then there has to be a connecting edge with weight aw,, because aw,
is the size of c. [

Lo B —

(a) Social node (b) Introverted node

Figure 7.18: Location of the poles of social (a) and introverted (b) nodes in the spanning tree T, thick edges
denote tree edges, dotted lines denote parts that are not in the spanning tree.

To compute the axis weights efficiently, we proceed recursively, i.e., determine the axis
weights of a node / from the axis weights of the child nodes using Lemma(7.12] If we know
the axis weights of all skeleton edges of u, then we can derive the axis weight of x in the
same way as we determine the axis weight of 1 from the weights of the edges in the pertinent
graph S,,.

Lemma 7.13. Let i be a non-leaf node in the SPQR-tree with poles u and v.

(1) If u is introverted then the skeleton edges of |1 whose pertinent node is introverted form
a tree T, with the same root as Ty restricted to S,. The axis weight of i, aw,, is the
maximum axis weight of an edge on the unique path from u to v in'l},.

(2) If v is social then the introverted skeleton edges of | form two trees T} and T}, with
u and v respectively as root. The axis weight of |1, aw,, is the minimum axis weight
of a skeleton edge joining a vertex of 1)} and a vertex of T}; (we call these edges the
connecting edges of the skeleton of).

Proof. Let T}, be the set of introverted edges of Sk, and let = be a vertex of Sk,. There is
exactly one edge (x,y) of T, such that y is the Ts-parent of x. There is at most one edge
e, of Sk, such that (z,y) is in Spert(e,)- Moreover, if z is not v or v, there exists such an
edge e, and this edge is introverted. Furthermore, each introverted edge of Sk, is such an
e, for some z. Let x and p, be the vertices incident with e,, i.e., nodes in Sk,. Then we
can consider p, as the parent of x in T}, and p, is an ancestor of x in Ty. Therefore 7}, has
no cycle and is a forest. If y is social then 7}, splits into two trees, otherwise (. is introverted
and 7}, is a tree. Suppose u is introverted. Then each edge on the unique path from u to v
in Tg is in some Spe,¢(c), such that €’ is on the unique path from v to v in Sk,. This is in
particular true for the maximum weight edge e on the unique path from u to v in Ts. By
Lemma the edge ¢’ of Sk, such that S,y contains e has the same axis weight as the
weight of e. Therefore the axis weight of y is the maximum axis weight of an edge of T},
on the unique path from u to v. Now suppose p is social and let e be a connecting edge of
S,.. Note that also the edge ¢’ of Sk, such that S,,+() contains e is social. Moreover, all

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 169

connecting edges of Sj,,(¢) are also connecting edges of S,,. If e is a connecting edge of S,
of minimum weight, then e is also a connecting edge of Spe+(¢/y of minimum weight. On the
other hand, if ¢’ joins a vertex of T;j and of T;j , then also ¢’ is social, and all connecting edges
of Speri(er) are connecting edges of S,. Each connecting edge of such S, therefore has
a weight that is at least the axis weight of p. Therefore the axis weight of 4 is the minimum
over the axis weights of edges ¢’ of Sk, connecting a vertex of T} with a vertex of 7). [

We can efficiently check if a node p with poles v and v is introverted, by checking that
one of the Q-nodes, that correspond to edges connecting v and v with its respective parent
in T, is a descendant of p in the SPQR-tree. This can be done in linear time with a simple
preprocessing of the SPQR-tree. Let y be introverted. Note that for the components Spe,¢(c)
that correspond to skeleton edges e that are passed by the unique path from u to v the nodes
pert(e) are also introverted. We determine a subforest 7 of the SPQR-tree consisting of the
introverted nodes. The children of y in 77 are pertinent nodes of the edges in 7}, that are on
the unique path from u to v in 7),. The axis weight of 1 is the maximum axis weight of a
child of x in T7.

If p is social, then we determine the subforest 7, of the SPQR-tree consisting of the
social nodes. The children of x in T, are the nodes with one pole vertex in T/j” and the other
one in T/, i.e., the connecting edges of 4. The axis weight of 4 is the minimum axis weight
of a child of p in Tg,..

Following Lemma we get the axis weight of 1 by determining the axis weight of
the children of y in 77 or T, and taking the maximum or minimum, respectively. This can
be done in linear time. We therefore have

Proposition 7.13. The axis weights of the skeleton edges can be computed in linear time.

Computation of Embeddings for the Skeletons

We need to compute embeddings for the skeletons of the S, P, and R-nodes of the SPQR-
tree. For the rigid case in R-nodes there is a unique combinatorial embedding up to reversal.
The combinatorial embedding of the path for the sequential case in S-nodes is unique, too.
For the skeletons of P-nodes we have to find a normal form embedding, i.e., a sequence
e1, ..., e of the parallel edges that splits into a decreasing and an increasing sequence that
satisfy the conditions of Theorem{7.4] The strategy to compute an embedding for the skeleton
of a P-node p is as follows:

(1) Instead of computing the whole overlap graph of i we only compute a spanning forest
O,,. We then also know the overlap components.

(2) For each edge in Sk, we determine whether it belongs to the decreasing or the in-
creasing subsequence. For each overlap component C, we select a e with maximum
maximum weight and put it into the increasing sequence.

(3) We know for each overlap component the elements of the decreasing subsequence and
of the increasing subsequence and can therefore derive the sequence e, . .., e; which
gives us an embedding of the skeleton.

170 7. Clustered Graph Drawings

A Spanning Forest of the Overlap Graph. Recall that the union of the intervals
(aw,,, mazx.,) of an overlap component C' forms an open interval (aw¢, max¢). Therefore
if awe < a < maxc then there is an ¢ € C with aw, < a < max.. If some ¢/ € C has
smaller axis weight than e, then aws < aw,s. On the other hand, if aw, overlaps with some
e” then aw, < max.» and therefore aw,. < maxc. It follows that if there is a ¢’ with smaller
axis weight than e in the same overlap component C', then awe < aw, < mazrc. We then
can conclude that there is a ¢’ € C' with aw.» < aw, < maxgn, i.e., €” overlaps with e and
has smaller axis weight than e. Hence we have the following:

Lemma 7.14. If the overlap component containing edge e also contains an edge €' with
smaller axis weight than e, then e overlaps with an €’ with smaller axis weight than e.

We know now, that if an e overlaps with an e’ of smaller axis weight, we can use such
an €’ as parent of e in the spanning forest of the overlap graph. But this does not determine
the whole spanning forest. We only know that if e has no parent, then aw, = awc where C
is the overlap component containing e. There might be several edges e; in C' with aw,, =
awe. Observe that if awe < mazxe such an e; can only belong to C' iff aw,, < maz,,. If
aw.,= maz,, its maximum weight is less than or equal to any axis weight of edges on C'. For
the backward direction, the intersection of the intervals (aw,,, mazx,.,) and (awc, mazc) is
non-empty and we can pick any x of the intersection and any ¢’ € C with awy < < max
so that e and €’ overlap.

Observe also in general that if aw, = aw.s < maxs < max, then e and €’ overlap. If
there is a ¢’ with aw. = aw, < mar. < maz. we can take such a e’ as parent of e.

We now have the following situation: If e and ¢’ belong to the same overlap component
and have no parent then they coincide in the weight and in the maximum weight and the
axis weight is smaller than the maximum weight. Therefore if the parent of e is not defined
but max. > aw,. then we have to check whether there is another ¢’ with aw. = aw, and
mazry = maz.. We consider e and €’ as equivalent if they conincide in max and aw and the
axis and the maximum value are different.

We observe that we can order the equivalent edges e in any way, and just the predecessor
of edge e can be taken as parent of e. We use the observations above and proceed as follows:

(1) We sort the skeleton edges of p in the first priority by their axis weight and in the
second priority by their maximum weights to obtain a sequence ey, ..., e;. This can
be done in linear time.

(2) If thereis a e; with j <4 and maz., > aw,, then we can take such e; as parent par(e;)
of e;. To do this efficiently, we proceed as follows:

(a) We determine for each i > 1, maa'(e;) := max;;(mazx,,), i.e., the maximum
max value of a e; with index smaller then 1.

(b) For each maximum weight m, we determine the smallest index i(m), such that
maz.,,, = m. This can be done in linear time by bucket sort.

(c) For each e; with max'(e;) > aw,, we assign par(e;) := €;mas'(e)))> i-€., the
parent of e; is an e; with maz(e;) = maz'(e;) of smallest index j.

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 171

Our main result is now

Proposition 7.14. Spanning forests of the overlap graphs O, of 1« can be determined in linear
time.

The partition of overlap components into decreasing and increasing subse-
quence. First we check whether an edge e; of Sk, belongs to the increasing or the de-
creasing subsequence of the skeleton edges ey, ..., ex. Note that overlap components and
nodes of O] without a parent are in a 1-1-correspondence. We proceed as follows:

(1) We determine for each overlap component C' of 1, mazc and a e € C with max,, =
maxc. That means, we determine for each e of Sk, that has no parent in OL, the
number mazc of that C' with e € C', i.e., the maximum mazx. of a descendent ¢’ of
e in O:L(including e). For this ', we determine ec. If e has proper descendants, i.e.,
C' has more than one element, this ec is the e; of minimum index such that maz., =
maxc, which means ec = i(maxc). If e has no proper descendants then e is just e.

(2) To check whether e belongs to the increasing or the decreasing sequence, we check if
it has an odd or even distance from some e¢ in the spanning forest O),.

We know now whether an edge e in Sk, belongs to the decreasing or the increasing
subsequence of ey, . . ., ex, but we do not know the position of e in ey, . . ., e yet.

We use our sorting ey, . . ., e, with respect to the axis and maximum weights from Sec-
tion as follows: Let Fi(e;) = 1 and Fy(e;) = 0 if e; belongs to the decreasing subse-
quence and F) (e;) = 0 and Fy(e;) = 1 if e; belongs to the increasing subsequence. This e; is

the ['* element of the decreasing subsequence if ngeﬂ) = land e; belongs to the decreasing

subsequence, and it it the [*" element of the increasing subsequence if Zf ;(ej) = [and it
belongs to the increasing subsequence.
The final sequence ey, ..., e is then just the concatenation of the decreasing and the

increasing subsequence.
All steps can be done in linear time. We can now state the main result of this subsection:

Proposition 7.15. For all P-nodes, the embeddings of the skeleton edges represented by the
sequence eq, . . ., €, can be computed in linear time.

Determining the Dominating Outer Paths of the Skeletons

We assume that x is a P- or R-node in the SPQR-tree, so that the embedding of the skeleton
is now fixed up to reversal (Remember that in an S-node, the skeleton consists simply of a
path between the poles representing the serial structure, and an additional edge connecting
the poles). Let u and v be the poles of ;.. Note that any path p from u to v in \S,, projects to
a path p’ from u to v in Sk,. This path p’ contains just those edges e; in the skeleton such
that Spe,4(¢,) contains at least one edge of p. The outer paths of S, project to outer paths of
the skeleton of i, i.e., the two paths from u to v in the skeleton that form the outer cycle of
the skeleton. We would like to find the outer path of the skeleton that is the projection of the
dominating outer path of .S, to the skeleton.

172 7. Clustered Graph Drawings

Lemma 7.15. Let a clustered planar embedding 1" of the graph G and a corresponding
SPQR-tree be given. If there is a proper face f, in Sk, with axis weight awy, = mazx,, then
there is an edge e on an outer path of the skeleton with aw. = max,,.

Proof. The proper face f in S, that is the corresponding face to f, also has weight mazx,,.
Let C be the concatenation of the axes of the edges e’ that belong to the outer cycle of Sk,,.
One of the edges of C' must have weight max,,, because otherwise a face of this weight is
separated by a cycle of smaller weight from the external face. Therefore one of the edges on
the outer cycle of Sk, must have axis weight max,,. [

The dominating outer path of a skeleton Sk, is the projection of the dominating outer
path of S, into Sk, i.e., an edge e of Sk, belongs to the dominating outer path of Sk, if
and only if Sj(¢) contains edges of the dominating outer path of \S,,.

Lemma 7.16. A dominating outer path of Sk, can be determined as follows:

(1) If Sk, contains a proper face [, with weight awy, = max, then an outer path of Sk,
containing an edge e with aw, = max, can be selected as the dominating outer path.

(2) If Sk, does not contain a proper face f with weight awy, = mazx, then an outer path
of Sk, containing an edge e with max e, () = max,, can be selected as the dominating
outer path.

Proof. We have to show that the selected outer path of Sk, is the projection of a dominating
outer path of S, into Sk,.

If Sk, contains a proper face of weight max, then Lemma applies, i.e., there is
an edge e on one of the outer paths p’ of Sk,, such that aw. = max,. This path p' is the
projection of an outer path p of S, that also passes Spe,«(c). If u and v are the endnodes of e
then p restricted to Spe(e) is a path from v to v in Spep(e). Since aw. = mazx,,, p restricted
t0 Spert(e) Passes an edge of weight > maw,,. Since mazyeri(e) < mazx,, such an edge must
have weight max,,.

If Sk, does not contain a proper face of weight max, then we consider any edge e of
S,, on an outer path of S, with weight max,. This edge e belongs to some Sy +(cry With
¢’ belonging to Sk,. Such a ¢’ belongs to one of the outer paths of Sk, and mazpe,(ery =
mazx,. Now consider any e’ in Sk, that belongs to an outer path with MAT per(e') = MAT,.
Let f, be the proper face of Sk, that contains e’ and let f be the corresponding face of S,.
Since the weight of f,, and therefore the weight of f are smaller than max,,, the dominating
outer path of Sp.,+(y (Which contains an edge of maw, = Maw e, () is not a sub-path of
the boundary of f. Therefore the dominating path of S, () is a sub-path of a dominating
path of S,,. This means that ¢’ is an edge of the projection of a dominating path of .S, into
Sk,,. Therefore the outer path of Sk, containing ¢’ can be taken as dominating outer path of
Sky,. [

The dominating outer path of Sk, now can be determined as follows:

(1) We determine the outer paths of Sk,. Note that a planar embedding of Sk, together
with the edge connecting the poles is known. The two faces containing this edge
determine the outer paths of Sk,,.

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 173

(2) We check whether there is a proper face of Sk, with weight max,. Note that each
face is determined by the sequence of its boundary edges. The maximum axis weight
of a boundary edge of any face can hence be determined in linear time.

(3) We proceed as in Lemma to determine the dominating outer paths. Since we
know the face weights and the maximum and axis weights of the edges in Sk, we can
determine the maximum axis or maximum weight of each outer path in linear time and
hence perform this step also in linear time.

As aresult of this subsection, we get the following:

Proposition 7.16. If 1 is a P- or R-node then a dominating path of Sk, can be determined
in linear time.

7.4.4 Computation of the Clustered Planar Embedding

In this section we show how the final clustered planar embedding can be computed. Our final
embedding has to satisfy the requirements of a normal form embedding. We can assume
from the results of the previous sections that the embedding of each Sk, in the SPQR-tree
is known. If is an S- or an R-node, we are done, in the case of a P-node we compute the
decreasing and increasing subsequence of the parallel edges and sort both sets with respect
to the axis weight. We also know the dominating paths, i.e., we know if the left or right outer
path of Sk, is dominating.

Now we have to find the relative orientation of a child component Sk, of Sk,. Note
that the axis in the pertinent graph of a skeleton edge e splits the pertinent graph into two
parts. We have to guarantee that for each face f incident with e, for the part that in the final
embedding will be turned in direction of f, its maximum weight is at most the axis weight
of f. Otherwise the part P,,,, with the higher maximum weight would be enclosed by a
circle with edge weights bounded by the axis weight of f. We therefore have to check if we
have to swap the embedding of Sk,.,(.). This can be done by first computing the relative
orientation of a child component within its parent component by a bottom-up traversal of the
SPQR-tree, followed by a top-down traversal that uses the relative orientations to compute
the absolute orientation as follows:

For each node v in the SPQR-tree, we store an orientation value or(v) that specifies the
relative embedding of a child component Sk, within its parent component Sk,. If e is an
inner edge of Sk, then we have to swap Skpe(c) if the part P,,,, is directed to the face of
smaller axis weight. If e is an outer edge, and y is not an S-node, then Sk, has to be
swapped if the incident face f different from the external face has smaller axis weight than
the weight of P,,,, and P,,,, is directed to this face or f has an axis weight that is at least
the maximum weight in P,,,, and P,,,, is directed to the external face of Sk,. If ;1 is an
S-node, the parts with the larger weight are oriented in the same direction.

Now we know for each child component its relative embedding within its parent compo-
nent. We can derive the absolute orientation abs(y) just by checking how often a component
would be swapped either directly or by swapping an ancestor component. If there is an odd
number of swaps, the component needs to be swapped in order to achieve the correct final

174 7. Clustered Graph Drawings

orientation. We therefore only need to compute

abs(ﬂ) = H(V ancestor of pin SPQR—tree) V (v=p) 0T(V>

which can be done in linear time by a top-down traversal.
Let emb,, be the original embedding of Sk,,. Then

final emb,, if abs(pu) =1
emb, """ 1= _
reversal of emb,,, if abs(u) = —1

The final embedding emb’/™ of G can be defined as follows: We determine the embed-
ding emb?’ of S, recursively knowing the embeddings embl ¢) of Speri(e,) for all e; in

pert(e;

Sk, and the embedding emb/"* of Sk,,.

embly® is determined as follows: For a skeleton edge e in Sk, with incident vertices u
and v in emb/"*, in the clockwise enumeration of the incident edges of u and v in Sk, e
is replaced by the edges of S,(c) that are incident with u, and with v, respectively. They
appear in embffe in the same order as in S, (). After processing all nodes in the SPQR-
tree, we know the embedding of the root node and therefore we can derive the embedding
for the graph (G. We finally insert the root edge connecting the poles u and v of the root node
between the first and last edge of « and v, respectively, and get an embedding for the input
graph G that satisfies the requirements of a normal form.

How to Derive the Normal Form Efficiently

If v is a vertex in (G, a node in the SPQR-tree 7 whose skeleton contains v is called an
allocation node of v. The allocation nodes of v form a subtree 7, of 7" and if v is not a pole
of the root of the SPQR-tree, then the root of 7,, is the only node y of T}, such that v is not a
pole of y, otherwise the root of 7, is the root of 7. Note that the number of roots of the trees
T, is equal to the number of vertices in G. The number of non-root nodes is also linear in
the size of (G, because each node j appears as non-root node in at most two trees 7, and 7T,
where u and v are the poles of p, and the size of the SPQR-tree of a planar graph is linear in
the number of vertices of the graph. We can therefore determine the trees 7, by a traversal
of the SPQR-tree in linear time.

We use the trees T, to efficiently determine the final embedding emb/™"% of G. We may
assume that the embeddings emd?® are known, where emb/ is the projection of a normal
form embedding emb’/™! of G into Sk,.

We call a vertex v an inner vertex of Sk, if v belongs to Sk, but is not a pole of y. For
each inner vertex v of Sk, embﬁ”6 determines the cyclic enumeration of the edges incident
with v in Sk,. For each pole of 1, we have a cyclic enumeration of the edges incident
with v where the first and last edge are fixed. Therefore we have for each node . of T, an
enumeration of the children of y that corresponds to the clockwise enumeration of the edges
of Sk, incident with v.

The leaves of T,, are just the Q-nodes representing edges that are incident with v (except
for the special case if v is a pole of the root of the SPQR-tree). We determine a postorder of
the nodes in 7;, and restrict this order to the leaves of T}, (plus the root if necessary). This

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 175

gives us exactly the enumeration of edges incident with v as in emb/™%, becauseif ey, . . . , e
is the enumeration of edges incident with v in Sk, that corresponds to the embedding emb?™
then in emb/™* the edges of Spert(e,) are enumerated first, the descendants of Sy, (c,) second
and so on, which is also true for the post order enumeration of 7.

Therefore we get the following result:

Theorem 7.17. The normal form embedding emb’™ of G can be determined in linear time
if the axis and maximum edge weights and the SPQR-tree are known.

Proof. A postorder traversal can be done in linear time. Selecting and renumbering the
leaves can be done in the same time bounds (for each leaf of T, determine the number of
leaves of T}, with a smaller postorder number). [

Checking Clustered Planarity of the Final Embedding

At this point we have an embedding emb/™% of (i that is a normal form embedding. We
know that this embedding is a clustered planar embedding if and only if G has a clustered
planar embedding. We check this using Theorem [7.4] as follows:

We determine a spanning tree T of the dual graph of GG such that T restricted to the
sets [} (see Section is a spanning tree of (F;, E;) for each i. The existence of such
a spanning tree is equivalent to the statement that any (F;, F;) is connected. Therefore, by
Theorem the fact that T restricted to F; is a spanning tree of (F;, T;) for each i, is
equivalent to the statement that emb/™% is a clustered planar embedding.

Let F_; be the set of faces of weight : and E_; be the set of edges of weight i. Clearly, if
¢ is the maximum weight of an edge of G, then F_; = F; and F_; = E; and, in a clustered
planar embedding, such a (F_;, E_;) therefore has to be connected. If i is not the maximum
weight, then in a clustered planar embedding for each connected component C' of (F_;, E_;)
there is an f € F_; and an f; € F;,, (i.e. with a higher weight than f), such that f and f;
share an edge of weight i: If there is no such edge of weight > i, then (F}, E;) could not be
connected. As the maximum weight of an edge at the boundary of f is ¢, the weight must be
exactly 7.

We compute the spanning tree 77 as follows:

(1) Determine the connected components of (F_;, F_;) and the spanning trees 7 for each
of these components.

(2) For each connected component C' of some (F_;, E_;) with ¢ not maximum edge weight,
try to determine an f- € C and an f; ¢ of weight > i, such that f- and f; - share an
edge ec of weight 7.

(3) T'r consists of the edges of the trees T~ and the edges ec.

The computation steps obviously can be done in linear time. Regarding the correctness,
we show the following:

final

Proposition 7.18. Ty is a tree if and only if the given embedding emb is a clustered

planar embedding.

176 7. Clustered Graph Drawings

Proof. Using Theorem (7.4, we show that T is a tree <= for each i, (F}, E;) is connected.
We use the following auxiliary result.

Lemma 7.17. TF is a tree if and only if for each non-maximum weight i and each connected
component C of (F_;, E_;), the tree edge ec of weight i and with incident faces fc in C and
fi1.c with weight greater than i exists and for the maximum edge weight i in G, (F_;, E_;) is
connected.

Proof. T restricted to each component C' of some (F_;, E_;) is a tree, therefore T is a tree
if and only if T is a tree if we contract each such component C' to a node. After contraction
of these connected components, 7% is a forest and only the edges ec remain. Therefore T
is a tree <= for all but one component C, the edge ec is defined. For components C
of (F_;, E—;) with maximum weight, ec is not defined. Therefore T is a tree <> there
is exactly one connected component of the (F_;, E_;) of maximum weight, and for each
non-maximum weight i and each connected component C' of (F_;, E_;), ec is defined. [

Now we assume that T is a tree. We root T as follows: For each non-maximum weight
i in G and each connected component C' of (F_;, E_;), we take fc as root of T restricted
to C. The parent of f¢ is fi . For the maximum weight 7 we take any f € F_; as root. The
weight of the parent of f is at least the weight of f and the weight of the edge joining f and
its parent is the weight of f. Therefore T restricted to F; is a spanning tree of (F;, £;) and
therefore (F;, ;) is connected for each i. Vice versa, if for each i, (F}, E;) is connected then
we know from the discussion above that for each connected component C' of (F_;, E_;),
there is an edge e with weight 7 at the boundary of some face f € C and of another face f’
of weight > 7. We chose one such edge as edge of T and obtain a tree. 0

Complexity Analysis

An SPQR-tree for a given biconnected graph can be constructed in linear time as shown
by Gutwenger and Mutzel [2001]]. The recursive procedure to compute the maximum weights
needs linear time with respect to the size of the SPQR-tree and therefore also linear time with
respect to the size of the graph G. From Proposition|7.13| we know that the axis weights can
be determined in linear time.

The computation of the embeddings of the skeletons can be done in linear time. For the
P-nodes we need to sort the subsequences of the parallel edges, but as they are sorted by their
axis weights, this can be done in linear time, too. The face weights are determined by the
computed axis weights and the computation of the dominating paths can be done in linear
time by Proposition After obtaining a normal form embedding, we can check in linear
time, if it is clustered planar, which is true if and only if the clustered graph is clustered
planar.

We get the following main result:

Theorem 7.19. If G is a biconnected graph then we can check in linear time whether C' =
(G, T) has a clustered planar embedding and we can construct such a clustered planar
embedding within the same time bound.

7.4. Linear Time Planarity Testing for C-connected Clustered Graphs 177

Extension to Connected Graphs

We give a sketch of how to extend the algorithm to the case of connected graphs. A con-
nected, but not biconnected graph GG can be decomposed into its biconnected components in
linear time [Hopcroft and Tarjan, [1973b, Tarjan].

We select in GG an edge e of maximum weight and consider the block b, containing e as
root of the block tree of G, B. This defines, for every other block and each vertex b, a parent
P(b) of bin B.

The algorithmic idea now is as follows:

(1) We determine clustered planar embeddings emb; of each of the blocks b, such that the
parent P(b), which has to be a vertex, appears at the external face.

(2) Let v be the parent of a block b and ¥’ the parent of v, i.e., v separates b and b'. We
embed b into a face f of b’ that contains v as boundary vertex and has a weight that is
at least as large as the maximum weight of an edge in b or a descendant of b.

To guarantee that the weight of a face into which a block is embedded is large enough,
we redefine the maximum weights.

(1) We define weights of vertices. Note that the decision to embed a block b into a cer-
tain face f means that all descendants of b in the block tree are enclosed by the face
boundary of f. The weight of a vertex v is therefore defined as the maximum weight
of an edge that appears in a block that is a descendant of v in B.

(2) Let i be anode in the SPQR-tree of block b. The axis weight is defined as before. The
maximum weight of ;. is the maximum weight of an edge of \S,, or an inner vertex of
S, (i.e., a vertex different from the poles of).

(3) If maz, is the weight of an edge of S, then the dominating path of S, is the outer
1 g g [gp 1
path containing such an edge. If max,, is instead the weight of an inner vertex of .S,
then the dominating outer path is one that contains an inner vertex of .S,, of maximum
weight.

We can determine max,, in the same recursive manner as in the biconnected case. We
determine the weights of the vertices and the maximum weights of the skeleton edges and
select the maximum of these weights as maz,,.

The next step is to determine the normal form embeddings of all the blocks b. It is clear
that each vertex v appears as boundary vertex of some face of b that has a weight that is at
least as large as the weight of v. In particular, this is true for the parent P(b) of block b.
The weight of P(b) is at least the maximum over all vertex and edge weights of b. Therefore
P(b) appears at a face of maximum weight of b, this face can then be taken as external face
of b.

After determining the embeddings of all blocks, we embed each block b into the face of
the parent of P(b) of largest weight that has the vertex P(b) at its boundary. This defines the
final embedding. The time bound is the same as in the case of biconnected components.

178 7. Clustered Graph Drawings

7.4.5 Conclusion

We presented a linear time algorithm for c-planarity testing of c-connected c-graphs. Overall,
the computations of the normal form embedding and the underlying theoretical foundations
are quite complex, the algorithm therefore does not seem to be a good starting point for a
practical approach to solve the general case for non-c-connected c-graphs. Nonetheless the
concepts used for the characterization in Section [/.4.1/ might be useful, but as clusters need
not induce connected subgraphs, we have to take care about edge-region crossings in this
case.

Part Ill
INTERACTIVE GRAPH DRAWING

8. INTERACTION

The sum of being consists of the two systems of substantial
forms and interactional relations.

J. F. SMITH IN ENCYCL. BRIT. XXI. 412/1 (1886)

In the context of this work, interaction refers to the process in which a user interacts
with graphical representations of graphs, either to explore the underlying data or to produce
a nice representation, e.g., for publishing or presentation purposes. Interactive graph editing
and exploration facilities have become components in visualization systems from many ap-
plication areas. Depending on the application area, the task at hand, and the software tool
used, the interaction may range from simple changes of graphical attributes, as, e.g., colors
or vertex size, over the generation of a new layout, to the modification of the graph structure.

Interactive graph drawing means computing ‘iterative’ layouts on a changing graph, i.e.,
to draw a series of graphs GG; where the difference between subsequent graphs is small and
often consists only of a single vertex or edge addition. Interactive graph drawing is useful
in the context of iterative processes for information gathering and modeling, and there are
two main aspects associated with it. The first one is how to preserve as much as possible
the user’s mental map, i.e., the characteristics and landmarks of the drawing that the user
memorizes and exploits for orientation. Certainly, the new drawing should also offer a good
quality with respect to the layout aesthetics in the static case. The second aspect deals with
the interaction concept, i.e., the operations allowed for the user to change the representation
or data, including navigation methods to move from the view of one data subset to another.
An important requirement for these operations is that the user should be able to work in ‘real
time’ interactively without having to wait for results too long. The recomputation should
therefore happen efficiently, for example by reusing parts of the previous layout instead
of creating the new one from scratch. However, there are also cases where the sequence
of all changes is known in advance; then the layouts can be computed in a preprocessing
step (offline drawing) and the change information can be used to improve the quality of the
intermediate layouts.

In the literature, the term ‘dynamic graph drawing’ is used quite frequently in a meaning
similar to the definition of interactive graph drawing here. As dynamic changes in graphs do
not require user interaction, but may for example be the result of a change in the data, the
concepts are not equivalent. Nonetheless they are closely related and the resulting scientific
questions have a large overlap, we therefore discuss the related topics together. A restricted
scenario is considered in incremental graph drawing, where a layout for a graph is computed
by adding vertices one at a time.

Even though interaction is an additional requirement both for the software tool and for the
layout approach, well-designed interactive navigation techniques may reduce both the com-

182 8. Interaction

putational and visual complexity. Interactive visualization coupled with analytical methods
is therefore employed in practice to support the user in complex data exploration and deci-
sion making processes, and the quality of the realization will have significant impact on the
success of these processes. Munzner [2000] states:

Interactivity is the great challenge and opportunity of computer-based visualiza-
tion.

Further important applications, besides data exploration, include the design of software
or business processes in modeling tools. There, the user memorizes the overall architecture
and expects the system to preserve both global and local layout characteristics to a certain
extent.

Clearly navigation and interaction issues are closely related, as navigation needs user in-
teraction and results in changes of the data representations. The treatment of interaction in
this thesis is not intended to completely cover all corresponding issues, but to treat some of
the main topics with regard to the resulting requirements for graph drawing solutions, dis-
cussed using exemplary interaction use cases from practical applications. Before we describe
these use-cases in Chapter [0 we give an overview on the relevant interaction and navigation
concepts and techniques in this chapter.

8.1 Interaction Concepts

There are several general concepts and terms related to interaction which categorize the op-
erations on the user interface, the graph representation, and the graph layout. These concepts
concern the user’s underlying intentions and goals when performing an operation, and also
the resulting events.

The development of a taxonomy that describes the design space of interaction techniques
is still a question of current research. |Y1 et al.|[2007]] identify seven categories of interaction
techniques that they propose as a basic framework:

e Select: Mark something as interesting.

Explore: Show something else.

Reconfigure: Show different arrangements.

Encode: Show different representations.

Abstract/Elaborate: Show more or less detail.

Filter: Show something conditionally.
e Connect: Show related items.

Lin and Eades| [[1995]] define the requirements of what they call a Diagram User Interface
(DUI) as:

8.1. Interaction Concepts 183

e Readability, representing rules such as minimization of crossings, symmetry, and uni-
form distribution of vertices.

e Conformance to the syntax and semantics of the application’s diagrammatic represen-
tation. The term ‘conformance criteria’ denotes the rules that define how the layout
conforms to the application.

e Controllability, which denotes the user interaction, for example placing vertices to the
center, or restricting the drawing width. The corresponding rules are called ‘preference
criteria’.

e Reasonable response time, i.e., the interactive system should not exceed the user’s
tolerance; therefore a computationally efficient implementation is needed.

Clearly, the requirements on the appearance of the user interface and also the response
time may also vary depending on the role of the user. Parameter setting interfaces to influence
the layout algorithm, and interaction techniques to modify and represent constraints should
be adapted to expert and non expert users. Often multiple views show different aspects of
the same data set at the same time. Linking the corresponding views, such that a change in
the representation in one of them is adopted in others, as, e.g., selection of a color for a data
subset, helps in improving the knowledge gain and at the same time reducing the confusion
from multiple simultaneous views on the data. Also brushing techniques, like simultaneous
selection in all views, can improve the value of multiple views in the analysis task.

The most basic conceptual distinction for layout operations is given by |Lin and Eades.
They distinguish between two layout operations: ‘layout creation’, i.e., creating a layout
from scratch, and ‘layout adjustment’, i.e., updating an existing layout after modifications. In
Lin and Eades [1995]] and Misue et al. [[1995]] the term layout adjustment is used to describe
the necessary update of a drawing after a change performed by either the user or the system.
Such changes may for example be addition or deletion of objects, or also the modification
of the layout due to a change in the data, or based on personal preferences. The update
then is required to beautify the drawing again or to guarantee that the drawing conforms to a
specified drawing convention.

There is a large number of potential user actions that may trigger a change in the layout,
involving the following:

e A change of the graph structure, including addition or removal of objects, edge split-
ting, or changing the direction of an edge. A special case of this change occurs when
an expand-and-collapse mechanism is used for navigation, allowing to expand/col-
lapse groups of vertices. Besides direct manipulation over the graph representation,
the change may also be caused indirectly, for example with a filter operation that elim-
inates graph objects from the view or from the database.

e A change in the cluster structure, either by moving vertices or by adding or removing
clusters.

e A change in the data annotations, e.g., adding edge weights that have to be reflected
by the layout method.

184 8. Interaction

e A change in the object semantics, e.g., changing the type of a vertex or edge. In UML
class diagrams for example, changing the edge type from association to generalization
should result in a modified layout that reflects the new inheritance structure.

e A change of the constraint set, by either adding/removing a constraint or modifying an
existing one.

e A manual change of the layout. The user may either want the layout to remain oth-
erwise unchanged in this case, or allow the layout method to adapt the layout to the
change, e.g., by repositioning neighbors of a moved vertex or by creating the space
needed around the new position.

e A change in the abstraction level of detail by a semantical zoom operation may add/re-
move additional objects, data annotations, or both.

Interaction thus occurs to directly or indirectly manipulate (visual) representations, and to
modify or enter data. It may also be used to give the system hints to achieve good results in an
optimization process [do Nascimento and Eades, 2002, 2005, |2008]]. Conversely, the system
should give hints to the user where important patterns (regarding semantic or structure) are
hidden in the diagram. An interesting question in this context is if even in the case when
a change in the graph can be automatically animated, user input should be at least allowed:
It may be beneficial for the knowledge transfer to allow or even require some kind of user
interaction guiding the animation. The user’s active participation may help to support the
knowledge discovery and the development of a mental map regarding the structure of the
data.

An aspect that is especially interesting for interactive graph drawing is the influence of
performance issues on user acceptance. When only static representations have to be com-
puted just once, for example for metro map layouts, performance issues are of minor sig-
nificance. In interactive environments, however, it is very important to have an acceptable
response time, and for some applications even a real time environment is needed. Even
though several methods allow to handle even large graphs within a few seconds with ac-
ceptable layout quality (see, e.g., Section [4.2.3)), interactive graph drawing poses a number
of problems that need to be solved. Multilevel drawing approaches for example start from
scratch, that is they do not build upon the existing layout, and can therefore not easily be
used to preserve a drawing.

A general goal for layout changes is stability, i.e., the preservation of layout characteris-
tics which allow the user to orient himself in the drawing. However, there are no clear rules
how to exactly specify and achieve stability. In the following section we present and discuss
existing approaches. Note that it is also possible to use different views to either find ‘the’
view that suits best the visualization needs or to explore different and unrelated characteris-
tics of the data. As the idea is to create diverse and unrelated layouts, there is no need in this
case to try to achieve stability.

8.1. Interaction Concepts 185

Stability and the Mental Map

I end here as I did in 1981: cognitive maps may be impos-
sible figures.

BARBARA TVERSKY, 1992

When graphs or their representations change over time, we would like to adapt the draw-
ing in a way that allows the user to keep his orientation and to experience the change as
a smooth transition from one drawing to the next. This goal is commonly denoted by the
terms stability and mental map preservation. See Figure As the cognitive processes
underlying the perception of a diagram are only understood to a small part, there is no exact
definition for the mental map, and it is even unlikely that there ever will be one [Tversky,
1992]]. Clearly, the main characteristics of the mental map may differ individually and de-
pend on several further aspects, therefore no general specification of drawing constraints can
be given to guarantee mental map preservation in all cases.There are however attempts to
capture some of the main characteristics which we will describe next.

Disruption of the mental map can be partially prevented by using some kind of animation
(see Section [8.3.1), but when the change in the structure or the layout is too large, this
won’t help much. Instead, the new layout should comprise some characteristics that can
be matched by the user with characteristics from the previous drawing. This might either
be characteristic structures of the graph drawn in a predefined and similar way, or anchor
landmarks that allow orientation. Even though stability is a major issue in interactive graph
drawing, mainly practical algorithms are published, and only a few theoretical treatments
and empirical evaluations deal with the mental map [Lin and Eades, 1995, Misue et al.,
1995/ North, |1996, Nesbitt and Friedrichl 2002, |Purchase et al., 2007, [Purchase and Samra,
2008|]. This is at least partially due to the fact that a thorough treatment of these problems
needs to involve perceptional, psychological, and application specific issues in addition to
graph drawing considerations. Experimental studies are also difficult to design properly, and
labor-intensive to conduct.

North| [1996]] defines the incremental layout problem as:

Given a sequence of graphs Gy, Gy, Go, ..., G, interpreted as successive ver-
sions of a graph G, find a ‘good’ sequence of Layouts L, L1, Lo, ..., L.

The question here is, how do we define ‘good’? North gives a set of desirable character-
istics and proposes the following order of importance:

e Consistency: The adherence to layout style rules.
e Stability: The preservation of the mental map.

e Readability create a pleasing and easy to read diagram.

North! [[1996] justifies a higher priority for consistency by the assumption that fundamen-
tal changes in the graph structure may be expected to cause large changes in layouts. Even
though this is a reasonable assumption, it is difficult to define a mapping of the degree of
fundamentality of structural change to the degree of layout change. Moreover, in the context

186 8. Interaction

(b)

(© (d)

Figure 8.1: Effects on the layout by a change in the graph structure: (a) A graph drawn in orthogonal style
using the GIOTTO approach, with a manually added vertex (red vertex). (b) The layout recomputed
without any layout preservation. Orthogonal ordering, topology, and even the vertex sizes are changed.
(c) Full preservation of the previous layout. (d) A balance between minimum change and high layout
quality, placing the new vertex close to his neighbors, and minimizing edge bends at the expense of an
edge crossing.

8.1. Interaction Concepts 187

of interactive graph drawing applications it is questionable whether the user is always aware
of the fact that he is causing a fundamental change of the structure in a graph theoretic sense
by a simple operation.

As most important factors for stability characterization |[North| identifies position (geom-
etry) and order (topology), both as absolute properties and relative to a logic or geometric
neighborhood. He suggests that some kind of ‘age’ or ‘memory’ could be employed to keep
track of recent changes and to prefer recently changed graph objects and their neighborhood
for further movement in subsequent changes. In addition, North proposes that edge routing
stability is less important than vertex stability, as edges are traced on the fly to discover con-
nections. This is however not a reasonable assumption for application areas where edges and
their routing may be part of characteristic substructures with established drawing styles, as
the alignment of the main pathway in a biological network or the representation of a network
motif. In contrast, Nesbitt and Friedrich| [2002] propose to highlight key structural edges,
to improve the perception of either semantically important or perceptually dominant edges.
Nesbitt and Friedrich suggest that the mental map of information provided by a graph draw-
ing is very dependent on the perceived form or structure in the overall layout and investigate
the application of perception principles for animation purposes.

The most simplistic concept of layout preservation clearly is to keep the previous layout
fixed. This may quickly lead to bad layout quality even after a few graph changes, and does
not allow modification of the layout to adhere to drawing conventions that might require
updates from the previous layout. Even ‘small’ local changes like the addition of a vertex
may be in conflict to the optimization goals in a way that makes a global rearrangement
necessary.

Papakostas and Tollis| [[1996] propose several scenarios for interactive orthogonal graph
drawing for 4-planar graphs, where only elementary changes to the graph structure are al-
lowed:

e No-change: the previous layout is preserved.
e From-scratch: the layout is recomputed for the updated graph.

e Relative-coordinates: the general shape should stay the same, but small changes are
allowed.

e Full-control: the user is in control of placing the new vertex or edges.

The most interesting of these cases in the context of this work is the relative coordinates
scenario. Depending on the definition of ‘small changes’, it comprises all aspects of layout
updates discussed here.

Misue et al.| [1995] and |[Eades et al.| [1991] propose orthogonal ordering, clusters, and
topology as the layout properties that should be maintained to preserve the mental map.
Orthogonal ordering captures the idea to preserve the relative ordering of point pairs in both
dimensions — if v is southeast of w in the first drawing, it should remain there in the new
drawing. Clusters reflect the idea of proximity — what is close together should stay close
together, and topology preserves the sense of inside and outside curves, typically captured
by the planar embedding. Based on these properties, Diehl and Gorg [2002] formally define

188 8. Interaction

metrics to measure how close the mental maps of two given layouts are. They call the
resulting class of metrics mental distances defined as follows: Let Layout be the set of all
layouts.

Mental Distance [Diehl and Gorg, 2002] Let [;,/> € Layout be two layouts. Then the
function A : Layout x Layout — R is a metric for how good I, preserves the mental map
of [;. In particular A(ly,l3) = 0 means that /; and [, have the same mental map.

Diehl and Gorg| note that such a metric does not need to be restricted to the layout of the
common subgraph in case of a dynamic graph operation. As examples for mental distances
they define and implement within their approach a Euclidean mental distance that is defined
as the sum over all vertices of the Euclidean distances between the positions of a vertex in
the two layouts. This is not a very adequate measure in practice, because it does not take
into account the amount of move for each single vertex, and it also completely ignores that
vertices may move together in a way that does not distort the mental map. The orthogonal
mental distance is defined to be proportional to the sum of the number of all changes in the
orthogonal ordering between each pair of vertices in x and y direction. Frishman and Tal
[2008], too, propose vertex displacement as a metric to measure dynamic stability. [Lyons
[1992] proposes an approach called cluster busting, which aims at distributing vertices more
evenly while preserving the shape of the overall layout. This concept use the idea of a ‘shape’
of a set of vertices, ignoring the edges. A difference metric based on the sum of distances
that the vertices have moved as well as a metric based on the clockwise geometric ordering
of the vertices are proposed. Further metrics are surveyed in Branke| [1999]. Such metrics
are rather basic indicators for changes in the layout and do not cover well mental map issues
in real-world applications, where drawing conventions and semantic information may be
important aspects. Freire and Rodriguez| [2000] investigate the preservation of the mental
map for interactive navigation using the focus+context approach. This approach relies on
frequent changes of the viewpoint and therefore is susceptible to a disruption of the user’s
orientation. They classify approaches for mental map preservation according to three factors:
the predictability of navigational actions, the degree of change from one view to the next,
and the traceability of changes once they occur.

Bridgeman and Tamassial [2000] propose a framework for difference metrics for defining
and validating metrics to measure the difference between two drawings of the same graph.
They define the following six metric categories:

e Distance: metrics based on the distance between points or the distance points move
between drawings.

e Proximity: metrics based on the nearness of points and the clustering of points accord-
ing to the distance between them.

e Partitioning: metrics based on partitioning points according to measures other than
proximity, e.g., identifying groups that have the same relative position in both draw-
ings.

e Orthogonal ordering: metrics based on the relative angle between pairs of points.

8.1. Interaction Concepts 189

e Shape: metrics based on the sequence of horizontal and vertical segments of the
graph’s edges.

e Topology: metrics based on the embedding of the graph.

This categorization builds upon and extends previously suggested criteria: Proximity,
orthogonal ordering, and topology are the criteria already suggested by Misue et al. [1995]]
and |[Eades et al.|[1991]], distance was suggested by Lyons| [[1992]], and shape tries to cover
edge routing in orthogonal drawings similar to the approach by Brandes and Wagner [[199§].
Bridgeman and Tamassial [2000] perform an experimental study and conclude that orthogo-
nal ordering achieved the best performance, but is far away from optimal in capturing layout
distances based on human judgment. As a further main result they suggest that combinations
of these metrics may perform significantly better. In Bridgeman and Tamassia [2002], an ex-
tended experimental study is performed that investigates similarity for orthogonal drawings.
Rotation issues are taken into account, and also the magnitude of difference is assessed by
evaluating response times on comparison tasks.

Those metrics cover the changes between a pair of drawings, but there is no direct exten-
sion to a series of drawings, as in the offline drawing scenario, besides the pairwise evalua-
tion between pairs of subsequent drawings. An additional aspect that is not covered by such
metrics is the case where instead of performing elementary operations for a graph change,
graphs are combined to form a union graph, as for example when a package vertex in a
software diagram is expanded by the graph that represents the contained structures. Due to
drawing style rules or rules based on the semantic, changes in the layouts might occur that
are perceived as quite natural and do not disrupt the user’s mental map.

Strategies to achieve a mental map preservation include either to reuse the given layout
and adjust it at the location of change, or compute a new one with constraints that guarantee
a certain stability. A lot of publications discuss approaches to preserve certain characteristics
of a given layout during the computation of a new one (e.g., [Bridgeman et al.,|1997, | Brandes
and Wagner, 1998, Brandes et al., 2002, Dwyer et al., [2009]]), a few complexity results on
underlying problems exist (e.g., [Brandes and Pampel, |2008]]). Freire and Rodriguez| [2006]]
discuss factors that affect the mental map preservation in interactive graph-based interfaces.
For navigation in interactive Focus+Context graphs they identify three factors that affect the
mental map: the predictability of navigational actions, the degree of change from one view
to the next, and the traceability of changes once they occur.

Preservation of the mental map is not only necessary when graph changes occur, but also
when a number of graphs need to be compared. In this case, use of constraints may allow the
generation of an appropriate mental map that facilitates comparison. Sometimes two or more
graphs with only small differences have to be displayed consecutively or simultaneously,
e.g., when graph sequences represent time series, or several data sets have to be compared.
In such cases, layouts that allow to match conserved characteristics and parts of the graphs
will facilitate the analysis. See also Sections [3.2.1]for a use-case from biology.

Interaction operations may also include manual editing of the layout, introducing addi-
tional constraints for a subsequent automatic drawing to preserve them.

190 8. Interaction

8.2 Navigation

It is always wise to look ahead, but difficult to look further
than you can see.

WINSTON CHURCHILL

As the amount of information to be analyzed and explored gets larger and larger, it is
impossible to visualize all data items at the same time. Practical applications may lead to
hundreds of thousands of vertices. Even if it would still be possible to physically display
medium sized data sets, the visualization would be of minimal use, as dense and cluttered
layouts with a large number of overlaps and edge crossings are unavoidable for most real-
world data. Hence there is a need to navigate through the data with only a moderate number
of data items displayed at a time.

Navigation is sometimes specified as the change of the viewpoint or the position of an
object in a scene (e.g., Munzner [2000]). We extend this specification to take into account
that for huge data sets there is no pre-specified scene for the whole data set, and we would like
navigation to include also the exploration of different parts of the data. Navigation concepts
allow to move from a visualization of a subset of the data, the focus region, to a different
visualization either of the same or of a different subset of the data. In the most basic case,
these subsets will be closely related, for example in expand-and-collapse approaches one of
the subsets will contain the other. A view on the focus region is often complemented with
additional contextual information, as for example an overview window that shows a larger
part of the data or an abstraction. Efficient navigation methods have to be combined with
concise visualizations for the focus region and smooth transitions at region changes to allow
a simple, fast, and valuable exploration process. Use cases for such an exploration process
are not restricted to the case where a specific data item of interest has to be retrieved, but can
also include a knowledge discovery process, e.g., to gain information on the characteristics
of a data set or on the contained structural relations. We give an overview on the goals and
concepts for interactive navigation in this chapter.

8.2.1 Goals for Navigation

Navigation should allow to explore and access the data without much effort. A key issue
to achieve this is the orientation of the user within the data space. During an exploration
process the user needs to have information about the location of the currently displayed data
subset in the whole data set, and about its relations to the hidden parts of the data. This can
either be done by using a focus+context approach which displays some kind of contextual
information in addition to the data in focus, or by using a strict classification of the data
for navigation. Navigation can be done directly along the structural information, e.g., along
edges or paths, or over additional classification information, e.g., a hierarchical clustering
structure.

A commonly accepted goal for navigation in graphs is stability, i.e., during navigation
the drawing should not change too much. Stability of the drawing is however not the only
aspect of stability for navigation. Even when a fixed layout of the whole graph is preserved
during navigation, a change of the focus region might distort the user’s orientation. Changing

8.2. Navigation 191

the viewport in a navigation process should therefore not result in a ‘jump’ but in a smooth
transition.

A simple idea to cope with the layout stability problem would be to provide a fixed
drawing of the graph and to show only small parts of it, but such an approach won’t work
in general, as the resource requirements will be too large, with respect to both computation
time and space. In addition, the necessary structural information won’t be available, either
because it cannot be retrieved as a whole, or because the graph structure itself is generated on
the fly corresponding to the user’s input, e.g., by applying filtering techniques on data anno-
tations during exploration. Approaches with static precomputed layouts also interfere with
the idea of interactivity, where the user can select and modify views and also add constraints
to adapt a layout to his needs.

A second goal for navigation is that the user is guided so that he can easily identify
promising paths to follow. This requires that task information and value metrics are inte-
grated in the objective function of the navigation approach.

8.2.2 Basic Concepts and State of the Art

There are a number of general concepts and techniques to handle navigation requirements.
According to Eades|[2010] only two basic operations need to be supported for the navigation
of large graphs: Drill down and drill up, meaning expanding groups of vertices and collaps-
ing them again. Eades states that the drill down operation should be triggered by the user,
whereas the drill up should be automatically performed by the system. Such a concept may
however lead to problems when multiple focii and their relation may be of interest. These
two operations also only cover a part of the navigation issues: the change of the graph in
the focus region with regard to an abstraction concept. Navigation concepts also need to
consider additional aspects like the representation of contextual information or a change of
the viewport. In the following, we will shortly discuss related techniques, for a detailed dis-
cussion see, e.g.,|Shneiderman and Plaisant| [2009]], Cockburn et al.| [2009], /Aigner, Herman
et al. [2000]].

Overview+Detail In an Overview+Detail approach, an abstraction of the whole data set,
e.g., a bird’s eye view, is visualized complementary to a detailed view of a data subset or re-
gion of interest, with a spatial separation between both views. A navigation operation allows
to jump not just to a neighboring data set but to far regions, possibly disrupting the users
orientation. This problem can at least partially be remedied by using animation techniques,
zooming out before a move and zooming in to the focus region again.

Focus+Context Detail information and contextual information are visualized together in
a single continuous view.

Pan-and-Zoom Zooming allows visualization of focus and context with a temporal sep-
aration, i.e. users magnify a subgraph for detail (zoom in) and demagnify for context (zoom
out), panning allows to move the viewport.

192 8. Interaction

Semantic zooming Whereas geometric zooming just changes the size of the viewport,
semantic zooming changes the shape or context in which the information is presented. The
level of detail information for objects is changed, e.g., by expanding the depiction of a bio-
logical reaction from an edge to a structure that also includes co-substrates and by-products.

Filter and Select Filtering allows to suppress the visualization of objects based on rules.
Selection allows to assign a subset of objects a priority status, e.g., to highlight them or
define them as targets for further action.

Distortion Spatial distortion techniques allow focus regions to occupy a larger area, for
example fish-eye views magnify the focus region and display it within its surrounding con-
text, which is distorted relative to the distance to the focus region.

According to Shneiderman and Plaisant|[2009], there are three main features for naviga-
tion interfaces:

(1) rapid situation awareness through effective overviews,
(2) reduced number of actions to accomplish tasks,
(3) prompt, meaningful feedback for user actions.

There are several reasons for problems in navigation approaches: Panning over long
distances is an annoying task that may make the user lose orientation. Zooming out to avoid
this problem may hide details that are landmarks for orientation, especially when a path
that is tracked is routed close to other vertices and edges, or has many crossings. Link
sliding [Moscovich et al., 2009] allows to simplify the tracking by constraining motion to a
single path, automated zooming can help to keep a balance between the moving speed and
the zoom level [Igarashi and Hinckley, 2000]. Such techniques may also be enriched by
using information on priorities for the objects (defining landmarks) and navigation paths to
remedy a second problem: Often the focus region does not contain information on the data
outside the focus region, and how the focus is embedded in it. A natural question then is
how to represent landmarks within the focus view. A basic information that is of interest for
navigation is the topological neighborhood of an object in focus, which can be dynamically
brought into the focus to help identifying valuable navigation paths [Moscovich et al.,|[2009].

Early work for online animated graph drawing was done by Huang et al. [1998] and
Eades et al.| [1997]. Here, the scenario is that only small parts of the graph may be known
and only a certain part is displayed on the screen. Navigation operations result in a transition
from one subgraph to the next, which only differ by a small number of vertices between the
two successive visible parts. A change of the visible part should then result in changes of
the drawing that are perceived as a smooth transition, preserving the users mental map. The
exploration of a graph is performed by moving from one focus vertex to the next, and the
subgraph visualized is computed from the neighborhood of the sequence of recently visited
focus vertices. A force-directed algorithm is modified to visually separate the neighborhoods
of the focus nodes, using gravitational repulsion forces.

8.3. Interactive Graph Layout 193

Eades and Huang [2000] present a force-directed model that allows to navigate clustered
graphs. They try to restrict vertices to a cluster region by introducing a virtual node for each
cluster, which is connected by virtual edges to the vertices of the cluster. Spring forces are
then divided into internal, external and virtual springs to reflect the clustering structure.

Abello et al.| [2004] use a technique that they call compound-fisheye view in combina-
tion with tree-maps to navigate large graphs. Instead of using a geometric distortion, the
compound-fisheye uses a hierarchical clustering of the graph and displays regions far away
from the focus with coarser representations from the cluster tree. |Abello et al.| [2006] present
a large scale graph visualization system where the user navigates by iteratively expanding
clusters. The authors use a force-directed algorithm [Barnes and Hut, 1986] for the ex-
panded subgraph’s layout, but their approach allows that an arbitrary layout algorithm can
be used.

Gansner et al.|[2005]] propose a slightly related ropological zooming method to visualize
large graphs, including also an animation scheme for transition between successive views.
They use a coarsening similar to the multilevel paradigm, where the merging is done based
on the neighborhood in a proximity graph in addition to the graph’s edges. After selection
of a focal vertex, a graph representation is computed such that the focus area is represented
in detail (i.e., using lower levels in the coarsening hierarchy), whereas more distant parts
are shown in less detail. As the focus area would be very dense with such an approach, a
distortion is used to get a better density distribution in the final layout. |Auber et al. [2003]]
present an approach for the interactive navigation of small world networks, where the net-
work is decomposed into a hierarchy of highly connected sub-networks. A force-directed
layout algorithm is applied both in overview and detail visualizations.

8.3 Interactive Graph Layout

The changes to a graph or its underlying model, performed by either the user or the system,
have to be reflected in the visual representation of the model. Not only need addition or
deletion of objects be reflected by adding or deleting corresponding representatives, but also
the layout of the graph needs to be adapted to respect the change in the graph structure or
semantics. The distances of the objects for example may reflect the strength of the relation
and strongly connected regions should be grouped close together in the layout. The addition
of an edge might therefore connect regions that then have to be drawn near each other. The
amount of change in the layout should be minimal with respect to the user’s orientation
within the diagram. The corresponding metrics were already discussed in Section[8.1] in the
following we describe existing strategies that try to observe them for layout computation.
Already a lot of strategies exist for the mental map preservation, some of which are based
on a specific layout method, whereas others are realized by independent techniques. [Eades
et al. [1991]] are the first to describe and formally discuss the problem of keeping the user’s
mental map in an interactive drawing system. Their approach mainly aims at preserving
the ‘shape’ of the diagram, modeled by proximity, orthogonal ordering, and topology. They
state that in this case the user’s mental map is hardly disturbed at all, and present several
simple techniques for vertex overlap removal and focus representation. As already stated
in Section [5.1.2] one of the first works on stability in automatic graph drawing was the

194 8. Interaction

publication of Bohringer and Paulisch [1990]. They call the issues related to user-defined
constraints structural stability, and in addition also propose an approach to achieve stability
in incremental layered drawings through constraints. For this dynamic stability problem,
constraints are automatically generated after each automatic layout to fix the layout structure,
and those constraints then are weakened in the vicinity of a subsequent graph change.

Diehl et al.|[2001] and |Diehl and Gorg [2002] consider offline drawings of a sequence
of graphs, i.e., when all changes are known in advance. In Diehl and Gorg| [2002], general
adjustment strategies independent of a layout method are described. Diehl et al. [2001]
describes foresighted layout, where a global layout for the sequence of graphs is computed
based on the supergraph that consists of the union of the sequence graphs. To avoid unused
space for graph objects that only occur in few steps, objects with disjoint life cycles are
grouped together and may occupy the same layout position.

Storey et al.| [[1999] adapt a fisheye-view based technique to help in preserving the mental
map. Independent of a specific layout method, their SHriMP technique grows a vertex
of interest by pushing neighboring vertices outside. Storey et al. describe how to adapt
the moves of the pushed vertices to maintain the stability criteria of Misue et al.| [1993]]
separately. [Lee et al. [2006b] integrate the distance metrics of Bridgeman and Tamassia
[2002]] into the cost function of a simulated annealing approach.

There is already a fair amount of work concerned with mental map preservation for or-
thogonal layouts. Besides the embedding, the bends on the edges and the angles between
consecutive edges at a vertex are of major influence. Miriyala et al.| [1993] discuss edge
routing in orthogonal drawings for use in an incremental orthogonal drawing scenario and
give a heuristic A* algorithm that avoids vertex overlap and tries to minimize bends, edge
lengths, and crossings. In |Papakostas and Tollis| [1996], |Papakostas et al. [1997], and |Pa-
pakostas and Tollis [1998]] update techniques for orthogonal drawings are discussed. For
several scenarios, a discussion of the different insertion cases is given in detail, and the per-
formance is analyzed and evaluated. From a practical point of view, these techniques may
quickly lead to a decline in layout quality, and may not allow to maintain compliance with
additional constraints. Interactive Giotto [Bridgeman et al., [1997] is an algorithm for inter-
active orthogonal graph drawing within the No-change Scenario of |Papakostas and Tollis
[1996]. Brandes and Wagner [[1997]] propose a Bayesian paradigm, with a cost model that
allows a trade-off between optimization criteria and the minimization of changes. |Brandes
and Wagner| [1998] try to cover edge routing preservation in a computation of an orthogo-
nal shape for 4-planar graphs. They suggest to use a penalized flow network that aims at
preserving bend and angles. Biedl and Kaufmann [1997] propose an incremental drawing
approach for orthogonal grid drawings of arbitrary graphs that works in linear time and guar-
antees upper bounds on the number of bends and the size of the grid, at the cost of a large
number of crossings. [Brandes and Wagner [1998] develop an approach for the dynamic or-
thogonal grid drawing of 4-graphs that preserves the embedding and penalizes changes in
the orthogonal shape, leading to a weighted trade-off between the total number of bends and
the number of changes. This approach is extended in Brandes et al.| [2000a] to cope with
high-degree vertices. Brandes et al.|[2002] give an orthogonal drawing algorithm that uses a
drawing ‘sketch’ of the graph as input. The algorithm produces an orthogonal drawing with
few bends in the Kandinsky model and tries to preserve the general appearance of the sketch.

8.3. Interactive Graph Layout 195

Frishman and Tal [2004] describe an algorithm that allows the dynamic drawing of clus-
tered graphs, where after each graph update also the corresponding layout is updated. To
minimize the change in the drawing, placeholder vertices may be inserted after vertex dele-
tion to stabilize the cluster size, and the movement of ‘old’ vertices and clusters is restricted.

Wybrow et al.| [2005] describe an efficient method to incrementally compute minimal
length object-avoiding poly-line connector routings, allowing the use in an interactive envi-
ronment. Dwyer et al.|[2006b]] show how an edge routing approach can be integrated into a
force-directed approach using stress majorization.

Based on force-directed layout techniques, Frishman and Tal| [2008] propose an algo-
rithm for large graphs that uses a modification of the algorithm from Fruchterman and Rein-
gold [1991] for execution on a GPU. Their measure of dynamic layout quality consists of
the average displacement of vertices, and each vertex is assigned an individual convergence
scheme with a pinning weight that controls the allowed displacement.

Cohen et al.| [1992] describe a framework for dynamic drawing of planar graphs. Their
model is based on a set of queries and updates that can be performed on an implicit repre-
sentation of the drawing. These operations include drawing queries that return the drawing
of a subgraph and update operations like vertex insertion and deletion and replacement of
an edge by a graph. Cohen et al. distinguish between two types of quality measures in
dynamic graph drawing with an inherent tradeoff in-between: aesthetic properties that have
to be maintained, and the space-time complexity of queries and updates. A solution to the
dynamic graph drawing problem then is an algorithm that maintains a drawing satisfying a
static and a dynamic drawing predicate under a sequence of operations. The static drawing
predicate expresses the aesthetic properties, e.g., ‘The drawing is planar, straight-line, grid,
upward, with O(n?) area’. The dynamic drawing predicate expresses similarity properties
maintained between subsequent drawings, ‘The drawing of a subtree is not affected by the
update up to translation’. Techniques with poly-logarithmic query and update time are given
that maintain drawings which are optimal with respect to sets of aesthetic criteria for rooted
trees, series-parallel graphs, and planar st-digraphs.

8.3.1 Animation

Animation is used to allow a smooth transition from one layout to the next in an interactive
or dynamic drawing context. Vertices are moved to their new position through a sequence
of intermediate images called frames. The changes over consecutive frames then should be
perceived as movements of the vertices by the human brain. A direct linear interpolation is
the most simplistic form of such an animation. Clearly, such an animation is in general not
a good choice, as it may introduce a large number of crossings during the move and also
multiple vertices may occlude each other when they pass through a single position at the
same time. An animation needs to communicate changes in the graph structure and move
prominent substructures during the move in a way such that they stay recognizable. Such a
behavior is in conformance with the common fate law, which states that objects that move
together are perceived to also belong together. Besides layout issues, techniques like fade-
in/fade-out can be used to highlight changes in the graph, so that the observer has some time
to recognize the change. A simple principle to help the user track the layout transformation
is slow-in slow-out animation, where near the beginning and the end of the movement more

196 8. Interaction

frames are used. The increased time to accelerate and slow down the movement helps in
recognizing transition paths.

Friedrich and Eades| [2002]] and |Friedrich and Houle| [2001]] describe models for good
animations and techniques for smooth transformations between a source and a destination
layout. The approach by Friedrich and Eades|is based on the idea that an animation of sub-
structures can be interpreted by the human brain as the movement of a three-dimensional
object in space. The algorithm first divides the animation into a series of translation, rota-
tion, scaling, and shearing operations. Applying an interpolation of these operations to the
original graph provides a smooth animation to the final drawing. Some layout styles require
special animation methods. The movement of vertices on a layer in a radial drawing to a
new position may need a specific treatment to avoid a confusing animation. For example,
the linear movement between the old and the new position on the same ring may mean that
the vertex has to leave the ring first and then return to a position on the ring later. Two inde-
pendent vertex movements may cross each other without need. The transition paths of many
vertices may cross in the middle of the display causing the user to lose track of the different
vertex paths. |Yee et al. [2001] used a transition based on polar coordinates to avoid such
problems. They state two transition constraints to maintain consistency between the old and
the new layout, where a spanning tree is used as underlying structure. [Pavlo et al. [2006]
presented an approach that also allows to smoothly change to a spanning tree that also may
be built from a different set of edges.

9. APPLICATIONS

Biologists currently waste a lot of time and effort in search-
ing for all of the available information about each small
area of research.

GENEONTOLOGY.ORG

We have seen several visualization approaches for data from various application areas
in the previous sections. In practical applications, these visualizations need to be comple-
mented with analysis methods, for example data clustering and classification, to structure
the data and filter the substantial information out of complex data sets. To communicate this
information in an appropriate way to humans, the visualizations have to be embedded in an
interactive framework that supports the user’s workflow and guides him during the knowl-
edge discovery process. This process then can be directed by the user based on his expert
knowledge, where decisions are not feasible for fully automatic analysis. The development
of appropriate methods and tools is a challenge for current research in several application
domains. The European Innovative Medicines Initiative (IMI) states that ‘Gaps in informa-
tion technology, and the lack of platforms to analyze large amounts of information in an
integrated and predictive way is a major pre-competitive barrier in the current biomedical
R&D process’ [IMI].

As we will see in the following examples, the intuitive data representation combined with
easy to use navigation methods may sometimes be more important than sophisticated graph
drawing methods alone. We show applications from two different areas, biology and chem-
istry, that use interaction and drawing constraints to support the user’s knowledge discovery
process. Section 9. 1| presents Scaffold Hunter, a tool for the analysis of chemical compound
databases, Section presents the integrative visual analysis of protein domain interaction
networks, and Section[9.3|presents an approach to combine 3D and 2D structure analysis for
protein residue networks.

9.1 Scaffold Hunter

The search for a potential drug over large compound databases can be a tedious challenge,
as the behavior and impact of a chemical compound cannot be easily predicted or derived
from simple molecular properties. In addition, the effects of a compound may change sig-
nificantly depending on several parameters like dose or the conditions of the organism at the
time of application. The drug discovery process therefore involves decisions based on exper-
tise and intuition of the experienced chemist that cannot be replaced by automatic processes.
Nonetheless this process can be greatly supported by an intuitive representation of the avail-
able data and by navigation approaches that allow for organized exploration of chemical

198 9. Applications

space.

Scaffold Hunter is a software tool for the exploration and analysis of chemical compound
databases. It is designed to support the chemist in the search for drug candidates out of a
large pool of compounds. Scaffold Hunter allows navigation in the chemical space spanned
by the database compounds with the help of a hierarchical classification based on compound
structure.

9.1.1 Motivation

In modern drug discovery and development, chemical synthesis is one of the key technolo-
gies. Due to the cost and effort involved in synthesis and experiments for the evaluation of
drug candidates, efficient identification of promising test compounds is important for the de-
velopment of new drugs. One of the main problems is that within the huge chemical space of
synthesizable compounds (approximately 10° molecules), there is only a small fraction of
potentially active compounds of interest for further investigation. Even though the drug dis-
covery pipeline, which aims at detecting small molecules that bind to protein targets involved
in a disease process, involves high throughput screenings in the early stages to identify po-
tentially active molecules, only a small part of this space can be covered by such a physical
screening. The chemist’s workflow therefore can be supported by automatic identification of
regions that may contain good candidates with high probability and by enriching the naviga-
tion with pointers to these region within a visual exploration process.

Orientation within this chemical space is difficult, as on the one hand there is only partial
knowledge about molecule properties, and on the other hand a large number of potentially
relevant annotations exist, as physical and chemical properties, target information, side ef-
fects, and many more. Some of these annotations also may be either predicted with a certain
confidence or result from experiments, with uncertainty and sometimes even contradicting
information. Nonetheless, there are some approaches to classify and cluster compounds for
navigation. A number of properties might be good indicators for drug-like molecule charac-
teristics, and there are several physico-chemical properties that allow to discard molecules for
reasons like bad oral availability, insufficient stability, or others. Prospective drug molecules
need to show sufficient biological activity with respect to a protein target (or a small set of
targets, which can sometimes be beneficial [Mencher and Wang, [2005]), but have to be se-
lective enough not to show harmful side-effects, and need to have physical properties that
allow them to be easily synthesized, sufficiently stable, as well as certain pharmacokinetical
properties to reach the disease site, as, e.g., bio-availability (the fraction of an administered
drug dose that reaches systemic circulation). At a later stage, also additional information like
patent status might be of interest. This wealth of possibly relevant information make efficient
drug testing difficult. In addition, although much of this information is publicly available,
it is difficult to effectively utilize public domain resources for drug discovery research. In-
formation is spread across many resources, access interfaces for these resources differ, and
even the unambiguous identification of compounds is difficult as different methods are used
to compute identifiers. Integration of these data resources in a visual analysis tool with an
intuitive navigation concept facilitates drug discovery processes to a large extent.

9.1. Scaffold Hunter 199

() (b)

Figure 9.1: Views on the hierarchical classification of molecules using the scaffold tree approach. (a) Manual
drawing giving the inspiration for the Scaffold Hunter visualization. (b) Scaffold Hunter screenshot. A
mapping of a scaffold property to the scaffold representation size is used, several scaffolds are enlarged,
indicating extraordinarily large values.

9.1.2 Goals and Challenges

Our main goal in the development of Scaffold Hunter was to facilitate the interactive explo-
ration of chemical space in an intuitive way. We wanted to develop and implement a software
tool that integrates drug discovery data and allows to browse through the structures and data
in an interactice visual analysis approach.

The development of Scaffold Hunter was motivated by a manually generated visualiza-
tion of a structural classification of natural products in Koch et al.| [2005], see Figure
Using this classification, the authors were able to ‘chart the known chemical space explored
by nature’. The combination of a simple organizing principle, which arranges represen-
tatives for subsets of molecules in a tree-like fashion, with the 2D depiction of chemical
structures allowed an intuitive representation of a biologically relevant fraction of chemical
space. However, this was only a static view for a specific task, and it required several days
of work to manually create it.

Several goals guided the design and implementation of Scaffold Hunter:

e Our tool should allow to automatically create views that represent a space of chemical
compounds in an intuitive fashion for chemists.

e The user should be able to integrate public data resources as well as his own compound
databases.

e Interaction with the views should be possible to adapt them to the needs of a specific
task, and to allow an analysis of the underlying data.

e Guided navigation within the compound space should be possible, to focus on regions
of interest and to drill down to promising drug candidates.

200 9. Applications

When these goals are satisfied, the tool enables a visual analysis workflow that allows
to efficiently identify drug candidates based on the combined information available. See
Figure 9.2]for a model of this workflow.

' Interactive Visualization —_—
R K g Analytical Reasonin —_—
* Visualization of huge networks requires proper
navigation methods such as expand-and- « The search for small bioactive molecules is a
collapse mechanisms, pan-and-zoom, filter and task that is not suitable for a fully automatic
select_ _ operations and semantic zoom process, but computational methods can help
capabilities. the scientistto generate new hypotheses.

+ The visualization of analysis results and
annotation with data from various sources must
be seamlessly integrated.

+ Analysis methods should be customizable in
an intuitive manner to support the knowledge
discovery process.

'l Automated Analysis ——

+ Statistical methods like clustering and

* The knowledge discovery process, including
new experiments as well as computational
analysis, can greatly benefit from well designed

Interactive Analytical SHREIEtEs

Visualization Reasoning
'mal Data Integration —_—

* The integration of existing data resources
allows to blend information on molecule

Automated Data
classification allow to detect relationships and Analysis Integration the user interface, e.g. to evaluate compound

screens or structure activity relationships into

patterns within the data.

It is essential for the successful integration to
provide appropriate similarity measures and
efficient computation of similarities for datasets
of millions of compounds.

selectivity, and to provide a data warehouse for
chemoinformatics.

* The key resources here include large
databases like PubChem, ZINC, Dictionary of
Natural Products, WOMBAT or Chemonaut.

Figure 9.2: Interactive visual analysis of the correlation between chemical structure and biological activity.
Graphic provided by Nils Kriege, used by permission.

Several challenges make a straightforward realization of these goals difficult:

e The set of chemical compounds under investigation may be huge—up to several mil-
lion compounds. This raises both efficiency and visualization problems.

e In order to provide the user with sufficient information on the compounds, interfaces
to quite diverse data resources have to be developed, including large online databases
as PubChem, Zinc, or ChEMBL.

e Chemists are not used to advanced visual analysis concepts and only have moderate
confidence in on-screen analysis so far.

e No visualization or navigation paradigms are established for the exploration of large
chemical databases. We therefore need to develop new interaction and navigation
concepts using visualization paradigms especially suited for the chemist’s workflow.
The interfaces and analysis methods need to be accessible for chemists without expert
knowledge in cheminformatics, mathematics, or statistics.

9.1.3 Approaches and Use-Cases

In order to organize chemical space and to reduce the number of objects that have to be visu-
alized, we use the scaffold tree approach of [Schuffenhauer et al.|[2007]]. This approach com-
putes an abstraction of the molecule structures that allows to represent subsets of molecules
with single representatives for navigation. The scaffold tree algorithm is applied to construct
a unique tree hierarchy, where for each molecule a representative underlying structure, the
so-called scaffold, is computed based on a set of deterministic rules. In a step-by-step pro-
cess, those scaffolds then are further reduced up to a single ring by cutting off parts that are

9.1. Scaffold Hunter 201

Ergotamine molecular
scaffold

\
T— -

1z 2
Z

Figure 9.3: Creation of a branch in the scaffold tree: Molecules are reduced to scaffolds, and scaffolds are
reduced by removing a ring structure in each step.

considered less important for biological activity. A hierarchy determined by the substructure
relation is then defined for the resulting set of scaffolds. In this step a unique parent is se-
lected. See Figure[9.3] The resulting set of trees is combined at a virtual root in a single tree
which can be visualized using graph layouts.

Each scaffold represents a set of molecules that are similar in the sense that they share a
common molecular framework. Experimental results show that these molecules also share
common biological properties, making the classification suitable for the identification of
previously unknown bioactive molecules [Schuffenhauer et al., 2007]. As, depending on the
task at hand, differing aspects may be relevant in order to measure molecule similarity, the
user can customize the rules for scaffold tree generation.

Classification by scaffold hierarchies also facilitates Scaffold Hopping, an established
technique in drug discovery, where one tries to find new bioactive molecules by starting at a
molecule with known activity, and modifies the central structure.

The classification into scaffold trees leads to a strong reduction of the number of objects
that have to be visualized. A flexible filter mechanism allows to further reduce the number
of visible scaffolds in a way that is suitable for the typical drill-down approach in a chem-
ical workflow. Filter rules can be created based on all scaffold properties deposited in the
database, see Figure [9.4]

We decided to represent scaffolds using a 2D structure, as the 2D information is suffi-
cient for a good estimation of the chemical behavior for the purpose of classification and
search of drug candidates. The combination of this 2D visualization with the classifica-
tion of the molecules enables the chemist to explore data in an intuitive visual fashion by
navigating along well-defined relations. Chemists are used to these 2D representations and
3D information is not needed in most of the use-cases. Integrating 3D facilities however
would complicate the user interface as well as the implementation and maintenance effort,
and would also increase the hardware resources needed.

Compounds in a chemical database will not completely cover the chemical space spanned
by the created scaffolds. Scaffolds that are not a representative of molecules, but solely
created during the scaffold tree reduction step, are nonetheless inserted into the visualization.
These virtual scaffolds represent ‘holes’ in the database and may be of particular interest as
a starting point for subsequent synthesis. They represent previously unexamined molecules

202 9. Applications

x| x
Overview over scaffold properti Definition of fiter rules
EERs e Number of visble scaffolds: 12 / 40108
[]Log AC50 Std Error [V] Log of AC50 Log of AC50 [isdefined [mean ~| (<~ HemEINES
[V molecuie frequency per scaffold [] molecule frequency per scaffold and its chidren e Wi =] PENEIRER
[Number HBond Acceptors "] Number of defined stereo atoms — j R
[V Number of HBond Donors [Number of heavy atoms QumbeelHBonbnon Osdened (medan o] (<o [S[() (]
["I Number of Points [] Number of possible tautomers Number of rotatable Bonds [isdefined |[max ~| [< | wfy (& (X]
[V[Number of rotatable Bonds [] Number of undefined stereo atoms
[Qualfied ACS0 [[] Total Charge
[@rep [Xcanca |[T managerer| | |_Foward B | [@rp | [Rcance || manageFiter | | ¢ Backvard | kv |

Figure 9.4: Filter dialogs in Scaffold Hunter: (a) This dialog allows to select properties to be used for filtering
out of the set of all scaffold properties. (b) The dialog for filter rule definition.

that may for example exhibit higher potency.

Besides navigation and orientation, data integration and efficient automated data analysis
are key challenges. We developed a generic interface layer that allows to integrate interfaces
to online resources or external databases. The integrated data then can be merged with
data from various local sources. Additional descriptive statistical measures for the relevant
structures are currently under development and will be provided in order to further guide
navigation and to annotate the scaffold structures.

Even though chemical databases may contain millions of compounds, the interface ca-
pabilities are designed and restricted to the visualization of dozens to only several thousand
compounds, as the visualization of all database entries as distinct entities at the same time is
hardly ever of interest for chemists. Instead, two main scenarios are of interest:

First, an overview on the database contents is needed, both for evaluation and for com-
parison. Applications include visualization of several data sets at the same time, for instance
results of several assays that have to be compared, or data sets stemming from multiple, het-
erogeneous databases where the covered region of chemical space, and also spots that are
not represented in the databases are of interest. A typical use case is to compare an internal
and a commercial database to see to what extent purchasing would increase the coverage of
promising chemical space.

Second, another main task is the search for biologically active molecules that may be
promising for synthesis to check suitability as potential drugs. Here, spots of large potential
biological activity have to be identified. Note that biological activity for the largest part of
the chemical space is not known, as the molecules are not tested or not even synthesized,
but can only be derived indirectly, e.g., from the values of similar molecules with known
activity. In addition, there are also many other required or desired properties, as for example
synthesizability or bio-availability, which need to be estimated, and are often approximated
best by experienced chemists. The visual representation of the known data combined with
the navigation along paths of structural similarity help to gain insight into patterns of the
molecule properties, and to drill down the data to small molecule sets that are especially
suited as drug candidates.

9.1. Scaffold Hunter 203

R:L OO0 & @

D

Figure 9.5: Close-up view of shaded scaffold tree visualization, with property bins that show the distribution
of a value among the molecules under each scaffold.

9.1.4 Interaction and Navigation Paradigm

Based on the scaffold classification concept, Scaffold Hunter’s main view represents the
scaffold tree. The user can freely navigate in the view, as the user interface allows grab-
and-drag operations and zooming. Zooming can be done either manually in direction of the
mouse cursor, or automatically when the user switches between selected regions of interest.
The system then moves the viewport in an animation to the new focus region, first zooming
out automatically to allow the user to gain orientation. At the new focus region, the system
zooms in again. For realization of the Overview-plus-Detail concept, we implemented a
minimap. The minimap shows the whole scaffold tree and the position of the viewport and
allows to keep orientation even at large zoom scales. Both the main view and the minimap
allow pan-and-zoom operations. See Figure[9.5]

On startup, a user-defined number of levels is shown in the radial layout style (see Sec-
tion[9.1.5). An expand-and-collapse mechanism is implemented that allows the user to either
remove unwanted subtrees from the view or to explore deeper into subtrees of interest. In a
sequence of filter and selection methods the user can define scaffold and molecule subsets of
interest that can be independently visualized and analyzed.

The layout of the classification tree is always centered at the virtual root. We decided not
to allow the selection of a new root for the following reason: As drug candidates need to meet
certain requirements regarding their biological activity and bio-availability, it will rarely be
necessary to explore trees over more than a few (< 8) levels. The molecules on deeper levels
will be too large and have to many rings to be relevant for further consideration. However,
Scaffold Hunter allows to open additional tabbed views, where subsets of the scaffold tree
can be visualized centered on a scaffold of interest, as shown in Figure @ Such detail
views of filtered subsets or subtrees help to analyze and compare multiple sets with different

204 9. Applications

[

(a) Subtree Layout (b) Sorting and Color Shading

Figure 9.6: Subtrees rooted at a scaffold of interest can be visualized in separate tabs. Color shading allows
to highlight scaffolds with desirable properties, as, e.g., biological activity. A sorting with respect to a
scaffold property can be applied to define the order of the scaffold trees in clockwise order, a background
color shading of the resulting segments reveals the corresponding distribution.

properties, see Figure

Complementary views show additional data, as, e.g., molecule sets, property spread
sheets, or dendrogram views resulting from a hierarchical clustering. A detail window shows
selected scaffolds together with a set of user-selected properties. This allows to quickly iter-
ate through a selected set of scaffolds.

In order to guide the chemist in his search for a new drug molecule, combined infor-
mation on the structure and the biological activity are included in the visual representation.
Property bins can be defined to show the distribution of a selected molecule property for
scaffolds. These property bins are displayed under the respective scaffold image and can
help to indicate interesting subtrees for further exploration, see Figure [9.5] Property bins
may optionally indicate the values of the molecule subset represented by a scaffold, or give
the cumulated values of the subtree rooted at the scaffold. The cumulative view can help to
select subtrees for deeper exploration.

The user interface provides detail on demand, passing the mouse over a scaffold of inter-
est brings up a tooltip that shows in detail the scaffold structure and selected properties. Data
annotations can also be represented by several graphical features: Activity data, or any other
relevant annotation, can be blended into the representation using color shadings, see Fig-
ure Scaffold structures, scaffold background, and canvas background can be colored
according to such data. This allows both to get an overview on the distribution of annotation
values and to focus on regions with specific values of interest. Annotation values can also be
mapped onto the size of a scaffold representation, see Figure [9.1(b)]

Bookmarks allow to persistently store and annotate specific scaffolds of interest.

All graphical views provide a kind of semantic zoom that increases the level of graphical
data annotations with increasing zoom level. See Figure During navigation in zoom
out mode, structure information on scaffolds in the mouse pointer region is displayed in a

9.1. Scaffold Hunter 205

magnifying glass window that can optionally be opened in the left side pane.

- ..
4 :
[
o
(@)
(b)
%, o =
B . ‘
8 &
(©

Figure 9.7: Increasing level of detail with semantic zoom. Simplified representative shapes (a) are first
replaced by structure images (b), and finally the full set of currently selected data annotations is shown.

9.1.5 Layouts

There are several requirements for layout methods within Scaffold Hunter which result from
the goals we defined for the application and also the approach taken. Minimum layout re-

quirements are:

206

9.

Applications

e ol sl

ORI KRAX EBRBEER

ratts x

oozt

07802424 08556249

0109007
oozmnze2
o697

o5

01050160 07862424 01050150

05475117 0731953 05475117 0547
1269425 0,5000063 D.4945830 05000663 05000653
01865117 01317006 07228681 01317006 01317006
02612008 02384120 0326273 02354120

042 9895175 05896142 0.0896L75 0959
3436 03852561 01151608 03652581 0,369

owseros 52063
014659320 02007450 06922793 02007490 02007490
903 Py

Figure 9.8: User interface of Scaffold Hunter. Several views show data and statistical analysis results com-
plementary to the scaffold tree navigation. A dendrogram view shows results of a hierarchical clustering,
and a spread sheet view shows a textual representation of molecule properties.

ScaffoldHunter
Fle Bl View

Detals Baokmarks Help

£ Gipoox AR Avwe

ReL OO0 & @

150
Hill Coeficient

Pty
Ky

5] crapvan

(4, Magnitying Glass

€2=CCL=CI=CS1C3=C2C=CS3,
Number of heavy atoms (na.

Number of undefined stereo

8o 8300079

PubChem Compound ID (CID): |

153 |

ot

/ /

& Properties for,c7=cci=C
Propertes | Comments |

e
& i Corren
T8 ™ 15
/ mean 153
| e 15
| min 153
oo o 1o
B LY [o
| O |la o et e
! |
O ol [ceeacse

Qrer_|

Number of heavy atoms mao: 14.0
PubChem Compound ID (CID)

Hill Coefficient (nav: 126

Number of undefined stereo atoms @mav: 0.0

o0

Y
0

. =

5 tumper Heand Acceprors

2272

Figure 9.9: Detail on demand: The screenshot shows three ways to display detail information on scaffolds.
1) The ‘details’ view in the left sidebar displays a close-up view of the scaffold structure and properties
for selected scaffolds. Using the buttons allows to iterate through the selected scaffolds. 2) Hovering over
a scaffold image with the mouse pointer opens a tooltip with the same information. 3) A properties dialog
can be opened from the context menu. It shows the full property information and the structure view for the
scaffold. Comments can be entered that are persistently stored for the scaffold. The user can customize
the first two views to show a selection of properties.

9.1. Scaffold Hunter 207

e Representation of the hierarchy: As we compute a scaffold hierarchy based on the
scaffold tree algorithm, the layout has to reflect this hierarchy so that the hierarchical
relations can be clearly identified. This includes both the top-down direction as well
as a visual separation of different subtrees. Also the level to which a scaffold belongs
has to be identifiable.

e Non-overlap: Edge crossings, vertex-edge or vertex overlap are unacceptable for scaf-
fold tree visualization.

e Vertex sizes: Vertex sizes are determined by sizes of SVG images that depict the 2D
scaffold structure. These vertex size have to be respected.

e Circular order: Chemists can sort the scaffold subtrees according to a scaffold property
of choice, and the layout has to reflect this order. This edge order requirement is
trivially supported by the implemented radial layout version.

Further criteria that can be used to evaluate the quality of the drawing are:

e Visual separation of the hierarchy levels. Levels should not be too close to each other,
and subtrees should be visually separated.

e Space utilization. The layout should not exhibit much white space.

e With respect to a given clockwise sorting and the requirement that subtrees and hier-
archy levels have to be identifiable, vertices should be distributed nicely (uniformly).

Several layouts are implemented to display the scaffold hierarchy, including radial, bal-
loon, and tree layout. All of them easily allow to satisfy our edge order, distance, crossing
restriction, and vertex size constraints. However, the space consumption is quite high. See
Figure[9.10] The main layout is the radial layout. We give visual cues for the level affiliation
of a scaffold by visualizing the radial circles as thin background lines. In addition, we use a
dynamic distance between layers which is adapted according to the zoom level. This allows
to achieve good separation of hierarchy levels and a clear depiction of the tree structure in
lower zoom levels, whereas in close-up zooms scaffolds can still be represented together
with at least one child level.

9.1.6 Realization and Further Features

Scaffold Hunter was implemented as a prototype application with the features described as
above in 2007 and then tested in practice. Since then the tool has been continuously main-
tained and updated. Scaffold Hunter is implemented in Java to allow platform independent
use, and freely available as open source. We have developed new concepts to extend and
improve Scaffold Hunter, stemming from the feedback of the user community and additional
input of chemists from both academia and industry. A student project group is currently
working on the implementation of several of these concepts; see Figure 0.8 for an example
screenshot of the new, enhanced user interface.

208 9. Applications

i)

(a) Tree layout (b) Balloon layout

(c) Radial layout

Figure 9.10: Scaffold Hunter provides several layout algorithms, including radial, tree, and balloon layout.

A frequent task during the analysis of chemical compounds is the search for structurally
similar compounds of a particular compound in a database, including molecules that contain
the search compound or are contained by it. Web interfaces of public compound databases
like PubChem therefore contain corresponding structure or substructure search facilities.
Structures may be entered using a structure editor or established representations such as
SMILES strings or the recently developed IUPAC International Chemical Identifier (InChl).
We have implemented a fast graph-based substructure search approach tailored to the special
characteristics of chemical molecules [Klein et al., 2011]]. A structure editor allows to create
search patterns graphically, alternatively also string identifier in standard formats can be
used. See Figure[9.11] Scaffold Hunter also provides image export for presentation purposes
in SVG, TIFF, and PNG format.

Data Integration

As already stated, chemical data on compounds is collected in different databases that are
accessible over web or programmatical interfaces. Due to the sheer amount of data, data
handling and integration must be organized in an efficient manner. Realtime processing
of the complete data set is not feasible for interactive navigation. In the prototype system

9.1. Scaffold Hunter 209

| Structure Editor - —— - [
File Edt View Atom Bond Tools Templates Help
[anser
9]l e |GG) [[oo 1) 2 B Ll |Gl 0
= FAY
Il Il
> o O
I e Qll
[Nl
l: ol
Ll |
l a
| O
N c L
| &
1
Ll Ll
[Il
Ll |
[il
[
Ll 3 |
V][() [H] (o] [N [P][s] [l [cy [Bel [1] [+1] [-1] & (=2 |
o €50, (16 Hs implicit) Zoomfactor: 100%

Figure 9.11: Graphical structure editor for substructure search.

only static precomputation of the scaffold tree for a local database is implemented. We are
currently working on the generic interface layer to allow the integration of arbitrary online
or database resources. The new interface allows a flexible integration of resources, which
can be dynamically changed when the user wants to select other data sources. Predefined
interfaces and data mappings for main online resources will be provided.

9.1.7 Impact and Related Approaches

Compared to other application areas, especially biology, the support of the analysis work-
flow in chemistry by integrated tools that combine both advanced visualization and inter-
action as well as analysis methods is rather weak even though the need for such tools has
been formulated quite often. Scaffold Hunter has been the first tool that allows to navi-
gate in the hierarchical chemical space defined by the scaffold tree. Recently there have
been further attempts to create new software to remedy the situation, namely the tools Mol-
wind, SARANEA [Lounkine et al.,[2010]], iPHACE [Garcia-Serna et al.,[2010]] and Scaffold
Explorer [Agrafiotis and Wiener, 2010] which also aim at facilitating the visual navigation
within chemical compound databases. The server-based tool Molwind, which has been in-
spired by Scaffold Hunter, has been developed by researchers at Merck-Serono. It is based
on the World Wind concept by NASA and maps structural spaces to geospatial layers. How-
ever, the Molwind approach neglects the edges of the hierarchical graph and therefore does
not contain all the information needed for navigation. Compared to these approaches, the
web based tool iPHACE introduces basic additional features for visual analysis, namely
interaction heat maps, and focuses on the drug-target interactions. iPHACE contains inter-
action data extracted from two databases (IUPHAR and PDSP), but lacks a sophisticated
graphical navigation concept as well as integration of external data sources. The applica-
tion SARANEA focuses on the visualization of structure-activity and structure-selectivity
relationships by means of ‘network-like similarity graphs’. The tool neglects structural clas-
sification schemes which are advisable for large datasets and is dependent on externally
calculated fingerprints for the calculation of similarities. The most recent approach to pro-

210 9. Applications

vide tools for the analysis of chemical data sets is Scaffold Explorer, which allows the user
to define the scaffolds with respect to his task-specific needs, but is targeted more towards
the analysis of small data sets.

Although these first approaches received a very positive feedback from the pharmaceu-
tical community, they are more or less in a prototypical stage and have only gained a small
user base. The most likely explanation is that chemists first need to familiarize with such
approaches, as there have not been established ways for the integrated visual analysis of
chemical data so far.

9.1.8 Evaluation and Outlook

We have used Scaffold Hunter successfully in a study that proved the effectiveness of the ap-
proach and the usefulness of our implementation [Wetzel et al., 2009]. There is also already
an active user community that provides valuable feedback. The main concept of bioactivity
guided navigation of chemical space seems to be promising, which is also backed by recent
results [[Bon and Waldmann, 2010].

Nonetheless the software is still missing some features that would make it a valuable tool
for a broader community, and there are also several possible extensions that would help to
allow a smoother integration into a chemist’s workflow. There are several workflows along
the drug discovery process that are related, but require slightly different views on the data.
Supporting these views in a more flexible setting, including also better analysis capabilities,
could help to boost the use of Scaffold Hunter in real-world environments.

The issues that need to be considered for improvement include:

Usability. Chemists are not used to complex visual analysis tools so far. In order to stim-
ulate use of such tools, established representations and interactions need to be included, also
to increase user’s confidence in automatically generated results. Visual representations like
heat maps and dendrograms are already used and intuitively understood, but combination in
an integrated interactive environment is not yet widespread. When multiple views of the data
are provided, intuitive linking is of utmost importance for acceptance by chemists. Brushing
and switching of views, e.g., from classification representations like dendrograms to spread-
sheets, are intuitive actions in the chemist’s knowledge discovery process, and need to be
supported in a way that allows to keep the orientation. This also includes labeling of the
views to be able to identify their source and how they were created (e.g. using the corre-
sponding parameters and data subsets), links back to upper levels in a drill-down process
to get back from dead ends and fathomed areas of the chemical space under investigation.
Users suggested that the tool should provide simple annotation facilities for temporary and
persistent labeling. This includes visual features like setting flags to support orientation
when moving back and forth through several views. We are currently working on including
these features in Scaffold Hunter. Several other tools allow to visually align 2D drawings of
compounds, i.e., draw them such that their layout is most similar. This can be useful to com-
pare compounds that share a pharmacophore, i.e., a set of structural features responsible for
a molecule’s biological activity, determined by the spatial arrangement of functional groups
essential for the biological activity. Implementation of such a feature may further improve

9.1. Scaffold Hunter 211

Figure 9.12: Bad radial overview layout - no structural information is conveyed to the user.

usability.

Layouts. Currently three layout methods are implemented, and the radial layout is the
most intuitive for representation of and navigation in the scaffold tree. There are however
several drawbacks. First of all, area utilization is poor when many molecules have to be
drawn at the first level. See Figure[9.12] The overview then does not convey any information
to the user. Specific tree layout algorithms like Walker’s algorithm might prove useful as
an alternative, even though they do not yield the nice concentric appearance of the radial
layout. Recently, an extension of multidimensional scaling for radial constraints was pre-
sented [Brandes and Pichl 2009b], and we currently are working on a modification of this
approach adapted to requirements in Scaffold Hunter. Several issues regarding a consistent
distance model, overlap avoidance, and inclusion of fixed circular order of the scaffolds have
to be considered to get satisfactory results.

Free area inside the inner circle could also be used to represent additional information,
e.g., representatives of the segments resulting from sorting (as in figure 0.6(b)).

Classification. The navigation approach implemented in Scaffold Hunter is based on
the tree-like structures of the scaffold tree classification. One the one hand, this makes
orientation an easy task, on the other hand it might be an oversimplification for various
use-cases, as information on molecule similarity is lost. Information on alternative parent
molecules and structurally closely related molecules might allow for a more network-like
structure without compromising the orientation too much. When ring-free molecules have to
be investigated or functional side-chains are much more important than the scaffold structure,
alternative classifications and navigation approaches might be better suited than the scaffold
tree. We will therefore extend the scaffold tree approach to allow flexible generation of
hierarchies, e.g., to take into account side chains and functional groups, which also facilitates
the use of structure-activity relationships.

212 9. Applications

9.2 Protein-Domain Interaction Networks

Protein interaction networks are the essential underlying dynamic structures for many bio-
logical processes. Their visualization and analysis can therefore help to gain new insights
into these processes and the underlying principles. However proteins are not the smallest
biological unit that can be considered for investigation, as they are made up of amino acid
chains and can be further subdivided into domains. A protein domain is a part of the protein
sequence that can function and exist independently, and is often conserved over different
species. Many proteins consist of several domains which may either act together or perform
independent functions. The investigation of the corresponding domain interactions is of in-
terest for a deeper understanding of biological processes. With a deeper insight in the way
the interplay between proteins is disturbed during diseases, new ways to control or modify
the behavior by new therapeutics can be developed. We have developed an interactive visu-
alization for protein interaction networks that takes into account the domain substructures.

9.2.1 Problem Overview

All information required for the functioning of an organism is encoded in its genome. Genes
in eukaryotic genomes are composed of sequences of exons (coding sequences) and introns
(non-coding sequences). The encoded information is required for the construction of pro-
teins. In the process of translating gene information into protein information, introns are
removed and consecutive exons are joined together. This procedure is called splicing. Pro-
teins play an important role in almost all biological processes performing a variety of func-
tions critical for the viability of cells. Since most protein functions are based on molecular
interactions between different proteins, recent research has focused on detecting protein in-
teractions. Proteins frequently contain several domains, and the same domain can usually
be found evolutionarily conserved within different proteins [Finn et al., 2008]]. Regarding
the interactions between proteins, it has been shown that protein-protein interactions are
often mediated by the physical contact of protein domains [Albrecht et al., [2005]. In the
last years, comprehensive studies of protein and domain interaction networks have produced
large amounts of interaction data. This results in sizable amounts of experimentally de-
rived protein interaction data, which is publicly available and complemented by even larger
datasets of computationally predicted interactions. Since protein-protein interactions are
mainly formed by specific domain-domain interactions, it is crucial to understand biological
mechanisms that alter the domain structure or the domain composition of a protein. One
such mechanism that commonly occurs in eukaryotic cells is alternative splicing. Alterna-
tive splicing is the process in which various exon combinations are joined together, leading
to different protein isoforms obtained from one gene. Recent work revealed that alterna-
tive splicing is a major cause of the observed protein and interaction diversity [Matlin et al.,
20035]]. Assembling different combinations of exons can be responsible for changes in protein
sequence and domain composition. In many cases, protein-protein interactions can thus be
prevented or promoted by disabling or enabling certain domains. This is of great importance
as some splice isoforms are also involved in human diseases. Special microarrays now allow
for measuring gene expression at the level of the coding sequences of genes (exons), which
makes it possible to identify alternative splicing events. With the so-called ‘exon arrays’,

9.2. Protein-Domain Interaction Networks 213

Figure 9.13: Example of a protein-domain network that shows the standard layout visualization commonly
used [Zhang et al., [2008]. Proteins and domains are depicted and treated in the same way.

alternatively spliced proteins and their domain compositions can be detected. In addition,
detecting differences between healthy and diseased cells concerning alternative splicing pat-
terns becomes feasible, which might lead to the identification of potential targets for drug
development. For a deeper discussion of the biological background, see for example Alberts
et al.| [2007]).

For the visualization of protein interaction networks, several algorithms already exist
that consider biological information for layout computation. Friedrich and Schreiber| [2003]]
propose the animated visualization of typed interaction networks, where a subnetwork of
proteins that support a specific, user-selected type of interaction is displayed using a force-
directed algorithm, while the remaining proteins are placed on a circle around the drawing
of the subnetwork. In order to reduce the number of crossings in the layout, |[Kato et al.
[20035]] add a crossing cost penalty to a grid-based layout algorithm, which can also deal with
placement constraints to model sub-cellular localization information. L1 and Kuratal [2005]]
present a grid-based layout algorithm that allows clustering the objects in the drawing based
on their membership in functional modules. None of these approaches consider the domain
structure of the proteins. Even though the roles of proteins and domains can be distinguished,
and the distinction is of interest for analysis of the interaction structures, proteins and do-
mains are often treated equally for visualization purposes, see Figure [9.13] To visualize
the impact of alternative splicing on protein interaction networks, we developed new graph
visualization paradigms that respect the domain structure of the proteins. Our approach is
implemented in the plugin DomainGraph for Cytoscape, an established open-source software
platform for the analysis and visualization of biological networks. DomainGraph comprises
two main functionalities: the decomposition of a user-imported protein interaction network
into the underlying domain-domain interactions and the integration of exon array expres-
sion data for highlighting the effects of alternative splicing events. The resulting protein and
domain networks can be visualized using our layout method.

214 9. Applications

9.2.2 Domain Graph Definition and Construction

The DomainGraph plugin is fully integrated into the Cytoscape application. In a first step, the
user imports a file containing pairwise protein-protein interactions, specifies the species, and
selects a suitable database containing domain-domain interaction information. Based on this
information, the domain interactions underlying the imported protein interaction network
are computed. This network is modeled as a graph as follows: We define a domain graph
as an undirected graph G = (V, '), where the vertices in the graph represent proteins and
the constituent domains. For each protein and each domain, a vertex in the domain graph
is created. Each edge describes either the occurrence of a specific domain in a protein (pd-
edge), or the presence of an interaction between two proteins (pp-edge) or domains (dd-
edge). The following definitions hold for a domain graph G = (V, E):

e 1/, is the set of protein vertices;

e V/;is the set of domain vertices, multiple vertices may represent the same domain iff it
occurs in multiple proteins;

e 1/ is the union set of protein and domain vertices;
V=V,UV

e [, is the set of pp-edges representing protein-protein interactions;
E,, = {(pi,p;) : pi,p; € V, and p;, p; interact}

e [/, is the set of dd-edges representing domain-domain interactions;
Eaa = {(d;,d;) : d;,d; € Vyand d;, d; interact}

o I

p
Eyi = {(pi,d;) : pi,d; € V and p; contains d; }

4 18 the set of pd-edges linking proteins to their constituent domains;

e F is the union set of protein-protein interaction and domain-domain interaction edges
and protein-domain linkers;

E =E,, UEsqUE,

9.2.3 Domain Graph Visualization

Several graphical attributes are used to allow an interpretation of the protein-domain network
with regard to the vertex type and also the alternative splicing events. We assign character-
istic shapes and colors for each type of vertex to distinguish between proteins and domains,
and corresponding colors to the different types of edges. In addition, expression data infor-
mation can be integrated into the visualization to represent specific splicing effects. After
exon array data has been integrated into the domain graph, occurrences and effects of al-
ternative splicing events as well as gene suppression events are highlighted. For each of
the different events, a different visual style is defined that makes them clearly visible; see

Figure 0-T7(6)

9.2. Protein-Domain Interaction Networks 215

137.48 KR 12

N

(a) (b)

Figure 9.14: Domain graph in extended (a) and compact view after one compaction step, where the two
SH2 domain vertices are merged (b). Protein vertices (squares) are on the outer circle, domain vertices
(diamonds) on the inner circle. Edge label numbers denote confidence values.

DomainGraph provides three different network views, which can be changed at any time
by the user to customize the domain graph to his needs. The extended view is the most
detailed view displaying all constituent domains for each protein separately. Therefore, the
number of shown vertices and edges is fairly high in the domain graph. In contrast, the
compact view provides a domain graph with a decreased number of vertices and edges by
merging identical domains contained in different proteins into a single meta-vertex, see Fig-
ure [9.14] Since a domain may occur in many different proteins, this view may reduce the
number of depicted vertices and edges considerably. The third viewing mode is the protein
network view, which by default shows only the vertices and edges of the protein interaction
network. In addition, the user can select the proteins for which the underlying domain-
domain interactions are visualized subsequently, see Figure 9.15] This third view has the
advantage that the user can individually choose the size of the domain graph and is able to
focus on protein interactions of special interest.

9.2.4 Splicing Pattern Analysis Methods

DomainGraph provides different methods for comparing domain graphs or calculating the
intersection, union, or difference of pairs of domain graphs, see Figure @ To this end,
DomainGraph does not only take the structure of the domain graph and the two main classes
of vertices, proteins and domains, into account, but also the types of the graph objects (for
example, a spliced domain). Distinguishing these types is especially important for comparing
domain graphs with integrated expression data. For instance, if a domain vertex is colored
as being normally expressed in one domain graph and displayed as being spliced out in

216 9. Applications

PP

P

P =
o NSO N
~ \ N

Vs _ f
rév2 ML cPstr) \
@ NG ‘

J R$1 o

IS

TRINMS?
i N e
L /
dd._ g /

RHOp—pd—sAllb 1 dd d R@'{
d

oo PP uapon 2EREEF_ e
// T N

Figure 9.15: Domain graph in protein network view that shows additional domains and their interactions for
the four selected proteins (yellow).

another graph, this vertex will be highlighted in the domain graph resulting from the analysis.
Using such analysis methods, varying gene expression patterns in different tissues caused by
alternative splicing events can easily be recognized. Moreover, variations due to different
splicing patterns can be detected between healthy and diseased tissues.

9.2.5 Domain Graph Layout Requirements

Even though existing graph drawing algorithms like the automatic layouts provided by Cy-
toscape may be a good starting point for the development of methods for visualizing bio-
logical networks, they need to be adapted to reflect specific biological information in the
computed drawing. Moreover, applying generic approaches to dense biological networks
often leads to cluttered layouts with a large number of edge and object intersections. The
results may be far away from biologically meaningful layouts that could help the biologist
to investigate and evaluate experimental data, see Figure for an example of a domain
graph visualized using Cytoscape’s force-directed layout. Several edges are concealed and
it is difficult to recognize the structure of the domain interactions. In the case of a domain
graph, the layout should allow a clear visual distinction between protein and domain ver-
tices and the corresponding distinct interaction types. Although DomainGraph provides a
graphical representation for the protein and domain vertices that separates them by their vi-
sual appearance, the application of generic network layout algorithms described above may
make it difficult to quickly identify the topology of the protein and domain interactions. We
therefore developed and implemented a radial layout algorithm that specifically takes the
integrated biological information for the networks into account and emphasizes the corre-
sponding topological characteristics. In our opinion, this improves the visual presentation of
the protein domain graphs considerably.

A natural problem for the identification of protein and domain interaction partners and of
structural interaction patterns are edge-edge and edge-vertex crossings and also overlapping

9.2. Protein-Domain Interaction Networks 217

oo

oo

KR 12

Figure 9.16: Intersection graph computed of two protein-domain networks. Vertices and edges contained in
both domain graphs with different type annotation are colored dark blue.

vertices. A good layout thus needs a clear visual separation of the objects without occlusion,
a minimization of edge-edge and edge-vertex crossings, a maximization of the angular reso-
lution, and it should allow an easy identification of the different vertex and interaction types.
In addition, protein vertices should be placed close to the domains they comprise.

9.2.6 Radial Layout Algorithm

Some of the layout aesthetics and optimization goals described compete with each other and
therefore cannot be met simultaneously. As a compromise, we decided to implement an
algorithm that combines elements of circular, radial, and layered layout algorithms, which
we call RadialLayout.

In order to allow a clear separation of protein and domain vertices, proteins and domains
are placed on separate concentric circles around a common center. The domain vertices are
placed on the inner circle such that the domain interactions in the focus of the user’s interest
are located in the center of the drawing and proteins are placed on the outer circle as close
as possible to their constituent domains see Figure The use of separate circles for
the two object types allows for the clear distinction between proteins and domains as well
as between the interaction and linkage edge types in the drawing. A further separation of
the domain vertices is achieved by highlighting the occurrences of alternative splicing events
and grouping the domain vertices on the domain circle with regard to their splicing pattern.

218 9. Applications

s
Al
T@?"""”t RRL1 =

p1 o dd dd gy, AN
st Q‘}\?" pa,
/ T W % e

|
e P M\

\ \

\ riir v

PP

(a) Force-directed (b) RadialLayout

Figure 9.17: Comparison of domain graph visualization using Cytoscape’s force-directed layout (left) and
RadialLayout algorithm (right), with protein vertices represented by squares and domain vertices repre-
sented by diamonds. Domains affected by alternative splicing are colored pink, and domains forming
interactions with spliced domains are colored orange. Missing proteins due to gene suppression are gray.
Proteins and their constituent domains are placed close to each other. Edge crossings are minimized and
pp-edges are routed around the protein circle.

In addition, the protein vertices are placed as close as possible to the domains they contain.
This facilitates assessing the influence of alternative splicing events on the functioning of a
certain protein and its interactions.

In order to reveal the interaction topology, the protein and domain vertices need to be
positioned in a way that minimizes the edge crossings since they complicate the identifica-
tion of corresponding connected objects. As the domain interactions often are in the focus of
investigation, one could expect that circular crossing minimization could be applied. How-
ever, due to the special structure of the protein-domain networks this does not significantly
improve readability, but leads to problems with the visual association of domains to their
containing proteins and the length and crossings of pd-edges. These effects are much more
problematic than the domain edge crossings, where interesting relation structures often still
can be perceived well. We therefore decided to minimize crossings between pd-edges. This
problem is similar to the crossing reduction in the bilayer crossing minimization, which has
an important application in hierarchical graph drawing. The order of the objects on each of
the two circles has to be fixed such that the number of crossings is minimized. The bilayer
edge crossing minimization problem is NP-hard, but it can be solved to optimality for small
instances in acceptable time, and heuristics have been developed that also perform very well
on larger instances (see, e.g., Jinger and Mutzel [1997]]). For DomainGraph, we decided to
implement a heuristic in order to layout also larger instances of up to a few hundred vertices
in reasonable time. The basic notion of our approach is to start with an initial permutation of
the vertices on both circles. Then the order on one circle is fixed and the algorithm tries to

9.2. Protein-Domain Interaction Networks 219

i1
}

P) e
= = o oo
R PR PN
8) & g A - ek . - @ @ - B
& s @ &
. & € i d @ e
& > k S - -
e & 3 @ » K3
-\ * e < * o
= B * = - > -
. -
g <o o e Ps =
. 23 & = = @ -+ g
. ¢ * 23
> g - * hd =
_ <+ = - ., -
o > >
s . @

BB

Figure 9.18: Handling of pd-edges crossing the inner domain circle (left) (dd-edges are hidden for this
picture): Curved routing removes edge-vertex occlusion and helps to better recognize domain interactions
(right).

find an order on the second circle with a decreased number of crossings. In our implementa-
tion, this is achieved by using an adaption of the well-known barycenter heuristic [Sugiyama
et al., 1981]. This heuristic places each vertex at the barycenter of its neighbors on the
second circle. This crossing reduction is iteratively performed with alternating roles of the
two circles until the number of crossings cannot be reduced any further. The computation
of the number of edge crossings in each step can be a bottleneck with regard to the running
time [Waddle and Malhotra, |1999]. Therefore, we use an implementation of the bilayer cross
counting method. This approach proved to be very fast in experiments [Barth et al., 2004]
and has O(|E|log|Vismau|) asymptotic running time where V,,,;; is the smaller set of pro-
tein and domain vertices. In case of expression data integration, the set of domain vertices
is additionally split into subsets according to their vertex types, and the crossing reduction
step starts with a permutation that reflects the grouping of the domains into domain types.
Our implementation of the barycenter heuristic is then applied to arrange the vertices in each
subtype group, minimizing the crossings in the drawing. The inner circle area is reserved for
dd-edges, while pp-edges and pd-edges that cross domain vertices on the inner circle or in
the inner circle area are routed as curved splines around the protein circle to further reduce
crossings and to facilitate the visual recognition of the domain interactions, see Figure

In summary, the main requirements met by RadialLayout are the visual separation of
protein and domain vertices, the focus on domain interactions and the impact of alternative
splicing, the avoidance of vertex occlusion, and the minimization of edge crossings in the
drawing.

9.2.7 Interaction and Navigation Features

We implemented several features to improve the interactive exploration of the networks. The
user may select interesting vertices for highlighting either by moving the mouse over a par-
ticular vertex or by clicking on several proteins to select a subset. When the user moves the
mouse pointer over a protein or a domain of interest, the neighbors of the object and the cor-

220 9. Applications

s 5 R -

Figure 9.19: Dynamic highlighting of a direct vertex neighborhood. An adaption of the vertex positions is
used to improve the layout of the highlighted subset. Unrelated vertices are grayed out.

responding links are highlighted, see Figure[9.19] Optionally, the user can select to either use
color change, a change of the vertex sizes, or both for highlighting. The vertex positions can
be adapted for such a highlighting view to improve the depiction of the related neighborhood
with respect, e.g., to confidence values. The graph structure can also be dynamically com-
pacted by use of the compact and protein network view. As shown in Figure [9.15] domains
not contained in selected proteins are hidden, reducing the number of vertices on the inner
ring and facilitating better recognition of the interaction structure. Tooltips in the graphics
provide experimental and structural information. Additional graphical information is dis-
played if the user double-clicks on a protein vertex. The domain architecture of the respec-
tive protein is then shown together with the underlying exon structure. Moreover, all vertices
are linked to the respective entries in the source databases giving more detailed information
in a web browser. When double-clicking on a protein vertex, a graphical representation of
the selected protein and its domain architecture is presented in a new window.

If the domain graph is derived from a dataset of predicted domain interactions, confidence
scores are provided with the protein and domain interaction edges. These scores can be used
for filtering. Interactions with a confidence score below a user-defined threshold can be
discarded from the domain graph to focus on more meaningful interactions. Confidence
scores of predicted domain interactions can be visualized by representing more confident
interactions with wider edges.

9.2.8 Alternative Layouts

Because the circle structure of RadialLayout is not always well suited to quickly comprehend
the decomposition of the interaction network with regard to the splicing types, we experi-
mented with alternative layouts. These break the strict assignment to positions on the circle
and allow groups of domains belonging to the same splicing event to move and shape ac-

9.2. Protein-Domain Interaction Networks 221

P@
) axseosns
s
e - O V-
B P g By
" Ens?@i}mmn ” - ’ e
p’v - . W{ﬂ}m
»
ensedgoogposzs m‘u - w ensodpracs
oo § &
N0

e

(a) (b)

Figure 9.20: Alternative layouts: (a) The SemiCircle layout breaks the circular vertex configuration to
improve the angular resolution of domain-domain interactions. It allows domain groups to bend stronger
towards their neighbors. (b) The LinearLayout draws domain groups as lines instead of arcs, independent
of their neighbors. It has a stronger focus on the proportions of the different domain types. They are
therefore drawn closer together and aligned to make the size of each group visible.

cording to their neighborhood structure. The layouts differ in the way the groups may differ
from the arc shape and circle positions, see Figure We however avoided introducing
completely different layouts, as the user should be able to switch from one layout style to
another without losing his orientation.

9.2.9 Conclusions

DomainGraph is a powerful tool for the visual analysis of protein and domain interaction
networks. Our visualization enables the straightforward identification of alternative splicing
events and their direct and indirect impact on the protein interaction network, based on the
integrated exon array data. Additional analysis methods that take vertex types into account
are especially useful for recognizing expression differences, for instance, between tissues or
healthy and diseased cells. For domain graphs, the development and application of our Radi-
alLayout algorithm has shown to be a major advantage over conventional layout algorithms
in practice because it is specifically designed for the integrated biological information and
the visual differentiation of protein and domain interactions. Moreover, the crossing mini-
mization of the edges aims at providing the best possible overview of the domain graph, its
topology and interactions.

Clearly, as the crossing reduction only takes into account the protein-domain edges,
the overall visualization could be improved by a combined crossing minimization of both
domain-domain as well as protein-domain edges. Several approaches for the crossing min-
imization on a cycle exist [Baur and Brandes, 2004, Gansner and Koren, 2007]. There are
also other ideas for further reduction of visual clutter, as, e.g., the techniques from |Gansner
and Koren [2007], but not all of them can easily be applied in our scenario. The idea to
route some of the edges outside the circle is not applicable, as a specific type of edges, the
pp-edges, are already routed outside the circle. As one of our main goals is crossing mini-
mization, and at least a partial ordering of the vertices is already given, the idea to minimize

222 9. Applications

edge lengths instead of the number of crossings is also not directly applicable. However,
edge bundling might be helpful for large and dense graphs, and also an angular maximiza-
tion approach might help to increase readability.

9.3. Visualizing Residue Networks of Protein Structures 223

9.3 Visualizing Residue Networks of Protein Structures

In the last section we have seen how the subdivison of proteins into domains can be used in
a visualization approach that allows a closer investigation of protein interaction structures.
A protein, however, is not just a sequence of domains, but a chain (or a set of chains) of
amino acids that folds in 3D space into a characteristic structure. Properties of this structure
influence the protein’s behavior and function. The folding is determined to a large extent
by the protein’s primary structure, the sequence of amino acids. Side chains of amino acids
linked with their neighbors in this sequence are called residues. Besides the sometimes quite
complex folding in 3D, local segments of the protein’s backbone may form quite regular
structures, which can be categorized as either helix or sheet. The arrangements make up the
secondary structure of the protein. Figure shows helices colored in red and sheets
colored in blue. The study of individual amino acid residues and their molecular interactions
in protein structures is crucial for understanding structure-function relationships. Recent
work indicates that residue networks derived from three-dimensional protein structures pro-
vide additional insights into the structural and functional roles of interacting residues. Our
main contribution here is an approach to visualize the residue networks for a combined anal-
ysis of 2D and 3D structures. It is included in the new software RINalyzer [Doncheva et al.,
2011]], a plugin for the Cytoscape platform.

9.3.1 Motivation

In recent years, thousands of 3D protein structures have been determined by X-ray crys-
tallography and NMR spectroscopy, and many more have been computationally modeled.
Commonly, protein structures are analyzed in 3D molecular viewers, a large variety of which
are now available [[O’Donoghue et al., [2010]]. Although 3D visualization still plays a vi-
tal role in the analysis of protein structure and function, complementary approaches based
on 2D representations of residue interaction networks (RINs) have been proposed more re-
cently [Csermely, 2008, Vishveshwara et al.,[2009]. RINs decrease the visual complexity of
3D protein structures and allow focusing on individual residues and their molecular interac-
tions. Basically, a RIN is derived from the atomic 3D coordinates of a protein structure model
that has been either determined experimentally or predicted by computational methods. Each
RIN consists of vertices representing amino acid residues as well as edges corresponding to
non-covalent interactions between residues, see Figure [0.21] Exploring and analyzing the
network of interacting residues was shown to provide additional insights into the structural
and functional role of residues [Csermely, 2008, Vishveshwara et al., 2009]]. RINs can be ap-
plied to study residue interactions in a number of relevant application scenarios, for instance,
regarding protein dynamics and engineering, folding, similarity, structure-function relation-
ships, protein and ligand binding, and the impact of residue mutations. The network models
of many proteins show small-world characteristics, i.e., most vertices are connected over
a short network distance. They contain a few hundred vertices which exhibit specific mo-
tif patterns, assemblies of a few network elements, and modules, densely connected groups
of residues that often correspond to protein domains. For a detailed discussion of protein
structure network analysis, see Bode et al.|[2007]].

224 9. Applications

(a) (b)

Figure 9.21: (a) A 3D structure representation of the HIV-1 protease in Chimera. Such a structure can be
converted into a 2D network representation of residue interactions. (b) The corresponding 2D network
representation visualized in Cytoscape. The RINalyzer tool allows to simultaneously explore both the 3D
protein structure and the 2D network, where the 2D layout is automatically computed and tries to preserve
the shape of the 3D structure.

9.3.2 Realization

Despite the many applications of RINs, 3D molecular graphics software for protein struc-
tures has not been combined yet with network analysis tools although a close integration
would be very useful for the investigation of protein structure and function. Therefore, novel
software is desirable that supports the simultaneous, interactive 2D visualization of a RIN
together with the corresponding 3D protein structure. Such integration is provided by RI-
Nalyzer, a new software tool that provides versatile and interactive structure analysis tools
for RINs and enables dynamic 2D and 3D views as shown in Figure [9.22] In this integra-
tive approach, residue vertices selected in a RIN are automatically highlighted in the protein
structure visualized by molecular graphics and vice versa. This approach also contrasts with
the generation of merely static 2D representations of molecules and their interactions [Zhou
and Shang|, |2009]]. Coloring is used to highlight different structural subunits and interaction
types to facilitate the analysis. Edges are labeled with the number of interactions of the
corresponding type.

RINalyzer is available as a plugin for the established network visualization platform Cy-
toscape. In general, this platform can easily be extended by plugins, many of which are
developed by other users to provide additional software functionalities. For instance, the
Cytoscape plugin structureViz supports the structural analysis of protein-protein interaction
networks [Morris et al., 2007]]. Like structureViz, RINalyzer links Cytoscape with the well-
known molecular modeling system UCSF Chimera [Pettersen et al., 2004] for 3D protein
structure visualization. RINalyzer is complemented by the RINerator module, which gener-
ates RINs from a 3D protein structure.

9.3. Visualizing Residue Networks of Protein Structures 225

Figure 9.22: Simultaneous viewing of the 3D protein structure of the NS3-4A protease of the hepatitis C
virus and the corresponding residue interaction network in 2D. The 2D layout and the 3D views are used
complementary for interactive visual analysis of the protease structure. The molecular graphics visual-
ization of the 3D protease structure is provided by UCSF Chimera. Different views of the corresponding
residue interaction network are displayed by RINalyzer within Cytoscape, including overviews of the
protease domain and the catalytic site. The vertex set interface (left) and the centralities panel (bottom
right) of RINalyzer provide additional software functionality for the visual exploration of RINs and their
topological properties. Picture kindly provided by Nadya Doncheva.

9.3.3 Network Layout

The simultaneous visualization of both 3D structure and 2D network should provide addi-
tional value to the user and make it possible to gain insight into structural and functional
properties better than one of the views alone. Both views should complement each other,
therefore the 2D layout should not just use the coordinates of the 3D structure information.
Instead, our goal for the 2D layout is that it mainly highlights the network characteristics.
However, the overall shape as well as the relative positions of characteristic substructures are
constrained to be similar to the one in the 3D view. Requirements for the layout therefore in-
clude both geometric as well as topological constraints, the latter ones restricted to structural
subunits of the residue network.

Our layout is based on the grid version of the Fruchterman-Reingold layout. Even though
this algorithm is only suited for networks of medium size, compared to more recent multi-
level layout approaches, we think it is responsive enough for RINs and often produces nice
layouts. We tuned the algorithm to achieve layouts that allow to recognize the protein fold-
ing structure better and to separate the secondary structure parts. As the algorithm computes
the layout based on the attraction of vertices connected by an edge and repulsion of vertices
close to each other, we adjust the attraction and repulsion values with respect to the 3D lay-

226 9. Applications

out given by Chimera and the protein structure. Vertices from the same part of the secondary
structure repel each other less than vertices from different parts. If consecutive vertices from
a helix or sheet are not directly connected by an edge, we simulate the attraction effect of the
edge such that the vertices are not drawn too far apart from each other. We start the algorithm
on a layout generated by a projection of the 3D structure positions to a 2D plane and anchor
the vertices at the position given by the Chimera layout. The vertices then are allowed to
move away from these positions depending on the force, i.e., anchoring is a soft constraint
in our approach, such that the resulting layout is not too far apart from the view in Chimera,
but the significant network relations have an adequate impact on the final layout.

Both views are linked, such that brushing and selecting in one view also leads to a selec-
tion in the other view.

9.3.4 Network Approaches to Protein Structure Analysis

The visual combination of RINs with 3D structures atfords novel complementary methods to
analyzing protein structures. One main feature of RINalyzer is the computation and illustra-
tion of a comprehensive set of well-known topological network centrality measures (based on
shortest paths, current flows, or random walks) for relating spatially distant residue vertices
and discovering critical residues and their long-range interaction paths in protein structures.
Another software feature is the ability to perform comparative analysis of residue interac-
tions by constructing a combined RIN that highlights the residue interaction similarities and
differences between two proteins, see Figure [9.23] This enables the detailed comparison of
residue interactions between homologous proteins or between different variants or mutants
of a given protein. In addition, RINalyzer can be used in combination with other Cytoscape
plugins such as NetworkAnalyzer for topological network analysis or MCODE and cluster-
Maker for finding network modules and clusters.

9.3.5 Concluding Remarks

We described innovative approaches to the investigation of complex protein structure-function
relationships using RINs. In particular, RINalyzer complements current 3D structure view-
ers and modeling tools and enables the interactive, visual analysis of protein structures with
RINs. Future extensions should aim at automating large-scale analysis and offering even
more user options for structure exploration and visualization with flexible network layouts.

9.3. Visualizing Residue Networks of Protein Structures 227

N ‘
:t 21
<1/

=\ PRO35L
=

Figure 9.23: Comparison of protein structures using residue interaction networks. (a) A wild-type protease
structure of the hepatitis C virus is compared with a variant structure associated with drug resistance. The
superimposed structures are visualized in UCSF Chimera with focus on the mutation (wild-type in orange
and variant in blue). The mutated residue is displayed using balls and sticks, its neighbors are shown
as lines. (b) RINalyzer is used to construct a combined network for comparing the residue interactions
of the wild-type and the variant structures. Solid black lines represent non-covalent residue interactions
preserved in both structures, the green dashed line corresponds to an interaction present only in the wild-
type structure, and the red dotted lines indicate interactions observed only in the variant form. (c) The
interfaces of two protein complexes are compared in UCSF Chimera. (d) RINalyzer is applied to compare
the interfaces between the two complexes using a combined network. Vertices corresponding to residues
of the two complexes are colored blue and yellow, respectively. Solid black lines represent non-covalent
residue interactions preserved in both binding interfaces, green and red dashed lines show interactions
observed only in one interface.

228 9. Applications

10. CONCLUSION, FURTHER WORK, AND
GENERAL REMARKS

Visualisation is an important weapon in the management
and control of the vast flood of data now generated.

CLAIRE KNIGHT AND MALCOLM MUNRO

There is a huge demand for efficient interactive graph visualization approaches and tools
in many application areas, and the gap between state-of-the-art findings in graph drawing
research and the methods used in practice is quite large. On the one hand, it is difficult
for practitioners to employ the latest approaches due to the lack of appropriate software
libraries, on the other hand the methods developed by graph drawing experts still fail to meet
all requirements needed in practical applications.

Graph drawing has come a long way from purely aesthetic layouts to sophisticated meth-
ods for some of the most complex problems motivated from practice. We are however still
far away from solving all problems of practitioners. The evaluation of the proposed methods,
if any, is mainly done on a few, ad hoc selected examples and rated from a graph drawing
perspective. Studies on the practical impact, the robustness, and effectiveness of the devel-
oped methods for real-world scenarios are rarely done. Instead, often implementations are
provided for purely experimental platforms.

Even though practitioners are willing to include graph drawing solutions into their own
implementations, they often do not know how to realize the methods, or how to use and
integrate existing graph drawing software. Easy-to-use interfaces and clear and well doc-
umented specifications need to be provided to overcome the lack of state-of-the-art graph
drawing methods in most of the relevant tools from practice. Publicly available and free
open-source graph drawing libraries that support both relevant exchange formats as well as
established drawing notations will facilitate the use of graph drawing algorithms in real-
world applications. However, such projects need to be reliably maintained and updated over
a longer period of time to increase the users’ confidence, allowing them to build upon graph
drawing libraries to create long-term solutions. With regard to these points, our graph draw-
ing library OGDF needs to be extended further. Support for notations as SGBN and UML,
a simple interface that allows a mapping from drawing requirements to constraint specifi-
cation also for non-experts in graph drawing, respective specifications how to store these
constraints also with our file format OGML, and a support for a larger number of constraints
in key layout algorithms are either under way or planned.

We investigated drawing requirements stemming from practical applications, and pre-
sented an extensive collection of these requirements together with a discussion of the cor-
responding data, tasks, and workflows. Our collection shows that most of the specific re-

230 10. Conclusion, Further Work, and General Remarks

quirements from different application areas can be reduced to rather generic and application-
independent requirements. These requirements can be mapped to drawing constraints which
make an algorithmic treatment of the corresponding drawing problems possible. We gave a
survey on the current state of the art regarding graph drawing with constraints, and presented
a categorization of the constraints. An overview of the methods in graph drawing to cope
with the related problems was presented, including interaction and navigation approaches as
well as the integration of constraints into the optimization process.

For two important types of constraints—clustering and embedding constraints—we de-
scribed models and solutions. For the case of cluster constraints we described an approach to
compute the maximum c-planar subgraph, which is useful in the context of a clustered pla-
narization approach. We made the branch-and-cut approach for the maximum c-planar sub-
graph computation publicly available in the open-source graph drawing library OGDEF. This
implementation is also useful for c-planarity testing of non-c-connected clustered graphs of
small size, and constitutes the first practical c-planarity testing approach for general clustered
graphs. As c-planarity testing is an important task independently of the maximum c-planar
subgraph computation, we presented an improvement for the case of pure c-planarity testing
which is based on a branch-and-price approach. Several concepts that exploit the specific
structural relations in the c-graphs constructed during our approach are used to prune the
search space. However, the complexity of c-planarity testing is still unknown, and there
is a lack of significant classes beyond c-connected c-graphs for which efficient c-planarity
testing can be done. In addition, theoretical foundations on the augmentation problem for
non-c-connected graphs are required to advance on the path to a solution for the general test-
ing problem. Rules to determine needed and unnecessary connectivity edges could greatly
improve both the theoretical understanding and the efficiency of practical approaches such
as our branch-and-price approach. An interesting field for further investigation might be
the interplay between Kuratowski subdivisions and the cluster structure with respect to the
necessary connectivity paths.

For the ec-embedding constraints, we developed a linear time testing and embedding
algorithm and showed that the edge insertion problem can still be solved in linear time un-
der these constraints. Even though in practice often all edges are subject to constraints and
therefore our model is directly applicable, still the problem of free edges that are not con-
strained has to be solved. As these edges do not fit into our expansion-based planarity testing
approach, other ways to consider them are needed.

We also described visualization paradigms for use within visual analysis approaches for
biological and chemical data. An implementation of the navigation concept for chemical
compound spaces is implemented in the Scaffold Hunter tool. Scaffold Hunter is an inter-
active exploration tool that allows data integration of multiple local and online resources
and provides complementary, linked views on both aggregated navigation structures and the
underlying data. Even though the tool already proved to be useful for real-world problem
solutions, the implemented interaction, visualization, and navigation concepts need to be
further evaluated in practice and refined to allow a smooth integration into the different task-
dependent workflows of chemists. Data integration from various online resources is only
partially achieved so far, but will greatly improve the tool’s value. Integrated visual analysis
of chemical data is just in the beginning, and there is still much work to be done to develop

231

and evaluate better interaction and visualization paradigms.

A similar challenge arises for our visualization approaches for biological networks. Even
though the quality of our protein-domain network layout clearly improves upon existing so-
lutions, there is still much room for improvement with a focus on the integration of such
layouts in an interactive visualization that fosters visual analysis and fits well into the biolo-
gist’s workflow.

A further problem in practice is the handling of huge graphs. In recent years, a large num-
ber of drawing and navigation approaches for such graphs were proposed, where multilevel
approaches seem to be the most promising technique. Although the methods proposed were
successful in fast and high quality computation of layouts, the discussion about large graph
layout is often decoupled from the considerations of real world requirements. If any, only
clustering constraints are integrated in these approaches [Bourqui et al., 2007]], as the cluster
structure is also used for navigation purposes. A further investigation of both, new tech-
niques for integration of more constraints, and also the underlying theoretical fundamentals,
is needed.

232 10. Conclusion, Further Work, and General Remarks

BIBLIOGRAPHY

Graph drawing toolkit. http://www.dia.uniroma3.it/ gdt/gdt4/. [I03]

IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, Kyoto, Japan, March
5-7, 2008, 2008. IEEE. [239] 250]

J. Abello, S. G. Kobourov, and R. Yusufov. Visualizing large graphs with compound-fisheye
views and treemaps. In[Pach|[2004]], pages 431-441. ISBN 3-540-24528-6.

J. Abello, F. van Ham, and N. Krishnan. Ask-graphview: A large scale graph visualization
system. IEEE Trans. Vis. Comput. Graph., 12(5):669-676, 2006.

D. K. Agrafiotis and J. J. M. Wiener. Scaffold explorer: An interactive tool for organizing
and mining structure-activity data spanning multiple chemotypes. Journal of Medicinal
Chemistry, 53(13):5002-5011, 2010. doi: 10.1021/jm1004495. URL http://pubs.
acs.org/doi/abs/10.1021/9m1004495. PMID: 20524668.

A. V. Aho, D. S. Johnson, R. M. Karp, S. R. Kosaraju, C. C. McGeoch, C. H. Papadimitriou,
and P. A. Pevzner. Emerging opportunities for theoretical computer science. SIGACT
News, 28(3):65-74, 1997.

W. Aigner. Infovis wiki. http://www.infovis-wiki.net/.[19]]

T. Aittokallio and B. Schwikowski. Graph-based methods for analysing networks in cell
biology. Brief Bioinform, 7(3):243-255, 2006. doi: 10.1093/bib/bbl022. URL http:
//bib.oxfordjournals.org/cgi/content/abstract/7/3/243.32

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of
the Cell, Fifth Edition. Garland Science, 5 edition, 2007. [213]

M. Albrecht, C. Huthmacher, S. C. E. Tosatto, and T. Lengauer. Decomposing protein net-
works into domain-domain interactions. In ECCB/JBI, page 221, 2005. 212]

M. Albrecht, A. Kerren, K. Klein, O. Kohlbacher, P. Mutzel, W. Paul, F. Schreiber, and
M. Wybrow. On open problems in biological network visualization. In Eppstein and
Gansner| [2010], pages 256-267. ISBN 978-3-642-11804-3. [6] [25]

P. Aloy and R. B. Russell. Structure-based systems biology: a zoom lens for the cell.
FEBS Letters, 579(8):1854 — 1858, 2005. ISSN 0014-5793. doi: DOI:10.1016/j.febslet.
2005.02.014. URL http://www.sciencedirect.com/science/article/
B6T36-4FHOT2R-4/2/5c9588641eab9%c66b2eb01d2a8edbb49. Systems Bi-

ology. [20]

http://pubs.acs.org/doi/abs/10.1021/jm1004495
http://pubs.acs.org/doi/abs/10.1021/jm1004495
http://www.infovis-wiki.net/
http://bib.oxfordjournals.org/cgi/content/abstract/7/3/243
http://bib.oxfordjournals.org/cgi/content/abstract/7/3/243
http://www.sciencedirect.com/science/article/B6T36-4FH0T2R-4/2/5c9588641ea59c66b2eb01d2a8ed6b49
http://www.sciencedirect.com/science/article/B6T36-4FH0T2R-4/2/5c9588641ea59c66b2eb01d2a8ed6b49

234 BIBLIOGRAPHY

S. W. Ambler. The Elements of UML 2.0 Style. Cambridge University Press, Cambridge,
UK, 2005. ISBN 978-0-521-61678-2. [44]

Y. An, J. Janssen, and E. E. Milios. Characterizing and mining the citation graph of the
computer science literature. Knowl. Inf. Syst., 6(6):664—678, 2004.

P. Angelini, G. Di Battista, F. Frati, V. Jelinek, J. Kratochvil, M. Patrignani, and I. Rutter.
Testing planarity of partially embedded graphs. In M. Charikar, editor, SODA, pages 202—

221. SIAM, 2010a. [83,[06, 07

P. Angelini, F. Frati, and M. Patrignani. Splitting clusters to get c-planarity. In Eppstein and
Gansner| [2010]], pages 57-68. ISBN 978-3-642-11804-3. 20009.

M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of dimensions for an en-
hanced visualization of multidimensional data. In INFOVIS ’98: Proceedings of the 1998
IEEE Symposium on Information Visualization, page 52, Washington, DC, USA, 1998.
IEEE Computer Society. ISBN 0-8186-9093-3. [I5]

B. Aranda, P. Achuthan, Y. Alam-Faruque, I. Armean, A. Bridge, C. Derow, M. Feuer-
mann, A. T. Ghanbarian, S. Kerrien, J. Khadake, J. Kerssemakers, C. Leroy, M. Menden,
M. Michaut, L. Montecchi-Palazzi, S. Neuhauser, S. Orchard, V. Perreau, B. Roechert,
K. van Eijk, and H. Hermjakob. The IntAct molecular interaction database in 2010. Nu-
cleic Acids Research, 38:D525-D531, 2010. 22] [33]

D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel graph layout by topo-
logical features. IEEE Transactions on Visualization and Computer Graphics, 13(2):305—
317,2007. ISSN 1077-2626. doi: http://dx.doi.org/10.1109/TVCG.2007.46. [66] [71]

M. Ashburner. Gene ontology: Tool for the unification of biology. Nature Genetics, 25:
25-29, 2000. 23]

D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Multiscale visualization of small world
networks. In INFOVIS. IEEE Computer Society, 2003. [193

G. J. Badros. Extending Interactive Graphical Applications with Constraints. PhD thesis,
University of Washington, 2000. [80]

S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems. Concurrency - Practice and Experience, 6(2):101—
117, 1994. [70]

J. E. Barnes and P. Hut. A hierarchical O(n-log-n) force calculation algorithm. Nature, 324:
446-449, 1986. [193]

A. Barsky, T. Munzner, J. Gardy, and R. Kincaid. Cerebral: Visualizing multiple ex-
perimental conditions on a graph with biological context. IEEE Transactions on Vi-
sualization and Computer Graphics, 14:1253-1260, 2008. ISSN 1077-2626. doi:
http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.117. 33] [34]

BIBLIOGRAPHY 235

G. Bartel, C. Gutwenger, K. Klein, and P. Mutzel. An experimental evaluation of multi-
level layout methods. In /8th International Symposium on Graph Drawing 2010 (GD10),
number 6502 in LNCS, pages 80-91. Springer-Verlag, 2010.

W. Barth, M. Jiinger, and P. Mutzel. = Simple and efficient bilayer cross count-
ing. Journal of Graph Algorithms and Applications (JGAA), 8(2):179-194, 2004.
http://www.cs.brown.edu/publications/jgaa/. 219

V. Batagelj, H.-H. Bock, A. Ferligoj, and A. Ziberna. Data Science and Classification (Stud-
ies in Classification, Data Analysis, and Knowledge Organization). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006. ISBN 3540344152. [13]

C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity relationship dia-
grams. Journal of Systems and Software, 4:163—173, 1984. [5§]

C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data flow diagrams. IEEE
Trans. Softw. Eng., 12(4):538-546, 1986. ISSN 0098-5589. [61] [B1]

M. Baur. visone - Software for the Analysis and Visualization of Social Networks. PhD thesis,
Universitit Karlsruhe (TH), 2008.

M. Baur and U. Brandes. Crossing reduction in circular layouts. In J. Hromkovic, M. Nagl,
and B. Westfechtel, editors, WG, volume 3353 of Lecture Notes in Computer Science,
pages 332-343. Springer-Verlag, 2004. ISBN 3-540-24132-9. 221]

M. Baur and U. Brandes. Multi-circular layout of micro/macro graphs. In|Hong et al.|[2008],
pages 255-267. ISBN 978-3-540-77536-2.

M. Baur, U. Brandes, J. Lerner, and D. Wagner. Group-level analysis and visualization of
social networks. In J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of Large
and Complex Networks, volume 5515 of Lecture Notes in Computer Science, pages 330—
358. Springer-Verlag, 2009. ISBN 978-3-642-02093-3.

M. Y. Becker and 1. Rojas. A graph layout algorithm for drawing metabolic pathways.
Bioinformatics, 17(5):461-467, 2001. 25| [85]

C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch. The aesthetics of graph visualization.
In D. W. Cunningham, G. W. Meyer, L. Neumann, A. Dunning, and R. Paricio, editors,
Computational Aesthetics, pages 5S7—64. Eurographics Association, 2007. ISBN 978-3-
905673-43-2. 62

F. Bertault. A force-directed algorithm that preserves edge-crossing properties. Inf. Process.

Lett., 74(1-2):7-13, 2000. 83, [06]

F. Bertault and M. Miller. An algorithm for drawing compound graphs. In Kratochvil|[[1999],
pages 197-204. ISBN 3-540-66904-3. [66|

P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the
minimum number of bends. IEEE Trans. on Comp., 49:826-840, 2000. [69

236 BIBLIOGRAPHY

P. Bertolazzi, G. D. Battista, and W. Didimo. Quasi-upward planarity. Algorithmica, 32(3):
474-506, 2002. 82

T. C. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In R. E.
Burkard and G. J. Woeginger, editors, ESA, volume 1284 of Lecture Notes in Computer
Science, pages 37-52. Springer-Verlag, 1997. ISBN 3-540-63397-9. [194]

T. C. Biedl, J. Marks, K. Ryall, and S. Whitesides. Graph multidrawing: Finding nice
drawings without defining nice. In S. Whitesides, editor, Graph Drawing, volume 1547
of Lecture Notes in Computer Science, pages 347-355. Springer Verlag, 1998. ISBN

3-540-65473-9. [60] [T0T]

C. Binucci, E. D. Giacomo, W. Didimo, A. Estrella-Balderrama, F. Frati, S. G. Kobourov, and
G. Liotta. Upward straight-line embeddings of directed graphs into point sets. Comput.
Geom., 43(2):219-232, 2010. P3|

BioCarta. BioCarta Pathway Project homepage. http://biocarta. comnl. [24]

BioCyc. The BioCyc collection of pathway/genome databases. http://biocyc.org.
24]

BioGRID. BioGRID is an online interaction repository with data compiled through compre-
hensive curation efforts. http://www.thebiogrid.org/. 22,06

J. Blythe, C. McGrath, and D. Krackhardt. The effect of graph layout on inference from
social network data. In Brandenburg| [1996], pages 40-51. ISBN 3-540-60723-4. 0]

C. Bode, I. A. Kovacs, M. S. Szalay, R. Palotai, T. Korcsmaros, and P. Csermely. Net-
work analysis of protein dynamics. FEBS Letters, 581(15):2776-2782, 2007. ISSN
00145793. doi: 10.1016/j.febslet.2007.05.021. URL http://dx.doi.org/10.
1016/75.febslet.2007.05.021. 223

H. L. Bodlaender and G. Tel. A note on rectilinearity and angular resolution. J. Graph
Algorithms Appl., 8:89-94, 2004. [100]

K.-F. Bohringer and F. N. Paulisch. Using constraints to achieve stability in automatic graph
layout algorithms. In Proc. of CHI-90, pages 43-51, Seattle, WA, 1990. [81],[97] [194]

R. Bon and H. Waldmann. Bioactivity-guided navigation of chemical space. Acc Chem Res.,
43(8):1103-14, 2010. [210]

K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and
graph planarity using P-Q tree algorithms. Journal of Computer and System Sciences, 13:

335-379, 1976. [T08] [T09]

R. Bourqui, D. Auber, V. Lacroix, and F. Jourdan. Metabolic network visualization using
constraint planar graph drawing algorithm. In[TV2006, pages 489-496. [25] [85]

http://biocarta.com
http://biocyc.org
http://www.thebiogrid.org/
http://dx.doi.org/10.1016/j.febslet.2007.05.021
http://dx.doi.org/10.1016/j.febslet.2007.05.021

BIBLIOGRAPHY 237

R. Bourqui, D. Auber, and P. Mary. How to draw clustered weighted graphs using a mul-
tilevel force-directed graph drawing algorithm. In IV, pages 757-764. IEEE Computer

Society, 2007. [85] 231]

J. Boyer and W. Myrvold. On the cutting edge: Simplified O(n) planarity by edge addition.
Journal on Graph Algorithms and Applications, 8(3):241-273, 2004. [108]

BPEL. Web services business process execution language version 2.0 OASIS standard, or-
ganization for the advancement of structured information standards (OASIS). http:
//docs.ocasis—open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

BPMN. Business process modeling notation (BPMN) homepage, object management group
(OMG). http://www.bpmn.org, a.

BPMN. BPMN example document, object management group (OMG). http://www.
omg.org/cgi-bin/doc?dtc/10-06-02, 2010b. [50]

F.-J. Brandenburg, editor. Graph Drawing, Symposium on Graph Drawing, GD ’95, Pas-
sau, Germany, September 20-22, 1995, Proceedings, volume 1027 of Lecture Notes in
Computer Science, 1996. Springer-Verlag. ISBN 3-540-60723-4. [236] 258] 262

U. Brandes and S. R. Corman. Visual unrolling of network evolution and the analysis of
dynamic discourse? Information Visualization, 2(1):40-50, 2003. 39] [85]

U. Brandes and B. Pampel. On the hardness of orthogonal-order preserving graph drawing.
In Tollis and Patrignani [2009], pages 266—277. ISBN 978-3-642-00218-2. [L00] [I89]

U. Brandes and C. Pich. An experimental study on distance-based graph drawing. In
Proc. Graph Drawing 2008, volume 5417 of LNCS, pages 218-229, 2009a. [73] [84]

U. Brandes and C. Pich. More flexible radial layout. In Eppstein and Gansner [2010], pages
107-118. ISBN 978-3-642-11804-3. [67} [73 B3] P7] 211]

U. Brandes and B. Schlieper. Angle and distance constraints on tree drawings. In Kautmann
and Wagner [2007]], pages 54—65. ISBN 978-3-540-70903-9. [97] [L00]

U. Brandes and D. Wagner. A bayesian paradigm for dynamic graph layout. In G. Di Battista,
editor, Graph Drawing, volume 1353 of Lecture Notes in Computer Science, pages 236—
247. Springer-Verlag, 1997. ISBN 3-540-63938-1. [194]

U. Brandes and D. Wagner. Dynamic grid embedding with few bends and changes. In Pro-
ceedings of the 9th International Symposium on Algorithms and Computation, ISAAC *98,
pages 89-98. Springer-Verlag, 1998. ISBN 3-540-65385-6. URL http://portal.
acm.org/citation.cfm?id=646341.686589.[189][194

U. Brandes, M. Giidemann, and D. Wagner. Fully dynamic orthogonal graph layout for
interactive systems. Technical report, Universitit Konstanz, 2000a. [194]

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.bpmn.org
http://www.omg.org/cgi-bin/doc?dtc/10-06-02
http://www.omg.org/cgi-bin/doc?dtc/10-06-02
http://portal.acm.org/citation.cfm?id=646341.686589
http://portal.acm.org/citation.cfm?id=646341.686589

238 BIBLIOGRAPHY

U. Brandes, G. Shubina, R. Tamassia, and D. Wagner. Fast layout methods for timetable
graphs. InMarks|[2001]], pages 127-138. ISBN 3-540-41554-8.

U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner. Sketch-driven orthogonal graph
drawing. In Proc. 10th Intl. Symp. Graph Drawing (GD 2002), volume 2528 of LNCS,

pages 1-11, 2002. [189]

U. Brandes, T. Dwyer, and F. Schreiber. Visual understanding of metabolic pathways across
organisms using layout in two and a half dimensions. J. Integrative Bioinformatics, 1(1),

2004. [83]

U. Brandes, C. Erten, J. J. Fowler, F. Frati, M. Geyer, C. Gutwenger, S.-H. Hong, M. Kauf-
mann, S. G. Kobourov, G. Liotta, P. Mutzel, and A. Symvonis. Colored simultaneous
geometric embeddings. In G. Lin, editor, COCOON, volume 4598 of Lecture Notes in
Computer Science, pages 254-263. Springer-Verlag, 2007. ISBN 978-3-540-73544-1. [84]

J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner, editors, Drawing
Graphs, volume 2025 of Lecture Notes in Computer Science, pages 228—-246. Springer-
Verlag, 1999. ISBN 3-540-42062-2.

S. Brasch, L. Linsen, and G. Fuellen. Vanlo - interactive visual exploration of aligned bio-
logical networks. BMC Bioinformatics, 10(1):327, 2009. ISSN 1471-2105. doi: 10.1186/
1471-2105-10-327. URL http://www.biomedcentral.com/1471-2105/10/
327. B0

P. BraB, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G. Kobourov, A. Lu-
biw, and J. S. B. Mitchell. On simultaneous planar graph embeddings. Comput. Geom.,
36(2):117-130, 2007. [84]

S. S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal graph draw-
ing algorithms. J. Graph Algorithms Appl., 4(3):47-74, 2000.

S. S. Bridgeman and R. Tamassia. A user study in similarity measures for graph drawing. J.
Graph Algorithms Appl., 6(3):225-254, 2002. [189]

S. S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. Interactivegiotto: An
algorithm for interactive orthogonal graph drawing. In D1 Battista|[1997]], pages 303-308.
ISBN 3-540-63938-1. [189] [194]

C. Buchheim, M. Jiinger, and S. Leipert. Improving Walker’s algorithm to run in linear time.
In|[Kobourov and Goodrich! [2002], pages 344-353. ISBN 3-540-00158-1.

C. Buchheim, M. Jiinger, A. Menze, and M. Percan. Bimodal crossing minimization. In
Chen and Lee|[2006], pages 497-506. ISBN 3-540-36925-2. [82] [83]

ChEMBL. ChEMBL database, european bioinformatics institute (EBI), part of the european
molecular biology laboratory (EMBL). https://www.ebi.ac.uk/chembl/| [I5

http://www.biomedcentral.com/1471-2105/10/327
http://www.biomedcentral.com/1471-2105/10/327
https://www.ebi.ac.uk/chembl/

BIBLIOGRAPHY 239

C. Chen. Information Visualization: Beyond the Horizon. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006. ISBN 184628340X. [3]

D.Z. Chen and D. T. Lee, editors. Computing and Combinatorics, 12th Annual International
Conference, COCOON 2006, Taipei, Taiwan, August 15-18, 2006, Proceedings, volume
4112 of Lecture Notes in Computer Science, 2006. Springer-Verlag. ISBN 3-540-36925-2.
23§]

N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar
graphs using PQ-trees. Journal of Computer and System Sciences, 30(1):54-76, 1985.

[T08] [T14] [122] [131]

M. Chimani and K. Klein. Algorithm engineering: Concepts and practice. In T. Bartz-
Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Experimental Methods for
the Analysis of Optimization Algorithms, pages 131-160. Springer Verlag, 2010.

M. Chimani, G. W. Klau, and R. Weiskircher. Non-planar orthogonal drawings with fixed
topology. In Proc. of SofSem 2005, volume 3381 of LNCS, pages 96—105. Springer-Verlag,
2005. ISBN 3-540-24302-X.

M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple Kuratowski
subdivisions. Technical Report TRO7-1-002, Chair for Algorithm Engineering, Dep.
of CS, University Dortmund, 2007. See http://1lsll-www.cs.uni—-dortmund.
de/people/chimani/files/extractkura-TR.pdf. [146]

M. Chimani, C. Gutwenger, M. Jansen, K. Klein, and P. Mutzel. Computing maximum
c-planar subgraphs. In Tollis and Patrignani| [2009], pages 114-120. ISBN 978-3-642-
00218-2.

M. Chimani, M. Jiinger, and M. Schulz. Crossing minimization meets simultaneous drawing.
In PacificVis DBL] [2008], pages 33—40.

A. Cockburn, A. Karlson, and B. B. Bederson. A review of overview+detail, zooming, and
focus+context interfaces. ACM Comput. Surv., 41:2:1-2:31, January 2009. ISSN 0360-
0300. doi: http://doi.acm.org/10.1145/1456650.1456652. URL http://doi.acm.
org/10.1145/1456650.1456652.

R. E. Cohen, G. Di Battista, R. Tamassia, I. G. Tollis, and P. Bertolazzi. A framework for
dynamic graph drawing. In Symposium on Computational Geometry, pages 261-270,

1992. [193

M. Coleman and D. Parker. Aesthetics-based graph layout for human consumption. Software
- Practice and Experience, 26(12):1415-1438, 1996. [61], [66]

M. K. Coleman. Aesthetics-based Graph Layout for Human Consumption. PhD thesis,
University of California, Los Angeles, 1993. [59

http://ls11-www.cs.uni-dortmund.de/people/chimani/files/extractkura-TR.pdf
http://ls11-www.cs.uni-dortmund.de/people/chimani/files/extractkura-TR.pdf
http://doi.acm.org/10.1145/1456650.1456652
http://doi.acm.org/10.1145/1456650.1456652

240 BIBLIOGRAPHY

C.S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for graph-based
visualization of the evolution of software. In Diehl et al.|[2003], pages 77-86, 212-213.
ISBN 1-58113-642-0.

S. Cornelsen and D. Wagner. Completely connected clustered graphs. J. Discrete Algorithms,

4(2):313-323, 2006. [127} [128] [129] [130} [132] [136} [137} [139] [143]

P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering cycles into cycles
of clusters (extended abstract). In Proc. of The 12th Int. Symposium on Graph Drawing

(GD 2004), 2004. [T32] [T40)

P. E. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia. C-planarity of c-
connected clustered graphs: Part I — characterization. Technical Report RT-DIA-109-2006,
Dip. Informatica e Automazione, Univ. Roma Tre, 2006a. [T31]

P. E. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia. C-planarity of c-
connected clustered graphs: Part II — testing and embedding algorithm. Technical Report
RT-DIA-110-2006, Dip. Informatica e Automazione, Univ. Roma Tre, 2006b. [131]

D. Croft, G. O’Kelly, G. Wu, R. Haw, M. Gillespie, L. Matthews, M. Caudy, P. Garapati,
G. Gopinath, B. Jassal, S. Jupe, I. Kataskaya, S. Mahajan, B. May, N. Ndegwa, E. Schmidt,
V. Shamovsky, C. Yung, E. Birney, H. Hermjakob, P. D’Eustachio, and L. Stein. Reac-
tome: a database of reactions, pathways and biological processes. Nucleic Acids Re-
search. doi: 10.1093/nar/gkq1018. URL http://nar.oxfordjournals.org/
content/early/2010/11/23/nar.gkgl018.abstractl 24

P. Csermely. Creative elements: network-based predictions of active centres in proteins and
cellular and social networks. Trends Biochem Sci, 33:569-576, 2008. 223

W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge clustering for graph
visualization. IEEE Trans. Vis. Comput. Graph., 14(6):1277-1284, 2008.

E. Dahlhaus. A linear time algorithm to recognize clustered planar graphs and its paralleliza-
tion. In LATIN: Latin American Symposium on Theoretical Informatics, 1998.[3] 130]
131} (136} [137}[156]

E. Dahlhaus, K. Klein, and P. Mutzel. Planarity testing for c-connected clustered graphs.
Technical Report TR06-1-01, Chair of Algorithm Engineering (Ls 11), Dep. of CS,
University Dortmund, 2006. See http://lsll-www.cs.uni-dortmund.de/
people/klein/CClusterTR.pdf. [[13]]

J. Demeter, C. Beauheim, J. Gollub, T. Hernandez-Boussard, H. Jin, D. Maier, J. C. Matese,
M. Nitzberg, F. Wymore, Z. K. Zachariah, P. O. Brown, G. Sherlock, and C. A. Ball.
The stanford microarray database: implementation of new analysis tools and open source
release of software. Nucleic Acids Res, 35(Database issue), January 2007. ISSN 1362-
4962. URL http://view.ncbi.nlm.nih.gov/pubmed/17182626. [I§]

http://nar.oxfordjournals.org/content/early/2010/11/23/nar.gkq1018.abstract
http://nar.oxfordjournals.org/content/early/2010/11/23/nar.gkq1018.abstract
http://ls11-www.cs.uni-dortmund.de/people/klein/CClusterTR.pdf
http://ls11-www.cs.uni-dortmund.de/people/klein/CClusterTR.pdf
http://view.ncbi.nlm.nih.gov/pubmed/17182626

BIBLIOGRAPHY 241

E. Dengler, M. Friedell, and J. Marks. Constraint-driven diagram layout. In Proc. of the
1993 IEEE Symposium on Visual Languages, pages 330-335, Bergen, Norway, 1993. [102]

G. Di Battista, editor. Graph Drawing, 5th International Symposium, GD 97, Rome, Italy,
September 18-20, 1997, Proceedings, volume 1353 of Lecture Notes in Computer Science,
1997. Springer-Verlag. ISBN 3-540-63938-1. 238]

G. Di Battista and F. Frati. Efficient c-planarity testing for embedded flat clustered graphs
with small faces. J. Graph Algorithms Appl., 13(3):349-378, 2009.

G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Com-
puting, 25(5):956-997, 1996. ISSN 0097-5397. doi: http://dx.doi.org/10.1137/
S0097539794280736. [10} [T16]

G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental
comparison of four graph drawing algorithms. Comput. Geom., 7:303-325, 1997.

G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and
quasi-upward drawings with vertices of prescribed size. In J. Kratochvil, edi-
tor, Proc. Graph Drawing 99, volume 1731 of LNCS, pages 297-310. Springer-
Verlag, 1999a. URL http://springerlink.metapress.com/openurl.
asp?genre=article&issn=0302-9743&volume=1731&spage=297.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, 1999b.
691

G. Di Battista, W. Didimo, and A. Marcandalli. Planarization of clustered graphs. In
P. Mutzel, M. Jiinger, and S. Leipert, editors, Graph Drawing, 9th International Sym-
posium, GD 2001 Vienna, Austria, volume 2265 of LNCS, pages 60—74. Springer-Verlag,

2001. ISBN 3-540-43309-0. [85] [133][139]

G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Drawing database schemas.
Software: Practice and Experience, 32(11):1065-1098, 2002. ISSN 0038-0644. doi:
http://dx.doi.org/10.1002/spe.474. [82]

G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Dbdraw - automatic layout
of relational database schemas. In M. Jinger and P. Mutzel, editors, Graph Drawing
Software, Mathematics and Visualization, pages 237-256. Springer-Verlag, 2004.

W. Didimo, F. Giordano, and G. Liotta. Overlapping cluster planarity. J. Graph Algorithms
Appl., 12(3):267-291, 2008. [133|

S. Diehl and C. Gorg. Graphs, they are changing. In Kobourov and Goodrich|[2002], pages
23-30. ISBN 3-540-00158-1. URL http://portal.acm.org/citation.cfm?

1d=647554.729718.[187,[188] 194

S. Diehl, C. Goerg, and A. Kerren. Preserving the mental map using foresighted layout.
In In Proceedings of Joint Eurographics U IEEE TCVG Symposium on Visualization Vis-
SymS01, pages 175—184. Springer Verlag, 2001.

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=1731&spage=297
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=1731&spage=297
http://portal.acm.org/citation.cfm?id=647554.729718
http://portal.acm.org/citation.cfm?id=647554.729718

242 BIBLIOGRAPHY

S. Diehl, J. T. Stasko, and S. N. Spencer, editors. Proceedings ACM 2003 Symposium on
Software Visualization, San Diego, California, USA, June 11-13, 2003,2003. ACM. ISBN

1-58113-642-0. P40] P44, P50)

R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
fourth edition, 2010.

H. A. D. do Nascimento and P. Eades. User hints for directed graph drawing. In Graph
Drawing, 9th International Symposium, GD 2001 Vienna, Austria, volume 2265 of Lecture
Notes in Computer Science, pages 205-219, 2002. [60] [I84]

H. A. D. do Nascimento and P. Eades. User hints: a framework for interactive optimization.
Future Generation Comp. Syst., 21(7):1171-1191, 2005. [184]

H. A. D. do Nascimento and P. Eades. User hints for map labeling. J. Vis. Lang. Comput.,
19(1):39-74, 2008. [184]

U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir. A compound graph layout
algorithm for biological pathways. In Pach|[2004], pages 442—447. ISBN 3-540-24528-6.
URLhttp://dblp.uni-trier.de/db/conf/gd/gd2004.htmll. 85} 91} 97

U. Dogrusoz, E. Z. Erson, E. Giral, E. Demir, O. Babur, A. Cetintas, and R. Colak.
Patikaweb: a web interface for analyzing biological pathways through advanced query-
ing and visualization. Bioinformatics, 22(3):374-375, 2006.

U. Dogrusoz, E. Giral, A. Cetintas, A. Civril, and E. Demir. A layout algorithm for undi-
rected compound graphs. Inf. Sci., 179(7):980-994, 2009.

N. T. Doncheva, K. Klein, F. S. Domingues, and M. Albrecht. Analyzing and visualizing
residue networks of protein structures. Trends in Biochemical Sciences (TIBS), 2011. doi:
doi:10.1016/j.tibs.2011.01.002. [5] 223

C. Dornheim. Planar graphs with topological constraints. Journal on Graph Algo-
rithms and Applications, 6(1):27-66, 2002. URL http://www.cs.brown.edu/
publications/jgaa/accepted/2002/Dornheim2002.6.1.pdf. [83]

C. Dunne and B. Shneiderman. Improving graph drawing readability by incorporating read-
ability metrics: a software tool for network analysts. Technical Report HCIL-2009-
13, University of Maryland, 2009. URL http://www.cs.umd.edu/localphp/
hcil/tech-reports—search.php?number=2009-13.[6]]

T. Dwyer. Scalable, versatile and simple constrained graph layout. Comput. Graph. Forum,
28(3):991-998, 2009. [89] [00]

T. Dwyer and Y. Koren. Dig-cola: Directed graph layout through constrained energy mini-
mization. In INFOVIS, page 9. IEEE Computer Society, 2005. ISBN 0-7803-9464-X. [83]

89 071

http://dblp.uni-trier.de/db/conf/gd/gd2004.html
http://www.cs.brown.edu/publications/jgaa/accepted/2002/Dornheim2002.6.1.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/2002/Dornheim2002.6.1.pdf
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2009-13
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2009-13

BIBLIOGRAPHY 243

T. Dwyer and K. Marriott. Constrained stress majorization using diagonally scaled gradient
projection. InHong et al|[2008]], pages 219-230. ISBN 978-3-540-77536-2. [89]

T. Dwyer and G. G. Robertson. Layout with circular and other non-linear constraints using
procrustes projection. In|Eppstein and Gansner [2010]], pages 393—404. ISBN 978-3-642-

11804-3. 89} 03} [07, 09|

T. Dwyer and M. Wybrow. Adaptagrams project homepage. http://adaptagrams.
sourceforge.net/. [103

T. Dwyer, Y. Koren, and K. Marriott. Stress majorization with orthogonal ordering con-
straints. InHealy and Nikolov| [2006], pages 141-152. ISBN 3-540-31425-3. [89] [07]

T. Dwyer, Y. Koren, and K. Marriott. Ipsep-cola: An incremental procedure for separation
constraint layout of graphs. IEEE Trans. Vis. Comput. Graph., 12(5):821-828, 2006a. [89]

T. Dwyer, K. Marriott, and M. Wybrow. Integrating edge routing into force-directed layout.
In [Kaufmann and Wagner| [2007], pages 8—19. ISBN 978-3-540-70903-9.

T. Dwyer, K. Marriott, and M. Wybrow. Dunnart: A constraint-based network diagram
authoring tool. In|Tollis and Patrignani| [2009], pages 420—431. ISBN 978-3-642-00218-

2. [101}[103

T. Dwyer, K. Marriott, and M. Wybrow. Topology preserving constrained graph lay-
out. In Graph Drawing: 16th International Symposium, GD 2008, Heraklion, Crete,
Greece, September 21-24, 2008. Revised Papers, pages 230-241, Berlin, Heidelberg,
2009. Springer-Verlag. ISBN 978-3-642-00218-2. doi: http://dx.doi.org/10.1007/

978-3-642-00219-9_22. [83] [89], 06 97} [189]

P. Eades. A heuristic for graph drawing. In Congressus Numerantium, volume 42, pages
149-160, 1984. [70]

P. Eades. Drawing free trees. Bulletin of the institute for Combinatorics and its Applications,
5:10-36, 1992. [65]

P. Eades. Invited talk GD’10, 2010.

P. Eades and Q.-W. Feng. Drawing clustered graphs on an orthogonal grid. In|D1 Battista
[1997], pages 146—-157. ISBN 3-540-63938-1. [85] 07

P. Eades and M. L. Huang. Navigating clustered graphs using force-directed methods. J.
Graph Algorithms Appl., 4(3):157-181, 2000. [85] [192]

P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental map of a diagram. In
Proceedings of COMPUGRAPHICS 91, pages 34-43, 1991. [189] 193

P. Eades, R. F. Cohen, and M. L. Huang. Online animated graph drawing for web navigation.
In Di Battista [1997], pages 330-335. ISBN 3-540-63938-1. [192]

http://adaptagrams.sourceforge.net/
http://adaptagrams.sourceforge.net/

244 BIBLIOGRAPHY

P. Eades, Q. Feng, X. Lin, and H. Nagamochi. Straight-line drawing algorithms for hier-
archical graphs and clustered graphs. In Algorithmica, pages 113-128. Springer-Verlag,
1999a.

P. Eades, Q.-W. Feng, and H. Nagamochi. Drawing clustered graphs on an orthogonal grid.
J. Graph Algorithms Appl., 3(4):3-29, 1999b.

P. Effinger, M. Siebenhaller, and M. Kaufmann. An interactive layout tool for bpmn. In
B. Hofreiter and H. Werthner, editors, CEC, pages 399—406. IEEE Computer Society,
2009. ISBN 978-0-7695-3755-9. [501

H. Eichelberger. Nice class diagrams admit good design? In Diehl et al. [2003], pages
159-167. ISBN 1-58113-642-0. 44

Eigenfactor. Eigenfactor ranking web page. http://eigenfactor.orgl @2

M. Eiglsperger, U. FoBBmeier, and M. Kaufmann. Orthogonal graph drawing with con-
straints. In Proc. of the 11th ACM-SIAM Symp. on Discr. Alg., SODA 00, pages 3-11,
Philadelphia, PA, USA, 2000. Society for Industrial and Applied Mathematics. ISBN
0-89871-453-2. URL http://portal.acm.org/citation.cfm?id=338219.

338225. [83,07

M. Eiglsperger, M. Kaufmann, and F. Eppinger. An approach for mixed upward planariza-
tion. J. Graph Algorithms Appl., 7(2):203-220, 2003.

M. Eiglsperger, C. Gutwenger, M. Kaufmann, J. Kupke, M. Jiinger, K. Klein, S. Leipert,
P.Mutzel, and M. Siebenhaller. Automatic layout of uml class diagrams in orthogonal
style. Information Visualization, 3:189-208, 2004. [68] [83]

W. D. Ellis. A source book of gestalt psychology,. Routledge & Kegan Paul, January 1969.
[13]

D. Emig, M. S. Cline, K. Klein, A. Kunert, P. Mutzel, T. Lengauer, and M. Albrecht. Inte-
grative visual analysis of the effects of alternative splicing on protein domain interaction
networks. J. Integrative Bioinformatics, 5(2), 2008a. 3]

D. Emig, K. Klein, A. Kunert, P. Mutzel, and M. Albrecht. Visualizing domain interaction
networks and the impact of alternative splicing events. Medical Information Visualisation,
BioMedical Visualisation, International Conference on, 0:36—43, 2008b. doi: http://doi.
ieeecomputersociety.org/10.1109/MediVis.2008.16. [5]

D. Eppstein and E. R. Gansner, editors. Graph Drawing, 17th International Symposium, GD
2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers, volume 5849 of Lecture
Notes in Computer Science, 2010. Springer-Verlag. ISBN 978-3-642-11804-3. 233] 234]

237, 243]

C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs with few bends. J.
Graph Algorithms Appl., 9(3):347-364, 2005. [84]

http://eigenfactor.org
http://portal.acm.org/citation.cfm?id=338219.338225
http://portal.acm.org/citation.cfm?id=338219.338225

BIBLIOGRAPHY 245

C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. V. Yee. Graphael: Graph
animations with evolving layouts. In Liotta [2004], pages 98—-110. ISBN 3-540-20831-3.

B0, D9

A. Estrella-Balderrama, E. Gassner, M. Jiinger, M. Percan, M. Schaefer, and M. Schulz.
Simultaneous geometric graph embeddings. In|Hong et al. [2008], pages 280-290. ISBN
978-3-540-77536-2. 84l

A. Estrella-Balderrama, J. J. Fowler, and S. G. Kobourov. Graphset, a tool for simultaneous
graph drawing. Softw., Pract. Exper., 40(10):849-863, 2010. [34]

Q. W. Feng. Algorithms for Drawing Clustered Graphs. PhD thesis, The University of
Newcastle, 1997. [136]

Q.-W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs. In P. G. Spirakis,
editor, ESA: Annual European Symposium on Algorithms, volume 979 of Lecture Notes in
Computer Science, pages 213-226. Springer-Verlag, 1995a. ISBN 3-540-60313-1. [§]
[126] [T29] [131] [132} [134), [135] [T39} [141] [156]

Q.-W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered graph. In D.-Z. Du
and M. Li, editors, COCOON, volume 959 of Lecture Notes in Computer Science, pages
21-30. Springer-Verlag, 1995b. ISBN 3-540-60216-X.

R. D. Finn, J. G. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H.-R. Hotz, G. Ceric,
K. Forslund, S. R. Eddy, E. L. L. Sonnhammer, and A. Bateman. The pfam protein fami-
lies database. Nucleic Acids Research, 36(Database-Issue):281-288, 2008. 212]

C. J. Fisk and D. D. Isett. “accel” automated circuit card etching layout. In DAC ’65:
Proceedings of the SHARE design automation project, pages 9.1-9.31, New York, NY,
USA, 1965. ACM. doi: http://doi.acm.org/10.1145/800266.810762.

M. Forster, A. Pick, M. Raitner, F. Schreiber, and F.-J. Brandenburg. The system architecture
of the biopath system. In Silico Biology, 2:37, 2002.

U. FoBmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. Lec-
ture Notes in Computer Science, 1027:254-266, 1996. ISSN 0302-9743. [6§|

J. J. Fowler, M. Jiinger, S. G. Kobourov, and M. Schulz. Characterizing simultaneous em-
bedding with fixed edges. Electronic Notes in Discrete Mathematics, 31:41-44, 2008.
B4

C. Fraley and A. E. Raftery. How many clusters? Which clustering method? Answers via
model-based cluster analysis. Comput. J., 41(8):578-588, 1998. [1§|

F. Frati, M. Kaufmann, and S. G. Kobourov. Constrained simultaneous and near-
simultaneous embeddings. J. Graph Algorithms Appl., 13(3):447-465, 2009. [84]

246 BIBLIOGRAPHY

L. C. Freeman. Graphic techniques for exploring social network data. InJ. S. P. J. Carrington
and S. Wasserman, editors, Models and Methods in Social Network Analysis,. Cambridge
University Press, 2004. [36|

M. Freire and P. Rodriguez. Preserving the mental map in interactive graph interfaces. In
A. Celentano, editor, AVI, pages 270-273. ACM Press, 2006. ISBN 1-59593-353-0. |[188|

A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for undirected
graphs. In GD ’94: Proceedings of the DIMACS International Workshop on Graph Draw-
ing, pages 388—403, London, UK, 1995. Springer-Verlag. ISBN 3-540-58950-3.

A. Frick, C. Keskin, and V. Vogelmann. Integration of declarative approaches. In S. C.
North, editor, Graph Drawing, volume 1190 of Lecture Notes in Computer Science, pages
184-192. Springer-Verlag, 1996. ISBN 3-540-62495-3.

C. Friedrich and P. Eades. Graph drawing in motion. J. Graph Algorithms Appl., 6(3):
353-370, 2002. [196]

C. Friedrich and M. E. Houle. Graph drawing in motion ii. In P. Mutzel, M. Jiinger, and
S. Leipert, editors, Graph Drawing, volume 2265 of Lecture Notes in Computer Science,
pages 220-231. Springer-Verlag, 2001. ISBN 3-540-43309-0.

C. Friedrich and F. Schreiber. Visualisation and navigation methods for typed protein-protein
interaction networks. Applied Bioinformatics, 2, 2003.

C. Friedrich and F. Schreiber. Flexible layering in hierarchical drawings with nodes of ar-
bitrary size. In V. Estivill-Castro, editor, ACSC, volume 26 of CRPIT, pages 369-376.
Australian Computer Society, 2004. ISBN 1-920682-05-8. [84]

Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In INFOVIS ’04: Proceedings
of the IEEE Symposium on Information Visualization, pages 191-198, Washington, DC,
USA, 2004. IEEE Computer Society. ISBN 0-7803-8779-3. doi: http://dx.doi.org/10.
1109/INFOVIS.2004.18. @3] [194]

Y. Frishman and A. Tal. Multi-level graph layout on the GPU. [EEE Transactions on
Visualization and Computer Graphics, 13(6):1310-1319, 2007. ISSN 1077-2626. doi:
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70580.

Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE Trans. Vis. Comput. Graph.,
14(4):727-740, 2008. 188}, [195]

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.
Softw. Pract. Exper., 21(11):1129-1164, 1991. ISSN 0038-0644. doi: http://dx.doi.org/

10.1002/spe.4380211102. [195]
M. Gaertler. Clustering. In U. Brandes and T. Erlebach, editors, Network Analysis, volume

3418 of Lecture Notes in Computer Science, pages 178-215. Springer-Verlag, 2004. ISBN
3-540-24979-6. [1§]

BIBLIOGRAPHY 247

P. Gajer and S. G. Kobourov. GRIP: Graph drawing with intelligent placement. J. Graph
Algorithms Appl., 6(3):203-224, 2002. 40|

P. Gajer, M. T. Goodrich, and S. G. Kobourov. A multi-dimensional approach to force-
directed layouts of large graphs. In Marks| [2001], pages 211-221. ISBN 3-540-41554-8.
/0]

E. R. Gansner and Y. Hu. Efficient, proximity-preserving node overlap removal. J. Graph
Algorithms Appl., 14(1):53-74, 2010. i1} [83]} 97, 99

E. R. Gansner and Y. Koren. Improved circular layouts. In Proceedings of the 14th in-
ternational conference on Graph drawing, GD’06, pages 386-398, Berlin, Heidelberg,
2007. Springer-Verlag. ISBN 978-3-540-70903-9. URL http://portal.acm.org/
citation.cfm?id=1758612.1758651.[65] 133 221]

E. R. Gansner, Y. Koren, and S. C. North. Graph drawing by stress majorization. In Pach
[2004], pages 239-250. ISBN 3-540-24528-6.

E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for visualizing large
graphs. IEEE Trans. Vis. Comput. Graph., 11(4):457-468, 2005.

R. Garcia-Serna, O. Ursu, T. I. Oprea, and J. Mestres. iphace: integrative navigation in
pharmacological space. Bioinformatics, 26(7):985-986, 2010. 209

M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on Alge-
braic and Discrete Methods, 4(3):312-316, 1983. ISSN 0196-5212.

A. Garg. New results on drawing angle graphs. Comput. Geom. Theory Appl., 9(1-2):43-82,
1998. ISSN 0925-7721. doi: http://dx.doi.org/10.1016/S0925-7721(97)00016-3. [I00]

B. Genc and U. Dogrusoéz. A constrained, force-directed layout algorithm for biological
pathways. In[Liottal [2004]], pages 314-319. ISBN 3-540-20831-3. [85]

E. D. Giacomo, W. Didimo, G. Liotta, H. Meijer, and S. K. Wismath. Constrained point-set
embeddability of planar graphs. In Tollis and Patrignani [2009], pages 360-371. ISBN
078-3-642-00218-2.

A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart. Rapid multipole graph drawing on the
GPU. In Proc. Graph Drawing 2008, volume 5417 of LNCS, pages 90-101, 2009.

A. Goesmann, M. Haubrock, F. Meyer, J. Kalinowski, and R. Giegerich. Pathfinder: re-
construction and dynamic visualization of metabolic pathways. Bioinformatics, 18(1):
124-129, 2002.

J. R. Goodall, G. J. Conti, and K.-L. Ma, editors. Visualization for Computer Security,
Sth International Workshop, VizSec 2008, Cambridge, MA, USA, September 15, 2008.
Proceedings, volume 5210 of Lecture Notes in Computer Science, 2008. Springer-Verlag.
ISBN 978-3-540-85931-4. 249,

http://portal.acm.org/citation.cfm?id=1758612.1758651
http://portal.acm.org/citation.cfm?id=1758612.1758651

248 BIBLIOGRAPHY

M. T. Goodrich, G. S. Lueker, and J. Z. Sun. C-planarity of extrovert clustered graphs. In
Healy and Nikolov [2006]], pages 211-222. ISBN 3-540-31425-3. [I32] [T38]

C. Gutwenger and P. Mutzel. A linear time implementation of SPQR trees. In J. Marks,
editor, Proc. 8th Intl. Symp. Graph Drawing (GD 2000), volume 1984 of LNCS, pages

77-90. Springer-Verlag, 2001. [10} [T13] [122]

C. Gutwenger and P. Mutzel. An experimental study of crossing minimization heuristics.
In G. Liotta, editor, Proc. 11th Intl. Symp. Graph Drawing (GD 2003), volume 2912 of
LNCS, pages 13-24. Springer-Verlag, 2004.

C. Gutwenger, M. Jiinger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel. Caesar automatic
layout of uml class diagrams. In Graph Drawing, pages 461-462, 2001. [83

C. Gutwenger, M. Jiinger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher. Advances in
C-planarity testing of clustered graphs. In Graph Drawing: Proc. Graph Drawing (GD),

2002. [131} [132] [133] [135] [138

C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. Algo-
rithmica, 41(4):289-308, 2005. [108] [114] [113] [122]

C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal edge insertion with
embedding constraints. In Kaufmann and Wagner [2007], pages 126-137. ISBN 978-3-
540-70903-9. [5/ [100]

C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal edge insertion with
embedding constraints. J. Graph Algorithms Appl., 12(1):73-95, 2008. [5] [83]

GVSR. Graph visualization software references. http://gvsr.polytech.
univ-nantes.fr/GVSR/.

S. Hachul and M. Jiinger. Drawing large graphs with a potential-field-based multilevel al-
gorithm. In J. Pach, editor, Proc. Graph Drawing 2004, volume 3383 of LNCS, pages
285-295. Springer-Verlag, 2004.

S. Hachul and M. Jiinger. Large-graph layout algorithms at work: An experimental study. J.
Graph Algorithms Appl., 11(2):345-369, 2007.

R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs nicely. Discrete Applied
Mathematics, 113(1):3-21, 2001.

D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. J. Graph
Algorithms Appl., 6(3):179-202, 2002.

M. Harrigan and P. Healy. Practical level planarity testing and layout with embedding con-
straints. In[Hong et al.|[2008], pages 62-68. ISBN 978-3-540-77536-2. [83]

W. He and K. Marriott. Constrained graph layout. Constraints, 3(4):289-314, 1998. ISSN
1383-7133. doi: http://dx.doi.org/10.1023/A:1009771921595. [81] [8§|

http://gvsr.polytech.univ-nantes.fr/GVSR/
http://gvsr.polytech.univ-nantes.fr/GVSR/

BIBLIOGRAPHY 249

P. Healy and N. S. Nikolov, editors. Graph Drawing, 13th International Symposium, GD
2005, Limerick, Ireland, September 12-14, 2005, Revised Papers, volume 3843 of Lecture
Notes in Computer Science, 2006. Springer-Verlag. ISBN 3-540-31425-3. 243] [248] [256]
263]

J. Heer and D. Boyd. Vizster: Visualizing online social networks. In IEEE Information
Visualization (InfoVis), pages 32-39, 2005. URL http://vis.stanford.edu/
papers/vizster. [3§]

N. Henry and J.-D. Fekete. Matlink: Enhanced matrix visualization for analyzing social
networks. In Proceedings of the International Conference Interact, pages 288-302, 2007.
36

N. Henry, J.-D. Fekete, and M. J. McGuffin. Nodetrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph., 13(6):1302-1309, 2007. 36|

I. Herman, G. Melangon, and M. S. Marshall. Graph visualization and navigation in infor-
mation visualization: A survey. IEEE Trans. Vis. Comput. Graph., 6(1):24-43, 2000. [61]

J. Homer, A. Varikuti, X. Ou, and M. A. McQueen. Improving attack graph visualization
through data reduction and attack grouping. In|Goodall et al.|[2008], pages 68—79. ISBN
978-3-540-85931-4. 4§

S.-H. Hong and M. Mader. Generalizing the shift method for rectangular shaped vertices
with visibility constraints. In Tollis and Patrignani [2009], pages 278-283. ISBN 978-3-

642-00218-2. [83)]

S.-H. Hong and H. Nagamochi. Convex drawings of hierarchical planar graphs and clus-
tered planar graphs. J. of Discrete Algorithms, 8:282-295, September 2010. ISSN 1570-
8667. doi: http://dx.doi.org/10.1016/j.jda.2009.05.003. URL http://dx.doi.org/
10.1016/7.7da.2009.05.003.

S.-H. Hong, T. Nishizeki, and W. Quan, editors. Graph Drawing, 15th International Sympo-
sium, GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, volume 4875
of Lecture Notes in Computer Science, 2008. Springer-Verlag. ISBN 978-3-540-77536-2.

[235] 243] 245] [243]

J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549-568,
1974. [108] [T13]

J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135-158, 1973a. [122]

J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph manipulation. Commun. ACM,
1(6):372-378, June 1973b.

M. L. Huang, P. Eades, and J. Wang. On-line animated visualization of huge graphs using a
modified spring algorithm. J. Vis. Lang. Comput., 9(6):623-645, 1998. [192]

http://vis.stanford.edu/papers/vizster
http://vis.stanford.edu/papers/vizster
http://dx.doi.org/10.1016/j.jda.2009.05.003
http://dx.doi.org/10.1016/j.jda.2009.05.003

250 BIBLIOGRAPHY

W. Huang, S.-H. Hong, and P. Eades. How people read sociograms: a questionnaire study.
In Misue et al|[2006], pages 199-206. ISBN 1-920682-41-4. [63]

W. Huang, S.-H. Hong, and P. Eades. Effects of sociogram drawing conventions and edge
crossings in social network visualization. J. Graph Algorithms Appl., 11(2):397-429,
2007.

W. Huang, S.-H. Hong, and P. Eades. Effects of crossing angles. In PacificVis DBL] [2008]],
pages 41-46. [61] [62]

W. Huang, P. Eades, and S.-H. Hong. Measuring effectiveness of graph visualizations: a
cognitive load perspective. Information Visualization, 8(3):139-152, 2009. ISSN 1473-
8716. doi: http://dx.doi.org/10.1057/ivs.2009.10. [63]

W. Huang, P. Eades, S.-H. Hong, and C.-C. Lin. Improving force-directed graph drawings by
making compromises between aesthetics. In C. D. Hundhausen, E. Pietriga, P. Diaz, and
M. B. Rosson, editors, VL/HCC, pages 176—183. IEEE, 2010. ISBN 978-0-7695-4206-5.
29

C. Huttenhower, S. Mehmood, and O. Troyanskaya. Graphle: Interactive explo-
ration of large, dense graphs. BMC Bioinformatics, 10(1):417, 2009. ISSN 1471-
2105. doi: 10.1186/1471-2105-10-417. URL http://www.biomedcentral.com/
1471-2105/10/417.32

T. Igarashi and K. Hinckley. Speed-dependent automatic zooming for browsing large docu-
ments. In UIST, pages 139-148, 2000. [192]

IMI. The innovative medicines initiative, second call for proposals 2009.

IV2006. 10th International Conference on Information Visualisation, IV 2006, 5-7 July
2006, London, UK, 2006. IEEE Computer Society. 236} 252]

T. Jacobs and B. Musial. Interactive visual debugging with uml. In Diehl et al.| [2003]], pages
115-122. ISBN 1-58113-642-0.

V. Jelinek, E. Jelinkova, J. Kratochvil, and B. Lidicky. Clustered planarity: Embedded
clustered graphs with two-component clusters. In Tollis and Patrignani| [2009], pages
121-132. ISBN 978-3-642-00218-2. [133]

V. Jelinek, O. Suchy, M. Tesar, and T. Vyskocil. Clustered planarity: Clusters with few
outgoing edges. In|Tollis and Patrignani [2009], pages 102—113. ISBN 978-3-642-00218-
2.

E. Jelinkov4, J. Kdra, J. Kratochvil, M. Pergel, O. Suchy, and T. Vyskocil. Clustered pla-
narity: Small clusters in cycles and eulerian graphs. J. Graph Algorithms Appl., 13(3):
379-422, 2009.

M. Jiinger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Practical layout
tools. Algorithmica, 16(1):33-59, 1996. [145] [T46]

http://www.biomedcentral.com/1471-2105/10/417
http://www.biomedcentral.com/1471-2105/10/417

BIBLIOGRAPHY 251

M. Jiinger and P. Mutzel. 2-layer straightline crossing minimization: Performance of exact
and heuristic algorithms. J. Graph Algorithms Appl., 1:1-25, 1997. 21§

M. Junger and P. Mutzel. Graph Drawing Software. Springer-Verlag, 2003. [7] [32]

M. Jiinger and S. Thienel. The ABACUS system for branch-and-cut-and-price algorithms in
integer programming and combinatorial optimization. Software: Practice and Experience,
30(11):1325-1352, 2000.

M. Jiinger, S. Leipert, and M. Percan. Triangulating clustered graphs. Technical report,
Zentrum fiir Angewandte Informatik Ko6ln, Lehrstuhl Jiinger, December 2002. [135]

B. Junker, C. Klukas, and F. Schreiber. Vanted: A system for advanced data analysis and
visualization in the context of biological networks. BMC Bioinformatics, 7(1):109, 2006.

25132

T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(1):7-15, 1989. ISSN 0020-0190. [59] B

T. Kamada and S. Kawai. A general framework for visualizing abstract objects and relations.
ACM Trans. Graph., 10(1):1-39, 1991. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/
99902.99903.

P. D. Karp and S. M. Paley. Automated drawing of metabolic pathways. In H. L. H., C. C.
C., and R. Robbins, editors, Proceedings of the Third International Conference on Bioin-
formatics and Genome Research, pages 225-238. World Scientific Publishing Co., 1994a.

25l 85l

P. D. Karp and S. M. Paley. Representations of metabolic knowledge: Pathways. 1994b.
URL citeseer.ist.psu.edu/karp94representations.html. 83

G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In SC, 1995. [70]

K. Kato, M. Nagasaki, and A. D. ans S. Miyano. Automatic drawing of biological networks
using cross cost and subcomponent data. Genome Informatics, 16(2):22-31, 2005. [92][97]
213l

M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of LNCS. Springer-
Verlag, 2001. [69

M. Kaufmann and D. Wagner, editors. Graph Drawing, 14th International Symposium,
GD 2006, Karlsruhe, Germany, September 18-20, 2006. Revised Papers, volume 4372 of
Lecture Notes in Computer Science, 2007. Springer-Verlag. ISBN 978-3-540-70903-9.

237, 243, 248

KEGG. Kyoto encyclopedia of genes and genomes (kegg) homepage.
http://www.genome.jp/kegg/. [24]

citeseer.ist.psu.edu/karp94representations.html

252 BIBLIOGRAPHY

D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges in visual data
analysis. In[TV2006, pages 9-16. [12]

D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler. Visual analytics:
Scope and challenges. In S. J. Simoff, M. H. Bohlen, and A. Mazeika, editors, Visual
Data Mining, volume 4404 of Lecture Notes in Computer Science, pages 76-90. Springer-
Verlag, 2008. ISBN 978-3-540-71079-0. 13|

S. Killcoyne, G. W. Carter, J. Smith, and J. Boyle. Cytoscape: a community-based frame-
work for network modeling. Methods Mol Biol., 2009.

K. Klein. Benchmark set of clustered graphs for the MCPSP experiments. 1s11-www.
cs.uni-dortmund.de/people/klein/clusterbenchmarks08. zip, 2008.

K. Klein, N. Kriege, and P. Mutzel. Ct-index: Fingerprint-based graph indexing combining
cycles and trees. In 27th International Conference on Data Engineering (ICDE). IEEE

Computer Society, 2011. to appear. [6] [35] [208]

A. Klippel, L. Knuf, B. Hommel, and C. Freksa. Perceptually induced distortions in cognitive
maps. In C. Freksa, M. Knauff, B. Krieg-Briickner, B. Nebel, and T. Barkowsky, editors,
Spatial Cognition, volume 3343 of Lecture Notes in Computer Science, pages 204-213.
Springer-Verlag, 2004. ISBN 3-540-25048-4. [84]

C. Klukas and F. Schreiber. Dynamic exploration and editing of kegg pathway diagrams.
Bioinformatics, 23(3):344-350, 2007.

C. Klukas and F. Schreiber. Integration of -omics data and networks for biomedical research.
Journal of Integrative Bioinformatics, 7(2), 2010. [33]

S. G. Kobourov. Visualization of Large Graphs. PhD thesis, Johns Hopkins University, 2000.
18]

S. G. Kobourov and M. T. Goodrich, editors. Graph Drawing, 10th International Symposium,
GD 2002, Irvine, CA, USA, August 26-28, 2002, Revised Papers, volume 2528 of Lecture
Notes in Computer Science, 2002. Springer-Verlag. ISBN 3-540-00158-1. 238]

I. Koch, W. Reisig, and F. Schreiber. Modeling in Systems Biology The Petri Net Approach,
volume 16 of Computational Biology. Springer-Verlag, 2011. [20]

M. A. Koch, A. Schuffenhauer, M. Scheck, S. Wetzel, M. Casaulta, A. Odermatt, P. Ertl,
and H. Waldmann. Charting biologically relevant chemical space: a structural classi-
fication of natural products (SCONP). Proceedings of the National Academy of Sci-
ences of the United States of America, 102(48):17272—-17277, November 2005. ISSN
0027-8424. doi: 10.1073/pnas.0503647102. URL http://dx.doi.org/10.1073/
pnas.0503647102.[199

ls11-www.cs.uni-dortmund.de/people/klein/clusterbenchmarks08.zip
ls11-www.cs.uni-dortmund.de/people/klein/clusterbenchmarks08.zip
http://dx.doi.org/10.1073/pnas.0503647102
http://dx.doi.org/10.1073/pnas.0503647102

BIBLIOGRAPHY 253

K. W. Kohn, M. I. Aladjem, J. N. Weinstein, and Y. Pommier. Molecular interaction maps
of bioregulatory networks: A general rubric for systems biology. Mol. Biol. Cell, 17(1):1-
13, 2006. doi: 10.1091/mbc.E05-09-0824. URL http://www.molbiolcell.org/
cgi/content/abstract/17/1/1.

K. Kojima, M. Nagasaki, E. Jeong, M. Kato, and S. Miyano. An efficient grid layout al-
gorithm for biological networks utilizing various biological attributes. BMC Bioinfor-
matics, 8:76+, March 2007. ISSN 1471-2105. doi: 10.1186/1471-2105-8-76. URL
http://dx.doi.org/10.1186/1471-2105-8-76.

K. Kojima, M. Nagasaki, and S. Miyano. Fast grid layout algorithm for biological networks
with sweep calculation. Bioinformatics, 24(12):1433-1441, 2008. [33] [92]

K. Kojima, M. Nagasaki, and S. Miyano. An efficient biological pathway layout algorithm
combining grid-layout and spring embedder for complicated cellular location information.

BMC Bioinformatics, 11:335, 2010. [32] 33, [02]

C. Kosak, J. Marks, and S. M. Shieber. Automating the layout of network diagrams with
specified visual organization. IEEE Transactions on Systems, Man, and Cybernetics, 24
(3):440-454, 1994. [102]

J. Kratochvil, editor. Graph Drawing, 7th International Symposium, GD’99, Stirin Castle,
Czech Republic, September 1999, Proceedings, volume 1731 of Lecture Notes in Com-
puter Science, 1999. Springer-Verlag. ISBN 3-540-66904-3.

K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta Mathemat-
icae, 15:271-283, 1930. [145]

A. Lander. The edges of understanding. BMC Biology, 8(1):40, 2010. ISSN 1741-
7007. doi: 10.1186/1741-7007-8-40. URL http://www.biomedcentral.com/
1741-7007/8/40. 20 [21]

B. Lee, C. S. Parr, C. Plaisant, B. B. Bederson, V. D. Veksler, W. D. Gray, and C. Kotfila.
Treeplus: Interactive exploration of networks with enhanced tree layouts. /IEEE Transac-
tions on Visualization and Computer Graphics, 12:1414-1426, November 2006a. ISSN
1077-2626. doi: http://dx.doi.org/10.1109/TVCG.2006.106. URL http://dx.doi.
org/10.1109/TVCG.2006.106. 3§

Y.-Y. Lee, C.-C. Lin, and H.-C. Yen. Mental map preserving graph drawing using simulated
annealing. InMisue et al.| [2006], pages 179-188. ISBN 1-920682-41-4. [194]

T. Lengauer. Hierarchical planary testing algorithms. In L. Kott, editor, ICALP, volume
226 of Lecture Notes in Computer Science, pages 215-225. Springer-Verlag, 1986. ISBN
3-540-16761-7.

I. Letunic, T. Yamada, M. Kanehisa, and P. Bork. ipath: interactive ex-
ploration of biochemical pathways and networks. Trends in Biochemical Sci-
ences, 33(3):101 — 103, 2008. ISSN 0968-0004. doi: DOI:10.1016/j.tibs.

http://www.molbiolcell.org/cgi/content/abstract/17/1/1
http://www.molbiolcell.org/cgi/content/abstract/17/1/1
http://dx.doi.org/10.1186/1471-2105-8-76
http://www.biomedcentral.com/1741-7007/8/40
http://www.biomedcentral.com/1741-7007/8/40
http://dx.doi.org/10.1109/TVCG.2006.106
http://dx.doi.org/10.1109/TVCG.2006.106

254 BIBLIOGRAPHY

2008.01.001. URL http://www.sciencedirect.com/science/article/
B6TCV—4RTTKPF—1/2/0b4c5cbd7labcde6787l4a9ba5l57980.gﬂ

W. Li and H. Kurata. @~ A grid layout algorithm for automatic drawing of bio-
chemical networks. Bioinformatics, 21(9):2036-2042, May 2005. ISSN 1367-
4803. doi: 10.1093/bioinformatics/bti290. URL http://dx.doi.org/10.1093/

bioinformatics/bti290. 32,00} 91} 92| 07 213]

T. Lin and P. Eades. Integration of declarative and algorithmic approaches for layout creation.
In GD ’94: Proceedings of the DIMACS International Workshop on Graph Drawing,
pages 376-387, London, UK, 1995. Springer-Verlag. ISBN 3-540-58950-3.

G. Liotta, editor. Graph Drawing, 11th International Symposium, GD 2003, Perugia, Italy,
September 21-24, 2003, Revised Papers, volume 2912 of Lecture Notes in Computer Sci-
ence, 2004. Springer-Verlag. ISBN 3-540-20831-3.

P. Liu and R. Geldmacher. On the Deletion of Nonplanar Edges of a Graph. In /0th Confer-
ence on Combinatorics, Graph Theory and Computing, pages 727738, 1977.

E. Lounkine, M. Wawer, A. M. Wassermann, and J. Bajorath. Saranea: A freely avail-
able program to mine structure-activity and structure-selectivity relationship informa-
tion in compound data sets. Journal of Chemical Information and Modeling, 50(1):68—
78, 2010. doi: 10.1021/ci900416a. URL http://pubs.acs.org/doi/abs/10.
1021/ci900416a. PMID: 20053000. 209]

K. A. Lyons. Cluster busting in anchored graph drawing. In CASCON ’92: Proceedings of
the 1992 conference of the Centre for Advanced Studies on Collaborative research, pages
327-337. IBM Press, 1992. [188] [189]

B. A. Malloy and J. F. Power. Exploiting uml dynamic object modeling for the visualization
of C++ programs. In T. L. Naps and W. D. Pauw, editors, SOFTVIS, pages 105-114.
ACM, 2005. ISBN 1-59593-073-6. 45|

J. Marks, editor. Graph Drawing, 8th International Symposium, GD 2000, Colonial
Williamsburg, VA, USA, September 20-23, 2000, Proceedings, volume 1984 of Lecture
Notes in Computer Science, 2001. Springer-Verlag. ISBN 3-540-41554-8. 238] [247], 259

A. J. Matlin, F. Clark, and C. W. J. Smith. Understanding alternative splicing: towards a
cellular code. Nature Reviews Molecular Cell Biology, 6:386-398, 2005. 212]

C. McGrath, J. Blythe, and D. Krackhardt. @ The effect of spatial arrangement on
judgments and errors in interpreting graphs. Social Networks, 19(3):223-242,
1997. doi: http://dx.doi.org/10.1016/S0378-8733(96)00299-7. URL http:
//www.sciencedirect.com/science/article/B6VD1-3SWYCMP—-8/
2/90db2cbcl2cefclal2b9ddcde251af062. 40

http://www.sciencedirect.com/science/article/B6TCV-4RTTKPF-1/2/0b4c5cbd71abcde678714a9ba515798c
http://www.sciencedirect.com/science/article/B6TCV-4RTTKPF-1/2/0b4c5cbd71abcde678714a9ba515798c
http://dx.doi.org/10.1093/bioinformatics/bti290
http://dx.doi.org/10.1093/bioinformatics/bti290
http://pubs.acs.org/doi/abs/10.1021/ci900416a
http://pubs.acs.org/doi/abs/10.1021/ci900416a
http://www.sciencedirect.com/science/article/B6VD1-3SWYCMP-8/2/90db2cbc12cefc1a2b9d4cde251af062
http://www.sciencedirect.com/science/article/B6VD1-3SWYCMP-8/2/90db2cbc12cefc1a2b9d4cde251af062
http://www.sciencedirect.com/science/article/B6VD1-3SWYCMP-8/2/90db2cbc12cefc1a2b9d4cde251af062

BIBLIOGRAPHY 255

K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan planarity
testing algorithm. Algorithmica, 16:233-242, 1996. [10§|

K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer-
Verlag, 1 edition, July 2008. ISBN 3540779779. URL http://www.worldcat.
org/isbn/35407797709.

S. Mencher and L. Wang. Promiscuous drugs compared to selective drugs (promiscuity
can be a virtue). BMC Clinical Pharmacology, 5(1):3, 2005. ISSN 1472-6904. doi:
10.1186/1472-6904-5-3. URL http://www.biomedcentral.com/1472-6904/

5/3. 19§

D. Merico, D. Gfeller, and G. D. Bader. How to visually interpret biological data using
networks. Nat Biotech, 27(10):921-924, October 2009. ISSN 1087-0156. doi: 10.1038/
nbt.1567. URL http://dx.doi.org/10.1038/nbt.1567. 2332

G. Michal. Biochemical pathways. Poster, 2005. [24]
MIM. Molecular interaction maps. http://discover.nci.nih.gov/mim/. [24]

K. Miriyala, S. W. Hornick, and R. Tamassia. An incremental approach to aesthetic graph
layout. In Proceedings of the International Workshop on Computer-Aided Software Engi-

neering, pages 297-308, 1993.

K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J.
Vis. Lang. Comput., 6(2):183-210, 1995. 183 [185] [187] [189] [194]

K. Misue, K. Sugiyama, and J. Tanaka, editors. Asia-Pacific Symposium on Information
Visualisation, APVIS 2006, Tokyo, Japan, February 1-3, 2006, volume 60 of CRPIT, 2006.
Australian Computer Society. ISBN 1-920682-41-4. 250] 253]

J. L. Moreno. Who shall survive? Foundations of Sociometry, Group Psychotherapy and
Sociodrama. Beacon House Inc., 2 edition, 1953. [36]

J. H. Morris, C. C. Huang, P. C. Babbitt, and T. E. Ferrin. structureViz: linking Cytoscape and
UCSF Chimera. Bioinformatics, 23(17):2345-2347, 2007. doi: 10.1093/bioinformatics/
btm329. URL http://biocinformatics.oxfordjournals.org/content/
23/17/2345.abstract.

T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D. Fekete. Topology-aware navi-
gation in large networks. In D. R. O. Jr., R. B. Arthur, K. Hinckley, M. R. Morris, S. E.
Hudson, and S. Greenberg, editors, CHI, pages 2319-2328. ACM, 2009. ISBN 978-1-
60558-246-7. [192]

T. Munzner. Interactive Visualization of Large Graphs and Networks". PhD thesis, Stanford

University, 2000. [T8}[T82} [T90]

http://www.worldcat.org/isbn/3540779779
http://www.worldcat.org/isbn/3540779779
http://www.biomedcentral.com/1472-6904/5/3
http://www.biomedcentral.com/1472-6904/5/3
http://dx.doi.org/10.1038/nbt.1567
http://discover.nci.nih.gov/mim/
http://bioinformatics.oxfordjournals.org/content/23/17/2345.abstract
http://bioinformatics.oxfordjournals.org/content/23/17/2345.abstract

256 BIBLIOGRAPHY

P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar
graph. In G. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, /PCO, volume 1610
of Lecture Notes in Computer Science, pages 361-376. Springer-Verlag, 1999. ISBN 3-
540-66019-4.

L. Nachmanson, S. Pupyrev, and M. Kaufmann. Improving layered graph layouts with
edge bundling. In Proceedings of the 18th International Symposium on Graph Drawing
(GD’10), volume 6502 of LNCS. Springer-Verlag, 2011.

H. Nagamochi and K. Kuroya. Drawing c-planar biconnected clustered graphs. Dis-
crete Appl. Math., 155:1155-1174, May 2007. ISSN 0166-218X. doi: 10.1016/j.dam.
2006.04.044. URL http://portal.acm.org/citation.cfm?id=1240325.
1240386l

M. Nagasaki, A. Saito, E. Jeong, C. Li, K. Kojima, E. Ikeda, and S. Miyano. Cell illustrator
4.0: A computational platform for systems biology. In silico biology, 2010. 22]

K. V. Nesbitt and C. Friedrich. Applying gestalt principles to animated visualizations of
network data. In IV, pages 737-743, 2002.

D. Nicholson. Nicholson maps online. http://www.iubmb-nicholson.org/
index.htmll 24]

S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchical ag-
gregation. In C. E. Brodley, P. Chan, R. Lippman, and W. Yurcik, editors, VizSEC, pages
109-118. ACM, 2004. ISBN 1-58113-974-8. [ix] 48] 49|

M. Nollenburg. Automated drawing of metro maps. Technical Report 2005-25, Universiét
Karlsruhe, 2005.

M. Nollenburg and A. Wolff. A mixed-integer program for drawing high-quality metro maps.
In[Healy and Nikolov| [2006], pages 321-333. ISBN 3-540-31425-3. [85]

M. Nollenburg and A. Wolff. Drawing and labeling high-quality metro maps by mixed-
integer programming. IEEE Transactions on Visualization and Computer Graphics, 99
(RapidPosts), 2010. ISSN 1077-2626. doi: http://doi.ieeecomputersociety.org/10.1109/
TVCG.2010.81. [87][88|

S. C. North. Incremental layout in dynadag. In Proc. 3rd Intl. Symp. Graph Drawing (GD
’95), volume 1027 of LNCS, pages 409-418. Springer-Verlag, 1996. ISBN 3-540-60723-

4. [185] [187]

N. L. Novere, M. Hucka, H. Mi, S. Moodiet, F. Schreiber, A. Sorokin, E. Demir, K. Wegner,
M. 1. Aladjem, S. M. Wimalaratne, F. T. Bergman, R. Gauges, P. Ghazal, H. Kawaji,
L. Li, Y. Matsuoka, A. Villeger, S. E. Boyd, L. Calzone, M. Courtot, U. Dogrusoz, T. C.
Freeman, A. Funahashi, S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna, S. Sahle,
E. Schmidt, S. Watterson, G. Wu, I. Goryanin, D. B. Kell, C. Sander, H. Sauro, J. L. Snoep,
K. Kohn, and H. Kitano. The systems biology graphical notation. Nature Biotechnology,

http://portal.acm.org/citation.cfm?id=1240325.1240386
http://portal.acm.org/citation.cfm?id=1240325.1240386
http://www.iubmb-nicholson.org/index.html
http://www.iubmb-nicholson.org/index.html

BIBLIOGRAPHY 257

27(8):735-741, 2009. ISSN 1087-0156. doi: 10.1038/nbt.1558. URL http://dx.
doi.org/10.1038/nbt.1558. 226

S. O’Donoghue, D. Goodsell, A. Frangakis, F. Jossinet, R. Laskowski, M. Nilges, H. Saibil,
A. Schafferhans, R. Wade, E. Westhof, and A. J. Olson. Visualization of macromolecular
structures. Nature Methods, 7(3(S)):S42-S55, 2010. 223]

OGDF. The Open Graph Drawing Framework. http://www.ogdf .net! [I03]

S. O’Hare, S. Noel, and K. Prole. A graph-theoretic visualization approach to network risk
analysis. In|Goodall et al|[2008]], pages 60—67. ISBN 978-3-540-85931-4. 4§

Orion. Orion telecom homepage. http://www.oriontelecom.com/.

J. Pach, editor. Graph Drawing, 12th International Symposium, GD 2004, New York, NY,
USA, September 29 - October 2, 2004, Revised Selected Papers, volume 3383 of Lecture
Notes in Computer Science, 2004. Springer-Verlag. ISBN 3-540-24528-6. 233] 242]

S. E. Palmer. VISION SCIENCE: Photons to Phenomenology. Bradford Books, MIT Press
Cambridge, 1999.

A. Papakostas and I. G. Tollis. Issues in interactive orthogonal graph drawing. In Pro-
ceedings of the Symposium on Graph Drawing, GD ’95, pages 419-430. Springer-Verlag,
1996. ISBN 3-540-60723-4. URL http://portal.acm.org/citation.cfm?
id=647547.728743.[187,[194

A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing. IEEE Trans. Comput.,
47:1297-1309, November 1998. ISSN 0018-9340. doi: 10.1109/12.736444. URL http:
//portal.acm.org/citation.cfm?1d=305086.305097.[194

A. Papakostas, J. M. Six, and I. G. Tollis. Experimental and theoretical results in interactive
orthogonal graph drawing. In Proceedings of the Symposium on Graph Drawing, GD ’96,
pages 371-386. Springer-Verlag, 1997. ISBN 3-540-62495-3. URL http://portal.
acm.org/citation.cfm?id=647548.728766.

M. Patrignani. Visualization of large graphs. Doctoral Thesis. Universita’ degli Studi di
Roma “La Sapienza”, Dottorato di Ricerca in Ingegneria Informatica, XIII Ciclo, 2001.

18

A. Pavlo, C. Homan, and J. Schull. A parent-centered radial layout algorithm for interactive
graph visualization and animation. CoRR, abs/cs/0606007, 2006. [196|

G. Pavlopoulos, A.-L. Wegener, and R. Schneider. A survey of visualization tools for bio-
logical network analysis. BioData Mining, 1(1):12, 2008. ISSN 1756-0381. doi: 10.1186/
1756-0381-1-12. URL http://www.biodatamining.org/content/1/1/12.
32

PDB. Protein data bank homepage. http://www.rcsb.org/pdb/. 22

http://dx.doi.org/10.1038/nbt.1558
http://dx.doi.org/10.1038/nbt.1558
http://www.ogdf.net
http://www.oriontelecom.com/
http://portal.acm.org/citation.cfm?id=647547.728743
http://portal.acm.org/citation.cfm?id=647547.728743
http://portal.acm.org/citation.cfm?id=305086.305097
http://portal.acm.org/citation.cfm?id=305086.305097
http://portal.acm.org/citation.cfm?id=647548.728766
http://portal.acm.org/citation.cfm?id=647548.728766
http://www.biodatamining.org/content/1/1/12
http://www.rcsb.org/pdb/

258 BIBLIOGRAPHY

M. Petre. Why looking isn’t always seeing: Readership skills and graphical programming.
Commun. ACM, 38(6):33-44, 1995. [54]

M. Petre. Mental imagery and software visualization in high-performance software develop-
ment teams. J. Vis. Lang. Comput., 21(3):171-183, 2010. [54]

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and
T. E. Ferrin. UCSF Chimera—a visualization system for exploratory research and analysis.
Journal of computational chemistry, 25(13):1605-1612, October 2004. ISSN 0192-8651.
doi: 10.1002/jcc.20084. URL http://dx.doi.org/10.1002/jcc.20084. 224

PG478. Final report: Project group 478 OGDF: An open graph drawing framework.
https://eldorado.tu-dortmund.de/handle/2003/23280.[104]

D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow map layout. In Proceed-
ings of the Proceedings of the 2005 IEEE Symposium on Information Visualization, pages
219-224, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7803-9464-
x. doi: 10.1109/INFOVIS.2005.13. URL http://portal.acm.org/citation.
cfm?id=1106328.1106595. 42

T. Poranen, E. Mikinen, and J. Nummenmaa. How to draw a sequence diagram. In
P. Kilpelédinen and N. Péivinen, editors, SPLST, pages 91-102. University of Kuopio, De-
partment of Computer Science, 2003. ISBN 951-781-265-5. 4] [80]

PSR. Visualization of affiliations in a social network. http://
powerstructureresearch.wordpress.com/2009/05/27/}2009. 41]

PubChem. Pubchem databases, national center for biotechnology information. http://
pubchem.ncbi.nlm.nih.gov/|[13

H. Purchase and A. Samra. Extremes are better: Investigating mental map preservation
in dynamic graphs. In G. Stapleton, J. Howse, and J. Lee, editors, Diagrammatic Rep-
resentation and Inference, volume 5223 of Lecture Notes in Computer Science, pages
60-73. Springer Berlin / Heidelberg, 2008. URL http://dx.doi.org/10.1007/
978-3-540-87730-1_09.

H. Purchase, E. Hoggan, and C. Gorg. How important is the ‘mental map’? an empirical
investigation of a dynamic graph layout algorithm. In M. Kaufmann and D. Wagner,
editors, Graph Drawing, volume 4372 of Lecture Notes in Computer Science, pages 184—
195. Springer Berlin / Heidelberg, 2007. URL http://dx.doi.org/10.1007/
978-3-540-70904-6_19. [183

H. C. Purchase. Metrics for graph drawing aesthetics. J. Vis. Lang. Comput., 13(5):501-516,
2002.

H. C. Purchase, R. F. Cohen, and M. I. James. Validating graph drawing aesthetics. In
Brandenburg| [1996]], pages 435-446. ISBN 3-540-60723-4. [59]

http://dx.doi.org/10.1002/jcc.20084
https://eldorado.tu-dortmund.de/handle/2003/23280
http://portal.acm.org/citation.cfm?id=1106328.1106595
http://portal.acm.org/citation.cfm?id=1106328.1106595
http://powerstructureresearch.wordpress.com/2009/05/27/
http://powerstructureresearch.wordpress.com/2009/05/27/
http://pubchem.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/
http://dx.doi.org/10.1007/978-3-540-87730-1_9
http://dx.doi.org/10.1007/978-3-540-87730-1_9
http://dx.doi.org/10.1007/978-3-540-70904-6_19
http://dx.doi.org/10.1007/978-3-540-70904-6_19

BIBLIOGRAPHY 259

H. C. Purchase, J.-A. Allder, and D. A. Carrington. User preference of graph layout aesthet-
ics: A uml study. In Marks| [2001]], pages 5—-18. ISBN 3-540-41554-8. 4] [63|

H. C. Purchase, M. McGill, L. Colpoys, and D. A. Carrington. Graph drawing aesthetics and
the comprehension of uml class diagrams: An empirical study. In P. Eades and T. Pattison,
editors, InVis.au, volume 9 of CRPIT, pages 129—137. Australian Computer Society, 2001.
ISBN 0-909-92587-9. 43] [44] [63]

A. J. Quigley and P. Eades. Fade: Graph drawing, clustering, and visual abstraction. In
Marks| [2001], pages 197-210. ISBN 3-540-41554-8.

E. F. Reid and H. Chen. Mapping the contemporary terrorism research domain. Int. J.
Hum.-Comput. Stud., 65:42-56, January 2007. ISSN 1071-5819. doi: 10.1016/j.ijhcs.
2006.08.006. URL http://portal.acm.org/citation.cfm?id=1222244.
1222621l

K. Ryall. Glide. In Graph Drawing, pages 479-480, 2001. [I0T] [T02]

G. Sander. Graph layout for applications in compiler construction. Theor. Comput. Sci., 217
(2):175-214, 1999.

SBGN. Systems biology graphical notation web page. http://www.sbgn.org/. [54]

A.-W. Scheer, O. Thomas, and O. Adam. Process modelling using event-driven process
chains. In Process-Aware Information Systems, pages 119—146. Wiley, 2005. /9|

F. Schreiber. High quality visualization of biochemical pathways in biopath. In Silico Biol-
0gy, 2:6, 2002.

F. Schreiber. Visual comparison of metabolic pathways. J. Vis. Lang. Comput., 14(4):327—
340, 2003. 28]

F. Schreiber, T. Dwyer, K. Marriott, and M. Wybrow. A generic algorithm for layout of
biological networks. BMC Bioinformatics, 10:375, 2009. [25] [67, [89] [00]

A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Koch, and H. Waldmann. The scaffold
tree - visualization of the scaffold universe by hierarchical scaffold classification. J. Chem.
Inf. Model., 47(1):47-58, 2007. 200} [20T]

B. Schwikowksi and T. Ideker. Personal communication, 2007.

B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in yeast.
Nat Biotech, 18(12):1257-1261, 2000. doi: \url{http://dx.doi.org/10.1038/82360}. [20]

R. Sharan and T. Ideker. Modeling cellular machinery through biological network com-
parison. Nature biotechnology, 24(4):427-433, April 2006. ISSN 1087-0156. doi:
10.1038/nbt1196. URL |http://dx.doi.org/10.1038/nbt1196. 2§

http://portal.acm.org/citation.cfm?id=1222244.1222621
http://portal.acm.org/citation.cfm?id=1222244.1222621
http://www.sbgn.org/
http://dx.doi.org/10.1038/nbt1196

260 BIBLIOGRAPHY

R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R. M. Karp,
and T. Ideker. Conserved patterns of protein interaction in multiple species. Proceed-
ings of the National Academy of Sciences of the United States of America. Copyright
(2005) National Academy of Sciences, USA, 102(6):1974-1979, February 2005. ISSN
0027-8424. doi: 10.1073/pnas.0409522102. URL http://dx.doi.org/10.1073/
pnas.0409522102. 28|29

C. Shirky. People on page: Yasns ... corante’s many-to-many. http://many.corante.
com/archives/2003/05/12/people_on_page_vyasns.php, 2003.

B. Shneiderman and C. Plaisant. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Pearson, 5th edition, 2009. [57], [191] [192]

C. Shulyupin. Linux kernel map. http://www.makelinux.net/kernel_map.
shtml.

M. Siebenhaller. Orthogonal Graph Drawing with Constraints: Algorithms and Applica-
tions. PhD thesis, Universitit Tiibingen, Wilhelmstr. 32, 72074 Tiibingen, 2009. URL
http://tobias—1lib.uni-tuebingen.de/volltexte/2009/4448|

SocialAction. SocialAction project homepage. http://www.cs.umd.edu/hcil/
socialaction/. 3§

M. Sponemann, H. Fuhrmann, R. von Hanxleden, and P. Mutzel. Port constraints in hierar-
chical layout of data flow diagrams. In Proceedings of the 17th International Symposium
on Graph Drawing (GD’09), volume 5849 of LNCS, pages 135-146. Springer-Verlag,
2010. doi: 10.1007/978-3-642-11805-0_14. 2] [82]

S. Stein. Modelling Method Extension for Service-Oriented Business Process Management.
PhD thesis, Christian-Albrechts-Universitét zu Kiel, 2008. [57]

U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. H. Brembeck, H. Goehler, M. Stroedicke,
M. Zenkner, A. Schoenherr, S. Koeppen, J. Timm, S. Mintzlaff, C. Abraham, N. Bock,
S. Kietzmann, A. Goedde, E. Toksoz, A. Droege, S. Krobitsch, B. Korn, W. Birchmeier,
H. Lehrach, and E. E. Wanker. A human protein-protein interaction network: a resource
for annotating the proteome. Cell, 122(6):957-968, Sep 2005. ISSN 0092-8674.]|

M.-A. D. Storey, F. D. Fracchia, and H. A. Miiller. Customizing a fisheye view algorithm to
preserve the mental map. J. Vis. Lang. Comput., 10(3):245-267, 1999.

M. Suderman and M. Hallett. Tools for visually exploring biological networks.
Bioinformatics, 23(20):2651-2659, 2007. doi: 10.1093/bioinformatics/btm401.
URL http://bioinformatics.oxfordjournals.orqg/cgi/content/
abstract/23/20/2651.

K. Sugiyama and K. Misue. Visualization of structural information: automatic drawing of
compound digraphs. Systems, Man and Cybernetics, IEEE Transactions on, 21(4):876—
892, 1991. ISSN 0018-9472. doi: 10.1109/21.108304. [58] [60} [81}, [141}, [142]

http://dx.doi.org/10.1073/pnas.0409522102
http://dx.doi.org/10.1073/pnas.0409522102
http://many.corante.com/archives/2003/05/12/people_on_page_yasns.php
http://many.corante.com/archives/2003/05/12/people_on_page_yasns.php
http://www.makelinux.net/kernel_map.shtml
http://www.makelinux.net/kernel_map.shtml
http://tobias-lib.uni-tuebingen.de/volltexte/2009/4448
http://www.cs.umd.edu/hcil/socialaction/
http://www.cs.umd.edu/hcil/socialaction/
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/20/2651
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/20/2651

BIBLIOGRAPHY 261

K. Sugiyama and K. Misue. Graph drawing by the magnetic spring model. J. Vis. Lang.
Comput., 6(3):217-231, 1995. [84]

K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
system structures. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109-125,
1981. ISSN 0018-9472. doi: 10.1109/TSMC.1981.4308636. URL http://dx.doi.

org/10.1109/TSMC.1981.4308636! 60} 64,66, [71] 82 O8] 219]

J. Z. Sun and C. Zhang. Advances on c-planarity testing of extrovert c-graphs. In H. R.
Arabnia, Y. Mun, and P. L. Zhou, editors, FCS, pages 25-31. CSREA Press, 2008. ISBN
1-60132-066-3. [132]

SUPERFAMILY. Superfamily is a database of structural and functional annotation for all
proteins and genomes. http://supfam.cs.bris.ac.uk/SUPERFAMILY/. 22|

I. E. Sutherland. Sketch pad a man-machine graphical communication system. In DAC
'64: Proceedings of the SHARE design automation workshop, New York, NY, USA,
1964. ACM. doi: 10.1145/800265.810742. URL http://dx.doi.orqg/10.1145/
800265.810742.

S. Takahashi, S. Matsuoka, K. Miyashita, H. Hosobe, and T. Kamada. A constraint-
based approach for visualization and animation. Constraints, 3:61-86, 1998.
ISSN 1383-7133. URL http://dx.doi.org/10.1023/A:1009708715411.
10.1023/A:1009708715411. [88]

R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM
Journal on Computing, 16(3):421-444, 1987. [64] [68], [100]

R. Tamassia. Constraints in graph drawing algorithms. Constraints, 3(1):87-120, 1998.
ISSN 1383-7133. doi: http://dx.doi.org/10.1023/A:1009760732249. [§]]

R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of
diagrams. IEEE Trans. Syst. Man Cybern., 18:61-79, January 1988. ISSN 0018-9472.
doi: 10.1109/21.87055. URL http://portal.acm.org/citation.cfm?id=

46931.46937. 67178

R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1(2):146—-160,
June 1972.

J.J. Thomas and K. A. Cook. llluminating the Path: The Research and Development Agenda
for Visual Analytics. National Visualization and Analytics Ctr, 2005. ISBN 0769523234.
URL http://www.worldcat.org/isbn/0769523234.[13

I. G. Tollis and M. Patrignani, editors. Graph Drawing, 16th International Symposium, GD
2008, Heraklion, Crete, Greece, September 21-24, 2008. Revised Papers, volume 5417
of Lecture Notes in Computer Science, 2009. Springer-Verlag. ISBN 978-3-642-00218-2.

[237] 239] [243] [247] 249] [250]

http://dx.doi.org/10.1109/TSMC.1981.4308636
http://dx.doi.org/10.1109/TSMC.1981.4308636
http://supfam.cs.bris.ac.uk/SUPERFAMILY/
http://dx.doi.org/10.1145/800265.810742
http://dx.doi.org/10.1145/800265.810742
http://dx.doi.org/10.1023/A:1009708715411
http://portal.acm.org/citation.cfm?id=46931.46937
http://portal.acm.org/citation.cfm?id=46931.46937
http://www.worldcat.org/isbn/0769523234

262 BIBLIOGRAPHY

Tulip. Tulip framework. http://tulip.labri.fr. [39

D. Tunkelang. A practical approach to drawing undirected graphs. Technical report, Carnegie
Mellon University, Pittsburgh, PA, USA, 1994.

W. T. Tutte. How to draw a graph. Proc Lond Math Soc, 13:743-767, 1963. URL http:
//www.ams.org/mathscinet—-getitem?mr=28:1610.[64][69

W. T. Tutte. Connectivity in graphs, volume 15 of Mathematical Expositions. University of
Toronto Press, 1966. [10]

B. Tversky. Distortions in cognitive maps. Geoforum, 23(2):131 — 138, 1992.
ISSN 0016-7185. doi: DOI:10.1016/0016-7185(92)90011-R. URL http:
//www.sciencedirect.com/science/article/B6V68-466FGFY-1F/2/
65df56cd6390c676bc0e38693d038cee. [84][183]

UML. UML diagrams. http://www.uml-diagrams.org/, a. @4

UML. UML specifications, object management group (OMG). http://www.omg.org/
spec/UML/, b. 2| 3]

F. van Ham and B. Rogowitz. Perceptual organization in user-generated graph layouts. /[EEE
Transactions on Visualization and Computer Graphics, 14:1333-1339, November 2008.
ISSN 1077-2626. doi: 10.1109/TVCG.2008.155. URL http://portal.acm.org/
citation.cfm?id=1477066.1477432 13

S. Vishveshwara, A. Ghosh, and P. Hansia. Intra and inter-molecular communications
through protein structure network. Curr Protein Pept Sci, 10:146-160, 20009.

Visone. visone project web page. http://visone.info. [3§

V. E. Waddle and A. Malhotra. An e log e line crossing algorithm for levelled graphs. In
Kratochvil| [1999], pages 59-71. ISBN 3-540-66904-3. 219

K. Wagner. Bemerkungen zum vierfarbenproblem. In Jahresbericht Deutscher Math. Verein,
volume 46, pages 26-32, 1936. [64]

C. Walshaw. A multilevel algorithm for force-directed graph-drawing. J. Graph Algorithms
Appl., 7(3):253-285, 2003.

X. Wang and 1. Miyamoto. Generating customized layouts. In Brandenburg [[1996], pages
504-515. ISBN 3-540-60723-4. [83]

C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004. ISBN 1558608192.

C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive measurements of graph
aesthetics. Information Visualization, 1:103-110, June 2002. ISSN 1473-8716. doi:
10.1057/palgrave.ivs.9500013. URL http://portal.acm.org/citation.cfm?
id=942164.942167.[62,[63]

http://tulip.labri.fr
http://www.ams.org/mathscinet-getitem?mr=28:1610
http://www.ams.org/mathscinet-getitem?mr=28:1610
http://www.sciencedirect.com/science/article/B6V68-466FGFY-1F/2/65df56cd6390c676bc0e38693d038cee
http://www.sciencedirect.com/science/article/B6V68-466FGFY-1F/2/65df56cd6390c676bc0e38693d038cee
http://www.sciencedirect.com/science/article/B6V68-466FGFY-1F/2/65df56cd6390c676bc0e38693d038cee
http://www.uml-diagrams.org/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://portal.acm.org/citation.cfm?id=1477066.1477432
http://portal.acm.org/citation.cfm?id=1477066.1477432
http://visone.info
http://portal.acm.org/citation.cfm?id=942164.942167
http://portal.acm.org/citation.cfm?id=942164.942167

BIBLIOGRAPHY 263

M. Wattenberg. Visual exploration of multivariate graphs. In R. E. Grinter, T. Rodden, P. M.
Aoki, E. Cutrell, R. Jeffries, and G. M. Olson, editors, CHI, pages 811-819. ACM, 2006.
ISBN 1-59593-372-7.

S. Wetzel, K. Klein, S. Renner, D. Rauh, T. I. Oprea, P. Mutzel, and H. Waldmann. Interactive
exploration of chemical space with scaffold hunter. Nat Chem Biol, 5(8):581-583, 2009.

B 210

C. E. Wheelock, A. M. Wheelock, S. Kawashima, D. Diez, M. Kanehisa, M. van Erk,
R. Kleemann, J. Z. Haeggstrom, and S. Goto. Systems biology approaches and path-

way tools for investigating cardiovascular disease. Mol. BioSyst., 5:588-602, 2009. doi:
10.1039/B902356A. URL http://dx.doi.org/10.1039/B902356A. [20]

H. D. White and K. W. McCain. Visualizing a discipline: An author co-citation analysis of
information science, 1972-1995. JASIS, 49(4):327-355, 1998. 40|

H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical
Society, 34(2):339-362, 1932. [10]

R. Wiese and M. Kaufmann. Adding constraints to an algorithm for orthogonal graph draw-
ing. In S. Whitesides, editor, Graph Drawing, volume 1547 of Lecture Notes in Computer
Science, pages 462-463. Springer Verlag, 1998. URL http://dx.doi.org/10.
1007/3-540-37623-2_47. 10.1007/3-540-37623-2_47. 97|

P. Willett, J. M. Barnard, and G. M. Downs. Chemical similarity searching. Journal of
Chemical Information and Computer Sciences, 38(6):983-996, 1998. [35]

K. Wong and D. Sun. On evaluating the layout of uml diagrams for program comprehension.
Software Quality Journal, 14:233-259, 2006. ISSN 0963-9314. URL http://dx.
doi.org/10.1007/s11219-006-9218-2. 10.1007/s11219-006-9218-2. [44]

M. Wybrow, K. Marriott, and P. J. Stuckey. Incremental connector routing. In Healy and
Nikolov|[2006], pages 446—457. ISBN 3-540-31425-3. [195]

M. Wybrow, K. Marriott, L. Mclver, and P. J. Stuckey. Comparing usability of one-way and
multi-way constraints for diagram editing. ACM Trans. Comput.-Hum. Interact., 14(4),

2008.

C.-H. Yeang and M. Vingron. A joint model of regulatory and metabolic networks. BMC
Bioinformatics, 7:332, 2006.

K.-P. Yee, D. Fisher, R. Dhamija, and M. A. Hearst. Animated exploration of dynamic graphs
with radial layout. In INFOVIS, pages 43-50, 2001.

J. S. Yi, Y.-A. Kang, J. Stasko, and J. Jacko. Toward a deeper understanding of the role of
interaction in information visualization. IEEE Transactions on Visualization and Com-
puter Graphics, 13:1224-1231, November 2007. ISSN 1077-2626. doi: http://dx.doi.org/
10.1109/TVCG.2007.70515. URL http://dx.doi.org/10.1109/TVCG.2007.
70515 182

http://dx.doi.org/10.1039/B902356A
http://dx.doi.org/10.1007/3-540-37623-2_47
http://dx.doi.org/10.1007/3-540-37623-2_47
http://dx.doi.org/10.1007/s11219-006-9218-2
http://dx.doi.org/10.1007/s11219-006-9218-2
http://dx.doi.org/10.1109/TVCG.2007.70515
http://dx.doi.org/10.1109/TVCG.2007.70515

264 BIBLIOGRAPHY

Q. Zhang, C. Zmasek, L. Dishaw, M. G. Mueller, Y. Ye, G. Litman, and A. Godzik. Novel
genes dramatically alter regulatory network topology in amphioxus. Genome Biology,
9(8):R123, 2008. ISSN 1465-6906. doi: 10.1186/gb-2008-9-8-r123. URL http://

genomebiology.com/2008/9/8/R123.

P. Zhou and Z. Shang. 2d molecular graphics: a flattened world of chemistry and biology.
Briefings in Bioinformatics, 10(3):247-258, 20009.

http://genomebiology.com/2008/9/8/R123
http://genomebiology.com/2008/9/8/R123

	Abstract
	Zusammenfassung
	Acknowledgements
	Part I Basics
	Introduction
	Motivation
	Organization of this Thesis
	Corresponding Publications
	Related Work

	Preliminaries and Notation
	Graphs
	Graph Drawings and Layouts
	Embeddings and Planarity
	Graph Decomposition and SPQR-Trees
	Related Research Areas

	Graphs, Data and Dimensions
	Data Characteristics and Visualization Goals
	Large Graphs

	Application Areas
	Life Sciences – Biology and Chemistry
	Social Sciences
	Software and Hardware Engineering
	Further Application Areas
	General Requirements from Practical Applications

	Automatic Graph Drawing
	Evaluating the Quality of a Drawing
	Layout Criteria
	Drawing Styles

	Approaches
	Topology-Shape-Metrics
	Energy-Based Models and Local Search
	Multilevel Paradigm
	Layered Layout
	Projection Techniques

	Graph Drawing Tools and Libraries

	Part II Constraints
	Overview and Classification
	Constraints in Graph Drawing
	Aspects of Constraint Handling and Constraint Characteristics
	History and Preliminary Work
	Classification of Constraints
	Constraints for Requirements from Practical Applications

	Constraint Handling
	Layout Libraries and Tools
	Constraints in OGDF

	Embedding Constraints
	ec-Constraints and ec-Planarity
	ec-Expansion
	Construction of the ec-Expansion
	ec-Expansion and ec-Planar Embeddings

	ec-Planarity Testing
	ec-Edge Insertion
	ec-Edge Insertion Paths and ec-Traversing Costs
	The Algorithm for Biconnected Graphs
	Correctness and Optimality
	Generalization to Connected Graphs

	Conclusion and Future Work

	Clustered Graph Drawings
	Problem Definition, Notations, and Previous Work
	Clustered Planarity
	Characterizations of C-Planar Graphs
	Compound Graphs

	The Maximum C-Planar Subgraph Problem
	Problem Description and Related Work
	Solving the MCPSP via an ILP and Branch-and-Cut
	Computational Experiments and Discussion
	Conclusion

	A Pricing Scheme for Clustered Planarity Testing
	Motivation and Basic Idea
	An ILP Formulation for the CPP
	Pruning the Search Space
	The Branch-Cut-And-Price Algorithm
	Conclusion and Future Work

	Linear Time Planarity Testing for C-connected Clustered Graphs
	Clustered Planar Embeddings
	Normal Forms of Clustered Planar Embeddings
	Clustered Planarity Testing Algorithm
	Computation of the Clustered Planar Embedding
	Conclusion

	Part III Interactive Graph Drawing
	Interaction
	Interaction Concepts
	Navigation
	Goals for Navigation
	Basic Concepts and State of the Art

	Interactive Graph Layout
	Animation

	Applications
	Scaffold Hunter
	Motivation
	Goals and Challenges
	Approaches and Use-Cases
	Interaction and Navigation Paradigm
	Layouts
	Realization and Further Features
	Impact and Related Approaches
	Evaluation and Outlook

	Protein-Domain Interaction Networks
	Problem Overview
	Domain Graph Definition and Construction
	Domain Graph Visualization
	Splicing Pattern Analysis Methods
	Domain Graph Layout Requirements
	Radial Layout Algorithm
	Interaction and Navigation Features
	Alternative Layouts
	Conclusions

	Visualizing Residue Networks of Protein Structures
	Motivation
	Realization
	Network Layout
	Network Approaches to Protein Structure Analysis
	Concluding Remarks

	Conclusion, Further Work, and General Remarks
	Bibliography

