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Introduction

This thesis is based on the project ‘Analysis and Modelling of the Deephole-Drilling
Process with Methods of Statistics and Neuronal Networks’ in the Collaborative
Research Centre 475 ‘Reduction of Complexity for Multivariate Data Structures’
of the German Research Council (Deutsche Forschungsgemeinschaft – DFG). The
goal of this project is to model the BTA deep-hole drilling with statistical methods
and phenomenological models from physics to understand and possibly prevent the
dynamic disturbances chatter vibration and spiralling.
One of the first tasks in this project was to choose an experimental design to con-
struct a database for the investigations on the dynamics of the deep-hole drilling
process. Whenever statistical experimental design is applied, the application should
determine the proceeding completely. So usually the application defines the appro-
priate model(s) which enable(s) the researcher to answer the questions at hand. The
model defines criteria an experimental design has to fulfill to make a proper and
meaningful fit possible. Besides the criteria dictated by the chosen model each ap-
plication has special requirements concerning the maximal number of experiments,
changes of the input variables and the amount of possible response sampling. Since
the nature of the dynamics in the deep-hole drilling were still completely unknown
the experimental design could not be based on a model for the dynamics. Instead a
central-composite design was chosen to model the influence of machine parameters
on quality measurements. The results from this experimental design are described in
detail in Chapter 2.
Furthermore, a general search for experimental designs for experiments with time
series as response did not reveal appropriate methods for a situation similar to the
problem of the BTA deep-hole drilling. All experimental designs discussed in connec-
tion with time series are concerned with correlated errors between experiments and
not time series as output which are independent between experiments. Chapter 3
gives an overview of the literature and points out a solution for such experiments.
During the experiments of the first experimental design seven on-line measurements
were sampled. These time series were investigated more closely because in all experi-
ments some chatter vibrations were observed. We discovered that the drilling torque
was the most meaningful of the on-line measurements. The drilling torque was found
to be dominated by single frequencies which are close to the eigen-frequencies of
the boring bar. Different kinds of chatter observed in the experiments can be de-
scribed by the change in the amplitudes of those dominating frequencies. The latter
observation led to the idea of modelling varying amplitudes.
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Introduction

The distribution of periodogram ordinates plays the key-role when the most impor-
tant or relevant frequencies have to be determined, and of course it has to be known
for the correct modelling of varying amplitudes. The distribution of the periodogram
ordinates is derived in Chapter 4, and a transformation is described which leads to
a normal approximation of this distribution and gives an estimate of the amplitude.
All theoretical results gained on these models are tested for their practical relevance
in two simulation studies in Chapter 5. These simulation studies are also designed
using the concepts of statistical experimental design.
The models on varying amplitudes are used to fit a descriptive model on the rele-
vant frequencies for the deep-hole drilling process in Chapter 6. The results from
this descriptive model are connected to the machine parameters and features of the
machine assembly. The highly dynamic nature of the chatter vibrations meant that
a general model could not be used for all experiments for the developments of the
relevant frequencies. This dynamic nature of the process can be described from a
phenomenological point of view as a bifurcation of a stochastic differential equation.
In Chapter 7 the stochastic differential equation proposed for the description of the
bifurcation into chatter vibration for one frequency is given. It is proved that the
descriptive model for the developments of the amplitudes at the relevant frequencies
is a solution of the corresponding amplitude equation.
Finally Chapter 8 summarises the results for the different areas – experimental design
for experiments with time series as response; models on varying amplitudes; the
project on the deep-hole drilling process – and points out open questions giving hints
on possible solutions.
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1 The BTA Deep-Hole Drilling Process

This chapter describes the BTA deep-hole drilling process and introduces more ter-
minology from the area of metal cutting technology. First the machine tool and its
special properties is described, then two quality measures and their measurement pro-
cesses are introduced, and finally the dynamic process-disturbances chatter vibration
and spiralling are described.

1.1 Deep-Hole Drilling

In metal cutting one speaks of deep-hole drilling, when for the proportion of length
l to diameter D of the hole to be machined, l/D ≥ 3 holds. When the diameter
D exceeds 20mm typically the BTA deep-hole drilling process is applied. BTA
stands for ‘Boring and Trepaning Association’. This refers to the design of the
tool which is explained in subsection 1.1.2 and shown in Figures 1.2 and 1.3. The
special construction of this tool leads to long holes with very smooth walls and a
high degree of straightness. In many cases the BTA deep-hole drilling process is
the final step in the production of expensive workpieces. For example axial bores in
turbines or compressor shafts are made with this process. It is extremely important
to avoid dynamic disturbances in the process because such disturbances can mean
high financial losses.
The machine tool used in the experiments, its components, and the process param-
eters are described in the next subsections. In the following subsection the tool and
the general principal of BTA deep-hole drilling are described.

1.1.1 The Machine Tool

The machine tool has six main components: two drive units for the rotary motion of
the workpiece and the rotary and translation motion of the tool, the machine bed,
the oil supply device containing the starting bush, the damper, and the tool – boring
bar assembly. Figure 1.1 gives a good impression of the machine.
A peculiarity of the BTA deep-hole drilling process is that the the tool and the
workpiece may be driven. This means that drilling can be performed in three different
ways:

(1) Turning tool and standing workpiece,

(2) Standing tool and turning workpiece,

9



1 The BTA Deep-Hole Drilling Process

(3) Turning tool and workpiece in opposite directions.

Figure 1.1: BTA-deep-hole-drilling machine

The following parameters can be influenced on the machine:

– The axial feed f in mm/rev

– The cutting velocity (cutting speed) vc in m/min

– The flow rate of the oil V̇ in l/min

– The position of the damper

– The operating-pressure of the damper

The cutting velocity is automatically controlled and therefore not exactly on target in
the process. This is taken into account by measuring the true number of revolutions
per second which then allows the effect of the variation in this parameter to be
inferred.
The axial feed influences the speed of the boring substantially, since it determines
the thickness of the chips which are removed by the cutting edge. The flow rate of
the oil determines the speed of transportation of the chips from the cutting edge and
the cooling and lubrication of the process. It also influences the damping properties
of the whole assembly.
The damper serves to prevent dynamic disturbances (see section 1.3) and to this aim
it can be positioned along the boring bar. Its position can be fixed on the machine
bed or relative to the drive unit of the tool. The pressure, with which the damper is
clamped to the boring bar, is determined by the machine operator. If the operator
detects a disturbance (by sound or vibrations felt on the boring bar) he/she can vary
the position and the pressure until the disturbance disappears.

1.1.2 Boring Tool and Principle of the BTA Deep-Hole Drilling

The BTA tool has only one cutting edge and two or three guiding pads. This is
illustrated in Figure 1.2. The chips are transported away by the cutting fluid via

10



1 The BTA Deep-Hole Drilling Process

the chip mouth and through the boring bar. The asymmetrical geometry of the
tool leads to forces pushing outwards against the walls of the hole. These forces are
counteracted by reactive forces at the guiding pads. The tool is thereby guided in
the machined hole and at the same time the bored hole walls are smoothened. Since
the chips are transported within the boring bar they cannot damage the hole surface,
and hence a high quality of the holes can be achieved.

Figure 1.2: Boring tool and detail of working principle

In Figure 1.3 the tool used in the experiments of the project is shown. In contrast
to the above description it has a parted cutting edge. The partition into two cutting
edges has the advantage that they can be placed so that the forces pushing outwards
which are counteracted by the guiding pads are substantially reduced (Latinovic and
Osman, 1989).

Figure 1.3: Boring tool as used in the experiments

11



1 The BTA Deep-Hole Drilling Process

1.2 Quality Measures

In mechanical engineering there are several possible quality measures to evaluate
a hole. Roughness and roundness are obviously related to chatter and spiralling
because chatter may lead to increased roughness and spiralling is a roundness error
(cf. Section 1.3).

1.2.1 Roughness

Roughness measurements are defined to describe the deviation of the surface from the
ideal totally smooth surface. They are generally determined by tracing a needle along
a line segment and measuring its relative vertical movements. These measurements
are then aggregated in several ways. Two of these aggregates are used in this work
and therefore described here.
The simplest aggregate is the single roughness depth which is the difference between
the minimum and the maximum of the measurements.

Figure 1.4: Determination of a single roughness depth

The mean roughness depth is defined as the mean of five single roughness depths on
parts of a line segment.

Figure 1.5: Determination of the mean roughness depth Rz

The drawback of these simple measurements is that they are highly influenced by
extreme values observed in the measured line segment. If such extreme occurrences
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1 The BTA Deep-Hole Drilling Process

are important in evaluating the quality of the workpiece, they are the best choices. If
however it is more important to obtain information about the average quality of the
surface, then the roughness average, which is defined as the integral of the absolute
values of the measurements on the line segment divided by the length of the segment,
is more appropriate.

1.2.2 Roundness

Roundness measures the deviation of the machined hole from an optimal circle (Tay-
lor Hobson Ltd.). It is measured by rotating either the measuring device or the
workpiece around a fixed axis. The tip of the measurement device is set up close to
the ideal radius of the workpiece, or in this case, of the hole relative to the fixed axis.
Then the movement of the tip is traced within a plane. The output combines three
kinds of signals; the instrument error, the set-up error of the workpiece, and form
error of the workpiece. The first is reduced to a negligible amount by high-precision
mechanics and stable electronics. The second is minimised by accurate centering and
levelling of the workpiece. The form error can be magnified so that a good roundness
measurement can be achieved.

Figure 1.6: A roundness measurement plot from an experiment with extreme chatter
vibrations

It has to be noted that several planes have to be measured to assess on the accuracy
of the roundness measurements of a cylinder, otherwise any postioning errors still
present cannot be checked, e.g. the tube may not be absolutely vertically, or it may
be round at one end but not at the other (or in-between). To assess the roundness
reference circles are used which are centered at the ideal axis, as shown in Figures 1.6
and 1.11 . In many cases the distance between the minimal circumscribed reference
circle and the maximal inscribed reference circle is used as a roundness measurement.

13



1 The BTA Deep-Hole Drilling Process

1.3 Process-Disturbances

The project’s main aims is how to deal with two dynamic disturbances (chatter
vibration and spiralling) and more to the point, how to predict their occurence and
prevent them by appropriate controls. The disturbances are described in the next
subsections with some explanations from the literature.

1.3.1 Chatter Vibrations

As the name suggests, this disturbance is audible. The acoustic effect that accom-
panies chatter vibration can best be described as a high-pitched tone which occurs
during the process. The tone suggests regularly interrupted cutting. A sawtooth
pattern is produced at the bottom of the hole (Figure 1.7 a)). Chatter leads to sig-
nificantly increased wear of the cutting edges and in more extreme cases it leaves
so-called chatter marks on the hole surface. The patterns on the bottom of the hole
are illustrated in Figure 1.7 a) and in Figure 1.7 b) chatter marks of varying kinds
in the wall of the hole are shown (part 1: starting phase with no chatter vibrations;
part 2: chatter type A; part 3: chatter type B). In the latter picture the marks repeat
themselves periodically, but with varying intervals for different kinds of chatter.

(a) (b)

Figure 1.7: (a) Chatter marks at the bottom of the hole; (b) chatter marks on boring
wall

Figure 1.8 displays time series of the drilling torque from two experiments with the
same machine parameters. From this view of the data it is already obvious that the
drilling torque behaves quite differently for the same machine parameters. On the
right-hand side an experiment with three kinds of chatter vibration is displayed and
on the left-hand side an experiment with only one kind of chatter vibration.

14



1 The BTA Deep-Hole Drilling Process

(a) (b)

Figure 1.8: Two time series (Exp. 1 and 21a) of the drilling torque from experiments
with the same parameters f = 0.185mm/rev, vc = 90m/min and V̇ =
300 l/min

In Figure 1.9 the spectrograms of the drilling torque for the experiments above are
depicted. The spectrogram is formed by calculating periodograms from sequences of
fixed length from the time series, and then plotting them in a 2D-plot with time on
the x-axis and frequencies on the y-axis using colours to distinguish the heights of
the periodogram ordinates. As the spectrogram in Figure 1.9 shows the process is
characterised by few frequencies.

(a) (b)

Figure 1.9: The spectrograms of the time series in Figure 1.8

Having observed out-of-phase torsional and longitudinal vibration during chatter,
Thai (1983) traced this type of behavior of the BTA deep-hole drilling process back
to the principle of coupled states. Furthermore, from the high dynamic content of
the process torque, he inferred that the cutting parts periodically disengage from the
workpiece when there is chatter vibration.

15



1 The BTA Deep-Hole Drilling Process

1.3.2 Spiralling

Spiralling is a periodic movement of the tool around the centre of the boring bar.
This produces holes with three to five side-lobes (see Figure 1.11), which repeat
themselves and turn slowly producing the characteristic spiralling marks shown in
Figure 1.10.

Figure 1.10: Spiralling marks

Figure 1.11: A roundness measurement plot from an experiment with spiralling

Results on Lack of Roundness and Spiralling

In the literature it is reported that spiralling in the BTA deep-hole drilling process is
mainly observed with 5 lobes when there are three guiding pads regularly spaced on
the circumference of the tool (cf. Pfleghar (1976), or Sakuma et al. (1981)). There-
fore, the BTA deep-hole drilling process is compared to reaming when the tool has
four cutting edges. This comparison is obvious in a way, since the guiding pads have

16



1 The BTA Deep-Hole Drilling Process

a transforming effect on the hole surface as well. In experiments with reaming Her-
rmann (1970) found that the number of lobes N is linearly dependent on the number
of cutting edges Z by N = nZ ± 1. An explanation for this phenomenon is given in
the following model (Sakuma et al., 1981):
The tool has a radius RT and the angular velocity shall be vT . It is also assumed
that the axis of the boring bar is turning in a circle with radius RA with an angular
velocity of vA. The path of (one) tip of a cutting edge can therefore be described by
the following formulas:

xS1 = RA cos(ϕ0 + vAt) +RT cos(θ0 + vT t) (1.1)
yS1 = RA sin(ϕ0 + vAt) +RT sin(θ0 + vT t) (1.2)

When the cutting edges and guiding pads, respectively, are positioned regularly
around the circumference of the tool, the path of the following edge/pad can be
derived as follows:

xS2 = RA cos(ϕ0 + vAt) +RT cos(θ0 −
2π
Z

+ vT t) (1.3)

yS2 = RA sin(ϕ0 + vAt) +RT sin(θ0 −
2π
Z

+ vT t) (1.4)

Figure 1.12: Schematic picture of the described mechanism for the development of
spiralling.

From this it can be derived that to make the two positions S1 and S2 coincide the
following equation must hold:

xS2

(
t = t0 +

2π
ZvT

)
= xS1(t = t0) (1.5)

yS2

(
t = t0 +

2π
ZvT

)
= yS1(t = t0) (1.6)

17



1 The BTA Deep-Hole Drilling Process

From equation 1.5 it follows directly that
vA
vT

= nZ must hold, with n ∈ N if the

angular velocities point in the same direction, and −n ∈ N if otherwise. From this
it can be deduced, that the cutting edges/guiding pads follow identical paths if the
axis revolves with a velocity nZ times the cutting velocity. Then the path of the tip
of the cutting edge can be described by

R =
(
R2
A +R2

T + 2RART cos((nZ − 1)vT t+ ϕ0 + θ0)
) 1

2 .

It is thus clear that this produces a hole with |nZ − 1| lobes.
This explains the number of lobes for regularly spaced cutting edges/guiding pads.
Since this is such an obvious geometrical explanation for the development of spiralling
mechanical engineers have changed the geometry of the drilling tool so that regular
spacing of cutting edge and guiding pads on the circumference is avoided.
Stockert (1978) differentiates between three types of spiralling according to their
occurrence: at the start of the process, repeatable at the same drilling depth, and
seemingly at random. More recent investigations of Gessesse et al. (1994) have shown
a connection between the bending modes of the boring bar and spiralling for the
second type of occurrence.
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2 Modelling Quality Measures in BTA
Deep-Hole Drilling

In this chapter the effects of machine parameters on quality measures are investigated.
The necessary design considerations are described and the study that resulted from
these considerations and its results are discussed in detail.

2.1 Design Considerations

In experimental design it is necessary first to define response variables and how they
should be modeled and which variables are influencing factors. Secondly it has to be
decided on the aim of the experiment so that a decision can be made for which model
of the response variables a design should be selected. These steps are now descibed
for the problem of the deep-hole drilling process.

2.1.1 Response Variables

The first target in the project was to determine the effect of the machine parameters
on quality measures. The mean roughness depth, the roughness average and round-
ness were chosen as quality measures, because as pointed out in Section 1.2 these
measures are connected in a way to the dynamic disturbances chatter vibration and
spiralling.
To model the dynamics of BTA deep hole drilling, time series of quantities charac-
terizing the process were recorded. Chatter vibration and spiralling can be detected
in the variation of the cutting and friction forces acting upon the cutting parts and
guide pads respectively. In previous investigations this type of measurement was
found to be very difficult to achieve, due to, among other things, the restricted space
available in the tool head. Therefore, the process forces were measured in terms of
feed force and drilling torque transmitted via the boring bar. To this end, the strain
gauges were applied to the clamped end of the bar.
These measurements were not to be modeled directly, but were investigated in an
exploratory fashion. They are:

– Drilling torque

– Feed force

– Airborne and structure-borne sound

19



2 Modelling Quality Measures in BTA Deep-Hole Drilling

– Realized number of revolutions of the workpiece

The realized number of revolutions of the workpiece are controlled by an engineering
process control. Therefore, we wanted to investigate whether the variation in this
factor might be correlated to the variation of the other measurements.
In Figure 2.1 the positions of the different sensors is shown.

Figure 2.1: Experimental Setup.

2.1.2 Influencing Factors

In Section 1.1.1 it was described, which possibilities exist to influence the BTA-
deep-hole-drilling process. These possibilities shall be considered again under the
viewpoint of the goal of the experiments and some further practical considerations.
Of the three different modes of operation only one was considered, namely the ro-
tating workpiece/stationary boring tool. This was chosen because an appropriate
measuring device to transmit the signals of drilling torque and feed force from the
rotating boring bar was not available. The mode of operation is mainly determined
by the kind of workpiece, which is to be manufactured. So it is more of a boundary
condition than an independent parameter of the process.
The damper was not considered in the first step because its position could not be
determined beforehand. Therefore, it was not possible to define one or two treatments
of its parameters, which would have allowed a proper inclusion into the experimental
design without increasing the number of experiments too much.
This left the following three controllable influencing factors for the design:

– feed f

– cutting speed vc

– flow rate of the drilling oil V̇

Finally there are some uncontrollable influences such as the temperature of the boring
oil and more importantly the wear of the cutting edges and the guiding pads.
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2.1.3 Model

Since Astakhov et al. (1997a) and Astakhov et al. (1997b) already investigated the
quality measures for the BTA-process with respect to the most important influencing
factors and found out that these are exactly the three named above, it was decided
to find optimal parameter settings for these parameters. In experimental design it is
standard to use models for response surfaces in this situation. In this case a quadratic
model was chosen, which included the influencing factors feed, cutting speed and oil
flow rate.
An important consideration was to account for known uncontrollable factors. Since
the temperature of the oil changes only slightly during the boring process, and has
no impact on the cooling effect, it was ignored. The wear of the guiding pads is a
very slow process, so it could be ignored as well.
Wear of the cutting edges of the tool was expected to be a serious problem. So
this was added to the model as a blocking factor, blocking the experiments by the
succession of the experiments on the cutting edge — this means the first experiments
with the cutting edges were blocked together and so forth.
The complete model for each of the quality measures (here denoted by R) considered
thus reads:

R = µ+β1f+β2vc+β3V̇ +β12fvc+β13fV̇ +β23vcV̇ +β11f
2 +β22v

2
c +β33V̇

2 +(η+)ε
(2.1)

with µ a constant term, η ∼ N (0, σ2
η) a block effect, and ε ∼ N (0, σ2

ε) a random
error term.

2.1.4 Experimental Design

For the estimation of the described model it is necessary to choose an experimental
design, which makes it possible to estimate all parameters in the model. Such a
design is the central-composite design (cf. Box and Draper (1987) pp.508-512). This
design consists of the so-called cube, which here is a full 23 factorial design, and the
star with points on the axis in a distance α from the centre, and some experiments
in the centre. Figure 2.2 shows a 3-dimensional central-composite design in coded
factors as it is used here. Coded means that the centre is the point (0, 0, 0)T and the
cube has points with coordinates 1,−1.
By choosing α correctly this design can have two desirable properties: Rotatability
and orthogonal blocking.
Rotatability means that the variances and covariances of the parameter estimates
are invariant with respect to arbitrary rotations of the design region. This is desirable
because it cannot be determined in which direction the largest variance will occur
before the experiments have been run.
Orthogonal blocking makes it possible to estimate variance components of the
block effect and the random error in the error structure independently. Possible
blocks in the described central-composite design are the star points with some centre
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points and the cube itself or two fractions of the cube with some centre points as
well.

Figure 2.2: Central-composite design

Both properties could almost be fulfilled by choosing α = 1.68 and three repetitions
in the centre. But to fulfill the blocking condition for the inclusion of the wear of the
cutting edges seven cutting edges were needed for the block consisting of the star,
but only five for the half fractions of the cube. So the blocks from the cube got two
additional repetitions in the centre each. A correction on α was therefore required.
This led to α =

√
2 (cf. Box and Draper (1987), pp. 509-511).

The following values for the machine parameters were chosen as borders of the ex-
perimental region:

f in mm/rev vs in m/min V̇ in l/min

min. 0.12 60 200
max. 0.25 120 400

Table 2.1: Minimal and maximal values of the machine parameters

As a comparison for common settings of these parameters Figure 2.3 shows the tool
manufacturer’s recommended region for cutting speed and feed, the recommondation
of the VDI and the total range of physically possible values.
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Figure 2.3: Plan in the region of all possible parameter values and recommended
parameter regions.

This results in the following Table 2.2 of experimental settings in the original values
for the machine parameters:

Exp. f in mm/rev vc in m/min V̇ in l/min

1 0.185 90.00 300.00
2 0.185 90.00 300.00
3 0.185 90.00 300.00
4 0.139 111.21 370.71
5 0.12 90.00 300.00
6 0.231 111.21 370.71
7 0.231 68.79 370.71
8 0.185 90.00 400.00
9 0.139 68.79 370.71
10 0.231 111.21 229.29
11 0.185 60.00 300.00
12 0.139 111.21 229.29
13 0.139 68.79 229.29
14 0.185 90.00 200.00
15 0.231 68.79 229.29
16 0.185 90.00 300.00
17 0.185 120.00 300.00
18 0.185 90.00 300.00
19 0.185 90.00 300.00
20 0.25 90.00 300.00
21 0.185 90.00 300.00

Table 2.2: Central-composite design in the original values of the machine parameters

23



2 Modelling Quality Measures in BTA Deep-Hole Drilling

2.2 Results of the Experiments

2.2.1 Results on Quality Measures

During the experiments, phases with different process dynamics were observed. These
in turn lead to corresponding sections of the workpiece, which also showed different
characteristics. For all quality measures (R) we therefore defined a weighted mean
to obtain one value per experiment, which reflects the different surfaces from the
observed phases of the process appropriately. The measurements from each homoge-
neous part of the hole are weighted by the length of the corresponding section:

g(R) =
lstartcm

50cm
Rstart +

lgoodcm

50cm
Rgood

+
lchatt.Acm

50cm
Rchatt.A +

lchatt.Bcm

50cm
Rchatt.B

‘Start’ stands for the first part of the drilling process until the guiding pads are
completely contained in the hole. ‘Good’ means a part where no chatter marks are
visible. Two different sorts of chatter have been observed, chatter type A which
leaves chatter marks in the surface and chatter type B which leads to the formation
of a pattern along the bore hole wall which could be described as high frequency
spiralling.
For the assessment of the models we used the Akaike Information Criterion AIC and
the R2

adj , both criteria for the prediction ability of the models. These criteria were
chosen because the main goal of a response surface model is the prediction of optimal
parameter values for the influences.
The AIC is defined as

AIC = −2 logL+ 2p ,

where L denotes the likelihood function and p the number of estimated parameters
in the model. And the R2

adj is defined as (cf. eg. Weihs and Jessenberger (1999)):

R2
adj := 1− σ̂2

ˆV ar(y)
, where

σ̂2 =
1

n− p− 1

n∑
j=1

ε2
j and

ˆV ar(y) =
1

n− 1

n∑
j=1

(yi − ȳ)2

ε are the residuals of the model, yi, i = 1, . . . , n, the observations and p the number
of parameters in the model.
Since the complete model described above did not provide satisfactory values of our
model selection criteria for some of the used quality measures, a stepwise regression
was performed by the function step in the statistical software package R (Ihaka and
Gentleman, 1996) to select the best possible model. This selection was based on the
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Akaike Information criterium as objective. The chosen model should minimize the
AIC.

Roughness
For the two selected measures of roughness (mean roughness depth (Rz) and rough-
ness average (Ra)) the following models were selected as optimal:

– For mean roughness depth (g(Rz)):

3.89−0.53f2+0.77v2
c−0.29V̇ 2+0.29f+0.49vc−0.18V̇+0.26fvc−0.37fV̇+0.2vcV̇

with R2
adj = 0.77 and AIC = −32.19

– For roughness average (g(Ra)):

0.69− 0.12f2 + 0.27v2
c − 0.10V̇ 2 + 0.09f + 0.16vc − 0.04V̇ + 0.08fvc − 0.08fV̇

with R2
adj = 0.83 and AIC = −90.84

The given parameter values are estimated for the coded influences to make them
comparable within the models.
Furthermore, it was tested whether using the blocks as a random parameter could
improve the found models. This only resulted in an increased number of parameters
in the model and no reduction in variability.

Figure 2.4: Contourplots with optimum for roughness average

Since the better fit was reached for Ra this model was also fitted for Rz to make
the results comparable. This only affected the fit slightly (R2

adj = 0.76 and AIC
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= −30.87). These models were therefore used to calculate the optimal values for the
influencing factors. The result can be seen in figure 2.4.
The optimum is realized at one of the borders of the chosen experimental region and
the common practice would be to then move the experimental region now in that
direction. But since the chosen values were already quite extreme, it seemed more
appropriate to move on to the usage of the Lanchester damper.

Roundness
The full model was unsatisfactory for our model selection criteria with regard to the
weighted mean of the roundness (g(fR)), and so again the best model had to be found
by a stepwise regression. The result including the coefficients of the terms scaled for
the original factor values is:

g(fR) = 1.05 + 0.32f + 0.38vc + 0.11V̇ + 0.18vcV̇

and has an R2
adj = 0.53 and AIC = −41.49. These values were not satisfactory but the

residuals displayed no hint of further structure and therefore unreflected influences,
as can be seen in Figure 2.5.

Figure 2.5: Residual- and Normalplot of the model for roundness

2.2.2 Results of On-line Measurements

The on-line measurements were to be explored with a view to explaining, understand-
ing and forecasting chatter and spiralling. The first approach was to look at spectro-
grams of the drilling torque. It turned out that the different marks on the boring wall
correspond to regimes of different frequencies. Figure 2.6 (a) shows an experiment at
the centre point of the experimental design (number 21 from Table 2.2), where two
dynamic regimes are recognizable: In the first part of the process a frequency near
1200Hz is prominent and then slowly a second frequency near 700Hz becomes visible
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and finally dominates the process to the end. Figure 2.6 (b) displays experiment 19
which has the same parameter settings but has just one kind of chatter vibration from
the moment that the guiding pads leave the starting bush until the end of the process.

(a) (b)

Figure 2.6: Spectrograms of two experiments on the centre point of the design; (a)
Chatter right after guiding pads leave starting bush and change to a
different kind at the end; (b) chatter right after guiding pads leave starting
bush but constant until the end.

Comparing these spectrograms to the spectrograms in Figure 1.9, which are two
other examples of experiments with the same machine parameters, it is obvious that
the behaviour of the BTA-deep-hole-drilling process is quite dynamic. Figure 2.7
shows a spectrogram of the experiment (number 5) with the lowest cutting speed of
60m/min which was undisturbed for the first 30cm, and then chatter was observed.
This chatter appears to have the same frequency as the second kind of chatter in
Figure 2.6.

Figure 2.7: Spectrogram of an experiment on the point with the lowest cutting speed
of the design

When looking at the other spectrograms it appeared that only a few frequencies,
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which were the same for all settings of the influencing factors in the design, really
determined the process. This was investigated by determining significant frequen-
cies on segments of a length of 4096 observations and draw histograms on these.
Figures 2.8-2.9 show the results.

Figure 2.8: Histograms of the significant frequencies of the experiments 1 to 12
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Figure 2.9: Histograms of the significant frequencies of the experiments 13 to 21a

It is obvious from Figures 2.8-2.9 that closer investigation of the region between 0Hz
and 2000Hz suffices since the higher frequencies are only important in experiments,
where chatter was only observed for a short time. The bar-width in Figures 2.10-2.11
is standardized to 50Hz to make comparison easier.
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Figure 2.10: Histograms of the significant frequencies smaller than 2000Hz of the
experiments 1 to 12
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Figure 2.11: Histograms of the significant frequencies smaller than 2000Hz of the
experiments 13 to 21a

Figure 2.12 is a summary of the preceding histograms, where the frequency that a bar
is larger than 2 is counted. So the bars most prominent in Figure 2.12 are especially
important for the process. The corresponding centre values of the bars are:

25 Hz 225 Hz 275 Hz 675 Hz 725 Hz 1175 Hz 1225 Hz 1625 Hz
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Figure 2.12: Histogram of the most frequent frequencies in the experiments.

When looking at the frequencies in the most prominent bars in the histogram in
Figure 2.12 the following frequencies are found to be significant in these intervals:

> 0 - 50 Hz
4.9 9.8 14.7 19.5 24.4 29.3 34.2 39.1 43.9 48.8

> 200 - 300 Hz
200.2 205.1 210.0 214.9 219.7 224.6 229.5 234.4 239.3 244.1
249.0 253.9 258.8 263.7 268.6 293.0 297.9

> 650 - 750 Hz
659.2 664.1 668.9 673.8 678.7 683.6 688.5 693.4 698.2 703.1
708.0 712.9 717.8 722.7 727.5 732.4 737.3 742.2 747.1

> 1150 - 1250 Hz
1152.3 1157.2 1162.1 1167.0 1171.9 1176.8 1181.6 1186.5 1191.4
1196.3 1201.2 1206.1 1210.9 1215.8 1220.7 1225.6 1230.5 1235.4
1240.2 1245.1

> 1600 - 1650 Hz
1601.6 1606.4 1611.3 1616.2 1621.1 1626.0 1630.9 1635.7 1640.6
1645.5

In the following Figure 2.13 the variation of the amplitudes over three of these in-
tervals are depicted for the experiment at the centre point from Figure 1.9 (a). In
Figure 2.14 the corresponding picture for the experiment from Figure 1.9 (b) is shown.
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Figure 2.13: Variation of the amplitudes for frequencies top 190-273Hz, middle: 659-
747 Hz, and bottom: 1143-1406 Hz
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Figure 2.14: Variation of the amplitudes for frequencies top: 190-273Hz, middle: 659-
747 Hz, and bottom: 1143-1406 Hz

These led to the idea to model time-varying amplitudes. The models will be discussed
in Chapter 4.

2.3 Second Experimental Design

The results from the first design made it possible to determine likely effective positions
for the damper. Therefore, it was decided to perform a second experimental design
using one of these positions to compare the results regarding roughness and roundness
to the results from the first design. Since the oil flow rate exerted a minor influence
on the responses and is not always changeable in practice, the design was reduced by
setting the oil flow rate at the optimal value found in the experiments at 300l/min.
The rest of the design was projected into the plane of the cutting speed and the
feed, thereby preserving α =

√
2 the optimal value in the two-dimensional case for
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orthogonal blocking and rotatability (Box and Draper (1987), p. 511). The number
of repetitions in the centre was set at two.
First the different positions were tested and the most efficient was chosen. As can be
seen from Figure 2.15 the frequencies dominating the chatter are completely gone.
But this does not mean that further research on the problem of chatter is unnecessary,
because in many practical situations the most efficient position for the damper cannot
be achieved. This is the case, when extremely long workpieces are machined or the
position is too close to the oil supply device.
In these experiments spiralling occurred with all settings of the influencing factors. It
turned out that this was due to the wear of the guiding pads. Although this should
not happen usually, it gave a good insight into the dynamics of spiralling which
develops slowly as well as the chatter. Again only a few frequencies are prominent in
the drilling torque in Figure 2.15(b). In the bending moment in Figure 2.15(a) single
frequencies are important for any time slice but they change with time. A closer
inspection reveals that some of the very low frequencies increase slowly over time.
So they could be used similarly to the chatter dominating frequencies to detect and
predict spiralling.

(a) (b)

Figure 2.15: Spectrograms of the drilling torque (a) and one bending moment (b) for
an experiment with vc = 111m/min and f = 0.231mm, both spectro-
grams are restricted to the frequencies 0–2000 Hz.

Because of the worn guiding pads the experimental design was completely repeated.
This time no chatter or spiralling was observed. Therefore, the damper efficiently
suppressed chatter and the appearance of spiralling was truely due to the worn guid-
ing pads. But since the damper cannot be placed at the most efficient place in all
tasks encountered in deep-hole drilling, it is of interest to avoid it without using the
damper.
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Methods for Time Series Experiments

When planning experiments with time-dependencies, it is necessary to distinguish
between time-dependent and time-independent influences. If the response in such an
experiment is time-dependent but the influences are time-independent the time may
be modelled as a further influence variable. In some cases it may be possible to elim-
inate the time completely by using summary statistics, which are time-independent,
for the response, e.g. the parameters of an assumed time series model, or the spec-
trum of a time series. Another way of looking at time-dependencies is to attribute
these dependencies to autocorrelation in the error structure.
From this description four situations arise:

(1) No time-dependent influences exist and the response can be transformed into
a time-independent measurement.

(2) No time-dependent influences exist, but the response can not be summarised
time-independently or time-independent modelling leads to information loss.

(3) No time-dependent influences exist, but a time-dependency in the error-structure
is assumed to generate the time-dependency in the response.

(4) Time-dependent influences exist and the error structure could be time-dependent
as well.

In the last situation the model can be viewed as a discrete time observation of a
stochastic dynamic system. In the case of dynamic systems the notion of an estimable
model is replaced by the notion of identifiability.
In the first situation standard procedures for experimental design for regression mod-
els can be used, like factorial or D-optimal designs. The greatest difficulty here is
determining the correct error model, as it is not always obvious, how a chosen sum-
mary statistic is distributed, given the assumed noise process in the response.
In the literature the problem of experimental design for responses measured over time
is considered mainly for repeated-measurement designs with auto-correlated errors.
For most of the other situations the literature is rather sparse. In the next sections
this literature will be briefly reviewed and finally assessed according to the usefulness
for the experimental design problem in the deep-hole drilling process.
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3.1 Evaluation of Time Series collected in an Experimental
Design

The two papers described in this subsection tackle one specific way to deal with a
problem of the first of the four types mentioned above.
Brillinger (1973) derives F -tests for the situation of analysis of variance (ANOVA)
type models on the discrete Fourier-transform in his article ‘The Analysis of Time
Series collected in an Experimental Design’. First he considers the following fixed
effects model

yij(t) = µij + γ(t) + δi(t) + εij(t),

where µij is the overall mean, γ(t) is a time effect and δi(t) are the effects of the
I levels of treatment. εij(t) are realisations of a stationary process with mean 0,
power-spectrum fεε(λ), 0 ≤ λ ≤ π, and all moments exist and are finite. This model
is extended to a random effects model by assuming that γ(t) and δij(t) are stationary
processes with the same properties as εij(t).
As a further modification the model with fixed effects and transients is considered:

yij(t) = µij + ωij(t) + γ(t) + δi(t) + εij(t),

with the same assumptions as in the fixed effects model above and the additional
condition that ωij(t) are constants, which fulfill the following property:

∞∑
t=0

|t||ωij(t)| <∞

Furthermore, he also considers stationary point processes in the case of one-way
ANOVA with one repetition per class. The considered model has the following form:

ni(t) = mi(t) + pi(t),

where pi(t), i = 1, . . . , I, are independent realisations of a stationary point process
with power spectrum fpp(λ), while mi(t), i = 1, . . . , I, are independent of pi(t), and
they are components of an I-vector-valued stationary point process m(t), t ∈ Z, which
are symmetrically dependent.
F−statistics are derived for all these models , so that it is possible to perform ANOVA
in all cases. In this article no further comments on the construction of suitable
experimental designs are made.
In ‘Time Series obtained according to an Experimental design’ Gallant et al. (1974)
describe a way to analyse time series obtained in a block design. The time series from
the experiments are transformed into periodograms and these are further transformed
by the function ϕα = zα, α ∈ (0, 1). The latter transformation is chosen to ensure
a better approximation to the normal distribution than is given by the simple argu-
ment, that the periodogram ordinates are χ2-distributed for a stationary Gaussian
process. The authors chose α = 1

4 , because this seemed to be appropriate for the ob-
served data. Like Brillinger (1973) they construct F−statistics on the Periodogram
ordinates and perform an ANOVA. Again nothing is said about the consequences for
experimental design.
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3.2 D-optimal Design for Time Dependencies

The Time Series Problem
The article of Papakyriazis (1978) is one of the very few articles concerned with
optimal experimental design for time series experiments. In the article he describes
designs for time dependencies in the influences as well as for time dependencies in
the errors and combinations of both types, thus the models fall into the last three
categories mentioned above. Papakyriazis restricts himself to AR and MA processes.
A significant limitation to the applicability of these considerations is the necessity to
have precise information about the order and the parameters of the AR/MA process.
If such information is not available or incorrect, the proposed methods will lead to
inefficient or even completely misleading designs.
The following models are considered:

(1) Lagged–independent variables: Consider a model with a finite, known and small
lag τ

yt =
K∑
i=1

τ+1∑
j=1

βijxi,τ−j+1 + εt mit εt ∼ N(0, σ) (3.1)

the influences xi,· are deviations from the respective means of the variables.
Moreover, the following assumptions are made:

(a) (xi,t) and εt are independent,

(b) (xi,t) is stationary for all i during the experiments and for the infinite past,

(c) var(xi,t) = 1 for all i and t,

(d) the estimates of the variances and covariances of the model parameters
must converge to the true values for growing sample size T .

Going on these assumptions it is proved that an experimental design is D–
optimal if and only if the correlation matrix is equal to the identity matrix.

(2) Auto-correlated errors: The model in formula (3.1) is modified in this case
so that εt = [θ(L)/φ(L)]at, where θ(L) and φ(L) are polynomials of the lag–
operator L (defined as Lkxi,t = xi,t−k). Designs are constructed especially for
the following models:

(a) A simple AR(1)–process, i.e. τ = 0, θ(L) = 1 and φ(L) = 1 − φL, φ ∈
(−1, 1),

(b) for an ARMA(1,1)–process,

(c) a model with a lag of one period, one independent variable and an AR(1)–
process on the error term, i.e.

yt = β1xt + β2xt−1 + (1− φL)−1at
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For all these models correlation structures for the control process are given.

(3) the mixed autoregressive–regressive model with correlated errors, i.e.

yt = δyt−1 + βxt + (1− φL)−1at

If φ is known, it exists a function, which has to be maximized with respect to
the auto-correlation at lag 1 to get a D–optimal design.

Therefore, various models of types (2)–(4) are tackled in this article. However, all
designs described have the aforementioned drawback of the exactness of information
on the model.

Factorial Designs and Auto–Correlation
The problem of optimal factorial designs in the presence of autocorrelation has been
considered in a series of articles in the 1990s. These models have time-dependent
influences i.e. the influencing factors are changed in time but correlation over time is
only introduced in the error process (type (4)). The articles will be described briefly
here.
Saunders and Eccleston (1992) dealt with ‘Experimental Design for continuous Pro-
cesses’. They consider models of the form

Yti = x′iβ + εti ,

where εti is a continuous time process with variogram V (t). The variogram is a
function of the following form:

V (t) =
1
2
E(Ys − Ys+t).

Additionally the authors make the following assumptions:

(1) the process has stationary increments, so that the variogram exists.

(2) the error process is not influenced by the treatments applied.

The authors are interested in the common case that it is not the effect of single
influences that are of interest, but only specific contrasts. In factorial designs these are
the main effects and the interactions of low order; in Taguchi experiments these are
the interactions of controlled and uncontrolled factors. The variance of the estimation
of a contrast is only dependent on the time points of the measurements, since it
is assumed that the variance structure does not depend on the level of the factors.
Saunders and Eccleston prove that the variances and covariances of a set of interesting
contrasts K are given by the expression −KTV K with V = V (ti − tj). Therefore,
the following procedure is proposed:

(1) Determine the contrasts with low variance from −KTV K.

(2) Assign the influencing factors so that the most interesting effects (parameter
estimates) are assigned to the contrasts with low variance.
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Then it is proved that the variances and covariances, which have to be controlled to
obtain an optimal design, only depend on the chosen contrasts and the form of the
variogram. A- and D-optimality can therefore be expressed directly by the variogram
as suggested by the above formula.
Optimal time points for the measurements are determined theoretically for the case
of equally spaced time points and increasing variogram. The time points are opti-
mal iff E

(
(εti − εtj )2

)
= limt→0,t≥0 V (t) for i 6= j. But the authors point out that

level changes of influencing factors in a continuous process show effects after some
time so that very short distances in time are not realistic. This leads to the prob-
lem that optimal contrasts cannot be determined only with respect to the optimal
time points but over a stretch of time points. This can lead to different optimal
contrasts, and therefore it is not possible to determine uniformly optimal contrasts
for all variograms.
Saunders (1994) constructs algorithms for the determining irregularly spaced opti-
mal time points for the linear and the exponential variogram. He proves that his
algorithms lead to minimal variance of the parameter estimates at least locally. The
restriction to local optimality is of no interest for practical purposes, because exper-
iments are always limited in time.
Saunders and Eccleston (1992) roughly describe an algorithm for constructing opti-
mal contrasts. This algorithm is formulated in more detail in Saunders et al. (1995).
In this article it is shown that contrasts with many level changes lead to small vari-
ances of the parameter estimates under the named circumstances. It is shown that
so-called paired contrasts of the form (k1,−k1, . . . , kn,−kn) are often optimal. On
the one hand a restriction to paired contrasts reduces the number of contrasts under
consideration. On the other hand it means that constructing a design to estimate
two main effects and their common interaction is not possible. This is easily seen by
considering the elementwise product of paired contrasts, which is obviously no longer
paired. For the algorithm they further restrict the search space by considering only
balanced designs. The examples they give show impressively the variance reduction
gained by using optimal contrasts.
These investigations are continued in Martin et al. (1998b). Here not only the afore-
mentioned AR(1)-correlation structures, but AR(q) and other kinds of structures are
considered. Most of the examples considered, are models with a MA(1)-structure or
a ‘linear variance’ structure (with a covariance of the form: In−1 + ∇′∇ with ∇ a
n − d × n difference matrix) with positive dependencies. In this case, the authors
prove explicit connections between the number of level changes and the optimality
criteria for A-, D- and E-optimality. Their results on the connection between designs
for different models are highly interesting. In Lemma 7 (page 374) they demonstrate
the special form of the information matrices, which makes it possible to construct an
optimal fractioned 2p−q-design from a complete optimal 2p-design.
Finally Martin et al. (1998a) demonstrate that similar criteria for the construction of
multi-level designs in this framework exist. Adequate generalisations for the number
of level changes and a suitable neighbourhood definition lead to easily determinable
parameters, which mainly influence the optimality criteria. They also managed to
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generalise the result on the connection between a complete and a fractioned design.

3.3 Experimental Design and Dynamics

So far only models of a classical statistical point of view, which do not include con-
tinuous time or even non-linear models, have been considered. In this section results
concerned with one or both of these topics will be mentioned. Again these models
may fall into the categories (2)-(4).

Connection to the other Approaches
Fedorov and Nachtsheim (1995) consider the design problem for dynamic experi-
ments, i.e. the models under consideration depend upon time and control variables.
They consider only additive error structures and linear models. The difference to the
other articles discussed is that they allow for continuous time. First they consider
the same models as Papakyriazis (1978) and get the same results using a slightly
different approach. The section on parameterization of the trajectories is the most
interesting. Parameterizationof the trajectories reduces the dimensionality of the
design problem by replacing the general series of r different settings of the control
variable with a parametric function of time for which only the parameters have to be
determined. Secondly they also discuss algorithmic problems in optimising designs
formed by trajectories.

3.3.1 Experimental Design for Dynamic System Identification

Dynamic system identification is a concept of control theory, and translates as the
estimation of parameters in a dynamic system from a statistical point of view.

Linear Dynamic Systems
In ‘Optimal Experiment Design for Dynamic System Identification’ Zarrop (1979)
constructs φ-optimal designs for the identification of linear dynamic systems of the
form

yk = Ls
b(L)
a(L)uk

+
d(L)
c(L)

εk ,

where a, b, c, d are polynomials of degrees n,m, q, r, and L is again the lag operator
as defined in section 3.2. The power s of L means that it is applied s times. (εk)k∈N
is a white noise process. Additionally it is assumed that the polynomials a, b, c, d are
relative prime, and that their degrees and the power s are known.
Under these assumptions Zarrop derives geometric properties of the space of all in-
formationmatrices for this model. He proves that this space is embedded in Rp. It
turns out that this property can be used to obtain canonical representations of input
trajectories in form of Tschebycheff systems. He derives algorithms for constructing
D-optimal designs of input trajectories. Finally he generalizes this approach to con-
tinuous time,and tackles the question of simultaneous optimization of sampling rate
and input trajectories.
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Non-linear Dynamic Systems
Leontaritis and Billings (1987) discuss the problem of optimal experimental design
in the case of non-linear systems. They show that in the case of open-loop operation
(i.e. there is no feedback control applied) Gaussian white noise is optimal when a
power constraint on the input is given, and a uniformly distributed process is optimal
when an amplitude constraint has to be respected. Furthermore, they proved that
the use of trajectories that are optimal for the identification of linear systems may
lead to a complete loss of identifiability. Additionally they give practical guidelines
for designing experiments in a closed-loop situation.

3.4 Repeated-Measurements Designs in the Presence of
Auto-Correlated Errors

In repeated-measurements (RM) models in particular, the question of auto-correlation
in the errors is considered frequently in the literature. This is not surprising, since
it would seem natural to take into account a possible time dependency when making
several observations over time on the same experimental unit.
In this section only a few articles are mentioned to complete this overview on methods
for experimental design respecting time dependencies.
There are several articles on the search for optimal designs in the case of first-order
auto-regressive processes in cross-over experiments. They all assume the following
kind of model:

yijt = αi + βt + τj + εijt ,

where αi is the effect of the ith subject or experimental unit, βt is the effect of time
t, τj the effect of treatment j, and εijt the error process with correlation matrix V .
Several articles consider the optimality properties of Williams-Designs. Berenblut
and Webb (1974) show that Williams designs are the best possible choice when, in
a repeated-measurements situation, it is not known whether or not the errors are
uncorrelated. They show by simulations that in this situation the Williams designs
are the most efficient under both conditions, uncorrelated errors or errors with first
order autocorrelation. Kunert (1985) shows, using the same model assumptions,
that E-optimality for weighted least-squares analysis is obtained with an additional
balancing property. More generally Kunert and Martin (1987) prove A- and D-
optimality for Williams (IIa) block designs with extra plot.
Based partly on the above cited papers Martin and Eccleston (1991) develop the con-
cept of strongly equineighboured designs and prove that designs fulfilling this concept
are weakly universally optimal BIB (balanced incomplete block) designs under ordi-
nary least-squares for any dependence structure of the errors.
The cited literature covers a wide variety of situations in designs for repeated-
measurement models with dependence of the errors.
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3.5 Assessment of Methods for Experimental Designs for
the BTA Deep-Hole Drilling Process

All experimental designs covered in this chapter so far deal with the problem of
correlation between experiments. Experiment means here observation from a period
with a constant treatment of the experimental unit. However, they do not deal
with experiments which have time series as the result or observation of a single
experiment. Thus, these experimental designs were of minor interest for the first
experiments on the deep-hole drilling process but some may be of interest in later
stages of the project. The first two articles on the evaluation of time series collected in
an experimental design provided the general idea for the developments of the models
on varying amplitudes described in Chapter 4.
In general, it can be said that the categories (2)-(4) from the beginning of the chapter
are covered well by the literature presented here. The first category is not extensively
covered.
The D-optimal designs on time series in the first part of Section 3.2 have the major
draw-back that the correlation coefficients of the time series need to be known in
order to construct the design. These coefficients are not known for the time series of
the drilling torque for the deep-hole drilling process, and the diverse outcomes of the
time series of the drilling torque at the centre point of the design point more towards
a dynamic process.
The second part on factorial designs and auto-correlation could be of interest for the
design of experiments to test the effect of on-line changes of the machine parameters.
Such factorial designs appear quite promising for detecting the most effective change
in the machine parameters for different kinds of chatter vibrations. Since the series
of articles not only includes all relevant theoretical proofs but also an algorithm to
construct the appropriate contrasts it should be possible to apply these designs in
the future.
The experimental designs for system identification could not be applied because the
first formulations of dynamic systems for the deep-hole drilling process were not in
the form of input-output systems. This may change after the first experiments with
time-varying machine parameters have been accomplished. It should then be possible
to distinguish between linear and non-linear dynamic systems which is crucial as the
results of Leontaritis and Billings (1987) show.
Finally the repeated-measurements designs are of interest when thinking about exper-
imental designs for the models on varying amplitudes. This is because a combination
of time-stationary and time-varying effects lead to a data situation which is best
described as a repeated-measurements model and certain error structures on har-
monic processes may lead to correlation between the periodograms estimated for the
spectrogram data. For more details see Section 4.3.
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3.6 Experimental Design Solutions for Experiments with
Time Series as Output

The investigation of dynamic problems or problems where the measurements are ob-
tained in the form of time series can be compared to spatial analyses. Müller (2001b)
points out in Chapter 4 of his book ‘Collecting Spatial Data’ that optimal design of
experiments is often criticised for the necessity to exactly specify the model to be
fitted to the data. This is often impossible in spatial problems because the models
used there are only rough approximations of the actual highly complex phenomena.
Furthermore, the experimental designs are criticised for ‘leaving large parts of the ex-
perimental region unobserved’. W. G. Müller suggests exploratory designs to address
this criticism. Since these designs may also be valuable in the situation discussed
here, the next subsection is dedicated to the brief introduction of several possible
definitions of such designs and a more extensive description of Coffeehouse designs.
Coffeehouse designs were chosen because they have an especially easy construction
rule.

3.6.1 Model-free or Exploratory Designs

When no model assumptions can be made because there is no information on possible
connections between influencing variables and the chosen response or the investigation
has several different goals, a way of exploring a wide variety of combinations of the
influencing variables is called for. The simplest form of such a design would be a grid
across all interesting levels of influencing variables. It should be noted however that
even with a small number of variables (less than five) and levels this amounts to very
large numbers of experiments.
Exploratory designs must therefore be able to:

(1) Explore the space of possible values as ‘completely’ as possible

(2) Deal with the restricted number of experiments

One approach to constructing such designs is to define regions of interest for each
variable, define a common sampling distribution for this restricted space, (e.g. a mul-
tivariate uniform distribution), and then draw a sample of the requested number of
experiments with this distribution. Alternatively define a distribution for each vari-
able, take one-dimensional samples, construct a grid from all these one-dimensional
samples, and sample again with a uniform distribution from this grid. These are
called random designs, cf. Esbensen et al. (1998). The results from these designs
are then typically evaluated with Principal Component Analysis (PCA) or Partial
Least Squares (PLS) because this makes it possible to identify the subspaces of large
variance contribution to the response variable. This kind of space-filling design is
probably not the best choice if only a small number of experiments can be accom-
plished because then it may happen that the random realisations are clustered within
the design space. Additionally it is not clear how to define an appropriate measure
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of variability for the use of PLS or PCA, when the outputs of the experiments are
time series. It should be noted however that the results of Leontaritis and Billings
(1987) on the identification of non-linear dynamic systems could be included in this
framework in the following sense:
Define a random set of time-stationary experimental conditions, and random input
samples to the dynamic system drawn from the appropriate distribution.
Another approach is to use optimal space-filling designs, or maxmin-distance designs.
These designs try to ‘fill’ the given space of input values with the given number of
experiments. The construction rules try to identify a set of points which has the
property to maximise the minimal distances between all points. This is done to ensure
that not more space than absolutely necessary is left void. There are various ways
of constructing space-filling designs, cf. e.g. Morris and Mitchell (1995) or Johnson
et al. (1990). An easy way of constructing such a design is described below. It was
also applied in the simulation study described in Chapter 5.

Coffeehouse Designs

Müller (2001a) proposed the so-called Coffeehouse Designs. These are maxmin-
distance designs constructed as follows:

(1) Choose two points in the design region with maximum distance.

(2) Find all points which maximise the minimal distance from all points selected
so far.

(3) Select one of the points found in step 2.

(4) Repeat step 2 and 3 until the number of experiments is achieved.

Figure 3.1 illustrates the steps on an irregularly shaped region. Points 1 and 2 have
the maximal possible distance in this region. Since the region is concave on the lower
left-hand side, the minimal distances cannot be maximised in this part of the region.
Thus the first guess is that the next point should lie on the blue curve on the upper
border. In this region therefore the point with equal distances to the first two points
is the correct choice. By finding the maximal width of the region it becomes clear
that point 4 with equal distance to point 1 and 3 is correct.
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Figure 3.1: Coffeehouse design on an irregularly shaped region.

This approach can be implemented much more easily, when a grid is applied to the
search space, thus candidate points are not constructed by computationally challeng-
ing optimisations.
Projection optimality is another interesting property in space-filling design (Morris
and Mitchell, 1995). Projection optimality means that any projection of the design
into a canonical subspace of the experimental space is a space-filling design with the
same number of experiments in this subspace. This property can be obtained by the
Coffeehouse Design in the following way:

(1) Determine candidate points from each one-dimensional interval by the Coffee-
house rule,

(2) construct a grid from these one-dimensional candidate points,

(3) apply the Coffeehouse rule to this grid,

(4) eliminate the elements of the chosen point from the one-dimensional candidate
points,

(5) repeat until number of experimental points is reached.

Of course this construction rule can only be applied when each variable can take at
least n levels. Figure 3.2 illustrates this algorithm for a design with six points on
points 3 and 4. The final position of point 4 is uniquely defined by the distances in
the two-dimensional space.
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Figure 3.2: Construction of a projection-optimal Coffeehouse design with six points.
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4 Models on Periodogram Ordinates for
Harmonic Processes

This chapter provides the theoretical background for the models on periodogram
ordinates. First the distribution of periodogram ordinates at significant frequencies
of a harmonic process with normal disturbances is determined. Then a procedure for
the determination of so-called relevant frequencies is derived and finally regression
methods to fit models on varying amplitudes are introduced.

4.1 Determination of the Distribution of Periodogram
Ordinates

Gallant et al. (1974) and Brillinger (1973) consider analysis of variance (ANOVA)
models on periodograms. Their argument – based on a Taylor series extension of
the distribution function – is to transform the observed ordinates with g(x) = x

1
4 to

increase the convergence of the χ2
2-distributed measurements to a normal distribution

and thereby make a common ANOVA sensible in this situation.
Since the basic idea of Gallant et al. (1974) is to use a normal approximation for
the distribution of the periodogram ordinates, the distribution of Fourier-transforms
of processes based on normal white noise is investigated more closely. This is the
foundation for the construction of models on varying amplitudes.
The periodogram ordinate at frequency f equals n times the squared absolute value
of the Fourier-transform F of the time series yt at frequency f , that is

I[yt](f) = n|F [yt](f)|2,

where n is the number of observations in the series.
If yt is a Gaussian process with distribution N (0, σ2), F [yt](f) as a linear trans-
formation of yt has again a normal distribution. |F [yt](f)|2 = (Re(F [yt](f))2 +
(Im(F [yt](f))2 is therefore χ2 distributed with 2 degrees of freedom, which equals an
exponential distribution (cf. e.g. Fisz (1970)). On the basis of this argument and us-
ing the fact that the Fourier-transform is a linear operator it follows that periodogram
ordinates of AR(p) processes are χ2

2p-distributed.
The expected value of |F [yt](f)|2 can be calculated using the formula V ar(X) =
E(X2)− E(X)2:

E(|F [yt](f)|2) = E((Re(F [yt](f)))2 + (Im(F [yt](f)))2) (4.1)
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= E((Re(F [yt](f)))2) + E((Im(F [yt](f)))2) (4.2)
E(F [yt](f))=0

= V ar(Re(F [yt](f))) + V ar(Im(F [yt](f))) (4.3)
= 2σ2 (4.4)

Now consider a harmonic process of the following form:

ht =
K∑
k=1

Rkcos2π(fkt+ ϕ) + εt, (4.5)

where εt ∼ N (0, σ2)∀t ∈ Z and Rk are the amplitudes at the relevant frequencies
fk , k = 1, . . . ,K.
The Fourier-transform of Rkcos2π(fkt+ϕ), t = 0, . . . , n−1, is (cf. Bloomfield (2000),
p.46):

F [Rkcos2π(fkt+ ϕ)](f) = Rk exp
(

2πi(fk − f)
n− 1

2

)
sin(π(fk − f)n)
sin(π(fk − f))

(4.6)

Because the equation
sin(π(fk − f)n)
sin(π(fk − f))

= 0 is true for all Fourier frequencies f 6= fk

and,
sin(π(fk − fk)n)
sin(π(fk − fk))

= 1 holds for the relevant frequencies fk, k = 1, . . . ,K,, it

follows that the Fourier-transform of ht is

F [ht](f) =
{
F [ε](f) +Bf for f 6= fk , k = 1, . . . ,K
Rk + F [ε](f) for f = fk , k = 1, . . . ,K

, (4.7)

where B 6= 0 is only true for frequencies near to one of fk , k = 1, . . . ,K, and possibly
harmonics of these frequencies.
Again a result on the distribution of the periodogram ordinates is readily gained by
the same arguments as above: they are χ2-distributed. It is only close to the relevant
frequencies that you get non-central χ2-distribution with non-centrality parameter
ν = n(R2

k + 2σ2
ε). The latter can be derived from formulas (4.4) and (4.7) in the

following way:

E(|F [ht](fk)|2) = E
(
Re(Rk + F [ε](fk))2

)
+ E

(
Im(Rk + F [ε](fk))2

)
(4.8)

= E(Re(Rk + F [ε](fk)))2 + E(Im(Rk + F [ε](fk)))2 (4.9)
+V ar (Re(Rk + F [ε](fk))) + V ar (Im(Rk + F [ε](fk)))(4.10)

= R2
k + 0 + σ2

ε + σ2
ε (4.11)

A more general determination of the distribution of periodogram ordinates can be
found in Wittwer (1986). In her paper G. Wittwer determines the moment generating
function and the general properties of the distribution of the periodogram ordinates
for stationary sequences.

49



4 Models on Periodogram Ordinates for Harmonic Processes

4.2 Regression Models on Periodogram Ordinates

When the amplitudes at the relevant frequencies fk , k = 1, . . . ,K, of a harmonic
process are influenced by some input variables ~x, it is of interest to investigate the
form of this influence. So the following model is considered:

Gt(~x) =
K∑
k=1

gk(~x)cos2π(fkt+ ϕ) + εt, (4.12)

With equation (4.7) the Fourier-transform is essentially the following:

F [Gt(~x)](f) =
{

F [ε](f) +Bf for f 6= fk , k = 1, . . . ,K
gk(~x) + F [ε](f) for f = fk , k = 1, . . . ,K

, (4.13)

where Bf 6= 0 is only true for frequencies near to one of fk , k = 1, . . . ,K and possibly
harmonics of these frequencies.
With equation (4.11) it is clear that the expected value of the periodogram ordinates
at the relevant frequencies is

E(IGt(~x)(f)) = n(|eiπϕ| gk(~x)2 + 2σ2
ε) for f = fk , k = 1, . . . ,K. (4.14)

4.2.1 Effect of the Phase

The phase is of no interest in this model because it contributes only a constant factor
in the complex Fourier transform equal to eiπϕ of which the absolute value is 1. So
the phase does not contribute to the estimates described above, and is ignored in the
following sections and subsections.

4.2.2 Estimating the Variance of ε (σ2
ε)

When constructing an estimator for the functions gk(~x) , k = 1, . . . ,K, an estimate
of σ2

ε is required. If the frequencies are known, it is then possible to fit a harmonic
process in those frequencies at different values of the input variables ~x, and use the
least-squares residuals to estimate σ2

ε . However, there are two reasons against this:
On the one hand the relevant frequencies need to be known, which might not be
the case. On the other hand the least-squares fit also needs a constant phase, albeit
unnecessary for the periodogram ordinates to be constant. If the phase varies only
slightly this leads to very large residuals and thereby to a bias of the variance estimate.
So another procedure is required, which does not rely on known relevant frequencies
and is not as vulnerable to faulty pre-steps for its calculation.
The Fourier-transform of a harmonic process with a small number of relevant frequen-
cies K compared to the number of observations n can be viewed as a sample from a
χ2-distribution contaminated by some non-central χ2-distributed observations, where
the distributions have the same degrees of freedom. As shown in formula (4.4) the
expected value of the majority of observations is directly connected with the variance
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of the disturbance process. A robust estimator of the expected value of this distribu-
tion is also proportional to an estimator for the variance of the disturbance process
with known proportionality factor.
Since it is assumed that in a regression situation the error processes are independent
between experiments and identically distributed over all experiments, the following
procedure looks promising:

(1) Estimate the periodogram I[Gt(~xl)] for all input values xl , l ∈ 1, . . . , L

(2) Merge all I[Gt(~xl)](f) into one sample

(3) Calculate a robust estimator for the expected value of I[Gt(~xl)](f), e.g. the
standardized median medstand.(X) = 1

log(2)med(X) on the merged sample

Step 2 enlarges the database for the robust estimate, because it is assumed, that
the observations with different input values are independent and the realisations of
IGt(~xl)(f) for different Fourier frequencies are independent due to the orthogonality
relations of the Fourier transform. If K � n and K

n is lower than the breakdown
point of the robust estimator, which equals 1

2 for the standardized median (Gather
and Schultze, 1999), one gets an estimator – in the case of Gaussian white noise –
for 2σ2

ε .

4.2.3 Constructing Regression Estimates

Known Frequencies
If the relevant frequencies are known, it suffices to calculate the regressions on pe-
riodogram ordinates of the corresponding Fourier frequencies – if fk are Fourier fre-
quencies themselves only at those frequencies. If they are not Fourier frequencies,
then at the nearest Fourier frequencies.

Unknown Frequencies
If the relevant frequencies are not known, they have to be estimated. This can be
done by using the estimate of 2σ2

ε to test for significant frequencies in all time series
from the experiments and then selecting those frequencies present in all of them.
Although the large number of significance tests could lead to a loss of power of the
test it is not strictly necessary to correct for multiple tests because this is taken care
of by checking if the frequencies test significant in all experiments. In the simulations
described in Section 5.2, all really relevant frequencies are found in all the situations
considered.

Transforming Periodogram Ordinates
Given that the goal of the regression on periodogram ordinates is to estimate the
influences on the amplitudes, the observations have to be transformed in the following
way:

(1) substract 2nσ2
ε to eliminate the bias
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(2) divide periodogram ordinates by n

(3) take the square root of the periodogram ordinates

(4) repeat for all realisations of the influences ~x.

So the following estimator for gk(~x) is used:

ĝk(~x) =

√
I[Gt(~x)](fk)− 2nσ2

ε

n
,

Johnson et al. (1994) state several normal approximations of the non-central χ2-dis-
tribution. One of these is simply to take the square-root of non-central χ2-distributed
variable. All these approximations depend on the value of the non-centrality parame-
ter, which in this context depends on the value of the functions gk , k = 1, . . . ,K and
the number of observations. So there is theoretical reason to use a normal approxi-
mation in these models. The impact of this approximation is tested in the simulation
study in section 5.2.

4.3 Time-varying Amplitudes

In the deep-hole drilling process it is necessary to deal with time-varying amplitudes.
Here a helpful tool is the so-called spectrogram. The spectrogram is formed by
calculating periodograms from sequences of fixed length from the time series, and
then plotting them in a 2D-plot with time on the x-axis and frequencies on the y-axis
using colours to distinguish the heights of the periodogram ordinates. This kind of
data can be used to construct models to approximate time-dependent functions of
the amplitudes.
Now the model in time domain has the following structure:

Ht(~x) =
K∑
k=1

hk(~x, t) cos 2π(fkt+ ϕ) + εt, (4.15)

for t ∈ 0, . . . , n − 1 and K � n. The functions of the amplitudes of the relevant
frequencies are now time-dependent. Since only discrete time is considered, they are
defined by hk : Rd × N→ [0,∞). For hk only the existence of a Fourier-transform is
assumed.
The corresponding model in frequency domain is in terms of the complex Fourier-
transform:

F [Ht(~x)](f) =
{

F [ε](f) +Bf for f 6= fk, k = 1, . . . ,K
F [hk(~x, t) cos 2π(fkt+ ϕ)](f) + F [ε](f) for f = fk, k = 1, . . . ,K

,

(4.16)
where again Bf 6= 0 is only true for frequencies near to one of fk , k = 1, . . . ,K and
possible harmonics. Now the transform is not as simple as before and therefore more
assumptions about hk(~x, t) are needed to analyse ways to estimate them.
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4.3.1 Modelling Amplitudes of Fourier Frequencies

The periodogram is only able to estimate Fourier frequencies, so it is of interest to
know what happens when the relevant frequencies are Fourier frequencies. This turns
out to be especially easy, because the finite Fourier transform of hk – omitting the
factor introduced by the phase – is:

F [hk(~x, t) cos 2π(fkt)](f) =
1
n

n−1∑
t=0

hk(~x, t) cos 2π(fkt)e−i2πf

(∗)
=

1
2n

(
n−1∑
t=0

hk(~x, t)ei2π(fk−f)t +
n−1∑
t=0

hk(~x, t)e−i2π(fk+f)t

)

=
1

2n

n−1∑
t=0

hk(~x, t)(1 + e−i4πfkt) for f = fk

(∗) cos(2πfkt) =
1
2

(
ei2πfkt + e−i2πfkt

)
.

When all relevant frequencies are Fourier frequencies the important part of the peri-
odogram is greater than 1/2 and less than or equal to the mean of the values of hk
over the time points 0, . . . , n− 1 – or the chosen part of the time series:

1
2n

n−1∑
t=0

hk(~x, t)�
√
I[hk(~x, t) cos 2π(fkt)](fk)

n
≤ 1
n

n−1∑
t=0

hk(~x, t)

So using the periodogram to estimate the function of the amplitudes over time pos-
sibly underestimates the values of the function.

Linearity in Time
As usual in statistics linearity means here linearity in the parameters of the time
model, and not that time has a linear effect on the amplitudes. The linearity of the
Fourier transform preserves this kind of linearity, and thereby makes these functions
of the amplitudes tractable by regression methods.
First consider a simple linear time-trend:

hk(~x, t) = µ+ lk(~x) +
j∑
i=1

βkixit+ αkt.

If fk, k = 1, . . . ,K are Fourier frequencies, it is easy to calculate the Fourier trans-
form:

F [hk(~x, t)cos2π(fkt+ ϕ)](fk) = µ+ lk(~x) +
1
2

[
j∑
i=1

βkixi
n− 1

2
+ αk

n− 1
2

+
1
n

j∑
i=1

βkixi

(
n−1∑
t=0

te−i4πfkt

)
+
αk
n

n−1∑
t=0

te−i4πfkt

]
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Divide a time series of length N into chunks of equal length n, then for the mth chunk
n−1

2 in the formula is replaced by 2m+n−1
2 . So this means that a linear function in

the amplitude is transformed into a linear function over several periodograms.
When t is replaced by a function φ(t), the transform at the Fourier frequencies stays
a linear combination of the Fourier-transform of φ.

4.3.2 Non-Fourier Frequencies

When fk is a non-Fourier frequency the finite Fourier transform introduces additional
non-zero terms to the periodogram because it only considers Fourier frequencies.
This comes from the fact that ei2π(fk−f) is not only non-zero at the nearest Fourier
frequencies but also in a neighbourhood.

F [hk(~x) cos 2π(fkt)](f) =
1
n

n−1∑
t=0

hk(~x, t) cos 2π(fkt)e−i2πft

=
1

2n

n−1∑
t=0

hk(~x, t)
(
ei2π(fk−f)t + e−i2π(fk+f)t

)
Because of the term ei2π(fk−f)t + e−i2π(fk+f)t it is clear that a larger value of hk
influences the estimates of the amplitudes around fk in an exponentially decaying
way with growing distance to fk. This has to be taken into account when deciding
how many significant appearances of a frequency in an experiment are necessary to
make that frequency a relevant frequency.

4.3.3 Constructing Regression Estimates

Since the distribution of the spectrogram data with varying amplitudes is the same
as the distribution of the periodogram ordinates the same procedure as described
in Subsection 4.2.3 can be applied to this situation. The only difference is that the
time series of the amplitudes on the varying frequencies have to be extracted from
the spectrogram data. Then Repeated Measurement models have to be applied, if
fixed influences ~x are included in the model for the amplitudes. Otherwise, it is
possible to use the time t as single regressand. It is also necessary to check whether
the assumption of independence holds for the observations – at least conditionally
for the periodogram ordinate estimates on the same frequencies. If the recorded
time series are long enough it is of course possible to ensure the independence of
the single periodograms by leaving gaps between the parts of the series which are
used for the estimation of the periodograms. Otherwise, if the series are short or
such spacing is not feasible repeated measurement models allow for auto-correlation
in the observations if a sensible guess of the order of autocorrelation can be made.
Overlap of the parts on which the periodograms are calculated can be a remedy
for an insufficient resolution in the frequencies, e.g. a good guess of the relevant
frequencies exists and two of them fall between two Fourier frequencies when no
overlap is allowed. In this case auto-correlation has to be included in the model. For
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4 Models on Periodogram Ordinates for Harmonic Processes

the general estimation of repeated measurement models compare e.g. Lindsey (1993)
‘Models for repeated measurements’.
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5 Simulation Studies on Regression
Models on Periodogram Ordinates

All situations considered in Chapter 4 shall be assessed for their correctness and
practical usefulness by two extensive simulation studies. A general introduction to
the design of computer experiments, simulations, resp., is given. The actual design
considerations for selecting of input variables and their respective realisable values
are presented. Exemplary results of the studies are shown and discussed and the
chapter ends with a general assessment of the results of the studies.

5.1 Experimental Design and Simulation Studies

Simulation studies are the experiments of the statistician. So it is an obvious question
to ask, how statistical experimental design can be applied in the construction of
simulation studies. A similar but more detailed discussion of the topic can be found in
the book Santner et al. (2003): ‘The Design and Analysis of Computer Experiments’.

5.1.1 Design Considerations

The first step for experimental design is to define possible influencing variables on
some response. This may appear a difficult task for an arbitrary statistical problem
but typically there are natural choices for the response as well as for influencing
variables. Natural choices for the responses include:

– Bias of a point estimator

– Variance of an estimator

– Power of a test

– Fit of a model

– Predictive power of a model

All these possible responses are typically measured in numerical variables.
Natural candidates for influencing variables include:

– Number of observations

– ‘True’ distribution of random variables
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– Deviation from the proposed model – stochastic or deterministic

– Signal-to-Noise ratio

In many cases it can be difficult to make proper assumptions on the distribution of the
above-mentioned response variables. Therefore, only designs are of interest which do
not heavily depend on distribution assumptions when constructing simulation studies.
The next subsection deals with possible designs.

5.1.2 Designs for Simulation Studies

Factorial Designs
To use factorial designs for a simulation study a unimodal distribution of the response,
and independent observations have to be assumed so that the typical way of analysis
in the form of a linear regression makes sense. The latter assumption would seem
sensible in simulation studies, although pseudo random numbers are not independent
in a strict sense.
Factorial designs are the simplest orthogonal designs, and therefore ensure that the
estimated parameters of a chosen linear model are independent stochastic variables.
This independence and the comparability of the estimated parameters in a coded
model at least make it possible to state the ‘most influencing variables’, even if no
significance test is applicable.

Model-free or Exploratory Designs
As pointed out in Section 3.6 there are many situations in which factorial designs
are too restricted in the number of levels, and no model-oriented experimental design
is applicable because the form of the influence of the interesting parameters on the
response is not theoretically tractable. This is especially true in a statistical simula-
tion study when the impact of wrong assumptions on a procedure is to be tested. Or
another reason often met in simulations are diverse goals of a study which make a
common modelling impossible. So again the designs discussed in Section 3.6, such as
the random designs or the space-filling designs and especially the Coffeehouse design,
are appropriate designs when planning computer experiments. This is also discussed
in the book of Santner et al. (2003), Chapter 5.

Uniform information not always desirable?! – Transforming input variables

When considering the mentioned influencing variables it is obvious that for some of
these variables a uniform spread of experiments – whether random or systematic –
does not always make sense. For example the behaviour of a model fit close to a
signal-to-noise ratio of one is more interesting – i.e. the signal is harder to discern
from the noise – than with very large values of the signal-to-noise ratio. A uniform
distribution would therefore be more appropriate on a log scale than on a usual scale.
The necessity to transform some of the variables can be incorporated in the plan by
choosing the plan on [0, 1]p ⊂ Rp, where p is the number of influencing variables, and
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transforming each variable back into its appropriate scale. This approach makes it
possible to apply the projection optimal space-filling design to all situations if the
transformations are allowed not to be injective. For example the transformation could
be a step function, with k levels. With the projection optimal Coffeehouse-Design
this would lead to a uniform sampling of the k levels. To use the projection optimal
Coffeehouse-design is advantageous because it is computationally easier to construct
for higher dimensions.

5.2 Simulation Study on Linear Regression on Periodogram
Ordinates

The first study is designed to reveal the properties of a stationary influence of the
input variables on the relevant amplitudes. In this setting the question is answered
whether an assumption of normally distributed errors is sensible and thus a normal
distribution is implied for the estimated parameters of a linear regression. Further-
more, the proposed technique to estimate the error variance is tested, and the results
are used for the determination of the relevant frequencies. The corresponding pro-
grams are reproduced in the Appendix, Section C.2.

5.2.1 Design Considerations

Since the goals of this simulation study were wide spread and no clear idea of the
impact of the different influencing variables could be stated, a Coffeehouse design
was chosen for this simulation study.
When looking at the harmonic model with influenced amplitude, the following pa-
rameters determine this model:

– The functions gk, k = 1, . . . ,K

– The relevant frequencies fk, k = 1, . . . ,K

– The phases ϕk, k = 1, . . . ,K

– The error variance σ2
ε

The phases are of no interest for the models on periodogram ordinates. For the
models on periodogram ordinates the following properties are of interest:

– The length of the observed series n

– The number of relevant frequencies fk, k = 1, . . . ,K

– The distance δf of the relevant frequencies to each other

– Whether or not the frequencies are Fourier frequencies

– The functions gk, k = 1, . . . ,K
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– The error variance σ2
ε

The last two points are closely related, since they determine the signal-to-noise ratio
in this model. To keep things simple for the simulation the chosen functions gk, k =
1, . . . ,K, are all equal:

gk(~x) := 2 + 3x1 + 4x2 + 0.001x3

The parameters b1 = 2, b2 = 3, b3 = 4 were chosen arbitrarily in this way, b4 =
0.001 was chosen to test whether an unimportant influence on influenced but time-
stationary periodogram ordinates could be detected with this model .
All influencing variables x1, x2, x3 are set to levels 0 and 1 in a 23 full factorial
design. Then the smallest signal is reached for x1 = x2 = x3 = 0 and therefore the
signal-to-noise ratio SNR may be calculated by

SNR =
2
σε

(5.1)

For the lengths of the series powers of 2 are chosen to allow for very fast Fourier
transforms. The smallest number of observations is 64, the largest 4096, the lower
bound was chosen to investigate cases where the number of observations is a hard
bound for the experiments. The number of frequencies is varied between 1 and 5, the
distance of the frequencies between 1 and 10 Fourier frequencies. Those numbers are
chosen with respect to the chosen range of numbers of observations.
For the signal-to-noise ratio values between 1.11 and 101.11 are chosen. Setting
the lower bound of the SNR at 1.11 ensures that a signal is present although not
prominent in the series. The chosen transformation x3 ∗ 100 + 1.11 leads then to the
upper bound. This function ensures that more situations with a low signal-to-noise
ratio are investigated than those with a high signal-to-noise ratio because it is more
interesting to see if the method works even in those more difficult situations.
Whether or not the frequencies are Fourier frequencies is assured by always selecting
the Fourier frequency 5

n as first frequency and the next frequencies 5+δfk−1
n , and in

case the non-Fourier frequencies, adding 1√
2

in the numerator. The underlying design

is a Coffeehouse design constructed in a standard hypercube [0, 1]d from which all
variables are transformed to fit the requirements. The transformation functions are:

(1) For the number of frequencies: [10x] mod 5 + 1

(2) Fourier Frequencies yes/no: [x]√
2

(3) Distance of frequencies δf : [10x] mod 10 + 1

(4) Length of series: 2[10x] mod 7+6

(5) Signal-to-Noise ratio: x3 ∗ 100 + 1.11
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Here [x] denotes the function:

[x] = m for m− 0.5 ≤ x < m+ 0.5 , m ∈ Z

The complete experimental design is displayed in Table 5.1.

# freq. Fourier dist. freq. n SNR

1 1.00 0.00 1.00 512.00 101.11
2 1.00 0.71 1.00 64.00 1.11
3 1.00 0.00 6.00 2048.00 15.69
4 3.00 0.71 4.00 64.00 2.93
5 3.00 0.00 9.00 256.00 50.32
6 2.00 0.71 2.00 4096.00 72.74
7 5.00 0.71 10.00 128.00 1.23
8 2.00 0.71 10.00 256.00 1.23
9 5.00 0.00 10.00 256.00 1.23

10 5.00 0.00 8.00 128.00 1.23
11 5.00 0.71 10.00 256.00 33.14
12 2.00 0.00 8.00 256.00 1.23
13 2.00 0.00 5.00 128.00 1.23
14 2.00 0.71 5.00 256.00 33.14
15 5.00 0.71 5.00 128.00 33.14
16 4.00 0.71 5.00 128.00 1.23
17 2.00 0.71 10.00 128.00 33.14
18 2.00 0.00 10.00 256.00 33.14
19 5.00 0.00 10.00 128.00 33.14
20 4.00 0.00 7.00 128.00 33.14

Table 5.1: Experimental Design

For each experiment 100 data sets are simulated from the model and then evaluated
by the algorithm described in Chapter 4, as well for known frequencies as for unknown
frequencies.

5.2.2 Results

Known Frequencies
In the simulations it was found that in most cases the assumption of normal dis-
tribution of the regression parameters could not be rejected at a 5% niveau in a
Shapiro-Wilk test (Shapiro et al., 1968). Only 22 out of 368 estimated parameters
showed significantly non-normal behaviour in 100 repetitions according to this test.
Thus some non-normality was found in only 6% of the considered samples. At most
two regression parameters were found to be distributed non-normal. By checking the
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situations in which such rejections of the normality assumption appeared, no recog-
nizable pattern as to which parameter was affected could be found. Common to the
experiments with rejections of normality in some parameters were the small number
of observations, and several relevant frequencies and a low SNR.
The proposed estimator for the error variance turned out to be generally biased.
The bias is, as expected, dependent on the number of relevant frequencies and the
number of observations. It seems that the amount of leakage is higher than presumed,
even for only one relevant Fourier frequency σ2

ε is overestimated, as can be seen in
Figure 5.1.

Figure 5.1: Estimated σ2
ε and true value σ2 = 0.01625, depicted by vertical red line,

for experiment 3 from Table 5.1.

Looking at the estimated parameter values, it turned out that they are distributed
around half the set value which is correct because the used design leads to the esti-
mation of half-effects. Only a slight underestimation of the parameters is observable
which is most likely due to the overestimation of σ2

ε . As an example, Figure 5.2
shows the results from experiment 1 in Table 5.1 with only one relevant Fourier fre-
quency and the highest possible SNR. But at least the significance of the regression
parameters is not heavily influenced by this finding. In all situations the parameter
for variable x3 was found insignificant.
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Figure 5.2: Histograms of parameter estimates for the linear model.

Unknown Frequencies
Despite the overestimation of the error-variance, the determination of relevant fre-
quencies by using a significance test based on this estimate was found to be very
efficient. In all situations at least all relevant frequencies were found and the num-
ber of frequencies which were considered relevant additional the true frequencies was
low. So the over-estimation allowed only very strong leakage frequencies to appear
relevant.
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5.3 Simulation Study on Time-Varying Amplitudes

The goal of this simulation was to check how strongly typical properties of the data
with time-varying amplitudes affect the goodness of fit in a linear model and a non-
linear model. Furthermore, the method to detect relevant frequencies was evaluated
in the presence of slow change in the amplitudes. The corresponding programs are
reproduced in the Appendix in Section C.3.

5.3.1 Design Considerations

In this case the strength of the influences on the fit measured by the residual sum of
squares have been evaluated. Therefore a full factorial design was applied. Again the
influences of interest are the signal-to-noise ratio, the number of frequencies, number
of observations, Fourier or non-Fourier frequencies, and the distance between the
relevant frequencies. Additionally the effect of AR(1)-disturbances was checked.
For the influences the following values for treatment low, high, respectively were
chosen:

(1) Number of frequencies: 1 or 5

(2) Fourier Frequencies no/yes add 0 or 1√
2

in the calculation of the frequencies

(3) Distance of frequencies δf : 3 or 10

(4) Length of series: 2560 or 102400

(5) Signal-to-Noise ratio: 1.1 or 100

These choices were made to ensure comparability with the choices in the preceding
simulation. The calculation of the frequencies considered is again 5+δfk−1

n with, in
the case of non-Fourier frequencies, addition of 1√

2
in the numerator.

The following functions were chosen as ‘true’ models for the variation of the ampli-
tudes:

Rlin(t) = 2 + 0.001 ∗ t (5.2)

Rnonlin(t) = 2 +
2

(1 + exp
(
m−t
d

)
)

(5.3)

The parameters m, d in equation (5.3) are changed for each frequency if 5 frequencies
are included in the model. This is done in the following manner:

m = 5 ∗ l or mi = (2 + i) ∗ l and d = l or di =
l

i

where i = 1, . . . , 5. These different values for the parameters in the nonlinear function
were chosen to test whether differing functions on the frequencies can be found in
the data.
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The choice of these functions had two reasons: the first slow linear trend may be
useful as approximation for a slow nonlinear trend in the amplitude. Generally it
can be assumed that amplitudes have an upper bound because oscillating systems
break down when the amplitude becomes too large. This is one reason for the chosen
logistic function. The other reason is that we use a product of logistic functions in
Chapter 6 to describe the development of amplitudes in the BTA deep-hole drilling
process. The inclusion of a mean intercept of 2 in both cases is done to ensure a true
harmonic process right from the start of the observations.
For all settings 100 repetitions were evaluated. The function nls from R was used to
fit the nonlinear models. Since it is well known that nonlinear regressions tend to
fail with some starting values, ten randomly chosen starting values were tested and
the first successful set was used for the fit.
As experimental design we used a 27 full factorial design. So the number of rele-
vant frequencies changed for every experiment, the Fourier or non-Fourier property
changed every two experiments, the distance of the relevant frequencies every four ex-
periments, the number of observations every eight experiments, which model changed
every 16 experiments, the signal-to-noise ratio changed after 32 experiments, and fi-
nally the kind of disturbance splitted the design into the first 64 experiments with
AR(1) disturbance and the second half with normally distributed disturbances.

5.3.2 Results

First we checked whether the procedure to find the relevant frequencies was influenced
by the time varying amplitudes, or the AR(1) disturbances. Both influences did
not show an effect on the performance of the method in the sense that the correct
frequencies are always found. This becomes obvious from the histograms of the found
relevant frequencies in Figures 5.3 to 5.5. In these histograms of relevant frequencies
the bars are set to a width of 0.0025 which equals a number of two or three possible
frequencies in the case of 1024 observations per periodogram.

Figures 5.3 and 5.4 show the results on relevant frequencies for experiments with
the high level of observations, 10240, and high signal-to-noise ratio of 100 and five
non-Fourier frequencies with a distance of ten Fourier frequencies in the simulated
model that is, the true values of the frequencies are:

0.00557 0.0251 0.03487 0.04463 0.0544

The left hand side panels are from linear models, the right hand side panel from
nonlinear models. The difference between Figures 5.3 and 5.4 is the disturbance
term which is an AR(1) process in Figure 5.3 and a normal white noise process in
Figure 5.4. The graphics show no obvious difference for these four cases, and it is
the same for all other similar situations.
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Figure 5.3: There are only slight differences visible between the histograms of the
linear (Exp. 1) to the nonlinear (Exp.9) case in the found relevant fre-
quencies.

Figure 5.4: Compared to Figure 5.3 the differences are even less recognizable in the
histograms of the linear (Exp. 65) to the nonlinear (Exp. 73) case in the
found relevant frequencies with normal error.

Figure 5.5 gives an impression of the more difficult situation with only 2560 observa-
tions and AR(1) disturbances but Fourier frequencies. From these panels it is clear
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that at least the true frequencies are found by the method for the detection of rele-
vant frequencies. In this case the true frequencies are (the first frequency is the single
frequency from experiment 52):

0.0195 0.0977 0.1367 0.1758 0.2148

Figure 5.5: At least the true relevant frequencies in the case of Fourier frequencies
are found (linear Exp. 52, nonlinear Exp. 59).

The goodness of fit in the different settings was summarised by calculating the indi-
vidual residual sums of squares for all fitted models and calculating the mean of these
per setting. Then these results were split between the linear and the nonlinear model
and within these groups again in those cases with AR(1) disturbance and those with
normal disturbances. After this a linear model was fitted in the influences of the
design and their two-factor interactions on each of the groups.
The most important influences are the number of observations and the signal-to-noise
ratio, and their interaction in all four cases. We found the distance of the relevant
frequencies and the interaction of number of relevant frequencies with Fourier/non-
Fourier important only in the case of the nonlinear function of the amplitude and
AR(1) disturbances.
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Figure 5.6: Normal plots of the residuals from the regressions on the RSS for the
linear trend without and with AR(1) disturbance.

This result is not surprising as the signal-to-noise ratio should influence the residual
sums of squares and the number of observations determine the exactness of the found
relevant frequencies. Both influences have a decreasing effect on the residual sum of
squares, which is to be expected because a high signal-to-noise ratio and a large
number of observations should result in low residual sums of squares.

Figure 5.7: Normal plots of the residuals from the regressions on the RSS for the
nonlinear trend without and with AR(1) disturbance.

As in Section 5.2 the normality approximation proposed in Chapter 4 was checked for
appropriateness. As before we applied a Shapiro-Wilk test to test this assumption.
First we checked whether the observations were normally distributed. To achieve this
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goal for each true relevant frequency and each of the ten observations the 100 repeti-
tions were collected and tested for normality on a 5%−niveau. The Shapiro-Wilk test
rejected the hypotheses for the case of the linear influences only in 4.86% of a total
of 2880 tested cases. With 5.82% in 2680 tested cases this value was slightly higher
for the case of the nonlinear influence on the amplitudes. The differing number of
observations is due to the fact that in two experiments with a 2560 observations, five
non-Fourier frequencies and normal disturbances the lower neighbouring frequency
was not detected as relevant in a small number of repetitions and therefore no general
comparisons were possible.
In both cases – linear and nonlinear influences – exists a difference with respect to
the kind of disturbance term. The number of rejections of normality of the obser-
vations for the normal disturbances is slightly higher than with AR(1) disturbances
(linear case: 5.21% vs. 4.51% of 1440 observations; nonlinear case: 6.04% of 1240
observations vs. 5.63% of 1440 observations). This was expected by the theoretical
model because the goodness of the approximation is influenced by the number of
stochastic components, i.e. the order of the disturbance process and the value of the
non-centrality parameter.
Since the percentage of rejections is slightly higher than the chosen niveau of the test
we investigated, whether there was a clear and assignable pattern to the rejections.
One such pattern could have been a higher number of rejections on the first three
or four observations in the simulated data sets due to the smaller non-centrality
parameter, but no such pattern was found. A hint of a pattern appeared in the
nonlinear case for the second to fifth observation in the simulated data sets, where
more rejections occurred but the difference was only slight compared to the other
observations.
The distribution of the parameter estimates was also investigated. In the linear case
the parameters displayed an even greater degree of normality. The Shapiro-Wilk test
rejected only in 3.47% of the situations.
In the nonlinear case it cannot be expected to find normality in the parameters. It is
hard to define a distribution for the parameters in nonlinear regression, only when a
linear approximation approach is chosen as fitting procedure normality is expected.
Since this was not the case here, no further investigation was pursued. Ratkowsky
(1990) remarks on page 20 in his ‘Handbook of Nonlinear Regression Models’:

‘. . . The [nonlinear] estimators achieve this property [unbiased, normally distributed,
minimum variance] only approximately, that is, as the sample sizes approach infinity.
Some nonlinear regression models have estimators that are badly biased with a highly
asymmetric long-tailed nonnormal distribution.[. . . ]’

Figures 5.8 to 5.10 give an insight into the goodness of the fits of the functions on the
truely relevant frequencies. In all cases it is obvious that the observations lie below
the values of the true functions and therefore the fitted functions underestimate the
true values as well.
Figure 5.8 compares the effects of the different disturbances and the effect of Fourier
or non-Fourier frequency in the linear case. The figures are very similar with respect
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to the apparent goodness of fit and the general behaviour of the fitted functions. The
case of the non-Fourier frequency on the right hand side gives the impression that
the underestimation may be cured by summing over neighbouring frequencies in an
appropriate way. This is emphasized by the dotted blue line which is the sum of the
fitted values.

Figure 5.8: Fitted function on varying amplitudes in the linear case, on the left-hand
side with AR(1) disturbances on a Fourier frequency; on the right-hand
side with normal disturbances and originally on a non-Fourier frequency,
therefore two lines on the neighbouring Fourier frequencies.

Figure 5.9: Fitted functions on varying amplitudes in the nonlinear case, on the left
hand side on Fourier frequencies, with 256 observations per periodogram;
on the right hand side on non-Fourier frequencies and with 1024 observa-
tions per periodogram estimation; normal disturbances.
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Figure 5.9 underlines the last impression as well. Furthermore, it is obvious that the
general form of the influences on the amplitudes is found even if they are different for
the different frequencies. This is also not influenced by the number of observations
or the kind of disturbances.

Figure 5.10: Fitted functions on varying amplitudes, on the left-hand side linear case
with five frequencies, normal disturbances; on the right-hand side non-
linear case, AR(1) disturbances; signal-to-noise ratio= 1.11 and Fourier
frequencies in both cases.

Figure 5.11: Residual plot and Normal plot for the regression on the difference of the
estimated to the true σ.

Figure 5.10 shows that everything said before is also true for the more difficult cases
with low signal-to-noise ratio.
The last thing investigated in this study was the effect of the varying amplitudes
on the performance of the variance estimator proposed in Chapter 4. Compared
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to the results from the simulation with fixed amplitutes in Section 5.2 slightly less
overestimation of the true standard deviation σ occured. This can be seen from
the residuals versus fitted in Figure 5.11 since the regression was performed for the
difference σ̂ − σ.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1506 0.0005 299.87 0.0000

nrelfreq 0.0065 0.0005 13.02 0.0000
fourier 0.0001 0.0005 0.11 0.9125

distfreqs 0.0040 0.0005 7.98 0.0000
model 0.0004 0.0005 0.77 0.4409
rate −0.0278 0.0005 −55.41 0.0000

StoN −0.1164 0.0005 −231.87 0.0000
AR −0.0079 0.0005 −15.73 0.0000

nrelfreq:fourier 0.0002 0.0005 0.30 0.7627
nrelfreq:distfreqs 0.0040 0.0005 7.97 0.0000

nrelfreq:model 0.0003 0.0005 0.58 0.5658
nrelfreq:rate −0.0054 0.0005 −10.73 0.0000

nrelfreq:StoN −0.0006 0.0005 −1.10 0.2752
nrelfreq:AR 0.0001 0.0005 0.19 0.8484

fourier:distfreqs 0.0001 0.0005 0.20 0.8397
fourier:model −0.0000 0.0005 −0.06 0.9540

fourier:rate −0.0001 0.0005 −0.17 0.8664
fourier:StoN 0.0010 0.0005 1.95 0.0536

fourier:AR −0.0000 0.0005 −0.09 0.9260
distfreqs:model 0.0003 0.0005 0.53 0.5957

distfreqs:rate −0.0035 0.0005 −6.90 0.0000
distfreqs:StoN 0.0012 0.0005 2.48 0.0148

distfreqs:AR 0.0002 0.0005 0.47 0.6393
model:rate −0.0002 0.0005 −0.44 0.6639

model:StoN −0.0001 0.0005 −0.10 0.9189
model:AR −0.0000 0.0005 −0.02 0.9862

rate:StoN 0.0173 0.0005 34.48 0.0000
rate:AR 0.0014 0.0005 2.79 0.0063

StoN:AR 0.0065 0.0005 13.01 0.0000

Table 5.2: Regression on differences of the estimated from the true σ (σ̂−σ), R2
adj =

0.9978.

The two most important influences are the signal-to-noise ratio followed by the num-
ber of observations (rate) which influence the distance to the true σ negatively. This
means that a high signal-to-noise ratio also leads to better estimates of the standard
deviation of the disturbance term. Of course a higher number of observations leads
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to a better estimation since then there are more observations following the distribu-
tion of the Fourier transformation of the AR(1) or white noise normally distributed
disturbances.

5.4 Summary and Conclusions from the Simulations

In general the simulations in Sections 5.2 and 5.3 supported the theoretical results
from Chapter 4. In both simulations the method for the estimation of the error vari-
ance in harmonic processes was found to be biased towards a general overestimation
of the true values. However this did not influence the method proposed for the de-
termination of the relevant frequencies since in all cases at least the true frequencies
were found by the method. It may have influenced the parameter estimates for the
functions on the amplitudes but this cannot be said for certain. This is because
the theoretical observations give a hint that the leakage effect may weigh down the
periodogram ordinates.
In both simulations the general form of the influences on the amplitudes could be
rediscovered by the regressions. It was proved in Section 5.2 that the importance of
the influencing variables is preserved. In Section 5.3 it was proved that the general
form is also preserved and differing functions on amplitudes for different frequencies
can be found as well. The observations at the end of Section 5.3 suggest that un-
derestimation might be avoided by appropriately summarising the observations near
the highest relevant frequencies with a weighted sum which would even improve the
normality approximation further.
Furthermore, it was shown that the normality approximation for the distribution
of the periodogram ordinates is already valid for small values of the non-centrality
parameter. This makes it possible to generally assume normality when investigating
varying amplitudes on a few relevant frequencies. The investigation into the autore-
gressive disturbance in Section 5.3 showed an even better approximation to normality
as expected by the theoretical discussion in Chapter 4.
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6 Modelling the Drilling Torque by
Models with Varying Amplitudes

Now that the statistical properties of models on periodogram ordinates have been
established in Chapter 4, and verified under a variety of situations in simulation
studies in Chapter 5, this chapter is dedicated to the application of these models
to the data from the deep-hole drilling process. First some more results from the
exploration of the data on the drilling torque will be presented. The model building
process is described on the basis of these results, and finally the results will be
presented and discussed.

6.1 Features of the Development of Amplitudes of the
Drilling Torque over Time

First the method to determine the relevant frequencies was applied to the time series
of the drilling torque. So periodograms on sequences of 4096 observations were calcu-
lated. For each sequence the significant frequencies were determined by standardizing
the data in the usual way, (i.e. substracting the mean and division by the standard
deviation), and then testing against the 95% quantile of the standard exponential
distribution. This was done so that the outcome would correspond with the results
from Section 2.2.2. Then the frequencies that test significant in this procedure for
more than 10 observations per experiment and more than 6 experiments were defined
as relevant. That ensured the inclusion of all frequencies found in at least one third
of the experiments. These frequencies in Hertz are given in Table 6.1.

4.88 195.31 200.20 205.08 209.96 214.84 219.73 224.61
229.49 234.37 239.26 244.14 249.02 253.91 258.79 263.67
268.55 468.75 664.06 668.95 673.83 678.71 683.59 688.48
693.36 698.24 703.12 708.01 712.89 717.77 722.66 727.54
732.42 737.30 742.18 1142.58 1147.46 1152.34 1157.23 1162.11
1166.99 1171.87 1176.76 1181.64 1186.52 1191.41 1196.29 1201.17
1206.05 1210.94 1215.82 1220.70 1640.62 1645.51 1650.39 2109.37
2114.26 2119.14

Table 6.1: Relevant frequencies found by the first method from Chapter 2.
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When compared with the results from the procedure described in Chapter 4 we found
that the results from the procedure from Chapter 4 included most of the frequencies
form the above procedure as well. The procedure from Chapter 4 has the clear
advantage that it tests against the correct distribution for the periodogram ordinates
and estimates the parameters of the distribution from the raw data. In contrast the
above procedure standardizes the time series first, then uses the Fourier-transform
and finally tests against a distribution that should be true for the Fourier-transform
of the standardised data. But also it has to be noted that the results from Section 5.3
show that the variance is in general slightly overestimated. Nevertheless, much harder
conditions can be applied in this procedure to make a frequency relevant because
if the same conditions as above are used with only 10 significant observations per
experiment in 6 experiments then 1687 frequencies are found relevant.
Therefore, we decided to demand for more than 1000 significant observations (corre-
sponding to more than one half of the observations in most of the experiments), in
more than 18 experiments and got 67 relevant frequencies. So we got the frequencies
reported in Table 6.2.

4.88 9.76 14.65 19.53 24.41 29.30 34.18 39.06
43.95 48.83 53.71 58.59 63.48 78.13 87.89 234.38
239.26 249.02 253.91 673.83 678.71 683.59 688.48 693.36
698.24 703.13 708.01 712.89 717.77 722.66 727.54 732.42
737.30 742.19 1147.46 1152.34 1166.99 1171.88 1176.76 1181.64
1186.52 1191.41 1196.29 1201.17 1206.05 1450.19 1748.05 1752.93
1850.59 2148.44 2451.17 3251.95 3281.25 3286.13 3349.61 3549.80
3647.46 3652.34 3950.20 4150.39 5048.83 5351.56 5449.22 5649.41
6562.50 6567.38 6850.59

Table 6.2: Relevant frequencies found with the new method described in Chapter 4.

Comparing the two lists of relevant frequencies it is obvious that more low and high
frequencies are present in the second list than in the first. Since the two procedures
agree on the most prominent frequency bands near 234Hz, 703Hz and 1200Hz, we
keep on reporting the results on the frequencies from the first procedure to maintain
the comparability with the results in Chapter 2, highlighting those frequencies found
by both procedures.
When looking at the plots over time for various experiments we find that all these
developments over time exhibit a common behaviour:

While the guiding pads are still in the starting bush none of the frequencies are
significant, because the amplitudes are constraint by the fact that vibrations of the
tool are strongly damped by the starting bush supporting the guiding pads. When
the guiding pads leave the starting bush there is always an increase in all relevant
amplitudes caused by the tool being freed. In most frequencies this increase is then
immediately dampened again, forming a peak in the beginning and then declining
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again. Under some experimental conditions certain frequencies increase very quickly
which leads to chatter right after the start of the process. This chatter continues
for some time until another frequency exceeds a certain threshold and dominates the
process. The first chatter mostly occurs near 1200Hz but sometimes also near 234Hz
while the second chatter can be near 234Hz or 703Hz. A stable chatter over the
complete process is only observed when all relevant frequencies emerge directly after
the guiding pads have left the starting bush.

Figure 6.1: The development of the amplitudes on the first 35mm from Figure 2.13.

For a better impression of this behaviour consider again Figures 2.13 and 2.14, where
the described behaviour can be seen. To get a more detailed insight Figures 6.1
and 6.2 show the first 35mm of these experiments. It is clear that the chatter right
after the guiding pads leave the starting bush develops very quickly in one of the
frequencies near 1200Hz. Yet in all frequencies a peak in the amplitude can be
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observed at this point, independent of chatter occurrence. Two different behaviour
patterns are observed after the first jump. If the jump turns out to be just a peak, it
is followed by a slow descent. If the jump leads into chatter, the amplitude rises to
a certain level and fluctuates around this level. When the chatter shifts to another
frequency the amplitude drops but not necessarily to the level produced by the noise
in the process, i.e. the frequency is still present but at a lower level. This behaviour
can be observed in all relevant frequencies whenever there is a shift in the chattering
frequency.

Figure 6.2: The development of the amplitudes on the first 35mm from Figure 2.14.

Chatter around 1200Hz was only observed directly after the guiding pads left the
starting bush in our experiments. Only the frequencies near 1200Hz and higher
frequencies are influenced significantly. The amplitudes have a high variance
for this kind of chatter.
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Chatter around 234Hz was observed at different stages of the process. In some
cases it developed after the high-frequency chatter while in others it developed
at different times from the stable process. In one case it also developed straight
after the guiding pads left the starting bush. All other relevant frequencies are
significant in this kind of chatter but with lower amplitudes.

Chatter around 703Hz develops at later stages of the process. If other kinds of
chatter are present in the experiments then chatter around 703Hz always fol-
lows high-frequency chatter or low-frequency chatter and dominates the process
completely.

One interesting question concerning the behaviour of the amplitudes on the relevant
frequencies was whether there were features which are influenced by the machine
parameters. The maximal value of the amplitudes was an obvious choice because it
is bounded by the constant damping factor of the tool/workpiece assembly and the
amount of energy introduced into the system by feed, cutting speed and the flow rate
of the oil.
So for each experiment and each relevant frequency the maximal value was deter-
mined. The maximal values for each frequency were regressed on the three machine
parameters used in the experimental design (cf. Section 2.1). For each frequency the
best fitting model was searched for by stepwise regression based on AIC (cf. Sub-
section 2.2.1). The quadratic model with all interactions up to the three factor
interaction was used as starting point. In Tables 6.3, and 6.4 the chosen parameters
are reported and marked by ‘+’ and if they are significant by ‘X’. What is of note
about these models is that the three main interesting frequency bands are each domi-
nated each by a different group of machine parameters. For the low frequency chatter
around 240Hz these parameters are the feed f and the flow rate of the oil V̇ which
are significant in most of the models in which they are present (13 of 18, and 13 of 16,
resp.). The feed f arises also as a quadratic term in some models. In this frequency
band the cutting speed vc arises in the interaction f : vc and as the quadratic term
v2
c in a significant way (4 of 16).

For the chatter around 703Hz the most dominant parameters are the feed f , the cut-
ting speed vc and their interaction f : vc. The most frequently significant quadratic
term is the feed (5 of 6). The flow rate of the oil is only present in 8 of 16 models
and only significant in two of them.
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Hz µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

5 . + . . + + X + + . . 0.375
195 X . . . X + X + + . . 0.409
200 X . . . X + X + + . . 0.371
205 X . . . X + X + + . . 0.346
210 X . . . X + X + + . . 0.307
215 . + . . + + + + + . . 0.265
220 . + + . + + + + + . . 0.201
225 . X X . X X . . . . . 0.134
229 X X X . + X + X + . . 0.644
234 X . . . X + X + + . . 0.341
239 X . . + X + X X + . . 0.464
244 X . . . X + X X + . . 0.452
249 X . . . X + X X + . . 0.411
254 X . . . X + X + + . . 0.369
259 X . . . X + X + + . . 0.334
264 . + . . + + X + + . . 0.318
269 . + + . + + + + + . . 0.232
469 . . . . + + + + . . . 0.133
664 X . . . X X . X . . . 0.302
669 X . . . X X . X . . . 0.277
674 . . . . X X . X . . . 0.216
679 X . . . + X + X . + . 0.164
684 . . . . . . . . . . . #
688 . . . . . . . . . . . #
693 X + . . X X X X X X X 0.226
698 X X . . X X X X X X X 0.717
703 . . . . + X . X . . . 0.239
708 . X X . X X . . . . . 0.473
713 . X X . + X . X . . . 0.436
718 . . . . X X . X . . . 0.306
723 . . . . + X . X . . . 0.251
728 X . . . + X + X . + . 0.203
732 . . . . . . . . . . . #
737 . . . . . . . . . . . #
742 . . . . . . . . . . . #

Table 6.3: Results of the stepwise regressions on the maximal amplitudes per relevant
frequency in the lower frequency bands. ‘+’ means chosen for the model,
but not significant at a 10% level, ‘X’ means significant influence.

In the models for the frequency band around 1200Hz the clearly dominating machine
parameter is the cutting speed vc, which is present in all models and in some ad-
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ditionally as a quadratic term. The flow rate of the oil V̇ is the second interesting
parameter in this frequency band with 6 selections in the 16 models.
Finally the frequencies near 1650Hz display a clear common behaviour with V̇ 2 , all
main effects and interaction f : vc present in all models. All frequency bands not
mentioned do not display a clear pattern.

Hz µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

1143 X . . . . X . . . . . 0.403
1147 X . . . . X . . . . . 0.348
1152 . . . . . X . . . . . 0.246
1157 . . . . . X . . . . . 0.158
1162 . . . . . . . . . . . #
1167 . . . . . . . . . . . #
1172 . + . . + + . + . . . 0.258
1177 . . X + + X + . . . . 0.448
1182 . . + + . X + . . . . 0.304
1187 . . . + . X + . . . . 0.342
1191 X . . . . X . . . . . 0.34
1196 X . . . . X . . . . . 0.336
1201 X . . . . X . . . . . 0.269
1206 . . . . . X . . . . . 0.165
1211 X . + . . X . . . . . 0.184
1216 . . X X + + X + . . . 0.5
1221 . . + X + + X X . . . 0.51
1641 . . . . . . . . . . . #
1646 . . + + + + + X . . . 0.399
1650 X . . X X X X X . . . 0.637
2109 . . . . + X X . . X . 0.109
2114 . . X . + + . + . . . 0.447
2119 X . . + X X + X . . . 0.534

Table 6.4: Results of the stepwise regressions on the maximal amplitudes per relevant
frequency in the higher frequency bands. ‘+’ means chosen for the model,
but not significant at a 10% level, ‘X’ means significant influence.

The next feature that was checked for correlations with the machine parameters was
the depth of the jumps of the amplitudes at the start of the chatter. Since the
chatter appeared at significantly different positions in the eight repetitions of the
centre point (including observation 21a) no general connection was determined. We
therefore investigated whether a change in the behaviour of the system is more likely
at certain depths than at others. Of course the end of the starting phase was already
established and well accounted for.
The bar plot in Figure 6.3 shows per bar the number of relevant frequencies, which
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had a high jump within the segment of 5mm corresponding to the bar. ‘High’ jumps
are defined here by the first differences of the amplitudes being lower/higher than the
5%/95% empirical quantiles of the first differences (cf. program code in Section B.2).

Figure 6.3: Number of frequencies with a jump in the amplitude within segments of
5mm.

The vertical lines at depths 35mm, 110mm, 140mm and 245mm indicate the most
prominent jumps apart from those at the end of the process. The jumps at the
end of the process are not counted in Figure 6.3 because they were significant in
nearly all frequencies in all experiments and therfore made it impossible to properly
see the structure of the other counts. It could be argued that there are other bars
which are only slightly below the horizontal red line at 110 counts, like 50/55mm,
85mm, 295mm, 325 and 385mm. The cut-off point of 110 counts was chosen in order
to restrict the number of vertical lines and thereby keep the structure of the plot
visible.
It is interesting that the highest bar in the plot is at 110mm and not at 30/35mm
depth. There appears to be a connection between this position and the machine
assembly in that it is approximately the position where the tool enters the bore hole
completely. This might lead to changes in the dynamic process because the boring
bar is slightly thinner than the tool and therefore the pressures in the hole may
change.
In several experiments (experiments 6,10, 12 and 17) a very slow oscillation could be
observed in important chatter frequencies. Figure 6.4 shows the two most important
chatter frequencies of experiment 6.
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Figure 6.4: Amplitudes of frequencies 703Hz and 1188Hz from experiment 6 display-
ing a slow oscillation.

6.2 Model Building

It is assumed that the error process in the data of the drilling torque is a Gaussian
process. Moreover it is assumed to be white noise. These assumptions are based on
the fact that before the start of the drilling process the signal is fluctuating around 0.
In the case of white noise we can apply the results from Chapter 4 and thereby know
that there are two possible assumptions for the random part of the model: either
one uses generalized regression models with a gamma distribution, or one uses the
normal approximation and standard regression. In the simulations in Chapter 5 it
was established that the normal approximations fit well. For this reason only the
models using these approximations will be considered here.
To establish common models for all tested machine parameters a common ‘time’ axis
needs to be defined. When time in seconds is used, different lengths of experiments
are obtained, and the time point is of no meaning in a technological sense. Therefore,
the depth of the hole was chosen as a common ‘time’-axis for all experiments. This
can be interpreted technologically because different depths can be related to changing
physical conditions in the process (i.e. guiding pads leave the starting bush, the tool
is completely in the hole).
Next, the functional form of the mean has to be tackled. It has to be flexible enough
to be able to approximate all observed behaviours of the process. Furthermore it
must be easy to parameterize with a small number of parameters to keep complexity
low and avoid over-fitting. Two different important behaviours were observed. On
the one hand the fast jump to a maximal value and then decline back to the start
level in a similarly steep descent, on the other hand a smaller peak and then a slow
descent to the start level. When searching for a smooth function which allows for
both behaviours, the use of a three parametric logistic function suggested itself. This
would allow for the steep rise, and when multiplied with a two parametric logistic
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function on −t, would allow for the descending behaviour.
So the basic functional form for the model is the following:

h(t; a, ~m, ~d) =
a

1 + exp
(
−t+m1
d1

)
+ exp

(
t−m2
d2

)
+ exp

(
− (d2−d1)t+d1m2−d2m1

d1d2

) (6.1)

The following Figure 6.5 shows two parameter settings for this function, which exhibit
the desired behaviour.

Figure 6.5: h(t; a, ~m, ~d) for a = 1, m1 = 10, m2 = 40, and d1 = 2 = d2 on the left-
hand side, and m1,2 = 10 and d1 = 2 and d2 = 1000 on the right-hand
side.

The several changes in the chatter frequencies observed in some experiments should
be incorporated by summing up various functions of this form. So the complete
model to be fitted to the periodogram ordinates reads:

Hk(t;~a, ~m, ~d) =
µA,k , for t < 30mm

µk +
J∑
j=1

aj,k(
1 + exp

(
−t+m1j,k

d1,j,k

))(
1 + exp

(
t−m2,j,k

d2,j,k

)) , else. (ii)

This function was fitted to each relevant frequency for each experiment. Because of
the different dynamic behaviour observed it was not possible to fit a common model
per frequency for all experiments including the machine parameters.

6.2.1 Fitting the Model

To fit the proposed model on each frequency per experiment the number of basic
functions to describe the development of the amplitudes has to be established first.
The number of basic functions should be as small as possible but as large as necessary.
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The first step to achieving this goal is to find the jumps in the data. This is done by
first calculating the means on 5mm sections of the time series, then calculating first
differences of these means, and the empirical 5% and 95% quantiles. The position
of the observations above or below these quantiles are then determined. So at most
five jumps in each direction are included in this first step. Short peaks are not taken
into account and a longer ascent or descent is modelled in one function. This is
further supported by checking for consecutive observations in the jumps and if they
are pointing in the same direction, they are merged into one jump. Narrow peaks
are eliminated completely. One basic function was provided for each of these jumps
except for those right at the end of the series.
After establishing the positions of jumps as starting values for m1,m2, their height to
length ratio as starting value for the steepness parameters d1, d2 had to be quantified.
For this the first difference divided by 5 was used if no merge had taken place. If
a merge had occurred, the first differences were totalled up. The number of parts
merged was multiplied by 5. The sum of the differences was then divided by the
result of the multiplication. In many cases the starting values found by this method
were astonishingly good, as can be seen from Figure 6.6.

(a) (b)

Figure 6.6: (a) Basic functions with start values (b) fitted by nonlinear regression
with main jumps only

Since the positions of the jumps were determined at sections of 5mm or more, the
starting point and end point of the jump were defined by this section. These points
were used to define the part of the series on which the actual basic function was to be
fitted to the data. For the first jump all the data up to the start of the second jump is
used if the latter is upwards, if the second jump is downwards the endpoint is included.
The rest of the time series is set to 0. After successfully fitting a basic function, the
fitted values of this function are added to the already fitted values (starting from 0)
and subtracted from the residuals (starting with the observed series).
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Nonlinear regression had problems with the extreme values of the steepness param-
eters d1, d2 because these often led to singular gradients in parameters. To resolve
this problem two approaches were implemented and then combined. The first ap-
proach was to relax tolerance of the comparison between numerical imprecision and
the residual sum of squares varying from 10−3 to 1. The second consisted of testing
several starting values for the steepness parameters. These values included the recip-
rocal of the determined starting value, ten times this value, the starting value itself
and 10 uniformly distributed random values between the smallest and the largest of
the named values. These two approaches were combined by first testing the different
starting values, then changing the tolerance and again testing the starting values.
Figure 6.6 displays the result of the algorithm described so far.
From Figure 6.6 one drawback of the described method is obvious: smaller steps in
the development of the amplitudes are not explained. It was tested whether a larger
quantile of jumps would help to explain these smaller steps, but this was not the
case. So after the first fit of basic functions the remaining residuals were checked for
larger parts of non-zero means. In these parts basic functions were again fitted. This
procedure was applied at most three times or until no larger portion of the residuals
with mean greater than zero was left. The portion had to be larger than 2% of the
data or 10mm depth in this case.

Figure 6.7: Final fit of the example from Figure 6.6

A second problem was that sometimes two or more basic functions were fitted to
a section of the series where by inspection one should have sufficed. This was due
to the empirical quantiles always forcing at least ten observations to be of interest.
We therefore checked at each jump detected by the first method if the means on the
actual section and the next were sufficiently different to need more than one basic
function. Then we checked whether the difference between the means on the sections
was lower than the jump found by the described method. If this was the case the
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next section was added to the current data to be fitted and the check was repeated
on the next section between jumps.
The result with the complete procedure for the example from Figure 6.6 can be seen
in Figure 6.7. The commented code for the fitting procedure can be found in the
Appendix in Section B.3.

6.3 Results from the Fits

6.3.1 Some Views of Fits

In general the fitting procedure worked very well, as can be seen from Figure 6.7 and
Figure 6.8. In the latter figure it is obvious that the two forms of the development
of the amplitudes can be fitted quite well.

Figure 6.8: Fit on the Amplitudes for Experiment 10, frequency 708Hz, displaying
the jump and the a plateau, and for Experiment 5, frequency 1188Hz,
displaying two peaks followed by slow descent.

But the model is even flexible enough to approximate more complicated forms, like the
two plots in Figure 6.9. On closer examination of these plots it is obvious that some
features can only be explained by fitting additional basic functions. For example
the ‘hill’ in the amplitude for 2109Hz on the depths 300-500mm is impossible to
describe with just one of the basic functions. It is well approximated however using
two functions.
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Figure 6.9: Two complicated developments of the amplitudes from Experiment 12.

It has to be said however that the procedure was not completely fail-safe. Consider
Figure 6.10 for example. Since in some situations the tolerance level had to be
relaxed considerably to get any result at all, in a few cases the results were totally
unsatisfactory. In Figure 6.10 the panel on the left-hand side displays the first result
(which is far off the mark) from the fitting procedure. The final result, which is used
in the following analysis, is shown in the right-hand panel. This result was gained
by simply reusing the fitting procedure several times on this data.

Figure 6.10: Failed and successful fit on frequency 200Hz in Experiment 1.

General failure even after several applications of the fitting procedure was only ob-
served for series of amplitudes which had no obvious development – only two of the
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1276 series. In the first automatic run 24 series turned out to be difficult to fit, but in
12 cases this could be cured by reusing the fitting procedure. The remaining 12 series
were only partially fitted, typically only one insufficient basic function was fitted.
Fits where the maximal parameter was not changed in the optimisation constituted
another persisting problem of the fitting procedure. This only happened for the later
fitted lower parts of the developments, as can be seen from Figure 6.11. Since this
occurred in 90 of the fits which was only a small fraction of the series, and only for
the parts of lesser importance a further improvement was not sought.

Figure 6.11: Series of amplitudes where the lower parts are overestimated by the
fitting procedure.

6.3.2 Summarising Results

Numbers of Basic Functions
Before analysing the fits we had expected that the number of basic functions needed
to describe the development of the different amplitudes would somehow be connected
to the number of chatter states in the experiment. This was not the case, however.
The differences when comparing the results from e.g. experiment 21a (which showed
only a short period of chatter at the end) with those of experiment 1 (which had three
different chatter phases) were negligible. For experiment 1 it took 13 basic function
in median to approximate the behaviour of the amplitudes, while for experiment 21a
10 were needed. No obvious structure was found in the necessary number of basic
functions, so it will not be discussed any further. The complete tables can be found
in the Appendix, Chapter A.

Parameters m1 and m2 of the Basic Functions
The parameters m1 and m2 in the basis functions mark the two turning points of this
function. In the fits they give the positions of steep rise or steep fall, respectively. So
the histograms in Figure 6.12 give the number of amplitudes for the relevant frequen-
cies which had a realisation of m1 or m2, respectively, within the section. Realisations
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of m1 or m2 outside 0-500mm range have been cut because they cannot be interpreted
sensibly. Furthermore, they are mainly due to basic functions corresponding to very
low shifts in the amplitude.

(a) (b)

Figure 6.12: Number of fits of basic functions with a realisation of m1 on the left-hand
side, and m2 on the right-hand side, within segments of 5mm.

In Figure 6.12 (a) the depth of 35mm has become as important as expected, compared
to Figure 6.3. The 110mm depth is still one of the highest bars, while 140mm and
250mm do not stand out any more. The same is true for all other afore-mentioned
depths. So upward jumps only happen more often near 0mm, 35mm, 110mm and
interestingly near 485mm depth.
In Figure 6.12 (b) it is obvious that the downward jumps are slightly more fuzzy than
the upward jumps because there are two types: the slow descent from a peak, and
the steep fall from a plateau. Here a possible explanation for the order of the counts
in Figure 6.3 can be found: depth 35mm is only important for the rise, but depth
110mm is important for rise and descent. In Histogram 6.12 (b) all other peaks from
Figure 6.3 are present which are not present in Figure 6.12 (a).

Machine Parameters and Parameters a, d1 and d2

One of the goals of analysing the development of the amplitudes over time was to
find possible connections to the machine parameters. Since each experiment had its
own specific number of chatter phases and even within the experiments the number of
basic functions per frequency was not constant, the parameters of basic functions with
maximal upper value a were investigated for connections to the machine parameters.
In some basic functions m1 and m2 switched positions, i.e. a no longer reflects the
maximal value of the fitted values. So only those basic functions, for which m1 <
m2− 5mm was true, were considered in this analysis. The maximal parameter a was
expected to display a similar behaviour as the maximal amplitude in Tables 6.3 to 6.4.
This is indeed the case when the general selection of the variables is compared. For
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the lower frequencies near 234Hz it is obvious from Table 6.5 that instead of the
feed f and the flow rate of the oil, the cutting speed vc is now the most significant
influence.

µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

5 X . . . + X + . X . . 0.385
195 X . . . + X + + + . . 0.39
200 X . . . + X + + + . . 0.366
205 X . . . + X + + + . . 0.348
210 X + . . + X + + + . . 0.316
215 X + . . + X + + + . . 0.252
220 X + + . + + + + + . . 0.149
225 X X X . . . . . . . . 0.169
229 X X X . + + + X . . . 0.53
234 X . . . + X + + + . . 0.334
239 X . . . X X + + + . . 0.392
244 X . . . X X + + + . . 0.384
249 X . . . + X + X + . . 0.4
254 X . . . + X + + + . . 0.363
259 X . . . + X + + + . . 0.336
264 X + . . + X + . + . . 0.197
269 X + . . + X + + + . . 0.213
469 . . . . . . . . . . . #

Table 6.5: Model fits of machine parameters to the maximal parameter a per fre-
quency, lower frequencies.

For the frequencies near 703Hz the feed f and the interaction of feed and cutting
speed f : vc are the most influencing factors. The cutting speed vc is less important
than for the maximal value of the series of amplitudes. The maximal parameter a
for the frequency band near 1200Hz is also clearly dominated by the influence of the
cutting speed vc. Tables 6.6 and 6.4 are also very similar with respect to the selected
albeit relatively unimportant influences.
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µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

664 X + . . X + . X . . . 0.363
669 X . . . X + . X . . . 0.296
674 X . . . X + + X . + . 0.385
679 X . . . X + . X . . . 0.174
684 . . . . . . . . . . . #
688 . . . . . . . . . . . #
693 X . . . + + + + + + X 0.108
698 X . + . + X X X X X X 0.651
703 X . . . X + . X . . . 0.27
708 X X X . + X . . . . . 0.414
713 X + X . X + . X . . . 0.39
718 X . . . X + . X . . . 0.33
723 X . . . X + . X . . . 0.284
728 X . . . X + . + . . . 0.193
732 . . . . . . . . . . . #
737 . . . . . . . . . . . #
742 . . . . . . . . . . . #
1143 . . . . . . . . . . . #
1147 X . + . . X . . . . . 0.347
1152 X . . . . X . . . . . 0.168
1157 X . + . . X . . . . . 0.172
1162 . . . . . . . . . . . #
1167 . . . . . . . . . . . #
1172 X X . . + + . + . . . 0.178
1177 X + . + X X + X . . . 0.652
1182 X . X . . X . . . . . 0.44
1187 X . . + . X + . . . . 0.461
1191 X . . . . X . . . . . 0.381
1196 X . + . . X . . . . . 0.355
1201 X . X . . X . . . . . 0.292
1206 X . . . + X + . . . . 0.313
1211 X . . . . X . . . . . 0.248
1216 X . X . X X . . . . . 0.376
1221 X X . X X X . X . . . 0.645
1641 . . . . . . . . . . . #
1646 X . . . X X . X . . . 0.315
1650 X . . X X X X X + X + 0.646
2109 . . . . . . . . . . . #
2114 X . X . . X + . . . . 0.478
2119 X . . + X X + X . + . 0.496

Table 6.6: Model fits of machine parameters to the maximal parameter a per fre-
quency, high frequencies.
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It was of interest whether the slope parameters d1 and d2 displayed a connection to
the machine parameters. While it is expected that d1 displays a similar behaviour
to a because all ascents are steep up to the maxima, d2 may show a different be-
haviour. Tables A.1 and A.4 in the appendix summarise the results for d1 and d2.
The presumed behaviour of d1 was not found. It is interesting that for most frequen-
cies where a model was found all parameters and interactions were selected. In some
cases quadratic terms were also added to the models.
In general the results on the parameters d1 and d2 are hard to interprete and do not
tell a story of their own since they are correlated to the maximal parameter a. So
it is much more interesting to base further studies on the clearer results from the
maximal parameters a.

6.3.3 Predicting early Chatter by Fitted Values

One of the challenging problems encountered when modelling the BTA deep-hole
drilling process is the chatter vibrations starting directly after the guiding pads leave
the starting bush. We therefore tried to use the fitted values of the varying amplitudes
to predict whether or not the occurrence of such chatter vibration was likely.
This problem was analysed as a classification problem. The 22 experiments were
classified into two groups – chatter vibration right after the guiding pads leave the
starting bush (16 observations), and no such chatter (6 observations). The median of
the fitted values between 25mm and 35mm depth was calculated for all the frequen-
cies detected by both procedures described in Section 6.1, and additionally for the
frequencies 2109Hz to 2119Hz. Inclusion of the frequencies 2109Hz to 2119Hz was
due the fact that they are the highest harmonics of the eigen-frequency 234Hz de-
tected significant. The high frequencies appeared more important because the strong
damping effect of the starting bush only allows small movements of the tool.
The small number of observations especially in the group with no chatter restricted
the choice of the classification method. We chose the well-known linear discriminant
analysis (LDA) (cf. e.g. Venables and Ripley (2002) pp. 332-339) because it is one
of the most stable methods and hard to beat with respect to prediction ability even
in difficult situations (cf. Pouwels et al. (2002)). Because the number of classificator
variables was, with 37 variables, still too high a stepwise variable selection procedure
based on a 4-fold cross validation was performed.
The described procedure led to the following set of frequencies to classify the experi-
ments into early chatter or none: 234Hz, 249Hz, 2109Hz, 2114Hz and 2119Hz. With
this set of classificator variables a leave-one-out error rate of 13.6% was reached. A
closer inspection of the posterior probability for the classes showed that one of the
three wrong classifications was based on 50.4% for the wrong class. Therefore, we
decided to check whether the discrimination could be improved by adding the ma-
chine parameters to the set of discriminators, and then reusing the variable selection
procedure. This led to the inclusion of the cutting speed in the variable set which in
turn led to the correct classification of the above mentioned observation. With this
final set of variables the leave-one-out error rate was reduced to 9.1% and the two
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wrongly assigned observations were assigned to the class of no chatter.

6.4 Summary and Conclusions

The relevant frequencies for the BTA deep-hole drilling process were established by
applying the concepts from Chapter 4. Characteristic features, namely that there
are always several phases in the development of the amplitudes, were then described.
First there is the phase when the amplitudes are low because all frequencies damped
by the fact the bore tool is firmly clamped in the starting bush by the guiding pads.
After the guiding pads leave the starting bush there is the potential for high frequency
chatter near 1200Hz. This chatter is either followed by chatter near 234Hz or chatter
near 703Hz. For the different phases in the development of the amplitudes two typical
forms were identified.
Connections between features of the machine/tool/workpiece assembly and the fea-
tures of the development of the amplitudes included the more frequent occurence of
large jumps near 35mm, 110mm and 250mm. The 35mm depth has already been
pointed out as corresponding to the point at which the guiding pads leave the start-
ing bush and thus a change in the dynamics is inevitable. The jump at 110mm is
particularly interesting because it occurs shortly after the tool head with a length of
95mm is completely in the bore hole. One possible explanation for this is that the
bore tool head is slightly thicker than the boring bar and for this reason the damping
changes close to this point.
The results of the connection between machine parameters and the maximal ampli-
tudes also prove interesting in that the maximal amplitudes of frequencies in the same
frequency band are dominated by a distinct combination of the machine parameters,
and could be used to construct control actions as a reaction to changes in specific
frequency bands.
The product of two logistic functions as the basic function for the approximation of
the developments of the amplitudes proved to be flexible enough to describe nearly
all series of amplitudes save for twelve, which were uninteresting. As a summarising
result we chose the maximal parameter a of the basic functions with the property
that m1 < m2− 5mm. These values should be connected to the maximal amplitudes
because the condition ensures that a gives the maximal value for the basic function.
It turned out that these parameters were similarly linked to the machine parameters
as the maximal amplitudes. Only a slight shift in the importance of the parameters
for the frequencies near 234Hz was observed. This supports the idea of using this
information to design of control actions.
When analysing the steepness parameters d1 and d2 of the basic functions with maxi-
mal parameter a the most prominent common feature of the models was that all main
effects and interactions were present in most of them. Because of the direct link to
the maximal parameter – it is not possible to change the steepness without changing
the maximum of the function – not a lot of insight is gained from this analysis.
More insight was gained from the consideration of the position parameters m1 and
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m2. Since m1 stands for the rise of the basic function and m2 for its descent, the
positions can be divided into upward and downward changes in the amplitudes. This
made it clear that 110mm depth is a point where not only many upward changes
occur like at the 35mm depth but also downward jumps occur just as frequently.
Overall it must be said that the dynamics of the process are much to variable to
be captured with the fairly simple model used here. Especially the differing num-
bers of basic functions, and the variation of the places where a certain kind of chatter
vibration occurs, make it impossible to define common sections of depth for all exper-
iments, on which basic functions could be fitted including the machine parameters.
The inclusion of the machine parameters could have been done by a linear function
of the machine parameters in place of the maximal value parameter a.
But many of the discovered regularities in the approximations of the developments
of the amplitudes make it possible to search more easily for interpretations of the ob-
served behaviour in connection with the machine parameters and the machine/workpiece
assembly. This makes the models for varying amplitudes useful in circumstances like
the ones encountered above.
The most helpful result of the analysis of the varying frequencies is the result from
the linear discriminant analysis which clearly makes it possible to predict chatter
vibrations immediately after the end of the starting phase. This supports the idea
of modelling and monitoring all frequency bands close to the eigenfrequencies of the
boring bar and their harmonics.
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7 Connection to Stochastic Differential
Equation

A common approach to modelling dynamics in Physics and Mathematics is the use
of stochastic differential equations. The change from one dynamic state of a system
to another is called bifurcation. G. Schöner and M. Hüsken proposed the follow-
ing differential equation as a general model to describe the bifurcation into chatter
vibration in one frequency (Weinert, Webber, Hüsken, Mehnen, and Theis, 2002):

d2M(t)
dt2

+ h(t)(b2 −M(t)2)
dM(t)
dt

+ ω2M(t) = W (t) (7.1)

where M(t) is the drilling torque and W (t) is a white noise process.
Since this is an alternative way to describe the development of the drilling torque over
time this chapter aimes to prove that it is directly connected to the basic functions
used in Chapter 6. In the next section the corresponding amplitude equation is
derived. This is followed by the proof that there is a function h(t) such that the
logistic function is a solution of the amplitude equation. Finally a discrete version
of the equation is derived and the closeness to the real data is demonstrated by a
simulation.

7.1 Derivation of the Amplitude Equation

This equation is considerably simplified when M(t) is taken as a harmonic process.
The following calculations are based on Davies (2003). Let

M(t) := g(t) cos(ωt+ φ). (7.2)
dM(t)
dt

=
dg(t)
dt

cos(ωt+ φ)− ωg(t) sin(ωt+ φ), (7.3)

d2M(t)
dt2

=
d2g(t)
dt

cos(ωt+ φ)− 2ωg(t) sin(ωt+ φ)− ω2g(t) cos(ωt+ φ) (7.4)

First, we note that the term ω2g(t) cos(ωt + φ) vanishes. Second, all terms without
ω may be omitted because ω is large compared to the change in the first and second
derivative of g(t). In other words dg(t)

dt does not contain high-frequency components
and thus, the following holds∫

dg(t)
dt

cos(ωt+ φ)dt ≈ 0.
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Therefore, (7.1) can be replaced by

− sin(ωt+ φ)
(

2
dg(t)
dt

+ h(t)g(t)(b2 − g(t)2 cos2(ωt+ φ))
)
. (7.5)

Now cos2(ωt+φ) = (1− cos(2ωt+ 2φ))/2, and the term g(t)2(1− cos(2ωt+ 2φ)) can
be omitted as well. So we get

− sin(ωt+ φ)
(

2
dg(t)
dt

+ h(t)g(t)(b2 − g(t)2

2
)
)
.

Now this is equalled to 0 or white noise W (t), it becomes

− sin(ωt+ φ)
(

2
dg(t)
dt

+ h(t)g(t)(b2 − g(t)2

2
)
)

= W (t). (7.6)

Multiply (7.6) with sin(ωt+ φ), and note that W (t) sin(ωt+ φ) behaves similarly to
white noise. Moreover, note that sin2(ωt + φ) ≈ 1/2. It follows for the amplitude
that

2
dg(t)
dt

+ h(t)g(t)(b2 − g(t)2

2
) =

W (t)
ω

. (7.7)

This is the amplitude-equation for the differential equation in (7.1) if there is only
one frequency present in the process.

7.2 Connection to Logistic Function

Now assume that the logistic function is the right form for g(t). It has to be shown
that there is a function h(t) so that equation (7.7) has a solution. To show this, the
white noise is replaced by 0 to make the calculations more straightforward.
Set

g(t) :=
a

1 + exp
(
− t−t0

d

) ,
it follows that

dg(t)
dt

=

(
−

exp
(
− t−t0

d

)
d

)
a(

1 + exp
(
− t−t0

d

))2 .
Inserting these formulas into (7.7) we get

−2
exp

(
− t−t0

d

)
a

d
(
1 + exp

(
− t−t0

d

))2 + h(t)

(
ab2

1 + exp
(
− t−t0

d

) − a3

2
(
1 + exp

(
− t−t0

d

))3
)

= 0

Adding the first term on both sides:

h(t)

(
2ab2

(
1 + exp

(
− t−t0

d

))2 − a3

2
(
1 + exp

(
− t−t0

d

))3
)

= 2
exp

(
− t−t0

d

)
a

d
(
1 + exp

(
− t−t0

d

))2 .
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Because the term in brackets on the left-hand side is never 0, it is possible to divide
by it. It follows that

h(t) = 2
exp

(
− t−t0

d

) (
1 + exp

(
− t−t0

d

))
d
(
b2
(
1 + exp

(
− t−t0

d

))2 − a2

2

) . (7.8)

This solution is well-defined for t ∈ R. So (g, h) is a pair of functions, which solves
equation (7.7).
Of course the same procedure could be applied to the product of the two logistic
functions from Formula (6.1). This establishes the link between the two approaches
to describe the development of the amplitudes.

7.3 Making the Amplitude Equation Discrete and
Simulations

Changing from continuous time to discrete time in equation (7.7) we get

g(t+ 1)− g(t) = −b
2h(t)

2
g(t) +

h(t)
4
g(t)3 + εt (7.9)

⇔ g(t+ 1) =
(

1− b2h(t)
2

)
g(t) +

h(t)
4
g(t)3 + εt. (7.10)

The latter relation is used to estimate h(t) from the amplitudes for frequency 703
Hz in experiment 5 of the experimental design. Taking 21 consecutive observations
of the amplitude and using only the linear part of the equation the coefficient of g(t)
displays the behaviour shown in Figure 7.1.

Figure 7.1: Coefficients of g(t) in (7.9) over time

The horizontal red curve in Figure 7.1 shows the result of the Loess-smoother (Cleve-
land et al., 1992) including 75% of the data in the fit. This curve is similar to a logistic
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function like the function h(t) found in the last section. The sign change indicated
by the vertical red line marks the change from stable to instable behaviour of this
recursive formula. As shown by Davies (1983) the actual shift from one state of the
system to another is postponed by the noise. Comparing the point of change in Fig-
ure 7.1 to the red line in Figure 7.2, which shows the development of the amplitude
of 703Hz in experiment 5, it is obvious that the actual change into chatter happens
approximately 130mm later.
That the change from one dynamic state of the system to the other is postponed by
noise is even more impressive in Figure 7.2 when it is known that the change point
was set to t0 = 160mm.

Figure 7.2: Comparison of a simulated amplitude (black) to a real amplitude (red)

Furthermore, Figure 7.2 demonstrates that the behaviour of the simulated data is
not far from the real data, and that the logistic function would fit the data perfectly
if the data were generated by the mechanism described by Formula (7.9).
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Figure 7.3: Outcome of a simulation using the estimated parameters from Sec-
tion 6.2.1 for the function h(t) from Formula (7.8.

However, the estimated parameters from the descriptive model found in Chapter 6
do not lead to similar data as can be seen from Figure 7.3 where the set of estimated
parameters for the same series as in Figure 7.2 was used. One run of the simulation
is plotted which used the calculated function h(t) from Formula (7.8). The simulated
data set does not reach the maximum of nearly 300 but only reaches 2.

7.4 Conclusions for further Modelling

In this chapter it was proved that there exists a deterministic solution to the stochas-
tic differential equation proposed by Schöner and Hüsken that links the descriptive
model (6.1) from Chapter 6 to this equation. But the results of the last simulation
make it clear that estimating parameters of the stochastic differential equation is not
possible using this simple semi-parametric approach. In particular, the critical point
of change from stable behaviour to chatter cannot be modelled by this description
because the parameter m1 gives the turning point of logistic function and not the
time point when the dynamic state changes from stable to instable. This change
happens clearly before the amplitude rises to its maximum. The fact that the noise
postpones the change into chatter vibration makes it possible to intervene before
the chatter vibration fully develops, thus making this a very useful result. Further
modelling should therefore be focused on detecting this change point and on how a
true change into chatter may be avoided.
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8.1 Conclusions for Experimental Designs and Time Series

The overview on experimental designs and time series in Chapter 3 made it clear that
there are many approaches to deal with problems where the observations from the
experiments are correlated. There are also optimal experimental designs when the
time series model can be specified up to a small number of parameters. And finally
there are also D-optimal designs of trajectories for the identification of linear and
nonlinear dynamic systems. All these methods were not applicable to the problem
of the first experiments on the BTA deep-hole drilling process because no specific
model for the on-line measurements was available.
In the literature a possible solution was found in the form of the space-filling or
exploratory designs described in Section 3.6. These designs allow you to plan a
sensible number of experiments which span the range of possible values of controllable
variables as well as possible. Because the number of experiments is controlled by the
experimenter it is also possible to allow for a number of repetitions of the complete
design. This is absolutely necessary when a dynamic problem is suspected. If no
repetitions are carried out when a dynamic phenomenon is under investigation then
it could happen that the dynamic nature may go unobserved. This is underlined by
the variety of behaviours observed at the centre point of the central-composite design
in our experiments (cf. Figures 1.8, 1.9 and 2.6) which showed clearly that no simple
link between the machine parameters and the dynamic behaviour can be established.
An unanswered question is whether and how the methods for the identification of
linear dynamic systems, or the optimal factorial designs for continious processes
could be employed in developing control strategies for dynamic systems. It may not
be possible to identify a nonlinear dynamic system (Leontaritis and Billings, 1987)
but nevertheless constructing trajectories with the methods of Zarrop (1979) based
on a linearisation of a proposed system may lead to a set of control actions that could
be tested for effectiveness.

8.2 Conclusions for Further Developments on Models on
Varying Amplitudes

In Chapter 4 it was proved that the periodogram ordinates of a harmonic process
with normal white noise or AR(p) disturbances are either χ2-distributed at the unim-
portant frequencies or non-central χ2-distributed at the important frequencies. The
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most important outcome was that this knowledge of the distribution can be used to
estimate the variance σ2 of the error process from the periodogram by means of a
robust estimator. On the one hand this estimate can be used to determine relevant
frequencies and on the other hand to construct an estimator for the amplitude at the
relevant frequencies. The estimator for the amplitude included the application of the
square root to the periodogram ordinate which is one possible transformation when
the behaviour of a non-central χ2 random variable is approximated by a normally
distributed variable (Johnson et al., 1994).
In Section 4.3 it was shown that the Fourier-transform is not only linear for time
stationary functions but also for time varying functions. This makes it possible to
use the estimates of the amplitudes on sections of a harmonic process constructed
from the periodogram ordinates to estimate the functional form of the development
of the amplitudes of relevant frequencies over time.
In Chapter 5 the theoretical results were investigated with regards to their practical
application. To this end the methods developed in Chapter 4 were applied to a wide
variety of data situations. The first simulation in Section 5.2 only considered a time
stationary influence on the amplitudes by a number of variables ~x. In general the
variance of the errors was slightly overestimated by the method while the amplitudes
were underestimated. The overestimation of the variance was traced to a higher
influence of leakage than expected. A very positive result was found for the normal
approximation because the normality assumption for the parameters in the linear
models could not be rejected 94% of the cases. This was a surprisingly positive
result considering that the normality approximation is dependent on the degrees
of freedom for the non-central χ2-distribution and the absolute value of its non-
centrality parameter.
In Section 5.3 the effect of time varying amplitudes was tested. The first interesting
result was that the normality approximation for the periodogram ordinates functioned
very well with less than 5% rejections on a 95%-niveau of the Shapiro-Wilk test for
normality. The second very positive result was that not just a linear time trend
of the amplitudes could be found by the method but also a nonlinear trend could
be fitted, and resembled the ‘true’ function of the amplitude. A serious drawback
was the general underestimation of the amplitudes. The method for estimating of
the variance of the error process turned out to be much more accurate on the data
with time varying amplitudes. This could have been due to the larger number of
observations. In some cases it underestimated the variance slightly which could have
been caused by the fact that the time varying nature of the amplitude does have a
small effect on all periodogram ordinates.
In general the estimates based on the periodogram ordinates underestimated the am-
plitudes in our simulations which was also suggested by the theoretical investigation
of, at least, the time varying amplitudes. A possible solution to this problem could be
an exponentially weighted mean on the periodogram ordinates in a small neighbour-
hood of the relevant frequencies, centred at the relevant frequencies with the highest
amplitudes. Such a procedure may not only improve the accuracy of the estimate
but also the goodness of the normality approximation by adding degrees of freedom
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in the χ2-distribution.
Further open questions on the topic include the effect of overlapping sections to
determine the periodogram data on harmonic processes with varying amplitudes.
This would be of interest if the time series that can be collected within an experiment
are rather short compared to the number of suspected relevant frequencies. Otherwise
it may happen that quite long time series of the harmonic process are recorded. Then
it is possible to leave gaps in the spectrogram data and thereby ensure a conditional
independence from one time point to the next. Another theoretically challenging
question is the effect of error processes with long memory. The question of optimal
experimental designs for the discussed models also remains open. The principles of
experimental designs for repeated measurements with normal errors can be viewed
as prototypes for these models because the normal approximation is obviously valid
in most cases, even if the signal-to-noise ratio is small.

8.3 Conclusions for the Investigation of the BTA
Deep-Hole Drilling Process

Using the central-composite design to investigate the quality measures and, at the
same time, to measure on-line variables for the investigation of the dynamic behaviour
proved appropriate because the repetitions at the centre point showed the diversity
of possible behaviour of the process. Additionally the experimental design made
it possible to distinguish between special and common behaviour. This led us to
realise that however different the drilling torque of a certain experiment may look
the dominating frequencies were the same for all sets of machine parameters.
The results on the quality measures roughness and roundness showed that the process
cannot be optimised by simply using a certain set of machine parameters: when the
damper cannot be used the result is a very slow process which can be economically
questionable. Even worse a certain amount of chatter vibrations was also observed
close to the optimal values found by the surface respond method applied. So no easy
way to avoid chatter vibrations without using the damper was found. The use of the
damper made it possible to avoid chatter vibrations. To achieve this however it had
to be applied at exactly one of the positions where theory suggested effectiveness.
Since such positioning may not be possible under all circumstances (e.g. if a very
long workpiece is to be machined) it is of great interest to find a way to avoid chatter
vibrations by controlling the parameters feed, cutting velocity and flow rate of the
cutting fluid.
The spectrograms of the drilling torque suggested the dominance of a few frequen-
cies in the process. This was already shown in the histograms in Section 2.2.2 and
the found frequencies proved to be the same as those found by the procedure to
detect relevant frequencies (Section 4.2) in Section 6.1. Since the depths at which
chatter vibrations became prominent appeared similar we tried to model the de-
velopments of the relevant frequencies over the common ‘time-axis’ depth with the
intention of building a general model including the machine parameters. Closer in-
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spection revealed however that the developments on the relevant frequencies were too
diverse especially for the repetitions at the centre point of the design. Thus only a
semi-parametric approach was applied to the individual developments of the relevant
frequencies.
When investigating the development of the amplitudes it was suggested that the
maximal value of the amplitudes may be linked to the machine parameters. This
proved correct and interesting because the maximal amplitudes on different frequency
bands indeed turned out to be influenced by different machine parameters. This
result was also found for the parameter a describing the maximal value of the basic
function from Section 6.2 when m1 < m2 is true. This result could then be used next
to construct control actions especially tuned to different sorts of chatter vibrations.
The individual semi-parametric fits of the basic functions proved much too diverse
to establish a common pattern which would have been necessary to construct models
across all experiments on the relevant frequencies. One reason for this can be seen in
the closeness of the simulation of the stochastic differential equation in Section 7.3
to the data observed. This closeness suggests that the dynamics of the theoretical
and practical processes are quite similar. Therefore, the delay of the change in the
behaviour by noise known for this kind of stochastic differential equation also applies
to the deep-hole drilling process. Thus it can be concluded that the deterministic
description implied by the semi-parametric approach is not appropriate in this case.
On the other hand this delay provides the opportunity to react to the state of in-
stability before chatter vibrations develop. The parameters in the discrete version of
the amplitude equation should therefore be monitored on the relevant frequencies or
on appropriate summarising statistics on frequency bands and used as signals when
chatter could develop and in the frequency (band) in which chatter might develop.
The signals on the frequencies 234Hz, 249Hz and 2109Hz-2119Hz proved to be good
discriminators to distinguish between chatter right after the guiding pads leave the
starting bush and no such chatter. This highlights the fact that the very restrictive
rule for choosing the relevant frequencies in Section 6.1 did not consider the particu-
larity of the process’ start phase so this method has to be applied cautiously. More
importantly, it should be noted that this result makes it possible to learn a rule for
the cases when chatter vibrations will start right after the end of the start phase of
the process. Furthermore, it shows that it is also necessary to monitor the devel-
opment of the amplitudes in all possible relevant frequencies to distinguish between
stable and instable states of the process.
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A Tables on Fits of Varying Amplitudes

Regressions on Parameters d1 and d2

µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

5 . X . X X . . . . . . 0.318
195 . . . . . . . . . . . #
200 . . . . . . . . . . . #
205 . X + . X + . + . . . 0.468
210 . X + + X . . . . . . 0.398
215 . . . . . . . . . . . #
220 . . . . . . . . . . . #
225 . . . X + X + X X + X 0.53
229 . . . . + + + + + + + 0.209
234 . . . . . . . . . . . #
239 X . . . + + + + X + + 0.379
244 X . . . X X X X X X X 0.65
249 . . . . . . . . . . . #
254 . X . . X + X X X X X 0.722
259 . + + + X X X X X X X 0.744
264 . . . . . . . . . . . #
269 . . . . . . . . . . . #
469 . . . . . . . . . . . #
664 . X . . X + X X X X X 0.706
669 X . . . X . . . . . . 0.184
674 . . . X X X X X X X X 0.858
679 X . . . + + . + . . . 0.174
684 . . . . . . . . . . . #
688 . . X . X + X . X . . 0.645
693 . . X . X . X . X . . 0.596
698 . . X + . X . . . . . 0.419
703 . . + + X X X X X X X 0.655
708 . X . . + + X X X X X 0.614
713 . + + + X X + X X X X 0.685
718 . . . . . . . . . . . #
723 . X . X X + X + X X X 0.932
728 . . . . . . . . . . . #
732 . . . . . . . . . . . #
737 . . . . . . . . . . . #
742 . + + X X X X X X X X 0.791

Table A.1: Model fits of machine parameters to the parameter d1 corresponding to
the maximal parameter a per frequency, lower frequencies.
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µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

1143 . . . . . . . . . . . #
1147 . . . . . . . . . . . #
1152 . + + + X X + X X + X 0.637
1157 . X . . + + + + + + + 0.17
1162 . X . . X X X X X X X 0.813
1167 . . X . X X + X + + + 0.864
1172 . . . . . . . . . . . #
1177 . X + . X . . . . . . 0.389
1182 . . . . . . . . . . . #
1187 . . . . . . . . . . . #
1191 . . . . . . . . . . . #
1196 X + . . X X X X X X X 0.702
1201 . . + . X X X X X X X 0.691
1206 X . X + + X + + + + X 0.499
1211 . + + + X X X X X X X 0.662
1216 . X . . + X + + X X X 0.551
1221 . . . . . . . . . . . #
1641 . X + X X . . . . . . 0.398
1646 . X + + X . . . . . . 0.404
1650 . . . . . . . . . . . #
2109 . + + X . . X . . . . 0.35
2114 . + X . . X . . . . . 0.358
2119 . . . . . . . . . . . #

Table A.2: Model fits of machine parameters to the parameter d1 corresponding to
the maximal parameter a per frequency, high frequencies.
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µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

5 . X + + X X + X X + X 0.59
195 . X . . X + + X X + + 0.611
200 . X . . + X X . . X . 0.646
205 . . . . . . . . . . . #
210 . X . . X . . . . . . 0.298
215 . . . . . . . . . . . #
220 . . . . . . . . . . . #
225 . X + . X + X + X + + 0.763
229 . . X + + X X + . X . 0.58
234 . X X X + + + X X X + 0.845
239 . X + . X X X X X X X 0.782
244 X . . . + + + + + + + 0.285
249 . X + + X . . . . . . 0.416
254 . + + + + + X + X + + 0.494
259 . . . . . . . . . . . #
264 . . . . . . . . . . . #
269 . . . . . . . . . . . #
469 . . . . . . . . . . . #
664 X . + . X + + + X . . 0.37
669 . . X . . . . . . . . 0.149
674 . . . . . . . . . . . #
679 . . . X X X X X X X X 0.795
684 . + + X . . X . . . . 0.416
688 . . + . X + X X X X X 0.536
693 . . + . X X X X X X X 0.701
698 . . X . X X X X X X X 0.815
703 X . + + X . . . . . . 0.23
708 . X X X . . . . . . . 0.681
713 X . . . X + . + . . . 0.257
718 X X X . X X X . X + . 0.621
723 . . . . . . . . . . . #
728 X X . . . . . . . . . 0.208
732 . . . . . . . . . . . #
737 . . . . . . . . . . . #
742 . . + X + + X + + + + 0.424

Table A.3: Model fits of machine parameters to the parameter d2 corresponding to
the maximal parameter a per frequency, low frequencies.
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µ f2 v2
c V̇ 2 f vc V̇ f : vc f : V̇ vc : V̇ f : vc : V̇ R2

adj.

1143 . . . . . . . . . . . #
1147 . X . . X X + + X + X 0.58
1152 . + . . . + + . . + . 0.105
1157 . X + . X X X + + X X 0.877
1162 . X . . + X + + X + X 0.566
1167 . X + . X . . . . . . 0.352
1172 X . . . X X + X X X X 0.608
1177 . + + + + X + + X + X 0.504
1182 . X . . . X X . . X . 0.598
1187 . + + + X X + X X X X 0.692
1191 . . . . . . . . . . . #
1196 . X . . + X . X . . . 0.324
1201 . + . . + X X + + X . 0.415
1206 . + + + X X X X X X X 0.688
1211 . X + + X X . X . . . 0.653
1216 . X . . X X X X X X X 0.749
1221 . . . . . . . . . . . #
1641 . . . . . . . . . . . #
1646 . X . . + X . X . . . 0.549
1650 X + . . + + + X + . . 0.354
2109 . . . . . . . . . . . #
2114 X . . . + + X + + X + 0.425
2119 . + . . + . . . . . . 0.128

Table A.4: Model fits of machine parameters to the parameter d2 corresponding to
the maximal parameter a per frequency, high frequencies.

108



A Tables on Fits of Varying Amplitudes

N
u

m
b

er
s

o
f

B
a

si
c

F
u

n
ct

io
n

s

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
21

a
5

12
14

7
12

1
10

9
9

5
7

14
15

2
13

2
6

13
4

6
5

6
7

19
5

16
24

10
3

9
10

12
8

8
6

9
13

9
18

12
9

8
17

22
13

21
16

20
0

8
12

13
17

5
12

12
11

9
19

11
12

12
26

10
21

13
14

14
16

22
6

20
5

17
15

6
11

15
5

10
18

15
9

6
14

17
22

9
12

10
19

17
20

17
7

21
0

19
8

2
6

11
10

7
15

12
9

20
10

16
12

12
16

13
14

18
7

13
10

21
5

16
10

12
12

3
10

7
14

8
6

24
13

10
13

15
15

19
18

9
11

18
8

22
0

14
12

15
14

1
8

5
7

5
7

11
9

10
15

10
11

8
12

12
12

12
16

22
5

15
10

11
7

16
7

10
13

5
7

8
11

9
19

19
11

10
17

14
12

16
5

22
9

10
13

12
13

19
5

8
11

13
6

16
8

8
21

6
9

8
17

9
15

8
7

23
4

10
13

15
9

12
8

12
7

4
9

14
16

12
14

5
9

10
14

3
13

10
10

23
9

17
14

12
12

6
5

19
17

11
7

13
11

13
12

11
13

5
9

9
6

15
6

24
4

19
20

10
9

6
8

8
13

8
6

12
9

15
11

8
12

8
7

14
11

9
11

24
9

22
15

15
19

4
9

8
13

7
12

13
12

10
14

9
8

7
11

10
6

8
15

25
4

9
19

4
5

2
16

21
10

11
18

12
9

8
16

9
12

6
10

10
4

7
10

25
9

16
17

11
11

5
9

6
17

9
12

19
12

10
17

15
20

8
25

18
4

11
6

26
4

12
18

8
19

15
9

8
13

2
6

12
13

12
14

16
13

21
19

6
11

25
7

26
9

12
11

20
11

6
9

8
11

18
11

18
16

17
13

14
21

18
14

16
7

14
12

T
ab

le
A

.5
:

N
um

be
r

of
ba

si
s

fu
nc

ti
on

s
pe

r
fr

eq
ue

nc
y

an
d

ex
pe

ri
m

en
t,

lo
w

fr
eq

ue
nc

ie
s.

109



A Tables on Fits of Varying Amplitudes

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
21

a
46

9
15

14
7

5
3

11
3

16
12

12
13

11
12

19
5

14
8

13
15

10
9

1
66

4
14

27
12

9
15

8
16

10
15

8
11

13
13

14
9

12
13

10
7

9
11

10
66

9
13

16
14

11
7

8
14

19
13

7
13

14
9

4
10

14
3

12
16

11
15

20
67

4
15

11
13

7
16

11
11

15
10

3
13

10
8

13
14

12
8

26
11

12
14

8
67

9
15

12
13

12
11

3
14

14
11

8
16

12
10

12
14

9
15

19
8

10
6

15
68

4
11

12
7

11
8

6
8

13
15

9
13

11
13

17
12

11
16

15
9

9
14

19
68

8
13

13
17

8
10

8
11

8
11

8
15

11
11

13
9

12
13

10
12

8
9

16
69

3
13

15
12

9
12

11
10

11
16

10
12

7
12

14
8

17
12

13
15

8
8

17
69

8
15

15
7

10
12

9
9

14
10

13
10

10
11

16
14

21
6

16
14

9
11

10
70

3
12

15
12

15
11

14
10

15
10

7
13

14
12

18
9

14
11

18
17

12
13

15
70

8
12

14
9

10
11

9
11

12
13

6
12

9
13

9
10

12
11

12
9

7
11

13
71

3
16

17
9

15
12

17
10

10
14

12
9

9
16

12
12

11
6

15
7

14
13

14
71

8
11

17
7

14
17

8
19

6
8

9
7

10
10

12
8

12
10

13
14

10
11

9
72

3
12

15
12

10
9

10
12

14
15

6
10

18
7

11
8

19
11

17
15

7
14

13
72

8
17

8
9

10
11

9
7

17
20

10
7

9
13

12
9

8
14

17
13

12
10

19
73

2
10

12
12

13
10

6
14

13
18

6
13

11
11

16
12

15
21

14
13

12
9

21
73

7
8

16
17

7
14

11
10

10
13

11
15

11
13

20
3

19
10

13
12

5
8

9
74

2
16

12
10

12
5

5
11

16
11

9
18

9
10

11
12

17
19

10
15

12
8

15

T
ab

le
A

.6
:

N
um

be
r

of
ba

si
s

fu
nc

ti
on

s
pe

r
fr

eq
ue

nc
y

an
d

ex
pe

ri
m

en
t,

m
id

dl
e

fr
eq

ue
nc

ie
s.

110



A Tables on Fits of Varying Amplitudes

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
21

a
11

43
14

9
6

11
3

10
2

7
2

4
12

14
10

12
13

10
15

15
9

12
15

9
11

47
11

7
22

7
9

8
10

7
16

11
11

5
14

12
4

10
12

9
14

8
22

4
11

52
12

9
18

8
12

9
8

8
2

5
12

8
14

14
7

12
16

17
13

11
15

4
11

57
9

10
13

9
13

2
8

9
4

15
18

10
12

16
7

14
13

15
11

16
7

9
11

62
16

12
10

5
10

12
18

11
14

8
17

8
20

14
12

16
9

11
13

21
13

13
11

67
18

14
11

7
10

8
10

11
13

6
13

14
14

11
21

10
10

13
12

9
14

10
11

72
12

12
6

7
10

9
9

12
12

9
11

9
13

19
12

11
5

15
10

14
10

11
11

77
18

15
12

11
11

14
18

15
20

11
9

11
12

14
12

8
6

14
18

9
9

11
11

82
12

17
20

11
3

8
20

5
9

3
11

7
15

3
11

6
2

20
16

10
7

16
11

87
10

3
11

6
12

7
9

12
19

8
9

9
20

11
13

8
2

14
13

7
14

13
11

91
8

8
15

10
10

13
14

6
17

7
8

12
10

9
20

8
7

12
9

14
11

15
11

96
9

4
17

13
17

10
21

4
4

9
11

10
9

11
9

10
12

10
6

11
17

23
12

01
10

5
14

7
10

11
6

6
13

11
14

8
17

10
8

3
14

12
16

12
13

16
12

06
3

7
11

9
22

12
8

5
17

6
15

12
14

15
16

16
20

12
31

18
16

16
12

11
4

6
9

5
11

7
9

3
3

12
18

8
14

14
18

26
10

12
29

21
13

16
12

16
13

21
12

9
8

9
8

4
7

13
22

10
16

3
17

6
1

15
12

12
15

6
12

21
11

14
12

8
10

8
4

4
8

8
21

7
13

7
13

5
14

6
12

3
13

2
16

41
15

11
10

11
6

7
4

9
5

10
9

6
13

15
14

10
11

9
11

9
1

12
16

46
20

13
10

16
5

13
18

9
2

15
12

14
13

9
13

7
9

12
18

14
7

8
16

50
11

8
17

8
5

14
8

14
11

10
8

7
12

13
11

7
5

15
9

12
13

11
21

09
14

9
11

12
8

15
17

12
11

14
11

9
14

10
8

11
12

9
5

16
14

12
21

14
8

19
14

12
9

8
13

11
18

8
11

9
11

11
7

11
10

11
19

17
14

9
21

19
15

9
12

9
6

10
16

10
17

9
15

10
17

11
8

17
7

16
7

2
12

7

T
ab

le
A

.7
:

N
um

be
r

of
ba

si
s

fu
nc

ti
on

s
pe

r
fr

eq
ue

nc
y

an
d

ex
pe

ri
m

en
t,

hi
gh

fr
eq

ue
nc

ie
s.

111



B Programs to Fit Varying Amplitudes

In this chapter the functions needed to fit the basic function model from Chapter 6
to the data are described and documented.

B.1 General

A generally useful function is the function successive . integer which determines se-
quences of integers within a vector and returns them as list or as vector of the
corresponding indices of the input vector.
” s u c c e s s i v e . i n t e g e r ” <−

f u n c t i o n ( x ){
mat <− m a t r i x ( c ( 1 , which ( c ( 1 , d i f f ( x ) )>1 ) ,

which ( c ( 1 , d i f f ( x ))>1)−1, l e n g t h ( x ) ) , n c o l
=2)

e r g <− a p p l y ( mat , 1 , f u n c t i o n ( y ) r e t u r n ( y [ 1 ] : y [ 2 ] ) )
i f ( i s . m a t r i x ( e r g ) ){

i f ( dim ( e r g )[2]==1){
e r g <− as . v e c t o r ( e r g )

} e l s e {
e r g <− as . l i s t ( as . data . f rame ( e r g ) )}}

r e t u r n ( e r g )}

B.2 Constructing Start Parameters

jumps
The first prestep to the fitting of the basic function is the detection of the most
prominent jumps in the time series of the amplitudes.

# F i n d i n g jumps i n a m p l i t u d e s as a p r i o r i e s t i m a t e s f o r
param e t e r m i j k

jumps <− f u n c t i o n ( datmat , s e c t=depth . s e c t , m i n f r a c t=m i n f r a c t .
jumps ){

d <− dim ( datmat ) [ 2 ]
# Aggregate data o v e r p i e c e s o f l e n g t h depth . s e c t
means . s e c t <− by ( datmat [ ,− d ] , as . f a c t o r ( datmat [ , d]%/% s e c t

) , f u n c t i o n ( x ) r e t u r n ( a p p l y ( x , 2 , mean ) ) )
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s e c t . depth <− u n i q u e ( datmat [ , d]%/% s e c t )∗ s e c t
n <− l e n g t h ( s e c t . depth )
means . s e c t <− m a t r i x ( u n l i s t ( means . s e c t ) , byrow=TRUE, n c o l=d
−1)

m <− dim ( datmat ) [ 2 ]−1
# Detect t he most prominent jumps by c a l c u l a t i n g

d i f f e r e n c e s and then
# check a g a i n s t e m p i r i c a l q u a n t i l e s
d i f f . s e c t <− a p p l y ( means . s e c t , 2 , d i f f )
l a r g e r q u a n t i l e <− f u n c t i o n ( x , pr =0.95){

r e t u r n ( which ( x>=q u a n t i l e ( x , p r o b s=pr ) ) )
}
l o w e r q u a n t i l e <− f u n c t i o n ( x , pr =0.05){

r e t u r n ( which ( x<=q u a n t i l e ( x , p r o b s=pr ) ) )
}
# Find l a r g e jumps
d i f f 9 5 <− a p p l y ( d i f f . s e c t , 2 , l a r g e r q u a n t i l e , pr=1−m i n f r a c t )
d i f f 5 <− a p p l y ( d i f f . s e c t , 2 , l o w e r q u a n t i l e , pr=m i n f r a c t )
# Find d i r e c t l y s u c c e s s i v e jumps
r e d . d i f f . min <− a p p l y ( r b i n d ( d i f f 9 5 , d i f f 5 ) , 2 , f u n c t i o n ( x ){

x <− s o r t ( x )
e r g <− l a p p l y ( s u c c e s s i v e . i n t e g e r ( x ) , f u n c t i o n ( i n t ) x [ i n t

] )
r e t u r n ( e r g )} )
# Combine s u c c e s s i v e jumps
min . jumps <− l i s t ( )
f o r ( i i n 1 :m){ # m number o f f r e q u e n c i e s

s t a r t <− u n l i s t ( l a p p l y ( r e d . d i f f . min [ [ i ] ] , min ) )
end <− u n l i s t ( l a p p l y ( r e d . d i f f . min [ [ i ] ] , max))+1

#to compensate f o r r e d u c e d l e n g t h o f d i f f ∗
m i d d l e <− u n l i s t ( l a p p l y ( r e d . d i f f . min [ [ i ] ] , mean ) )∗ s e c t
j u m p h e i g h t <− u n l i s t ( l a p p l y ( r e d . d i f f . min [ [ i ] ] , f u n c t i o n (

x ){
r e t u r n ( sum ( d i f f . s e c t [ x , i ] ) ) } ) )

ups <− which ( j u m p h e i g h t>0)
downs <− which ( j u m p h e i g h t<0)
f o l l . ups <− s u c c e s s i v e . i n t e g e r ( ups )
f o l l . ups <− f o l l . ups [ u n l i s t ( l a p p l y ( f o l l . ups , l e n g t h ))>1]
f o l l . downs <− s u c c e s s i v e . i n t e g e r ( downs )
f o l l . downs <− f o l l . downs [ u n l i s t ( l a p p l y ( f o l l . downs ,

l e n g t h ))>1]
# Search f o r jumps i n the same d i r e c t i o n to e l i m i n a t e

jumps
# from h i g h v a r i a t i o n
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i f ( l e n g t h ( f o l l . ups )>0){
f o r ( f o l l i n f o l l . ups ){

f o r ( j i n 1 : ( l e n g t h ( f o l l )−1)){
i f ( l e n g t h ( end [ ups [ f o l l [ j ] ] ] : s t a r t [ ups [ f o l l [ j

+1] ] ] )>1){
p r i n t ( c ( j , i , dim ( datmat ) [ 1 ] , j u m p h e i g h t [ f o l l [ j

] ] ) )
i f (3∗ sd ( d i f f . s e c t [ ( end [ ups [ f o l l [ j ] ] ] : s t a r t [ ups [ f o l l

[ j + 1 ] ] ] )−1 , i ])>= j u m p h e i g h t [ ups [ f o l l [ j ] ] ] ) {
j u m p h e i g h t [ ups [ f o l l [ j ] ] ] <− NaN

}}}}
}
i f ( l e n g t h ( f o l l . downs )>0){

f o r ( f o l l i n f o l l . downs ){
f o r ( j i n 1 : ( l e n g t h ( f o l l )−1)){

i f ( l e n g t h ( end [ downs [ f o l l [ j ] ] ] : s t a r t [ downs [ f o l l [ j
+1] ] ] )>1){

p r i n t ( c ( j , i , dim ( datmat ) [ 1 ] , j u m p h e i g h t [ downs [
f o l l [ j ] ] ] ) )

i f (3∗ sd ( d i f f . s e c t [ ( end [ downs [ f o l l [ j ] ] ] : s t a r t [ downs [
f o l l [ j + 1 ] ] ] )−1 , i ])>=− j u m p h e i g h t [ downs [ f o l l [ j
] ] ] ) {

j u m p h e i g h t [ downs [ f o l l [ j ] ] ] <− NaN
}}}}

}
s t a r t <− s t a r t ∗ s e c t
end <− end∗ s e c t
min . jumps [ [ i ] ] <− data . f rame ( m i d d l e , s t a r t , end ,

j u m p h e i g h t )
min . jumps [ [ i ] ] <− min . jumps [ [ i ] ] [ which ( ! i s . nan (

j u m p h e i g h t ) ) , ]
min . jumps [ [ i ] ] <− data . f rame ( min . jumps [ [ i ] ] , g r a d i e n t

<− a p p l y ( min . jumps [ [ i ] ] , 1 , f u n c t i o n ( x ) r e t u r n ( x [ 4 ] / ( x
[3 ]− x [ 2 ] ) ) ) )

}
r e t u r n ( l i s t ( min . jumps=min . jumps , l a r g e . obs . up=d i f f 9 5 , l a r g e

. down=d i f f 5 , s e c t . depth=s e c t . depth ) )
}

construct.start.par
The next function uses the previous function to generate the start values for the basic
functions.
c o n s t r u c t . s t a r t . par <− f u n c t i o n ( data , r e l f r e q , depth=NULL ,

s e c t i o n s=NULL , e n d s t a r t =0, form . asymptote=NULL , ccov=NULL ,
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t e s t . v a l u e =0.9 , depth . s e c t =10,max . depth =500, m i n f r a c t . jumps
=.05, s t e p f i t=TRUE)

{
i f ( ! i s . n u l l ( depth ) ){ data <− add . depth ( data , depth )}

# adding t he depth a c c o r d i n g to t ) he
r e s p e c t i v e e x p e r i m e n t

i f ( e n d s t a r t>0){ # E s t i m a t i n g mean a m p l i t u d e s i n s t a r t i n g
phase

mu <− l a p p l y ( data , f u n c t i o n ( x ){
d <− dim ( x ) [ 2 ]
e r g <− a p p l y ( x [ ( x [ , d]<= e n d s t a r t ),−d ] , 2 , mean )
r e t u r n ( e r g )} )

mu <− a p p l y ( as . data . f rame (mu ) , 1 , mean )
} e l s e {mu <− 0}

# F i n d i n g upper q u a n t i l e s f o r the e s t i m a t i o n o f
# i n f l u e n c e s on maximal a m p l i t u d e s
maxim . data <− l a p p l y ( data , f u n c t i o n ( x ){

d <− dim ( x ) [ 2 ]
e r g <− a p p l y ( x [ ,− d ] , 2 , q u a n t i l e , p r o b s=t e s t . v a l u e )
r e t u r n ( e r g )} )

maxim . data <− t ( as . m a t r i x ( as . data . f rame ( maxim . data ) ) )
i f ( ! i s . n u l l ( ccov )){ # c a l c u l a t e l i n e a r models , i f c o n s t a n t

i n f l u e n c e s g i v e n
f i t l m s <− f u n c t i o n ( y , i n f l , s t e p s , f o r m e l ){

a t t a c h ( i n f l )
i f ( i s . n u l l ( f o r m e l ) ){

v a r . names <− names ( i n f l )
dcv <− l e n g t h ( v a r . names )
f o r m e l <− p a s t e (” y ˜ ” , p a s t e ( r e p (” I ( ” , dcv ) , v a r . names ,

r e p ( ” ˆ 2 ) ” , dcv ) , sep =””, c o l l a p s e =”+”),”+”, p a s t e ( v a r .
names , c o l l a p s e =”∗”), sep =””)

f o r m e l <− f o r m u l a ( f o r m e l , data= i n f l )
}
e r g <− lm ( f o r m e l )
s i n k (” t e s t . t x t ”)
e r g <− s t e p ( e r g )
s i n k ( )
u n l i n k (” t e s t . t x t ”)
de t ach ( i n f l )
r e t u r n ( e r g )}

ak <− a p p l y ( maxim . data , 2 , f i t l m s , i n f l =ccov , s t e p s=s t e p f i t ,
f o r m e l=form . asymptote )

} e l s e { # no c o n s t a n t i n f l u e n c e s , as y m pto te s assumed
c o n s t a n t
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ak <− a p p l y ( maxim . data , 2 , mean )
p r i n t (” C o n s t a n t s f o r Asymptote ”)

}
data . jumps <− l a p p l y ( data , jumps , s e c t=depth . s e c t , m i n f r a c t=

m i n f r a c t . jumps )
r e t u r n ( l i s t (mu . gen = mu , jumps . data = data . jumps , asymptote .

lm = ak ) )
}

B.3 Fitting Basic Functions to the Amplitudes

profiling
This function fits the proposed basic function to a single frequency.
p r o f i l i n g <− f u n c t i o n ( ampl . t s , d e p t h s , minsucc , e p s i l o n =5, t o l e r=

c ( 1 0 ˆ (−3 ) , 0 . 5 ) , numtests =5, numval =10, a c c e p t . r e m a i n s =0.05,
s e c t = 3 , . . . ) {

n t o l <− seq ( from=t o l e r [ 1 ] , to=t o l e r [ 2 ] , l e n g t h=numtests )
r e s i d u a l s . f u n c <− 0
f i t t e d . f u n c <− 0
f a i l e d <− numer ic ( 0 )
base . e l e m e n t s <− l i s t ( )
endadded <− FALSE
y <− ampl . t s
l <− 2
i <− 1
k <− 1
m <− 1
s t e p o n <− FALSE
# Main l o o p to c a l c u l a t e n o n l i n e a r r e g r e s s i o n s
w h i l e ( i+k<=dim ( minsucc ) [ 1 ] ) {
# Check i f two a d j a c e n t s p a r t s o f the s e r i e s have

a p p r o x i m a t e l y t he same
# h e i g h t to a v o i d s e v e r a l f u n c t i o n s f o r j u s t one s t e p

i f ( i+k<dim ( minsucc ) [ 1 ] ) {
i f ( abs ( mean ( ampl . t s [ which ( ( minsucc [ i ,3 ]< d e p t h s )& (

d e p t h s<minsucc [ i+k , 2 ] ) ) ] ) − mean ( ampl . t s [ which ( (
minsucc [ i+k ,3 ]< d e p t h s )& ( d e p t h s<minsucc [ i+k
+ 1 , 2 ] ) ) ] ) )< abs ( minsucc [ i+k , 4 ] ) ) {

k <− k+1
s t e p o n <− TRUE

}
}
i f ( s t e p o n ){
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s t e p o n <− FALSE
} e l s e {
i f ( l ==2){

# Set o b s e r v a t i o n s o u t s i d e the r e g i o n o f s u p p o r t
e q u a l to 0

y [ ( d e p t h s<=i f e l s e ( i ==1,−1, minsucc [ i , l ]− e p s i l o n ) ) | y
<0] <− 0

l <− i f e l s e ( minsucc [ i+k , 4 ]> 0 , 2 , 3 )
# Check i f t h i s i s t he l a s t jump down and add 0 ’ s to

g i v e n l s a chance
i f ( ( minsucc [ i+k , l ]+ e p s i l o n<=max ( d e p t h s ))&( i+k!=dim (

minsucc ) [ 1 ] ) ) {
y [ d e p t h s>minsucc [ i+k , l ] ] <− 0

} e l s e {
d i f f d e p t h s <− d i f f ( d e p t h s ) [ 1 ]
d e p t h s <− c ( d e p t h s , ( ( l e n g t h ( d e p t h s ) + 1 ) : ( l e n g t h (

d e p t h s )+50))∗ d i f f d e p t h s )
y <− c ( y , r e p ( 0 , 5 0 ) )
endadded <− TRUE

}
} e l s e {

# i f second jump down , check i f n e x t p a r t needs
b a s i c f u n c t i o n

y [ ( d e p t h s<=minsucc [ i , l ]− e p s i l o n ) | y<0] <− 0
l <− i f e l s e ( minsucc [ i+k , 4 ]> 0 , 2 , 3 )
# Check i f t h i s i s t he l a s t jump down
i f ( minsucc [ i+k , l ]+ e p s i l o n<=max ( d e p t h s ) ){

y [ d e p t h s>minsucc [ i+k , l ]+ e p s i l o n ] <− 0
} e l s e {

d i f f d e p t h s <− d i f f ( d e p t h s ) [ 1 ]
d e p t h s <− c ( d e p t h s , ( ( l e n g t h ( d e p t h s ) + 1 ) : ( l e n g t h (

d e p t h s )+50))∗ d i f f d e p t h s )
y <− c ( y , r e p ( 0 , 5 0 ) )
endadded <− TRUE}

} # end e l s e f o r jumps down
j <− 1
# I n i t i a l i z i n g s t a r t v a l u e s f o r n o n l i n e a r r e g r e s s i o n

d 1 s t a r t v e c t o r <− as . numer ic ( c (1/ abs ( minsucc [ i , 4 : 5 ] ) , 1 0 /
abs ( minsucc [ i , 4 : 5 ] ) , abs ( minsucc [ i , 4 : 5 ] ) , r u n i f ( numval
, min ( as . numer ic ( c (1/ abs ( minsucc [ i , 4 : 5 ] ) , abs ( minsucc [
i , 4 : 5 ] ) ) ) ) + . 0 0 0 0 1 , max ( as . numer ic ( c (1/ abs ( minsucc [ i
, 4 : 5 ] ) , abs ( minsucc [ i , 4 : 5 ] ) ) ) )− . 0 0 0 0 1 ) ) )

d 2 s t a r t v e c t o r <− as . numer ic ( c (1/ abs ( minsucc [ i+k
, 4 : 5 ] ) , 1 0 / abs ( minsucc [ i+k , 4 : 5 ] ) , abs ( minsucc [ i+k
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, 4 : 5 ] ) , r u n i f ( numval , min ( as . numer ic ( c (1/ abs ( minsucc [ i
+k , 4 : 5 ] ) , abs ( minsucc [ i+k , 4 : 5 ] ) ) ) ) + . 0 0 0 0 1 , max ( as .
numer ic ( c (1/ abs ( minsucc [ i+k , 4 ] ) , abs ( minsucc [ i+k
, 4 ] ) ) ) )− . 0 0 0 0 1 ) ) )

names ( d 1 s t a r t v e c t o r ) <− NULL
names ( d 2 s t a r t v e c t o r ) <− NULL
gmy <− which ( y>mean ( y ) )
s t a r t m 1 <− min ( d e p t h s [ min (gmy ) ] , minsucc [ i , 1 ] )
s t a r t m 2 <− max ( d e p t h s [ max (gmy ) ] , minsucc [ i+k , 1 ] )
names ( s t a r t m 1 ) <− NULL
names ( s t a r t m 2 ) <− NULL

r e p e a t {
# Try to c a l c u l a t e n o n l i n e a r r e g r e s s i o n on d i f f e r e n t

t o l e r a n c e l e v e l s
numstar t <− 1
r e p e a t {

# b e f o r e c h a n g i n g t o l e r a n c e l e v e l s , t e s t
d i f f e r e n t s t a r t v a l u e s

base . e l e m e n t s [ [m] ] <− t r y ( n l s ( y ˜ a1 / ( ( 1 + exp
( (m1 − d e p t h s )/ d1 ) ) ∗ ( 1 + exp ((−m2 + d e p t h s )/
d2 ) ) ) , s t a r t=c ( a1=max ( y ) , m1=s t a r t m 1 , m2=
s t a r t m 2 , d1=d 1 s t a r t v e c t o r [ numstar t ] , d2=
d 2 s t a r t v e c t o r [ numstar t ] ) , c o n t r o l=n l s . c o n t r o l
( t o l=n t o l [ j ] ) , . . . ) )

# check i f s u c c e s s f u l , i f not i n c r e a s e number o f
i t e r a t i o n s . . .

i f ( i s . c h a r a c t e r ( base . e l e m e n t s [ [m] ] ) ) {
i f ( l e n g t h ( g re p ( base . e l e m e n t s [ [m ] ] , pat=”

i t e r a t i o n s ”)) !=0){
base . e l e m e n t s [ [m] ] <− t r y ( n l s ( y ˜ a1 / ( ( 1 +

exp ( (m1 − d e p t h s )/ d1 ) ) ∗ ( 1 + exp ((−m2 +
d e p t h s )/ d2 ) ) ) , s t a r t=c ( a1=max ( y ) , m1=s t a r t m 1
, m2=s t a r t m 2 , d1=d 1 s t a r t v e c t o r [ numstar t ] , d2=
d 2 s t a r t v e c t o r [ numstar t ] ) , c o n t r o l=n l s .
c o n t r o l ( t o l=n t o l [ j ] , m a x i t e r = 1 0 0 ) , . . . ) ) } }

# . . . o r check d i f f e r e n t s t a r t v a l u e s
i f ( i s . c h a r a c t e r ( base . e l e m e n t s [ [m] ] ) & ( numstar t<(

l e n g t h ( d 1 s t a r t v e c t o r ) ) ) ) {
numstar t <− numstar t+1

} e l s e {
b r e a k } # i f t h i s a l s o does not h e l p . . .

}# end r e p e a t−l o o p s t a r t v a l u e s
i f ( ! i s . c h a r a c t e r ( base . e l e m e n t s [ [m] ] ) ) {

i n t o b s <− which ( y !=0)
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i n t r e s <− y [ i n t o b s ]− f i t t e d ( base . e l e m e n t s [ [m ] ] ) [
i n t o b s ]

i f ( l e n g t h ( i n t r e s )>2){
i f ( median ( i n t r e s )>sd ( i n t r e s ) ){

i f ( j<numtests ){
j <− j +1

} e l s e {# i f e v e r y t h i n g d i d not l e a d to a s u c c e s s ,
t a k e the i n s u f f i c i e n t , but mark as f a i l e d

f a i l e d <− c ( i , l e n g t h ( minsucc [ , 4 ] ) )
b r e a k }

} e l s e {
b r e a k }

} e l s e { b r e a k }
} e l s e { # . . . change t o l e r a n c e

i f ( j<numtests ){
j <− j +1

} e l s e {# i f e v e r y t h i n g d i d not l e a d to a s u c c e s s ,
g i v e up

f a i l e d <− c ( i , l e n g t h ( minsucc [ , 4 ] ) )
r e t u r n ( l i s t ( b a s e s=base . e l e m e n t s , f i t t e d=f i t t e d .

f u n c , r e s i d u a l s=r e s i d u a l s . f u n c , f a i l s =f a i l e d ) )}
}
} # end r e p e a t−l o o p t o l e r a n c e l e v e l s
i f ( endadded ){

n e w f i t t e d <− f i t t e d ( base . e l e m e n t s [ [m ] ] ) [ 1 : l e n g t h (
ampl . t s ) ]

d e p t h s <− d e p t h s [ 1 : l e n g t h ( ampl . t s ) ]
endadded <− FALSE

} e l s e {
n e w f i t t e d <− f i t t e d ( base . e l e m e n t s [ [m] ] ) }

f i t t e d . f u n c <− f i t t e d . f u n c+n e w f i t t e d
r e s i d u a l s . f u n c <− ampl . t s− f i t t e d . f u n c
base . e l e m e n t s [ [m] ] <− c o e f ( base . e l e m e n t s [ [m] ] )
y <− r e s i d u a l s . f u n c

m <− m+1
i <− i+k
k <− 1

}# end e l s e o f i f ( s t e p )
} # end w h i l e−l o o p minsucc

# c o n t r o l i f any g r e a t e r p a r t >0 not e x p l a i n e d
# s e v e r a l t i m e s , to make s u r e , max 3 t i m e s , b e c a u s e o f

e n d l e s s r e p e t i t i o n
runde <− 0
r e p e a t {
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runde <− runde+1
means . s e c t <− by ( r e s i d u a l s . f u n c , as . f a c t o r ( d e p t h s%/%s e c t ) ,

mean )
i f ( ( ! any ( means . s e c t >0)) | runde ==4){

b r e a k
} e l s e {

g r e a t e r . z e r o <− which ( means . s e c t>0)
g r e a t e r . z e r o <− l a p p l y ( s u c c e s s i v e . i n t e g e r ( g r e a t e r . z e r o

) , f u n c t i o n ( x ) r e t u r n ( which ( means . s e c t >0)[ x ] ) )
maxy <− o r d e r ( u n l i s t ( l a p p l y ( g r e a t e r . z e r o , f u n c t i o n ( x )

r e t u r n ( max ( means . s e c t [ x ] ) ) ) ) , d e c r e a s i n g=TRUE)
s e c t s <− u n i q u e ( d e p t h s%/%s e c t )∗ s e c t
mingz <− u n l i s t ( l a p p l y ( g r e a t e r . z e r o , min ) ) [ maxy ]
maxgz <− u n l i s t ( l a p p l y ( g r e a t e r . z e r o , max ) ) [ maxy ]
l g z <− u n l i s t ( l a p p l y ( g r e a t e r . z e r o , l e n g t h ) ) [ maxy ]
# D e f i n e r e m a i n i n g p a r t o f the data
r e m a i n s <− which ( l g z>l e n g t h ( means . s e c t )∗ a c c e p t . r e m a i n s )
i f ( l e n g t h ( r e m a i n s )>0){

d <− l e n g t h ( base . e l e m e n t s )
f o r ( i i n ( d +1):( d+l e n g t h ( r e m a i n s ) ) ){

y <− r e p ( 0 , l e n g t h ( r e s i d u a l s . f u n c ) )
s e l e c t o b s <− which ( ( d e p t h s>s e c t s [ mingz [ [ r e m a i n s [ i−d

] ] ] ] ) & ( d e p t h s<s e c t s [ maxgz [ [ r e m a i n s [ i−d ] ] ] ] ) )
y [ s e l e c t o b s ]<− r e s i d u a l s . f u n c [ s e l e c t o b s ]
# Find jumps i n y
gmy <− which ( y>mean ( y ) )
s t a r t m 1 <− d e p t h s [ min (gmy ) ]
s t a r t m 2 <− d e p t h s [ max (gmy ) ]
p a r t d e p t h s <− d e p t h s [ s e l e c t o b s ]
i f ( max ( p a r t d e p t h s)>=max ( d e p t h s ) ){

d i f f d e p t h s <− d i f f ( d e p t h s ) [ 1 ]
d e p t h s <− c ( d e p t h s , ( ( l e n g t h ( d e p t h s ) + 1 ) : ( l e n g t h (

d e p t h s )+50))∗ d i f f d e p t h s )
y <− c ( y , r e p ( 0 , 5 0 ) )
endadded <− TRUE}

j <− 1
d 1 s t a r t v e c t o r <− c (1/max ( abs ( y )/ e p s i l o n ) , 1 0 / max ( abs

( y )/ e p s i l o n ) , max ( abs ( y )/ e p s i l o n ) , r u n i f ( numval , 1 /
max ( abs ( y )/ e p s i l o n )+.00001 , max ( abs ( y )/ e p s i l o n
)− .00001))

r e p e a t {
# Try to c a l c u l a t e n o n l i n e a r r e g r e s s i o n on d i f f e r e n t

t o l e r a n c e l e v e l s
numstar t <− 1
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r e p e a t {
# b e f o r e c h a n g i n g t o l e r a n c e l e v e l s , t e s t

d i f f e r e n t s t a r t v a l u e s
base . e l e m e n t s [ [ i ] ] <− t r y ( n l s ( y ˜ a1 / ( ( 1 + exp ( (m1 −

d e p t h s )/ d1 ) ) ∗ ( 1 + exp ((−m2 + d e p t h s )/ d2 ) ) ) , s t a r t=c
( a1=median ( y [ y>0 ] ) ,m1=s t a r t m 1 , m2=s t a r t m 2 , d1=
d 1 s t a r t v e c t o r [ numstar t ] , d2=d 1 s t a r t v e c t o r [ numstar t
] ) , c o n t r o l=n l s . c o n t r o l ( t o l=n t o l [ j ] ) , . . . ) )

# check i f s u c c e s s f u l , i f not i n c r e a s e number o f
i t e r a t i o n s . . .

i f ( i s . c h a r a c t e r ( base . e l e m e n t s [ [ i ] ] ) ) {
i f ( l e n g t h ( g re p ( base . e l e m e n t s [ [ i ] ] , pat=”

i t e r a t i o n s ”)) !=0){
base . e l e m e n t s [ [ i ] ] <− t r y ( n l s ( y ˜ a1 / ( ( 1 +

exp ( (m1 − d e p t h s )/ d1 ) ) ∗ ( 1 + exp ((−m2 +
d e p t h s )/ d2 ) ) ) , s t a r t=c ( a1=median ( y [ y>0 ] ) ,m1
=s t a r t m 1 , m2=s t a r t m 2 , d1=d 1 s t a r t v e c t o r [
numstar t ] , d2=d 1 s t a r t v e c t o r [ numstar t ] ) ,
c o n t r o l=n l s . c o n t r o l ( t o l=n t o l [ j ] , m a x i t e r
= 1 0 0 ) , . . . ) ) } }

# . . . o r check
d i f f e r e n t s t a r t
v a l u e s

i f ( i s . c h a r a c t e r ( base . e l e m e n t s [ [ i ] ] ) & ( numstar t<(
numval +3))){

numstar t <− numstar t+1
} e l s e { b r e a k } # i f t h i s a l s o does not h e l p . . .

}# end r e p e a t−l o o p s t a r t v a l u e s
i f ( ! i s . c h a r a c t e r ( base . e l e m e n t s [ [ i ] ] ) ) {

b r e a k
} e l s e { # . . . change t o l e r a n c e

i f ( j<numtests ){
j <− j +1

} e l s e {# i f e v e r y t h i n g d i d not l e a d to a s u c c e s s
, g i v e up

f a i l e d <− c ( f a i l e d , i , l e n g t h ( minsucc [ , 4 ] ) )
r e t u r n ( l i s t ( b a s e s=base . e l e m e n t s , f i t t e d=f i t t e d

. f u n c , r e s i d u a l s=r e s i d u a l s . f u n c , f a i l s =
f a i l e d ) )}

}
} # end r e p e a t−l o o p t o l e r a n c e l e v e l s
i f ( endadded ){

n e w f i t t e d <− f i t t e d ( base . e l e m e n t s [ [ i ] ] ) [ 1 : l e n g t h (
ampl . t s ) ]
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d e p t h s <− d e p t h s [ 1 : l e n g t h ( ampl . t s ) ]
endadded <− FALSE

} e l s e {
n e w f i t t e d <− f i t t e d ( base . e l e m e n t s [ [ i ] ] ) }

f i t t e d . f u n c <− f i t t e d . f u n c+n e w f i t t e d
r e s i d u a l s . f u n c <− ampl . t s− f i t t e d . f u n c
base . e l e m e n t s [ [ i ] ] <− c o e f ( base . e l e m e n t s [ [ i ] ] )
y <− r e s i d u a l s . f u n c

} # end f o r−l o o p r e m a i n s
} e l s e { # i f ( l e n g t h ( r e m a i n s )>0)

b r e a k }
}# end e l s e f o r means g r e a t e r 0
}# end r e p e a t f o r r e m a i n s

r e t u r n ( l i s t ( b a s e s=base . e l e m e n t s , f i t t e d=f i t t e d . f u n c ,
r e s i d u a l s=r e s i d u a l s . f u n c , f a i l s =f a i l e d ) )

}

individual.profiles
This function is just a wrapper to apply the previous function to all amplitudes in
all experiments
i n d i v i d u a l . p r o f i l e s <− f u n c t i o n ( data , s t a r t p a r , r e l f r e q =1, pr .

t o l e r=c ( 1 0 ˆ (−3 ) , 0 . 5 ) , num . t e s t s = 5 , . . . ) {
r e q u i r e ( n l s )
mu . gen <− s t a r t p a r $ m u . gen
s t a r t p a r <− s t a r t p a r $ j u m p s . data
p r o f i l e s <− l i s t ( )
f a i l s <− l i s t ( )
f o r ( i i n 1 : l e n g t h ( data ) ){

p r o f i l e s [ [ i ] ] <− l i s t ( )
f a i l s [ [ i ]]<− l i s t ( )
d <− dim ( data [ [ i ] ] ) [ 2 ]
d e p t h s <− data [ [ i ] ] [ , d ]
f o r ( j i n 1 : ( d−1)){

p r o f i l e s [ [ i ] ] [ [ j ] ] <− p r o f i l i n g ( data [ [ i ] ] [ , j ]−mu . gen [ j
] , d e p t h s , s t a r t p a r [ [ i ] ] $min . jumps [ [ j ] ] , t o l e r=pr . t o l e r
, numtests=num . t e s t s , . . . )

p r o f i l e s [ [ i ] ] [ [ j ] ] $ f i t t e d <− p r o f i l e s [ [ i ] ] [ [ j ] ] $ f i t t e d+
mu . gen [ j ]

i f ( l e n g t h ( p r o f i l e s [ [ i ] ] [ [ j ] ] $ f a i l s ) ! = 0 ) f a i l s [ [ i ] ] [ [ j
] ] <− p r o f i l e s [ [ i ] ] [ [ j ] ] $ f a i l s

p r i n t ( c ( i , j , p r o f i l e s [ [ i ] ] [ [ j ] ] $ f a i l s ) )
} #end f o r−l o o p i n f r e q b a n d

} #end f o r−l o o p data
r e t u r n ( l i s t ( p r o f i l e s=p r o f i l e s , f a i l s = f a i l s ) )}
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C.1 General Functions for the Construction of Designed
Simulations

The following functions are wrapper functions to execute a simulation for which
functions for the construction of the data, the evaluation and a report are given.

build.data
This function needs as input the name of the function which generates the determin-
istic part of the data, fix .func, the name of the function that generates the random
part of the data, rand.func, and a function to assemble the data from the parts con-
structed in these two steps, concat.func. Additionally it needs an experimental design
matrix, plan, the number of parameters for the deterministic part and possibly the
number of parameters common to random and deterministic part, e.g. number of
observations, etc..
b u i l d . data <− f u n c t i o n ( p l a n , s im . f u n c= l i s t ( f i x . f u n c=” i d ” , rand .

f u n c=”rnorm ” ) , c o n c a t . f u n c =”+”,n . f i x . param =1,common=0,n . r e p
, s im . name=” t e s t ”){

i f ( l e n g t h ( s im . f u n c )==2){
i f ( s im . f u n c [ [ 1 ] ] ! = ” i d ”){ # I f f i x e d i s t he i d e n t y j u s t do

n o t h i n g ,
# e l s e a p p l y f i x e d to

a p p r o p r i a t e p a r a m e t e r s
f i x . f u n c t <− e v a l ( p a r s e ( t e x t=sim . f u n c [ [ 1 ] ] ) )
}

# d e f i n e f u n c t i o n to g e n e r a t e random p a r t
rand . f u n c t <− e v a l ( p a r s e ( t e x t=sim . f u n c [ [ 2 ] ] ) )
# f u n c t i o n to add e r r o r to f i x e d
c o n c a t <− e v a l ( p a r s e ( t e x t=c o n c a t . f u n c ) )
K <− dim ( p l a n ) [ 2 ]
#
# No random e f f e c t s :
i f ( (K−n . f i x . param==0)&(common==0)){ r e t u r n ( f i x . p a r t )}

#
# C o n c a t e n a t i n g random and f i x e d p a r t f o r each

s i m a u l a t i o n e x p e r i m e n t
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#
f o r ( k i n 1 : dim ( p l a n ) [ 1 ] ) {

i f ( s im . f u n c [ [ 1 ] ] ! = ” i d ” ){ f i x . p a r t <− f i x . f u n c t ( as .
numer ic ( p l a n [ k , 1 : n . f i x . param ] ) ) }

# Some p a r a m e t e r s may e f f e c t f i x e d a n d random p a r t ,
# e . g . l e n g t h o f t ime s e r i e s
i f ( (K−n . f i x . param==0)&(common==1)){

rand . p a r t <− rand . f u n c t ( p l a n [ k ,K ] , N=n . r e p )} e l s e
{

i f ( (K−n . f i x . param==1)&(common==0)){
rand . p a r t <− rand . f u n c t ( p l a n [ k ,K ] , N=n . r e p )

} e l s e {
rand . p a r t <− rand . f u n c t ( p l a n [ k , ( n . f i x . param−common+1):K

] , N=n . r e p )
}}

exp . data <− l i s t ( param=p l a n [ k , ] , data=c o n c a t ( f i x . p a r t ,
rand . p a r t ) )

s a v e ( exp . data , f i l e =p a s t e (” exp−”,k ,”−”, s im . name , ” . Robj ” ,
sep =””))}

# r e t u r n ( exp . data )
} e l s e { r e t u r n ( p r i n t (” P l e a s e t r y to a g g r e g a t e your f i x e d p a r t

o r random p a r t \ n g e n e r a t i o n to one f u n c t i o n each and
implement f u r t h e r s t r u c t u r e \ n by u s i n g th e
c o n c a t e n a t i n g f u n c t i o n ” ) )

}
}

exec.evaluation
As the name suggests exec. evaluation applies a given evaluation to the data con-
structed by build .data, and carries out reports on each single experiment, and pos-
sibly on results from all experiments.
e x e c . e v a l u a t i o n <− f u n c t i o n ( f i r s t =1, l a s t =0, gen . e v a l , r e p o r t .

f u n c , s im . name=” t e s t ” , g e s r e p f u n c=NULL , . . . ) {
i f ( l a s t ==0){

f i l e s <− system (” l s exp−∗”, i n t e r n=TRUE)
l a s t <− max ( as . numer ic ( u n l i s t ( l a p p l y ( f i l e s , f u n c t i o n ( t x t ){

r e t u r n ( u n l i s t ( s t r s p l i t ( t x t , s p l i t = ”−” ) ) [ 2 ] )} ) ) ) )
}
e v a l u a t i o n<− e v a l ( p a r s e ( t e x t=gen . e v a l ) )
r e p o r t <− e v a l ( p a r s e ( t e x t=r e p o r t . f u n c ) )
g e s r e p <− l i s t ( )
f o r ( k i n f i r s t : l a s t ){

l o a d ( f i l e =p a s t e (” exp−”,k ,”−”, s im . name , ” . Robj ” , sep =””))
r e s u l t s <− e v a l u a t i o n ( exp . data , . . . )

124



C Programs for the Simulations

s a v e ( r e s u l t s , f i l e =p a s t e (” r e s−”,k ,”−”, s im . name , ” . Robj ” ,
sep =””))

r e p <− r e p o r t ( r e s u l t s , f i l e =p a s t e (” r e p−”,k ,”−”, s im . name
, ” . t e x ” , sep =””), s im . name , k , l a s t )

s a v e ( r e p , f i l e =p a s t e (” r e p−”,k ,”−”, s im . name , ” . Robj ” , sep
=””))

g e s r e p [ [ k ] ] <− r e p
i f ( k==1){ system ( p a s t e (” c a t r e p−”,k ,”−”, s im . name , ” . t e x

> r e p−ges−”, s im . name , ” t e x ” , sep =””))} e l s e { system (
p a s t e (” c a t r e p−”,k ,”−”, s im . name , ” . t e x >> r e p−ges−”,
s im . name , ” . t e x ” , sep =””))}

}
i f ( ! i s . n u l l ( g e s r e p f u n c ) ){

g e s r e p f u n c <− e v a l ( p a r s e ( t e x t=g e s r e p f u n c ) )
g e s r e p <− g e s r e p f u n c ( g e s r e p , g e s f i l e=p a s t e (” r e p−ges−”, s im .

name , ” . t e x ” , sep =””))
s a v e ( g e s r e p , f i l e =p a s t e (” r e s−ges−”, s im . name , ” . Robj ” , sep

=””))
}
i n v i s i b l e ( g e s r e p )

}

transform.var
This function carries out arbitrary transformations defined as character strings for
each variable in the experimental design plan.

t r a n s f o r m . v a r <− f u n c t i o n ( p l a n , t r a n s f ){
i f ( dim ( p l a n )[2]== l e n g t h ( t r a n s f ) ){

f o r ( i i n 1 : l e n g t h ( t r a n s f ) ){
i f ( t r a n s f [ i ] !=” i d ”){

x <− p l a n [ , i ]
# Conver t c h a r a c t e r s t r i n g i n t o f u n c t i o n and a p p l y

to x
x <− e v a l ( p a r s e ( t e x t=t r a n s f [ i ] ) )
p l a n [ , i ]<−x

}
}
r e t u r n ( p l a n )

} e l s e {warn ing (”No t r a n s f o r m a t i o n e x e c u t e d , i f you do not
want to t r a n s f o r m c e r t a i n v a r i a b l e s s a v e i d i n t o t he
v e c t o r t r a n s f a t t he a p p r o p r i a t e p l a c e ”)}

}
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determine.plan
Again a wrapper function calling functions to construct the experimental design and
transform. var to transform the variables as needed. The functions for the construction
of the designs are not documented here.
d e t e r m i n e . p l a n <− f u n c t i o n ( p l a n . t y p e=” f a c t o r i a l ” , v a r . i n t s=

m a t r i x ( c ( 0 , 0 , 1 , 1 ) , n c o l =2), v a r . names=c (” x ” , ” y ” ) , t r a n s f=NULL
, des . i n f o=NULL , f i l e n a m e=NULL , coded . f i l e =NULL , nexp = 2 0 , . . . ) {

i f ( i s . n u l l ( des . i n f o )&&p l a n . t y p e !=” c o f f e e−house ”){
n v ar <− dim ( v a r . i n t s ) [ 1 ]
i f ( l e n g t h ( v a r . names )!= nv ar ){ r e t u r n (” P l e a s e e n t e r a name and

an i n t e r v a l f o r each v a r i a b l e ”)} e l s e {
des . i n f o<−data . f rame ( vnames=v a r . names , r e i n=r e p ( 1 , n v ar ) ,

varmin=v a r . i n t s [ , 1 ] , varmax=v a r . i n t s [ , 2 ] )
}} e l s e { n v ar <− dim ( des . i n f o ) [ 1 ] }
i f ( p l a n . t y p e==” f a c t o r i a l ”){ p l a n <− F F f r o m I n fo ( des . i n f o

, . . . ) }
i f ( p l a n . t y p e==”p l a c k e t t−burman ”){ p l a n <− PBFromDesignInfo (

des . i n f o )}
i f ( p l a n . t y p e==”d−o p t i m a l ”){ r e t u r n ( p r i n t (” Not implemented

y e t ” ) )}
i f ( p l a n . t y p e==”c e n t r a l−compos i t ”){ p l a n <− CCfromInfo ( des .

i n f o , . . . ) }
i f ( p l a n . t y p e==”c o f f e e−house ”){

p l a n <− c o f f e e h o u s e d e s i g n ( v a r i n t s=v a r . i n t s ,N=nexp , . . . ) }
i f ( ! i s . n u l l ( coded . f i l e ) ){ w r i t e . t a b l e ( p l a n , f i l e =coded . f i l e ,

quote=FALSE)}
i f ( ! i s . n u l l ( t r a n s f ) ){ p l a n <− t r a n s f o r m . v a r ( p l a n , t r a n s f )}
i f ( ! i s . n u l l ( f i l e n a m e ) ){ w r i t e . t a b l e ( p l a n , f i l e =f i l e n a m e , quote

=FALSE)}
r e t u r n ( i n v i s i b l e ( p l a n ) )

}

deviat.normal
This function measures the distance of the empirical quantiles to the corresponding
theoretical quantiles of the normal distribution.
d e v i a t . normal<−f u n c t i o n ( x , t y p e=” e u c l i d ”){

qu . normal<−qnorm ( ( 1 : l e n g t h ( x ) ) / ( l e n g t h ( x )+1))
x <− s o r t ( ( x−mean ( x , na . rm=TRUE) ) / sd ( x , na . rm=TRUE) )
r e s t <− x−qu . normal
i f ( t y p e==”e u c l i d ”){

r e t u r n ( s q r t ( sum ( r e s t ˆ 2 ) ) )
}
i f ( t y p e==”max”){

r e t u r n ( max ( abs ( r e s t ) ) )}
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i f ( t y p e==”manhattan ”){
r e t u r n ( sum ( abs ( r e s t ) ) )}

}

C.2 Functions for the Simulation with Fixed Amplitudes

In this section all functions used to construct the data for the simulation with time
stationary influences on the amplitudes and its evaluation are presented.

Deterministic Part of the Data
The deterministic part is generated in this case by two functions. The first, harm.model,
constructs from given amplitudes amp, frequencies frequ (or a two-column matrix
freqamp), and number of observations a harmonic process. The second, festerteil,
calculates the linear relationship of the amplitudes to the influences x and then uses
harm.model to construct the set of observations for this experiment.
harm . model<−f u n c t i o n (amp=15, l e n g =1024, f r e q u =127/1024, phase =1,

freqamp=NULL){
t<−1: l e n g
i f ( i s . n u l l ( freqamp ) ){ f reqamp <− c b i n d ( f r e q u , amp)}
harmfkt<−f u n c t i o n ( ampfr ){

x t<−ampfr [ 2 ] ∗ cos (2∗ p i ∗ampfr [ 1 ] ∗ t+phase )}
ht<− a p p l y ( freqamp , 1 , harmfkt ) # d e t e r m i n e harmonic f u n c t i o n

f o r a l l
# f r e q u e n c i e s and a l l t

i f ( i s . m a t r i x ( ht ) ) { ht <− a p p l y ( ht , 1 , sum )} # add up o v e r
f r e q u e n c i e s

r e t u r n ( ht )
}
f e s t e r t e i l <− f u n c t i o n ( param ){

n r e l f r e q <− param [ 1 ]
f o u r i e r <− param [ 2 ]
d i s t f r e q s <− param [ 3 ]
r a t e <− param [ 4 ]
# C o n s t r u c t i n g t he f u l l f a c t o r i a l d e s i g n f o r the l i n e a r

model o f t he t ime
# s t a t i o n a r y i n f l u e n c e s
v e r s <− as . m a t r i x ( expand . g r i d ( l i s t ( 0 : 1 , 0 : 1 , 0 : 1 ) ) )
v e r s <− v e r s%∗%c ( 3 , 4 , . 0 0 1 )
v e r s <− v e r s +2
# C o n s t r u c t t he f r e q u e n c i e s from the p a r a m e t e r s
i f ( n r e l f r e q ==1){

f r e q s <− (5 + f o u r i e r )/ r a t e
} e l s e {
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f r e q s <− ( c (5,5+ d i s t f r e q s ∗ ( 1 : ( n r e l f r e q −1))) + f o u r i e r )/
r a t e

}
# Apply harm . model to the v e c t o r o f a m p l i t u d e s v e r s
data <− data . f rame ( l a p p l y ( v e r s , harm . model , l e n g=r a t e , f r e q u=

f r e q s , freqamp=NULL ) )
co lnames ( data ) <− p a s t e (”V ” , 1 : 8 , sep =””)
r e t u r n ( data )

}

Calculating and Adding the Random Part
The functions zufallsteil and zusammen simply add normal errors to the data con-
structed before.
z u f a l l s t e i l <− f u n c t i o n ( param ,N){

r a t e <− as . numer ic ( param [ 1 ] )
StoN <− as . numer ic ( param [ 2 ] )
sd <− 2/StoN
x <− r e p ( r a t e , 8∗N)
rand <− l a p p l y ( x , rnorm , sd=sd )
rand <− as . data . f rame ( rand )
rand <− l a p p l y ( 1 :N, f u n c t i o n ( k ){ r e t u r n ( rand [ , ( ( k−1)∗8+1):(8∗

k ) ] ) } )
r e t u r n ( rand )

}
zusammen <− f u n c t i o n ( f e s t , z u f a e l l i g ){

zusammen <− l a p p l y ( z u f a e l l i g , f u n c t i o n ( x ){ r e t u r n ( t ( x+f e s t
) )} )

r e t u r n ( zusammen )
}

Evaluation of the Data
The function ampl.lm calculates relevant frequencies if they are not specified by the
user and then calculates regressions on the time stationary amplitudes influenced by
outer variables x.
ampl . lm <− f u n c t i o n ( data , i n f l u e n c e=NULL , f r e q s=NULL , l s e r=NULL ,

f o r m u l a=NULL , s t e p w i s e=FALSE , s i g n . l e v e l = . 0 5 , . . . ) {
i f ( i s . n u l l ( i n f l u e n c e ) ){

i f ( i s . n u l l ( l s e r ) ){ r e t u r n (” P l e a s e s p e c i f y l e n g t h o f s e r i e s
! ” )}

i n f l u e n c e<−as . data . f rame ( data [ , ( l s e r +1): dim ( data ) [ 2 ] ] )
data<−data [ , 1 : l s e r ]
}

i f ( i s . n u l l ( l s e r ) ){ l s e r<−dim ( data ) [ 2 ] }
i f ( i s . n u l l ( f r e q s ) ){
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# Check f o r s i g n i f i c a n t f r e q u e n c i e s and i f t h e y a r e e q u a l
f o r a l l

# o b s e r v a t i o n s
s i g n a m p l<− a p p l y ( data , 1 , spectrum , p l o t=FALSE)
twosigma <− 1/ l o g ( 2 )∗median ( u n l i s t ( l a p p l y ( s i g n a m p l ,

f u n c t i o n ( x ) r e t u r n ( x $ s p e c ) ) ) )
c r i t . v a l <− qexp (1− s i g n . l e v e l , r a t e =1/twosigma )
s i g n f r e q s <− u n l i s t ( l a p p l y ( s i g n a m p l , f u n c t i o n ( x ){ r e t u r n (

which ( x $ s p e c>c r i t . v a l ) ) } ) )
tab . f r e q s <− t a b l e ( s i g n f r e q s )
r e l . f r e q s <− as . numer ic ( rownames ( tab . f r e q s ) [ which ( tab .

f r e q s==dim ( data ) [ 1 ] ) ] )
i f ( l e n g t h ( r e l . f r e q s )==0){ r e t u r n (”No f r e q u e n c i e s found to

a p p l y lm model to ! ” )
} e l s e {

r e l . amp<−u n l i s t ( l a p p l y ( s i g n a m p l , f u n c t i o n ( x ){ r e t u r n ( x $ s p e c
[ r e l . f r e q s ] ) } ) )

r e l . amp <− m a t r i x ( r e l . amp , nrow=l e n g t h ( r e l . f r e q s ) )
r e l . f r e q s <− s i g n a m p l [ [ 1 ] ] $ f r e q [ r e l . f r e q s ]
}
} e l s e { # I f f r e q u e n c i e s a r e g i v e n , check to which f o u r i e r−

f r e q u e n c i e s t h e y c o r r e s p o n d
r e a l . f r e q s <− r e a l . s i g n i f . f r e q ( l e n=l s e r , f r e q u=f r e q s )
# Determine t he c o r r e s p o n d i n g a m p l i t u d e s
r e l . f r e q s<− r e a l . f r e q s [ , 1 ]
r e l . ampl <− a p p l y ( data , 1 , f u n c t i o n ( x ){ r e t u r n ( spectrum ( x ,

p l o t=F ) $spec )} )
twosigma <− 1/ l o g ( 2 )∗median ( as . v e c t o r ( r e l . ampl ) )
r e l . amp <− r e l . ampl [ r e l . f r e q s , ]

}
r e l . amp <− s q r t ( ( r e l . amp−twosigma )/ l s e r )
i f ( i s . n u l l ( dim ( r e l . amp ) ) ){

s t a r t l m s <− NULL
i f ( i s . v e c t o r ( i n f l u e n c e ) ){

s t a r t l m s <− lm ( r e l . amp˜ i n f l u e n c e )
} e l s e {

s t a r t l m s <− lm ( r e l . amp ˜ . , i n f l u e n c e )}
i f ( s t e p w i s e==TRUE){
upper . f o r m u l a <− p a s t e ( u n l i s t ( l a p p l y ( names ( i n f l u e n c e ) ,

f u n c t i o n ( x ){ r e t u r n ( p a s t e (” I ( ” , x , ” ˆ 2 ) ” , sep = ” ” ) )} ) ) ,
c o l l a p s e =”+”)

upper . f o r m u l a <− p a s t e (” x ˜ ” , upper . f o r m u l a ,”+”, p a s t e ( names
( i n f l u e n c e ) , c o l l a p s e =”∗”), sep =””)

upper . f o r m u l a <− f o r m u l a ( upper . f o r m u l a , data=i n f l u e n c e )
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endlms <− s t e p ( s t a r t l m s , scope=upper . f o r m u l a )
r e t u r n ( l i s t ( l i n m o d e l s=endlms , d i f f r e l t o s i g n=d i f f . found . r e l

, r e l . f r e q s=r e l . f r e q s ) , v a r e p s=twosigma /(2∗ l s e r ) )
} e l s e {
r e t u r n ( l i s t ( l i n m o d e l s=s t a r t l m s , r e l . f r e q s=r e l . f r e q s , v a r e p s

=twosigma /(2∗ l s e r ) ) )
}

} e l s e {
r e l . amp<−t ( r e l . amp)
i f ( i s . n u l l ( f o r m u l a ) ){

s t a r t l m s <− NULL
i f ( i s . v e c t o r ( i n f l u e n c e ) ){

c a l c l m <− f u n c t i o n ( x , i n f l ){ r e t u r n ( lm ( x˜ i n f l ) )}
} e l s e {

c a l c l m <− f u n c t i o n ( x , i n f l ){ r e t u r n ( lm ( x ˜ . , i n f l ) )}
}
s t a r t l m s <− a p p l y ( r e l . amp , 2 , c a l c l m , i n f l =i n f l u e n c e )

} e l s e {
i f ( ! i s . f o r m u l a ( f o r m u l a ) ){ f o r m u l a <− as . f o r m u l a ( f o r m u l a

)}
c a l c l m <− f u n c t i o n ( x , i n f l ){ r e t u r n ( lm ( f o r m u l a , i n f l ) )}

s t a r t l m s <− a p p l y ( r e l . amp , 2 , c a l c l m , i n f l =i n f l u e n c e )
}
i f ( s t e p w i s e==TRUE){
upper . f o r m u l a <− p a s t e ( u n l i s t ( l a p p l y ( names ( i n f l u e n c e ) ,

f u n c t i o n ( x ){ r e t u r n ( p a s t e (” I ( ” , x , ” ˆ 2 ) ” , sep = ” ” ) )} ) ) ,
c o l l a p s e =”+”)

upper . f o r m u l a <− p a s t e (” x ˜ ” , upper . f o r m u l a ,”+”, p a s t e ( names
( i n f l u e n c e ) , c o l l a p s e =”∗”), sep =””)

i n f l <− i n f l u e n c e
upper . f o r m u l a <− f o r m u l a ( upper . f o r m u l a , data= i n f l )
endlms <− l a p p l y ( s t a r t l m s , s t e p , scope=upper . f o r m u l a )
r e t u r n ( l i s t ( l i n m o d e l s=endlms , r e l . f r e q s=r e l . f r e q s , v a r e p s=

twosigma /(2∗ l s e r ) ) )
} e l s e {
r e t u r n ( l i s t ( l i n m o d e l s=s t a r t l m s , r e l . f r e q s=r e l . f r e q s , v a r e p s

=twosigma /(2∗ l s e r ) ) )
}

}
}
The next function is the evaluation specific for the simulation on stationary ampli-
tudes.
a u s w e r t <− f u n c t i o n ( daten , geg . f r e q s=TRUE){

param <− daten$param
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daten <− d a t e n $ d a t a
v e r s <− as . data . f rame ( expand . g r i d ( l i s t ( 0 : 1 , 0 : 1 , 0 : 1 ) ) )
i f ( geg . f r e q s ){

n r e l f r e q <− as . numer ic ( param [ 1 ] )
f o u r i e r <− as . numer ic ( param [ 2 ] )
d i s t f r e q s <− as . numer ic ( param [ 3 ] )
r a t e <− as . numer ic ( param [ 4 ] )
# C a l c u l a t e t r u e f r e q u e n c i e s
i f ( n r e l f r e q ==1){

f r e q s <− (5 + f o u r i e r )/ r a t e
} e l s e {

f r e q s <− ( c (5,5+ d i s t f r e q s ∗ ( 1 : ( n r e l f r e q −1))) + f o u r i e r )/
r a t e

}
# C a l c u l a t e t he l i n e a r models on the a m p l i t u d e s
e r g 1 <− l a p p l y ( daten , ampl . lm , f r e q s=f r e q s , i n f l u e n c e=v e r s )
# E x t r a c t t he e s t i m a t e d v a r i a n c e s
e r g 4 <− u n l i s t ( l a p p l y ( e r g 1 , f u n c t i o n ( e r g s ) r e t u r n (

e r g s $ v a r e p s ) )
# E x t r a c t i n g t he r e s i d u a l s and c h e c k i n g f o r d i s t a n c e to

n o r m a l i t y
e r g 2 <− u n l i s t ( l a p p l y ( e r g 1 , f u n c t i o n ( e r g s ){

l l m s <− e r g s $ l i n m o d e l s
i f ( ( n r e l f r e q >1) |( f o u r i e r !=0)){
abstnorm <− u n l i s t ( l a p p l y ( l l m s , f u n c t i o n ( lms ){

r e t u r n ( d e v i a t . normal ( l m s $ r e s i d u a l s ) )} ) )} e l s e {
abstnorm <− d e v i a t . normal ( l l m s $ r e s i d u a l s )}

r e t u r n ( abstnorm )} ) )
# E x t r a c t i n g c o e f f i c i e n t s
e r g 3 <− as . data . f rame ( l a p p l y ( e r g 1 , f u n c t i o n ( x ){

models <− x $ l i n m o d e l s
i f ( ( n r e l f r e q >1) |( f o u r i e r !=0)){
c o e f f s <− data . f rame ( l a p p l y ( models , f u n c t i o n ( lms ) r e t u r n

( l m s $ c o e f f i c i e n t s ) ) )
r e t u r n ( c o e f f s )} e l s e {

c o e f f s <− x $ l i n m o d e l s
c o e f f s <− c o e f f s $ c o e f f i c i e n t s
r e t u r n ( c o e f f s )}} ) )

i f ( n r e l f r e q ==1){
i f ( f o u r i e r !=0){

K <− dim ( e r g 3 )[2]%/%2
e r g 3 <− l i s t ( unten=t ( as . m a t r i x ( e r g 3 [ , 2 ∗ ( 1 : K)−1 ] ) ) ,

oben=t ( as . m a t r i x ( e r g 3 [ , 2 ∗ ( 1 : K ) ] ) ) )
} e l s e {
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e r g 3 <− t ( as . m a t r i x ( e r g 3 ) )
}

} e l s e {
i f ( f o u r i e r ==0){

e r g <− l a p p l y ( 1 : n r e l f r e q , f u n c t i o n ( k ){ r e t u r n ( t ( as .
m a t r i x ( e r g 3 [ , ( 1 : dim ( e r g 3 )[2])%% n r e l f r e q ==(k
−1 ) ] ) ) )} )

e r g 3 <− e r g
} e l s e {

unten <− e r g 3 [ , ( 1 : dim ( e r g 3 )[2])%%2 == 0]
oben <− e r g 3 [ , ( 1 : dim ( e r g 3 )[2])%%2 == 1]
unten <− l a p p l y ( 1 : n r e l f r e q , f u n c t i o n ( k ){ r e t u r n ( t ( as .

m a t r i x ( unten [ , ( 1 : dim ( unten )[2])%% n r e l f r e q ==(k
−1 ) ] ) ) )} )

oben <− l a p p l y ( 1 : n r e l f r e q , f u n c t i o n ( k ){ r e t u r n ( t ( as .
m a t r i x ( oben [ , ( 1 : dim ( oben )[2])%% n r e l f r e q ==(k
−1 ) ] ) ) )} )

e r g 3 <− l i s t ( unten=unten , oben=oben )
}

}
r e t u r n ( l i s t ( ampl . lms=e r g 1 , a b s t . norm=e r g 2 , c o e f f s=e r g 3 ,

v a r e p s=e r g 4 ) )
} e l s e {

e r g 1 <− l a p p l y ( daten , ampl . lm , i n f l u e n c e=v e r s )
e r g 4 <− u n l i s t ( l a p p l y ( e r g 1 , f u n c t i o n ( e r g s ) r e t u r n (

e r g s $ v a r e p s ) ) )
e r g 2 <− u n l i s t ( l a p p l y ( e r g 1 , f u n c t i o n ( e r g s ){

l l m s <− e r g s $ l i n m o d e l s
abstnorm <− u n l i s t ( l a p p l y ( l l m s , f u n c t i o n ( lms ){ i f ( a t t r (

lms , ” c l a s s ”)==”lm ”){ r e t u r n ( d e v i a t . normal (
l m s $ r e s i d u a l s ) )} e l s e {NaN}} ) )

r e t u r n ( abstnorm )} ) )
r e t u r n ( l i s t ( ampl . lms=e r g 1 , a b s t . norm=e r g 2 , v a r e p s=e r g 4 ) )

}
}

C.3 Functions for the Simulation with Varying Amplitudes

In this section all functions for the generation of harmonic processes with time varying
amplitudes and the corresponding evalution functions are documented.
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C.3.1 Generating the Time Series

harm.model.tdep
is the function which constructs a harmonic process from a given set of frequencies
and for each frequency a function by which the amplitude varies.
harm . model . tdep<−f u n c t i o n ( gen . l e n g =1024, f r e q u =17/256,amp=” s i n

(200∗ t ) ” , freqamp=NULL){
t<−1:gen . l e n g
i f ( l e n g t h (amp)==l e n g t h ( f r e q u ) ){

i f ( i s . n u l l ( freqamp ) ){ f reqamp <− data . f rame ( f r e q u , amp)}
harmfkt<−f u n c t i o n ( ampfr ){

f r e q <− as . numer ic ( ampfr [ 1 ] )
# Change t e x t i n t o f u n c t i o n
amp <− e v a l ( p a r s e ( t e x t=ampfr [ 2 ] ) )
x t<−amp∗( s i n (2∗ p i ∗ f r e q ∗ t )+ cos (2∗ p i ∗ f r e q ∗ t ) )}

ht<− a p p l y ( freqamp , 1 , harmfkt ) # d e t e r m i n e harmonic
f u n c t i o n f o r a l l

# f r e q u e n c i e s and a l l
t

i f ( i s . m a t r i x ( ht ) ) { ht <− a p p l y ( ht , 1 , sum )} # add up o v e r
f r e q u e n c i e s

} e l s e {
p r i n t (” Warning : f r e q u and amp must have t he same l e n g t h ”)
r e t u r n (” E r r o r ”)

}
r e t u r n ( ht )

}

fixedvarampl
is the specific function for the simulation on varying amplitudes.
f i x e d v a r a m p m o d e l <− f u n c t i o n ( para ){

n r e l f r e q <− para [ 1 ]
f o u r i e r <− para [ 2 ]
d i s t f r e q s <− para [ 3 ]
model <− para [ 4 ]
r a t e <− para [ 5 ]
i f ( model==1){
# C o n s t r u c t i n g t he t r u e r e l e v a n t f r e q u e n c i e s

i f ( n r e l f r e q ==1){
f r e q s <− (5+ f o u r i e r )/ r a t e

} e l s e {
f r e q s <− ( c (5,5+ d i s t f r e q s ∗ ( 2 : n r e l f r e q ))+ f o u r i e r )/ r a t e

}
# C a l c u l a t i n g t he harmonic p r o c e s s
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data <− harm . model . tdep (10∗ r a t e , f r e q s , amp=r e p (”2+.001∗ t ” ,
n r e l f r e q ) )

} e l s e {
# C o n s t r u c t i n g t he t r u e r e l e v a n t f r e q u e n c i e s

i f ( n r e l f r e q ==1){
f r e q s <− (5+ f o u r i e r )/ r a t e
ampl func <− p a s t e (”2+2/(1+ exp ((− t +”, as . c h a r a c t e r (5∗ r a t e

) , ” ) / ” , as . c h a r a c t e r ( ( r a t e ) ) , ” ) ) ” , sep =””)
} e l s e {

f r e q s <− ( c (5,5+ d i s t f r e q s ∗ ( 2 : n r e l f r e q ))+ f o u r i e r )/ r a t e
ampl func <− p a s t e (”2+2/(1+ exp ((− t +”, as . c h a r a c t e r ( ( 2 + ( 1 :

n r e l f r e q ) )∗ r a t e ) , ” ) / ” , as . c h a r a c t e r ( ( 1 / ( 1 : n r e l f r e q )∗
r a t e ) ) , ” ) ) ” , sep =””)

}
# C a l c u l a t i n g t he harmonic p r o c e s s

data <− harm . model . tdep (10∗ r a t e , f r e q s , ampl func )
}
r e t u r n ( data )

}

errprocess
returns either a normal white noise process or an AR(1) process with autocorrlation
ρ = 0.3. add. error is the concatenating function in this simulation.
e r r p r o c e s s <− f u n c t i o n ( para ,N){

para <− as . numer ic ( para )
r a t e <− para [ 1 ]
StoN <− para [ 2 ]
AR <− para [ 3 ]
n <− 10∗ r a t e
data <− m a t r i x ( rnorm ( as . numer ic (N∗n ) , 0 , as . numer ic (2/ StoN ) ) ,

n c o l=N)
i f (AR!=1){

data <− 0.3∗ r b i n d ( r e p ( 0 ,N ) , data [−1, ] )+ data
}
r e t u r n ( data )

}

add . e r r o r <− f u n c t i o n ( f i x e d , e r r ){
r e t u r n ( f i x e d+e r r )
}
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C.3.2 Evaluation of the Data

varampl.eval
is the function which calculates the regressions linear or nonlinear on the varying
amplitudes.
varampl . e v a l <− f u n c t i o n ( data ){

# S u b r o u t i n e to be a p p l i e d to the data
a n a l y s i s <− f u n c t i o n ( ht , para ){

n o t r u e f r e q <− FALSE
ht <− m a t r i x ( ht , n c o l=para [ 5 ] , byrow=TRUE)
# C a l c u l a t e t he s p e c t r a on the p a r t s o f the t ime s e r i e s
s p e c s <− a p p l y ( ht , 1 , f u n c t i o n (X) r e t u r n ( spectrum (X , p l o t=

FALSE) $spec )
# Determine r e l e v a n t f r e q u e n c i e s f o r w h i t e n o i s e . . .
s igmahat <− 1/ l o g ( 2 )∗median ( s p e c s )
c r i t . v a l <− qexp ( . 9 5 , 1 / s igmahat )
r e l . f r e q s <− s p e c s>c r i t . v a l
r e l . f r e q s <− a p p l y ( r e l . f r e q s , 1 , sum )
r e l . f r e q s <− which ( r e l . f r e q s>5)
r e l . f r e q s . a r <− NULL
# . . . and AR ( 1 ) d i s t u r b a n c e s
i f ( para [7]==1){

c r i t . v a l <− qgamma ( . 9 5 , shape =2, s c a l e=s igmahat )
r e l . f r e q s . a r <− s p e c s>c r i t . v a l
r e l . f r e q s . a r <− a p p l y ( r e l . f r e q s . a r , 1 , sum )
r e l . f r e q s . a r <− which ( r e l . f r e q s . a r > 5)

}
# Transform t he data
s p e c s <− s q r t ( s p e c s−s igmahat )/ para [ 5 ] )
# C a l c u l a t e t r u e f r e q u e n c i e s to check found r e l e v a n t

a g a i n s t t r u e
i f ( para [1]==1){

i f ( para [2]==0) t r u e f r e q s <− 5 e l s e t r u e f r e q s <− 5:6
} e l s e {

i f ( para [2]==0) t r u e f r e q s <− c (5,5+ para [ 3 ] ∗ ( 2 : para [ 1 ] ) )
e l s e t r u e f r e q s <− c ( 5 : 6 , s o r t ( c(5+ para [ 3 ] ∗ ( 2 : para
[ 1 ] ) , 6 + para [ 3 ] ∗ ( 2 : para [ 1 ] ) ) ) )

}
i f ( a l l ( t r u e f r e q s % i n % r e l . f r e q s ) ){

i f ( ( para [1]==1)&( para [2 ]==0)) r e l a m p l <− as . v e c t o r (
s p e c s [ t r u e f r e q s , ] ) e l s e r e l a m p l <− t ( s p e c s [ t r u e f r e q s
, ] )

} e l s e {
n o t r u e f r e q <− TRUE

135



C Programs for the Simulations

r e l a m p l <− t ( s p e c s [ r e l . f r e q s , ] )
}
# Two s u b r o u t i n e s f o r the r e g r e s s i o n s
l i n f i t <− f u n c t i o n ( y ){

r e s <− lm ( y˜ c ( 1 : 1 0 ) )
r e t u r n ( r e s )

}
n o n l i n f i t <− f u n c t i o n ( y , r a t e=para [ 5 ] ) {

t <− 1:10
s t a r t d <− rnorm ( 1 0 , 2 , 1 )
i <− 1
r e p e a t {

# Avoid f i t t i n g prob lems by t r y i n g s e v e r a l s t a r t
p a r a m e t e r s

r e s <− t r y ( n l s ( y ˜b+a/(1+ exp ((− t+m)/ d ) ) , s t a r t=c ( a=max (
y)−min ( y ) , b=min ( y ) ,m=5,d=s t a r t d [ i ] ) ) , s i l e n t=TRUE)

i f ( i s . c h a r a c t e r ( r e s )& i<=9){
i <− i +1

} e l s e {
b r e a k

}
}
r e t u r n ( r e s )

}
r e l v e c <− FALSE
i f ( i s . v e c t o r ( r e l a m p l ) ){ r e l v e c <− TRUE
} e l s e {
i f ( ( dim ( r e l a m p l ) [ 1 ] = = 1 ) | ( dim ( r e l a m p l ) [ 2 ] = = 1 ) ) r e l v e c <−

TRUE
}
i f ( para [4]==1){

i f ( r e l v e c ){
e s t v a r a m p l <− l i n f i t ( as . numer ic ( r e l a m p l ) )

} e l s e {
e s t v a r a m p l <− a p p l y ( r e l a m p l , 2 , l i n f i t )

}
} e l s e {

i f ( r e l v e c ){
e s t v a r a m p l <− n o n l i n f i t ( as . numer ic ( r e l a m p l ) )

} e l s e {
e s t v a r a m p l <− a p p l y ( r e l a m p l , 2 , n o n l i n f i t )

}
}
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r e t u r n ( l i s t ( models=e s t v a r a m p l , r e l f r e q s=r e l . f r e q s / para [ 5 ] ,
r e l f r e q s a r = r e l . f r e q s . a r / para [ 5 ] , e s t s i g m a=s igmahat ,
n o t r u e f r e q=n o t r u e f r e q ) )

}
r e s u l t <− a p p l y ( d a t a $ d a t a , 2 , a n a l y s i s , para=as . numer ic (

data$param ) )
r e t u r n ( l i s t ( r e s u l t s=r e s u l t , para=data$param ) )

}
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