Design and Evaluation of
Job Scheduling Strategies
for Grid Computing

Doctorial Thesis
Ramin Yahyapour

Genehmigte Dissertation zur
Erlangung des akademischen Grades eines Doktors an der
Fakultéat fiir Elektrotechnik und Informationstechnik
Universitat Dortmund

Computer Engineering Institute
Lehrstuhl fiir Datenverarbeitungssysteme

Acknowledgements

It is my pleasure to thank all the people who supported me to make this thesis
possible. In particular, i would like to express my thanks to my advisor, Prof. Dr.
Uwe Schwiegelshohn, who supervised my research work and encouraged me every
time. I also want to thank Prof. Dr. Burkhard Monien for his helpful support.

Further, i wish to thank all members of the Computer Engineering Institute at
the University of Dortmund for providing a pleasant and always helpful working
atmosphere. I am especially grateful to my research colleagues, Volker Hamscher,
Carsten Ernemann, and Achim Streit, with whom i had the pleasure to work with.
I am also deeply indebted to all undergraduate students who contributed to my
research work.

Finally, i have to thank my parents who supported my in every possible way with
their love, encouragement and patience. I would further like to thank Petra for her
help and patience.

1. Gutachter: Prof. Dr.-Ing. Uwe Schwiegelshohn
2. Gutachter: Prof. Dr. Burkhard Monien

Tag der Einreichung: 16. Juli 2002

Tag der Priifung: 13. November 2002

Stand vom: 20. November 2002

iii

Abstract

Grid computing is intended to offer an easy and seamless access to remote resources.
The importance of grid computing can be seen by the attention it gained recently
in research and industry support. The scheduling task of allocating these resources
automatically to user jobs is an essential part of a grid environment. In this work
we discuss the evaluation and design of different scheduling strategies. To this end,
we present a concept for the design process of such a scheduling system. The eval-
uation of scheduling algorithms for single parallel machine is done by theoretical
analysis and by simulation experiments. The theoretical approach by competitive
analysis lead to bounds for the worst-case scenarios. As we are especially interested
in the scheduling performance in a real system installation, simulations have been
applied for further evaluation. In addition to the theoretical analysis, we show that
the presented preemptive scheduling algorithm is also efficient in terms of makespan
and average response time in a real system scenario if compared to other schedul-
ing algorithms. In some of the examined scenarios the algorithm could outperform
other common algorithms such as backfilling. Based on these results, scheduling al-
gorithms for the grid environment have been developed. On one hand, these methods
base on modifications of the examined conventional scheduling strategies for single
parallel machines. On the other hand, a scheduling strategy with a market economic
approach is presented. These methods are also analyzed and compared by simula-
tions for a real workload environment. The results show that the economic approach
produces similar or even better results than the conventional strategies for common
criteria as the average weighted response time. Additionally, the economic approach
delivers several additional advantages, such as support for variable utility functions
for users and owner of resources. As a proof of concept a possible architecture of
a scheduling environment is presented, which has been used for the evaluation of
the presented algorithms. The work ends with a brief conclusion on the discussed
scheduling strategies and gives an outlook on future work.

v

Contents

1 Introduction

I Designing a Scheduling System

2 Design of a Scheduling System

2.1 Scheduling Problem
2.1.1 Single Parallel Machine
2.1.2 Machine Model oL
2.1.3 JobModel.

2.2 Design Process for a Scheduling System

2.3 Scheduling Policy

2.4 Objective Function oo

2.5 Scheduling Algorithm

2.6 Dependencies

2.7 CompariSon

2.8 Evaluation Example L 0o
2.8.1 Determination of the Objective Function
2.8.2 Examined Algorithms
2.83 Workloado
2.8.4 Evaluation Results,

2.9 Summary

IT Theoretical Evaluation

3 Overview on Theoretical Evaluation

3.1 Performance Metrics

© o o I N

11
13
14
16
21
23
24
25
25
26
29
35

36

37

vi

3.2

3.3

3.4

Background o

3.2.1 Optimal Solutions

3.2.2 Worst-Case Analysis with Approximation Factors

Fairness in Parallel Job Scheduling

3.3.1 The Algorithm

3.3.2 Theoretical Analysis

Summary

III Experimental Evaluation

4 Scheduling Simulations

4.1
4.2
4.3

The Workload Data

Analysis of the Results

Comparison to Theoretical Results

5 Grid-Scheduling

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

Multi-Site Applications

Grid Site Model
Grid Machine Model
Grid Job Model

Grid Scheduling System

Conventional Grid Algorithms

5.6.1

5.6.2 JobSharing L.

5.6.3 Multi-Site Computing
Simulation Results on Multi-Site Computing
5.7.1
5.7.2 Workload Model
5.7.3 Results

Machine Configurations

Summary

Local Job Processing

CONTENTS

CONTENTS

6 Economic Scheduling Model
6.1 Market Methods
6.1.1 Considerations on Market Methods
6.1.2 Economic Scheduling in existing systems
6.2 Economic Scheduling oo
6.3 Simulation and Evaluation 0000
6.3.1 Resource Configurations
6.3.2 Job Configurations
6.3.3 Results

6.4 Summary

IV Grid Scheduling Infrastructure

7 Grid Scheduling Implementation in NWIRE
7.1 Scheduling Considerations
7.2 Architecture of NWIRE
7.2.1 Description of the Architecture
7.2.2 Properties of the Architecture
7.3 Scheduling in NWIRE
7.3.1 Resource Request.
7.3.2 Request and Offer Description
7.3.3 Resource Determination
7.3.4 Scheduling and Allocation

T4 Summaryo
8 Conclusion

A Description Language Syntax in NWIRE

vii

99
100
100
101
102
110
110
111
112
119

121

122
123
125
125
126
127
128
129
134
134
136

138

151

Chapter 1

Introduction

The technological progress over the last decades is especially apparent in the vast
improvements in computer technology. The computing power of a single computer
increased dramatically from 1980 until 2000. Although Moore’s law has repeatedly
been considered to loose validity as physical limits are reached, it still holds very
well for several aspects in computer technology.

Nevertheless, computing power has always been a limited resource although com-
puters became significantly faster. On one hand, this is caused by new and complex
applications which just became feasible by new technology. On the other hand, many
existing applications grow in demand for computing power. For instance, simulations
get more detailed and complex; databases grow to new dimensions; the Grand Chal-
lenge problems, e.g. the human genome project, or the sophisticated computer aided
development of new drugs are becoming computational tractable. These are all ex-
amples leading to the conclusion that there was and still is an ongoing need for more
computing power.

Besides making processors - and consequently single processor computer system
- faster, the combination of processors to parallel computers is a suitable way to
achieve better performance. This makes parallel computers - leaving out special
purpose computers - the fastest machines according to common metrics such as the
installed GFlops by the LinPack benchmark in the TOP 500 list [45]. For now quite
some time the building of clusters is an interesting subject for high-performance
computing. Linking single and autonomous computers like workstations via a com-
munication network to a cluster is a cost-efficient alternative for some but not all
applications. The rise of the internet in the past decade is an additional development
that dramatically changed the view of our information society. The ability to be con-
nected and linked to the internet is omnipresent. The trend of connecting everything
via a network has now even reached commodity devices. The simple connection of
our computing resources to the net is yet common standard and practice.

Combining the need for computing power with the connection of these resources via
the network leads naturally to concepts that have gained a lot of attention by re-
search in the past decade. The term metacomputing was established in 1987 by Smarr
and Catlett [68]. This approach has similarities to cluster computing as computers

2 CHAPTER 1. INTRODUCTION

are connected via a network. Here, the combined resources are high performance
computers. Additionally, the resources are usually geographically distributed. The
user of a so called metacomputer need not to be aware where his computing task is
actually executed. Metacomputing comes well along the lines of the former slogan
by Sun Microsystem: ” The network is the computer”. Cluster computing in compar-
ison denotes a computing where single workstations are interconnected and usually
belongs to the same owner or administrative instance. Metacomputing is considered
to connect geographically remote computing resource from different owners, who
usually do not even know each other or the metacomputing users.

Recently, the term metacomputing has been substituted by computational grid or
just the grid [35,53]. This term still describes a similar subject. While metacomputing
was limited to compute resources, grid computing takes a broader approach on
the resources that are connected. Here, devices for visualization as well as data
storage can be included. Metacomputing - besides several limited projects - never
got common practice, grid computing became a new buzz word and gained a lot of
attention. An example is the Global Grid Forum (GGF) [39] that has been launched
to coordinate the different initiatives in Europe (e.g. EGrid [14]), U.S. (e.g. Globus
[31]) and Asia.

The term grid has been coined during the Globus project [35] and alludes to the
electrical power grid which provides all users with electrical power just on demand
without deeper insight how and where the power has actually been generated. The
analogy is to provide computational power on demand to all users without prior
knowledge where the underlying resources come from. Note, that as we focus on
computational resources in this work, we will use the terms metacomputing, compu-
tational grid or metasystem mutually exchangeable, denominating the same subject.

Overview

The research presented in this work has been focused on resource management and
the scheduling of parallel jobs in a distributed environment. However, the results for
this subject are not limited to grid computing as the same concepts can be applied
to other application fields. This ranges from logistics, telecommunications to mobile
devices. In this typical scenario independent users generate workload by submitting
job requests for resources. It is the task of the management system to decide when
and where a job is finally executed and resources are allocated to the job. This is
done under several constraints in terms of the job requirements, the user’s objective
and the resource owner’s policy to grant access to the resources. The application of
this task in grid computing allows the practical study and research on core topics
which can be easily extended to other applications.

Therefore, the work presented in this document is dedicated to several issues in grid
computing. The main topic is the scheduling task, which is an important part for
a resource management system. The scheduling process is responsible for the above
mentioned allocation of resources to a user request. This includes the task of finding
suitable resources for such a request, deciding which resources to chose from the

actual available and when to start the particular application. As there are usually
many requests submitted while there are only a limited amount of resources, this
leads to resource conflicts which must be settled by the scheduling algorithm. This
is done under the premise to generate the most efficient schedules. The design and
evaluation of such a scheduling system is subject of this work.

To this end, we present a concept for designing and evaluating scheduling systems
which is based on scheduling policies supplied by the administrator. These policies
are used to derive a suitable scheduling objective which is subsequently applied in
the design and evaluation process of an algorithm.

The evaluation of such a scheduling system is an import part of the presented design
process. In this work, theoretical as well as the experimental approaches are used to
evaluate existing and new algorithms. As we will see, conventional algorithms that
are proposed by theory are frequently not suitable for practical usage and often focus
on the off-line scenario. But in real installations jobs are submitted independently
and continuously with an unknown or an user supplied estimated execution time.
Additionally, most algorithms do not consider user and administrator objectives at
the same time, which is one reason why still list scheduling methods are frequently
used for real installations. Therefore, we introduce in this work a concept of fairness
to scheduling and present a new algorithm called PFCFS which is fair from a user
point of view while also regarding the optimization criteria that are anticipated by
administrators. In this case, the makespan as well as the weighted completion time
is considered as a performance metric. The selection of a job weight based on the
Smith ratio is proposed which has, for instance, the benefit that it does not favor
jobs with less or more parallelism. In a first step, the algorithm is examined by
theoretical competitive analysis. We prove that the algorithm achieves a constant
competitive ratio for both the makespan and the weighted completion time.

However, we also discuss the limitation that the theoretical analysis does not take
the workload into account. Therefore the theoretical results are useful to examine
the general behavior of an algorithm. However, we need additional evaluation to gain
information on the system performance in real workload scenario. Consequently, we
additionally apply experimental analysis on the presented algorithm. Simulations are
used to achieve information on its practical performance. These results and the com-
parison with conventional algorithms show the benefit of the introduced algorithms.
Based on these results, we make the transition to grid scheduling. The discussed
approach on single parallel machine is used to propose several grid scheduling al-
gorithms that have been derived from the conventional methods for single parallel
computers. These methods are again evaluated and analyzed by simulation.

By the very nature of grid computing in which resources are owned and maintained
by different individuals who are geographically distributed and often do not even
know each other, the usage of economic models seem appropriate. These models have
been in discussion for quite some time for computational problems. While most of
these economic approaches suffer from centralistic concepts with the introduction of
markets and auctions which often require the revelation of information on scheduling
policies, we present in this work a flexible economic scheduling model that takes

4 CHAPTER 1. INTRODUCTION

our considerations for grid usage into account. Here, our model supports features
as e.g. advance reservation, guarantees, information hiding, or support for multi-
site applications. Additionally, users can supply individual scheduling objectives
for each submitted job. Similarly, the administrators can also provide individual
scheduling objectives for each job and each resource. Moreover, the infrastructure
is optimized by a domain-based design which is not focused on a single central
scheduler or information service which lead to a performance bottleneck or single-
point of failure. Instead it provides site-autonomy and keeps full control of all local
resources in the local domain and management realm. For the resource determination
and communication we propose a new peer-to-peer approach.

We evaluate the presented economic method by simulations with different workloads
that are derived from real traces and show that it produces results in terms of
common performance metrics as average weighted response time and utilization
in the range of the conventional scheduling algorithms. In several simulations the
conventional strategies have even been outperformed. In addition, the economic
model has the great advantage that it can deal with arbitrary scheduling objectives
and can for example optimize for other criteria, as for instance the cost.

While it is important that a scheduling method produces ‘good’ scheduling results,
it is as important as that it is implementable. As a proof of concept, we present a
suitable scheduling infrastructure for grid computing which has been implemented
in the NWIRE project. This architecture exploits the domain-based concept and the
peer-to-peer request architecture. The interfaces are flexible enough to support con-
ventional scheduling algorithms as well as economic variants. Moreover, each domain
or resource can have different and specialized schedulers which can still interact with
others by submitting requests and returning offers. Therefore, the specification of
the description of these messages is of special interest. Within our implementation,
we also developed a specification for this description language which is briefly in-
troduced in this work. Note that all of our evaluations have been performed in the
scheduling framework that has been implemented in the NWIRE project.

Document Structure

Overall, this work is divided into 8 chapters. We will first discuss the scheduling
problem and present our concept for the design process of a scheduling system in
Chapter 2. The evaluation of a scheduling algorithm is an important part of this
process. We will examine the theoretical analysis of such algorithms in Chapter 3.
As scheduling for single parallel machines has been subject to research for years,
we start our design process in this area and use theoretical competitive analysis for
the evaluation process. As we will see, the theoretical approach gives as information
on the worst-case behavior of our algorithms. As we are especially interested in the
scheduling performance in a real environment, we extend our scope to experimental
analysis. Therefore, we use actual workload simulations to evaluate the scheduling
algorithms. The method and its results are discussed in Chapter 4.

Based on these results we will make the transition to scheduling for a grid environ-
ment and the evaluation by simulation results for this scenario. In Chapter 5 we

first present scheduling methods derived from conventional scheduling algorithms
for single parallel machine . Next, we propose a scheduling model based on market
economic methods in Chapter 6. Both approaches are evaluated and compared by
simulation results. Herein, we show that economic methods can compete with the
algorithms based on conventional scheduling methods and even outperform them.
Furthermore, we discuss the additional advantages of economic algorithms in grid
computing in terms of flexibility and features. As a proof of concept, in Chapter
7 we present and discuss a scheduling infrastructure that supports conventional as
well as market economic scheduling models. This thesis ends with a brief conclusion
and an outlook on possible extensions and future work on the presented models.

Part 1

Designing a Scheduling System

Chapter 2

Design of a Scheduling System

In this chapter we first focus on the actual design of a scheduling system. The ad-
ministrator or maintainer of a parallel machine - participating in a grid environment
or not - is interested in a scheduling method that provides “good” scheduling results.
To this end, we present a general concept of designing such a scheduling system in
this chapter.

Currently, computers are usually not dedicated to the grid. Moreover, we have often
single parallel machines that are used by a local user community. And additionally
these machines may voluntarily participate in the grid. Overall scheduling in a grid
environment is an extension to the scheduling problem on local parallel systems.
However, grid scheduling has distinct requirements that we will address later in this
work. Nevertheless, general job scheduling for parallel processors has been subject
to research for quite some time. Therefore, we will start with the scheduling problem
for these single parallel machines. Later, in Chapter 5, the scope is extended to the
scenario of meta- and grid-computing.

Before we start with the design of a scheduling system, we give a short explanation
of our general job scheduling problem.

2.1 Scheduling Problem

Generally, it is the task of the scheduling system to allocate resources to a certain
application request for a certain amount of time. This problem occurs in many areas
and, as mentioned before, has been subject to research for a long time. In the context
of this work scheduling deals with the allocation of resources like processor nodes or
network bandwidth to user requests for mostly computational applications. These
requests are usually called jobs. A job consists of information about the requirements
on the resources that are necessary to execute this particular job. A typical example
is a computational job which can only be executed on a specific type of computer
system. It is the task of a scheduling system to decide where and when such a job
is executed.

8 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

In our model, a parallel job schedule S determines for each job i its starting time
s; and the subset of nodes M; assigned to this job. The starting time of a job must
be greater or equal than its submission time or release date r;. The node subsets of
two jobs executing concurrently must be disjoint. That means that we use space-
sharing instead of time sharing. The job i requests m; number of nodes and needs an
execution time p; until completion. The completion time ¢;(S) of a job i in schedule
S depends on the execution time and the starting time s;.

2.1.1 Single Parallel Machine

As mentioned before, we begin with the scheduling problem for a single parallel
machine [12]. Scheduling for such a massive parallel processing system (MPP) dif-
fers significantly from scheduling for a single processor or for smaller SMP system
(symmetric multi-processing). The scheduling in the context of high-performance
computing as presented in this work should not be mistaken for processor or instruc-
tion scheduling on a single machine. There, instructions, processes and threads are
executed quasi-simultaneously by multi-tasking. A task scheduler of the operating
system on a single machine usually performs a switching between tasks by variants of
round-robin strategies. In this case the resources are used in a time-sharing fashion.

Here, in the area of high-performance computing, jobs are usually assigned exclu-
sively to processors of a MPP system. This is partially due to the fact that these jobs
often represent large and complex applications. These applications often require a
large amount of memory which makes time-sharing inefficient as several jobs on the
same processing node may lead to severe memory swapping. Also a job can run in
parallel on different nodes. As these applications typically also require communica-
tion between the different job parts it would lead to a drawback in performance if job
parts are not active at the same time or if some job parts need significantly longer
due to multi-tasking on that node. Therefore MPP systems are predominantly used
in a space-sharing fashion instead of time-sharing.

2.1.2 Machine Model

In the following a machine model is given which is used for the later discussions in
this work on evaluation of scheduling strategies.

We assume a MPP architecture where each node contains one or more processors,
main memory, and local hard disks while there is no shared memory between different
nodes. The system may contain different types of nodes characterized e.g. by their
type and number of processors, by the amount of memory or by the specific task
this node is supposed to perform. An example for the last category are those nodes
which provide access to mass storage. This model comes close to an IBM RS/6000
SP parallel computer. In particular, IBM SP2 architectures supports different kind
of processors nodes. Currently, there are three types of nodes: thin nodes, wide nodes,
and high nodes. Wide or high nodes with a large number of expansion slots are usually
associated with server functionalities. They contain more memory than a thin node

2.1. SCHEDULING PROBLEM 9

while there is little difference in processor performance. Recently introduced nodes
have a SMP architecture and can contain several processors . However, it should
be noted that still most installations are predominantly equipped with thin nodes.
In 1997 only 48 out of a total of 512 nodes in the CTC RS/6000 SP2 were wide
nodes while no high nodes were used at all. Thin nodes have a better form factor to
include more nodes into the available frame space. This is the typical configuration
for systems that are designed for computational intense usage. Although in most
installations the majority of nodes have the same or a similar amount of memory, a
wide range of memory configurations are possible. For instance, the mentioned CTC
RS/6000 SP2 contains nodes with memory ranging from 128 MB to 2048 MB with
more than 80% of the nodes having 128 MB and an additional 12% being equipped
with 256 MB. Additional information on the CTC SP2 machine is given by Hotovy in
[44]. We use the CTC example throughout this work as a reference. Additionally, it is
assumed that all nodes on a machine are identical. This coheres with the observation
mentioned above that large scale MPP systems for computational purposes consists
predominantly of homogeneous partitions.

Fast communication between the nodes is achieved via a special interconnection
network. In our model, this network does not prioritize clustering of any subset of
nodes over others [24] such as in a hypercube or a mesh, i.e. the communication
delay and the bandwidth between any pair of nodes is assumed to be constant.
These assumptions come also close to the IBM RS/6000 SP2 architecture. The SP2
switch network scales with the number of nodes and does not favor certain node
combination.

2.1.3 Job Model

In our examined scenario the scheduling system receives a stream of job submission
data and produces a valid schedule. We use the term ‘stream’ to indicate that sub-
mission data for different jobs need not arrive at the same time. Also the arrival of
any specific data is not necessarily predictable, that is, the scheduling system may
not be aware of any data arriving in the future. Therefore, the scheduling system
must deal with the so called ‘on-line’ behavior.

Further, we do not specify the amount and the type of job submission data. Different
scheduling systems may accept or require different sets of submission data. For us
submission data comprise all data which are necessary to determine a schedule.
However, a few different categories can be distinguished:

e User Information: These data may be used to determine job priorities. For
instance, the jobs of some user may receive faster service at a specific location
while other jobs are only accepted if sufficient resources are available.

e Resource Requests: These data specify the resources which are requested
for a job. Often they include the necessary number and type of processors,
the amount of memory as well as some specific hardware and software require-
ments. Some of these data may be estimates, like the execution time of a job,

10 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

or describe a range of acceptable values, like the number of processors for a
malleable job (see Section 2.1.3).

e Scheduling Objectives: These data may help the scheduling system to gen-
erate ‘good’ schedules. For instance, a user may state that he needs the result
by 8am the next morning while an earlier job completion will be of no benefit
to him. Other users may be willing to pay more if they obtain their results
within the next hour.

Of course other submission data are possible as well. Job submission data are sup-
plied by the user and first available to system when a job is submitted for execu-
tion. Nevertheless, some systems may also allow reservation of resources before the
actual job submission. Such a feature is especially beneficial for multi-site metacom-
puting [64]. Especially important for scheduling is information on the number of
requested resources and on the execution time of a job. The execution time may be
an estimate by the user and is often used as a maximum processing time which a job
must not exceed. Usually the scheduling system terminates a job if it reaches the
supplied execution length. Section 2.5 gives an example for the need to provide in-
formation on the job execution length at submission time. The backfilling algorithm
presented in that Section needs this information to determine the job execution
order.

Note, that some job parameters may depend on the actual job allocation that is
generated by the scheduler. As an obvious example the job execution length may
depend in real systems on the available number of processors and the CPU speed.
More available processing nodes usually result in a decrease of the execution time.
This is often taken into account by allowing a generic description of such parameters
relative to other job attributes.

In addition, some technical data are often required to start a job. That is for example
the name and the location of the input data files of the job. But as these data do
not affect the schedule if they are correct, we ignore them here. Finally note that
the submission of erroneous or incorrect data is also possible. However, in this case
a job may be immediately rejected or fail to run.

In our model, a job runs to completion after it is started. That is, the job will
not be interrupted after its start. Alternatively, we speak of preemption if a job is
temporarily stopped on its processor set. Later on, the job is resumed on the same
processors. The ability to preempt parallel jobs simultaneously on all processors in
the job’s current partition is often also referred to as gang-scheduling [25]. Further-
more, if additionally the set of resources can be changed during run-time, we speak
of migration. However, in our model we assume that the resource set is fixed during
job execution.

Moreover, the resource requirement is also fixed. That means that the number of
resources that are requested for a job is given by the user and cannot be modified.
These jobs are often referred to as rigid jobs, see [28]. In comparison, jobs are called
moldable if the partition size cannot be modified and the job is capable to run on
different numbers of processors, see also [28]. The user supplies a range or a list of

2.2. DESIGN PROCESS FOR A SCHEDULING SYSTEM 11

suitable partition sizes for a job. Nevertheless, this number is fixed after the job is
started. For malleable jobs, this limitation is also removed. Here, even the partition
size may change during run-time.

2.2 Design Process for a Scheduling System

Next, we want to focus on the actual design of a scheduling system. The creation of a
scheduling algorithm which produces ’'good’ schedule results is a complex task. This
is especially true for massively parallel processors (MPPs) where many users with
a multitude of different jobs share a large amount of system resources. While job
scheduling does not affect the results of a job, it may have a significant influence on
the efficiency of the system. For instance, a good job scheduling system may reduce
the number of MPP nodes that are required to process a certain amount of jobs
within a given time frame. Or it may permit to execute more jobs on the resources
of a machine in the same amount of time. Therefore, the job scheduling system plays
an important role in the management of computer resources. This is especially the
case as these resources usually represent a significant investment for a company or
institution in the case of MPPs. The difference between a more and a less efficient
scheduling system is often comparable to providing additionally hardware resources
to achieve the same system performance.

Hence, the availability of a good job scheduling system is in the interest of the owner
or administrator of an MPP. It is therefore not surprising that in the past new
job scheduling methods have frequently been introduced by institutions which were
among the first owners of MPPs like, for instance, ANL [51], CTC [57] or NASA
Ames [58]. On the other hand, machine manufacturers often showed only limited
interest in this issue as they frequently seem to have the opinion that “machines
are not sold because of superior job schedulers”. Moreover, the design of a job
scheduling system must be based on the specific environment of a parallel system.
Consequently, administrators of MPPs will always remain to be involved in the
design of job scheduling systems.

Thus, we first want to take a closer look at the schedule. As mentioned before a
schedule is an allocation of system resources to individual jobs for certain time
periods. Therefore, a schedule can be described by all the time instances where a
change of resource allocation occurs as long as either this change is initiated by the
scheduling system or the scheduling system is notified of this change. To illustrate
this restriction assume a job being executed on a processor that is also busy with
some operating system tasks. Here, we do not consider changes of resource alloca-
tion which are due to the context switches between OS tasks and the application.
Those changes are managed by the system software without any involvement of our
scheduling system.

For a schedule to be valid some restrictions of the hardware and the system software
must be observed. For instance, a parallel processor system may not support gang
scheduling or require that at most one application is active on a specific processor at
any time. Therefore, the validity constraints of a schedule are defined by the target

12 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

machine. A valid schedule defines resource allocations that do not violate the physical
constraints of the supplied job requirements and the available resources. We assume
that a scheduling system does not attempt to produce an invalid schedule. However,
note that the validity of a schedule is not affected by falsely supplied properties of
a submitted job if those do not comply with the actual job execution. For instance,
if not enough memory is requested and assigned to a job, the job will simply fail to
run. Also, a schedule depends upon other influences which cannot be controlled by
the scheduling system, like the sudden failure of a hardware component. But this
does not mean that the resulting schedule is invalid. Therefore, the final schedule is
only available after the execution of all jobs.

In our model the scheduling system is divided into the following 3 parts [48]:

1. A scheduling policy,
2. an objective function and
3. a scheduling algorithm.
We describe these scheduling parts and their dependencies in more detail in the

following sections. Later on, we compare the evaluation of scheduling systems with
the evaluation of computer architectures.

/ Scheduling System \

-

Administrator > Scheduling Policy

v

Objective Function

v

[Workload Scheduling Algorithm }[Schedule]
\ /

Figure 2.1: Scheduling System.

2.3. SCHEDULING POLICY 13

2.3 Scheduling Policy

The first component of a scheduling system is the scheduling policy on which it is
based. This policy is defined by the owner or administrator of a machine as shown
in Figure 2.1. In general, the scheduling strategy is a collection of rules to determine
the resource allocation for all submitted jobs. There are usually not enough resources
available to satisfy all jobs immediately: as a consequence resource conflicts occur.
The scheduling strategy is responsible to settle these resource conflicts. To better
illustrate our approach, we give an example:

Example 1 The department of chemistry at University A has bought a parallel
computer which was financed to a large part by the drug design lab. The department
establishes the following rules for the use of the machine:

1. All jobs from the drug design lab have the highest priority and must be executed
as soon as possible.

2. 100 GB of secondary storage is reserved for data from the drug design lab.

3. Applications from the whole university are accepted but the labs of the chem-
istry department have preferred access.

4. Some computation time is sold to cooperation partners from the chemical in-
dustry in order to pay for machine maintenance and software upgrades.

5. Some computation time is also made available to the theoretical chemistry lab
course during their scheduled hours.

Note that these rules are hardly detailed enough to generate a schedule. But they
allow a fuzzy distinction between good and bad schedules. Also, there may be some
additional general rules which are not explicitly mentioned, like ‘Complete all appli-
cations as soon as possible if this does not contradict any other rule’. There may be
also specific rules to the customer or users that has to be obeyed as for example cost
modelling or statements on quality of service. These rules have not been included in
our example.

Finally, some conflicts between those rules may occur and must be resolved. For
instance in Example 1, some jobs from the drug design lab may compete with the
theoretical chemistry lab course. Hence, in our view a good scheduling policy has
the following two properties:

1. If some rules produce any conflicts, the scheduling policy contains rules to
settle these conflicts. This includes for example a prioritization if different
rules may apply.

2. It must be possible to implement the scheduling policy in an algorithm.

14 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

We believe that there is no general method to derive a scheduling policy. Also there
is no need to provide a very detailed policy with clearly defined quotas. In many
cases this will result in a reduction of the number of good schedules. For instance,
it would not be helpful at this point to demand that 5% of the computation time
is sold to the chemical industry in Example 1. If there are only a few jobs from the
drug design lab then the department would be able to earn more money by defining
a higher industry quota. Otherwise, the department must decide whether to obtain
other funding for the machine maintenance or to reduce the priority of some jobs of
the drug design lab. This issue will be further discussed in Section 2.6.

2.4 Objective Function

Alternatively, a scheduling system can be applied to a multitude of different streams
of submission data and the resulting schedules can be evaluated. This requires a
method to automatically determine the quality of a schedule. Therefore, an objective
function must be defined that assigns a scalar value, the so called schedule cost, to
each schedule. Note that this property is essential for the mechanical evaluation
and ranking of a schedule. In the simplest case all good schedules are mapped to 1
while all bad schedules obtain the value 0. Most likely however, this kind of objective
function will be of little help. To derive a suitable objective function an approach
based on multi criteria optimization can be used, see e.g. [71]:

1. For a typical set of jobs determine the Pareto-optimal schedules based on the
scheduling policy.

2. Define a partial order of these schedules.
3. Derive an objective function that generates this order.

4. Repeat this process for other sets of jobs and refine the objective function
accordingly.

To illustrate Steps 1 and 2 of our approach we consider Rules 1 and 5 of Example 1.
Assume that both rules are conflicting for the chosen set of job submission data.
Therefore, we determine a variety of different schedules, see Figure 2.2. Note that we
are not biased toward any specific algorithm in this step. We are primarily interested
in those schedules which are good with respect to at least one criterion. Therefore,
at first all Pareto-optimal schedules are selected. Those schedules are indicated by
bullets in Figure 2.2. Next, a partial order of the Pareto-optimal schedules is ob-
tained by applying additional conflict resolving rules or by asking the owner. In the
example of Figure 2.2 numbers 0, 1 and 2 have been assigned to the Pareto-optimal
schedules in order to indicate the desired partial order by increasing numbers. Here
any schedule 1 is superior to any schedule 0 and inferior to any schedule 2 while the
order among all schedules 1 does not matter.

The approach is based on the availability of a few typical sets of job data. Further, it
is assumed that each rule of the scheduling policy is associated with single criterion

2.4. OBJECTIVE FUNCTION 15

Average Response Time of
Drug Design Jobs

A
400 min
- +
T+ T+ + 4 +
+ o+
+ + T o+ + n N
® + +4L + 4+ +
- + T+
0® + + - "
o ++++-¢+ Tt L 4 "
2 -
+
,® o+ +, L+ o+
® o+ " + +
2 1 + +
® ® +
1 0 ®
300 min 0
100% 0%

Availability for the Theoretical Chemistry Course

Figure 2.2: Pareto Example for 2 Rules

functions, like Rule 4 of Example 1 with the function ‘amount of computation time
allocated to jobs from the cooperation partners from industry’. If this is not the
case, complex rules must be split.

Now, it is possible to compare different schedules if the same objective function and
the same set of jobs is used. Further, there are a few additional aspects which are
also noteworthy:

e Schedules can be compared even if they do not have the same target architec-
ture. The partial order of the Pareto-optimal schedules can be generated for
different resource configurations. This allows the analysis of different system
selections for a given job set.

e An up front calculation of the schedule cost may not be possible. Most likely,
it will be necessary to execute all jobs first before the correct schedule cost can
be determined.

e It is also possible to compare two schedules which are based on the same job
set. In this case the results for the different schedules can be used to analyze
the influence of different submission strategies (e.g. queue configuration or user
policies).

Thus, schedules can even be used as a criterion for system selection if desired.

At many installations of large parallel machines simple objective functions are used,
like the job throughput, the average job response time, the average slowdown of a

16 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

job or the machine utilization, see [27]. We believe that it cannot be decided whether
those objective functions are suitable in general. For some scheduling policy they
may be the perfect choice while they should not be used for another set of rules.
Also, it is not clear whether the use of those ‘simple’ objective functions allows an
easier design of scheduling systems.

2.5 Scheduling Algorithm

The scheduling algorithm is the last component of a scheduling system. It has the
task to generate a valid schedule for the actual stream of submission data in an on-
line fashion. A good scheduling algorithm is expected to produce very good if not
optimal schedules with respect to the objective function while not taking ‘too much’
time and ‘too many’ resources to determine the schedule. Overall, the algorithm
must be implementable in a real system.

In order to obtain good schedules the administrator of a parallel machine is therefore
faced with the problem to pick an appropriate algorithm among a variety of subopti-
mal ones. He may even decide to design an entirely new method if the available ones
do not yield satisfactory results. The selection of the algorithm is highly dependent
on a variety of constraints:

e Schedule restrictions given by the system, like the availability of dynamic par-
titioning or gang scheduling.

System parameters, like I/O ports, node memory and processor types.

Distribution of job parameters, like the amount of large or small jobs.

Availability and accuracy of job information for the generation of the schedule.
For instance, this may include job execution time as a function of allocated
processors.

Definition of the objective function.

Frequently, the system administrator will simply take scheduling algorithms from
the literature and modify them to his needs. Then, he picks the best one from his
algorithm candidates. After making sure that his algorithm of choice actually gener-
ates valid schedules, he also must decide whether it makes sense to look for a better
algorithm. Therefore, it is necessary to evaluate those algorithms. We distinguish
the following methods of evaluation:

1. Evaluation using algorithmic theory
2. Simulation with job data derived from

e an actual workload

e a workload model

2.5. SCHEDULING ALGORITHM 17

In general, theoretical evaluation is often not well suited for scheduling algorithms
on real systems as it will be discussed in Chapter 3. Occasionally, this method is
used to determine lower bounds for schedules. These lower bounds can provide an
estimate for a potential improvement of the schedule by switching to a different
algorithm. However, it is very difficult to find suitable lower bounds for complex
objective functions.

Alternatively, an algorithm can be fed with a stream of job submission data. The
actual schedule and its cost are determined by simulation with the help of the
complete set of job data. The procedure is repeated with a large number of input
data sets. The reliability of this method depends on several factors:

e Availability of correct job data,

e Compliance of the used job set with the job set on the target machine.

Actual workload data can be used if they are recorded on a machine with a user group
such that sufficient similarity exists with the target machine and its users. This is
relatively easy if traces from the target machine and the target user community are
available. Otherwise some traces must be obtained from other sources, see e.g. [21].
In this case it is necessary to check whether the workload trace is suitable. This may
even require some modifications of the trace.

Also note that the trace only contains job data of a specific schedule. In another
schedule these job data may not be valid as is demonstrated in Examples 2 and 3:

Example 2 Assume a parallel processor that uses a single bus for communication.
Here, independent jobs compete for the communication resource. Therefore, the ac-
tual performance of job i depends on the jobs executed concurrently with job i.

Example 3 Assume a machine and a scheduling system that support adaptive par-
titioning for moldable jobs (see Section 2.1.3). In this case, the number of resources
allocated to job i again depends on other jobs executed concurrently with job 1.

Also, a comprehensive evaluation of an algorithm frequently requires a large amount
of input data that may not be available by accessible workload traces.

If accurate workload data are not available, then artificial data must be generated.
To this end a workload model is used. Again conformity with future real job data is
essential and must be verified. On the other hand, this approach is able to overcome
some of the problems associated with trace data simulation, if the workload model
is precise enough. For a more detailed discussion of this subject, see also [27].

Unfortunately, it cannot be expected that a single scheduling algorithm will produce
a better schedule than any other method for all used input data sets. In addition
the resource consumption of the various algorithms may be different. Therefore, the
process of picking the best suited algorithm may again require some form of multi
criteria optimization.

18 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

In the following several scheduling algorithms are briefly introduced which will be
used later in this work for evaluation purposes and comparisons. These are several
typical algorithms that are either known from theory (Gary-Graham, Smart, PSRS)
and/or from practical use on MPP systems (FCFS and Backfilling)

FCFS

First-Come-First-Serve (FCFS) is a well known scheduling scheme that is used in
some production environments. All jobs are ordered by their submission time. Then
a greedy list scheduling method is used, that is the next job in the list is started as
soon as the necessary resources are available. This method has several advantages:

1. It is fair as the completion time of each job is independent of any job submitted
later.

2. No knowledge about the execution time is required.

3. It is easy to implement and requires very little computational effort.

However, FCFS may produce schedules with a relatively large percentage of idle
nodes especially if many highly parallel jobs are submitted, as in [78]. Therefore,
FCFS has been replaced by FCFS with some form of backfilling at many locations
including the CTC. Nevertheless, the administrator does not want to ignore FCFS
at this time as a theoretical study has recently shown that FCFS may produce
acceptable results for certain workloads [61].

Backfilling

The backfilling algorithm has been introduced by Lifka [51]. It requires knowledge
of the job execution times and can be applied to any greedy list schedule. If the next
job in the list cannot be started due to a lack of available resources, then backfilling
tries to find another job in the list which can use the idle resources but will not
postpone the execution of the next job in the list. In other words, backfilling allows
some jobs down the list to be started ahead of time.

There are 2 variants of backfilling as described by Feitelson and Weil [29]:

EASY backfill is the original method of Lifka. It has been implemented in several
IBM SP2 installations. While EASY backfill will not postpone the projected
execution of the next job in the list, it may increase the completion time of
jobs further down the list, see [29].

Conservative backfill will not increase the projected completion time of a job submit-
ted before the job used for backfilling. On the other hand conservative backfill
requires more computational effort than EASY.

2.5. SCHEDULING ALGORITHM 19

However, note that the statements regarding the completion time of skipped jobs in
the list are all based on the provided execution time for each job. Backfilling may
still increase the completion time of some jobs compared to FCFS as in an on-line
scenario another job may release some resources earlier than assumed. In this case
it is possible that a backfilled job may prevent the start of the next job in the list.
For instance, while some active job is expected to run for another 2 hours it may
terminated within the next 5 minutes. Therefore, backfilling with a job having an
expected execution time of 2 hours may delay the start of the next job in the list by
up to 1 hour and 55 minutes.

List Scheduling (Garey and Graham)

The classical list scheduling algorithm by Garey and Graham [36] always starts
the next job for which enough resources are available. Ties can be broken in an
arbitrary fashion. The algorithm guarantees good theoretical bounds in some on-line
scenarios (unknown job execution time) [30], it is easy to implement and requires
little computational effort. As in the case of FCFS no knowledge of the job execution
time is required. Application of backfilling will be of no benefit for this method.

SMART

The SMART algorithm has been introduced by Turek et al. [79]. The algorithm
consists of 3 steps:

1. All jobs are assigned to bins based on their execution time. The upper bounds
of those bins form a geometric sequence based on a parameter 7. In other
words, the bins can be described by intervals of the possible execution time:
10,1],11,4%,17%,72], The parameter v can be chosen to optimize the sched-
ule.

2. All jobs in a bin are assigned to shelves (subschedules) such that all jobs in a
shelf are started concurrently. To this end the jobs in a bin are ordered and
then arranged in a shelf as long as sufficient resources are available.

3. The shelves are ordered using Smith’s rule [69], that is for each shelf the sum of
the weights of all jobs in the shelf is divided by the maximal execution time of
any job in the shelf. Finally, those shelves with the largest ratio are scheduled
first.

Schwiegelshohn et al. [60] have presented two variants of ordering the jobs in a bin
and assigning them to shelves (Step 2):

SMART-FFIA

1. The jobs of a bin are sorted according to the product of execution time
and the number of required nodes, also called area, such that the smallest
area goes first.

20 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

2. The next job in this list is assigned to the first shelf with sufficient idle
resources, that is, all shelves of this bin are considered.

3. If there is no such shelf, a new one is created and placed on top of the
other shelves of this bin.

This approach is called the First Fit Increasing Area variant.
SMART-NFIW

1. All jobs of a bin are ordered by an increasing ratio of the number of
required nodes to the weight of the job.

2. The next job in this list is added to the current shelf if sufficient resources
are available on this shelf.

3. Otherwise a new shelf is created, placed on top of the current shelf and
then becomes the current shelf itself.

This is the Next Fit Increasing Width to Weight variant.

The SMART algorithm has a constant worst case factor for weighted and unweighted
response time scheduling. However, it is an off-line algorithm and cannot be directly
applied to the scheduling problem of Example 5. It requires a priori knowledge of
the execution time for all jobs and assumes that all jobs are available for scheduling
at time 0. Therefore, the administrator modifies the SMART algorithm as follows:

1. He does not use the SMART algorithm to determine an actual schedule but to
provide a job order for all jobs already submitted but not yet started. Whenever
new jobs are submitted the SMART algorithm is started again. Based on this
order a greedy list schedule is generated, see FCFS.

2. Instead of the actual execution time of a job the value provided by the user at
job submission is used.

In order to reduce the number of recomputations for the SMART algorithm the
schedule is recalculated only when the ratio between the already scheduled jobs in
the wait queue to all the jobs in this queue exceeds a certain value. In the example
a ratio of % is used. The parameter ~ is chosen to be 2.

As the final schedule is a list schedule the administrator decides to apply backfilling
here as well.

PSRS

The PSRS algorithm [59] generates preemptive schedules. It is based on the modified
Smith ratio of a parallel job, that is the ratio of job weight to the product of required
resources and the execution time of the job. The basic steps of PSRS are described
subsequently:

2.6. DEPENDENCIES 21

1. All jobs are ordered by their modified Smith ratio (largest ratio goes first).

2. A greedy list schedule is applied for all jobs requiring at most 50% of the ma-
chine nodes. If a job needs more than half of all nodes and has been waiting
for some time, then all running jobs are preempted and the parallel job is exe-
cuted. After the completion of the parallel job, the execution of the preempted
jobs is resumed.

Similar to SMART, PSRS is also an off-line algorithm and requires knowledge of the
execution time of the jobs. In addition it needs support for time sharing. Therefore,
it cannot be applied to our target machine without modification.

The off-line problems can be addressed in the same fashion as for the SMART
algorithm. Further, it is necessary to transfer the preemptive schedule into a non-
preemptive one. To this end, it is beneficial that a job is not executed concurrently
with any other job if it causes the preemption of other jobs.

1. First, 2 geometric sequences of time instances in the preemptive schedule are
defined, one for those jobs causing preemption (wide jobs) and one for all other
jobs (small jobs). In both cases the factor 2 is used with different offsets. These
sequences define bins.

2. All jobs are assigned to those bins according to their completion time in the
preemptive schedule. Within a bin the original Smith ratio order [69] is main-
tained.

3. A complete order of jobs is generated by alternatively picking bins from each
sequence and starting with the small job sequence.

As with SMART the modified PSRS algorithm guarantees a constant approximation
factor for the off-line case (with and without preemption).

2.6 Dependencies

The main dependence between the components of a scheduling system is easy to
see: The scheduling policy produces rules which are used to derive an objective
function. The application of this objective function to a schedule yields the schedule
cost which allows performance measurements for the various algorithms. However,
there are also additional dependencies. For instance, some policy rules may not allow
efficient scheduling algorithms, see Example 4.

Example 4 Assume a machine that does not support time sharing. The scheduling
policy includes the rule:

FEvery weekday at 10am the entire machine must be available to a theoretical chem-
istry class for 1 hour.

22 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

Average Response Time
of Drug Design Jobs

A
600 min L Achievable by online algorithms
++ Ty - +
+ + o+
+ + T 4+ 4+ 4 n N
® + +4 ++ F 4
@ + + + 4L aF +
o +H g+ !
T
o) o+ + 7T +
+
e T o +
[
300 min
f b
100% 0%

Availability for the Theoretical Chemistry Course

Figure 2.3: On-line versus Off-line Dependence

The Pareto-optimal schedules used for the determination of the objective function
show an acceptable (by the owner) amount of idle resources before 10am. However,
users are frequently unable to provide accurate execution time estimates for their
jobs. Without knowledge on the execution time of jobs it is impossible for a scheduling
algorithm to consistently generate good schedules for different workloads. While, for
instance, the first-come-first-serve strategy performs well for jobs without execution
time estimates, it results in inefficient system utilization if many highly parallel jobs
exist [78].

Without the ability to preempt a running job (time sharing), an unexpected earlier
job completion or a job failure can unnecessarily leave resources idle. The scheduler
cannot foresee the actual run-time of jobs and has mo ability to change previous
scheduling decisions by preemption.

Figure 2.3 illustrates for Example 1 the different schedules if different job knowledge
is available. There, it is shown that on-line algorithms can usually achieve a sig-
nificantly smaller area of schedules in comparison to off-line methods with advance
knowledge on the job submissions. Therefore, it may require a review of the conflict
resolving strategy if results are compared from the different scheduling evaluation.
Consequently, this can affect the considered schedule cost. Unfortunately, this on-
line area of schedules will typically be the result of a combination of several on-line
algorithms. Therefore, the off-line methods in the approach of Section 2.4 cannot
be simply replaced by a single or a few on-line algorithms. The lack of knowledge
on current and future jobs makes it usually impossible for on-line algorithms to
generate the same schedules as off-line methods.

2.7. COMPARISON 23

More of these additional dependencies are listed below:

e The owner may not know upfront his complete scheduling policy and all
rules with their consequences. Aspects of the produced schedules may lead
to changed rules and policies from the owner point of view. Too many or too
restrictive policy rules may prevent schedules that are acceptable by owner
and/or users at all. The user perspective and expectations are usually some
part of the owner goal.

e Contrary to the case where many or too restrictive rules produce unacceptable
results, there may not be sufficient rules to discriminate between good and bad
schedules. Some implicitly assumed rules are frequently not explicitly stated
by the owner.

e While there may be a variety of different objective functions which all support
the policy rules, a specific objective function may not be suitable as a crite-
rion for an on-line scheduling algorithm. This function may take effects into
account that are unappropriate for the examined scenario. This can lead to
unacceptable results for owner and/or user.

e The workload model may not be correct if users adapt their submission pattern
due to their knowledge of the policy rules.

e The workload model must be modified as the number of users and/or the types
and sizes of submitted jobs change over time.

Due to these dependencies a few design iterations may be required to determine
the best suitable scheduling algorithms and/or it may be appropriate to repeat
the design process occasionally. Nevertheless, it is not guaranteed that the owner
succeeds in defining policy rules that leads to acceptable results.

2.7 Comparison

In this section we briefly compare the evaluation of scheduling systems with the well
known procedure used for computer architectures. Today, computer architectures are
typically evaluated with the help of standard benchmarks, like SPEC95 or Linpack,
see [42]. For instance, the SPEC95 benchmark suite contains a variety of programs
and frequently no architecture is the best for all those programs. Depending on his
own applications the user must select the machine best suited for him. This leads to
the question whether a similar approach is also applicable for scheduling systems.
With other words, can we provide a few benchmark workloads which are used to
test various scheduling systems?

We claim that this cannot be done at the moment and doubt whether this will
ever become possible. For computer architectures there is a standard objective func-
tion: the execution time of a certain job. As we discussed in the previous sections

24 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

each scheduling system has its own objective function. Therefore, we cannot really
compare two different scheduling systems. On the other hand, the comparison of
different scheduling algorithms only makes sense if the same objective function is
used. Hence, the evaluation of scheduling algorithms must be based on benchmarks
consisting of workloads and objective functions. However, it is not clear to us that
there will ever be a small set of objective functions that will more or less cover all
scheduling systems.

2.8 Evaluation Example

In this section we give an example for the design and evaluation process of scheduling
algorithms. As the focus is on scheduling algorithms we will assume simple scheduling
policy rules and only briefly cover the determination of the objective function.

During this example, we will use several typical algorithms as introduced in Sec-
tion 2.5. We will later use these evaluation results for the comparison of theoretical
and experimental evaluation Chapter 3 and Section 3.3.

Example 5 Assume an Institution B that has just bought a large parallel computer
with 288 identical nodes. The institution has established the following policy rules:

1. The batch partition of the computer must be as large as possible, leaving a few
nodes for interactive jobs and for some services.

2. The user must provide the exact number of nodes for each job (rigid job model)
and an upper limit for the execution time. If the execution of a job exceeds this
upper limit, the job may be cancelled.

3. The user is charged for each job. This cost is based on a combination of pro-
jected and actual resource consumption.

4. Every user is allowed at most two batch jobs on the machine at any time.

5. Between Tam and 8pm on weekdays the response time for all jobs should be as
small as possible.

6. Between 8pm and Tam on weekdays and all weekend or on holidays it is the
goal to achieve a high system load.

According to our model in Section 2.1.2, the machine supports variable partitioning
[25] but does not allow time sharing. Further, it is required that all batch jobs have
exclusive access to their partition.

The administrator decides that 256 nodes can be used for the batch partition. He
further believes that the user community at the Cornell Theory Center (CTC) and
at Institution B will be very similar. As the parallel machines at the CTC and at

2.8. EVALUATION EXAMPLE 25

Institution B are of the same type he decides to use a CTC workload as a basis for
the selection of the objective function and the determination of a suitable scheduling
algorithm. Due to the interdependence between user community and scheduling
policy this decision also requires knowledge of the scheduling policy used at the CTC,
see [44]. Only if there is no major disagreement between the scheduling policies at
the CTC and at Institution B the profiles of both user communities can be assumed
to remain similar.

2.8.1 Determination of the Objective Function

Next, the administrator must determine an objective function. To this end he ignores
Rules 1 to 4 because they do not affect the schedule for a specific work load or are
only relevant to the on-line situation (Rule 2). As Rules 5 and 6 do not apply at the
same time he decides to consider each rule separately.

Rule 4 indicates that all jobs should be treated equally independent of their resource
consumption. Therefore, the administrator uses the average response time as
objective function for the daytime on weekdays (Rule 5). The average response time
is the sum of the differences between the completion time and submission time for
each job divided by the number of jobs.

For the remaining time (Rule 6) the sum of the idle times for all resources in a
given time frame seems to be the best choice.

The administrator intends to independently determine an appropriate scheduling
algorithm for each objective function and then to address the combination of both
algorithms. Note that multi criteria optimization is therefore not necessary in our
simple example.

When starting to look for scheduling algorithms the administrator realizes that the
sum of idle times is based on a time frame. Therefore, it does not support on-line
scheduling. Using the makespan instead has the advantage that several theoretical
results are available, see e.g. [30], but again the makespan is mainly an off-line
criterion [27]. Hence, he decides to use instead the average weighted response
time where the weight is identical to the resource consumption of a job, that is,
the product of the execution time and the number of required nodes, see [62]. It
is calculated in the same fashion as the average response time with the exception
that the difference between the completion and the submission time for each job
is multiplied with the weight of this job. In comparison the job weight is always 1
for the average response time criterion. Note that for the average weighted response
time the order of jobs does not matter if no resources are left idle [61]. We will
discuss this weight selection later in Section 3.1.

2.8.2 Examined Algorithms

After the objective function has been determined it is necessary to find a suitable
scheduling algorithm. Instead of producing an algorithm from scratch it is often

26 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

more efficient to use algorithms from the literature and to modify them if necessary.
In this first step it is frequently beneficial to consider a wide range of algorithms
unless previous experiences strongly suggest the use of a specific type of algorithm.
Further, there may be algorithms which have been designed for another objective
function but can be adapted to the target function.

For Example 5 the administrator examines the algorithms from Section 2.5. On one
hand, these are algorithms known from theory (Gary-Graham, Smart, PSRS) with
known approximation costs as we will discuss in Chapter 3. On the other hand,
typical algorithms (FCFS and Backfilling) are examined which are practically in use
on real MPP systems.

The administrator decides to use both types of backfilling, conservative as well as
EASY, as it is not obvious that one method is better than the other. In our example
the administrator decides to apply backfilling to PSRS schedules as well.

2.8.3 Workload

As already mentioned in Section 2.8 the administrator wants to base his algorith-
mic evaluation on workload data from the CTC. In addition he decides to use two
artificial workloads:

1. Artificial workload based on probability distributions,

2. Artificial workload based on randomization.

The number of jobs in each workload is given in Table 2.1. The reasons for this
selection are discussed in the following subsections.

Workload Number of jobs |
CTC 79,164
Probability distribution 50,000
Randomized 50,000

Table 2.1: Number of jobs in various workloads

Workload Trace

In Section 2.8 the administrator has already verified that a CTC workload trace
would be suitable in general. He obtains a workload trace from the CTC batch
partition for the months July 1996 to May 1997. The workload is on-line available
from the standard workload archive [74]. The trace contains the following data for
each job:

e Number of nodes allocated to the job

2.8. EVALUATION EXAMPLE

e Upper limit for the execution time

status.

Time of job submission
Time of job start

Time of job completion

27

Additional hardware requests of the job: amount of memory, type of node,
access to mass storage, type of adapter.

Additional job data like job name, LoadLeveler class, job type, and completion

Those additional job data are ignored as they are of no relevance to the simulation
at this point. But the administrator must address two differences between the CTC
machine and the parallel computer at his institution:

1. The CTC computer has a batch partition of 430 nodes while the batch partition

at Institution B contains only 256 nodes.

2. The nodes of the CTC computer are not all identical. They differ in type and
memory. This is not true for the machine at Institution B.

Total number

Jobs requiring at

Jobs requiring at

of jobs most 256 nodes most 128 nodes

Jul 96 7953 7933 99.75% 7897 99.30%
Aug 96 7302 7279 99.69% 7234 99.07%
Sep 96 6188 6180 99.87% 6106 98.67%
Oct 96 7288 7277 99.85% 7270 99.75%
Nov 96 7849 7841 99.90% 7816 99.58%
Dec 96 7900 7893 99.91% 7888 99.85%
Jan 97 7544 7538 99.92% 7506 99.50%
Feb 97 8188 8177 99.87% 8159 99.65%
Mar 97 6945 6933 99.83% 6909 99.48%
Apr 97 6118 6102 99.74% 6085 99.46%
May 97 5992 5984 99.87% 5962 99.50%

Table 2.2: Number of Jobs in the CTC Workload Data for Each Month (Submission

Time)

A closer look at the CTC workload trace in Table 2.2 reveals that less than 0.2%
of all jobs require more than 256 nodes. Therefore, the administrator modifies the
trace by simply deleting all those highly parallel jobs. Further, he determines that
most nodes of the CTC batch partition are identical (382). Therefore, he decides to
ignore all additional hardware requests.

28 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

Unfortunately, these modifications will affect the accuracy of the simulation. For
instance, the simulation time frame of the whole modified CTC workload will most
likely exceed the time span of the original trace as less resources are available. This
will result in a larger job backlog during the simulation. Therefore, it is not possible
to compare the original CTC schedule with the schedules generated by simulation.
On the other hand, the administrator wants to separately test for two different
objective functions, each of which will typically be valid for half a day. Hence, the
present approach is only suited for a first evaluation of different algorithms. Any
parametric fine tuning must be done with a better workload.

Besides using the CTC workload with the job submission data described above the
administrator also wants to test his algorithms under the assumption that precise
job execution times are available at job submission. This simulation allows him to
determine the dependence of the various algorithms on the accuracy of the provided
job execution times and the potential for improvement of the schedule. For this
study the estimated execution times of the trace are simply replaced by the actual
execution times.

Workload with Probability Distribution

As we mentioned above, there are some difficulties in applying an actual workload
trace of another system. These traces may contain singular effects like for instance
down-times. Additionally, necessary modifications of the traces to match the exam-
ined configurations may affect the accuracy of the evaluation. In order to overcome
some of these difficulties the administrator decides to extract statistical data from
the CTC workload trace. These data are then used to generate an artificial workload
with the same distribution as the workload trace.

An analysis of the CTC workload trace yields that a Weibull distribution matches
best the submission times of the jobs in the trace. It is difficult to find a suitable
distribution for the other parameters. Therefore, bins are created for every possible
requested resource number (between 1 and 256), various ranges of requested time and
of actual execution length. Then probability values are calculated for each bin from
the CTC trace. Randomized values are used and associated to the bins according to
their probabilities. This generates a workload that is very similar to the CTC data
set. Simulations for the CTC machine configurations are performed to analyze if the
results are consistent to the original CTC sets. This can be compared for known
characteristics like e.g. average weighted response time, backlog, machine utilization
for the original CTC and the artificial workload. Once the administrator decided
that the artificial workload does model the original CTC workload sufficiently for
his purposes (for example by correlation analysis), the probabilistic parameters can
be adapted to consider the various differences between the CTC and Institution B.

Randomized Workload

Finally, totally randomized data are used as a third input data set. The administrator
is aware of the fact that this workload will not represent any real workload on his

2.8. EVALUATION EXAMPLE 29

machine. But he wants to determine the performance of scheduling algorithms even
in case of unusual job combinations. For the workload, jobs are generated with the
parameters in Table 2.3 being equally distributed.

Submission of jobs > 1 job per hour
Requested number of nodes 1 - 256

Upper limit for the execution time | 5 min — 24 h
Actual execution time 1 s — upper limit

Table 2.3: Parameters for randomized job generation

2.8.4 Evaluation Results

The administrator selects the simulation of FCFS with EASY backfilling to be a
reference value as this algorithm is used by the CTC. First he compares the results for
the CTC workload trace for the average response time, see Figure 2.4 and Table 2.5.
In these figures the different strategies are compared relatively to the FCFS results
with backfilling, which mark the 0% reference.

For the unweighted case he comes to the following conclusions:

e All algorithms are clearly better than FCFS even if some form of backfilling
is used together with FCFS.

e PSRS and SMART can be improved significantly with backfilling.

e The classical list scheduling produces good results but is inferior to the PSRS
and SMART with backfilling.

e Conservative backfilling outperforms EASY backfilling slightly when applied
to PSRS and SMART schedules.

o There are little differences between PSRS and SMART schedules when back-
filling is used.

The administrator does not give much weight to the absolute numbers as the work-
load trace has been recorded on a machine with 430 nodes while the simulations are
done for a machine with 256 nodes. Although some highly parallel jobs have been
removed from the trace a machine with 256 nodes will experience a larger backlog
which results in a longer average response time.

Additionally, the weighted case is examined. To this end, the weight selection from
Section 2.8.1 is applied, where the weight is identical to the resource consumption
(execution time multiplied with the number of required nodes. In this weighted case
as shown in Figure 2.5, the results are different:

e The classical list scheduling algorithms clearly outperforms all other algo-
rithms.

30 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

100,0% -
B FCFS
9 b I
80.0% B PSRS
60,0% - OSMART-FFIA
O SMART-NFIW
40,0% B Garey&Graham|
20,0%
0,0% -
-20,0%
-40,0%
-60,0% -
-80,0%
-100,0%
Listscheduler Backfilling EASY-Backfilling

Figure 2.4: Relative Average Response Time for the CTC-Workload to the FCFS
result with backfilling (0%)

300,0%
BEFCFS
250,0% - W PSRS
[OSMART-FFIA
. O SMART-NFIW
200,0% 7 B Garey&Graham
150,0% -
100,0% -
50,0%
| B || .
0,0% |
-50,0%
Listscheduler Backfilling EASY-Backfilling

Figure 2.5: Relative Average Weighted Response Time for the CTC-Workload to
the FCFS result with backfilling(0%)

2.8. EVALUATION EXAMPLE

31

Listscheduler Backfilling EASY-Backfilling
sec ‘ pct sec pct sec | pct

FCFS | 4.91E+06 0% | 4.05E405 -39.6% | 3.93E+05 -0.5%

Unweighted PSRS | 1.05E+05 -34.0% | 6.35E404 -37.7% | 5.48E4+04 -48.3%

Case SMART-FFIA | 9.07TE+04 -42.2% | 5.60E4-04 -451% | 5.33E4+04 -49.7%

SMART-NFIW | 9.39E+4-04 -48.4% | 5.66E+04 -44.5% | 5.34E4+04 -51.9%
Garey&Graham | 1.46E+05 0.0%

FCFS | 4.99E+11 0% | 1.14E+11 -37.7% | 9.82E+10 -31.3%

Weighted PSRS | 3.91E+11 +2.4% | 1.15E411 -32.4% | 9.91E4+10 -30.7%

Case SMART-FFIA | 3.03E+11 -15.1% | 2.73E+11 +36.5% | 2.58E+11 +70.9%

SMART-NFIW | 3.33E+11 -14.8% | 2.92E+11 +43.8% | 2.68E+11 +79.9%
Garey&Graham | 1.20E+11 0.0%

Table 2.4: Average Response Time for the CTC-Workload with Knowledge of the
Exact Job Execution Time in Comparison to Results with Estimated Execution
Times in Table 2.5

Listscheduler Backfilling EASY-Backfilling
sec | pct sec | pct sec | pct

FCFS | 4.91E4+06 +1143.0% | 6.70E+05 -69.6% | 3.95E+05 0%

Unweighted PSRS | 1.59E+05 -59.7% | 1.02E+05 -74.2% | 1.06E4+05 -73.2%

Case SMART-FFIA | 1.57E405 -60.2% | 1.00E+05 -74.7% | 1.17E+05 -70.4%

SMART-NFIW | 1.82E+405 -53.9% | 1.02E+05 -74.2% | 1.11IE4+05 -71.9%
Garey&Graham | 1.46E+05 -63.0%

FCFS | 4.99E+11 +249.0% | 1.83E+11 +28.0% | 1.43E+11 0%

Weighted PSRS | 3.82E+11 +167.1% | 1.70E+11 +18.9% | 1.43E+11 0%

Case SMART-FFIA | 3.57TE+11 +149.6% | 2.00E+11 +39.9% | 1.51E+11 +5.6%

SMART-NFIW | 3.91E+11 +173.4% | 2.03E+11 +42.0% | 1.49E+11 +4.2%
Garey&Graham | 1.20E+11 -16.1%

Table 2.5: Average Response Time for the CTC-Workload with Estimated Execution

Times
Listscheduler Backfilling EASY-Backfilling
sec ‘ pct sec pct sec ‘ pct
FCFS | 6.17TE4+06 +499.0% | 1.06E+06 +2.9% | 1.03E+06 0%
Unweighted PSRS | 2.86E+405 -72.2% | 1.71E+05 -83.4% | 1.55E+05 -85.0%
Case SMART-FFIA | 2.67TE405 -74.1% | 1.74E+05 -83.1% | 1.57TE+05 -84.8%
SMART-NFIW | 2.85E405 -72.3% | 1.65E+05 -84.0% | 1.64E+05 -84.1%
Garey&Graham | 2.78E+05 -73.0%
FCFS | 6.17TE+11 +108.4% | 3.03E+11 +2.4% | 2.96E+11 0%
Weighted PSRS | 5.10E+11 +72.3% | 3.05E+11 +3.0% | 2.91E+11 -1.7%
Case SMART-FFIA | 4.84E+11 +63.5% | 3.33E+11 +12.5% | 2.97TE+11 40.3%
SMART-NFIW | 4.86E+11 +64.2% | 3.31E+11 +11.8% | 3.03E+11 +2.4%
Garey&Graham | 2.72E+11 -8.1%

Table 2.6: Average Response Time for the Probability Distributed Workload

32 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

o/ — .
100,0% EFCFS

80,0% | W PSRS L
OSMART-FFIA
60,0% - COSMART-NFIW —
B Garey&Graham

40,0% -

20,0%

0,0% ~

-20,0%

-40,0%

-60,0% -

-80,0%

-100,0%

Listscheduler Backfilling EASY-Backfilling

Figure 2.6: Relative Average Response Time for the Unweighted Probabilistic Work-
load in comparison to the FCFS result (0%)

e PSRS and SMART can be improved with either form of backfilling but are
never better than FCFS with EASY.

e EASY is superior to conservative backfilling.

e PSRS is slightly better than either form of SMART.

The artificial workload based on probability distributions basically supports the
results derived with the CTC workload, see Figure 2.6 and Table 2.6. This seems to
indicate that the larger backlog in the CTC workload does not significantly affect
the simulation results. However, it is strange that the absolute values for the average
response time are even larger than in the CTC workload case although the number
of jobs in the same time frame is significantly less. The only difference to the CTC
workload is the fact that EASY is better than conservative backfilling if combined
with PSRS or SMART in the unweighted case.

The derived qualitative relationship between the various algorithms is also supported
by the randomized workload, see Table 2.7. Therefore, the administrator need not
worry if a workload will occasionally deviate from his model.

Next the administrator addresses the simulation using the CTC workload with exact
job execution times, see Figure 2.7 and Table 2.4. By comparing those results with
the CTC workload simulations (Table 2.5) he wants to determine how much the
accuracy of the job execution time estimation affects the schedules. This comparisons
yields the following results:

e In the unweighted case the average response time of PSRS and SMART sched-
ules can be improved by almost a factor of 2.

2.8. EVALUATION EXAMPLE

33

Listscheduler Backfilling EASY-Backfilling
sec ‘ pct sec pct sec ‘ pct

FCFS | 3.40E+08 +96.5% | 1.72E+408 -0.6% | 1.73E+08 0%

Unweighted PSRS | 1.66E+08 -4.0% | 1.44E+408 -16.8% | 1.32E4+08 -23.7%

Case SMART-FFIA | 1.57TE408 -9.2% | 1.41E408 -18.5% | 1.37TE4+08 -20.8%

SMART-NFIW | 1.61E+408 -6.9% | 1.42E+08 -17.9% | 1.39E+08 -19.7%
Garey&Graham | 1.73E+08 0%

FCFS | 9.40E+14 +41.6% | 6.66E+14 +0.3% | 6.64E+14 0%

Weighted PSRS | 8.66E+14 +30.4% | 6.61E+14 -0.5% | 6.60E+14 -0.6%

Case SMART-FFIA | 8.15E+14 +22.7% | 7.54E+14 +13.6% | 6.96E+14 +4.8%

SMART-NFIW | 9.05E+14 +36.3% | 7.96E+14 +19.9% | 7.09E+14 +6.8%
Garey&Graham | 6.68E+14 +0.6%

Table 2.7: Average Response Time for the Randomized Workload

Listscheduler | EASY-Backfilling
pct pct

FCFS -81.6% 0%

Unweighted PSRS -76.7% -33.7%

Case SMART -75.6% -32.7%
Garey&Graham -58.4%

FCFS -80.6% 0%

Weighted PSRS +30.6% -39.4%

Case SMART -13.7% -34.3%
Garey&Graham -57.2%

Table 2.8: Computation Time for the CTC Workload

Listscheduler | EASY-Backfilling
pct pct

FCFS -92.1% 0%

Unweighted PSRS -88.5% -79.6%

Case SMART -87.1% -80.1%
Garey&Graham -72.3%

FCFS -91.6% 0%

Weighted PSRS -27.2% -57.4%

Case SMART -50.5% -72.7%
Garey&Graham -69.2%

Table 2.9: Computation Time for the Probability Distributed Workload

34 CHAPTER 2. DESIGN OF A SCHEDULING SYSTEM

0,0%
-10,0% 1 mFCFS
EPSRS
-20,0% - COSMART-FFIA
O SMART-NFIW
-30,0% W Garey&Graham
-40,0% L L
-50,0% — |
-60,0%
Listscheduler Backfilling EASY-Backfilling

Figure 2.7: Comparison of the Average Response Time for Exact vs. Estimated Job
Execution Length

e In the weighted case both forms of backfilling achieve better results than the
classical list scheduling if applied to FCFS or PSRS schedules.

e Surprisingly, SMART schedules with backfilling give worse results in the weighted
case for the CTC workload using the estimated job execution time than for
the original submission data.

Finally, the administrator considers the computation time to execute the various
algorithms for the CTC workload (Table 2.8) and the artificial workload based on
probability distributions (Table 2.9). In both cases similar results are obtained with
a few observations being noteworthy:

e It is surprising that the classical list scheduling algorithm requires a similar
computation time for both workloads while the larger number of jobs in the
CTC workload results in more computational effort in almost all other cases.

e In the unweighted case SMART and PSRS together with EASY require ap-
proximately the same computation time which is significantly less than needed
by FCFS and EASY.

e In the weighted case PSRS and SMART need a significant amount of compu-
tation time.

As a conclusion, the administrator decides to use the classical list scheduling algo-
rithm for the weighted case. In the unweighted case the results are not that clear.
He intends to use either SMART or PSRS together with some form of backfilling.
However, he wants to execute more simulations to fine tune the parameters of those
algorithms before making the final decision. In addition he must evaluate the effect
of combining the selected algorithms. This concludes the evaluation example.

2.9. SUMMARY 35

Note that there may be plenty of reasons to consider other algorithms or to modify
the simulation model. This section showed practical results for the assumed scenario
and allowed the discussion on the examined scheduling algorithms.

2.9 Summary

In this chapter we presented a strategy to design a scheduling system for parallel
processors. This strategy was illustrated with the help of an example that addressed
the following items in particular:

1. Determination of an objective function from a given simple set of policy rules

[\)

. Selection of a several scheduling algorithms from the literature
3. Modification of the selected algorithms where necessary

4. Evaluation of the algorithms with the help of real and artificial workloads

A main task in designing a scheduling system is the evaluation of a scheduling
algorithm. In our design of scheduling algorithms for parallel computers and conse-
quently for grid system we want to address this topic in more detail in the following
parts of this work. To this end, we first investigate further into theoretical evalu-
ation of scheduling methods. The theoretical approach will give us information on
the worst-case behavior of the algorithms. However, the actual workload and the
user demand is not taken into account. As we are especially interested in the practi-
cal performance of the scheduling system in a real workload scenario, we later look
closer on simulation results for designing scheduling methods in a grid environment.

Part 11

Theoretical Evaluation

36

Chapter 3

Overview on Theoretical
Evaluation

During the process of designing a scheduling system in the previous chapter the
evaluation of potential algorithm played an important role. As we mentioned before,
there are generally two approaches on the evaluation:

e Theoretical evaluation and

e experimental evaluation.

In this part, we examine the theoretical evaluation more closely. Based on observa-
tions of previous results for FCFS | we present a new algorithm called PFCFS and its
theoretical analysis. We will discuss this approach at the end of this chapter. From
these results we make the transition to experimental analysis in the next chapter.

3.1 Performance Metrics

As seen in Section 2.8 different objectives are possible for designing an algorithm
and evaluating a schedule. Several common performance metrics are frequently used
in theoretical analysis. We will briefly introduce some of them as they are used in
the following evaluations.

Makespan This value is defined by the completion time of the last job of a given
job set 7, which is Cyaz,5 = maxier t;(5).
The makespan is mainly an off-line criterion. It is closely related to the uti-
lization throughput and represents a metric which is often preferred by system
owners [26].

Average Weighted Completion/Response Times The average completion time
(ACT) is defined by the sum of all completion times divided by the number

37

38 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

of jobs. By use of the weight w; for each job ¢ some jobs may indirectly get
a higher priority than others. The sum of the weighted completion times is
therefore defined as: C'g = >, w;t;(S). The average weighted response time
(AWRT) closely relates to the delay between submission and completion time:

Dier (ti— i) - wi

ZiET wy
The response or flow time represents a metric from the user’s point of view,
as he is most often interested in minimizing the delay between job submission
and job completion. However, it is much harder to approximate the optimal
weighted flow time than the optimal weighted completion time, as shown by
Leonardi and Raz [50]. Therefore, many researchers focused on the completion
time problem. This may be justified as both measures differ from each other
only by a constant. Therefore, it is sufficient to consider just one of both criteria
for the purpose of comparing two schedules.
Note that the completion time is of very limited interest in a practical setting
where individual jobs are not submitted at the same time.

AWRT =

3.2 Background

First, we start with a brief overview on the theoretical analysis of scheduling in job
scheduling.

Unfortunately, most scheduling problems are NP-complete in the strong sense. This
is even true for off-line problems with simple objective functions and few addi-
tional requirements, see for instance [37]. As mentioned previously, in the theoretical
scheduling community the criteria most frequently used are either the makespan or
either the sum of the completion times or flow times of all jobs. Even simple parallel
scheduling problems based on these criteria are NP-complete, see Bruno, Coffman,
and Sethi [5] or Du and Leung [13].

Previous work in the area of makespan scheduling of parallel jobs includes off-line
scheduling [36], scheduling of moldable (malleable) jobs [80] or scheduling with un-
known job execution times [30] as well as release date scheduling [85].

Similarly, completion time scheduling algorithms with a constant approximation fac-
tor have been provided with respect to off-line scheduling [60], randomized schedul-
ing [8], preemptive scheduling [59], scheduling of moldable (malleable) jobs [78] and
scheduling with unknown job execution times [11].

3.2.1 Optimal Solutions

For very simple scheduling problems it is possible to calculate the optimal solution.
This is often done by the enumeration of solutions and by some variations of branch-
and-bound strategies. For parallel job scheduling the optimal solution is usually not
tractable in a moderate amount of time.

3.2. BACKGROUND 39

Example 6 A simple branch-and-bound approach for a scheduling problem with 14
jobs on a parallel computer takes several hours to complete on a workstation (de-
pending on the hardware). Computationally hard branch and bound problems have
typically exponentially time complexity for increasing problem sets with more vari-
ables. In our case, for a larger job set the amount of time necessary to find the
optimal solution is not acceptable. This applies for the offline as well as for the on-
line problem.

In the online case, there are typically a number of jobs in the backlog queue. Addi-
tionally, the process has to be applied recurrently, as new jobs arrive and running
jobs end ahead of the estimated execution time.

3.2.2 Worst-Case Analysis with Approximation Factors

As optimal solutions are difficult or sometimes impossible to obtain, efforts to deal
with these scheduling problems have mainly been devoted to find polynomial time
algorithms that have small approximation factors. This factor can be a worst-case
bound for an algorithm in comparison to the optimal solution or in comparison to
another algorithm. The theoretical analysis may provide an approximation factor
for these algorithms. This factor denotes the quality of the solution relative to an
optimal solution. In competitive analysis the result of an algorithm is compared
to the result of another algorithm for a given input data. In this case the analysis
provide a ratio for the criteria between both algorithm.

Makespan and completion time scheduling have been subject to various research
efforts:

Makespan Scheduling For the makespan scheduling problem, for instance, Garey
and Graham [36] have shown that an arbitrary list schedule on m identical machines
for a given job system achieves a tight approximation factor of 2 — % That means
that a list scheduler, as e.g. the algorithm from Section 2.5, provides results for the
makespan problem that is less than twice as long as the optimal solution.

Completion Time Scheduling For sequential jobs Kawaguchi and Kyan [47]
presented a list scheduling algorithm called LRF with a tight approximation factor of
1+T*/§. Additionally, McNaugthon proved that every such schedule could not further
be improved by preemption [54].

The problem for parallel jobs is more difficult than its sequential counterpart. Turek
et al. showed that the SMART algorithm generates shelf based schedules with an
approximation factor of 10.45 [79] which has subsequently been reduced to 8.53 [60].

Turek et al. [78] showed that a generalization of Kyan and Kawaguchi’s LRF method
produces a tight approximation factor of 2 for parallel jobs with unique weights if
the resource requirement of each job is at most 50% of the maximum number of
processors. If arbitrary jobs are allowed, this method may result in schedules which
deviate significantly from the optimum.

40 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

While preemption does not improve the results for the sequential scheduling problem,
this does not hold for the parallel case. Deng, Gu, Brecht, and Lu [11] also discuss
response time scheduling with preemption for jobs with unique weights and variable
resource requirements. Schwiegelshohn [59] gave an approximation factor of 2.42 for
the preemptive PSRS algorithm from Section 2.5. In the non-preemptive case, PSRS
delivers an approximation factor of 7.11 for the completion time.

However, the mentioned works focus on off-line scheduling. Real systems for parallel
job scheduling, especially in metacomputing and grid scenarios, have different release
times for the submitted jobs. There is also no knowledge on future job submissions.
In addition, some provided job properties may not be immediately available or may
be incorrect which makes the task for the algorithm even harder, see Section 2.
Consequently, the on-line scenario has to be considered.

It must be emphasized that most results in the theoretic research usually address
either the makespan or the weighted completion time criterion which is not satis-
fying. While an optimal makespan will not guarantee a minimal or even small sum
of weighted completion times and vice versa [59], Stein and Wein [70] as well as
Chakrabarti et al. [8] and Schwiegelshohn [59] showed that there are methods which
provide good performance for both criteria. Moreover, all the weighted completion
time algorithms mentioned above fit in this category.

In real installations the weighted completion or flow time criterion is almost never
used to represent user satisfaction. A first-come-first-serve strategy is frequently
applied in order to guarantee some kind of fair treatment for all users [44]. Un-
fortunately, this strategy has a very bad worst case behavior, see Section 2.5. We
want to address the aspect of fairness related to this scheduling problem in more
detail in the following section. In our example for the design and evaluation process
in Section 2.8.2 we used several of the here mentioned algorithms. We will refer to
these results in our further discussion on the theoretical analysis.

3.3 Fairness in Parallel Job Scheduling

As we saw, theoretic scheduling algorithms mostly focus on off-line scheduling and do
not consider both objectives, owner’s and user’s satisfaction. Neglecting the weighted
completion or response time can cause very bad response time behavior for user
jobs which is usually not tolerable. This is a reason why several of the mentioned
algorithms are not implemented in real installations. In the following we want to
introduce a preemptive scheduling algorithm which is based on the concept of fairness
in job scheduling [48,65]. To this end, we first introduce a special selection of job
weights.

The weight selection results from the assumption that there should be no gain in
splitting a parallel job into many sequential jobs. The same is true for combining
many independent short jobs into a single long job. Only the overhead of a parallel
job in comparison to its sequential version is considered. Based on the results of
Smith [69] this leads to the following weight selection:

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 41

Assumption 1 The weight w; of a job i is the product of the mumber of nodes
assigned to the job, that is m; = |M;|, and the execution time p; of the job.

The weight w; in Assumption 1 may also represent the cost of job i as it equals
the total resource consumption of the job. Note that w; may not be available at the
release date of ¢ if the execution time p; is not known at this moment.

As already mentioned, fairness is further observed in many commercial schedulers
by using the First-come first-serve principle. But starting jobs in this order will
only guarantee fairness in a non-preemptive schedule. We now consider a parallel
computer that supports preemption. As mentioned before, preemption allows to
temporarily halt a job on its resource set. The job can later be resumed. The ability
to preempt parallel jobs simultaneously on all processors in the job’s partition is
often referred to as gang-scheduling [25]. This context switch is executed by use
of the local memory and does not affect the interconnection network. It will cause
a preemption penalty which in reality is mainly due to processor synchronization,
storing of undelivered messages, saving of job status and page faults [83]. In our
model we describe this preemption penalty by a constant time delay s. During this
time delay no node of an affected partition is able to execute any part of a job.
Note that the context switch does not include job migration, which would change
the node subset assigned to a job during its execution.

In a preemptive schedule a job may be interrupted by another job which has been
submitted later. In the worst case this may result in job starvation, that is the delay
of the job completion for a long period of time. Therefore, we introduce the following
parameterized definition of fairness:

Definition 1 A scheduling strategy is \-fair if all jobs submitted after a job i cannot
increase the flow time of © by more than a factor A.

It is therefore the goal to find a method which produces schedules with small values

for Cé"ng, gf , and A where C7, .. and C* denote the optimal makespan and the

optimal sum of weighted completion times, respectively.

3.3.1 The Algorithm

In the following, we introduce a new preemptive algorithm called PFCFS that is
well suited for fair on-line scheduling of parallel jobs. Fairness is achieved by using
the selection of job weights as mentioned above and by limiting the time span a job
can be delayed by other jobs submitted after it. Further, we do not require that the
processing time of a job is known when the job is released.

At first we consider a simple non-preemptive list scheduling algorithm where the
start order of all jobs is determined by their submission times. Although this algo-
rithm is actually used in commercial schedulers, it may produce bad results as can
be seen by the example below.

42 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

Example 7 Simply assume m jobs with p; = m, m; = 1 and m jobs with p; = 1,
m; = m. If jobs are submitted in quick succession from both groups alternatively,
then Craz.s = O(m?) while C,,,, = O(m).

Based on the given scheduling strategy and our job model we are looking for an
algorithm producing a A-fair schedule S with Cyuz5 < 1 - Cr,,,. for small values A
and p. As pointed out by Shmoys et al. [66] the method of Feldmann et al. [30] can be
used to achieve p = 4. But no constant bound can be given for A. In addition Shmoys
et al. showed that no deterministic on-line algorithm has a better competitive ratio
than 2 — % even if preemption is allowed and all jobs are sequential.

On the other hand no gain can be expected from trying to achieve A\ = 1.

Lemma 1 Any on-line algorithm producing 1-fair schedules S cannot guarantee

Cma:(;,S < O(\/m) ’ C:lax'

Proof Assume two jobs i and j being submitted in quick succession with p; = m,
m; = 1 and p; = /m, mj = m. Obviously both jobs cannot be executed concurrently.
Assuming w; = p; - m; and w; = p;j - mj we obtain the following results for both
orders:

order | sum of weighted completion times | A-fairness
(4, 4) O(m*?) A=1
(i) O(m?) A=1+ L

Note that this result cannot be improved by introducing preemption.

To solve this problem we introduce preemption and accept A > 1. A suitable al-
gorithm for this purpose may be PSRS (Preemptive Smith Ratio Scheduling) [59]
which is based on a list and uses gang scheduling. The list order in PSRS is de-
termined by the ratio #;Z As this ratio is the same for all jobs in our scheduling
problem (see Assumption 1) any order can be used and PSRS is able to incorporate
FCFS (First Come First Serve Scheduling). An adaption of PSRS to our scheduling

problem is called PFCFS (Preemptive FCFS) and given in Table 3.1.

Intuitively, a schedule produced by Algorithm PFCFS can be described as the inter-
leaving of two non-preemptive FIFO schedules where one schedule contains at most
one (wide) job at any time instant. Note that only a wide job (m; > %) can cause
preemption and therefore increase the completion time of a previously submitted
job. Further, all jobs are started in FIFO order.

Instruction A is responsible for the on-line character of Algorithm PFCFS. We call

any time period A a period of available resources (PAR), if during the whole period
m

Instruction A is executed and at least % resources are always idle. Note that any

execution of Algorithm PFCFS will end with a PAR.

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 43

while (the parallel computer is active) {
if (Q = 0 and no new jobs have been submitted)
A wait for the next job to be submitted;
attach all newly submitted jobs to @ in FIFO order;
Pick the first job 7 of () and delete it from @Q;

if (mi < 2) {
B wait until m; resources are available;
start ¢ immediately;}
else {
C wait until 5 are available;
D If (job 7 has not been started)
FE wait until m; resources are available or time period ¢ has passed;
else
Es wait until the previously used subset of m; resources is available

or time period t has passed;
If (the required m; resources are available)
start or resume execution of ¢ immediately;
else {
preempt all currently running jobs;
start or resume execution of ¢ immediately;
wait until ¢ has completed or time period t has passed;
If (the execution of ¢ has not been completed)
preempt job ;
resume the execution of all previously preempted jobs;
If (the execution of ¢ has not been completed)
Goto D; }}}

ST Q™

=~

Table 3.1: The Scheduling Algorithm PFCFS

44 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

Further, we assume that the modification of @ or the selection of resources does
not require any time. Therefore, any time instant in a PFCFS schedule corresponds
with Instructions A, B, C, E1, Es, F', G, H, I, J or K. This is easy to see for any
instructions that contain the word wait. In addition we assume that preempting a
running job or resuming the execution of a preempted job results in a preemption
penalty. Therefore, some time passes during the execution of Instructions G, J and
K. The same holds for Instructions F' and H if the execution of job 7 is resumed.

3.3.2 Theoretical Analysis

Next, we theoretically examine the proposed PFCFS algorithm. The competitive
analysis allows us to give bounds for schedules produced by the PFCFS algorithm.

First, we describe a few specific properties of schedules where w; = m;p; holds for all
jobs i. Note that these properties can also be derived from more general statements
of other publications.

Corollary 1 Let 7 be a sequential job system such that w; = p; holds for all jobs
i € 7. Assume a non-preemptive schedule S where each job i is started time (k—1)p;
after the completion of the previous job (or after time 0 if i is the first job). Then
the completion time cost Cg of S is independent of the order of the jobs in S and

there is L
_ * 2 2
Cs =kC" = (X p)*+ S pd).

1ET 1ET

Proof Note that each job i is completed time kp; after its immediate predecessor
(or after time 0 if i is the first job in S) in schedule S and that 1;1 = 1 holds for all
jobs. Therefore, Smith’s rule [69] guarantees that the job order of schedule S does
not affect the completion time cost. Moreover, any schedule S with k = 1 is optimal.

We have Craz,s = k) e, pi for |T| = 1. Therefore, the bound is clearly true for
|7| = 1. Neat assume that the statements for Cs and Cyqz. 5 hold for all job systems
T with |T| = n — 1 and any schedule S for T with the described structure. Adding a
new job i, to T and starting this job time (k — 1)p;, after the completion of the last

job in such a schedule S produces a job system 7' with |7'| = n and a schedule S’
with
Cmax,S’ = Cmax,S + kp'in
= kY pi+kpi,
1ET

= kZpl and

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 45

CS’ = CS + kwinpin + winCmax,S
= Cs+ kp?n + pi, Cmax,S

= g((ZW +) p}) + kpi, + kpi, Y pi

1ET 1ET 1ET
k
= S(Q_p)+ D0
ier’ ier’

Corollary 2 Assume that w; = m;p; holds for all jobs i in a job system 7. A new
job system 7' and a new schedule S" are generated from any non-preemptive schedule
S for T by replacing a single job i € T with the successive execution of two jobs iy
and iy such that m;, = m;, = my, Di = Piy + Piy, Wi, = My, and w;, = m;p;, hold.
This results in Cs — Csr = piypiym; < C*(1) — C*(1').

Proof Note that the transformation always produces a legal schedule S’. The split-
ting of job i has no effect on the completion time of any other job in 7. Further,
Wiy + wiy, = w;, t(S) = t;,(S"), and t;, (S") = t;,(S’) — pi, hold. Therefore, we have

Cs—Cg = witi(S) — wi i, (S") — wiyti, ()
(Wi, 4+ wiy)ti(S) — wi, (tiy (S7) — Piy) — wiyti, (S”)

Wiy Pig = MyiPiy Pig -

As this kind of job splitting also transforms an optimal non-preemptive schedule for
T into a legal but not necessarily optimal schedule, C*(1) — C*(7') > mpipi, =

Cs — Cg holds as well.

The proof described above also holds in the preemptive case, if the second job iy is
not preempted in schedule S’ and starts immediately after the completion of job ;.
For a more general statement see Corollary 3.

Note, that Corollary 2 leads also to the following relation :

Cs Cs +mipi,piy
Cx(r) C*(7)
Csr + mipi, pi, < Csr
C*(T’) + Mypi Pis C*(T’)

It is further possible to split a parallel job vertically, that is producing a schedule
S’ from a schedule S by replacing a job 4 in S with m; identical jobs i’ such that
my = 1, py = p;, and wy = % Then, we have Css = Cs and C*(7) > C*(7').

Therefore the following relation holds for vertical as well as for horizontal splitting
as described above:

46 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

Cs < Cg
C*(t) — C*(")

As already mentioned in the previous section, PFCFS will generate non-preemptive
FCFS schedules, if all jobs are small, that is, they require at most 50% of the
maximum amount of resources (m; <). First, we restrict ourselves to this case
and prove some bounds. In Lemma 2 we consider scenarios with a single PAR.

Lemma 2 Let m; < 5 and w; = m; - p; for all jobs of a job system 7. Also assume
that there is no PAR before the submission of the last job. Then Algorithm PFCFES
1s 1-fair and will only produce non-preemptive schedules S with the properties

1. Cg<2-C* and

2. Crnazs < 3-C

max -

Proof As the whole else block starting with Instruction C cannot be executed, Al-
gorithm PFCFS is identical to the non-preemptive FCFS algorithm which is 1-fair.

Next, we address the bound for the completion times. Note that for the calculation
of C*(7) the submission times of all jobs are simply ignored. This cannot increase

C*(7).
Now we describe a class of job systems ' and schedules S’ with the following prop-
erties:
1. All jobs i € 7' are sequential, that is m; = 1.
2. x is the last starting time of any job in 7'.
3. 11 is the set of all jobs i € ' that complete no later than time x (t;(S") <).
4. All jobs i € T'\1{ start at time x in schedule S'.
5. Exactly 3 resources are used at any time instant between 0 and x in schedule

S’

Note that 7'\7{ contains at least 1 and not more than m sequential jobs. Further,
7'\7{ is partitioned into two disjoint sets 75 and T4 which are implicitly defined by
use of the following equation where the parameter y is introduced for reasons of
convenience:

ZjET/\Té by . .'IZ‘% + ZjETé pj

m—|rl — m— |

}.

mh={i e T\1|pi >y :=

Intuitively, y - (m — |74]) is the total resource consumption of all jobs in T'\74, see
Figure 3.1. Of course, 75 may be empty.

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 47

0 0,5m m 0 0,5m m

Figure 3.1: Schedule S’ (left) and the optimal schedule for 7" (right)

Using these definitions and Corollary 1 we can calculate Cgr:

Cy = Cg(ry)+ Cg(my) + Cs(73)

2?m 1
= 4 °F §ZP?+ZZH(M+$)+ZP¢(M+$)

; / ; / N /
1ET] 1ET, 1€Tg

To determine the optimal schedule C*(7") for 7 on m resources we again use Corol-
lary 1 and obtain

2 /
. y*(m—|m3|) 1 1
c(r) = ——7¥L+§Ep%3§<ﬁ+§p?

i€T] i€T) i€T]
22 (> pi)? EZPM% 1
rem Th P ? 2 2
= + 2 + pi+5) pi+) pi
Som— 1) " 2om— 1) 2w Zl PILAP

Finally, we compare the costs of the schedule S" and the optimal schedule. This yields

2?2 Coyp)® Xypiam 1
x m 2 1
o = +5> P}

Am —|r3]) ~ m—Im| m— |

E}%———— pir— Y pix

; /
167'3 ieTh 1ETy

20*(7'/) —Cgy >

o)
ZETI

48 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

2

> 564m(m |7_3| _|_sz +sz Zpia:

i€T) ieT) ieTs
2
z°m |7' |
Y B
zET ZET
2 > ier Di > ier Di
X 1€74 Z €Tk 1
> |l + (T) =) piw = [m(-T2 >0
4 73] 2 73]

1673

Zi ! pi . .
Note that for 5 = () the term (|ET,:|”)2 disappears. Now, we transform job system T
3
and the PFCFS schedule S into such a job system 7" and a schedule S’ by repeatedly
applying

e vertical splitting,

e horizontal splitting as addressed in Corollary 2,

e and by moving all jobs which violate the resource constraints to the end of the
schedule.
Remember that no job requires more than 5 resources and that there is no PAR
before the submission of the last job. The moving of jobs will increase the cost of a
schedule while C* (1) remains unchanged. Therefore, we have

Cs _ Oy
C*(1) — C*(7!)’

This concludes the proof for the completion time bound. The same bound for gs can
also be derived by a generalization of Lemma 4.1 in a paper by Turek et al. [78].
For the makespan first note that Cpas.s' > Cmaz,s and Cr . (7') < Cr o0 (T) hold
with respect to all transformations described above. Also, the optimal makespan is
bound by C,,..(7") > max;e{p;} and C,...(7") > # > 5. This results in

max max

Cmax S =T + max p; < QC:na:c() + C;’Laa:() = Sc:naa:()

Z€T2U7'3

The bounds for PFCFS given in Lemma 2 are tight for m > 1. Note that the bound
of 2 for C—i cannot be increased by jobs in 75 and 74 independent of m, z, |5|, and
|75]. In addltion, the bound of 2 can only be approached if the processing time of all
jobs in 71 is as small as possible. These observations are important for the proof of
Lemma 4.

Next, we remove the PAR restriction.

Theorem 1 Let m; < % and w; = m; - p; for all jobs. Then Algorithm PFCFS is
1-fair and will only produce non-preemptive schedules S with the properties

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 49

1. Cg<2-C* and
2. Craz,s < 3-C

max*

Proof For the given restrictions Algorithm PFCFES is again identical to the 1-fair
FCFS method.

The bounds for Cpax,s and Cs are proven by induction on the number of PARs
occurring during the execution of Algorithm PFCFS. As shown in Lemma 2 the
bounds hold for all schedules without any inner PAR, that is, any PAR which is
ended by the submission of another job. Therefore, we assume that the bounds are
valid for all schedules with at most k > 0 inner PARs and consider schedules with
k+ 1 inner PARs.

Now, let job i € T with release date r; be the job ending the last inner PAR of
schedule S. Then job system 7' and schedule S’ are generated from job system T and
schedule S by applying the following transformations:

1. Any job j € T is horizontally split at time 2r; into two jobs j1 and jo, if j
is processed at time 2r; in schedule S, that is, t;(S) — p; < 2r; < t;(S). We
say that jy1 is the first descendant of job j, if j1 is executed before jo in the
resulting schedule S’.

2. If rj <r; for a job j € T split at Step 1, then we set rj, = r; else rj, = r;. In
both cases we have rj, = r;j.

3. Job system 7' is partitioned such that

= {jerr; <nri},
v = {jer; >riandt;(S") < 2r;}, and
5 = {jer|r; >randt;(S') > 2r}.

Similarly, schedule S” is split into schedules Sy, S5, and S5.

Note that in any schedule o for job system T we have tj(c) —r; > pj, for any job

j € T which is split in '. With Corollary 2 we therefore obtain Cs < O gnd

C*(t) — C*(7)
C, /
g:;”:;(’f) < C::””:;”(‘f,). Further, no job in schedule S starts before time 2r;. This results

m

Cg = CS{+CS§+CS§a
CH(r) > CH() + O () + (),
Crmaz,s = max{Craz,s, Crmaz,s}> Cmaz,s;
Craa(T') 2 max{C},.0(11), Crraa(72), Crraw (73)}-

Schedule S} is a PFCFS schedule with k inner PARs. Due to the induction assump-
tion the bounds therefore hold for job system 7| and schedule S .

50 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

Next, we derive job system T4 from job system 14 by subtracting min{r;,2r;} fmm
the release dates of each job j € T5. Note that the release date of each job in T4 is
reduced by at least r;. Therefore, we have the relations C*(74) < C*(74)—r; der’ wj

and C} o, (15) < Cfnax(3) — ;. Also, schedule S§ is transformed into schedule S5 by
starting each job in 5 time 2r; earlier. Note that S5 is a PFCFS schedule with no
inner PAR. Using Lemma 2 this yields the following relations:

CSé < Qriij <QC*<7'§),
JET)
Cgy = CS//—}-2T’ZZUJ] < 2C*(74 —1—27“1210] = 2(C* (73)+nZw]~)
JeTs JETS jeTs
< 20%(7),
Cmax,Sé < 2 < 2C:<nax()
Cmax,sé < Cmaz,sél +2r; < SC:’LCLCC(?/>I) +2r; < 3(C:na:r(é/) + T’i) < SC:w:p()

The combination of the results concludes the proof.

A brief look at the example of the workload for a real machine with 430 nodes (see
Table 2.2) shows that wide jobs are rather uncommon. This explains the acceptable
performance of FCFS schedules in many cases.

It has already been mentioned that preempting a running job and resuming the
execution of a previously preempted job results in a preemption penalty s. For the
general analysis of Algorithm PFCFS we assume that s is a constant and that the
minimal execution time of any job is p. Further, we introduce the relative preemption
penalty 5§ = 1%, see [59]. Without the definition of a minimal execution time there
is no constant competitive factor for Algorithm PFCFS in general. But in a real
application there is always a minimal execution time due to the time required for
loading of a job, even if the job fails to run. Further, in Algorithm PFCFS we set
time period t = p.

We start this part of the analysis by introducing a generalization of Corollary 2.

Corollary 3 Assume that w; = m;p; holds for all jobs i in a job system 7. Further,
we have a schedule S with C(> for some parameter . A new job system 7’ and
a new schedule S’ is generated from S and T by replacing a single jobi € T in S with
the successive execution of two jobs i1 and iy such that m;, = m;, = m;, pi = pPi, +Pi,,
Wiy = MiPiy, Wiy = MiPiy, iy (S") = t:(S) and 0 < t;,(S") — t;, (S") < ypi, hold. This
results in 280~ > G5

C*(T) = C*(1)"

Proof Note that the transformation produces a legal schedule S’ if any minimal job
execution time p is ignored. As in Corollary 2 it does not affect the completion time
of any job in T\{i}. Further, the relation w;, +w;, = w; holds. Therefore, we obtain
with the help of Corollary 2

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 51

Cs — CS’ = witi(s) — wj ti, (S/) — Wiy ti, (SI)

< (wiy + wiy)ti(S) — wiy (i, (") — Vpiy) — wiytiy (S')
= YM;Pi Pigs
C*(1)=C*(1") = mipipi,.

The combination of both inequalities finally yields

Cs S Cs — ym;pi, Di,
* ! - *
C (T) C (T) — MyPiq Pio
Cs — Cg—é_)miphpiz
C*(T) — mipi, Piy
cg—(ST)(C*(T) — MPiy Piy)
C*(1) — m;ipi, Di,
Cs
C*(1)’

v

Next, we take a look at the part of a schedule in which a wide job ¢ causes preemp-
tions of other jobs. We define a so called preemptive time period T that starts with
the end of Instruction C' and ends with the next beginning of Instructions A, B or
C. Two cases are possible:

1. Wide job ¢ completes in Instruction I while other jobs are preempted.

2. Enough resources become available to run wide job ¢ to completion after it has
already preempted other jobs (Instructions F').

In both cases time period T can be divided into different kinds of subperiods. Ta-
ble 3.2 describes the length and the minimum resource use for those subperiods with
t = p. In Table 3.2 the preemption penalty is represented by penalty subperiods a
and b. Note that the first and the last penalty subperiod in T relates to either the
start or the completion of a gang. As the time requirement to load a job or store its
final results is included in the processing time of the job those subperiods last only

5 (subperiod a) while in all other cases the full penalty of s is encountered.

For the first case period 7" can be represented by the sequence

c—a—-d—-b—e—b—...—d—-b—e—b—d—a.

Further, we set k = L%J if p; is not an integer multiple of p and k = % —1 otherwise.
Then, the subsequence d — b — e — b is repeated k times. The last subperiod d has
a length of p’ = p = p; — kp < p while for all other subperiods d and e we have

p’ = p. Also note that in all subperiods e a single long running sequential job may

52 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

Subperiod identifier | Length | Minimum resource consumption
a 3 -
b S -
c D p(m —m; + 1)
d p<p p'm;
e p<p Y

Table 3.2: Subperiods of a schedule where wide job 7 causes preemptions

prevent the availability of the necessary resources to execute the rest of job ¢ in
a non-preemptive fashion as no job migration is allowed. Hence, the resource-time
product in subperiods e is positive but may be very small.

Therefore, the overall length and the minimal resource consumption of 7" in the first
case are

S S
p+§+k(2p+23)+]ﬁ+§

(k+1)(2p+2s)+p—p—s
(k+1)(2p+ 2s)
p(m —my) + kpm; + pm; = pm + (k — 1)pm; + pm;

m ™m
E+1p— 4 pt
(k +)P2+p2

(k+ 1)p%

Length(T).

Length(T)

Resource(T')

VoV IA

v

v

4(1+5)

The second case is almost identical to the first case. Only the last subperiod b and
the last subperiod d are missing. For this case we therefore have the sequence

c—a—d—-b—e—-b—...—d—-b—e—a.

Here, the subsequence d—b—e—b is repeated k > 0 times. Further, the last subperiod
e has a length of p’ = p < p while p’ = p holds for all other subperiods d and e.
In contrary to the first case job ¢ will continue execution after period P but not
cause any preemption of other jobs anymore. For the overall length and the minimal
resource consumption of T" we have

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 53

Length(T) = p+%+k(2p+28)+p+s+ﬁ+§
(k+2)(2p+2s)—p—2s
Resource(T') p(m —m;) + kpm; + pm;
= pm+ kpm;

(k+ 2)p%

m
————Length(T).
SRTE R

Finally, the case must be considered when enough resources become available to
process a wide job ¢ before it causes any preemption (Instruction Ejp). In this case
between m — m; 4 1 and % resources are used for a period p’ < p. Here, we define
a degenerated preemptive time period T' consisting of a subperiod ¢ with length p’
and a subperiod that is formed by the first p’ processing of ¢, that is the degener-
ated preemptive period does not stop with the beginning of the next instruction A,
B or C. For such a degenerated preemptive period we have Length(T")= 2p’ and
Resource(T”)> p(m — m;) + p'm; = p'm = LLength(7").

Note that any PFCFS schedule only consists of PARs, periods with preemptions as
described above and periods with a minimum resource consumption of more than %
at any time. Therefore, we can evaluate the minimum degree of machine utilization
for the general case.

Lemma 3 At least ﬁ of the resources are used on average during any time frame

of a schedule produced by Algorithm PFCFS if the time frame

e does not include any part of a PAR and

e does not start or end during a preemptive period or a degenerated preemptive
period.

The first condition simply prevents underutilization due to a lack of jobs. Due to
the second condition any time frame allowed by Lemma 3 cannot only partially
include a preemptive or degenerated preemptive period to avoid any temporary
underutilization.

Proof At any time instance not belonging to a preemptive or degenerated preemp-
tive period (Instructions A, B or C') more than 50% of the resources are used as
no PAR is allowed. During any preemptive or degenerated preemptive period at least
ﬁ resources are used on average as has been shown above.

The average usage of resources can be significantly increased in a realistic setting if
we allow the concurrent execution of small jobs together with a preemption causing

54 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

wide job. This is also true if migration is allowed. However, those architectural
modifications may also cause a larger preemption penalty.

Further note that after the execution of a job is resumed following its preemption,
the job will either run to completion or execute for a time period of at least p before
it is preempted again. Then the job will stay inactive for at most p + 2s. Therefore,
we can apply Corollary 3 with v = 2 + 25 to a PFCFS schedule provided any job
within a preemptive period can only be split when its execution is resumed following
a preemption. Then the first descendent of the split job has a remaining execution
time of 0 after the preemption. Outside of those preemptive periods any job may be
split at any time.

To determine the competitive factors for preemptive PFCFS schedules we again
consider at first schedules without any inner PARs, that is, schedules where a PAR
only occurs after the submission of the last job.

Lemma 4 Let w; = m; - p; for all jobs. Also assume that there is no PAR before
the submission of the last job. Then Algorithm PFCFS is (24 23)-fair and produces
schedules S with the properties

1. Cg < (3.562 + 3.3865)C* and

2. Crnaz,s < (44 35)C:

max*

Proof As already mentioned above the completion time of a job i may increase at
most by p;(1+25) due to a wide job which is submitted later and causes preemption.
This yields the fairness result.

Note that the application of Corollary 3 is useful as v = 2 + 25 < 3.562 + 3.386s5.

As in the proof of Lemma 2 we start by describing a class of job systems 7 and
schedules S with the following properties:

~

. 7' is partitioned into 3 subsets 11, T4 and TS.

2. For every job i € 1| there is m; = .

3. All jobs of 11 are scheduled first in S’ such that job i starts (1+ 23)p; after the
completion of the preceding job (or after time 0 if i is the first job).

4. T contains % wide jobs i with p; = p and m; = 5 and % sequential jobs j
with p; = p and m; = 1.

5. 1 wide job of Ty is always started concurrently with %5 sequential jobs of T5 in
schedule S’. Such a block of jobs is started 2p + 3s after the completion of the
previous block (or after the last job of 71 if it is the first block).

6. T4 only contains sequential jobs, that is jobs i with m; = 1.

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 55

7. In schedule S" all jobs in T4 are executed after the jobs in 1y such that at any
time instant between the completion of the last job in 75 and the completion of
the last job in T4 exactly B resources are used.

Note that 7' only consists of sequential jobs and wide jobs which use 50% of the
resources. For reasons of convenience we introduce the variables x = E‘ef’ pi and

2
z = ZZ% With the help of Corollary 1 we can now calculate the cost of schedule
S’ to be

(2—1—25

Cs = + sz
167’1
3+35)m
%(y2 + yp) + my(2 + 28)z +
22+ Zp, 2((2 4 25)z + (3 4 35)y).
167'3

For the optimal schedule we demand that no two wide jobs can be executed concur-
rently. Using the same convexity argument as in the proof of Lemma 2 we obtain

2(y* +yp) + (2? —i—EZET/pl)—i- Dy + 4z2+ ZZGT/pZ + B2y ifx>z
cr = %(y2+yp)+%(2x +Zz€7”pz)+m$y+ (Z_$)2
Y e P+ Bz - 2)(a +y) ifr <z

If we consider only cases with C*(5 > 3 + 35 the proof idea of Corollary 3 can be
used to obtain

Oy _ Csr — (34 338)(F ZzGTI YD~ 3 2267’3 ;)
cH(r') CH () = 3 Xien Vi — BUP — 3 EiET?/) p;
Csr = (2428)F Yier 7 — 3+ 35)Fyp — 3

CHT) = Yier 7 = BYP — 5 Dien, 1

iery Pi

Therefore, it is sufficient to determine the upper bound for the ratios

(14 3)(22% + 6y> + Syx + 4zx + 62y) + 2>
22 + 2% + 2xy + 22 + 22y
(1+3)(222 + 6y* + Syx + 42z + 62y) + 2°
202 4+ 2y + day + (2 — 2)2 4+ 2(z — z)(z + y)

forx > z and

forx < z.

56 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

The solution of this algebraic optimization problem produces

222 + 6y% + 8yx + 2% + 42w + 62y
22 4+ 2y2 + 2zy + 22 + 22y
222 + 6% + 8yx + 2% + dzx + 62y
22 4+ 2y2 + 2xy + 22 + 22y
222 + 6% + Syx + 4zx + 62y
2 + 292 + 2xy + 22 + 22y
222 + 692 + 8yx + 4zx + 62y
22 + 2% + 2xy + 22 + 22y

|:>0y>02>2 <

’yZO,x:1.281z = 3.562

l:>0y>02>2 <

|y:z,x:1.886z = 3.386

222 + 6y + 8yx + 2% + dzx + 62y
202 +2y2 +day + Lz —2)2 4+ 2(z —2) (v + y
222 + 6y + Syx + 4zx + 62y
202+ 2y + day + 3(2 —)2+ 2(z — z)(z + y)

) 20,420,252 < 3.562

250,450,252 < 3.386.

Now, it remains to be shown that every job system T and every PFCFS schedule S
with no inner PAR can be transformed into a job system 7' and a schedule S’ with
% > CC—(ST) To this end we use four elementary transformations each of which
cannot decrease the ratio gi provided gi > 2+ 25 holds:

1. Horizontal splitting of jobs as described in Corollary 8 with v = 2+ 23
2. Vertical splitting of jobs

3. Increasing the completion time of some jobs without affecting the completion
time of any other job in the schedule

4. Earlier start or introduction of empty subperiods (periods in which no job is
processed)

In detail we apply the following sequence of transformations:

1. If a job executes during a preemptive or a degenerated preemptive period P
and starts or terminates outside of P in the PFCFES schedule it is horizontally
split at the beginning and/or at the end of P. This separates all those periods
from the rest of the schedule.

2. In a degenerated preemptive period of length 2p’ wvertical splitting is applied
to all jobs in the period such that there is one wide job i’ with my = % and
py = p' while all other jobs in this period are sequential.

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING o7

10.

11.

12.

135.

The preemption causing wide job i in a preemptive period P is horizontally split
at the beginning of the second subperiod d if there are at least two subperiods d.
This produces a wide job of execution time p and another wide job of execution
time p; — p. In case of a degenerated preemptive period there is only a single
wide job i with processing time p; < p.

. All other jobs belonging to this preemptive period are horizontally split at the

beginning of the first subperiod e.

All jobs executing during subperiods e are executed at the end of the schedule
in a non-preemptive fashion. Note that this does not include jobs executing
during subperiod ¢ which complete at the beginning of the first subperiod e.

Both subperiods a, the first two subperiods b, and the first subperiod e are
moved to the beginning of the preemptive period.

Vertical splitting is applied to the first wide job (executing in the first subperiod
d, see Step 3) such that one wide job i' with my = 3 and m; — % sequential
jobs are generated.

m
2

Vertical splitting is applied to the jobs in subperiod c such that all jobs in this
subperiod are sequential.

m — m; of the sequential jobs in subperiod ¢ are executed concurrently with
wide job ' in the following subperiod d while the remaining jobs are executed
at the end of the schedule.

All subperiods e (except the first one which has been moved to the beginning of
the preemptive period P, see Step 6) and all subperiods b (except the first two,
see Step 6) are scheduled immediately after the completion of the first wide job
in this preemptive period.

Vertical splitting is applied to the second descendant of wide job i (with ex-
ecution time p; — p, see Step 3) such that there is a single wide job i" with
min = 5 and m; — 5 sequential jobs. All those sequential jobs are executed at

the end of the schedule.

For each degenerated period of length 2p’ an empty period of length p’ + 35p
1s introduced at its beginning. This way a degenerated preemptive period has a
resource ratio of

1
3+3s°

The transformations of Lemma 2 are applied to all jobs not executing during
any preemptive period such that always exactly %5 resources are used except for
any preemptive period and the final PAR.

With these transformations (and by possibly introducing additional periods without
any resource use) we have generated periods with a use of %, ﬁ, and L= of the
available resources.

4445

o8 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

Next, Smith’s rule [69] is generalized to those periods. As p"—”_“ is invariant for all

jobs, the ratio of used resources to available resources within a perzod (resource ratio)
wetght

processing time

largest weighted completion time cost of the schedule is obtained by executing periods

with the smallest resource ratio first. This produces the ordering in the description
of S'.

It remains to be shown that any jobs executing during the final PAR of the schedule
cannot result in a larger mazimum value for Cf(- To this end we consider two job

corresponds to the ratio in uniprocessor scheduling. Therefore, the

systems 7 and 7’ and the corresponding schedules S’ and S'. Both job systems only
differ in the subsets 7y C 74 and 7j C 4.

1. Job system TZ contains less than %5 sequential jobs that all start at the beginning
of the last PAR in schedule S’. This can be achieved by use of Corollary 2.

i jdentical sequential jobs with processing time

2. Job system T) contains
p. Those jobs are executed last in schedule S" such that exactly 5 machines
are used for their processing and all machines are idle in the final PAR.

With the help of Corollary 1 we obtain:

m ZZET’ Pi 1 Zief[l pi

CS” _CS’ = sz T) 5 5 2
2674
_ ZP ZGT’ v) — pzieﬂ;pi
¢ 2
Z€T4
(0 * 1 1
cH (') - C*(r) > §(Zp3—p2pi)>§(cg/—05')

I]
1ET, 1ETy

Using the proof idea of Corollary 3 we can therefore show that any jobs executing in
the final PAR cannot increase the ratio of C* roIe=) beyond 3.562 + 3.3865.

Finally note that each job i' in 7" with my = % is a descendant of a job i in T with
m; > 5. Therefore, any two of those jobs cannot be executed concurrently in any
schedule. This justifies the additional constraint in the optimal schedule for 7'.

For the makespan we use the same definitions of x, y, and z. In addition we now
assume that 7' also contains jobs which execute during the final PAR. Then, the
following bounds hold for the optimal makespan:

Chax(T) > i for all jobsie 1
Crar(T) = x4y

1
C:nax(T/) > y—l——(l‘—FZ)

2

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 59

With j being the job that finishes last in schedule S we obtain:

Cmax,S/
pj+ 2+ (3+335)y+ (2+235)z

Cmax,S

IA N

IN

p;+2(y+ %(az+z)) + (14 35)(x +y)
(4+35) 0 (7') < Crrpga(7)

IN

Finally, we again remove the constraint on the number of PARs.

Theorem 2 Let w; = m; - p; for all jobs. Then Algorithm PFCFS will only produce
schedules S with the properties

1. S is (2 + 25)-fair,
2. Cg < (3.562 + 3.3865)C*, and
3. Crnaw.s < (4+35)C:

max*
Proof In general the proof is done in the same fashion as the proof of Theorem 1.
However, due to the existence of preemptive periods there are some differences. Be-
cause of the definition of a PAR time s; cannot belong to a preemptive period.

We start by addressing the completion time cost of schedule S. First assume that
ri < 2p+2s. We define 1 = {j € 7|r; < r;i} and consider two situations:

1. Every job j € Ty starts at time r;. Then job system 7' is generated by splitting
each job j € 11 into jobs ji1 and jo at time r; if t;(S) > r;. As in the proof of
Theorem 1 we have tj(o) —1r; > pj, in any schedule o for job system 7. We can
now prove the claims by applying Lemma 4 to job system 1o, = {j € 7'|r; > r;}.

2. Otherwise we have ZjEn mj > m and ZjETAtj(S)<m mjp; > 2. Therefore,
we can modify T and S by replacing the schedule between time 0 and r; with

a period using 4_:45 of the available resources as described in the proof of

Lemma 4. This will remove all inner PARs and increase C?—gﬂ

Therefore, it is sufficient to consider r; > 2p + 2s. As in the proof of Theorem 1
we want to use horizontal splitting to generate a job system 14 with r; > r; for all
jobs j € T3 and a corresponding pair of schedules Sy and S5 such that Lemma 4 can
be applied to S§. Let us consider time t = (3.562 + 3.3863)r;. If t does not fall into
a preemptive period then each job is split at time t provided it is evecuting at this

moment. Note that B
3.562 + 3.3865 — 1

2425

holds if rj < r;. On the other hand if t is a time instant within a preemptive period
we first move the final subperiod a in schedule S down to the first subperiod a, see
also the proof of Lemma 4, Step 6 of the transformation. This can only increase Cyg.
Now we must address two cases:

Pj = > Ty

60 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

1. If t belongs to a subperiod a or c then all jobs are horizontally split before the
preemptive period, that is, at timet —p —s >t — %ri or later. Therefore, we

have
3.562 + 3.3865 — 1 — 3

2+ 25

Dj = TP > T

if i <7Tj.

2. In all other situations all jobs j with r; < r; are split at the end of the preemp-
tive period while the wide job is split at the beginning of the last subperiod d
before t. As any jobs executing during subperiods e are not used in the proof of
Lemma 4 we are allowed to split those jobs after t thus guaranteeing p;, > r;.
However, wide jobs may be split as early ast — (2+25)p > (2.562 + 2.3863)r;.
This also does not affect the validity of Lemma 4 for 74 and S5.

The proof of Theorem 1 can be directly applied to all jobs j € T4, that is, jobs j with
r; > 1 and t;(S") <t.

Finally, we must consider all jobs j € 7" with t;(S") > r; and rj < r;. Unfortunately,
Lemma 4 can only be applied if those jobs are not preempted after time s;. Using
Lemma 8 it can be assumed that those jobs start with the beginning of the last inner
PAR. Again, we must distinguish 3 cases:

1. j is not preempted.

2. by > 0.6407}.

3. j is preempted and p; < 0.640r;.
As already stated Lemma /4 is valid in the first case. For the second case we use the

fairness property to compare the completion time of job j in schedule S’ with the
earliest completion time of j in any schedule o:

tj(S/) = 7+ (2 + 2§)pj

1 _
(——+2+25)p;

<

= 0.640

< (1562 + 2 + 28)t(0)
< (3.562 + 3.3865)t;(0)

Therefore, those jobs can be split at time r; and considered separately from .

Any job j belonging to the third case will complete in schedule S’ before time r; +
(2 + 25)0.6407; = (2.280 + 1.2808)r; < t —1; < t — (24 25)p, that is, before the
start of any wide job assigned to 75. To address such a job j we first vertically split
each wide job k that preempts j to generate a job k with my, = m; that preempts j.
If the completion time of any such job k is larger than t;(S) then k is horizontally
split after the preemption following t;(S). The set of all those jobs k is denoted

3.3. FAIRNESS IN PARALLEL JOB SCHEDULING 61

by 1. Next, we rearrange the schedule such that j is only preempted just before its
completion by possibly increasing the completion time of k'. Therefore, the completion
time cost of the resulting schedule S” cannot be smaller than C'sr and t;(S")—p—s <
maxyer, {tx(S”)} < t;(S”)—p—s. Finally, we horizontally split job j at the beginning
of its first preemptive period after r;. Then job ji belongs to Case 1 while we can
use 1, = pj; and i = r; for all k € 7. From the proof of Lemma 4 we know that
ZkeTk Pr = %‘lpj2 with % >a > 1. Now, we can determine the contribution of job jo
and jobs k € 1y, to the completion time cost of S” (upper bound) and the cost of the
optimal schedule C*(7') (lower bound):

Csr: mpjt(S") +my > prtw(S") <

keTy

3+ 35
M (Djs (ri + pjy) + P52+ 28) + (O pe)(ri + pjy + szk)+

ke keTy
3+ 35
5 D Pk =
k‘ETk
. Z2a _ 2a?
mjpjz(ri + D5y +pj2(2 + 23) =+ ?(7“7, +pj1) + (1 + 8)?1%2) +
3+ 35 9
9 Z pi) =
ket
2a+3 22 +6,
mj(sz(T(Tz‘erjl)Jr 3 (1+35)pj,)) +(34+35)= Zpk
kETk

() mj<pj2(pj1+pj2>+<zpk><n+§zpk>+§Zp,%>=

kETk k’ETk, k‘GTk
2a
m;(pj, (Pjy + Pjs + 3 Pi2Ti + sz Z Pic)
kETk
2a 202 +9
m; (P (57 + iy + —5 D) Z D)
kETk

9 7 _
2a+3 (7"1 +p]1) 2a +6(1 + 5)]9]'2) + 3+3s ZkETk pi
P (3ri + pjy + 2 5 p) + 3 ZkETk P}

Ratio : pj,(—) < 3.562 4 3.3865

The proof for the optimal makespan follows the proof from Theorem 1 and Lemma 4.
The relations Cpap,s' > Cmaz,s and Cr o (7)) < Cop(T) hold with respect to all
transformations described above. The addition of inner PARs in Theorem 2 does not

alter the lower bound for the optimal makespan as used in the proof for Lemma 4:
Caa () = maxic, {pi}, and Cihy () = ZE2P and O (7)) = 14

- m max

For the makespan in S and S’ we only have to consider the completion of the last
job j. Following the assumption and modifications of the completion time proof for

62 CHAPTER 3. OVERVIEW ON THEORETICAL EVALUATION

Jjem and r; < 2p+ 25 and t;(S’) > r;, the third case on Page 59 is considered for
the worst-case. Lemma 1 applies accordingly for Cpaz,s < (4 + 35)Ciaa= (1) . For
r; > 2p + 28 and the job beginning with the last inner PAR, we get an upper bound:

Cmaacﬁ’ < ri+ pj<2 =+ 25) < (4 + 3§)C:nax(7—/)

3.4 Summary

The developed PFCFS algorithm is an example for the design of an algorithm as
shown in Chapter 2. Our algorithm improves the FCFS strategy by introducing
preemption on the parallel machine. As mentioned in Section 3.3, preemption is
used to temporarily interrupt a job and continue it later. Our algorithm is well
suited for fair on-line scheduling of parallel jobs. Fairness is achieved by selecting
job weights to be equal to the resource consumption of the job and by limiting
the time span a job can be delayed by other jobs submitted after it. Further, the
processing time of a job is not known when the job is released. It is proven that
the algorithm achieves a constant competitive ratio for both the makespan and the
weighted completion time

We addressed the issue of fairness in parallel job scheduling. We used a selection of
job weights that do not result in a prioritization of small jobs over wide jobs and
vice versa. The presented algorithm prevents job starvation and achieves constant
competitive factors for both, the makespan and the weighted completion time criteria
with the given weight selection. As an extension it is possible to use different job
priorities by supporting different values of the ratio weight to resource consumption.
To each group of jobs with the same ratio the algorithm can be applied separately.
The final schedule is obtained by interleaving the different schedules and assigning
time frames to them in accordance with their ratio values.

The theoretical approach on the evaluation gives us valuable information on the
worst-case behavior. Nevertheless, competitive factors are worst case factors which
are frequently not acceptable for practical use. For instance, a competitive factor of
2 for the machine load of a schedule denotes that in some cases 50% of the resources
are not used. On the other hand, the corresponding input data to achieve this worst
case result typically cannot be found in real job traces. We can compare the results
from the approximation analysis of known theoretical algorithms as mentioned in
Section 3.2.2 with our example simulation results from Section 2.8. Here, we see that
the theoretical approximation factors give bounds that address the question if the
scheduling system can guarantee that it always produces schedules with a certain
quality. However, the theoretical analysis does not take workload and user demand
into account. Therefore, it does not indicate how this algorithm performs under
real workload compared to some other algorithms. This shows a common limitation
for the theoretical analysis in the evaluation process for the algorithm design. Fre-
quently, this is also true if randomization is used for the analysis. Additionally, it
is often very complex or even impossible to apply theoretical competitive analysis
to an algorithm. For example, heuristic algorithms, or very complex strategies, or

3.4. SUMMARY 63

economic models may be difficult to examine by theoretical analysis if the number
of dependencies and different cases grow. It may require a lot of effort to prove a
relevant or even tight bound.

Overall, the competitive analysis can provide valuable information for the design of
a scheduling system with real workload. In our example, we now know worst-case
guarantees and fairness properties of our algorithm. Nevertheless, we do not yet
know the actual usability in a real installation of the PFCFS algorithm. Theoretical
analysis does not help us in this kind of evaluation. Thus, we apply experimental
analysis to further evaluate the algorithms in the following.

Part 111

Experimental Evaluation

64

Chapter 4

Scheduling Simulations

We have seen in the previous chapter that performance evaluation is a difficult task.
Theoretical worst case analysis is only of limited help as typical workloads on pro-
duction machines never exhibit the specific structure that will create a really bad
case. Further, there is no random distribution of job parameter values, see e.g. Feit-
elson and Nitzberg [23]. Hence, a theoretical analysis of random workloads will not
provide the desired information either. A trial and error approach on a commercial
machine will be tedious and may affect system performance in a significant fashion.
Therefore, most users will probably object to such an approach except for the final
fine tuning. This just leaves simulation for all other cases.

Simulation may either be based on real trace data or on a workload model. While
workload models, see e.g. Jann et al. [46] or Feitelson and Nitzberg [23], enable a
wide range of simulations by allowing job modifications, like a varying amount of
assigned processor resources, the consistence with real workloads cannot always be
guaranteed. This is especially true in the case of workloads whose characteristics
change over time. On the other hand, trace data restrict the freedom to select differ-
ent allocation and scheduling strategies in the case of simulations as the performance
of a specific job is only known under the given circumstances. For instance, trace
data specifying the execution time of a batch job do not provide similar informa-
tion, if the job would be assigned to a different subset of processors. Therefore, the
selection of the base data for the simulation depends on the circumstances deter-
mined by the scheduling strategy and the MPP architecture. There are already a
variety of examples for evaluation via simulation based on a workload model, see
e.g. Feitelson [20], Feitelson and Jette [22] or on trace data, see e.g. Wang et al. [84].

We want to use simulations to further analyze the PFCFS algorithm from the pre-
vious chapter. Here, we describe the use of trace data for the evaluation of different
parameter settings for a preemptive scheduling strategy.

65

66 CHAPTER 4. SCHEDULING SIMULATIONS

4.1 The Workload Data

As already mentioned, we use the workload traces originating from the IBM SP2
of the Cornell Theory Center. We have already used this data for the example in
Section 2.8.3. In our simulation we again assume batch partitions of 128 and 256
nodes respectively. Jobs with an node allocation exceeding 128 or 256 nodes are
ignored.

In our simulation experiments for the PFCFS scheduler a wide job only preempts
enough currently running jobs to generate a sufficiently large partition as is typically
done in real parallel computers using preemption. Those small jobs are selected
by use of a simple greedy strategy. This modification of Algorithm PFCFS does
not affect the theoretical analysis but improves the schedule performance for real
workloads significantly.

We generated our own FCFS schedule as a reference schedule and did not use the
CTC schedule as, for instance, some jobs were submitted in October and started
in November. Using the CTC schedule would not allow to evaluate each month
separately. As the preemption penalty for the commercial IBM gang scheduler is
less than a second it is neglected (5 = 0).

A large number of simulations with different preemption strategies have been done.
For each strategy and each month we determined the makespan, the total weighted
completion time and the total weighted flow time with the described selection of
weights and compared these values with the results of a simple non-preemptive
FCFS schedule. For a better understanding in Table 4.1 three selected examples of
the examined preemption strategies are explained with certain parameters. Addi-
tional simulations with variations on the parameters have also been executed and
are presented below.

Note that PFCF'S; is similar to the strategy used for the theoretical analysis except
for the selection of the gang length. As already mentioned the gang length has been
selected to be p in the theoretical analysis to guarantee a constant competitive factor.
In a practical setting the gang length is a parameter of the scheduling algorithm.

In order to obtain information on the influence of the parameters and to determine
good parameter values, various simulations have been done. For each strategy and
each month we determined the makespan, the total flow time, and the total weighted
flow time using our weight selection and compared these values with the results of a
simple non-preemptive FCFS schedule. To compare the algorithm performance with
a non-FCFS strategy, we made simulations with a backfilling scheduling policy.

Further, we examined variations on the specification of wide jobs. We also simulated
with different gang lengths x and start delays ¢ before the start of the preemption.

Although the work traces of the Cornell Theory Center reflect a batch partition
comprising 430 nodes, there are only very few jobs in these traces that use between
215 (%) and 430 nodes, as seen in Table 2.2. A reason is the tendency to use a number
of processors which is equal to a power of 2. Taking into account that a noticeable
gain by PFCFS can only be expected for a suitable number of wide jobs, we assume

4.1. THE WORKLOAD DATA 67

PFCFS; | A wide job causes preemption after
it has been waiting for at least 10
min. Then the two gangs are pre-
empted every 10 min until one gang
becomes empty.

PFCFSy | A wide job causes preemption af-
ter it has been waiting for at least
1 min. After running for 1 min
the wide job is preempted and the
previously preempted jobs are re-
sumed. Finally, the wide job waits
until the partition becomes empty
(no further preemption).

PFCFSs3 | A wide job causes preemption after
it has been waiting for at least 10
min. Then it runs to completion.
Afterwards, the preempted jobs are
resumed.

Table 4.1: Different Preemption Strategies

parallel computers with 128, respectively 256 resource. This is also reasonable as
most installations only have a smaller number of nodes, and it can be assumed that
there the percentage of wide jobs will be larger than for the CTC. This approach
prevents the direct comparison of the simulation results with the original schedule
data of the CTC.

In order to evaluate our scheduling strategy we assume a homogeneous MPP, that
is a computer with identical nodes. As already mentioned, the batch partition of the
CTC SP2 consists mainly of thin nodes with 128 or 256 MB memory. Therefore, our
reference computer is almost homogeneous in this respect. Special hardware requests
of the jobs are currently ignored as we assume a homogeneous MPP system. It is
easy to include such requests into the scheduling process. Additional constraints
limit the number of available resources for a job while the scheduling process for
this reduced set of resources follow our homogeneous model.

Table 4.2 shows the parameter spectrum of our simulations.

The theoretical analysis [61] suggests x = 50%. We chose several values around
50% to determine the sensitivity of the schedule quality on this parameter. While
good theoretical results require a potentially unlimited number of preemptions we
wanted to determine whether in practice a restriction of this parameter is sufficient.
The time period between two context switches A is selected to span a wide range.
However, to prevent a significant affect of the preemption penalty a minimum value
of 60 seconds was used. The theory also suggests to set the gang length to § = A.
We additionally used two fixed values for 4.

Finally, we ignored any preemption penalty in our simulations although it can easily

68 CHAPTER 4. SCHEDULING SIMULATIONS

T n A 1)
Wide job | Maximum Start Gang
spec. preemptions Delay Length
40% 1 60 sec 1 sec
45% 2 120 sec | 60 sec
50% 3 240 sec A
55% 10 600 sec
60% 11 1800 sec
3600 sec

Table 4.2: Different Parameter Settings for Simulation Experiments

be included into the simulator. Moreover, as migration is not needed and only local
hard disks are used for saving of job data and job status, the strategy allows gang
scheduling implementations with a relatively small preemption penalty. Note that a
preemption penalty of 1 second as assumed in [84] will still be small compared to
the minimal value of A. The gang length § of 1 sec is considered for comparing the
influence of this parameter for shorter and more frequent gang switches. In a real
implementation such a small value has to be considered in comparison to an actual
preemption penalty.

Finally, our experiments were conducted for each month separately to determine the
variance of our results. This is another reason why the CTC schedule data could not
be used for comparison as in the original schedule there are some jobs which were
submitted in one month and executed in another.

4.2 Analysis of the Results

First we examine the results for the different example strategies described in Ta-
ble 4.1. As evaluation criteria the makespan, completion time and flow time in
comparison to standard FCFS are used in Tables 4.3 to 4.5. We can see, that the
PFCFSy consistently outperforms FCSFS and the other of the sample PFCFS
strategies. We noticed that the schedule quality is very sensitive to the preemption
strategy. While significant improvements over FCFS are possible, FCFS may still
outperform some preemptive methods. Although there may be general explanations
for some phenomena, like the short execution times of wide jobs which fail to run
due to a bug, the workload certainly plays a significant role. This can be best demon-
strated by looking at the total weighted flow time where strategy PFCF Sy produced
almost 50% improvement over FCFS for November 1996 while it performed more
than 9% worse than FCFS in January 1997, see Table 4.5.

Figure 4.1 shows that the preemptive FCFS strategy was able to improve FCFS
for all scheduling criteria if the best parameter setting was used, see Table 4.6.
The results for the FCFS denote 100%. The preemptive FCFS strategy also outper-
formed the backfilling scheduling policy in all cases. This algorithm does not utilize

4.2. ANALYSIS OF THE RESULTS

PFCFS, | PFCFSy | PFCFS;

Jul 96 3.5% -163% | +20.0%

Aug 96 -8.3% 222% | +14.3%
Sep 96 -10.0% -25.4% +8.7%

Oct 96 -4.9% -23.2% | +12.2%
Nov 96 -18.0% -30.0% | +11.2%
Dec 96 -12.5% -22.3% | 420.3%
Jan 97 -4.9% -16.9% | +16.4%
Feb 97 -4.1% -15.4% | +32.3%
Mar 97 5.6% 14.1% | +15.4%
Apr 97 -14.3% -26.7% +8.6%
May 97 -15.8% -29.2% +3.0%
Sum 9.5% 221% | +14.4%

Table 4.3: Results for Makespan and 128 Nodes

PFCFS, | PFCFS; | PFCFSs

Jul 96 1% 197% | +13.8%

Aug 96 -6.1% -20.4% | +13.2%
Sep 96 -10.9% -25.5% +6.5%
Oct 96 -3.3% -20.9% | +11.5%
Nov 96 -21.0% -33.4% +5.7%
Dec 96 -15.0% -25.6% | 4+20.7%
Jan 97 -4.6% -13.4% | 4+12.1%
Feb 97 -5.8% -18.3% | +25.0%
Mar 97 -5.3% -14.2% | +16.7%
Apr 97 -11.8% 24.5% | +11.8%
May 97 -14.0% -28.4% +2.7%
Sum 9.6% 222% | +12.3%

Table 4.4: Results for Completion Time and 128 Nodes

PFCFS, | PFCFSy | PFCFS3

Jul 96 -10.4% -30.6% +22.0%

Aug 96 -22.6% -41.9% +2.0%
Sep 96 -15.9% -37.3% +9.4%
Oct 96 -5.2% -32.9% +17.4%
Nov 96 -29.7% -47.3% +8.1%
Dec 96 -22.4% -39.1% +31.7%
Jan 97 +28.1% +9.6% +63.0%
Feb 97 -8.2% -28.8% +38.3%
Mar 97 -8.4% -22.3% +26.2%
Apr 97 -18.4% -38.3% +18.4%
May 97 -19.5% -39.5% +3.7%
Sum -13.6% -33.2% +19.1%

Table 4.5: Results for Flow Time and 128 Nodes

Resources ‘ 128 ’ 256 ’
Wide job spec. z 40% 45%
Max. preemptions n 1 1
Start delay § 60 sec 60 sec
Gang length A not applicable

Table 4.6: Parameter Setting for the Results Shown in Figure 4.1

70 CHAPTER 4. SCHEDULING SIMULATIONS

Relative Overall Improvement over FCFS
with minimum and maximum deviation of the months
91,56% 88,85%
100% 85,85% . 8293% 89,13% 96,62%
. 76,92% 61,60% 77,80%
90% 59,379]
80% 65.82% 66,12% 11 L
60% T) — |PFCFS (128 Nodes)

o || | | |mPFCFS (256 Nodes)
50% O Backfilling (128 Nodes)
40% +— — |OBackfilling (256 Nodes)
30% —

20% —
10% 1 —
0%
Flowtime Wg. Flowtime Makespan

Figure 4.1: Comparison of PFCFS with FCFS for Different Criteria

preemption, but requires the user to provide a maximum execution time for each
job.

However, it can be noticed that the effect on the flow or weighted flow time is more
pronounced for a 256 node parallel computer while the smaller 128 node machine
achieves a better result in terms of the makespan criteria. It can also be seen that in
every month a noticeable gain can be achieved with this set of parameters although
the actual gains depend on the workload. Note that in the selected setting there is no
fixed time period between two context switches. With n = 1 a wide job will interrupt
some small jobs and then run to completion. A similar approach was also subject
by Chiang et al. [9] in the context of dynamic jobs and application characteristics.

Also, there is only very little difference between the weighted flow time and the
flow time results. This can be attributed to the large amount of short running jobs
which do not require a large number of nodes. The stronger emphasis of larger highly
parallel jobs in weighted flow time criterion does not have a significant impact on the
evaluation of the strategy. However, this can be expected to change if the number
of those jobs would increase.

Next, we examine the result for different limits on the number of preemptions. The
results in Figure 4.2 and Figure 4.3 show that there are always improvements for
odd values of n. Note that an odd n gives preference to the execution of the wide job
once the maximum number of preemptions is reached. However, the gains change
only little if the number of preemptions is increased. This indicates that the desired
improvement of the scheduling costs can already be obtained by using a simple
preemption for a wide job. On the other hand, even values of n result in significantly

4.2. ANALYSIS OF THE RESULTS

128 Resources

50%
40%

30%

20%

10%

0% -
-10% -
-20% -
-30% -

O Flowtime
B Wg. Flowtime
OO0 Makespan

-40%

2 3 10
Max. Preemptions Allowed

11

71

Figure 4.2: Results for Different Limits on the Number of Preemptions for the 128

Node Machine

100%

256 Resources

80%

60%

40%

20%

0% -
-20% -
-40% -
-60%

O Flowtime
B Wg. Flowtime
O Makespan

2 3 10
Max. Preemptions Allowed

11

Figure 4.3: Results for Different Limits on the Number of Preemptions for the 256

Node Machine

72 CHAPTER 4. SCHEDULING SIMULATIONS

128 Resources

100%
90%
80% —
20% [[[L | |
60% - — m - T — |3 Flowtime
50% - — — — — — |l Wg. Flowtime
40% - — — — — — |0 Makespan
30% - — — — — —
20% - — — — — —
10% ~ — — — — —

0% -

40 45 50 55 60

Criterion for Wide Jobs
(in % of total resources)

Figure 4.4: Results for Different Characterizations of Wide Jobs for the 128 Node
Machine

256 Resources

100%
90% — — —] T
80% —
70% —
60% -]] I] — |E@ Flowtime
50% - — — — — — |l Wg. Flowtime
40% -]] I] — |8 Makespan
30% - — — — — —
20% - — — — — —
10% - — — — — —

0% -

40 45 50 55 60

Criterion for Wide Jobs
(in % of total resources)

Figure 4.5: Results for Different Characterizations of Wide Jobs for the 256 Node
Machine

4.3. COMPARISON TO THEORETICAL RESULTS 73

worse schedules in comparison to FCFS. This is due to the fact that the completion
time of the wide job may actually be further increased over the FCFS schedule as its
node allocation is fixed at the start time of the job and no job migration is allowed.
This may then lead to a larger degree of fragmentation.

The schedule quality is not as sensitive as on the other parameters. Our theoretical
studies [61] indicate that z=50% would be the best choice to separate wide jobs
from small ones. Figure 4.4 and Figure 4.5 show that the schedule cost increases for
all three criteria if x is selected to be larger than 50%. For the presented workloads
a further slight improvement can be obtained by selected values for x which are less
than 50%.

A is irrelevant if n is selected to be 1. For all other odd values of n the schedule
cost varies only little with A as seen in Figures 4.2 and 4.3. There, A = 120 sec is
frequently the best choice. Additional simulations showed for even n that the results
improve with a larger A as the chances to reach the preemption limit become smaller.

As the choice of A has little influence on the schedule quality, it is sufficient to just
consider the cases é= 1 sec and =60 sec. From theory we would expect a better
makespan for = 1 sec as fragmentation will be reduced if wide jobs are executed
as early as possible. On the other hand, = 60 sec will permit some short running
small jobs to complete before they are interrupted by a wide job. However, in our
simulation, switching from 1 sec to 60 sec changed the schedule costs by less than
0.01%. Therefore, ¢ can also be ignored.

4.3 Comparison to Theoretical Results

The presented evaluation by simulation provides information on the schedule quality
that is actually achievable for certain workloads. Our workloads were derived from
real traces and used to resemble a real application scenario with the mentioned mod-
elling. We noticed that the schedule performance is very sensitive to the preemption
strategy. While significant improvements over FCFS are possible, FCFS may also
outperform some preemptive methods. The evaluation showed that the results are
sensitive to the workload and can be fine tuned by several heuristic parameters.
Nevertheless, the results showed also that the presented PFCFS algorithm can con-
sistently outperform the FCFS strategy if the scheduling parameters are selected
correctly.

The results from the theoretical analysis guarantee a certain degree of fairness and
competitive ratios under all circumstances for our algorithm. Nevertheless, the the-
oretical analysis did not give us information on the actual performance of the al-
gorithm for real workloads. The theoretical analysis provides a competitive ratio
of > 3.562 for the completion time which suggests that a large percentage of re-
sources would be idle in the worst-case. However, our algorithms showed efficient
results for the workload simulations in terms of completion and flow time as well
as the makespan in comparison to the FCFS algorithm. Even backfilling has been
outperformed in certain scenarios. This leads to the assumption that from a per-

74 CHAPTER 4. SCHEDULING SIMULATIONS

formance point of view the presented algorithm is actually recommendable for real
installations. This example shows the importance of a experimental simulation in the
process of a scheduling system design. Note, that a parameter-optimization and fine-
tuning of the algorithm can be performed by simulation studies. Such studies and
examinations on a production system are usually cost-inefficient and impracticable.
Note, that the theoretical analysis of the impact of certain parameter selections, as
e.g. presented in our evaluation, would require quite some effort while the relevance
on the real system is very limited. From the results for the PFCFS algorithms, we
suggest that the parameters are determined on-line in an adaptive fashion based on
former workload. While potentially beneficial for a real installation, the theoretical
analysis may not provide additional practically relevant information for a scheduling
system designer.

After these results we make the transition from the design and evaluation of schedul-
ing strategies for single parallel machines to the grid scheduling problem in the next
chapters. There, we use the same approach on the design process. The components
of a grid are typically single parallel machines with local management instances,
therefore we can use and adapt the above discussed models and strategies.

Chapter 5

Grid-Scheduling

In this work we have suggested a strategy and a process to design job scheduling
systems. According to this concept the evaluation of the schedule quality takes an
important part. We want to focus on the actual performance of grid scheduling
strategies for real installation scenarios. Based on our previous results, we choose the
experimental evaluation for this purpose. The theoretical analysis of such algorithms
gives worst-case bounds and guarantees of certain properties like the introduced
concept of fairness. For the schedule quality in a real system scenario these bounds
are of minor interest. Based on the results and discussions in the previous chapters
we will therefore focus on experimental evaluation by simulation.

However, all previous chapters dealt with analysis and results for scheduling systems
on single parallel machines. As we want to develop scheduling strategies for grid
computing, we have to extend the previous results to the grid environment.

Here, a computational grid (see [14,39]) or metacomputer [63] consists of numer-
ous independent computing resources which are linked by interconnection networks.
The term independent emphasizes the fact that the participating resources are not
controlled by a single entity and may be geographically distributed. While this def-
inition for a grid does not include further details on the individual resources in
this network, these resources are often high performance computing components
like large parallel processors, networks with high speed and high bandwidth or huge
databases. Only the component at the user access point may not necessarily belong
to this category. However, the user of such a grid system may not be aware of the
internal system structure but has the illusion of a single virtual machine. The grid
management system may use several components of the system concurrently to solve
a large problem.

The job scheduling for a single parallel computer significantly differs from scheduling
for a metacomputer. As we have seen, the scheduler of a parallel machine usually
arranges the submitted jobs in a certain order to achieve a high utilization. The task
of scheduling for a metacomputer is more complex as many machines are involved
with mostly local scheduling policies. The metacomputing scheduler forms a new
level of scheduling which is implemented on top of the job schedulers. Also, it is likely
that a large metacomputer may be subject to more frequent changes as individual

75

76 CHAPTER 5. GRID-SCHEDULING

resources may join or exit the grid at any time. Note that some users will utilize
the ability to solve single large problems by combining many different resources.
Altogether, this requires solutions for several challenges in hard- and software in
several areas. One of these topics is the scheduling problem.

As one of its benefit, grid computing provides the user with access to locally un-
available resource types. Furthermore, there is the expectation that a larger number
of resources are available. It is also expected that this will result in a reduction
of the average job response time. Also the utilization of the grid computers and
the job-throughput is likely to improve due to load-balancing effects between the
participating systems.

However, parallel computing resources are usually not exclusively dedicated to grid
computing. Furthermore, they are typically not owned and maintained by the same
administrative instance. Research institutes are an example for such resource own-
ers, as well as laboratories and universities. Without grid computing local users are
usually only working on the local resources. The owners of those computing systems
are interested in the impact of participating in a computational grid and whether
such a participation will result in better service for the users by improving the job
response time. Therefore, first we want to examine the practical benefit of collabo-
ration between computing sites.

5.1 Multi-Site Applications

The usage of multi-site applications has been theoretically discussed for quite some
time [4]. Multi-site computing is the execution of a job in parallel at different sites.
This results in a larger number of totally available resources for a single job. The
effect on the average job response time is yet to be determined as there are only
few real multi-site applications. The lack of real multi-site applications may be the
result of an absence of a common grid computing environment which is able to
support the parallel allocation of resources at remote sites. In addition many users
fear a significant adverse effect on the computation time due to the limitations in
network bandwidth and latency over wide-area networks. The overhead depends on
the communication requirements between the job parts of a particular application.
As WAN networks become faster, the overhead may decrease over time. Therefore,
we determine which amount of overhead will still result in an overall user benefit.

To evaluate the effect of multi-site applications in a grid environment, we want to
examine the usage of multi-site jobs in addition to job sharing. To this end, discrete
event simulations on the basis of workload traces have been executed again for sample
configurations. The potential benefit is evaluated if a computing site participates in
a computational grid. This evaluation is focused on the question whether sharing
jobs between sites and/or using multi-site applications could provide advantages in
mastering the existing workload.

5.2. GRID SITE MODEL 77

5.2 Grid Site Model

We assume a computational grid consisting of independent computing sites with
their local workloads. That means that each site has its own computing resources as
well as a local user community that submits jobs to the local job scheduling system.
In a typical single site scenario all jobs are only executed on the local resources.

The sites may combine their resources and share incoming job submissions in a grid
computing environment. Here, jobs can be executed on local and remote machines.
The computing resources are expected to be completely committed to grid usage.
That is job submissions of all sites are redirected and distributed by a grid scheduler.
This scheduler exclusively controls all grid resources. For a real world application this
may be a difficult requirement to fulfill. There are other possible implementations
where site-autonomy is maintained, while the results from our model can still be
applied. Nevertheless, the scheduling process becomes more complex. Scalability to
large scale grids with many resources is challenging as users and administrators have
high expectations in terms of security, fault-tolerance and performance.

5.3 Grid Machine Model

We assume massive parallel processor systems (MPP) as the grid computing re-
sources where each site has a single parallel machine that consists of several nodes.
Each MPP machine coheres to our machine model from Section 2.1.1. A parallel job
can be allocated to any subset of nodes of a machine. This model comes reasonably
close to a grid environment consisting of real systems like IBM RS/6000 Scalable
Parallel Computers, a Sun Enterprise 10000 or a HPC clusters.

For simplicity all machines and all nodes in this study are identical. The machines
at the different sites only differ in the number of nodes. The existence of different
resource types would additionally limit the number of suitable machines for a job. In
a real implementation a preselection step is part of the grid scheduling process and
is normally executed before the actual scheduling takes place. After the preselection
phase the scheduler can ideally choose from several resources that are all suitable
for the job request. In this study we neglect this preselection step and focus on the
remaining scheduling task. Therefore, in the following it is assumed that all resources
are of the same type and all jobs can be executed on all nodes.

Further, we keep the model for the execution of a job from the previous chapters
as introduced in Section 2.1.2. That is, the jobs are not preempted nor is time-
sharing used. Thus, once started a job runs until completion. Furthermore, we do
not consider the case that a job exceeds its allocated time. After its submission, a
job requests a fixed number of resources that are necessary for starting the job. This
number is not changed during the execution of the job. That is, jobs are neither
moldable nor malleable [19, 28].

78 CHAPTER 5. GRID-SCHEDULING

5.4 Grid Job Model

We model a grid scenario with independent sites with workload generated by local
user groups. Jobs are submitted by these independent users at the local sites. This
produces an incoming stream of jobs over time. Thus, we still deal with an on-line
scheduling problem without any knowledge on future job submissions. Furthermore,
we restrict our simulations on batch jobs, as we did in our discussion on single
parallel machines.

In our model the scheduling system allocates resources for the jobs and determines
its starting time. The job is executed without further user interaction. In a real
implementation the job data must be transferred to the remote site before the ex-
ecution. This transport of data requires additional time. This effect can often be
hidden by prefetching before the execution or returning output data after the ex-
ecution time (postfetching). In this case the resulting overhead is not necessarily
part of the scheduling process. It is the task of a data management to optimize the
transport of data. Note, that for some applications, e.g. high-energy physics many
users work on the same input data sets. The intelligent management of these data
files can reduce the network overhead. In our grid computing scenario, a job can be
transmitted to a remote site without any additional overhead. Data management of
any files is neglected in this study. Nevertheless, in a real implementation an intelli-
gent data management would be part of the scheduling system and should be taken
into consideration in future work.

In a grid environment we now assume the ability of jobs to run in multi-site mode.
That means a job can run in parallel on a node set distributed over different sites.
This allows the execution of large jobs that require more nodes than available on a
single machine in the grid environment. The impact of bandwidth and latency has to
be considered as wide-area networks are involved. In the simulations, we will address
this subject in Section 5.6.3 by increasing the job length if multi-site execution is
applied to a job.

5.5 Grid Scheduling System

As we have seen in previous parts of this work, first-come-first-serve (FCFS) strate-
gies can result in poor quality if more jobs with large node requirements are submit-
ted. The results already showed that backfill is usually preferable against FCFS in
our scenarios. To this end, we assume the backfill strategy for the local machines as
a reference implementation, see Section 2.5. It requires knowledge of the expected
job execution time and can be applied to any greedy list schedule.

In our scenario for grid computing, the scheduling task is delegated to a grid sched-
uler. The local scheduler is only responsible for starting the jobs after the allocation
by the grid scheduler. Note, that we use a central grid scheduler for this study. In a
real implementation the architecture of the grid scheduler will be different as single
central instances are usually associated with drawbacks in performance, fail-safety or

5.6. CONVENTIONAL GRID ALGORITHMS 79

acceptance of resource users and owners. Nevertheless, distributed architectures can
be designed in such a way that they act logically similar to a central grid scheduler
as presented in this study.

5.6 Conventional Grid Algorithms

Three scenarios are compared in our study for a small grid environment:

1. local job processing as a reference scenario with the local execution;
2. job-sharing between cooperating computing sites;

3. multi-site computing with jobs split over different sites.

We briefly illustrate these scenarios in the following.

5.6.1 Local Job Processing

Grid-Scheduler

—>

Scheduler 1 Scheduler 2] Scheduler 3 [* |

i i !

L L L
= —— E [IIIN=
nodes nodes nodes
Schedule Schedule Schedule
Machine 1 Machine 2 Machine 3
é Job-Queue 1 g Job-Queue 2 g Job-Queue 3
[| 1 | 1 J
Sitel Site 2 Site3

Figure 5.1: Sites executing all jobs locally

This scenario refers to the common situation where the local computing resources
at a site are dedicated only to its local users (see Figure 5.1). A local workload is
generated at each site. This workload is not shared with other sites and the local
submission queues are independent from each others. In our examination the fore-
mentioned backfilling scheduler is applied. In this work we just present the results
for EASY backfill algorithm as its performance proved to be more effective in our
simulations than conservative backfilling. The EASY backfill scheduler is the origi-
nal method presented by Lifka [51]. It has been implemented for several IBM SP2
installations [67].

80

5.6.2 Job Sharing

CHAPTER 5. GRID-SCHEDULING

7 Grid-Scheduler ™

]]]
Scheduler 1 Scheduler 2 Scheduler 3

T T

O EE ()

- EIMIMNIME

nodes nodes nodes

Schedule Schedule Schedule
Machine 1 Machine 2 Machine 3

[
Job-Queue 1 E Job-Queue 2 é Job-Queue 3
L | | J

Sitel Site 2 Site 3

Figure 5.2: Sites sharing jobs and resources

In the job-sharing scenario all jobs submitted at any site are delegated to the grid
scheduler as seen in Figure 5.2. In our examination the scheduling algorithms in grid
computing consist of two steps. In the first step the machine is selected and in the
second step the allocation in time for this machine takes place.

Machine Selection: There are several methods possible for selecting machines.
Other simulation results (presented in [41]) showed good results for a selection strat-
egy called BestFit. Here, the machine is selected on which the job leaves the least
number of free resources if started.

Scheduling Algorithm: Here, the backfilling strategy is applied for the single
machines as well. This algorithm has shown best results in previous studies.

5.6.3 Multi-Site Computing

This scenario is similar to job sharing: the local schedulers forward all jobs to a grid
scheduler. This time, the grid scheduler does not only select a single site for job
execution but can also split jobs to be executed crossing site boundaries (see Figure
5.3).

There are several strategies possible for multi-site scheduling. For this work we use
a scheduler which first tries to find a site that has enough free resources for starting
the job. If such a machine is not available, the scheduler tries to allocate the jobs
to resources from different sites. To this end the sites are sorted in the descending
order of free resources and allocating the free resources in this order for a multi-site

5.6. CONVENTIONAL GRID ALGORITHMS 81

] Grid-Scheduler ™
Scheduler 1 Scheduler 2 Scheduler 3

nodes nodes
Schedule Schedule Schedule
Machine 1 Machine 2 Machine 3

[
Job-Queue 1 E Job-Queue 2 g Job-Queue 3
L | |
Sitel Site 2 Site3

|

Figure 5.3: Support for multi-site execution of jobs

job. In this case the number of combined sites is minimized. If there are not enough
free resources available for a job, it is queued and normal backfilling is applied.

Spawning job parts over different sites usually produces an additional overhead.
This overhead is due to the communication over slow networks (e.g. a WAN). This
overhead applies to the time necessary to transfer job data to and from a resource at
job start and end. Additionally, this overhead applies to the process communication
during run-time. Consequently, the overall execution time of the job will increase
depending on its particular communication pattern. For those jobs with limited
communication demand there is only a small impact. Note, without the introduction
of any penalty for multi-site execution, the grid would behave like a single large
computer. Hence, multi-site scheduling will ideally outperform all other scheduling
strategies. In this study we examine the effect of multi-site processing on the schedule
quality under the influence of a communication overhead. To this end, we model the
influence of the overhead by extending the required execution time r; to r; for a job
7 that runs on multiple sites by a constant factor:

rf=(1+p)-r; withp =0 ..40 % in steps of 5%.

The overhead in a real system scenario highly depend on the job communication
pattern and the network configuration between the sites. In our model we do not
regard these effects, as for example the number of sites involved for a multi-site jobs.
All mentioned overhead contributions are summarized in the extension of the job
run-time.

82 CHAPTER 5. GRID-SCHEDULING

5.7 Simulation Results on Multi-Site Computing

For the evaluation of the different structures and algorithms discrete event simu-
lations have been performed, see also [15,18]. Several machine configurations have
been examined for the forementioned algorithms.

5.7.1 Machine Configurations

All configurations use a total of 512 resources. Those resources are partitioned in
the various machine configurations as shown in Table 5.1.

‘ identifier H configuration ‘ max. size ‘ sum ‘
m64 4.-644+6-32+8-8 64 512
m64-8 8- 64 64 512
m128 4-128 128 512
m256 2-256 256 512
m256-5 1-256+4-64 256 512
m384 1-384+1-64+4-16 384 512
mb12 1-512 512 512

Table 5.1: Resource Configurations

The configurations m64-8, m128 and m256 represent several sites with equal ma-
chines. They are balanced as there is an equal number of resources at each machine.
They differ in the number of machines and in the number of resources at each ma-
chine. The configurations m384 and m256-5 are examples of a large computing
center with several client sites. In the latter configuration, the biggest machine is
smaller than the biggest machine within the configuration m384 and all other ma-
chines have an equal size in contrast to m384. The configuration mé/ is a cluster of
several sites with smaller machines.

Finally, a reference configuration m512 consists of a single site with one large ma-
chine. In this case no grid computing is used and a single scheduler can control the
whole machine without any need to split jobs.

5.7.2 Workload Model

Unfortunately, no real workload is currently available for grid computing. For our
evaluation we derived a suitable workload from real machine traces. To this end, we
use the CTC workload which has already been used for the analysis in the previous
chapters, see Section 2.8.3.

In order to use these traces for our study it is necessary to modify the traces to
simulate submissions at independent sites with local users. To this end, the jobs
from the real traces have been assigned in a round-robin fashion to the different
sites. However, it is typical for many known workloads to favor jobs requiring a

5.7. SIMULATION RESULTS ON MULTI-SITE COMPUTING 83

power of 2 number of nodes. The CTC workload shows the same characteristic, see
Figure 5.4. The modelling of configurations with smaller machines would put these
machines into disadvantage if the number of nodes is not a power of 2. To this end,
our configurations consist of 512 nodes altogether. Nevertheless, the traces provide
enough workload to keep a sufficient backlog on all systems (see results from [41]).
The backlog is the workload that is queued at any time instant if there are not
enough free resources to start the jobs. A sufficient backlog is important as a small
or even no backlog indicates that the system is not fully utilized. In this case there is
not enough workload available to keep the machines working. Many schedulers, e.g.
the mentioned backfilling strategy, depend on the availability of enough jobs for its
backfilling in order to utilize idle resources. Therefore, a small or no backlog usually
leads to bad scheduling quality and unrealistic results.

As we already discussed in our previous evaluations in this work, the quality of
a scheduler is highly dependent on the workload. We again assume a network of
homogeneous machines that comply with our previous models of an IBM RS/6000
SP and the CTC job traces for such a machine. To minimize the risk that singular and
abnormal workload characteristic affect the validity of our results, the simulations
have been done for 4 workload sets. This allows to examine deviation for different
workloads. Nevertheless, all used workloads are derived from the actual user group
from the same real installation. As proposed in our presented scheduling design
process, we assume a grid scheduling scenario where the user workload is similar
as in the CTC workload. As we already explained, the schedule quality is usually
highly depend on the workload. Additional evaluations have to be done for a specific
other workload to select and adapt an algorithm.

Therefore, the following workload sets have been used:

e 3 extracts of the original CTC traces.

e A synthetic probabilistic generated workload on the basis of the CTC traces.

The synthetic workload is very similar to the CTC data set from Section 2.8.3. It
has been generated to prevent that potential singular effects, e.g. a down-time of
the real system, in real traces affect the accuracy of the result. Also the 3 extracts
of real traces are examined to get information on the consistency of the results for
the CTC workload. Each workload set consists of 10000 jobs which corresponds in
real time to a period of more than three months.

A problem of such simulations is the handling of wide jobs which are contained in
the original workload traces. The widest job in the CTC traces for example requests
336 processing nodes. On one hand these jobs can be used in simulations to examine
the benefit of multi-site applications. Here jobs can be split over different sites to
get more resources than available at a single site. On the other hand, some of these
jobs cannot be started in simulations of scenarios with only local execution or job
sharing.

To permit a valid comparison of the simulation results, no job must be neglected.
Therefore we assume that the corresponding workloads of wide jobs are still gener-
ated at single sites. The wide jobs are split up into several parts of the local machine

84 CHAPTER 5. GRID-SCHEDULING

size to allow their execution. Accordingly, the job size is limited by the size of the
largest machine in the job-sharing scenario. Here, users can submit jobs that are
wider than the local machine size. We also use a modification were all jobs are split
up into several parts with maximum 64 nodes to allow their execution on all exam-
ined configurations. Every configuration has a machine that consists of at least 64
nodes.

To allow the comparison of different scenarios for job sharing the following modifi-
cations have been applied to each forementioned workload.

Workload Modification:

1. Wide Jobs are split in parts of local machine size,

2. Wide Jobs are split in parts of largest machine size in the configu-
ration,

3. Wide jobs are split in parts of 64 nodes,
4. Wide jobs are unchanged.

The workloads with modification 7 and 8 were executed in all 3 scenarios. The
workloads with modification 2 were simulated for scenario job-sharing and multi-
site while modification 4 was only used for the multi-site scenario. Note, that all of
these modifications do not alter the overall workload. In our model, we assume that a
certain amount of workload exists at a local site. With our modifications larger jobs
are split up, but are still generated locally at the corresponding site. Depending on
the scenario a user may submit jobs larger than the local machine. The simulations
allow the examination of the impact caused by wider multi-site jobs on the schedule.

The examined workloads are summarized in Table 5.2 and an identifier is introduced
for each workload.

5.7.3 Results
Job-Sharing

The simulation results show that job-sharing provides significant improvement over
local job execution for the user. We use the average weighted response time as the
measure in this study. Note that the weight is selected according to the definition
in Section 3.3 which prevents any prioritization of small over wider jobs in terms of
the average weighted response time if no resources are left idle [61].

The usage of job-sharing improved the average weighted response time in all ex-
amined machine configuration and in all workloads. In the m128 configuration for
example the improvement is over 50% (Figure 5.5). The results are similar in the
other simulations. Note, that the results for the reference scenario in which jobs stay
local on its site of origin depend on the modelling of the local workload. The EASY
backfilling strategy is used in both scenarios, single-site execution and job-sharing.
In contrast to job-sharing single-site execution is restricted to keep the workload

5.7. SIMULATION RESULTS ON MULTI-SITE COMPUTING

N
(o]
o

200

150

100

Workload in 10 processor*seconds
(4]
o

3

identifier

description

10_20k_org

An extract of the original CTC traces
from job 10000 to 20000.

10_20k_max64

The workload 10_20k_org split into jobs
with at most 64 processors.

3040k _org

An extract of the original CTC traces
from job 10000 to 40000.

30_40k_max64

The workload 30_40k_org split into jobs
with at most 64 processors.

60_70k_org

An extract of the original CTC traces
from job 60000 to 70000.

60_70k_max64

The workload 60_70k_org split into jobs
with at most 64 processors.

syn_org The synthetically generated workload
derived from the CTC workload traces.
syn_max64 The workload syn_org split into jobs

with at most 64 processors.

Table 5.2: The used workloads

85

0
8
16

NS T | PO T T : : : | Ilﬂ" :
TANONDOFNOROTNONOTNONDOTNONVOITNOROITNO®DOF NO ® ©
v—v—v—‘_ FFFFFFFF NN(\INNNNNNNNNN@(‘)U)(‘Q(‘O

Number of allocated Processors

Figure 5.4: Workload distribution for the syn_org workload

86 CHAPTER 5. GRID-SCHEDULING

B 1 x 512 processors machine @ 4 x 128 processors machines

70

AWRT (in 1000 seconds)

Multi-0
Multi-05
Multi-10
Multi-15
Multi-20
Multi-25
Multi-30
Multi-35
Multi-40

Job sharing

Figure 5.5: Average Weighted Response Time for the m128 configuration and work-
load ctesyn with modification 2

locally. No job is transferred to a remote site. As mentioned before large jobs that
are wider than the local machine have been split up into smaller jobs which are
sequentially executed on the local system. This leads to an increase of the AWRT as
the workload of these wide jobs are still generated and submitted at the same time
as the original wide job, but the sequential execution leads to a delay of job parts.
Job-sharing on the other hand allows the transfer of jobs to remote machines.

5.7. SIMULATION RESULTS ON MULTI-SITE COMPUTING 87

250%

200%

Machine Configuration: mé4 Machine Configuration: m128 Machine Configuration: m256 Machine Configuration: m384
Maximum Job Size: 64 Maximum Job Size: 128 Maximum Job Size: 256 Maximum Job Size: 384
Data-set: ctcsyn Data-set: ctcsyn Data-set: ctcsyn Data-set: ctcsyn

150% —

100% - H _ Hi-

AWRT relative to m512 with backfilling

50% o H —

0%

ing
ti-0 p
Multi-0 @
Multi-0
Multi-0 =

::::::::

::::::::

::::::::

::::::::

0D SN

Job sharing —

Job sharing

Job shari

Figure 5.6: Results for different resource configurations compared to configuration
mb12 with backfilling (equals 0%)

Multi-Site Computing

Next, we examine the influence of using multi-site execution. The results show that
further improvement on the AWRT can be achieved in comparison to job-sharing. As
a reference the result for a single machine with 512 nodes is used (Figure 5.5). The
result of this m512 configuration gives the lower bound for the backfilling algorithm.
In this configuration no machine partitioning had to be taken into account contrary
to any other configuration. As expected, the average weighted response time without
overhead for multi-site is near to the m512 result, see Figure 5.5. In this case splitting
a job for multi-site execution causes no penalty.

Moreover, multi-site execution is beneficial compared to job-sharing even for an
overhead on execution time of about 25% (Figure 5.5).

Similar results are achieved for other configurations. As an example Figure 5.6 shows
the improvement for the workload with the modification to limit the job width to
the maximum machine size. Note, that the configurations with equal sized machines
show better results than for the m38/ or m6/ configurations. Here, on the equal-sized
machines, a larger overhead is tolerable for multi-site to still improve the AWRT in
comparison to job sharing.

The mentioned improvements can also be verified in different workload scenarios.
Moreover, the previously mentioned results, as given in Figure 5.5, showed the least
effective improvements in comparison to other examined workloads, see Figure 5.7.
The average weighted response time in other configurations delivered even better
results. The tolerable overhead on multi-site executed jobs can even be larger.

All mentioned results are achieved for the workload in which all original wide jobs

88 CHAPTER 5. GRID-SCHEDULING

@mb512 single 0 m128job sharing ® m128 multi-site

40

35

30

Workload: ctcl Workload: ctc2 Workload: ctc3 Workload: ctcsyn

25

20 1

15

AWRT (in 1000 seconds)

10 |

o
—
[

0

© o o 9 < © o o 9 o © o o 9 ©o © o o 9 <
» 22383§F 5 22388F 522388F 23888
< § 3 E E E E < § S E E E E < § S E E E E < § 3 E E E E
uw c = 3 3 3 3 w c = 5 3 3 3 w c = 3 3 3 3 uw c = 3 3 3 3
o @ = = = =2 o 0 = = = = v O = = = = v @ = = = =
> 2 > 2 > 2 > 2
2 3 g3 g3 2 3

Figure 5.7: Results for different workloads

are split into job parts with the size of the machine on which it has been generated.
In our example as shown in Figure 5.5 jobs with node requirements larger than 128
were split up into jobs requesting 128 or less nodes. This allowed us to compare the
job-sharing and multi-site scenario with the single-site scenario. We now want to
examine the influence on the results if wide jobs are submitted locally that require
the execution on remote resource by multi-site. To this end, we used the original
wide jobs from workloads without the modification in our simulations. Note, that
this simulation cannot be computed for the job-sharing scenario as these wide jobs
can only be executed in a multi-site scenario. The results show that submitting
these wide jobs does not increase the average weighted response time significantly
(10-20%). An example is presented in Figure 5.8. There is still an advantage of
multi-site over job-sharing, although these wide jobs are actually more difficult to
schedule. The allocation of such a wide job requires synchronously free resources
at different sites. This may require a longer delay for the wide job and leaves less
possibilities for allocating other jobs in comparison to the previous workloads where
wide jobs are split and the different parts do not have to be executed concurrently.

Nevertheless, the addition of wide jobs in multi-site did not significantly increase
the AWRT.

5.7. SIMULATION RESULTS ON MULTI-SITE COMPUTING

Bms512, wide jobs split
to 128

Mms512 with wide Zjob

jobs

sharing

Emulti-site, wide jobs split Omulti-site with wide

to 128

jobs

350%

89

300%

250%

200%

150%

AWRT relative to m512

100%

50% +

0% +

m512
single

Job
sharing

Multi-
0

Multi-
05

Multi-
10

Multi-
15

" Multi-
20

Multi-
25

Multi-
30

Multi-
35

Multi-
40

al

Figure 5.8: Comparing workloads with original jobs split to 128 parts against keeping

wide jobs
Average Weighted Response Time for Multi-Site Scheduling and workload 60_70k_org
7,0E+04
6,0E+04 3
3
s Op=0%
& 5,0E+04 - Dp=5%
£ E & Ep=10%
2 i mp=15%
= g Wp=20%
@ 4,0E+04 = p o
g % Wp=25%
g E = F Ep=30%
]) z = _
© £ & Mp=35%
i 8 = =
3 3,0E+04 g 7 H 2 Ep=40%
7 . 2 = .
2 e . . E: i Bp=50%
4 H = 0
o 2,0E+04 2 Z é | z | 2 Ep=55%
s g o ? ? | & | £ Ep=60%
> H H i
< {(OE nell| e
1,0E+04 - : ii 7 | | g ‘ 2
H % % = i
; JEEE 1 é [N :
& | ’ & 3
- 7 a : :
0,0E+00 % ‘

m64

m64-8

m128

m256

m256-5

m384

machine configuration

Figure 5.9: The average weighted response time in seconds for workload 60_70k_org

and all machine configurations and Multi-Site Scheduling

90 CHAPTER 5. GRID-SCHEDULING

Machine configurations

Average Weighted Response Time for Multi-Site Scheduling and workload 60_70k_org related to
machine configuration m512

250%

200%

Op=0%

Op=5%

Ep=10%
Ep=15%
Wp=20%
p=25%
Mp=30%
Ep=35%
p=40%
- Bp=45%
Bp=50%
Ep=55%
A p=60%

150%

100%

50% -

AL L |
H,

O,

o SRR

0%

Average Weighted Response Time in % related to m512

m64 m64-8 m256 m256-5 m384

-50%

machine configuration

Figure 5.10: The average weighted response time for workload 60_70k_org and all ma-
chine configurations relative to machine configuration m512 for Multi-Site Schedul-
ing

Next, different machine configurations have been examined to determine if the results
can be verified on different grid configurations and in which way they are sensitive on
the machine sizes. The simulation results show that configurations with equal sized
machines provide significant better scheduling results than machine configurations
that are not balanced, see Figures 5.9 and 5.10.

Overall, machine configurations with less but smaller machines produce better schedul-
ing results under the precondition that each configuration has the same amount of
resources in the sum. As an example for the scheduling quality the average weighted
response time for the workload 60_70k_org and all resource configurations is given
in Figure 5.9. The other workloads show a similar behavior. The AWRT for the
machine configuration m512 is constant for all parameters, due to the fact that no
multi-site scheduling is applied in this configuration. In the example in Figure 5.9
the AWRT decreases from m64-8 over m128 to m256. These three machine configu-
rations have equal sized machines but the sizes of the machines increase between the
configurations, as previously described in Section 5.7.1 and Table 5.1. The AWRT
decreases from machine configuration m64 to m64-8, because the configuration m64-
8 consists of more larger machines than m64. As more jobs are executed in multi-site
mode in configurations with more smaller machines, an increase of the communi-
cation overhead (p) has a higher impact on the AWRT. The same effect can be

5.7. SIMULATION RESULTS ON MULTI-SITE COMPUTING 91

file 10_20k_org 30_40k_org 60_70k_org syn_org
[j0bs]=[1072%] | [jobs]=[1072%] | [jobs|=[1072%)] | [jobs]=[1072%]
p=0% 539 431 840 774
p=5% 543 436 850 769
p=10% 582 448 928 827
p=15% 572 490 917 906
p=20% 583 546 946 946
p=25% 601 567 951 1042
p=30% 622 521 979 1026
p=35% 637 523 1036 1063
p=40% 647 534 1106 1012
p=45% 673 597 1008 1181
p=50% 755 579 1029 1188
p=55% 748 578 1086 1233
p=60% 746 638 1114 1177

Table 5.3: Number of Multi-Site Jobs for different workloads and different parameters
using machine configuration m128

observed between m256 and m256-5. Here the configuration m256-5 is not balanced
and contains some smaller machines, which turns out to be a disadvantage. The
results are very sensitive to the characteristic of the workload as can be seen in the
comparison between m384 and m256. In this example m384 outperforms m256 for
a communication overhead up to 45%. Note, that the AWRTS of the configurations
m64 and m64-8 are almost similar for values of the multi-site overhead parameter
between 0% and 35%. If the overhead exceeds 35% the AWRT of configuration m64
increases dramatically and is at least 25% bigger than the AWRT for configuration
m64-8. The difference of the AWRT for parameters under 35% is not significant.
Similar results can be found by comparing configuration m256 and m256-5. The
AWRT increases for overheads over 45% significantly.

The increase of the AWRT results from two effects. First, the overall workload
increases as all multi-site jobs have a longer execution time due to the overhead.
Second, we can make the observation that the number of multi-site jobs increases
with additional overhead. Table 5.3 shows the number of multi-site jobs for machine
configuration m128 for different workloads and different multi-site parameters. The
effect can be observed for all workloads. This process is not monotone, but the
difference between the number of multi-site jobs for p=0% and p=60% is always at
least 30%.

This behavior results from the scheduling policy to schedule all jobs as soon as
possible after submission. Because of an increased execution time of all multi-site
jobs the number of free time slots within the schedule decreases and the probability
of free time slots within one machine decreases as well. Therefore jobs are started
as soon as possible if free time slots from different machines are combined.

Table 5.4 indicates that the increasing number of multi-site jobs corresponds to an

92 CHAPTER 5. GRID-SCHEDULING

file | 10-20k_org | 30_40k_org | 60_70k_org | syn_org

p=0% 22.19% 23,97% 34,01% | 40,75%
p=5% 22.87% 25,09% 36,36% | 41,21%
p=10% | 24,71% 27.21% 37.28% | 46,85%
p=15% | 25,30% 28,24% 38.97% | 47,95%
p=20% || 26,05% 31,36% 40,43% | 46,91%
p=25% || 29,40% 31,93% 11,02% | 52,81%
p=30% || 29,11% 30,84% 4453% | 53,62%
p=35% || 30,24% 31,01% 44.38% | 54,01%
p=40% | 31,21% 32,82% 48.10% | 56,01%
p=45% | 33,22% 37,20% 1587% | 59,77%
p=50% | 37,15% 34,18% 46,25% | 59,99%
p=55% | 37.87% 36,05% 1981% | 62,72%
p=60% | 41,46% 39,17% 52,38% | 60,46%

Table 5.4: The amount of work by Multi-Site jobs related to the amount work by
the whole workload for different workloads and multi-site parameters using machine
configuration m128

increased ratio of the amount of work, the processor time product, caused by the
multi-site jobs and the whole workload. This multi-site part increase at least 50%
(up to 90% in our example) from jobs without overhead to jobs with 60% execution
time increase in multi-site computing.

Tables 5.3 and 5.4 also indicate that jobs running in multi-site mode are in majority
bigger jobs. This can be concluded because 5% to 10% of all jobs are multi-site jobs
while they are responsible for about 20% to 40% of the whole amount of workload
depending on the used job trace. This effect even increases for a higher multi-site
overhead and is responsible for the mentioned results.

The AWRT for the machine configurations m128, m256 and m384 is smaller in com-
parison to m512 for the multi-site parameter p=0%, as it can be seen in Figure 5.10.
This effect results from the algorithm for multi-site scheduling as described in Sec-
tion 5.1. A job that is considered for multi-site execution can be started earlier as
previously submitted but not yet started jobs. This strategy allows that backfilling
is outperformed in some of our simulations. The results for for different workloads
while using multi-site scheduling with p=50% lead to the assumption that the ex-
plained effects apply in general, see Figure 5.11.

After examining the influence of the machine configuration on the multi-site schedul-
ing we address the influence on the job sharing scenario. Here, we see the jobs with
limited resource demand result only in a minor drawback for configurations with
smaller machines, see Figure 5.13. In this example only workloads with the modifi-
cation to split jobs to a maximum of 64 processors are used to allow the comparison
between the scenarios. The increase of the average weighted response time stays gen-
erally within 20% for all partitioned configurations except m64 compared to a single
large machine with 512 nodes. The workload syn_max64 as an exception shows that

5.7. SIMULATION RESULTS ON MULTI-SITE COMPUTING 93

Average Weighted Response Time for different workloads and different machine configuration for
Multi-Site Scheduling and p=50%

7,0E+04

6,0E+04]

4

5,0E+04

Time in

Om64
Om64-8
Em128
Em256
Em256-5
m384
[Em512

4,0E+04

p

4
3,0E+04 1—

2,0E+04 1—

Average

1,0E+04 +—

70722
7//////‘/////

0,0E+00 A T / T
10_20k_org 30_40k_org 60_70k_org syn_org
Workloads

Figure 5.11: The average weighted response time in seconds for all workloads and
all machine configurations for Multi-Site Scheduling and p=50%

the results are highly dependent on the workload characteristics. Similar results can
be found for other workloads where the job width is limited to other sizes. This
leads to the observation that the AWRT of the schedules suffers if the job processors
requirement is large (e.g. 50%) in comparison to the largest available machines.

The results for job sharing correspond to the statements made for multi-site schedul-
ing. The AWRT for all workloads and machine configuration m64 is higher than the
AWRT for machine configuration m64-8, see Figure 5.13. This indicates that bal-
anced systems with bigger machines is advantageous to unbalanced system with
some smaller machines. In our example the m64-8 configurations produces to upto
25% better AWRT results in comparison to m64. The comparison between the con-
figurations m64-8, m128 and m256 shows that the use of bigger machines produces
favorably better scheduling results. The actual improvement depends on the work-
load. The job-sharing scheduling for the m256 and m256-5 configurations produce
the same results as for multi-site scheduling. Again, the use of a system with two
big machines is preferable to the use of a system with one big and several smaller
machines. The configurations m384 and m256 provide similar results without a clear
advantage to one of them.

94

CHAPTER 5. GRID-SCHEDULING

Average Weighted Response Time in seconds for machine configuration m128 and all workloads

for Multi-Site Scheduling

N

o

m

+

o

=
I

6,0E+04
» 5,0E+04
T©
c
]
o
o
n
c
‘s 4.0E+04
E
=
2 010_20k_org
o
2 30E+04 030_40k_org
41 [@60_70k_org
"4
- Hsyn_org
2
£
(=]
o
=
o
=)
o
$
<

15 20 25 30 35 40 45 50 55 60
Multi-Site Job Length Parameter in %

Figure 5.12: The average weighted response time in seconds for machine configura-
tion m128 and all workloads for Multi-Site Scheduling

4,0E+04

Comparision of the Average Weighted Response Time between all machine configurations for all

workloads using job sharing

3,5E+04

3,0E+04

2,5E+04

Time in

Average

5,0E+03 1+

0,0E+00

> 2,0E+04 +—

1,5E+04 +—

1,0E+04 1—

[010_20k_max64
[30_40k_max64

mé4

m64-8

E60_70k_max64
W syn_max64

m128 m256 m256-5 m384 m512

machine configuration

Figure 5.13: The average weighted response time in seconds for all workloads and
all machine configurations for Job Sharing

5.7. SIMULATION RESULTS ON MULTI-SITE COMPUTING 95

Average Weighted Wait Time in seconds for Multi-Site Scheduling and workload m60_70k_org

5,0E+04

4,5E+04

4,0E+04

Op=0%
Op=5%

Ep=10%
HEp=15%
Wp=20%
Bp=25%
mp=30%
Hp=35%
o Ep=40%
Bp=45%
Hp=50%
Bp=55%
Sp=60%

3,5E+04

A

LAY

THH

2,0E+04

1,5E+04 1

Average Weighted Wait Time in seconds
N w
(%) o
m m
+ +
o o
S S

1,0E+04 1 ‘

0z RaNadls0s0s0alalaNahatalsttstaly

AL AT LA AL LA L LA AL R AR LAY,

5,0E+03 ‘

IS SIIITTTTTSTTTTTTTT IS TTITTITTTFTTTTTI SIS TTTSIIITTTT)

A A A A A R A A HEAHL

AAAALAAALLL AR LR LA

ISILLIILTI IS SIS IS II IS SIS

FTSTITTS T TTSTIT T I TS IS
VRARLOLLURARR AR UGN

0,0E+00 - - \' - T
m64 m64-8 m128 m256 m256-5 m384 m512

machine configuration

Figure 5.14: The average weighted wait time in seconds for workload 60_70k_org and
all machine configurations for Multi-Site Scheduling

Backlog Examination

As we already mentioned, the evaluation of scheduling algorithm is dependent on the
examined workload. According to our concept for the design process for a scheduling
algorithm, the administrator defines the workload for the simulations. In this exam-
ination we assume a grid scenario in which the user community and the workload
correspond to the CTC setting. The grid size has been selected accordingly. In the
following we want to check if the workload modelling is appropriate. The workloads
have been derived from traces that have been recorded at a different machine con-
figuration with a different scheduling system. There are at least two potential risks
in workload modelling by traces: on one hand, the jobs in the generated schedule
may not utilize enough resources. In such a case the average weight time can be
very small as there are frequently free resources and submitted jobs can be started
immediately. On the other hand, there is a risk that constantly more workload is
submitted as it can be executed. In this case the wait time grows on average during
the scheduling process.

Therefore, we want to examine the backlog. As a criterion the wait time of the jobs
is suitable. We use the average weighted wait time (AWWT) with our presented
weight selection, which additionally takes the amount of workload in the backlog
into account.

96 CHAPTER 5. GRID-SCHEDULING

Average Weighted Wait Time in seconds for Job Sharing and all machine configurations and
workloads

3,0E+04

2,5E+04

2,0E+04

010_20k_max64
[30_40k_max64
[@60_70k_max64
M syn_max64

1,6E+04

1,0E+04 1|

Average Weighted Wait Time in seconds

5,0E+03 1

0,0E+00

mé4 m64-8 m128 m256 m256-5 m384 m512

machine configuration

Figure 5.15: The average weighted wait time in seconds for all workloads and all
machine configurations for Job Sharing

The AWWT is defined as follows:

Dier (ti—si) - w;

AWWT =
ZiE’T W;

In comparison, the average wait time without the weight would relate to the number
of jobs in the backlog and as a measure would favor small jobs. However, both
criteria can be used as a mean for the backlog. As we used the weight selection for
the AWRT to not prioritize smaller over larger jobs, we also decided to use AWWT
for the backlog examination. Note, that the splitting of a long job to several shorter
jobs with the same submission time change the AWWT due to the nature of wait-
time in comparison to the response-time. Note also, that the AWWTT differs only by
a factor from the AWRT. This is the weighted execution time of all jobs as can be
seen from the AWRT definition on Page 38 .

The simulation results show that the AWWT is at least two hours. As an example
the AWWT for simulations with the workload 60_70_org for all used machine con-
figurations and multi-site scheduling is given in Figure 5.14. The average weighted
waiting time of about two hours indicates the existence of an appropriate backlog.
Such a backlog is for example important for the backfilling algorithm as previously
mentioned. The examination of the actual schedule also showed that there was no job
starvation in the long run of job submissions. That is the backlog did not grow signif-
icantly during the simulation. The examination of the different scheduling strategies,
machine configurations and workloads generated similar results. Figure 5.15 shows

5.8. SUMMARY 97

the results for the job sharing scenario for all workloads and all machine configura-
tions. The minimal AWWT is about 45 minutes and so there is also evidence for a
sufficient backlog.

Generally, the results for the AWWT, as presented in Figure 5.14, show a similar
behavior as in the results in Figure 5.9. As mentioned, this is the case because the
AWWT differs from the AWRT only by the weighted execution time of all jobs.

5.8 Summary

The results show that the collaboration between sites by exchanging jobs even with-
out multi-site execution significantly improves the average weighted response time.
This is already achieved with a simple algorithm for a central scheduler as used in
this work. Note, that the applied algorithms for scheduling are simple extensions of
backfilling and node selection strategies.

Furthermore, the usage of multi-site applications leads to even better results under
the assumption of a limited increase of the job execution time due to communication
overhead. Even an increase of their execution time by 25% multi-site proved to
be beneficial compared to job-sharing. Note, we do not conclude that multi-site is
suitable for all applications. WAN networks are in terms of latency in the order of
2-3 magnitudes slower than common fast interconnection networks between nodes
inside a parallel computer, e.g. an IBM SP Switch. Thus, the actual overhead caused
by multi-site may be much higher. The question if multi-site execution is suitable,
depends on many factors as e.g. the actual communication pattern, the requirement
in data I/O of input/output data. Nevertheless, the results indicate that multi-site
execution may be beneficial in terms of response time reduction for applications with
a limited demand in communication as presented in our results.

Overall, as expected the results show that our scheduling strategies produce smaller
average weighted response times for configurations with large machines in compari-
son to configurations with more but smaller machines. For example, the increase for
the average weighted response time stays in general below 15% for a configuration
with four machines of 128 nodes compared to a single large machine with 512 nodes.
Comparing the results with the workload characteristics, it can be observed that
job systems with jobs limited in resource demand (e.g. 50% of the largest machine)
result in a minor drawback in configurations with smaller machines. It can be ex-
pected that an adequate ratio between the workload of large jobs and the available
computing power of the large machines is necessary to guarantee an acceptable re-
sponse time. As long as this requirement is met, the remaining resources may consist
of smaller machines without implying a significant drawback. This shows how the
evaluation can be useful for system selection and configuration.

In contrast to job-sharing the usage of multi-site scheduling allows the execution of
jobs that are not limited by the maximum machine size. The results show that the
resource configurations and the overhead due to multi-site scheduling have a strong
impact on the AWRT of the schedule. Configurations of larger machines are superior

98 CHAPTER 5. GRID-SCHEDULING

to those with smaller machines. If there is only a small overhead for multi-site
execution (p < 20%), balanced large machine configurations show a slight advantage
compared to unbalanced systems with small machines. Especially on smaller resource
configuration a large overhead results in a very steep increase of the AWRT, as
more jobs are executed in multi-site mode in configurations with a higher number of
smaller machines. Nevertheless, there are some values for the overhead that lead to
a decrease or at least no increase of the AWRT compared to larger overheads in the
same scenario. This may be caused by two effects. First, the number of jobs that are
executed in multi-site mode increases corresponding to the size of the overhead, while
the amount of work by these jobs shows a much lower increase than the overhead.
Therefore, each job must be smaller in average. This leads to the assumption, that
jobs used for multi site scheduling differ in each scenario for each size of the overhead.
Second, the increase of the communication overhead leads incidentally to a more
suitable job size as certain pattern of job execution times are more common than
others. Recent results showed [16], that the results for multi-site computing can be
further improved by introducing additional bounds for jobs size and the allowed
number of job parts.

As grid environments and networks are becoming more and more common, it seems
reasonable for resource owners to participate in such initiatives. Simple strategies
like job sharing significantly improve the average weighted response time and there-
fore the quality of service to the users. Also the research and effort in developing
multi-site programs for suitable applications with limited demand in network com-
munication can provide even better results. Furthermore, multi-site applications can
effectively use more resources for a single job than available at any single machine.
The drawback on the overall schedule quality in regards on the AWRT due to sub-
mitting a wider instead of several smaller jobs was limited in our simulations, about
10 - 20%. Of course this may vary with the amount of wide jobs in a workload.
It has still to be kept in mind, that the quality of a schedule always depends on
the actual configuration and workload. The presented improvements were achieved
using example configurations and workloads derived from a real trace. Nevertheless,
the results show that job-sharing and multi-site execution in a grid environment are
capable of improving the scheduling quality for the users significantly.

Nevertheless, our model has limitations as we consider a central scheduling instance.
The actual implementation may use a different and distributed architecture that can
act from a logical point of view still similar to our model. But overall the scalability
and reliability remain important issues which have to be considered. We will address
these aspects in the next chapter.

Our evaluations showed good results for response time. Other examinations not
presented here showed also that high utilization of the machines were achieved. But
we have to ask if the simple assumptions for the user and owner objectives in regards
to the response time and utilization suffices. Up to now we assumed that minimizing
the response time is the main objective. In the next chapter we will present and
examine a different scheduling method which is based on an economic model. This
new model has several features that seem appropriate for grid computing. One of
them is the support of variable objective formulation.

Chapter 6

Economic Scheduling Model

In the first chapters of this work we examined scheduling algorithms and their ap-
plications for the management of single parallel machines. Later, we adapted them
for the application in grid environments. There, we showed that the participation in
a grid environment may be beneficial for users and owners of such systems.

As already mentioned the challenges for scheduling methods differ from single ma-
chine scheduling as the resources are geographically distributed and owned by differ-
ent individuals. The scheduling objective on a single parallel machine is usually the
minimization of the completion time of a computational job. We used this objective
in our previous evaluations of this work by examining the average weighted response
time.

In a grid environment there are much more different users and owners and these
individuals will typically not know each other. In comparison to accessing local
resources where user may not consider costs and cannot change system properties,
in a grid environment other requirements and expectations may apply. Consequently,
other objectives have to be considered as e.g. cost, quality of service or additional
time constraints, e.g. given start and end time limits. The examined algorithms in
this work are mostly derivations of list-scheduler that are usually predestined for
a single overall objective. To this end, other scheduling approaches are necessary
that may deal better with different user objectives as well as owner and resource
policies. For instance, the grid scenario with independent user or resource owner can
be compared to a network in which independent parties trade for goods; in our case
a good is the resource allocation for a certain time. This is a typical application
scenario in which economic models are used.

In the following, we want to address the idea of applying economic models to the
scheduling task. To this end a new market-economic method for grid scheduling
is presented and analyzed. In our study we use the evaluation process from the
previous chapter. The quality of an economic scheduling is more difficult to measure
as the former single objective is now dependent on the specific and variable objective
formulation and the corresponding cost-metric. Additionally, the process for offer
and request generation has to be taken into account. While there is a high degree
freedom in this processes, heuristics are often applied to limit the time consumption

99

100 CHAPTER 6. ECONOMIC SCHEDULING MODEL

for the execution of market methods. This is one reason why theoretical analysis
is difficult to apply. In our example we want to focus on the practical performance
for a real system scenario as presented in the previous chapter. Because economic
methods support different objectives, it is difficult to compare and evaluate such
methods to other approaches. In this work, we therefore examine the efficiency of
this economic approach by the means of response-time minimization by simulations
with real workload traces [17]. Note, we assume for this study that the response
time should be minimized despite the additional features by economic models as the
mentioned support for variable objective formulation. This allows the examination
of the performance that can be achieved by economic approaches in comparison to
the conventional methods as presented in the previous chapter.

6.1 Market Methods

Market methods for computational tasks have been subject of research for some
time. An overview of such models is, for example, given by Buyya in [6]. In this
work, we give a brief introduction on the background needed for our scheduling
setting.

We just give a brief introduction on the background needed for our scheduling set-
ting.

6.1.1 Considerations on Market Methods

Market methods, sometimes called Market oriented programming in combination
with Computer Science, can be used to solve the following problems which occur in
real scheduling environments [10]:

e The site autonomy problem arises as the resources within the system are
owned by different individuals, companies or institutions.

e The heterogeneous substrate problem that results from the fact that
different installations use different resource management systems.

e The policy extensibility problem means that local management systems
can be changed without any effects for the rest of the system.

e The co-allocation problem addresses the aspect that some applications
need several resources of different companies at the same time.

e The online control problem is caused by the fact that the system works in
an online environment.

We address these problems from an architectural point of view in more detail in
Chapter 6.

6.1. MARKET METHODS 101

The supply and demand mechanisms provide the possibility to optimize different
objectives of the market participants under the usage of costs, prices and utility
functions. It is expected that such methods provide high robustness and flexibility
in case of failures and a high adaptability during changes.

As a general definition, a market can be defined as a virtual market or from an
economical point of view as follows: “Generally any context in which the sale and
purchase of goods and services takes place.” [76]. The minimal conditions to define a
virtual market are: “A market is a medium or context in which autonomous agents
exchange goods under the guidance of price in order to mazximize their own utility.”
[76]. The main aspect is that autonomous agents exchange voluntarily their goods
in order to maximize their own utility.

A market method is given by Berman and Tucker in [77] as follows: “A market
method is the overall algorithmic structure within a market mechanism or principle
1s embedded.” 1t has to be emphasized that a market method is an equilibrium
protocol and not a complete algorithm.

The definition of an agent can also be found in [77]: “An agent is an entity whose
supply and demand functions are equilibrated with those of others by the mechanism,
and whose utility is increased through exchange at equilibrium ratios.”

It is now the question how this equilibrium can be obtained. One possible method
is the application of auctions: “An auction is a market institution with an explicit
set of rules determining resource allocation and price on the basis of bids from the
market participants” [82]. The most common auctions are: the English Auction, the
Dutch Auction, the Sealed Bid Auction and the Double Auction that are described
in detail by Walsh et.al. [77]. More details about the general equilibrium and the
existence of the general equilibrium is given by Ygge in [86].

6.1.2 Economic Scheduling in existing systems

Economic methods have been applied in various contexts. Besides the references
given by Buyya in [6], we want to briefly mention some other typical algorithms of
economic models.

WALRAS

The WALRAS method is a classic approach by translating a complex, distributed
problem into an equilibrium problem [3]. One of the assumptions is that agents do not
try to manipulate the prices with speculation, which is called a perfect competition.
To solve the equilibrium problem the WALRAS method uses a Double Auction.
During that process all agents send their utility functions to a central auctioneer
who calculates the equilibrium prices. A separate auction is started for every good.
At the end, the resulting prices are transmitted to all agents. As the utility of goods
may not be independent for the agents, they can react on the new equilibrium prices
by re-adjusting their utility functions. Subsequently, the process starts again. This
iteration is repeated until the equilibrium prices are stabilized.

102 CHAPTER 6. ECONOMIC SCHEDULING MODEL

The WALRAS method has been used for transportation problems in the area of
processor scheduling and rental, see also [43]. The transportation problem requires
to transport different goods over an existing network from different start places to
different end places. The processor rental problem consists of allocating one processor
for different processes, while all processes have to pay for the utilization.

Enterprise

Another application example for market methods is the Enterprise [75] system. Here,
machines create offers for jobs to be run on those machines. To this end, all jobs
describe their necessary environment in detail. After all machines have created their
offers the jobs select between these offers. The machine that provides the shortest
response time has the highest priority and will be chosen by the job. All machines
have a priority scheme where jobs with a shorter run time have a higher priority.

Additionally economic concepts have been examined for different application fields,
e.g. the Mariposa project which is restricted to distributed database systems [72].
The presented methods are examples on market economic methods. In the next
sections we present our infrastructure and scheduling method for grid job scheduling.

6.2 Economic Scheduling

This section includes a description of the scheduling algorithm that has been imple-
mented for the presented infrastructure. The general application flow can be seen in
Figure 6.1. In contrast to Buyya et.al. in [7] and [6] or Waldspurger et.al. in [81], our
scheduling model does not rely on a single central scheduling instance. Moreover,
each domain acts independently and may have different objective policies, see also
Chapter 7. Additionally the job requests of the users can contain individual objec-
tive functions. The scheduling model has the task to combine these objectives to
find the equilibrium of the market. This is a derivation of the previously presented
methods of WALRAS and Enterprise. Our method also supports the co-allocation
of distributed resources in different domains. This feature is useful for multi-site job
execution.

In our scheduling model all users submit their job requests to the local scheduler of
the domain. The scheduler first analyzes those requests and, if possible, creates new
offers for all local machines. After this step, a first selection takes place where only
the best offers are selected. The request is forwarded to the schedulers of other known
domains. This is possible as long as the number of hops (search depth of involved
domains) for this request is not exceeded and the time to live for this request is still
valid. In addition none of the domains must have received this request before. The
selection which domain is queried for offers can be implemented by different strate-
gies. In a peer-to-peer approach, in which also network-locality can be exploited,
each domain keeps a list of domains it asks. This list can be set up manually based
on network structure or according some logical hierarchy. Furthermore, it is possible
to setup information services that provides addresses for domains and information

6.2. ECONOMIC SCHEDULING 103

!

New Request Submit

v

Local Machines
create Offers for
new Request

v

First Selection

v

Interrogation of
Remote Domains

v

Second Selection

v

Create Offer

Figure 6.1: General application flow.

on the available resources. Such a directory service can be used to find domains in
which suitable resource for a specific request are installed.

The remote domains create new offers and return their best to the requesting do-
main. If a request for a job has already been processed before, no further offers are
generated. That is, a domain answers on requests for a job only once as the same
request may be forwarded from different domains. Afterwards, a second selection
process takes place in order to find the best offers among the returned result of this
particular domain.

Note, that this method is an auction with neither a central nor a decentral auc-
tioneer. Moreover, the different objective functions of all participants are used for
equilibration. For each potential offer o for request ¢ the utility value UV/; , is evalu-
ated and returned within the offer to the originating domain that received the user’s
request. The utility values are calculated by the user supplied utility function U F;
which can be formulated with the job and offer parameters. Additionally to this
parameter set P, the machine value M Vi, of the corresponding machine j can be
included.

104 CHAPTER 6. ECONOMIC SCHEDULING MODEL

[Request Submit J

multi -site

no multi -site

e Y

Check Request

v

Search for Free Intervals
within the Schedule

. J
e ‘ Y
Rough Selection
of Intervals
A J
e ¢ B

Fine Selection
of an Interval

v

Create Offer

®

Figure 6.2: Local offer creation.

UVie = UF(P,,MV;;)

MVi; = MF(Py)

The machine value results from the machine objective function M F which can de-
pend on a parameter set Py,.

The originating MetaManager selects the offer with the highest utility value UV ,.
In principle this MetaManager serves the tasks of an auctioneer.

A more detailed explanation of the local offer generation is given in Figure 6.2.

Within the Check Request phase it is determined if either the best offer will be
automatically selected or if the user is going to select the best offer interactively
among a given number of possible offers.

In the same step it is checked whether the user‘s budget is sufficient in order to
process the job at the local machines. Additionally, it is determined whether the
local resources meet the requirements of the request. Next, the necessary scheduling
parameters are extracted which are e.g. the earliest start time of the job, the deadline

6.2. ECONOMIC SCHEDULING 105

(end time), the maximum search time, the time until the resources will be reserved
for the job (reservation time), the expected run time and the number of required
resources. Another parameter is the utility function which is applied in the further
selection process.

If not enough resources can be found during the Check Request phase, but all other
requirements can be fulfilled by the local resources, a multi-site scheduling will be
initiated unless explicitly forbidden by the used. In this case additional and modified
offers are requested from remote domains to meet in combination the original job
requirements.

The next step Search for free intervals within the schedule tries to find all free time
intervals within the requested time frame on the suitable resources. For a simple
example assume a parallel computer with dedicated processors as the resources.
The example schedule is given in Figure 6.3. The black areas within the schedule are
already allocated by other jobs. Now a new incoming job requests three processors
and has a start time A, an end time D and a run time less than (C' — B). First, free
time intervals are extracted for each processor. Next, the free intervals of several
processors are combined in order to find possible solutions. To this end, a list is
created with triples of the form {time, processor number, +/-1} which means that
the processor with the specified processor number is free (+1) or not free (-1) at the
examined time.

The generated list is used to find possible solutions as shown in the following pseudo-
code:

list tempList; LOOP: while(generatedList not empty) {
get the time t of the next element in the sourcelist;

test for all elements in templList whether the difference between

the beginning of the free interval and the time t is bigger or

equal to the run time of the job;

if (number of elements in tempList, which fulfill the time
condition, is bigger or equal the needed number of processors)

{
create offer from the elements of the tempList;
}
if (enough offers found)
{
finish LOOP;
}

add or substract the elements of the sourcelList to or from
tempList which have time entry t; }

The given algorithm creates possible offers that are specified by start, end, run time
and the requested number of processors.

Note, that we did not yet show how the offer is created from the elements of this
list. This is achieved by the following algorithm. The goal is to find areas of enough

106 CHAPTER 6. ECONOMIC SCHEDULING MODEL

D D
c T T T T T T7T T T T T T T T
I‘\‘I‘\‘I‘\‘I‘ ‘\‘I‘\‘I‘\‘I‘\
I‘\‘I‘\‘I‘\‘I‘ ‘\‘I‘\‘I‘\‘I‘\
time time T e s
I‘\‘I‘\‘I‘\‘I‘ ‘\‘I‘\‘I‘\‘I‘\
e LT
B T T T T T T7T T T T T T T T
A Al
12 3 4 5 6 7 1 2 3 4 5 6 7
processors processors
Figure 6.3: Start Situation. Figure 6.4: Bucket 1.
D D
e o
\II‘\II‘\II‘\I . T T
fime time L
\II‘\II‘\II‘\I T T
\II‘\II‘\II‘\I :‘:I:‘:
\II‘\II‘\II‘\I \:I:\:I
\‘II\‘I
A A ‘ L 1T T 1
1 3 4 5 6 7 1 2 3 4 5 & 7
processors processors
Figure 6.5: Bucket 2. Figure 6.6: Bucket 3.

resources within the schedule for a given list of free time intervals. This has to take
into account that idle times at resource elements may have different start and end
times. The resulting areas are characterized by the earliest start and latest end time.
To this end a derivation of a bucket sort is used. In the first step all intervals with
the same start time are collected in the same bucket. In the second step for each
bucket the elements with the same end time are collected in new buckets. At the end
each bucket has a list of resources available between the same start and end time.

For the example above, the algorithm creates three bucket as shown in Figures 6.4,
6.5 and 6.6. After this bucket creation, suitable offers are generated either with el-
ements from one bucket if the bucket includes enough resources or by combining
elements of different buckets. Additional care must be taken as elements from dif-
ferent buckets can have different start and end times. The maximum start and the
minimum end time must be calculated. In our example only bucket 1 can fulfill the
requirements alone and therefore an offer can be built e.g. with resources 1, 2 and
D.

In order to generate different offers buckets for which an offer could be generated
by using only its own elements are modified to contain one resource less than the
required number. Afterwards, the process of offer generation is repeated. If the num-
ber of elements within a bucket is less than the necessary number, all elements of
this bucket are taken into the collection bucket. For our example this is true for the
buckets 2 and 3. If yet not enough solutions are found and no further bucket can
fulfill the request by itself, and the number of remaining elements of all buckets is
greater or equal to the requested resource number, new solutions are generated by
combinations of bucket elements with appropriate intersecting time frames.

In our example, combined with the solution built from bucket 1 the whole set of solu-
tions would be: {{1,2,5}, {1,2,3}, {1,2,4}, {1,2,7}, {1,3,4}, {1,3,7}, {1,4,7}, {2,3,4},

6.2. ECONOMIC SCHEDULING 107

{2,3,7}, {3,4,7}}.

After finishing the phase Search for free intervals within the schedule from Figure 6.2,
a rough selection of one of these intervals takes place in the next step. In principle a
large number of solutions may be possible due to small changes for the start and end
time for a job in every combination and then selecting the interval with the highest
utility value. In practice this is not applicable as the run-time of the algorithm must
be considered. Therefore, a heuristic is used by first selecting several combination
among all possible combinations. The start and end time for these combinations
are modified to improve this utility value. The modification with the highest utility
value is selected as the resulting offer (in phase “fine selection of an interval” in
Figure 6.2). A parameter for the number of steps can be given which defines the
number of different start and end times within the given time interval. Note, that
the utility function is not constrained in terms that is must be monotone. Therefore,
this selection process is also based on heuristics.

After this phase the algorithm is finished and possible offers are generated.

The utility functions of the machine owner and the user have not been specified
yet. This method allows both parties to define their own utility functions. In our
implementation, presented in Chapter 7, any mathematical formula, using any valid
time and resource variables, is supported. Overall, the resulting objective value for
the user’s utility function is maximized among the available offers. Note, that we
do not obtain by this process the general maximum. Instead, from the available
offers the solution with the maximum value is selected. The linkage to the objective
function of the machine owner is created by the price for the machine usage which
equals the machine owner’s utility function. The price may be included in the user’s
utility function.

The owner of the machine can formulate the utility function in which additional
variables can occur that depend on the resulting schedule. Figure 6.7 shows variables
that are used in our implementation. The variable under specifies the area in the
schedule in which the corresponding resources (processors) are unused before the
job allocation. The variable over determines the area of unused resources after the
job to the start of next job start on the according resources or to the end of the
schedule. The variable left_right specifies the concurrently idle resource area during
the allocation of the job. In a graphical depiction of a schedule as in Figure Figure 6.7,
this is the idle area on the left and right side of the job for all processors of the
machine. The variable utilization specifies the utilization of the machine if the job
is allocated. This is defined by the relation between the sum of all allocated areas to
the whole available area from the current time instance to the end of the schedule.

108 CHAPTER 6. ECONOMIC SCHEDULING MODEL

time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

processors

- already aocated jobs g new job

free area before job start Q free arealeft and right
(under) & (left_right)

V/ free area after the job end until the next job or the ende of the schedule
% (over)

Figure 6.7: Parameters for the calculation of the owner utility function.

Time Consumption of the Economic Scheduling Algorithm

An important issue for the practical applicability of an algorithm is its run-time be-
havior. The time-consumption of the algorithm depends on many parameters which
define the number of steps and its complexity. Therefore, we give theoretical esti-
mations of the time requirement for the single steps of the algorithm.

Determination of idle time intervals: The process of searching idle times on a
resource requires in the worst case (J + 1), while J denotes the number of jobs that
have been allocated to the resource. This assumes that the corresponding lists are
already ordered at the insertion of job allocations. As we have R resources that are
available for a job request, the complexity for this step is maximal: ((J + 1) - R).

Search for free intervals within the schedule During this process, we have to
consider first the generation of a sorted list with start and end times: The merging
of the resource information on start and end times to a list with maximal ((J+1)-2)
elements requires at most ((J + 1) - R) time.

Next, the algorithm for finding possible solutions as displayed in the pseudo-code
on Page 105 is considered.

The loop is executed maximal (2-(J+1)) iterations as the list can have that number
of entries in the worst-case.

6.2. ECONOMIC SCHEDULING 109

Calculation of potential offers: The process of sorting resources into the buck-
ets, as described above, consists of two steps. The first sorting in respect to the
available start-time on a resource requires at most R steps.

The second sorting in respect to the potential end-time on the resource requires
again at most R steps.

After the bucket sort the scheduler has to find combinations from these buckets
to generate offers. The maximal time-complexity is again R steps, as there are R
buckets in the worst-case. In each combination the earliest start-time and latest end-

A

N >, with NV
denoting the number of resources requested by the job and A the number of resources
in the collection bucket. This is the number of steps if all possible combinations are

examined. In a real implementation this process is certainly bound by a parameter

o< 1)

Therefore, the run-time of the whole search of potential offer intervals requires:

time has to be calculated. The maximum run-time for this step is

e ((J+1)-2-R) steps for the search of free intervals of each resource and list
creation.

o (2-(J+1)-{runtime for offer generation}) steps for the loop iterations on the
generated list.

A
e (3-R+ < N >> steps for sorting the time intervals for start and end times

into buckets.

In the worst case, the number of elements in the collection bucket A equals the
number of resources R. This leads to the overall run-time int the worst-case of:

2. (J+1)- <R+3~R+<f,>) steps.

Again, in an implementation the term <]]\%7) will be limited by a parameter C.

Selection of an offer: We described that a heuristic is used for the actual %ffer
N
steps. Note, that this strategy is an example for the selection process and other
variants are possible.

Afterwards, the actual start time has to be selected for the job request as the avail-
able time frame on the resources can be longer than the requested execution time.

Here, we used a heuristic that produces Z start-times.
The overall maximal run-time (without C') for the selection process is therefore:

selection. This heuristic for selecting resources had a time complexity of

<<<]]\%[> + 7+ 2) - {run-time for calculating the utility function}).

110 CHAPTER 6. ECONOMIC SCHEDULING MODEL

Calculation of the owner utility function: The calculation depends on the
parameters that are included in the utility function. In our example, we used infor-
mation on idle times on different machines. This step lead to a time-complexity of
(R-(J+1)) in the worst-case.

6.3 Simulation and Evaluation

As mentioned before the economic scheduling method provides support for variable
objective functions for user and owners. Therefore, the evaluation of such a eco-
nomic method highly depends on these objective functions. Common criteria as the
minimization of the response time or a high utilization of the resources can be part
of these objective functions, but this is not required. Some users for instance may
be interested in cost-reduction as long as given response times are met, other users
may look for earliest response time without regarding the cost. Thus, the evaluation
and comparison of the whole scheduling process by one mean, as e.g. the average
weighted response time, may not be appropriate if this is not the single objective of
users and owners. Especially the comparison to other scheduling methods that focus
on such a objective as for example is meaningless.

However, we can examine the performance of the economic scheduling method if
we assume that the overall objective is actually the reduction of the response-time.
This allows the comparison to the conventional scheduling algorithms as presented
in the last chapter. Note, that this is a scenario where the ability to use different
objectives for certain users and owners is not utilized. According to our discussed
concept for the scheduling design process, the designer has to identify and model the
user workload including the objectives and analyze/optimize the economic method
by evaluation. This evaluation step includes the definition of the criterion - objective
function - for the overall schedule. In our example, we base our simulation on the
definitions that have been used for our evaluations for the conventional algorithms.
Note, that we yet do not know how to formulate objective functions for machines
and users to achieve a low average weighted response time. To this end, we select
several objective functions and discuss the results in respect to the average weighted
response times.

In the following sections the simulation environment is described. First, the resource
configurations which are used for our evaluation are described followed by an intro-
duction of the applied job model.

6.3.1 Resource Configurations

We use the same configurations as presented in Section 5.7.1 in Table 5.1. Again, all
configurations use a total of 512 resources.

Additionally, in order to apply economic scheduling methods, utility functions are
required as mentioned before. For the simulations 6 different owner objective func-
tions were used. The first one describes the most general owner utility function in

6.3. SIMULATION AND EVALUATION 111

our example from which all others are derived. The owner machine function M F;
consists of several terms. The first term:

NumberO f Processors - RunTime

calculates the area that the job is using within the schedule. The second term cal-
culates the free areas before and after the job as well as the parallel idle time for
the other resources within the local schedule (see Figure 6.7.):

over + under + le ft_right.
The last term of the formula is:
1—leftright_rel,

where left_right_rel describes the relation between the free areas to the left and
right of the job within the schedule (left_right) and the area actual used by the job.
A small factor describes that the free areas on both sides are small in comparison to
the job area. This leads to the following objective function M F} and its derivations
MF2 - MFGZ

MFy = (NumberO fProcessors - RunTime

+ over + under + left_right) - (1 — left_right_rel)
MF;, = (NumberO fProcessors- RunTime

+ over + under + left_right),
MF; = (NumberO fProcessors - RunTime

+ over + under) - (1 — left_right_rel),
MF, = (NumberOfProcessors- RunTime

+ leftright)- (1 —leftright_rel),
MFs = (NumberO fProcessors - RunTime

+ over +leftright) - (1 — left_right_rel),
MFs = (NumberO fProcessors - RunTime

+ under + leftright) - (1 — left_right_rel).

However, note that these are only examples that are used in this evaluation. Other
utility functions are possible.

6.3.2 Job Configurations

For the evaluation we again use the CTC workload. This allows the desired com-
parison of economic systems in this work to the non-economic scheduling systems.
Again, the jobs from the real traces have been assigned in a round-robin fashion to

112 CHAPTER 6. ECONOMIC SCHEDULING MODEL

the different sites to model local job submissions. 4 different sets have been examined
in the simulations. These are the same workload sets that we used in Chapter 5 as
shown in Table 5.2 with 10000 jobs each.

Additionally, a utility function for each job is necessary in economic scheduling to
represent the preferences of the corresponding user. To this end, the following 5 user
utility functions (UF) have been applied in our simulations. During a simulation, we
assume that all users have the same utility function. Again, these are example utility
functions to get first information on the impact on the scheduling performance to our
mentioned schedule criteria in comparison to the conventional scheduling algorithms.
Further work is necessary if the utility function are optimized for a real system.

The first user utility function prefers the earliest start time of the job. All processing
costs are ignored.

UF, = (—StartTime).

The second user utility function only considers the calculation costs caused by the
job.

UFy = (—JobCost).

The last user utility functions are combinations of the first two, but with different
weights.

UF; = (—(StartTime+ JobCost))
UF, = (—(StartTime+ 2 - JobCost))
UFs = (—(2- StartTime + JobCost)).

6.3.3 Results

Discrete event-based simulations have been performed according to the previously
described architecture and settings.

Figure 6.8 shows a comparison of the average weighted response time for the eco-
nomic method and for the conventional first-come-first-serve/backfilling scheduling
system. For both systems the best achieved results have been selected. Note, that
the used machine and utility functions differ between the economic simulations.

The results show for all used workloads and all resource configurations that the eco-
nomically based scheduling system has the capability to outperform the conventional
first-come-first-serve /backfilling strategy.

Note, it is possible to outperform backfilling as the economic scheduling system
is not restricted in the job execution order. Within this system a job, that was
submitted after another already scheduled job, can still be started earlier, if corre-
sponding resources can be found. The conventional backfilling strategy used with
the first-come-first-serve algorithm [51] can only start jobs earlier if all jobs that

6.3. SIMULATION AND EVALUATION 113

20000,00
18000,00 +— | —]
16000,00 +—]
14000,00 M
— [O0m128 Economic
§ 12000,00 | Cm128 Conservative
8 T Em256 Economic
] .
» Em256 Conservative
1 100 1
c 0000,00 W m384 Economic
E m384 Conservative
2 8000,00 H Wm512 Economic
Mm512 Conservative
6000,00
4000,00 +
2000,00
0,00 T T T
syn_org 10_20k_org 30_40k_org 60_70k_org

Workloads
Figure 6.8: Comparison between Economic and Conventional Scheduling.

were transmitted before are not additionally delayed. The EASY backfilling lowers
this restriction to not delay the first job in the queue only [29]. However, this does
not result in a better performance.

Figure 6.8 shows the best results for the economic scheduling system. Now, in Fig-
ure 6.9 a comparison between the economic and the conventional scheduling system
for only one machine/utility function combination is presented.

The used combination of M F; and U F} leads to scheduling results that can outper-
form the conventional system for all used workloads and configurations m128 and
mb12. Note, that the benefit of the economic method was achieved by applying a
single machine/utility function combination for all workloads. This indicates that
certain combinations of machine and user utility functions can provide good results
for different workloads, such as the combination M F; and U F} in our example.

Figure 6.10 presents the average weighted response time (AWRT) as the sum of
the corresponding run and wait times weighted by the resource consumption. In all
cases the same resource configuration as well as the same machine/utility function
combination are used. The time differences between the simulations for both resource
configurations are small. This shows that the algorithm for multi-site scheduling
(for resource configuration m128), although it is more complex, does not result in
a much worse response time in comparison to a single machine. Note, that multi-
site execution is not penalized by an overhead in our evaluation. Therefore, the
optimal benefit of job splitting is examined and only the capability of supporting
multi-site in an economic environment over remote sites is regarded. Here, effects
of splitting jobs may even improve the scheduling results. Therefore, we can only
compare these results to the equivalent conventional scheduling method without

114 CHAPTER 6. ECONOMIC SCHEDULING MODEL

20000

18000

16000

14000 +—

12000 +—

- 0Om128 Economic

Om128 Conservative Multi-Site
Em512 Economic

W m512 Conservative

10000 +—

AWRT in seconds

8000 +—

6000 +—

4000 +—

2000 +—

syn_org 10_20k_org 30_40k_org 60_70k_org
Workloads

Figure 6.9: Comparison between Economic and Conventional Scheduling for the
Resource Configurations m128 and m512 using MF1 - UF1.

multi-site overhead. Note, that the potential impact of using multi-site job execution
has been examined in the previous chapter. The actual impact by using overhead
depends only on the number of jobs that are executed in multi-site. It can be assumed
that the process of splitting jobs can be designed accordingly in different scheduling
strategies that the usage of multi-site leads to similar effects.

Figure 6.11 demonstrates that the average weighted response as well as the average
weighted wait time do not differ significantly between the different resource config-
urations. In this case, the machine configurations have limited impact on the effect
on multi-site scheduling. Here, the overall number of processors is of higher signifi-
cance in our economic algorithm. Configurations with bigger machines have smaller
average weighted response times than configurations with a collection of smaller
machines.

The influence of using different machine/utility function combinations for a resource
set is shown in Figure 6.12. Here, the amount of work (the sum of the products of the
run time and the number of processors) is given for different resource configurations.
The variant m128 is balanced in the sense of having equal sized machines. The desired
optimal behavior is usually an equal balanced workload distribution on all machines.

The combination of (M Fy, UF}) leads to a workload distribution where the decrease
of the local squashed area is nearly constant between the machines, ordered by their
number as shown in Figure 6.12. The maximum difference between the squashed
areas is about 18%.

In the second case, the combination (M Fy, UF5) presents a better outcome in terms
of a nearly equally distributed workload.

6.3. SIMULATION AND EVALUATION 115

20000

18000

N 3
12000 - l —
10000 -—| - - | | |mWait Time

ORun Time

8000 +—— —

AWRT in seconds

6000 +—— —

4000 +— —

2000 +—— —

® 2 5 Q 5 Q > Q
U N U N G IN Ui IN
S & & & & N e
; S & Y ;

¥ ¥ OB 7
W® w® QO ©
n)%/ ,50/ QQ/ (OQ/

Simulation Configuration

Figure 6.10: AWRT and AWWT for m128 and m512 using several workloads, ma-
chine function MF1 and utility function UF1.

The third function combination (M F», UF5) leads to an unbalanced result. Two
of the machines execute about 67% of the overall workload and the two remaining
machines the rest.

Additional simulation results are shown for keeping the same machine/utility func-
tion combinations in Figure 6.13. The combination of (M Fy, U F3) does not perform
very well in terms of the utilization as all machines achieve less than 29%. This indi-
cates in combination with Figure 6.12 that a well distributed workload corresponds
with a lower utilization. The combination of (M Fy, UFy) leads to a utilization be-
tween 61% and 77% on all machines. The third examined combination (M F», UF5)
shows a very good utilization of two machines (over 85%) and a very low utilization
on the others (under 45%). In this case the distributed workloads correlates with
the utilization of the machines.

After the presentation of the distributed workload and the corresponding utilization
the AWWT and AWRT in Figure 6.14 clearly indicates that only the function com-
bination (M Fy, UF}) leads to acceptable scheduling results. Figures 6.12, 6.13 and
6.14 demonstrate that different machine/utility function combinations may result
in completely different scheduling behaviors. Therefore an appropriate selection of
these functions is important for an economic scheduling system.

In the following, we compare different machine/utility functions which are shown for
the resource configuration m128. In Figure 6.15 the average weighted response time
is given for all different machine function in combination with utility function U F3.
The average weighted response time for the machine function M F5 performs signif-
icantly better than all other machine functions. Here, the factor 1 — le ft_right_rel,
which is used in all other machine functions, does not work well for this machine
configuration. Instead it seems to be beneficial to use absolute values for the areas,
e.g. (NumberO f Processors- RunT'ime + over +under +le ft_right). Unexpectedly,

116 CHAPTER 6. ECONOMIC SCHEDULING MODEL

16000

14000

12000

10000

Om128

8000 Om256

mm384
Em512

6000

AWWT and AWRT in seconds

4000

- :.:
0 T

AWRT AWWT

Figure 6.11: AWRT and AWWT for all Resource Configurations and the syn_org
workload in combination with MF1 - UF1.

Figure 6.15 also shows that the intention to reduce the free areas within the sched-
ule before a job starts (with attribute under) results in very poor average weighted
response times (see the results for M Fy, M F3, M Fg).

As machine function (M F») provides significantly better results, different user utility
functions are compared in combination with M F5 in Figure 6.16.

Utility function U F}y, which only takes the job start time into account, results in
the best average weighted response time. In this case, no attention was paid to the
resulting job cost. For our selection of the machine objective function this means
that no minimization of the free areas around the job is regarded. The utility func-
tions which include this job cost deliver inferior results in terms of the average
weighted response times. The second best result originates from the usage of the
utility function U Fj3. In opposite to UF; the starting time and the job costs are
equally weighted. All other utility combinations in which either only the job costs
(UF3E) or unbalanced weights for the starting time and the job costs are used, lead
to higher response times.

6.3. SIMULATION AND EVALUATION

Squashed Area Part in %

IS
S

w
a

)
S

)
o

N
o

o

=5}

o

MF1 - UF1

MF1 - UF2
Utility Function Combinations

MF2 - UF2

OMachine 1
OMachine 2
EMachine 3
B Machine 4

117

Figure 6.12: The amount of workload (processor-time-product) in simulations with
m128 (4 identical machines with 128 processors) and the syn_org workload using
different machine and utility functions.

Utilization in %

100

90

80

70 4

60

50 1

40 1

30 +

20 1

MF1 - UF1

MF1 - UF2
Utility Function Combinations

MF2 - UF2

OMachine 1

OMachine 2
@ Machine 3

B Machine 4

Figure 6.13: The resulting utilization of simulations with m128 (4 identical machines
with 128 processors) and the syn_org workload using different machine and utility

functions.

118 CHAPTER 6. ECONOMIC SCHEDULING MODEL

200000

180000

160000

140000

120000

OMF1 - UF1
100000 EMF1 - UF2
BMF2 - UF2

80000

AWRT and AWWT in seconds

60000

40000

20000

T S

AWRT AWWT

Figure 6.14: The resulting average weighted response and wait times of simulations
with configuration m128 and workload syn_org using different machine and utility
functions.

300000

250000
£ 200000
©
E
i
150000 +
2 100000 |
50000 -
MF 1 MF 2 MF 5 MF 6

MF 3 MF 4
Machine Functions

Average

o

Figure 6.15: The resulting average weighted response for resource configuration
m128; utility function UF 3 and several machine functions.

6.4. SUMMARY 119

100000

90000

80000

70000
60000
50000
40000
30000
20000

0

UF 1 UF 2 UF3 UF 4 UF 5
Utility Functions

Time in

Average

Figure 6.16: The resulting average weighted response for resource configuration
m128, machine function MF 2 and several utility functions.

6.4 Summary

In this chapter we presented an economic scheduling system for grid environments.
The quality of the algorithm has been examined by discrete event simulations with
the same workload and machine configurations as our previous evaluations on con-
ventional grid scheduling algorithms. Now, in this evaluation we focused on the
quality in respect to minimizing the average weighted response time. To this end,
several parameter settings for owner and user utility functions have been introduced.

The results demonstrate that the used economical model can achieve results in the
range of conventional algorithms in terms of the average weighted response time.
In comparison, the economical method leaves a much higher flexibility in defining
the desired resources. Also the problems of site autonomy, heterogenous resources
and individual owner policies are solved by the structure of this economic approach.
Moreover, the owner and user utility function may be set individually for each job
request. Additionally, features as co-allocation and multi-site scheduling over differ-
ent resource domains are supported. Especially the advance reservation of resources
is an advantage. In comparison to conventional scheduling systems there is instant
feedback by the scheduler on the expected start time of a job already at submit
time.

Note, that the examined utility functions in the simulations are first approaches
and leave room for further analysis and optimization. Nevertheless, the presented
results indicate that an appropriate utility function for a given resource configuration
delivers steady performance on different workloads.

Further research is necessary to extend the presented model to incorporate the net-
work as a limited resource which has to be managed and scheduled as well. In
this case a network service can be designed similar to a managed computing re-

120 CHAPTER 6. ECONOMIC SCHEDULING MODEL

source which provides information on offers or guarantees for possible allocations,
e.g. bandwidth or quality-of-service features.

A more extensive parameter study for comprehensive knowledge on their influence
on cost and execution time is necessary. The presented architecture in general pro-
vides support for re-scheduling, that means improving the schedule by permanently
exploring alternative offers for existing allocations. This feature should be examined
in more detail for optimizing the schedule as well as for re-organizing the schedule
in case of a system or job failure.

Besides the advantages of the economic models as described above there are addi-
tional aspects to consider in an implementation. This includes for example the actual
implementation of supporting differentiated objective functions in each job requests
as well as the concept of using domains that can query other domains supports an
efficient infrastructure where network-locality can be taken into account. In the next
chapter, we present details to a implementation of such an environment. As a proof
of concept the NWIRE infrastructure of a scheduling environment is presented in
which the discussed algorithms have been implemented.

Part 1V

Grid Scheduling Infrastructure

121

Chapter 7

Grid Scheduling
Implementation in NWIRFE

After the design and evaluation of scheduling algorithms for the grid environment,
there is still the question whether the algorithms can actually be implemented and
how a suitable infrastructure for grid scheduling might look like. In this chapter we
first want to discuss the requirements of such an infrastructure. Later on, we present
our approach on a scheduling infrastructure.

It is the task of a grid or metacomputing management software to provide the user
with a transparent interface to the included resources. As we already mentioned,
the initial idea of grid/meta computing is the impression of a single virtual grid
computer. The usage should be easy and flexible. Additionally, there is the expecta-
tion that the management software simplifies the administration and improves the
efficiency of the system.

The aspect of easy and transparent access as well as the increased efficiency is
closely related with the scheduling system as we have seen before. It is part of the
scheduler to select suitable resources and schedule the execution without further
user interaction. In the following we will focus on the scheduling aspects for the
infrastructure for grid computing.

Presently, there are a number of projects that work on the realization of a metacom-
puting environment. These projects include Globus [32-34], Legion [40], Codine [38],
Condor [52], AppLeS [1,73,87], LSF [88] and several other initiatives [2]. While many
of those systems have been developed especially for a certain class of applications
there are a few which use a more general approach. Most notable is the Globus
project. It addresses many aspects of grid computing like for instance account man-
agement, message passing communication, and security. With regard to the Global
Grid Forum, which has the task of coordinating the different grid approaches, Globus
has evolved to be the most prominent reference initiative.

The scheduling in Globus is done by a multi-level hierarchy of resource brokers,
resource co-allocators, and local managers. Globus also uses a special resource spec-
ification language (RSL) to define resources and generate requests.

122

7.1. SCHEDULING CONSIDERATIONS 123

7.1 Scheduling Considerations

In the previous chapters, we already discussed several aspects in grid scheduling
in comparison to scheduling for single parallel machines. Here, we want to repeat
briefly general considerations that have to be taken into account for the design of
a generic grid scheduling environment, see also [10]. This includes variable schedul-
ing objectives, the existence of additional independent schedulers, the availability to
generate arbitrary resource requests, the support of resource reservation including
the ability to provide guarantees for job execution.

Site Autonomy: The resources are typically not owned and maintained by the same
administrative instance. Different owners have different scheduling policies that have
to be taken into account.

Independent Schedulers: Following from the previous aspect, the resources are
not exclusively dedicated to the grid. Hence, the scheduler in a grid computer has
no exclusive control over all resources. This leads to the problem that not all jobs on
a local machine may be submitted via the grid computing software. This makes grid
scheduling more complex as the resource utilization may be changed by the local
management system.

Heterogeneous Substrate: The resources typically have its own local management
software with different features. Hence, we have to cope with the limitations of the
local management. For instance, some scheduling systems are non-deterministic in
terms that they cannot provide any information about the expected completion
time of a job. Unfortunately, this kind of information is important in distributed
metasystems for planning future allocations. That means the grid scheduling system
should utilize such features if supported but also cooperate with systems that do
not. Nevertheless, the efficiency of a schedule system highly depends on the features
of the lower-level scheduler. If a resource does not provide the requested features
like a guaranteed completion time, it may not be suitable for some job requests.

Flexible Resource Description: As job requirements and resources in a metasys-
tem may vary according to type and application, there is need for ability to describe
complex job requests. This request may be very specific if necessary or very broad.
As an example, a user may not provide a very detailed request as he wants to get
as many offers for resources as possible. More restrictive requirements would only
reduce the possible resource sets for the job. Another user is looking for very spe-
cific resources. He may have access to an alternative set of local resources for the
execution of his job and is therefore only interested in a better resource allocation.
Consequently, he formulates very detailed requirements and preferences. The grid
scheduler should support both approaches. The individual user should be able to
influence the resource selection and the scheduling to get best results.

Variable Scheduling Objectives: We already discussed the necessity to support
variable scheduling objectives. A conventional scheduling system for a parallel com-
puter is optimized for a single scheduling objective or performance metric which is
fixed for all jobs. Here, we already noted the minimization of the average response
or turnaround time [28]. This objective is typically determined by the local manage-

124 CHAPTER 7. GRID SCHEDULING IMPLEMENTATION IN NWIRE

ment system or by the administrator. The situation is very different in grid comput-
ing. First, the distributed system is not controlled by a single instance. Therefore,
the objective may vary for each available resource according to the administrator’s
policy. While the scheduling target for some machines may, for instance, be the
maximization of the throughput, others have the objective to minimize the response
time. Second, in addition to the owner objective we must also take the needs of the
user into account. Some user may favor the availability of specific resource prop-
erties while other may have additional constraints about the execution of a job. A
typical example would be the already mentioned deadline for a job that must be
met without regard to when it is executed. For this user the minimization of the
response time would not reflect his demands. Another user may only be interested in
resources that fits his needs better than resources that are already locally available.
Therefore, the scheduling must be adaptable to generate the most appropriate result
and support individual user objectives.

Co-allocation: This addresses the aspect that some applications need several re-
sources from different sites at the same time. The grid scheduling system should
be capable of coordinating these resources. This may be difficult as we have local
management systems.

Resource Reservation: Several advanced applications need the support of resource
reservation. For instance, a demonstration may require the reservation of a resource
allocation for a dedicated time span. It is also advantageous for the scheduler to
consider system downtime or restricted access that is known in advance. Reservations
are further needed for multi-site applications. It should be possible for a scheduler
to reserve resources for a specific time span in order to guarantee the concurrent
availability of resources at different locations.

Online Problem: The grid scheduling takes place in an online environment. Jobs
may be submitted at any time. Additionally, information on the current state of
resources may be difficult to obtain and to keep up to date.

Scalability and Reliability: The scheduler for a single parallel machine has a
limited number of resources to control. In comparison, the grid is intended to span
over a very large number of systems. Therefore, there are additional requirements in
scalability and reliability. If many systems are connected to the grid, the continuous
availability and work must be guaranteed. The grid should be usable even if some
components are impacted by a network or resource failure. A central scheduling
instance would lead to a single point of failure and may also become a performance
bottleneck.

7.2. ARCHITECTURE OF NWIRE 125

7.2 Architecture of NWIRE

Based on the previous considerations we developed the grid scheduling architecture
NWIRE (Net-Wide-Resources). In this project we focused on the scheduling aspect.
NWIRE does not provide all components for a full grid management system. More-
over, it is a proof of concept for a scheduling infrastructure which can be applied to
other management systems. It supports the presented scheduling algorithms in this
work and has been used for the evaluations.

7.2.1 Description of the Architecture

Most management structures use a similar concept to include different resources.
Local resource agents are used to interface between the local system and the man-
agement layer. Similarly, in NWIRE resources are abstracted by so-called Resource-
Managers. In our implementation these components provide remote access to re-
sources, which are represented by CORBA objects. Other implementation may use
different communication standards.

To address the autonomy problem, NWIRE uses independent domains, that are
constituted by a set of local resources and local management instances. Each so
called MetaDomain is controlled by a MetaManager, as shown in Figure 7.1.

Scheduler

~

MetaManager

Resource

Resource

\ MetaDomain

Resource

)

Scheduler

~

MetaManager

Resource

Resource

\ MetaDomain

Resource

)

Figure 7.1: Structure of NWIRE

This MetaManager administers the local resources and also answers to local job
requests. Additionally, this MetaManager consists of a local scheduler and acts as
a broker/trader to other remote MetaDomains, respectively their MetaManagers.
That is, the local MetaManager can offer local resources to other domains and tries
to find suitable resource allocations for local requests.

126 CHAPTER 7. GRID SCHEDULING IMPLEMENTATION IN NWIRE

The MetaManager can discover other domains by using directory services or explor-
ing the neighborhood similar to peer-to-peer network strategies. Requests to another
MetaManager can be further forwarded to other domains if necessary. Additional
parameters are used to control strategy and depth of this search. Information on the
location of specific resource types can be cached for later requests. An overview in
all scheduling steps is given in Figure 7.3.

This concept provides several advantages e.g. an increased reliability and fail-safety
as the domains act independently. A failure at one site has only local impact as the
overall network is still intact.

Another feature is the ability to allow different implementations of the scheduling
and the offer generation. Thus, according to the policy at an institution, the owner
can setup an implementation that suits his needs best. Note, the policy on how
offers for remote job requests are created does not have to be revealed to the public.
Instead, job request for resources are analyzed locally by a MetaManager and its
offers are returned. The process of this offer generation is a black-box from the point
of view of a requesting clients or of MetaManagers from other domains.

Also, the scheduling-infrastructure in a MetaManager provides the ability to imple-
ment different strategies for the scheduler. This includes the ability to use conven-
tional methods like e.g. the previously mentioned backfilling as well as the proposed
economic scheduling strategy. Within the NWIRFE system, this is achieved by using
so called requests for the information exchange between the user and the components
involved in the scheduling. The request is a flexible description of the conditions of
a resource that are necessary for a job.

Note that we did not specify the term resource. In NWIRE it is simply required that

e certain methods can be applied to a resource and

e a resource provides status information to the attached ResourceManager.

For instance, in a grid environment the interconnection network between two mul-
tiprocessor systems can be considered a resource. A typical example would be the
setup of quality-of-service features in switches and routers or the reservation of guar-
anteed bandwidth (e.g. with ATM channels).

From a functional point of view a MetaManager permanently collects information
about all resources associated with it. Further, it handles all requests inside its Meta-
Domain and works as a resource broker to the outside world - to other MetaDomains.

7.2.2 Properties of the Architecture

The architecture of NWIRE especially addresses the autonomy problem by using
independent domains. The administrator of resources can build a local domain and
keep full control over his resources. The management and scheduling is performed
locally. Hence, the scheduling policy and objective can be introduced in the design of
the scheduling part of the local MetaManager. The owner or administrator of such

7.3. SCHEDULING IN NWIRE 127

Meta
Manager

_
Site-Boundary_- ~ -
MM works as a broker for
the local resources
Meta
Manager

MM controls
access to RM

Resource Resource Resource
Manager Manager Manager

RM interacts
with local management
Local Local Local
Management Management Management
Resource Resource Resource

Figure 7.2: Distributed Architecture of NWIRE

a machine may decide to temporarily exclude his resource from the grid or use it for
additional local requests that are not received through the grid environment.

Furthermore, the infrastructure supports arbitrary resource types. As we mentioned
a resource may be more than a computational resource. Nevertheless, the distinct
description and features can be included in the system and easily incorporated into
the scheduling process.

In the next section, we will illustrate the scheduling in regards to implementation
aspects.

7.3 Scheduling in NWIRE

NWIRE relies on a mechanism of trading resources between domains via the Meta-
Manager. The schedule quality in the trading approach relies on a market mech-
anism. Here, the description of the objectives is a key element for the resource
allocation. Chapter 6 showed our model for a economic scheduling approach.

We assume that a metacomputing system will only be accepted, if it meets most
or all of the requirements defined in Section 7.1. Especially the ability to supply a
scheduling objective for every resource is important as many owners of computing

128 CHAPTER 7. GRID SCHEDULING IMPLEMENTATION IN NWIRE

Request Request Request
3) The query is limited and directed

Meta Meta by search parameters

Manager Manager

A T
equest Request /
/

2) Scheduler asks
other MetaManagers Offer
for offers

Attributes
ObijectiveFunction

Offer

1) User or Client Request
sends a request

Requirements 4) Allocation is done for maximizing the objective
Job Attributes Meta e’ Schedule for the whole schedule , which is the combined
ObjectiveFunction / Manager Alocation 1 objective of all allocations

location _

Allocation_2
Allocation_3

Application

6) The client gets feedback
on the resource allocation 5) MetaManager can reallocate the schedule
to optimize the objective or to recover from
system changes

7) Execution of a job can be initiated
by the MetaManager

Resource
Manager

Resource
Manager

Resource
Manager

Figure 7.3: Scheduling Steps in NWIRE

resources are only willing to share their resources with someone else under certain
conditions. This includes political scheduling [49] as well as strategies on the overall
machine utilization. Currently, this seems only to be feasible with a trading system.
In addition, this approach provides the highest degree of flexibility and is usually
rather fault-tolerant. If a single trader fails only some jobs may be affected but not
the whole metasystem.

7.3.1 Resource Request

According to the architecture of NWIRE, as presented in Section 7.2, a request
for resources is directed to the MetaManager of a MetaDomain. This request is
formulated in a resource description language which allows arbitrary combinations
of requirements and attributes about the job and the user. An objective function
can be part of this request. This function is then used to calculate a value for
the utility of a resource allocation, see also [77]. The request is parsed to determine
whether a resource is suitable. While it is not necessary that the scheduler recognizes
all attributes in a request, some other properties are known by the management
system. This method allows arbitrary resource definitions. But resources of the same
class must have the same set of obligatory and optional attributes. Otherwise if
the interfaces differ, users and programs would be unable to specify or even access
those resources. However, this definition must not be known by the scheduler and
can therefore be modified later and standardized to meet the requirements of a

7.3. SCHEDULING IN NWIRE 129

metasystem.

7.3.2 Request and Offer Description

As a proof of the concept a description language has been developed which is used
to specify requests, resources and offers. Our economic scheduling model from Chap-
ter 6 has been implemented with this language.

As we mentioned before, it is essential that requests for offers are very flexible. Our
description language allows arbitrary attributes which are specified as key value
pairs. Note, that the implementation can deal with new resource types with specific
keys that have not been defined yet. Only a few keys are specific for the management
and scheduling environment. Resources can be specified with additional keys, as well
as requests can form requirements for this keys. All these keys are checked for offer
matching. We already discussed, that it is necessary to standardize the description
and the parameter keys for known resource types.

The description language is used for requests, as well as for offer and resource de-
scription. The syntax is very similar in all cases. We allow complex statements in
the formulation of the values. This includes expressions and conditions to allow pa-
rameterized attribute specification that can be evaluated at run-time. Examples are
the utility function or the job length, which may be derived from other attributes
as the job cost or the available processor number /speed.

Next, we want to describe several selected example attributes that are used for our
scheduling examination of compute resources. The real set of attributes is larger and
specific scheduling methods may utilize more of them. The scheduling for network
resources would certainly require additional parameters and an extended scheduling
techniques. We first show the sample attributes for the requests; an overview on
the resource and offer parameterized are given next. The syntax of the description
language is given afterwards with an example to further illustrate the usage.

Request Attributes:
The following is a list of parameters that are available for the requesting formulation:

Hops: This attribute limits the query depth to remote domains. A MetaManager only
forwards a request to other domains if the number of hops is not exceeded.

RequestID: a unique number that denotes the current request.

MaxOfferNumber: This is the number of offers a user wants to receive for his request.
The value 0 specifies that the MetaManager should automatically select and allocate
the best offer according to the UtilityValue.

MinMulti-Site: This specifies a minimum number of available resources before a job is
split up during multi-site execution. This prevents too small jobs from being started
in multi-site mode.

130 CHAPTER 7. GRID SCHEDULING IMPLEMENTATION IN NWIRE

MaxMulti-Site: This specifies a maximum number of available resources that is required
in a domain before a job is split up during multi-site execution. This value can lead
to the consequence that a job must be executed in multi-site mode.

OfferBudget: This specifies the budget that is available for offer generation. Note, that
this is not the budget for the actual job execution, but for the offer generation process
which may require additional costs as well.

ReservationTime: This is the time until which the available resources should be reserved.
StartTime: A job must not be started before this date.
EndTime: A job must not end after this date.

OperationSystemEqual: This parameter specifies that all resources must have the same
operating system (=1) if executed in multi-site mode. If the value is 0, the different
partitions of a multi-site job can consist of different operating systems which requires
that the job supports different architectures.

SearchTime: The scheduling system can search for offers until this absolut time instance.
JobBudget: This parameter specifies the maximum execution cost.
ReservationBudget: This parameter specifies the maximum reservation cost.

RunTime: This parameter specifies the execution time of a job. This definition can be
done relative to the speed index of resources.

UserName: This parameter specifies uniquely the submitting user.
Memory: This is the memory requirement per processor (in kBytes).
OperatingSystem: This specifies the requested operating sytem type.
NumberOfProcessors: This is the number of requested resources.

UtilityValue: This value denotes the marginal gain from the user’s point of view.

Resource Attributes:

Resources are defined in a similar way as requests and offers. The following is a list
of parameters that are available for the resource description:

ResourcelID: This is a unique identifier for a resource.

StartTime: This is the date after which the resource is available for grid usage.
EndTime: The resource is withdrawn from grid usage at this date.
NumberofProcessors: The specifies the available nodes of the resource.

Memory: This specifies the memory available in each node (in kBytes).

7.3. SCHEDULING IN NWIRE 131

OperatingSystem: This is the OS type of the available resource.

Objective: This formula denotes the owner’s utility function which can be evaluated for a
resource allocation.

OfferCost: This is the cost for generating the offer.

ReservationCost: This is the cost for reserving the offer.

Offer Attributes

The MetaManager receives the requests and has information on the resources above.
Consequently, it generates suitable offers for the request. Therefore, the request and
the resource information is combined into the offer. Following is a list of parameters
that are specific the offer description:

OfferID: This is a unique specifier for the offer.

RequestID: This is a specifier for the corresponding request.

JobCost: This is the cost for the job execution.

OfferCost: This specifies the cost for the offer generation.

ReservationCost: This specifies the cost for the offer reservation.

ReservationTime: This parameter is the date until which the offer is reserved.
StartTime: This is the start time of the job.

EndTime: This is the end time of the job.

Utility Value: This is the calculated value of the user utility function.

132 CHAPTER 7. GRID SCHEDULING IMPLEMENTATION IN NWIRE

Description Language Syntax

Key element of the request and offer description is the ability to formulate flexible
statements on the required resource as well as variable objective functions. The
language allows arbitrary key value pairs. As mentioned before this is not a flat
list of attributes. Moreover, complex statements are allowed for expressions and
conditions.

The formal syntax of the language is given in Appendix A. It is presented in BNF-
format which can be used, for instance, in implementing the parser with the common
Yacc utility.

In the following section an example is given to illustrate the syntax. The main
syntax element is the assignment from a value to a key. An expression is the sim-
plest element of the syntax. It can represent a number as well as a string. As a
string it can be a combination with another expression which is later evaluated
to determine the actual value. Here, several operators are allowed like e.g. addition,
substraction, multiplication, division and several other more complex operations like
modulo, square-root, exponent or logarithmic functions. The expression is used for
mathematical calculations like e.g. for the objective function.

A condition in combination with a simplecondition is used for conditional statements
with logical operators. The common AND, OR, NOT operators are available. Ad-
ditionally, there are the condition statements ISDEF and ISNDEF which check for
the existence of attributes. As not all attributes are defined for each resource and
we also allow arbitrary resource types, these operators allow the check if a specific
key exists. This can be used for example if a completely different utility function
should apply if a specific key exists. Furthermore, conditions can be combined to
more complex statements.

The other syntax rules are used for simple values, lists and concatenation of other
definitions.

7.3. SCHEDULING IN NWIRE 133

Example

To better illustrate the description language, we give a brief example for a request
formulation:

REQUEST "ReqO001" {
KEY "Hops" {VALUE "HOPS" {2}}
KEY "MaxOfferNumber" {VALUE "MaxOfferNumber" {0}}
KEY "MinMulti-Site" {VALUE "MinMulti-Site" {2}}
KEY "MaxMulti-Site" {VALUE "MaxMulti-Site" {5}}
KEY "OfferBudget" {VALUE "OfferBudget" {100.00}}
KEY "ReservationTime" {VALUE "ReservationTime" {900008}}
KEY "StartTime" {VALUE "StartTime" {900000}}
KEY "EndTime" {VALUE "EndTime" {9000283}}
KEY "OperationSystemEqual" {VALUE "OperationSystemEqual" {0}}
KEY "SearchTime" {VALUE "SearchTime" {899956}}
KEY "JobBudget" {VALUE "JobBudget" {900.89}}
KEY "ReservationBudget" {VALUE "ReservationBudget" {7.56}}
KEY "Utility" {

ELEMENT 1 {
CONDITION{
((OperationSystem EQ "Linux") || (OperationSystem EQ "UNIX"))
&& ((NumberOfProcessors >= 8) && (NumberOfProcessor <= 32))
}

VALUE "UtilityValue" {-StartTime}
VALUE "RunTime" {5}
VALUE "memory" {NumberOfProcessors * 100}
}
ELEMENT 2 {
CONDITION{
((memory >= 360) && (memory <= 580))
&& ((NumberOfProcessors >= 8) && (NumberOfProcessor <= 32))
}
VALUE "UtilityValue" {-JobCost}
VALUE "RunTime" {9}
}
}

Within request ,,Req001” some simple assignments are made for the keys Hops to
ReservationBudget.

Next, two possible environments for job execution are defined for the key Utility.
The first environment requires Linux or UNIX for the operating system and needs
between 8 and 32 nodes. For this condition the (Utility Value) is defined to start jobs
as soon as possible by the definition - StartTime. The job has an execution time of
5 seconds and a memory requirement per node of 100 KBytes.

A second environment requires between 360 kByte and 580 kByte as well as between
8 and 32 nodes. For this environment a different utility function is selected which
minimizes the job cost. Also the run-time of the job is now 9 seconds.

134 CHAPTER 7. GRID SCHEDULING IMPLEMENTATION IN NWIRE

7.3.3 Resource Determination

A request is generated by an application or user. It is submitted to the MetaManager
in the local MetaDomain. Then the MetaManager tries to find suitable resources
and makes allocations if requested. The search for a matching resource set always
starts in the local MetaDomain. Giving priority to local resources typically leads to
shorter response time, less network load and may result in shorter startup times. The
MetaManager may split up requests into more detailed requests which are then used
to determine if a specific resource fits the requirements. Moreover, the scheduler
connects to known remote MetaManagers and forwards requests to them. This is
a peer-to-peer communication pattern, where central instances are not necessary.
Nevertheless, additional directory and information services for faster retrieval of
resources can easily be introduced and utilized.

The reply to a request is a resource offer. Note, that there may be several possible
allocations that fit a request. Therefore several offers may be created. Even a single
resource can provide several offers which differ in their attributes. Note that every
MetaManager can ask any other MetaManager for offers. To prevent network flood-
ing we therefore limit the scope of requests by special attributes: maximum number
of hops to search, maximum number of collected offers etc. The whole peer-to-peer
search mechanism is also similar to the trading service as defined in the CORBAser-
vices [55]. The performance impact for searching is usually limited; the MetaManager
does not query the whole network. Optimization with caching and lookup-strategies
further minimizes the number of involved MetaManagers. Note that a suitable con-
figuration of links between MetaManagers in this trading scheme allows to utilize
network locality. For instance, MetaManagers should be linked if the corresponding
counterparts are connected by a network with high bandwidth and low latency.

Each trading step can generate a set of resource offers. Depending on the request
attributes these offers may only be valid for a specific time. Further, obtaining and
reserving an offer may already result in costs. The MetaManager is responsible to
guarantee the validity of its offers. In order to find possible allocations for a request
a scheduler may combine several offers. Finally, it is up to the scheduler or the
requesting user to accept an allocation.

7.3.4 Scheduling and Allocation

The generation of offers depends on the local scheduling policy. Administrators can
use different strategies for different resources. Overall, our infrastructure supports
the implementation of conventional algorithms as well as economic models. Our
scheduling models as the economic methods presented in Chapter 6 have been im-
plemented in NWIRE. The mechanism by using requests and offers provides a flexible
interface that allows different scheduling policies to cooperate without exposing too
much information to remote sites and delegating control to remote schedulers.

In our economic approach the selection of the best suited allocation is based on a
comparison of the provided objective functions as we have shown in Chapter 6. The

7.3. SCHEDULING IN NWIRE 135

objective function of a request is applied to an allocation in order to generate a
value for the utility from the user’s point of view. Similarly, the offers also provide
an objective function or a value for its utility to represent the resource’s point
of view. This also represents the actual cost for the allocation. The responsible
MetaManager evaluates the user utility function and determines an allocation that
maximizes the objective, this can also be done with respect to the overall objective of
its full schedule. It is also possible to provide the user with a front-end that allows
interactive selection of allocations. Such a front-end can also be used to obtain
status information about the metasystem with the help of the request mechanism.
This information may help a user to generate a request which results in the best
suited set of resources depending on the current condition in the metasystem.

Our schedulers select allocations that optimize the utility value for the particular
scheduling time instance. However, the selected allocation must not necessarily be
executed. The MetaManager can maintain a schedule with all current allocations
in its domain. Its scheduler is free to modify the current schedule at any time.
Future implementations of scheduling strategies in the MetaManager can therefore
try to improve the current schedule. However, changes in the current scheduling
would only be allowed as long as they do not violate any guarantees that have been
given for current jobs. Requested guarantees are additional constraints that limit
future requests for rescheduling. This procedure of ‘rescheduling’ can be used to
improve the current schedule or to cope with resource failures or cancellations of
jobs. The rescheduling requires new requests for offers if other allocations are not
active anymore. Note that a valid schedule still exists at every moment. Also, there is
a tentative schedule available for all jobs after a scheduling step. A user can monitor
the estimated job schedule. This is a feature that only a few job scheduling systems
provide, an example is the CCS scheduling system [56].

Any improvements to the schedule can be measured in regard to the utility value.
To this end, the scheduler attempts to maximize the overall objective value of the
schedule. As an objective function is provided for every request, there is a combined
objective function or value for each allocation. The objective functions of all alloca-
tions together define the optimization problem for the scheduler. An improvement
can be achieved for instance by moving existing allocations while all constraints are
observed. Alternatively, the scheduler can look for new allocations. The NWIRE
scheduling concept furthermore supports multi-site scheduling and co-allocation as
we have shown in our economic model.

There is also the foundation to include network resources as just another manageable
resource to provide guaranteed communication bandwidth between participating
resources. While this scheduling strategy does not guarantee an optimal schedule in
general, it meets all requirements of Section 7.1 as separate objectives are allowed
for each resource in the metasystem.

The following example illustrates the scheduling architecture. Assume a user who
submits at noon a job with the following specific requests to a metasystem managed
by NWIRE: 16 nodes of type Power3 with operating system AIX 4.3.1. and at least
8 GByte of total main memory. The execution time of the job will not exceed 1 hour

136 CHAPTER 7. GRID SCHEDULING IMPLEMENTATION IN NWIRE

and the user would like to obtain the results as soon as possible. Unfortunately, there
are no AIX nodes on the local system. Therefore, the local MetaManager forwards
the request to other known MetaManagers. If the computing system attached to
such a MetaManager is able to provide the required resources and also permits
access of the requesting user, then its Meta Manager generates an offer, temporarily
reserves the resources and sends the offer to the first MetaManager. In addition,
MetaManagers may further forward the request. The validity of those offers will
typically expire after some time. Assume in our example that there are two offers:
The first offer provides 8 GByte memory and guarantees completion of the job
by 3 pm. The other offer does not include any information about the completion
time but allows the use of 16 GByte. Based on the criterion of the user the first
MetaManager selects the first offer, informs the user, and notifies the MetaManagers
that generated the offers. If a scheduling criterion is not detailed enough or cannot
be completely met, the MetaManager may also leave the final decision up to the user.
After acceptance of its offer a local ResourceManager can rearrange the schedule as
long as the conditions of the original offer are observed. For instance, in our case the
job must be started no later than 2 pm to obey the given guarantee of a completion
by 3 pm. Note that the process of data and code submission is not addressed in this
simple example.

7.4 Summary

We presented a scheduling concept for a metacomputing environment. This method
is based on a brokerage and trading approach and provides a high degree of flexibility.
For instance, administrators of resources in the metasystem are still able to apply
arbitrary scheduling and allocation strategies for their resource. The system also
supports guarantees, reservation and multi-site applications. Similarly, a dedicated
objective can be defined for each request by a user. An additional feature is the
instant feedback to a request. This allows the user to adapt his job requirements
and to explore the metasystem with informal requests. He can also monitor the
planned allocation and execution time of his job at any time.

This implementation has been used for our grid scheduling models as the presented
economic approach in Chapter 6. Different scheduling policies and algorithms can
easily be implemented. Nevertheless, different schedulers can interoperate in our in-
frastructure with respect to the presented request and offer mechanisms. The com-
munication is done by a description language for requests and offers and may use
different communication interfaces in comparison to our example implementation

that used CORBA. This may include for example RMI or SOAP web services.

Note, that NWIRE has been designed as a proof of concept and tool for analyzing
distributed scheduling. This is not an implementation of a full grid management
software, which requires more additional services. Nevertheless, the presented con-
cept provide several features that are currently not available in any of the current
initiatives. The infrastructure can be easily adapted to be incorporated into other
grid projects. Suitable scheduling models have been presented in the previous chap-

7.4. SUMMARY 137

ters. Especially our new economic scheduling method can be implemented in this
infrastructure as we have proven. Also the scheduling method provides the discussed
features, such as for example the automatic co-allocation of resources, support for
variable objective functions, support for guarantees etc., which are currently not
available in the mentioned grid initiatives, as e.g. Globus.

Chapter 8

Conclusion

High Performance Computing is an important tool for research and development
in many different areas. Originally, supercomputers were mainly used to address
problems in physics. Today many research fields require access to suitable computing
resources. High performance computer equipment is essential for e.g. the design of
new drugs, an accurate weather forecast or the creation of new movies. Other new
applications especially in the field of education are currently under development.

Grid computing is intended to offer an easy and seamless access to such resources.
The grid environment should be capable of managing the access to available re-
sources. User jobs have to be assigned automatically to suitable resources. Ideally,
the user needs no further knowledge on the current state and configuration of grid
resources. The submission of jobs should be as easy as accessing a local resource.
Overall, it is expected that in terms of quantity more resources are available in the
grid. There is also the expectation that a larger number of different resource types
are available in the grid. This allows to assign more suitable resources for a compu-
tational problem than locally accessible by the user. These resources may be more
efficient for the user’s application. This requires a flexible and efficient scheduling
strategies. The purpose of this work was the design and evaluation of such a schedul-
ing system for grid environments. There exists a lot of research on algorithms for
single autonomous parallel machines. We therefore started our examination with
these well-known algorithms. We presented a concept for the design process of a
scheduling system. We were especially interested in strategies that produce ’good’
results in real implementations. Therefore, we think that the design of a scheduling
system can only be done if the scheduling policy of the machine owner as well as
the actual user’s workload profile on that machine configuration is taken into ac-
count. Unfortunately, most scheduling problems are computationally NP-complete
and proved to be very hard. This makes it almost impossible to achieve optimal
scheduling results. Therefore, the algorithm designer has to settle for less. Conse-
quently, the evaluation of scheduling algorithms becomes a very important task.

The evaluation of scheduling algorithms can be done theoretically and by experi-
ments. We presented a new on-line parallel job scheduling method which adheres
to a notion of fairness in regards of user satisfaction. We theoretically examined

138

139

the algorithm by competitive analysis that leads to bounds for the worst-case sce-
nario. However, we also discussed that the theoretical approach does not consider
the workload and the actual user demand. The worst-case scenario is usually of lim-
ited relevance for a real implementation as it may occur very seldom. Additionally,
it is often difficult or maybe impossible to find theoretical bounds for complex algo-
rithms. This led to the use of experimental analysis. As real experiments are often
to expensive and not applicable, simulations are used for evaluation. In addition to
the theoretical analysis, we showed that the presented preemptive scheduling algo-
rithm (PFCFS) is also efficient in terms of makespan and average response time in
comparison to other scheduling algorithms. In some of the examined scenarios the
algorithm could outperform common algorithms such as backfilling.

Based on these results, we presented scheduling algorithms for the grid environment.
These methods based on modifications of the examined conventional strategies for
single parallel machines. The results showed that: a) it is beneficial for the average
response time of local system users if the machines of different sites participate in a
computational grid; b) the multi-site computing paradigm improves the result even
if it results in some overhead on the execution time (50%).

The requirements for grid computing differs significantly from single parallel machine
computing. We discussed especially the fact that the machines belong to different
owners or administrative instances and that the machines are usually not solely
dedicated to grid usage. As a result this leads to the requirement that variable
scheduling policies should be taken into account — for the owner as well as the
user of the environment. Therefore, the application of economic models has been
considered as they provide support for cost models and utility functions. To this
end, we presented an economic scheduling model suitable for grid computing. The
economic approach is an example for a scheduling strategy where theoretic analysis
is especially difficult to perform. We used the experimental analysis by simulating
workload models in the same way as we did with the other scheduling strategies.
We assumed that the scheduling objective is the minimization of the response time.
Although this need not necessarily be the case for the economic method, this allowed
the comparison to our conventional scheduling strategy. In our study we examined
how the economic method performs in comparison to the conventional scheduling
methods under the assumption which requires that the response time is the overall
objective in this scenario. To this end utility functions for user and owners had to
be selected for this overall objective. The results with first selections of this utility
functions are very promising for the economic scheduling model. Although we do not
have theoretical bounds on the scheduling quality, the simulation showed that we are
able to get results in the same range or even better than the conventional strategies.
However, as we mentioned before the economic models has several advantages as it
supports different scheduling policies, cost models etc.

A proof of concept has been given by the NWIRE architecture, that economic
scheduling strategies can actually be implemented for grid usage. Here, we showed a
scheduling infrastructure that supports the presented economic model. It supports
a scheduling infrastructure that is flexible enough to scale with larger grid environ-
ments. In a peer-to-peer fashion the infrastructure does not need central services

140 CHAPTER 8. CONCLUSION

but still can take advantage of them. Additionally, the scheduling interfaces support
different scheduling policies at each participating site. More features have also been
discussed in this work.

It has to be noted, that the quality of a scheduling system closely depend on the
actual workload on that system. The evaluation can only be done for a certain sce-
nario. We therefore used an actual workload and some derivations to our simulation
studies. The traces were taken from the IBM RS/6000 SP from the Cornell Theory
Center. Our machine model was selected to resemble such an IBM RS/6000 SP. Be-
fore applying the results to other configurations it is necessary to verify the results
by additional analysis and adapt the strategy.

Overall, our scheduling infrastructure is not a full implementation of a full grid
management software, which requires many additional services. Nevertheless, the
presented concept provides several features that are currently not available in any of
the current initiatives like e.g. Globus. The infrastructure can be easily adapted to be
incorporated into other grid projects. We presented several suitable scheduling mod-
els and gave evaluation results in this work. Especially our new economic scheduling
method can be implemented for this infrastructure as shown. The scheduling method
provides the discussed features which are currently not available in the scheduling
components in the mentioned initiatives for grid environments.

Future Work

Future work should include a thorough parameter study to optimize the utility
and machine functions of the economic scheduling model. In our work we used first
example functions that seemed suitable. We believe that the results can be improved
further by selecting more sophisticated functions.

The presented scheduling model allows the inclusion of network or data resources as
manageable components. Future work is necessary to support these resource types
and include them accordingly into the scheduling process.

In this work, we discussed the importance of experimental evaluation. Simulation
with workload derived from a real traces has been used for our evaluation. For the
design process for a scheduling system it is important that the workload model used
for evaluation resembles the user group on the real implementation. We therefore
used real traces from the CTC as the base of our workload model. Nevertheless,
we always loose validity of this model as it is typically assumed, that the actual
scheduling process has no impact on the job submission. This is obviously not true,
as people usually see the current utilization of a machine or the quality of service
they get from previous job submissions. Additionally, the response time of previously
submitted jobs will influence the submission of future jobs. Therefore, there is always
some deviation from real system if workloads are replayed on a different system.
This deviation may be small and neglectable if the scheduling policy and method
lead to vastly similar results. Nevertheless, future work should include some kind of
user modelling that considers specific user profiles and submission processes. Such a

141

model can be used to better adapt the workload to different machine configuration,
e.g. for different machine configurations.

The proposed models can be applied to current grid computing environments. Mo-
mentarily, the Grid Global Forum proposes a draft for the Open Grid Service Ar-
chitecture (OGSA) for extending current compatible grid environments. Work is
currently underway to support OGSA by the Globus project. In future work our
models can be adapted and implemented to support the OGSA standard. This is a
promising way to contribute to current initiative and introduce the proposed models
to broad practical usage.

While the application for grid computing allows the practical study and research
on core topics like scheduling, it can be easily extended to other applications. Our
results are especially usable in scenarios in which distributed resources which are
owned and controlled by independent individuals must cooperate to solve a problem.
The automatic allocation of resources by the presented scheduling strategies and
the proposed peer-to-peer environment provides a reliable architecture and efficient
strategies. Therefore, the results are not limited to grid computing as the same
concepts apply to other application fields. Logistics, telecommunications or mobile
devices come into mind.

Bibliography

1]

F. Berman, R. Wolski, S. Figueria, J. Schopf, and G. Shao. Application level
scheduling on distributed heterogeneous networks. In Proceedings of Supercom-
puting, 1998.

C. Bitten, J. Gehring, U. Schwiegelshohn, and R. Yahyapour. The nrw-
metacomputer building blocks for a worldwide computational grid. In Pro-
ceedings of the IPDPS 2000, May 2000.

N. Bogan. Economic allocation of computation time with computation mar-
kets. In Master Thesis. Massachusetts Institute of Technology, Department of
FElectrical Engineering and Computer Science, May 1994.

M. Brune, J. Gehring, A. Keller, and A. Reinefeld. Managing clusters of ge-
ographically distributed high-performance computers. Concurrency - Practice
and Ezperience, 11(15):887-911, 1999.

J. Bruno, E.G. Coffman, and R. Sethi. Scheduling independent tasks to reduce
mean finishing time. Communications of the ACM, 17:382-387, 1974.

R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for
resource management and scheduling in grid computing. Special Issue on
Grid Computing Environments, The Journal of Concurrency and Computation:
Practice and Ezperience (CCPE), May 2002 (accepted for publication).

R. Buyya, J. Giddy, and D. Abramson. An evaluation of economy-based re-
source trading and scheduling on computational power grids for parameter
sweep applications. In The Second Workshop on Active Middleware Services
(AMS 2000), In conjuction with Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC' 2000), Pittsburgh, USA, August
2000. Kluwer Academic Press.

S. Chakrabarti, C. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein, and J. Wein.
Improved approximation algorithms for minsum criteria. In F. Meyer auf der
Heide and B. Monien, editors, Proceedings of the 1996 International Colloquium
on Automata, Languages and Programming, pages 646—657. Springer—Verlag
Lecture Notes in Computer Science LNCS 1099, 1996.

143

144

[9]

[16]

[17]

[18]

BIBLIOGRAPHY

S.-H. Chiang, R.K. Masharamani, and M.K. Vernon. Use of application char-
acteristics and limited preemption for run-to-completion parallel processor
scheduling policies. In Proceedings of ACM SIGMETRICS Conference on Mea-
surement of Computer Systems, pages 33-44, 1994.

K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A
resource management architecture for metacomputing systems. In Job Schedul-
ing Strategies for Prallel Processing, volume 1459 of Lecutre Notes in Computer
Science, pages 62—68. Springer Verlag, 1998.

X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs
on multiprocessors. In Proceedings of the 7" SIAM Symposium on Discrete
Algorithms, pages 159-167, January 1996.

R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for distributed
memory machines. Multi-Scale Phenomena and Their Simulation, pages 255—
266, 1997.

J. Du and J. Leung. Complexity of scheduling parallel task systems. STAM
Journal on Discrete Mathematics, 2(4):473-487, November 1989.

European grid forum, http://www.egrid.org, October 2001.

C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour.
On Advantages of Grid Computing for Parallel Job Scheduling. In Proceedings
of the 2nd IEEE International Symposium on Cluster Computing and the Grid
(CC-GRID 2002), Berlin, pages 39-46, 2002.

C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour.
Enhanced Algorithms for Multi-Site Scheduling. In Proceedings of the 3rd In-
ternational Workshop on Grid Computing, Baltimore. Springer—Verlag, Lecture
Notes in Computer Science LNCS, 2002 - to appear.

C. Ernemann, V. Hamscher, U. Schwiegelshohn, and R. Yahyapour. Economic
scheduling in grid computing. In D.G. Feitelson and L. Rudolph, editors, HPDC
2002 Workshop: Job Scheduling Strategies for Parallel Processing. Springer—
Verlag, Lecture Notes in Computer Science LNCS, 2002 - to appear.

C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. On effects of ma-
chine configurations on parallel job scheduling in computational grids. In In-
ternational Conference on Architecture of Computing Systems, ARCS, pages
169-179, 2002.

D.G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems.
Research report rc 19790 (87657), IBM T.J. Watson Research Center, Yorktown
Heights, NY, February 1995.

D.G. Feitelson. Packing schemes for gang scheduling. In D.G. Feitelson and
L. Rudolph, editors, IPPS5°96 Workshop: Job Scheduling Strategies for Parallel
Processing, pages 89-110. Springer—Verlag, Lecture Notes in Computer Science
LNCS 1162, 1996.

BIBLIOGRAPHY 145

[21]

[22]

[24]

D.G. Feitelson. Online Parallel Workloads Archive. Web-Archive, 1998.
http://www.cs.huji.ac.il/labs/parallel /workload/ .

D.G. Feitelson and M.A. Jette. Improved utilization and responsiveness with
gang scheduling. In D.G. Feitelson and L. Rudolph, editors, IPPS’97 Workshop:
Job Scheduling Strategies for Parallel Processing, pages 238-261. Springer—
Verlag, Lecture Notes in Computer Science LNCS 1291, 1997.

D.G. Feitelson and B. Nitzberg. Job characteristics of a production parallel sci-
entific workload on the nasa ames ipsc/860. In D.G. Feitelson and L. Rudolph,
editors, IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing,
pages 337-360. Springer—Verlag, Lecture Notes in Computer Science LNCS 949,
1995.

D.G. Feitelson and L. Rudolph. Parallel job scheduling: Issues and approaches.
In IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing, pages
1-18. Springer Verlag, Lecture Notes in Computer Science LNCS 949, 1995.,
1995.

D.G. Feitelson and L. Rudolph. Parallel job scheduling: Issues and approaches.
In D.G. Feitelson and L. Rudolph, editors, IPPS’95 Workshop: Job Scheduling
Strategies for Parallel Processing, pages 1-18. Springer—Verlag, Lecture Notes
in Computer Science LNCS 949, 1995.

D.G. Feitelson and L. Rudolph. Towards convergence in job schedulers for paral-
lel supercomputers. In D.G. Feitelson and L. Rudolph, editors, IPPS5’96 Work-
shop: Job Scheduling Strategies for Parallel Processing, pages 1-26. Springer—
Verlag, Lecture Notes in Computer Science LNCS 1162, 1996.

D.G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job
scheduling. In D.G. Feitelson and L. Rudolph, editors, IPPS’98 Workshop:
Job Scheduling Strategies for Parallel Processing, pages 1-24. Springer—Verlag,
Lecture Notes in Computer Science LNCS 1459, 1998.

D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and P. Wong. The-
ory and practice in parallel job scheduling. In D.G. Feitelson and L. Rudolph,
editors, IPPS’97 Workshop: Job Scheduling Strategies for Parallel Processing,
pages 1-34. Springer—Verlag, Lecture Notes in Computer Science LNCS 1291,
1997.

D.G. Feitelson and A.M. Weil. Utilization and Predictability in Scheduling the
IBM SP2 with Backfilling. In Procedings of IPPS/SPDP 1998, pages 542-546.
IEEE Computer Society, 1998.

A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel ma-
chines. Theoretical Computer Science, 130:49-72, 1994.

I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple commu-
nication methods in high-performance networked computing systems. Journal
of Parallel and Distributed Computing, 40(1):35-48, jan 1997.

146

[32]

[45]

[46]

BIBLIOGRAPHY

1. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infras-
tructure for the I-WAY high performance distributed computing experiment. In
Proceedings 5'h IEEE Symposium on High Performance Distributed Computing,
pages 562-571, 1997.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Application, 11(2):115-128, 1997.

I. Foster and C. Kesselman. The globus project: A status report. In
IPPS/SPDP’98 Workshop: Heterogenous Computing Workshop, volume 11,
pages 4-18, 1998.

I. Foster and C. Kesselman, editors. The GRID: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1998.

M. Garey and R.L. Graham. Bounds for multiprocessor scheduling with re-
source constraints. SIAM Journal on Computing, 4(2):187-200, June 1975.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

GENIAS Software GmbH. CODINE 4.2, 1997. http://www.genias.de/.
The Grid Forum, http://www.gridforum.org, October 2001.

A. Grimshaw, A. Wulf, J. French, A Weaver, and P. Reynolds. Legion: The
next logical step toward a nationwide virtual supercomputer. Technical Report
(CS-94-21, University of Virginia, Computer Sciences Department, 1994.

V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation
of job-scheduling strategies for grid computing. Lecture Notes in Computer
Science, 1971:191-202, 2000.

J.L. Hennessy and D.A. Patterson. Computer Architecture A Quantitative Ap-
proach. Morgan Kaufmann, San Francisco, second edition, 1996.

J. Heuer. Evaluierung und Implementierung von marktorientierten
Verteilungsverfahren fr Metacomputing. In Diploma Thesis at CEI Univer-
sity of Dortmund, Germany, 2000.

S. Hotovy. Workload evolution on the Cornell Theory Center IBM SP2. In
D.G. Feitelson and L. Rudolph, editors, IPPS’96 Workshop: Job Scheduling
Strategies for Parallel Processing, pages 27-40. Springer—Verlag, Lecture Notes
in Computer Science LNCS 1162, 1996.

Jack Dongarra and Hans Meuer and Erich Strohmaier. Top 500 Report. WWW
Page, 2001. http://www.netlib.org/benchmark/top500/top500.list.html.

J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan. Modeling
of workload in mpps. In D.G. Feitelson and L. Rudolph, editors, IPPS’97 Work-
shop: Job Scheduling Strategies for Parallel Processing, pages 94-116. Springer—
Verlag, Lecture Notes in Computer Science LNCS 1291, 1997.

BIBLIOGRAPHY 147

[47]

[48]

[49]

[55]

[56]

[57]

T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the
mean weighted flow-time problem. SIAM Journal on Computing, 15(4):1119—
1129, November 1986.

J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the Design and Eval-
uation of Job Scheduling Systems. In D.G. Feitelson and L. Rudolph, editors,
IPPS/SPDP’99 Workshop: Job Scheduling Strategies for Parallel Processing.
Springer—Verlag, Lecture Notes in Computer Science, 1999.

R.N. Lagerstrom and S.K. Gipp. PscheD: Political Scheduling on the CRAY
T3E. In D.G. Feitelson and L. Rudolph, editors, IPPS’97 Workshop: Job
Scheduling Strategies for Parallel Processing, pages 117-138. Springer—Verlag,
Lecture Notes in Computer Science LNCS 1291, 1997.

S. Leonardi and D. Raz. Approximating total flow time on parallel machines.
In Proceedings of the 29" ACM Symposium on the Theory of Computing, pages
110-119, May 1997.

D.A. Lifka. The ANL/IBM SP Scheduling System. In D.G. Feitelson and
L. Rudolph, editors, IPPS’95 Workshop: Job Scheduling Strategies for Parallel
Processing, pages 295-303. Springer—Verlag, Lecture Notes in Computer Science
LNCS 949, 1995.

M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations.
In Proceedings of the 8" Intl Conf. on Distributed Computing Systems, pages
104-111, 1988.

M. Livny and R. Raman. High-Throughput Resource Management. In I. Foster
and C. Kesselman, editors, The Grid - Blueprint for a New Computing Infras-
tructure, pages 311-337. Morgan Kaufmann, 1999.

R. McNaughton. Scheduling with deadlines and loss functions. Management
Science, 6(1):1-12, October 1959.

Object Management Group Document. CORBAservices: Common Object Ser-
vices Specification, 1998. 98-07-06.

F. Ramme. Building a virtual machine-room - a focal point in metacomputing.
Future Generation Computer Systems, Special Issue on HPCN, 11:477-489, aug
1995.

M.E. Rosenkrantz, D.J. Schneider, R. Leibensperger, M. Shore, and J. Zoll-
weg. Requirements of the Cornell Theory Center for Resource Management
and Process Scheduling. In D.G. Feitelson and L. Rudolph, editors, IPPS’95
Workshop: Job Scheduling Strategies for Parallel Processing, pages 304-318.
Springer—Verlag, Lecture Notes in Computer Science LNCS 949, 1995.

W. Saphir, L.A. Tanner, and B. Traversat. Job Management Requirements
for NAS Parallel Systems and Clusters. In D.G. Feitelson and L. Rudolph,
editors, IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing,

148

BIBLIOGRAPHY

pages 319-337. Springer—Verlag, Lecture Notes in Computer Science LNCS 949,
1995.

U. Schwiegelshohn. Preemptive weighted completion time scheduling of parallel
jobs. In Proceedings of the 4 Annual European Symposium on Algorithms
(ESA96), pages 39-51. Springer—Verlag Lecture Notes in Computer Science
LNCS 1136, September 1996.

U. Schwiegelshohn, W. Ludwig, J.L. Wolf, J.J. Turek, and P. Yu. Smart SMART
bounds for weighted response time scheduling. SIAM Journal on Computing,
28(1):237-253, January 1999.

U. Schwiegelshohn and R. Yahyapour. Analysis of First-Come-First-Serve Par-
allel Job Scheduling. In Proceedings of the 9" SIAM Symposium on Discrete
Algorithms, pages 629-638, January 1998.

U. Schwiegelshohn and R. Yahyapour. Improving first-come-first-serve job
scheduling by gang scheduling. In D.G. Feitelson and L. Rudolph, editors,
IPPS’98 Workshop: Job Scheduling Strategies for Parallel Processing, pages
180-198. Springer—Verlag, Lecture Notes in Computer Science LNCS 1459,
1998.

U. Schwiegelshohn and R. Yahyapour. The NRW Metacomputing Initiative.
In G. Cooperman, E. jessen, and G. Michler, editors, Workshop on Wide Area
Networks and High Performance Computing, pages 269-282. Springer—Verlag,
Lecture Notes in Control and Information Science LNCIS 249, 1998.

U. Schwiegelshohn and R. Yahyapour. Resource allocation and scheduling in
metasystems. In Distributed Computing and Metacomputing, volume 1593 of
Lecture Notes in Computer Science, pages 851-860. Springer, april 1999.

U. Schwiegelshohn and R. Yahyapour. Fairness in parallel job scheduling. Jour-
nal of Scheduling, 3(5):297-320. John Wiley, 2000.

D. Shmoys, J. Wein, and D. Williamson. Scheduling parallel machines on-line.
SIAM Journal on Computing, 24(6):1313-1331, December 1995.

J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY — LoadLeveler API
Project. Lecture Notes in Computer Science, 1162:41-47, 1996.

L. Smarr and C.E. Catlett. Metacomputing. Communications of the ACM,
35(6):44-52, June 1992.

W. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3:59-66, 1956.

C. Stein and J. Wein. On the existence of schedules that are near-optimal for
both makespan and total weighted completion time. Preprint, 1996. To appear
in Operations Research Letters.

BIBLIOGRAPHY 149

[71]

[72]

[73]

[76]

[77]

78]

R.E. Steuer. Multiple Criteria Optimization, Theory, Computation and Appli-
cation. Wiley, New York, 1986.

M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin,
and A. Yu. Mariposa: A wide-area distributed database system. VLDB Journal,
5(1):48-63, 1996.

A. Su, F. Berman, R. Wolski, and M. Strout. Using apples to schedule a
distributed visualization tool on the computational grid. In Proceedings of the
1998 Cluster Computing Workshop, Blackberry Farm, Tennessee, 1998.

Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/,
October 2001.

K. R. Grant T. W. Malone, R. E. Fikes and M. T. Howard. Enterprise: A
market-like task scheduler for distributed computing environments. In The
Ecology of Computation, volume 2 of Studies in Computer Science and Artifical
Intelligence, pages 177-255, 1988.

P. Tucker. Market mechanisms in a programmed system. Department of Com-
puter Science and Engineering, University of California, 1998.

P. Tucker and F. Berman. On market mechanisms as a software technique.
Technical Report CS96-513, University of California — San Diego, Department
of Computer Science and Engineering, December 1996.

J.J. Turek, W. Ludwig, J.L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow,
U. Schwiegelshohn, and P. Yu. Scheduling parallelizable tasks to minimize av-
erage response time. In Proceedings of the 6th Annual Symposium on Parallel
Algorithms and Architectures, Cape May, NJ, pages 200-209, June 1994.

J.J. Turek, U. Schwiegelshohn, J.L.. Wolf, and P. Yu. Scheduling parallel tasks
to minimize average response time. In Proceedings of the 5" SIAM Symposium
on Discrete Algorithms, pages 112-121, January 1994.

J.J. Turek, J.L. Wolf, and P. Yu. Approximate algorithms for scheduling par-
allelizable tasks. In Proceedings of the 4th Annual Symposium on Parallel Al-
gorithms and Architectures, San Diego, CA, pages 323-332, June 1992.

C.A. Waldspurger, T. Hogg, B. Huberman, J.O. Kephart, , and W.S. Stornetta.
Spawn: A distributed computational economy. IEEE Transactions on Software
Engineering, 18(2):103— 117, 1992.

W. Walsh, M. Wellman, P. Wurman, and J. MacKieMason. Some economics of
market-based distributed scheduling. In In Eighteenth International Conference
on Distributed Computing Systems, pages 612—-621, 1998.

F. Wang, H. Franke, M. Papaefthymiou, P. Pattnaik, L. Rudolph, and M.S.
Squillante. A gang scheduling design for multiprogrammed parallel computing
environments. In D.G. Feitelson and L. Rudolph, editors, IPPS’96 Workshop:

150

[84]

[85]

[36]

BIBLIOGRAPHY

Job Scheduling Strategies for Parallel Processing, pages 111-125. Springer—
Verlag, Lecture Notes in Computer Science LNCS 1162, 1996.

F. Wang, M. Papaefthymiou, and M.S. Squillante. Performance evaluation of
gang scheduling for parallel and distributed multiprogramming. In D.G. Fei-
telson and L. Rudolph, editors, IPPS’97 Workshop: Job Scheduling Strategies
for Parallel Processing, pages 277-298. Springer—Verlag, Lecture Notes in Com-
puter Science LNCS 1291, 1997.

L.M. Wein and P.B. Chevelier. A broader view of the job-shop scheduling
problem. Management science, 38:1018-1033, 1992.

F. Ygge. Market-Oriented Programming and its Application to Power Load
Management. PhD thesis, Department of Computer Science, Lund University,
1998.

D. Zagordono, F. Berman, and R. Wolski. Application scheduling on the infor-

mation power grid. International Journal of High-Performance Computing, 00,
March 1999.

S. Zhou. LSF:load sharing in large-scale heterogeneous distributed systems. In
Proceedings Workshop on Cluster Computing, 1992.

Appendix A

Description Language Syntax in
NWIRE

Following is the formal syntax of the request, offer and resource description language
as implemented in NWIRE. The syntax is presented in the BNF-format.

Additional information are given in Section 7.3.2.

expression: a_float_number (e.g. 2.34+E20)
| a_string (e.g. memory)

| a_long integer (e.g. 123456789)
| "=’ expression

| expression '+’ expression

| expression '—’ expression

| expression '+’ expression

| expression ’/’ expression

| expression '%’ expression

| SQRT ’(’ expression ’)’

| EXP ’(’ expression ’)’

| LOG ’(’ expression ’)’

| ’(’ expression ')’

9

value: VALUE ""key_string”” ’{’ expression '}’
| VALUE ”’”key_string””’ 7{7 77777arbitrary_stringmv 7}7

)

valuelist:value
| valuelist value

)

condition: CONDITION ’{’ singlecondition '}’

)

151

152 APPENDIX A. DESCRIPTION LANGUAGE SYNTAX IN NWIRE

singlecondition ’&&’ singlecondition
singlecondition ’||’ singlecondition
(" 'NOT” singlecondition ’)’

'(’ 'ISDEF’ key_string ’)’

'(’ ISNDEF”’ key_string ’)’

9

singlecondition: ’(’ key_string '<’ expression ’)’
| ’(" key_string ">’ expression ’)’

| ’(’ key_string ‘<=’ expression ’)’

| ’(" key_string '>=’ expression ’)’

| ’(" key_string '==’ expression ’)’

| ’(’ key_string ’! =’ expression ’)’

| ’(key_string 'EQ’ ””arbitrary String”” ’)’
| (" key_string 'NE’ ””arbitrary _String”” ’)’
| ’(’ singlecondition ’)’

|

|

|

|

|

elements: element

| elements element

element: FLEMENT long integer '{’ condition valuelist '}’
| ELEMENT long integer ’{’ valuelist '}’

9

keys: key
| keys key

key: KEY 7"key_string”” '{’ elements '}’
| KEY ""7key_string”” '{’ valuelist '}’

)

object: OFFER ”object_ID"” ’{’ keys '}’
| REQUEST " object_ID”” '{’ keys '}’
| MASCHINE " object_ID”” '{’ keys '}’

)

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education.
Information derived from the published and unpublished work of others has been
acknowledged in the text, and a list of references is given.

Ramin Yahyapour

153

About the Author

Ramin Yahyapour was born April 16, 1972 in Dortmund, Germany. After his A-level
graduation (Abitur) at the Stadtgymnasium Dortmund he studied Electrical Engi-
neering at the University Dortmund in 1991. After receiving his diploma in 1996, he
joined the Computer Engineering Institute (Lehrstuhl fiir Datenverarbeitungssys-
teme) at the University Dortmund as a research assistant of Prof. Dr.-Ing. Uwe
Schwiegelshohn.

His research interest lies in parallel job scheduling and especially in its application in
grid computing. He worked in the NRW metacomputing project for the scheduling
task. A selection of his contributions to conferences, workshops or journals can be
found in the bibliography of this document.

154

		2002-11-22T11:51:09+0100
	Universitaetsbibliothek Dortmund - Eldorado

