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Chapter 1

Introduction

Investment is one of the key figures in determining the business cycle as well

as in facilitating long-term economic growth. Despite the relative importance

of the topic and the amount of research conducted, economists’ knowledge

and understanding of micro-level and aggregate investment decisions are far

from being conclusive. The neo-classical approach, that assumes the exis-

tence of a representative firm which trades off gains in firm value against the

(continuous and convex) costs associated with changes in its stock of capital,

has proved not very successful empirically. Two major theoretical reasons

why the workhorse of the neo-classical investment theory, the quadratic-

adjustment cost, q-theoretic model, performs so relatively poorly have been

established in the literature.

The first reason put forth, relies on the hypothesis that capital markets

are imperfect. This forces firms in their investment activities to consider

the investment-funds available to them; and hence, investment decisions not

only depend on the fundamental profitability of investment projects. In fa-

vor of this view, a number of papers has found empirical evidence for high

cash-flows being a driving force in investment decisions. Moreover, this force

seems stronger for firms with low investment-funds. However, recent works

have questioned these results.1 The main point of criticism focuses on errors

1See Kaplan and Zingales (1997), Cummins et al. (1999), Erickson and Whited (2000)

1



2 CHAPTER 1. INTRODUCTION

in measuring fundamental investment incentives, which may mislead econo-

metric findings. Yet, these arguments still typically do not rehabilitate the

neo-classical model.

Therefore another reason, why the neo-classical model might fail, has

seemed a more promising explanation: If investment is connected to some

fixed costs of adjusting the capital stock, then investment activity of firms

concentrates at a few points in time. Moreover, firm-expected investment is

no longer a linear or concave function in productivity of capital, but is convex.

Thus, higher order moments of the marginal productivity distribution (over

the firm population of an economy) play an important role in determining

aggregate investment.

However, as Gomes (2001) pointed out, without allowing for both finan-

cial frictions and non-convex investment-technologies, empirical evidence can

hardly discriminate between both theories: Fixed cost of capital adjustment

and fixed costs of financial transactions yield similar investment patterns.

Moreover, Holt (2003) has argued that financial frictions and fixed costs of

adjusting the stock of capital reinforce each other’s importance. Hence, in the

thesis at hand we merge both the financial frictions and the fixed adjustment

costs approach.

Only by allowing for both elements, we are able to differentiate between

the financial transaction cost and the fixed adjustment cost model. Moreover,

by incorporating both effects we can directly address the seemingly contradic-

tory observation that finance has a quite low influence on the stock of capital

whereas it has a strong influence on investment decisions.2 Additionally, since

we employ nonparametric estimation techniques, the empirical results pre-

sented in this thesis are free of bias from functional mis-specification. And,

as will be shown, this bias can be substantial and may lead to false conclu-

sions if in fact both financial frictions and fixed capital adjustment costs are

of importance.

or Gomes (2001).
2E.g. Guariglia (1999) finds that liquidity proxies and firm size are not correlated,

whereas investment and liquidity are.
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However, the relevance of non-convex investment technologies on the

macro-level has been taken into question recently by Thomas (2002). She

argues that under perfect competition, general equilibrium effects force aggre-

gate investment to behave as if adjustment costs were concave, even though

there are fixed costs of adjusting the stock of capital.3 Yet, the assump-

tion of perfect competition is quite unrealistic for a number of industries.

We show in contrast that imperfect competition even amplifies the effects

of financial frictions and non-convexities: In duopoly the strategic situation

brings up investment behavior that is qualitatively different from both the

monopolistic setting with frictions and the duopolistic setting with concave

adjustment costs. If e.g. firms are homogeneous enough with respect to their

debt-burden or ”leverage”, a shrinking market may trigger a predatory race

for market shares.

One should however mention that most said so far and the major concern

of this thesis relates to investment in structures and equipment. Investment is

but a much broader phenomenon: A firm invests whenever it trains workers,

when it hoards labor during recessions, when it restructures, or when it

undertakes R&D. So do workers invest, when they search for a job, train

themselves, or spent time and effort in building (social) networks. Needless

to say, we can expect investment technologies to differ substantially across

these different types of investment. Hence, it is sensible to concentrate on

one of these types, and–as stated above–we do so by concentrating on

investment in equipment and structures, where fixed costs of investment are

a long documented phenomenon.4

The following chapter, Chapter 2, extends this introduction by reviewing

the investment literature. However, we do not try to give an extensive sur-

vey of the literature as there already exists a number of excellent surveys.5

3Similar results can also be found in Khan and Thomas (2003) and Veracierto (2002).
4See e.g. Rothschild (1972).
5See e.g. Chrinko (1993), or Hassett and Hubbard (1996) for general surveys, Caballero

(1997) for a survey concentrating on fixed adjustment cost works and Hubbard (1998) for
a survey of the financial-frictions-in-investment literature.



4 CHAPTER 1. INTRODUCTION

We rather review the literature to the extent that it builds a foundation for

the subsequent analysis. Having introduced to and reviewed models with ei-

ther non-convex capital-adjustment technologies or financial frictions in the

previous chapter, Chapter 3 now provides a first, stylized model of both

frictions interacting. Chapter 4 joins the preceding chapters and presents

empirical evidence for our hypothesis that the interaction of financial fric-

tions and non-convex technologies plays an important role in determining

investment. Chapter 5 now puts this evidence into a strategic perspective,

and analyzes the interaction of financial frictions and non-convex technolo-

gies in a duopolistic setting. In a sense this chapter changes the focus from

a macroscopic to a more microeconomic point of view. To allow Chapter 5

to be read independently, it is organized mostly self-contained. So someone

who is only interested in a theory of predatory behavior based upon financial

frictions and capital irreversibility may concentrate on this chapter. Chapter

6 gives some concluding remarks. Three appendices follow and present the

technical proofs, which were omitted in the preceding chapters.



Chapter 2

Reviewing the literature:

Financial frictions or

non-convex adjustment cost

2.1 Tobin’s-q approach and before

One of the earliest contributions to the (empirical) investment literature is

the accelerator model of Clark (1917). Or, to account for the serial correlation

of investment, the flexible accelerator model (Clark 1944, Koyck 1954):

It = α
nX

τ=0

βτ∆Yt−τ (2.1)

This model was motivated by the assumption that the long-run optimal stock

of capital K∗ was a fraction α of the output Y produced. So investment I

was assumed to be a distributed lag process of changes in optimal capital.

Although the approach was empirically rather successful, the absence of

prices was a major criticism. Hence, starting from the optimization problem

of a perfectly competitive firm that faces no adjustment costs and produces

with a constant returns to scale technology, Jorgenson (1963) proposed the

neoclassical theory of investment. Again, there also was a (ad hoc) flexible

5



6 CHAPTER 2. REVIEWING THE LITERATURE

version (Hall and Jorgenson, 1967). In these models, K∗ is replaced by the

first-order condition

K∗ = α
Y

Pk

(2.2)

where Pk is the price—respectively user-cost—of capital so that

It = α
nX

τ=0

βτ∆

µ
Yt−τ
Pk,t−τ

¶
. (2.3)

However, modifying this model to

It = α
nX

τ=0

¡
β1τ∆Yt−τP−1k,t−τ + β2τYt−τ∆P−1k,t−τ

¢
(2.4)

Eisner (1969) showed that the cost of capital coefficient, β2τ , was quite low

and statistically insignificant once it was not imposed to equal the one of

production, β1τ . Additionally, the flexible neo-classical model suffered from

the same ad-hockery as the flexible accelerator model, since there was no clear

theoretical underpinning for the distributed lags.1 Moreover, one should note

that production is not determined on the firm level in such a setting with

perfect competition.2 Consequently, the seminal contribution of Tobin (1969)

and Brainard and Tobin (1968) was the first one that constituted a full model

of investment. The basic idea was that in a general equilibrium the ratio of

firm value over the replacement costs of the firm’s assets should be equal to

1 in the absence of adjustment costs. This ratio then became well known

as ”average-q” or ”Tobin’s q”. In its ad-hoc flexible version the now widely

used investment equation was

It =
nX

τ=0

βτqt−τ . (2.5)

Later, the theoretical contributions of Abel (1979) and Hayashi (1982) showed

1Hall and Jorgenson (1967) propose delivery lags to be the driving force behind the
dynamics, but their explicit model is a static one.

2See Hayashi (1982, p. 213)
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that the neoclassical investment model with convex adjustment cost could

be represented by a q-model in which Tobin’s q had to be replaced by the

fraction of the marginal internal value of new capital over its replacement

costs. Additionally, Hayashi showed that, when firms are price-takers and

the technology is linear homogeneous, Tobin’s-q remains a sufficient statistic

for investment. As marginal-q is–unlike Tobin’s-q–unobservable, this is an

important result for empirical work.

Hayashi’s model–here presented in discrete time as in Barnett and Sakel-

laris (1999)–reads as follows: Let F (Kt, µt) denote a production function

that is linear homogeneous in capital, K, and depends on a stochastic pro-

ductivity parameter µ.Moreover, let A (It,Kt, ut) ·Pk,t be an adjustment cost

function which also is homogeneous of degree one in capital and investment

and also depends on a stochastic term u. Consequently, the optimization

problem of the firm–assuming no depreciation for simplicity–can be repre-

sented by the following Bellman equation:

V (Kt, µt, ut, Pk,t) = max
It

(
F (Kt, µt)− A (It, Kt, ut) · Pk,t

+βEt

£
V
¡
Kt + It, µt+1, ut+1, Pk,t+1

¢¤ ) . (2.6)

Et denotes the expectations operator conditional on information available at

time t. β is the discount-factor.

Define it := It
Kt
and denote items relative to capital by small letters. Due

to our homogeneity assumptions, V is linear in capital Kt. A division of (2.6)

by Kt now yields:

v (µt, ut, Pk,t) = max
it

(
f (µt)− a (it, ut) · Pk,t

+βEt

£
(1+ it) v

¡
µt+1, ut+1, Pk,t+1

¢¤ ) . (2.7)

The first order condition for optimal investment then is

∂a (it, ut)

∂it
· Pk,t = βEt

£
v
¡
µt+1, ut+1, Pk,t+1

¢¤
. (2.8)

If individual shocks to productivity, µt, and to adjustment costs, ut, are
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uncorrelated with shocks to the price of capital, we obtain by dividing by

Pk,t :

∂a (it, ut)

∂it
= βEt

"
v
¡
µt+1, ut+1, Pk,t+1

¢
Pk,t+1

#
Et

·
1

1+ Ṗt+1

¸
, (2.9)

where Ṗt denotes the inflation rate,
Pk,t+1

Pk,t
− 1. Let a be quadratic, i.e.

a (it, ut) =
1
2α1
(α0 + α1it + ut)

2 and define average q as qt+1 :=
v(µt+1,ut+1,Pk,t+1)

Pk,t+1
.

Then we can rewrite (2.9) as

α0 + α1it + ut = βEt

·
qt+1

1+ Ṗt+1

¸
=: βq̂t+1. (2.10)

Therefore, investment is theoretically directly related to q. However, it is

related to the expected value of future q for which two proxies are at hand

as Barnett and Sakellaris (1999) argue: qt and qt+1. As the original model

of Hayashi (1982) was presented in continuous time, most authors have used

qt in empirical applications. However, the correlation between qt and q̂t+1

is not clear-cut. For that reason Barnett and Sakellaris propose to use qt+1
instead, which is an unbiased estimator, as

qt+1 = q̂t+1 + ξt+1; Et

¡
ξt+1

¢
= Et

¡
ξt+1q̂t+1

¢
= 0. (2.11)

The structural parameters α0,1 can then be estimated by regressing qt+1 on

it. Previous studies typically solved (2.10) for it and replaced q̂t+1 by qt. So

the estimated equation was:

ijt = γ0 + γ1qjt + νjt. (2.12)

However, such an estimation has modest success: The estimated parameters

yield implausible high adjustment costs, and changes in q explain only about

5% of the variation in investment rates in firm-panels.3 Moreover, additional

scale variables such as cash-flow or sales have a significant influence on in-

3See for example Blundell et al. (1992).
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vestment, though there is no additional role for them in the above model.4

Indeed, Barnett and Sakellaris (1999) show that the estimated parameters

become much more plausible, once (2.10) is directly estimated replacing q̂t+1
by its realization. Nevertheless, marginal R2 remains as low as 3% in their

regressions. Respectively R2 raises to 8% when lagged cash-flow enters the

regression, which is still considerably small. Of course, when explaining

such relatively large fraction of variation, the cash-flow parameter is highly

significant.

2.2 Incorporating financial frictions

The lack of empirical success of q-theoretic models and the superiority of

accelerationists’ models let researchers look for a theoretical reasoning to

include cash-flow or other sales based variables besides q in the empirical

models. Already in the 1950s Meyer and Kuh (1957) had argued that fi-

nancial considerations of firms could result in an accelerationist model. Yet,

after the famous contribution of Modigliani and Miller (1958) most econo-

mists believed in the dichotomy of financial and real decisions of firms. The

progress in capital-market theory, achieved during the late 1970s and 1980s,5

gave a renewed theoretical ground for the inclusion of financial variables in

investment regressions.

The seminal contribution of Fazzari et al. (1988) triggered a new research

4See Summers (1981), who argues, why these variables should not be included in a
structural estimation. Similar Fazzari, Hubbard and Petersen (1988) argue that under a
perfect capital market assumption, no other scale variables should appear significant in
the regression.

5Since the famous ”lemon market” paper of Akerlof (1970) it has been well noticed
that because of informational asymmetries external finance can be more expensive than
internal one. Jaffee and Russell (1976) provide a model of asymmetric information that
leads to credit rationing. Stiglitz and Weiss (1981) argue, that due to moral hazard and
adverse selection credit rationing may occur. Gale and Hellwig (1985) relate capital market
imperfections to costly-state-verification in case of bankruptcy.
The Myers and Majluf (1984) model, directly based on the ”lemons” consideration,

shows that new shares can only be issued at a discount so that external equity finance is
more expensive just as external debt financing had been shown to be.
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agenda which was joined in by others in a number of subsequent papers.6

Denoting cash-flow by CF, the canonical estimating equation became:

ijt = γ0 + γ1qjt + γ2
CFjt

Kjt

+ νjt. (2.13)

Fazzari et al. now split their sample on apriori grounds in three subgroups.

These subgroups had the purpose to reflect the likelihood of a firm being

financially constrained in its investment decisions. For each subgroup (2.13)

is then estimated independently and the estimated parameters are compared

across the groups. If considered as a formal test, the neoclassical model is

rejected if γ2 6= 0. Yet, a rejection of the neo-classical model does not nec-
essarily imply the existence of financial frictions. Other deviations from the

neo-classical model are e.g. adjustment costs other than to capital, market

power, or fixed costs of adjustment. However, Fazzari et al. argue that, if

the rejection is due to financial frictions, γ2 can be expected to be larger

for a financially constrained sample of firms than for an unconstrained one.

Hence, a test for financial frictions uses the differences between firm groups.

Following this procedure a number of studies emerged. These studies

each used different econometric procedures or different groupings: Fazzari et

al. (1988) grouped firms by their dividend payout behavior. They showed

that those firms which payed least dividends reacted strongest to changes

in cash flow. Gilchrist (1991) has confirmed Fazzari et al.’s results using

similar sample splittings. Calmoris and Hubbard (1995) use a tax-reform as

a natural experiment to identify the shadow value of internal funds. They

group the firms by this estimated shadow price and find a significantly higher

cash-flow estimate for the firms that valued internal funds higher. Hoshi et al.

(1991) obtain similar results analyzing a sample of Japanese firms, splitting

the sample on the basis of membership in a ”keiretsu”, a large industrial

group. The procedure of Lammont (1997) is quite analogous. He uses a

drop in oil-prices to estimate the different response of investment of non-

6See Hubbard (1998) for an extensive survey.
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oil branches in oil and non-oil companies. He found a significant decrease

in investment of the non-oil-branches of oil companies which is not present

for the non-oil companies. Moreover, controlling for other factors, liquidity

constraints can be identified as the driving force behind this phenomenon.

In the same spirit, Ber et al. (2002) uses the differential impact of monetary

policy on exporting and non-exporting firms to identify liquidity constraints.

As exporting firms have better access to international capital markets, they

can be expected to be much less influenced by monetary policy through the

credit channel than other firms. Indeed, this is what Ber et al. find.7

Gilchrist and Himmelberg (1995) proceed similar to Fazzari et al. (1988),

but split their sample of manufacturing firms on the basis of a multitude of

indicators, e.g. if the firm has a bond rating or a commercial paper program

or on firm size. Moreover, they explicitly take the dynamic and interdepen-

dent structure of the data into account.

In all these papers, typically for the unconstrained group γ2 is indeed

smaller than for the constrained group, and sometimes even γ2 = 0 cannot

be rejected for firms considered as unconstrained. Hence, this evidence sup-

ports the view that capital market imperfections are an important factor in

determining investment.

However, there is a number of reasons why q might measure fundamental

investment incentives with error and if this measurement-error differs be-

tween ”constrained” and ”unconstrained” firms, the obtained evidence may

be flawed.

In the denominator the value of the stock of capital reported may not

equal the replacement costs.One reason for this could e.g. be a difference

between economic and reported depreciation. In the nominator of q there

is e.g. an error when the market value of a firm may be subject to stock

7Note, however, that Ber et al.’s paper is not based as straightforward on a q-theoretic
model as the other papers mentioned. The estimation equation they used is augmented by
a number of other regressors than Tobin’s q. Their main point of focus is the interaction
term of the short-term (aggregate) interest-rate and the amount of export-orientation of
a firm.
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market bubbles or stem from other capitalized quasi-rents besides the one

from capital.8 Additionally, average q and marginal q differ, when firms have

market power. Hence Whited (1992), Bond and Meghir (1994) and Hubbard

et al. (1995), test the neoclassical model on the basis of the first-order-

condition Euler-equations. They also can confirm the results of Fazzari et

al. (1988). The basic idea of these Euler equation approaches is as follows:

If the Lagrange multiplier for the liquidity variable appears significant in the

estimated first-order condition, the neoclassical model can be rejected. Yet,

the Euler-equation approach has been criticized for the lack of statistical

power.9

On the other hand, the original approach by Fazzari et al. (1988) has

been criticized for only testing the neoclassical model as a whole. Kaplan

and Zingales (1997) argue that the sensitivity of investment to liquidity does

not necessarily increase with net-worth when capital markets are imperfect.

Moreover, they argue that typically the empirical studies carried out mostly

rejected the neoclassical model not only for the constrained firms but for the

whole sample. Kaplan and Zingales use the as-constrained-classified subsam-

ple of Fazzari et al. and split it up into in 5 groups based on the firms’ finan-

cial reports. Although for all groups the neoclassical model is rejected, there

is no clear-cut structure in the sensitivity. Rather, the firms which appear to

be least likely constrained exhibit the largest investment-sensitivity to cash

flow. However, Fazzari et al. (2000) note that Kaplan and Zingales’ sample

is rather small so that splitting the sample in five subgroups may result in a

substantial small sample bias. Moreover, Kaplan and Zingales’ sorting itself

is rather subjective and firms identified as financially constrained are likely

to be in financial distress. This also might bias their results.

Nevertheless, Kaplan and Zingales’ paper was very influential in the sense

that it emphasized the problem of how to interpret positive cash-flow coef-

ficients. One possible alternative interpretation–which still is somewhat

8See e.g. Merz and Yashiv (2002) for a discussion of this topic, when labor markets are
incomplete.

9See e.g. Oliner et al. (1995).
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related to Fazzari et al.’s (1988) one–are non-value-maximizing managers

(Jensen, 1986). Blanchard et al. (1994) use cash-windfalls as a natural ex-

periment to test the asymmetric information model against the agency model

of Jensen and find better support for the agency model. Typically, even if av-

erage q is low managers keep cash-windfalls within the firm and invest them

in fixed assets rather than use them to reduce debt or repurchase shares. So

this interpretation still links the estimates to some informational imperfec-

tions, but here within the firm. More recently, product market imperfections,

respectively decreasing returns-to-scale in production, have been put forward

as a potential cause of the positive empirical cash-flow influence.

Recall that only under a constant returns-to-scale production technology

and perfect competition marginal-q can be replaced by average q. Hence

γ2 = 0 tests these assumptions jointly with the assumption of a perfect

capital market.

Cooper and Ejarque (2001) provide numerical examples by generating

artificial data for firms with a decreasing returns-to-scale technology. When

they estimate (2.13) from their generated data cash-flow appears as a signif-

icant regressor although the capital market has been assumed to be perfect.

A very similar analysis has been carried out by Alti (2003). He shows that

even the differences between the sample-splittings can be reproduced by the

decreasing-returns assumption. He does so by splitting his artificially gen-

erated data by a similar rule as Fazzari et al. (1988) apply to their data.

Abel and Eberly (2002) provide a fairly general theoretical underpinning for

these results: They show analytically that investment of a monopolist with

perfect access to finance reacts positively to average q even in the absence

of adjustment costs. Furthermore, the monopolist’s investment also reacts

positively to cash-flow. Moreover, Abel and Eberly show that in this setting

cash-flow sensitivity of fast-growing firms are larger. Empirically, these firms

are the no-dividend paying small firms and are the ones typically considered

as financially constrained in the previous literature.

Closely related to the results concerning market power are the findings of
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Gomes (2001) who simulates a general equilibrium model of investment and

financing decisions. In summary, he finds positive estimates for cash flow to

be neither sufficient nor necessary for capital market imperfections. Notewor-

thy, in one alternative specification Gomes (2001, pp. 1278) also picks up the

idea of fixed financial transaction costs and concludes that empirically the re-

sulting investment behavior can hardly be distinguished from the behavior of

a firm facing fixed capital adjustment costs. This is unusual insofar as most

theoretical models which employ the imperfect capital market framework at

the aggregate level emphasize net-worth effects on the marginal cost of capi-

tal and hence rely on the above mentioned (more sophisticated) asymmetric

information microeconomic models of capital market imperfections.10

What drives Gomes main results? On the one hand, a positive cash-

flow effect (in the absence of financial frictions) is obtained since average-q

measures marginal-q imperfectly. Therefore, cash-flow provides additional

information (on this measurement error). On the other hand firm value and

hence q not only captures the fundamental profitability of incremental invest-

ment, but also the value liquidity has when capital markets are imperfect.

Therefore, a high q can simply reflect the financial flexibility a firm has, so

that additional liquidity variables have a lesser informational content.11

This problem has been observed before by Gilchrist and Himmelberg

(1998), who construct a structural VAR-model, that controls for the dy-

namics and interdependency of fundamental and financial variables that de-

termine investment. Gilchrist and Himmelberg disentangle the effect of both

factors on firm-value and find a significant fraction of cash-flow influence

in investment-decisions simply reflects fundamental productivity. Neverthe-

10See e.g. Bernanke et al. (1996).
11Note that the assumptions of Gomes’ (2001) model are somewhat problematic. His

basic idea is that a firm which cannot finance its investment from current cash flow has
to rely on external finance and pay a premium for these funds. However, in such setting,
firms would have an incentive to precautionarily save. Hence and as Blinder (1988) argues,
liquidity is rather to be measured as a stock which–for example–proxies the line of credit.
This view of ”liquidity” also is more suitable to capture the ideas of the capital markets
literature that highlights the role of net-value, e.g. Bernanke et al. (1998).
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less, they also find an independent influence of the financial factor in the

investment decisions. Insofar, they still are able to reject a broad class of

neo-classical models. Moreover, the influence of the financial factor is found

to be stronger for the group of firms apriori considered as financially con-

strained.

In summary, evidence of financial frictions still is mixed, but one has

to be careful in selecting measures of liquidity and fundamental investment

incentives.

2.3 Measurement errors or financial frictions?

The argument put forth in the last section, based on economic theory and

highlighting the imperfectness of average-q as a proxy for marginal-q, is just

one possible reason for a classical measurement error that might actually

drive the results of the empirical financial constraints literature. Other pos-

sible reasons that have been discussed in the literature are stock market

bubbles or misreported respectively falsely calculated replacement costs of

capital.12

As a remedy for measurement errors induced by stock-market bubbles

Cummins et al. (1999) suggest to construct a measure of fundamental firm

value based on analysts’ net-income forecasts ECFit for each firm.

As this highlights the problems involved in dealing with the measurement

error problem in q-theoretic models, we will discuss their procedure in more

detail: Cummins et al. define a variable ”real Q”, bQit, which is computed on

the basis of analysts’ expectations [ECF it of firm net-income and its expected

net-income growth-rates. These items are available through I/B/E/S. Scaling

12See for example Erickson and Whited (2000, 2001 and 2002) and Cummins et al.
(1999) for a discussion.
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all items by the replacement value of capital, they compute bQit as:

bQit =
nX

j=1

αj [ECF it+j−1. (2.14)

This formula is of course motivated by the idea that fundamental firm value is

the sum of discounted net-income. ”Real Q” is then used in (2.13) instead of

Tobin’s q. Using GMM-techniques they obtain more reasonable estimates for

the parameter of ”real Q”, when this parameter is interpreted in terms of a

quadratic adjustment cost function. Moreover, they find no significant influ-

ence of cash-flow. These results have been replicated by Bond and Cummins

(2001), who also provide a more detailed theoretical underpinning. Further-

more, Bond and Cummins find that lagged sales and Tobin’s q also appear

as insignificant additional regressors in this setting. So, they conclude, the

neo-classical model captures investment behavior quite well, once rational

bubbles are controlled for. However, in a sense their empirical model just

replicates the findings of Jorgenson (1963), so that Eisner’s (1969) criticism

might well apply:

First of all, bQjt and cash-flows are notably correlated,13 so that one might

also specify bQjt = β
CFjt

Kjt−1
+ ujt. As a result the estimation equation becomes

ijt = γ0 + γ1

µ
β
CFjt

Kjt−1
+ ujt

¶
+ γ2

CFjt

Kjt−1
+ νjt. (2.15)

If the variance of u is small, there is a strong collinearity problem. Indeed

the very large confidence bounds reported may indicate such a situation.

Moreover, using instruments as a cure for the potential measurement error

problem makes the potential collinearity problem even worse, if the instru-

ments are not correlated with ujt. And even if one imposes γ2 = 0, as Bond

and Cummins (2001) do in one of their regressions, the interpretation of their

results is not clear-cut. If ujt and user-cost of capital are highly correlated,

13See figure 1 in Cummins et al. (1999).



2.3. MEASUREMENT ERRORS OR FINANCIAL FRICTIONS? 17

we obtain Jorgenson’s neoclassical model; if they are not, we are back to the

accelerationist-model.14

Moreover, more important and besides the issues raised by Gomes (2001),

the structural interpretation of Cummins et al. (1999) is correct if and only

if β is chosen correctly, i.e. there is no systematic correlation between cash-

flow and the difference of marginal-q and bQjt. If there is such a difference, γ2
will be estimated incorrectly, perhaps as insignificant although it might be

significant in the ”true” marginal-q model.

A sufficient condition for this to happen would be systematic errors in the

constructed analysts’ forecasts of bQjt which are correlated with current cash

flow. To be more precise, suppose bQjt is formed (by the analysts) as a linear

function of marginal q, a purely random measurement error, and maybe an

additional effect of cash-flow:

bQjt = θ1
CFjt

Kjt−1
+ θ2qjt + ujt . (2.16)

Using this equation in (2.13) now yields:

Ijt = γ0i +
γ1
θ2
bQjt +

µ
γ2 −

θ1
θ2
β1

¶
CFjt

Kjt−1
+

µ
νjt − γ1

θ2
ujt

¶
(2.17)

Obviously, the structural parameters are not identified unless one is willing

to assume fixed values for θ1,2, e.g. θ1 = 0 and θ2 = 1, which means there

is no systematic error in forming a measure of marginal-q from the analyst’s

cash-flow forecast.

Yet, there are a number of reasons why θ1 > 0: If, for example, a firm

also has other (quasi-)rents but the one from capital to exploit, cash-flow will

be serially correlated to a greater extent than marginal-q is.15 Another rea-

son could be costly information. If information is costly to acquire, analysts

14If e.g. analysts have some knowlege about (non-profitable) investment projects, that
will increase net-income, ujt clearly will measure investment, but it will not measure
fundamental incentives.
15Merz and Yashiv (2002) analyse the case, where the labour market is imperfect. They

show, that the labor force in place significantly effects firm-value and investment decisions.
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will concentrate on information easy to obtain and omit the more expen-

sive information. As a result–of the omitted variable problem–analysts

will rationally overemphasize current and lagged cash-flow. Alternatively,

if analysts have incentives to trade off accuracy of their forecasts in favor

of optimism,16 their cash-flow forecasts will be biased. If additionally the

tolerated inaccuracy depends on the realized cash-flow, we obtain the stated

effect.

The problem of mismeasured marginal-q has been addressed by Erickson

and Whited (2000, 2001, 2002), too. Instead of replacing observed average-

q by some related measure, they use higher order moment conditions to

tackle the measurement error problem more directly. Depending on the way

Tobin’s-q is computed, Erickson and Whited (2002) find that the empirical

measure Tobin’s-q explains between 44% and 65% of the variation in true but

unobservable average-q.17 Moreover, once measurement errors are controlled

for, Erickson and Whited (2000) find no additional influence of cash-flow

on investment. In line with Gomes (2001) argument they explicitly state

that this result does not necessarily imply the absence of financial frictions.

Insofar Erickson and Whited’s results rather suggest that it is necessary to

obtain more direct measures of expected marginal productivity of capital and

of the financial status of a firm, if one wishes to carry out estimations that

can be interpreted structurally.

2.4 Investment and fixed adjustment cost

Another possible argument for the empirical failure of the neo-classical in-

vestment model stems from the fact that adjustment costs of capital may

16Hong and Kubik (2003) provide evidence that analyst who provide upwardly biased
earnings forecasts are more likely to be promoted. Hence, analysts have an incentive to
do so.
17In their setting average-q is defined as the unobservable variable driving investment.

This may of course be different to the explicit definition as ”true” value over replacement
costs.
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not be a continuous convex function.18

There are a number of reasons why adjustment cost could be non-convex.

The typically considered cases are irreversibilities and fixed costs: Investment

may be (partially) irreversible due to asymmetric information in the market

for used capital goods. Fixed costs of investment could for example arise

because the installation of a new assembly line in an existing factory requires

to halt current production. Another form fixed costs of investment can for

example take are overhead costs involved in planning and carrying out an

investment project.

In all these cases, as Caballero and Leahy (1996) show, there needs not

be a monotonic relation between marginal-q and investment; and paradox-

ically average-q better predicts investment than marginal-q does. However,

average-q no longer is a sufficient statistic for investment.

The following model briefly sketches this idea: Suppose a firm completely

finances the capital stock by debt (capital is leased). Moreover, assume

that profits Π (x,K) are linear homogeneous in capital given the measure of

capital imbalance x, which is affected by investment. Then,

Π (xt,K) : = π (xt)Kt, (2.18)

xt+1 : = it + xt + µt (2.19)

with i.i.d. productivity-shocks µt. Now, assume that the costs of adjusting

the stock of capital are a fixed-fraction of the capital previously installed and

are borne by the equityholders, i.e.

a (i) :=

½
w

0

if i 6= 0
if i = 0.

(2.20)

Then (2.7) simplifies to

v (xt) = max
it

©
π (xt)− I{it 6=0}w + βEt [v (it + xt + µt)]

ª
. (2.21)

18Caballero (1997) gives a good overview over the literature considering this situation.
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Now, for notational convenience define

v̂ (xt) = βEt [v (xt + µt)] . (2.22)

The optimal ”capital imbalance” x∗ is implicitly defined by the first-order

condition ·
∂v̂ (x)

∂x

¸
(x=x∗)

= 0. (2.23)

Therefore, optimal investment is given by it = (x
∗ − xt) . However, the firm

will only invest if

w ≤ v̂ (x∗)− v̂ (xt) (2.24)

holds.19 One can show, that v is quasi-concave, when π is quasi-concave.

Thus (2.24) implicitly defines two thresholds (l, u) for investment such that

the firm invests if and only if xt ≥ u and disinvests if xt ≤ l. Hence, in

the presence of fixed adjustment costs a firm lumps adjustment to avoid

paying the fixed adjustment costs too often. This is reflected by the inaction

range (l, u) in fundamental investment incentives. Yet, if xt /∈ (l, u) the firm
invests and qit is constant as q := v̂ (x) = const holds. Therefore, there is

no direct and obvious link between the volume of investment and Tobin’s-q.

If, however, the setting is generalized, this conclusion does not necessarily

hold anymore, as Abel and Eberly (1994) show in their model that remerges

q-theory and the theoretical literature on lumpy investment.

The ”lumpy investment” model itself has proved quite successful empir-

ically: Doms and Dunne (1998) analyze the investment-series of those firms

contained in the Longitudinal Research Database (LRD), which documents

investment pattern of 12 000 US manufacturing plants from 1972 to 1989.

To do so, they calculate the fraction of the total equipment investment of

each establishment that is carried out in a single year. They find that on av-

erage the year with the largest plant-year investment accounts for more than

19Caballero and Engel (1999) show, that a very similar model is well defined. Here, we
take the assumptions made, for heuristic reasons. See chapter 3 for a more elaborated
version of this model.
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a quarter of the total cumulative investment of a plant over the whole pe-

riod. Moreover, more than half of the establishments exhibits capital growth

close to 50 % in a single year. Employing the same database, Cooper et al.

(1999) estimate the hazard-rate of a plant exhibiting an investment spike.

They estimate this hazard-rate as a function of the time elapsed since the

last spike occurred and find evidence for a time-increasing hazard-rate. This

points towards non-convex costs of adjustment.

A more direct approach has been taken by Caballero et al. (1995): Also

using the LRD, they estimate a measure of ”mandated investment”, which

is the difference between optimal and realized capital and takes the role of q.

They construct ”mandated investment” by imposing a long-run cointegrating

relation between earnings, capital employed and the user cost of capital. In a

second step Caballero et al. estimate the adjustment hazard as a function in

”mandated investment” by spline smoothing. They find a convex relationship

between ”mandated investment” and the actual realized investment rate, i.e.

an upward sloping hazard. In contrast, the convex-cost framework would

predict investment to be concave or linear in ”mandated investment”.

Additional evidence from other data (COMPUSTAT) has been provided

by Abel and Eberly (2002), who test their (1994) q-theoretic augmented ad-

justment cost model. Indeed they find evidence for an inaction range and

hence especially for fixed costs.20 Goolsbee and Gross (2000) estimate a

model very similar to the one of Caballero et al. (1995), but they employ de-

tailed data from the airline industry. Goolsbee and Gross find significant non-

linearities in the adjustment costs, when they allow for capital-heterogeneity.

If they, however, aggregate the data to the firm-level, the non-linearities

partly wash out. Moreover, the estimated adjustment costs become upwards

biased as by aggregation parts of the fixed costs are perceived as marginal

costs by the econometric procedure. Because of that result, data on the

lowest level of aggregation available should be used to estimated adjustment

20Barnett and Sakellaris (1998) who tried to test that model earlier, could not find
evidence for non-convex costs. However, it has been noted that this might well be due to
unobserved heterogeneity, that they do not control for.
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costs.

Yet, in most cases the level of micro-detail Goolsbee and Gross have in

their data is not available to the researcher, so that one can only test for

convex adjustment cost using firm-level-aggregate data. Data, for which

Goolsbee’s and Gross’ result strikingly shows the lack of power a test for

non-convex adjustment cost might have. Accordingly one will often accept

the hypothesis of convex adjustment-cost, although adjustment-costs are in

fact non-convex.

To avoid this data problem and to obtain estimates from macro-data,

Caballero and Engel (1999) have developed an empirical model of stochastic

fixed adjustment costs that can work out the form of adjustment costs from

the time-series behavior of aggregate investment.

In this model, the range of inaction varies from period to period and the

probability of a firm to invest is given by a hazard function that is upward

sloping in ”mandated investment”. They employ this model to two-digit

aggregate data and find both an upward sloping hazard-rate and a supe-

rior within and out-of sample behavior of this model compared to the lin-

ear (partial adjustment) model. Interestingly, when estimating their model

they do not have to rely on any explicit measure of mandated investment.

Instead, they calculate the stationary mandated investment distribution of

their model in the absence of aggregate shocks and obtain the parameters

distribution of shocks to productivity and adjustment-costs by maximizing

the likelihood of the sectoral investment series. Basically, their model ex-

tends the above one to cases, where the fixed cost of investment, wt, is i.i.d.

distributed. Hence the probability of an investment(-spike) for a firm is

Λ (x) = prob [wt ≤ (v̂ (x∗)− v̂ (x))] . (2.25)

Given the stochastic model for w and µ, both Λ and v can be calculated.

An alternative econometric approach to obtain structural estimates of the

underlying adjustment costs has been followed by Cooper and Haltiwanger

(2002), using an indirect inference method. In a first step, they use em-
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ployment and sales data to generate a measure of capital-productivity. In a

second step, they regress investment on a polynomial of this measure and its

lagged value. Finally, they obtain the structural estimates by carrying out

the estimation of their second step for simulated investment models (with

different types of adjustment costs). The estimates of the structural para-

meters are then identified as those, which minimize the distance between

the estimates from a simulated model and the previously estimated empiri-

cal one. They find that a model which mixes both convex and non-convex

adjustment costs fits the data best.
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2.5 Towards merging both strands

Up until very recently the typical strategy was to analyze each single reason

why the neo-classical model might fail separately at a time. So far, the fixed

or more generally speaking the non-convex adjustment costs model has seen

least criticism. However, do non-convex adjustment costs solely explain the

strong empirical rejection of the neo-classical model, really? Thomas’ (2002)

results casts some doubt on this: In aggregate investment general equilibrium

effects mostly wash-out the influence of higher moments of the fundamental

investment incentives-distribution, that is caused on the micro-level by fixed

costs.

Moreover, if there are transaction costs of finance, debt-ceilings, or net-

worth effects in financing costs, the estimates of fixed costs may well be biased

upwards compared to their structural values: Holt (2003) presents a real-

options model of investment in which equity-funds cannot be raised after the

firm is founded and in which equity serves as a buffer-stock for bad outcomes,

i.e. equity has to be always positive. In his model financial variables amplify

the influence of fundamental ones. Put differently, fundamentals and finance

work as complementaries in determining investment.

Empirically this has recently been confirmed by Whited (2002), who

shows that the hazard-rates of firms to exhibit an investment spike are sub-

stantially ”flatter” for firms which are financially constrained. Hence, the

average time between two spikes is much larger for financially constrained

firms.21 Figure 2.1 illustrates this.

Moreover, only when both financial frictions and fixed costs of capital

adjustment are allowed for in the (econometric) model, one can discriminate

between the various models of financial frictions. Furthermore, as Gomes

(2001) claims, the fixed transaction and the fixed adjustment costs model

may yield similar investment patterns. Hence, only by allowing for financial

21Independently developed, a comparable idea is the basis of the analysis in chapeters 3
and 4, which are based on working papers (Bayer, 2002 and 2003) previously available. The
results are similar to the ones of Whited (2002), but obtained using a different procedure.
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probability of
investment

spike

time since
last spike

constrained
unconstrained

1

Figure 2.1: Hazard-rates for constrained and unconstrained firms

frictions and fixed adjustment costs, we can separately test for both structural

(technological) assumptions.

Therefore, we will analyze investment behavior under both financial fric-

tions and non-convex adjustment costs simultaneously in the following chap-

ters. How to measure financial frictions is anything but straightforward.

Mostly cash-flow has been employed as a proxy. Yet, already at the very

beginning of the financial frictions literature, and commenting the seminal

paper of Fazzari et al. (1988), Blinder (1988, p. 199) stated that it is prob-

ably a stock of liquidity like the line of credit which influences investment.

This claim holds true in both the transaction-cost and the net-worth models.

So, Blinder concludes it would be preferable to use a stock-based measure

and that a flow measure of liquidity could be a misleading proxy. We share

this view and use the equity-ratio as such proxy throughout this thesis.22

22Strictly speaking, the equity-ratio is a stock-based relative measure. By using a relative
specification, we assume that influence of size is approximately constant (or zero) over time.
But even if varying size effects are present, using the relative measures avoids picking up
size with the liquidity proxy.
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This also has a number of additional advantages. Firstly, only with a

stock-measure of liquidity one can distinguish between different types of fi-

nancial frictions using their differential impact on short- and long-run behav-

ior of investment: Suppose fixed transaction costs of finance are the driving

force behind the dependence of investment on liquidity. Then we can expect

firms to have an optimal stock of capital independent of their financial sta-

tus, whereas investment heavily depends on liquidity. If, however, there is a

net-worth effect on the marginal cost of capital, one can expect the optimal-

stock of capital to depend on the financial status, while investment is only

indirectly influenced. In fact, apriori evidence seems to support the transac-

tion costs hypothesis rather than the net-worth one.23 Secondly, the problem

of fundamental investment incentives being correlated with the measure of

liquidity can be expected to be less pronounced using a stock-measure than

with a flow-measure like the cash-flow.

2.6 Synopsis and conclusion

Before proceeding we should sum up the main points again:

Although the q-model of investment is theoretically well-founded, its em-

pirical success is modest at best. Q-models typically yield estimates of adjust-

ment costs that are way to large and hence imply very implausible half-lifes

of capital imbalances. Moreover, the fit of these regressions is typically very

low. Conversely, this leaves much room for other factors to explain invest-

ment.

One of these other factors is cash-flows. By many authors this has been

interpreted as evidence for financial frictions playing an important role in

firm-level investment decisions. Especially backed up by inter-firm differences

in the influence of cash-flows, this view has some appeal.

23E.g. Guariglia (1999) reports firm size and stock-measures of liquidity to be uncorre-
lated. Mairesse et al. (1999) report in their survey the influence of financial variables in
investment to die out rapidly over time.
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However, a measurement-error in q (whose existence can be soundly jus-

tified from theory) could as well generate the significant positive cash-flow

coefficient. Moreover, this virtual influence even varies across firms in ac-

cordance to ”a priori” measures of financial frictions. Gomes (2001) even

shows that positive cash-flow coefficients in a q-model are neither sufficient

nor necessary for the existence of financial frictions. By and large, he thereby

renders the whole approach unsuitable. Additionally he shows that the fixed

transaction-cost of finance and the fixed adjustment-cost of real investment

models are observationally virtually equivalent, if the other friction is not

controlled for.

As a consequence, an analysis has to be based on a more direct measure

fundamental investment incentives. Moreover, one has to focus much more

on the interaction of frictions and test the various models along those lines.

Instead, most studies so far have tried to establish a direct influence of a

financial variable.

Fixed-adjustment cost models always reflect the adjustment costs in the

frequency of adjustment. If we view liquidity as a measure of options to adjust

the stock of capital, crossbreeding financial frictions and fixed-adjustment

cost models yield an influence of finance on this frequency, as we will see in

the following chapter. This influence can be used to discriminate between

and to test against alternative models.

Therefore, combining the fixed adjustment-costs and the financial fric-

tions frameworks allows to discriminate both, within various financial-frictions

models, and between the financial frictions and the fixed adjustment-cost

models. Moreover it obviously avoids a number of problems of omitted vari-

ables and misspecification.
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Chapter 3

A first model of interacting

frictions

3.1 Firm-level investment

We will start off with presenting and discussing the representative problem

of a firm which is at the same time subject to financial constraints and fixed

adjustment costs.1 For simplicity and as in Caballero and Engel (1999), the

industry modelled in this chapter shall consist of a large number of monop-

olistically competitive single-plant and single-product firms, which all are

subject to a limited liability constraint. The investment decision is modelled

in discrete time. Each firm faces an infinitely elastic supply of all factors.

At the beginning of each period all uncertainty about that period is resolved

and is common knowledge from then on. Thereafter, each firm decides upon

investment.

1Note that typically the investment-functions in investment problems with fixed cost
are not aggregable. Hence we can only discuss the typical investment problem—of course
given a parameterization of the production technology, market structure etc. If these
parameters vary across firms, this makes the aggregation problem more severe. This is
quite analoguous to the aggregation problem in consumer-theory.
Moreover, when relating investment to consumer theory it should be noted that under

finacial frictions, the ”law of supply” obviously does no longer necessarily hold, as firms
then face a budget constraint.

29
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3.1.1 Adjustment technology and financial constraint

If a firm wants to change its capital stock it has to pay some fixed costs; all

other factors may be adjusted without costs. At the end of every period each

firm has to pay back its last period’s debt plus interest, has to pay for any

new purchased capital goods and for all other factors. Moreover, it can issue

new debt and pay out dividends.

Apart from the non-convexity in the investment technology, firms face

a capital market imperfection: As in Gilchrist and Himmelberg (1998) and

as an extremely simplified version of the pecking order of finance theory,

there shall be a no-new-equity constraint, i.e. firms are unable to issue new

shares or to have negative dividends once founded (which is in the absence

of taxation equivalent on the margin):

Assumption 3.1: Once founded, firms are unable to issue new equity.

Especially, dividend payments Dt must be non-negative at any point

in time: ∀t : Dt ≥ 0.

This simplified version of the pecking order theory is necessary to keep the

model tractable. Nevertheless, the general results should not change if this

assumption were replaced by a more complex version as in Gomes (2001).

Moreover and more important, this assumption is not strongly contra-

dicted by empirical findings as e.g. Friedman (1982) shows empirically that

firms hardly use any external equity finance at all. Moreover this assumption

also has theoretical support: Fries et al. (1997) show how full collataralization-

and ”no new equity”-constraints may theoretically arise as an industry equi-

librium.

Secondly, we assume that a firm must declare bankruptcy immediately

if it has a negative book value of equity (at any point of time). Under

assumption 3.1 this is equivalent to a full collataralization constraint, i.e.,

the amount of debt a firm may issue is limited by the actual stock of capital

depreciated and discounted for one period.2 To see the equivalence, suppose

2This ensures that the firm always has a positive present value in the following period
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a firm would borrow above the constraint. Then the firm would be bankrupt

next period. Hence, either all assets were transferred to the debtholders who

continue operations or debt burden had to be renegotiated. Any combination

of the two would contradict assumption 3.1. However, both procedures would

imply a sure loss either for the stock- or the debtholders. Thus, at least one

party will never allow for any increase in debt beyond that ceiling.

Assumption 3.2: The maximum debt Bt+1 (repayable in period t+1) a

firm may issue in period t is restricted by the book value of the stock

of capital Kt, depreciated (with rate δ) and discounted (at the interest

rate on debt r) for one period: Bt+1

Kt

≤ (1−δ)
1+r

(
Bt+1
Kt

) .

The third, last, and weakest assumption regarding capital market imper-

fections is that the interest rate on debt r only depends on the leverage. As

Gilchrist and Himmelberg (1998), we assume r to be homogenous of degree

zero in B and K, and to be weakly increasing in B. This does not rule out r

to be independent of B and K.

Assumption 3.3: r = r
³

Bt+1

Kt

´
and r0

³
Bt+1

Kt

´
≥ 0.

3.1.2 Periodic sales

Now let K∗ denote the frictionless stock of capital of a firm, i.e., the stock

of capital that would be chosen in the absence of fixed costs for investment

and capital market imperfections. Let K be the actual capital employed.

The semi-reduced function of earnings per-period (EBIT), Π, shall be

linear homogenous in the frictionless stock of capital K∗ and can be written

as:3

Π(z,K∗) = π(z)K∗, (3.1)

and will stop production before going bankrupt. Alternatively, this assumption can be
viewed as a simplification of Hart and Moore’s (1994) debt capacity model.

3This assumption and the assumptions below with respect to π are e.g. fulfilled if
demand is iso-elastic and the production function is Cobb-Douglas. See Caballero and
Engel (1999) for details.
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with z denoting the capital-imbalance at the beginning of each period before

investment takes place, i.e. the ratio of actual capital employed to frictionless

capital, K
K∗ . The profit, π, per unit of frictionless capital shall be strictly

concave and fulfill the (Inada) conditions π(0) = 0 and lim
z→0

π0(z) = +∞.
Moreover, assume lim

z→+∞
π0(z) < ψδ to make profits bounded.

When a firm invests, it faces a stop of production, the duration of which is

determined by the random variable w ∈ ]0, 1[ representing the fraction of the
period used for the installation of the new capital–similar to the adjustment

costs assumption in Caballero and Engel (1999). So the costs, A, of adjusting

the capital stock are given by:

A(zo, K∗, w) := wπ(zo)K∗, (3.2)

where zo denotes the capital-imbalance after adjustment, zo := Kt+Investmentt
K∗

t

.

Note that in the presence of depreciation the firm will typically invest up to

a larger stock of capital than the frictionless optimal one, K∗.

3.1.3 Dynamics of the stochastic variables

So far there are no restrictions on the stochastic dynamics of the random

variables K∗
t and wt. Both variables together completely determine firm het-

erogeneity and investment dynamics, so any assumptions on these variables

are crucial. A minimal assumption for keeping the model tractable is that

both variables exhibit the Markov property.4 Furthermore, we shall assume

that wt is i.i.d. and that K∗
t follows a geometric random walk (with drift d).

The innovations ξt to K∗
t are normally distributed and serially uncorrelated

(although possibly correlated across firms):

K∗
t

K∗
t−1

= exp (d+ ξt) . (3.3)

4If shocks to productivity would be serially correlated, the analysis would just be com-
plicated. Managers would have a true optimal stock of capital that is different from the one
that maximizes current profits. This would make the financing problem more pronounced.
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3.1.4 Capital market and the firm’s objective

Firms are assumed to be risk-neutral. Therefore, they seek to maximize the

expected, discounted dividend stream. They do so by choosing some capital-

imbalance zo (respectively the amount of capital employed, zoK∗
t ) and the

amount of debt used to finance production, Bt+1.

In order to finance investment, a firm can either cut back dividend pay-

ments Dt or raise debt Bt+1. As assumed, a firm is unable to sell any new

shares or raise equity by negative dividends (assumption 3.1). Moreover,

the amount of debt a firm can issue is limited by the actual stock of capi-

tal employed (assumption 3.2). Additionally, the interest rate is a function

of bt := Bt

Kt−1
and is weakly increasing in bt (assumption 3.3).5 Therefore,

dividend payments, Dt, are given by

Dt = D(zo, Bt+1, K
∗
t , wt, zt, Bt)

:= Π(zo, K∗
t )−A(zo, K∗

t , wt)I{zo 6=zt} −K∗
t (z

o − zt) +Bt+1 − (1+ rt)Bt

(3.4)

in which I is an indicator function. Moreover, let the time constant discount
factor be denoted by ψ and the value of the firm be denoted by V. Then the

following Bellman equation determines both V and the optimal investment

policy:

V (K∗
t , wt, zt, Bt) =

max
(zo,Bt+1)∈X

©
D(zo, Bt+1, K

∗
t , wt, zt, Bt) + ψEt[V (K

∗
t+1, wt+1, zt+1, Bt+1)]

ª
.

(3.5)

5That the interst-rate for bonds increases does not follow from our model but is an as-
sumption. And as we have explicitely ruled out bancruptcies, debt is even risk-free. Hence,
the assumption in its strong form itself is somewhat inconsistent with the model. Yet, to
rule out risky debt is only to simplify and concentrate the analysis. Introducing another
risk-term that enters after the investment decisions are made and adding bancruptcy costs
for the debt-holders would generate an upward sloping interest-function, but would only
complicate the analysis a lot.
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In this expression X := X (K∗
t , wt, zt, Bt) is the correspondence of finan-

cially feasible capital-imbalance and debt pairs. Et denotes the expectations

operator, conditional on information available at time t.

Let the ratio of equity to capital (slightly abusing notation here) denoted

by et, which is a function of bt, i.e. et := e(bt) = 1 − (1+r(bt))
1−δ bt.

6 To reduce

the number of state variables and to obtain a more convenient formulation

of the problem at hand, we subtract the book value of equity from V and

divide by K∗
t . This defines a new value function v := V

K∗
t

− etzt, which is the

difference between ”market-value” and book-value of equity relative to the

frictionless stock of capital. As both et and K∗
t are determined before the

optimal policy decision is taken, maximizing v and maximizing V yield the

same optimal policy.

Now, define firm value ṽ as v if the capital imbalance is not altered by

investment in the current period. Defining c(zo, bo) := π(zo)
zo

+ (bo − 1) and

rearranging terms,7 we obtain

ṽ(z, bo) := c(z, bo) + (1− δ)ψze (bo)

+ ψEt

n
v
h
wt+1, z

1−δ
exp(d+ξ

t+1)
, e (bo)

i
exp(d+ ξt+1)

o
. (3.6)

For capital-imbalance and debt pairs (”plans”) with strictly positive capi-

tal we define Y to be the correspondence of financially feasible plans in terms

of zo and bo :

Y (wt, zt, et) :=n
(zo, bo) ∈ R++ ×R+|zo − etzt − π(zo)[1− wtI{zo 6=zt}] ≤ zobo ≤ zobbo .

(3.7)

6See Appendix A.1 for details.
7Again, see Appendix A.1.
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bb denotes the maximum debt-to-capital ratio

bb := sup½b ∈ R++| b ≤ 1− δ

1+ r(b)

¾
.

The following Lemma proves to be useful in order to write the Bellman

equation (3.5) in terms of zo and bo in a short and accessible form:

Lemma 3.1 (a) Y is non-empty and

(b) employing zero capital is suboptimal, i.e.

max
(zo,bo)∈Y

ṽ(zo, bo)− π(zo)wtI{zo 6=zt} > ψEt[v(wt+1, 0, 0) > 0

Proof. (a) As, et, zt ≥ 0 also etzt ≥ 0 holds. Thus to proove (a), it is
sufficient to show, that

∃z(wt) : z − π(z)[1− wtI{z 6=zt}] ≤ 0.

Because lim
x→0

π0(x) = +∞ and π(x)
x
≥ π0(x) (since π is concave), this ”self-

financing” z always exists.

(b) Using z from part (a) a firm can always pay out a larger dividend than

et and can also set bo = bt+1 = 0 as well. By paying a larger dividend in the

current period and having the same debt as if it was to stop production but

with a larger stock of capital, the expected value for t+ 1 must be larger than

Et[v(wt+1, 0, 0)], so that

ṽ(z, 0, wt, zt, bt) > ψEt[v(wt+1, 0, 0)]

follows. Because the plan ∀t : zot = z(wt) is always feasible and leads to

positive dividends, v (·) must be bounded from below by a positive real number,
so that ψEt[v(wt+1, 0, 0)] > 0.

Because of the above Lemma, firms never stop production completely
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respectively declare bankruptcy.8 Therefore, the optimal policy is always an

element of Y and thus the Bellman equation defining v is given by:

v (wt, zt, et) = max
(zo,bo)∈Y (wt,zt,et)

ṽ(zo, bo)− π(zo)wtI{zo 6=zt} . (3.8)

3.1.5 Adjustment process

In general, Y is only upper-hemicontinuous, thus v might not be continuous

everywhere. The lack of continuity arises because of the fixed adjustment

costs: If a firm employs a large stock of capital and is heavily indebted, it

may find itself unable to repay the debt obligations if the capital-imbalance

or the debt level rise marginally. Therefore it will be necessary to distinguish

two cases when describing firm level investment:

(a) The firm is in danger of becoming insolvent: this happens, if

1− et − π(zt)

zt
> bb . (3.9)

In this case the firm has a negative cash flow and cannot sustain the actual

level of capital employed by issuing new debt. Therefore, it has to (heavily)

cut back production to increase its average productivity. In consequence, a

firm always disinvests if in financial distress.

(b) The firm is not in danger of becoming insolvent:

Then, denoting the (optimal) capital-imbalance after adjustment with

z∗ and the ratio of debt to capital after adjustment with b∗, a firm adjusts

its stock of capital (i.e. it invests) in period t if the expected increase in

8This result seems a contradiction to empirical facts at a first glance, i.e. of course in
reality firms do declare bankcruptcy and are shut down. However, Lemma 1 should not be
taken literally as ”firms never disappear”. Basically the Lemma states, that the monopoly
power of a firm is always of some value, which would be lost upon bancruptcy. Hence, the
Lemma may better be interpreted as ”brands never disappear”, which surely comes closer
to reality than the former interpretation.
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discounted value outweighs the adjustment costs. That is if:

0 ≥ max
bo∈Z(zt,et)

ṽ(zt, b
o)− ṽ(z∗, b∗) + π(z∗)wt (3.10)

Z(zt, et) : =

½
bo ∈ R++|1− et − π(zt)

zt
≤ bo ≤ bb¾

or equivalently

wt ≤ min
bo∈Z

½
ṽ(z∗, b∗)− ṽ(zt, b

o)

π(z∗)

¾
. (3.11)

As shown in the appendix, the value of a firm that adjusts,

ṽ(z∗(wt, et), b
∗(wt, et))− wtπ(z

∗(wt, et)) , (3.12)

is monotonically decreasing in wt, so that for every (et, zt) there exists an

unique w̄ such that

ṽ(z∗(wt, et), b
∗(wt, et))− wπ(z∗(w, et)) R max

bo∈Z
ṽ(zt, b

o) for w Q w̄ . (3.13)

3.2 Cross-sectional investment

3.2.1 Aggregation

Having reduced the firm’s investment decision to a comparison of two values,

it is now possible to define for every (et, zt) a critical value Ω which is the

largest value of the stoppage duration wt for which the firm chooses to invest.9

Ω(et, zt) :=

(
w(et, zt)

1

if Z (zt, et) 6= ∅
if Z (zt, et) = ∅

(3.14)

As only contemporary state variables matter for the aggregation, the time in-

dices of state variables are suppressed henceforth. LetKA
t , I

A
t , Kt(e, z), It(e, z)

9Since w is always smaller than one, Ω(z, e) = const ≥ 1 implies that a firm adjusts
independent of its realized w. Furthermore, as a firm always disinvests if it is in danger
of becoming insolvent (:⇔ Z = ∅), Ω(z, e) = 1 is a sensible value if Z = ∅.
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denote the aggregate stock of capital, aggregate gross investment, and the

stock of capital and gross investment of firms with capital-imbalance z and

equity-to-capital-ratio e (sectoral aggregates) in period t, respectively. More-

over, let G(w) be the distribution of w. Then the investment hazard can be

defined as Λ(e, z) := G(Ω(e, z)) and we can define

z̄∗(e, z) := Λ(e, z)−1
Ω(e,z)Z

z∗(w, e, z)dG(w), (3.15)

which is the average optimal capital-imbalance of firms that invest condi-

tional on having an equity-ratio e and capital-imbalance z before investment.

At time t investment of firm j with capital-imbalance zjt and equity ejt,

which adjusts indeed, is given by

Ijt = [z
∗(wjt, ejt, zjt)− zjt]K

∗
it =

·
z∗(wjt, ejt, zjt)

zjt
− 1

¸
Kjt . (3.16)

Therefore, with these quantities at hand, the expected (cross-sectional) in-

vestment conditional on (e, z) can be expressed as

E[It(e, z)] = Kt(e, z)

·
z̄∗(e, z)

z
− 1

¸
Λ(e, z). (3.17)

Since adjustment-cost shocks w are i.i.d., the cross-sectional average invest-

ment rate i(e, z) follows directly from (3.17):

i(e, z) :=
It(e, z)

Kt(e, z)
=

·
z̄∗(e, z)

z
− 1

¸
Λ(e, z) (3.18)

Differentiating average investment i with respect to the equity-ratio e

yields an interesting decomposition of the effect of a change in the leverage
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(if ∂z̄∗
∂e
and ∂Ω

∂e
exist):10

∂i(e, z)

∂e
=

Λ(e, z)

z

µ
∂z̄∗(e, z)

∂e

¶
| {z }

level-effect

+
(z̄∗(e, z)− z)

z

∂Λ(e, z)

∂e| {z }
frequency-effect

(3.19)

While the first term represents a long-run or level effect of the equity-

ratio, the second term represents an only short run or frequency effect. The

latter effect is only short-run since an increase in Λ decreases the variance

of the cross sectional capital-imbalance and therefore later on decreases the

probability of investment. Due to this frequency effect investment can be

more sensitive to the financial situation than the optimal stock of capital is:

Theorem 3.1 (a) If [i(e, z) + Λ(e, z)] is large enough–but possibly smaller

than one–then the investment rate is more sensitive to the equity-ratio than

the optimal stock of capital, i.e. the elasticity of z̄∗ w.r.t. the equity-ratio is

smaller then the semi-elasticity of investment w.r.t. the equity-ratio:

∂i(e, z)

∂ ln(e)
≥ ∂z̄∗(e, z)

∂e

e

z̄∗
. (3.20)

(b) In an environment around (e, z̄∗(e, z)) we have

∂2i(e, z̄∗(e, z))
∂e∂z

Á
∂i(e, z)

∂e
≤ 0. (3.21)

Proof. (a) From equation (3.18) we obtain

i

Λ(e, z)
=
(z̄∗(e, z)− z)

z
.

10Proposition A.4 in the appendix shows that ∂Ω
∂ẽ
exists almost everywhere (a.e.).
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Using this to rewrite (3.19) in terms of elasticities η, we obtain

ηie =
e

i(e, z)

Λ(e, z)

z

µ
∂z̄∗(e, z)

∂e

¶
+

e

i(e, z)

(z̄∗(e, z)− z)

z

∂Λ(e, z)

∂e

=
Λ(e, z)

i(e, z)

e

z

µ
∂z̄∗(e, z)

∂e

¶
+ ηΛe =

h
z̄∗(e,z)

z
− 1+ 1

i
Λ(e, z)

i(e, z)
ηz̄
∗

e + ηΛe

=
i(e, z) + Λ(e, z)

i(e, z)
ηz̄
∗

e + ηΛe . (3.22)

If [i(e, z) + Λ(e, z)] + i (e, z) ηΛ
e

ηz
∗

e

≥ 1, this yields

∂i(e, z)

∂ ln(e)
= ηie · i(e, z) = [i(e, z) + Λ(e, z)] ηz

∗
e + ηΛe · i(e, z) ≥ ηz

∗
e (3.23)

(b) Suppose ∂i(e,z)
∂e

> 0 (< 0), now let e increase marginally then we have

for some firms an increase (decrease) in realized z. Now assume contradic-

tory ∂2i(e,z̄∗(e,z)))
∂e∂z

> 0 (< 0), then investment rates would rise (fall) further,

contradicting z̄∗ to be optimal. Thus the stated inequality must hold.

Remark 3.1 Differentiating (3.23) with respect to ln(z) yields the following:

∂2i(e, z)

∂ ln(e)∂ ln(z)
=

∂

∂ ln(z)

£
[i(e, z) + Λ(e, z)] ηz

∗
e + ηΛe · i

¤
(3.24)

=
∂ [i(e, z) + Λ(e, z)]

∂ ln(z)
ηz
∗

e +
∂2z̄∗

∂z∂e

e

z̄∗
z + i

∂ηΛe
∂ ln(z)

+ ηΛe
∂i

∂ ln(z)

As z and e enter Y only multiplicatively and as Y determines z∗(w, e, z),
∂2z̄∗
∂z∂e

can be approximated by ∂2z̄∗
∂e2

e
z
. Therefore, we can state:

∂2i(e,z)
∂ ln(e)∂ ln(z)

' ∂[i(e,z)+Λ(e,z)]
∂ ln(z)

ηz
∗

e +
∂2z̄∗
∂e2

e2

z̄∗ + i ∂ηΛ
e

∂ ln(z)
+ ηΛe

∂i
∂ ln(z)

= ∂ηz
∗

e

∂ ln(e)
+ ∂i(e,z)

∂ ln(z)

£
ηz
∗

e + ηΛe
¤
+
h

i
Λ(e,z)

+ ηz
∗

e

i
∂Λ(e,z)
∂ ln(z)

. (3.25)

Although the sign of these terms is not clear from analytic grounds, we would

expect for negative ln(z) the effect of equity on the optimal capital stock to
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be decreasing in e, the adjustment hazard to be decreasing in z and the ex-

pected investment to be a decreasing function of z, too. Hence, intuitively
∂2i(e,z)

∂ ln(e)∂ ln(z)
< 0 if i is positive.

3.2.2 Discriminating between our model and alterna-

tives

The above theorem and remark are central in discriminating between the

model of this chapter and both, the Myers and Majluf (1984) pecking-order

of finance and the liquidity-dependent cost of capital (but convex adjustment

cost) models: In the liquidity-dependent cost of capital models with convex

adjustment costs the long-run effect is clearly dominant.11 Any effect of liq-

uidity on the speed of adjustment in these models is only a second-order

effect. Slower adjustment marginally saves internal funds, so that the mar-

ginal gains of faster adjustment and the marginal-costs of internal funds have

to be equalized. Therefore, liquidity can have an influence on the adjustment

speed only via the second-order derivative of the costs of capital with respect

to liquidity. In the fixed adjustment cost model however, investment is an

extramarginal decision. For a given fixed cost of investment, a change in

liquidity hence may render some adjustments unprofitable, so that there is a

first-order effect of liquidity on the adjustment speed.

In the pecking-order model there is an important short run effect of liq-

uidity independent of the form of adjustment costs. In these models when

adjustment costs are concave typically three regimes of firm-finance emerge.12

These are stylized in figure 3.1.

The firms with a high z (low productivity of investment) are financially

unconstrained, rely on internal finance, and their investment decision is in-

11However, note that in a model with convex costs z
o has to be defined somewhat

differently. In this case it is the capital imbalance at which a firm would not actively
change the capital imbalance by investing. Yet and although firms adjust their capital
imbalnce in the short-run towards this level, outside its long run equilibrium level (where
e is endogenuous) zo is never actually reached by active investment.
12See Gomes (2001), Bond and Meghir (1994), or Whited (1992) for details.
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constrainedinternal
finance

external
finance

productivity
of investment

investment

actual investment

unconstrained investment

Figure 3.1: A stylized version of the pecking-order model

dependent of their liquidity constraint. Firms with low z rely on external

finance and depending on the form of transaction costs, investment of these

firms can be sensitive to liquidity. Firms with intermediate z are strictly

constrained by liquidity and a change in liquidity changes investment. Firms

with high productivity rely on external finance. For these firms increasing eq-

uity either has no effect or actually reduces the sensitivity of investment with

respect to fundamentals, because these firms become liquidity constrained

when equity rises. This can happen since the gains of obtaining external fi-

nance get smaller, the larger the internally financed amount of investment is.

Therefore, the cross-derivative ∂2i(e,z)
∂ ln(e)∂ ln(z)

would be positive. Consequently,

Theorem 3.1(b) and Remark 3.1 can be used to test the model of this paper

against (simpler) pecking-order alternatives.13 Another possibility to dis-

13This argument, however, only holds if transaction costs in a pecking-order model are
deterministic. If transaction costs are stochastic, cross-sectional aggregation of the short
run investment function may be governed by the distribution of transaction costs, which
- if chosen from a set of arbitrary distributions - can have a dynamics similar to the one
of our model as a result.
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criminate between fixed cost of investment and fixed cost of external finance

models is the investment behavior for z > 1 : Fixed disinvestment costs im-

ply a range of inactivity, while transaction costs of finance yield immediate

disinvestment, if firms can hold financial assets.

Whether within our model the debt-ceiling or the liquidity dependence of

the cost of capital is more important can be evaluated by comparing ∂i
∂z
× ∂z̄∗

∂e

and ∂i
∂e
. If only the liquidity dependence is of importance, ∂i

∂z
× ∂z̄∗

∂e
and ∂i

∂e

should be close to equal. In this case a change in the equity ratio alters the

discount factor. This is similar to an increase in z, i.e. the typical investment

project is smaller. Yet, there still is an effect on investment frequency. Only

this effect is similar to the effect a marginal change in z would have, smaller

investment projects only pay at lower investment costs.

If the debt-ceiling is the important financial friction, ∂i
∂e
can be expected

to exceed ∂i
∂z
× ∂z̄∗

∂e
substantially. Here, liquididity corresponds to a number

of investment options a firm can expect to have at most over some given

period of time. The smaller the number of options is, the larger the value of

each option will be. This option-value adds another factor to the fixed cost

of adjusting the stock of capital.

In that sense, even if we later estimate the investment function non-

parametrically and even if the estimated derivatives have no structural inter-

pretation in the form of coefficients of an adjustment-cost function, we can

identify the various investment models using first- and higher-order deriva-

tives. Moreover, in its general formulation, the model nests the alternative

models as it only partially differs with respect to the ”test objects” men-

tioned.

3.3 Aggregate investment and its dynamics

One obtains the time-series of aggregate investment by aggregating over the

distribution of (e, z) pairs. Aggregate investment can therefore be expressed
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as:

IAt =

Z Z
i(e, z)Kt(e, z)f(e, z, t)dedz (3.26)

where f denotes the joint density of (e, z) .

To obtain a simplified expression for the aggregate investment equation,

we make the following assumption:14

Assumption 3.4: Let Kt(e,z)

KA
t

and i(e, z) be independent in (e, z).

Then we get for the aggregate investment rate IA
t

KA
t

:

IAt
KA

t

'
Z Z ·

z̄∗(e, z)
z

− 1

¸
Λ(e, z)f(e, z, t)dedz. (3.27)

Given equation (3.27), aggregate investment is fully determined by the dis-

tribution of equity and the conditional distribution of capital-imbalances.

The dynamics of the aggregate investment series is then determined by the

transition from f(·, t) to f(·, t+ 1). Now let–as in Caballero et al. (1995, p.

35) and without loss of generality–the sequence of shocks/adjustment be:

1. adjustment as described

2. idiosyncratic shocks ξ

3. aggregate shock vt and depreciation δ.

Given this sequence, we can now describe the transition from f(·, ·, t− 1)

to f(·, ·, t). We do so by proceeding backwardly beginning with step 3.
Given adjustment and idiosyncratic shocks, aggregate shocks and depre-

ciation still alter the capital imbalance and the equity ratio. If e1 is the

equity ratio before depreciation, then the equity ratio after depreciation is

e2 =
e1 − δ

(1− δ)

14See Caballero and Engel (1999, p. 816) for a detailed numerical justification of a
closely related assumption.
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so that

e1 = e2 (1− δ) + δ. (3.28)

Analoguously, we obtain

z2 =
K1 (1− δ)

K∗
1 exp(vt−1)

= z1
1− δ

exp(vt−1)
(3.29)

and hence

z1 = z2
exp(vt−1)
1− δ

. (3.30)

Therefore, expression (3.28) and (3.30) give the transformations the capital

imbalance and the equity-ratio of a given firm undergo by step 3. Let the joint

distribution of (e, z) after adjustment and idiosyncratic shocks be denoted

by ef1. For f we then obtain.
f(e, z, t) = ef1µδ + e(1− δ), z

exp(vt−1)
1− δ

, t− 1

¶
. (3.31)

For step 2, let g (ξ) denote the density of the productivity shocks ξ. Then–

using the same reasoning as for the aggregate shocks and denoting the dis-

tribution after adjustment by ef2–we obtain
ef1(e, z, t-1) = Z ef2(e, z exp(d+ ξ), t-1)g(ξ)dξ. (3.32)

As adjustment itself is governed by the stochastic stoppage duration, adjust-

ment is a stochastic variable itself. So let
·
Kjt := 1 + ijt denote the growth

rate of capital and let
·
Ejt be the growth-rate of the equity-ratio. Moreover,

let H
µ ·
E,

·
K

¯̄̄̄
e, z

¶
denote their conditional distribution. This distribution

governs step 1, the adjustment-process. The distribution ef2 of (e, z) after
adjustment is generated by a convolution of f in period t− 1 and H:

ef2(e, z, t-1) = Z dH(o, p| e
o
, z
p
, t-1)f( e

o
, z
p
, t-1)dodp. (3.33)
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Since wt are i.i.d., H is stationary. Combining (3.31) - (3.33) yields

f(e, z, t) =

Z
dH(o, p| e

o
, z
p
)f
³
δ +

³
e
o
+ o

p

´
(1− δ), z

p

exp(d+ξ+vt−1)
(1−δ) , t-1

´
g(ξ)dξdodp .

(3.34)

Therefore, the aggregate investment series can be characterized as a gen-

eralized Markov-chain. Note that because of the presence of aggregate shocks

f is non-stationary.15

Our model maps the parameters at the firm level now to some density

dH. Therefore and as in Caballero and Engle (1999), even with only aggre-

gate data–and given an initial distribution f (e, z, 0)–one could still obtain

parameter estimates by choosing the firm level parameters as to maximise

the likelihood of the aggregate investment and equity-ratio data. However,

in this thesis we will pursue an empirical approach using firm-level data.

3.4 Brief Summary

As we will begin the following chapter with a relatively extended discussion

of the empirical implications of our model, we shall only very briefly sum-

marize the main results of this chapter: The key result of our model was to

introduce a frequency-of-adjustment interpretation of the effect liquidity has

on investment. It explains seemingly contradictory evidence concerning the

influence of liquidity on investment decisions in the short and on stocks of

capital in the long-run. Moreover, we provided implications of the model for

15If f were stationary in the absence of aggregate shocks, the density of disequilibria
and equity to capital ratios through which a firm goes over its lifetime would be ergodic
(Caballero and Engel (1992)). Without aggregate shocks f would be stationary, if the
operator T defined below converges (to a non-degenerated density).

(Tf)(e, z) : =

Z
dH(o, p|e · p+ o

p
,
z

p
|e · o, z · p)

×f
µµ

e · p+ o

p
+ δ

¶
(1− δ),

z

p

exp(d+ ξ)

(1− δ)

¶
g(ξ)dξdodp
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the derivatives of the investment function which can be used to test our model

against a broad range of alternatives. Furthermore, we have shown how the

aggregate investment series driven by the distributions of equity-ratios and

capital imbalances.

We leave an extended summary of the main implications–focused on its

empirical content–of our model to the beginning of next chapter, where our

model will be applied to German and UK firm panel-data.
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Chapter 4

Empirical evidence

With the initial considerations of the last chapter at hand, we can now turn

towards empirically assessing the importance of our claim: financial factors

and non-convexities amplify each other’s importance. We will do so by ana-

lyzing both a UK and a German dataset, which both contain accounting data

at the company-level. Yet, or of course, we will also check the existence of an

influence and its importance for both factors themselves. Before proceeding,

however, we should reconsider our main theoretical results.

4.1 Summing up and extending the theoret-

ical considerations

Like before, let k∗ denote the log of the stock of capital a company would

hold in the absence of any adjustment costs. As argued, this stock of capital

may depend on the (log) equity-ratio e in the presence of some influence of

equity on the cost of finance, i.e. the cost of capital. Thus, k∗ = k∗ (e, ξ) , in

which ξ denotes the productivity of capital. Let k be the log of the capital

actually employed. Now define the capital imbalance

x := z∗ − z = κ + k∗ − k, (4.1)

49
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where κ+k∗ is the dynamically optimal (long-run) capital-stock in the pres-

ence of adjustment costs. Parameter κ captures the optimal capital imbal-
ance, i.e. the capital-imbalance that is optimally installed to account for

depreciation and trends in productivity. For example, if there is depreci-

ation, a firm will adjust to a larger stock-of capital than it would hold in

the absence of adjustment-costs. The firm does so to minimize the average

distance between the capital-stock and its optimal level.

Now suppose the firm faces only fixed costs of investment; then it will

invest up to (κ + k∗) if it decides to invest. Therefore, investment would

equal mandated investment as in (3.16) and hence is given by

I = exp (κ + k∗)− exp (k) . (4.2)

Again, let Λ(x (e) , e) be the hazard rate of investment for a firm with capital

imbalance x and equity e. The expected investment rate i is then given by

i (x, e) := E
µ

I

exp (k)

¶
= Λ(x (e) , e) [exp (x (e))− 1] (4.3)

If investment is not lumpy but continuous, then Λ can be interpreted as the

fraction of mandated investment that is actually realized. As discussed in

the previous chapter, Λ is a function of both x and e: Internal funds may

not only change costs of capital but also affect the speed of adjustment itself

and thus interact with productivity in a more complex way.

In order to assess to what extent financial considerations enter the firm’s

decision process mainly by a flexibility or a cost-of-capital argument we can

apply our decomposition of the effect of a marginal change in equity on

investment, obtained in the previous chapter in (3.19):

∂i (x, e)

∂e
=

∂i (x, e)

∂x

∂x

∂e| {z }
level-effect

+
∂Λ

∂e
[exp [x (e)]− 1]| {z }
frequency-effect

. (4.4)

Thus, the effect of a marginal change in equity on investment can be decom-
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posed into a ”level”-effect and a ”frequency”-effect. The ”frequency”-effect

reflects changes in the speed of adjustment to the target stock of capital. The

”level”-effect results as the change in the optimal stock of capital induced,

multiplied by the marginal propensity to invest upon changes in productiv-

ity. The optimal stock of capital may for example be changed by e through

altering the cost of capital or the (implied) managerial discount-factor.

Given this decomposition, we can test two hypothesis how the availabil-

ity of (accumulated) internal funds influences investment activity. The first

hypothesis reflects the long run neutrality of finance:

H0
0 : Internal funds have no effect on the optimal stock of capital, a company

holds. This is equivalent to ∂x
∂e
= 0.

The second hypothesis accounts for the influence of equity on the invest-

ment process, this is:

H1
0 : Investment reacts to changes in internal funds only because the optimal

stock of capital is changed, i.e. ∂i(x,e)
∂e

= ∂i(x,e)
∂x

∂x
∂e
.

If H0
0 cannot be rejected, the Modigliani-Miller theorem holds in the long

run. However, this still allows for the possibility that finance influences the

transition path of the stock of capital, i.e. hypothesis H1
0 is rejected. This

could for example be due to fixed costs of external equity finance or short-run

ceilings on debt-ratios.1 Note that (only) if H0
0 holds true, H

1
0 simplifies to

∂i(x,e)
∂e

= 0.

Moreover, we can test the way fundamental and financial variables inter-

act in the investment decision. This–as laid out in Chapter 3–enables us to

discriminate between the ”convex-adjustment but fixed financial transaction

costs”, the ”net-worth effect in finance with fixed adjustment costs” and the

”both fixed adjustment and transaction costs” model.2

1See Gomes (2001) for a discussion.
2See sections 4.2.5.3, 4.3.4 and 4.3.5.
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Since productivity of capital is unobservable, a proxy for the marginal

productivity of capital or directly for fundamental investment incentives is

needed. To obtain such a proxy, one could of course rely on Tobin’s-q. How-

ever, the drawbacks of this measure have been discussed in detail in Chapter

2. Therefore, for the German data, we follow a technique closest to the one

used by Cooper and Haltiwanger (2002): As we have data on firm-specific

wages available, we will use first-order employment conditions, to determine

the productivity of capital and hence the optimal stock of capital. In con-

trast to Cooper and Haltiwanger, however, we allow the technology to vary

across firms.

For the UK-data we do not have any wage data available, but detailed

data on firm-specific subsidies. This makes the procedure of Caballero et al.

(1995) an attractive option, as we have some variation in observed marginal

cost of capital, even if we control for firm and time fixed-effects.

However, our analyses of the UK and the German sample not only differ

in the way the optimal stock-of-capital measure is generated. For the UK

data we present full estimates of the investment functions as well as average

derivative estimates. To avoid any longueurs, for the German dataset only

the derivative estimates, the ”parameters” of interest, are reported. This

gives room to address possible endogeneity problems associated with the

liquidity variable. We will begin with the analysis of the UK data.

4.2 Evidence from a sample of UK firms

4.2.1 Measuring the capital imbalance

Alternatively to the two approaches mentioned above, we could of course

proceed with the full-information maximum-likelihood approach of Caballero

and Engel (1999).3 However, when micro-panel data is available, as in our

3To do so we would need to estimate the distributions involved in (3.34) . The distri-
bution of equity can be estimated without use of any theoretical model with a suitable
parametric or nonparametric estimator. However, one has to generate B and Ω for any
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case) the two-step approach of Caballero et al. (1995) is more flexible. We

follow this approach and estimate z as a proxy of fundamental investment

incentives in a first step. Thereafter, we regress investment on this proxy and

the equity-ratio, to obtain the (short-run) expected investment function. It

seems useful to take this approach, since it is applicable to a much broader

class of models that incorporate nonlinear adjustment-/investment-functions

and/or capital-market-imperfections, i.e. this estimation approach nests the

alternative models we want to test against.

The first intermediate goal of this section is hence to construct an esti-

mator for the capital-imbalance z. In contrast to Caballero et al. (1995), it

cannot be assumed that the desired capital is proportional to the stock of

capital K∗ that a plant would hold in the absence of adjustment costs. From

lemma 2, we know that z and e enter only multiplicatively in z∗. Taking logs

of all variables except for i (e, z) (without changing notation), we then can

write the optimal capital imbalance, as defined in the previous chapter, as a

function in two arguments. Abusing notation slightly, we replace z∗(w, e, z)

by z∗(w, e + z). Neglecting the differential effect of e and z on the composi-

tion of z̄∗, we then can also write z̄∗ as a function of (e+ z) . Assuming z̄∗ is

differentiable, a Taylor-approximation of z̄∗(e+ z) around z̄∗(0)–neglecting

higher-order-derivatives–yields for desired stock of capital k̃ in logs (by the

definition of z∗):4

z̄∗i (eit + zit) = k̃it − k∗it = αi0 + βi(eit + zit). (4.5)

For an isoelastic production/sales function (in logs: yit = ψ0it + ψk
i kit) we

G from our Chapter 3 model and choose a starting distribution f(·, 0). Then one is able
to maximize the likelihood of the system by choosing an optimal G (Caballero and Engel,
1999). Though this approach does not rely on a specific measure of fundamental invest-
ment incentives, specifying an initial distribution f (·, 0) and the distribution of shocks
to productivity and adjustment costs can be problematic. Moreover, as a very structural
approach it does not nest all the alternative models we want to test against.

4This means, we approximate z̄∗ around the average optimal stock of capital a firm
would like to hold that has a book value of equity equal to the frictionless optimal stock
of capital.
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obtain from the first order condition for k∗it:
5

−zit = k∗it − kit =
1

1− ψk
i

£
ln(ψk

i ) + yit − kit − θi ecoit¤ , (4.6)

where kit denotes log-capital employed, yit denotes log-sales, ecoit denotes log
cost-of-capital and bi denotes the elasticity of sales to capital. Now combining

(4.5) and (4.6) yields:

z̄∗it − zit
1− βi

= αi1 + ηi [yit − kit − θi ecoit] + β
i

1−β
i

eit (4.7)

with αi1 : = αi0

1−βi

+
ln(ψk

i )

1− ψk
i

and ηi :=
1

1− ψk
i

In this equation z̄∗it − zit gives the log of the ratio of dynamically optimal

capital to capital currently employed. If firms adjust their stock of capital

over time, we can expect z̄∗it− zit to be mean reverting. y, k and eco are most
likely to be non-stationary. The equity-ratio eit in the opening balance is

predetermined. If z̄∗it − zit is not only mean-reverting but also stationary,

there must be a cointegration relation and θ and β can be estimated from a

panel-cointegration regression (Caballero et al., 1995, p. 15).6 ,7

Regarding (βi, θi) we assume the cointegrating vector to be homogeneous

(at least amongst industries Indj). Thus (βi, θi) = (β, θ)∀i ∈ Indj. Further-

more, since the number of parameters is larger than the number of variables,

one needs to approximate ψk
i by the cost share of equipment capital (Ca-

ballero et al., 1995, p. 15).

Given consistent estimators bθ, bβ (and bαi0) it is then possible to compute

z and estimate i (e, z), f(e, z, t) non-parametrically.

5See appendix B.1 for details, especially for the definition of bi.
6Obviously it would be preferable to test for a cointegration relation being present

in the data. However, as the panel data we have is large only along the cross-section-
and not along the time series dimension, such a test would be meaningless. Nevertheless,
estimating the cointegrating vector should still be possible, as this is even possible in pure
cross-sections (Madsen, 2001).

7Strictly speaking, of course we only estimate a long-run covariance. This covariance
reflects the cointegration relation if there is such a relation, which is what we assume.
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4.2.2 Estimation procedure

For estimating the cointegration relation (4.8), Phillips’ and Moon’s (1999)

”full-modified panel cointegration estimator” (henceforth PFM-OLS) is used.

This estimator is
√
nT -consistent, asymptotic normal and corrects for possi-

ble endogeneity of the regressors. However, the consistency result is obtained

by letting T (the time series dimension) and n (the number of observations

per individual) tend to infinity sequentially, i.e. it is a consistent estima-

tor for samples which are larger along the time-series than along the cross-

sectional dimension. Nevertheless, the estimator should still be superior to

OLS. Moreover and mentioned before, Madsen (2001) shows, how inference

on the cointegrating vector can even be obtained from a cross-section in a

similar framework.

Another drawback of the PFM-OLS estimator is that it is formulated

for balanced panels with integrated regressors only. The data we have is an

unbalanced panel and at least for e we would rather assume it to be an I(0)

process. However, the PFM-OLS estimator is a generalization of the full-

modified OLS estimator of Phillips and Hansen (1990) and Phillips (1995)

and hence we expect the results of Phillips (1995) to carry over to the panel-

case as well, i.e. the estimator is
√
nT -consistent and asymptotic normal

for parameters of stationary regressors. The standard errors will thus be

calculated in analogy to the time-series case.

To account for the unbalancedness, the unbalanced-panel equivalents of

all items that appear in the formula of the estimator are calculated.8 For

inference the average number of observations per firm is used. The equation

we use for estimation is:

ηi (kit − yit) = αi1 + γt − θηi ecoit + κeit + uit, κ :=
β

1− β
. (4.8)

8For example when estimating the short-run covariance matrix, we calcualte the co-
variance for every firm in the sample using the firm-specific number of observations and
then average over firms.
For inference in the I(1)-regressor case we calculate confidence bounds on the basis of

T being the average number of observations per firm.
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The time-dummies γt have been added for two reasons: The first reason is

that the data used covers a period of large shocks to inflation, thus measuring

the real interest rate correctly is something to be concerned about. The

second reason is that we do not have data on taxational shocks–common to

all firms. The usual within transformation will be used to remove time and

individual effects.

With the estimator of θ at hand, we can use (4.6) to calculate end-of-

period t capital imbalances ẑt+1. Of course, we would need to know the

beginning-of-period capital imbalance. Nevertheless, even with the consistent

estimates generating beginning of period capital imbalances is problematic.

Of course one could simply subtract investment from ẑt+1, which would yield

beginning-of-period z consistently with our model. However, subtracting the

regressand in generating the regressor is obviously problematic.9 Instead,

we will simply take bzt, as a proxy for zt. The innovation to productivity

and costs will then however cause a measurement error, which may bias our

estimates for the investment-function towards zero. Yet, there are no obvious

instruments available to correct for this problem.

After removing individual averages and time-specific effects, we obtain

for our model:

bzit+1
ηi

=
¡
kit − ki. − k.t + k..

¢− (yit − yi. − y.t + y..)

+ bθ(T,n) ³ecoit − ecoi. − eco.t + eco..´ (4.9)

As already mentioned before, in a second step, the investment rate ijt is

regressed non-parametrically on (ejt, bzjt) . To compare the short- and long-run
behavior, and to compare the results with other empirical studies, average

derivatives of i(e, z) are estimated, as well. These are the counterparts to the

coefficients estimated in linear models. However, as we only observe average

z on the company level, but not for every single plant, and also because of

9In an earlier version, this approach has been taken and the results were qualitatively
the same.
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the measurement error described above, the second-order derivative of the

investment function in z will be underestimated if the function is convex, i.e.

the function will appear to be less curved than it is.

The nonparametric estimation procedure, that will be employed will basi-

cally be a generalized-nearest neighborhood estimator. However, accounting

for firm-specific effects is not as straightforward in the nonparametric case,

as it is in the parametric one (Ullah and Roy, 1998). According to our speci-

fication in (4.9) the investment function shall meet the following assumption:

Assumption 4.1: For each firm j at time t investment i is given by

ijt(zjt, ejt) = a0j+b0t+i(zjt−(azj + bzt) , ejt−(aej + bet))+vjt . (4.10)

Moreover, E(i (·, ·)) = 0 (to identify i). axj and bxt are individual- and

time-fixed effects.

Under this assumption the function i can be directly estimated using

within-transformed quantities only. Alternatively, the nonparametric first-

derivative estimator of Ullah and Roy (1998) could be applied. To obtain the

investment function one has to integrate over the derivatives. For estimating

average derivatives however, we will also apply the estimator of Ullah and

Roy.

4.2.3 Data

The UK-data we employ is the BSO-dataset of the Cambridge/DTI Data-

base.10 This database contains annual accounting data from UK companies

from 1976 to 1990. 50494 company-year observations are included in the

data. About half of them come from manufacturing firms. For the subse-

quent analysis the dataset has been restricted to companies of the manufac-

turing sector with positive fixed capital and positive equity. Moreover, only

10See Goudi et al., 1985.
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firms with 5 or more consecutive observations available remain in the sample.

After removing outliers (see below), the sample contains 7147 observations

from 915 different firms.11

The BSO dataset contains capital and investment data for land and build-

ings as well as for tools and machinery. Since reported depreciation rates for

machinery are about 40%, we restrict the analysis to land and buildings.12

All data have been deflated to 1975 prices using the retail-price-index (RPI).

The user-cost of capital are computed as the average reported deprecia-

tion rate (on land and buildings) for each firm δi plus the real interest-rate

(reported in table 1). But then a fraction sit of the investment spending is

payed for by subsidies. In consequence, this fraction has to be subtracted

from the cost: ecoit = ln((δi + rt)(1− sit)). (4.11)

The real interest series is obtained by subtracting annual inflation rate (on

the basis of RPI) from 3-month Euro-sterling deposit rates, see table 4.1.

Due to the logarithmic transformation the real-interest rate shocks are not

completely removed by the time-dummies.

The data on subsidies is problematic as we obtain sit ≥ 1 for a few firm-

years. Therefore, all these observation are removed by discarding all obser-

vations with cost-of capital below the 4% and above the 99.5% quantile.13

Moreover, apriori it is doubtful that the yearly average subsidy fraction sit is

equal to the expected marginal fraction of subsidies. In this sense, there could

11There are missing observations for few firms due to the way outliers are removed, i.e.
we have an observation in t − 1 and in t + 1 but the observation in t is removed. The
within-transformation we use takes care of this, but we simply neglect this fact for the
following regressions. More strictly, we either would have to take the whole time series
for the firm out of the sample or at least treat observations after the outlier and before
differently. However, in any case we would lose quite many observations.
12Although our model might still hold true for fast depreciating capital goods, we would

need data at a higher frequency to sensibly analyse the data. At a depreciation rate of
50% capital goods are replaced on average every second year on a regular basis, if the
stock of capital stays constant. Hence, we can expect to hardly find any influence of fixed
costs in yearly data.
13Additionally, we remove observations with the 0.05% highest or lowest costs after the

within transformation.
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Table 4.1: Nominal interest-rate i, real interest-rate r,
change in the RPI, deflator P

year 1975 76 77 78 79 80 81 82

i [%] 11.4 13.5 8.9 10.4 13.9 16.7 13.9 12.3
RPIt+1
RPIt

[%] 17 16 9 13 17 12 9 5

r [%] -4.75 -2.18 -0.09 -2.28 -2.65 4.22 4.53 6.93

P 1 1.17 1.357 1.479 1.672 1.956 2.191 2.388

year 83 84 85 86 87 88 89 90 91

i [%] 10.1 10.0 12.2 11.0 9.7 10.3 13.9 14.8 11.5
RPIt+1
RPIt

[%] 5 5 4 4 5 6 8 7 5

r [%] 4.89 4.72 7.91 6.70 4.48 4.07 5.46 7.26 6.22

P 2.507 2.632 2.764 2.875 2.990 3.139 3.327 3.594 3.845

theoretically be a measurement error problem present in this specification.

However, there are no obvious instruments available and the actually esti-

mated coefficient looks in no way biased downwards, as it is insignificantly

different from its theoretical value of 1.

Table 4.2 reports descriptive statistics for the variables of the sample

that we use. The within transformation is calculated before taking first

differences, and thus before loosing the first observation for each firm. Hence,

the regressors do not have mean zero exactly.

In chapter 2 we summarized the recent literature on q-theoretic empiri-

cal investment models which has highlighted the role of measurement errors.

Although the analysis does not rely on q, in two other systematic ways a

measurement error might be present in the cost series. The first is a sys-

tematic risk effect, the second would be a difference between our constructed

real interest series and the real interest rate on debt. If firms have different

idiosyncratic risks, their costs of capital are different. If risk enters capital

costs multiplicatively, however, the fixed effects perfectly control for this (if

risk is constant over time), otherwise they still should do most to remove the

measurement-error bias.14 The same argument also holds true for differences

14Note that obviously, if financial frictions determine the cost of capital, our measure of
costs measures with an error. However, the residual is just explained by the parameter of
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Table 4.2: Descriptive statistics of the quantities used
(within-transformed)

full sample removing first obs. (as in PFM-OLS)
min max std

ηy −5.655 3.438 0.326
ηk −3.389 6.302 0.486
η eco −.4233 0.627 0.075
e −2.414 1.585 0.210
ηa 0.617 1.000 0.026
zb −5.680 4.775 0.358
i −10.37 0.778 0.514

mean min max std
η (y − k) 0.001 −5.648 4.956 0.383
η eco −0.004 −.4233 0.627 0.062
e 0.0005 −2.414 1.585 0.209

before individual demeaning
z −4.08 −10.66 1.716 0.796
ic 0.339 −0.936 8.115 0.571

aNot demeaned
bAfter removing individual effects, the correlation of capital-imbalance and equity-ratio is about 0.032
cGross-investment, calculated as annual differences of reported capital stocks.

between the real-interest series used and the relevant real-interest series for

firm debt.

As a last preliminary check, we test for independence of investment rates

and equity. For the full dataset, i.e. without restricting to more than 5 con-

secutive observations, Ahmad and Li’s (1997) nonparametric kernel-based

test yields a test statistics of 10.0775. Therefore, the hypothesis of indepen-

dent equity and investment rate distributions can be rejected far below the

0.1% level.

4.2.4 Long-run optimal stock of capital

Table 4.3 reports estimates of (4.8) for the whole dataset as well as for the

industries for which many observations are available. These are Food (21),

Chemicals (26), Non-electrical engineering (33), Electrical Engineering (36),

Paper, Printing & Publishing (48) and Transport & Communication (50).

The standard errors are given in parentheses.

The estimated long-run elasticity of capital with respect to the user-costs

is with 0.9752 statistically insignificantly different from 1. The elasticity with

equity in our regression.
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Table 4.3: Estimates from the cointegration regression
(PFM-OLS, Within)

full sample By industriesc

κ θ
P

Tini

PFM-OLSa 0.079 0.98 5944
prelim. OLS 0.070 1.08
std. err. I(1) 0.026 0.07
std. err. I(0)b 0.035 0.14
OLS 0.082 0.71 7147

Ind. κ θ
P

Tini

21 PFM 0.191 1.73** 471
OLS 0.136 1.340 554

26 PFM 0.108 1.119 760
OLS 0.097 0.738 897

33 PFM 0.020 0.32** 836
OLS -0.019 0.075 1065

36 PFM 0.164 0.957 534
OLS 0.209 0.443 626

48 PFM -0.037 0.991 410
OLS -0.047 0.570 493

50 PFM 0.296 0.627 378
OLS 0.156 0.637 482

aOnly observational units have been used for which (outliers removed) 5 or more observations are available.
bThe standard errors are obtain as panel analogues to Phillips (1995, p. 1033ff).
cFull industry-sample OLS estimates are reported in brackets ( ).

** Significantly different from the remaining-sample-estimate at the 5%-level - based

on PFM-OLS estimate under the assumption of an I(1)-regressor.

respect to the equity-ratio is with κ
κ+1

= 0.077 statistically significant under

both the I(0) and I(1) assumption for e.15 If the equity-ratio influences the

long-run stock of capital through influencing the marginal cost of finance

(interest rate on debt), these estimates imply an elasticity of the cost of

finance with respect to the equity-ratio that is equal to κ
θ
' 0.081, which is

only moderate.

The OLS-estimates for the elasticity with respect to equity is slightly

lower than the PFM-OLS-estimate. This is quite in line with what one

would expect: High realizations of z induce losses and will therefore lower

the equity-ratio. Other explanations, such as older firms being less produc-

tive and more equity financed are mostly controlled for by the fixed effect.

15If e exhibits lag-dependency, however, the parameter-estimate of β may be biased.
In section 4.3 this issue is discussed in more detail using the German dataset. For the
German data, we show the bias from lag-dependency to be negative, if present.
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Although there are differences among subsample estimates these are insignif-

icant, except for two estimates. Therefore, we conclude the model to be

reasonably specified as a homogeneous panel.

Compared to the estimates of Caballero et al. (1995) the PFM-OLS esti-

mates of the cost-elasticity are much closer to its neoclassical-theory value of

1. Moreover, the variation between the industry specific estimates is slightly

smaller.

With the regression estimates it is now possible to construct a time seriesbzit for each firm. The series is constructed using all 7147 observations.16
4.2.5 Investment behavior

4.2.5.1 Density and conditional expectations estimates

Since the structure of our investment model is highly nonlinear, and the

functional forms of the profit function and distributions involved are not

quite clear, a nonparametric estimation is most fruitful.17

Figure 4.1 shows the distribution of within transformed investment rates

conditional on the capital-imbalance bz. The distribution has been estimated
with a normal-kernel estimator and a fixed window width of 0.12×n−

1
6 , both

z and i have been standardized. The relationship is as expected: Firms with

lower z invest more. More surprisingly and in line with the model the distri-

bution of investment rates has two peaks for high mandated investments.

For firms with an unproductive capital stock, we find three peaks in the

distribution, one where no disinvestment occurs, one with partial (uncon-

strained optimal) disinvestment and one peak for nearly full disinvestment,

16However, 3% of the observations were discarded as outliers with respect to the within
transformed investment-rate. We do so by removing the top 0.5 % observations and the
bottom 2.5 %.
17The non-parametric estimates presented in this section were generated in autumn 2000.

At that time, computational effort of the variable window width estimator still played some
role . This forced us to rely on less computational intense estimation techniques, such as
k-nn estimators. At the time, the estimates presented in section 4.3 were generated (Spring
2003), this issue was of much lesser importance, as the computer system available then
was about 10 times faster.
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being again perfectly in line with the model. However, these findings are on

the boundary of the support, where the estimator becomes less reliable.

Figure 4.1: Density of the investment-rate distribution conditional on z

However the distributional findings are not completely supportive: Most

firms do by far not remove their capital-imbalance completely in case they in-

vest. One explanation for this could be time-to build constraints which cause

investment to be spread over two accounting periods. Another explanation

is that many of the firms in our sample are large firms. These are themselves

aggregates of many establishments. Therefore, given z, the model presented

above would yield an approximate investment rate of n
m
i(e, z) for a company

with m independent establishments of which n establishments adjust. The
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distribution of n would then be given by a binomial distribution B with:18

P (n|z, e) = B(n|m,G(Ω(e, z))

When the number m of establishments per firm is large enough we would

expect to hardly ever see zero investment rates for larger z in our model.

Moreover, if heterogeneous capital goods indeed matter, aggregation over

these goods will result in a downward bias of second order derivatives. (Gools-

bee and Gross, 2000).

Figure 4.2: Expected investment-rate i conditional on e and z

Figure 4.2 presents the expected investment rates conditional on the log

equity-to-capital ratio and mandated investment. For the estimation a 360-

nearest neighborhood (k-NN), local linear, Epanechnikov-kernel estimator19

18Note that, investment decisions in heterogeneous capital goods as in Goolsbee and
Gross (2000) or for different establishments or plants of one company would - strictly
speaking - not be independent in our model, as investment decisions are linked through
their effect on the balance sheet.
19This means, when estimating the expected investment rate E (i) at (e, z) we drop all,
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has been used. The choice of k = 360 is approximately equivalent to twice

the fixed window-width used for density estimation.20 The window-width has

been chosen by ”eye-balling”, but tends to slightly undersmooth the condi-

tional expectation estimator on the center of the support. Especially for sec-

ond order-derivative estimation, this problem becomes much more apparent.

Therefore, when estimating second-order derivatives (see below), a combina-

tion of 720-nearest-neighborhood and fixed window-width (of h = 4n−1/10)

kernel is used. This effectively approximates variable window-width estima-

tors, but is computationally much faster.

Figure 4.2 shows that the investment function is nonlinear in a many-

fold sense: For a large equity-ratio, investment is a convex function of the

capital-imbalance, highly indebted firms investment mostly only disinvest

and for these firms investment is concave in fundamentals. In our model

this is a result of the concavity of the earnings-function and the fixed costs.

A higher equity-ratio raises investment, but only when fundamentals allow

so.21 Therefore, this results supports our pecking-order, fixed-adjustment-

cost model. Moreover, for very low productivity equity-ratio first has to

reach some threshold to influence investment, i.e. to stop sharp disinvest-

ment. Again this is very much in line with our pecking-order, fixed-cost

model. And as a last (but not really surprising) deviation from the linear

model, the second order derivative of equity seems to be negative, at least

for low z.

To better visualize the effect of ignoring the important interaction of eq-

uity and capital-imbalance and thus the non-linear structure for investment,

but the 360 data points that are nearest to (e, z) in Euklidean distance.
Then we estimate E (i) at (e, z) running a weighted least-squares regression, for which

the weights are calculated using an Epachenikov-kernel function. See Pagan and Ullah
(1999) for details.
20The optimal k for k-NN estimators and the optimal window-width h are linked by

k = nh4/6 in the two dimensional case (Pagan and Ullah, 1999, p. 91).
21Note that we have not included any long-run effect of equity in generating the capital

imbalance estimates.
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the generalized additive model

E[i|(e, z)] = m1(z) +m2(e) (4.12)

has also been estimated.

Figures 4.3 and 4.4 now present the estimates for the generalized additive

model. As the identifying restriction in a generalized additive model is arbi-

trary, we employ different restrictions for figures 4.3 and 4.4: While in figure

4.3 E[m2(e)] = 0 was used, in figure 4.4 E[m1(z)] = 0 is chosen. This makes

it easier to visualize the relative changes in the investment rate caused by

changes in z and e.

Still there is some sign of non-linearity of investment in z. However, this

is very minor, as in general the function is close to linear. Clearly this shows,

how misleading it can be if one neglects (non-linear and) cross-effects. This

bias becomes even worse for the estimate of m2(e) in figure 4.4:

For low equity-ratios there is no effect, whereas for high equity-ratios the

effect is clearly positive. However, we have seen a clearly positive effect for

low equity as soon as productivity is high enough. Moreover from figure 4.2,

this effect is decreasing if equity rises, while in figure 4.4 it is increasing in

e. This no-effect result, when equity is low, has appeared in earlier studies in

the form of apriori as financially constrained considered firms reacting less

on increases in cash flow (Kaplan and Zingales, 1997). Therefore, figure 4.4

sheds some new light on these results, too: It may well be that a misspecifica-

tion bias drives this evidence that has been brought forward as an argument

against financial constraints playing a prominent role in investment decisions.

The effect of the within transformation can be seen, when comparing

figure 4.4 to figure 4.5 and 4.6, where we report the estimates without trans-

formation. This allows to use the full dataset and not only firms with at least

five observations, therefore, the full dataset has been used for the estimates

in figure 4.5. For figure 4.6 the restricted dataset was used.

Interestingly, the effect seems to be U-shaped. This could be due to some

underlying economic structure or to the unreliability of nonparametric esti-
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Figure 4.3: Generalized additive model: m1(z)
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Figure 4.4: Generalized additive model: m2(e)
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mates near the boundary of the support. If there is an economic explanation

for this, it has to rely on firm- or industry-characteristics of the very indebted

firms. A theoretical explanation for this will be brought forward in chapter

5.

4.2.5.2 Average derivative estimators

A major drawback of the nonparametric estimates are their wide confidence

bounds. Thus, to draw more reliable conclusions, it is necessary to estimate

average derivatives of i(z, e) = E(i|z, e) directly. This yields much closer
confidence bounds because nonparametric average-derivative estimators con-

verge with parametric rates of convergence (Rilstone, 1991). The estimates

are reported in tables 4.4 and 4.5.

Several nonparametric estimators for the average derivative are available

in our panel data setting (Ullah and Roy, 1998). E.g. for the local linear

estimator, there are immediately two procedures to estimate the derivative

at hand. The local linear estimator is basically a locally weighted version of

an OLS estimator. Typically it is derived from a first order Taylor expansion

around the point (z, e), at which the function is estimated, i.e.

ijt = E(i|z, e) + (zjt − z) bz (z, e) + (ejt − e) be (z, e) + ujt . (4.13)

Therefore, we can numerically generate b∗ := ∂(z,e)bE(i|z, e) or alternatively
take b∗∗ :=

³bbz,bbe´ as their direct estimates. The weights are generated
according to the kernel-function chosen, with K = diag(K(z, e)). When we

denote a vector of ones by ι, the matrix of regressors by

X := [(zjt − z) (ejt − e)]j=1..Nt=1..Tj
(4.14)

and the vector of observed investment-rates by
−→
i , we obtain:

[bE(i|z, e) b∗∗(z, e)] = βOLS(K1/2−→i , K1/2 [ι X]). (4.15)
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Both estimators are asymptotically normally distributed, but have a different

variance. Moreover, in small samples the bias is different and they perform

differently. In most cases the numerical estimator b∗ should be preferable

(Ullah and Roy, 1998). However, a drawback of this estimator is that the

variance of its averaged form is not yet known (Pagan and Ullah, 1999).

In our panel data setting, additionally the fixed effects estimator of Ullah

and Roy (1998) is available.22 This estimator bFE is locally weighted OLS

of:

ijt − ij. − i.t + i.. = (zjt − zj. − z.t + z..) bz (z, e)

+ (ejt − ej. − e.t + e..) be (z, e) + ujt − uj. − u.t + u.. (4.16)

The weights are different to those used for the pooled estimator in our

setting. For the pooled estimator we used the within-transformed data to

measure the distance of the evaluation point and the observations, while the

fixed effects estimator uses the original data. The advantage of this estimator

is that assumption 4.1 is no longer needed to let the estimates be interpretable

in a sensible manner. All we need to assume is the investment function to

exhibit fixed idiosyncratic and time effects and to be otherwise homogenous

among the firms in the original (not within transformed) quantities. As we

will see below, results do not qualitatively depend on the estimator chosen.

The average derivative estimators are generated as the mean of the point-

wise estimates. Average-derivatives over a subset of observations are calcu-

lated by using the conditional mean (conditional on the observation falling

into the subsample) and not by re-estimating for the subsample.

The cross- and higher-order-derivatives are computed as numerical es-

timates of these quantities using (4.13). As for the first-order derivative

numerical estimator the asymptotic variance is not yet known.

For the second-order-derivatives the undersmoothing of the nearest neigh-

borhood estimator in the center of the distribution becomes a more apparent

22Note that we also use within-transformed data in estimating (4.13) .



4.2. EVIDENCE FROM A SAMPLE OF UK FIRMS 71

problem. Therefore, we generate the weights K in (4.15) as average of a

720 nearest-neighborhood Epanechnikov kernel and a fixed window-width

Epanechnikov kernel. The fixed window width is calculated as h = n−1/10.

The implied window width dk of the nearest neighborhood estimator varies,

depending on the evaluation point xi at which we estimate. We set dk (xi)

equal to the maximum distance (to xi) of the 720 points of data being nearest

to xi. The weight (kernel) of a point of data x is hence calculated as

K(x|xi) =
1

2

·
K1

µ
xi − x

dk(xi)

¶
+K2

µ
xi − x

h

¶¸
.

This is computationally very efficient and gives a variable window-width,

which is neither too small on the border nor on the center of the support,

so that the estimator should not be too heavily under- or oversmoothed.

Furthermore and within a certain range, window-width selection has been

reported to be of a lesser issue for average derivative estimators, as they

are generally not too sensitive to window-width selection,23 as long as the

averages are not dominated by a few outliers.

4.2.5.3 Average derivative estimates

The average derivative estimates for all four estimators are reported in table

4.4. Although the various estimators yield quantitatively slightly different

estimates, they qualitatively do not differ: Both the equity-ratio and the

capital-imbalance have a significant effect. Moreover and more surprisingly,

the derivative with respect to the equity-ratio is about twice as large as the

elasticity of the optimal stock of capital with respect to the equity-ratio. The

difference is both economically and statistically significant. This also holds

true if one requests higher levels of significance to account for the dependence

of the short-run and long-run estimates.24 Therefore, for the DTI-Database,

23See Pagan and Ullah (1999).
24Taking the standard deviations as reported above and the asymptotic distributions as

approximation, the 5% one-sided upper confidence bound for β is 0.1368, while the lower
5% one-sided confidence bound for b

∗∗
e
is 0.1425. If both estimators were independent, this
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Table 4.4: Average first-order derivatives of the investment rate i(e, z)

Number of observations: N = 6950 std. deviation

derivative b
∗

b
∗∗

b
FE

b
∗
720,f ix

a for b
∗∗

− ∂î
∂z

0.5057 0.5146 0.5341 0.5137 0.0068
∂î
∂e

0.1555 0.1588 0.1782 0.1450 0.0097
aestimated with a mixture of fixed window-width and 720-NN-Kernel.

Table 4.5: Average second-order derivatives
of the investment rate i(e, z)

derivative full Samplea low zb high ec
∂2i
∂z2

0.2931 0.3838 0.3565
∂2i
∂e2

0.1079 −0.106 −0.150
∂2i
∂e∂z

0.1078 −0.123 0.2257

N 6922 2284 2353
a e and z within the 0.5% and 99.5% quantiles .
b e within the 0.5% and 99.5%, z within the 0.5% and 33% quantiles.
c z within the 0.5% and 99.5%, e within the 66% and 99.5% quantiles.

we can reject both the hypothesis H0
0 and H1

0 , i.e. finance matters in both

the short and the long-run but influences the frequency of adjustment much

stronger, than it influences the optimal stock of capital.

Table 4.5 reports the higher-order derivative estimates and reveals some

interesting results as well: We find a clear evidence for convexity in z for both

the total sample average and the local averages over low z. Moreover and as

predicted by the theoretical model, for low z the cross-derivative is clearly

negative. Therefore, all empirical results are in line with the investment

model that includes fixed adjustment cost and capital market imperfections.

Due to the slow rate of convergence of nonparametric multivariate density

estimators, a meaningful test of forecasting performance of the generalized

Markov-chain-model proposed in chapter 3.3. does not seem to be achievable

with an unbalanced panel of only about 7000 observations over 13 years.

would of course equal an one-sided 0.25% test.
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Therefore, a forecasting performance test remains open to further research.

Maybe a series estimator for the investment function could help to overcome

the need for very large data samples.

4.3 Evidence from a sample of German firms

So far from our analysis of the UK data the main claim of this thesis seems

well supported. To provide additional empirical support of our hypothesis we

will now analyze a German company accounting dataset, the ”Bonner Stich-

probe”. Moreover, we will also address some econometric issues left out in the

last section, i.e. especially we want to account for the lagged dependency of

the equity-ratio. Additionally, we will complement the nonparametric analy-

sis with a non-structural parametric one and also will present results for the

long-run estimates from a number of different estimators. Furthermore, the

analysis of the German data complements the analysis of the UK one, as we

use a differently constructed measure of fundamental incentives.

4.3.1 Brief description of the data

The ”Bonner Stichprobe” is a sample of annual company accounts of German

companies. Most of these companies are large listed stock companies. The

data covers the time-period 1960 to 1997. The panel is unbalanced and

contains 694 companies (observational units) and 18943 observations in total.

Thus, the average time in the sample is 28.7 years.

The data bank includes complete profit- and loss-statements as well as

annual accounting data. Moreover, for the very most company-years data on

average wages and salaries as well as the number of employees is reported.

Unfortunately, after firms which are holdings, multi-corporate compa-

nies, or business trusts are removed from the sample, sample-size falls sub-

stantially. Additionally, we have to drop a few firm-years for which data

seemed inconsistent with usual accounting standards (e.g. negative depreci-

ation, very high appreciation). This leaves us with a sample of about 10000
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observations. Although–as Goolsbee and Gross (2000) report–assuming a

homogeneous capital good biases the estimated investment function towards

a linear specification, it is necessary to do so in this section, since many firms

do not report stock and depreciation of land and buildings and machinery

separately.

If removing a single observation (due to data inconsistency) splits a firm-

series in two parts which are long enough to be sensibly analyzed, the second

part of the series is identified as a different firm. If the missing observation

separated the series in a very short and a longer one, the short one was

completely removed, i.e. only firms with five or more consecutive observa-

tions remain in the sample. Additionally, single observations were removed,

if the investment rate differed from the mean by 5 times the standard devi-

ation (removing 11 observations), differed from the firm specific log-equity

ratio by 4 standard deviations (39 observations), or if the turnover-change

differed from the mean by 6-times the standard deviation (14 observations).

Moreover, firms were excluded, if their average wage-share or proxied aver-

age cost-of-capital share25 exceeded 70% (removing 111 observations). This

leaves us with 449 firms and a total of 9731 observations, making an average

of 21.67 accounting years per firm.

The stock of capital series has been generated using the perpetual inven-

tory method, investment, wages and profit were deflated using the producer-

price index for investment goods.

Investment-ratios exhibit moderate excess skewness and kurtosis, reflect-

ing the fact, that most firms in the sample are aggregates of many plants.

However, investment is typically a highly concentrated activity only at the

plant level. Using the widely employed cut-off value of 30% for the defini-

tion of an investment spike, we find that 17.4% of all firm years exhibit an

investment-spike, accounting for 36.1 % of all investment.

As the time-dimension compared to the number of observational units

is only moderate and the sample is unbalanced, the Breitung-Meyer (1994)

25See section 4.3.3.
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Table 4.6: Descriptive Statistics "Bonner-Stichprobe"
Variable Obs. Mean Std. Dev. Min Max
investment-rate 9770 0.210 0.120 -0.140 0.8254
capital 9770 164.97 491.50 .03631 6893.2
equity-ratio 9770 .40287 .1395 .01561 0.9371
real wage 9770 14.803 4.969 1.7556 36.908
total value added (turnover) 9770 464.70 1415.4 0 20584
No. Employees 9770 6009.0 17813 4 215800

Table 4.7: Breitung-Meyer Unit-Root Tests
Variable estim. root sign. of estim. root ≥ 1
log No. Employees 1.034 1
log turnover 1.010 1
log capital 1.008 1
log equity-ratio 0.965 0
Π̂ 1.010 1
x 0.965 0

test is employed to test for unit-roots. The hypothesis of a unit root can-

not be rejected for capital, revenues, the number of employees, and for the

measure of capital-productivity Π̂, which is derived below. We can however

reject the unit-root hypothesis for the equity-ratio. Also for the cointegra-

tion regression–specified below–we can reject the null of a unit-root in the

cointegration error (and thus the null of no cointegration).

4.3.2 Empirical model

Again, for the empirical model assume that revenues Y are generated by

capitalK and labor L according to a Cobb-Douglas function, which is subject

to decreasing returns to scale,26 i.e. εLi + εKi < 1 and

Y = ΞLεL
i KεK

i . (4.17)

26The assumption of decreasing returns to scale is well supported by the data, for every
firm in the sample εL

i
+ εK

i
< 1 holds.

Furthermore, note that the parameters εL
i
and εK

i
will be firm-specific.
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Ξ is the parameter characterizing productivity. If labor is perfectly flexible

adjustable and w is the wage, we obtain

wL = εLi Y (4.18)

and thus

Y =

"
Ξ

µ
εLi
w

¶εL
i

# 1

1−εL

i

K
ε
K

i

1−εL
i . (4.19)

Take the equity-ratio as not influenced by the level of the capital stock,

then the long-run optimal stock of capital k∗ is determined by the first or-

der condition that equates marginal revenues and marginal costs mc.27 The

optimal (log) stock of capital is thus driven by marginal costs and total

capital-productivity Π,

Πit :=
ln (Ξit) + εLi

¡
ln
¡
εLi
¢− ln (wit)

¢
1− εLi

. (4.20)

This gives for the optimal capital

k∗it =

¡
1− εLi

¢
1− (εLi + εKi )

[Πit − ln (mcit)] . (4.21)

Yet, this equation has still to be operationalised. Assume, productivity

Ξ is random, e.g. it could follow a geometrical Brownian motion, then Π is

in principle computable from estimates of (4.17) . And if marginal costs were

known, k∗it could be calculated. However, true marginal cost mcit of capital

for each firm i at time t are not directly observable. Nevertheless, under our

assumptions from the previous section, the gap between optimal and realized

stock of capital can still be identified. These assumption are especially:

27If larger firms would have different access to capital (e.g. through an equity channel)
then of course mc would need to be corrected for this.
Suppose mc = rt+µi+θk, then the correctly measured optimal stock of capital k∗∗ would

be k∗∗
it
=

µ
1+ θ

(1−εLi )
1−(εLi +εK

i )

¶−1
k∗
it
.
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1. kit and k∗it are cointegrated.
28

2. Log-marginal costs split up in an aggregate component rt (e.g. the risk-

free interest rate), a firm specific component µi (e.g. due to firm-specific

risk) and the influence of the equity-ratio γ1eit - which is common across

firms.

Thus, we can estimate rt, µi, γ1 and γ2 from a panel cointegration regres-

sion between k and k∗, using preliminary obtained estimated ε̂Li , ε̂
K
i and Π̂it

and

k∗it =
1− ε̂Li

1− ¡ε̂Li + ε̂Ki
¢ hγ1Π̂it − (rt + µi) + γ2eit

i
. (4.22)

Note, that this specification explicitly allows for a certain degree of tech-

nological heterogeneity among firms.

Once estimates of the optimal stock of capital are obtained, these can be

used in estimating the investment function. As argued before, the functional

form of investment is not clear a priori and highly depends on the distrib-

ution of adjustment cost shocks,29 the technology, the structure of financial

markets,30 etc.. Therefore, again a flexible estimation technique such as a

nonparametric local-linear regression is most appropriate. Yet, we will only

present our estimates of average derivatives, as these are the ”parameters” of

main interest. Additionally we will also estimate the polynomial expression

given below for the investment-rate i. However, to control for firm specific

adjustment costs and firm specific access to capital markets (determining

the long-run equity-ratio), only deviations from firm-specific means x̄j. are

considered:

ijt − ı̄j. =
PX

p=0

QX
q=0

ap,q
¡
xjt − x̄j.

¢p
(ejt − ēj.)

q + vjt. (4.23)

28Of course this assumption can be tested, and we actually can reject the unit-root
hypothesis for the cointegration error x. (See table 2)
29See Caballero and Engel (1999) for a detailed discussion.
30See e.g. Gomes (2001).
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To compute capital imbalances xjt, we take the optimal capital stock of

period t relative to the reported stock of capital at the end of period t− 1.

Given estimates for εLi and εKi , there are two estimators at hand for Π.

One is the direct estimate, taking Ξit as the residuals of (4.17) and using

these together with the estimate for εLi in (4.20) . However, Π can also be

estimated indirectly using the optimality condition for labor, as Cooper and

Haltiwanger (2002) do. This estimate is

eΠind
it := ln (witLit)− ε̂Ki

1− ε̂Li
kit. (4.24)

Just as Cooper and Haltiwanger state for their data, the indirect esti-

mator is less volatile. However, this estimator relies on the hypothesis that

labor could be perfectly flexibly adjusted, which is likely to be wrong for the

German labor-market.

Nevertheless, this estimator will–even due to the inflexibility–perform

better than the residual based one, if there is a transitory as well as a per-

sistent component in the shocks to productivity. E.g. ln (Ξit) could be an

ARIMA process affected by a firm-specific fixed effect, a random walk com-

ponent (driven by aggregate and individual shocks) and a transitory com-

ponent υit. This transitory component should of course not matter for any

employment decisions, if capital and labor are not immediately productive

and adjustment is not costless.31

The direct estimator would include υit as an error term, while the indi-

rect one would correctly measure the productivity expected by the firm (if

managers can observe υit). For transitory shocks to the real wages (wit =

w̄i. + w̄.t + ωit) the same line of argument applies. As wages in the long-run

cannot differ across firms unless they do so due to firm specific reasons, we

can easily identify the transitory shocks as ωit and remove them from the

data. However, this only holds true if working conditions remain relatively

constant across firms over time.

31See Barnett and Sakellaris (1999) for an analoguous argument on for Tobin’s q.



4.3. EVIDENCE FROM A SAMPLE OF GERMAN FIRMS 79

Nevertheless, it could and should in general be assessed by a technique

similar to the one developed by Erickson and Whited (2001) which estimator

has the lower measurement error. Hence, which estimator is superior is in

the end an empirical question. So this issue is analogous to the problem of

the quality of different measures of Tobin’s-q. However, in the non-linear

setting applied here, the application of Erickson and Whited’s method is not

straightforward. Moreover, the amount of data required for this procedure

is quite large. Thus, a more heuristic approach is taken: If the estimator Π̂

has a low measurement error, first of all γ1 should be close to 1, and second

the estimate for x should be informative for the investment regression. In

the empirical specification employed, it turns out, that the direct estimateeΠdir
it is more informative for the investment regression, whereas the indirect

one gives more realistic estimates for γ1. However, simply taking Π̂it :=
1
2

³eΠdir
it + eΠind

it

´
performs very close to the respective superior estimate for

both the cointegration- and the investment-regression.

4.3.3 Long-run optimal stock of capital

Inspecting the firm-specific average wage-shares, 1
T

P
t
witLit

Yit

, or the firm spe-

cific mean fraction of revenues which compensates for depreciation, 1
T

P
t
δitKit

Yit

,

substantial differences can be found across firms. Figure 4.7 presents a kernel

density estimate of the time-average wage-shares of firms.

Therefore, we can expect firms to be heterogeneous with respect to their

technology. Hence, using any pooled or panel estimator on

ln (Yit) = εLi ln (Lit) + εKi ln (Kit) + ln (Ξit) (4.25)

would yield biased estimates of the productivity shock. Estimating the pro-

ductivity for each firm is again not really feasible due to data-limitations,

as in any case a dynamic estimator32 and therefore more observations would

32Especially note that estimates just using the levels will be inconsistent. Even taking
first differences will still not remove all correlation between (∆kt,∆lt) and the productivity
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Figure 4.7: Firm—specific average wage shares

be needed. However the expenditure shares are still valid estimates for εLi
and εKi .

33 To compute the expenditure-shares for capital, the firm average-

depreciation-rates plus a time constant real interest-rate of 3% was used.

Factor productivity Π̂ is then estimated as described above. The coin-

innovation ∆ ln (Ξ)
t
. This however means that one would need at least lagged differences

as instruments, meaning a loss of 2 observations per firm, and thus limiting the analysis
to firms with at least 5 observations (leaving no degree of freedom in the equations for
some firms then).
33To see this, note that L ,Y andK are endogenuous unit-root processes, all driven in the

long-run by Ξ. Thus (8) gives–loosely speaking–a cointegration relation. However, then
OLS for each firm on this equation is super-consistent, but collapses to εL

i
= 1

Ti

P
witLit

Yit

if we can write the estimation equation with a ”heteroscedastic” error term

witLit = εL
i
Yit + Yitvit.

If the error were to come in multiplicatively, the geometric mean were apprpriate. Note
that using the geometric mean instead, does not alter the results significantly.
Still, Caggese (2003, p. 10) has argued that this procedure will lead to biased results,

if labor and capital employment decisions are constrained by some third variable, e.g. by
financial constraints. In our case r might depend on the finacial conditions. Nevertheless,
as we find a only very minor influence of finance on the long-run stock of capital, the bias
can be expected to matter only marginally. More formally, our estimates are consistent
under H0

0 , the hypothesis we test.
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tegration relation (4.22) can then be estimated using the Panel-Dynamic-

OLS-Estimator (PDOLS) following Kao and Chiang (2000), the Panel-Full-

Modified-OLS-Estimator (PFM-OLS) of Phillips and Moon (1999) or OLS

controlling for fixed effects. However, allowing for heterogeneous short-run

dynamics in the PDOLS regression would mean the inclusion of at least 2300

parameters (for 2 lags and 2 leads of first difference). Therefore, in estimat-

ing the PDOLS estimator, a homogeneous short-run dynamics is assumed

in all but two models (PDOLS-Ind), in which industry specific34 short-run-

dynamics is allowed for. All regressions control for fixed time and firm-effects.

Table 4.8 presents the main results.

Table 4.8: Single-Stage Cointegration regressions
Estimator and Model PDOLS-1 PDOLS-2 PDOLS-Ind-2 PDOLS-Ind-1

γ1

³
Π̂
´

0.7626*** 0.7404*** 0.7442*** 0.7717***

γ2 (log equity-ratio) -0.0386 -0.0275 -0.0144 -0.0175
No. of Parameters 39 43 378 535
No. of Observations 6612 7447 7447 6612a

No. of Firms 383 416 383 412

Estimator and Model PFM-OLS PFM-OLS OLS FM-std. err. I(1)

γ1

³
Π̂
´

0.6938*** 0.6009*** 0.6442 0.02768

γ2 (log equity-ratio) -0.0345 -0.0484*(et−1) 0.03813 0.02544
No. of Parameters 39 39 39 std. err. I(0)
No. of Observations 9289 8823 9731 γ1 .02802
No. of Firms 442 442 442 γ2 .02763
***/**/* indicate significance at the 1/5/10% level

Model PDOLS-(Ind-)1 includes 3 lags and leads of ∆Π, whereas model

PDOLS-(Ind-)2 only includes 2 lags and leads, but of both ∆e and ∆Π.

Standard errors are calculated on the basis of the FM-Estimator, using the

average number of observations per firm. Standard errors are generated for

34The industry variable provided in the Bonn Database has been used for classification.
This variable splits up the database in 52 different industries. Note however, that this
variable does not coincide with SIC.
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both, the case where the regressors are I(1) and the case where the regressors

are I(0). Significance is indicated on the I(1) basis.

A few remarks on these results are worthwhile. First of all and although

γ1 is significant in all estimations and the estimates are reasonably large,

it is clearly smaller than 1. This means, capital productivity seems to be

either measured with a (stochastic) error or to be simply deterministically

overestimated. Especially in the presence of fixed adjustment costs, we would

rather expect the dynamically optimal stock of capital to exceed the static

one, i.e. γ1 ≥ 1. Nevertheless, γ1 < 1 does not necessarily mean that there

is a severe bias in our later fundamental investment incentives estimate. It

could well be a fixed percentage of revenues, that has to be attributed to

something not modelled, which deterministically drives up the productivity

measure. Another explanation could be that wages endogenously react to

increases in productivity in the long-run–a fact, that is also not modelled.

Again if a fixed fraction of the productivity increase runs into wage-increases,

the estimates should not be severely biased. At any rate, the estimates for

γ1 are well in line with the estimates Caballero et al. (1995) obtained for

their cost-of capital proxy.35

For the estimate of γ2 evidence is mixed assuming the log equity-ratio is

I(1) . However, the unit-root test clearly rejects this hypothesis. Using a for-

mula analogous to the general one provided in Phillips (1995)36 standard er-

rors get slightly larger (the I(0) estimates are of course not super-consistent).

Then, hypothesis H0
0 , which means the equity-ratio has no influence on the

optimal-stock of capital, cannot be rejected. In any case, all except the

OLS-estimate have a negative sign, saying higher equity ratios lead to lower

optimal stocks of capital, which is contradictory to most of the earlier em-

pirical financing-constraints literature. Also this seems inconsistent with a

”wealth effect on the cost-of-capital” explanation as e.g. in the theoretical

macro-model of Bernanke et al. (1998). However, still the regression results

35However, if adjustment costs strongly dampen the variation of capital, it is well known,
that our estimator will underestimate γ1 by construction (Caballero, 1997, p. 8).
36See equation (14), Phillips (1995, p. 1038).
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have to be interpreted with care, as the equity-ratio may be endogenous.

Fixed effects of different ”baseline” access to capital markets are accounted

for by controlling for firm-specific effects. The PDOLS and the PFMOLS

account for the endogeneity of the equity-ratio due to shocks to the stock of

capital. If e.g. larger firms have better access to equity markets and have

reasons of holding larger amounts of equity, which are not related to costs,

our estimators control for this. Firms could e.g. have an incentive to increase

their equity holdings, if a larger stock of equity would yield more flexibility

with their investment decisions. This could economicly explain the difference

between FM and OLS estimate.

However, if there is lag-dependency in the equity-ratio (for which there

seems to be evidence), or if the contemporaneous shocks to equity and capi-

tal are correlated, the PFM-OLS estimator γ̂+2 is likely to be biased. Yet, γ̂
+
1

remains asymptotically unbiased in all these cases. To remove the contem-

poraneous correlation, one can replace et by et−1 and argue that beginning of

period liquidity determines managerial discount factors. The resulting esti-

mates are reported in column PFM-OLS (et−1). The estimate for γ2 becomes

smaller and is now weakly significant. However, if there is lag dependency,

still the estimator remains biased.

Since γ1 can be estimated consistently in any case, there is another way to

obtain estimates of γ2. If k and k
∗ are indeed cointegrated, kit−γ1Πit−rt−µi

can be expressed as

x̂it := kit − γ̂+1 Π̂it + r̂t + µ̂i = γ02eit + γ002eit−1 + C∗ (L) ξit, (4.26)

with a moving-average error-term C∗ (L) ξit on the right hand side and a

the stationary cointegration error on the left hand. Depending on, whether

the beginning-of-period equity-ratio or the end-of-period (respectively during

period) equity determines the managerial discount rate, γ02 or γ002 is zero.

However, the equity-ratio depends of course on its previous realization and
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past and current capital imbalances, so that we have as a second equation

eit = ρeit−1 + η1x̂it + η2x̂it−1 + νit. (4.27)

If now η1 = γ002 = 0 and

∀j ≥ 0 : cov ¡ξit−j, νit¢ = 0, (COV)

or γ02 = 0 and

∀j ≥ 0 : cov ¡ξit−j, νit−1¢ = 0, (COV*)

the parameters in (4.27) can be consistently estimated recursively as all re-

gressors are predetermined then.37 In a second stage (4.26) can be estimated,

using the fixed-effects OLS-residual ν̂it as an instrument for eit.

Since we would rather assume current capital imbalances to influence the

current equity ratio, but not the other way round, models with γ02 = 0 are

the preferred ones, yet this comes at the price that the assumption (COV*)

is more restrictive: If x measures fundamental investment incentives imper-

fectly and current residual changes in equity reflect productivity, assumption

(COV*) will be wrong and our estimates will be biased upwards.

Hence, table 4.9 presents the two-stage estimates for both models. Again,

we cannot reject hypothesisH0
0 . However, the estimated coefficient for equity

becomes larger. For estimating the investment-function, we use the PDOLS-

Ind-1 model with γ02 = 0. Since the resulting estimates for the influence of

equity are among the larger ones, this makes our test of the frequency effect,

37Strictly speaking, this is only true if T → ∞, as we use fixed effects OLS. Therefore
in small samples, our estimates are biased. However, we are mainly interested in gener-
ating an instrument that is orthogonal to the within transformed variables, but contains
information on et. Hence, one should not interprete the estimates of (4.27) structurally.
To avoid this probelm at least for the estimation of (4.27) we additionally estimate a

IV-regression of this equation in first differences, in which ∆eit−1 is instrumented by eit−2
and ∆eit−2. Yet, we only obtain ∆νit as error-term, which may be correlated with ξit
under assumption (COV) as ξit and νit−1 may be correlated. Hence, we use ∆νt+1 as
instrument for et. The results are reported under IV-PDOLS, but are not significantly
different from the ones obtained by fixed effects OLS. Nevertheless, notice that for (4.26)
the small sample bias only vanishes if one assumes ∀s, t : cov (ξ

is
, νit) = 0.
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i.e. the test of H0
1 , more conservative.

Now, how do these estimates correspond to an investment-function? In

any steady state, I
K
= const needs to hold. Suppose for simplicity investment

to be a linear function in the capital imbalance and the log-equity-ratio. Of

course, what we measure is not k∗ itself, but the steady-state stock of capital

kS. Define i := i (x̂, e) . As by construction ∂x̂
∂e
= −∂kS

∂e
, the implicit function

theorem yields

∂i
¡
x̂S, e

¢
∂x̂

· dx̂+ ∂i
¡
x̂S, e

¢
∂e

· de = 0⇒ ∂kS

∂e
=

∂i(x̂S ,e)
∂e

∂i(x̂S ,e)
∂x̂

. (4.28)

Of course, if investment would be linear in x̂ and equity e, ∂i
∂e
and ∂i

∂x̂
were

constants and the average derivatives later estimated would equal these con-

stants. As we will see, the estimated adjustment process is quite slow, with
∂i
∂x
≈ 0.14.38 Therefore, if the linear specification was correct, from our

long-run analysis, ∂i
∂e
can be expected to be very small.

4.3.4 Investment behavior

4.3.4.1 Parametric Analysis

To analyze the investment decisions, with our German data ”mandated in-

vestment” is generated as the difference between log optimal capital at time

t and end-of-period stock of capital in period t− 1. To construct

xit := k∗it − kit−1 = γ̂+1 Π̂it + γ̂IV
2 eit−1 − (r̂t + µ̂i)− kit−1, (4.29)

the estimates of γ̂+1 , γ̂
IV
2 from PDOLS-Ind-1 are used. This specification

has one of the largest influences of equity for the long-run regression. This

makes the test of H1
0 more conservative. Fixed effects are then removed

as in (4.23) . This controls for inter-firm differences in the optimal capital

imbalance, i.e. different target values for the capital employed. Yet, it is

38This estimate implies a half-life of 4.27 years of technological shocks.
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Table 4.9: Two-Stage Cointegration regressions
Model γ002 = η1 = 0 γ02 = 0
Estimator. PFM-OLS PFM-OLS
γ1

a 0.6938*** 0.6009***
γ2 -0.0118 0.0187
η1 0 (assumed) -0.0177
η2 0.0119 0.0285**
ρ 0.8057*** 0.8058***
No. of Observ. 9364 8897

Estimator. PDOLS-Ind-1 PDOLS-Ind-1
γ1

a 0.7717*** 0.7714***
γ2 -0.0074 0.0310
η1 0 (assumed) -0.0067
η2 0.0107 0.0164
ρ 0.8056*** 0.8056***
N 8897 6720

Estimator PDOLS-2 PDOLS-2
γ1

a 0.7404*** 0.7404***
γ2 -0.0091 0.0287
η1 0 -0.0086
η2 0.1121 0.0184
ρ 0.8056*** 0.8056***
N 6720 6720

Estimator IV-PDOLS-Ind-2 IV-PDOLS-Ind-2
γ1

a 0.7442*** 0.7442***
γ2 0.0475 -0.0311
η1 0 (assumed) -0.0176
η2 0.0058 0.0068
ρ 0.5436*** 0.5458***
***/**/* indicate significance at the 1/5/10% level,
a Std. Err. from first stage PFM-OLS is 0.02833
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not obvious how to estimate r̂t. The coefficients of time-dummies used in the

cointegration regression would also pick up the state of aggregate mandated

investment (which is to the most extent driven by productivity). However,

aggregate mandated investment should not be subtracted from the individual

mandated investment as both together determine the actual investment of a

firm. Hence, we project the series of the time-specific effects obtained from

the cointegration-regression on a series of real-interest rates and take these

projections as estimate of r̂t.39 The equity-ratio used in the regressions is

the equity-ratio taken from the opening balances. Table 4.10 presents the

regression-results.40

Essentially, the approach taken in equation (4.3) generalizes the error-

correction model

∆kit = α (x∗i − xit) +
LX

j=1

γj

¡
∆χit−j

¢
+ φit

in which χ :=
³

k Π e
´T

. The generalization is derived as α is taken to

be a function (here approximated by a polynomial) of (e, x) . Neglecting the

short run dynamics, we obtain

ijt =

"
α0 +

pX
j=1

qX
k=1

αjk (xit − x̄i.)
j (eit − ēi.)

k

#
((x∗i − x̄i.)− (xit − x̄i.)) + φit.

The capital imbalance x∗ that is chosen upon investment is typically different

from the average x̄i. since depreciation deterministically increases the amount

of mandated investment between adjustments.

The parametric estimates show only a moderate degree convexity of the

investment function with respect to the capital imbalance. And so the aver-

39The correlation between the real-interst-rates and the time-specific effects is quite low.
this reflects the fact, that the aggregate (average) capital-imbalance is mainly driven by
productivity respectively demand-shocks, which vary more than the real interest-rate.
40To preclude that our results are driven by extreme observations of mandated invest-

ment, we remove all observations from the sample which deviate by more than 4 standard
deviations from the firm-specific average in the capital-imbalance measure.
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Table 4.10: Short-Run Parametric Estimates
Model 1 Model 2

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)
x 0.1495*** 0.0058 0.1504*** 0.0042
x2 0.0650*** 0.0112 0.0662*** 0.0111
x3 -0.0416* 0.0231 -0.0429*** 0.0073
x4 -0.0415*** 0.0113 -0.0414** 0.0110
x5 -0.0204 0.0162 — —
e 0.0246* 0.0091 0.0162*** 0.0045
e2 0.0666** 0.0258 0.0329** 0.0132
e3 -0.1430 0.0796 — —
e4 -0.0792* 0.0592 — —
e5 0.2718 0.1274 — —
xe 0.0358*** 0.0130 0.0347*** 0.0122
(xe)2 -0.0630 0.0439 -0.0840** 0.0398
xe2 0.0152 0.0288 — —
x2e 0.0240 0.0216 — —
const -0.0060*** 0.0014 -0.0052*** 0.0013
Adj. R2 0.1977 — 0.1973 —
No. Obs. 8973 — 8973 —
***/**/* significant at the 1/5/10% level

age second order derivative ∂2i
∂x2
equals only 0.126.41 Moreover, the investment

function becomes concave when x is about as large as one standard deviation.

However, this should not be taken at face value as evidence against the fixed

adjustment cost model. It rather reflects the fact, that most companies in

the sample are multi-establishment / multi-plant firms, so their individual

investment function rather equals an average over many investment functions

of different plants with mean capital imbalance x. Due to this fact–and as

e.g. Whited (2002) or Goolsbee and Gross (2000) argue–the observed in-

vestment function becomes less curved.

In fact it is the rather stark effect of equity, that would be at odds with

a convex cost model, where there would be no frequency effect of equity

41Average parametric derivatives are calculated by differencing the estimated function
(Model 2) and then averaging over the observation-wise calculated derivatives.



4.3. EVIDENCE FROM A SAMPLE OF GERMAN FIRMS 89

-0.4

-0.2

0

0.2

0.4

x
-0.2

0

0.2

e

-0.02

0

0.02

0.04

IêK

-0.4

-0.2

0

0.2

0.4

x

Figure 4.8: Investment function, e and x between 1.5 std. errors

on investment. This is also reflected by an important interaction between

fundamental capital imbalance and the financial variable. The fundamental

influence is the strongest one and explains most of the (explained) variation.

Moreover, the adjusted R2 is notably large for an investment regression,

pointing towards a reasonable quality of x̂ in measuring investment incen-

tives.42 Moreover, as the employed estimation procedure is close to the one

of Cooper and Haltiwanger (2002), we might interpret the larger R2 as ad-

ditional evidence for substantial technological heterogeneity (which is one of

the major differences between this paper and their one). Figure 4.8 plots

the shape of the estimated investment function for 1.5 standard deviations

around the means of x and e.

In Table 4.11 average derivatives for the parametric model are reported.

The results are in line with the frequency-effect interpretation of short term

influences of equity on investment introduced in Chapter 3: Equity has a

42Typical R2 statistics in most (homogeneous) investment regressions (using q or some
other estimator for productivity) range in between 5 and 10%. See for instance Cooper
and Haltiwanger (2002) or Barnett and Sakellaris (1999).
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much larger effect if there are strong fundamental investment incentives any-

way. Interestingly, the Kaplan and Zingales (1997) result, that apriorily

financially constrained firms are less sensitive to changes in liquidity is repli-

cated. Firms with below ”normal” equity exhibit a far lower average deriva-

tive with respect to equity.

Table 4.11: Parametric estimates
of average derivative ∂i

∂e

x ≤ 0 x > 0
e ≤ 0 −0.0001 0.0110
e > 0 0.0194 0.0328

4.3.4.2 Non-parametric Analysis

As the parametric analysis naturally depends on the choice of the functional

form, also a nonparametric analysis has been employed. Additionally, this al-

lows to obtain direct inference on the derivatives of expected investment with

respect to finance and fundamentals. To analyze the data non-parametrically,

the data are pooled after individual fixed effects have been removed. As the

(average) derivatives of the investment-function are the main points of in-

terest, we concentrate on estimating these derivatives only. The derivatives

are calculated by employing a local linear kernel-estimator to the data. For

the derivative estimators, we have discussed the various alternatives in the

section about the UK-data. Here, we will use the following two: One is Li

et al.‘s (1998) (analytic) estimator from the local linear regression. As be-

fore, the average derivative is computed by taking the sample average over

the pointwise estimates
³

β̂x (x) β̂e (e)
´
, which are generated by weighted

least squares on

i (xj, ej) = m (x, e) + βx (x) (xj − x) + βe (ej − e) + uj. (4.30)
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The weights themselves are computed using a kernel-function.43 Alterna-

tively, numerical derivative (of i w.r.t. argument s) can be used, which is

obtained (at point t) as

eβs (t) =
m̂
¡
x+ 1

2
ht,ses

¢− m̂
¡
x− 1

2
ht,ses

¢
ht,s

, (4.31)

where ht,s is the (variable) window-width used to generate kernels at evalua-

tion point t, ek is the s-th unit-vector, and m̂ again is the weighted least

squares estimate.44 Again, average derivatives are computed as sample-

means of eβ (t) . Both the analytic and the numerical average derivative esti-
mator converge with parametric rates.

As kernel, a Gaussian-product kernel has been employed. To generate

window width ht,s, the adaptive two-stage estimator for the window width

was used, starting with a fixed window width of σsn
−1/4, in the first stage,

in which σs stands for the standard deviation of argument s.45

Table 4.12 reports average derivative estimates for both the direct esti-

mators and the numerical ones. Additionally, the mean of all estimates that

fall inside the interval of ±5 standard deviations around the previously calcu-
lated mean are reported as eβcens

. These are less affected by outliers generated

by undersmoothing and low density in the tails of the distribution.

The overall speed of adjustment, measured by the derivative of the invest-

ment rate with respect to the capital imbalance x is with 0.137 again rather

low. This speed of adjustment is equivalent to an overall half-life of an capital

imbalance of 4.7 years. In comparison to that, the mean effect of equity is

with 0.018 quite substantial. An effect of that size in the linear model (4.28)

would result in a long-run elasticity of approximately 0.131. This is far larger

than the previously obtained long-run estimate. Moreover, the equity effect

43Note that this estimator is asymptotically equivalent to the Rilstone (1991) estimator.
44In most cases the numerical estimator has better small sample (and asymptotic bias)

properties (Ullah and Roy, 1998). However, its asymptotic variance is not yet known
(Pagan and Ullah, 1999).
45Note that in comparison to pointwise derivative estimations, this choice of window

width leads to substatial undersmoothing.
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Table 4.12: Average nonparametric derivative estimates
(a): Full sample

β̄x β̄e

overall 0.137 0.018
std. error46 0.0009 0.0013

eβx
eβe

0.134 0.020
— —

eβcens

x
eβcens

e

0.138 0.018
— —

(b): Stratified

Case β̄x β̄e

x > 0 e > 0 0.163 0.043
e ≤ 0 0.137 -0.021

x ≤ 0 e > 0 0.124 0.043
e ≤ 0 0.126 -0.003

eβx
eβe

0.152 0.050
0.126 -0.018
0.121 0.043
0.141 -0.002

eβcens

x
eβcens

e

0.159 0.044
0.129 -0.016
0.127 0.039
0.141 -0.002

measured is an effect additionally to the one equity has on x. Hence, testing

H1
0 means testing the significance of βe = 0. And therefore, we are clearly

not able to reject H1
0 and can expect second order and cross effects to be

important and of a significant amount. This is validated by looking at the

sample stratified by values of e and x, especially the numerical ones:

If equity is high, firms react 21% faster to positive mandated investment,

than they do if equity is low.47 For low mandated investment there is no such

strong effect. Interestingly, the effect, equity has, again seems to be rather

U-shaped, if there is high mandated investment. An explanation for this

could be a Brander and Lewis (1986 and 1988) type strategic effect, which

we will discuss in chapter 5. Using the robust estimator, that calculates the

averages without using ”outliers”, the overall picture remains the same.

4.3.5 Discussion

Now as we have also used the ”Bonner Stichprobe” to test hypothesis H0
0

and H1
0 - the ”long-run” and ”short-run versions” of the Modigliani and

Miller theorem, if one likes - we can state the following, with respect to these

hypothesis:

47The halve-life is 3.9 years for high equity, whereas it is 4.7 years for low equity.
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1. H0
0 can only be rejected on fairly weak grounds, so in the long-run

finance does not seem to matter (a lot).

2. Since the estimated short-run influence of equity, measured by the aver-

age derivative, is both substantial and significant,H1
0 has to be rejected.

This holds true, as we only tested for additional short-run influences of

liquidity on investment.

Hence, the question arises, why there is the additional short-run effect

that has been found. Inspecting the short-run parametric and nonparametric

estimates, we find a substantial interaction of finance and fundamentals in

determining investment.

To further condense the results and to give them a more intuitive appeal,

Table 4.13 presents (geometric) means of pointwisely calculated half-lifes

of capital imbalances. These are calculated as ln 0.5

ln(1−β̂(x)) . As the pointwise

derivatives exhibit large variation, and sometimes obtain negative values, the

derivatives are reestimated with a three times larger window width. Again

the larger x, the faster is investment, and if firms wish to invest, more equity

speeds up investment. Therefore, a pure ”net-wealth effect on cost-of-capital”

model can be rejected. Reading Table 4.13 linewise, we find some important

additional evidence for the non-convex adjustment cost and financial fric-

tions, but against a model that only incorporates fixed transaction cost in

finance. Without analyzing second-order-effects, these models are typically

hard to discriminate empirically (Gomes, 2001). The evidence we find is,

that investment is ”more convex”, i.e. has a stronger curvature, in the fun-

damentals, if equity is high. However, under the pure transaction cost model,

the reverse would hold true. Thus, our results could be summed up as: ad-

justment costs are non-convex and finance influences the speed of adjustment

substantially.

So far, we omitted any short run dynamics to keep the empirical model

and the theoretical one as closely together as possible. This gave our em-

pirical model a structural interpretation. One may, however, be tempted to
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Table 4.13: Average half-lifes
of capital-imbalances (in years)

x ≤ 0 x > 0
e ≤ 0 5.06 4.41
e > 0 5.19 4.07

argue that the non-linearities found are a mere result of the omitted dynamic

links between changes in productivity, capital, and the equity-ratio. While a

structural interpretation for including the lagged change in the stock of cap-

ital could be a delivery lag, an interpretation for other short-run dynamics is

far from obvious. Moreover, even if we find a significant short-run dynamics,

this could well be due to an imperfect approximation of the true functional

form which is picked up by the first-differences of the equity-ratio and pro-

ductivity. Table 4.14 presents the regression results from a model as in Table

4.10 augmented by some short-run dynamics.

Though the point estimates change, the overall structure of the estimated

error-correction, i.e. investment function, remains the same. Hence, our

results seem–at least to a certain extent–robust to the inclusion of short-

run dynamics. However, the levels of significance of the terms involving

equity drop.

4.4 Summary of the empirical results

In chapter 3 we presented a stylized model of financial frictions and fixed

adjustment-cost. In chapter 4 we now have tested this model against alter-

natives. To do so, we analyzed two samples of company accounts, one from

the UK and one from Germany. Both samples comprised a large number of

company accounting data of (large) companies. And for both, we generated

a measure of fundamental investment incentives and took the equity-ratio as

an indicator of the financial status of a firm. Although, the way we generated

the fundamental investment-incentive measure was different for both data,

qualitatively we obtained quite similar results.
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Table 4.14: short-run parametric estimates, dynamics-augmented
Model 1 Model 2

Variable Coefficient (Std. Err.) Coefficient (Std. Err.)
∆kit−1 0.1627*** 0.0064 0.1630*** 0.0064
∆eit -0.0204** 0.0064 -0.0210*** 0.0064
∆eit−1 0.0276*** 0.0073 0.0281*** 0.0073
∆Πit 0.0340*** 0.0073 0.0340*** 0.0073
∆Πit−1 0.0458*** 0.0074 0.0459*** 0.0074
(k∗it − kit−1) 0.1586*** 0.0060 0.1580*** 0.0044
(k∗it − kit−1)

2 0.0394*** 0.0116 0.0405*** 0.0115
(k∗it − kit−1)

3 -0.0579** 0.0251 -0.0458*** 0.0081
(k∗it − kit−1)

4 -0.0255* 0.0132 -0.0237* 0.0128
(k∗it − kit−1)

5 0.0067 0.0191 — —
eit−1 0.0194** 0.0091 0.0105** 0.0049
e2it−1 0.0604** 0.0260 0.0306** 0.0134
e3it−1 -0.1302 0.0805 — —
e4it−1 -0.0809 0.0595 — —
e5it−1 0.2252 0.1310 — —
(k∗it − kit−1) eit−1 0.0239* 0.0135 0.0205 0.0128
[(k∗it − kit−1) eit−1]

2 -0.0550 0.0501 -0.0972** 0.0432
(k∗it − kit−1) e2it−1 0.0373 0.0315 — —
(k∗it − kit−1)

2 eit−1 0.0084 0.0240 — —
const -0.0094*** 0.0013 -0.0088*** 0.0013
Adj. R2 0.2637 0.2635
No. Obs. 8153 8153
***/**/* significant at the 1/5/10% level
Note that k∗it := γ̂+1 Π̂it + r̂t + µ̂i + γ002eit−1, x := (k

∗
it − kit−1)

One major outcome of our theoretical model was to identify the differ-

ence between a short-run effect of liquidity on the frequency of investment

and a long-run effect on the optimal stock of capital. While the standard

agency or oligopoly models of investment and finance48 predict only a strong

48See e.g. Myers (1977) or Brander and Lewis (1986). Moreover, very most of modern
macroeconomic literarure, which emphasizes the role of a financial accelerator mechanism,
builds upon a long-run influence of finance via the cost-of-capital. Examples are: Bernanke
et al. (1995, 1998), Céspedes et al. (2000) or Devereux and Lane (2001).
In contrast, our findings are more in line with the earlier literaure such as Meyer and

Kuh (1957, pp. 198). However, other modern macroeconomic models of financial frictions
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influence of liquidity on the chosen stock of capital, the model of chapter 3

rather suggested a strong short-run effect. This stronger short-run than long-

run influence of the equity-to-capital ratio on investment, is exactly what is

empirically found, so that in this point the empirical evidence supports our

theoretical model. In detail, we have found the long-run influence of finance

on the stock of capital to be only small but significant for the UK-sample and

for the German sample the influence was even mostly insignificant.49 How-

ever, the short-run influence on investment, we find, is well significant and

comparably large in both samples; but again the measured role of finance is

larger for the UK-sample.

Moreover, empirically we find the investment rate to be a highly nonlinear

function of the capital-imbalance (investment opportunities) and equity (liq-

uidity). With the UK-data we have shown, that because of this non-linearity

even only imposing additive separability leads to a severe error. This error

could well be the cause of the puzzling finding reported in the literature that

”apriori unconstrained” firms react stronger to changes in their financial

variables than constrained ones. For further empirical research, this finding

therefore suggests a need to estimate investment equations in a generalized

error correction framework50 as we did.

The results from the UK-data are complemented with our evidence from

the ”Bonner Stichprobe”. Here, we find, that the half-life of a shock to the

capital imbalance is not only substantially smaller in high-equity states, but

also, that the investment-function is stronger curved if equity is large.

These higher-order and cross-effects help to discriminate between the

(pure) financial (fixed) transaction cost, the net-worth, the (pure) fixed

capital-adjustment cost and our mixed model. The comparably low influ-

rather rely on versions of the pecking-order theory of finance, so e.g. Aghion et al. (2001).
49These results are somewhat similar to the results Bond et al. (1999) have reported

earlier. They analyzed both a sample of German and UK firms using identical estimation
techniques on both samples, so that their results are better comparable between contries.
In result, they found a much larger and more significant influence of cash-flow for their
UK firm-sample than they could find for their (comparable) German one.
50See e.g. de Jong (2001).
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ence finance has on the equilibrium stock of capital does not well support

the net-worth model. The transaction and convex adjustment-cost model is

however at odds with an investment-function that is ”more convex” when

equity is high. In this setting, which yields a pecking order of finance, theory

would rather suggest the investment-function to be more curved when eq-

uity is low. And as for the pure fixed adjustment cost model, the significant

influence of equity on investment can be put as evidence against it.

To obtain these results, we have followed an econometric approach that

estimates the long-run relationships of capital, productivity and costs in a

first step. The short-run dynamics (or error correction function) have then

been estimated nonparametrically. From a complementary parametric analy-

sis, we have seen that our approach is well capable to explain a large fraction

in company-level investment. Hence, we can conclude that our proxy of fun-

damental investment-incentives, which we have obtained from the long-run

relation specified, is of reasonable quality. Moreover, and since the proxy for

the fundamental incentives we used for the German data, explicitly allows for

heterogeneity, the good relative quality of the proxy suggests that there is in-

deed a substantial degree of technological heterogeneity across firms–which

may be considered as a side-result of our analysis.

For questions of economic policy, the findings of our analysis suggest,

e.g. that the central bank not only should try to observe the distribution

of capital-imbalances, but also consider the financial situation of firms in

order to predict policy implications. More specifically both effects cannot be

considered separately as the magnitude of each effect depends on the state

of the other variable. Especially, we find firms with high equity to adjust to

shocks much faster. If this itself leads to a rather stabilizing or destabilizing

effect remains open for further research. However, if we only concentrate

on adverse shocks, an economy which is simultaneously hit by a crisis of

company-finance and an adverse aggregate shock will recover much slower

than the financially unconstrained economy. In any case, an economy with

many firms being in a high equity state should have the stock of capital more
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efficiently distributed among firms.

Therefore, another example where our results have policy implications

are (corporate) tax reforms. There, the impact of the reform on the costs

of retaining earnings have to be taken into account as well. A rise in the

average equity-to-capital ratio, induced by such a reform, would not only raise

investment in the short run but also–at least in the partial model presented

in chapter 3–increase efficiency as average (absolute) capital-imbalances fall.



Interlude

Monopolistic competition and

oligopoly

In the proceeding chapters, we assumed the market structures firms operate

in are monopolistically competitive. In fact, we only needed that firms face

decreasing returns to scale. Monopolistic competition is just one way to ra-

tionalize this, without introducing strategic action to the model. Decreasing

returns to scale are also well compatible with perfect competition.

Anyway, this allowed us to have firms with positive profits–respectively

positive variable gross margins–analyzed in an environment of many firms.

So, we could use laws of large numbers and the expectations operator con-

sistently with our model, thereby deriving expressions for average industry-

investment.

Whether monopolistic competition, perfect competition or pure oligopoly

is the more realistic way to think about market structure has a strong history

of lively debate since the Chamberlin (1933) first introduced the idea of

monopolistic competition.51 We used monopolistic competition merely to

abstract from the influence of strategic considerations to keep our model

tractable. In a way adding imperfect competition to the framework developed

51See Samuelson (1967) and Bain (1967) for reviews. Central contributions to the debate
how to differentiate empirically between those concepts were Bishop (1952, 1953 and 1955)
Heiser (1955), Fellner (1953), Chamberlin (1953).
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in Chapter 3 serves as some sort of comparative statics.52

For homogeneous oligopolies the products of each competitor are each

perfect substitutes for the consumers. The inverse demand function is defined

as

pi = p

Ã
NX
j=1

xj

!
. (4.32)

If the products are differentiated, which is the basis for monopolistic compe-

tition, the inverse demand function takes the more general form53

pi = pi (xi |x−i ) . (4.33)

Monopolistic competition now is a situation, where firm i can rightly

neglect the influence of any other single firm on x−i, the output of other

firms. Hence it can also neglect its own influence on others. In contrast to

perfect competition, the influence of xi on pi is but not negligible.54

Which model of market-structure is appropriate for any given industry

is in the end an empirical question.55 Most probably some markets are

52However, note that we do not simply adopt the previously derived framework to
duopoly. Again this would be intractable and hence it would be excessively hard to reach
decisve conlusions.
53See e.g. Shaked and Sutton (1982) for a model of product differentiation.
54Hart (1985) presents a model that gives monopolistic competition as an arbitrary

good approximation of the equilibrium of an economy with many firms and heterogeneous
consumers.
Dixit and Stiglitz (1977) provide a model based on the assumption of a representative

consumer.
55The classical debate initiated by Bishop (1952), how to measure market structure has

focused on the the the size of cross elasticities of demand in comparison to the elasticity
of demand itself. However, there is not neccessarily a such strong relation between cross-
elasticities, numbers of firms in the market and the elasticity of demand as suggested by
Bishop (1952, 1953, and 1955).
Suppose e.g. there is a representative consumer with a Cobb-Douglas utility function

over a (very large) number of goods. However, her effective preferences shall be only
formulated over the set of goods that are indeed produced I.

U (x) =
Y
i∈I

xαi

i . (4.34)

Then given any number of firms in the economy producing an arbitrary set of goods I,
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oligopolistic (differentiated or not), some are near monopolistically competi-

tive, some are regulated or natural monopolies, and some are near perfectly

competitive.

An analysis of the impact financial frictions and non-convex investment-

technologies have on duopoly–as a complement to our analysis under mo-

nopolistic competition in Chapter 3–therefore seems to be a valid research-

goal. Also, by moving perspective from monopolistic competition, respec-

tively perfect-competition with decreasing returns to scale to duopoly, we

zoom to the very microeconomic analysis of investment decisions.

given total consumption C, this representative consumer demands

x∗i (pi,p−i) =
αiP
j∈I αj

C

pi
. (4.35)

Therefore, the elasticity of xi w.r.t. its own price is Eii = −1 and the elasticity of xi w.r.t.
price j is Eij = 0! Moreover, as there are monopoly rents to exploit, every new entrant (or
operating firm) will rather invent a new product, than imitating an existing one. It now
depends on the number of goods the consumer differentiates at most, the relation of costs
of entering a new market and a market for an established good, etc. whether monopolistic
competition, differentiated oligopoly, a number of different homogeneous oligopolies or
perfect competition emerges.
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Chapter 5

Investment timing and

predatory behavior in duopoly

with debt

5.1 Introducing strategic considerations

5.1.1 Non-convexifying imperfect competition vs. con-

vexifying perfect competition

Our analysis of company investment decisions in the previous chapters has

highlighted the importance of the interaction between non-convexities and

financial frictions. However, Thomas (2002), Khan and Thomas (2003) and

Veracierto (2002) have recently questioned the relevance of the non-convex

adjustment-costs framework for macroeconomic data. Their basic idea is

that on the aggregate two effects smooth out the non-linearities. The first

effect is the direct one from aggregation itself: in the aggregate time-series

domain typically the higher-order moments of the ”mandated investment”

distribution evolve slowly. The other, less obvious reason for the minor rele-

vance of the non-convex framework in the aggregate is the convexifying effect

of (perfect-) competition and general equilibrium.
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This chapter contrasts these perfect competition results, with evidence

from imperfect competition. Our model in Chapter 3 focused on the inter-

action of financial fractions and non-convex investment technologies purely

within a firm and therefore, we assumed monopolistic competition to ab-

stract from strategic aspects of this interaction between firms. Similarly, the

assumption of perfect competition abstracts from strategical aspects. Yet,

for many industries if not monopolistic competition then oligopoly seems the

more realistic way to model competition.

Therefore, we present a model of duopoly in which capital-market im-

perfection, irreversibility of investment, and imperfect goods-market com-

petition interact. This interaction brings about investment patterns which

are neither present in the monopolistic competition, irreversible investment

framework nor in the imperfect competition, reversible investment one.

Our model presented in this chapter also addresses the broader question

which impact non-convex adjustment cost and capital market imperfections

have on the strategic situation of a firm. And this strategic perspective proves

fruitful. Our model contributes to a number of strands in the literature,

such as the investment, the debt-in-industry-equilibrium, the strategic real

options, or the predatory behavior literature. To keep this chapter mostly

self-contained we will discuss the relation of our model to all these strands

of the literature in detail in this introductory section.

Most models of interdependent financial and real investment decisions can

neither replicate the observed debt-ratios, which are rather modest compared

to the substantial tax benefits of debt,1 nor a non-monotone influence of

leverage ratios on investment.2 The model of this chapter can explain both

1E.g. Schowalter (1999, p. 327) finds in a sample of 1641 manufacturing firms that the
average debt to asset ratio is about 0.25, whereas Fischer et al. (1989) obtain debt ratios
somewhat between 0.3 and 0.7 as optimal debt ratios in their capital choice model.

2An example for this non-monotone relationship are our results in the previous chapter,
presented in figure 4.5 and 4.6 and table 4.12. An alternative example is the paper of
Busse (2001), who reports that price wars between airlines are predicted best as non-
linear (threshold functions) in flow measures of liquidity.
Brander and Lewis (1988) provide an explanation for this finding, in cases when there

are bankruptcy costs which are proportional to the ”magnitude” of bankruptcy. However,
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these empirical findings by the strategic situation of indebted firms in a

duopolistic real options setting of investment.

Moreover, our model offers an explanation for predatory behavior without

defining predatory behavior as deviation from tacit collusion, without relying

on learning or network effects, and without relying on Folk theorem like

reputational arguments. It rather builds upon a real options approach. This

approach models predatory investment as the attempt of one firm driving

a competitor out of the market if the loss from an early exercise of the

investment option is more than compensated by a gain from the expected

earlier exit of a competitor.

5.1.2 Imperfect competition and debt

Since the seminal paper of Brander and Lewis (1986), economists have drawn

attention to the strategic effects of debt on competition.3 As described in

chapter 2, most of the empirical literature on the link between financial situ-

ation and investment decisions of firms suggests that increasing debt reduces

investment. In Brander and Lewis contribution however, larger debt leads

to fiercer competition, so that firms invest and produce more. In a monopo-

listic setting, in which equity but not debt is the marginal source of finance,

we can easily build a model that replicates the general empirical findings

(Jou, 2001). However, in a duopoly with equity being the marginal source

of finance, endogenous bankruptcy decisions render predatory investment-

strategies possible.

Although Brander and Lewis (1988) already describe how predatory be-

havior may emerge in a two period setting with bankruptcy, a dynamic model

of finance, investment timing, and predatory behavior has not been formu-

lated yet. In this sense the present chapter extends the Brander and Lewis

contribution to cases in which investment is subject to non-convex costs of

their model as a static one cannot explain periods of predatory behavior triggered by
changes in the environment.

3See e.g. Maksimovic (1990), Maksimovic and Zechner (1991) and Fries et al. (1997).
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adjustment. In contrast to the Brander and Lewis (1988) model however,

declaring bankruptcy is a truly endogenous decision, as the owners of the

firm are allowed to pay for the firm’s obligations with private funds, if this is

advantageous for them. Therefore, bankruptcy is declared only when optimal

and not necessarily, once a itself firm has insufficient funds.

In this (general) setting, changes in market conditions may trigger preda-

tory behavior in highly leveraged industries, but debt does not necessarily

make output market competition fiercer in general. This also is a central

difference to Brander and Lewis’ contributions, where predatory behavior

simply is fiercer competition in all states of nature and not a different policy-

regime triggered by exogenous changes in the environment.

Moreover, the model of this chapter can also be read as a contribution

to the debt-in-industry-equilibrium literature. This literature typically has

either ruled out the possibility of predatory investment by the assumption

of free market entry–which makes predatory investment unprofitable–or

assumed myopic behavior from the outset.4

5.1.3 Imperfect competition, real options and preda-

tory behavior

Our model also extends the literature on real options in oligopoly to cases

with predatory investment. So far, most of this literature has ignored the

strategic effects of debt.5 Nevertheless, debt can have important strategic

effects and, especially in the irreversible investment framework, influences

investment decisions substantially: If a firm is subject to limited liability, its

owners have to decide to finance negative cash flows from private funds or to

default on the firms obligations in adverse states, i.e. to declare bankruptcy.

As declaring bankruptcy often leads to an irreversible and complete exit of

that firm from the market, a bankruptcy decision influences the payoff of the

4See for instance Fries et al. (1997) or Maksimovic and Zechner (1991).
5See for example Huisman and Kort (1999), Sparla (2001), or Weeds (2001).
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competitor and thus the value of the competitor´s investment. Therefore,

the option to declare bankruptcy and the possibility of driving a competitor

to bankruptcy (and thereby out of the market) may alter the prices of in-

vestment options significantly. The decision to declare bankruptcy obviously

depends on the relative debt-burden a firm faces. Thus, investment not only

can be used to drive the competitor to bankruptcy by lowering prices, but

can also serve as a commitment device not to declare bankruptcy by altering

the relative debt-obligation.

Therefore, allowing for predatory investment yields new insights and

clearly distinguishes our model from existing work on exit decisions in duopoly

in a real options framework: Sparla (2001) discusses partial but irreversible

capacity reductions, only. Depending on the parameters of aggregate demand

firms may end up in a war-of-attrition or a preemption game. However, as

firms are assumed to be unable to increase capacity, predatory behavior does

not emerge.

Joaquin and Khanna (2001) allow for both irreversible investment and

exit decisions in their model of potential competition. Yet, predatory invest-

ment cannot occur in their model, due to their assumptions on revenues and

costs: (rational) exit of the competitor imposes a loss on the remaining firm.

This chapter combines the real options approach with the strategic effects

of debt literature. The basic setting is similar to the one of Jou (2001), who

models a potential monopolist (or myopic investor) that enters the market

and at the same time issues debt to finance investment.

In contrast to Jou, we model a duopoly. Both firms are assumed to op-

erate with a given capacity and are indebted from the very beginning. Both

firms can irreversibly increase capacity, but do not have any possibility of

raising or lowering debt-levels. Therefore, debt is taken to be exogenous.

The corporate tax-system is assumed to be classical, i.e. there is no share-

holder´s relief for corporate taxes, whereas interest payments are completely

tax-deducible. This gives a tax-advantage of debt.

Although throughout this chapter ”debt” will be interpreted as a special
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financial obligation, by the way ”debt” is to be modelled, all results equally

apply to any fixed running cost (e.g. overhead costs), on which a firm may

default. As a result, the model of this chapter gives an explanation for preda-

tory behavior itself in a wide class of situations, and is thus a contribution

to the literature on predatory behavior, too. In contrast to existing models,

that relate financial situation of firms to predatory behavior (e.g. Bolton

and Scharfstein, 1990, or Glazer, 1994), predatory outcomes in our model

can be described as regimes that depend on the fluctuating state of demand.

Insofar, predatory behavior emerges from time to time, triggered by changes

in market-conditions.

In contrast to many contributions in this field that study price wars,6

predatory behavior is not defined as a deviation from tacit collusion, but as

investment at market conditions which yield negative net-present value for

investment unless the endogenous nature of the exit decisions of the com-

petitors is taken into account.7 This leads to additional investment activity

when the aggregate state of demand worsens. Hence, the present paper is

related to and extends the results of Grenadier’s (1996) real options-model

on investment-cascades to a non-collusive setting.

Moreover, our model also does not rely on the assumption that infor-

mation is asymmetric among competitors, but only on the imperfectness of

information.

In line with Fershtman and Pakes’ (2000) model heterogeneity of firms

with respect to their fixed costs is one of the driving factors in the presented

model. Other models of predatory behavior that do not rely on asymmetric

information typically build upon network8 or learning-curve effects (Cabral

and Riordan, 1994 and 1997). Besides the work of Fershtman and Pakes,

the empirical paper of Busse (2002) is most closely related. Busse finds that

6See Ordover and Saloner (1989) for a summary or for more recent contributions Fer-
shtman and Pakes (2000) or Busse (2002).

7In this respect, our model is closest to Milgrom and Roberts (1982) paper.
8See Athey and Schmutzler (2001) for a fairly general model of investment and increas-

ing dominance, that includes network-industries as a special case.
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leverage is one of the main determinants for starting a price war in the airline

industry, and that the probability of starting a price war reacts in a quite

non-linear fashion to changes in the financial situation of a firm.

5.1.4 Some main results anticipated

Our model will partly consist of equations that cannot be solved analytically,

and so numerical simulations are presented where analytical solutions are not

available. Nevertheless, it will be shown analytically as well as numerically

that parameter constellations exist which lead to predatory behavior, i.e.

firms invest not because investment itself has a positive present value, but to

drive the competitor out of the market. However, the occurrence of predatory

behavior in equilibrium depends on the ”competitiveness” of the market:

When adjustment costs are high or demand is sufficiently elastic, predatory

investment never occurs.

The numerical analysis yields furthermore that already a credible threat

of predatory behavior lowers price triggers for investment substantially. How-

ever, predatory behavior only emerges in highly indebted industries. If preda-

tory behavior does not occur in equilibrium, increasing debt increases the

price trigger for investment of the firm increasing its debt. The price trig-

ger for the other firm decreases. Therefore, only if the firm that changes its

debt were the follower in equilibrium, increasing debt would delay invest-

ment. Furthermore, competition and the possibility of predatory investment

generally lowers the value of debt and therefore might explain the lower lever-

age ratios observed in practice, when compared with those predicted by the

contingent claims literature.9

We will proceed as follows: Section 5.2 outlines the model and presents

the basic assumptions. Section 5.3 presents the expressions that determine

the value of equity and price triggers for bankruptcy when both firms have

already exercised their investment option. Section 5.4 derives the value of

9See e.g. Fischer et al. (1989).
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equity and the price-triggers for investment and bankruptcy when firms may

invest. Section 5.5 shortly states the conditions which determine debt-value.

Section 5.6 presents our numerical results and section 5.7 summarizes. De-

tailed proofs are available in appendix C.

5.2 Model setup

We model a duopoly with quantity-competition and stochastic demand fluc-

tuations in continuous time t, t ∈ [0,∞[. Total production given, the price
process (Pt)t≥0 is assumed to be a geometrical Brownian motion and shall be

given by

Pt = D(Qt)Yt , (5.1)

dYt = Yt (µdt+ σdBt) . (5.2)

Bt denotes a standard Brownian motion and Qt denotes aggregate industry

production, such that

Qt = q1,t + q2,t ,

with qi,t denoting production of firm i at time t. For the sake of simplicity,

we assume that output is solely produced by a capital good which does

not depreciate. Moreover, we assume that both firms already operate in the

market with some initial production q
i
. However, both firms may irreversibly

invest and increase production to qi at cost Ci . This increase in production

is assumed to be instantaneous. At time t = 0 each firm issues debt of

unstated maturity with associated coupon payments bi. Thereafter, a firm

may not change its debt. Since we want to model heterogenous firms, we

assume the ”flow leverage” of the two firms to differ. With ”flow leverage”

the ratio li (qi) := bi
qiD(qi)

of debt payments to monopoly earnings at the state

of demand normalized to Yt = 1 is meant. Without loss of generality assume

firm 2 is the firm with the higher leverage once both firms have invested.

Assumption 5.1: l1 (q1) < l2 (q2) .
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For notational convenience, we define a function ∆ for the relative price-

change induced by a change in aggregate supply.

∆Q1,Q2 :=
Pt(Q2)

Pt(Q1)
=

D(Q2)

D(Q1)
(5.3)

The following assumption ensures, that price levels always exist, so that

investment is profitable:

Assumption 5.2: Investment increases revenues of the investing firm,

regardless if the other firm has invested or not, i.e.

D(q
i
+ q−i)qi < D(qi + q−i)qi (5.4)

As the tax-system is assumed to be classical, losses are fully offset. There-

fore, there is a tax advantage of debt, and at tax-rate τ instantaneous net

earnings of firm i are given by

(1− τ)(qi,tPt(Qt, Yt)− bi) . (5.5)

However, firms may default and declare bankruptcy at any point in time,

as they are assumed have limited liability. If bankruptcy is declared, the

coupon payments are stopped, the firm leaves the market, and its assets are

transferred to the creditors and sold at price λqi . Although in a more general

context λ may well be determined endogenously, here it will be treated as

exogenous. Moreover, λ will only matter for determining the market value

of debt and thus will not influence any decisions of the equityholders after

debt has been issued.

Furthermore, we assume that the firm is unable to temporarily suspend

production. Finally, equityholders are assumed to have unlimited external

resources. The risk-adjusted discount rate is ρ, which shall be larger than µ,

i.e. ρ > µ.

As Sparla (2001) argues, if the drift µ is strong compared to the variance

σ2, the probability that firms will not exit in finite time is strictly positive.
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However, this causes notational inconvenience as one root of the ”fundamen-

tal quadratic equation” (see below) has to be ”adjusted” to derive the correct

value functions, see Sparla (2001) for details. To avoid this difficulty the drift

is assumed to be not excessively large, i.e. |µ| < σ2

2
.

Under these assumptions, the roots of the so called ”fundamental quadratic

equation” (see e.g. Dixit and Pindyck, 1994) are given by

β1,2 =
1

2
− µ

σ2
±
s·

1

2
− µ

σ2

¸2
+
2ρ

σ2
, (5.6)

which implies β1 > 1 and β2 < 0 and β1 + β2 = 1− 2 µ

σ2
> 0.

Therefore, just as in Jou (2001, p. 72), the general solutions for the value

of equity Ei(P, b, qi, q−i) and the value of debt Bi(P, b, qi, q−i) for firm i are

given by the following equations:10

Ei(P, bi, qi, q−i) = (1− τ )
h
qi

P
ρ−µ − bi

ρ

i
+ ai1(qi, q−i)P β1 (5.7)

+ai2(qi, q−i)P β2 ,

Bi(P, bi, qi, q−i) =
bi

ρ
+ ci1(qi, q−i)P β1 + ci2(qi, q−i)P β2 . (5.8)

For notational convenience, b is dropped from the list of arguments of the

value function, as it will remain constant throughout the subsequent analysis.

5.3 Value and bankruptcy without investment

option

The derived formula for the value of equity still contains two unknowns ai1
and ai2. These have to be solved for by deriving further conditions that reflect

the optimality of investment-plans. Therefore, strategic considerations have

an important influence on these parameters. This means the parameters ai1
and ai2 will in general vary with the state of production (qi, q−i).

10See appendix C.1 for details. As usual, we denote by firm −i the competitor of firm i.
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We should hence discuss in a bit more detail the timing structure of the

game. At each point in time an active firm may chose to

(1) invest and increase capacity to q̄i if it has not invested yet,

(2) declare bankruptcy and become inactive from then on,

(3) or do nothing and wait.

As a result, the number of possible states of production (q1, q2) complicate

the analysis a lot. The following two sections will derive and specify equity-

value at the various states (qi, q−i), which also index subgames. We do not

assume which firm invests first, but let this be determined in equilibrium.

Therefore, at the time the first firm invests the other firm must be at least

indifferent between investing somewhat earlier or becoming the second firm

that invests. We discuss the behavior of both firms as second-mover first.

This allows us to obtain the valuation of the second-mover position for both

competitors. This valuation is crucial in the competition for the position of

the first-mover.

To some extent, this discussion cannot avoid some technical complexity.

The most technical proofs are presented in appendix C.

5.3.1 The monopolist’s case

Once one of the firms declares bankruptcy, the other firm becomes a monop-

olist. Therefore, we also have to consider the monopoly situation, although

we want to model a duopoly. We start with determining the value functions

of a monopolist who has already exercised its investment option. As our

model is–for the case of a monopolist that has invested–similar to Jou´s

(2001) investment and financing model, we can primarily rely on his result

to obtain the value functions.

Proposition 5.1 Having invested, the monopolist´s value of equity and debt
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is given by

E(P, q, 0) = (1− τ )

µ
q

P

ρ− µ
− b

ρ

¶
+

b (1− τ )

ρ(1− β2)

µ
P

P exit
q,0

¶β2

, (5.9)

B(P, q, 0) =
b

ρ
+

µ
λq − b

ρ

¶µ
P

P exit
q,0

¶β2

. (5.10)

Here, we denote by P exit
q,0 = β2(ρ−µ)

(β2−1)ρ
b
q
the trigger price to declare bankruptcy.

Proof. Denote the revenues process by eP := qP. This process has exactly

the same properties as the price process in Jou (2001). The proposition then

follows straightforward from Jou´s Proposition 1.

5.3.2 The duopolists’ case

When both firms have invested, so that we are in state (q̄1, q̄2) , both firms still

have to decide whether and when to declare bankruptcy. However, a priori

it is not obvious which firm will declare bankruptcy first. But since we have

assumed the two firms to be differently leveraged in the above introduced

sense, the only Markov-perfect equilibrium of the resulting exit game is the

one where the higher leveraged firm exits at its monopoly exit price. This is

shown by the proposition below:

Proposition 5.2 In all Markov-perfect equilibria in pure strategies of the

(q̄1, q̄2)-subgame (exit after investment), the firm with the higher leverage

(firm 2) chooses its monopoly exit price as the price trigger for bankruptcy

P
exit,2
q2,q1

= P
exit,2
q2,0

, whereas firm 1 chooses as exit-price trigger some

P
exit,1
q1,q2

∈
i
∆q1+q2,q1

−1P exit,1
q1,0

,∆q1+q2,q2
−1P exit,2

q2,0

h
.

Proof. See appendix.

With the equilibrium exit strategies given by Proposition 5.2, which de-

termine who stays in the market, we can now compute the equilibrium value

functions for equity and debt in a duopoly when both firms have exercised

their investment option. As firm 2´s behaves myopic, its value functions

are the same as the monopolist’s ones. However, the possible exit of firm 2
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changes firm 1´s value. Therefore, the value functions of firm 1 need to be

determined anew and the ”option values” a11, a12, c11 and c12 of (5.7) and

(5.8) have to be calculated.

Firstly, when prices tend to infinity, the bankruptcy option becomes

worthless. This leads to a11 = c11 = 0.11 Secondly, when the price tends

towards the exit price of firm 2, the following value-matching conditions

must hold:

E1(P exit,2
q2,0

, q1, q2) = E(∆q1+q2,q1
P

exit,2
q2,0

, b1, q1, 0) (5.11)

B1(P exit,2
q2,0

, q1, q2) = B(∆q1+q2,q1
P

exit,2
q2,0

, b1, q1, 0) (5.12)

This now yields for c12 and a12 after some algebraic calculations:

c12(q1, q2) =

µ
λq1 −

b1

ρ

¶Ã
∆q1+q2,q1

P
exit,1
q1 ,0

!β2

, (5.13)

a12(q1, q2) = g · (1− τ )

1− β2

b1

ρ

Ã
1

P
exit,1
q1 ,0

!β2

, (5.14)

with g being defined as

g :=
¡
∆q1+q2,q1

¢β2| {z }
<1

−β2
¡
∆q1+q2,q1

− 1
¢| {z }

>0

µ
q1b2

q2b1

¶1−β2
> 1.

The stated inequalities are shown to hold in the appendix. With these

terms at hand, we obtain for the value of equity and debt of firm 1 the

following expressions

E1(P, q1, q2)

(1− τ )
=

µ
q1

P

ρ− µ
− b1

ρ

¶
+ g · b1

(1− β2) ρ

Ã
P

P exit
q1,0

!β2

, (5.15)

B1(P, q1, q2) =
b1

ρ
+

µ
λq1 −

b1

ρ

¶Ã
P

P
exit,1
q1 ,0

!β2 ¡
∆q1+q2,q1

¢β2 . (5.16)
11See Jou (2001) for details.
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Figure 5.1: Equity-value of firm 1
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As one can now easily see, the presence of a competitor who leaves the market

at a higher trigger price adds a factor g in (5.9) to the price of the exit-option.

This factor is composed of the costs of postponed exit
¡
∆q1+q2,q1

¢β2 and the
gain, when firm 2 exits, which is a ”hedge” against bad states. This hedge

outweighs the cost of waiting and in total increases equity-value. Moreover,

value of firm 1´s equity now exhibits a kink where firm 2 exits and it no

longer necessarily monotonously increases in P (see figures 5.1(a),(b) and

appendix for details).

5.4 Value, optimal investment and bankruptcy

To describe investment behavior in the model presented here, some assump-

tions are necessary to keep the model tractable. Some of them were men-

tioned above. However, further discussion of these assumptions is still open.

First of all, as debt payments are fixed, investment–financed by external

equity–is the only way to decrease leverage. Although this seems too great a

constraint at first glance, it is very much in line with the findings of Fries et al.

(1997), who find that a small equityholder finds only extramarginal changes

in leverage advantageous. Therefore, if only marginal changes are feasible

by issuing or buying back marginal debt, investment–as an extramarginal
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change–is the only possibility to lower leverage.

Moreover, as leverage is changed by investment, the order of leverage ra-

tios and therefore the order of exit prices may be reversed by investment.

Furthermore, as we have made no assumptions about the sizes of the in-

vestment projects, the order of leverage ratios may differ before and after

investment anyway. Therefore, we have to consider a number of sub-cases

which depend on the parameters of the model.

A further issue concerns predatory behavior, i.e. firms might invest just to

drive the price down to increase the probability of the other firm defaulting.

Obviously, the possibility of profitable predatory investment again depends

on the parameter-values and the order of leverage ratios.

As no assumptions concerning which firm invests first shall be made, the

two possible asymmetric orders of movement have to be considered. The

order of movement will later be determined endogenously in equilibrium.

However, as with ruling out equal leverage ratios, we assume simultaneous

investment of both firms (or collusive strategies) to be ruled out by pro-

hibitive costs of simultaneity.12

In order to obtain the sequence of price triggers for bankruptcy by the

same reasoning used in Proposition 5.2 and to obtain a benchmark case, we

start with the investment and bankruptcy decisions of a monopolist. We will

leave the calculation of debt-values open for a later section.

5.4.1 Investment- and bankruptcy-decisions of a mo-

nopolist

For a monopolist holding an investment and a bankruptcy option, we will

label its bankruptcy trigger price as P exit
q,0 and its investment price-trigger as

P inv
q,0 . The two following value-matching conditions must hold for the equity-

12Instead we could as well assume firm sales to be decreasing if both firms invest simul-
taneously, i.e. ∆q

1
+q

2
,q1+q2

qi < q
i
. However, such assumption would be stronger.
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value function:

E(P exit
q,0 , q, 0) = 0, (5.17)

E(P inv
q,0 , q, 0) = E(∆q,qP

inv
q,0 , b, q, 0)− C. (5.18)

Together with the following smooth-pasting conditions these equations fully

determine equity-value and price triggers. The two smooth-pasting condi-

tions are:

∂E(P exit
q,0 , q, 0)

∂P
= 0, (5.19)

∂E(P inv
q,0 , q, 0)

∂P
=

∂E(∆q,qP
inv
q,0 , q, 0)

∂P
. (5.20)

Now, combining (5.7),(5.17) and (5.19) , an algebraic expression for the value

of equity can be derived after some calculations:

E(P, q, 0) = (1− τ )

·
q

P

ρ− µ
− b

ρ

¸
(5.21)

+
(1− τ)

β2 − β1

Ã
qP exit

q,0

ρ− µ
− b

ρ

!β1
Ã

P

P exit
q,0

!β2

− β2

Ã
P

P exit
q,0

!β1


+
(1− τ)

β2 − β1

qP exit
q,0

ρ− µ

Ã P

P exit
q,0

!β2

−
Ã

P

P exit
q,0

!β1
 .

The trigger prices P inv
q,0 and P

exit
q,0 , however, have to be calculated numerically

from equations (5.18) and (5.20).

5.4.2 Investment- and bankruptcy-decisions in duopoly

when one firm has invested

As mentioned above, both the order of movement where firm 1 invests first

and firm 2 invests second and the reversed one have to be considered before

one is able to determine which firm invests first in equilibrium. The firm
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investing first will be called ”leader” while the other firm will be called ”fol-

lower”. We begin with discussing the behavior of the follower. As the case

where firm 2 is the follower is the simpler one, we start with discussing this

case.

Firm 2 as follower

Proposition 5.3 As a follower, firm 2 behaves myopically, i.e. just as a

monopolist would behave that faces the same demand function as firm 2.

Proof. Investment causes no continuous costs. Therefore, equity value at

q (before investment) must be smaller than equity value at q (after investment)—

statet differently: the investment option must be worth less than the in-

crease in revenues after investment, (∆q̄1+q
2
,q̄1+q̄2 · q2− q

2
)P. Thus, we obtain

P
exit,2
q
2
,q2

> P
exit,2
q2,0

. Moreover, proposition 5.2 yields that firm 2 leaves first after

investment and behaves just as a monopolist would do. Thus, firm 2 can also

not credibly threaten to exit second before investing, i.e. firm 2 leaves first

and therefore cannot influence the (exit) behavior of firm 1.

So, as follower–just like in other games with preemption (e.g. Weeds,

2001), firm 2, the higher leveraged firm, does not need to take into account the

strategic situation. Therefore, we obtain equations similar to the situation

of a monopolist, determining the investment and bankruptcy price-triggers.

Firm 1 as follower

If firm 1 is the follower the strategic situation changes: In contrast to

the simpler situation of firm 2, firm 1’s actions affect the probability of firm

2 declaring bankruptcy. Hence, the strategic situation of firm 1 is much

richer and firm 1 may invest not because it is ”fundamentally” profitable but

because this makes the exit of firm 2 more likely. As we have seen, firm 2

does not have this opportunity.

Taking into account the possible exit of firm 2, a couple of different cases

have to be considered. For the moment, take P exit,2
q2,q1

to be given. P exit,2
q2,q1

will

be later endogenously determined in equilibrium of course. The two cases
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differ with respect to the number of price-triggers for investment. In the first

case, there is a unique (high) price-trigger so that firm 1 invests if and only if

the price gets larger than this trigger. In the other case there are two trigger

prices a high and a low one. Investment at the low price-trigger is predatory.

However, to calculate the price-trigger(s) it is necessary to determine in

a first step if predatory investment is profitable. To do so, we define two

auxiliary ”equity-value” functions. The first function to be defined is the

equity value firm 1 would have if it could not investment. This is similar

to the case where both firms have already invested but q1 is replaced with

q1 and the exit-price trigger of firm 2 is replaced with P
exit,2
q2,q1

. eE1(P, q
1
, q2)

will denote this function. Given the exit price-trigger of firm 2 P
exit,2
q2,q1

, one

can easily decide if eE1(P, q
1
, q2) is similar to firm 1’s or firm 2’s value when

both firms have invested. This function obviously defines a lower bound for

E1(P, q
1
, q2).

It hence is necessary for predatory investment to be profitable that

eE1(P, q
1
, q2) + C1 = E1(∆q1+q2,q1+q2P, q1, q2)

has more than one solution in P . The largest solution to this equation also

defines a lower bound for the non-predatory investment price-trigger.13

Lemma 5.1 (i) Other things equal

eE1(P, q
1
, q2) + C1 = E1(∆q1+q2 ,q1+q2P, q1, q2) (5.22)

has at most three solutions in P > max{P exit,2
q2,q1

, P
exit,1
q
1
,q2
}. We denote the so-

lutions with P ∗(< P ∗∗)(< P ∗∗∗) respectively and the set of solutions by S.

13A remark to notation is necessary at this point: The solution to an equation of the
form lhs(P (Y )) = rhs(P (Y )), like equation (5.22) , is noted as a ”price level” for which
the equation is solved. However, this is slightly incorrect, as we rather obtain solutions
in Y . E.g. the solution might be at a price-level, lower than the exit-price of one of the
firms. Therefore, the exit-decision has to be taken into account, since it causes prices to
rise. So we normalize for induced changes in price. Nevertheless we stick to the notion as
”price level”, as it is easier to interpret.
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Moreover, if P is large the following inequality holds:

eE1(P, q
1
, q2) + C1 < E1(∆q1+q2 ,q1+q2P, q1, q2). (5.23)

Proof. See appendix.

Although equilibrium exit-price-triggers will at first be derived in the

next subsection, individual optimality already puts a restriction to the exit-

price-triggers, as the following Lemma shows. This Lemma proves useful in

discussing the existence of predatory investment in our model.

Lemma 5.2 (i) If firm 2 leaves the market first P exit,2
q2,0

< P
exit,2
q2,q1

holds.

(ii) Moreover, in all cases P
exit,2
q2,q1

< ∆−1q
1
+q2,q1+q2

P
exit,2
q2,0

.

Proof. See appendix.

The second auxiliary equity-value function to be defined, is the value

equity would have, if investment was not allowed for prices below max (S) .

This prohibits predatory investment, if P ∗ > ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

. We denote

this second auxiliary function by bE1(P, q
1
, q2). Note that–given the exit

strategy of firm 2–this function is well defined by the usual smooth-pasting

and value-matching conditions.14

With these auxiliary functions at hand, three possible investment schemes

can now be distinguished:

1. A situation may occur, where firm 2 exits at quite high prices in situa-

tion (q1, q2), the demand is very inelastic,
15 and the costs of investing

are low, so that the value-gain of equity of firm 1 in situation (q1, q2)

is always larger than the costs of investing. This however means that

firm 1 would invest at any price. This is the case if for all P > P
exit,2
q,q

E1(∆q1+q2 ,q1+q2P, q1, q2) > C1 + eE1(P, q
1
, q2).

14See appendix for details.
15This means prices react strongly to changes in total output.
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Therefore, in this case

E1(P, q
1
, q2) ≡ E1(∆q1+q2 ,q1+q2P, q1, q2)− C1 . (5.24)

2. If #S = 1 or #S > 1 but

bE1(P, q
1
, q2) = E1(∆q1+q2 ,q1+q2P, q1, q2)− C1 (5.25)

has one and only one solution in
h
P

exit,2
q2,q1

,∞
h
, we have

E1(P, q
1
, q2) = bE1(P, q

1
, q2) .

This will usually be the non-predatory behavior case. However, if

P
exit,2
q2,q1

< ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

, we may obtain P ∗ < ∆−1q
1
+q2,q1+q2

P
exit,2
q2,0

,

which is predatory, though we will not refer to this case as predatory

investment.

3. If #S > 1 and (5.25) has more than one solution in
h
P

exit,2
q2,q1

,∞
h
, firm

1 will predatorily invest, i.e. firm 1 invests at low prices to crowd firm

2 out of the market. However, the exact structure of the value-function

of firm 1 depends on the number of solutions to (5.25):

(a) If (5.25) has two solutions, we will get an Investment/ No-Investment/

Investment scheme, i.e. a low price-trigger for which investment

occurs and a high price-trigger for investment and a region of in-

activity in between. See figure 5.2(a). We can then obtain both

price-triggers and the equity value by applying standard bound-

ary and smooth-pasting conditions for investment. However, for

the predatory-investment price-trigger P pred,1
q
1
,q2

(low price-trigger)

the smooth-pasting condition needs not to hold and the border

solution P
pred,1
q
1
,q2

= ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

may well be obtained.

(b) If (5.25) has three solutions, the situation gets even more complex:

If occasionally P is very low, firm 1 will not invest, but will invest
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Figure 5.2: Solutions to (5.22)

P

Ci

P* P**

Ei

(a) two solutions

P

Ci

P* P**

Ei

P***

(b) three solutions

as prices rise. However, smooth-pasting conditions need not to

hold in this situation. See figure 5.2(b). Starting between P ∗∗ and

P ∗∗∗, we obtain the same Investment/ No-Investment/ Investment

scheme obtained under (a). Again note the possibility of a border-

solution for the predatory-investment price-triggers.

To simplify the following analysis we shall rule out the latter case by

assumption:

Assumption 5.3: The costs of investment shall be such that firm 2 will

never invest at a price level that would lead to a type 3(b) predatory

investment case with very low prices, where firm 1 would predatorily

invest as soon as prices rise.

The following proposition discusses the general possibility of predatory

investment. The exact equations describing equity value and determining

price-triggers will be derived afterwards.

Proposition 5.4 (i) If demand is sufficiently elastic, i.e. ∀Q1, Q2 : ∆Q1,Q2 ≈
1, or if demand is not too inelastic and the costs of investment C1 are suffi-

ciently high, then predatory investment never occurs.

(ii) If g >
³

q1b1
q2b2

´1−β2
and
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(a) if firm 1 exits first when it had no investment option and if

eP exit,1
q
1
,q2

< ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

, (5.26)

then there exists an investment-cost C1, so that (5.22) has multiple

solutions.

(b) if firm 2 exits first and if for the right-hand partial derivative ∂E1
∂P+

∂ eE1
∂P

³
∆q

1
+q2,q1+q2

−1P exit,2
q2,0

, q
1
, q2

´
>

∂E1

∂P+

³
P

exit,2
q2,0

, q1, q2

´
∆q

1
+q2,q1+q2

holds, then there exists the cost of investing C1, so that predatory in-

vestment occurs.

Proof. See appendix.

In case, predatory investment indeed occurs, the exit value-matching con-

dition for firm 1 has to be modified to

E
pred
1 (P pred,1

q1,q2
, q
1
, q2) = E1(∆q1+q2,q1P

pred,1

q1,q2
, q1, q2)− C1 . (5.27)

Let ∂
∂P+

denote the right-hand partial-derivative. Due to Lemma 2 (and since

we have to allow for a corner solution) we obtain for the necessary (smooth

pasting) condition the following generalized expression:

∀P ≥ ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

:Ã
∂E

pred
1

∂P
(P pred,1

q1,q2
, q
1
, q2)−

∂E1

∂P+
(P pred,1

q1,q2
, q1, q2)∆q1+q2,q1

!³
P

pred,1

q1,q2
− P

´
≤ 0.

(5.28)

Corollary 5.1 The predatory investment-price trigger P pred,1

q1,q2
is always strictly

larger than P
exit,2
q2,q1

, P pred,1

q1,q2
> P

exit,2
q2,q1

.

Proof. Follows straightforward from Lemma 5.2 and the definition of the

predatory investment-price trigger.
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Equilibrium exit-strategies

The exit strategy of firm 2 was taken to be given so far. However, exit

strategies have to be determined as an equilibrium of both firms competing

to monopolize the market.

Independently of the (qi, q−i)-state equilibrium exit strategies can be char-

acterized as follows:

Definition 5.1 A vector of (qi, q−i)-state-contingent price-triggers P̄
#
i is a

Markov-perfect best-response in pure strategies of firm i, given the

vector of price-triggers P#
−i of firm −i, if for all (qi, q−i) not to exit before the

declared price-trigger is credible

∀P > P̄ exit,i
qi,q−i

: Ei

³
P, qi, q−i|P̄#

i , P
#
−i
´
> 0. (limited liability)

Secondly, it also must be credible not to preempt on the own proposed price

triggers for investment, i.e.

∀P ≤ P̄ inv,i
q
i
,q−i

: Ei

³
P, q

i
, q−i|P̄#

i , P
#
−i
´
≥ Ei

³
P, qi, q−i|P̄#

i , P
#
−i
´
− Ci

∀P ≥ P̄ pred,i
q
i
,q−i

: Ei

³
P, q

i
, q−i|P̄#

i , P
#
−i
´
≥ Ei

³
P, qi, q−i|P̄#

i , P
#
−i
´
− Ci.

(no preemption)

For all price-triggers P#
i (which may include predatory investment-triggers)

that fulfill the above credibility constraints, the proposed price-triggers need

to be optimal, i.e.

Ei

³
P̄ exit,i
qi,q−i

, qi, q−i|P̄#
i , P

#
−i
´
≥ Ei

³
P̄ exit,i
qi,q−i

, qi, q−i|P#
i , P

#
−i
´

Ei

³
P̄ inv,i
qi,q−i

, qi, q−i|P̄#
i , P

#
−i
´
≥ Ei

³
P̄ inv,i
qi,q−i

, qi, q−i|P#
i , P

#
−i
´
. (optimality)

Definition 5.2 A Markov-perfect equilibrium in pure strategies is a

pair of vectors
³
P
#
i , P

#
−i
´
, so that each is a best response of the other.

Thus, a firm that defaults first, uses the value-matching and smooth
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pasting condition

Ei(P
exit,i
qi,q−i

, qi, q−i) =
∂Ei

∂P
(P exit,i

qi,q−i
, qi, q−i)

!
= 0 (5.29)

to determine its own exit price-trigger. If a firm expects to leave second,

the value function of this firm is flat in its own exit price-trigger. Thus, this

firm is indifferent about the level of its own exit price-trigger on the margin.

Therefore, there always is a multiplicity of equilibria which only differ at the

(virtual) exit price-trigger of the firm which exits second.

Now denote by P ind,i
qi,q−i

the largest exit-price-trigger of firm i that lets the

limited liability constraint of firm −i hold with equality for some P 0. If firm

i chooses an exit price trigger below P ind,i
qi,q−i

, firm −i cannot credibly threaten
to exit later as the limited liability constraint would bind. Thus, firm −i
exiting at the myopic price-trigger and the other firm choosing an exit price-

trigger smaller than P ind,i
qi,q−i

will be an equilibrium, if P ind,i
qi,q−i

fulfills the other

equilibrium conditions of firm i. Note that P ind,i
qi,q−i

≥ ∆−1qi+q−i,q−i
P

exit,−i
q−i,0

always

holds since firm −i would immediately exit in state (q−i, 0) at a price below
∆−1qi+q−i,q−i

P
exit,−i
q−i,0

.

The following proposition describes all equilibria of the exit-game depend-

ing on the parameters of the actual environment.

Proposition 5.5 (i) If for firm i the myopic exit price-trigger Pm_exit,i
qi,q−i

, ob-

tained from (5.29) , is smaller than P ind,i
qi,q−i

, then firm −i choosing P
m_exit,−i
q−i,qi

and firm i choosing a lower price-trigger is an equilibrium of the (qi, q−i)

stage.

(ii) If
h
∆qi+q−i,qi

−1P exit,i
q−i,0

, P ind,i
qi,q−i

i
= ∅, then firm i chooses P

m_exit,i
qi,q−i

as the

exit-price-trigger in all equilibria of the (qi, q−i) stage.

(iii) If Pm_exit,−i
q−i,qi > P ind,i

qi,q−i
and

h
∆qi+q−i,qi

−1P exit,i
q−i,0

, P ind,i
qi,q−i

i
6= ∅, then firm

i choosing some P exit,i
qi,q−i

∈
h
∆qi+q−i,qi

−1P exit,i
q−i,0

, P ind,i
qi,q−i

i
and firm −i choosing

P
m_exit,−i
q−i,qi is an equilibrium of the (qi, q−i) stage, if this yields no incentive

to predatorily invest for firm −i.
(iv) If both firms have an incentive (and option) to predatorily invest, instead



5.4. VALUE, OPTIMAL INVESTMENT AND BANKRUPTCY 127

of choosing their myopic exit price-trigger, then both firm preempt on preda-

tory investment.16

(v) If firm i predatorily invests, firm −i cannot credibly threaten to deviate
from choosing the myopic exit price-trigger to hinder i in investing predato-

rily.

Proof. See appendix.

Remark 5.1 Part (iii) of the last proposition gives rise to the problem of

multiplicity of equilibria. For the numerical simulations the firm with the

larger P ind,i
qi,q−i

is selected as the one, who leaves second.

This selection can be motivated by the following idea: Suppose firm−i chooses
an exit price-trigger P̄ marginally larger than P ind,i

qi,q−i
. Is the choice of P ind,i

qi,q−i

still credible then? Of course not for the firm with the lower P ind,i
qi,q−i

, as

P ind,i
qi,q−i

< P̄ < P ind,−i
q−i,qi

, so that firm i would find it optimal to leave before

P̄ is actually reached, even when (falsely) expecting to leave second.

Conversely, this rule can be interpreted as a notion of conservativeness in the

following sense: Suppose the shareholders of firm i imagine the worst case,

i.e. firm −i defaults just one logical second before i0s (proposed) trigger price
is reached. Then only if the proposed exit price trigger is larger than the own

indifference price trigger, i has no incentive to exit before.

Another motivation for this rule would be that firms stepwise and sequentially

undercut each other’s exit price-triggers before the actual game commences.

5.4.3 Investment- and bankruptcy-decisions in duopoly

when no firm has invested yet

We shall now turn to the investment decision of the leader. Here however, the

problem becomes more complex, as there may be a preemption game for both,

predatory investment and ”fundamental” investment decisions. However, if

second mover advantages are not too strong, one can obtain a relatively

simple rationale for the investment trigger prices.

16See section 5.4.3
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To avoid further complication, we will make the following assumption

according to the price-level (and investment costs) in t = 0 :

Assumption 5.4: At the initial price-level P0 at least one firm finds

it unprofitable to invest and both firms find it unprofitable to de-

clare bankruptcy. Moreover, P0 lies between the preemption thresholds¡
P pred,i
pre , P inv,i

pre

¢
, which will be define below, i.e.

min
i=1,2

{P pred,i
pre } < P0 < max

i=1,2
{P inv,i

pre } .

Non-predatory investment

To disentangle the interrelated decisions at the early stage of the game

(when both firms still do not have invested) non-predatory investment is

analyzed separately in a first-step. The exit and investment strategy of the

respective other firm are assumed to be given for the moment. Just as we

did when firm 1 was the follower, we construct a hypothetical value-function

for the leading firm i. For this hypothetical value-function we again assume

firm i would not have any investment option. Hence, this function exhibits

a kink at the price-trigger where the follower, firm −i, invests.
Non-predatory investment of a leader (with the leader’s role preassigned)

is again defined as investment, that occurs at prices larger than the largest

price-level P ∗ for which this hypothetical value function intersects with the

value at output (qi, q−i) less investment costs.
17 However, if this intersection

is at a higher price than the investment price of firm −i, then firm i can-

not profitably invest in a non-predatorily before firm −i invests. Therefore,
under the assumption that firm −i does not predatorily invest, we obtain
the following value-matching conditions for our second hypothetical value-

function: bEi(P
exit,−i
q−i

,q
i

, q
i
, q−i

) = Ei(∆q
i
+q−i

,q
i

P exit,−i
q−i

,q
i

, q
i
, 0) (5.30)

17Again a case where investment is profitable at any price may occur. However, we will
not further comment on this possible case.
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if firm i chooses an exit price-trigger larger than the one of firm −i and

bEi(P
exit,i
q
i
,q−i

, q
i
, q−i

) = 0 (5.31)

otherwise. If firm i non-predatorily invests, we obtain

bEi(P
inv,i
q
i
,q−i

, q
i
, q−i

) = Ei(∆q
i
+q−i

,qi+q−i
P

inv,i

qi,q−i, qi, q−i
)− Ci (5.32)

and if firm −i invests first, we obtain

bEi(P
inv,−i
q−i

,q
i

, q
i
, q−i

) = Ei(∆q
i
+q−i

,q
i
+q−i

P inv,−i
q−i

,q
i

, q
i
, q−i). (5.33)

The investment price-trigger P inv,i
q
i
,q−i

is then determined as the solution P inv,i
q
i
,q−i

∈
Θ :=

h
P pred,−i
q−i

,q
i
, P inv,−i

q−i
,q

i

i
to the generalized smooth-pasting condition

∀P ∈ Θ :

Ã
∂ bEi

∂P
(P inv,i

q
i
,q−i

, q
i
, q−i

)− ∂Ei

∂P
(P inv,i

q
i
,q−i

, qi , q−i
) ·∆qi+q−i ,qi+q−i

!
×
³
P inv,i
qi ,q−i

− P
´
≤ 0. (5.34)

Proposition 5.5 can be used to find an exit-equilibrium, given the invest-

ment strategies of firm −i. If predatory investment at the early stage of the
game is possible, can be checked by expressions analogous to those obtained

in the case when firm 1 is the follower.

Equilibrium investment

The investment strategies of firm−i obviously cannot be taken as given, i.e.
we have to determine the exit- and investment-equilibrium at the early stage

of the game simultaneously. Remember that we were merely interested in

competitive outcomes. Thus, we assumed that collusive investment strategies

are not feasible.

We define as Huisman and Kort (1999) a function Φi(P ) which represents

the advantage of taking the role of the leader and investing at P instead of
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becoming the follower, when the other firm invests at price P.

Φi(P ) := Ei(∆q
i
+q−i

,qi+q−i
P, qi, q−i

)− C| {z }
Value as leader

− Ei(∆q
i
+q−i

,q
i
+q−i

P, q
i
, q−i)| {z }

Value as follower
(5.35)

Note that this expression is independent of exit decisions in the early stage

of the game and is thus well defined, although we have not identified the exit

equilibrium, yet.

To describe the root-behavior of Φi(P ) a bit more notation has to be

introduced. We denote the state-
¡
q, q
¢
price at which firm i invests as follower

by P i, i.e.

P i = ∆−1q
i
+q−i

,q
i
+q−i

P
inv,i
q
i
,q−i

analogously we define P i as the price at which firm i quits as follower, invests

predatorily, or firm −i quits, whichever happens first.

Proposition 5.6 (i) On M := [max
j=1,2

{P j},min
j=1,2

{P j}]

Φi(P ) = 0 (5.36)

has at most three solutions.

(ii) If P i ≤ P−i, then Φi(P ) = 0 has at most two solution on M and only

one additional one for P i ≤ P ≤ P−i, namely P−i with Φ0i(P−i) < 0.

(iii) If P i > P−i , then Φi(P i) = 0 and Φi(P ) < 0 for all P i > P > P−i.

(iv) If Φi(P ) = 0 has two solutions onM in case (ii) or three solutions in case

(iii), then Φi(max{P i}) > 0. Moreover, there can only exist an additional

solution on min
j=1,2

{P j} < P < max
j=1,2

{P j} if P i < P−i.

Proof. See appendix.

If there are two solutions to Φi(P ) = 0 in case (ii) (respectively three

solutions in case (iii)) we will call the smaller one the preemption-threshold

for predatory investment and the larger one preemption-threshold for non-

predatory investment. They define a threshold at which firm i is just indif-

ferent between being the leader and being the follower. We will denote these
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thresholds by P pred,i
pre and P inv,i

pre respectively. If there are less solutions, we

only define a non-predatory preemption threshold.

If in case (ii) there is no solution to (5.36) onM then there is a solution for

smaller P since the leader´s payoff is negative at its effective exit price, while

it is zero for this firm being follower. We then denote this solution by P inv,i
pre .

Moreover, we set P pred,i
pre = P i. This is the only case in which P inv,i

pre > P pred,i
pre .

If in case (iii) Φi(P ) < 0 for all P < P i, we set P inv,i
pre = P−i.

A typical problem that arises in timing games of (dis-)investment is the

multiplicity of equilibria associated with Fudenberg and Tirole´s (1985) no-

tion of perfect timing game equilibria. The non-uniqueness typically arises

if none of the firms has an unilateral incentive to invest, while both firms

have an incentive to preempt each other.18 However, this non-uniqueness

disappears when we look at the renegotiation-proof equilibria only and make

the following additional assumption.

Assumption 5.5: Let i be the firm with the larger P i, then the largest

solution to (5.36) for firm −i shall be larger, than the optimal uncon-
strained19 investment price trigger of firm i. Moreover at least for one

firm there exists an (interior) solution for P inv,i
pre on M.

This assumption assures that second-mover advantages not being ”too

strong”

Proposition 5.7 Under Assumption 5.5 the only Markov-perfect equilib-

rium for the preemption game for non-predatory investment is that the firm

18See e.g. Weeds (2001) or Sparla (2001).
Indeed, in some numerical simulations (not reported) we found non-renegotiation-proof

predatory equilibria. Renegotiation-prooveness is but a strong assumption on rationality.
Therefore, we might in reality observe a circular situation of the following form: One

agent takes pre-emptive, predatory action in threat of a predatory action of the other
agent. This other agent however has no incentive to undertake that action as long as the
first agent does not take action. The first agent however takes action as she is threatened.
Triggered off by a sunspot, the situation escalates.
19This means P inv,−i

q−i
,q

i

is set to infinity in calculating the price-triggers.
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with the smaller P inv,i
pre takes the lead, and chooses an investment-price trig-

ger, which is a solution to (5.34) , where P inv,−i
q−i

,q
i
= P inv,−i

pre , P pred,−i
q−i

,q
i
= P inv,i

pre .

We denote this investment price trigger by P inv,L
q
L
,q−L

.

Proof. First note that at P inv,L
q
L
,q−L

firm L indeed prefers to be the leader,

moreover because of assumption 5.5 we have a preemption game for non-

predatory investment: Suppose τ denotes the stopping-time associated with

the optimal investment-price trigger of firm i. Then firm −i has an incentive
to invest at time τ − ε, as long as the price is above its preemption threshold.

Therefore, when Pt ∈ [P pred,−L
pre , P inv,−L

pre ] firm −L prefers to be the follower,
while at P inv,L

q
L
,q−L

firm L profitable invests.

However, an existing preemption threshold for predatory investment does

not necessary imply predatory investment to occur in a renegotiation-proof

Markov-perfect equilibrium:

Proposition 5.8 There can only occur predatory investment in a renegotiation-

proof Markov-perfect equilibrium, if at least one firm can profitably invest

predatorily, without assuming that the other firm invests predatorily, i.e. a

Ṕ < P inv,L
q
L
,q−L

exists, such that

Ei(∆q
i
+q−i

,qi+q−i
Ṕ , qi, q−i

)− C ≥ bEi(Ṕ , q
i
, q−i

), (5.37)

where bEi denotes the equity value without the possibility of predatory invest-

ment. If (5.37) has indeed such a solution, we will call predatory investment

for firm i to be ”fundamentally profitable”.

Proof. (5.37) defines a kind of net-present value rule to predatory in-

vestment: The option to predatorily invest exists if and only if predatory

investment can give a net-present-value gain. If predatory investment is not

profitable for both firms unless the other firm predatorily invests, then both

firms can renegotiate not to invest predatorily.

Proposition 5.9 A solution to (5.37) implies that a predatory investment

preemption threshold for firm i exists, i.e. there cannot be second-mover

advantages for profitable predatory investment independent of how low P gets.
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Proof. See appendix.

Therefore, if both firms have a predatory-investment preemption-threshold

price, or if the non-predatory investment threshold of one firm is smaller than

the predatory one of the other firm, we have a preemption game for preda-

tory investment. However, both firms only enter this game, if at least one

firm finds predatory investment fundamentally profitable. If only for one

firm a predatory-investment preemption threshold is defined, and if this firm

finds predatory investment fundamentally profitable, then it will predatorily

invest, indeed. In this case it sets the predatory investment-price trigger ac-

cording to a generalized smooth pasting condition analogous the one derived

for firm 1 as follower.

Proposition 5.10 (i) If there is a preemption game for predatory invest-

ment and P pred,i
pre < P inv,−i

pre for both firms, the only Markov-perfect equilibrium

(outcome) is that the firm with the higher P pred,i
pre , takes the lead for predatory

investment and invests at a price-trigger which is a solution to a version of

(5.34) that is modified by defining P inv,−i
q−i

,q
i
:= P pred,i

pre , P pred,−i
q−i

,q
i
:= P pred,−i

pre and

by using the appropriate value matching conditions.

(ii) If there is a preemption game for predatory investment, and P pred,i
pre >

P inv,−i
pre for firm i, and one of the firms has an unilateral incentive to invest

in
£
P inv,−i
pre , P pred,i

pre

¤
,20 then in all Markov-perfect equilibria firm −i invests

predatorily at P pred,i
pre .

(iii) If there is a preemption game for predatory investment and P pred,i
pre >

P inv,−i
pre for one of the firms, and none of the firms have an unilateral incentive

to invest on
£
P inv,−i
pre , P pred,i

pre

¤
, then in all renegotiation-proof Markov-perfect

equilibria firm i predatorily invests at its unconstrained optimal predatory

investment price-trigger or at P pred,−i
pre , whichever is the higher price.

Proof. See appendix.

Corollary 5.2 If both firms wish to predatorily invest, then the equilibrium

20This means the unconstrained optimal investment price-trigger falls in this interval.
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predatory investment price-trigger is strictly smaller than the equilibrium nor-

mal investment price-trigger.

The equilibrium exit strategies are determined analogously to the follower

case. Therefore, we now have all equations that determine the equilibrium

price-triggers of our model and so we can obtain numerical results and nu-

merically check the importance of the strategic situation modelled in this

chapter.

5.5 Value of debt

For completeness, we briefly state the two value-matching conditions which

generally characterized the value of debt:

Bi(P
exit,i
qi ,q−i

, bi, qi , q−i) = λqi , (5.38)

Bi(P
Trig, bi, qi1 , q−i1) = Bi(∆qi1+q−i1 ,qi2+q−i2P

Trig, bi, qi2, q−i2). (5.39)

P Trig denotes an arbitrary decision price trigger that does not lead to an

immediate exit of firm i and at which capacities are changed from (qi1 , q−i1) to

(qi2 , q−i2). However, as we do not aim at deriving optimal leverage strategies,

debt values are not reported in the numerical results.

5.6 Numerical results

Numerical solutions have been calculated for different parameter values. Ta-

ble 5.1 contains the parameter-values for the non firm-specific parameters.

In all calculations an isoelastic specification for the inverse demand-function

has been used. Two base cases are considered. One to discuss the impact of

changes in the leverage, and one to study the influences of the elasticity of

demand and the tax rate.

Tables 5.2, 5.3 and 5.4 report the results for those two base cases. First

of all, investment price-triggers for the duopoly and the monopoly differ very
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Table 5.1: General Parameter Values,
Base Cases

Tax Rate τ 0.3
Discount Rate ρ 0.05
Drift µ 0.03
Variance σ2 0.1
Inverse-Demand Q−ξ

Table 5.2: Base Case I (a), (b): ξ = 0.9
Firm 1 (a) Firm 1 (b) Firm 2

Production before Investment 18 17.9 18
Production after Investment 20 20 20
Investment-Costs 120 120 120
Coupon-Payment [Debt] 49.9 49.9 50
MONOPOLY
Exit-Price Trigger after investment 0.4496 0.4496 0.4505
Exit-Price Trigger before investment 0.4980 0.4980 0.4990
Investment-Price Trigger 99.844 95.337 99.844
DUOPOLY
Both Invested, Exit-Price Trigger Firm 2 exits Firm 2 exits 0.45049
Firm 1 Follower: Exit-Price Trigger 0.4867 0.4888 Firm 1 exits
Firm 1 Follower: Investment-Price Trigger 15.872 15.061 Firm 1 inv.
Firm 2 Follower: Exit-Price Trigger Firm 2 exits Firm 2 exits 0.4881
Firm 2 Follower: Investment-Price Trigger Firm 2 inv. Firm 2 inv. 17.48
Preemption Threshold Non-Predatory Investment 4.57881 4.36741 4.895 (4.873)
Unilateral Incentive to predatorily Invest as Leader No No Yes
Firm 1: Predatory Investment-Price Trigger 0.611624 0.6206 Firm 1 inv.

significantly21.

For the follower, this is just the standard result of Cournot competition.

For the preemption threshold of the leader, this is the usual effect of the

strong first-mover advantages of the Stackelberg-leader. These first-mover

advantages are additionally amplified in the presence of predatory behavior

or if the order of exit is reversed by investment. These first-mover advantages

drive the results of our base cases.22 The (tax adjusted) net-present-value

21This is also true for the trigger values of Y , which can be obtained by rescaling the
price triggers by 1.86607 for the leader and 1.95912 for the follower, setting D (q) = 1.
22Note, that although interior solutions for the non-predatory investment price-trigger
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Table 5.3: Base Case I (c): ξ = 0.8

Firm 1 Firm 2
Production before Investment 17 18
Production after Investment 21 20
Investment-Costs 160 120
Coupon-Payment [Debt] 70 70
MONOPOLY
Exit-Price Trigger after investment 0.601 0.631
Exit-Price Trigger before investment 0.7296 0.695
Investment-Price Trigger 34.75 49.77
DUOPOLY
Both Invested, Exit-Price Trigger Firm 2 exits 0.631
Firm 1 Follower: Exit-Price Trigger 0.693 Firm 1 exits
Firm 1 Follower: Investment-Price Trigger 9.293 Firm 1 inv.
Firm 2 Follower: Exit-Price Trigger Firm 2 exits 0.680
Firm 2 Follower: Investment-Price Trigger Firm 2 inv. 15.924
Preemption Threshold Non-Predatory Investment 3.579 3.109
Unilateral Incentive to predatorily Invest as Leader No Yes
Firm 1: Predatory Investment-Price Trigger Firm 2 inv. 0.786

price triggers, PNPV , for investment in duopoly in the two base cases were

(according to rule 1 below) 5.7 (8.2) and 7.6 (10.9) respectively.23 If one

assumes the other firm would invest, unless firm i invests (rule 2), then the

net-present-value rule yields a tax-adjusted price trigger of PNPV = 4.5 in

base case I (a), which is only slightly below the equilibrium investment-price

trigger of firm 1.

Moreover, in calculating the adjusted net-present value price-trigger of

were allowed for, in the cases reported, the leader always invested at the preemption
threshold of the follower.
23

PNPV
Rule_1 =

ρCi

(1− τ)
³
qi∆q

i
+q−i

,qi+q−i
− q

i

´ (5.40)

PNPV
Rule_2 =

ρCi

(1− τ)
³
qi∆q

i
+q−i

,qi+q−i
− q

i
∆q

i
+q−i

,q
i
+q−i

´ (5.41)
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Table 5.4: Base Case II: ξ = 0.7
Firm 1 Firm 2

Production before Investment 18 18
Production after Investment 20 20
Investment-Costs 160 160
Coupon-Payment [Debt] 40 50
MONOPOLY
Exit-Price Trigger after investment 0.3604 0.4505
Exit-Price Trigger before investment 0.3963 0.4951
Investment-Price Trigger 43.9427 43.9679
DUOPOLY
Both Invested, Exit-Price Trigger Firm 2 exits 0.4505
Firm 1 Follower: Exit-Price Trigger Firm 2 exits 0.4584
Firm 1 Follower: Investment-Price Trigger 19.59 Firm 1 inv.
Firm 2 Follower: Exit-Price Trigger Firm 2 exits 0.4863
Firm 2 Follower: Investment-Price Trigger Firm 2 inv. 19.73
Preemption Threshold Non-Predatory Investment 9.055 9.4218
Unilateral Incentive to predatorily Invest as Leader No No
Firm 2: Exit-Price Trigger before Investment Firm 2 exits 0.4974

PNPV = 4.5, the investment of firm 2 when the price-process reaches the

follower’s price-trigger is ignored. Therefore the ”true” net-present-value rule

investment-price trigger is larger than 4.5. In that sense, we can conclude

that in some cases the threat of being forced to exit first outweighs the gains

from waiting.

Comparing the results for the three sub-cases of Base Case I–(a) Firm

1 has lower leverage before and after investment, (b) Firm 1 has a higher

leverage before, but lower leverage after investment and (c) the size of the

investment projects differs between Firm 1 and 2–shows that the firm with

the higher initial, the firm with the higher post-investment leverage, and the

firm with the lower leverage in both states can prey in equilibrium. Therefore,

our model includes not only the cases studied by Busse (2001) but also the

cases in which the financially healthier firm preys.

Table 5.5 now reports the effects of a change in leverage of firm 1 (relative

to Base Case I(a)). In states, in which investment does neither change the
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Table 5.5: Effects of firm 1’s debt on investment-price triggers

debt P
inv,1
q
1
,0 P

inv,1
q
1
,q2

P inv,1
pre P inv,2

pre

49.9∗ 99.8436 15.8715 4.57881 4.89525
49 99.8422 17.2948 6.0871 6.52665
48 99.8407 17.2942 6.08645 6.52679
47 99.8392 17.2935 6.08581 6.52694
40 99.8294 17.2894 6.08161 6.5279
35 99.8232 17.2868 6.07892 6.52851
∗ Firm 1 exits first as follower and also predatorily invests as leader.

Table 5.6: Effects of firm 2’s debt on investment-price triggers

debt P
inv,2
q
2
,0 P

inv,2
q
2
,q1

P inv,2
pre P inv,1

pre

50 133.102 23.2316 8.57345 8.20269
55 133.108 23.2526 8.61058 8.1743
60 133.115 23.2749 8.64987 8.14432
70 133.13 23.3233 8.73448 8.07987
80 133.147 23.3762 8.8266 8.00988

ordering of exit price triggers, nor predatory investment would occur on the

second stage, the effect of debt on investment-price triggers are rather minor.

Moreover, as firm 1 becomes leader in equilibrium, the probability of

investment in duopoly shrinks with larger debt levels, as long as debt levels

stay intermediate.

However, if both firms become more similarly leveraged, debt starkly

influences investment decisions. If firm 2 can expect that firm 1 leaves the

market first (in case firm 2 becomes the leader) then—as we have seen—first-

mover advantages become very strong. The first-mover advantages can be

even strong enough to let firm 1 in equilibrium invests below the simple

net-present-value price trigger.

Therefore, the model presented in this chapter might indeed explain the

U-shaped investment-debt relation found in our empirical analysis of the pre-

vious chapter. Figure 5.3 shows the Φi functions for both firms corresponding

to the first base case.
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Figure 5.3: Gain, Φi, from becoming the leader, Base Case I (a)

Table 5.6 reports the investment price triggers for different debt-levels of

firm 2 (with the base case II specifications). For firm 2 investment becomes

more likely for lower debt levels, which is in line with Jou´s (2001) findings

for monopolists and empirical evidence. Interestingly, different debt levels

influence firm 2´s investment decision much stronger in a duopoly than in

monopoly.

Unlike in a static model of Cournot-competition, here increasing the elas-

ticity of demand make investment of the leader more likely, whereas the

investment of the follower becomes less likely, as shown in table 5.7. Here

again the strong first-mover advantages drive the result. This may serve as

an independent test of the model.

Table 5.8 presents the price triggers for different corporate tax rates. We

use Base Case II as the reference-case, because in Case I, firm 1 would invest

immediately as follower for low tax rates. However, note that the effect of tax-

rates of course only comes in, when tax rates do not lower investment costs by

the same percentage, i.e. given debt, taxes are neutral if Ci (τ) = (1− τ)Ci.

At last one may wonder if the results hinge on the near symmetry of

both firms in the cases studied. Yet, although only results for firms that are

relatively symmetric were reported, solutions have been calculated for cases

more asymmetric in production or investment costs, too. In more asymmetric
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Table 5.7: Effects of the elasticity of demand on investment-price triggers

elasticity P
inv,1
q
1
,0 P

inv,2
q
2
,0 P

inv,1
q
1
,q2

P
inv,2
q
2
,q1

P inv,1
pre P inv,2

pre

−0.5 26.1318 26.1671 17.0162 17.1305 9.98429 10.3272
−0.6 32.8083 32.8389 18.2142 18.34 9.50913 9.86668
−0.7 43.9427 43.9679 19.5916 19.729 9.05488 9.42182
−0.8 66.2228 66.2419 21.1916 21.3402 8.61981 8.99124
−0.9 133.09 133.102 23.0725 23.2316 8.20269 8.57345

Table 5.8: Effects of the tax rate on investment-price triggers

tax rate P
inv,1
q
1
,0 P

inv,2
q
2
,0 P

inv,1
q
1
,q2

P
inv,2
q
2
,q1

P inv,1
pre P inv,2

pre

0.1 34.2003 34.2304 15.2379 15.399 6.98867 7.41972
0.2 38.462 38.4898 17.1425 17.2921 7.8937 8.29367
0.3 43.9427 43.9679 19.5916 19.729 9.05488 9.42182
0.4 51.2517 51.2744 22.8573 22.9816 10.6 10.9317
0.5 61.4864 61.5063 27.4294 27.5396 12.7591 13.0528

cases the results do not change much, except for predatory outcomes to be

more likely, i.e. we obtain predatory equilibria also for cases with a greater

difference in leverage ratios or more elastic demands.

Generally predatory outcomes are likely if firm 1 is small compared to

firm 2 and both are heavily leveraged.

5.7 Summary of the results of chapter 5

At the end of this chapter, we may briefly summarize. We analyzed a real

options model of a duopoly. This model simultaneously allowed for both irre-

versible investment and exit decisions. The duopoly was modelled in contin-

uous time, firms were assumed to hold debt because of tax advantages, and

were allowed to default on their obligations at no cost to the equityholders.

We showed how endogenous bankruptcy decisions alter the strategic sit-

uation significantly: Firms may invest not because investment is fundamen-

tally profitable, but because this makes the exit of the competitor more

likely. This, however, affects the value of the investment options themselves.
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Therefore, in the presented model debt not only induces an agency prob-

lem, but also has a negative strategic effect, which reduces the value of debt.

This might explain the low debt-ratios found in practice compared to the

substantial tax benefits of debt.

Moreover, a discontinuous effect of debt on investment incentives was

found. For moderate levels of debt, investment tends to decrease with in-

creasing debt. However, if debt levels get large enough, investment-incentives

become very strong, as both firms seek to become leader and monopolize

the market when revenues decrease in the presence of adverse shocks. This

strategic effect of debt might explain the non-monotone influence of debt on

investment we found in chapter 4. Therefore, our model also explains preda-

tory behavior in a dynamic setting with neither relying on an asymmetry

of information among competitors, nor on learning-curve or network effects.

Our numerical examples show that in equilibrium both the firm with the

higher and the firm with the lower debt may prey.
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Chapter 6

Concluding Remarks

Although we have discussed the main results of each chapter at the end of

it, some concluding remarks may still be justified.

The goal of this work was modest. We wanted to show that financial

frictions and non-convex adjustment costs interact in a non-trivial and im-

portant way, when firms decide upon investment behavior. To do so, we

began with building a model of a monopolistically competitive firm which

faces both financial constraints and fixed costs of investment. We found the

financial status of the firm to be influential on both the adjustment speed

and the optimal stock of capital in this model. Maybe, one should summarize

the idea behind this effect in the following very stylized way: Suppose a firm

completely leases its capital. Given an amount of liquidity and given a fixed

cost of adjusting the stock of capital, this firm is employed with a certain

number of options to change the stock of capital. The larger this number,

the smaller the value of each of the options. However, the option-value adds

to the fixed cost of adjustment. Hence, adjustment is the more frequent, the

larger liquidity is.

To test our hypothesis, we analyzed company-account data from Ger-

many and the UK. Indeed, we could find only a weak influence of finance on

the long-run optimal stock of capital. Yet, we found the influence of finance

on investment to be quite substantial. Moreover, greater liquidity also am-

143
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plified the reaction of investment to changes in fundamentals. Therefore, our

theoretical point appears to be well supported by the data.

On the basis of these results, we have built a model of duopoly in which

two firms are both equipped with an irreversible investment and a bankruptcy

option. As we have seen, these two options and competition interact in

a complex manner. This interaction can trigger predatory investment in

adverse states of demand. Moreover, we have seen this interaction to speed

up investment more than the effect of competition alone would do.

So we might say we have reached our goal to a considerable extent. How-

ever, it is still not clear, how the proposed investment model would actually

behave in a macroeconomic setting. Would the financial frictions exacerbate

shocks to the economy or would they rather smooth the reaction of firms

to those shocks over time? Suppose an economy is hit by an adverse shock,

that drives down firm liquidity as well as productivity. On the one hand,

firms would adjust their stock of capital more slowly than without the finan-

cial shock. Hence, there would be a lesser financial-multiplier effect, caused

by a drop in the price of capital goods. On the other hand, the economic

downturn would appear to be more persistent. Compared to the convex-cost

framework the reaction of aggregate investment, may yet still be stronger, if

the shock is large and many firms would be forced to fully adjust their stock

of capital.

Another field of further research, related to our findings, could look for

the interaction of non-convex adjustment cost and other rigidities than only

an imperfect financial market. For example studying labor demand of firms

with non-convex adjustment costs in both capital and labor would surely be

a topic of interest.1 Again these interdependent demands could be influenced

by financial market imperfections.

Our duopoly model might be extended in several directions: The choice

of debt may be endogenised and collusive behavior and simultaneous action

may be allowed for. This might especially be of interest, as Glazer (1994)

1See Sakellaris (2001) for an exploratory study of this topic.
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finds debt to make collusive behavior more likely in a two-period setting of the

Brander and Lewis (1986) model. Moreover, market entry as a special case

may be worthwhile to study. Another interesting extension of the duopoly

model would be to allow for a multitude of investment options or to analyze

welfare issues.

However, these questions go beyond both, the aim and scope of the

present thesis.
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Appendix A

Appendix to Chapter 3

In this appendix, we derive the Bellman equation which is central to our

model in chapter 3. Thereafter, we show the existence and uniqueness of a

solution to this equation. At the end of this appendix, some properties of

the induced optimal-policy function are discussed.

A.1 Deriving the Bellman Equation

All variables, functions etc. are defined as in the main text, unless stated

differently. The correspondence, X, of financial feasible capital-imbalance

and debt pairs is given by:

X (K∗
t , wt, zt, Bt) =

(
zo, Bt+1 ∈ R2+|D(zo, Bt+1, K

∗
t , wt, zt, Bt) ≥ 0

∧Bt+1 ≤ b̂zoK∗
t

)

=

(
zo, Bt+1 ∈ R2+

¯̄̄̄
¯ (1+ i( Bt

Kt−1
))Bt − Π(zo,K∗

t )[1− wtI{zo 6=zt}]

+K∗
t (z

o − zt) ≤ Bt+1 ≤ b̂zoK∗
t

)
(A.1)

Dividing the expression by K∗
t and using bt :=

Bt

Kt−1 and for the stock of
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capital before investment Kt−1 = Kt

1−δ yields:

X̂ (K∗
t , wt, zt, bt) :=

=

(
zo, bo ∈ R++ ×R+

¯̄̄̄
¯ (1+r(bt))

1−δ btzt − π(zo)[1− wtI{zo 6=zt}]

+(zo − zt) ≤ bozo ≤ b̂zo

)
∪ {(0, 0)}

(A.2)

To obtain a more accessible form define et to be the equity-ratio in the

opening balance and thus

et := e(bt) = 1− (1+ r(bt))

1− δ
bt.

Define furthermore c(z, b) to be the cash flow per unit of capital (including

cash flow from newly issued debt, and ”costs” for ”buying back” the capital

stock), that is

ct := c(zo, bo) =
π (zo)

zo
+ (bo − 1) .

We then get for X̂ :

X̂ (K∗
t , wt, zt, bt) =zo, bo ∈ R++ × R+

¯̄̄̄
¯̄ e(bt) ztzo + c(zo, bo)− wtI{zo 6=zt}

π(zo)
zo
≥ 0

∧ 0 ≥
³
bo − b̂

´ ∪{(0, 0)}.
(A.3)

Next define

Y (wt, zt, et) :=

zo, bo ∈ R++ × R+

¯̄̄̄
¯̄ et ztzo + c(zo, bo)− wtI{zo 6=zt}

π(zo)
zo
≥ 0

∧ 0 ≥
³
bo − b̂

´  .

(A.4)

For et = e(bt) we have X̂ = Y ∪ {(0, 0)}.

Now denote the value-function by V. For notational convenience define

Y := Y (wt, zt, e(bt)) . Then V is determined by the following Bellman equa-
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tion:

V (K∗
t , wt, zt, bt)

:= max
(zo,bo)∈X(K∗

t
,wt,zt,bt)

©
D(zo, bo, K∗

t , wt, zt, bt) + ψEt

£
V (K∗

t+1, wt+1, zt+1, b
o)
¤ª

= K∗
t max
(zo,bo)
∈Y

n
e(bt)zt + c(zo, bo)zo − wtI{zo 6=zt}π(z

o) + ψEt

h
V (K∗

t+1,wt+1,zt+1,b
o)

K∗
t

io

= K∗
t

e(bt)zt + max
(zo,bo)
∈Y

 c(zo, bo)zo − wtI{zo 6=zt}π(z
o)+

+ψEt

h³
V (K∗

t+1,wt+1,zt+1,b
o)

K∗
t+1

− e(bo)zt+1 + e(bo)zt+1

´
K∗

t+1

K∗
t

i 


= K∗
t

e(bt)zt + max
(zo,bo)
∈Y

 c(zo, bo)zo − wtI{zo 6=zt}π(z
o) + ψe(bo)zo(1− δ)

+ψEt

h³
V (K∗

t+1,wt+1,zt+1,b
o)

K∗
t+1

− e(bo)zt+1

´
zo(1−δ)
zt+1

)
i 


(A.5)

The first equality follows from the linear homogeneity in K∗ of the function

D and the linearity of the Et−operator, the second equality stems from the

fact, that e(bt)zt is no function of (zo, bo) and is thus not affected by the

maximization. The third follows from the linearity of Et and the definition

of zt+1. (3.3) yields
K∗

t+1

K∗
t

= exp(d+ ξt+1) and zo(1− δ) = zt+1 · exp(d+ ξt+1).

Now define vt :=
V (K∗

t
,wt,zt,bt)

K∗
t

− e(bt)zt. Due to the homogeneity of V , v does

not depend on K∗
t . Thus we obtain:

v(wt, zt, e (bt)) := max
(zo,bo)∈

X(1,wt,zt,bt)

(
c(zo, bo)zo − wtI{zo 6=zt}π(z

o) + ψe(bo)zo(1− δ)

+ψEt[v(wt+1, z
o (1−δ)
exp(d+ξ

t+1)
, bo) exp(d+ ξt+1)]

)
(A.6)

That maximizing v leads to an equivalent policy to maximizing V has been

discussed in the main text.

A.2 Existence and uniqueness

From now on time-indices will be suppressed. Due to Lemma 3.1 we can

drop ”no production” from the set of alternatives X and express the value
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function v as

v (w, z, e) = max
(zo,bo)∈Y (w,z,e)

 c(zo, bo)− wπ(zo)I{zo 6=zt} + (1− δ)ψe (bo) zo

+ψ
RR h

v
³
ε, zo 1−δ

exp(d+ξ)
, e (bo)

´
exp(d+ ξ)

i
dF (ξ)dG(ε)


(A.7)

or respectively as:

v (w, z, e) =

(
max {vno adj (z, e) , vadj (w, z, e)}

vadj (w, z, e)

for Z 6= ∅
for Z = ∅ (A.8)

with

vno adj (z, e) : = max
bo∈Z

 c(z, bo) + (1− δ)ψe(bo)z

+ψ
RR h

v
³
ε, z 1−δ

exp(d+ξ)
, e (bo)

´
exp(d+ ξ)

i
dF (ξ)dG(ε)


vadj (w, z, e) : = max

(zo,bo)
∈Y (w,z,e)

 c(zo, bo)− wπ(zo) + (1− δ)ψe (bo) zo

+ψ
RR h

v
³
ε, zo 1−δ

exp(d+ξ)
, e (bo)

´
exp(d+ ξ)

i
dF (ξ)dG(ε)

 .

Assumption A.6: µξ := ψE[exp(ξ + d)] < 1.1

Lemma A.1 Consider the operator T defined by posing (Tv) (w, z, e) equal

to the right hand side of (A.7). This operator is defined on the set B of

all real-valued, a.e. continuous and bounded functions with domain D =

[0, 1]× R+ × R+
Then the mapping T (a) preserves boundedness, (b) preserves continuity a.e.,

1This assumption is equivalent to assumption A.6 in Caballero and Engel (199, p. 811).
Assume ξ is normally distributed with variance σ2. Then this assumption is equivalent
to exp

³
d+ σ

2

2

´
< 1+ r. Approximately, this is r − d > σ

2

2 . Economicly this means that
productivity and hence value of a given stock of capital grows at a smaller rate than the
market rate of return.
Suppose, this assumption would not hold and neglect adjustment costs for the moment.

It is easy to see that a firm could obtain infinite expected value by choosing a stock of
capital that is small enough to reproduce its depreciation plus the interest rate in the
first period. In the next period it can be expected, that this stock of capital (depreciated
capital replaced) generates a positive profit, which grows at a larger rate than the interest
rate.
In this sense, assumption 1 is an equilibrium condition for the capital-market.



A.2. EXISTENCE AND UNIQUENESS 151

and (c) satisfies Blackwell´s conditions.

Proof. (a) To show that T preserves boundedness, one has to show that

for any bounded function u (Tu)(·) is bounded.
Consider u ∈ B, that is bounded from above by u and bounded from below by

u, then(Tu) (·) is bounded from above because

(Tu) (w, z, e) ≤ µξu+ sup
(zo,bo)∈Y (w,z,e)

©
c(zo, bo)− wπ(zo)I{zo 6=zt} + (1− δ)ψe (bo) zo

ª
≤ µξu+ sup

0≤zo,0≤bo≤b̂
{c(zo, bo) + (1− δ)ψe (bo) zo}

= µξu+ sup
0≤zo,0≤bo≤b̂

{[1− ψ (1+ r(bo))] bzo + π(zo)− (1− ψ(1− δ)) zo}

≤ µξu+ sup
0≤zo,0≤bo≤b̂

{(1− ψ) zo + π(zo)− (1− ψ(1− δ)) zo}

= µξu+ sup
0≤zo

{π(zo)− ψδzo} .

The first inequality reflects the boundedness of u. The second inequality results

from dropping adjustment costs.

Using the definitions for c and e we obtain the first equality. The third

inequality now follows from r(bo) ≥ 0, 0 ≤ bb < 1.

The last supremum is bounded, because π(zo) − ψδzo obtains its maximum.
This follows from our concavity assumption on π and our assumption on the

first derivative of π that leads to

lim
zo→0

π0(zo)− ψδ > 0 > lim
zo→∞

π0(zo)− ψδ.

That (Tu) (·) is bounded from below follows from

(Tu) (w, z, e) ≥ µξu+ sup
(zo,bo)∈Y (w,e,z)

©
c(zo, bo)− wπ(zo)I{zo 6=zt} + (1− δ)ψe (bo) zo

ª
> µξu.

The last inequality follows directly from Lemma 3.1—the optimality of no-

bankruptcy.
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(b) Firstly, for every u that is continuous a.e. the parameter integrals in

(A.7) are continuous. So the function that is maximized is continuous. Sec-

ondly, both Y and Z are continuous correspondences except for the equity

and capital imbalance pairs (e, z) ∈ A := {(m,n)|m = (1 −bb) − π(n)
n
. These

are the points at which Z switches to being empty, the (e, z) pairs at which

a marginal decrease in equity will force the firm to adjust capital to avoid

bankruptcy. Therefore, the maximization fullfils the assumptions of Berge’s

thorem at all points outside A. Hence, (Tu)(w, z, e) is continuous for all

points (e, z) /∈ A. Now, as A is a curve in R2 and so has measure 0, (Tu) is
continuous a.e.

(c) To show that T satisfies Blackwell´s conditions, one first notes that if

f1, f2 ∈ B and if ∀(w, z, e) ∈ D : f1(w, z, e) ≤ f2(w, z, e), then (because

exp(d + ξ) > 0) the expected value in (A.8) preserves the inequality, and so

does the max-function. Thus

(Tf1)(w, z, e) ≤ (Tf2)(w, z, e)

Straightforward algebra yields

(Tf + a)(w, z, e) = (Tf)(w, z, e) + µξa

Assumption A.6 now yields the second Blackwell condition.

Proposition A.1 Equation (A.7) has exactly one solution (which belongs to

B).

Proof. Lemma A.1 yields that T defines a contraction mapping on the

metric space B with a modulus strictly smaller than one. The existence and

uniqueness now follows from the contraction mapping theorem (See Theorem

3.2 in Stockey, Lucas and Prescott, 1989)
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A.3 Optimal policy

Now define the following functions related to the solution of the Bellman

equation of v (w, z, e) in Chapter 3.

J(z, b, w) := c(z, b)− wπ(z) + (1− δ)ψe (b) z + I(z, b) (A.9)

I(z, b) := ψ

ZZ h
v
³
ε, z 1−δ

exp(d+ξ)
, e (b)

´
exp(d+ ξ)

i
dF (ξ)dG(ε) (A.10)

Lemma A.2 The function J(z, b, w) is bounded from above, so that

sup
(zo,bo)∈Y (w,e,z)

J(z, bo, w) is finite.

Proof. As v satisfies the Bellman-equation, it must be bounded. However,

since

v (w, z, e) = max
(zo,bo)∈Y (w,e,z)

J(zo, bo, w)+wπ(zo)I{zo=z} ≥


max

(zo,bo)∈Y (w,z,e)
J(zo, bo, w)

max
bo∈Z(z,e)

J(z, bo, w) + wπ(z)

always hold, J must be bounded, too.

Corollary A.1 bJmax(z, e) := sup
bo∈Z(z,e)

J(z, bo, w)+wπ(z) and Jmax(w, z, e) :=

sup
(zo,bo)∈Y (w,z,e)

J(zo, bo, w) are finite, too.

Lemma A.3 (a) J and Jmax are strictly monotonously decreasing in w.

(b) J(z, e, w) + wπ(z) is independent of w,

(c) Jmax and bJmax(z, e) (and therefore v, too) are monotonously increasing in
e.

Proof. (a) For any w1, w2 ∈ [0; 1] : w1 < w2 we have:

J(z, b, w2) = c(z, b)− w2π(z) + (1− δ)ψe (b) z + I(z, b)
< c(z, b)− w1π(z) + (1− δ)ψe (b) z + I(z, b)
= J (z, b, w1)
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And since Y2 := Y (w2, z, e) ⊂ Y (w1, z, e) =: Y1, we get:

Jmax(w2, z, e) = max
(zo,bo)∈Y2

J(zo, bo, w2) ≤ max
(zo,bo)∈Y1

J(zo, bo, w2)

< max
(zo,bo)∈Y1

J(zo, bo, w1) = Jmax (w1, z, e)

(b) This follows directly from the definition of J,

(c) Since both Z and Y strictly grow with e this follows straightforwardly.

Proposition A.2 Define for Z 6= ∅ as an implicit function w(z, e) by

Jmax(w, z, e)− bJmax(z, e) = 0 (A.11)

Then firms adjust if their current adjustment cost factor w is smaller than

w(z, e) or if Z = ∅.
Proof. That a unique w(z, e) equating Jmax and bJmax exists, follows from

Jmax(0, z, e) ≥ bJmax(z, e) ∀(z, e) together with the monotonicity of Jmax in w.
As argued in the main text firms adjust if Z = ∅ or Jmax(w, z, e) > bJmax(z, e).
Since Jmax is monotonously decreasing in w this inequality holds if and only

if w < w.

Proposition A.3 J(z, b, w) is analytic and thus the set Q of (zo, bo) ∈bY (w, e) ∩ {zo ≥ z} (Lemma 3.1) such that J(z, b, w) = Jmax(w, z, e) is a

non-empty set with a finite number of points.

Proof. To show that J is analytic it suffices to show that I is analytic.

Therefore note that I can be written as a convolution of an a.e. continuous

function and a normal density:

I(z, b) : = ψ

Z
K(z, b, ξ)dF (ξ)

K(z, b, ξ) : =

Z ·
v

µ
ε, z

1− δ
exp(d+ ξ)

, e(b)

¶
exp(d+ ξ)

¸
dG(ε)

However, as K is integrable, the convolution of K and a normal density is

analytic (see e.g. Theorem 9 on p. 59 in Lehmann (1986)).
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As J is analytic is must be continuous, too. Since Y (w, z, e) is compact this

ensures that J attains its maximum within a non-empty compact set Q. Since

J is analytic the maxima are isolated, so that Q contains a finite number of

elements.

Proposition A.4 Suppose π is analytic, then the function w(z, e) is analytic

on the open and convex set C :=n
(e, z) ∈ R2+|e > (1−bb)− π(z)

z

o
, of which A is the border. Therefore, Ω(z, e)

is analytic a.e. and so has derivatives of all order on R2+\A
Proof. From proposition A.3 we know that J is analytic on C. As all

functions involved in the construction of Z and Y are analytic (when π is

analytic), so must be Jmax and Ĵmax.(The hessian of the associated Lagrange-

Kuhn-Tucker problem has maximal rank). As (A.11) implicitly defines w̄, its

differentiabilty of all order follows from Jmax and Ĵmax being analytic together

with the implicit function theorem.
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Appendix B

Appendix to Chapter 4

B.1 Approximation of the optimal stock of

capital for the UK data

Suppose a firm produces with a production function that is of the Cobb-

Douglas-type and with two Input factors K and L.1 Then taking logarithms:

yit = ξit + ε
K
i kit + ε

L
i l ; εKi + ε

L
i < 1.

Denoting wages by w and interest-rates by r, the first-order condition for

labor yields

l∗i (kit) = ln
¡
εLi
¢
+ yit (kit, l

∗ (kit))− ln (wit)

Hence, we can rewrite the production function in a semi-reduced form as an

iso-elastic function only of capital.

yit = ψ0i + ψ
k
i kit,

ψk
i : =

εKi
1− εLi

,ψ0it =
ξit + ε

L
i

£
ln
¡
εLi
¢− ln (wit)

¤
1− εLi

1The derivation of z follows Caballero et al. (1995, p. 37).
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Now the first-order condition for k determines k∗

ln
¡
ψk
i

¢
+ yit (k

∗
it)− ln (r) = k∗it

Replacing y (k∗) by an exact Taylor-expansion y around kit now yields

ln
¡
ψk
i

¢
+ yit (kit) + ψ

k
i (k

∗
it − kit)− ln (r) = k∗it

Subtracting
¡
1− ψk

i

¢
kit from both sides and rearranging terms, we obtain

ln
¡
ψk
i

¢
+ yit (kit)− kit − ln (r) =

¡
1− ψk

i

¢
(k∗it − kit)

−zit := (k∗it − kit) =
1¡

1− ψk
i

¢ [ln (bi) + yit (kit)− kit − ln (r)]

B.2 Data Appendix to the ”Bonner Stich-

probe” (Section 4.2)

The dataset used is the ”Bonner Stichprobe”, a sample of annual company

accounts of German companies. To the very most, these companies are large

listed stock companies. The sample covers the time-period 1960 to 1997.

The panel is unbalanced and contains 694 companies (observational units)

and 18943 observations in total. Thus, the average time in the sample is 28.7

years.

The sample includes complete profit- and loss-statements as well as fur-

ther annual accounting data. Moreover, for the very most company-years

data on average wages and salaries as well as the number of employees is

reported.

Unfortunately, after firms which are holdings, multi-corporate companies,

or business trusts are removed from the sample, sample-size falls substan-

tially. Additionally, we have to drop firm-years for which data seemed in-
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consistent with usual accounting standards (e.g. negative depreciation, very

high appreciation). This leaves us with a sample of about 10000 observations.

If removing a single observation (due to data inconsistency) splits a firm-

series in two parts which are long enough to be sensibly analyzed, the second

part of the series is identified as a different firm. If the missing observation

separated the series in a very short and a longer one, the short one was

completely removed, i.e. only firms with five or more consecutive observa-

tions remain in the sample. Additionally, single observations were removed,

if the investment rate differed from the mean by 5 times the standard devi-

ation (removing 11 observations), differed from the firm specific log-equity

ratio by 4 standard deviations (39 observations), or if the turnover-change

differed from the mean by 6-times the standard deviation (14 observations).

Moreover, firms were excluded, if their average wage-share or proxied aver-

age cost-of-capital share exceeded 70% (removing 111 observations). This

leaves us with 449 firms and a total of 9731 observations, making an aver-

age of 21.67 accounting years per firm. In many cases series for ”land and

buildings” and ”machinery” were not reported separately over the full sam-

ple period. Therefore ”capital” is identified as ”total tangible fixed assets”

(”Sachanlagevermögen”).

Depreciation rates were generated as reported depreciation relative to the

reported stock of capital before depreciation. For a number of firm-years the

data contains capital sales as well as gross investment. For some firm years

only investment net of capital sales are reported. The stock of capital used for

the analysis was generated by the perpetual inventory method. Investment

was deflated by the producers-price index for investment goods. To account

for sales of capital, we assume that in case capital is sold, the capital stock of

each vintage is reduced by the same fraction. Thus, we obtain for the capital

series (in real terms):

Kit = Kit−1 (1− δit)
µ
1− CSitbKit + CSit

¶
+
Iit
Pt

, t > Ti
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KiTi
=
bKiTi

PTi

.

Here bKit is the reported stock of capital of firm i at time t. CSit are reported

capital-sales and Iit is reported investment, Pt is the price-index, Ti is the

year when firm i joins the sample. Wages, profits etc. were also deflated

using the producer-price index for investment goods as well.

By using the perpetual inventory method, problems induced by a change

in accounting standards in 1987 are partly eluded. However, the perpetual

inventory method leads to different (mostly larger) stocks of capital than

reported. Thus the book-value of equity was adjusted as well.
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Appendix to Chapter 5

In the following appendix, we first derive the functional form of the value

function involved in the model of chapter 5. Thereafter the proofs which

were omitted in the main text of chapter 5 are presented.

C.1 Deriving the value functions

Treating Ei(P, bi , qi , q−i) as an asset value and using (5.2) yields according

to Itô´s Lemma for the firms expected gain in value (capital gain):

E
·
dEi(P, bi, qi , q−i)

dt

¸
=

1

2
σ2P 2

∂2Ei(P, bi, qi , q−i)

∂P 2
+ µP

∂Ei(P, bi , qi, q−i)

∂P
(C.1)

This expected capital gain plus the dividend (1− τ ) [qiP − bi] should be equal
to the normal return ρEi(P, bi , qi, q−i) to prevent any arbitrage profits from

arising. This yields the differential equation

ρEi(P, bi, qi , q−i) =

σ2

2
P 2
∂2Ei(P, bi , qi, q−i)

∂P 2
+ µP

∂Ei(P, bi , qi, q−i)

∂P
+ (1− τ ) [qiP − bi] (C.2)
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A particular solution to this equation is

Ei(P, bi, qi, q−i) = (1− τ)
·
qi

P

ρ− µ −
bi
ρ

¸
(C.3)

The complementary solution involves terms in the form P β, for each solution

β to the fundamental quadratic equation

β2
σ2

2
+ β

µ
µ− σ2

2

¶
− ρ = 0 (C.4)

as given in (5.6) . (See Dixit and Pindyck (1994) for details.)

C.2 Proofs of the propositions of the main

text

C.2.1 Proof of Proposition 5.2

Lemma C.1 Under the assumptions of our model

g ≥ h :=
"¡

∆q1+q2,q1

¢β2 − β2 ¡∆q1+q2,q1 − 1
¢µq1b2

q2b1

¶1−β2
∆
−(1+b)
q1+q2,q2

#
≥ 1

(C.5)

holds for all ∆q1+q2,q1 ≥ 1 ≥ ∆
−β1
q1+q2,q2

.

Proof. For notational convenience we denote a := ∆q1+q2,q1 − 1; b :=

−β2 > 0 and r := q1b2

q2b1
. By definition of flow leverage, we obtain r =

l2

l1

∆q1+q2,q2

∆q1+q2,q1
. Therefore, we have r

∆q1+q2,q2
(a + 1) =

l2

l1
> 1 by assumption,

so r
∆q1+q2,q2

> 1
a+1

follows. Rewriting h yields:

h(a) =

µ
1

a+ 1

¶b

+ bar1+b∆−(1+b)q1+q2,q2
(C.6)

≤
µ

1

a+ 1

¶b

+ bar1+b = g (a) (C.7)
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and

∂h(a)

∂a
= b

"
∆
−(1+b)
q1+q2,q2

r1+b −
µ

1

a+ 1

¶1+b#
= b

µ
1

a+ 1

¶1+b "µ
l2

l1

¶1+b
− 1

#
> 0

(C.8)

Now, note that h(0) = 1 which completes the proof.

Lemma C.2 For any P exit,2
q2,q1

and P ≥ P exit,2
q2,q1

≥ ∆−1q1+q2,q2P
exit,2
q2,0

> 0 equity

value of firm 1 is positive.

Proof. To obtain negative equity values dependent on choosing P exit,2
q2,q1

, a

necessary condition would be that ∃P̂ exit,2
q̄2,q̄1 > 0 : min

P>0
{E1(P, b1, q1, q2)} ≤ 0.

Using (5.11) we obtain as a general solution for the equity-value of firm 1:

1

1− τ E1(P, b, q, q2) =
qP

ρ− µ −
b

ρ
+OpV P β2 (C.9)

OpV :=
¡
∆q1+q2,q1 − 1

¢ q

ρ− µ
³
P̂ exit,2
q2,q1

´1−β2
+

1

1− β2
b

ρ

³
∆−1q1+q2,q1P

exit,1
q1,0

´−β2
.

(C.10)

Therefore, we obtain for the price Pmin which minimizes value:

Pmin = OpV
1

1−β2

·
− 1

β2

q

ρ− µ
¸− 1

1−β2

. (C.11)

Note that this price may be smaller than P̂ exit,2
q2,q1

. Using Pmin to calculate the

minimal equity-value Emin of firm 1 yields.

Emin : =
1

1− τ E1(Pmin, b1, q1, q2)

= q

ρ−µOpV
1

1−β2

h
− 1

β2

q

ρ−µ
i− 1

1−β2 − b

ρ
+OpV

1+
β2

1−β2

h
− 1

β2

q

ρ−µ
i− β2

1−β2

=
h
(−β2)

1
1−β2 + (−β2)

β2
1−β2

i · q

ρ− µ
¸− β2

1−β2

OpV
1

1−β2 − b

ρ
. (C.12)

Since OpV is increasing in P̂ exit,2
q2,q1

so is Emin. Therefore, the smallest minimal

equity value is obtained at P̂ exit,2
q2,q1

= ∆−1q1+q2,q2P
exit,2
q2,0

= ∆−1q1+q2,q2rP
exit,1
q1,0

(with

r defined as above in the previous Lemma). Substituting this back in (C.10)



164 APPENDIX C. APPENDIX TO CHAPTER 5

we obtain (making further use of the definition of P exit,1
q1,0

)

OpVmin

³
P exit,1
q1,0

´β2
=
¡
∆q1+q2,q1 − 1

¢ q1P exit,1

q1,0

ρ− µ
³
∆−1q1+q2,q2r

´1−β2
+ 1

1−β2
b
ρ

³
∆q1+q2,q1

´β2
=
¡
∆q1+q2,q1 − 1

¢ q−β2(ρ−µ)(1−β2)ρ
b
q

ρ− µ
³
∆−1q1+q2,q2r

´1−β2
+ 1

1−β2
b
ρ

³
∆q1+q2,q1

´β2
=

·
−β2

¡
∆q1+q2,q1 − 1

¢ ³
∆−1q1+q2,q2r

´1−β2
+
³
∆q1+q2,q1

´β2¸ 1
1−β2

b
ρ

= h
1

1− β2
b

ρ
. (C.13)

This now yields for Pminmin :

Pminmin = h
1

1−β2

"
1

1−β2
b
ρ

− 1
β2

q

ρ−µ

# 1
1−β2 ³

P exit,1
q1,0

´− β2
1−β2 (C.14)

= h
1

1−β2

h
P exit,1
q1,0

i 1
1−β2

³
P exit,1
q1,0

´− β2
1−β2 = h

1
1−β2P exit,1

q1,0
.

Thus, the global minimum of the equity value is

1

1− τ E1(P
min
min , b1, q1, q2) = h

1
1−β2

q1P
exit,1
q1,0

ρ− µ − b1
ρ
+ h 1

1−β2
b1
ρ

h
P exit,1
q1,0

i−β2 h
h

1
1−β2P exit,1

q1,0

iβ2
= h

1
1−β2

"
q1P

exit,1
q1,0

ρ− µ − b1
ρ
+ 1

1−β2
b1
ρ

#
+
³
h

1
1−β2 − 1

´ b1
ρ

=
³
h

1
1−β2 − 1

´ b1
ρ
> 0. (C.15)

The last equality follows from the definition of P exit,1
q1,0

, whereas the inequality

is result of Lemma C.1. This completes the proof.

Proposition C.1 (Proposition 5.2 main text) In all Markov-perfect equi-

libria in pure strategies of the (q̄1, q̄2)-subgame (exit after investment), the

firm with the higher leverage (firm 2) chooses its monopoly exit price as the

price trigger for bankruptcy P exit,2
q2,q1

= P exit,2
q2,0

, whereas firm 1 chooses any price
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P exit,1
q1,q2

, such that P exit,1
q1,q2

∈ eP :=]∆(q1+q2, q1)−1P exit,1
q1,0

,∆(q1+q2, q2)
−1P exit,2

q2,0
[.

Proof. First note that under the proposed equilibrium strategy firm 2

never becomes a monopolist. Therefore, only the actual price and not the

quantity of the competitor matters for firm 2, so that firm 2 behaves myopic.

Thus, the value of firm 2 under the proposed strategy is zero at P exit,2
q1,q2

, which

then is indeed the optimal trigger price.

Secondly, we have to show that firm 2 cannot profitably choose an exit price

trigger smaller than P exit,1
q1,q2

. To see this, suppose firm 2 chooses a lower price

trigger. Hence, it becomes a monopolist after firm 1 exits. However, as the

price after firm 1 has left the market is still below firm 2´s monopoly exit

trigger, the value associated with this strategy must be negative.

To see that P exit,1
q1,q2

is indeed an equilibrium trigger price, first note that, if firm

2 chooses P exit,2
q2,q1

, all trigger prices below P exit,2
q2,q1

yield the same payoff given

P . Because of the above Lemmata this payoff must be positive. Moreover,

it cannot be rational to exit earlier than firm 2 as firm 1 would then forego

monopoly profits, i.e. the positive payoffs.

Choosing any price-trigger outside eP for firm 1, however, cannot be part

of an equilibrium strategy as firm 2 could profitably deviate and set a price

slightly smaller and obtain monopoly profits.

Last, we have to show, that eP is non-empty. This now follows straightforward
from our assumption regarding the leverage ratios.

C.2.2 Proof of Lemma 5.1

Lemma C.3 (Lemma 5.1 main text) (i) Other things equal

eE1(P, b1, q1, q2) + C1 = E1(∆q1+q2,q1+q2P, b1, q1, q2) (C.16)

has at most three solutions in P > max{P exit,2
q2,q1

, P exit,1
q
1
,q2
}. We denote the solu-

tions with P ∗(< P ∗∗)(< P ∗∗∗) respectively and the set of solutions by S.

(ii) The sign of
∂
[
Ẽ1 (P,b1,q1,q2)−E1 (∆q1+q2,q1+q2P,b1,q1,q2)

]
∂P

changes from one solu-

tion to the next.
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(iii) If the number of solutions is odd, we have

∂
h eE1(P, b1, q1, q2)− E1(∆q1+q2,q1+q2P, b1, q1, q2)

i
∂P

¯̄̄̄
¯̄
P=P ∗

< 0;

(iv) if there are two solutions, we have

∂
h eE1(P, b1, q1, q2)− E1(∆q1+q2,q1+q2P, b1, q1, q2)

i
∂P

¯̄̄̄
¯̄
P=P ∗

> 0.

Proof. (i) Due to Lemma C.1, if firm 2 exits first, eE1(P, b1, q1, q2) ex-

hibits a kink, and this kink must be at a smaller P than the kink in

E1(∆q1+q2,q1+q2P, b1, q1, q2). Define the continuous function

f(P ) := eE1(P, b1, q1, q2) + C1 −E1(∆q1+q2,q1+q2P, b1, q1, q2). (C.17)

In case ∆q1+q2,q1+q2P
exit,1
q
1
,q2

< P exit,2
q2,0

it has the following functional form (for

P > max{P exit,2
q2,q1

, P exit,1
q
1
,q2
}):

f(P ) =

(
x11P + x12P

β2 + C if ∆q1+q2,q1+q2P < P exit,2
q2,0

x21P + x22P
β2 + C if ∆q1+q2,q1+q2P ≥ P exit,2

q2,0

. (C.18)

Otherwise

f (P ) = x31P + x32P
β2 . (C.19)

Hence, f must be either concave or convex on each subset. Consequently

f(P ) = 0 can have at most four solutions.

Now note that as sales are increasing with investment lim
P→+∞

f(P ) = −∞.
Moreover, consider that f keeps its functional form until firm 1 exits in

monopoly. As eE1(P, b1, q1, q2) ≥ 0, we can conclude f(P ) > 0 at the nor-

malized price where firm 1 exits in monopoly. Therefore, the number of

solutions to f(P ) = 0 must be odd on the set of price-levels larger than the
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monopoly exit-price. However,
n
P
¯̄̄
P > max{P exit,2

q2,q1
, P exit,1

q
1
,q2
}
o
is subset of

this set. This completes the proof.

(ii)-(iv) follow trivially.

C.2.3 Proof of Lemma 5.2

Lemma C.4 (Lemma 5.2 main text) (i) If firm 2 leaves the market first

P exit,2
q2,0

< P exit,2
q2,q1

holds.

(ii) Moreover, in all cases P exit,2
q2,q1

< ∆−1q
1
+q2,q1+q2

P exit,2
q2,0

.

Proof. (i) The first inequality follows from the fact that the possible

investment of firm 1 lowers equity-value of firm 2. Thus, P exit,2
q2,0

< P exit,2
q2,q1

.

(ii) We firstly show that

∀P < P inv,1
q
1
,q2
: E2(∆

−1
q
1
+q2,q1+q2

P, q2, q1) > E2(P, q2, q1).

∆−1q
1
+q2,q1+q2

P maps situation (q2, q1) to (q2, q1) prices and situation (q2, q1)

differs from (q2, q1) for firm 2 only in the different prices which correspond

to the same Yt.

Therefore, the decrease in equity value of firm 2 that is caused by the existence

of an investment option of firm 1 is always smaller than the decrease caused

by investment itself. Thus, the stated inequality follows. This inequality

itself implies that the equity-value of firm 2 at price ∆−1q
1
+q2,q1+q2

P exit,2
q2,0

must

be positive, because

E2(∆
−1
q
1
+q2,q1+q2

P exit,2
q2,0

, q2, q1) > E2(P
exit,2
q2,0

, q2, q1) = 0.

Thus, P exit,2
q2,q1

< ∆−1q
1
+q2,q1+q2

P exit,2
q2,0

, which concludes the proof.

C.2.4 Proof of Proposition 5.4

Proposition C.2 (Proposition 5.4 main text) (i) If demand is sufficiently

elastic, i.e. ∀Q1, Q2 : ∆Q1,Q2 ≈ 1, respectively if demand is not too inelastic

and the costs of investment C1 are sufficiently high, then predatory invest-
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ment never occurs.

(ii) If g >
³
q1b1
q2b2

´1−β2
and

(a) if firm 1 exits first when it had no investment option and if

eP exit,1
q
1
,q2

< ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

,

then there exists an investment-cost C1, so that (5.22) has multiple

solutions.

(b) if firm 2 exits first and if for the right-hand partial derivative ∂E1
∂P+

∂ eE1
∂P

³
∆q

1
+q2,q1+q2

−1P exit,2
q2,0

, q
1
, q2

´
>
∂E1
∂P+

³
P exit,2
q2,0

, q1, q2

´
∆q

1
+q2,q1+q2

holds,1 then there exists the cost of investing C1, so that predatory

investment occurs.

Proof. (i) As ∆q1+q2,q1 → 1 the value of a monopolist and of the value

a duopolist (after investment) converge and firm 1 cannot gain anything by

firm 2´s exit. Therefore, predatory investment must become unprofitable.

(ii) First note from the proof of Lemma C.2 that if g >
³
q1b1
q2b2

´1−β2
and if

P 0 ∈
³
P exit,2
q2,0

, Pmin

´
, then ∂E1

∂P
(P 0, q1, q2) < 0. Moreover, P

exit,2
q2,0

corresponds

to the same Y as ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

does in situation-
³
q
1
, q2

´
.

(a) If firm 1 exits first if not predatorily investing in situation
³
q
1
, q2

´
, equity

value is upward sloping and eP exit,1
q
1
,q2

< ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

by assumption.

Thus, shifting eE1 + C1 by altering C1 yields a solution of (5.22) oni
∆q

1
+q2,q1+q2

−1P exit,2
q2,0

,∆q
1
+q2,q1+q2

−1Pmin
h

1This condition means that an increase in the state of demand, Y, affects the value
of a firm with low capacity stronger than the firm with high capacity. This is possible if
the hedging effect from the other firm potentially leaving is relatively strong, i.e. value
decreases when demand increases. Then, for a large firm the potential gain from a price
increase is of course larger.
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and another one on
i
∆q

1
+q2,q1+q2

−1Pmin,+∞
h
.

(b) If firm 2 would exit first, due to Lemma 2, the peak in E1 (P, q1, q2) lies

at ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

> P exit,2
q2,q1

. Consider the costs C 0 that yield

eE1 ³P, q1, q2´+ C 0 < E1

³
∆q

1
+q2,q1+q2P, q1, q2

´
(C.20)

for all P ≥ ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

except for one point P 0 (see figure C.1). At

this point either both functions are tangentially or P 0 = ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

.

The assumption on the derivative rules out the latter case.

Therefore, at costs C 0 firm 1 invests for all prices P ≥ ∆q
1
+q2,q1+q2

−1P exit,2
q2,0

and

Ê1
³
P, q

1
, q2

´
≡ E1

³
∆q

1
+q2,q1+q2P, q1, q2

´
− C 0.

Now take costs to be equal to C 0 + ε, ε > 0. Assuming that there is only one

price trigger for investment P inv, will lead to a contradiction: For this trig-

ger P 0 ≤ P inv holds. However, defining the stopping-time τ (P1) := inf{t ∈
R|Pt = P1} the difference in value for ∆q

1
+q2,q1+q2

−1P exit,2
q2,0

< P < P 0 evalu-

ates as

Ê1

³
P, q

1
, q2|C 0

´
− Ê1

³
P, q

1
, q2|C 0 + ε

´
= E

"Z τ(P inv)

0

³
E1
³
∆q

1
+q2,q1+q2Pt, q1, q2

´
− C 0 −fE1 (Pt, q1, q2)

´
e−ρtdt

¯̄̄̄
¯P0 = P

#

≥ E

"Z τ(P 0)

0

³
E1

³
∆q

1
+q2,q1+q2Pt, q1, q2

´
− C 0 − eE1 (Pt, q1, q2)

´
e−ρtdt

¯̄̄̄
¯P0 = P

#
> 0.

Both inequalities follow from (C.20) (and τ (P inv) ≤ τ (P 0) ). Thus, a mar-

ginal change in costs would lead to a non-marginal drop in value (the last

integral does not depend on ε), whereas this would not be true for a system

of two price-triggers of investment depending on ε. Thus for ε small enough

two price-triggers are optimal.
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E

P

E1

E1+C'

P'

Loss in value when using just a
single trigger

Figure C.1: Loss in value from a single trigger

C.2.5 Proof of Proposition 5.5

Proposition C.3 (Proposition 5.5 main text) (i) If for firm i the my-

opic exit price-trigger Pm_exit,i
qi,q−i

obtained from (5.29) , is smaller than P ind,i
qi,q−i

,

then firm −i choosing Pm_exit,−i
q−i,qi and firm i choosing a lower price-trigger is

an equilibrium of the (qi, q−i) stage.

(ii) If
h
∆qi+q−i,qi

−1P exit,i
q−i,0

, P ind,i
qi,q−i

i
= ∅, then firm i chooses Pm_exit,i

qi,q−i
as the

exit-price-trigger in all equilibria of the (qi, q−i) stage.

(iii) If Pm_exit,−i
q−i,qi > P ind,i

qi,q−i
and

h
∆qi+q−i,qi

−1P exit,i
q−i,0

, P ind,i
qi,q−i

i
6= ∅, then firm

i choosing some P exit,i
qi,q−i

∈
h
∆qi+q−i,qi

−1P exit,i
q−i,0

, P ind,i
qi,q−i

i
and firm −i choosing

P
m_exit,−i
q−i,qi is an equilibrium of the (qi, q−i) stage, if this yields no incentive

to predatorily invest for firm −i.
(iv) If both firms have an incentive to predatorily invest, instead of choosing

their myopic exit price-trigger, then both firm preempt on predatory invest-

ment.

(v) If firm i predatorily invests, firm −i cannot credibly threaten to deviate
from choosing the myopic exit price-trigger to hinder i in investing predato-

rily.
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Proof. (i) Firm value is increasing in the exit price of the competitor.

If undercutting the price-trigger of firm i is not credible even when i chooses

the myopic price-trigger, then −i cannot threaten to exit second.
(ii) If leaving second always yields positive equity value for all credible exit

price triggers of the competitor i, then firm −i will leave second, as this
increases value at the myopic exit price-trigger. Note that since P ind,i

qi,q−i
≥

∆−1qi+q−i,q−i
P exit,−i
q−i,0

, the interval can never be empty for both firms.

(iii) This was largely discussed in the main text, it remains to mention that

if firm −i invests predatorily, this decreases equity value below the value ob-
tained by behaving myopically, since the competitor will only invest predato-

rily (if not preempting) if she expects to leave second after investment.

(iv) See main text.

(v) If firm -i would exit earlier it would forgo profits, therefore, this is not

credible. Exiting later is also not credible. If firm -i exits later, payoff becomes

negative. Thus, firm -i cannot credible threaten to set an exit price different

to the one determined by the smooth-pasting conditions if firm i predatorily

invests.

C.2.6 Proof of Proposition 5.6

Lemma C.5 Let f(P ) = x0 + x1P + x2P
β1 + x3P

β2; P > 0 and x1 > 0,

x2 < 0, then f has at most three roots. Moreover if at P 0 f(P 0) > 0, there

can only be two roots of f for P < P 0.

Proof. We have to consider two cases:

Case 1: x3 ≤ 0, then f is concave and therefore has at most two roots.
Case 2: x3 > 0. We firstly show that the second derivative changes its sign

at most once:

Suppose f 00(P ∗) = P ∗−2
£
β1 (β1 − 1) x2P

∗β1 + β2 (β2 − 1)x3P
∗β2
¤
= 0. Then

f 000 (P ∗) = −2P ∗−3 £β1 (β1 − 1) x2P
∗β1 + β2 (β2 − 1)x3P

∗β2¤
+ P ∗−2

£
β1 (β1 − 1) β1x2P

∗β1 + β2 (β2 − 1) β2x3P
∗β2¤ . (C.21)
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However, the first term is zero and therefore:

f 000 (P ∗) = P ∗−2[β1 (β1 − 1)β1| {z }
>0

x2P
∗β1| {z }

<0

+ β2 (β2 − 1) β2| {z }
<0

x3P
∗β2| {z }

>0

] < 0 . (C.22)

This implies that the second derivative changes its sign at most once, dividing

the function in a convex and a concave part. Now suppose f (P ∗) < 0, then

there may be two roots larger than P ∗. However, as f (P ∗) < 0, at the next

smallest root f 0 (P ) must be negative, but as f is convex , there are no more

roots. The case f (P ∗) ≥ 0 follows analogously.

Lemma C.6 Φi(P ) can be represented by Φi(P ) = x0i + x1iP + x2iP
β1 +

x3iP
β2 for P ∈M := [max

j=1,2
{P j},min

j=1,2
{P j}]; with x1i > 0, x2i < 0. Moreover,

Φi(P ) is also continuous on [min
j=1,2

{P j},max
j=1,2

{P j}]
Proof. First note that Φi(P ) has the stated functional form since it is a

difference of functions of the type given in (5.6) (which are analytic onM). It

is clear, that the followers equity value must be a convex function. Moreover,

the leader´s value decreases by the potential entry of the follower, therefore

x2 < 0. That sales are increased by investment implies x1 > 0. Continuity

follows from the value-matching conditions

Proposition C.4 (Proposition 5.6 main text) (i) On

M := [max
j=1,2

{P j},min
j=1,2

{P j}]
Φi(P ) = 0 (C.23)

has at most three solutions.

(ii) If P i ≤ P−i, then Φi(P ) = 0 has at most two solution on M and only

one additional one for P i ≤ P ≤ P−i namely P−i with Φ0i(P−i) < 0.

(iii) If P i > P−i, Φi(P i) = 0 and Φi(P ) < 0 for all P i > P > P−i.

(iv) If Φi(P ) = 0 has two solutions in case (ii) or three solutions in case (iii)

on M then Φi(max{P i}) > 0. There may only exist an additional solution

for min
j=1,2

{P j} < P < max
j=1,2

{P j} if P i < P−i.

Proof. (i) follows straightforward from the last two Lemmata.
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(ii) At P i firm i invests as follower, therefore

Ei(∆q
i
+q−i

,q
i
+q−i

P, bi, q
i
, q−i) = Ei(∆q

i
+q−i

,qi+q−i
P, bi, qi, q−i)− C ∀P ≥ P i.

(C.24)

This implies Φi(P ) > 0 if P i ≤ P < P−i and Φi(P−i) = 0, since sales of the

leader are larger before the follower has invested and

Ei(∆qi+q−i ,qi+q−i
P−i, bi , qi , q−i

)− C = Ei(∆qi+q−i ,qi+q−i
P−i, bi , qi , q−i)− C.

(C.25)

(iii) At P−i firm −i invests as follower, therefore

∀P ≥ P−i : Ei(∆q
i
+q−i

,qi+q−i
P, bi , qi , q−i

)− C
= Ei(∆qi+q−i ,qi+q−i

P, bi, qi, q−i)− C. (C.26)

Therefore, as long as P < P i firm i finds it unprofitable to invest as fol-

lower and obtain Ei(∆q
i
+q−i

,qi+q−i
P, bi, qi, q−i) − C. Hence, the right-hand

term must be smaller than the equity value of i being the follower when

P < P i.

(iv) Φi(max
j=1,2

{P j}) > 0 follows from the continuity of Φi and in case (ii) from

Φi

¡
P̄i

¢
> 0, respectively Φi

¡
P̄−i
¢
< 0 in case (iii). Define f (P ) as stated in

Lemma C.5. Now suppose that firm i exits at P i ≥ P−i, then Φi(P ) > f (P )

for P < P i, since the value of firm i as follower is a convex function with

derivative zero at P i. Therefore, for Φi(P ) to have an additional root, f(P )

must have an additional root, too. However, due to Lemma C.5, f (P ) cannot

have that additional root.

If firm i predatorily invests at P i. Then for all min
j=1,2

{P j} < P < max
j=1,2

{P j}

Φi(P ) = Ei(∆q
i
+q−i

,qi+q−i
P, bi, qi, q−i

)− Ei(∆q
i
+q−i

,qi+q−i
P, bi, qi, q−i) > 0

(C.27)

because the sales of the follower are lower, and firm −i exits later.
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C.2.7 Proof of Proposition 5.9

Lemma C.7 If firm i invests predatorily as follower, then Φ (P i) > 0.

Proof. At the price where firm −i exits after firm i has predatorily in-

vested as follower Φ = 0 must hold. However, in state (qi , q−i) firm −i will
exit later than in state

³
qi, q−i

´
. Moreover, prices are lower before −i exits

if i is the follower. Therefore, firm i’s value as leader must be larger than

firm i’s value as follower at the price at which firm i predatorily invests as

follower, i.e.

Ei(∆qi+q−i ,qi+q−i
P i, bi , qi , q−i

)− C ≥ Ei(∆qi+q−i ,qi+q−i
P i, bi, qi , q−i)− C .

(C.28)

Lemma C.8 Only a firm i that effectively stays in the market longer than its

competitor in state
³
q
i
, q−i

´
could have second mover advantages of profitable

predatory investment.

Proof. Suppose that firm i leaves the market first in state
³
q
i
, q−i

´
.

Furthermore, suppose firm −i invests at P 0 and at P 0 predatory investment
would be profitable for firm i, too, i.e.

Ei(∆q
i
+q−i

,qi+q−i
P 0, bi , qi , q−i

)− C ≥ bEi(P 0, bi, q
i
, q−i

) . (C.29)

Investment of firm −i will lower prices and therefore decrease the revenues
of firm i compared to the situation

³
q
i
, q−i

´
. Then, as firm i leaves first, it

cannot gain of any investment-induced change in the probability of firm −i
exiting. Therefore, its value as follower must be less than bEi(P 0, bi , q

i
, q−i

),

so that there cannot be any second mover advantages, i.e. bEi(P 0, bi, q
i
, q−i

) >

Ei(∆q
i
+q−i

,q
i
+q−i+P

0, bi , q
i
, q−i).

Lemma C.9 If firm i does not predatorily invest as follower, then

Ei(∆q
i
+q−i

,q
i
+q−i

P, bi, q
i
, q−i) ≤ bEi(P, bi , q

i
, q−i

) .
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Proof. The option of firm −i investing decreases firm i´s value to a lesser

extent than the drop in revenues caused by investment itself does. Because

of that bEi(P, bi , q
i
, q−i

) < Ei(∆q
i
+q−i

,q
i
+q−i

P, bi, q
i
, q−i) can only hold, if firm

i would have to expect some costs not included in bEi for low P or if there

would be any expected gain in revenues associated with investment of firm

−i. However, as firm i as follower was assumed to not predatorily invest,

there cannot be any expected gain, since firm −i’s investment decreases the
probability of firm −i leaving the market. Moreover, there are no costs ignored
in deriving bEi (except for the cost of possible predatory investment, which -

if profitable - increases value). Therefore, the stated inequality follows.

Proposition C.5 (Proposition 5.9 main text) A solution to (5.37) im-

plies that a predatory investment preemption threshold for firm i exists, i.e.

there cannot be second-mover advantages for profitable predatory investment

independent of how low P gets.

Proof. In case firm i exits first or exists last, but does not predatorily

invest, the proposition follows straightforward from the last two lemmata.

Hence, we only need to discuss the case where firm i would predatorily invest

as follower. However, due to Lemma C.8 Φ (P i) > 0. Therefore, and because

of Proposition C.4(iv) we either have first-mover advantages of investment

for all P, or we have an preemption threshold price for predatory investment

which is larger than P i.

C.2.8 Proof of Proposition 5.10

Proposition C.6 (Proposition 5.10 main text) (i) If there is a preemp-

tion game for predatory investment and P pred,i
pre < P inv,−i

pre for both firms, the

only Markov-perfect equilibrium (outcome) is that the firm with the higher

P pred,i
pre takes the lead for predatory investment and invests at a price-trigger

which is a solution to a version of (5.34) that is modified by defining P inv,−i
q−i

,q
i

:=

P pred,i
pre , P pred,−i

q−i
,q

i
:= P pred,−i

pre and by using the appropriate value matching con-

ditions.
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(ii) If there is a preemption game for predatory investment, and P pred,i
pre >

P inv,−i
pre for firm i, and one of the firms has an unilateral incentive to invest on£
P inv,−i
pre , P pred,i

pre

¤
, then in all Markov-perfect equilibria firm −i invests preda-

torily at P pred,i
pre .

(iii) If there is a preemption game for predatory investment and P pred,i
pre >

P inv,−i
pre for one of the firms, and none of the firms have an unilateral incentive

to invest on
£
P inv,−i
pre , P pred,i

pre

¤
, then in all renegotiation-proof Markov-perfect

equilibria firm i predatorily invests at its unconstrained optimal predatory

investment price-trigger or at P pred,−i
pre , whichever is the higher price.

Proof. (i) Suppose firm i wishes to invest at a price P 0 < P pred,−i
pre . De-

fine τ to be the corresponding stopping time. Then firm −i would have an
incentive to preempt and invest at a smaller price at time τ − ε. Therefore,
predatorily investing below P pred,−i

pre cannot be part of an equilibrium. How-

ever, at prices between P pred,−i
pre and P inv,−i

pre firm −i wishes to become follower
and so will not preempt. Moreover at prices below P pred,i

pre firm i wishes to

become leader, therefore the described solution P ∗ to the generalized smooth

pasting condition (5.34) (allowing for border and non-border solutions) is in-

deed optimal for firm i, given firm −i would invest as soon as prices hit the
preemption thresholds. Hence, this is indeed an optimal strategy for firm

given that firm i would invest at all prices lower than P ∗.

(ii) If one of the unconstrained investment price triggers–say for firm j–

lies between P pred,i
pre and P inv,j

pre , then not only threatening to invest is for firm j

credible, but also threatening to not invest is not credible. Thus, the firms wish

to preempt until P pred,i
pre is reached, where firm i is indifferent between becom-

ing leader or follower. As investment-price trigger, firm −i will clearly choose
(if this is possible) its unconstrained-optimal predatory-investment price trig-

ger, which determined by a smooth-pasting condition or otherwise P pred,i
pre as

investment price-trigger.

(iii) We only need to argue that investing on [P pred,i
pre , P inv,−i

pre ] cannot be renegotiation-

proof. Suppose one firm would invest at P ∗ ∈ [P pred,i
pre , P inv,−i

pre ]. Then, since

neither firm has an unilateral incentive to invest at some price P ∈ [P pred,i
pre , P inv,−i

pre ],
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both firms would find it profitable to renegotiate and sign an incentive com-

patible contract that investment should be carried out at the proposed price-

triggers for predatory and non-predatory investment.
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