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1 Introduction

The optimization of a mechanical engineering process usually is a complex problem.
On the one hand, large numbers of influencing parameters and several quality charac-
teristics are to be optimized simultaneously. On the other hand, due to time and cost
constraints there is a need to reduce the number of experimental runs. A well-known
tool for such situations is sequential optimization.

Based on a small initial design a surrogate model is fitted. This model is refined by
sequentially adding updating points until the global optimum is found. An example is
the Efficient Global Optimization algorithm (EGO) by Jones et al.|(1998) that uses the
expected improvement criterion to generate updating points. EGO pioneered the idea
of incorporating the model uncertainty to get a truly global search for an optimum. It
was designed only for single-objective unconstrained problems. Various similar algo-
rithms or direct enhancements of EGO for multivariate problems or constraint problems
appeared. A common practice for multi-objective problems is to transform the multi-
objective problem into a single-objective problem using scalaring weighting functions
or the concept of desirabilities. These multivariate expected improvements are always
determined numerically, assuming the distribution of the uncertainty of the surrogate
model to be normal or at least to be known. Due to difficulties with the distribution
of the uncertainty in a target-value problem all multivariate algorithms are restricted
to minimization problems and maximization problems respectively. However, during
the optimization of real-world processes a minimization or maximization may achieve

over-optimized results.

1.1 Motivating example

We optimize a simple pot produced by a sheet metal spinning process. This is an
incremental forming process that produces complex rotationally symmetric workpieces

in low and medium volume of production. In Figure the principle of the process is
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Figure 1.1: Producing a pot with the sheet metal spinning process
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Figure 1.2: The optimization targets

illustrated. The pot is formed incrementally from a blank to the die. The forming tool
(a roller tool) follows a path like it is shown on the right hand side of the figure.

The ideal pot is illustrated in Figure|l.2. The optimum shape is reached if the blank
encloses the die as close as possible after the forming process. According to the theory
of the sheet metal spinning process, the blank is only bent to the die and not buckled.
The thickness of the blank, hence, stays constant. Hence, the die gives the targets of
the optimization process. The diameter of the pot is given by the diameter of the die
plus two times the thickness of the blank. The pot depth results from the radius of
the blank minus the radius of the die. However, due to physical effects such as rubbing
the sheet usually thins and thickening is assumed not to happen. In order to minimize
thinning, we therefore aim to maximize the resulting sheet thickness. If the sheet thins
out the pot depth also enlarges undesirably, i.e. the depth is to be minimized. The
diameter of the pot is optimal if the die and sheet conform, but often not reached due
to springback. Hence, the diameter is optimal if it is minimum. We use a sequential
multivariate optimization technique to simultaneously minimize diameter and depth

and maximize thickness. We find the ‘optimum’ pot that has a sheet thickness of
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1.02mm and a depth of 59mm. It is too thick and too small, and hence a rather bad
result instead of being the optimum. Against the assumption that the sheet continually
thins, it thickened unexpectedly.

Obviously, for this particular application an optimization towards defined target
values is needed. The simplest way would be to transform the quality characteristics to
characteristics that contain the absolute deviations from the target values and minimize
those objectives. However, it would be more preferable to consider that it is worse if
the thickness is too thick than being too thin. Such an asymmetric penalization of
the direction of deviation from the target can be reached using two-sided desirability

functions.

1.2 Thesis contributions

This thesis introduces a sequential multivariate target-value optimization, called mtEGO,
that uses two-sided desirabilities. The main problem that has to be solved is related
to the distribution of the uncertainty of the surrogates after the transformation with
two-sided desirabilities. This distribution is not known in a closed form and a full
Monte Carlo simulation of this distribution is not feasible. It would lead to too many
simulations and would be too time consuming. We therefore propose to get only a
rough impression of the uncertainty distribution by determining a small number of vir-
tual observations at each design point. The virtual observations are chosen using the
predictions and prediction errors of the surrogate model. The virtual observations are
transformed to two-sided desirability functions and aggregated to desirability indices.
Based on the constructed desirability indices a rough impression of the improvements
under the given uncertainty of the surrogate model is determined. We then use the idea
from the expected improvement criterion that the parameter setting that maximizes
the improvement is a candidate for the global optimum. Instead of determining the
expectation of the improvement using the very roughly simulated uncertainty distribu-
tion, we generate several updating points simultaneously like other hybrid optimization
algorithms do. Usually, many of the suggested updating points are similar, we therefore
use cluster analysis to finally choose the essential updating points that find the global
optimum efficiently.

The properties of mtEGO are evaluated with the help of simulation studies on various

known test problems. As a result of the simulation study a guideline for the appropriate
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parameterization of the new approach is developed. Furthermore, mtEGO is compared
to two brute force methods.

The mtEGO approach is characterized by its flexibility to handle various complex
optimization targets. Minimization, maximization and target value problems can be
handled as well as mixtures of these problem types, where the possibility to handle
asymmetric two-sided target specifications is the most important property. mtEGO
also enables to weigh between several objectives. It is not restricted to any dimension-
ality of the parameter space or number of objectives beside time constraints given by
the user.

We further develop an enhancement of mtEGO that accelerates the algorithm for
high-dimensional problems. The thesis also deals with the problem of unknown con-
straints. The handling of missing values during an optimization is discussed and results
in another enhancement of mtEGO. Finally, the usability of mtEGO is demonstrated
with the help of a target-value optimization of the sheet metal spinning process and

the optimization of a necking-in process.

1.3 Thesis structure

The remainder of the thesis is organized as follows. Chapter 2 introduces the statisti-
cal background of sequential optimization required for the new approach. The chapter
comprises sequential optimization in general, space-filling designs, Kriging models, the
sequential design optimization algorithm by Cox and John, the popular EGO algo-
rithm, the concept of desirability, a multivariate enhancement of EGO, and cluster
analysis. In Chapter 3, the new approach mtEGO is presented. First, we demon-
strate the idea of the virtual observations and how they work. Then we give a detailed
step-by-step instruction of mtEGO, followed by the introduction of a criterion for the
automatic choice of the appropriate number of clusters and the stopping criterion.
Further, a step-by-step application example is presented. In Chapter 4 a simulation
study evaluating the properties of mtEGO can be found. The algorithm is tested with
several test problems for different parameterizations of mtEGO for standard and ad-
vanced optimization problems. The results are used to give recommendations for the
parameterization of mtEGO and to compare mtEGO with two brute force methods.
Limitations of the approach are discussed as well. Chapter 5 suggests two extensions

of mtEGO: a more efficient extension for high-dimensional problems and an extension
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to handle unknown constraints and resulting missing values. Chapter 6, presents the
application of mtEGO to the sheet metal spinning process from the motivating example
in Section and an optimization of a necking-in process. The last chapter contains

a discussion on the remaining problems of mtEGO and possible future work.
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2 Sequential optimization

In this chapter we give the statistical background for the methods presented in the
following chapters. First of all, sequential optimization is introduced in general (Section
2.1). It is followed by brief introductions to space-filling designs (Section 2.2) and
Kriging models (Section 2.3) which are essential for sequential optimization. We then
present an algorithm by Cox and John and the EGO algorithm in Section 2.4 and 2.5.
Details on the concept of desirability are given in Section 2.6. It is followed by the
presentation of a multivariate extension of the EGO algorithm that uses desirabilities

(Section 2.7). Finally, clustering methods are briefly introduced (Section 2.8).

2.1 Different approaches to sequential optimization

Various sequential optimization strategies can be found in the literature. All of them

implement the same schema:
1. Generate an initial design.
2. Fit a surrogate model.
3. Locate new design points based on a certain criterion.
4. Update the surrogate model with the new points.
5. Repeat steps 3 and 4 until a reasonable stopping criterion is fulfilled.

One main difference between the optimization algorithms is the way that they locate
the updating points in Step 3.

One possible method to search for the optimum is to restrict the design space se-
quentially. Examples can be found in [Wang] (2003, |Osio and Amon| (1996)) and Wang
and Simpson (2004)). In each step they restrict the space based on the surrogate model

and spread new points inside the restricted space. A drawback is that they restrict the
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design irreversibly and do not account for model uncertainty, which entails that they
may only find a local optimum if the fitted model is not appropriate. A theorem by
Té6rn and Zilinskas (1987, Ch.1.2) states, that in order to guarantee convergence to the
global optimum of a continuous function, the algorithm must be able to converge to
every point in the parameter space. According to |Jones (2001)) this means, that any
method that shall really converge globally must “have a feature that forces it to pay
attention to parts of the space that have been relatively unexplored and, from time to
time, go back and sample in these regions”.

As a consequence, several optimization strategies locate new design points based
on criteria that take the model uncertainty into account. The “Taxonomy of Global
Optimization Methods” by |Jones (2001) gives a good overview of such strategies. The

list below gives four examples that compete with each other.

e The efficient global optimization algorithm (EGO) introduced by Jones et al.

(1998) maximizes the expected improvement of the candidates in the design space.
e Kushner| (1964) maximizes the probability of improvement.

e Gutmann (2001) maximizes the credibility of the hypothesis that a value f* is
the global optimum.

e Cox and John! (1997) minimizes a statistical lower bound of the surrogate model.

Due to its good properties regarding efficiency and global convergence, the EGO al-
gorithm by Jones has become very popular. The other algorithms mentioned above
have not been as much accepted as EGO nor as advanced. We will concentrate on the
EGO algorithm, since it is widely accepted especially among engineers. Also several
multivariate enhancements already exist. However, the new approach seizes also the
ideas of Cox and John.

Another group of sequential optimization algorithms are the so-called evolutionary
algorithms (EA’s). Updating points are generated with a selection and mutation strat-
egy. The best point already found is selected. A mutation of these points is taken as
the new updating point. The mutation includes random components, that either shift
the algorithm towards the target region or explore an unknown region. EA’s are known
as simple and efficient algorithms. The research on this area happens side by side with
the research on the optimization strategies around EGO. None of the strategies can

be generally preferred to the other. Even some combinations of both approaches exist
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(e.g. Jeong and Obayashi, 2005). As already said, in this thesis we concentrate on the
ideas of EGO.

2.2 Space-filling designs

Space-filling designs, sometimes also called exploratory designs, originate from the field
of computer experiments. As a consequence, they underly specific principles. Santner

et al. (2003, Ch.5.1.2) formulate the following two:

1. In computer experiments repeated observations at the same parameter setting
yield identical responses. Designs should not take more than one observation at

any parameter setting.

2. The uncertainty about the exact functional form of the relationship between the
parameters and the responses in computer experiments imply that the designs
should provide information about the whole experimental region to allow us to

fit a variety of models.

Primarily implied by the second principle, space-filling designs have the advantage
that they do not assume any special underlying model. The points of the design
are selected using optimality criteria, such that they are spread evenly over the whole
region of parameter settings. The initial designs in a sequential optimization procedure
are usually space-filling designs. In what follows some popular space-filling designs are
introduced in more detail. A comprehensive review of space-filling designs can be found
in Santner et al. (2003, Ch.5).

2.2.1 Latin-Hypercube design

The Latin-Hypercube design (LHDs) is generated by Latin-Hypercube sampling. A
design with n points for p independently distributed parameters is obtained as follows.
First, the p-dimensional parameter space is partitioned into n? so-called cells. This
is achieved by dividing the domain of each design parameter into n intervals. The
Cartesian products of those intervals gives the cells. A subset of n cells is selected
such that the projections of the centers of the cells onto each axis are uniformly spread

across the axis. Finally, one design point is chosen randomly from each selected cell.
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The explained algorithm does not guarantee to get an LHD which is intuitively space-
filling over the full experimental region. In the two-dimensional space the diagonal may
for example be an LHD design. To guarantee the design to be space-filling additional
optimality criteria have to be applied. Extensions of the LHD are e.g. introduced in
Morris and Mitchell (1995), Handcock| (1991) or |(Owen| (1992).

2.2.2 Minimax and maximin design

Very popular space-filling designs are the Minimax and Maximin design. They are using
the p™ order distance (also named Minkowsky metric) to select the design points. The

p" order distance is defined by

b ,
pp(i, 5) = [Z i — 33jk|p] (2.1)
k=1

for p > 1. It measures the distance between two points x;, z; from a grid of points
X C R’ representing the parameter space y. For p = 1 the p* order distance becomes
the rectangular distance, also called city block metric, absolute distance, Manhattan
distance or Taxicab distance. For p = 2 it becomes the Euclidian distance.

If the p™ order distance is minimized

min p,(z1, z2) (2.2)

@1,m9€A

one obtains a measure of closeness of any pair of points 1, x5 in a set of design points
AcCX.

A Maximin distance design (Aj,,) maximizes the measure of closeness:

o nin pp(1,72) = max min (1, 7). (2.3)

By maximizing the minimum distance the Maximin design guarantees that no two
points in the design are too close.

In contrast, a Minimax design (A,,ys) aims to select the design points in such a way
that every point in X is close to some point in A. It is formally defined as

min max p,(z, A) = max p,(z, Amar). (2.4)

The p™ order distance p,(z, A) between a point x and a set of points A is thereby
defined as
pp(z, A) = min p,(x, x;). (2.5)

T, EA
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Usually, the Euclidian distance (p = 2) is used for the Minimax or Maximin design.
In the literature also designs using other distance measures like the average distance

criterion function or the average projection design criterion can be found (cf. Santner
et al., 2003, Ch.5.3).

2.2.3 Uniform coverage design

The uniform coverage design, also called U-optimal design, minimizes the deviation
of a design from the uniform distribution. It is assumed that the parameter space x
is a p-dimensional hyper rectangular x*_;[a;, b;] and & € x is a random variable with

uniform distribution function

P
F(x) = . 2.6
@ =112 26)
Let A ={x1,...,x,} be any design. The empirical distribution for the points in A and

one fixed pOth Ty = (]701, ceey .Top) from the parameter Space is
( ) ! §n { <— < } (2 7)
J; n\T — ] ZT; L1y +eey Lf X R .
0 n = 1 01 d Op

where I{.} is the characteristic function. Hence, the distance |F,(z) — F(x)| is the
discrepancy between one design point and the uniform distribution. A design A, is
a uniform coverage design if it minimizes the discrepancy between any design A and
the uniform distribution, i.e.

Aypip = minsup |F,(z) — F(x)|. (2.8)

ACX zex

Since the uniform coverage criterion needs extensive computation time, the parameter
space is usually discretized. [Fang et al.| (2000) describe two algorithms to generate the
design for a discretized parameter space. The resulting design then is nearly uniform
coverage and can be determined within short computation time. However, (nearly)

uniform coverage designs need not be intuitively space-filling like LHDs.

2.2.4 Coffee-house design

The coffee-house design by Miiller (2001, Ch.21) is a space-filling design with a very

simple construction rule. Miiller’s idea is to generate the design subsequently just like
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people select their table in a Viennese coffee-house, which gives the name of the design.
According to a popular Austrian novel upon arrival a new customer chooses that table
in the coffee-house that is the most remote from all other customers already present in
the coffee-house. In accordance to this principle the coffee-house design is generated
as follows. Let x be the parameter space. First the two points x; and x;; that have the
maximum distance among all pairs in y are chosen as initial two point design

Ay = {xy, 22} = arg max |xi — x|

iyl

Then additional points z; are added to the design A, subsequently, generating A; 1 =
Ai U Lit1, where

Tis1 = argmax min [|z; — ol

which is the point that maximizes the minimum distance to all points in A;. The
construction of a coffee-house design is simple and quick. It asymptotically shares

desirable properties of maximin distance designs.

2.2.5 Discussion of the different space-filling designs

Of course, many other space-filling designs than presented exist. Because of their
complexity they are not considered here. Due to their simple construction Maximin and
Latin-Hypercube designs are the most popular designs. However, LHDs become much
more difficult when multiple constraints restrict the design space and may intuitively
not be space-filling. Maximin designs avoid small distances between the design points
which leads to the drawback that for a small number of design points they tend to
locate the selected points near the boundary of the parameter region. Hence, Maximin
and LHD designs often are not appropriate for practical applications. Minimax designs
do not have this drawback, but are much harder to compute than Maximin designs.
The computation time needed to generate them is so extensive that they are rarely
used. Nearly uniform coverage and coffee-house designs have similar properties to the
Minimax designs, but do not need extensive computation time. The combination of
different criteria is a way to find a design that is simple to construct but still intuitively
space-filling. One example is the Maximin LHD by [Morris and Mitchell (1995)). In a
first step, the set of all LHDs with a design point in the middle of the space with the
required size n is generated. In a second step, that LHD is chosen that maximizes the

minimum distance between two design points.
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2.3 Kriging models

The initial design in sequential optimization is usually generated to be space-fillingly to
assure that the whole design space is explored uniformly and no functional form of the
relationship is assumed a priori. On the basis of the initial design a surrogate model
is fitted that is updated sequentially during the optimization process. The surrogate
model should now be likewise flexible as the design is. Furthermore, it should be
able to model complex response surfaces data-faithfully and give information on the
uncertainty of the model.

The Kriging model, also known as stochastic process model or spatial regression,
provides such a model (Santner et al. (2003,Ch.2), Cressie (1993, Ch.3), Sacks et al.
(1989)). Originally, it was introduced in the 1950s by Krige and forms the basis of
geostatistics. At the end of the 1980s, Kriging techniques were applied to deterministic
computer experiments, which became known under the name DACE (Design and Anal-
ysis of Computer Experiments). Nowadays, DACE or Kriging in general is widely used
as surrogate model in statistical optimization. The great advantage of Kriging is that
it permits realistic predictions of the response surface in the entire design space based
on a relatively small number of design points by incorporating information about their
spatial dependencies. The model differentiates between large-scale dependency mod-
eled through the deterministic mean structure and small-scale dependency modeled

through the correlation structure. Formally the model is defined as
y(x;) = w(x;) + Z(x;), for i=1,...,n, (2.9)
where

e 1; denotes the i-th sampled design point from the p-dimensional parameter space

X € RP.

e 4(x;) defines a deterministic trend component with
p
Ely(z;)] = p(x;) = Y. fi(x:)B;, where fi(.),..., f,(.) are known regression func-
j=1

tions and § = (f, ..., §,) are unknown regression coefficients.

e 7(x;) is a realization of a second-order stationary stochastic process
Z ={Z(x;) : x; € x} with E[Z(z;)] = 0 and Cov[Z(z;), Z(z;)] = 0% R[x; — ;]
for i,j = 1,..,n, where Rlx; — ;] = Corr|Z(z;), Z(x;)] and 0% = Var(Z(x;)).
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Usually, further structure is imposed on R to make the correlation matrix R estimable

and hence permit statistical inferences. The correlation function of the second-order
stationary process Z is assumed to depend only on the distance h = z; — x; and a fixed
number of unknown parameters 6 = (64, ...,6,)’, i.e.
Corr|Z(x;), Z(x;)] = Rlh;0]. Often a model from the class of nonlinear isotropic
correlation functions is used to model the correlation structures of the process Z. The
property isotropy implies that the correlation of two design points does not depend
on the different directions of h, but only on the distance. The exponential model, the
gaussian model, and the spherical model belong to this class.

A commonly used spatial correlation function in Kriging is the power exponential

A - ] (120 o0

where # > 0 and 0 < s < 2. The parameter # determines how fast the correlation

correlation function:

between the factors decreases. The parameter s affects the smoothness of the function.
If the assumption of isotropy is too restrictive, geometrically anisotropic correlation
functions may be appropriate.

The anisotropic power exponential correlation function formally is:

R[h; 0] = exp{—zp: (%”)l} (2.11)

=1
where hy =z — zj; and 6, > 0 and 0 < 5; <2 for [ = 1,...,p. The parameters named
0, and s; basically do have the same affect as in the isotropic case, but differentiate
between the [ coordinate directions.

An anisotropic correlation function implies that many parameters are unknown.
Sometimes the smoothness parameters s; are set to the fixed value 1 or 2. Still 6;,
the unknown parameters of the deterministic trend component and 0% are unknown.
One should be aware of overfitting when fitting a Kriging model with a complex de-
terministic trend component and an anisotropic correlation function to a small design.
Often only the intercept is chosen as the deterministic trend component then. This is

known as ordinary Kriging.

2.3.1 Estimation of unknown parameters

The unknown parameters in the Kriging model can be estimated by the maximum like-

lihood (ML) method among other options. In the Kriging model the distribution of the
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random vector Y = (Y (z,),...,Y(z,)) is assumed to be n-dimensional multivariate
normal
Y™ ~ N, (u= FB,0%R), (2.12)

where F' = (f(z1), ..., f(x,)) and R is the correlation matrix of the random vector Y (.
Based on this distribution the log likelihood function for the vector of observations y™
1s
1
1(B,07) = —= [n log(27) + nlog(o%) + log(det(R))

(y"™ — FBYR(y™ — Fp)
+ . .
Oz

[\

(2.13)

Differentiating the log likelihood with respect to 3 and 0%, equating it to zero and

using some algebra, the following ML estimators can be obtained

3= (F'R'F)Y'F'Ry™ (2.14)

~2 1 (n) AN/ p—1/,.(n) A
07 = (" = FOYR™(y" = FD). (2.15)
The estimators B and 6% do assume a known correlation matrix R, which is usually
not true. Let us assume the underlying structure for the correlation matrix R is
unknown. The ML estimators of 8 and ¢% in Equation and depend only
on the correlation parameters 6. When the ML estimators 3 and 6% are inserted in

the log likelihood function of the Kriging model (Equation [2.13)) it can be simplified to
the log likelihood function

1(3,07,0) = —%[n log(27) + 1 log(c52(8)) + log(det(R(8))) + ). (2.16)

The ML estimator of # can then be obtained by numerically maximizing this log likeli-
hood using e.g. the ridge-stabilized Newton-Raphson algorithm (Wolfinger et al., 1994).
To estimate the parameters 3 and o% the correlation matrix R is substituted by its
estimate R = R() in Equation m to m

For small samples the ML estimators of o2

2 and 6 are known to be biased. The

higher the dimension of # the more biased are the estimators. In such a case, it is
recommended to determine the restricted maximum likelihood (REML) estimates (cf.
Patterson and Thompson, 1974). Without loss of generality let rank(F) be the (row)
rank of " and rank(F) = p. The idea of REML is to determine a matrix C' with full
(row) rank n—p for which CF' = 0. A transformation of the data with C' then results in
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CY™ ~ N(CFB = 0,02CR(6)C"), which means the likelihood does not depend on 3
anymore. The REML estimate of § maximizes this likelihood of the transformed data

CY ™ and can again be determined numerically. The REML estimate of 0% becomes

~ 1 n 2N\ — n 2
oy = n_p(y‘ V= FBYR'(y™ - Fp). (2.17)

2.3.2 Prediction

With the help of the estimated parameters an (empirically) best linear unbiased pre-
dictor of a new point y(zy) and an (empirically) estimated prediction error can be
obtained. In the case of a known correlation function, [Sacks et al. (1989) prove that
the best linear unbiased predictor (BLUP) for an unknown point x, given the obser-

vation vector y™ is

j(wo) = f(x0)' B+ r(wo) R~ (y™ — FB), (2.18)

where r(xo)" = (R(zg,x1), ..., R(xg, z,)) is the vector of correlations between the new
point xy and the observations y™. The prediction error is estimated by the mean

squared prediction error (MSPE)

MSPE(j(x0)) = B{(4(x0) — y(x0))|y™}

(2.19)
=o05(1 —r(xo) R 'r(zo+d (F'R™'F) 'a)

with a = f(xg) — F'R™r(xg) (cf. Santner et al., 2003, Ch.3). The MSPE is defined to
be zero for observed points, which is intuitive for deterministic experiments.

In fact the correlation function needed in Equation and [2.19]is usually not known
and R and () have to be replaced by the estimates R and 7#(x,). The estimator §(z)
is then called the empirically best linear unbiased predictor (EBLUP), although it is
usually not linear and unbiased anymore. For the MSPE 0%, R and r(z,) are replaced
by 67, R and 7(xo), changing it to an empirical estimator.

For simplicity, the prediction error MSPE(jj(xo)) is referred to as s3(zo)) in the

following sections.

2.3.3 Kriging for nondeterministic experiments

In the previous subsections the Kriging model for deterministic experiments was intro-

duced. The model is appropriate if the design is conducted as a computer experiment,
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e.g. with FEM-Simulation techniques or if the experiments can be assumed as exactly
repeatable. When physical experiments are conducted an error term is added to the

model to consider the process variance. The model then has the form
y(x;) = plxy) + Z(x;) + e(x;), for i=1,....n, (2.20)

where u(x;) and Z(z;) are as before, and €(z;) is the additional error term. The error

term is considered as a realization of a white-noise process E = {e(x;) : x; € S} with

Ele(x;)] =0
2 if g — (2.21)
and Covle(x;), e(x;)] = % SR TT
0 ,lf Z; 7£ X
The covariance matrix of y(z) now is
2 2 2 (0%
V=ozR+ol=0;SR+1]. (2.22)

Analogously to the deterministic case, estimators for 3 and o2 can be obtained by
maximizing the likelihood function. The log likelihood has the same form as in the
deterministic case, only R has to be substituted with W = %R + I. Likewise, the
BLUP can still be obtained with Eq. when R is substituted with W. The MSPE
for the nondeterministic case has the form

MSPE(§(x0)) = o5(1 + % _ r(zo) W tr(zg + ' (FWF) ta), (2.23)

2
Oz

with a = f(xg) — F'Wr(zq) (cf. O’Connell and Wolfinger, 1997). Note, that this

MSPE is not zero for observed points.

2.3.4 Model validation techniques

The Kriging model is a very flexible approach, that permits various different model
specifications, e.g. different trend components, different spatial correlation structures,
isotropy or anisotropy and so on. Some goodness of fit measures may help to choose
the best model specification. The Akaike criterion (AIC) and the Schwarz criterion

(BIC) are well-known goodness of fit measures. They are based on the deviance

L = —2log(l%),
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where [* is the maximized likelihood value of the model. The AIC criterion as defined
by |Akaike| (1974) is
AIC = L + 2u, (2.24)

where u is the number of estimated parameters. The smaller the AIC is, the better
is the model. The summation of 2u to the deviance L penalizes a large number of
parameters and aims to prevent overfitting. The BIC criterion was defined by |Schwarz
(1975). It penalizes large number of parameters depending on the number of design

points n that are used to fit the model. Formally it is
BIC = L+ log(n)u. (2.25)

A comparison of the two criteria shows that for n > 7 BIC harder penalizes a large
number of parameters than AIC.

Jones et al.| (1998) suggest to use several diagnostic plots to validate the fitted model
based on the leave-one-out cross validation method. Suppose the model was fitted with
the help of observations y™ = [y(x1), ..., y(2,)]. Bach of the y(z;) is eliminated one at
a time and the model is fitted to the remaining observations. Then the deleted observa-
tion y(x;) is predicted from the model fitted with the remaining data. These predictions
are plotted against their respective observations. For a good model, the points in the

plot are close to the 45° line. If the model is valid, it also holds approximately that

y(;) — y(—z‘)(xz')

2 .
S s, (z;)

~ N(0,1) for 1<i<n, (2.26)

where g(_;)(x;) is the prediction of point x; from the model fitted without y(z;) and

2
(=)
cross-validated residual (SCVR) and states that the SCVR values should roughly be in

the interval [-3,3] for a valid model due to their normal distribution. Additionally, the

sz (x;) the corresponding prediction error. Jones calls this quantity the standardized

SCVR’s can be visualized in a Q-Q plot (SCVR’s against standard normal quantiles)
and should be close to the 45° line there, too.
The cross-validation technique can also be used to compare the prediction abilities

of different models. The smaller the mean squared cross-validation error (MSCVE)

n

MSCVE = = S (ylr) = G o @)’ (2.27)

is, the better are the predictions of the model.
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2.4 Sequential design optimization (SDO) by Cox and
John

Cox and John| (1997) introduced a sequential sampling method to find a global min-
imum. Starting with a small space-filling design they stepwise fit a Kriging model
(cf. Section 2.3). New design points are generated based on the standard prediction

error provided by the Kriging model. Let X = (z;);=1...; be a grid of candidate points

representing the parameter space y. Let further §(z;) be the predictions and s*(z;) the
mean squared prediction errors provided by the Kriging model and 6% the estimation
of the variance of the stochastic component Z(x) of the Kriging model as defined in

Section [2.3] Cox and John determine a lower confidence bound of the predictions
leb(z) = () — kog? /8% (;) (2.28)

for some specified k. The candidate x; that minimizes lcb(x;) is chosen as the next
updating point. The algorithm stops when a user-defined maximum number of ex-
periments is reached or when the current observed minimum y,,;, is smaller than the

minimum of the lower confidence bounds, i.e.

Ymin < ZI:nllnl(lcb(xl)) (2.29)
Cox and John suggest setting k = 2 or Kk = 2.5. This method has been reviewed by
Jones (2001) using x = 5 as a conservative choice for k. He shows that the method fails
to find the global optimum. He states that the success of the method strongly depends
on the choice of k. Jones suggests enhancing the method by using several confidence
boundaries with different x’s simultaneously. Each confidence boundary with a different
r is minimized by another point, which results in different possible optima. All points
resulting from minimizing the confidence boundaries are then clustered to form a small
number of updating points which are used to refine the Kriging model. He writes that
this “appears to be a highly promising approach”. Cox and John’s algorithm has not
been used or advanced, probably due to the popularity of the EGO algorithm. However,
the virtual observations used in the new approach (cf. Section [3.1]) are very similar to
the confidence boundaries from Cox and John’s SDO algorithm. The mtEGO algorithm

also uses the idea of Jones to consider several confidence boundaries simultaneously.
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2.5 The EGO-algorithm

The efficient global optimization algorithm (EGO) was published by |Jones et al.| (1998)).
First, an initial space-filling design is generated. The number of design points should be
as small as possible, but should enable to fit a surrogate that reflects the true relation-
ship at least roughly. Jones et al. propose to use 10 points per influencing parameter.
Then a Kriging model is fitted. A so-called expected improvement criterion is evalu-
ated for each candidate in the design space. The point that maximizes the criterion is
the new updating point. The model and the expected improvement are refined then
with the new points. This refinement is repeated until some lower boundary for the
expected improvement value is reached. The following subsection gives details on the

expected improvement criterion.

2.5.1 The expected improvement criterion

The expected improvement criterion was introduced by [Schonlau (1997). It balances
exploitation from the meta-model where the prediction is optimal with the need for
exploration where the uncertainty of the metamodel is high. Without loss of generality,
let us assume our problem is to find the minimum of the objective Y (z) given an n
point initial design with responses y™ = (y(z1),..,y(zy))". Let §(x) be the prediction
of the surrogate model fitted to the design for each possible point x in the design space
and let s?(x) be the corresponding mean squared prediction prediction errors. Further,
it is assumed that for a new point x the response Y (z) given y™ is normally distributed
with mean equal to the prediction and variance equal to the prediction error, hence
Y(2)ly™ ~ N(g(z), 53 ,,). We neglect the fact that the parameters §(z) and 7, are
estimated and that a t-distribution would be more appropriate here. To determine the
capability of x to be the minimum regarding the currently observed local minimum

Ymin & probabilistically-based improvement function is defined by

B , 1Y (2) > Ymin

In an intuitively appealing way, the improvement function increases the smaller Y (x)
is than the current minimum ¥,,;,, and is 0 for values Y (z) greater or equal than the
current minimum. Hence, the improvement function I(z) only measures how close

Y (z) is to the target y,in, the model uncertainty is not taken into account so far. The
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conditional density of the predictions fy (), can be seen as a measure of uncertainty

of the fitted model.

Therefore, the conditional expectation of I(x), given the observations y™ | is deter-
mined as
Ymin
E[[(m)’y(")] = / (Yrmin — Z)fy(x”y(n) (2)dz. (2.31)

The conditional expectation E[I(z)y™] is called the expected improvement. Due
to the assumption that Y (z)|y™ ~ N(g(x), 5;27(33))7 the expected improvement can be

transformed to the closed form

B = (i — i) (22D ) g (2= 00D) (o
Sj(z) Sg(z)

where ¢() and ®() are the density and distribution function of the standard normal
distribution (a proof is given in Henkenjohann, 2006). The first term is the improve-
ment of ¥,,;, multiplied by the probability that this improvement is actually achieved.
The second term is the prediction error multiplied by the probability that y is smaller
than y,,:;,. Hence, the expected improvement is large in areas where the improvement
(Ymin — 2) 1s likely to be large, i.e. the prediction is close to the optimum, or where the
model uncertainty is high. Particularly, it gets large if the prediction is close to the op-
timum and uncertain. The expected improvement gets 0 for points that are observed,

if the prediction error is 0 in those points, which is true for computer-experiments.

The calculation of the expected improvement and the updating of the model is re-
peated until a stopping criteria is reached. Originally, Schonlau (1997) suggests stop-
ping if the expected improvement becomes smaller than a fixed threshold value, e.g.
0.001. Since the expected improvement is dependent of the size of the observed qual-
ity characteristics, [Jones et al. (1998) suggest stopping if the expected improvement
becomes smaller than 1% of the currently observed optimum. [Henkenjohann et al.
(2005) propose that the threshold value should be 1% of the range of the observations
|Ymin — Ymaz|- They argue that if a quality characteristic is enlarged with an additive
constant ¢ = 100, the intercept of the surrogate model changes. The expected im-
provement does not change then, but a threshold value that depends on the currently

observed optimum does.

In|Jones et al.| (1998) a generalized version of the expected improvement is introduced
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as follows

Ymin
E[I*(z)ly™] = / (Ymin — 2)? [y @)y (2)dz. (2.33)
The exponent g enables the user to weigh how important areas of high uncertainty
are and enables to control between a local or global search. The larger g is chosen
the more global the search is. Different sizes of g and also cyclic schemes for g have
been discussed in [Sasena et al| (2000). For the generalized expected improvement

the same stopping rules as for the original version can be used. They now refer to
(E[I9(z)|y™])"/9 instead of E[I(x)|y™].

2.5.2 Recent developments regarding EGO

The EGO-algorithm is designed for single-objective maximization (resp. minimization)
problems without constraints and without noise. Many versions and extensions have
been published recently.

Hawe and Sykulsky| (2007)) published a so-called hybrid-algorithm with different
phases and a cooling scheme to gain more efficiency and accuracy compared with
the original EGO for standard situations. [Sobester et al. (2005), Sasenal (2002) and
Forrester et al.| (2006) extended the EGO algorithm to enable the optimization of con-
strained objectives. |Williams et al.| (2000), |(Queipo et al.| (2002), Huang et al. (2006])
or |Villemonteix et al.| (2009)) give examples how to adapt or modify EGO to cope with
noisy objectives for robust optimization. All approaches mentioned above are designed
to optimize only one objective. However, for many fields like mechanical engineering
it is substantial to optimize several objectives simultaneously. Multi-objective opti-
mization leads to the concept of pareto-optimality introduced by [Pareto (1896). A
realization of b objectives Y(zo) = (y1(xo), ..., yp(z0)) is said to be pareto-optimal if
there is no other realization Y (z) = (y1(z), ..., yo(x)), & € x, that improves the quality
of one objective without decreasing the quality of at least one other objective. That
means the realization Y (z¢) dominates all other realizations Y (z) and is, hence, a
non-dominated pareto solution. The set of all non-dominated pareto solutions is called
the pareto front.

The extensions of the EGO algorithm to the multi-objective case split into two groups
in the literature. [Hawe and Sykulsky]| (2004) and Jeong and Obayashi| (2005) optimize
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the objectives separately as long as possible to get to know the pareto front and then
determine one pareto-optimum as a best compromise for the present application. In
contrast, the algorithms ParEGO by Knowles| (2005), HyPerModel by Turner et al.
(2007) and ASOP by |Henkenjohann et al.| (2005) transform the multi-objective problem
into a single-objective problem first and proceed with a single-objective sequential
algorithm. They only search for one pareto-optimum, but not for the whole pareto
front. The transformation is done differently. ParEGO uses scalarizing Tchebycheff-
functions, HyPerModel uses a criterion that is a weighted sum of four different criteria
on proximity, weight, slope magnitude and convergence metrics and ASOP uses the
concept of desirabilities. All approaches to multivariate optimization are designed
for minimization or maximization of the objectives. To the best of our knowledge,
an algorithm that enables multivariate optimization towards a special target value is
not available yet. Since the concept of desirabilities provides handsome features for
the target-value optimization problem, our approach adopts and extends the ideas of
ASOP by Henkenjohann et al.| (2005).

Some of the previously mentioned references make use of hybrid, cooling or cyclic
schemes to yield faster and more precise results. [Sasena et al| (2000), Sobester et al.
(2005), Turner et al.| (2007)), [Hawe and Sykulsky| (2007)) vary their criterion-parameters
regarding a special cooling or cyclic scheme reminiscent of simulated annealing. They
start with a global search that becomes more local with each step. |Jones| (2001) presents
an enhancement for different sequential optimization strategies that suggests to work
in a hybrid way. A set of different parameterizations of one infill sampling criterion is
used simultaneously which results in a set of updating points. The obtained results are
clustered to few essential updating points. In each single step maximum information is
obtained. The concept of using different parameterizations simultaneously and cluster

the obtained results has great importance for the new strategy mtEGO.

2.6 The concept of desirability

The concept of desirability was introduced by Harrington| (1965) for multi-objective
optimization in industrial quality management. Harrington’s idea is to transform the
b-dimensional multi-objective problem into a single-objective problem. First, each sin-
gle objective y is transformed to the scale-free interval [0, 1] with a so-called desirability

function d(y). After the transformation of all objectives Y = (yi, ..., Y ) with desirabil-
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ity functions to gain comparable scales and comparable targets, they are aggregated
to a joint desirability index DI(Y) = DI(y1,...ym). The joint optimum of the multi-
objective problem can be found by optimizing the desirability index. The specification
of a desirability function needs experts knowledge about the problem that is to be
optimized. Particularly, information is needed about the target and how strong the
non-optimality has to be penalized. In the following, different types of desirability

functions and desirability indices with their corresponding features are described.

2.6.1 Types of desirability functions

Desirability functions can be grouped into one-sided and two-sided functions. One-
sided functions map quality characteristics to [0, 1] that are to be minimized or max-
imized. If the optimum of a quality characteristic is a certain target value, we need a
two-sided desirability function. For both types, a desirability value of 0 corresponds to
an unacceptable quality. The desirability values get larger, the better the quality is,
slowly approaching 1. A desirability value of 1 indicates the perfect quality, the target
is exactly met.

For the one-sided case Harrington defines the desirability function as
d(y) = exp(—exp(—(bo + by1y))), with by, b € R. (2.34)

The parameters by and b, explicitly define the kurtosis of the function. The expert
should provide two points of y and their associated values of d(y) to determine by and
by with a system of two equations.

To specify the two-sided desirability function of Harrington an upper and a lower
specification limit (USL and LSL) are required that lie symmetrically around the tar-
get value and which are associated with a desirability of 1/e. The two-sided desirability
function has the form

_USL4LSL

d(y) = exp <_ ‘ —UsT ST
2

) with v > 0. (2.35)

The parameter v determines the kurtosis of the function and has to be chosen such
that it meets the expert’s preferences. The larger v is, the less the function penalizes
deviations from the target. Figure shows some exemplary Harrington desirability
functions.

Derringer and Suich| (1980) introduce desirability functions that are defined piecewise

and also enable asymmetric forms. The one-sided Derringer-Suich desirability function
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Figure 2.1: Examples of Harrington desirability functions: one-sided (left) and two-
sided (right)

for a maximization problem has the form

0 ify < LSL
dly) =3 (=3h)" LSL<y<T (2.36)
1 ify > T

where T is the target value. It is advisable to use this function, if a precise target T" and
a certain lower specification limit LSL are known. The USL marks the specification
limit where all values of y greater than T realize no additional benefit and values
smaller than LSL result in an unacceptable quality. The parameter | again specifies
the kurtosis of the function and hence influences how strong deviations from the target
are penalized. For a minimization problem the desirability function is specified likewise.

Derringer and Suich also provide a two-sided desirability function for target-value

problems in the following form

0 if y < LSL
—LSLN\! .
d(y) = (i) AfLSL<y<T (2.37)
(228 G T <y <USL
0 ify > USL

Here, the lower and upper specification limits LSL and USL represent those values of
y, where the deviation from T is that large that an unacceptable quality is reached.
The desirability gets 0 outside these limits. With the help of the parameters [ and r
the shape of the function below and above the target value are determined. Specifying
[ and r differently, this desirability function can be asymmetric. This is very useful for
situations where a deviation below the target is worse than exceeding the target or vice
versa. For example the optimization problem from the motivating example in Section
can be transformed to two-sided asymmetric desirabilities to penalize sheet thicking
adequately. Figure shows examples of Derringer-Suich desirability functions.
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Figure 2.2: Examples of Derringer-Suich desirability functions: one-sided (left) and
two-sided (right)

Further specifications of desirability functions can be found in Govaerts and Le Bailly
de Tilleghem (2005). They develop functions based on the cumulative distribution
function of the standard normal distribution to provide smoother and differentiable

functions. Asymmetric specifications are however permitted.

2.6.2 Types of desirability indices

To evaluate the joint quality of b objectives at the same time, Harrington| (1965) sug-
gests to aggregate the desirabilities to a desirability index. He defines the desirability

index as the geometric mean of the single desirabilities d;(y;), 7 =1,...,b

b
DI(Y) =[] ()" (2.38)
j=1

A desirability index DI(Y) close to 1 indicates that the observation Y = (yi,..,yp)’
has an overall good quality, whereas DI(Y) = 0 indicates an unacceptable quality
result. Notice, that if one of the single desirabilities is 0, i.e. one of the objectives has
unacceptable quality, the overall quality is unacceptable, too. Figure[2.3|shows contours
of two desirability functions and their joint desirability index. The joint optimum can
easily be seen from the right contour plot.

In Trautmann and Weihs| (2004) it was shown that a point x,,, that is determined by
optimizing the geometric mean of desirability functions is pareto-optimal. This makes
the concept of desirability very appealing for multi-objective optimization.

In some cases, it may be appropriate to use the weighted geometric mean as the

desirability index to allocate different importance to the quality characteristics. The
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Figure 2.3: Two exemplary desirability functions and their joint desirability index

index then has the form

b b
DI(Y) = | d;(y;)*, with > g; =1. (2.39)
j=1 j=1
There exist also other versions of desirability indices, e.g. DI = min d; by Kim
-]: K b
and Lin| (2000)). These versions play a minor role for optimization, since they omit a

lot of information and pareto-optimality is not given.

2.6.3 Distribution of desirability functions and indices

Optimization using the concept of desirability usually starts with a statistically planned
design. A model is fitted, which is used to predict the desirability index for each point
in the parameter space. Finally, the optimum is found by maximizing the predicted
desirability index. The prediction error from the fitted model is ignored when optimiz-
ing the desirability index. A simulation study published by [Steuer| (2005) showed that
the results may be largely wrong. The found optimum was often lying far away from
the actual optimum. Sometimes the true desirability of the found optimum was even
0. Therefore, it may be wise to regard the predicted desirability index as a random
variable and to optimize their estimated expectation instead.

Weber and Weihs (2003) derive distributions of different desirability functions. As-
suming the quality characteristic to be normally distributed with expectation p and
variance o2, the distribution of the Harrington desirability functions d can be derived

applying the density transformation theorem multiple times.
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The distribution of the one-sided Harrington desirability function is the double log-

normal distribution with density

-1 1 N
) = e | g oa—log @)~ (240

where ji = —(by + byp) and 62 = b20%. The distribution of the two-sided specification
is given by the density

) [exp (—<<— logd)) ! - ﬂ)2) + o (—((— log(d))"/” + ﬂ>2>] o)

20 252
where
1l_y
o oo (Slog@)
V2mody
- 2 USL+LSL
® = gsi—rsiM T USi—LsL
o and 52 = (12 )02
USL—LSL :

The derivation of the distributions for Derringer-Suich desirability functions is much
more difficult. Only for the special case with r = [ = 1 a distribution can be determined
in the same manner (cf. Steuer, 2005). In the one-sided case for a the-smaller-the-

better quality characteristic the density has the form

 (25574) Jifd=0
fld) = { T=LsLg (LSH“(T(;LSL)‘“> it d € (0,1) (2.42)
1— () Jifd=1

where ¢ is the density and ® the distribution function of the standard normal distri-
bution. The distribution of the two-sided Derringer-Suich desirability with r =1 =1
has the density

O (EL=) 41 — @ (¥EL=2) ifd =0
fld) =1 T=LSLg (q)) + USL=T¢ () ,if d € (0,1) (2.43)
0 Jifd=1

LSL+d(T—LSL)—p
o2

L—d(USL—T)—
and ¢o = 22 (UUS )1

where ¢; =
The derivation of exact distribution or density functions for the geometric mean as
desirability index is very complex and only possible for some special cases. [Trautmann

and Weihs| (2006]) derived the exact distribution for the bivariate case of two-sided
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Harrington desirabilities with » = 1 and approximative distributions for one-sided de-
sirabilities. Based on large simulation studies, Steuer| (2005)) yields information about
some properties of the distribution of desirability indices with Derringer-Suich desir-
abilities, but also no closed forms are given. In |Govaerts and Le Bailly de Tilleghem
(2005)) density functions for their own desirability functions are given for independent

objectives.

2.7 Multivariate expected improvement using

desirabilities

As already mentioned in Section the expected improvement criterion has been
extended for the multivariate case in different ways, where the variant of |[Henkenjo-
hann et al.| (2005) is the most appealing version for our problem. Henkenjohann et
al. develop a multivariate expected improvement criterion based on the concept of
desirabilities. The predictions of the fitted surrogate models are transformed to desir-
abilities and combined in one desirability index to proceed with the univariate expected
improvement criterion. The calculation of the univariate expected improvement does
not change much. In Equation to the univariate objective Y (x) has to be
replaced by the desirability index DI(x) as follows. Assume we have a b-dimensional
multivariate optimization problem. Let DI be the desirability index of the b desirability
functions d;, j = 1,...,b, defined for the b objectives. Let further DI,,,, be the maxi-
mum desirability index within the current observations yin), - yl()n). The multivariate

improvement function based on the desirability index then has the form

(2.44)

1 () = { (DI(2) = Dlpay)? it DI(x) > DIy

0 Jif DI(x) < Dlpas

Taking the conditional expectation leads to the multivariate expected improvement
1

Bl @) o) = / (5 = Dl Fpryyt o (N, (245)

D]maac

where fDI(x)\y(") o) is the conditional density of the desirability index DI(z) given
1Y
the observations y§n), e yén).
The stopping criteria for this multivariate expected improvement depends on the

currently observed maximum desirability index DI,,,,. The contour plots of the desir-
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Figure 2.4: Contour plots of the desirability index with weights for the geometric mean
(left: g1 = g2 = 0.5, right: ¢g; = 0.3, g2 = 0.7) (from Henkenjohann, 2006)

ability indices in Figure[2.4show that the lines are roughly parallel only for DI, > 0.6
and only then the relation of the value of the expected improvement is relatively con-
stant to its actual improvement of the current optimum. Therefore, only if DI,,,, > 0.6
the process can be stopped if a certain multiple of the expected improvement is smaller
than 1% of DI,,,., otherwise the decision should depend on the location of the distri-
bution of the desirability index.

In general, the strategy works with every kind of desirability function and desirability
index, and can hence also be used with a target-value problem. However, it is difficult

to obtain the conditional density of the desirability index f, ()| m). This poses
b

(n)

a great challenge, especially for two-sided desirability functionz.1 o?r %erringer—Suich
desirability functions since they are only piecewise differentiable. Henkenjohann et al.
(2005) could only give the conditional density for the special case of Harrington’s
one-sided desirabilities d;(x) and the geometric mean as index. Assuming Y(x) ~

N(j(z), %(x)), the conditional density function of DI(z) = d;(x) has the form

f(DI(z)) = (-1 e 2@ (2.46)

\ 2m)YE()] 1j1 log(d;(x))d;(x)

where a = (log(—log(DI(x))) — fu(z)) with ji(z) = by + biij(z) and S(z) = b,5(2)by.

Henkenjohann| (2006)) also discuss the use of a Monte-Carlo simulation of the condi-

tional density function and show that it is computationally not feasible to do so.
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2.8 Clustering methods

Some multivariate optimization algorithms work in a hybrid way, several different infill
sampling criteria or parameterizations of one criterion are evaluated simultaneously. All
updating points that are developed simultaneously are reduced to few good updating
points using simple methods from cluster analysis. Since the new approach also is a
hybrid strategy, the idea of cluster analysis and some algorithms are introduced.
Cluster analysis is the generic name for a wide variety of techniques that are used to
empirically group entities from an unclassified data set into homogeneous subgroups,
so-called clusters. The points are grouped on the basis of their similarities, such that
the distance between any two points in the cluster is less than the distance between any
point in the cluster and any point not in it. This makes the clusters as homogeneous

as possible.

2.8.1 Distance measures

The recognition of entities as similar or dissimilar is the basis of the process of clas-
sification. A clustering algorithm usually starts with the calculation of a matrix of
similarities or distances between the entities. If the data is binary, i.e. the variables are
of the type ‘absence’ or ‘presence’, similarity coefficients are used. They measure the
relationship between the two entities, given the values of a set of k variables common
to both. In general, they take values between 0 and 1. For examples of similarity
coefficients see Everitt (1980, Ch.2.3).

For quantitative data the similarity between two entities z; and x; with £ variables
each is measured by distance metrics. The most commonly used distance measure
in clustering methods is the p* order distance p,(z;, ;) as defined in Equation
Usually, the Euclidian metric (p = 2) is used. Since it is badly affected by changing the
scale of a variable, often the entities x; = (z)x=1, o, are replaced by the standardized
variable (zix)k=1.. o = (%ix/0k)k=1,. ., Where o is the standard deviation of the kth
variable. Another interesting distance measure that is also used in some clustering

methods is the Mahalanobis distance
p(zi, ;) = (z; — xj)/E_l(xi — ;). (2.47)

Thereby, > is the pooled within group variance-covariance matrix. The Mahalanobis

distance has the advantage that it permits correlation between variables.



32 Chapter 2. Sequential optimization

To evaluate the similarity between clusters instead of entities, the same metrics
can be used by substituting the inter-individual coefficients x with group means = in
Equation and [2.47] For other concepts of distance measures used in clustering
methods we refer to Aldenderfer and Blashfield (1984, Ch.2).

2.8.2 Clustering algorithms

Since the field of application for clustering methods is huge, a large number of different
algorithms have been developed. Everitt (1980, Ch.3) gives a comprehensive review of
existing algorithms, where he classifies the algorithms into the five families of techniques
given below. Other good reviews of clustering methods can be found in Aldenderfer
and Blashfield (1984, Ch.2) or |Cormack| (1971).

Hierarchical techniques form the clusters stepwise by classifying the classes them-
selves into groups at different levels to form a tree. The direction of classification
can be agglomerative or divisive, depending whether it is started with several

groups with one entity each or one group with all entities.

Optimization techniques form the clusters by optimizing a certain clustering crite-

rion.

Density or mode-seeking techniques form clusters by searching for regions with a

relatively dense concentration of entities.
Clumping techniques form eventually overlapping clusters.

Hierarchical agglomerative methods are the most popular and simple ones. Among
the hierarchical agglomerative methods the most popular methods are known as single-
linkage, complete-linkage, and average-linkage. The basic procedure for all of them
is the following. Suppose the set of n entities {x1,...,2z,} to be classified. Initially
each entity forms its own cluster. In any particular step the methods merge those
two currently existing clusters G, and G} that have the smallest distance D(G,, Gy),
where D(G,, Gy) varies for the different methods. Each fusion decreases the number
of clusters by one, until all clusters are merged into one large group.

Let us specify the distance D(G,, Gp) for the mentioned methods. Suppose p(z;, x;)

denotes any choice of distance measure, as presented in subsection [2.8.1]
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Single linkage method (nearest neighbor method) In each step those clusters are
merged that have the smallest distance between their nearest members. Hence,
the distance between the groups is defined as the distance between their closest

members, formally:

D(G,,Gy) = min  p(zy, x;). (2.48)

ziEGa,ijGb
The single linkage rule states that it is enough that at least one member of the

existing cluster is of the same level of similarity as the cluster that is to be merged.

Complete linkage method (furthest neighbor method) As the second name indi-
cates, this method is exactly the opposite of the single linkage method. The
distance between groups is defined as the distance between their most remote
pair of entities:

D(Go,Gy) = max  p(zy,x;). (2.49)

ziGGa,Ij €Gy
In contrast to single linkage, the idea of this rule is that any candidate that is
included into an existing cluster must be within a certain level of similarity to all

members of that cluster.

Average linkage method This method was proposed as a compromise to the extremes
of single and complete linkage. There are a number of variants of the method.
Each essentially computes an average of the similarity of any candidate under
consideration with all candidates in the existing cluster and, subsequently, merges
the candidates to that cluster if a given level of similarity is achieved using the
average value. The most commonly used variant of average linkage computes the

arithmetic mean of similarities among the candidates.

E— Z Z p(z4, ;). (2.50)

2;€Gq z;€GY

(Gm Gb

Other variants are designed to calculate the similarity between the centroids of

two clusters that might be merged, often named centroid method, i.e.

D(G,,Gy) = p(Tq,Tp), where T, = Z x; and T = Z x;. (2.51)

r;€Gq Tj EGb

The sequence of successive fusions of the entities can be represented visually by a
tree-diagram, usually called dendrogram (see Figure . Each step where a pair of

cases is merged is represented as a branch in this tree. At the lowest level, all entities
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Figure 2.5: Exemplary dendrogram (left) and scree plot (right) for Complete Linkage

are independent. At the highest level, all entities are merged into one large cluster. In
the dendrogram the height of a horizontal line is the distance p between them, where

p varies between the different cluster methods as described before.

2.8.3 The optimal number of clusters and validation techniques

The nested structure of a dendrogram suggests that many different groups may be
present in the data. A yet unsolved problem of cluster analysis is the definition of the
optimal number of groups in this data. The reason is the lack of a suitable null hy-
pothesis and the complex nature of multivariate sampling distributions. A heuristical
approach is to look at the dendrogram and to search for a point, where adding another
cluster would decrease the homogeneity of the clusters strongly. Branches in the den-
drogram that are merged late, i.e. large vertical lines, state that their corresponding
clusters are inhomogeneous. A way to find such stages more easily is to plot the height
of fusion against the number of clusters. Analogous to the scree test of factor analysis,
a good partition of the data can be found to the left of a marked ‘flattening’. Such a
marked ‘flattening’ in the graph suggests that no new information is constituted by the
following fusions of clusters. A jump in the graph implies that two relatively dissimilar
clusters have been merged. Thus, the optimal number of cluster should lie to the right
of a jump. Figure [2.5| shows a dendrogram and its corresponding scree plot. Here, a

good choice would be to take four clusters.
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Note, that the validation of cluster analysis is difficult due to the same problems as
the choice of the optimal number. In Jain and Dubes (1988, Ch.4) and Aldenderfer and
Blashfield (1984, Ch.4) some approaches are suggested, but not used here. In sequential
optimization clustering is used to reduce the number of potential updating points.
Miss-classification does not cause serious problems. Only the number of optimization

iterations that is needed to find the global optimum may raise.
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3 mtEGO - A novel approach to
multi-objective target-value

optimization

In this chapter we present a novel multivariate global optimization algorithm for target-
value problems. As the procedure of the new algorithm follows the concepts of EGO
(for details on EGO see Section it is named mtEGO (multivariate target-value
EGO). We start with a small initial space-filling design and fit a Kriging model as
surrogate model. This model is refined stepwise by adding new points until a stopping
criterion is reached. The infill sampling criterion that decides on the updating points
is a variant of the expected improvement criterion. The novelty of the new variant is
its ability to account for target-value problems using transformations of the objectives
to two-sided desirabilities (for details on the concept of desirabilities see Section [2.6).

Henkenjohann et al.| (2005)) introduce a multivariate expected improvement criterion
using the concept of desirability (Section 2.7). They transform the multi-objective
problem to a single-objective problem with the help of a desirability index and then
use the expected improvement criterion as introduced by Jones et al. (1998]). The
criterion needs to incorporate information about the model uncertainty which is now
reached using the conditional density of the vector of desirabilities. This conditional
density is known in a closed form only for some very special cases (cf. Section .
Therefore, the approach by Henkenjohann et al. is restricted to one-sided Harrington
desirabilities and can not be used straightforward with two-sided desirabilities. For
length of computation time, a Monte-Carlo Simulation of the distribution is also not
feasible. However, the approach of Henkenjohann et al. gave the basic idea for the
new algorithm. The new algorithm also uses desirability functions and indices to
transform the multi-objective problem into a single-objective one. We also keep up the

idea that the conditional density of the vector of desirabilities must be incorporated
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into the algorithm to regard the original uncertainty of the surrogate after all the
transformations are done. In contrast to Henkenjohann et al., we do not need the
conditional density of the vector of desirabilities in a closed form or a precise estimation
of it. It is replaced by a very rough approximation using so-called virtual observations

and a combination and clustering strategy to find appropriate updating points.

3.1 Virtual observations

Instead of deriving or fully simulating the conditional distribution of the desirability
vector, we calculate a very rough approximation of the uncertainty distribution of the
untransformed predictions by virtual observations. Similarly to|Cox and John|(1997)) in
Section[2.4] we construct virtual observations by means of (1—a)% confidence intervals
for the predictions from the fitted surrogate model using the corresponding prediction
errors. Suppose j(z) is the prediction of y(z) from the surrogate and s3(x) is the
prediction error. Assuming the predictions of the surrogate model are approximately
normally distributed, which is true for Kriging models, the (1—a)% confidence interval

of the prediction ¢y can be determined by

[G(x) — s3(x) - tiajaar » §(2) + 55(2) - ti_ayoar,] (3.1)

where t1_q /2 ¢ is the (1—a/2)—quantile of the t-distribution with df degrees of freedom.

The left hand side of Figure[3.1{shows the 99.5% confidence interval for one exemplary
predicted point (91(xg), J2(x0)). The prediction, the lower and the upper confidence
boundary are determined for each objective y; and y,. Matching each of the three values
for objective y; with all three values from objective ¥y, gives nine points, including the
original prediction, that are displayed in the figure. Each of these nine points represents
one possible true result (y;(xg),y2(x0)) and is therefore called a virtual observation.
The set of nine virtual observations gives a very rough impression of the impact of the
model uncertainty on the predictions.

To get a better impression, virtual observations for several levels of different (1—a)%
confidence intervals can be used simultaneously. The right hand side of Figure[3.1]shows
virtual observations for three levels o € {0.1,0.05,0.005}, resulting in 90%, 95% and
99.5% confidence intervals. Of course a large number of levels would yield in a full
Monte-Carlo simulation of the model uncertainty distribution. But for a confidence

levels and b objectives a® virtual observations have to be determined for each predicted
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point. The following procedure becomes slow and computationally expensive for larger
values of a and b.

For the optimization of a whole parameter space, we are not interested in virtual ob-
servations for only one predicted point, but in the vectors of virtual observations for the
whole parameter space. For better illustration, suppose there are two objectives y; and
Yo and only one influencing parameter x. Figure shows virtual observations of three
confidence interval levels for the univariate parameter space =z = (1.0,1.1,1.2,...,11)".
The predictions are quite certain in the interval [1,5] and very uncertain in the interval
[5,11]. The target is represented by the horizontal line. The current local optimum for
y1 lies in the space with small model uncertainty. While the predictions (solid black
line) do not indicate any potential for an optimum in the uncertain area, the virtual
observations (colored lines) reveal a high potential of containing global optima in dif-
ferent places. If we take one vector of virtual observations the point where it meets

the target or is at least the closest to the target can possibly be one true optimum
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Figure 3.3: Exemplary resulting vectors of desirability indices

within the confidence level of this virtual observation. The set of all optima of the
single virtual observation vectors thus represents the impact of the model uncertainty
on the possible optimum. The same applies to objective y5. The new information from
the virtual observations for each single objective has to be combined to find the multi-
variate global objective. We use the concept of desirabilities to transform the problem
into a univariate one. All vectors of virtual observations are transformed using before-
hand specified (two-sided) desirability functions, resulting in desirability vectors. The
desirability vectors of all objectives are cross-combined with each other and aggregated
to desirability indices, such that the index is computed for each virtual observation
displayed on the right hand side of Figure . Hence, the result are a® different de-
sirability index values for every parameter setting x. Figure |3.3[ shows some resulting
desirability indices for the example. The left hand side of the figure shows some indices
having their maximum very close to the currently found optimum. The right hand side
of the figure shows indices that have their maximum in another region than the cur-
rently found optimum. The single desirabilities for the certain combination of virtual
observations that leads to one of these indices are both large in this region. Hence,
the points maximizing these indices have a high potential for a joint global optimum.
Each desirability index is then transformed to an improvement vector, as introduced by
Jones et al.| (1998)), resulting in one improvement vector per desirability index. Figure
[3.4] shows the improvement vectors that result from the desirability indices displayed
in Figure [3.3] The peaks in these plots represent the potential regions for a global

optimum.

The expected improvement could now be estimated taking the arithmetic mean of

all improvement values that have been determined through the cross-combination of
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virtual observations for each observation. The resulting vector of average improve-
ments then is a rough estimation of the expected improvement. The maximum of the
estimated expected improvement would be the updating point. But taking the average
masks all the information about the tails of the distribution that we could gain by
constructing the virtual observations. For the example used in Figures to the
estimated expected improvement vector, i.e. the average of all improvement vectors,
results in the curve displayed in Figure 3.5 Since 20 from all 25 indices look similar
to the left hand side of Figure [3.4] the peak close to the currently found optimum is
dominating such that the expected improvement also has its peak close to the currently
found optimum. The information from the five indices on the right hand side of the
figure is masked. Unfortunately, these are the important indices showing possible other
optima in the uncertain areas. Only if we use only very small « levels there would be
a chance that the expected improvement gets larger in an uncertain area than in the

local optimum. However, this would be a very inappropriate parameterization.
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In order to solve that problem, our heuristic proceeds with the separate improve-
ment vectors, like other hybrid sequential algorithms do and “average” the information
only in the end using hierarchical clustering. We determine the parameter settings x
that maximize the improvement vectors and thus get a set of points that we call the
candidates for the global optimum. The set of candidates represents the impact of the
model uncertainty on the possible location of the global optimum. In order to mini-
mize the number of candidate points and since some of the candidates often lie close to
each other or occur several times, we use standard hierarchical clustering to determine
groups of candidate points. Finally, a representative point from each clustered group
is taken as updating point to refine the model. A precise step-by-step instruction of
the algorithm is given in the next subsection. Note, that without taking the average of
the several improvements the name “expected improvement” is formally wrong, since

no expectation of the improvements is determined.

3.2 The mtEGO algorithm step-by-step

In the following we give a detailed step-by-step introduction to the new mtEGO ap-
proach. The algorithm follows the same scheme like most of the sequential optimization

procedures. The single steps are
1. Generate and run an initial space-filling design.

2. Fit a surrogate model that provides predictions and normally distributed predic-

tion errors. Preferably a Kriging model.

3. Locate new design points based on the observations and the fitted surrogate

model.
4. Evaluate the stopping criterion.

5. Update the surrogate model with the new design points and repeat Step 2 to 4
until the stopping criterion is fulfilled.

Suppose we have a multi-objective problem with b objectives vy, ys, ..., y» and p influ-
encing parameters. Let G C x be a set of ¢ feasible parameter settings representing the
parameter space Y C RP. Let further be A the n point initial design determined in Step
1, where A C G. Based on the design A, a Kriging model is fitted in Step 2 for each
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objective separately providing the algorithm with b predictions and prediction errors
Up(2),VYx € G be the predictions
and s? (), s3, (), ..., s, (¢), Yz € G be the predlctlon errors, that are estimated by the

empirical BLUP and MSPE in the Kriging Model (cf. Section - The location of

new design points in Step 3 now is different from other existing algorithms. It can be

for all parameter settings z € G. Let 91(z), 92(2), ..

partitioned in three phases: (A) estimation of the rough impression of the distribution,
(B) determination of candidates for the global optimum, (C) reduction of the candi-
dates to a small set of updating points. Each of these phases consists of several steps,
that are explained in the following. Therefore, for each objective yq, o, ...
D), d? (), ...,

.,d®] (usually the geometric mean) must be selected.

, Yp & separate
desirability function d d®(.) must be specified and a desirability index

DI[dM,d?

Phase 3.A:
This phase is used to determine a small number of virtual observations to get a rough

impression of the uncertainty distribution of the surrogate model.

3.A.1 The levels of the confidence intervals {aq, as, ...., a, } with «; € (0, 1] are chosen,
depending on how local or global the location of the new updating points shall
be. The effect of different choices of a is demonstrated in Section [3.5] and a
reasonable parameterization for the whole set of a levels is discussed as a result

of the simulation study in Section

~—

3.A.2 The vectors of virtual observations for each vector of predictions ¢ (x), ga(x

(

,Vx € G are determined according to the following schema:

- t17a1/2,df : 831 (ZL’),

—t1ay/2,df 83271(37)

Ta+ () = 01(2) + ti—au /2,45 - 5%, (2), Ta—(2) = G1(2) + ti_a, /2,05 - 55, (x)

Yoat (1) = Yo (2) + ti_a, /2,05 -

Yoa— (1) = Yo () + ti_a, /2,05 -



44 Chapter 3. mtEGO - A novel approach to multi-objective target-value optimization
Gs(z) = Gp(),
Uort (2) = G6() + tiarjoar - /55, (@), G- () = Gp(T) — t1ayj2ar - 1/ 55, (2),
Urat+ (7)) = Up() + tioanjodr - \/55,(), oo () = o) — t1-an/24r * 1/ 55, (2)
Ga+ () = Go(2) + t1man/2ar = 1/ 55,(2)s Toa— () = G6(2) + tiauoar - /55, (7)
Altogether, we get (2ba + b) Vectors of virtual observations.

3.A.3 Each of the vectors from 3.A.2 is transformed into desirabilities according to the

3.A4

corresponding desirability functions dV,d®, ..., d®.
di(z) = dV (G (x)),

diy(z) = dV (G (@), du-(z) =dW (G- (2))
oy () = dV (Groy(2)), dia-(z) = dV (G1o-(2))

dy(7) = d(b)(ﬂb(fﬁ)%
dp11(7) = d®) (o1 (7)), dp—(z) = d(b)(ﬂbl—(x))
dyay () = d® (Up2+(2)), dpo—(x) = d(b)(?]bz—(x»

dpo+ () = d®) (Jbat (%)) dpa— () = d® (Fba—())
for all x € G. The result of 3.A.3 are (2ba + b) vectors of desirabilities.

The desirability vectors of 3.A.3 are aggregated to desirability indices. Therefore,
one desirability vector per objective is selected from the set in 3.A.3 and then
aggregated to the desirability index using the (weighted) geometric mean. Each
desirability vector belonging to y; is combined with each belonging to y, with
each from ys ... with each from g,. The b desirability vectors to be combined to
one index are selected according to the following cross-combination scheme (for

simplicity we use the short notation d; for the desirability vector dy 1 (x),Va €

G):
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DI[d1,ds, ...,dp),
DI[d14,dz2, ... dy), DI[dyi—,d2,....ds], ... DI[dras,dz2,....ds], DI[dia—,dz,...,ds)]

DI[dy,d21+,...,dp], DI[d1,d21—,...,dp], ... DI[d1,d2a+,...,ds], DI[d1,d2a—,...,dp]

DI[dy,dy,...;dy14], DI[dy,da,...,dp1_], ... DI[dy1,ds, ...,dpas], DI[d1,da,...,dpe_]

DI[d114,d214, .. dp), DI[d11—,d214,....dp], . DI[d1at,d214, ., dp), DI[dia—,doit, ..., ds]
DIfdi14,do1—,...;dy], DI[d11—,dai—,....dy), ... DI[dias,do1—,...;dy], DI[dra—,do1_,...,dp]
DI[d114,d22+, ... dp), DI[d11—,dooy,...;dp], ... DI[dray,doot, . dp), DIldia—,doot, ..., ds]

DIld11+,d22—, ..., dp], DI[d11—,d22—,...,;dp], ... DI[d1a+,d22—,...,dp], DI[d1a—,do2—,...,dp]

DI[di14,d2a+, .., dp], DI[d11—,d2a+,...,dp], ... DI[d1ay,d2at,...,dp), DI[dia—,d2a+, .., dp]

DI[d11+4,d2a—, ..., dp), DI[d11—,d2a—,...;dp], ... DI[d1a+,d2a—,...,dp], DI[d1a—,d2a—, .., dp]

DI[d11+,d21+, .-, do14], DI[d11—,d214,..,dp14], ... DI[d1at,d214, ., dp1y], DI[dia—,d21+, ..., dp14]
DI[di14,d21—,...,dp1—], DI[di1—,d21—,...,dp1—], ... DI[d1ay,do1—,...,dp1—], DI[d1a—,d21—,...,dp1—]
DIfdi14,d22+, .., dp1+], DI[di1—,d22+,...,dp1+], ... DI[d1at,d22+,...;dp1+], DI[dia—,do2+,...;db1+]

DI[di1+4,d22—,...;dp1—], DI[d11—,d22—,...,dp1_], ... DI[d1a+,d22—,...,dp1_], DI[d1ia—,d22—,...,dp1_]

DIfdi1y,doarsosdyii], DI[dii—,dzat, s dprs]s o DI[dratsdsas, s dprs], DIldia—,doar .., dyi]
DI[dirs, dza—, oy dy1_], DI[dii—,dza—,.dpr_], - DI[diat,doas..dyi_], DIldia—,dza—, .., dpr_]
DIldi14,do1s, . dyos], DI[d11—,dorg,sdyai], - DI[diay,dois, o dyas], DIldia—,dois, ..., dyss)
DIfdi14,d21—,...,dp2—], DI[d11—,d21—,...;dp2—], ... DI[d1a+,d21—,...,dp2-], DI[d1a—,d21—,...,dp2]
DIldi14, dozs s dyos], DI[d11—,doog, o dpai], - DI[diay,daos, ... dyas], DIldia—,daos, ..., dysy]

DIldi1+4,d22—,...,dpa—], DI[d11—,doo—,...;dp2—], ... DI[d1a+,d22—,...,dp2_], DI[d1a—,d22—,...,dp2]

DIldiry,d2as, - dbat], DIldi1—,doat, - doay], - DIldiat,dzat, o dpar], DIldia—,dzat s dpay]
DI[dii+,d2a—, - dpa_], DI[di1—,d2a—,.,dpa_], - DI[drat,d2a—rdba_], DI[dra—,d2a—, .- dpa_]
In total, there exist (2a + 1)° desirability indices, where each one represents
a possible true desirability index within the uncertainty of the models. The
desirability indices still are vectors depending on = and should formally be noted
as DI[dyq—(x),dye—(x),...,;dpe—(2)],Vx € G. This dependency is important to

remember in the next phase but is now hidden in the short notation.
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Phase 3.B:

Having a rough impression how the desirability index looks like within the whole range

of uncertainty, potential candidates for the global optimum are determined.

3.B.1

3.B.2

Each vector of desirability indices from 3.A.4 is transformed into a vector of
improvement values using Equation with g = 1.

1) (DI(x) = Dlnas) if DI(x) > Dlpas
xXr) = .
0 Jif DI(x) < Dlpas

(Using another value of g is not reasonable since the choice of the « levels enables
to control how local or global the search will be. If ¢ would be varied too, the
parameterization of a becomes difficult.)

The currently maximum observed desirability index here is
Dlyngy = max DIV (y1(2)), .., A" (yy(2))] (3.2)
Te

and DI(x) is substituted subsequently by all desirability index vectors from 3.A.4.
For the exemplary desirability index DI(x) = DI[dy;_(z),da(x), ..., dp(x)] the

improvement is hence calculated as follows:

(DI[dy1_(2),do(2), ..., dp(x)] — DIppaz)
Ipridy,_ do,....dy) (T) = JAf DI[dy—(x),do(z), ..., dy(z)] > Dl (3.3)

0, else

Determining the improvements for all desirability indices from 3.A.4 thus results
in the vectors of improvements
Ipiid, da,....dy) (),

IDI[d11+,d2 ..... dp) (ZE), ]Df[d11—,d27---7db] ({L‘),

IDIldiar doardra 1 (T)s D110 doarsodpa ) (T)
In total, there exist (2a + 1) vectors of improvement, where each one represents

a possible true vector of improvement within the uncertainty of the models.

For each vector of improvement Ip;(z)) from 3.B.1 the point = is determined

that maximizes it

z. = argmax Ipr(z)). (3.4)

zeG
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The resulting maximizing points x. are candidates for the potential true optimum
and are collected in the set of candidate points C. If several points maximize
an improvement vector, all of them are added to the set C', unless all values
are 0. If all values for one improvement vector are 0 this states that no point
can improve the currently found optimum for this possible true result. If all
improvement vectors are 0 for all parameter settings x, the set C' is empty, which
means that the currently found optimum can not be further improved at all and

the algorithm stops.

Phase 3.C:

Reduction of the set of candidates to a small set of updating points.
3.C.1 First, the point z* with the best predictions with the current model fit, i.e.

¢* = argmax DI[dY (g,(x)),...,d" ((z))] (3.5)
zi€{x1,....xq}

is determined. If z* is not included in the design yet, z* is included in the
candidate set C' determined in 3.B.2, since it is the suggested candidate of the
above mentioned index (a proof can be found in Appendix [A.I). The point z*
then becomes the first updating point and is excluded from the candidate set C'.
The remaining points are stored in the set C*.
If * is already included in the design, all improvements are 0 for the index
DI[dY (4, (x)), ..., d® (g (z))] and no candidate is suggested then. Hence, C* = C
in this case (proofed in Appendix [A.T)).
This procedure ensures that the currently best predicted point is an updating

point and is used to refine the surrogate model, if it is not already available.

3.C.2 The remaining set of candidates C* is divided into groups with candidates that lie
close to each other using any hierarchical clustering method described in Section
The number of groups defines the number of updating points and can be
influenced directly by choosing the point where the dendrogram is cut. How to

find the appropriate number of clusters automatically is described in Section

3.C.3 For all groups formed in 3.C.2 the center points are chosen as representative
candidate points. The center point Z e, of group G = {z1, ..., z,} (21, ..., x, € C*)

is that point from the group that minimizes the Euclidian distances to the rest
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of the points within the group

0 p 1/2
Leent = argminz (Z(‘rzk - xjk)2> . (36)

;€G -
e =1 \k=1

If there is more than one point minimizing the distances, we choose one of them
at random. The representative points and eventually the point x* from 3.C.1 are

the final updating points.

In Step 4 the stopping criterion, which is introduced in the next subsection, is eval-
uated. If it is not reached yet, the updating points determined in 3.C.3 are added to
the design and the model is refined. mtEGO then starts over again with Step 2 to Step

4 until the stopping criterion is reached.

3.3 Choice of the number of clusters in the candidate

set

As described in Section the choice of the number of clusters is not trivial and a
naturally right number of clusters does not exist. Since the number of clusters defines
the number of updating points and we do not want to add a mass of points, we try to
add as few points as needed without missing interesting regions by merging too different
clusters. Section [2.8.3describes how a scree graph can help finding a good cutting point.
However, using the scree graph also always is a subjective choice and needs experience
in using mtEGO to choose an appropriate number of clusters. We therefore present
a criterion that chooses the number of clusters automatically for users that are not
experienced with mtEGO. The criterion was developed using a kind of teach-back. In
a first study mtEGO was used for different « levels and test problems and the number
of clusters was chosen by an experienced user. Then different automatized criteria were
developed and the criterion that chooses (almost) the same numbers of cluster as the
expert is now presented. But as every automatization, a manual choice on the basis of
long experience can yield in much better results. Therefore, it is sensible to supervise
the scree graph, the dendrogram and the progress of the candidate set to get familiar
with the decisions and detect eventually bad decisions in exceptional cases. In some
cases one may prefer a larger number of updating points, since the model fit is bad. Or

vice versa, one wants to choose only few clusters since the model is very precise and
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the progress of the candidates concentrates more and more on a certain region that
obviously has to be the region of the optimum.

The basis of the criterion is the idea to choose the number of clusters where the
scree graph has a marked ‘flattening’. To detect a ‘flattening’ automatically we need
to know where the decrease changes the most. Suppose we have n candidates and we
build clusters by taking the least homogenous entity out of the cluster in each step
starting with one group containing all clusters. Let H(i),7 = 1,...,n, be the fusion
height when the i-th cluster is formed. H (i) is the monotone decreasing function that

is also displayed in the scree graph. The first derivative
H@)=H@G) —H@G@—-1),i=2,...,n,

gives the decrease of the fusion height between the fusion of the (i — 1)-th and (¢)-th

cluster. The second derivative
H”(i) :H’(z‘+1)—H’(i) =H@G@+1)—2H(W)+H(i—1),i=2,...,n—1,

then gives the change in decrease of the fusion height between the fusion of the (7 —1)-
th and i-th cluster compared to the fusion of the i-th to the (i + 1)-th cluster. The
number of clusters i that maximizes H” (i) is hence the point with the greatest marked
‘flattening’ in the scree graph (see Figure .

Often the fusion height starts decreasing very strongly and flattens slowly before
the first marked ’flattening’ can be seen in the scree graph. H”(i) is then very large
in the beginning although we would not see a marked ‘flattening’ in the graph. In
Figure for example H” (i) is maximum for two groups, but the flattening and the
dendrogram suggest to choose five clusters. To avoid choosing too few groups in such
cases, we search the number of groups i that maximizes H” (i) under the condition that
H(i) < 0.5- H(1). With the new condition the criterion correctly chooses five groups
in the example.

In the implementation of mtEGO, that is attached in Appendix [A.0], the user is also
allowed to limit the number of groups by definition of a maximum and a minimum. For
the simulation study presented in Section [4] the limit is set to 10 groups at maximum,
since we see no sense in adding more points than twice the dimension of the parameter
space in each cycle. Few updating points per cycle most probably result in many cycles,
which is not desirable in high dimensions due to long computing times per cycle. Note,

that for the criterion presented here five candidates at minimum are needed to compute
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H"(i) and decide about the maximum. If less candidates are available, all can be taken

as separate groups, unless some obvious cluster are present.

3.4 Stopping criterion for the new approach

Jones et al.| (1998)) use the maximum value of the expected improvement as stopping
criterion. If the expected improvement gets too small their algorithm stops. As de-
scribed in Section the new heuristic uses a cross-combination of the desirability
vectors from all virtual observations. Therefore, we do not have one maximum EI. The
new stopping criterion has to take all indices into account. A good basis for a stopping
criterion is to take the maximum of all improvement vectors determined in Step 3.B.2

and to choose the maximum among those maximums, formally:

maxrimaxr =  max (max [D[(w)) : (3.7)
¥ Ip; in 3.B.2 \ Vacy

maximax is determined by the improvements, that depend on the desirability index,
which depends only on the predictions. If the predictions only get more precise (i.e.
the prediction error gets smaller) but change very slightly between two optimization
steps, maximax changes only very slightly. An appropriate stopping criterion should
take into account, that the predictions got better in the sense of precision although
the predictions did not get better regarding the optimization targets. The prediction
error should be taken into account. Therefore, we determine the maximum prediction
error that is present in the current surrogate models, i.e. the maximum among the

maximums of the standard prediction errors for each objective (yi, ..., 4,), formally:

i=1 vzey U

.....

mazerrmaz = max, (maX 32,($)> . (3.8)

The maximum improvement value present in the optimization mazimax is then
multiplied with the maximum available prediction error maxerrmaz resulting in the

stopping criterion:
relmaxrimaxr = maximax - Marerrma. (3.9)

The algorithm may be stopped, if relmaximax reaches 0, i.e. no point, not even a vir-
tual observation, reaches better results then the currently found. However, depending

on the a levels it may need many points and iterations until 0 is reached. Therefore
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elmaximax

stopping criteria

1 2 3 4 5 6 7

after optimization loop

Figure 3.8: Exemplary progress of the stopping criteria

we propose to observe the progress of the criterion and stop if it saturates at a level
close to 0, where the meaning of ‘close’ depends on the size of relmaximax after the
first optimization loop. If it starts with a value of approximately 6, 0.2 can be seen
as close to 0. If it starts with values of approximately 0.5, a saturation of 0.2 must
be very clear to stop the optimization. Figure |3.8 shows a saturating progress that
indicates to stop after the sixth optimization loop. Note, that there is no guarantee
that relmaximax is monotonically decreasing. If the surrogate model is changed after
adding updating points to the design because it was false in some regions, this may
cause that relmazrimax enlarges before it decreases again.

Sometimes, it makes sense to supervise also the progress of the average of the max-

imum improvements weighted by the prediction errors,

relmeanimaz = 1/a’ - Z (max ]Dl(ac)) - mazxerrmaz, (3.10)
V Ip; in 3.B.2
where a is the number of « levels used and b is the number of objectives. Just like for
relmaximax, the algorithm can be stopped if relmeanimax approaches 0 or saturates
close to 0. For the same reason as relmaximazx, the criterion relmeanimax is not
necessarily monotonically decreasing.

The two criteria relmaximax and relmeanimax together give a good overview of
the current capability of improvement of the optimization procedure. If relmeanimax
already saturates close to 0, but relmaximax does not, this means that for the majority
of desirability indices no more improvements can be reached. Only one or few indices
are then able to improve the results and it is wise to check which confidence levels are
responsible for this effect. If those are rather narrow intervals one could stop if the
optimum satisfies the users quality requirements. If those are very wide intervals, we
advise to proceed, since they may reveal a new optimum in a still uncertain region.

Additionally, it makes sense to supervise the progress of the set of candidates, the
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current best predicted point z* and the current observed optimum Zcyyop:. If the set
of candidates concentrates around z* and z* = Zeyrop at least for two iterations, the
algorithm can be stopped, independently from the criterion relmaximax. Usually,
relmaximax then saturates too, but if relmaximax is already very small in the first
optimization cycle a saturation sometimes is hard to recognize. In such a case the
supervision of the progress is a helpful tool.

Due to Step 3.C.1 of the algorithm the predicted optimum is always verified in the
next optimization cycle. If the stopping criterion is reached, it is not necessary to
verify the found optimum once again. This step is also very important to avoid that
the algorithm may get stuck in a predicted optimum x* that is actually false or badly
predicted. Because of Step 3.C.1 the predicted optimum will be an updating point in
the next optimization cycle and will be corrected then. If the prediction is correct and

no other better point is found, z* becomes ¢y o after the next optimization cycle.

3.5 The effect of a certain a level on mtEGO

The choice of the « levels used during the optimization with mtEGO has of course an
impact on the optimization process. With the help of the parameterization of the set
of a levels in Step 3.A.1 of mtEGO the user may control how global or local the search
is. The combination of different « levels that are used simultaneously enables mtEGO
to search globally and locally at the same time. Nevertheless, one should know in
general the effect of a certain « level to be able to choose the vector. In the following
we try to illustrate the effect that a different size of one « level has. A guideline on
the appropriate choice of the whole set of « levels is developed in the simulation study
in Section 4.2l

In general, an optimization is more global the more attention is given to uncertain
areas. |[Jones et al. (1998)) use the factor g in the generalized expected improvement
criterion to control how much weight is given to the uncertainty distribution (cf. Section
2.5). In mtEGO the level of the (1 — @)% confidence interval controls how much
attention is given to the uncertain areas. Figure demonstrates how the level affects
the search. The 20% confidence interval (i.e. = 0.8 virtual observations) has narrow
confidence boundaries above and below the predictions even in the uncertain area
[5,10]. The corresponding desirability is small in the whole uncertain interval [5, 10]

and largest for x = 3.05, which is very close to the currently found optimum at z = 3.
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Suppose, we do a multi-objective optimization with mtEGO using only this a = 0.8
level. We cross-combine the o = 0.8 level virtual observations with all other a = 0.8
level virtual observations from all other objectives. The resulting indices will most
probably be maximum close to the currently found optimum. The suggested candidates
will hence lie close to the currently found optimum. The optimization is very local then.
In contrast, the 95% confidence interval, which is the o = 0.05 virtual observation,
forms wide boundaries around the predictions in the uncertain area [5, 10]. The upper
boundary almost touches the target. Now, the desirability of the upper boundary is
maximum inside the uncertain space. Using 99% confidence intervals, i.e. a small o =
0.01 level virtual observation, the upper boundary even exceeds the target and hence
the desirability reaches 1 in the two points where the target is met. The desirability
around the currently found optimum at z = 3 is much smaller than in the uncertain
area. Suppose again we do a multi-objective optimization with mtEGO using only this
a = 0.01 level. We then cross-combine the o = 0.01 level virtual observations with
all other a@ = 0.01 level virtual observations from all other objectives. The resulting
indices have maxima in the uncertain area then and suggest candidates there. The
search is more global now.

Figure demonstrates a problem that occurs if too small o values are used for
mtEGO. If one compares the 99%, the 99.5%, and the 99.9% confidence interval, one
can see that the points x where the boundaries meet the target are lying closer to

the observations the wider the confidence interval is. This means the smaller « is
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chosen the closer the suggested candidates for the optimum lie to the already available
observations. If only very small o values are used for an optimization with mtEGO
the suggested candidates and, hence, also the updating points will all lie next to the
already observed design points. We call this phenomenon clumping of the updating
points. Clumping is only desirable around those observations with high desirability,
around the other observations it is an undesired effect. An updating point lying very
close to an existing observation with small desirability yields no benefit and is a waste

of resources and time.

Summarizing the previous demonstration one can say that using mtEGO with small
a levels (i.e. wide confidence intervals) yields a global search and using large a levels
(i.e. narrow confidence intervals) yields a local search. The idea of mtEGO is to use
several a levels simultaneously, which enables to combine small and large a levels to
account for a global and local search at the same time. As already mentioned, the

appropriate number and combination of « levels is studied with several simulations in

Section (4.2l

3.6 Implementation

The new algorithm mtEGO has been implemented with the software R (Version 2.8.1),
a state-of-the-art, freely available statistical software package. For details on R we re-
fer to the manual by the R Development Core Team| (2005)). Since the implementation
of mtEGO is not published, the code is given in Appendix [A.6 The function mtEGO()
performs Phase 3.A and 3.B of the algorithm and gives the set of candidates. Further-
more, the function already gives the values of the stopping criterion. The functions
elimcuropt (), grouping() and updates() implement Phase 3.C of the algorithm.
The Kriging model is fitted with the procedure proc mixed of the SAS software, Ver-
sion 9.1. We preferred using the SAS software to the implementations of the Kriging
model in the software R, because of the availability and simple usage of anisotropic
correlation functions. An exemplary code for the fit of the Kriging model can also be
found in the appendix. We also give the function mtEGOimp () for the improved version
of mtEGO, but only the two-sided case is implemented. Also other functions in R are

given that are only subroutines needed for the main functions mentioned above.
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Figure 3.11: Plots of the true underlying relationship and the initial design and fitted

model

3.7 Step-by-Step Example

In the following we present a simple but illustrative optimization example using mtEGO.
The example has only one influencing parameter and two objectives. Figure shows
the true relationship for the two objectives y; and y» (dashed lines), the initial design
points (black dots) and the fitted Kriging models 4; and g, (solid black line). For a
better understanding how the heuristic works, we chose the initial points unbalanced,
although we strongly recommend to cover the parameter space in a space-filling way
in real applications. Let the optimization target value for y; be 2.5 and 9 for ys.
Two-sided symmetric Harrington desirability functions with the following specification
limits are used during the optimization (cf. Section [2.6|and Equation for the exact
formulae of d(y;) and d(ys)):

‘ target value LSL USL v
n 2.5 1 42

The desirability index is the unweighted geometric mean of the single desirabilities.
Figure |3.12 shows the resulting desirabilities for the two objectives and its desirability
index of the true underlying relationship. The desirability of objective y; shows one
local and two global optima. The desirability of objective yo has two global optima.
The joint desirability index finally has one local optimum at 3.15, one local optimum at

7.3 and a global optimum that is not much larger than the first local optimum at 8.8.
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Figure 3.12: Plots of the desirabilities

and the desirability index

The initially fitted model in Figure [3.11]indicates that the large local optimum at 3.15

is already found but the other two optima lie in the uncertain area of the parameter

space and should be found by mtEGO.

We choose the vector o € {ag = 0.005, s = 0.01, a3 = 0.05} and start construct-

ing the virtual observations and their corresponding desirabilities and indices. Figure

m shows the pure predictions g; and g, (black lines) and the corresponding virtual

observations § + t1-9.005/2,4f - 5> (dashed blue), § — t1-.005/2,4r - $* (dotted blue),

G+ ti—o.01/2,4 - s° (dashed green), § — t1_g.01/2,4r - s° (dotted green),

U+ t1—0.05/2,4 - 5° (dashed red), § — t1_o.05/2,4r - s (dotted red).
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Figure 3.13: Plots of the virtual observations for y; and ys
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Figure 3.14: Desirability indices for some exemplary pairs of virtual observations with

the annotated « level

The curves of the six vectors of virtual observations approach or even meet the target
in the interval [5,10], indicating that there is a possibility for an optimum within the
corresponding (1 — «)% confidence level.

Let us now transform the virtual observations to desirabilities and combine them
into desirability indices. Since there are seven vectors for each of the objectives y; and
y2 the complete cross-combination results in 49 different desirability indices (according
to Step 3.A.4 in Section [3.2). All indices are similar in the interval [1,5], where the
prediction error is small and the currently observed optimum is found. Most of the
indices look like the upper part of Figure and have one large peak close to the
already known local optimum and only smaller peaks in the uncertain area [5, 10]. Only
four indices are special and therefore illustrated in the lower part of Figure [3.14] For
the annotated combinations of « level virtual observations, the desirability indices get

new peaks in the interval [5,10] that are higher than the peak of the local optimum
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# indices | suggested Clustering Representative
suggested | candidate Group = updating point

7 3.15 currently predicted optimum 3.15

2 3.05 1

11 3.25 1 3.25

6 3.30 1

1 9.30 2 9.30

1 9.95 3

1 10.00 3 10.00

1 10.15 3

19 NA no point is better -

than current optimum

Table 3.1: Clustering of the points with maximum improvement

around x = 3. When calculating the improvements for all 49 indices, the indices
with the largest peak around the local optimum (displayed in the upper plot) will
become maximum around 3 and hence also suggest updating points around 3, which
is the region of the local optimum. But for the four other indices the improvements
each have their maxima in different points and yield in different updating points as
shown in Table Altogether, we have a set of eight suggested candidates which
partially lie close to each other. After excluding the currently predicted optimum,
which is x = 3.15, from the set of candidates according to Step 3.C.1 of mtEGO, we
use the complete linkage clustering method to reduce the remaining candidates to really
interesting updating points. We form three groups (cf. Table and determine the
representatives for each group. Finally, we have four updating points that are added

to the initial design.

After updating the fitted model the whole heuristic starts from afresh. In the next
step, the suggested candidates are {9.00, 9.05, 6.00, 6.20, 6.05, 8.80, 8.90, 8.95}. After
clustering, three updating points at {6.05,8.90,9.05} are added to the design. The de-
sign has 13 points now. In the third iteration of the heuristic, only = = 8.8 is suggested
as a candidate, which is the true global optimum. After refining the model with x = 8.8
all improvements are 0, also for all virtual observations in the fourth iteration. The

global optimum has been found correctly within four steps and altogether 14 points.
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Figure 3.15: Progress of the stopping criteria during the optimization procedure

Figure additionally shows the progress of the stopping criteria for this example. It
decreases monotonically reaching 0 after mtEGO has been run the fourth time. Figure
3.16] shows the progress of the surrogate model during the updating process. It can be

seen how well the procedure approaches the true relationships with quite few points.
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4 Simulation study

In this chapter we present a simulation study on the performance of the mtEGO ap-
proach. The algorithm is evaluated for a set of seven different test problems. The main
question of the study is whether the global optima are found. Additionally, we are inter-
ested in how many steps and how many points are needed to find the optima. Another
question of interest is how different choices of « levels influence the optimization pro-
cess. As a conclusion, a guideline on a reasonable parameterization of the confidence
levels is given. The results of the study are then compared to two simple brute force
methods. Further, some successful optimizations of advanced problems with different
target structures are shown exemplarily for one selected parameterization. Finally,

limitations of the mtEGO strategy are discussed briefly.

4.1 Introduction of the test problems

Special test suites for the evaluation of multivariate target-value optimization prob-
lems are not available in the literature. The test functions for this simulation study
are mainly those Knowles (2005) uses to evaluate his ParEGO approach. They are
originally coming from Deb et al.| (2001)), |Van Veldhuizen and Lamont (1999), and
Okabe et al. (2004) and have been introduced for testing evolutionary algorithms for
the whole spectrum of complexity of multivariate minimization problems. Among the
test problems some have a simple diagonal pareto front, one has a spiral shaped front
or similar complex structures. However, when a special target value is defined for
those test suites instead of using them as minimization problems, the complexity of
the structure of the global optimum is reduced to quite simple structures, e.g. exactly
one point in the parameter space. Therefore, our simulation study does not cover the
whole spectrum of complexity of applications. To give a really representative study
completely new test suites would have to be developed.

The test problems of this simulation study are introduced in the following. Note, that
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we use two-sided Harrington desirability functions and the geometric mean as desirabil-
ity index for all test problems. Section presents the applicability of mtEGO using

other desirability functions and the weighted geometric mean as desirability index.

MOSI is a new creation in the spirit of [Sasena et al.| (2000)). The problem consists of
two objectives and only one influencing design variable. The functions of the objectives
are

y1 = —sin(z) — exp(z/100) + 10

Yo = sin(z) + 2 - exp(x/10)
where x € [0,10]. The target value optimization problem is defined by Harrington

(4.1)

two-sided desirability functions specified with the parameters

‘ target value LSL USL v
U1 8.5 6.5 105 1
Y2 4 6 2 1
The joint global optimum of the two objectives can be found at x = 6.47. Figure

illustrates the objectives and the joint desirability index.

10

0.9

— Y1 --- targetofy,
= © 1 — y2 --- targetofy, S £
= a E
£
S 2 5
'S
Q
K=
~ g — ©
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0 2 4 6 8 10 0 2 4 6 8 10
X X

Figure 4.1: Plot of the objectives and desirability index of test problem MOSI

VLMOP2 has two influencing parameters x1,xs and two objectives yi,ys. It was
introduced by [Van Veldhuizen and Lamont| (1999). The objectives are defined as

yp=1—exp|— 3 (w:—1/v2)?

i=1,2

yo=1—exp|— > ($i+1/\/§)2

i=1,2

(4.2)
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for z1,29 € [—2,2]. The target value problem is specified by two-sided Harrington

desirability functions with the parameters

‘ target value LSL USL v
0.5 03 07 2
0.5 03 07 2

Y1

Y2
Figure [4.2] shows the contours of the objectives and the desirability index. The global
optimum lies in the coordinates (0, 0) surrounded by large areas with desirability index
with value 0. mtEGO should find the optimum straight forward, without searching too
much in those areas with value 0.

DI(x)

— Y1
— Y2
—— targets ~

)

-2 -1 0 1 2 -2 -1 0 1 2

Figure 4.2: Contours of the objectives (left) and desirability index (right) of test prob-
lem VLMOP2

VLMOP3
Lamont| (1999). The objectives are defined as

is a three dimensional test problem introduced by |[Van Veldhuizen and

y1 = 0.5(z? + 22) + sin(a? + 23)

(3w1—2w2+4)2 (z1—x2+1)2
— + == +15 (4.3)

Y2 =

Ys = ! -

2 2

for z1,29 € [—3,3]. The target value problem is specified by two-sided Harrington

desirability functions with the parameters

target value LSL USL v
" 4 2 6 2
Yo 30 25 35 2
s 0.15 01 02 2
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Figure shows the contours of the three objectives and their joint desirability in-
dex. The contour of the desirability index shows two global optima in the coordinates
(0.6, —2.5) and (2.5,0.4), one local optimum in the upper left corner and a large region
with desirability value 0. mtEGO should find both optima and also give attention to

the area around the local optimum.

DI(x)

Figure 4.3: Contours of the objectives (left) and desirability index (right) of test prob-
lem VLMOP3

VLMOP3Bound is a shifted version of VLMOP3. The objectives and desirability
functions are defined as before. Now, the parameter space is the rectangular with
xry € [—3,2.5] and zo € [—2,3.5]. We shifted the parameter space such that for this
test problem VLMOP3Bound only one global optimum is available in (2.5, 0.4), which
lies exactly on the right boundary of the parameter space. Testing VLMOP3Bound is
important to see how the heuristic behaves if an optimum lies exactly on the boundary.
It is also possible to compare how the efficiency of the heuristic differs between the case
when an optimum lies inside the parameter space as for VLMOP3 versus lying on the

boundary.

DTLZ1 is the first of many test problems published by [Deb et al. (2001)). All test

problems introduced there are designed for any n design variables and M objectives.
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The objectives are defined as

Y1 = %1’1372...1']\4,1(1 —+ g)

Yo = %1‘11'2(1 - IM—I)(l + g)

Yn—1 = 321(1 — 22)(1 + g)

4.4
ym = 5(1—z1)(1+g) .

where g =100 [n+ > (2; —0.5)% — cos(20m(x; — 0.5))

1=2,...,n

and z; € [0,1],i =1, ..., n.

For better illustration, we use the DTLZ1 test function with only two design vari-
ables and two objectives. The two-sided Harrington desirability functions of the two

objectives are specified with the parameters

‘ target value LSL USL v
Y1 10 6 14 2
Y2 2 0 4 2

Figure 4.4/ shows the contours of the objectives and the desirability index. The problem
is symmetric and has two global optima in the coordinates (0.8,0.1) and (0.8,0.9).
Mainly the right half of the parameter space is of interest, the left half only contains

undesired results.

Xz

X1 X1

Figure 4.4: Contours of the objectives (left) and desirability index (right) of test prob-
lem DTLZ1
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Figure 4.5: Contours of the objectives (left) and desirability index (right) of test prob-
lem DTLZ2

DTLZ2 was published by Deb et al|(2001) designed for any n design variables and
M objectives like DTLZ1. The objectives are defined as

y1 = (1 + g) cos(xym/2) cos(xom/2)... cos(xpr—17/2)
y2 = (1 + g) cos(xym/2) cos(xom/2)...sin(zp_17/2)
ys = (1 + g) cos(x17/2) cos(xom/2)...sin(zp_o7/2)

yv—1 = (1+ g) cos(z17/2) sin(xqom/2) (4.5)
yp = (1 + g)sin(zy7/2)
where g =100 |n+ > (z; —0.5)* — cos(207(z; — 0.5))

1=2,...,n

and z; € [0,1],i =1,...,n.

In our study we use the DTLZ2 test function with only two design variables and
two objectives. The two-sided Harrington desirability functions are specified with the

parameters

‘ target value LSL USL v
5 2 8 2
5 2 8 2

Y1
Y2

The global optimum lies in the coordinates (0.1,0.9), hence very near to the left upper
corner of the parameter space (cf. Figure . The contour of the desirability index
also shows two large local optima and one of it lies very close to the global optimum.

With this test problem we aim to evaluate which confidence levels are able to find a
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global and a local optimum and differentiate between them, when they are similar and

close to each other.

KNO was introduced by Knowles (2005). The problem contains two objectives with

two influencing parameters and the formal definition is

y1 =20 — 7 - cos(9)
Yo = 20 — r - sin(¢)
with r = 9 — [3sin(g5357) + 3sin(4(wy + 22)) + 5sin(2(z1 + 22) + 2)]

(z14z2
_ s
and ¢ - 12($1722+3)

(4.6)

for x1,z9 € [0,3]. The target value problem is specified by two-sided Harrington

desirability functions with the parameters

‘ target value LSL USL v
(1 12 7 17 2
Yo 19 16 22 2

The contour of the desirability index (Figure shows a very regular structure. There
exist two global optima in the coordinates (1.4,2.4) and (0.4,1.4) that lie on the top
of two very flat long hills. It is a special challenge for optimization algorithms to find

a global optimum in a flat area efficiently.

X

00 05 10 15 20 25 30
|
X2

00 05 10 15 20 25 30
|

00 05 10 15 20 25 30 00 05 10 15 20 25 30

X1 X1

Figure 4.6: Contours of the objectives (left) and desirability index (right) of test prob-
lem KNO
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MEINE is a newly constructed test problem with an asymmetric and skew contour
of the desirability index and two almost equally good optima. The problem has three

objectives and two influencing parameters. The objectives are defined as

Y =23 + 0.5 %25 — 0.1 % 2§

yo = 20 — r* sin(mw/(12 * (z1 — 22 + 3)))

with 7 =9 — (3 xsin(5/(2 * (z; + x9)?))+ (4.7)
+3 x sin(4 x (x1 + x2)) + 5 * sin(2 * (x1 + x2) + 2))

Ys =21 — T2

where z1,29 € [0,3]. To get a skew contour and almost equally sized optima the

two-sided Harrington desirability functions are specified with the parameters

target value LSL USL v
Y1 2 -3 ) 2
Yo 19 16 22 2
Y3 -0.5 -1 0 2

The contour of the objectives and the desirability index can be found in Figure [4.7]
The two optima lie in the coordinates (0.6,1.1) and (2.2, 2.65), where the second point
is the slightly better one.

X2

00 05 10 15 20 25 3.0
|
X2

00 05 10 15 20 25 3.0
|

00 05 10 15 20 25 30 00 05 10 15 20 25 30

X1 X1

Figure 4.7: Contours of the objectives (left) and desirability index (right) of test prob-
lem MEINE
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4.2 Simulation results

In the following, mtEGO is tested for all test problems that have been introduced in
the previous section. It is parameterized with different combinations and numbers of
(1—a)% confidence intervals. The aim of the study is on the one hand to show that the
algorithm is able to find global optima in differently complex functional relationships.
On the other hand, guidelines for the parameterizations of the « levels are to be
developed. The main question thereby is which parameterization is the most reasonable
in which situation. Or does any parameterization exist that yields the overall best
results. Table [4.1] shows eight different parameterizations of « levels that are used
during the study.

The chosen parameterizations of « levels vary from three to six different levels that
are used simultaneously in the algorithm. We did not try more levels for reasons of
computation time. However, the results show good performance already for this small
number of levels. Some of the parameterizations concentrate on very small « levels (i.e
wide confidence intervals), some on large o/s (i.e. narrow confidence intervals). Most
of the chosen parameterizations combine wide, medium-sized and narrow intervals.

First of all, we optimize the very simple test problem MOSI with all eight different
parameterizations shown in Table [4.11 The results show only slight differences at
all. When starting with an initial 5 point design, mtEGO succeeds to find the global
optimum by adding 9 to 14 updating points in 4 optimization cycles with all eight
parameterizations. After the first cycle of mtEGO two to seven updating points and in
the second cycle 3 to 4 points are added. The refined surrogate model after the second
cycle is already that good, that for all parameterizations the global optimum is nearly
found. When the third cycle of mtEGO is conducted, the stopping criterion saturates
close to 0 and the heuristic stops. For all parameterizations the currently best observed
point then is the global optimum. The choice of the a’s does not effect the progress
of the optimization very much for this simple test problem. Details on the progress of
the optimization with the different parameterizations are given in Appendix [A.5]

For all other test problems, the choice of the a levels does have an effect on the
efficiency and even the success of the algorithm. Table summarizes an evaluation

of the results. The table gives the following evaluation criteria:

e The number of cycles that mtEGO needs until the stopping criterion is satisfied.

A number of five cycles means that updating points were added to the model



Chapter 4. Simulation study

72

AIepunoq opim Ou ‘S9LIRPUNOQ 90USPYUOD MOLIIRU AURUI 60 ‘80 ‘L0 °C0°T0 Q
POSIRIUS [9AS] }S98IR[ PUR JSO[[RUWIS N ‘G "OU UL S[OAD] [} O} IRIWIIS 60 °C0°‘7T0 ‘100 )
S[OAS] SIOW (| ‘G"OT UL AI] PAMGLIISTP S[AS] | 680 ‘G'0 ‘GZ'0 ‘T°0 ‘T0°0 ‘T000 | 9
SOLIRPUNO( 90UOPYUOD MOLIRU AIOA PUR WINIPOUL ‘OPIM ATOA G0 ‘G0 ‘T°0 ‘TO0°0 G
POMALISIP A[IR[IDI SILIRPUNO( 9DUSPHUOD JO SIZIS [[e ¢'0 ‘62’0 '1°0 ‘1070 ‘100°0 i
S[OAQ[ 9OUSPYUO) POZIS-WINIPOUL GL'0 '¢’0 '6T°0 ‘T°0 ‘G0°0 ¢
SOLIRPUNO( 9OUIPYUOD MOLIRU SUO PUR oPIM AIOA Aueul 680 ‘SO0 ‘TO0°0 ‘T000°0 C
SOLIEPUNO( 9OUDPYUOD dPIM ATUO ¢0°0 ‘10°0 ‘10070 I
soryrodoad ‘ou

S[oAS] ©

Table 4.1: Different combination of « levels for the (1 — ) confidence intervals that
are used in the simulation study
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parameterization — 1 2 4
# cycles 5 )
~ # design points 25 27 27 27 31 32 30 25
% optimum/model o/o o/o */+ */+ */+ * [+ */+ */+
E progress candidates + o} ++ + + + ++ ++
- progress updatings (¢} (¢} ++ o + - + —++
clumping - - - o - + +
# cycles ) 6 6 5 5 5
- # design points 25 31 22 36 27 34 28 22
?5 optimum /model +o/+ *0o/+ ++/o x0/+ ++/+ xo/+ x+/+  x+/+
E progress candidates o} o} ++ + o) + ++ +
g progress updatings 0 0 + + + + ++ ++
clumping - - 0 o + + + +
= # cycles 8 7 6 7 5 7 7 5
% # design points 35 36 32 36 28 40 31 25
% optimum/model * [+ */0 o/o o/—|— */_|_ _|_/_|_ +/+ +/+
% progress candidates - 0 0 + + o + ++
E progress updatings - o - o + - 0 44
g clumping - - + + +
# cycles 7 5 4 6 5 4
_ # design points 30 28 22 41 31 29 21 24
E optimum/model xo/+  x+/+  x+/+ w4 )k [+ k[ kx4 *+/0
A progress candidates - o ++ + + + ++ +
progress updatings - o} + - + o + +
clumping + o o + o + +
# cycles 5 5 6 5 4
~ # design points 16 26 21 18 35 28 25 23
E optimum/model o/o o/+ o/+ o/o */+ */+ */+ */+
A progress candidates - o} + - + + + ++
progress updatings - o + - + o 4 ++
clumping - o + 0
# cycles 4 6 4 5 5 6 5
# design points 8 30 24 28 26 27 39 29
o optimum/model --/o  *+/o *0/+ oo/+ o00o/+  o-Jo  ox/+ x+/+
é progress candidates - o) o) o) 0 o) + —++
progress updatings - + ) o + - 4 +
clumping ) - o o - + +
# cycles 4 5 5 4 4 4 5
@ # design points 20 26 28 30 18 23 27 23
é optimum /model +o/+  x+/+ *x+/+ ++/+ x+/+  x+H/+ x+/+ x0/+
= progress candidates 0 + ++ ++ + 0 4 +
progress updatings o + + o ++ =+ o 4+
clumping + - o + + + 0 +

Table 4.2: Evaluation of the simulation results for the different used confidence levels
(av levels belonging to the numbers in the headline are listed in Table



74

Chapter 4. Simulation study

for four times and when running Step 2 to 4 of mtEGO for the fifth time the

algorithm stops without adding new updating points.

The amount of design points that have been examined during the optimization
procedure (i.e design plus all updating points). In real applications this is the

number of experiments that are to be run.

The evaluation of how precise the global optima are found and how good the
overall functional relationship is represented by the final model. If the test prob-
lem has only one global optimum the first sign belongs to the optimum and the
second sign to the model. A -’ indicates that the optimum is not found at all and
respectively the model is far from the true relationship. '+’ means the optimum
is quasi found, i.e. the currently found optimum is a direct neighbor grid point of
the true global optimum. Respectively, the contour plot of the model resembles
the true relationship well if it is marked with '+’. ’0’ is the neutral case, the
currently found optimum is close to the true optimum, but not found correctly
and the model is acceptable but not really good. If the global optimum is found
precisely this is marked with "x’.

In the case that the test problem has two global optima the first two signs belong
to the evaluation of the found optima and the third sign evaluates the finally
fitted model. Note, that it is possible that the algorithm finds the optimum, but
the overall model fit is actually not good, e.g. when it is only precise around the

global optimum.

The progress of the distribution of the set of candidates (C' in Step 3.B.2 of
mtEGO, see Section [3.2]) and the progress of the distribution of the updating
points (the points Z¢e,; and z* from Step 3.C.3). Both progresses are rated with
’-? for bad, 'o’ for acceptable, '+’ for good and '++’ for excellent. It is evaluated
exemplarily with graphics as shown in Figure for the test problem VLMOPS3.
It can be seen how the set of candidates (marked with black squares) evolves
over the optimization steps and approaches the global optima more and more.
This progress would be evaluated with ++’. A good progress of the candidates
is important to ensure that mtEGO does not end up in a stochastic search or
gets inefficient. The heuristic should concentrate more and more on the area of
the global optimum, but not forget about local optima, and not examine the

undesired areas too much, just as the progress in the figure does. The same
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Figure 4.8: Exemplary figure to evaluate the progress of candidates and updating points
for test problem VLMOP3

applies for the progress of the updating points, which are marked with red dots
in the figure.

e The intensity of clumping among the updating points. It is also evaluated with
plots like Figure [4.8] In some cases it happens that the algorithm suggests updat-
ing points that lie very close to the already measured points. This phenomenon
is described in more detail in Section In the area around the global optimum
this is of course desirable. But if all updating points just lie next to already
measured points this is a waste of time and experimental runs. An optimization
process without clumping is more efficient and hence better than one where all
updating points build clusters around the initial points. No clumping is assigned

with '+, few clumping with 'o’ and heavy clumping with -’

The best overall parameterization for every test problem is printed in blue, i.e. the
one that has the most '+’ or "’ assigned and then needs the fewest cycles and points.
In the following, we only discuss the summary of the results of the simulation study
from Table [£.2] Details on the single progresses of the optimizations and all figures of

the progress can be found in Appendix [A.5]
Regarding the question if mtEGO is able to find the global optimum in differently
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complex situations Table shows, that the heuristic works fine. For all problems
the global optima could be found within limited time and a certain parameterization.
mtEGO is able to deal with two objectives (e.g. VLMOP2, DTLZ1, DTLZ2) and three
objectives (e.g. VLMOP3, MEINE), as well as one global optimum (e.g. VLMOP2,
DTLZ2) or two global optima (e.g. DTLZ1, VLMOP3, MEINE). mtEGO has no prob-
lems with symmetric situations (e.g. VLMOP2, DTLZ1, VLMOP3) neither with asym-
metric situations, (e.g. DTLZ2, MEINE). Even if the optimum lies on the boundary
of the parameter space, the optimum is found. mtEGO then needs additional points
and cycles to localize the optimum, see the results for VLMOP3 and VLMOP3Bound.
The additional points and cycles can be explained by the fact, that the candidate the
most in the middle of the cluster is chosen as updating point (cf. Step 3.C.3 in Section
3.2). The cluster containing the potential optimum on the boundary of the space,
hence, must be very small to choose an updating point on the boundary. mtEGO is
also able to handle test problem DTLZ2 that has two local optima that are almost as
good as the global optimum. It finds the global optimum correctly among the other
good regions. In contrast, mtEGO does not differentiate correctly between the almost
equally sized optima of test problem MEINE. The progress of the candidates show for
all parameterizations that mtEGO gives the same attention to both optima and mainly
decides for the slightly worse local optimum in the end. The other situation that seems
really difficult for the algorithm is the case of flat hills around the optimum, like for
the test problem KNO. If the optimum is not a clear peak but only slightly better than
the whole area around, mtEGO needs many updating points, many optimization cycles
and a good parameterization to be able to find the global optimum precisely. For most
of the parameterizations mtEGO could only approach the global optimum and stopped
there, but did not find the precise point. At least the finally fitted model was in most
cases acceptable, such that the user could assume from the model that the optimum
is a region instead of being a precise point, which is not completely false for this test
problem. If the precise global optimum shall be known, additional points and cycles
would be needed. In such a situation it may be wise to stop with the approximate
region region of the global optimum and then sample directly inside this region with a
very local parameterization (i.e. only very narrow confidence intervals) or even another

optimization strategy.

Since, mtEGO does find the global optima almost with all parameterizations, we

compare the different parameterizations now. The question of interest here is, whether
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mtEGO works faster or better with any special parameterization for the different situ-
ations and if any parameterization can be favored. The most important result of this
study is that mtEGO is able to find or at least to approach the global optimum with
each parameterization of a. None of the parameterizations found a completely false
optimum, except for test problem KNO. As already mentioned, KNO is due to the flat
hills a very difficult optimization situation. However, the evaluated parameterizations

behave different concerning the question how fast and efficient they find the optima.

It is not surprising that a very global parameterization with mainly wide confidence
intervals, e.g. number 1,2 or 4, tend to only approach the optima. The progress of
the set of candidates and also the progress of the updating points is rather poor for
these parameterizations. The updating points often cluster around the initial design
points. If the confidence intervals are chosen only very wide, it happens that only less
probable candidates for the optimum are considered which are the neighbors of the
already measured points. For test problem KNO the global parameterizations number
1 and 2 are the ones that also fail to approach an acceptable model fit, showing the
existence of flat hills around the optima. These parameterizations only seem important
if the initial model is strongly false (for details on this problem see the explanations in
Section [3.5).

Here, the parameterizations number 5,7 and 8 show the best progress of optimiza-
tion and best results. Number 8 is a very local parameterization with mainly narrow
intervals. Such a parameterization can find the optima very precisely, since it allows
one to search locally around the currently found optimum. The drawbacks are more
optimization cycles and many experiments, if the initial search direction is wrong be-
cause of a bad initial model. We can explain the success of parameterization number
8 by the goodness of the initial surrogate models. For our simulation study we used
space-filling initial designs with few points (five to seven). The models were not pre-
cise, but basically o.k. None of the models modeled the true relationship completely
false. Having a good surrogate, it was appropriate to search locally around the cur-
rent optimum from beginning. The parameterization would not succeed that well if
the initial model would be very bad. For the test problem KNO with very flat hills
around the optimum, the very local parameterization number 8 is even needed to find

the optimum among the many good points.

Parameterization numbers 5 and 7 use four levels regularly arranged between 0.01

and 0.9, i.e. some global and some local components are combined. It is intuitively
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appealing that a combination of local and global components in the parameterization of
the optimization procedure yields good results. The same applies for parameterization
number 3. It also uses regularly arranged a-levels between medium-size and narrow.
In our case study this parameterizations indeed also shows an overall good progress
and result, but it is little worse than 5 and 7. We conclude that one really narrow
confidence level is needed.

Summarizing all evaluations of the parameterizations, we come to the conclusion
that a combination of wide and narrow confidence levels regularly arranged (e.g. num-
ber 5 and 7) with an emphasis on narrow confidence levels is most preferable for all
situations. For applications that permit larger numbers of levels than four or five levels,
our advise is to use @ € {0.01,0.1,0.5} and then chose the remaining levels locally. For
example choose o € {0.01,0.1,0.5,0.9} as a four level parameterization. A five level
parameterization could be o € {0.01,0.1,0.5,0.7,0.9} and a six level parameterization
a =0.01,0.1,0.5,0.7,0.8,0.9. Only if the initial model fit is bad, e.g. the mean squared

cross validation error is very large, we suggest to use smaller levels like 0.001, too.

4.3 Comparison of the mtEGO approach with brute

force methods

The simulation study presented in the previous section shows that mtEGO is able to
find global optima in various situations. Now we compare the results of the mtEGO
strategy with results from two brute force methods. It is assumable that the global
optima can also be found with simple designs, they only must be large enough. Let
mtEGO need a certain number of experiments in total to find the optimum of a given
optimization problem. It is examined here how close a one-step design with the same
amount of design points approaches the optimum and whether mtEGO dominates the
simple strategy or not. The results of mtEGO are therefore compared with results
from a large one-step space-filling design and a random design.

First, for each test problem from the previous section we start with the same initial
design as in the mtEGO simulation study and add the same number of points as the
mtEGO strategy needs randomly chosen from the parameter space. The procedure is
repeated 100 times for each test problem and each parameterization. Table gives
the percentage of how often mtEGO finds an optimum lying closer to the true global
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optimum than the optimum found by the random search, i.e. the percentage where

mtEGO is superior to the random search.

The mean of the percentages given in the table shows that mtEGO is superior to
the random search for six of the eight test problems. For the test problems DTLZ1
and DTLZ2 the random search yields better results in approximately 60% of the rep-
etitions. The dominance of the random search for these two problems can easily be
explained by the size of the grid representing the parameter space. DTLZ1 and DTLZ2
have a parameter space grid with only 121 points, but anyway 24 or 28 design points
are observed. The examined grid portion is approximately 20%. For the other test
problems the examined grid portion is always less than 5%. It is clear that the models
and results for DTLZ1 and DTLZ2 respectively are, hence, very good even with the
random search. Furthermore, if we have a look on the results of mtEGO for DTLZ1
and DTLZ2 in Table [4.2] we can see that the results of mtEGO were poor particularly
for those parameterizations where the random search is strongly dominating. Table
[4.4] compares the optima achieved by mtEGO and the random design regarding their
achieved desirability. It is possible, that an optimum that lies more remote from the
true optimum anyway has a better desirability index than the closer optimum. The
table again gives the percentage where the results of mtEGO are better then those of
the random design, i.e. where mtEGO achieves the higher desirability. The compari-
son regarding the achieved quality also shows the dominance of the mtEGO approach.
The mean percentage where mtEGO is better than the random design even increases

compared to the comparison regarding the closeness of the found optima.

The results attained with the mtEGO strategy are now compared with a large
equally-sized space-filling design. Here we start with the two design points that have
maximum distance in the parameter space and add subsequently the number of up-
dating points that mtEGO needs according to the coffee-house design criterion. Since
the updating points are determined according to a fixed criterion, repetitions are not
needed here. Table displays for which parameterization mtEGO dominates the
equally-sized space-filling design. '+’ states that mtEGO finds an optimum that lies
closer to the true optimum than the optimum found by the coffee-house design, i.e.

)

mtEGO is superior. ’-’ states that the coffee-house design is superior. o’ indicates that
both strategies find optima that have the same distance to the true optimum or they

both find the true optimum.
As one can see in Table 4.5/ mtEGO dominates the coffee-house design for the major-
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Table 4.3: Percentage where the optimum found with mtEGO is closer to the true

optimum than the optimum found with a random design
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Table 4.6: Comparison of the achieved desirabilities with mtEGO and the coffee-house

design
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ity of the test problems and parameterizations. The true optimum is rarely found more
precise with the coffee-house design than with mtEGO. For the test problems DTLZ1
and DTLZ2 mtEGO and the brute force method have about the same power to find
the global optimum. The reason is the same as for the random search. A space-filling
grid covering 20% of the parameter space grid yields very good model fits and can
thus approach the global optimum very closely. The desirability index of test problem
VLMOP2 has a really simple structure. Here, very few design points are sufficient
to yield such a good model fit that predicts the global optimum correctly. One can
say, mtEGO needs too many updating points for such a simple structured problem.
However, the amount of the updating points evolves from the problem of the stopping
criterion in a sequential procedure. One always needs an additional step with probably
several updating points to note that an optimum has been found, whereas the large
one-step space-filling design uses the given number of design points and eventually con-
firms the predicted optimum with only one point. However, mtEGO can not dominate
the coffee-house design for VLMOP2, but it is not dominated either.

Table gives an evaluation of mtEGO and the coffee-house design comparing the
desirability of the found optima. 4’ states that mtEGO finds an optimum with a
larger desirability index compared to the desirability index of the optimum found by
the coffee-house design. -’ states that the optimum found by the coffee-house design
achieves the larger desirability index. ’o’ indicates that both strategies find optima
with the same desirability index. Beside for the test problem KNO the results do not
differ from the comparison regarding the closeness of the optima. For the test problem
KNO the coffee-house now dominates mtEGO in opposite of the comparison regarding
the closeness of the optima. This test problem is indeed a really difficult problem
for mtEGO due to its flat hills around the optimum. In this case the optimization
using mtEGO often failed to find the optimum correctly and could only approach
it. The results implicate that mtEGO tries to locate the global optimum as close as
possible. The large space-filling design yields better allover model fits and apparently
finds optima with larger desirability than mtEGO, even though they are located more
remote from the true optimum. Summarizing the results of both comparisons for the
test problem KNO, we come to the conclusion that mtEGO is not powerful and efficient
for test problems with flat hills as KNO has.

For the most complex and irregular structured test problem MEINE, both brute force

methods are dominated by mtEGO with respect to both criteria closeness and achieved
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desirability. It may be expected that mtEGO dominates the brute force methods for
large and complex problems. However, due to the requirement to supervise the progress
of the optimization using mtEGO we chose the test problems in the simulation study

small and relatively simple.

4.4 Solving advanced test problems with the new

heuristic

In Section all considered objectives are transformed using two-sided Harrington
desirability functions and the unweighted geometric mean as index. In this section it is
shown exemplarily that mtEGO also works for other test problems, e.g. using Derringer-
Suich desirabilities, mixed desirabilities (one- and two-sided), the weighted geometric
mean as index and large-dimensional problems. Having already studied different pa-
rameterizations of « in the previous section, we now use o € {0.01,0.1,0.5,0.9} for
these further problems. This was one of the best parameterizations in the case study.
Except for the large dimensional example, all following test problems are based on
the test problem VLMOP3 (cf. Section and have the same parameter space and
objectives. For this one test problem completely different optimization targets are de-
fined with the help of various specifications of the desirability functions and indices.
The contour of the true desirability index and the global optima are different for each
example, which is illustrated in Figure [£.9) These further test problems also demon-
strate the flexibility of the new heuristic. The possibility to use any kind of desirability
function and index permits to specify any possible target structure for multivariate op-
timization problems. With the help of the following examples, we show that mtEGO

is indeed able to solve them successfully.

4.4.1 One-sided multivariate test problem

The test problem VLMOP3 from Section is considered here as a simple one-sided
test problem. All three objectives are to be minimized. The specified desirability func-

tions are one-sided Harrington functions with the parameters
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objective ‘ Y1 Yo Y3
bo 3 8 1.5
b -0.8 -0.3 -15

Using the unweighted geometric mean as desirability index, the contour has the form
displayed in Figure and the joint minimum can be found in the coordinates
(—0.1,0.1). The progress of the optimization procedure using « € {0.01,0.1,0.5,0.9}
is summarized in Table L7

In total mtEGO needs 30 experiments to find the optimum. Starting with a 5 point
design and a bad initial model fit, the optimum is searched by adding updating points

Figure 4.9: Contour plots of the true desirability indices for the advanced test problems:
a) one-sided desirabilities, b) Derringer-Suich desirabilities, ¢) weighted ge-
ometric mean as index, d)complex mixed target structure (the red dots

mark the global optima)
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cycle # of currently currently model relmax— global # of location

design observed predicted fit imax optimum added | of updatings
points | optimum optimum found? points

1 5 (-1.5,-2.1) (-0.2,3) bad 7.109 not found 5 ok

2 10 (-1.5,-2.1) | (-0.7,2.1) better 4.783 not found 5 ok

3 15 (0.5,0.4) (0.5,0.4) moderate 0.553 approaching opt 3 good

4 18 (0.2,0) (0.2,0) ok 0.288 opt close 7 good

5 25 (-0.2,0) (-0.1,0.1) good 0.178 opt close 5 good

6 30 (-0.1,0.1) (-0.1,0.1) good 0.128 opt found stop

Table 4.7: Progress of the optimization of a one-sided multivariate test problem using

the new heuristic
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Figure 4.10: Progress of the candidates and updating points for a one-sided multivariate

test problem

all over the parameter space in the beginning to improve the model quality.

In the later cycles target-oriented updating points are added. The stopping criterion
decreases monotonically in every cycle. The decrease gets already small (0.288) when
the optimum is almost found and starts saturating slightly in the following optimization
cycle, where the global optimum is met. Hence, mtEGO also does succeed for a one-
sided optimization problem. Although, we must admit that 30 experiments is quite a
mass of points for a simple one-sided optimization problem. Figure shows that
mtEGO needs quite many points to locate the global optimum very precisely in the

center, although it is known from cycle four where the optimum roughly is lying.
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4.4.2 Two-sided multivariate test problem using Derringer-Suich

desirability functions

In Section [4.1] the test problem VLMOP3 is considered as a target value problem using
symmetric two-sided Harrington desirability functions. In the following the target value
problem is specified with asymmetric two-sided Derringer-Suich desirability functions.
The target and hence the global optimum are the same as in Section [4.1], while the
deviations in different directions are penalized differently. The contour of the true
desirability index (which is again the unweighted geometric mean) and therefore the
progress of the heuristic is different than for the symmetric Harrington functions (cf.

Figure ) The specification parameters of the Derringer-Suich desirability functions

here are
objective | y1  vy2 Y3
target 4 30 0.15
LSL 0 15 0.1
USL 8 37 0.17
r 1 1 1
l 2 2 2

The joint global optima are the parameter settings (0.6, -2.4) and (2.5, 0.3). Table
and Figure[4.11]give details on the optimization of this example using « € {0.01,0.1,0.5,
0.9}.

The optimization again starts with only 5 design points and a poor initial model.
However, already in the third cycle the region of one of the global optima is approached.
mtEGO finds the first global optimum in the fourth cycle and proceeds examining
the region of the second optimum during the fifth to seventh cycle, approaching it
more and more. In the eighth cycle both optima are found. The stopping criterion
decreases monotonically and starts saturating in cycle five. As the saturation is not
very close to 0, we do more cycles until relmazimaz really saturates in the eighth
cycle. mtEGO succeeds to meet the target within four cycles and finds both optima
in eight cycles. It needs 34 experiments in total until both optima are found and
the stopping criterion saturates. However, a slight saturation can already be observed
after five cycles when the first optimum is found. Hence, mtEGO is also able to handle

asymmetric desirability specifications.
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cy- # of currently | currently model relmax— global # of location
cle | design | observed | predicted fit imax optima added of updatings
points | optimum | optimum found? points

1 5 (1.8,-1.5) | (0.9,-1.7) bad 6.981 not found 6 few clumping
2 11 (1.8,-1.5) | (0.7,-2.2) better 3.794 not found 5 few clumping
3 16 (0.5,-2.3) | (0.6,-2.4) | moderate 2.166 approaching 1.opt 5 ok

4 21 (0.6,-2.4) | (2.4,-0.1) ok 1.356 1.opt found 5 good

5 26 (0.6,-2.4) | (2.4,0.2) ok 1.212 approaching 2.opt 3 good

6 29 (0.6,-2.4) | (0.6,-2.4) ok 1.148 1.opt found 2 good

7 31 (2.5,0.4) (2.5,0.3) ok 1.072 2.opt close 3 good

8 34 (2.5,0.3) (2.5,0.3) ok 1.038 both opts found stop

Table 4.8: Progress of the optimization of a multivariate test problem using the new

heuristic and Derringer-Suich desirabilities
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Figure 4.11: Progress of the candidates and updating points for a two-sided multivari-

ate test problem using Derringer-suich desirabilities
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4.4.3 Two-sided multivariate test problem with weighted

objectives

In this section the target-value optimization with Derringer-Suich desirabilities from the
previous subsection is varied using a weighted geometric mean as desirability index (cf.
Equation [2.39)). The specification of the desirability functions for the three objectives is
the same as before, but they are weighted with w; = 0.2, wy = 0.2 and w3 = 0.6 during
the aggregation to one desirability index. The third objective y3 is more important
to be optimal in comparison with y; and y,, that have the same weights. Giving y; a
larger weight than the other objectives, the contour of the true desirability index (see
Figure [1.9¢) and also the joint optimum shift towards the target value of y3. The new
global optimum can be found in the coordinates (0.8, -2.2). An almost equally sized

local optimum is located at (2.3, 0.4).

cy- # of currently | currently model relmax— global # of location
cle | design | observed | predicted fit imax optimum added | of updatings
points | optimum | optimum found? points

1 5 (1.8,-1.5) (0,-1.2) bad 4.902 not found 7 ok

2 12 (1.8,-1.5) (0.8,-3) better 2.462 not found 5 ok

3 17 (1.8,-1.5) | (0.7,-2.2) | moderate 2.13 approaching global opt 5 good

4 22 (0.9,-2.2) | (0.8,-2.2) | moderate 1.214 global opt close 5 good

5 27 (0.8,-2.2) | (1.8,-0.8) ok 0.989 global opt found 4 good

6 31 (0.8,-2.2) | (2.5,-0.1) ok 0.91 global opt found & stop

local opt close

Table 4.9: Progress of the optimization of a multivariate test problem with weighted

objectives

Table shows that mtEGO also is able to optimize this target-value problem that
includes the weighted geometric mean as desirability index. mtEGO successfully finds
the global optimum within 31 experiments and six cycles. Figure shows how the
region around the global optimum as well as the region around the local optimum
is examined. mtEGO starts approaching the global optimum almost from beginning
on. The currently predicted optimum approaches the global optimum in each cycle,
although the observed optimum stays at the firstly observed best point for the first
three cycles. The stopping criterion saturates in the sixth cycle and, actually, the

global optimum is exactly found now. The local optimum is at least roughly located.
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Figure 4.12: Progress of the candidates and updating points for a two-sided multivari-

ate test problem with a weighted desirability index

4.4.4 A multivariate test problem with complex mixed target

structure

The following test problem covers almost the whole range of complexity of the tar-
get structure of a test problem that can be handled with mtEGO. As a basis for this
example the objectives of test problem VLMOP3 are used again. Different desirabil-
ity functions are used to specify completely different targets for the three objectives.
Objective y; is to be minimized and we use a one-sided Harrington function with
bp = —1.8 and b; = 0.5. The second objective y, shall reach the target value T" = 46
and deviations to both sides are equally bad. Hence a symmetric two-sided Harrington
function with LSL = 25, USL = 67 and v = 2 is specified. ys3 also is to be optimized
regards a target value (7' = 0.15) but it is worse if the target is exceeded than if it
is underrun. Therefore the specified desirability function is an asymmetric Derringer-
Suich desirability function with parameters LSL = 0.1, USL = 0.17,l = 2 and r = 1.
All objectives are aggregated to the desirability index shown in Figure 4.9d using the

unweighted geometric mean. The resulting global optimum is the point (2.1, —1.4).
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cycle # of currently | currently model relmax— global # of location

design | observed | predicted fit imax optimum added | of updatings
points | optimum | optimum found? points

1 5 (1.8,-1.5) | (1.8,-1.5) bad 6.978 not found 4 ok

2 9 (1.8,-1.5) | (2.7,-1.2) better 3.886 approaching opt 9 ok

3 18 (1.9,-1.8) | (1.7,-1.8) | moderate 3.209 approaching opt 4 good

4 22 (1.7,-1.8) (1.5,-2) moderate 2.765 not found 5 good

5 27 (1.7,-1.8) (2,-1.5) ok 2.489 approaching opt 4 good

6 31 (2,-1.5) (2.1,-1.4) ok 2.183 opt close 5 very good

7 36 (21,-14) | (2.2,-1.2) ok 1.944 opt found stop

Table 4.10: Progress of the optimization of a multivariate test problem with complex

mixed target structure

Details of the optimization procedure for this example using a € {0.01,0.1,0.5,0.9}
are given in Table In total, mtEGO needs seven cycles and 36 experiments to find
the optimum. After adding many updating points that are scattered quite regularly
in the parameter space in cycle one and two, the observed optimum lies already close
to the true global optimum. mtEGO then proceeds searching more locally around the
observed optimum in the fourth cycle. The stopping criterion starts slightly saturating
but still improves. Since the level of saturation is far from 0, we do more cycles. We
stop the algorithm after seven cycles, although the stopping criterion is not clearly
saturating. However, the predicted and observed optima move very little around the
same point and the improvement in the stopping criterion is very little. The progress
of the candidates displayed in Figure also indicate to stop in the seventh cycle.
The candidates concentrate more and more on one region. Furthermore, in the sixth
cycle only two updating points are added in two different promising regions. One of the
regions disappears in the seventh cycle and the other region is the already well observed
region with the currently observed optimum. We therefore stop in the seventh cycle
and indeed find the global optimum. Altogether, mtEGO optimized this exemplary
problem with complex mixed target structure successfully, which confirms the high

flexibility of the new algorithm regarding the specification of the optimization target.

4.4.5 A large-dimensional target optimization problem

To show that mtEGO is also able to find a global optimum in optimization prob-
lems with more dimensions than two inputs or three objectives, here also an exam-

ple with five inputs and five objectives is run exemplarily with the parameterization
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Figure 4.13: Progress of the candidates and updating points for a test problem with

complex mixed target structure

a € {0.01,0.1,0.5,0.9}. Different a parameterizations are only tested in the case study
in Section due to time reasons. One optimization cycle of this example with only
four « levels takes already approximately two hours on a 2 GHz machine with the cur-
rent implementation. The basis of this example are the objectives from test problem
DTLZ2 (see Section . To restrict the complexity of this example we used two-sided
Harrington desirability functions for all five objectives and the unweighted geometric
mean as desirability index. The desirability functions are thereby specified with the

following parameters
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LSL target value USL v
(% 0 4 8 2
Yo 0 20 40 2
ys | 0.5 6 115 2
Y4 0 15 30 2
ys | 10 50 90 2

This specification of desirabilities results in one global optimum that can be found in
the coordinates (0.8,0.4,0.2,0.8,0). The large dimensionality of the example impedes a
graphical illustration of the desirability index, the model, or the location of the design
points. To supervise the progress of the optimization appropriately we compare the
20 best predictions with the truly 20 best parameter settings to get an idea of the
number of almost equally sized local optima and their location regarding the known
global optimum.

Additionally, we use graphics like the one shown in Figure to roughly supervise
the progress of the updating points. Each colored line in the plot illustrates for one
updating point its Euclidian distance to all observed design points. The upper black
horizontal line shows the maximum Euclidian distance between the initial design points
and the lower black line shows the Euclidian distance between the grid points of the
parameter space. If all lines are very close to the upper line, the new updating points

are scattered very regular in the parameter space similar to a stochastic search. This is

1.5

euclidian distance
1.0

0.5
1

desirability index

0.0

design point

Figure 4.14: Euclidian distances between updating points and the already observed

design points
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only acceptable if the initial model is very bad. If all lines touch the lower line at any
point, this means all updating points are lying next to an already existing point, i.e.
they are clumping. Figure |4.14] shows a reasonable distribution of the updating points.
The lines are far away from those design points with low desirability index (i.e. the
lines are not touching the lower line there). Some lines are close to the design points
3,5, 7,12, 15 and 16 (i.e. they almost touch the lower line there). These design points
are those with the highest desirability indices among the observations. The line of the
desirability index shows peaks in these places. Hence, this figure implicates that the
optimization procedure shifts towards the current optimum. Table gives details for
the progress of the optimization of this large-dimensional example. mtEGO successfully
finds the global optima in eight cycles with 55 experiments in total. Note, that this
is approximately the number of experiments Jones et al. suggest to use already for
the initial space-filling design. Already in the second cycle mtEGO starts approaching
the global optimum. In the fifth cycle the observed optimum is already lying close to
the true optimum. The true optimum is found in the seventh step. mtEGO thereby
starts adding many widely scattered updating points in the first cycles and less points
that concentrate on the region of the global optimum are added in the later cycles.
Unfortunately, the stopping criterion does not indicate to stop very clearly. It starts
saturating at a level of approximately 2.3 already in the third cycle. It improves again
from cycle four to seven, and saturates at a level of approximately 1 in the last step
again. Usually, we would proceed the search when the saturation is uncertain and at
a level larger than 1. But in the eighth cycle the observed and predicted optimum
are the same, which finally indicates to stop. However, the important result is the
ability of mtEGO to find a global optimum even in large dimensional problems. The
supervision of the progress is a complex task in large-dimensional problems as shown
above, but the example demonstrates that mtEGO searches quite straight forward and

the stopping criterion also works well.

In Section we conclude with the statement, that mtEGO clearly dominates the
brute force methods for large or more complex examples. We therefore do the same
comparisons using random points and the coffee-house design as in Section for
this large-dimensional example. In all simulation runs mtEGO achieves better results
then the other methods, i.e. the percentage where mtEGO is better is 100 %. This
example, hence, emphasizes that mtEGO is powerful especially in the case of complex

optimization problems.
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Table 4.11: Progress of the optimization of the large-dimensional optimization example
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#  # grid 2 3 4 5 6
inputs points | objectives objectives objectives objectives objectives

3 1000 11.6s 20.3s 1.7m 14.6m 2.6h
4 1000 12.9s 21.5s 1.7m 14.3m 2.7h
5 1000 14.3s 23.0s 1.7m 14.7m 2.7h
3 5000 57.8s 1.7m 8.5m 1.2h 12.0h
4 5000 1.1m 1.8m 8.6m 1.2h 12.1h
5 5000 1.23m 1.9m 8.7Tm 1.4h 12.1h
3 10000 2.0m 3.5m 17.6m 2.5h
4 10000 2.2m 3.7Tm 17.7m 2.5h
5 10000 2.4m 3.9m 18.0m 2.5h
3 50000 10.5m 18.5m 1.5h 12.5h
4 50000 11.8m 19.6m 1.6h 12.5h
5 50000 13.0m 20.5m 1.6h 12.5h
3 100000 23.2m 40.5m 3.0h
4 100000 25.6m 42.1m 3.1h
5 100000 27.5m 43.9m 3.1h
3 500000 3.9h 5.7h 19.5h
4 500000 4.1h 5.8h 19.5h
5 500000 4.9h 6.4h 19.5h

Table 4.12: Computation time for one optimization cycle for « € {0.01,0.1,0.5,0.9}

4.5 Limitations of the approach

During the simulation study on mtEGO, some time limitations of the current imple-
mentation (see Appendix [A.6) became obvious. We define mtEGO to be infeasible
when it needs more than 10 hours on a 2GHz computer with 2GB RAM for one opti-

mization cycle. Whether mtEGO is feasible or not depends on the number of « levels,

the number of objectives, and the size of the grid representing the parameter space,

which directly depends on the number of influencing parameters and levels per param-

eter. Table |4.12| shows an overview of the computation time needed for one cycle of

the heuristic.

We tested mtEGO for three to six objectives using four « levels {0.01,0.1,0.5,0.9}.
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For each number of objectives we determined the computation time for parameter
spaces represented by grids with 1000, 5000, 10000, 50000, 100000, 500000 points.
The more factor levels per input parameter, the larger becomes the grid. When four
influencing factors are present with 10 levels per factor the four-dimensional parameter
space is a grid with 10000 points. Having five factors with 10 levels each, the five-
dimensional parameter space is a grid with 100000 grid points. The computation
time of mtEGO depends almost entirely on the number of grid points and not on
the number of influencing factors directly. Table [4.12] shows that the difference in
computation time for different numbers of influencing parameters is marginal for the
same size of parameter space grids. This means that if the dimensionality of the
parameter space gets larger, maybe because new significant factors are found and the
computation time shall not be extended, less levels per factor can be optimized to keep
the parameter space grid the same size. We show all times for completeness, but we are
mainly interested in the time differences between the different numbers of objectives.
Already for four « levels the limitation of 10 hours is reached soon. For two and three
objectives more than 500000 grid points can be optimized within 10 hours. But the
heuristic needs more than 10 hours already with 50000 grid points for five objectives.
For six objectives the runtime for one cycle of mtEGO is already 2.6h for 1000 grid
points. One optimization cycle for seven objectives needs already 42 minutes for 125
grid points and for a 1000 grid point parameter space it would need more than one
day. Fewer than four a levels would allow us to optimize more objectives or grid points
within 10 hours of computation time. However, it is not reasonable to use fewer than
three levels, since mtEGO yields either in a very local search if narrow boundaries
are chosen, or it is very unprecise if wide boundaries are chosen. More « levels are
only feasible for five objectives at maximum. Altogether, mtEGO gets very slow and
infeasible for more than six objectives with the current implementation and a 2GHz

machine with 2GB RAM regardless the number of « levels used for the heuristic.

In the following we try to explain the complexity of computation for the heuristic
more theoretically. Suppose, b is the number of objectives, ¢ is the number of grid
points representing the p-dimensional parameter space and a is the number of « levels
used in the optimization. According to Section firstly, all virtual observations are
constructed in Step 3.A.2. Altogether, 2a + 1 virtual observations per objective and
per grid point are determined (i.e. (2a + 1)bg virtual observations in total) Respec-

tively, (2a + 1)bq arithmetic operations are conducted. The same amount of operations
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is needed to transform all virtual observations to desirability values in Step 3.A.3.
Hence, up to now 2(2a + 1)bq operations are needed. For a confidence levels and b
number of objectives, the cross-combination of the desirabilites to desirability indices
in Step A.3 results in a® indices. To determine the indices, one arithmetic operation
is needed for each. Then all indices are transformed to improvement values, which are
again a® operations. This sums up to (2(2a + 1)bq) + (2a®) operations already. Finally,
the candidates (i.e. the points among the ¢ grid points that maximize the improve-
ments vectors according to Step 3.B.3) are determined, saved, clustered in groups, and
a representative for each group is chosen. All those steps need computation time, too,
where the runtime depends on the kind of algorithm used to find the maxima and
the clustering algorithm that are used. Note, that the runtime of the clustering only
depends on the number of candidates that is at maximum a® and on the dimensionality
of the parameter space, but is independent of the actual number of grid points. Hence,
beside the search for the maximum of the improvements and the final clustering of the
candidates, the heuristic needs (2(2a + 1)bq) + (2a%) = 4aqb + 2qb + 2a® operations.
The formula indicates the poor algorithmic efficiency and the need for a good imple-
mentation. Note, that p is not present in the formula above. The time differences
between different numbers of influencing factors in Table results from time needed
for saving data and matrices in the memory, which is proportional to p.

As a conclusion, we recommend to implement mtEGO in a more efficient way for
applications with large dimensions. For example a more adequate programming lan-
guage like C+4 could be used. Further, the heuristic also gives the opportunity to
be parallelized for grid computing. E.g. the construction of the virtual observations
and desirabilities for each objective separately can be done parallel and even the deter-
mination of the different desirability indices and improvements with their maximizing
points can be parallelized, since they are determined independently from each other.
Additionally, a more efficient extension of mtEGO for large dimensions is introduced

in the next section.
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5 Extensions to the new approach

5.1 A variant for large dimensional optimization

problems

In the previous chapter the new heuristic mtEGO is tested with an extensive simulation
study. It is shown that mtEGO finds the global optimum reliably, but gets computa-
tionally expensive and slow for a large number of « levels, inputs or objectives. Here,
an improved version mtEGOimp that is computationally more efficient than mtEGO
is presented subsequently.

The improved version mtEGOimp basically works just like the original mtEGO algo-
rithm from Section [3.2] The overall procedure with the five steps stays the same. The
improvement of the original mtEGO algorithm takes place in Step 3.A.1. Originally,
the set of « levels is determined and used completely in Step 3.A.2. In mtEGOimp Step
3.A.1 is extended with a pre-selection among the manually chosen « levels according
to a simple decision rule. The suggested « levels are reduced to those levels that are
reasonable for the specific problem that is to be optimized. mtEGOimp then proceeds
with the construction of the virtual observations (i.e. Step 3.A.2) and the remaining
procedure exactly like the original mtEGO approach.

Figure motivates the idea of the reduction of the suggested a levels. Assume the
five « levels {0.01,0.02,0.1,0.25,0.5} are chosen for the optimization. The plot shows
the corresponding virtual observations for one exemplary objective. The target for this
objective lies below the predictions g for all univariate parameter settings x;. Clearly,
the upper (1 — a/2) confidence boundaries for all « levels (i.e. the dashed lines) are
virtual observations that lie even more remote from the target than the predictions
7y do. Hence, these virtual observations do not provide any additional information
about possible global optima. They are useless during the optimization procedure and

we can leave them out. The same would apply to all lower confidence boundaries, if
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Figure 5.1: Motivation of the reduction of « levels to smaller « levels only

an objective would lie below the target for all parameter settings. But there is more
potential to reduce the used « levels in this example. Among the solid blue and green
colored virtual observations the distance is minimum to the target for almost the same
parameter settings. They indicate almost the same candidates for the global optimum.
Here, the solid red colored virtual observations and only one among the solid blue or
green virtual observations belong to the relevant « levels for the optimization. All
other virtual observations can be skipped.

The situation is contrary for the exemplary objective in Figure [5.2} Like for the
first example all upper levels can be skipped, since the predictions all lie above the
target. But here the virtual observations with small « levels (i.e. the wide confidence
boundaries, solid red lines) and those with the medium sized « level (solid green line)
yield nearly the same candidates. Hence, using all three virtual observations during the
optimization process actually is a waste of time. Mainly the virtual observations with
the large a levels (solid blue lines) provide new information about possible optima for
this example. The optimization should be done with the « levels belonging to the solid
blue lines and the solid green line to use the maximum information with a minimum
number of « levels.

Figure [5.3] shows a third example where the decision is not as easy as for the first
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Figure 5.2: Motivation of the reduction of « levels to larger « levels only
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two examples. Neither all upper, nor all lower confidence boundaries can be excluded
right away, since the predictions lie below the target for small x; and then exceed it for
large x1. If we concentrate on the interval [0, 3] the two dashed blue lines give almost
the same information and the two dashed red lines give the same information. But
the dashed blue, the dashed green and the dashed red lines give different information
and one of each group should be used for the optimization. The solid lines are not
needed in this intersection. The virtual observations in the next interval [3, 6] are very
narrow because of a small prediction error. Here all solid lines can be skipped and all
dashed lines result in the same candidate. One level would be sufficient. In the last
intersection [6, 10] the virtual observations printed with dashed lines give candidates
that lie very close to each other and could be represented just by one of the levels, e.g.
the green colored medium sized « level. The virtual observations printed with solid
lines also yield candidates that lie quite close to each other and could be represented
only by the green medium sized « level. Altogether, for this third interval we need
upper and lower confidence boundaries and it would be reasonable to use the a levels

{0.02,0.1,0.25}, i.e. one red, the green and one blue line for the optimization.

However, the decision which « levels are reasonable to be used or skipped should
happen automatically. The first rule is to skip all upper (lower) boundaries if the
predictions are lying above (below) the target for all parameter settings z; € x,i =
1,...,q, where x is the parameter space grid. Additionally, without mentioning it yet,
we used the green colored virtual observations as reference confidence boundaries in
all three examples to test whether smaller, larger or similar a levels compared to
the reference boundaries should be used. In the decision rule, we define reference
confidence boundaries specified with a medium-sized « level deca (resulting in ¥ geca
and Y_geco) and a 25% decision interval around the target value 7', i.e. [T_g.95, Tr0.25] =
[T'—0.25T, T 4 0.25T]. The reference boundaries are compared to the decision interval
[T 025, T 025 and that for each parameter setting x; separately. If g(z;) is larger than
the target value, we take the lower reference boundary y_4..o and check if it lies inside,
below or above the interval [T_g.95, T 0.25). If it lies inside the interval, similar « levels
are chosen. If it lies below although the prediction lay above the target, the reference
boundary is already wide enough and it is reasonable to choose larger « levels. If it lies
above the interval the reference boundary still is far away from the target and wider
boundaries which means smaller « levels should be included in the optimization. For

predictions y(z;) that are smaller than the target the decision is exactly vice versa.
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Figure displays the whole decision rule well-arranged. For each parameter setting
x; this decision tree is evaluated. It results in a decision ’smaller’; "larger’ or ’similar’
for each setting x;. Finally, we chose the most frequently decision among the resulting

q decisions.

Suppose a beforehand predefined complete set of a levels, e.g. {0.01,0.02,0.1,0.25,
0.5}, that would have been used for the original heuristic, is split into a reference level
0.1, large levels {0.25, 0.5} and small levels {0.01, 0.02}. If the most frequent decision
is ’smaller” or ’larger’, the corresponding levels together with the reference level are
used for the following optimization procedure. If the most frequent decision is ’similar’
we use the reference level, half of the small levels (the largest among them) and half
of the large levels (the smallest among them). The chosen levels are then used to
determine upper and or lower confidence boundaries as virtual observations depending
on the fact whether all predictions lie above, below or alternating compared to the
target. Hence, for five levels the number of virtual observations for one objective is
reduced from eleven to only seven or even four virtual observations. For problems with
many objectives the reduction of computationally complexity is remarkable when only
four instead of eleven virtual observations are cross-combined in the following steps of

the optimization algorithm.

Note, that the decision rule described before and illustrated in Figure[5.4is only valid
for target value problems. For the one-sided case, i.e. minimization or maximization
problems no actual target value is known and the decision rule illustrated in Figure [5.5
is used. For a better understanding of this tree, suppose the objective in Figure [5.1
is to be minimized. Obviously, all upper boundaries do not give any useful informa-
tion, since they can only yield larger and thus worse values than the currently found
minimum Y., (at = 3). All upper boundaries can immediately be excluded from
the optimization. The reference level (solid green line) yields smaller and thus better
values than the currently found minimum in the uncertain area. Each smaller « level
(i.e. wider boundaries) yield the same minimum as the reference level then. Hence, we
are not interested in the smaller levels that do not provide new information. We can
concentrate on the larger « levels to include also the local search around the current
optimum. The reference level already ensures that the algorithm searches globally. If
the upper solid blue line would represent the reference level here, its minimum would
lie around the currently observed minimum. This boundary lies almost completely

above the current minimum. Then we are of course interested in wider boundaries (i.e.
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Figure 5.5: Decision tree for the question if smaller or larger a’s compared to the ref-

erence level should be taken for one-sided optimization problems

smaller « levels) to ensure a global search.

If the optimization problem is a maximization problem the decision has to be exactly
the opposite way round comparing the reference boundary with y,,... The decision to
use 'similar’ levels is not needed in the one-sided optimization problems. The nature

of minimization and maximization are much simpler than the target-vale problem.

We also tried to differentiate the decisions on the « reduction between the separate
uncertain areas. The problem here is to define the separate uncertain areas. As one
can see in Figure [5.6h, this problem is trivial for the univariate parameter space. The
grey vertical lines show a clear separation of the different uncertain areas between the
known observations. Already for a bivariate parameter space the uncertain subspaces
can not be well-defined. An example design is shown in Figure [5.6p. Figurd5.6c shows
the contour of the prediction error for that example. There are areas of large and small
uncertainty, but the borders are flowing. This makes it difficult to find a criterion
to split the parameter space in different uncertain areas automatically. Therefore, we

evaluate each candidate individually and then choose the most frequent decision.

Simulation studies with mtEGOimp show that the extension is working well. For

the large dimensional example in Section the computation time for one optimiza-
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space

tion cycle is reduced from approximately two hours to 30 minutes with mtEGOimp.
Meanwhile, the global optima are found with about the same number of cycles and
experiments. Unfortunately, the time needed to decide which « levels can be excluded,
compensates the time savings of the shorter a vector for low dimensional optimization
problems. The originally introduced heuristic from Section should be used if fewer
than five objectives are present. The comments on stopping rules, choices for «, and
the evaluation of the progress of the optimization hold for the extended heuristics as

well.

5.2 Optimization in the presence of unknown

constraints

Forrester et al. (2006) state that “in an ideal world, a seamless parameterization would
ensure that the optimizer could visit wide ranging geometries and move between them
without interruption. In reality, however, [...] in all but the most trivial or clearly
constrained cases the design evaluation can fail in certain areas of the search space.”
The mtEGO approach can easily be adapted to this case of unknown constraints. The
main problem with unknown constraints is, that eventually experiments are planned
that actually lie inside the unknown constrained region. The evaluation of these exper-
iments fails and missing values are present in the design. In sequential optimization the
aim is to find a global optimum with as few experiments as possible. The initial designs

are very small and the presence of missing values distorts the surrogate model. The
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Figure 5.7: Idea of the convex hull strategy (from Henkenjohann et al., 2005)

next subsection provides a procedure to generate an initial design that is space-filling
and includes enough so called “non-failures” to enable a good surrogate model. The
occurrence of missing values during the updating process is even worse. Why this is

such a great problem and how it is solved will be explained in Section [5.2.2]

5.2.1 Generation of an appropriate initial design

Henkenjohann et al.| (2005) already discuss the problem of generating an appropriate
initial design in the presence of unknown constraints. They suggest to extract failure
regions adaptively by constructing spatial cylinders from the observations. The method
is based on the assumption that the non-failure region is convex and connected which
can often be assumed in engineering processes. Assuming convexity is given, a pair of
one failure and one non-failure point provides the information that everything from the
viewpoint of the failure point lying behind the non-failure point belongs to the failure
region and can therefore be extracted. According to Figure (left hand side), the
boundary of the convex feasible area has to lie somewhere between these two points.

If in the p dimensional parameter space p non-failure points and one failure point are
observed, the complete convex hull of the vectors spanned by the failure point with
each of the non-failure points has to be part of the failure region (see right hand side
of Figure . With the help of an initial space-filling design the failure region of the
parameter space then is excluded constructing a convex hull for each combination of
one failure point and p non-failure points. Figure 5.8 gives an example. Henkenjohann

et al. then augment the design with new points that are not lying inside one of the
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Figure 5.8: Excluded failure region (white) from a parameter space using the convex

hull strategy

excluded convex hulls and examine the feasible area adaptively until they reach a
desired amount of non-failure points. In |[Henkenjohann et al.| (2005)) it is shown that
the algorithm still works for slight violations of the convexity assumption. This convex
hull exclusion strategy is an excellent strategy to construct a good initial space-filling
design for global optimization procedures. It gives a good basis to fit surrogate models.
However, the brute force implementation by Henkenjohann is very inefficient and slow
for more than three objectives and large space-filling designs.

Therefore, we extend this algorithm using the double description method for poly-
hedral convex cones (PCC) introduced by [Fukuda and Prodon| (1996). The core of the
double description method are so-called double description pairs (DD pairs). A pair
(A, R) of real matrices A and R is called a DD pair if the following relationship holds

Az > 0 iffx = R for some A > 0. (5.1)

The same intersection of a cube for example can hence either be defined by hyperplanes
as illustrated on the left hand side of Figure [5.9 or given by vectors as shown on the
right hand side of the figure. A DD pair also exists for polyhedral convex cones. A
subset P € RP is called a polyhedral cone if there exists any A € R™*P that satisfies
the equation

P={xeRP: Az >0} =: P(A). (5.2)

In Fukuda it is shown that for a polyhedral cone P and the corresponding matrix A
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Figure 5.9: Double description pair of a cube intersection: given by the hyper-
planes x; < 1,29 < 2, and x3 < 3 (left) and given by the vectors
(1,2,3),(1,0,0),(0,1,0),(0,0,1) (right)

that fulfills P = P(A), there exists a matrix R € RP*™ such that (A, R) is a DD pair
and it is
P = {xeRP:Ax >0}

5.3
= {x € RP: 2 = R for some A > 0}. (5:3)

The matrix A then is called the representation matrix and R the generating matrix
of the polyhedral cone P. With the help of an algorithm presented in Fukuda et al.
one can very fast transform between the matrix A and R. Thereby, the transformation
algorithm considers only extreme rays when determining the representation matrix of
a polyhedral cone. In our application, we can produce the generating matrix R imme-
diately using all failure and a non-failure point. Then we determine the corresponding
representation matrix A with the transformation algorithm. The equations resulting
from Ax > 0 enable to check very easily whether a new point lies inside the cone.
Thus, the double description method provides a fast solution to generate a polyhedral
convex cone (PCC) from a set of non-failure points and one failure point as the tip of

the cone. The decision whether a point lies inside this cone or not is very easy.

5.2.2 Handling of missing values during the updating process

When performing statistical analysis with missing values, it must be distinguished be-
tween data that is missing at random and missing values, where a relationship between
the data and its ‘missingness’ is present. When data is missing at random it can be
ignored and interpolated. However, when a design point or an updating point fails,
the data is usually lying in an infeasible area. If such a failure point is ignored and

the sequential optimization process is proceeded without new information from the up-
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dating point, the surrogate model will remain unchanged in the region of the missing
value. The criterion used to find new updating points will remain unchanged, too. The
sequential optimization will then stall in this region. This problem can eventually be
solved choosing a random point every time an updating point fails, but it does not
prevent the process from recurring to the infeasible region several times and hence may
be very inefficient. Forrester et al.|(2006) suggest to use the information of the missing
value about the infeasible region. They replace a missing value with imputed values be-
fore training the surrogate model again. The substitution of the missing value thereby
is not important to have a certain value. The imputation is only used to set a value
representing the missing observation, such that the prediction error of the refined sur-
rogate model is reduced in the region around the missing value and the optimization is
diverted towards the feasible region. Forrester et al. suggest to substitute the missing
value with the upper bound of the prediction from the surrogate model at this point
Yimputed = J(x) + $*(z) for a minimization problem. They state that the asymptotic
convergence of the maximum expected improvement criterion is not affected and global
convergence is guaranteed in the feasible region. We adapt the imputation method to
the target-value optimization case with the help of desirabilities. Suppose x4 is the
candidate where the experiment fails and the observation y(xy4) is missing. We then

substitute y(zy4) with

G(xna) + s*(xya) ,if glaya) >T

G(xna) — 2 (xya) if Glana) <T ’ (5.4)

Yimputed (xNA) - {

where T is the target value of objective y. The differentiation in the formula affects
that adding or subtracting the prediction error diverts the imputed value from the
target value. In case of a minimization or maximization problem the imputation of
Forrester et al. is to be used. This imputation ensures that the process will not recur
to the region of the failure point unless the region is so good, that even the imputed
value is better than the already found local optimum.

If the recurrence of the region around the missing value shall be excluded definitively,
the missing value can be substituted with the upper or lower specification limit of
the corresponding desirability function. The desirability of the imputed ¥imputed then
becomes zero with a prediction error equal to zero. Hence, the region will be avoided
in the next optimization cycles.

The optimization procedure can be improved additionally if the imputation of a

missing value is combined with the PCC strategy from the previous section. If an
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updating point fails, we use all present observations to exclude the region behind the
failure point from the candidate grid. Then we substitute the missing value by the
corresponding imputed value in order to prevent the algorithm from stalling on the
boundary of the failure region. Finally, we refine the surrogate model with all new
updating points including the imputed one. The new surrogate model now has worse
values with a smaller prediction error near the failure point and no predictions are
determined for the excluded candidates. In the next optimization cycle the updating
points are chosen among the remaining candidate grid, where the known failure region
is excluded. We also did some small simulations for this strategy showing that the
global optimum is usually still found. Problems can arise when the predictions from
the surrogate model are very bad and the global optimum is lying exactly at the
boundary of the feasible region. In such cases the strategy might impute the missing
value that hard, that the algorithm does not recur to the region between a known
feasible observation and the failure point where the global optimum in fact is. To find
such an optimum the only strategy that works is to go stepwise backwards from the
failure point until a non-failure point is reached. But this is very inefficient and still does
not guarantee to find the true optimum, since the question is which direction ‘going
backwards’ is the most reasonable if the dimension of the parameter space is large.
However, if an optimum is assumed to lie close to the boundary of the feasible area
one definitely should use the imputation defined in Equation instead of imputing

with one of the specification limits of the desirability.
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6 Case studies: application to sheet

metal spinning and necking-in

In order to check the applicability of mtEGO in industrial practice, we have run two
case studies in engineering processes. First, it is used to optimize a pot produced with
the sheet metal spinning process. This optimization problem has been solved already in
the literature as a maximization/minimization problem, see for example [Henkenjohann
et al.| (2005). But further optimizations with other and more influencing parameters
led to problems as explained in Section [I.1l Now, a target-value optimization using
mtEGO is performed. As a second case study, mtEGO is used to optimize necking-in

of tubes using the spinning process. Both optimizations show encouraging results.

6.1 Optimization of a pot produced with the sheet

metal spinning process

Sheet metal spinning is one of the oldest chipless forming processes (Kénig and Klocke,
1995, Ch.3.4). The process transforms flat sheet metal blanks to complex rotationally
symmetric hollow shapes. Due to low costs of manufacture sheet metal spinning is
mostly used for low and medium volumes of production or for prototyping. Examples
for industrial applications are centrifuges, funnels, tank ends, wheel rims as well as
workpieces in the aerospace industry. Figure shows the principles of the process.

The circular blank is clumped centrically against the mandrel by means of the tail stock.
The mandrel with the mounted workpiece starts rotating. Following a beforehand
determined path a roller tool progressively forms the rotating workpiece pressing it
against the contour of the mandrel in multiple passes. The roller tool is operated
through a CNC (Computer Numerical Control) unit. Figure shows a possible

path of the roller tool for a process with 10 stages. For certain parameter settings
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Figure 6.1: Principle of the sheet metal spinning process (from Henkenjohann et al.,

2005)

the process fails, i.e. wrinkling or cracking of the workpiece. To stabilize the forming
process a blank supporting tool is often used.

In this project, research is concentrated on three quality characteristics. The wall
thickness (smin), the cup depth (nt) and the radius of the cup (dmaz). Thereby,
the overall minimum wall thickness is measured, since the degree of sheet thinning
is of interest. The radius is measured in the maximum point to get to know the
strength of the springback or a bulge. The depth of the cup is measured in the lowest
point of the flange, that often forms tails. Metal spinning is influenced by a large
number of interacting parameters. From screening experiments we know that our three
quality characteristics are influenced significantly by the following six parameters (other

machine parameters that were not significant have been fixed at a certain value):

e The curvature of the passes of the roller tool in forward direction kj;, and back-

ward direction k. in mm.
e The working radius of the roller tool rdw in mm.

e The end point of the last pass of the roller tool on the equidistant to the mandrel
eaqu in % (cf. Figure [6.1pb).

e The distribution of the passes on the formed rim of the blank vrbk, where 1
indicates equally distributed passes (cf. Figure )

e The ratio f,, which is feed rate f divided by the spindel speed s.
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quality characteristics
nt
dmazx

smin

target value
96mm
73mm

2mm

influencing parameters

b considered factor levels

Knin -2,-1,0,1, 2
Eruck -2,-1,0,1, 2

rdw 2, 5,10, 15, 20
eaqu 30, 38, 46, 54, 62
vrbk 0.92, 0.95, 0.98, 1.01, 1.04
fs 1.5, 2.5, 3.5, 4.5, 5.5
fixed machine parameters fized at value

vaqu 1.01

number of passes 14

f 3000

blank

blank diameter 180mm

blank thickness 2mm

diameter of mandrel 69mm

material

Al99.5 w7 (soft aluminium)

Table 6.1: Target values and parameter space of the sheet metal spinning optimization

The ratio fs was planned to be set up in the machine holding the feed rate f at the
constant value of 3000 revolutions per minute and choosing a corresponding spindel
speed s to get a given ratio f,. The ratio f; was used instead of the spindel speed

directly in compliance with the requirements of the engineers.

Table summarizes the whole experimental setup for the optimization procedure.
It gives the target values for the quality characteristics, the factor levels for each influ-
encing parameter, the blank values and the fixed machine parameters. The optimiza-
tion deals with six influencing parameters and five factor levels for each parameter,
resulting in a grid of 15625 points representing all settings in the six-dimensional pa-
rameter space. Although we are using soft aluminium for these experiments that is very

flexible to be formed, we expect to touch the forming limits with the chosen parameter
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Characteristic | LSL target USL 1 r

nt 86 96 111 0.15 0.1
dmax 71 73 80 1 0.1
smin 1.3 2 2.1 0.3 0.1

Table 6.2: Specifications of the Derringer Suich desirability functions in the spinning

process optimization
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Figure 6.2: Desirability functions for the sheet metal spinning process

space and have failure parts within the optimization procedure.

With the help of expert knowledge from the engineers, desirability functions are
specified for the three objectives dmax,nt and smin. Particularly, we give attention
to the case of over-optimization of the sheet thickness mentioned in the motivating ex-
ample and, hence, specify asymmetric Derringer-Suich desirability functions. Table|6.2
and Figure show the specifications of the desirability functions. The characteristic
thickness smin is penalized very hard if it exceeds the target value of 2mm, and less
harder if it falls below. The opposite applies for the diameter dmax. Here, values below
the target are penalized very hard and exceeding the target is less worse. However, the
diameter should physically not fall below the target, because of the springback of the
cup walls. The target of 73mm is hardly reachable and theoretically not possible to be
under-run. We anyway use a two-sided desirability function for this characteristic just
to penalize the case of under-running correctly if it happens in spite of the theory. For
the third characteristic nt, deviations to both sides are penalized almost equally, since
the flange of the cup is usually cut after production and hence only cups with much
too small diameters are useless, and those with much too large diameters will be too

thin or will have bad stiffness.
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According to|Jones et al.| (1998) it is advisable to use 10 experiments per influencing
parameter for the initial design. We had a limit of approximately 50 experiments in
total for the whole optimization and decided to start with a very small design and
keep as many experiments for the updating steps as possible. The optimization of the
spinning process is therefore initiated with only 15 design points. The initial design is
chosen with the uniform-coverage criterion to cover the parameter space space-fillingly
(cf. Section [2.2.3)). The first rows of Table show the design points of the initial
design with their resulting observations and desirability index D1. The best observation
already has a DI of 0.9295 and also all other values of DI are either 0 or very large
(> 0.7135). Unfortunately, the majority of the desirability index values lie between
0.8 and 1.0 (confer to the right hand side of Figure showing the distribution of DI
values for the surrogate model fitted to the initial design). This happens due to too
liberal specifications of the desirabilities, particularly for the depth nt.

After running the initial design the selection of appropriate surrogate models for
the three objectives is done. Kriging models with differently complex deterministic
trend components (only intercept or linear) and isotropic as well as anisotropic power
exponential covariance functions with smoothness 1 or 2 are fitted. Since the influencing
parameters are very differently scaled, we scale all of them to the interval [0, 1] first
before fitting the models. This should be remembered during an interpretation of
the estimates of the effects. A detailed summary on the fitted models and the model
selection can be found in Appendix[A.3] The model with the best compromise of lowest
BIC, MSCVE and number of estimated parameters is chosen. Tables [6.4] and [6.5] show
the estimates for the parameters of the chosen surrogate models during the progress of
the optimization. The first column of the table contains the initial surrogate models.
For all characteristics dmax, nt and smin the linear deterministic trend function p +
kpin + rdw + eaqu + vrbk + k... + fs was fitted and the covariance function is an
isotropic power exponential covariance function with smoothness s = 2. The progress
of the surrogate models over the optimization cycles shows that the choice of the
model was sufficient, since it does not change a lot with increasing number of included

observations.

Having the initial design, the surrogate models and the desirability function we start
the optimization procedure. The computing time per step should be less than one hour.
For six influencing parameters and three objectives this indicates to use only three

confidence levels. Due to the very small initial design and the resulting assumption
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id cycle ‘ khin rdw  eaqu  vrbk  kpyck fs fscorr  failure  smin  dmaz nt DI

1 Initial 1 2 38 1.01 0 3.5 3.5 0 1.29 76.2 109.14 0.0000
2 Initial 1 15 38 1.01 0 4.5 4.5 0 1.85 77.0 89.92 0.9056
3 Initial 1 15 46 1.04 0 1.5 2.7 0 1.68 76.4 98.95 0.9134
4 Initial -2 5 46 0.98 2 3.5 3.5 0 1.38 76.7 110.46  0.7027
5 Initial 2 5 46 0.95 -1 3.5 3.5 0 1.51 76.1 97.65 0.8661
6 Initial -2 20 46 0.98 2 3.5 3.5 0 1.80 77.6 93.43 0.9193
7 Initial 1 20 46 0.95 -1 3.5 3.5 0 1.94 76.8 88.68 0.9040
8 Initial 1 10 46 0.92 2 4.5 4.5 0 1.88 76.4 89.10 0.9053
9 Initial 1 10 46 0.98 2 1.5 2.7 0 1.73 76.0 94.10 0.9250
10  Initial -1 10 46 0.92 -1 4.5 4.5 0 1.61 76.9 98.50 0.8917
11 Initial -1 10 62 0.95 0 1.5 2.7 0 1.40 76.2 107.61  0.7676
12 Initial -1 10 46 1.04 -1 1.5 2.7 0 1.26 78.3 118.14 0.0000
13 Initial 1 10 62 1.01 0 4.5 4.5 0 1.36 78.3 107.08  0.7135
14 Initial -2 10 46 1.01 -1 4.5 4.5 0 1.30 78.1 108.69  0.0000
15  Initial -1 10 30 0.95 0 1.5 2.7 0 1.74 76.4 97.88  0.9295
16 Step 1 2 15 46 0.92 0 4.5 4.5 0 1.93 76.8 86.41 0.8217
17  Step 1 1 15 30 0.92 2 1.5 2.7 0 2.06 75.9 86.33 0.8034
18 Step 1 -2 15 38 0.92 0 1.5 2.7 0 1.76 76.8 96.82 0.9324
19 Step 1 0 15 54 1.01 -1 1.5 2.7 0 1.49 77.9 104.43  0.8203
20 Step 1 0 15 62 0.95 2 1.5 2.7 0 1.73 76.8 97.07 0.9256
21 Step 1 0 20 30 0.98 1 1.5 2.7 0 1.93 76.4 88.43 0.9017
22  Step 1 -1 20 38 1.01 0 1.5 2.7 0 1.86 76.9 94.10 0.9418
23 Step 1 -2 10 30 0.92 2 1.5 2.7 0 1.73 76.3 98.59 0.9265
24  Step 1 2 10 30 0.92 0 3.5 3.5 0 1.95 76.0 86.86 0.8618
25 Step 1 2 2 46 1.04 0 1.5 2.7 1 1.31 77.0 115.26 0.0000
26  Step 2 -1 10 30 0.92 2 1.5 2.7 0 1.77 76.1 95.34 0.9392
27  Step 2 1 10 38 0.98 2 1.5 2.7 0 1.83 76.0 93.24 0.9393
28  Step 2 2 10 38 0.95 0 3.5 3.5 0 1.82 76.1 89.88 0.9080
29  Step 2 2 20 30 0.92 -1 1.5 2.7 1 2.25 76.5 77.58 0.0000
30 Step 2 -2 20 30 1.04 2 1.5 2.7 0 1.74 77.5 94.46 0.9147
31 Step 2 1 15 38 0.92 1 1.5 2.7 0 1.99 76.0 88.20 0.9086
32 Step 2 1 5 38 0.92 2 2.5 2.7 0 1.70 76.4 92.75 0.9068
33 Step 3 1 10 30 0.98 1 1.5 2.7 0 1.90 76.0 92.00 0.9421
34  Step 3 2 10 54 0.95 2 1.5 2.7 0 1.83 75.9 91.80 0.9297
35 Step 3 1 20 54 0.92 2 2.5 2.7 0 2.06 76.6 88.20 0.8778
36 Step 3 -1 20 62 0.92 2 1.5 2.7 0 1.80 77.0 94.40 0.9318
37 Step 3 1 20 54 0.92 -1 2.5 2.7 0 1.96 76.5 91.60  0.9437
38 Step 3 1 15 38 1.01 2 1.5 2.7 0 1.89 76.6 90.40 0.9211
39 Step 3 1 5 30 1.04 2 1.5 2.7 0 1.44 76.0 99.80 0.8275
40 Step 4 -2 15 30 0.92 2 1.5 0 1.73 75.9 98.08 0.9310
41  Step 4 0 15 62 0.92 -1 1.5 0 1.67 76.2 103.82  0.8970
42 Step 4 2 15 54 0.92 2 1.5 0 1.95 75.6 90.24 0.9363
43 Step 4 2 5 30 0.92 1 2.7 0 1.89 75.6 90.82 0.9333
44 Step 4 2 10 46 0.98 2 3.5 0 1.86 76.4 90.50 0.9191
45  Step 4 -1 15 38 1.01 0 1.5 0 1.54 77.5 104.64  0.8437
46  Step 4 1 5 30 0.92 -1 1.5 0 1.57 75.2 106.95  0.8594
47 Verif. 2 20 62 0.92 -2 1.5 0 1.86 75.9 94.23  0.9513
48  Verif. 2 0 15 30 0.92 -1 1.5 0 1.96 75.7 94.67 0.9712
49 Verif. 2 0 20 54 0.92 0 1.5 0 1.89 76.1 95.69 0.9626
50  Verif. 2 1 20 62 0.92 -1 1.5 0 1.86 76.1 96.26 0.9585
51  Verif. 2 2 10 30 0.92 -1 1.5 0 1.95 75.4 94.69  0.9720

Table 6.3: Experiments and observations with the resulting desirability index DI for

the sheet metal spinning optimization
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model component | para- | estimator estimator estimator estimator
meter initial optimization | optimization | optimization
design cycle 1 cycle 2 cycle 3
dmazx
deterministic I 75.954 76.337 76.648 76.550
trend khin -1.044 -0.783 -0.818 -0.815
component rdw 0.622 0.514 0.675 0.746
eaqu 0.750 0.681 -0.030 -0.031
vrbk 1.289 0.950 0.810 0.762
kruck -0.601 -0.544 -0.523 -0.452
fs 1.082 0.687 0.792 0.834
power exponential 0 0 1.0E-18 0.6153 0.5627
covariance function 0%, 0.2959 0.2189 0.2972 0.2309
isotropic (s=2)
nt
deterministic L 110.30 122.70 115.97 114.74
trend khin -12.746 -13.322 -15.008 -12.450
component rdw -19.776 -18.593 -23.860 -19.610
eaqu 11.080 8.711 1.488 1.258
vrbk 12.340 11.356 12.378 9.694
Kruck -7.271 -5.784 -4.231 -6.621
fs -3.753 -5.943 -2.551 -1.888
power exponential 0 0 1.8104 1.3472 1.0080
covariance function o2 7.1140 165.47 64.188 30.138
isotropic (s=2)
smin
deterministic I 1.364 1.328 1.244 1.254
trend khin 0.261 0.250 0.274 0.290
component rdw 0.611 0.564 0.601 0.592
eaqu -0.343 -0.268 -0.294 -0.031
vrbk -0.301 -0.253 -0.312 -0.324
kruck 0.212 0.185 0.168 0.115
fs -0.004 0.023 -0.009 0.023
power exponential 0 0 3.1E-17 0.853 0.8642
covariance function 0%, 0.0022 0.0029 0.0156 0.0164

isotropic (s=2)

Table 6.4: Surrogate models during the optimization of the sheet metal spinning process
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Table 6.5: Surrogate models during the optimization of the sheet metal spinning process

model component | para- estimator estimator estimator estimator
meter | corr. model | optimization | verification | verification
cycle 3 cycle 4 phase 1 phase 2
dmazx
deterministic I 76.321 75.893 75.878 75.841
trend knin -0.629 -0.653 -0.701 -0.678
component rdw 0.581 0.624 0.571 0.549
eaqu 0.596 0.592 0.535 0.548
vrbk 0.862 0.964 0.967 0.980
Kruck -0.405 -0.381 -0.309 -0.291
fs 1.040 1.144 1.227 1.265
power exponential 0 0.4849 0.4644 0.4602 0.4724
covariance function | o% 0.1886 0.1759 0.1748 0.1659
isotropic (s=2)
nt
deterministic I 110.16 118.50 118.33 118.88
trend khin -11.532 -12.563 -12.758 -13.054
component, rdw -19.192 -20.521 -20.706 -21.012
eaqu 12.538 10.852 10.428 10.517
vrbk 10.446 8.816 8.769 8.814
Kruck -5.939 -7.771 -7.334 -7.548
fs -6.494 -11.310 -10.951 -10.938
power exponential 0 0.8443 0.7558 0.7451 0.7766
covariance function o2 14.423 12.340 11.6888 12.056
isotropic (s=2)
smin
deterministic 1 1.347 1.258 1.257 1.282
trend knin 0.279 0.305 0.301 0.306
component rdw 0.563 0.571 0.568 0.570
eaqu -0.264 -0.248 -0.253 -0.267
vrbk -0.273 -0.263 -0.262 -0.268
Kruck 0.141 0.157 0.162 0.150
fs 0.023 0.116 0.120 0.097
power exponential 0 0.4240 0.4276 0.4156 0.4008
covariance function 0%, 0.0034 0.0040 0.0039 0.0039

isotropic (s=2)
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knin rdw eaqu  vrbk  kpyer  fs (fscorr) smin  dmax nt DI

optimum after initial design (points 1-15)

observed -1 10 30 0.95 0 1.5 (2.7) 1.74 76.4  97.88 0.9295
predicted -2 10 30 0.92 2 1.5 1.58 75.63 94.25 0.9516
optimum after optimization cycle 1 (points 1-25)

observed -1 20 38 1.01 0 1.5 (2.7) 1.86 76.9  94.10 0.9418
predicted -1 10 30 0.92 2 1.5 1.83 75.83 95.41 0.9523
optimum after optimization cycle 2 (points 1-32)

observed -1 20 38 1.01 0 1.5 (2.7) 1.86 76.9  94.10 0.9418
predicted -1 20 62 0.92 2 1.5 1.94  76.85 95.76 0.9641
optimum after optimization cycle 3 (points 1-39)

observed 1 20 54 0.92 -1 2.5 (2.7) 1.96 76.5 91.60 0.9437
predicted -2 15 30 0.92 2 1.5 1.88 76.07 95.86 0.9619
optimum after optimization cycle 4 (points 1-46)

observed 1 20 54 0.92 -1 2.5 (2.7) 1.96 76.5 91.60 0.9437

predicted 2 20 62 0.92 -2 1.5 1.89 76.4  96.87 0.9618
optimum after verification (points 1-47)

observed 2 20 62  0.92 -2 1.5 1.86 759 94.23 0.9513
predicted 2 10 30 0.92 -1 1.5 1.84 75.33 96.02 0.9619
optimum after verification phase 2 (points 1-51)

observed 2 10 30  0.92 -1 1.5 1.95 754 94.69 0.9720
predicted 2 10 30 0.92 -1 1.5 1.95 75.4  94.69 0.9720

Table 6.6: Results of the sequential optimization for the sheet metal spinning process.

that the first model is probably very uncertain, the search should be very global and
the « confidence levels are parameterized with small values o € {0.0001,0.001,0.01}.

Table summarizes the progress of the optimization procedure. After each cycle
of the procedure the currently observed and currently predicted optimal parameter
setting are given with their observations and predictions for dmax,nt, and smin, and
the resulting DI. The predicted optimum thereby is that point with the best DI
among the predictions for the whole parameter space based on the surrogate model
fitted to all currently observed values. After the initial cycle the observed optimum
reaches DI =0.9295. The predictions indicate a possible optimum in another setting
with DI=0.9516.

In the first optimization cycle, mtEGO determines a set of 98 candidates, that are

clustered in nine groups, i.e. nine updating points are chosen. The corresponding clus-
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ter dendrograms and scree plots for each optimization step that were used to decide
on the number of updating points can be found in Appendix[A.2] In addition to the 9
updating points, the predicted optimum is added as updating point. The correspond-
ing observations in Table show one failure part. To include this information for
the optimization procedure, we substitute the missing observations for dmax,nt and
smin of this parameter setting with the predictions of the previous surrogate model
and penalize them with their standard prediction error as explained in Section [5.2.2]
to avoid that the algorithm searches in this area again. This constructed penalized
observation is included when refining the surrogate model. The observations also show
that the parameter setting with the previously predicted optimum is actually not bet-
ter than the previously observed optimum. The fitted surrogate model was wrong
there. However, among the ten updating points actually a better parameter setting
than the previously observed optimum is found with DI =0.9418 for a completely dif-
ferent parameter setting. During the second optimization cycle seven updating points
(including the predicted optimal setting from the first optimization cycle) are chosen
from a set of 84 candidates. Again one failure part occurred and was substituted by
penalized predictions. The parameter setting with optimal predictions also was again
worse than predicted and also no other updating point had a better value for DI. The
observed optimum stays the same as in the first optimization cycle, but the predictions
still indicate a possible improvement of DI. During the third optimization cycle again
seven design points are chosen from a set of 109 candidates. Although not being the
predicted optimum, the DI can be improved in this step. We find a new optimum
among the observations with DI =0.9437. Now, the refined surrogate model switches
and predicts the optimum in another area of the parameter space. We decide to do a

fourth optimization cycle.

Unfortunately, between the third and the fourth cycle the engineers realized that
the influencing parameter f, has been set up wrong from beginning. Instead of setting
fs to the levels 1.5, 2.5, 3.5, 4.5 and 5.5, all levels below 2.7 are set to the fixed value
2.7, all levels above are set correctly. The levels 1.5 and 2.5 are not set up differently
contrary to what the design says. Hence, every time when mtEGO suggests to take
the smallest possible fy to improve the results, f, is indeed larger in the experiments.
This mistake leads to a wrong model and is corrected for the next cycle. We determine
the correct set up fs for all conducted experiments (i.e. column fsqo- in Table and

fit a new surrogate model. It is surprising that the model for the wrong f; does not
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Figure 6.3: Progress of the stopping criterion in the spinning optimization

differ much from the corrected model (see Table[6.4 and [6.5]). However, we assume that
the DI should improve now, since the models suggest to use a smaller f, to improve
DI from beginning on. Now we can actually realize it. In the fourth optimization
cycle seven updating points (now with corrected fsor) from 39 candidates are added.
All seven parameter settings yield in observations with good DI values, but none of
them improves the already observed optimum. On the one hand, the predictions still
indicate a possibility of improvement for a completely other setting. On the other
hand, the stopping criteria in Figure finally saturates after the fourth optimization
cycle, which indicates to stop the optimization now. Since we do not have many blanks
left and the optimization is distorted by the engineers mistake, we decide to proceed
with verification steps manually. We start with the evaluation of the current predicted
optimal setting. Luckily, the predicted optimal setting is good and yields improved
observations. DI is now 0.9513 and the refined predictions indicate still the capability
for better results. The next points are chosen according to the information of Table
containing the seven parameter settings with the best predicted DI values in decreasing
order based on the model refined with the one verification point. We summarize the
information from these seven points as follows: To get a good part that meets the
target values one should choose f; and vrbk as small as possible (i.e. f; = 1.5 and
vrbk = 0.92 here). The parameter k. should be set up small or medium sized (i.e.
-1 or 0). The upper values of ky;, (i.e. 0,1,2) improve the DI. The parameters eaqu
and rdw interact. Either eaqu has to be small (30) and rdw medium sized (10 or 15)
to get good results. Or one should set both parameters the largest possible (eaqu = 54

or 62 and rdw = 20). We derive four new verification points from this information.

The results in the design table show that all four settings have better DI values
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id of grid point | kp;n  rdw  eaqu  vrbk ke fs
13756 2 10 30 092 -1 1.5
12386 1 20 62  0.92 0 1.5
12381 1 20 62 0.92 -1 1.5
9136 0 20 54 0.92 0 1.5
8171 0 15 30 0.95 2 1.5

0

1

8131 15 30 092 -1 1.5
12256 20 54 092 -1 15

Table 6.7: Parameter settings with seven best predicted DI values for the spinning

process in decreasing order

than the observed optimum and the predicted optimum has the best DI of them.
Since, the fitted surrogate model does not suggest a better setting now and the total of
approximately 50 experiments is reached, we stop the optimization now. The optimal
part meets the target values (smin=2, dmax="73 and nt=96) very good. The thickness
smin does not exceed the target as it did in the motivating example. Although the DI
only improves from 0.9295 to 0.9720 between the first best part and the overall best
part, the quality changes a lot. The desirability functions are specified quite poorly, a
more appropriate specification, i.e. more conservative specification of nt, would show
a much larger improvement in quality. Maybe, a weighted desirability index would be
appropriate in this case. One could weigh the depth that is very liberal to deviations

less than the other two characteristics.

The case study shows the influence of the desirability functions. It is important to
specify them very carefully. The study further shows, that a sequential optimization
procedure has the advantage to deal with upcoming mistakes in the model. Of course,
some additional points and maybe also additional cycles are needed, but the mistake

is corrected and the optimum is finally found.
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Figure 6.4: Principle of necking-in using the sheet metal spinning process

6.2 Optimization of the diameter reduction of a tube

produced using necking-in with spinning

Subject of this case study is the optimization of the reduction of the diameter of
tubes using the sheet metal spinning technology that has already been subject of the
optimization in the previous section. The so-called necking-in with spinning can be
used to manufacture tubular products with varying diameter over the part’s length like
driveshafts or gas containers. In our case we examine a tube with a simple diameter
reduction. The principles of the process are shown on the left hand side of Figure
A tube with constant diameter is spanned between the tail stock and the spindel in the
spinning machine. The mandrel starts rotating and a roller tool incrementally reduces
the diameter of the desired region of the tube. The roller tool follows a path like the one
shown on the right hand side of Figure In contrast to the pot produced with the
spinning process in the previous section, the diameter reduction of the tube is formed
freely without a mandrel that determines the shape of the results. Typical failures of
this process are cracks in the corners of the machined region. During our optimization
however no failure occured. The quality of the machined region is measured by several
characteristics. Figure [6.5] shows a CAD model and the cross section of the formed
tube. The outer width wy comprises the whole machined region, whereas the inner
width w; represents the length of the region where the reduction of the diameter is the
achieved radial depth ¢t. For a better comparison of experiments for different geometries
usually the necking-in ratio (5 is measured instead of the depth ¢. The necking-in ratio

is defined as
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Figure 6.5: Quality characteristics to evaluate the diameter reduction

( = blank diameter D, / necked-in diameter d

The taper regions are described by the angle «; and the angle «s.
(2007) present an extensive examination of the influencing machine parameters like

spindel speed, feed rate, different process strategy, number of passes etc. on those
characteristics. Further, the deformation state, discoloration, disruptions, grooves and
buckling are examined. They determine active factors on the quality characteristics
with screening experiments and develop linear models to describe the basic functional
relationship between machine parameters and quality characteristics. The results reveal
that the geometry of the produced part does not fit with the targets of the geometry
that shall be reached. If the CNC code is programmed to form a part with angles of 45
degrees and an inner width of 35mm, the processed part will have angles and an inner
width that are different from the desired targets, depending on the chosen machine

parameter settings.

6.2.1 Subject of the case study and experimental setup

In this case study the subject is a necked-in tube that shall be used in gear boxes,
the chassis or as a drive shaft in automotive industry. The requirement of such a part
is that it meets the geometry very precisely because of the restricted space inside the
chassis or the gear box. The idea is to vary the input of the CNC programm such
that a desired outer geometry is reached. We want to find the setting of angles, inner
width and necking-in ratio that has to be coded to the CNC programm to get a part
that actually reaches desired target values of angles, inner width and necking-in ratio.

We do an optimization of four input geometry parameters aq, o, w; and § towards the
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quality characteristics target value

descent angle avjops 45 degrees

ascent angle agops 45 degrees

inner width w;gps 35mm

necking-in ratio SBups 1.5

design parameters 11 factor levels considered

descent angle oy 40, 43.5, 47, 50.5, 54, 57.5, 61, 64.5, 68, 71.5, 75
ascent angle as 40, 43.5, 47, 50.5, 54, 57.5, 61, 64.5, 68, 71.5, 75
inner width w; 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
necking-in ratio 3 1.4, 1.46, 1.52, 1.58, 1.64, 1.7, 1.76, 1.82, 1.88, 1.94, 2
machine parameters fized at value

path strategy see right hand side of Figure

roller tool symmetric roller tool with a radius of 8mm
number of passes 7

direction of the roller tool bidirectional

pitch 3

tailstock yes

blank tube

blank diameter 70mm

blank length 250mm

blank wall thickness 1.5mm

material 27TMnCrB

Table 6.8: Target values and parameter space of the necking-in optimization

target values for the corresponding achieved geometry values. To avoid confusion we
name the input parameters a;q, as, w; and 4 and name the quality characteristics of the
observed geometry avops, Q2obs, Wiohs aNd Bops. The target values for the achieved outer
geometry and the considered factor levels of the influencing parameters are given in
Table 6.8l The machine parameters are fixed for the optimization and set to reliable
settings for discoloration, buckling, disruption, deformation, chosen according to the
results of the screening experiments of Kunert et al. The fixed settings for the machine
parameters can also be found in Table [6.8 Additionally, it gives information about
the blank to be formed.
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6.2.2 Initial design and specified desirabilities

Altogether, this application is a target value optimization problem with four inputs
and four objectives. The four dimensional parameter space of the inputs is represented
by a point grid spanned over eleven factor levels per parameter, i.e. 11* = 14641 points.
For the whole optimization procedure a maximum number of 60 tubes was available.
We started with a fourth of the blanks, i.e. 15 experiments as the initial design. The 15
point initial design was determined space-fillingly with the uniform coverage criterion
from Section [2.2.3] The chosen initial design points and their experimental results are
displayed in the first 15 rows of Table

The last column of the table contains the joint desirability index of the four quality
characteristics. The currently best desirability index for each step is highlighted with
grey color. Figure shows the specified desirability functions for each characteristic.
All of them are two-sided Derringer-Suich desirability functions as defined in Equation
parameterized according to Table [6.10l The aim for all characteristics is to meet
the geometry as precise as possible such that it fits into the constructive requirements.
For the angles, as well as the inner width it makes no difference when the observed
values are below or above the target value, only the absolute deviation gets problem-
atic the larger it is. Therefore, the desirability functions are defined symmetrically,
deviations in all directions are equally penalized. In contrast, it is worse if the necking-
in ratio falls below the aimed target than if it exceeds the target. A necking-in ratio
below the target means the diameter in the machined region is too large. This is rarely
acceptable if the part shall fit in the provided constructive requirements. On the other
hand, a slightly larger diameter yields a better stiffness of the part which is of course
beneficial for every part that is exposed strong forces like gear parts or chassis. We
defined an asymmetric desirability function, that penalizes necking-in ratios that fall
below the target (i.e. necked-in diameter too large) faster and stronger than values
exceeding it (i.e. the part tends not to fit anymore but yields more stiffness). All de-
sirability functions were specified with the help of expert knowledge of engineers. The
engineers provided us with all specification limits and curtosis of the functions. Their
specified desirability functions were aggregated with the unweighted geometric mean
to a joint desirability index DI. Table shows that the best part among the initial
experiments already reaches a desirability index of 0.927512. The fact that we found a

quite good part at random among the first 15 experiments, simplifies and shortens the
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id  step w; oy op B Wiobs  Qlobs  Q20bs  Bobs DI
1 Initial 37 470 68.0 1.82 40.116 44.336 64.466 1.752 0.000000
2 Initial 31 47.0 68.0 1.88 36.346 44.386 65.956 1.818 0.000000
3 Initial 31 47.0 68.0 1.52 34.483 42.372 55.951 1.481 0.784844
4 Initial 36 68.0 50.5 1.52 39.498 53.857 46.587 1.480 0.745266
5 Initial 30 68.0 50.5 1.52 33.482 53.094 47.318 1.485 0.833043
6 Initial 29 47.0 50.5 1.88 33.402 44.869 49.124 1.809 0.792879
7 Initial 36 68.0 68.0 1.82 41.748 61.534 63.062 1.749 0.000000
8 Initial 37 575 71.5 1.46 40.011 48.112 52.406 1.424 0.676651
9 Initial 36 47.0 50.5 1.52 39.253 42.051 46.549 1.477 0.823559
10 Initial 30 50.5 47.0 1.52 33.188 44.665 44.136 1.482 0.927512
11  Initial 31 68.0 47.0 1.88 36.353 63.029 45.524 1.795 0.000000
12 Initial 30 68.0 68.0 1.82 36.338 62.765 64.784 1.765 0.000000
13 Initial 32 68.0 71.5 1.46 35.407 51.675 54.656 1.424 0.710951
14  Initial 36 64.5 470 1.88 41.358 60.215 45.828 1.794 0.000000
15 Initial 35 47.0 47.0 1.88 39.387 44.647 46.198 1.792 0.757240
16 Step 2 32 50.5 47.0 1.58 35.338 45.749 43.996 1.529 0.967669
17  Step 2 32 50.5 435 1.58 35.419 46.199 40.888 1.530 0.929059
18 Step 2 32 40.0 40.0 1.58 35.142 37.618 38.667 1.529 0.834656
19 Step 2 31 50.5 50.5 1.52 34.540 45.752 46.651 1.481 0.944306
20  Step 2 31 47.0 470 1.58 34.318 43.024 44.475 1.539 0.950238
21  Step 3 32 50.5 47.0 1.52 34.944 44.456 43.376 1.477 0.949759
22 Step 3 31 75.0 43.5 1.52 34.222 54.747 41.151 1.476 0.792572
23 Step 3 31 61.0 470 1.52 34.523 51.050 43.816 1.477 0.884666
24 Verif. 32 50.5 50.5 1.52 35.575 45.102 46.829 1.482 0.947153
25 Verif. 31 50.5 47.0 1.58 34.513 45.740 44.532 1.541 0.966055

26 Verif. 32 50.5 470 1.58 35308 45240 44.074 1.529 0.973921
mean(26,16) 32 50.5 47.0 1.58 35.323 45.495 44.035 1.529  0.970812

Table 6.9: Experiments and observations with the resulting desirability index DI for

the necking-in optimization
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Figure 6.6: Specified desirability functions for the quality characteristics in the necking-

in process optimization

characteristic LSL target USL 1 r

inner width w;ps 27 35 43  0.63 0.63
angle apps 30 45 60 0.55 0.55
angle aogps 30 45 60 0.55 0.55
necking-in ratio Bs | 1.2 1.5 2 1.5 0.63

Table 6.10: Parameters used to specify Derringer Suich desirability functions for the

quality characteristics in the necking-in process optimization
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optimization. Altogether, the goodness of the parts varies from very poor (0) to very
good (> 0.92).

6.2.3 Model selection

Like in the first case study, we try various Kriging models with different deterministic
trend component and differently parameterized power exponential covariance functions
for each objective separately. Isotropic and anisotropic power exponential covariance
functions with smoothness s=1 and s=2 are considered as covariance of the stochastic
process. For the deterministic trend component we fit the intercept p only and the
linear trend component consisting of all effects p + w; + a3 + as + 3. If one or more
effects in the linear trend component are not significant, we do a stepwise backwards
selection until we get a model where all effects are significant. An overview of all fitted
surrogate models and how we select the actual surrogate model is attached in Appendix
A4

Table summarizes the chosen models for every parameter. It gives the estimates
for all parameters after every optimization cycle. Note, that for all models the influ-
encing parameters are scaled to the interval [0, 1] before the models are fitted, because
the influencing parameters have quite different scales. The parameter estimates of the

initial surrogate models are shown in the third column.

6.2.4 Sequential optimization

To start the sequential optimization of the process, we now have to choose a param-
eterization of the « levels. As said before, this is an optimization problem with four
objectives and a four dimensional parameter space represented by 14641 grid points.
The computation time per optimization cycle shall be restricted to 10 hours, to run at
least one cycle per day. Therefore, we decide to choose five different confidence levels.
As suggested in Section we take the levels a € {0.01,0.1,0.5,0.7,0.9}.

Table summarizes the progress of the target value optimization. mtEGO needs
four cycles: the initial design, two sets of updating points,and a verification phase.
After every cycle of the procedure the optimum observed parameter setting with its
observations and desirability index DI and the optimum predicted point with all values
is noted. The optimum predicted point is that point that has the best DI value

among all predictions for all grid points of the parameter space predicted with the
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model component para- | estimator estimator estimator estimator
meter initial optimization | optimization | verification
design step 1 step 2 step
inner width w;
deterministic I 30.2 30.4 30.4 30.4
trend component w; 9.41 9.33 9.48 9.47
ag 1.69 1.59 1.26 1.22
16 2.83 2.83 3 2.95
power exponential 0 0.657 0 0 0
covariance function 0% 0.669 0.242 0.257 0.242
isotropic (s=2)
ascent angle oy
deterministic I 47.75 45.56 42.13 49.31
trend component
power exponential Oi 0.051 0.0193 0.037 0.4403
covariance function 0ot 1.662 2.965 0.963 2.391
anisotropic (s=2) 0.2 0.0025 3.865 3.487 7.373
03 1.527 0.959 0.719 1.693
o2 70.025 105.71 164.06 64.06
descent angle oy
deterministic I 41.87 45.54 44.13 46.37
trend component
power exponential 0 2.763 2.119 1.365 0.847
covariance function 0%, 1240.03 676.23 191.04 80.73
isotropic (s=2)
necking-in ratio [
deterministic 1 1.37 1.37 1.37 1.37
trend component 16 0.542 0.541 0.542 0.542
power exponential 0 0.725 4.7E-17 3.9E-17 0
covariance function 0% 0.0000983 0.000051 0.000045 0.000044

isotropic (s=2)

Table 6.11: Surrogate models
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w; o Qg ﬁ Wiobs A10bs Q20bs Bobs DI

optimum after initial design (points 1-15)

observed 30 50.5 47 1.52 33.188 44.665 44.136 1.582 0.9275
predicted 32 50.5 47 1.58 35.528 45.505 44.486 1.532 0.9697
optimum after optimization step 1 (points 1-20)

observed 32 50.5 47 1.58 35.338 45.749 43.996 1.529 0.9677
predicted 32 50.5 47 1.58 35.338 45.749 43.996 1.529 0.9677
optimum after optimization step 2 (points 1-23)

observed 32 50.5 47 1.58 35.338 45.749 43.996 1.529 0.9677
predicted 32 50.5 47 1.58 35.338 45.749 43.996 1.529 0.9677
optimum after optimization step 3 & verification (points 1-26)

observed 32 50.5 47 1.58 35.308 45.240 44.074 1.529 0.9739
predicted 32 50.5 47 1.58 35.308 45.240 44.074 1.529 0.9739

Table 6.12: Results of the sequential optimization for the necking-in process.

currently fitted model. After the initial step the observed optimal setting is w; =
30, a1 =50.5, a0 =47 and 3 =1.52. The observed results reach a desirability index of
0.9275, which is a really good result already. Though the predictions forecast that the
setting w; = 32, a1 = 50.5, ap = 47 and [ = 1.58 even reaches DI = 0.9697. The first
cycle of mtEGO suggests 13 candidates for the global optimum. With the help of the
dendrogram and scree plot (see first row of Figure the candidates are clustered in
four groups and representatives are chosen for each cluster. Additionally, the predicted
optimum point is added as updating point (see Table for the exact points). The
observed optimum among the 15 initial and 5 new updating points now is the previously
predicted optimum. The observations for this setting are only slightly worse than
predicted and have DI =0.9677. The DI has improved approximately 4.3%, where the
DI can improve approximately 7.8% at maximum (assuming the theoretical maximum
value of DI =1 can be reached with one of the parameter space grid points). The
predicted joint optimum now is the same setting as the already observed optimum.
Leaving the uncertainty aside, this means that according to the fitted model the found
optimum is the best point in the parameter space. The second cycle of mtEGO suggests

28 candidates, which are clustered in three groups after consulting the dendrogram and
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Figure 6.7: Cluster dendrograms and scree plots of the candidate sets for every opti-

mization cycle for the necking-in optimization
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Figure 6.8: Progress of the stopping criterion for the necking-in optimization

the scree plot again (cf. second row of Figure . Three representatives are chosen
and added to the design. The predicted optimum is already available and therefore not
added again. The observed and the predicted optimum after this second cycle are still
the same as after cycle 1. The recurring optimal points indicate to stop the algorithm
now. However, mtEGO is run a third time to determine the stopping criterion again.
Figure shows the progress of the criterion. The maximax criterion gets clearly
smaller and the meanimax criterion already saturates slightly. We could stop here, but
to be more certain about our results we decide to add more updating points. The third
cycle of mtEGO suggests only 8 candidates (also an indicator that we are close to the
end of the procedure). The dendrogram and scree plot show two cluster (third row of
Figure . Two representatives are added as updating points, which are the points
with second and third best DI and are the grid points in the parameter space next to
the found optimum. Actually, the twenty best points are all lying next to the found
optimum, which indicates that there is only one global optimum and no local optimum
of about the same size. The best DI is still our found optimum. Since our CNC machine
has been modified to be used for other experiments between optimization cycle 2 and
3 we add the found optimum once again to the design to assure the repeatability of
the experiments. The third optimization cycle becomes a verification step. The results
in Table verify what is already known. The found optimum stays the best point
and the other two settings also yield very good results. The replication of the optimal
parameter setting could now yield even better results and has an index of DI =0.9739
now. For the finally fitted models we took the average of the two replications of the
parameter setting that is noted below all other experiments in the design table. The

predicted optimum in the final models is again the observed optimum. The algorithm
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stops after finding the same optimal point for three steps and the stopping criterion is
saturating. The tube formed with the necking-in process could be optimized with the

help of mtEGO successfully within only 26 experiments.
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7/ Summary and outlook

In engineering processes the specification of optimization targets is usually reduced to
minimization or maximization problems. The specification of challenging multivariate
target structures is excluded, due to the lack of algorithms that are able to handle them.
Often however the optimum is a precise target instead of a minimum or maximum and
it would be helpful if the deviation from the target could be penalized asymmetrically.

In this thesis a new heuristic named mtEGO for multi-objective target value sequen-
tial optimization has been developed. A small initial space-filling design is used to
fit a surrogate model for each objective of the optimization problem. Based on the
predictions and prediction errors of the surrogate model for the whole parameter space
virtual observations with different (1 — «) confidence levels are constructed. These
virtual observations are used to roughly simulate the effect of the model uncertainty
on the capability of each setting in the parameter space to be the global optimum.
A transformation with desirability functions and the aggregation to a joint desirabil-
ity index turns the multi-objective target value problem in a simple single-objective
maximization problem. Improvements are determined for this single-objective max-
imization problem then, which are maximized to find the global optimum. mtEGO
therefore works in a hybrid way, which means for each combination of (1 — «) confi-
dence levels an own candidate for the global optimum is determined simultaneously.
The candidates are reduced to a small number of updating points using hierarchical
clustering. Finally, the model is refined with the observations from the updating points
and the algorithm proceeds to generate and add new updating points until the stopping
criterion is fulfilled.

In contrast to the existing approaches, mtEGO is not based on any distribution
assumptions and can be used with any kind of desirability function and desirability
index. For example one- and two-sided Harrington or Derringer-Suich desirabilities
can be used. In addition, the user can vary e.g. between the weighted and unweighted

geometric mean as the desirability index. This enables a precise specification of the
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optimization target according to the users requirements.

The mtEGO algorithm was validated successfully by means of extensive simulation
studies and two case studies from mechanical engineering. Beside the fact that the
two case studies demonstrate the applicability of mtEGO to real applications, they
show that mtEGO even works successfully if basic conditions change in an ongoing
optimization process. Another benefit of the mtEGO approach for real applications is
the fact that it permits to update the model with several points at the same time in
each step. If real experiments are performed, it is economically not reasonable to start
the whole machine and e.g. code a CNC programme for only one experiment.

Further, an improved variant of mtEGO,named mtEGOimp, was developed. It does
a pre-selection of reasonable confidence levels before cross-combining them. As a con-
sequence, the computation time of the mtEGO approach is strongly reduced, which
relaxes time limitations. The incorporation of a convex hull restriction method for
failure points and an imputation of missing values into the mtEGO approach, finally
extends it to a powerful tool for optimization problems even in the presence of unknown
constraints.

Nevertheless, the mtEGO approach suffers from the following weak points.

e [f the optimum to be found is lying on a kind of flat hill, the algorithm has
problems to locate the optimum precisely. Likewise, the algorithm has problems
to locate optima that lie on the boundary of the parameter space, particularly
if they lie on the boundary of an unknown constraint. These problems are a
consequence of constructional principles and it is necessary to insert some kind

of special rules to solve them.

e In some cases the satisfaction of the stopping criterion is hard to recognize for
an unexperienced user. One should aim for a clearer stopping criterion that is a

measure that has to exceed or underrun a ceratin threshold.

e The automatized choice of the number of clusters sometimes fails. To recognize
the failure of the criterion is another challenge for an unexperienced user. Other
criteria that are more precise should be developed here, eventually including some

cooling scheme that permits to take less updating points the closer the target is.

e The pre-selection of the « levels used for the confidence intervals in mtEGOimp

is currently done identically for the whole parameter space. Actually, the differ-
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ent regions of uncertainty in the parameter space usually could permit different
selections of levels and the reduction could hence be more efficient. However, a

separation of the regions of uncertainty is currently not available.

The weak points listed before are a good starting point for future work. To better
evaluate future criteria for the automatic choice of clusters or future stopping criteria
it would be reasonable to develop a representative suite of test problems especially for
target-value optimization problems. On the basis of this new test suite further research
on different initial designs, different parameterizations, improved stopping criteria, and
different cluster methods could be done. Particularly, the exemplary advanced test
problems, could be evaluated with a representative test suite to examine the properties

of the mtEGO approach in such situations more precisely.
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A Appendix

A.1 Proofs for Step 3.C.1 of mtEGO

In Step 3.C.1 of mtEGO it is stated that if the point with the currently best prediction
has not already been observed, it is the candidate for the desirability index of the
pure predictions and hence included in the set of candidates. If it equals the current
observed optimum, no candidate is suggested for this single desirability index and the

point is not included in the final candidate set.

Suppose x is the parameter space and x* € y is the point with the current best
prediction. Let further x.y.,x be the currently observed optimal point, which means
Dj<xcuropt) - D]mam‘

Part 1:
The point with the best prediction maximizes the improvement values of the desirability
index of these pure predictions.

If x* is the point with the best predictions

DI(xz*) > DI(x) Vo e x
= DI(z*) — DIpay > DI(x) — Dl Yz € x
= I(z*) > I(z) Vo € x

& z¥is the point with the best improvement value.

Part 2:
If the best prediction is exactly the already observed current optimum, i.e. * = Zcyropt,
no point is suggested as a candidate for the desirability index of the pure predictions.
DI(z*) = DI(Zcuropt)
< DI(x*) — Dlppar = 0 = DI(Teuropt) — Do
& I(z*) = 0 = I(Teuropt)
And since it was shown in part 1 of the proof, that I(z*) > I(x) Vo € Y, here
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I(zx) = I(x) = 0 Yz € x. That means no point could improve the current results

and hence no candidate is suggested.
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A.2 Cluster dendrograms and scree plots of the
candidate sets for each optimization step during

the sheet metal spinning optimization
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A.3 Model selection for the initial surrogate model of

the sheet metal spinning optimization

Various Kriging models with different deterministic trend components and differently
parameterized power exponential covariance functions are fitted for each objective sepa-
rately. Isotropic and anisotropic power exponential covariance functions with smooth-
ness s=1 and s=2 are considered as covariance of the stochastic process. For the
deterministic trend component we fit the intercept p only and the linear trend com-
ponent consisting of all effects u + kpip, + rdw + eaqu + vrok + kpuer + fs. Depending
on the significance of the effects in the linear choice for the trend component, we do
a stepwise backwards selection until we get a model where all effects are significant.
The different models with their corresponding number of estimated parameters, BIC
and MSCVE values can be found in the tables below. In all three tables one can find
NA’s for the MSCVE values. When calculating the MSCVE one design point after
another is taken away and the same model specification is fitted to the subset of the
design. The difference of the prediction of the design point taken aside beforehand and
its actually observed value is summarized to the MSCVE (for more details see Section
. For the model specifications where NA is written it was not possible to fit the
given model specification for one or several of the design subsets, because of problems
during the estimation of the covariance parameters. The certain model specification
seems maybe appropriate for the whole design, but not for a subset of the design. It
is not appropriate to use these models for the optimization, since it is very uncertain
if the model is good after refining it with updating points in the next steps and it is
advisable to avoid too many model changes between the optimization steps. These
models are only listed in the tables for the sake of completeness. The models with
the best (smallest) BIC values and smallest MSCVE are bold in the table. The model
highlighted with the grey background is the one finally chosen as the surrogate model

for the optimization procedure.
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Surrogate models considered for the maximum cup diameter dmaz

deterministic Power exponential | # parameters | MSCVE | BIC
trend function covariance function

isotropic (s=1) 3 7.52 39.1

i isotropic (s=2) 3 12.3325 | 40.1

anisotropic (s=1) 8 14.8 41.6

anisotropic (s=2) 8 18.7418 | 47.1

isotropic (s=1) 9 9.57323 | 19.2

i+ kpin + rdw + eaqu+ isotropic (s=2) 9 8.51797 | 19.2

+orbk 4+ kpyer + [ anisotropic (s=1) 14 NA 31.6

anisotropic (s=2) 14 9.13527 | 214

The cup diameter damx is modeled best with the linear deterministic trend component
W+ kpin +rdw + eaqu+ vrbk + ko + fs and an isotropic power exponential covariance
function with smoothness s = 2. The same model specification with smoothness s = 1
yields the same minimum BIC values, but worse MSCVE values. Hence, we decide
for the smoother version with better MSCVE values. The best MSCVE value has the
simple ordinary Kriging model with only the intercept as trend component. However,
it has clearly worse BIC values, that do not compensate the fewer number of unknown

parameters.

Surrogate models considered for the cup depth nt

deterministic Power exponential | # parameters | MSCVE | BIC
trend function covariance function

isotropic (s=1) 3 404.392 | 102.2

i isotropic (s=2) 3 251.827 | 97.6

anisotropic (s=1) 8 425.367 | 103.6

anisotropic (s=2) 8 565.689 | 99.2

isotropic (s=1) 9 184.295 | 44.6

1+ kpin + rdw + eaqu+ isotropic (s=2) 9 184.295 | 44.6

+orbk + kpyer, + [ anisotropic (s=1) 14 172.705 | 57.1

anisotropic (s=2) 14 NA 53.1
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For the cup depth nt the Kriging model with the linear deterministic trend component
i+ kpin + rdw + eaqu + vrbk + kp + fs yields far better results then the ordinary
Kriging model using only the intercept as trend component. The BIC value is best for
an isotropic power exponential covariance function whatever smoothness is used. The
MSCVE value is minimum fitting an anisotropic power exponential covariance function
with smoothness s = 1. Due to the idea to use as few unknown parameters as possible
but as smooth functions as possible, we decide to model nt by means of an isotropic

power exponential covariance function with smoothness s = 2.

Surrogate models considered for the sheet thickness smin

deterministic Power exponential | # parameters | MSCVE | BIC
trend function covariance function
isotropic (s=1) 3 0.247 0.2
i isotropic (s=2) 3 0.0688 -12
anisotropic (s=1) 8 NA -0.9
anisotropic (s=2) 8 NA -16.4
isotropic (s=1) 9 0.06468 | -18
i+ kpin + rdw + eaqu+ isotropic (s=2) 9 0.09146 | -20.1
+orbk + kpyer + [ anisotropic (s=1) 14 0.24446 | -7.6
anisotropic (s=2) 14 NA -7.6

The Kriging model with the linear deterministic trend component p + kp; + rdw +
eaqu + vrbk + k... + fs and an isotropic power exponential covariance function yields
the best model fit. The MSCVE value is minimum using a smoothness value of s = 1.
The BIC value is minimum using a smoothness value of s = 2. Since, there are no more
differences between the two models but the smoothness, we decide for the smoother

model with s = 2.
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A.4 Model selection for the initial surrogate model of

the necking-in optimization

This subsection gives an insight in the model selection procedure for surrogate model
for the necking-in optimization. For the necking-in optimization the same models are
fitted as for the optimization of the sheet metal spinning process. Further, the selec-
tion of the appropriate model and the comments on the problems with the MSCVE
values for the necking-in case study are the same as for the sheet metal spinning case
study (cf. Appendix . We again fit various Kriging models with different de-
terministic trend component and differently parameterized power exponential covari-
ance functions for each objective separately. For the deterministic trend component
we fit the intercept p only and the linear trend component consisting of all effects
W+ kpin + rdw 4 eaqu + vrbk + ke + fs. Depending on the significance of the effects
in the linear choice for the trend component, we do a stepwise backwards selection
until we get a model where all effects are significant. The different models with their
corresponding number of estimated parameters, BIC and MSCVE values can be found
in the tables below. In all three tables one can find NA’s for the MSCVE values.
When calculating the MSCVE one design point after another is taken away and the
same model specification is fitted to the subset of the design. The difference of the
prediction of the design point taken aside beforehand and its actually observed value is
summarized to the MSCVE (for more details see Section [2.3.4). For the model specifi-
cations where NA is written it was not possible to fit the given model specification for
one or several of the design subsets, because of problems during the estimation of the
covariance parameters. The certain model specification seems maybe appropriate for
the whole design, but not for a subset of the design. It is not appropriate to use these
models for the optimization, since it is very uncertain if the model is good after refining
it with updating points in the next steps and it is advisable to avoid too many model
changes between the optimization steps. These models are only listed in the tables for
the sake of completeness. The models with the best (smallest) BIC values and smallest
MSCVE are bold in the table. The model highlighted with the grey background is the

one finally chosen as the surrogate model for the optimization procedure.
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Surrogate models considered for the inner width w;

deterministic Power exponential | # parameters | MSCVE | BIC
trend function covariance function

I isotropic (s=1) 3 15.61 | 62.8

o isotropic (s=2) 3 9.27 51.3

i anisotropic (s=1) 6 17.19 | 47.6

i anisotropic (s=2) 6 13.38 | 50.1

W+ w; +ap+ay+ 3 isotropic (s=1) 7 6.84 24.2

w+w; +aq + 0 isotropic (s=1) 6 7.84 26.2

A+ w; + a1 +as+ 5 isotropic (s=2) 7 6.57 | 23.2

w4 w; +oq + B isotropic (s=2) 6 7.48 25.4

i+ w; +aq +ax+ [ | anisotropic (s=1) 10 NA 26.6

i1+ w; +ag +as + [ | anisotropic (s=2) 10 NA 29.1

pAw; + oy + 3 anisotropic (s=2) 9 NA 31.3

For the inner width w; a Kriging model with the linear deterministic trend component
i+ w; + a; + as + B and an isotropic power exponential covariance function with
smoothness s = 2 yields the best MSCVE and BIC values. However, in this model the
factor ay is not significant. Using a deterministic trend component without ay, i.e. the
trend component is p + w; + a3 + § yields almost as good MSCVE and BIC values.
Since this reduced model has one parameter less, we choose it instead of the full model.
Ordinary Kriging models with only the intercept as trend component or anisotropic

covariance functions have clearly worse MSCVE and BIC values.
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Surrogate models considered for the angle o,

deterministic Power exponential | # parameters | MSCVE | BIC
trend function covariance function

i isotropic (s=1) 3 139.56 | 91.6

o isotropic (s=2) 3 27.73 | 77.6

i anisotropic (s=1) 6 24.01 | 70.6

o anisotropic (s=2) 6 9.73 59.4

A+ w; +a;+ay+ 0 isotropic (s=1) 7 83.26 50.5

p+w; +oq + 3 isotropic (s=1) 6 89.05 | 54.7

pw+ag+ 0 isotropic (s=1) 5 76.47 | 55.9

p+w; +ag +as+ 5 isotropic (s=2) 7 39.59 | 45.8

pA4w; +oq + 3 isotropic (s=2) 6 50.11 | 51.9

w4+ o+ 3 isotropic (s=2) 5 288.3 | 57.1

i+ w; +aq +ay+ G| anisotropic (s=1) 10 19.51 40.8

P+ w; 4+ oq + B anisotropic (s=1) 9 17.18 | 42.1

w4 oy + 0 anisotropic (s=1) 8 14.12 | 43.6

i+ w; +aq +ay+ G| anisotropic (s=2) 10 NA 37.5

w4 w; +ap+ 4 anisotropic (s=2) NA 35.5

A+ aq + 3 anisotropic (s=2) NA 48.2

With respect to the BIC values, the angle «; could be modeled best with a linear

trend component and anisotropic covariance function with s = 2, but here the de-

termination of the MSCVE values is problematic and the models should rather be
avoided. The best BIC value without having troubles when determining the MSCVE

values is reached for the model with the linear trend component p + w; + a1 + as + 8

and anisotropic covariance function with smoothness s = 1.

In contrast, the ordi-

nary Kriging model with trend component p and anisotropic covariance function with

s = 2 has a much better MSCVE value and medium BIC value. Having only about

half of the parameters than the previous model, we use this model for the optimization.
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Surrogate models considered for the angle o,

deterministic Power exponential | # parameters | MSCVE | BIC
trend function covariance function

i isotropic (s=1) 3 198.18 | 93.8

o isotropic (s=2) 3 7.41 | 78.6

o anisotropic (s=1) 6 NA 71.7

i anisotropic (s=2) 6 136.70 | 67.9

W+ w; +a;+ay+ 3 isotropic (s=1) 7 149.1 57.2

p+w; + oo+ 3 isotropic (s=1) 6 141.9 | 62.3

w+ag+ 0 isotropic (s=1) 5 1525 | 67.1

A+ w; + a1 +as+ 5 isotropic (s=2) 7 NA 43.8

A+ w; + g+ 3 isotropic (s=2) 6 6.06 | 53.3

W+ as+ 03 isotropic (s=2) 5 20.78 61.1

JT e isotropic (s=2) 4 16.60 69

i+ w; +aq +ay+ [ | anisotropic (s=1) 10 NA 46.2

A4 w; +as+ anisotropic (s=2) 9 NA 69.8

w+as+ 0 anisotropic (s=1) 8 NA 49.3

4 w; + a1 +ax+ [ | anisotropic (s=2) 10 NA 41.5

w4 w; +as+ 3 anisotropic (s=2) NA 44.1

w4 as+ 03 anisotropic (s=2) NA 48.1

JT e anisotropic (s=2) NA 55.9

For angle oy the determination of the MSCVE values is not possible for half of the

different fitted models. We concentrate on those models where it was possible. Among

these models the linear trend component p+ w; + as + 3 and isotropic covariance func-
tion with s = 2 reaches the best BIC and MSCVE values. However, in this model the

factors w; and [ are not significant. The models that use a reduced trend component

have much worse goodness of fit and the larger model is even excluded because its

MSCVE value is not available. Therefore, we choose the ordinary Kriging model with

isotropic covariance function with s = 2 instead. This model has only a little bit worse

MSCVE value, a medium sized BIC value and uses the fewest parameters within all

models.
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Surrogate models considered for the necking-in ratio (3

deterministic Power exponential | # parameters | MSCVE | BIC
trend function covariance function

i isotropic (s=1) 3 0.0303 -20

o isotropic (s=2) 3 0.000124 | -67.9

i anisotropic (s=1) 6 0.001477 | -72.3

i anisotropic (s=2) 6 0.003659 | -66.4

A+ w; +a;+ay+ 0 isotropic (s=1) 7 0.000682 | -66.6
p+w; + o+ 3 isotropic (s=1) 6 0.000712 | -74
w+w; + 3 isotropic (s=1) 5 0.000682 | -79.5

w8 isotropic (s=1) 4 0.000674 | -85.3

A+ w; +ap+ay+ 3 isotropic (s=2) 7 NA -67.8
p+w; 4o + 3 isotropic (s=2) 6 0.000718 | -75

w4 w; + 3 isotropic (s=2) 5 0.000661 | -80.5

p+ B isotropic (s=2) 4 0.000632 | -86.5

i+ w; + oy +ay+ G| anisotropic (s=1) 10 NA -66.1

p+w; +as+ 3 anisotropic (s=1) 0.000908 | -75.8

w4 w; + 3 anisotropic (s=1) 8 0.10032 | -81.6

i+ w; +aq +ay+ G| anisotropic (s=2) 10 NA -72.8

The model with the smallest MSCVE value for 3 is the ordinary Kriging model with

isotropic covariance function with s = 2. This is actually also the simplest model fitted

and would be the most preferred one. The Kriging model using the trend component

i+ (8 and same covariance function reaches only a slightly worse MSCV error, but

much better BIC value. Since it has only one additional parameter and the estimators

of the parameters indicate that the observed necking-in ratio (3, is mainly influenced

by the input § and the effect from the stochastic component is very small, we prefer

this model.
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A.5 Progress of candidates and updating points for the

different parameterizations of « in Section 4.2

MOSI
global optimum: 6.47

a’s cycle # of currently currently model relmax— global # of location
design observed predicted fit imax optimum upda- of updatings
points optimum optimum found? tings

1 1 5 6 8.02 bad 0.118 not found 2 ok
2 7 6 6.64 better 0.204 approaching opt 3 ok
3 10 6.64 6.47 ok 0.04 opt close 4 ok
4 14 6.47 6.47 ok 0.025 opt found stop ok
2 1 5 6 8.02 bad 0.137 not found 4 ok
2 9 6 6.54 better 0.171 approaching opt 4 ok
3 13 6.47 6.47 ok 0.028 opt found 3 ok
4 16 6.47 6.47 ok 0.025 opt found stop ok
3 1 5 6 8.02 bad 0.207 not found 3 ok
2 8 2.75 6.5 better 0.156 local opt close 4 ok
3 12 6.5 6.47 ok 0.031 global opt close 3 ok
4 15 6.47 6.47 ok 0.025 opt found stop ok
4 1 5 6 8.02 bad 0.207 not found 6 ok
2 11 6.32 6.53 better 0.072 approaching opt 3 ok
3 14 6.53 6.47 ok 0.03 opt close 3 ok
4 17 6.47 6.47 ok 0.023 opt found stop ok
5 1 5 6 8.02 bad 0.16 not found 7 ok
2 12 6.32 6.5 better 0.069 approaching opt 4 ok
3 16 6.5 6.47 ok 0.027 opt close 3 ok
4 19 6.47 6.47 ok 0.023 opt found stop ok
6 1 5 6 8.02 bad 0.207 not found 3 ok
2 8 2.75 6.63 better 0.153 local opt close 3 ok
3 11 6.63 6.47 ok 0.039 global opt close 3 ok
4 14 6.47 6.47 ok 0.028 opt found stop ok
7 1 5 6 8.02 bad 0.159 not found 5 ok
2 10 6.32 6.51 better 0.076 approaching opt 3 ok
3 13 6.51 6.47 ok 0.029 opt close 3 ok
4 16 6.47 6.47 ok 0.024 opt found stop ok
8 1 5 6 8.02 bad 0.159 not found 4 ok
2 9 2.74 6.52 better 0.141 local opt close 3 ok
3 12 6.52 6.47 ok 0.032 global opt close 4 ok
4 16 6.47 6.47 ok 0.022 opt found stop ok
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VLMOP2
global optimum: (0,0)

a’s cycle # of currently currently model relmazr— global # of location
design observed predicted fit imax optimum upda- of updatings
points optimum optimum found? tings

1 1 5 (0.8,1.8) (0.85,-2) bad 0.592 not found 3 clumping

1 2 8 (0.9,1.7) (-0.05,-0.2) better 0.419 approaching opt 6 few clumping

1 3 14 (-0.05,-0.2) (0.15,0) moderate 0.176 approaching opt 6 few clumping

1 4 20 (0.15,0) (0.1,-0.1) moderate 0.133 opt close 5 ok

1 5 25 (0.1,-0.1) (0.05,-0.05) ok 0.105 opt close stop

2 1 5 (0.8,1.8) (0.85,-2) bad 0.594 not found 4 ok

2 2 9 (0,-1.05) (0.15,-0.15) better 0.378 approaching opt 6 clumping

2 3 15 (0.15,-0.15) (0.15,-0.15) moderate 0.124 stagnation 8 clumping

2 4 23 (0.1,-0.1) (0.1,-0.1) ok 0.108 opt close 4 few clumping

2 5 27 (0.1,-0.1) (0.1,-0.1) ok 0.107 opt close stop

3 1 5 (0.8,1.8) (0.85,-2) bad 0.595 not found 7 few clumping

3 2 12 (-0.05,-0.6) (0.25,-0.05) better 0.317 approaching opt 5 ok

3 3 17 (0.25,-0.1) (0.05,-0.05) ok 0.141 opt close 4 good

3 4 21 (0.05,-0.05) (0,0) ok 0.091 opt very close 6 good

3 5 27 (0,0) (0,0) good 0.074 opt found stop

4 1 5 (0.8,1.8) (0.85,-2) bad 0.595 not found 5 few clumping

4 2 10 (0.8,1.8) (-0.05,-0.25) better 0.392 approaching opt 6 clumping

4 3 16 (0.15,-0.05) (0.1,-0.1) ok 0.134 opt close 6 few clumping

4 4 22 (0.1,-0.1) (0,0) ok 0.113 opt close 5 ok

4 5 27 (0,0) (0,0) good 0.091 opt found stop

5 1 5 (0.8,1.8) (0.85,-2) bad 0.595 not found 5 ok

5 2 10 (0,-1.05) (0.15,-0.2) better 0.384 approaching opt 6 few clumping

5 3 16 (0.2,-0.1) (0.15,-0.15) ok 0.139 opt close 10 ok

5 4 26 (0.05,0.05) (0,0) ok 0.106 opt very close 5 good

5 5 31 (0,0) (0,0) good 0.086 opt found stop

6 1 5 (0.8,1.8) (0.85,-2) bad 0.595 not found 6 clumping

6 2 11 (0,-1.05) (0.15,-0.15) better 0.331 approaching opt 6 few clumping

6 3 17 (0.15,-0.15) (0.05,-0.05) ok 0.13 opt close 6 good

6 4 23 (0,0) (0,0) good 0.096 opt found 9 ok

6 5 32 (0,0) (0,0) very good 0.071 opt found stop

7 1 5 (0.8,1.8) (0.85,-2) bad 0.595 not found 5 ok

7 2 10 (0.8,1.8) (0.1,-0.15) better 0.364 approaching opt 5 good

7 3 15 (0.1,-0.15) (0.2,-0.15) ok 0.132 opt close 5 good

7 4 20 (0.1,-0.15) (0.05,0) good 0.114 opt close 6 good

7 5 26 (0,0.05) & (0,0) very good 0.071 opt very close 4 good
(0.05,0)

7 6 30 (0,0) (0,0) very good 0.065 opt found stop

8 1 5 (0.8,1.8) (0.85,-2) bad 0.595 not found 6 ok

8 2 11 (-0.2,-1.15) (0.1,-0.2) ok 0.361 approaching opt 5 good

8 3 16 (0.1,-0.2) (0.05,0) good 0.138 opt close 4 good

8 4 20 (0,0) (-0.05,0.05) very good 0.096 opt very close 5 good

8 5 25 (0,0) (0,0) very good 0.084 opt found stop
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VLMOP3
global optima: (0.6,-2.5) & (2.5,0.4)

a’s cycle # of currently currently model relmax— global # of location
design observed predicted fit imax optima upda- of updatings
points optimum optimum found? tings

1 1 5 (1.8,-1.5) (0.6,-3) bad 5.151 not found 2 clumping
1 2 7 (0.6,-3) (0.6,-1.9) better 3.973 approaching one opt 5 clumping
1 3 12 (0.6,-3) (0.5,-2.5) moderate 2.776 one opt close 7 few clumping
1 4 19 (0.5,-2.5) (0.5,-2.5) ok 0.337 one opt quasi found 6 ok
1 5 25 (0.5,-2.5) (0.6,-2.5) good 0.291 one opt quasi found, stop
second close
2 1 5 (1.8,-1.5) (0.6,-3) bad 5.83 not found 5 few clumping
2 2 10 (0.3,-3) (0.5,-2.4) better 2.452 approaching one opt 5 clumping
2 3 15 (0.5,-2.4) (0.5,-2.6) moderate 0.856 one opt close 6 few clumping
2 4 21 (0.5,-2.6) (0.5,-2.5) ok 0.424 one opt close 6 ok
2 5 27 (0.5,-2.5) (0.6,-2.5) good 0.265 one opt quasi found 4 ok
2 6 31 (0.6,-2.5) (0.6,-2.5) good 0.219 one opt found, stop
second close
3 1 5 (1.8,-1.5) (0.6,-3) bad 5.873 not found 5 few clumping
3 2 10 (0.6,-3) (0.5,-2.5) better 3.216 approaching one opt 8 ok
3 3 18 (0.5,-2.5) (3,0.5) moderate 0.346 one opt close 4 good
3 4 22 (0.5,-2.5) (0.5,-2.5) ok 0.318 one opt quasi found, stop
second close
4 1 5 (1.8,-1.5) (0.6,-3) bad 5.873 not found 5 ok
4 2 10 (0.6,-3) (0.5,-2.2) better 3.198 approaching one opt 7 few clumping
4 3 17 (0.5,-2.2) (0.4,-2.6) moderate 2.29 one opt close 9 ok
4 4 26 (0.4,-2.6) (0.5,-2.5) ok 0.362 one opt close 6 good
4 5 32 (0.5,-2.5) (0.6,-2.5) good 0.265 one opt quasi found 4 good
4 6 36 (0.6,-2.5) (0.6,-2.5) good 0.222 one opt found, stop
second close
5 1 5 (1.8,-1.5) (0.6,-3) bad 5.872 not found 10 ok
5 2 15 (0.6,-3) (0.5,-2.5) better 2.791 approaching one opt 6 good
5 3 21 (0.5,-2.5) (0.5,-2.5) ok 0.308 one opt close 6 good
5 4 27 (0.6,-2.5) (0.6,-2.5) good 0.324 one opt quasi found, stop
second close
6 1 5 (1.8,-1.5) (0.6,-3) bad 5.873 not found 8 ok
6 2 13 (0.6,-2.3) (0.5,-2.6) better 2.231 approaching one opt 7 ok
6 3 20 (0.5,-2.6) (0.5,-2.5) ok 0.595 one opt close 9 good
6 4 29 (0.5,-2.5) (0.6,-2.5) ok 0.336 one opt quasi found 5 good
6 5 34 (0.6,-2.5) (3,0.5) good 0.275 one opt found, stop
second close
7 1 5 (1.8,-1.5) (0.6,-3) bad 5.874 not found 7 ok
7 2 12 (0.8,-2.7) (0.7,-2.3) better 2.364 approaching one opt 7 good
7 3 19 (0.8,-2.3) (3,1) ok 1.016 approaching opt 5 good
7 4 24 (0.7,-2.4) (0.6,-2.5) good 0.446 one opt close 4 very good
7 5 28 (0.6,-2.5) (0.6,-2.5) very good 0.278 one opt found, stop
second close
8 1 5 (1.8,-1.5) (0.6,-3) bad 5.874 not found 5 ok
8 2 10 (0.6,-3) (0.6,-2.4) better 3.292 approaching one opt 4 good
8 3 14 (0.6,-2.4) (0.8,-2.4) ok 0.671 one opt close 5 good
8 4 19 (0.8,-2.4) (0.6,-2.5) good 0.418 one opt close 3 very good
8 5 22 (0.6,-2.5) (2.5,0.3) very good 0.257 one opt found, stop
second close
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VLMOP3Bound

global optimum: (2.5,0.4)

a’s cycle # of currently currently model relmax— global # of location
design observed predicted fit imax optimum upda- of updatings
points optimum optimum found? tings

1 1 5 (1.8,-1.5) (0.7,-2) bad 5.17 not found 2 clumping
1 2 7 (1.8,-1.5) (1.4,-1.1) better 4.179 not found 6 clumping
1 3 13 (1.8,-1.5) (1.7,-1.3) moderate 2.693 not found 5 clumping
1 4 18 (1.8,-1.5) (1.3,-2) moderate 2.201 not found 5 clumping
1 5 23 (1.3,-2) (1.2,-2) ok 1.228 not found 4 clumping
1 6 27 (1.3,-2) (2.5,0.1) ok 1.172 approaching opt 4 ok

1 7 31 (2.5,0.1) (2.5,0.4) good 0.474 opt close 4 ok

1 8 35 (2.5,0.4) (2.5,0.4) good 0.289 opt found stop

2 1 5 (1.8,-1.5) (0.7,-2) bad 5.851 not found 5 few clumping
2 2 10 (1.8,-1.5) (1.8,-0.7) better 3.332 not found 8 clumping
2 3 18 (1.8,-1.5) (1.3,-2) moderate 2.178 not found 5 clumping
2 4 23 (1.3,-2) (1.2,-2) moderate 1.281 not found 5 few clumping
2 5 28 (1.3,-2) (2.5,0.2) ok 1.226 approaching opt 4 ok

2 6 32 (2.5,0.2) (2.5,0.4) ok 0.329 opt close 4 ok

2 7 36 (2.5,0.4) (2.5,0.4) good 0.266 opt found stop

3 1 5 (1.8,-1.5) (0.7,-2) bad 5.898 not found 5 ok

3 2 10 (1.8,-1.5) (1.7,-1.2) better 5.187 not found 8 ok

3 3 18 (1.8,-1.5) (1.5,-1.6) moderate 2.65 not found 5 good

3 4 23 (1.8,-1.5) (2.5,0.2) moderate 2.127 approaching opt 5 good

3 5 28 (2.5,0.2) (2.5,0.2) ok 0.325 opt close 4 good

3 6 32 (2.5,0.2) (2.5,0.2) ok 0.308 opt close stop

4 1 5 (1.8,-1.5) (0.7,-2) bad 5.898 not found 5 ok

4 2 10 (1.8,-1.5) (1.8,-1.1) better 3.376 not found 6 few clumping
4 3 16 (1.8,-1.5) (2.5,-0.3) moderate 2.183 approaching opt 8 ok

4 4 24 (2.5,-0.3) (2.5,0) ok 0.943 approaching opt 4 good

4 5 28 (2.5,0) (2.5,0.2) good 0.427 opt close 4 good

4 6 32 (2.5,0.2) (2.5,0.2) good 0.269 opt close 4 very good
4 7 36 (2.5,0.2) (2.5,0.2) good 0.258 opt close stop

5 1 5 (1.8,-1.5) (0.7,-2) bad 5.898 not found 5 ok

5 2 10 (1.8,-1.5) (1.6,-1.1) better 3.512 not found 10 few clumping
5 3 20 (2.5,0.6) (2.5,0.4) moderate 0.379 opt close 5 good

5 4 25 (2.5,0.4) (2.5,0.4) ok 0.284 opt found 3 good

5 5 28 (2.5,0.4) (2.5,0.4) good 0.267 opt found stop

6 1 5 (1.8,-1.5) (0.7,-2) bad 5.898 not found 5 ok

6 2 10 (1.8,-1.5) (1.7,-1.2) better 5.243 not found 6 ok

6 3 16 (1.8,-1.5) (1.6,-1.6) moderate 3.295 not found 5 good

6 4 21 (1.8,-1.5) (1.3,-1.8) moderate 2.715 not found 8 good

6 5 29 (1.3,-1.8) (2.5,0.3) ok 1.597 approaching opt 8 very good
6 6 37 (2.5,0.3) (2.5,0.3) good 0.243 opt quasi found 3 very good
6 7 40 (2.5,0.3) (2.5,0.3) good 0.233 opt quasi found stop

7 1 5 (1.8,-1.5) (0.7,-2) bad 5.898 not found 5 ok

7 2 10 (1.8,-1.5) (1.6,-1.2) better 3.456 not found 5 ok

7 3 15 (1.8,-1.5) (1.4,-1.8) moderate 2.291 not found 4 good

7 4 19 (1.4,-1.8) (2.5,-0.3) ok 1.805 approaching opt 4 good

7 5 23 (2.5,-0.3) (2.5,0.3) ok 0.862 approaching opt 4 very good
7 6 27 (2.5,0.3) (2.5,0.3) good 0.269 opt quasi found 4 very good
7 7 31 (2.5,0.3) (2.5,0.3) good 0.254 opt quasi found stop

8 1 5 (1.8,-1.5) (0.7,-2) bad 5.898 not found 5 few clumping
8 2 10 (1.8,-1.5) (1.5,-1.2) better 3.381 not found 8 very good
8 3 18 (1.8,-1.5) (2.5,0.3) ok 2.062 approaching opt 4 very good
8 4 22 (2.5,0.3) (2.5,0.3) ok 0.326 opt quasi found 3 very good
8 5 25 (2.5,0.3) (2.5,0.3) ok 0.316 opt quasi found stop




164 Appendix A. Appendix
DTLZ1
global optima: (0.8,0.1) & (0.8,0.9)

a’s cycle # of currently currently model relmax— global # of location
design observed predicted fit imax optima upda- of updatings
points optimum optimum found? tings

1 1 4 (1,0.4) (0.8,0.6) bad 2.993 not found 2 ok
1 2 6 (1,0.4) (0.9,0) bad 2.836 approaching 1.opt 7 ok
1 3 13 (1,0.4) (0.7,0.2) moderate 3.139 1.opt close 5 ok
1 4 18 (0.8,0) (0.8,1) moderate 3.085 l.opt quasi found 4 ok
1 5 22 (0.9,0.1) (0.8,0.1) ok 2.385 1l.opt quasi found 6 few clumping
1 6 28 (0.8,0.1) (0.8,0.1) good 0.131 1.opt found 2 few clumping
1 7 30 (0.8,0.1) (0.8,0.1) good 0.112 1.opt found, 2.opt close stop
2 1 4 (1,0.4) (0.8,0.6) bad 2.996 not found 6 good
2 2 10 (0.9,0.2) (0.8,0.8) moderate 0.615 1l.opt close 5 good
2 3 15 (0.9, 0.2)& 0.8,0.2 ok 0.539 l.and 2. opt close 9 ok
(0.9, 0.8)
2 4 24 (0.8,0.1) (0.8,0.1) good 0.136 1. opt found 4 good
2 5 28 (0.8,0.1) (0.8,0.1) good 0.16 1l.opt found, 2.opt quasi stop
3 1 4 (1,0.4) (0.8,0.6) bad 2.993 not found 6 few clumping
3 2 10 (0.9,0.4) (0.9,0.2) moderate 1.02 approaching 1.opt 7 good
3 3 17 (0.8,0.1) (0.8,0.8) ok 0.18 1l.opt close 5 good
3 4 22 (0.8,0.1) (0.8,0.1) good 0.175 1.opt found, 2.opt quasi stop
4 1 4 (1,0.4) (0.8,0.6) bad 2.993 not found 6 few clumping
4 2 10 (0.9,0.4) (0.7,0.9) moderate 1.464 approaching 1.opt 9 clumping
4 3 19 (0.9, 0.4)& 0.7,0.1 ok 1.245 approaching 1.opt 6 few clumping
(0.9, 0.6)
4 4 25 (0.9,0.7) (0.8,0.1) good 0.552 l.opt close 4 ok
4 5 29 (0.8,0.1) (0.8,0.1) very good 0.213 1.opt found 7 ok
4 6 36 (0.8,0.1) (0.8,0.1) very good 0.158 1.0pt found 5 ok
4 7 41 (0.8, 0.1)& (0.8, 0.8) very good 0.18 1.and 2.opt found stop
(0.8, 0.9) (0.8,0.9)
5 1 4 (1,0.4) (0.8,0.6) bad 2.996 not found 5 ok
5 2 9 (0.9,0.4) (0.8,0.8) moderate 1.251 approaching 1.opt 8 good
5 3 17 (0.9,0.2) (0.8,0.2) ok 0.59 l.opt close 6 ok
5 4 23 (0.9,0.3) (0.8,0.9) good 0.405 1l.opt close 5 ok
5 5 28 (0.8, 0.1)& (0.8, 0.1)& good 0.147 l.and 2.opt found 3 good
(0.8, 0.9) (0.8,0.9)
5 6 31 (0.8, 0.1)& (0.8, 0.1)& very good 0.142 l.and 2.opt found stop
(0.8, 0.9) (0.8,0.9)
6 1 4 (1,0.4) (0.8,0.6) bad 2.996 not found 6 ok
6 2 10 (1,0.4) (0.8,0.8) moderate 3.117 approaching 1.opt 7 few clumping
6 3 17 (0.9, 0.8)& 0.8,0.1 ok 0.582 both opts close 8 ok
(0.9, 0.2)
6 4 25 (0.8,0.1) (0.8,0.1) good 0.166 1.opt found 4 ok
6 5 29 (0.8,0.1) (0.8,0.1) very good 0.138 1.opt found, 2.opt quasi stop
7 1 4 (1,0.4) (0.8,0.6) bad 3.001 not found 7 ok
7 2 11 (1,0.5) (0.8,0.8) moderate 2.743 approaching 1.opt 7 ok
7 3 18 (0.8,0.9) (0.8,0.1) ok 0.18 1.opt found 3 good
7 4 21 (0.8, 0.1)& (0.8, 0.1)& good 0.169 l.and 2.opt found stop
(0.8, 0.9) (0.8,0.9)
8 1 4 (1,0.4) (0.8,0.6) bad 3.001 not found 5 ok
8 2 9 (0.9,0.6) (0.8,0.2) bad 0.999 approaching 1.opt 12 good
8 3 21 (0.8,0.1) (0.8,0.8) ok 0.192 1.opt found 3 good
8 4 24 (0.8,0.1) (0.8,0.1) ok 0.189 1.opt found, 2.opt quasi stop
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DTLZ3
global optimum: (0.1,0.9)

a’s cycle # of currently currently model relmazx— global # of location
design observed predicted fit imax optimum upda- of updatings
points optimum optimum found? tings

1 1 4 (0.5,0.9) (0.3,0.9) moderate 6.018 not found 4 ok
1 2 8 (0.3,0.9) (0.2,0.8) moderate 6.776 approaching opt 5 clumping
1 3 13 (0.2,0.8) (0.2,0.8) ok 0.403 local opt found 3 clumping
1 4 16 (0.2,0.8) (0.2,0.8) ok 0.32 local opt found, stop
shape ok
2 1 4 (0.5,0.9) (0.3,0.9) moderate 7.422 not found 7 few clumping
2 2 11 (0.3,0.9) (0.2,0.8) moderate 5.958 approaching opt 5 few clumping
2 3 16 (0.2,0.8) (0.3,0.6) ok 0.367 local opt found 6 good
2 4 22 (0.2,0.8) (0.5,0.4) good 0.415 local opt found 4 ok
2 5 26 (0.2,0.8) (0.5,0.3) good 0.375 local opt found stop
shape ok
3 1 4 (0.5,0.9) (0.3,0.9) moderate 9.087 not found 5 ok
3 2 9 (0.1,0.8) (0.3,0.7) moderate 3.354 opt close 6 ok
3 3 15 (0.2,0.8) (0.5,0.3) ok 0.382 local opt found 6 good
3 4 21 (0.2,0.8) (0.2,0.8) good 0.395 local opt found stop
shape good
4 1 4 (0.5,0.9) (0.3,0.9) moderate 9.087 not found 7 good
4 2 11 (0.5,0.3) (0.3,0.7) ok 3.026 approaching opt 7 ok
4 3 18 (0.3,0.7) (0.2,0.8) ok 1.225 local opt found stop
shape ok
5 1 4 (0.5,0.9) (0.3,0.9) moderate 9.07 not found 10 good
5 2 14 (0.1,0.7) (0.4,0.4) ok 8.032 approaching opt 6 good
5 3 20 (0.3,0.6) (0.4,0.3) good 3.714 opt close 10 ok
5 4 30 (0.2,0.7) (0,1) very good 0.614 opt close 5 ok
5 5 35 (0.2,0.7) (0.1,0.9) very good 0.625 opt found stop
shape good
6 1 4 (0.5,0.9) (0.3,0.9) moderate 9.087 not found 5 few clumping
6 2 9 (0.2,0.9) (0.3,0.7) moderate 3.359 global opt quasi found 5 few clumping
6 3 14 (0.3,0.7) (0.4,0.5) moderate 0.918 approaching local opt 6 ok
6 4 20 (0.2,0.8) (0.2,0.8) ok 0.397 local opt found 5 ok
6 5 25 (0.1,0.9) (0.1,0.9) ok 0.012 global opt found 3 ok
6 6 28 (0.1,0.9) (0.1,0.9) good 0.009 global opt found stop
shape very good
7 1 4 (0.5,0.9) (0.3,0.9) moderate 9.07 not found 6 few clumping
7 2 10 (0.1,0.7) (0.2,0.8) moderate 6.849 global opt quasi found 6 good
7 3 16 (0.2,0.8) (0.2,0.8) ok 0.508 local opt found 5 good
7 4 21 (0.2,0.8) (0.5,0.3) ok 0.44 local opt found 4 ok
7 5 25 (0.2,0.8) (0.2,0.8) good 0.338 local opt found stop
shape good
8 1 4 (0.5,0.9) (0.3,0.9) moderate 9.075 not found 10 ok
8 2 14 (0.2,0.9) (0.4,0.4) ok 4.808 global opt quasi found 5 good
8 3 19 (0.2,0.8) (0.4,0.3) ok 0.551 local opt found 4 good
8 4 23 (0.1,0.9) (0.1,0.9) good 0.012 global opt found stop
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KNO
global optima: (0.4,1.4) & (1.4,2.4)

a’s cycle # of currently currently model relmax— global # of location
design observed predicted fit imax optima upda- of updatings
points optimum optimum found? tings

1 1 4 (0.7,2.2) (1.1,2.1) bad 1.721 not found 1 ok
1 2 5 (0.7,2.2) (1.1,2.7) better 1.492 approaching 1.opt 1 ok
1 3 6 (1.1,2.7) (0.1,1.2) moderate 0.135 approaching 2.opt 2 ok
1 4 8 (1.1,2.7) (0.6,1.7) ok 0.11 both opts not found, stop

shape ok
2 1 4 (0.7,2.2) (1.1,2.1) bad 1.723 not found 5 ok
2 2 9 (0.5,2.1) (1.3,2.8) better 0.481 approaching 1.opt 6 ok
2 3 15 (0.5,2.1) (0.3,1.4) moderate 0.404 approaching 1.opt 5 few clumping
2 4 20 (2.3,1.5) (1.4,2.4) ok 0.077 approaching 2.opt 5 few clumping
2 5 25 (1.4,2.4) (0.5,1.3) ok 0.004 2.opt found 5 ok
2 6 30 (1.4,2.4) (1.4,2.4) ok 0.004 2.opt found, 1.opt quasi stop

shape ok
3 1 4 (0.7,2.2) (1.1,2.1) bad 1.724 not found 5 clumping

2 9 (1,0.7) (0.1, 0.9) better 0.208 approaching 1.opt 6 clumping
(0.3,1.1)

3 3 15 (1.1,0.7) (1.3,2.6) moderate 0.076 approaching 2.opt 9 few clumping
3 4 24 (1.1,0.7) (1.4,2.4) ok 0.071 2.opt found, 1l.opt close, stop

shape ok
4 1 4 (0.7,2.2) (1.1,2.1) bad 1.721 not found 5 few clumping
4 2 9 (1.3,0.6) (0.1,1.1) better 0.496 approaching 1.opt 5 few clumping
4 3 14 (1.1,0.6) (0.7,1.6) moderate 0.192 1.opt close 7 few clumping
4 4 21 (1.1,0.7) (1.5, 2.8) ok 0.067 approaching 2.opt 7 few clumping

(1.5, 2.9)
4 5 28 (1.1,0.7) (1.6,2.1) good 0.071 2 local opts close to stop
global opts, shape ok

5 1 4 (0.7,2.2) (1.1,2.1) bad 1.724 not found 5 few clumping
5 2 9 (1.1,0.7) (1.3,2.7) better 0.092 not found 5 ok
5 3 14 (1.1,0.7) (1.4,2.3) moderate 0.088 approaching 1.opt 6 ok
5 4 20 (1.5,2.3) (1.5,2.3) moderate 0.004 1.opt close 6 ok
5 5 26 (1.5,2.3) (0.6,1.4) ok 0.004 both opts close, stop

shape ok
6 1 4 (0.7,2.2) (1.1,2.1) bad 1.724 not found 5 clumping
6 2 9 (0.7,2.2) (0.1,1.2) better 1.036 approaching 2.opt 8 few clumping
6 3 17 (2.5,2.6) (0.6,1.6) moderate 0.086 approaching 1.opt 10 ok
6 4 27 (2.5,2.6) (2.5,3) ok 0.078 one local opt close stop

to global opt, shape ok
7 1 4 (0.7,2.2) (1.1,2.1) bad 1.724 not found 9 ok
7 2 13 (0.8,1.9) (0.5,1.4) better 0.367 approaching 1.opt 6 good
7 3 19 (0.4,1.3) (1.6,2.7) ok 0.146 1.opt close 9 good
7 4 28 (1.2,0.6) (0.4,1.4) ok 0.084 approaching 2.opt 5 good
7 5 33 (0.4,1.4) (0.1,0.9) good 0.018 1.opt found 6 good
7 6 39 (0.4,1.4) (1.5,2.3) good 0.018 1.opt found,2.opt close, stop
shape good
8 1 4 (0.7,2.2) (1.1,2.1) bad 1.724 not found 6 few clumping
8 2 10 (0.7,2.1) (0.3,1.4) better 0.578 approaching 1.opt 5 ok
8 3 15 (0.3,1.4) (0.7,1.3) moderate 0.181 1l.opt close 8 good
8 4 23 (1.5,2.3) (1.4,2.4) ok 0.005 approaching 2.opt 6 good
8 5 29 (1.4,2.4) (1.4,2.4) good 0.004 2.opt found, 1.opt stop
quasi found, shape good
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MEINE
global optima

£ (0.6,1.1) & (2.2,2.65)

a’s cy- # of currently currently model relmax— global # of location
cle design observed predicted fit imax optima upda- of updatings
points optimum optimum found? tings
1 1 5 (1.5,2.25) (0.75,1.25) moderate 1.154 not found 5 ok
1 2 10 (0.75,1.25) (0.65,1.15) moderate 0.043 approaching 1.opt 5 good
1 3 15 (0.65,1.15) (0.65,1.15) ok 0.008 l.opt quasi found 5 ok
1 4 20 (0.65,1.15) (0.65,1.15) ok 0.008 1.opt quasi found,2.opt stop
close, shape ok
2 1 5 (1.5,2.25) (0.75,1.25) moderate 1.157 not found 6 good
2 2 11 (0.75,1.25) (0.65,1.15) moderate 0.033 approaching 1.opt 10 ok
2 3 21 (0.65,1.15) (0.65,1.15) ok 0.011 1l.opt quasi found 5 good
2 4 26 (0.6,1.1) (0.6,1.1) good 0 1.opt found, 2.opt quasi stop
found, shape good
3 1 5 (1.5,2.25) (0.75,1.25) moderate 1.157 not found 7 good
3 2 12 (0.75,1.25) (0.15,0.1) ok 0.044 approaching 1.opt 7 ok
3 3 19 (0.55,1.05) | (0.65,1.15) ok 0.02 1.0pt close 6 few clumping
3 4 25 (0.65,1.15) (0.6,1.1) good 0.007 1.opt quasi found 3 good
3 5 28 (0.6,1.1) (0.6,1.1) very good 0.002 1.opt found, 2.opt quasi stop
found, shape very good
4 1 5 (1.5,2.25) (0.75,1.25) moderate 1.157 not found 7 few clumping
4 2 12 (0.75,1.25) (0.7,1.2) moderate 0.065 approaching 1.opt 7 few clumping
4 3 19 (0.7,1.2) (0.65,1.15) ok 0.028 1l.opt close 4 good
4 4 23 (0.65,1.15) (0.65,1.15) good 0.008 1.opt quasi found 7 ok
4 5 30 (0.65,1.15) (0.6,1.1) very good 0.012 both opts quasi found, stop
shape very good
5 1 5 (1.5,2.25) (0.75,1.25) moderate 1.157 not found 6 good
5 2 11 (0.75,1.25) (2.05,2.55) ok 0.076 approaching 1.opt 3 ok
5 3 14 (0.6,1.1) (0.65,1.15) ok 0.011 1.opt found 4 very good
5 4 18 (0.6,1.1) (0.6,1.1) good 0.01 1l.opt found, 2.opt quasi stop
found, shape good
6 1 5 (1.5,2.25) (0.75,1.25) moderate 1.158 not found 8 ok
6 2 13 (0.65,1.2) (0.65,1.15) ok 0.047 1l.opt close 5 good
6 3 18 (0.65,1.15) (0.6,1.1) good 0.013 1.0pt quasi found 5 ok
6 4 23 (0.6,1.1) (0.6,1.1) very good 0.01 1.opt found, 2.opt quasi stop
found, shape very good
7 1 5 (1.5,2.25) (0.75,1.25) moderate 1.158 not found 7 ok
7 2 12 (0.75,1.25) (0.2,0.1) moderate 0.031 1.opt close 8 good
7 3 20 (0.55,1.05) (0.6,1.1) ok 0.016 1.opt close 7 few clumping
7 4 27 (0.6,1.1) (0.6,1.1) good 0 1l.opt found, 2.opt quasi stop
found, shape very good
8 1 5 (1.5,2.25) (0.75,1.25) moderate 1.158 not found 6 good
8 2 11 (0.75,1.25) (0.15,0.1) ok 0.037 l.opt close 6 good
8 3 17 (0.75,1.25) (0.65,1.15) ok 0.046 1l.opt close 3 very good
8 4 20 (0.6,1.1) (0.6,1.1) ok 0.007 1.opt found 3 good
8 5 23 (0.6,1.1) (0.6,1.1) good 0.006 1.opt found, 2.opt stop
close, shape ok
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A.6 Implementation of mtEGO in R

Exemplary R code for Step 1 of mtEGO
(including the missing value extension)

## example how to build a 3-dimensional grid representing the parameter space
x1 <- x2 <- x3 <- ¢(0,2,4,6,8)

library(gtools)

kombis <- permutations(5,3,repeats.allowed=TRUE)

Grid <- data.frame(x1=x1[kombis[,1]], x2=x2[kombis[,2]], x3=x3[kombis[,3]])
## generate a space-filling design

library(fields)

design <- cover.design(Grid, 15, nruns=10)[1:15,]

## restrict parameter space if missing values occur

library(rPorta)

restrictedGrid <- failureRegions(as.poi(design),as.poi(Grid),failures)
restricted <- as.matrix(getFeasiblePoints(restrictedGrid))

## add more points to the existing space-filling design

old <- as.matrix(design[which(design == failure),])

kombi <- rbind(old, restrictedGrid)

fixrows <- which(duplicated(kombi)==TRUE)-length(old[,1])

rownames (restrictedGrid) <- 1:length(restrictedGrid[,1])

newDesignpoints <- cover.design(restrictedGrid, 5 ,nn=FALSE, fixed=fixrows)[1:5,]

Exemplary SAS code for Step 2 of mtEGO
(’C:/mtEGO-VImop2Two-auto.sas’)

DATA daten;

INFILE ’C:\auto-vp.txt’ FIRSTOBS=2;
INPUT id $ x1 x2 yl1 y2 wl w2 wges;
RUN;

DATA punkte;

INFILE ’C:\testproblem-paramspace.txt’ FIRSTOBS=2;
INPUT id $ x1 x2;

RUN;

DATA all;
SET daten punkte;
RUN;

PROC MIXED DATA=all method=reml scoring=50 convh=1e-8 alpha=0.05 asycov noinfo noitprint;
model yl=x1 x2/ solution outpred=predicted;

repeated /type=SP(exp) (x1 x2) subject=intercept;

RUN; QUIT;

DATA t1;
SET predicted;
IF y1 NE . THEN DELETE;
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pyl=pred;
sl=stderrpred;
dl = DF;

RUN;

PROC MIXED DATA=all method=reml scoring=50 convh=1e-8 alpha=0.05 asycov noinfo noitprint;
model y2=x1 x2/ solution outpred=predicted;

repeated /type=SP(exp)(x1 x2) subject=intercept;

RUN; QUIT;

DATA t2;

SET predicted;

IF y2 NE . THEN DELETE;
py2=pred;
s2=stderrpred;

d2=DF;

RUN;

DATA t_final;

MERGE t1 t2;

KEEP x1 x2 pyl py2 sl s2 dl d2;
RUN;

DATA t_final2;
SET t_final;
predyl=pyl;
predy2=py2;
syl=si;
sy2=s2;
dfi=d1;
df2=d2;

RUN;

DATA t_final3;

SET t_final2;

KEEP x1 x2 predyl predy2 syl sy2 dfl df2;
RUN;

PROC EXPORT DATA= WORK.t_final3
OUTFILE= "C:\auto-model.csv"
DBMS=CSV REPLACE;

RUN;

# Code to run the sas-model-fitting procedure from R

# vpw -- the design which shall be modeled

# sasprog -- the path of the sas programme with the model fittign code that shall be run
# sascmd -- the path of the sas.exe file, to tell R where to search the sas-programme

# vpwfile -- file-path of the file where the current design is to be stored temporarily
# modelfile -- file-path of the file where the fitted model is to be stored temporarily

sasmodelfit <- function(vpw, sasprog="C:/SAScode.sas", sascmd="C:/Programme/SAS/SAS 9.1/sas.exe",

vpwfile="C:/design.txt", modelfile="C:/outputfile.csv")
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write.table(vpw, vpwfile)

sascmds <- paste(shQuote(sascmd), "-sysin")

sasrun <- try(sysret <- system(paste(sascmds, sasprog)))
if (inherits(sasrun, "try-error") | sysret < 0)

{ cat("SAS Sytem error - view log files")

}elsed{

sasmodel <- read.table(modelfile, sep=",", header=TRUE)
}
for(j in 1:odim)

{ a <- which(is.na(sasmodel[,idim+odim+j]))

if (length(a) != 0) sasmodell[a,idim+odim+j] <- 0
}

return(sasmodel)

Code for Step 3.A and 3.B and 4 of mtEGO

#
#

#
#
#
#

H ¥ H OH O O H

d
{

desifun(), wimaxcorrfun(), allowrepeatfun(), desvirtobsfun() are subroutines for the

functions mtEGO() and mtEGOeff ()
## function to transform any objective y to desirabilities
y -- the objective to be transformed to desirabilities
desiparams -- a list with one entry per objective specifying the desirability function
Each entry starts with the number
1 for "one-sided desirability",
2 for "Harrington two-sided desirability"
or 3 for "Derringer-suich two-sided desirabilities"
the specification parameters of the desirabilities are given in the following order:
for one-sided: 1, b0, bl
for two-sided Harrington: 2, LSL, target, USL, nu
for two-sided Derringer: 3, LSL, target, USL, 1, r
esifun <- function(y, desiparams)

desis <- NULL
if (desiparams[1]==1)
desis <- round(exp(-exp(-(desiparams[2]+desiparams[3]*y))), digits=4)
if (desiparams[1]==2)
desis <- round(exp(-1*abs((y - (desiparams[4] + desiparams[2])/2 )
/((desiparams[4] - desiparams[2])/2)) desiparams[5]), digits=4)

if (desiparams[1]==3)
{desis <- numeric(length(y))

hl <- which(y < desiparams[2])

h2 <- which(y >= desiparams[2] & y <= desiparams[3])

h3 <- which(y > desiparams[3] & y <= desiparams[4])

h4 <- which(y > desiparams[4])

if (length(hl) !'= 0)

desis[hl] <- 0

if (length(h2) !'= 0)

desis[h2] <- ((y[h2] - desiparams[2])/(desiparams[3] - desiparams[2])) desiparams[5]
if (length(h3) != 0)

desis[h3] <- ((y[h3] - desiparams[4])/(desiparams[3] - desiparams[4])) desiparams[6]
if (length(h4) !'= 0)
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desis[h4] <- 0
}
return(desis)

}

#For the improvement the current maximal desirability (wimax) is needed. If this value is smaller in
#the prediction compared to the measured one, since the model does not interpolate exactly, a correction
#of the wimax value is needed; wimax then is the currently maximum desirability among the predictions
wimaxcorrfun <- function(vplw, models, desiparams)
{wimax <- max(vplw$wges)
maxicand <- vplw[which(vplw$wges == wimax) [1],1:idim]
indges <- NULL
trues <- rep(NA,dim(models) [1])
for(k in 1:idim)
{ for(z in 1:dim(models) [1])
{trues[z] <- all.equal(models[z,k],as.numeric(maxicand[k])) }
indges <- c(indges, which(trues==TRUE))
}
ind <- as.numeric(names(which(table(indges)==idim)))
ws <-rep(NA, odim)
for(f in 1:o0dim){ ws[f] <- desifun(models[ind,idim+f], desiparams[[£f]]) }
wimaxcorr <- prod(ws weightedDI)
if (wimaxcorr > wimax) wimaxcorr = wimax

return(wimaxcorr)

#set prediction error s=0 for observations to force the improvement to be 0

allowrepeatfun <- function(vplw, sda, modell)

{samples <- data.frame(dummy=1:dim(vplw) [1],vplw[,1:idim])

for(j in 1:dim(vpiw) [1])

{ for(k in 1:dim(modell)[1])
{ if(all(modell[k,1:idim] == samples[j,-1]) == TRUE) sdalk,] <- rep(0, (odim+1))
}

}

return(sda)

}

#function to calculate the virtual observations and their corresponding desirabilities for a given
#\alpha vector and a set of predicted values
desvirtobsfun <- function(alphafinepart, ydpart, sdapart, dfspart, k)
{desvirtobs <- list((odim))

desvirtob <- matrix(rep(NA,length(ydpart)*length(alphafinepart)),nrow=length(ydpart))
for(h in 1:length(alphafinepart))

{if (alphafinepart[h] != 1)

{virtob <- ydpart+sdapart*sign(alphafinepart[h])*

qt ((1-abs(alphafinepart[h])/2),as.numeric(dfspart))

}else{virtob <- ydpart}

desvirtob[,h] <- desifun(virtob, desiparams[[k]])

}

return(desvirtob)
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#####function that generates the candidates for the updating points (the core of mtEGO)

#vplw -- data.frame of the observed design points with their desirabilities

#modell -- data.frame of the predictions and predictions errors for the currently fitted model
# the data frame has to be ordered as follows:

# x1, ... xn, y1, .., yb, sy1, ..., syb, df1, ..., dfb

#desiparams -- list of specification parameters for the desirability functions

# (specified as in desifun() )

#weightedDI -- defualt is an unweighted geometric mean as desirability index

# (optional can weights be given as a vector)

#alphafine -- the vector of alpha-levels used for the optimization given in the form

# as shown by this example c(-0.0001, -0.001, -0.01, 1 , 0.01,0.001, 0.0001)
#idim -- dimension of the parameter space

#odim -- number of objectives

#allow.repeatpoint -- the algorithm may suggest update points at already observed points
# if the predciton error is not O there, this can be surpressed
mtEGO <- function(vplw, modell, desiparams, weightedDI=NULL, alphafine,
idim, odim, allow.repeatpoint=FALSE)

{library(gtools)

if (is.null(weightedDI)) weightedDI <- rep(1/odim, odim)

# yd, sda, and x include a dummy variable to enable odim=1

yd <- data.frame(modell[, (idim+1): (idim+odim)], rep(NA,dim(modell)[1]))

sda <- data.frame(modell[, (idim+odim+1):(idim+2%0dim)], rep(NA,dim(modell) [1]))

x <- data.frame(modell[, 1:idim], rep(NA,dim(modell)[1]))

dfs <- c(as.vector(modell[1, (idim+2*odim+1) : (idim+3*odim)]), NA)

wimaxcorr <- wimaxcorrfun(vplw, modell, desiparams)

if (allow.repeatpoint==FALSE) sda <- allowrepeatfun(vplw, sda, modell)

#determine virtual observations and their desirabilities for all confidence boundaries
desvirtobs <- list()
for(k in 1:odim){desvirtobs[[k]]<-desvirtobsfun(alphafine,yd[,k],sdal,k],dfs[k],k=k)}

#determine improvements and candidates that maximize the improvements
virtkombis <- permutations(length(alphafine), odim, repeats.allowed=TRUE)
imax <- imean <- rep(NA, dim(virtkombis)[1])
optipoints <- list()
sdadummy <- data.frame(rep(NA,dim(yd) [1]), sda)
for(g in 1:dim(virtkombis) [1])
{ desvirtobskombi <- matrix(rep(NA,odim*dim(yd) [1]),ncol=odim)
for(z in 1l:odim) desvirtobskombil[,z] <- desvirtobs[[z]][,virtkombisl[g,z]]
simwges <- apply(desvirtobskombi, 1, function(y) prod(y weightedDI))
imps <- simwges - wimaxcorr
imps [which(simwges <= wimaxcorr)] = 0
imps [which(sdadummy[,2] == 0)] = 0
ims <- imps
#measures needed for the stopping criterion
imax[g] <- max(ims)
imean[g] <- mean(ims)
if (all(alphafine[virtkombis[g,]] == rep(l, odim))) wcurr <- simwges

#determine the canidates
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if (length(which(ims != 0)) != 0)
{ optipoints[[g]] <- which(ims == max(ims))
}else{ optipoints[[g]] <- NA
}
}
remove (sdadummy)
opti <- NULL
for(n in 1: dim(virtkombis) [1])
{if ('is.na(optipoints[[n]]) [1])opti<-c(opti,t(optipoints[[n]l]))}

#if all improvements are O, the global optimum is assumed to be found and printed out
if ( is.null(opti))
{ gloptimum <- modell[which(wcurr==max(wcurr)),1:idim]
cat("All Improvements O, global Optimum found at", as.character(gloptimum))
optihelper <- "all expected improvements O - no optimum/updating step"
Yelseq{
optiind <- opti
opti <- x[optiind,-(idim+1)]
if (idim==1){
opti <- data.frame(opti, rep(NA, length(opti)))
optihelper <- unique(optil[which(!is.na(opti)[,1]1),])
Yelse{
opti <- data.frame(opti, rep(NA, dim(opti)[1]1))
optihelper <- unique(optil[which(!is.na(optil,11)),]1)

}

#stopping criteria

errmax <- apply(modell[, (idim+odim+1):(idim+2%odim)], 2, max, na.rm=TRUE)

optvor <- data.frame(curopt=modell[wcurr == max(wcurr),1l:idim], wmax=max(wcurr))
maximax <- max(imax)

meanimax <- mean(imax)

maxerrmax <- max(errmax)

stops <- data.frame(relmaximax=maximax*maxerrmax, relmeanimax=meanimax*maxerrmax)
stopps <- list(optvor, stops)

return(list(optihelper=optihelper, optiind=unique(optiind), stoppings=stopps))

R code for Step 3.C of mtEGO

###subroutine to determine the currently predicted optimum, i.e. the parameter setting with the
#currently best predictions (model, desiparams, weightedDI, odim as described in mtEGO(Q))
currentOpt <- function(model, desiparams, weightedDI, odim)
{ if(is.null(weightedDI)) weightedDI <- rep(1/odim, odim)

wfinal <-matrix(rep(NA,odim*dim(model) [1]), ncol=odim)

for(f in 1:odim){ wfinal[,f] <- desifun(model[,idim+f], desiparams[[f]]) }

wifinalges <- apply(wfinal, 1, function(y) prod(y~weightedDI))

gloptimum <- model[which(wifinalges==max(wifinalges)),1:idim]

return(list(wiges=wifinalges,gloptimum=gloptimum))

###function to eliminate the current optimum (step 3.C.1)
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#curopt -- currently predicted optimum (value gloptimum from function currentOpt() )
#candidates -- and object from function mtEGO() containing the values optihelper and optiind
elimcuropt <- function(curopt, candidates)
{if (idim==1){ ind <- which(candidates$optihelper[,1] == curopt)
Yelseq{
for(m in 1:dim(curopt) [1])
{indges <- NULL
indpart <- list()
equals <- rep(NA, dim(candidates$optihelper) [1])
for(k in 1:idim)
{for(z in 1:dim(candidates$optihelper) [1])
{equals[z] <- all.equal(candidates$optihelper[z,k],as.numeric(curopt[m,k]))
}
indpart[[k]] <- which(equals==TRUE)
indges <- c(indges, indpart[[k]])
}
ind <- as.numeric(names(which(table(indges)==idim)))
}
}
if (length(ind) != 0)
{ elimoptihelper <- candidates$optihelper[-ind,]
elimoptiind <- candidates$optiind[-ind]
}else{elimoptihelper <- candidates$optihelper; elimoptiind <- candidates$optiind}

return(list(elimoptihelper=elimoptihelper, elimoptiind=elimoptiind))

### function to (automatically) choose the appropriate number of groups (step 3.C.2) and to produce

#the dendrogram and scree plot for the clustering

#elimoptihelper -- data.frame of candidates suggested by mtEGO after the elimination of the

# current optimum, i.e. set Cx (value elimoptihelper fom function elimcuropt())
#grmax -- maximum of group fusions that is displayed in the Screegraph

# (grmax must be larger than maximum)

#minimum -- minimum number of groups to be fromed

#maximum -- maximum number of groups to be formed

#model, desiparams, weightedDI, odim, idim as described in mtEGO()
grouping <- function(elimoptihelper, grmax=20, model, desiparams, weightedDI=NULL, odim,
idim, minimum=1, maximum=10)
{if (dim(elimoptihelper) [1] > 5)
{ par(mfrow=c(2,1))
klass <- hclust(dist(elimoptihelper[,-dim(elimoptihelper) [2]]))
plot(klass)
vals <- data.frame(gr=seq(dim(elimoptihelper)[1]-1, 1,-1), he=klass$height)
valshe <- sort(vals$he, decreasing=TRUE) [1:grmax]
steig <- (c(NA,valshe) - c(valshe, NA)) / -1
diffm <- (c(steig[-1],NA) - c(steig))
halb <- which(valshe < (max(valshe, na.rm=T)*0.5))
if (length(halb)==0) halb <- c(1:(length(valshe)))
if (any(halb < maximum)){halb9 <- halb[which(halb < maximum)]}else{halb9 <- halb}
if (any(halb9 < minimum)) halb9 <- halb9[-which(halb9 < minimum)]
num <- which(diffm==max(diffm[halb9], na.rm=T))
plot(valshe, type="1", ylim=c(-2,max(valshe, na.rm=T)), xlim=c(0,grmax))
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lines(seq(0.5, (grmax+0.5),1), steig, type="1", col="green")

points(diffm, col="red")

for(i in 1:grmax) abline(v=i, col="lightgrey", lty=2)

text(15,-2, paste("automatic group-choice: " ,num))
}else{num <- dim(elimoptihelper)[1] }

return(list (num=num, values=vals))

###function to determine groups and their representatives (step 3.C.3)
#elimcuropt -- object of function elimcuropt(), containing elimoptihelper and elimoptiind
#clusterm -- number of groups to be formed (usually determined with function grouping())
#vplw -- current design before updating including the measurements and desirabilities
# (with the columns ordered as follows x1, ..., xn, yl, .., yb, dyil, .., dyb, DI)
#model, desiparams, odim, idim, weightedDI as described in mtEGO()
updates <- function(elimcuropt, clusterm, vplw, odim, idim, model, desiparams, weightedDI=NULL)
{elimoptihelper <- elimcuropt$elimoptihelper
elimoptiind <- elimcuropt$elimoptiind
curmod <- currentOpt(model, desiparams, weightedDI, odim)
#subset in clusterm groups (result from step 3.C.2)
if (dim(elimoptihelper) [1] == 1)
{ updatepoint <- elimoptihelper[,-dim(elimoptihelper) [2]]
kombi <- "Only one updatepoint suggested, hence no clustering"
Yelse{
klass <- hclust(dist(elimoptihelper[,-dim(elimoptihelper) [2]]))
kombi <- data.frame(optis=elimoptihelper[,-dim(elimoptihelper)[2]], kl=cutree(klass,
k=min(c(dim(elimoptihelper) [1],clusterm)) ), curwges=curmod$wiges[elimoptiind])
}
### determine representatives
curwges <- curmod$wiges
knr <- max(kombi$kl)
updatepoint <- matrix(rep(NA, knr*(idim+1)), ncol=(idim+1))
for(j in 1:knr)
{klj <- subset(kombi, kl==j)[,-(idim+2)]
if (dim(k1j) [1] == 1){
for(m in 1:(idim+1))
{ updatepoint[j,m] <- k1j[,m]
}
Yelse{
hl <- as.matrix(dist(k1lj))
means <- as.vector(apply(hl, 1, mean))
reprind <- which(means == min(means))
h2 <- which(kombi$curwges[reprind] == max(kombi$curwges[reprind]l))
if (length(h2) > 1)
{ reprind2 <- reprind[sample(length(reprind),1)]
}else{ reprind2 <- reprind[h2] }
updatepoint[j,] <- as.numeric(klj[reprind2,])
}
}
z <- NULL
for(hj in 1:idim)
{ z <~ c(z,which(vpiw[,hj] == curmod$gloptimum[,hj]))
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}

repres <- as.matrix(updatepoint[,1:idim])

if (tany((table(z) == idim)))
updatingpoints<-rbind(as.matrix(updatepoint[,1:idim]),as.matrix(curmod$gloptimum[,1:idim])) [,-(idim+1)]
if (idim==2)

{plot(model[,1] ,model[,2], col="white")

points (vplw)

points(updatingpoints, col="red")}

return(list (kombi=kombi, updatingpoints=updatingpoints, curopt=as.matrix(curmod$gloptimum)))

}

Exemplary application of the functions

x1 <- x2 <- seq(-2,2,0.05)
paramspace <- data.frame(xl=rep(xl, length(x2)), x2=rep(x2,rep(length(x2),length(x2))))
idim=2; odim=2; weightedDI=NULL; thopt=data.frame(x1=0,x2=0)
desil <-desi2 <- ¢(2,0.3,0.5,0.7,2)
desiparams <- list(desil, desi2)
measure <- function(x)
{ if(is.null(dim(x))){ xla <- x[1]; x2a <- x[2] }else{ xla <- x[,1]; x2a <- x[,2]}
y1 <= 1 - exp(-1*((xla - 1/sqrt(2))°2 + (x2a - 1/sqrt(2))°2))
y2 <- 1 - exp(-1*((xla + 1/sqrt(2))°2 + (x2a + 1/sqrt(2))°2))
wl <- round(desifun(yl, desiparams[[1]]), digits=4)
w2 <- round(desifun(y2, desiparams[[2]]), digits=4)
return(point=data.frame(xl=xla,x2=x2a, yl=yl, y2=y2, wl=wl,w2=w2, wges=wl"0.5%w270.5))
}
vlmop2 <- measure(paramspace)
#i###step 1
vpl <- measure(data.frame(x1=c(1,0.8,1,-1,-1.4), x2=c(-1.2,1.8,0.4,-1.2,1)))
#it##step 2
model <- sasmodelfit(vpl, sasprog=paste("C:/mtEGO-Vlmop2Two-auto.sas",sep=""),
vpwfile="C:/Xphd-project/la-thesis/simulationstudy/auto-vp.txt",
modelfile="C:/Xphd-project/la-thesis/simulationstudy/auto-model.csv")
#i#t##step 3
#3.A.1
alphafine <- c(-0.01, -0.1, -0.5,-0.9, 1,0.9, 0.5, 0.1, 0.01)
#3.A.2 - 3.B.2
candidates <- mtEGO(vplw=vpl,modell=model,desiparams=desiparams,weightedDI=weightedDI,
alphafine=alphafine, idim=idim, odim=odim, allow.repeatpoint=FALSE)
#3.C.1
curopt <- currentOpt(model, desiparams, weightedDI, odim)
casterix <- elimcuropt(curopt$gloptimum, candidates)
#3.C.2
gronum <- grouping(casterix$elimoptihelper, grmax=25, model, desiparams,weightedDI=NULL, odim, idim,
minimum=1, maximum=10)
#3.C.3
updatingpoints <- updates(casterix, clusterm=grnum$num, vplw=vpl, odim, idim, model, desiparams,
weightedDI=NULL)
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Improved version of mtEGO, implemented only for two-sided

optimization problems

#vplw -- data.frame of the observed design points with their desirabilities

#modell -- data.frame of the predictions and predictions errors for the currently fitted model
# the data frame has to be ordered as follows:

# x1, ... xn, y1, .., yb, syl, ..., syb, df1l, ..., dfb

#desiparams -- list of specification parameters for the desirability functions

# (specified as in desifun() )

#weightedDI -- defualt is an unweighted geometric mean as desirability index

# (optional can weights be given as a vector)

#alphadec -- alpha-level to decide whether smaller, similar or larger alphas are needed
#alphasmall -- vector of alpha-levels used if the decision is to use smaller alpha levels,
# it must be given in the form c(0.01, 0.1)

#alphalarge -- vector of alpha-levels used if the decision is to use larger alpha levels,

# it must be given in the form alphalarge=c(0.5,0.8)

#alphasimilar --vector of alpha-levels used if the decision is to use smaller alpha levels,
# it must be given in the form alphasimilar=c(0.1,0.5)

#idim -- dimension of the parameter space

#odim -- number of objectives

#allow.repeatpoint -- the algorithm may suggest update points at already observed points
# if the predciton error is not O there, this can be surpressed
mtEGOimp <- function(vplw, modell, desiparams, weightedDI=NULL, alphadec, alphasmall, alphalarge,
alphasimilar, idim, odim, allow.repeatpoint=FALSE)
{library(gtools)
if (is.null(weightedDI)) weightedDI <- rep(1/odim, odim)
# yd, sda, and x include a dummy variable to enable odim=1
yd <- data.frame(modell[, (idim+1): (idim+odim)], rep(NA,dim(modell) [1]))
sda <- data.frame(modell[, (idim+odim+1): (idim+2*odim)], rep(NA,dim(modell) [1]))
x <- data.frame(modell[, 1:idim], rep(NA,dim(modell) [1]))
dfs <- c(as.vector(modell[1, (idim+2*odim+1) : (idim+3*odim)]), NA)
wimaxcorr <- wimaxcorrfun(vplw, modell, desiparams)
if (allow.repeatpoint==FALSE) sda <- allowrepeatfun(vplw, sda, modell)
# determine which alphas are to be taken, smaller, larger or similar?
# (decisions only valid for two-sided problems)
orgob <- decobl <- decob2 <- decis <- matrix(rep(NA,length(yd[,1])*odim),ncol=odim)
maxoccur <- targetp <- targetm <- NULL
desvirtobs <- list()
alphafine <- list()
le <- length(ydl[,11)
target <- NULL
for(k in 1:odim)
{target[k] <- desiparams[[k]][3]
decobl[,k] <- yd[,k] + sdal,k] * qt((1-alphadec/2), as.numeric(dfs[k]))
decob2[,k] <- yd[,k] - sdal,k] * qt((1-alphadec/2), as.numeric(dfs[k]))
orgob[,k] <- yd[,k]
targetpl[k] <- target[k] + 0.25%(as.numeric(dist(range(orgobl[,k]1))))
targetm[k] <- target[k] - 0.25%(as.numeric(dist(range(orgobl[,k]))))
lower <- upper <- 0
for(m in 1:1e)

{if (orgob[m,k] > target[k])
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{lower <- lower + 1
if (decob2[m,k] >= targetpl[k]) decis[m,k] <- "smaller"
if ((decob2[m,k] > targetm[k]) & (decob2[m,k] < targetp[k])) decis[m,k] <-"similar"
if (decob2[m,k] <= targetm[k]) decis[m,k] <- "larger"
}
if (orgob[m,k] < target[k])
{upper <- upper + 1
if (decobl[m,k] > targetpl[k]) decis[m,k] <- "larger"
if ((decobl[m,k] > targetm[k]) & (decobl[m,k] < targetp[k])) decis[m,k] <-"similar"
if (decobl[m,k] < targetm[k]) decis[m,k] <- "smaller"
}
if (orgob[m,k] == target[k])
{ decis[m,k] <- "similar"
}
}

occur <- c(length(which(decis[,k] == "larger")),length(which(decis[,k] == "similar")),
length(which(decis[,k] == "smaller")))

maxoccur [k] <- c("larger","similar","smaller") [which(occur == max(occur))]

if (lower == le) #if all predictions larger than target, consider only lower boundaries
{if (maxoccur[k] == "similar") alphafine[[k]] <- c(-1*alphasimilar, -ixalphadec, 1)

if (maxoccur[k] == "larger") alphafine[[k]] <- c(-1*alphadec, -1*alphalarge, 1)

if (maxoccur[k] == "smaller") alphafine[[k]] <- c(-1*alphasmall, -1*alphadec, 1)

}

if (upper == le) #if all predictions smaller than target, consider only upper boundaries
{if (maxoccur[k] == "similar") alphafine[[k]] <- c(1, alphadec, alphasimilar)

if (maxoccur[k] == "larger") alphafine[[k]] <- c(1, alphalarge, alphadec)

if (maxoccur[k] == "smaller") alphafine[[k]] <- c(1, alphadec, alphasmall)
}

if (lower != le && upper != le)
{if (maxoccur[k] == "similar")

alphafine[[k]] <- c(-1*alphasimilar, -1*alphadec, 1, alphadec, alphasimilar)

if (maxoccur[k] == "larger")

alphafine[[k]] <- c(-1*alphadec, -1l*alphalarge, 1, alphalarge, alphadec)

if (maxoccur[k] == "smaller")

alphafine[[k]] <- c(-1*alphasmall, -1xalphadec, 1, alphadec, alphasmall)
}
#determine virtual observations and their desirabilities for all confidence boundaries
desvirtobs[[k]] <- desvirtobsfun(alphafine[[k]], yd[,k], sdal,k], dfs[k], k=k)
}
#determine all cross-combinations of alpha levels acc. to step 3.A.3
lens <- NULL
for(i in 1:o0dim)
{ 1lens[i] <- length(alphafine[[i]]) }
eins <- function(a){ rep(1,a) }
virtkombis <- matrix(rep(NA, prod(lens)*odim), ncol=odim)
virtkombis[,1] <- rep(c(1l:lens[1]), prod(lens[-1]))
if (odim > 2)
{for(p in 2:(odim-1))

{virtkombis[,p] <- eins(prod(lens[(p+1):0dim]))%x%(c(1:1lens[p])

%xheins (prod(lens[1: (p-1)1)))
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}
}
virtkombis[,odim] <- c(1:lens[odim]) %x% eins(prod(lens[-odim]))

#determine improvements and candidates that maximize the improvements
imax <- imean <- rep(NA, dim(virtkombis)[1])
optipoints <- list()
sdadummy <- data.frame(rep(NA,dim(yd) [1]), sda)
for(g in 1:dim(virtkombis) [1])
{ desvirtobskombi <- matrix(rep(NA,odim*dim(yd) [1]),ncol=odim)
for(z in 1l:odim) desvirtobskombil,z] <- desvirtobs[[z]][,virtkombisl[g,z]]
simwges <- apply(desvirtobskombi, 1, function(y) prod(y weightedDI))
imps <- simwges - wimaxcorr
imps [which(simwges <= wimaxcorr)] = 0
imps [which(sdadummy[,2] == 0)] = 0
ims <- imps
#measures needed for the stopping criterion
imax[g] <- max(ims)
imean[g] <- mean(ims)
#determine the candidates for the updatings
if (length(which(ims != 0)) != 0)
{ optipoints[[g]] <- which(ims == max(ims))
}else{ optipoints[[g]l] <- NA

}
}
remove (sdadummy)
opti <- NULL

for(n in 1: dim(virtkombis) [1])
{if ('is.na(optipoints[[n]]) [1]) opti <- c(opti, t(optipoints[[n]])) }

#if all expected improvements are O, the global optimum is assumed to be found
wfinal <-matrix(rep(NA,odim*dim(modell) [1]), ncol=odim)
for(f in 1:odim)
{ wfinal[,f] <- desifun(modell[,idim+f], desiparams[[f]])
}
wcurr <- apply(wfinal, 1, function(y) prod(y weightedDI))
if ( is.null(opti))
{ gloptimum <- modell[which(wcurr==max(wcurr)),1:idim]
cat("All Improvements O, global Optimum found at", as.character(gloptimum))

optihelper <- "all expected improvements O - no optimum/updating step"
Yelse{
optiind <- opti
opti <- x[optiind,-(idim+1)]

opti <- matrix(opti, ncol=idim, byrow=TRUE)
if (idim==1){

opti <- data.frame(opti, rep(NA, length(opti)))

optihelper <- unique(optil[which(!is.na(opti)[,1]1),])
Yelse{

opti <- data.frame(opti, rep(NA, dim(opti)[1]))

optihelper <- unique(optil[which(!is.na(optil[,1])),]1)
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}

#the stopping criteria

errmax <- apply(modelll[, (idim+odim+1):(idim+2*odim)], 2, max, na.rm=TRUE)

optvor <- data.frame(curopt=modell[wcurr == max(wcurr),1l:idim], wmax=max(wcurr))

maximax <- max(imax)

meanimax <- mean(imax)

maxerrmax <- max(errmax)

stops <- data.frame(relmaximax=maximax*maxerrmax, relmeanimax=meanimax*maxerrmax)

stopps <- list(optvor, stops)

return(list(optihelper=optihelper, optiind=unique(optiind), stoppings=stopps,decis=decis, lens=lens))



	Introduction
	Motivating example
	Thesis contributions
	Thesis structure

	Sequential optimization
	Different approaches to sequential optimization
	Space-filling designs
	Latin-Hypercube design
	Minimax and maximin design
	Uniform coverage design
	Coffee-house design
	Discussion of the different space-filling designs

	Kriging models
	Estimation of unknown parameters
	Prediction
	Kriging for nondeterministic experiments
	Model validation techniques

	Sequential design optimization (SDO) by Cox and John
	The EGO-algorithm
	The expected improvement criterion
	Recent developments regarding EGO

	The concept of desirability
	Types of desirability functions
	Types of desirability indices
	Distribution of desirability functions and indices

	Multivariate expected improvement using desirabilities
	Clustering methods
	Distance measures
	Clustering algorithms
	The optimal number of clusters and validation techniques


	mtEGO - A novel approach to multi-objective target-value optimization
	Virtual observations
	The mtEGO algorithm step-by-step
	Choice of the number of clusters in the candidate set
	Stopping criterion for the new approach
	The effect of a certain  level on mtEGO
	Implementation
	Step-by-Step Example

	Simulation study
	Introduction of the test problems
	Simulation results
	Comparison of the mtEGO approach with brute force methods
	Solving advanced test problems with the new heuristic
	One-sided multivariate test problem
	Two-sided multivariate test problem using Derringer-Suich desirability functions
	Two-sided multivariate test problem with weighted objectives
	A multivariate test problem with complex mixed target structure
	A large-dimensional target optimization problem

	Limitations of the approach

	Extensions to the new approach
	A variant for large dimensional optimization problems
	Optimization in the presence of unknown constraints
	Generation of an appropriate initial design
	Handling of missing values during the updating process


	Case studies: application to sheet metal spinning and necking-in 
	Optimization of a pot produced with the sheet metal spinning process
	Optimization of the diameter reduction of a tube produced using necking-in with spinning
	Subject of the case study and experimental setup
	Initial design and specified desirabilities
	Model selection
	Sequential optimization


	Summary and outlook
	Bibliography
	Appendix
	Proofs for Step 3.C.1 of mtEGO
	Cluster dendrograms and scree plots of the candidate sets for each optimization step during the sheet metal spinning optimization
	Model selection for the initial surrogate model of the sheet metal spinning optimization
	Model selection for the initial surrogate model of the necking-in optimization
	Progress of candidates and updating points for the different parameterizations of  in Section 4.2
	Implementation of mtEGO in R


