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Abstract

M-estimators as modified versions of maximum likelihood estimators and their asymp-
totic properties play an important role in the development of modern robust statistics
since the 1960s. In our thesis, we construct new M-estimators based on Tukey’s bisquare
function to fit count data robustly. The Poisson distribution provides a standard frame-
work for the analysis of this type of data.

In case of independent identically distributed Poisson data, M-estimators based on the
Huber and Tukey’s bisquare function are compared to already existing estimators imple-
mented in R via simulations in case of clean data and of additive outliers. It turns out
that it is difficult to combine high robustness against outliers and high efficiency under
ideal conditions if the Poisson parameter is small, because such Poisson distributions are
highly skewed. We suggest an alternative estimator based on adaptively trimmed means
as a possible solution to this problem. Our simulation results indicate that a modified
version of the R-function glmrob with external weights gives the best robustness prop-
erties among all estimation procedures based on the Huber function. A new modified
Tukey M-estimator provides improvements over the other procedures which depend on
the Tukey function and also those which depend on the Huber function, particularly in
case of moderately large and very large outliers. The estimator based on adaptive trim-
ming provides even better results at small Poisson means.

Furthermore, our work constitutes a first treatment of robust M-estimation of INGARCH
models for count time series. These models assume the observation at each point in time
to follow a Poisson distribution conditionally on the past, with the conditional mean
being a linear function of previous observations and past conditional means. We focus
on the INGARCH(1,0) model as the simplest interesting variant. Our approach based
on Tukey’s bisquare function with bias correction and initialization from a robust AR(1)
fit provides good efficiencies in case of clean data. In the presence of outliers, the bias-
corrected Tukey M-estimators perform better than the uncorrected ones and the condi-
tional maximum likelihood estimator. The construction of adequate Tukey M-estimators
or the development of other robust estimators for INGARCH models of higher orders
remains an open problem, albeit some preliminary investigations for the INGARCH(1,1)
model are presented here.

Some applications to real data from the medical field and artificial data examples indicate
that the INGARCH(1,0) model is a promising candidate for such data, and that the issue
of robust estimation tackled here is important.

Keywords: Count data; Poisson model; INGARCH models; GLM models; Huber M-
estimator; Tukey M-estimator; Robustness; Asymptotic properties; Medical applica-
tions.






Contents

(1 _Introduction|

2 Basic concepts of location M-estimators|

2.2 Types of M-Estimators| . . . . . . . . ... . ... ... ... ...
[2.3  Properties of M-Estimators| . . . . ... ... ... ... ... . ...

2.4 Computation | . . . . . . . . . . ...

[3 M-estimation of the Poisson parameter|

[3.1 M-estimation using Huber’s ¥ function |. . . . . . . . ... ... ... ..

[3.2  M-estimation using Tukey’s ¢) tunction|. . . . . . . ... ... ... ...

[3.3  Comparison of the Huber M-estimators| . . . . . . . ... ... ... ...

[3.3.1 Choice of the tuning constant| . . . . . . .. ... ... ... ...

[3.3.2  Robustness comparison|. . . . . . . .. ... ...

[3.4  Comparison of the Tukey M-estimators| . . . . . . . ... ... ... ...

[3.4.1 Choice of the tuning constant| . . . . . . .. ... ... ... ...

[3.4.2  Robustness comparison|. . . . . . . . .. ... ... ...

[3.5 Comparison of Huber and Tukey M-estimators|. . . . . . . . ... .. ..

[3.6  Alternative estimators suggested for small means| . . . . . .. ... ...

I Noosh on Tor INGARCH Models
.1 Properties of INGARCH(p,q) models| . . . . . .. ... ... ... ....

Al T 3 3 Al Al

vii

12
17

21
22
25
27
31
34
35
40
43
46
46
49
23



viii CONTENTS
M6 Simulations| . . . . . ..o 75
[4.6.1 Results for initialization from assuming independence| . . . . . . . 75
[Results in case of clean datal . . . . . . . . ... .. ... ... .. 76

[Results in case of contaminated datal . . . . . ... ... ... .. 76

4.6.2 Results for initialization from robust AR(1) fit.| . . . ... .. .. 80
[Results in case of clean datal . . . . . . . . ... .. ... ... .. 80

[Results in case of contaminated datal . . . . . .. ... ... ... 89

M.6.3 General conclusionsl . . . . .. ... .o oL 90

U7 M-estimation for INGARCH modell . . . . .. ... ... ... ... 95
4.8 Computation| . . . . . . . . . . ... 96
1.9 Simulations| . . . . . ..o 98
491 Resultsin case of clean datal . . . . . . .. ... ... ... ... .. 98

4.9.2 Results in case of contaminated datal . . . .. ... ... ... .. 102

49.3 General conclusions| . . . . ... ..o oo 102

[> Real data applications in the medical field| 107
[5.1 Analysis of the poliomyelitisdatal . . . . .. ... ... ... ... .... 107
[5.1.1  Description of the poliomyelitis data] . . . . . . . ... ... ... 107

[p.1.2  INGARCH(1,0) fit to the poliodatal. . . . . . ... ... ... .. 109

[>.1.3 INGARCH(1,0) fit to the cleaned polio data] . . . . . . .. .. .. 109

[5.2  Analysis of artificial poliomyelitis data] . . . . . . . ... ... ... ... 111
[>.2.1 INGARCH(1,0) fit to the artificial polio datal. . . . . . . . .. .. 111

[>.2.2  INGARCH(1,0) fit to the cleaned artificial polio data] . . . . . . . 111

[5.3  Analysis of the campylobacterosis data] . . . . . . ... .. .. ... ... 113
[5.3.1  Description of the campylobacterosis data] . . . . . ... ... .. 113

[>.3.2 INGARCH(1,0) fit to the campy dataj. . . . . . . ... ... ... 114

[>.3.3 INGARCH(1,0) fit to the cleaned campy data] . . . . . .. .. .. 114

[5.4 Analysis of artificial campylobacterosis data] . . . . . . . ... ... ... 116
[>.4.1 INGARCH(1,0) fit to the artificial campy datal . . . . . . . .. .. 116

[>.4.2 INGARCH(1,0) fit to the cleaned artificial campy data] . . . . . . 116

6 Summary, conclusions and outlook] 119
A ppend 120
|A  Asymptotic properties of M-estimators for INARCH(1) Parameters| 121
B Resul Fihe T . bPoisTShuber? [TobPoisTShuberd 133



CONTENTS

ix

[Bibliography|

139



CONTENTS




List of Figures

R 1

p , ¥ and w functions (from left to right) for Huber, Tukey and Hampel

proposals| . . . ...

B1

Relative asymptotic efliciency of the Huber M-estimator relatively to the

sample mean as a function of underlying true mean 6 for several tuning

constants k.l . . . . L,

B2

Relative asymptotic efliciency of the Tukey M-estimator relatively to the

sample mean as a function of underlying true mean 6 for several tuning

constants Kl . . . . .,

[3.3

Comparison of the sample biases of all Huber procedures with several tun-

ing constants £ in case of an increasing percentage ot additive outliers of

size 5 and a Poisson distribution with mean 2, sample size n=100.| . . . .

B

Comparison of the relative etficiencies measured by the mean square error

of all Huber procedures with several tuning constants & relatively to the

sample mean as a function of the underlying true mean, sample size n=100.] 30

[3.5

Comparison of the relative efficiencies measured by the mean square error

of all Huber procedures relatively to the sample mean as a function ot the

underlying true mean for refined values of the tuning constants k£, sample

size n=100. . . . . . . e

[3.6

Comparison of the relatively efhiciencies for the Huber M-estimators at tun-

ing constants, which achieve approximately 90% or 95% level of efficiency

(from top to bottom).| . . . . . ...

[3.7

Comparison of the biases of the Huber procedures tuned to achieve 907

level of efficiency in case of a Poisson with mean 2 and the sizes of the

additive outliers being 5, 10 and 30 (from top to bottom).| . . . . . . ..

13.8

Comparison of the biases of the Huber procedures tuned to achieve 90%

level of efliciency in case of a Poisson with mean 5 and the sizes of the

additive outliers being 5, 10 and 30 (from top to bottom).| . . . . . . ..

3.9

Comparison of the biases of the Huber procedures tuned to achieve 957

level of efficiency in case of a Poisson with mean 2 and the sizes of the

additive outliers being 5, 10 and 30 (from top to bottom).| . . . . .. ..

xi



xii LIST OF FIGURES

[3.10 Comparison of the biases of the Huber procedures tuned to achieve achieve

| 95% level of efficiency in case of a Poisson with mean 5 and the sizes of

| the additive outliers being 5,10 and 30 (from top to bottom).|. . . . . . .

[3.11 Comparison ot the sample biases of all Tukey procedures in the case of

[3.12 Comparison of the relative efficiencies of the Tukey procedures relatively

| to the sample mean as a function of the underlying true mean for several

| tuning constants k.| . . . . . . ..

[3.13 Comparison of the relative efficiencies of the Tukey procedures relatively

| to the sample mean as a tfunction of the underlying true mean for refined

| values of the tuning constants k£.|. . . . . . . . . .. ... ... ... ..

[3.14 Comparison of the relative efficiencies of the Tukey procedures at tuning

constants which achieve approximately 90% or 95% level of efficiency (from

top to bottom).| . . . ... oo

[3.15 Comparison of the biases of the Tukey based procedures tuned to achieve

| 90% level of efficiency in case of a Poisson with mean 2 and the sizes of

| the additive outliers being 5, 10 and 30 (from top to bottom). . . . . . .

[3.16 Comparison of the biases of the Tukey based procedures tuned to achieve

| 90% level of efficiency in case of a Poisson with mean 5 and the sizes of

| the additive outliers being 5, 10 and 30 (from top to bottom).| . . . . . .

[3.17 Comparison of the biases of glmrob with external weights and tukeypois,

| both tuned to achieve 90% level of efficiency in case of a Poisson with

mean 2 and the sizes of the additive outliers being 5, 10 and 30 (from top

to bottom).| . . . ..

[3.18 Comparison of the biases of tukeypois, huberpois, glmrob and glmrob with

external weights, tuned to achieve 957% efficiency in case of an additive

outlier of increasing size (left) and in case of the additive outliers of size 3

for tukeypois, size 5 for glmrob with external weights and of size & for the

others (right), in case of a Poisson with mean 2, sample size n=100.| . . .

[3.19 Relative efficiencies for tukeypois, glmrob, trimmeanfit and roptest mea-

| sured by the percentage mean square error relatively to the sample mean

| with several tuning constants k, n=100 . . . . . . . . . . ... ... ...

[3.20 Comparison of the biases of tukeypois, glmrob, trimmeanfit and roptest

| with several tuning constants k, in case of a Poisson with mean 0.5 and

| the sizes of the additive outliers being 2 and 5, respectively,| . . . . . ..

[3.21 Comparison of the biases of tukeypois, glmrob, trimmeanfit and roptest

| with several tuning constants k, in case of a Poisson with mean 2 and the

| sizes of the additive outliers being 5 and 10, respectively| . . . . . . . ..

4.1  Simulated biases of tukeypois, glmrob with external weight, trimmeanfit

| and roptest tuned to achieve 95% level of efficiency in case of one transient

| outlier of increasing size from 1 to 20 in a Poisson time series with mean 2.|




LIST OF FIGURES

xiii

12

Simulated biases of tukeypois, glmrob with external weight, trimmeanfit

and roptest tuned to achieve 95% level of efficiency in case of two transient

outliers of increasing size from 1 to 20 in a Poisson time series with mean 2.| 68

‘4.3

simulated relative efficiencies of glmrob, Huber and Tukey M-estimators

with different tuning constants k£ relative to the conditional maximum

likelihood estimator for 3, (left) and «; (right) as a function of the true

a, n=100. . . . . .

7

A

Simulated biases of the conditional maximum likelihood estimator, glmrob

and of Huber and Tukey M-estimators with different tuning constants &

for By (left) and «; (right) as a function of the true oy, n=100.. . . . . .

78

4.5

Simulated biases of the conditional maximum likelihood estimator, glmrob

and of Huber and Tukey M-estimators with different tuning constants k

for Oy (left) and ay (right) in case of one transient outlier of increasing size

with Gy = 1 and a; = 0.4, sample size n=100.] . . . . . ... ... .. ..

79

XS

Simulated biases for 3, (right) and relative efficiencies for 3, (left) of glm-

rob, corrected and uncorrected Tukey M-estimators with different tuning

constants k., relatively to the conditional maximum likelihood estimator,

as a function of the true value of oy, for o =1, n=100.f. . . . . . . . ..

82

a7

Simulated biases for § (right) and relative efficiencies for 5y (left) of glm-

rob, corrected and uncorrected Tukey M-estimators with different tuning

constants k, relatively to the conditional maximum likelihood estimator,

as a function of the true value of ay, for 5o =1, n=200.. . . . . . . . ..

83

18

Simulated biases for a; (right) and relative efficiencies for o, (left) of

glmob, corrected and uncorrected Tukey M-estimators with different tun-

ing constants k, relatively to the conditional maximum likelihood estima-

tor, as a function of the true value of oy, for 5y =1, n=100.| . . . . . ..

84

19

Simulated biases for ; (right) and relative efliciencies for a; (left) of glm-

rob, corrected and uncorrected Tukey M-estimators with different tuning

constants k., relatively to the conditional maximum likelihood estimator,

as a function of the true value of a4, for 5o =1, n=200. . . . . . .. ..

85

.10

Boxplots of the conditional maximum likelihood estimator and uncorrected

Tukey M-estimators with tuning constant k = 5 for (y (top) and a; (bot-

tom) estimated from INARCH(1) with true values 3y = 1 and a; = 0.4,

5000 data sets of sizes 100, 200, and 500 (from left to right).| . . . . . . .

1T

QQ-plots of the conditional maximum likelihood estimator and uncor-

rected Tukey M-estimators with tuning constant £ = 5 for [, estimated

from INARCH(1) with true values §y = 1 and oy = 0.4, 5000 data sets of

sizes 100, 200, and 500 (from left to right).| . . . . . ... ... ... ...

A12

QQ-plots of the conditional maximum likelihood estimator and uncor-

rected Tukey M-estimators with tuning constant k = 5 for a; estimated

from INARCH(1) with true values §y = 1 and a; = 0.4, 5000 data sets of

sizes 100, 200, and 500 (from left to right).| . . . . . . . . ... ... ...




xiv

LIST OF FIGURES

[4.13 Simulated biases of the conditional maximum likelihood estimator, glm-

rob, corrected and uncorrected Tukey M-estimators with different tuning

constants k for Fy (left) and «a; (right) in case of one transient outlier of

increasing size with true values 5y = 1 and oy = 0.4, sample size n=200.|.

[4.14 Simulated biases of the conditional maximum likelihood estimator, glm-

rob, corrected and uncorrected Tukey M-estimators with different tuning

constants k for [y (left) and «; (right) in case of an additive outlier of

increasing size with true values 5y = 1 and oy = 0.4, sample size n=200.|.

92

[4.15 Simulated biases of the conditional maximum likelihood estimator, glm-

rob, corrected and uncorrected Tukey M-estimators with different tuning

constants k for 3, (left) and «; (right) in case of increasing numbers of

additive outliers of increasing sizes with true values 5y = 1 and a; = 0.4,

sample size n=200.] . . . . . .. . ...

93

[4.16 Simulated biases of the conditional maximum likelihood estimator, glm-

rob, corrected and uncorrected Tukey M-estimators with different tuning

constants k for 3y (left) and «a; (right) in case of increasing numbers of

additive outlier of fixed size [40| with true values fy = 1 and «o; = 0.4,

sample size n=200.] . . . . . . . ...

94

[4.17 Boxplots of the conditional maximum likelihood estimator and Tukey M-

estimators with tuning constant k = 7 for By, oy and [; (from left to

right) estimated from INGARCH(1,1) with true values 8y = 1, oy = 0.3

and g; = 0.4, 500 data sets of size 200.] . . . . . . . ... ... ... ...

101

[>.1 Monthly number of poliomyelitis cases in the United States for the period

1970 to 19830 . . . o o o

108

.2 Polio data (solid black line) and data after outliers removal (dashed green

line). Step 1: AO at time 35 (vertical red line), step 2: TS at time 7

(vertical blue line), step 3: TS at time 113 (vertical brown line), step 4:

LS at time 167 (vertical yellowgreen line).| . . . . . ... ... ... ...

110

[>.3 Artificial Polio data (solid black line) and data after removal of outliers

(dashed green line). Step 1: AO at time 35 (vertical red line), step 2: T'S

at time 7 (vertical blue line), step 3: 'S at time 113 (vertical brown line).| 112

[5.4  Monthly number of cases of campylobacterosis infections from January

1990 to the end of October 2000 in the north of the Province of Quebec,

I Canada.l . . . . .. . L 113
[>.5 Campy data (solid black line) and data after removal of outliers (dashed
green line). Step 1: LS at time 84 (vertical red line), step 2: TS at time

100 (vertical blue line).| . . . . . . . ... ... oo 115
[>.6 Artificial campy data (solid black line) and data after outliers removal
(dashed green line). Step 1: TS at time 100 (vertical red line), step 2: LS

at time 84 (vertical blue line)| . . . ... ... ... 117

[A.1 Equation (AD)| . . . . . . . 125




LIST OF FIGURES XV

[B.1 Simulated biases (bottom) and relative efliciencies (top) of corrected and |
| uncorrected Huber M estimator with different tuning constants k relatively |
| to the conditional maximum likelihood estimator for 3y (left) and a4 (right) |
| as a tunction of the true oy, for 5o =1 and n=200.| . . . . ... .. ... 134

| of corrected and uncorrected Huber M- estlmators with dlﬁerent tumng |
constants £ for By (left) and o, (right) in case of an additive outlier of |
increasing size with true values 130 =1 and a; = 0.4, sample size n=200]. 135

| ot corrected and uncorrected Huber M- estlrnators with dlﬁerent tunlng |
| constants k for y (left) and ay(right) in case of a transient outlier of |
| increasing size with true values §y = 1 and a; = 0.4, sample size n=200.|. 136

of corrected and uncorrected Huber M-estimators with dlﬁerent tunlng |
constants k for [y (left) and «(right) in case of increasing numbers of |
additive outliers of increasing sizes with true values 5y = 1 and a; = 0.4, |
sample size n=200.] . . . . . ... 137

ot corrected and uncorrected Huber M- estlmators with dlﬁerent tunmg |
constants k for [, (left) and a;(right) in case of increasing numbers of |
additive outlier of fixed size with true values gy = 1 and oy = 0.4, sample |
size n=200 . . . . .. 138




xvi LIST OF FIGURES




List of Tables

2.1 p, v and w functions for Huber, Tukey and Hampel proposals|. . 10
4.1 Results of the Tukey M-estimators and the conditional maximum likeli- |
| hood estimator in case of clean data with oy =1, oy = 0.3 and 57 = 0.4 100
4.2  Results of the Tukey M-estimators and the conditional maximum likeli- |
| hood estimator in case of 3 additive outliers with 5y = 1, a; = 0.3 and |
| Oy =04]. . . 103
4.3  Results of the Tukey M-estimators and the conditional maximum likeli- |
| hood estimator in case of 6 additive outliers with 5y = 1, a; = 0.3 and |
| 01 =040 . . . 104
[4.4  Results of the Tukey M-estimators and the conditional maximum likeli- |
| hood estimator in case of 10 additive outliers with Gy, = 1, a; = 0.3 and |
| 01 =040 . . . 105
[>.1 Parameter estimates for the polio data (left) and for the cleaned polio data |
| (right) |. . . . o o 109
[>.2  Parameter estimates for the artificial polio data (left) and for the cleaned |
| artificial polio data (right)| . . . . . . .. ... ... ... L. 111
[>.3 Parameter estimates for the campy data (left) and for the cleaned campy |
| data (right)| . . . . . . . .. 114
[>.4 Parameter estimates for the artificial campy data (left) and for the cleaned |
| artificial campy data (right)] . . . . .. .. ... o 0oL 116

xvii



LIST OF TABLES

XV1ll

List of abbreviations

7 Abbreviation 7 Meaning 7 Page ;
ABP Asymptotic breakdown point 12
AO Additive outlier 110
ARE Asymptotic relative efficiency 23
BP Breakdown point 12
condlikest Conditional maximum likelihood function for INARCH(1) model 72
condlikest11 Conditional maximum likelihood function for INGARCH(1,1) model 72
FBP Finite breakdown point 12
GES Gross-error sensitivity 14
glmrob with external weights | glmrob in the R-package robustbase using external weight function 28
huberpois Huber estimator for i.i.d. Poisson data 24
Hubercorr Huber estimator with bias correction for INARCH(1) model 134
Huberuncorr Huber estimator without bias correction for INARCH(1) model 75
tukeypois Tukey estimator for i.i.d. Poisson data 26
IF Influence function 13
INGARCH Integer-valued generalized autoregressive conditional heteroscedasticity model 59
LS Level shift outlier 110
poissmall Initial estimator for i.i.d. Poisson data 24
RMSE Root mean square error 29
trimmeantfit Adaptive trimming estimator 54
robPoisTShuberl Huber function without bias correction and with independence initialization for INARCH(1) 72
robPoisTShuber2 Huber function without bias correction and with initialization from the AR(1) for INARCH(1) | 72
robPoisTShuber3 Huber function with bias correction and with initialization from the AR(1) for INARCH(1) 72
robPoisTStukeyl Tukey function without bias correction and with independence initialization for INARCH(1) 72
robPoisTStukey?2 Tukey function without bias correction and with initialization from the AR(1) for INARCH(1) | 72
robPoisTStukey3 Tukey function with bias correction and with initialization from the AR(1) for INARCH(1) 72
robPoisTStukey11 Tukey estimator without bias correction for INGARCH(1,1) model 99
robPoisTStukey22 Tukey estimator without bias correction for INGARCH(1,1) using independent initialization 99
robPoisTStukey33 Tukey estimator with bias correction for INGARCH(1,1) using ARMA(1,1) initialization 100
SC Sensitivity curve 13
TS Transient shift outlier 110
Tukeyuncorr Tukey estimator without bias correction for INARCH(1) model 80
Tukeycorr Tukey estimator with bias correction for INARCH(1) model 80




Chapter 1

Introduction

Robust statistics provides inference methods, which are not sensitive to unusual observa-
tions or other small deviations from ideal models. Finding the best fit to the majority of
the data is one of the most important aims of robust methods.

M-estimators are a general class of robust estimators and their asymptotic properties
played an important role in the development of modern robust statistics since the 1960s,
where the most important property is that for any asymptotically normal estimator exists
an asymptotically equivalent M-estimator, see Staudte and Sheather (1990, Page 116).
In general there are two main approaches to finding robust M-estimators described in
Peracchi (1990)). The first one is Huber’s minimax approach, see [Huber (1964 1981).
The second one is Hampel’s infinitesimal approach, see Hampel (1968)) and Hampel et al.
(1986). Both approaches assume a parametric model for the observations and try to con-
struct estimators that perform well over a neighborhood of the assumed model. Huber’s
approach is to consider a neighborhood of the assumed parametric model and then to
safeguard within that neighborhood in a minimax sense. This approach also described in
Kordzakhia et al. (2001) is based on the minimization of some functional of the likelihood
process, namely so-called Huber’s p functions, see Section 2.1 and Section 2.2. Hampel’s
approach focuses on the asymptotic behavior of an estimator in an infinitesimal neigh-
borhood of a given model. In our work, we follow the first approach to finding robust
estimators, but we use modified versions of likelihood functions, which are suitable for
our model and we use estimators computed using the second approach for the purpose of
comparison, as we will see later in Chapter 3.

This thesis considers the problem of robust modelling for count data, where the Poisson
model provides a standard framework for the analysis of this type of data. It consists
of six chapters and the relationship between them is illustrated in Figure 1.1. The first
chapter is this introduction and the outline of the other chapters is as follows:

e In Chapter 2, we review some concepts for location M-estimators in robust estima-
tion theory such as their definition, types, properties and computation.

e In Chapter 3, we construct new Tukey M-estimators with bias correction of the
Poisson mean in case of i.i.d. data. We propose a new algorithm for estimating the



2 Introduction

mean of the Poisson distribution, which is based on the Tukey function. We mod-
ify the R-function glmrob by adding a bias correction term and external weights.
Then we compare modified bias-corrected M-estimators based on the Huber and the
Tukey functions to already existing estimators implemented in R via simulation in
case of clean and additive outliers data. We will finish this chapter by considering
alternative estimators as a solution to the problem of combining high robustness
against outliers and high efficiency relatively to the sample mean when the true
mean is small.

e In Chapter 4, we introduce robust M-estimation for so called INGARCH models
for count time series data in the presence of outliers, where we focus on robust esti-
mation for the INGARCH(1,0), or more briefly INARCH(1), model. We start with
the definition and the properties of these models. We apply conditional maximum
likelihood as a classical approach to estimate the parameters of these models. We
discuss robust estimation of the marginal mean in case of time series data from
INGARCH models using our best functions given in Chapter 3 for i.i.d. Poisson
data. Then we modify the classical estimation approach by giving robust estima-
tors for the parameters of the INARCH(1) model. We investigate some of the basic
properties of these estimators. Afterwards we compute the estimates using some
functions, which we have implemented in R, and compare them via simulations in
case of clean and contaminated Poisson time series data. We will finish this chapter
by trying to extend robust estimation to more general INGARCH models.

e In Chapter 5, we apply our methods proposed in Chapter 4 to two real data exam-
ples in the medical field. The first example is the poliomyelitis data. The second
example is the campylobacterosis data. We start with an analysis of the poliomyeli-
tis data. We give a description of these data, then we fit an INGARCH(1,0) model
to them using conditional maximum likelihood as a non robust method and Tukey
M-estimation as a robust method for parameter estimation. After that, we fit an
INGARCH(1,0) model using the same methods but after having cleaned the data
from outliers. To verify the reliability of our proposed methods, we analyse an
artificial data example generated to resemble the poliomyelitis data. We fit an
INGARCH(1,0) model to the artificial data using the same methods as for the
poliomyelitis data, then we fit an INGARCH(1,0) model again but after having
cleaned the artificial data from outliers. For the campylobacterosis data, we repeat
what we did for the poliomyelitis data.

e In Chapter 6, we provide a summary, conclusions and an outlook.

Each chapter starts with a short description of its contents. Additionally, we begin
Chapter 3 and Chapter 4 with a brief review of the previous treatments in the literature
for the topics treated in these chapters.

We use R software version 2.11.1 (2010-05-31). Under R, we use packages "MASS'",
"robustbase’, "dplR" and "ROptEst". Along with this dissertation comes a CD, which
contains the .pdf of this document and the codes in R, which we wrote to calculate our
estimates, to run our simulations and to plot our figures.
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Chapter 2

Basic concepts of location
M-estimators

The purpose of this chapter is to present some basic concepts of location M-estimators in
robust estimation theory, which we will need afterwards. We start by giving a definition
of location M-estimators. Then we present Huber’s M-estimators and Tukey’s biweight or
bisquare M-estimators as different types of M-estimators. Afterwards we review criteria
used for studying whether robust estimators have good properties: qualitative robust-
ness, quantitative robustness, and infinitesimal robustness. We finish this chapter by the
computation of location M-estimators with previously computed dispersion.

2.1 Definition of location M-Estimators

M-estimators naturally estimate M-measures of location, so we can define them through
the following three parts:

e Location model
e Measures of location

o M-Estimators

We first consider the simple location model as described in Maronna et al. (2006, Page 17),
Xi=p+u (i=1,..,n), (2.1)

where the outcome X; of each observation depends on the true value of 1 and on some
random error u;, with uq,...,u, being assumed to be independent and identically dis-
tributed random variables with the same symmetric distribution Fj, which is symmetric
to 0. It follows that Xi,..., X, are independent with common distribution function F,
where
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F(z)=Fy(x —p), T€R (2.2)

A measure g maps a class F of distribution functions F' onto the real line (R) by con-
structing p(F'). According to Staudte and Sheather (1990, Page 101), a measure p is
called a measure of location if for any constants a and b and random variable X with
distribution [ holds:

o u(X +b) =u(X)+b (location equivariance).
o p(=X) = —p(X) (symmetry).
e X >0 implies u(X) > 0.

e u(aX) =au(X) for all a > 0.

Bickel and Lehmann (1975) require measures of location to be stochastic order preserving,
so they added

o If X is stochastically larger than Y, then p(X) > u(Y).

We can use the classical estimator of i, e.g., least squares or maximum likelihood meth-
ods, assuming the data to come from the same normal distribution, Fy ~ N (0, ¢?), which
implies that F' ~ N(u,0?) if there are no outliers.

Applying the maximum likelihood method, the likelihood function for a realization x4, ..., z,
of X17 ey Xn is

L1, i 1) = Hf< ), (2.3)

with fo being a density of Fy. The maximum likelihood estimate (MLE) of u is the value
i - depending on (z1, ..., x,) - that maximizes L(xy, ..., Tn; ),

L=z, ..., x,) = argmaz, L(xy, ..., Ty; 1), (2.4)

where "argmax” stands for "the value maximizing the function".

If I was exactly a normal distribution, the MLE which is the sample mean would be an
optimal estimator. But if F' is only approximately normal, then our goal is an estimator
that is almost as good as the mean when F' is exactly normal. To achieve this goal, we
use modified versions of maximum likelihood methods for estimation, such that i is close
to p with high probability, e.g., M-estimators.

M-estimators are a broad class of estimators which are obtained as the solution of the
problem of minimizing certain objective functions of the data or as the root of a system
of equations equating certain functions of the data to 0. Given observations z1, ..., x,, an
M-estimator of a location parameter y is the minimizer of the following objective function
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> i, 1) (2.5)

where the p function measures the agreement between an observation x; and any possible
value of u. Using p(x, u) = —log fo(x, i), i.e. the negative logarithm of the model density,
gives the maximum likelihood estimator.

If we assume that p has a derivative ¢ with respect to its second argument, ¢(x;, 1) =
a% p(x;, i), then an M-estimator can be defined as the solution of the following equation
for i

n

Z Y(wi, ) = 0. (2.6)
i=1
According to Maronna et al. (2006, Page 23), we can calculate /i using the maximum
likelihood estimation as a special case of M-estimation for model (2.1) assuming the scale
parameter o to be known, e.g., 0 = 1, as follows:
Since the logarithm is an increasing function if fj is everywhere positive, (2.4) can be
written as

la = la(xla ) xn) = argminu Z p($l - ,u)a (27)
=1

If p is differentiable, differentiating (2.7) with respect to u yields

> (s — 1) =0 (2.8)

Note that if f, is symmetric, then p is even and hence v is odd.
Generally, we have the following possible solutions of (2.8) according to the type of 1:

e if ¢ is monotone nondecreasing with ¢ (—o00) < 0 < ¥ (00), a solution to (2.8) exists
and all solutions form an interval since p is convex.

e [f ¢ is continuous and strictly increasing, the solution is unique.

e If ¢ is discontinuous, a solution to (2.8) might not exist and in this case we shall
interpret (2.8) to mean that the left-hand side changes its sign at fi.

e If ¢ is not a strictly monotone function, then there can be more than one solution
of (2.8).

Using different structures of p and 1 functions gives different types of estimates of pu, for

example the mean and the median:
2

If Fy = N(0,1), then fo(z) = \/%e_%, and apart from a constant we have for the MLE

p(xz) = % and ¥(x) = x, and equation (2.8) becomes

Z(Iz — ) =0 (2.9)
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which has i = x, the sample mean, as its unique solution.

If Fy is the double exponential distribution, fo(z) = 1e~Il, then for the MLE p(z, p1) =
|z — p|, ¥(x, pu) = sign(x — p), and any sample median of x1, ..., x, will be a solution of
(2.8), what is equivalent to

> sign(z; — 1) =0 (2.10)
i=1

Under normality the sample mean is the most efficient estimator for p, while the median
has asymptotic efficiency % ~ 64%, since the asymptotic variance of the sample median
is m/2, see Maronna et al. (2006, Page 26). On the other hand, the median is a robust
measure of central tendency while the mean is not.

Now our problem is, how can we choose appropriate p or ¢ functions, which give us the
best compromise between efficiency and robustness? One of the most popular ¢ functions
is the Huber function

U(ry) = {T“ . i < K (2.11)
k- sign(r;), |ri|l >k

where for ¢ = 1,...,n, r; = x; — u is the residual of z; and k is a tuning constant to be

determined suitably.

The calculation of the Huber location estimate defined in (2.11) is commonly done by

iteratively reweighted least squares (IRWLS), derived from writing the solution of equa-

tion (2.8) as a weighted mean with weights depending on the distances between the data

points and the current solution as follows:

Define the weight function W (r;)

17 ’r7,| S k

(2.12)
k/ il ril >k

W(r;) =(r:)/ri = {
Rewrite (2.8) as

> Wlri(zi — ) = (2.13)

so that

n
j = Zm it (2.14)
Zizl Wy

with w; = W (r;). If W(r;) is bounded and nonincreasing for r; > 0, IRWLS converges to
a solution of (2.8).
For Huber’s ¢ function, choosing a larger value of k increases the efficiency but reduces
the robustness to outliers. Now our problem becomes how can we choose a reasonable
value of k7 If the model distribution F' is a normal distribution with a unit scale, it
is reasonable to choose the tuning constant k of the Huber function within the interval
[1, 3], since such distributions rarely generate values with distances from the mean larger
than 3 (standard deviations), whereas all values within the range [—1, 1] are typical.
We will give later on more details about 1 functions and the results of applying these
functions for different choices of the tuning constants.
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If F depends on an unknown scale parameter o, we can derive M-Estimators in two ways:

1. with previous estimation of dispersion,

2. simultaneous M-Estimates of location and dispersion.

In these cases, k can be chosen as a corresponding multiple of an estimate &, which can
be calculated a-priori or simultaneously, see Maronna et al. (2006, Page 36). We will
discuss these options with some details in Section 2.4.

2.2 Types of M-Estimators

Several types of M-estimators have been developed depending on the choice of p or ¥
functions. One usually tries to obtain p or ¥ functions, which lead to some desirable
properties. If p is differentiable, the computation of the estimate fi is usually easier. If
the derivative ¥ of p is continuous and strictly monotone increasing, there is a unique
solution like in case of Huber’s ¢ function. When ¢ is not monotone a solution of
(2.8) is called a redescending M-estimator. According to [Staudte and Sheather (1990,
Page 118), redescending M-estimators are popular since they have some additional de-
sirable properties. Their ¢ functions are non decreasing near the origin but decrease for
large arguments. Many of them satisfy ¢ (z) = 0 for all = with |z| > k, where k is a finite
number which is called the minimum rejection point.

Another property is that they can be quite efficient and have a high breakdown point if
we find the solution by iteration, beginning with an initial estimator with a high break-
down point, and unlike other outlier rejection techniques they do not suffer from masking
effects. Their efficiency is due to the fact that they completely reject large outliers, but
use the exact values of all reasonable observations, as opposed to the median. This is
because their ¢ function is chosen to redescend smoothly to 0.

Examples for this type of estimators:

e Hampel’s three part M-estimators

e Tukey’s biweight or bisquare M-estimators

Table 2.1 and Figure 2.1 show the different p, 1) and w (weights) functions, for the Huber,
Hampel and Tukey proposals, which are the most popular ones.

From Table 2.1, we find that Hampel’s ¢ function is more complicated than the Huber
and Tukey functions since it needs fixing three tuning constants a, b and ¢ instead of only
one constant. So in our study, we will concentrate on the Huber function and the Tukey
function, which have been successfully used in a wide variety of applications. Under the
normal model with a unit scale, Tukey’s ¥ function needs larger values of k£ between 3 and
5, because k does not limit the range of typical, but the range of plausible observations
generated from the normal model.
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Table 2.1: p, ¥ and w functions for Huber, Tukey and Hampel proposals

Criterion 7 p(r7) 7 P(r;) = ASV 7 w(r;) = ¥(r;)/r 7 range
Huber 577 T 1 Iri| <k

k|ri| — $k? k - sign(r;) k/|ri |ri| >k
Tukey’s biweight | 1 —[1 — (%)*]? [l — (%)% [1— (%)% Iri| < k

| 0 0 | > &
Hampel r? T 1 il <a

2a |ry| — a? a- sign(r;) o a<|ri| <b

a2clry| —r?) 7 , | a-sign(r)(c—1ri|) | a

R L (elrh /e =b) | b<|n] <
Il =) 1, ot L lelr/(c—) o< n <
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Figure 2.1: p , ¥ and w functions (from left to right) for Huber, Tukey and Hampel
proposals
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2.3 Properties of M-Estimators

There are three basic concepts used to establish whether robust estimators have good
properties:

e Qualitative robustness
e QQuantitative robustness

e Infinitesimal robustness

Qualitative robustness:

The definition of qualitative robustness is very closely related to continuity of the statis-
tic in the weak topology viewed as a functional. [Hampel et al. (1986, Page 99) relate
continuity and qualitative robustness with each other, where they note that qualitative
robustness is closely related, but not identical with, a nonzero breakdown point. [Hampel
(1968)) calls an estimator qualitatively robust if its sampling distribution is equicontinous.
That is, roughly stated, a small change in distribution of the observations should cause
only a small change in the distribution of the estimator.

Quantitative robustness (global reliability):

The general idea here is to measure quantitatively how the effect of a small change in
the underlying distribution F' changes the distribution of an estimator or statistic 6. The
breakdown point (BP) addresses this property. The BP concepts have been presented
by Maronna et al. (2006, Page 58) as follows: Let X = (xy,...,2,) be a data set and
let 6, be an estimator of the parameter #, which belongs to a given parameter space ©.
The finite-sample breakdown point (FBP) is the largest fraction of contamination m/n,
such that 6, is bounded away from the boundary of ©, if at most m data points are

changed arbitrarily. More formally: Let d: © x © — Rd be a distance measure and call
N(X,m)={Z = (z1,...,z,) : #{i : z; # x;} = m}. Then the FBP of # at the sample X

e,(0,X) :Lmax{m 3K, d(6,(Z),6,(X)) < K VZ € N(X,m)}. (2.15)

The asymptotic contamination breakdown point (ABP) of an estimate 0 at F, denoted
by €*(0, F), is the largest fraction ¢ € (0,1) of contamination, such that  is bounded
away from the boundary of © for all distributions in the corresponding contamination
neighborhood. More formally: Let d : © x © — R be a distance measure and N (F, ¢) :=
{(1 —€)F 4+ ¢G,G € G} be a contamination neighborhood of F', where G is a family of
contamination distributions. Then

(0, F) = sup{e > 0: 3K € R, d(é(F),é(u _OF + eG)) <K YGeg) (2.16)

In most cases of interest, the FBP does not depend on X and tends to the ABP when
n — oo.
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Note that both the sample mean and the sample variance have an FBP and ABP of 0
if the parameter space is R. On the other hand, the median has a breakdown point of
50% asymptotically if the parameter space is R, because at least half of the observations
need to be moved arbitrarily far away before the median becomes completely wrong.
For location M-estimators with monotonic but not necessarily odd ) function, the break-
down point is

A min(kl, ]{72)
O F) = ———= 2.17
€ ( ) ) kl + kQ ( )
where k; = —1)(—00) and kg = 1)(0c0) are the limits of ¢ as its argument goes to —oo or

oo. If ¢ is odd as for the Huber M-estimator, then k; = ky and ¢ = 0.5. For all prac-
tical purposes the bisquare M-estimator with previous scale (median absolute deviation,

MAD) has € = 0.5, while for simultaneous estimation, €* is usually lower than 0.5, see
Maronna et al. (2006, Page 60).

Infinitesimal robustness (local stability)

Infinitesimal robustness shows us what happens if we add one more observation with value
xg to a large sample. The Influence Function (I F') measures the effect of an infinitesimal
perturbation, where IF' in its finite sample version is known as the Sensitivity Curve
(SC). The SC is defined in [Maronna et al. (2006, Page 55) as follows: Let z1,...,x, be
an i.i.d. sample from a distribution F' and 0, an estimator of a parameter 6, then

A A

SCy (w1, ..y T, 20) = (04 D)[On1 (21, ..o, Tny T0) — On (21, .0, 7))

- 1
n+1

The SC'is computed by calculating the estimator 6, as a function of the empirical distri-
bution (F,, = X" ,0,,/n) with and without an observation, where d,, is the point-mass at
the point x, and is proportional to the size of the sample. This means the SC' describes
the effect of an individual observation on the estimator for a specific data set. When we
let the sample size n tend to infinity (asymptotic behavior), we usually have 6, 2 0. (F),
where éoo(F ) is the asymptotic value of the estimate at F', and the resulting limit is the
IF. According to [Hampel (1974), the I F' of an estimator 6 at a distribution F is

O ((1 _OF + eéxo) — O (F)
]F@(.T(), F) = ZZ'TTLE_@ y (218)
€

where f, is a functional on a set of reasonable distributions (a contamination neighbor-
hood of F).

Note that the SC' is obtained if F' is replaced by the empirical distribution F},, which
assigns mass n%rl to each of (zg,x1, ..., z,), and setting € to n%rl

For location M-estimators with bounded and continuous 1 function, |Croux (1998)) shows

that for each xg
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SC@H(QT()) & ]F@(ZL’(), F)
The IF of an M-estimator is

w(m()? é00>
B(6,v)

with B(0,v¢) = %E@/J(X, 6). Equation (2.19) shows an important connection between the
IF and the ¢ function of an M-estimator. The [ F' provides a lot of information on the
estimators. According to Maronna et al. (2006, Page 62), the most important one being
that the I gives us a picture of the asymptotic bias caused by a small contamination
of size € in the data (robustness stability). To show this: Consider a contamination
neighborhood of Fy with parameter 6, and § an estimator of 8, such that

[Fy(x, F) = — (2.19)

N(Fp ) :={(1—¢€)Fp+¢G,G € G},

where G is a family of contamination distributions. Then the asymptotic bias of 0 at any
FeN (Fg, 6) is

B(F,0) = 0..(F) -0
and the maximum asymptotic bias (M B) is
MBy(e,0) = sup{|B(F,0)| : F € N(Fp,e)}
where the maximum bias is related to the IF via
MBj(e,0) ~ ¢ -~(0,0)

for small values of €, where v(f, #) is the gross-error sensitivity (GES) of  at 0, which is
equal to

7(0,68) = max |1 Fy(xo, Fy)|- (2.20)

If the parameter space is the whole set of real numbers, the relationship between M B
and BP is

e*(9, Fy) = max{e > 0 : MBy(e,0) < co}

Note that two estimators may have the same BP but different M Bs.

For M-estimators with nondecreasing and bounded 1 function, let F),(z) = Fy(z — p),
where Fj is symmetric about 0, k = 1(0c0) and € < 0.5, then the maximum bias is the
solution b, of the following equation
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Ert(x,b) = (2.21)

1—¢€’

see Maronna et al. (2006, Page 79).

Secondly, Martin (1978)) shows that the I F provides an intuitively appealing representa-
tion for a robust estimator from which the asymptotic distribution of the estimate may
be formally deduced. Under some regularity conditions, 0, may be represented as

~ 1
0 =0+ —> IF;(zx;,F)+ R, (2.22)
n

i=1

and often the remainder term satisfies n%Rn 2, 0. Then the difference

V{0, — 0] = & Sy TFy(as, F)}

converges to zero in probability, so that we have the approximation

A

V0, — 0) ~ N(0,V(0))

A

i.e. 0, — 0 is asymptotically normal with parameters
Ep[IFy(X,F)] =0 (ie. E(f,) — 0)
and
Vil0) = Ep(1F;(X, F))? (2.23)

This formula shows that a bounded IF implies a bounded asymptotic variance.

Maronna et al. (2006, Page 64) define the asymptotic relative efficiency (ARE) of § at 6
as the ratio of variances as follows:

ARE(0) = Viuin(0)/V5(0) (2.24)

where Vinin(0) is the smallest possible asymptotic variance within a reasonable class of
estimators (e.g. equivariant ones) or Vi (6) = min{V;(6) : 6 is a "reasonable" estimator
of 6}. Under reasonable regularity conditions Vi, (6) is usually achieved by the MLE.

At the normal model, M-estimators with the Huber function (2.11) have an ARE larger
than redescending M-estimators if we choose the constants to obtain the same maxi-
mal bias. For several symmetric, wider tailed distributions, suitable redescending M-
estimators are slightly more efficient than M-estimators with the Huber function, and for
the Cauchy distribution redescending M-estimators are much more efficient (about 20%
more) than the Huber estimator. This is because they completely reject large aberrant

observations, while the Huber estimator effectively treats them like moderate outliers,
see Staudte and Sheather (1990, Page 119).
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If F' does not belong to the family Fy but is in a neighborhood of Fy, F' € N (Fy,¢), the
bias will dominate the variance component of MSE for n large since (6, —0) < N (b, w/n)
with b = éoo(F ) — 6 being the asymptotic bias and w the asymptotical variance of 0,
at I, i.e. the variance of 6, — 0 goes to zero while the bias does not. Thus we must
balance the asymptotic efficiency and asymptotic bias using different approaches, which
are given in Maronna et al. (2006, Page 64). One approach to achieve this is to minimize
the maximum bias for a fixed efficiency. For example among Huber and Tukey bisquare
M-estimators with previous MAD scale which have BP=0.5, we choose k to fix a certain
efficiency and compare the maximum biases thereafter. [Hampel (1974) states another
approach to balance the problem between bias and efficiency as minimizing the asymp-
totic variance under the constraint that the gross-error sensitivity (GES) is bounded. A
criterion for the construction of optimally robust M-estimators is to use the 3 function
that minimizes ¢tr(V;(6)) under the constraint that v(6,8) is bounded by a finite constant
k. An optimal choice of ¢ is

k
(z,p) —a|

where s(z, ) denotes the score function for p or the objective function and a satisfies
E(°P"(X,u)) = 0. The term min[ | in (2.25) is often called the robust weight, see
Simpson et al. (1987)).

When working with parametric models, Hampel (1974)) shows that in the class of M-
estimators with bounded influence functions, a type of modified log-likelihood function
(Huber function) offers highest asymptotic efficiency, and is therefore asymptotically op-
timal in this sense.

VP, 1) = (s(m,,u) - a>min[1, s (2.25)

Huber (1972) links the three concepts (qualitative robustness, influence function and
breakdown point) to the stability aspects of, say, a bridge: (1) qualitative robustness
- a small perturbation should have small effects; (2) the influence function measures
the effects of infinitesimal perturbations; and (3) the breakdown point tells us how big
the perturbation can be before the bridge breaks down, see [ Hampel et al. (1986, Page 42).

Staudte and Sheather (1990, Page 115) summarize some of the desirable properties of
M-estimators as follows:

e M-estimators can be tuned to be robust against large proportions of outliers.

e For every asymptotically normal estimator 0 there is an equivalent M-estimator
(so from the point of view of asymptotic normality only M-estimators need to be
studied).

e M-estimators can be chosen to completely reject large outliers maintaining a large
breakdown point and high efficiency at the model.

e The [F of an M-estimator is proportional to ¢ (from 2.19), hence this function
may be chosen to bound the influence of outliers and achieve high efficiency for a
particular model.
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As an example to show the latter property of M-estimators, returning to (2.9) and (2.10),
the 1 functions of the mean and the median are z; — ji and sign(z; — f1), respectively and
their influence functions are proportional to their score functions, so the mean is not B-
robust (unbounded influence function), while the median is B-robust (bounded influence
function). So one criterion for a robust measure of location is that its influence function
is bounded.

However, we note that M-estimators also have some drawbacks, such as they are not in
general scale equivariant and algorithms for their computation possibly do not converge
if we do not have a good initialization.

2.4 Computation

For many choices of 1, no closed form solution for the corresponding M-estimator ex-
ists and an iterative approach to computation is required, such as a Newton Raphson
algorithm. Alternatively, in many cases an iteratively re-weighted least squares fitting
algorithm can be applied. According to Maronna et al. (2006, Page 39), we will use the
latter algorithm to compute M-estimates with a previously computed dispersion, since in
general estimation with a previously computed dispersion is more robust than simulta-
neous estimation of location and scale as follows:

Location with previously computed dispersion estimation

The weighted average expression (2.14) suggests an iterative procedure, starting with a

robust estimate 6y of o and some initial estimate fip of u. For j = 0,1, ..., given f[i;
compute
Wi = W(x_“f) (i=1,..,n), (2.26)
0o
where W is the function defined in (2.12). Let
N Do WjiT5
iy = ST (2.27)
i=1Wji

If W(r;) is bounded and nonincreasing for 7; > 0, then the sequence fi; converges to a
solution of

iw(” _ﬂ> =0 (2.28)

i=1 o
The algorithm, which requires a stopping rule based on a tolerance parameter ¢, is thus:

1. Compute ¢ (for instance, the normalized median absolute deviation, MADN) and
fio (for instance the sample median, Med(x)).

2. For j =0,1,2, ..., compute the weights (2.26) and then fi;,; in (2.27).
3. Stop when |fij11 — fi;] < €6y.

We note that we can use the same algorithm, if we want to estimate location and disper-
sion simultaneously, by adding another iterative procedure for the scale estimate ;.
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To combine high breakdown point and high efficiency at the normal distribution, we add
a variant of M-estimators called MM-estimators. MM estimators have been introduced
by [Yohai (1987). These estimators combine an M-estimator p of location with an S es-
timator S,, of scale. Here our interest is the location parameter p, so we treat the scale
parameter ¢ as an unknown nuisance parameter.

The following steps to compute MM-estimators are given in|Maronna et al. (2006, Page 124).
We start by finding an M-estimate as the solution which minimizes

L(z1, oo ) = fjp(T(M)) (2.29)

i=1 o

where r;(1t) = x; — p and & is a preliminary scale M-estimator.
Then we can apply the following steps:

1. We compute a consistent initial estimate fip with high breakdown point but possibly
low normal efficiency (this initial point will also be used to compute the robust scale
d required to define the M-estimate).

2. Compute a robust scale ¢ from the residuals 7;(j1).

3. Find a solution i of 21" ; ¥(%) = 0 by using an iterative procedure starting at fi.

For the purpose of comparison we will include the results of MM-estimators in Chapter 3.

There are several functions available for computation of M-estimators with the Huber or
the Tukey function implemented in R software version 2.11.1 (2010):
Firstly, for Huber’s v function we have the following functions available:

1. Function huberM in the R-package "robustbase'
huberM gives a modified "safe" (and more general) Huber estimator, which is a
function of y, k = 1.5, weights = NULL, tol = 1e-06, mu , s ,..., where mu is the
initial location estimator and s is the scale estimator held constant through the
iterations.
This function is a compatible improvement of huber() in MASS because it returns
median() if the median absolute deviation, mad (), equals 0.

2. Function glmrob in the R-package "robustbase"

glmrob is a function in formula, family, data, weights, ..., method = "Mqle",.... This
function is used to fit generalized linear models by robust methods, where formula
is a symbolic description of the model to be fitted. Here it is y ~ 1 for estimation
of the mean of identically distributed data. Weights is an optional vector to be
used in the fitting process. The method is maximum quasi likelihood "Mqle", which
is used to fit a generalized linear model using Huber’s ¢ function as described in
Cantoni and Ronchetti (2001).
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3. Function rlm with method M-estimation in the R-package "MASS"
rlm is a function in formula, data, weights, ..., psi =c("psi.huber", "psi.hampel",
"psi.bisquare", d = 1.345, method = c¢("M", "MM"), ...).
This function is used to fit a linear model by robust regression using an M estimator.
The formula y ~ 1 fits a constant mean. Weights is a vector of prior weights for
each case. Fitting is done by iterated re-weighted least squares (IWLS). Selecting
method = "MM" ensures the estimator to be highly robust and highly efficient.

Secondly, for Tukey’s biweight 1) function the following functions exist:

1. Function tbrm in the R-package "dpIR'
tbrm calculates Tukey’s biweight robust mean, a robust average that is unaffected
by outliers. It is a function in a numeric vector y and a constant k, where k
determines the point at which outliers are given a weight of 0.

2. Function rlm with the methods M-estimation and MM-estimation in the R-package
"MASS'
rlm is described above for Huber’s 1 function, but we use psi = "psi.bisquare"
instead of psi = "psi.huber".

We will compare the different resulting estimators in Chapter 3 in the context of estima-
tion of the Poisson parameter.
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Basic concepts of location M-estimators




Chapter 3

M-estimation of the Poisson
parameter

We start this chapter with some of the previous treatments in the literature in chrono-
logical order as follows:

Huber (1964) proposes M-estimation to estimate a location parameter robustly.

Hampel (1968)) develops a useful optimality theory for robust M-estimation of a univari-
ate parameter and he conjectures that the optimal M-estimate for the Poisson parameter
is asymptotically normal provided that the truncation points of the score function are
not integers.

Huber (1981) provides a solid foundation in robustness to both theoretical and applied
statisticians. In Chapter 3, he discusses three basic types of estimates: Maximum likeli-
hood type estimates (M-Estimates), linear combinations of order statistics (L-Estimates)
and estimates derived from rank tests (R-Estimates), and their qualitative and quanti-
tative robustness properties. He emphasizes M-estimates because of their flexibility and
their possibility for generalization. He observes that M-estimators with score functions
which are not everywhere differentiable have a non normal limit at certain distributions.
Hampel et al. (1986, Page 92) show that robustness theory is not only for location pa-
rameters and symmetric distributions. They use the Poisson model as an example for an
asymmetric model, with the Poisson distribution getting closer to symmetry as the mean
of the distribution increases. The sample mean is fully efficient at the Poisson model, but
its influence function is unbounded. Hence the gross error sensitivity measured by the
supremum of the absolute value of the influence function is unbounded, so the estimator
is not B-robust (B from "bias").

Simpson et al. (1987)) note that the score function for Hampel’s optimal M-estimator is not
smooth, that is, it is not everywhere differentiable and this can lead to complications in
the asymptotic theory when the data are discrete. They show asymptotic non-normality
over neighborhoods of Hampel’s optimal M-estimators when the underlying distribution
is discrete and they propose smooth score functions for the Poisson distribution to retain
asymptotic normality.

Cantoni and Ronchetti (2001) propose a robust approach to inference for generalized
linear models based on robust deviances, which are natural generalizations of quasi-

21
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likelihood functions. They focus in particular on the estimation for binomial and Poisson
models.

Cadigan and Chen (2001]) show that the Huber M-estimator for the Poisson mean is rea-
sonably efficient and has negligible bias even for small sample sizes.

Kohl (2005)) uses Hampel’s approach to finding robust estimators. He proposes opti-
mally robust influence curves as solutions to certain optimization problems based on the
maximum mean square error (MSE) criterion. He proofs asymptotic normality of his
estimators in the framework of infinitesimal (shrinking at a ratio of \/n) neighborhood
by the smoothness of the underlying L2 differentiable parametric models such as Nor-
mal, Gamma, Binomial, Poisson and a suitable estimator construction, see |[Kohl (2005,
Page 64).

Maronna et al. (2006) concentrate on M-estimators which play a major role throughout
their book, because of their desirable properties such as the asymptotic normality under
the assumptions of Theorem 10.7 on Page 339 in their book.

The remainder of this chapter is organized as follows: We introduce new Tukey M-
estimators modified with bias correction. We propose a new algorithm for estimating the
mean of the Poisson distribution, which is based on the Tukey function. We modify the
function glmrob, implemented in the R package "robustbase', by adding a bias correction
term and external weights. Then we compare the results of these estimators to already
existing estimators implemented in R software by simulation in case of clean data and
data with additive outliers. After that we compare the best procedures obtained for the
Huber function and the Tukey function. Finally, we finish this chapter by comparing
our best estimators with some alternative estimators suggested as solutions for Huber’s
and Tukey’s problem at small means caused by the strong asymmetry of such Poisson
distributions.

3.1 M-estimation using Huber’s 1) function

Consider a Poisson random variable Y with independent realizations ¥y, ..., y,, with mean
. . ) p ) Al .

6 and probability density function fy(y) = eyi!eyj y € Ny. An M-estimator 6 is the solution

of

n

S (g, 0) =0 (3.1)

=1

The 1 functions introduced in Chapter 2 are symmetric and thus implicitly rely on
a symmetric distribution of the observations. Following |Cadigan and Chen (2001)), a
modified version of (2.25) for Huber’s ¢ function is

yi — 0 ; ko2
Vra(ys, 0) = <6’1/2 — a)mln[l, v — 0 — ab'?| (3.2)

where the tuning constant k is chosen to ensure a given asymptotic efficiency and a =
a(0, k) is a correction term to achieve asymptotical unbiasedness. To estimate § we need
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Figure 3.1: Relative asymptotic efficiency of the Huber M-estimator relatively to the
sample mean as a function of underlying true mean 6 for several tuning constants k.

to solve simultaneously both

Ero(Y,0) =0 (3.3)
and
Z ¢k,a(yi7 0) =0 (34)
=1

for  and a. Let époi denote this solution. We can calculate the asymptotic efficiency

of B,0; relatively to the maximum likelihood estimator of 6 (ARE), which is the sample
mean, as the ratio of variances as follows:

ARE = 6/V;(6) (3.5)

where Vj(#) is computed using (2.23), see |(Cadigan and Chen (2001]).

Figure 3.1 illustrates the asymptotic efficiency (3.5) of the Huber M-estimator with differ-
ent tuning constants k € {1, 1.2, ..., 2} for different true means of the Poisson distribution,
0 € {0.25,0.5,...,25}. Obviously, achieving a high relative asymptotic efficiency needs
larger values of k if the true mean @ is small. This can be explained by the increasing
asymmetry of the Poisson distribution for decreasing 6.



24

M-estimation of the Poisson parameter

Based on the above formulas (3.2)-(3.4), we implement Cadigan and Chen’s estimation
algorithm, called "huberpois', in the following to compute Huber M-estimators:

huberpois algorithm
This algorithm can be described by its implementation in R using the following steps:

1.

We define "psi.Huber" function as a function in the mean 6, tuning constant k,
correction term a, values of the response variable Y. This function calculates the
right hand side of (3.2).

. We define the "optimHuber" function as the sum of the squares of the output of the

"psi.Huber" function for all observations y1, ..., yn.

. We calculate correction terms a = a(, k) as a function of the mean ¢ and the tuning

constant choosing a certain range of values for the correction term a and equating
the expected value of the left hand side of (3.3) under the Poisson distribution to
0, using the function "nullstelleH". For different values of 6 € {0.1,0.2,...,1,1.2, ...
,5,5.5,...,10,11,...,50} and k € {2,2.25,...,12.5}, we store the corrections a in the
matrix aHuber.

. We initialize our estimator using the function "poismall", which is a function in the

data sample Y and in [ € {0,1}. It calculates an alternative initial estimator based
on the relative frequencies of small values or the sample median. We compute the
mean 0 from the estimate corresponding to the relative frequency either of zeros
(fo): @ = —1n fy, or of zeros and ones (fo+ f1): exp ?(1+8) = fo+ fi. For this, we
use the uniroot function, which searches the interval from a lower (0) to an upper
value (max(2*median, 5)) for a root with respect to the argument §. Whenever the
uniroot function fails to find a root, we use the sample median.

. We define the "huberpois" function as a function in Y, k, init=poismall(1,0), toler-

ance. It iterates between estimating the value of 6 for a given value of a and the
specification of a based on the current estimate of 6.

First we choose a value of a. Second we estimate #. Then we derive the value
of a which is suitable for this estimate of §. Then we re-estimate 6 by using the
optimize function, and iterate this process until the absolute differences for two
consecutive iterations of a do not exceed our desired accuracy of 0.0001, which we
use to determine convergence.

The new estimates of 6 are obtained using the optimize function, which searches the
interval from a lower (0.5 estimate) to an upper value (2xestimate+1) for a minimum of
the function f = optimHuber with respect to the argument 6 under the desired accuracy.
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Figure 3.2: Relative asymptotic efficiency of the Tukey M-estimator relatively to the
sample mean as a function of underlying true mean 6 for several tuning constants k.

3.2 Me-estimation using Tukey’s @) function

Analogously to (3.2), Tukey’s biweight function also treats positive and negative devia-
tions from the mean symmetrically. Therefore we modify Tukey’s 9 function by intro-
ducing auto-scaling by the standard deviation v/0 and a bias correction a. The modified
Tukey 1 function is

et = (17 - (i (150 -) ) s (£ )

where I, is the indicator function for a real set A, and a = a(#, k) needs to fulfill (3.3).
Similarly to Figure 3.1, Figure 3.2 illustrates the asymptotic efficiency (3.5) of the Tukey
M-estimator with different tuning constants k € {4,5,...,8}. Figure 3.1 and Figure 3.2
illustrate that larger tuning constants lead to higher asymptotic efficiencies. But note that
we again have difficulties to achieve a high efficiency at small means 6; we cannot choose
tuning constants which guarantee the same desired level of efficiency for all considered
means. We will check the validity of these asymptotic results in finite samples of size
100 within our simulation study for both the Huber and the Tukey functions and we will
investigate this problem further later on in Section 3.6.
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To compute an M-estimator based on (3.6), we define our a new estimation algorithm,
called "tukeypois":

tukeypois algorithm
We can describe this algorithm by the following steps using Tukey’s v function:

1.

We define "psiTukey' as a function in the mean 6, tuning constant £, correction
term a, values of the response variable Y. This function calculates the right hand

side of (3.6).

. We define the "optimTukey" function as the sum of the squares of the output of the

"psiTukey" function for all observations y, ..., .

. We calculate a correction term a as a function of the mean # and the tuning con-

stant, choosing a certain range of values for the correction term a and equating the
expected value of the left hand side of (3.3) under the Poisson distribution to 0, using
the function "nullstelle". For different values of § € {0.1,0.2,...,1,1.2,...,5,5.5, ...,
10,11,...,50} and k € {2,2.25,...,12.5}, we store the values of a in the matrix
aTukey.

. We define "tukeypois" as a function in Y, k, init=poismall(1,0), tolerance, where

"poismall" is defined in step 4 of the huberpois function and "tukeypois" iterates
between estimating the value of 6 for a given value of a and the specification of
a based on the current estimate of #. First we choose a value of a. Secondly we
estimate . Then we derive the value of a which is suitable for this estimate of
6. Then we re-estimate 6 by using the optimize function, and iterate this process
until the absolute differences for two consecutive iterations of a do not exceed our
desired accuracy of 0.0001, which we use to determine convergence.

In the following Sections 3.3 and 3.4, we perform some simulation experiments to compare
the performance of the modified M-estimators based on the Huber function and the Tukey
function. We generate contaminated data sets with sample size n=100 considering:

Poisson distributions with means 6 € {2,5}.
Different sizes of additive outliers (small = 5, medium = 10, high =30).

Different percentages of outliers from 1% to 20%.

The results are based on 10000 independent and identically distributed random samples

each.
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3.3 Comparison of the Huber M-estimators

In this section, we compare several implementations based on Huber’s ¢ function in terms
of bias and root of the mean square error (RMSE), namely:

e huberpois introduced in Section 3.1.
e huberM from the package "robustbase".
e rlm with method "M" and psi=psi.huber from the package "MASS".

e glmrob from the package'robustbase".
Additionally, we modify glmrob by using the following external weight function Wt(r;)

1, |Tz‘ S k

3.7
Bl Il >k (3.7)

Wit(r;) = ra(rs)/ri = {

where 1, is defined in (3.2) and r; = ((y; —0)/v/0 — a) is the residual. We compute (3.7)
at the same values for the tuning constant k& and the bias correction term a, which is
suitable for k. We evaluate the bias correction for glmrob using the true mean because we
want to know whether a bias correction is effective or not. Afterwards, if we have better
results for the new version of glmrob with bias correction, then we will define another
new version of glmrob where we iterate between estimating the value of # and choosing a
in the same way as in step 5 of the huberpois algorithm. This is because in practice the
true mean is unknown. So we will add to our comparison under the Huber function

e glmrob with external weights and without bias correction term a, and

e glmrob with external weights and with bias correction term a.

For a first bias comparison of the different functions based on Huber's ¢ function, we
consider a Poisson distribution with mean 2, up to 20% additive outliers of size equal to
5 and tuning constants k € {1,1.5,2,2.5,3}.

Figure 3.3 shows that the smaller the tuning constant the more robust is the estimator,
except for the huberM and rlm estimators with small tuning constants in case of small
percentages of additive outliers. Additionally, we find noteworthy differences between the
different functions.

Figure 3.4 compares the efficiencies of these functions as measured by the percentage
mean square error relatively to the sample mean as a function of the true mean of the
Poisson, which is varied in {1,2,3,4,5,6,7,10, 15,20} with the same tuning constants in
the case of clean data. We find that for all means larger than 4 bigger tuning constants
lead to higher efficiencies, except for the huberpois estimator. Again we note considerable
differences between the different functions.
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Our question once again is, which one of these functions should we choose?

Criteria for robustness are a small bias and a small root of the mean square error (RMSE)
under contaminated data. However, efficiency and robustness are contradicting objec-
tives. So we look for a method which gives a good compromise between robustness and
efficiency. A common approach is to fix a certain good efficiency and then look for a
method obtaining as much robustness as possible among those methods achieving the
fixed level of efficiency. We realize this as follows:

1. We fix the efficiency relatively to the maximum likelihood estimator at a satisfactory
level of 90% or 95% for uncontaminated data irrespective of the true mean of the
Poisson. Therefore, for each method we try to find tuning constants which achieve
for all values of 6 at least approximately these levels of efficiencies, see Section 3.3.1.

2. We compare the biases and the root of the mean square error (RMSEs) for our
tuning constants chosen in step 1 at means 6 € {2,5} and sizes of additive outliers
being 5, 10, and 30, see Section 3.3.2.
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Figure 3.3: Comparison of the sample biases of all Huber procedures with several tuning
constants k in case of an increasing percentage of additive outliers of size 5 and a Poisson
distribution with mean 2, sample size n=100.
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Figure 3.4: Comparison of the relative efficiencies measured by the mean square error of
all Huber procedures with several tuning constants k relatively to the sample mean as a
function of the underlying true mean, sample size n=100.
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3.3.1 Choice of the tuning constant

In this subsection, we search for tuning constants which guarantee levels of efficiencies
90% or 95% over the whole range of values for 6 considered here. For this, we generate
10000 samples of size n=100 each for several values of # and calculate the percentage of
the MSE of the sample mean relatively to the sample MSE of the considered estimator.
From Figures 3.4 and Figures 3.5, we find that the huberM and rlm functions have
difficulties with reaching a high efficiency in case of a Poisson distribution with a small
mean ¢ < 4. huberpois has this difficulty for # < 1 and glmrob with external weights
and with or without correction term only for £ = 1. Therefore we try to choose tuning
constants which guarantee the desired level of efficiency at least for most of the values of
6 considered here.

Reasonable tuning constants for a 90% level of efficiency are:

1. For huberpois, we choose k = 1.
2. For huberM and rlm, we choose &k = 1.1.
3. For glmrob, we choose £ = 0.8.

4. For glmrob with external weights with bias correction term (a # 0) or without bias
correction term (a = 0), we set k = 1.5.

Reasonable tuning constants for a 95% level of efficiency are:

1. For huberpois, we choose k£ = 1.8.
2. For huberM and rlm, we choose £ = 1.6.
3. For glmrob, we choose k£ = 1.1.

4. For glmrob with external weights with bias correction term (a # 0) or without bias
correction term (a = 0), we set k = 2.

Note that glmrob in all three versions considered here is the only procedure which achieves
the desired level of efficiency over the whole range of values of 6.

If we look again at Figure 3.1, we find that a reasonable tuning constant for an asymptotic
efficiency of 90% is 1 for the Huber M-estimator, which is the same as for the huberpois
function, and a reasonable tuning constant for an asymptotic efficiency of 95% is 1.4
for the Huber M-estimator, which is less than the chosen tuning constants for all our
functions at the same level of efficiency, except glmrob.

The results above are summarized in Figure 3.6, which gives the relative efficiencies with
the tuning constants chosen to achieve approximately 90% and 95% levels of efficiencies,
respectively.

Further simulation results indicate that the above tuning constants are also appropriate
in case of samples of size n=>50.
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Figure 3.5: Comparison of the relative efficiencies measured by the mean square error of
all Huber procedures relatively to the sample mean as a function of the underlying true
mean for refined values of the tuning constants k, sample size n=100.
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Figure 3.6: Comparison of the relatively efficiencies for the Huber M-estimators at tun-
ing constants, which achieve approximately 90% or 95% level of efficiency (from top to
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3.3.2 Robustness comparison

In this subsection, we compare the biases and the RMSEs under our choices of the tuning
constant in Subsection 3.3.1. Figure 3.7 compares the biases of the methods with the
tuning constants chosen to achieve a 90% level of efficiency. The Poisson mean is set to
2 and the sizes of the additive outliers to 5, 10 or 30. We find that:

1. At all sizes of the additive outliers the differences between the biases of the several
methods are small, but the differences are noticeable at larger percentages of outliers
for lager sizes of outliers 10 and 30.

2. rlm has the largest bias after 17% outliers, whereas glmrob with external weights
with or without bias correction term (the green line and the red line are identical)
has the smallest bias at larger percentages of outliers.

We obtain the same conclusions for the RMSEs since they are dominated by the biases.

Figure 3.8 compares the biases of the methods with the tuning constants chosen to achieve
a 90% level of efficiency in case of a Poisson mean equal to 5 and the sizes of the additive
outliers being 5, 10 and 30. We get similar results as in Figure 3.7. The main differences
are:

1. In case of additive outliers of sizes 10 and 30, glmrob with external weights with
or without bias correction term has the smallest bias. The differences between this
function and the other functions become larger as the outliers increase.

2. The differences between the biases at the size of the additive outliers 30 are larger
than the differences in the biases at the size 10.

For the RMSEs, we get again the same conclusions as for the bias.

Figure 3.9 compares the biases of the methods with the tuning constants chosen to achieve
a 95% level of efficiency in case of a Poisson mean equal to 2 and the sizes of the additive
outliers being 5, 10 and 30. We find that:

1. In case of additive outliers of size 5, glmrob, glmrob with external weights and
huberM have smaller bias than the functions huberpois and rlm.

2. In case of additive outliers of sizes 10 and 30 the differences between the biases of
the functions become larger than in case of additive outliers of size 5. For larger
outliers, we can order the functions in ascending order with respect to the bias as
follows:

(a) glmrob with or without bias correction term (a # 0,a = 0),
(b) followed by default glmrob and huberM,
(¢) then rlm for up to 10% outliers, followed by huberpois,
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(d) and finally, after 10% outliers, rlm shows the largest bias.

The RMSE closely matches these findings since again the RMSEs are dominated by the
bias.

Figure 3.10 compares the biases of the methods with the tuning constants chosen to
achieve 95% level of efficiency in case of a Poisson mean equal to 5 and the sizes of the
additive outliers being 5, 10 and 30. We get similar results as for Figure 3.9. The main
differences are:

1. The differences between the biases of glmrob and glmrob with external weights with
or without bias correction term become larger in case of additive outliers of size 30
than for the smaller additive outliers sizes.

2. We can order the functions in ascending order with respect to the bias in case of
additive outliers of sizes 10 and 30 as follows:

(a) glmrob with or without bias correction term (a # 0,a = 0),

(b) followed by glmrob,

()
)

(d) and finally, after 17% outliers, rlm shows the largest bias.

then rlm and huberM for up to 17% outliers, followed by huberpois,

Again these findings are confirmed with respect to the RMSEs since they are dominated
by the bias.

According to the results of this section, glmrob with external weights gives the best
results, which are similar irrespective whether the bias correction is used or not. So we
do not need to iterate between estimating the value of our parameter and derive the
corresponding bias correction in the same way as we did before in step 5 of the huberpois
algorithm. From now, we call this function glmrob with external weights.

3.3.3 General conclusions

Altogether, glmrob with the external weights function gives the best robustness among
all estimation procedures based on the Huber function for all sizes and percentages of
outliers, both at 90% and 95% efficiency, and these results are better than for the ordinary
glmrob function. The differences become larger for larger outliers and higher percentages
of outliers.
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Figure 3.7: Comparison of the biases of the Huber procedures tuned to achieve 90% level
of efficiency in case of a Poisson with mean 2 and the sizes of the additive outliers being
5, 10 and 30 (from top to bottom).
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Figure 3.8: Comparison of the biases of the Huber procedures tuned to achieve 90% level
of efficiency in case of a Poisson with mean 5 and the sizes of the additive outliers being
5, 10 and 30 (from top to bottom).
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Figure 3.9: Comparison of the biases of the Huber procedures tuned to achieve 95% level
of efficiency in case of a Poisson with mean 2 and the sizes of the additive outliers being

5, 10 and 30 (from top to bottom).
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3.4 Comparison of the Tukey M-estimators

In this section, we compare the performance of the modified M-estimators based on
Tukey’s biweight function in terms of bias and root of the mean square error (RMSE),
namely:

e tukeypois introduced in Section 3.2.
e tbrm from the package "dplR".

e rlm with methods "M","MM" and psi=psi.bisqure from the package "MASS".

Note that we add method "MM" because Tukey’s bisquare function works well using this
method, see Maronna et al. (2006 page 130). In the R Package "MASS", method "MM"
is computed by using Tukey’s bisquare function.

As in the case of the Huber function, we start by a first bias comparison of the different
procedures based on Tukey's ¢ function. We consider a Poisson distribution with mean
2, size of additive outliers equal to 5 and tuning constants k € {5,6,7,8,9}.

Figure 3.11 shows that the smaller the tuning constant, the more robust is the estimator,
except thrm and rlm in both variants at small percentages of outliers. Additionally, we
find noteworthy differences between the different procedures, which will be analysed in
more details later on.

Figure 3.12 compares the efficiencies of the procedures with the same tuning constants
in the case of clean data as a function of the true mean of the Poisson, which is varied in
{1,2,3,4,5,6,7,8,10,15,20} for a sample size n=100. We find that for all means bigger
tuning constants lead to higher efficiencies, except for the tukeypois function, where a
downward bias of tukeypois with small tuning constants explains this exception. Again
we note considerable differences between the different functions.

We use the same approach as for the Huber function, by fixing a certain good level of
efficiency of 90% or 95%, see Section 3.4.1. Then we search for a method which offers as
much robustness as possible among those methods which guarantee this level of efficiency,
see Section 3.4.2.
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Figure 3.11: Comparison of the sample biases of all Tukey procedures in the case of
additive outliers of size 5 and a Poisson distribution with mean 2.
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3.4.1 Choice of the tuning constant

In this subsection, we try to find tuning constants, which achieve levels of efficiencies
of 90% or 95% as we did in Subsection 3.3.1. Figure 3.13 gives the efficiencies of our
functions with further values of the tuning constants. From Figure 3.12 and Figure
3.13, we can choose reasonable tuning constants which achieve approximately levels of
efficiencies of 90% or 95% as shown in Figure 3.14.

Reasonable tuning constants which achieve approximately a level of efficiency of 90% are:

1. For tukeypois, we choose k£ = 4.
2. For rlm with method "M" or "MM", we choose k = 4.5.

3. For tbrm, we choose k = 7.5.
Reasonable tuning constants which achieve approximately a level of efficiency of 95% are:

1. For tukeypois, we choose k = 5.5.
2. For rlm with method "M" or "MM", we choose k = 5.5.

3. For tbrm, we choose k = 11.

If we look again at Figure 3.2, we find that a reasonable tuning constant for an asymptotic
level of efficiency of 90% is 4 for the Tukey M-estimator and a reasonable tuning constant
for a level of efficiency of 95% is 5, which are less than the tuning constants for all
procedures defined above, except tukeypois at a 90% level of efficiency.

Further simulation results indicate that the above tuning constants are also reasonable
even for samples of size n=>50.
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3.4.2 Robustness comparison

In this subsection, we compare the biases and the RMSEs under our choices of the tuning
constants from Subsection 3.4.1. Figure 3.15 compares the biases of the procedures with
the tuning constants chosen to achieve a 90% level of efficiency. The Poisson mean is set
to 2 and the sizes of the additive outliers are 5, 10 or 30. We find that in case of additive
outliers of size 5, the differences between the biases of all procedures are small for up
to 8% outliers. After 8% outliers, tukeypois shows the smallest bias, followed by tbrm,
whereas rlm with method MM or method M show the largest bias. In case of additive
outliers of sizes 10 and 30 all procedures perform very well, since the Tukey function is
redescending and can thus ignore large outliers completely. We get the same results for
the RMSEs since they are dominated by the bias.

Figure 3.16 compares the biases of the procedures with the tuning constants chosen to
achieve a 90% level of efficiency in case of a Poisson mean equal to 5 and the sizes of the
additive outliers being 5, 10 or 30. We find that, in case of additive outliers of sizes 5, the
differences between the biases of the procedures are small for up to 20% outliers and the
biases increase as the percentages of outliers increase. These differences are small up to
6% outliers in case of additive outliers of sizes 10. After 6% outliers tukeypois shows the
smallest bias, followed by rlm with method MM, whereas tbrm and rlm with method M
show the largest bias. In case of additive outliers of sizes 30, the differences between the
biases are small for up to 20% outliers and appear as horizontal lines. For the RMSEs
we have the same conclusions as for the biases.

Figures which compare the biases of the methods with tuning constants chosen to achieve
95% level of efficiency in case of a Poisson mean equal to 2 and 5 are omitted here, since
they look similar to Figures 3.15 and 3.16. We only have the following remarks in case
of additive outliers of size 10:

e In case of a Poisson distribution with mean equal to 2, tukeypois and rlm with
method MM show the smallest bias, whereas tbrm amd rlm with method M show
the largest bias after 16% outliers.

e In case of a Poisson distribution with mean equal to 5, tukeypois shows the smallest
bias followed by rlm in both variants and tbrm after 10% outliers.

For the RMSESs, we have the same conclusions as for the biases.

3.4.3 General conclusions

The modified Tukey M-estimator seems to provide improvements over the other proce-
dures, particulary in case of a Poisson distribution with mean # = 2 and small outliers,
and at mean # = 5 in case of moderately large outliers. Very large outliers do not re-
ally affect Tukey’s redescending bisquare function. It is well known that redescending
M-estimators like Tukey can completely ignore very large outliers.
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3.5 Comparison of Huber and Tukey M-estimators

In this section, we compare the best M-estimation procedures based on the Huber func-
tion and the Tukey function found before. In addition to the best procedures, we add
glmrob and huberpois, and perform another robustness study with one additive outlier
of increasing size {1,2,...,10,12,...,20}, since it is well known that Huber and Tukey
M-estimators are most vulnerable to different outlier sizes. Finally, we compare the pro-
cedures in case of different percentages of outliers varying from 1% to 20%, fixing the
outlier sizes to the most harmful ones identified in case of a single outlier.

Robustness comparison for an increasing number of additive outliers

Figure 3.17 compares the biases of the best M-estimation procedures based on the Huber
function and the Tukey function in the same situations as before, namely, glmrob with
external weights and tuning constant k£ = 1.5, and tukeypois with tuning constant k=4,
chosen to achieve a 90% level of efficiency. The mean of the Poisson is set to 2 and the
sizes of additive outliers are 5, 10 and 30. We find that the differences in biases between
the two functions are small for up to 7% outliers of all sizes. After 7% outliers the differ-
ences in biases between the two functions increase with the percentages of outliers, with
tukeypois having a smaller bias than glmrob with external weights. We get the same
conclusions for the RMSEs.

We have similar results in case of a Poisson mean of 5, and also in case of Poisson means
equal to 2 or 5 at a 95% level of efficiency, so we omit the corresponding figures here, but
note that the differences between the two functions are small for up to 20% outliers at a
95% level of efficiency and in case of additive outliers of sizes 5.

Robustness comparison with one additive outlier

The left hand side of Figure 3.18 compares tukeypois, huberpois, glmrob and glmrob
with external weights with the predefined tuning constants which achieve 95% effi-
ciency, in case of a Poisson mean § = 2 and a single additive outlier of increasing size
{1,2,...,10,12,...,20}. In case of small sizes less than 5, we find that glmrob with ex-
ternal weights leads to the smallest bias, followed by glmrob, then tukeypois and finally
huberpois, which gives the largest bias. For lager outlier sizes, glmrob with external
weights and tukeypois give the smallest biases, with the differences between both func-
tions becoming smaller for an increasing size. glmrob gives larger bias then, followed by
huberpois.

An outlier of size 3 causes the largest bias for tukeypois, whereas the procedures huber-
pois and glmrob, which are based on the Huber function, show an increasing bias which
stabilizes for outlier sizes as the outlier size exceeds 5.

In case of a Poisson with mean 6 = 5, we get similar results as for § = 2, so we omit
this figure here. But we note that under all outlier sizes, the two versions of glmrob give
smaller biases than the modified Tukey M-estimator.
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Robustness comparison for an increasing number of outliers of worst size

It would be interesting to compare the worst-case performances of the estimators for a
varying percentage of outliers. However, the most harmful outlier size can depend on
the percentage of outliers, and determination of the worst case for each percentage would
be cumbersome. Instead, we consider an increasing percentage of outliers of a fixed size
which was found to be particularly harmful in case of a single outlier. The right hand
side of Figure 3.18 compares the predefined functions in case of different percentages of
outliers from 1% to 20% with sizes of additive outliers being 3 for tukeypois, 5 for glmrob
with external weights and sizes of additive outliers being 8 for the others. The Poisson
mean is set to # = 2. We find that glmrob with external weights has the smallest bias for
up to 17% outliers followed by tukeypois and glmrob. After 17% outliers, tukeypois gives
smaller bias than glmrob with external weights and finally huberpois gives the largest bias.

General conclusions

According to the situations considered here, we conclude that for up to 4% additive
outliers of different sizes glmrob with external weights provide better results than the
modified Tukey M-estimator and glmrob, whereas in case of moderately large outliers
and very large outliers, the modified Tukey M-estimator gives better results than glmrob
with external weights. The differences between the two functions become larger for higher
percentages of outliers.
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Figure 3.17: Comparison of the biases of glmrob with external weights and tukeypois,
both tuned to achieve 90% level of efficiency in case of a Poisson with mean 2 and the
sizes of the additive outliers being 5, 10 and 30 (from top to bottom).



52 M-estimation of the Poisson parameter

bias in case of an outlier of increasing size bias for outliers of sizes 3,5, 8
3. o
o H
— huberPois, k=1.8 — huberPois, k =1.8, size=8
— tukeyPais, k =5.5 — tukeyPois, k =5.5, size =3
— glmrob, k=11 — glmrob, k=11, size =8
— glmrob with external weight, k =2 — glmrob with external weight, k =2, size =5
3 | o |
o o}
3. o
o o}
1) 0
@ ko
el o)
3 v
o o}
5. N
o o}
8 | o |
o o}
1T 1T 1T 1T 1T T T T T T T T TT rr 171717 17 17 17T 17T 17T T T T T T T T T T
123456789 12 16 2 1 3 5 7 9 11 13 15 17 19
size of the outlier % outliers
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3.6 Alternative estimators suggested for small means

In this section, we focus on the problem of reaching large efficiencies in case of small
Poisson means, say 6 < 4. In addition to our best Huber and Tukey procedures, namely
glmrob with external weights and tukeypois, we will add the standard version of glmrob
because we will treat small values of # here and we want to see if this function works
well under these values or not. We will also add the function roptest from the R-package
"ROptEst", which can be described as follows:

roptest function

This is a function in the R package "ROptEst", which is written by Kohl and Ruckde-
schel (2010)). This function computes optimally robust estimates for L2-differentiable
parametric families via k-step construction. It is a function in Y, L2Fam, eps, eps.lower,
eps.upper, initial.est, steps, ... where Y is the data sample, L2Fam is the Poisson model
as a member in this class, eps is the amount of gross errors considered, eps.lower is a
lower bound for the amount of gross errors (contamination). eps.upper is an upper bound
for the amount of gross errors (contamination), which is a rough estimate between 0 and
0.5. We choose eps.upper=0.05 as it is chosen in [Kohl (2005) under the Poison model,
initial.est is the initial estimate for the unknown parameter. If initial.est is missing, a
minimum distance estimator is computed. steps is the integer number of steps used for
k-steps construction. We choose the number of steps as 3. For more details, see the
R package ROptEst. The main idea underlying this function is to minimize the asymp-
totic variance at the model subject to a bound on the supremum of the influence functions.

We construct an alternative new estimator, called trimmeanfit, based on the idea of
trimmed means with adaptive trimming. We can describe it as follows:

trimmeanfit function

This is a function in Y, init, , where Y is the data sample, the parameter init is either
2 in order to initialize by the median, or 0 to initialize by poismall with 1=0, which is
described before in the huberpois algorithm. Here, « is a trimming proportion chosen
beforehand, which will be set to 0.01 in our simulations to control the efficiency of the
procedure. The main idea underlying this function is to use an initial estimate (median
or poismall), then trim all observations larger than the (1-a/2) quantile or smaller than
the («/2) quantile, and re-estimate the parameter as the mean of the non-trimmed obser-
vations. Iterate this procedure until convergence. Note that we might trim more or less
than this fraction in each step depending on the position of the observations relatively to
the quantiles of the current solution.

To choose a function which combines efficiency and robustness, we follow the same ap-
proach we used before to design Huber and Tukey functions, namely: By trial and error we
fix the efficiency at a satisfactory level in case of uncontaminated data. For each function
we try to find a tuning constant which achieves approximately the same level of efficiency.
Then we compare the robustness of the procedures. To apply this approach, we compare
the relative efficiencies for several values of § € {0.1,0.2,0.3,0.5,0.8,1.3,2.1,3.4,5.5,8.9,
14.4,23.3}, and we compare biases at means 6 € {0.5,2} for the following estimators.
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1. glmrob with & € {1.5,1.8}.

2. glmrob with external weights and k£ = 2.5.
3. tukeypois with k € {5,6}.

4. trimmeanfit with init=2, o = 0.01.

5. roptest with eps.upper = 0.05, steps = 3.

Figure 3.19 compares the efficiencies of our functions suggested above resulting from 1000
simulations runs at each value of # for n=100, measured by the percentage mean square
error relatively to the maximum likelihood estimator, which is the sample mean. If 4 is
very small, tukeypois and glmrob with external weights are not as efficient as glmrob,
roptest and trimmeanfit. But we note that the efficiency for tukeypois with & = 5 is
nearly 80% and nearly 85% with & = 6. For larger values of 6, all functions achieve much
better efficiencies.

Figure 3.20 compares the biases of our functions with predefined tuning constants in case
of a Poisson mean 0.5 and the sizes of additive outliers being 2 and 5. In case of additive
outliers of size 2, the differences between the biases of the methods are small for up to
20% and the biases increase as the percentages of outliers increase. In case of additive
outliers of size 5, we can order the functions in ascending order with respect to the bias
as follows:

1. tukeypois with k € {5,6}, followed by trimmeanfit with o = 0.01,

2. glmrob with external weights at k£ = 2.5,

3. then glmrob with k£ = 1.5 and roptest with eps.upper = 0.05, steps = 3,
4. and finally glmrob with k£ = 1.8.

We have the same order in case of additive outliers of size 10 (not shown here), but we
note that the differences become larger at larger sizes and larger percentages of outliers.
Figure 3.21 compares the biases of our functions with predefined tuning constants in case
of a Poisson mean 2 and sizes of additive outliers being 5 and 10. We find in case of
additive outliers of size 5, the differences between the biases of all functions are small
and tukeypois with £ = 5 has the smallest bias. In case of additive outliers of size 10, we
have the same order as in case of additive outliers of size 5 in Figure 3.20, and we have
also the same order in case of additive outliers of size 30 (not shown here). But we note
that in cases of additive outliers of sizes 10 and 30, the differences between the biases
become larger.

General conclusions

We conclude that the estimator based on adaptive trimming is efficient and has similar
robustness properties as the modified Tukey M-estimator. glmrob and roptest are also
efficient at small means but they are less robust. In general, we can use the estimator
based on adaptive trimming at small means, otherwise we should use the modified Tukey
M-estimator.
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Efficiencies for tukeypois, glmrob, trimmeanfit and roptest
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Figure 3.19: Relative efficiencies for tukeypois, glmrob, trimmeanfit and roptest measured
by the percentage mean square error relatively to the sample mean with several tuning
constants k, n=100
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bias at Poisson mean=0.5, size of outliers=2 bias at Poisson mean=0.5, size of outliers=5
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Figure 3.20: Comparison of the biases of tukeypois, glmrob, trimmeanfit and roptest
with several tuning constants k, in case of a Poisson with mean 0.5 and the sizes of the
additive outliers being 2 and 5, respectively.
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Figure 3.21: Comparison of the biases of tukeypois, glmrob, trimmeanfit and roptest with
several tuning constants k, in case of a Poisson with mean 2 and the sizes of the additive
outliers being 5 and 10, respectively.
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Chapter 4

M-estimation for INGARCH Models

This chapter treats robust estimation for the parameters of INGARCH models for count
time series data in the presence of outliers. We can start our previous treatments for this
chapter from the 1980s, when the autoregressive conditional heteroscedastic (ARCH)
model was proposed by [Engle (1982), followed by the generalized autoregressive condi-
tional heteroscedastic model (GARCH) introduced by Bollerslev (1986)). These models
are commonly used in the literature for estimation of the volatility of financial time series
data.

MacDonald and Zucchini (1997) show the importance to use discrete valued time series
models especially when the observations are categorical or quantitative but fairly small.
Fokianos and Kedem (2002)) propose in Chapter 4 of their book the regression model for
count time series such as the Poisson model and the doubly truncated Poisson model.
Fokianos and Kedem (2004) prove that these models fall within the broad class of gener-
alized linear time series models and state that their analysis is based on partial likelihood
inference.

Ferland et al. (2006)) propose the integer-valued GARCH (INGARCH) model with Pois-
son deviates. They concentrate on a special case of this model, the INGARCH(1,1) model
and its properties. They propose a conditional maximum likelihood (ML) approach, con-
ditional on the pre-sample values, to fit this model. They conclude that the distribution
of the ML estimator can be approximated by the normal distribution. The asymptotic
covariance matrix of the ML estimator can be approximated from the observed Fisher
information matrix.

Weiss (2009) shows that INGARCH models are able to describe integer-valued processes
with over-dispersion. He investigates the purely autoregressive INGARCH(p,0) model,
or more briefly INARCH(p), and shows that they are closely related to the standard
AR(p) models. For p=1, he determines the stationary marginal distribution in terms of
its cumulants. He also provides applications to real data for the INARCH(p) model.
The INGARCH model is studied further by Fokianos et al. (2009)), who consider geometric
ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions.
In the linear case and under geometric ergodicity they prove that the maximum likelihood
estimators of the INGARCH(1,1) model are asymptotically Gaussian.

Robust estimation and outlier detection for time series has been considered by several

29



60 M-estimation for INGARCH Models

authors since the 1970s, see (Gastwirth and Rubin (1975), Denby and Martin (1979)),
Martin and Yohai (1985), Basawa et al. (1985)) and |Chen and Liu (1993)).

Muler and Yohai (2002)) present two robust estimates for ARCH processes: 7— and filtered
T—estimates. These estimates are based on 7—scale estimates, which have simultaneously
a high breakdown point and high efficiency under normality.

Muler and Yohai (2008)) introduce two classes of robust estimates for GARCH models:
M-estimates and bounded M-estimates. The first class is an extension of M-estimates in-
troduced by [Huber (1964) for location and Huber (1973)) for regression. They show that
M-estimators are consistent and asymptotically normal. To improve robustness they pro-
pose bounded M-estimates, which are also consistent and asymptotically normal.
Mukherjee (2008) derives asymptotic normality of a class of M-estimators in the GARCH
model. This class of estimators includes least absolute deviations and Huber’s estimator
in addition to quasi maximum likelihood estimator.

Fokianos and Fried (2010) develop techniques for estimation and detection of different
types of outliers (intervention effects) within the framework of INGARCH models. They
focus on the detection and estimation of sudden shifts and outliers and employ the max-
imum of score tests, whose critical values in finite samples are determined by parametric
bootstrap to identify such unusual events successfully.

In the remainder of this chapter, we will focus on INARCH(1) and INGARCH(1,1) mod-
els as special variants of INGARCH models. We will start by the properties of these
models. We will apply conditional maximum likelihood as a classical approach to esti-
mate the parameters of these models. Then we will introduce the robust estimation of
the marginal mean in case of time series data from INGARCH models using our best
functions given in Chapter 3 for i.i.d. Poisson data to test if these functions are still
suitable or not. Then we will modify the classical estimation approach by giving robust
estimators for the parameters of INARCH(1) models. Thereafter we investigate some of
the basic properties of these estimators. Afterwards we compute the estimates using some
new functions, which we implemented in R, and compare between them via simulations
in case of clean and contaminated Poisson time series data. We will finish this chapter
by trying to extend robust estimation to general INGARCH models.
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4.1 Properties of INGARCH(p,q) models

In this section, we will briefly give the definition and known basic properties of the
INGARCH(p,q) models, concentrating on INARCH(1) and INGARCH(1,1) processes.
According to Weiss (2009), we can define the INGARCH(p,q) models as follows: Let (Y;)
be a process with range Ny = {0, 1, ...}. Let )} abbreviate the information on the process
available at time t, V; = {Y}, Y1, ...}.

The process (Y; : t € N) follows an INGARCH(p,q) model, p > 0, q > 0 if

e Y, conditioned on ), 1 is Poisson distributed according to Pois()\;), where

e the conditional mean \; := F(Y;|);—1) fulfills the recursion

p q
At = fo + Z ;Y + Z BiAi—j, (4.1)
i=1

Jj=1

with By > 0 and ay, ..., 0, 1, ..., B4 > 0.
When p = ¢ = 0, this leads to an i.i.d. process with marginal distribution Pois().

Simple variants of INGARCH(p,q) models, defined in (4.1), are:
1. INGARCH(1,0) or INARCH(1), which has the following conditional mean form

At = Po+arY (4.2)

2. INGARCH(1,1), which has the following conditional mean form

A = Bo+ 1Y+ Bir-a. (4.3)
Weiss (2010) gives the following properties of the INARCH(1) model:

1. An INARCH(1) process with fy > 0 and 0 < a; < 1 is a stationary Markov chain
with the transition probabilities

(Bo+ - j) N

g 0. (4.4)

pijj = p(Ye =i|Yi1 = j) = exp(—Fo — a1 - j) -
It is irreducible and aperiodic and hence ergodic.

2. All moments of the stationary marginal distribution exist and can be determined
recursively. In particular, the marginal mean A = E(Y};), marginal variance V (Y;),
skewness (SK) and excess (EX) of Y; are as follows:

o

1—041

A= E(Y) =

(4.5)
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o

VY, = 4.6

1+ 2a? 14+ oy
SK = : 47
l+ar+ail B (.7)

1 2 3 5
oYX - + 6a7 + 50241 + 60z12 (4.8)

Bo(1 + a1+ af)(1 + af)

3. The autocorrelation function py(h) := corr[Y;,Y; 1] simply equals o like in the

standard AR(1) model. An INARCH(1) model can be described by an AR(1)
structure or it has AR(1) like dependence structure, where the AR(1) satisfies the
equation Y; = a1Y; 1 + ¢ with ¢ being a white noise error term.

4. An explicit expression for the marginal distribution of an INARCH(1) process is
not known, but it can be approximated using the Poisson-Chalier expansion.

5. An INARCH(1) model is a generalized linear model with Poisson distribution as a

random component and identity link as a systematic component, see Fokianos and
Kedem (2002).

Ferland et al. (2006) and Fokianos et al. (2009) describe the following properties of the
INGARCH(1,1) model:

1. The process ); is a stationary ergodic Markov chain provided that 0 < a; + (3, < 1.

2. Under these conditions all moments of the stationary distribution exist. In partic-
ular, the expected value, A := E(Y}), is given by

Bo
A= ——— 4.9
l—ar—p (4.9)
and the variance, V(Y}), is given by
A1 — 2 2

1 — (a1 + f1)?

Obviously, the mean and the variance being different, the marginal distribution of
Y, is not Poisson, except for ay = 31 = 0.
The autocovariance function, (), is given by

ar[1 = Bi(ar + B1)](eq + 1) 1A
) = 1 —(aq + B1)?

Vr > 1. (4.11)
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3. An INGARCH(1,1) process can be written as an ARMA(1,1) process: An ARMA(1,1)

process (Y;) satisfies the equation
Yi=¢o+ ¢1Yio1 + 0161+ & (4.12)

where () is a sequence of uncorrelated random variables with mean 0 and constant
variance o2
An INGARCH(1,1) process, given in (4.3), can be written as

Y = 6o+ (a1 + 51)Yi1 — Prec—1 + € (4.13)

Bo
l—a1—B1°
Let ¢ = a1 + 31, 6 = —; and 02 = A, then the autocovariance function of the
corresponding ARMA(1,1) process is the same as the autocovariance function of
the INGARCH(1,1) process.

The autocorrelation function of an ARMA(1,1) process is given by

where (e;) is a white noise process with variance o2 = \ =

1 (=0
o= { ey (4.14)
O1p1—1 [>2

4. An INGARCH(1,1) process is related to the theory of generalized linear models for
time series, see Kedem and Fokianos (2002).

4.2 Classical estimation in the INGARCH model

Let y1, ..., yn, be a time series from an INARCH(p) process, and 6§ = (5, a1, ..., o)’ denote
the vector of its parameters. We can apply the conditional maximum likelihood approach
to estimate 6 as follows:
The conditional likelihood function of the n observations ¥, ..., 4, conditionally on the
first p values is given by

. e—)\t/\yt
L(0) = Ht:p—H | : (4.15)
Ye:

where \; is given in (4.1) with ¢ = 0. The log-likelihood function is

t=p+1 t=p+1
where [;(0) = ydni, — Ny — Iny,!.
The score function is defined by

ol(6 " 0l,(0
S, (0) = 8(0) =Y 1(0) (4.17)
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The vector of the the first derivatives (gradient) of [;(6) with respect to 6 is

al(0) Yt O\
=|=—-1)—= 4.1
o = ()% (419
where
O\ ,
aiet = (17yt—17"';yt—p) . (419)
In case of the INARCH(1) model, this simplifies to
O\ ,
aiet = (L y-1) (4.20)

Ferland et al. (2006) apply the conditional maximum likelihood approach for estimating
the parameters of the INGARCH(p,q) model. Following their lines to estimate the pa-
rameters of INGARCH(1,1) models defined in (4.3), let 8 = (5y, a1, £1)" denote the vector
of its parameters. Then the first derivatives of [;(6) with respect to 6;, i =0, 1,2, are

o(0) _ (e >8>\t
00; </\t ! 00; (4.21)
where
8)\t 8)\15,1
75 =1+ 4.22
om o5 (4.22)
o\ ONi—1
o = Y- 4.2
Dory Yi—1 + B o, (4.23)
o\ ONi—1
o7 = M- — 4.24
0B, -1+ 95, ( )
Then the solution of the following set of estimation equations
(Yt I\ N A oY
S, (8) = (—1) - ( ) ~0 4.25
D=2~ 50 ) wa, (4.5

gives the conditional maximum likelihood estimators with g;: defined in (4.20) for model

(4.2) and with g—g: defined in (4.22), (4.23) and (4.24) for model (4.3).

The conditional maximum likelihood estimators are calculated by numerical optimization
of the function S,,(0), see Section 4.5 in case of the INARCH(1) model and Section 4.8
in case of the INGARCH(1,1) model.

Zhu and Wang (2009, Theorem 3) show that the conditional maximum likelihood es-
timators of the INARCH(1) model are asymptotically normally distributed. |Ferland
et al. (2006)) conclude that the distribution of the maximum likelihood estimator of the
INGARCH(1,1) model can be approximated by the normal distribution where the asymp-
totic covariance matrix of the maximum likelihood estimator can be computed from the
observed Fisher information matrix. [Fokianos et al. (2009) prove that the maximum
likelihood estimators of the INGARCH(1,1) model are asymptotically Gaussian under
considering geometric ergodicity of this process.
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4.3 Robust estimation of the marginal mean

We introduce this section as an entry of robust estimation for the parameters of IN-
GARCH models in the next section. Here, we test if our best functions given in Chapter
3 for i.i.d. Poisson data are still suitable for estimation of the marginal mean in case of
Poisson time series data from an INGARCH model or not. Namely, we compare biases
and RMSEs for our best functions (glmrob with external weights, tukeypois, trimmeanfit,
roptest) with the predefined tuning constants given in Chapter 3, which achieve 95% level
of efficiency using Poisson time series data. We set the true marginal mean equal to 2
with By = 1, #; = 0.25, and a; = 0.25 and we consider one and two transient outliers of
increasing size w € {1,2,...,20}. A transient outlier can be defined as an outlier whose
effect on the time series decays exponentially. Following Fokianos and Fried (2010), we
define the INARCH (1) model including this type of outliers as follows:

Zy|Fi—1 ~ Poisson(ky),

Ry = ﬁo —+ Clet,l —+ th, (426)

for t > 1, where F; is the o-field generated by {Zy, ..., Z;} representing the whole infor-
mation up to time t, k; is the new conditional mean after adding one transient outlier
and Z; is the contaminated process. w is the size of the outlier and {X;} is a sequence of
deterministic covariates, which has the following form

Xt = (StiT[t<T>, (427)

where I;(7) is an indicator function with [,(7) = 1 if ¢ equals a specific time 7 and
I;(1) = 0 if t # 7. In our simulations, we set § = 0.8 and 7 = 30.

1. The results in case of one transient outlier
Figure 4.1 compares the biases between glmrob with external weights, tukeypois
with & € {5,6}, trimmeanfit and roptest with the predefined tuning constants
given in Chapter 3, which achieve 95% level of efficiency, in the presence of one
transient outlier in Poisson time series data with mean equal to 2. We find that:

(a) In case of outliers of sizes from 1 to 9, the differences in biases between all
procedures are small.

(b) In case of outliers of sizes larger than 9, tukeypois with k£ = 5 has the smallest
bias, followed by trimmeanfit, then tukeypois with k£ = 6, and finally glmrob
with external weights and roptest have the largest biases.

We obtain the same conclusions with respect to the differences in the RMSEs.

2. The results in case of two transient outliers
Figure 4.2 compares the biases between our predefined functions in Figure 4.1 if
we have two transient outliers in Poisson time series data with mean equal to 2.
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Figure 4.2 gives the same conclusions as in Figure 4.1, but we note that the biases
become larger than before and also the differences in the biases between glmrob
with external weights and roptest on one side, and tukeypois and trimmeanfit on
the other side become larger than in case of one transient outlier.

Here we again have the same conclusions with respect to the differences in the
RMSEs.

In general these results confirm our results in case of i.i.d Poisson data as a guideline for
the suitability of our best functions. Next we search for suitable robust estimators of the
INGARCH model parameters.
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bias for tukeypois, gimrob with external weight, trimmeanfit and roptest at lambda = 2, efficiency 95%
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Figure 4.1: Simulated biases of tukeypois, glmrob with external weight, trimmeanfit and
roptest tuned to achieve 95% level of efficiency in case of one transient outlier of increasing
size from 1 to 20 in a Poisson time series with mean 2.
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bias for tukeypois, gimrob with external weight, trimmeanfit and roptest at lambda = 2, efficiency 95%

—+— tukeyPois, k=5

—+— tukeyPois, k=6

—0— trimmeanit, init=poismall

o === glmrob with external weight, k =2.5
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Figure 4.2: Simulated biases of tukeypois, glmrob with external weight, trimmeanfit
and roptest tuned to achieve 95% level of efficiency in case of two transient outliers of
increasing size from 1 to 20 in a Poisson time series with mean 2.
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4.4 Me-estimation in INARCH models

1.

M-estimation for the INARCH model without bias correction
Returning to (4.25) and downweighting the influence of unusual observations in
these equations leads to a straightforward robustification of the conditional likeli-
hood estimators. For this, we truncate observations with large standardized resid-
uals (y; — \¢)/v/As using Huber’s or Tukey’s ¢ function, and do the same with
regressors Yy_i, - . ., Y—p which are outlying w.r.t. the marginal distribution. This
leads us to the following set of estimating equations:

1

(yt_At> 1 oy (%)4_)‘

=) 7 2 =0, (4.28)

oy (@) + A

where \ and 02 are the marginal mean and variance for the given set of parameters,
respectively, see |[Elsaied and Fried (2010).
In case of the INARCH(1) model, (4.26) becomes simply

éw<%>\/&7<g¢(@)+A>:0, (4.29)

where A = 3y/(1 — ay) is the marginal mean and o2 = (kaﬁﬁ is the marginal
1

variance, see Fokianos et al. (2009)).

. M-estimation for the INARCH model with bias correction

After adding a bias correction term, (4.28) becomes

1 ao 0
t—1—A .
> w(yt”t>1 7 (#572) 2 = (4.30)
et VA ) VA : : a '
o (%) + A a, 0
with bias correction B = (ay, ..., a,)’, such that the expectation of the term on the

left hand side equals 0, see Elsaied et al. (2011)).
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In case of the INARCH(1) model the bias correction, B = (ag, a;)’, fulfills

EV(%)\/&T(W(%}A)JFA)—QZ’)}:O (4.31)

Following |Cantoni and Ronchetti (2001)), the bias correction, B, in (4.31) becomes

ii (j\;—i\t)\/1)\—t<aw(i—01>\)+)\>XP(Yt:jD/;:—lzi)XP(Y;_l:i) (4.32)

where P (Y; = j|Y;_1 = i) is the conditional probability of Y; = j given Y;_; = i, derived
from a Poisson with parameter \; = o+ 14, and P (Y;_1 = 7) is the marginal probability
of Y;_1 = 7, which can be estimated from the empirical relative frequencies in a Monte
Carlo experiment, where we generate a long time series from this model.

The rest of this section is devoted to formulate a conjecture, which states some of the
asymptotic properties of M-estimators for the INARCH(1) Parameters. Let:

0 = (6o, a1)" denote the parameter vector of the INARCH(1) model,

6 be the value of # for which the expectation of the left hand side of (4.31) equals 0,

0 = (B, &) denote the vector of the estimators,

G (0,) denote the left hand side of (4.30) with

Go(0) = < gm )> th (4.33)

and let
G(60) = —Fay(X,(0)) (4.34)

where

Xt(9>:¢(yﬁt)¢%<a¢(”;lk)+A>_<Z(1)>:<8>

We need the following assumptions (A1)-(A6), which are given with more details in
Appendix A:

e (Al): For model (4.2), the parametric space © is compact.

o (A2): G,(0) is a continuous function (this is fulfilled whenever ¢ function is con-
tinuous, as for the Tukey and the Huber ¢ function).

o (A3): ——=G,(0) converges to G(f) in probability uniformly in © for all 6 € ©,
and G(0) has a unique root.

o (A4): U,(6,) = 8059(6) i exists and continuous.
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o (A5): n7'U,(07) converges to a finite nonsingular matrix A(6y) = lim En='U,(6,)
in probability for any sequence 6 such that plim 0 = 6,.

o (46): n~2G,(6y) — N(0, B(6y)), where B(6) = lim,_.oo En Gy (00)G(bo)’

Conjecture 4.1:

Let (Y;) be an INARCH(1) model such that oy < 1. Under assumptions (A1) — (A6), as
n— oo,

(a) 0, 22 0, (strong consistency) and
(b) /a(fn — 00) - N(@, A(QO)‘lB(é’O)(A(QO)‘l)t> (normal convergence)

We investigate the background of this conjecture in Appendix A.
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4.5 Computation

In this section we describe some new functions, which we implemented in R to compute

1.

conditional maximum likelihood estimates for the parameters of the INARCH(1)
model using function condlikest.

. robust M-estimates for the parameters of the INARCH(1) model without bias cor-

rection and with robust initialization under the assumption of independence using
functions robPoisTShuberl and robPoisTStukey1.

. robust M-estimates for the parameters of the INARCH(1) model without bias

correction and with robust initialization from the AR(1) model using functions
robPoisTShuber2 and robPoisTStukey?2.

. robust M-estimates for the parameters of the INARCH(1) model with bias correc-

tion and with robust initialization from the AR(1) model using functions robPoisT-
Shuber3 and robPoisTStukey3.

. condlikest

We can describe the function condlikest by the following steps:

(a) We define the function "liklinear.poisson.un" as a function in theta and data,
where theta is our parameter vector. This function calculates the value of the
log-likelihood function (4.25).

(b) We define the function "condlikest" as a function in y and theta. This function
gives classical estimates for the parameters of the INARCH(1), Gy and .
These estimates are obtained using the function constrOptim.

(¢) constrOptim is a function in theta, f, grad, ui, ci, mu = 1e-04, control = list(),
method = if(is.null(grad)) "Nelder-Mead" else "BFGS", outer.iterations = 100,
outer.eps = 1e-05, ....

Here, theta is our parameter vector (o, ). We initialize 3y with the mean
of our data (y) and we let a; = 0.001 or we initialize it using an AR(1) fit,

f is our score function "liklinear.poisson.un', defined above in (a),

grad is the function scorelinear.poisson.un, which we implemented to compute
the derivatives of our score function with respect to its parameters,

ui, ci are a matrix and a vector for our constraints Gy, @1 > 0 and a; < 1,
method is "BFGS", which is a quasi-Newton method. This method uses func-
tion values and gradients to build up a picture of the surface to be optimized,
see the function optim in R for more details,

outer.iterations is set to 100 and outer.eps to le-05.
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2. robPoisTStukey1l
This function is based on Tukey’s 1) function and we can describe it as follows:

(a) We define the function "robPoistukeyscoresl" as a function in param, y, k,
which calculates the left hand side of (4.29) using Tukey’s ¢ function.

(b) We define the function "robPoisTStukeyl" as a function in y, k, iter=200. This
function gives robust estimates for the parameters of the INARCH(1) model,
Bo and «. These estimates are obtained using the function constrOptim.

(¢) constrOptim is a function in theta, f, grad, ui, ci, mu = 1le-04, control = list
(), method = if (is.null (grad)) "Nelder-Mead" else "BFGS'", outer.iterations =
100, outer.eps = 1e-05, ....

Here, theta is our parameter vector (3, ai). We initialize theta under the
assumption of independence with a robust estimate of (3, using the function
tukeypois and a; = 0.001,

f is our score function "robPoistukeyscoresl”, defined above in (a),

grad is set to null because we do not make use of the derivatives,

ui, ci are a matrix and a vector describing our constraints [y, a; > 0 and
ap < 1,

method is "Nelder-Mead", which uses only function values and is robust but
relatively slow. It will work reasonably well for non-differentiable functions,
see the function optim in R for more details.

outer.iterations is set to 200 and outer.eps to 1e-06.

3. robPoisTStukey2

This function is a modified version of the function robPoisTStukey1, where we use
a robust initialization for (B, and «; to start the iterations in constrOptim using
robust estimates in the AR(1) model. According to the properties of INARCH(1),
we conclude that the first two moments of the INARCH(1) with parameters (3, and
ay are identical to those of an AR(1) model with the same dependence parameter
a7 and marginal mean X\ = /(1 — ay). Therefore, it suffices to estimate oy using
a robust estimate of the lag-one dependence parameter a; = p(1) in the AR(1)
model. Then we estimate the marginal mean using the function tukeypois and
afterwards we use the formula of the marginal mean /(1 —ay) to obtain an initial
estimate of 3. To estimate the lag-one parameter robustly, we apply the highly
robust estimate of |Ma and Genton (2000)) as follows:

Qifl(?ﬂ T Y, Yn + yn_l) - Qiq(w — Y, Yn — yn—1)
Q?L—l(yQ + Yty - Yn + yn—1> + Q?Q’L—l(yQ — Yy Yn — yn—l)’

p(1) = (4.35)

using Rousseeuw and Croux (1993))’s @,, for estimation of the unknown variances
Var(Y; +Y;—1) and Var(Y; — Y;_1) because of its high robustness and considerable
efficiency. The @), scale estimator of a sample x4, ..., x,, roughly corresponds to
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the 25% percentile of the sample of pairwise differences and is defined by

Qm(T1, .. Tm) = cnilz — 25 1 < i< j <mb, l:<Lm/22J+1>. (4.36)

¢m is a finite sample correction factor to achieve unbiasedness at a sample of size
m. It can be omitted in our context since it cancels out.

. robPoisTStukey3.

This function is a modified version of the function robPoisTStukey2, where we use
the same robust initialization for Gy and «;. However, here we correct our score
function robPoistukeyscores3 by subtracting suitable bias correction terms. These
correction terms have been computed based on (4.32). The estimates are obtained
using the function constrOptim. constrOptim iterates between estimating ; and
oy for a given value of bias corrections for Gy and «; and the specification of bias
corrections based on the current estimate of 5y and «;. First we choose a value of
the correction terms. Second we estimate 3y and «q, then we derive the values of
our correction terms which are suitable for these estimates. Then we re-estimate
Bo and . We iterate this process until the absolute differences of our estimates
for two consecutive iterations do not exceed our desired accuracy of 0.0001, which
we use to determine convergence.

The functions robPoisTShuberl, robPoisTShuber2 and robPoisTShuber3 can be
described in the same way as for the functions robPoisTStukey1, robPoisTStukey?2
and robPoisTStukey3, but we use Huber’s ¢ function instead of Tukey’s v function.
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4.6 Simulations

In this section, we perform some simulation experiments to compare the performance of
the conditional maximum likelihood estimator, computed using the function condlikest,
and the generalized M-estimators, computed using the different versions of the functions
robPoisTStukey and robPoisTShuber. Namely, we consider the following situations of
M-estimators:

e without bias correction and with robust initialization under the assumption of inde-
pendence, see the results of the functions robPoisTStukeyl and robPoisTShuberl.

e with and without bias correction and with robust initialization using robust esti-
mates in an AR(1) model, see the results of the functions robPoisTStukey2 and
robPoisTStukey3.

Because the INARCH(1) model belongs to the class of generalized linear models, we
include the function glmrob in our comparison using the identity link, family Poisson
and using the lagged variables as regressors. We initialize our parameters estimates with
Bo = 0.1 and «; = 0.1 or we use a robust initialization from robust AR(1) fit in the same
way as in the function robPoisTStukey?2.

These estimators are compared in terms of bias and root of mean square error (RMSE)
in finite samples from an INARCH(1) model and with several tuning constants k.

4.6.1 Results for initialization from assuming independence

Here we compare

1. conditional maximum likelihood estimators for the parameters of the INARCH(1)
model, with initialization of 3, by the mean of our data (y) and a; = 0.001, there
were no differences between the two initialization used for this estmator, see function
"condML".

2. robust M-estimators for the parameters of the INARCH(1) model using the function
glmrob, with initialization Gy = 0.1 and «; = 0.1, see function "glmrob".

3. robust M-estimators for the parameters of the INARCH(1) model using the function
robPoisTShuberl with different tuning constants k& € {1.8,2.5}, with initialization
from robust estimate of 3y using the function huperpois and «; = 0.001, see function
"Huberuncorrl".

4. robust M-estimators for the parameters of the INARCH(1) model using the function
robPoisTStukeyl with initialization from robust estimate of 3y using the function
tukeypois and «; = 0.001 and with different tuning constants & € {5, 7}, and we
add an adaptive choice of k between 5 and 7 depending on the estimate of a; (we
use k = 71if 0.7 < &3 or &; < 0.3 and k = 5 otherwise); we add this adaptive choice
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of k to achieve more stable efficiency than using a fixed value of k£ over the whole
parameter range, see function "Tukeyuncorrl".

These estimators are compared in several situations with and without outliers as follows:

Results in case of clean data

To compare the efficiencies and the biases of the predefined estimators, we generate data
from INARCH(1) models with parameters 5y = 1, ay € {0,0.1,...,0.9}. The results are
based on 2000 data sets of size 100 each.

Figure 4.3 illustrates relative efficiencies of the generalized M-estimators relative to the
conditional maximum likelihood estimator as a function of a;. Figure 4.3 shows that the
estimators generally achieve good efficiencies, but have some problems as a; approaches
1, which is the non-stationary case. Only glmrob has some problems with the estimation
of oy if it is small.

Figure 4.4 illustrates the resulting finite samples biases of the conditional maximum
likelihood estimator, glmrob and the generalized M-estimators. Form Figure 4.4, the
differences between the bias curves for [, are small except if oy approaches 1. For ag,
the estimators show a similar bias behavior except if a; approaches 1 and glmrob gives
the smallest bias.

Results in case of contaminated data

To compare the robustness, bias curves are approximated using 1000 time series of length
n = 100 from an INARCH(1) model with Gy = 1 and «; = 0.4. We consider a single
transient outlier of increasing size [jo] (rounding to an increasing number j of multiples
of the marginal standard deviation). Figure 4.5 shows the robustness of the estimators,
where the conditional maximum likelihood estimator shows little bias for the intercept (3
in this situation because a; absorbs almost all of the outlier effect. At sizes of the outlier
> 5, glmrob has the largest bias for the intercept 3, and it has only slightly smaller bias
than the conditional maximum likelihood estimator for a;. robPoisTStukeyl with its
different tuning constants shows better performance than robPoisTShuberl.

Next we will give the results for the other versions of the function robPoisTStukey
(robPoisT'Stukey2 and robPoisT'Stukey3). The results of the functions robPoisTShuber2
and robPoisTShuber3 are illustrated in Appendix B.
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Figure 4.3: Simulated relative efficiencies of glmrob, Huber and Tukey M-estimators with
different tuning constants k relative to the conditional maximum likelihood estimator for
Bo (left) and oy (right) as a function of the true ay, n=100.
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Figure 4.4: Simulated biases of the conditional maximum likelihood estimator, glmrob
and of Huber and Tukey M-estimators with different tuning constants k for 5y (left) and
oy (right) as a function of the true oy, n=100.
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Figure 4.5: Simulated biases of the conditional maximum likelihood estimator, glmrob
and of Huber and Tukey M-estimators with different tuning constants k for 5y (left) and
a; (right) in case of one transient outlier of increasing size with y = 1 and oy = 0.4,
sample size n=100.
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4.6.2 Results for initialization from robust AR(1) fit.

Here we compare

1. conditional maximum likelihood estimators for the parameters of the INARCH(1)
model with initialization from an AR(1) model, see function "cond ML, initial
AR(1)".

2. robust M-estimators for the parameters of the INARCH(1) model using the function
glmrob with robust initialization from an AR(1) model, see function "glmrob, initial
AR(1)".

3. robust M-estimators for the parameters of the INARCH(1) model with robust ini-
tialization from an AR(1) model and without bias correction using the function
robPoisTStukey2, see function "Tukeyuncorr2".

4. robust M-estimators for the parameters of the INARCH(1) model with robust
initialization from an AR(1) model and with bias correction using the function
robPoisTStukey3, see function "Tukeycorr".

Robust M-estimators are compared with different tuning constants & € {5,7,10} and
with an adaptive choice of k between 5, 7, and 10. The adaptive values depend on
the initial estimate of ay, which is computed using the function racf (we use k = 7 if
04 < é; <08, k=101if 0.8 < &; and k = 5 otherwise). These estimates are compared
in several situations with and without outliers as follows:

Results in case of clean data

We generate our data as follows:

e Data come from INARCH(1) models, with parameters 3, = 1 and o; € {0,0.1,...,0.9}.

e The results are based on 500 data sets for each of different sizes 100 and 200.

Figure 4.6 illustrates the efficiencies (left) and biases (right) for 3, using the predefined
functions with a sample size equal to 100. We find that:

The estimators generally achieve good efficiencies, except glmrob and Tukeyuncorr2, Tuk-
eycorr with £ = 5. We have small differences between the bias curves if a; < 0.8, except
the bias curve of Tukeyuncorr2 with k£ = 7, which has the largest bias. Tukeycorr with
k = 7 and with adaptive k& have the same efficiency and give the smallest biases (the
orange line and the forest-green line are identical).

Visual comparison of Figures 4.3 (left) and 4.6 (left) indicates that the efficiencies for 3,
of Tukeyuncorr with k& € {5,7} in case of using robust initialization from an AR(1) fit
is larger than for the initialization from independence. Comparison of Figures 4.4 (left)
and 4.6 (right) indicates that this can be explained by the biases becoming smaller.
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Figure 4.7 illustrates the efficiencies (left) and biases (right) for 3, using the predefined
functions with sample size equal to 200. We find that:

The bias-corrected estimators give good efficiencies, except glmrob and Tukeyuncorr2,
Tukeycorr with & = 5. The differences in biases become smaller than in case of the
sample size equal to 100. This means the bias correction works better in case of a larger
sample size (the resulting estimators are asymptotically unbiased). Tukeycorr with k =7
and with adaptive k£ again give the smallest biases.

Figure 4.8 illustrates the efficiencies (left) and biases (right) for o using the predefined
functions with a sample size equal to 100. The estimators generally achieve good effi-
ciencies, except glmrob, Tukeyuncorr2 and Tukeycorr with £ = 5. Among the estimators
achieving high efficiency, Tukeycorr with k& = 7 and with k adaptive give the smallest
biases. The bias correction gives some improvements if «; is moderate to large.

By comparison between Figures 4.4 (right) and 4.8 (right), we find that the biases for
ay of Tukeyuncorr with k£ € {5,7} in case of using robust initialization from an AR(1)
model become smaller than when initializing from independence, and the efficiencies be-
come higher.

The results for a sample size equal to 200 are very similar, but with the bias again be-
coming substantially smaller, see Figure 4.9.

We run further simulation studies to check the consistency and the asymptotic normality
of our estimators. For this, we draw boxplots and qqg-plots for the parameters estimates
obtained from conditional maximum likelihood, see function "cond ML", and the robust
parameters estimates of the INARCH(1) model with robust initialization from an AR(1)
model, without bias correction and with tuning constant & = 5, see function "Tukeyun-
corr2".

Figure 4.10 depicts boxplots of the conditional maximum likelihood estimates and the
uncorrected Tukey M-estimates with tuning constant k = 5 for 3y (top) and «; (bottom)
in case of data generated from an INARCH(1) with true values fy = 1 and a; = 0.4,
obtained from 5000 for each different sizes 100, 200, and 500 (from left to right). The
boxplots indicate that the conditional maximum likelihood estimator and the uncorrected
Tukey M-estimators with tuning constant & = 5 are consistent and the distributions be-
come more symmetric and roughly normal when we increase the sample size. The qqg-plots
in Figures 4.11 and 4.12 for 3, and «y, respectively, confirm these results and support
the conjecture of asymptotic normality.

Note that boxplots and qqg-plots for the parameters estimators with bias correction are
similar to the case without bias correction and thus not shown here. The results for the
uncorrected Tukey M-estimators with tuning constants k& € {7, 10} lie in between those for
the conditional maximum likelihood estimator and the uncorrected Tukey M-estimators
with tuning constant k£ = 5 (also not shown here).
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Figure 4.6: Simulated biases for G, (right) and relative efficiencies for 3, (left) of glmrob,
corrected and uncorrected Tukey M-estimators with different tuning constants k, rela-
tively to the conditional maximum likelihood estimator, as a function of the true value
of ay, for By = 1, n=100.
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Figure 4.7: Simulated biases for §, (right) and relative efficiencies for 3, (left) of glmrob,
corrected and uncorrected Tukey M-estimators with different tuning constants k, rela-
tively to the conditional maximum likelihood estimator, as a function of the true value

of aq, for By = 1, n=200.
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Figure 4.8: Simulated biases for oy (right) and relative efficiencies for a; (left) of glmob,
corrected and uncorrected Tukey M-estimators with different tuning constants k, rela-
tively to the conditional maximum likelihood estimator, as a function of the true value

of ay, for By = 1, n=100.
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Figure 4.9: Simulated biases for a; (right) and relative efficiencies for o (left) of glmrob,
corrected and uncorrected Tukey M-estimators with different tuning constants k, rela-
tively to the conditional maximum likelihood estimator, as a function of the true value

of aq, for By = 1, n=200.
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Tukey M-estimators with tuning constant k = 5 for y (top) and a; (bottom) estimated
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Figure 4.11: QQ-plots of the conditional maximum likelihood estimator and uncorrected
Tukey M-estimators with tuning constant & = 5 for 3y estimated from INARCH(1) with
true values Gy = 1 and a; = 0.4, 5000 data sets of sizes 100, 200, and 500 (from left to

right).



88 M-estimation for INGARCH Models

cond ML, n=100 cond ML, n=200 cond ML, n=500

Sample Quantiles
Sample Quantiles
Sample Quantiles
0.4
!

N [oo
R
[} o
o o
T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles
Tukeyuncorr2, k=5, =100 Tukeyuncorr2, k=5, n=200 Tukeyuncorr2, k=5, n=500
© LY o
c o o
0o
© o
o h
d
0 0 0
3 3 9
£ g g
g g g
o I o o I
o ° o e °
Q a %
£ £ £
d d 4
) ) 0
o N
] o7,
0 | o b o | o |
o} o} o
T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles

Figure 4.12: QQ-plots of the conditional maximum likelihood estimator and uncorrected
Tukey M-estimators with tuning constant k& = 5 for a; estimated from INARCH(1) with
true values Gy = 1 and a; = 0.4, 5000 data sets of sizes 100, 200, and 500 (from left to
right).
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Results in case of contaminated data

Here we compare the predefined functions from Subsection 4.6.2 in the presence of outliers.
We omit function Tukeycorr with adaptive k, because it gives the same results as for
k = 7 in the situations considered here. Our data come from an INARCH(1) model with
parameters By = 1 and a; = 0.4. The results are based on 200 data sets of size 200,
where we consider the following four outlier scenarios:

1. One transient outlier of increasing size:
We consider a single transient outlier of increasing size [w = jo| (rounding to an
increasing number j € {1,2,...,20} of multiples of the marginal standard deviation
o). The definition of the INARCH(1) including this type of outliers is given in
Section 4.3. In our simulations, we set 6 = 0.8 and 7 = 50.

2. One additive outlier of increasing size:
We consider a single additive outlier of increasing random size generated from Pois-
son distributions with means from 1 to 20 at time 50. The INARCH(1) with an
additive outlier of increasing size can be defined by:

Z, =Y.+ X, (4.37)

where Z, is the new contaminated observed value at a specific time 7 and X; is the
size of the outlier such that X; ~ Poisson(;) with v € {1,2,...,20}. Here Z, =Y,
if ¢ # 7 with 7 = 50 and Y; follows model (4.2).

3. Increasing number of additive outliers of increasing size:
We consider an increasing number j of additive outliers of increasing size [jo]
(rounding multiples of the marginal standard deviation). Note that the INARCH(1)
model including this type of outliers is as in case of an additive outlier, however
here we use an increasing number j of additive outliers, X; = jo is the size of the
outlier with j € {1,2,...,20} and o is the marginal standard deviation.

4. Increasing number of additive outliers of fixed size:
We consider an increasing number j of additive outliers of fixed size [40] (four
marginal standard deviations after rounding). Note that the INARCH(1) model
including this type of outliers is as in case of an additive outlier, however here we
use an increasing number j of additive outliers of fixed size X; = 4o.

Figure 4.13 compares the biases for §y (left) and «; (right) using the estimators in case
of one transient outlier of increasing size [jo|. For 3, Tukeyuncorr with k& = 5 gives the
largest bias at outlier sizes < 5, whereas condML gives the largest bias at sizes of the
outlier larger than 5 followed by glmrob. Tukeycorr with k = 7 gives the smallest bias.
For a4, we observe that the differences between the biases are small, except for glmrob
and condML, which give the largest bias. Among the estimators achieving high efficiency,
Tukeycorr with £ = 7 gives the smallest bias.
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Figure 4.14 compares the biases for 3y (left) and «; (right) caused by an additive out-
lier of increasing size [jo|. condML and glmrob overestimate (3, and underestimate o
because of an additive outlier. The corrected Tukey M-estimators give better robustness
than the uncorrected ones. Among the estimators achieving high efficiency, Tukeycorr
with k£ = 7 gives the smallest bias.

Figure 4.15 compares the biases for 3y (left) and «; (right) in case of an increasing num-
ber of additive outliers with increasing size [jo]. For 3y, the differences between the bias
curves are small, except with tuning constant £ = 10 in case of a number of outliers less
than 10, and condML, glmrob. condML and glmrob overestimate 3, and give the largest
bias. All estimators underestimate «;, where the differences between the bias curves be-
come smaller than for 3y, except the condML, glmrob and the bias curves for Tukeycorr
and Tukeyuncorr with £ = 10 in case of a number of outliers smaller than 10. Among
the estimators achieving high efficiency, Tukeycorr with £ = 7 gives the smallest bias.

Figure 4.16 compares the biases for 3y (left) and a; (right) in case of an increasing num-
ber of outliers of fixed size [40]. The smaller values of the tuning constants give smaller
biases; condML corresponds to k = oo. For 3y glmrob gives similar bias as our implemen-
tation of the Tukey estimator with tuning constant £ = 10 in case of a number of outliers
less than 10. For a number of outliers lager than 10, glmrob gives smaller bias than our
estimator with tuning constant £ = 10. The differences between the bias curves for o, are
smaller than for ;. We note that all estimators underestimate «; and overestimate (3,
except the bias curves of Tukeycorr and Tukeyuncorr with & = 5. Tukeycorr with £ =5
gives the smallest bias for Gy and «;. Among the estimators achieving high efficiency,
Tukeycorr with k = 7 gives the smallest bias.

The results for the RMSE are the same as for the biases, because they are dominated by
the bias and thus not shown here.

4.6.3 General conclusions

Generally, the uncorrected and the corrected versions of Tukey M-estimators show better
results than the different versions of Huber M-estimators under all scenarios of outliers
considered here, see Appendix B. Among the estimators achieving high efficiency, the
corrected versions of Tukey M-estimators with robust initialization from AR(1) show
good performance, where in our simulations Tukeycorr with k = 7 gives good robustness.
Also our simulation results indicate that the consistency and the asymptotic normality
of these estimators.
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Figure 4.13: Simulated biases of the conditional maximum likelihood estimator, glmrob,
corrected and uncorrected Tukey M-estimators with different tuning constants k& for (3,
(left) and oy (right) in case of one transient outlier of increasing size with true values
8o = 1 and oy = 0.4, sample size n=200.
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(left) and oy (right) in case of an additive outlier of increasing size with true values fy = 1

and oy = 0.4, sample size n=200.
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Figure 4.15: Simulated biases of the conditional maximum likelihood estimator, glmrob,
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4.7 M-estimation for INGARCH model

In this section, we extend robust M-estimation with and without bias correction to general
INGARCH(p,q) models, focusing on the case p=1, q=1.

1.

2.

M-estimation for INGARCH(1,1) model without bias correction
Returning to (4.25) with 23t defined in (4.22), (4.23) and (4.24), we downweight the

influence of unusual observations with large standardized residuals (y; — \¢)/v/A¢
using Huber’s or Tukey’s 1 function, and do the same with regressors ¥, ; which
are outlying w.r.t. the marginal distribution. This leads to the following set of
estimating equations:

14+ 5 aé\tﬁgl
g 1 Y oA
¢< ) op (B==2) A+ Bt | =0, (4.38)
; t \/>\_t ( ) OJan
A1+ 5175 mt !
where \ = u—fﬁ is the marginal mean and o2 = ’\[11(_022:515)12);’0‘%} is the marginal

variance of the stationary process, see Fokianos et al. (2009).

M-estimation for INGARCH(1,1) model with bias correction
After adding a bias correction term, (4.38) becomes

1+ﬂmt1 ao 0
. Yr — Mt 1 ye_1—A A\
- t— A t—1 . _ 0
5o (UR) o | o () e |- o |
)\t1+518/\t1 a2 0
(4.39)

with bias correction B = (ag, a1, as)’, such that the expectation of the term on the
left hand side of (4.39) equals (0,0,0)". We approximate the bias correction, B, as
follows:

1"—6183;;1
1 N oo oo Y 1 8)\ | |
g E E R )\ t—1 P Y: Y, —
N_1t2j:0i:0w< VA > VA Uw( >+ + 5% (Vi =34,Y1=1)

O
Ai—1+ 51 56,

(4.40)
using a large simulated time series of length N. The probability P (Y; = j,Y; 1 = i)
can be calculated from P (Y; = j|Y;—1 = i), which is the conditional probability of
Y; = j given Y;_; = i (derived from a Poisson with parameter A, = Go+ai+ 1 \—1),
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and P (Y;_; = i), which is the marginal probability of Y; ; =i (estimated from the
observed relative frequencies from a long trajectory of an INGARCH series with
the corresponding parameters.

4.8 Computation

In this section we describe some new functions, which we implemented in R to compute

1.

conditional maximum likelihood estimates for the parameters of the INGARCH(1,1)
model using function condlikest11.

. robust M-estimates for the parameters of the INGARCH(1,1) model without bias

correction and with robust initialization under the assumption of independence
using function robPoisTStukey11.

. robust M-estimates for the parameters of the INGARCH(1,1) model without bias

correction and with robust initialization from the ARMA(1,1) model using function
robPoisTStukey22.

. robust M-estimates for the parameters of the INGARCH(1,1) model with bias cor-

rection and with robust initialization from the ARMA(1,1) model using function
robPoisTStukey33.

. condlikest11

We can describe function condlikest11 in the same way as we describe the function
condlikest in case of the INARCH(1) model by the following steps:

(a) We define the function "liklinear.poisson.un" as a function in theta and data,
where theta is our parameter vector (8, ai, $1). This function gives the
summation of log-likelihood function (4.25) with ‘g—;‘; defined in (4.22), (4.23)
and (4.24).

(b) We define the function "condlikest11" as a function in y and theta. This func-
tion gives classical estimates for the parameters of the INGARCH(1,1) model,
8o, a1 and (1. These estimates are obtained using the function constrOptim.

(¢) constrOptim is a function in theta, f, grad, ui, ci, mu = 1le-04, control = list
(), method = if (is.null(grad)) "Nelder-Mead" else "BFGS', outer.iterations =
100, outer.eps = 1e-05, ....

Here, theta is our parameter vector (g, a1, (1), where we initialize theta with
Bo = mean of our data (y), oy = 0.001 and ; = 0.001,

f is our score function "liklinear.poisson.un', defined above in (a),

grad is the function "scorelinear.poisson.un', which we implemented to com-
pute the derivatives of the score function with respect to its parameters,

ui and ci are a matrix and a vector for our constraints Gy > 0, aq, 41 > 0 and
a1 + (41 < 1, method is "BFGS", see the function optim in R for more details,
outer.iterations is set to 100 and outer.eps to 1le-05.



4.8 Computation 97

2. robPoisTStukeyl11
This function is based on Tukey’s ¢ function and we can describe it like the function
robPoisTStukeyl in case of the INARCH(1) model as follows:

(a) We define the function "robPoistukeyscores11" as a function in param, vy, k,
which calculates the left hand side of (4.38) using Tukey’s ¢ function.

(b) We define the function "robPoisTStukeyll" as a function in y, k, iter=200.
This function gives robust estimates for the parameters of the INGARCH(1,1),
0Bo, a1 and (1. These estimates are obtained using the function constrOptim.

(¢) constrOptim is a function in theta, f, grad, ui, ci, mu = le-04, control = list
(), method = if (is.null(grad)) "Nelder-Mead" else "BFGS", outer.iterations =
100, outer.eps = 1e-05, ....

Here, theta is our parameter vector (5o, ay and ;). We initialize theta under
the assumption of independence with a robust estimate of 3y using the function
tukeypois, a; =0.001 and (5, = 0.001,

f is our score function "robPoistukeyscores11", defined above in (a),

grad is set to null,

ui and ci are a matrix and a vector describing our constraints 5y > 0, a1, 31 > 0
and ay + 31 < 1,

method is "Nelder-Mead", see the function optim in R for more details.
outer.iterations is set to 200 and outer.eps to 1le-06.

3. robPoisTStukey22

This function is a modified version of the function robPoisTStukeyll, where we
use a robust initialization for 3y, oy and (3, to start the iteration in constrOptim
using robust estimates in the ARMA(1,1) model. According to the properties of
INGARCH(1,1), we conclude from (4.12) and (4.13) that f; = —6; and oy =
¢1 — (1. To estimate the parameters ¢; and 6; of the ARMA(1,1) model robustly,
we estimate the autocorrelations at lags 1 and 2 robustly using the method of Ma
and Genton (2000) as in case of the INARCH(1) model. Then we derive Yule-Walker
type estimates of ¢; and 6, by solving (4.14) for these parameters and plugging in
the robust autocorrelation estimates. Afterwards we estimate the marginal mean
using the function tukeypois and use the formula of the marginal mean (y/(1 —
a; — [31) to obtain an initial estimate of [3.

4. robPoisTStukey33.
This function is a modified version of the function robPoisTStukey22, where we
use the same robust initialization for 3y, a; and 3;. However, here we correct our
score function robPoistukeyscores33 by subtracting suitable bias correction terms.
These correction terms have been computed based on (4.40). The estimates are
obtained using the function constrOptim. constrOptim, defined before in the func-
tion robPoisTStukey11, iterates between estimating 3y, a; and (; for a given value
of bias corrections for 3y, a; and (; and the specification of bias corrections based
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on the current estimate of 3y, a; and ;. First we choose a value of the correction
terms. Second we estimate [y, oy and (1, then we derive the values of our correc-
tion terms which are suitable for these estimates. Then we re-estimate 3y, oy and
(1. We iterate this process until the absolute differences of our estimates for two
consecutive iterations do not exceed our desired accuracy 0.0001, which we use to
determine convergence.

4.9 Simulations

In this section, we perform some simulation experiments to compare the performance of
conditional maximum likelihood estimators, computed using the function condlikest11,
and the generalized M-estimators, computed using the different versions of the function
robPoisTStukey (robPoisTStukey11, robPoisTStukey22, robPoisT'Stukey33). Namely, we
consider the following M-estimators:

e without bias correction and with robust initialization under the assumption of in-
dependence, see the results of robPoisTStukey11.

e with and without bias correction and with robust initialization using robust esti-
mates in an ARMA(1,1) model, see the results of robPoisTStukey22 and robPoisT-
Stukey33.

These estimates are compared in terms of bias and root of mean square error (RMSE),
in finite samples from an INGARCH(1,1) model, with several tuning constants and with
and without outliers.

4.9.1 Results in case of clean data

We compare the results of the conditional maximum likelihood estimator and the gener-
alized M-estimator for the parameters of the INGARCH(1,1) model in situations without
outliers. Namely, we compare

e condlikest11
e 10bPoisTStukeyll with different tuning constants k& € {7, 10, 12}.
e 10bPoisTStukey22 with different tuning constants k € {7, 10,12}.

e robPoisTStukey33 with different tuning constants k € {7,10,12}.

We generate data from an INGARCH(1,1) model with parameters Gy = 1, a; = 0.3,
(1 = 0.4. The results are based on 500 data sets of size 200 each. We have the following
findings:

e For () and /31, using robust initialization from ARMA(1,1) model gives better results
than using robust initialization under the assumption of independence.
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e The corrected Tukey M-estimators (robPoisTStukey33) give smaller biases and RM-
SEs than the uncorrected ones (robPoisTStukeyl1, robPoisTStukey22) for G, and
(1, whereas the uncorrected ones with initialization under the assumption of inde-
pendence give smaller biases and RMSEs for «;.

e The conditional maximum likelihood estimator gives the smallest biases and RM-
SEs for oy and (3, and it also gives the smallest RMSE for (3,. We note that
the conditional maximum likelihood estimator gives similar results as for the un-
corrected Tukey M-estimators with initialization under the assumption of indepen-
dence (robPoisTStukey11) for ay, and it gives similar bias as for the corrected Tukey
M-estimator with tuning constants k = 12 for f.

e Increasing the tuning constant k& reduces the biases and RMSEs for oy and 3y, but
not necessarily for (.

Figure 4.17 depicts boxplots of the conditional maximum likelihood estimates and the
Tukey M-estimates with tuning constant & = 7 for (y, oy and (3, estimated from IN-
GARCH(1,1) with true values Gy = 1, a; = 0.3 and 3; = 0.4, 500 data sets of size
200. The boxplots indicate that the distribution for 5y of robPoisTStukey11 (Tukey11) is
symmetric but with a large number of outliers, which can explain its strange bias results.
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Table 4.1: Results of the Tukey M-estimators and the conditional maximum likelihood
estimator in case of clean data with 3y =1, ay = 0.3 and 5, = 0.4.

Estimators Values | (3 aq 061
bias 0.1610 | -0.0023 | -0.0455
RMSE | 0.5028 | 0.0700 | 0.1728

bias 0.4107 | -0.0059 | -0.1261
RMSE | 0.7464 | 0.0723 | 0.2163
bias 0.4276 | -0.0053 | -0.1272
RMSE | 0.7510 | 0.0718 | 0.2171
bias 0.4295 | -0.0052 | -0.1263
RMSE | 0.7536 | 0.0717 | 0.2166

bias 0.0998 | 0.1328 | -0.1675
RMSE | 0.7534 | 0.3116 | 0.2600
bias 0.2169 | 0.0606 | -0.1286
RMSE | 0.7068 | 0.2137 | 0.2310
bias 0.2440 | 0.0443 | -0.1203
RMSE | 0.6901 | 0.1849 | 0.2230

bias -0.0174 | 0.1289 | -0.1173
RMSE | 0.6916 | 0.3124 | 0.2490
bias 0.1030 | 0.0827 | -0.1112
RMSE | 0.6672 | 0.2538 | 0.2290
bias 0.1552 | 0.0559 | -0.1012
RMSE | 0.6568 | 0.2090 | 0.2210

condlikest11

robPoisTStukeyll, k =7

robPoisTStukeyl11, k£ = 10

robPoisTStukeyll, k = 12

robPoisTStukey22, k =7

robPoisTStukey22, k = 10

robPoisTStukey22, k = 12

robPoisTStukey33, k=7

robPoisTStukey33, k = 10

robPoisTStukey33, k = 12
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Figure 4.17: Boxplots of the conditional maximum likelihood estimator and Tukey M-

estimators with tuning constant k = 7 for 3y, a; and 31 (from left to right) estimated
from INGARCH(1,1) with true values fy = 1, a; = 0.3 and ; = 0.4, 500 data sets of

size 200.
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4.9.2 Results in case of contaminated data

We compare the results of the predefined estimators in the presence of outliers.
consider the following three outlier scenarios:

1. Three additive outliers of fixed size 20 at times 50, 100, 150.
2. Six additive outliers of fixed size 20 at times 40, 80, 100, 120, 160, 200.

3. Ten additive outliers of fixed size 20 at times 10, 20, ..., 100.

We have the following findings:

We

e The conditional maximum likelihood estimator shows strange positive bias for (3,
and substantial biases for for oy and (3; in the presence of isolated additive outliers

considered here.

e The Tukey M-estimators reduce these biases substantially in case of 3 and a; and
have thus smaller RMSESs for these parameters. However these are even more biased

for 61 .

e Increasing the tuning constant k reduces biases and RMSEs for oy and (3 slightly,

as in case of clean data.

e In case of using less than 5% (3 or 6) additive outliers, the corrected Tukey M-
estimators give the smallest biases and RMSEs for ;. The uncorrected Tukey
M-estimators with initialization under the assumption of independence give the
smallest biases and RMSEs for «y, whereas the conditional maximum likelihood
estimator gives the smallest bias for 3;. We note that the sum of the dependence
parameters o and (3 is estimated with less bias when using the bias correction,

but it seems difficult to distinguish these two influences.

e In case of 5% (10) additive outliers, the corrected Tukey M-estimator with tuning
constant k = 12 gives the smallest biases and RMSEs for a; and (;, and with

tuning constant k = 7 gives the smallest bias for f.

4.9.3 General conclusions

The Tukey M-estimators provide robustness for the estimation of 3y and «q, but not for
(1, in the presence of additive outliers. The bias-corrected versions with initialization
from an ARMA(1,1) fit and a large tuning constant additionally perform almost as good

as the conditional maximum likelihood in case of clean data.
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Table 4.2: Results of the Tukey M-estimators and the conditional maximum likelihood
estimator in case of 3 additive outliers with Gy = 1, oy = 0.3 and 3; = 0.4.

Estimators Values | 5y a b

condikest1 RASE | L5074 | 01947 | 02770
robPoisTStuker 1 k=7 | e | 0050 | 00s0s | 02940
robPoisTStuker L k=10 | p¥ier | 0o | 010885 | 0.2040
robPoisTStukey 1, k=12 | e | '6a00 | 00851 | 02902
robPoisTStnkes22, k=7 | ks | o8 | 0571 | 03020
robPoisTStukey22, k=10 | ok | 0360 | 01992 | 03013
robPoisTStukey22, k= 12 | p¥ier | 08435 | 01558 | 02951
robPoisTStukesd3, k=7 | it | 7076 | 02188 | 02011
robPoisTStukeyd3, k=10 | picr | 07016 | 011650 | 02685
robPois TStakey33, £ = 12 | piise | (o1t | 01305 | 02676
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Table 4.3: Results of the Tukey M-estimators and the conditional maximum likelihood
estimator in case of 6 additive outliers with Gy = 1, oy = 0.3 and 3; = 0.4.

Estimators Values | (3 o 061
bias 1.5163 | -0.1949 | -0.1441
RMSE | 1.8486 | 0.2091 | 0.2921

bias 0.6388 | 0.0280 | -0.2513
RMSE | 0.7481 | 0.0888 | 0.2784
bias 0.6454 | 0.0271 | -0.2471
RMSE | 0.7538 | 0.0867 | 0.2752
bias 0.6763 | 0.0153 | -0.2381
RMSE | 0.7943 | 0.0806 | 0.2682

bias 0.4451 | 0.0886 | -0.2520
RMSE | 0.7825 | 0.2096 | 0.2855
bias 0.5671 | 0.0556 | -0.2508
RMSE | 0.7813 | 0.1530 | 0.2877
bias 0.6317 | 0.0295 | -0.2378
RMSE | 0.8200 | 0.1172 | 0.2827

bias 0.3911 | 0.1149 | -0.2509
RMSE | 0.7965 | 0.2378 | 0.2920
bias 0.5088 | 0.0825 | -0.2537
RMSE | 0.7852 | 0.1943 | 0.2904
bias 0.6056 | 0.0490 | 0.1515
RMSE | 0.8175 | 0.1515 | 0.2852

condlikest11

robPoisTStukeyll, k =7

robPoisTStukeyl1, £ = 10

robPoisTStukeyll, k£ = 12

robPoisTStukey22, k =17

robPoisTStukey22, k = 10

robPoisTStukey22, k = 12

robPoisTStukey33, k =7

robPoisTStukey33, k = 10

robPoisTStukey33, k = 12
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Table 4.4: Results of the Tukey M-estimators and the conditional maximum likelihood
estimator in case of 10 additive outliers with 3y =1, a; = 0.3 and 5, = 0.4.

Estimators Values | (3 oy 061
bias 2.7535 | -0.2671 | -0.2994
RMSE | 2.9580 | 0.2703 | 0.3801

bias 0.7247 | 0.0464 | -0.3127
RMSE | 0.8051 | 0.0943 | 0.3255
bias 0.7405 | 0.0464 | -0.3116
RMSE | 0.8206 | 0.0925 | 0.3242
bias 0.8213 | 0.0252 | -0.3041
RMSE | 0.9137 | 0.0806 | 0.3186

bias 0.6029 | 0.0784 | -0.3079
RMSE | 0.8154 | 0.1798 | 0.3212
bias 0.6590 | 0.0646 | -0.3059
RMSE | 0.8261 | 0.1464 | 0.3206
bias 0.7924 | 0.0293 | -0.3013
RMSE | 0.9061 | 0.1048 | 0.3167

bias 0.5768 | 0.0940 | -0.3041
RMSE | 0.8221 | 0.1934 | 0.3190
bias 0.6581 | 0.0665 | -0.2998
RMSE | 0.8120 | 0.1360 | 0.3154
bias 0.7896 | 0.0291 | -0.2959
RMSE | 0.8962 | 0.0890 | 0.3117

condlikest11

robPoisTStukeyll, k =7

robPoisTStukeyl1, £ = 10

robPoisTStukeyll, k£ = 12

robPoisTStukey22, k =17

robPoisTStukey22, k = 10

robPoisTStukey22, k = 12

robPoisTStukey33, k =7

robPoisTStukey33, k = 10

robPoisTStukey33, k = 12
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Chapter 5

Real data applications in the
medical field

This chapter applies our proposed methods from Chapter 4 to two real data examples
in the medical field. The first example is the poliomyelitis (briefly: polio) data. The
second is the campylobacterosis (briefly: campy) data. We start by an analysis of the
polio data. We give a description of the polio data, then we fit an INGARCH(1,0) model
to these data using conditional maximum likelihood as a non robust method and Tukey
M-estimation as a robust method to estimate the model parameters. After that, we fit
an INGARCH(1,0) model using the same methods but after having cleaned the data
from outliers using the approaches given in |Fokianos and Fried (2010]), which concern the
detection of sudden shifts and outliers. Second, to verify the reliability of our proposed
methods, we analyse an artificial data example generated to resemble the polio data. We
fit an INGARCH(1,0) model to artificial data using the same methods as for the polio
data, then we fit an INGARCH(1,0) model again after having cleaned the artificial data
from outliers. For the campy data, we repeat again what we did for the polio data.

5.1 Analysis of the poliomyelitis data

5.1.1 Description of the poliomyelitis data

Figure 5.1 shows the polio data. These data have been published by the U.S. Centers
for Disease and Control and list the monthly number of poliomyelitis cases in the United
States for the period 1970 to 1983. This data set has become a standard example in the
field of count time series data. The data consist of 168 observations with some strongly
deviating data points and periods of higher level and variability. This data set has been
studied by [Zeger (1988)) using the Poisson log-linear regression model. Davis et al. (2000)
developed a practical approach to diagnosing the existence of a latent process in Poisson
log-linear regression models and derived the asymptotic properties of the generalized lin-
ear model estimator when an autocorrelated latent process is present. This data set has
been studied further by Fahrmeir and Tutz (2001, Chap. 6.1) in the framework of gener-
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Figure 5.1: Monthly number of poliomyelitis cases in the United States for the period
1970 to 1983.

alized linear models for time series, where the authors use both conditional and marginal
models to analyse these data. When using marginal models the long-term decrease in the
rate of polio infections becomes more obvious. In contrast, this effect is attenuated with
conditional models. [Jowaheer and Sutradhar (2005 used AR(1) and MA(1) models to
fit these data and suggested to search a suitable robust estimation technique to fit time
series of counts in the possible presence of outliers. More recently Zheng et al. (2006)
proposed the p-th order random coefficient integer valued process [RCINAR(p)] for these
data. [Mora et al. (2009) used integer valued AR (INAR) processes as an alternative to
the Poisson regression model given by |Zeger (1988)) and Davis et al. (2000). Davis and
Wu (2009) extended the asymptotic results of Davis et al. (2000)), modelling the polio
data by a negative binomial regression model. Kang and Lee (2009) proposed a cumu-
lative sum test for identifying change points in a first order random coefficients integer
autoregressive process [RCINAR(1)] to analyse the polio data. Fokianos and Fried (2011))
investigated whether there are intervention effects corresponding to unusual events in this
time series, which was modelled as a log-linear Poisson autoregression.

In this chapter, we consider that the polio data follow an INGARCH(1,0) model. Then
we fit this model non robustly and robustly.
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Table 5.1: Parameter estimates for the polio data (left) and for the cleaned polio data
(right)

estimates unclean clean
Estimators Bo & Bo &
condlikest 0.8522 | 0.3739 | 0.9036 | 0.0571
robPoisTStukey3 0.8433 | 0.2415 | 0.8771 | 0.0333

5.1.2 INGARCH(1,0) fit to the polio data

Here we use conditional maximum likelihood as a non robust estimation method, which is
computed by the function condlikest, and we use Tukey M-estimators with bias correction
and with robust initialization from an AR(1) model with & = 7 as a robust estimator,
which is computed by the function robPoisTStukey3.

The left hand side of Table 5.1 gives the parameter estimates using the functions cond-
likest and robPoisTStukey3 for the polio data. For this data set, the difference between
condlikest and robPoisTStukey3 is negligible for Gy, but we have a larger difference for
ay. So in this situation «; seems to absorb the outliers effects.

5.1.3 INGARCH(1,0) fit to the cleaned polio data

We clean the polio data from outliers using the approach given in the paper of |Fokianos
and Fried (2010). We use the third scenario in their paper, which concerns the detection
of multiple interventions when the type and the time are both unknown. Following their
lines, the INGARCH(1,0) with intervention effects can be defined by:

Z|Fi—1 ~ Poisson(k),

Ry = ﬁ(] + olet_l + I/Xt, (51)

for t > 1, where F; is the o-field generated by {Zy, ..., Z;} representing the whole infor-
mation up to time ¢, x; is the new conditional mean process after adding the intervention
effects, Z; is the contaminated precess, v is the size of the intervention effect, and {X;} is
a sequence of deterministic covariates, which determines the intervention effect included
in the observation equation. It has the following form

Xy = &(B)L(7), (5.2)

where I;(7) is an indicator function with [;(7) = 1 if ¢ equals a specific time 7 and
I(r) = 0 if t # 7, B is the shift operator such that B'X; = X, ,;, and &(B) is a
polynomial operator of the form

§(B)=(1—-4(B))" (5.3)

The choice of £(B) determines the kind of intervention effect: 6 = 0 for a spiky outlier
(SO), 6 = 1 for a level shift (LS) and 6 € {0.7,0.8,0.9} is a predefined constant for a
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Figure 5.2: Polio data (solid black line) and data after outliers removal (dashed green
line). Step 1: AO at time 35 (vertical red line), step 2: TS at time 7 (vertical blue line),
step 3: TS at time 113 (vertical brown line), step 4: LS at time 167 (vertical yellowgreen
line).

transient shift (TS). Note that for v = 0 the processes {\;} and {k;} are identical as well
as {Y:} and {Z;}. For more details, see |Fokianos and Fried (2010, Section 6).

Figure 5.2 illustrates the corrections performed in the iterative procedure for the po-
lio data. We detect (in this order) a spiky outlier (SO) at time 7 = 35 of size v = 11.38
(recall that ¢ is set to 0), transient shifts (TSs) at times 7 and 113 of sizes 4.14 and 4.17,
respectively, (recall that 0 is set to 0.8), and finally a level shift (LS) at time 167 of size
3.46 (recall that ¢ is set to 1).

The right hand side of Table 5.1 gives the parameter estimates using the functions condlik-
est and robPoisTStukey3 for the cleaned polio data (after removing intervention effects).
We find that the differences between condlikest and robPoisTStukey3 are small for both
0Bo and oy after cleaning this data set from outliers. Note that the robust estimate for a;
in case of the original (contaminated) data is closer to the estimate for a; for the cleaned
data than the non-robust estimate for «;.
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Table 5.2: Parameter estimates for the artificial polio data (left) and for the cleaned
artificial polio data (right)

estimates unclean clean
Estimators Bo o Bo &
condlikest 0.9906 | 0.2480 | 0.9976 | 0.0855
robPoisTStukey3 0.9594 | 0.0778 | 1.017 | 0.0824

5.2 Analysis of artificial poliomyelitis data

To know whether the INGARCH(1,0) model is a good model for the polio data, we
generate a data set from the final INGARCH(1,0) model with outliers fitted to the polio
data. Then we compare the parameter estimates using the functions condlikest and
robPoisTStukey3. Second, we clean the artificial polio data from the outliers using the
same approach as for the polio data, and compare our parameters estimates again.

5.2.1 INGARCH(1,0) fit to the artificial polio data

We generate a data set with sample size 168 from the final INGARCH(1,0) model with
parameters fy = 0.9 and a; = 0.05 and with a SO at time 35, T'Ss at times 7 and 113. We
ignore the LS, which is located at the end of the time series. The left hand side of Table
5.2 gives the parameter estimates using the functions condlikest and robPoisTStukey3
for the artificial polio data generated from the final INGARCH(1,0) model with outliers.
We find that the difference between condlikest and robPoisTStukey3 is small for 3y, but
we have a larger difference for oy with the robust estimate recovering the true value well.

5.2.2 INGARCH(1,0) fit to the cleaned artificial polio data

We clean the artificial polio data from outliers using the same approach as for the real
polio data. From Figure 5.3, we detect an additive outlier (AO) at time 35 and transient
shifts (T'Ss) at times 7 and 113. This means that all outliers are identified correctly and
at the correct time points. The right hand side of Table 5.2 illustrates the results for the
cleaned artificial polio data. The differences between condlikest and robPoisTStukey3 are
negligible for Gy and «; and close to the true parameter values used for generating the
data. Note that the robust estimates for the contaminated data are close to the estimates
after cleaning.
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Figure 5.3: Artificial Polio data (solid black line) and data after removal of outliers
(dashed green line). Step 1: AO at time 35 (vertical red line), step 2: TS at time 7
(vertical blue line), step 3: TS at time 113 (vertical brown line).
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Figure 5.4: Monthly number of cases of campylobacterosis infections from January 1990
to the end of October 2000 in the north of the Province of Quebec, Canada.

5.3 Analysis of the campylobacterosis data

5.3.1 Description of the campylobacterosis data

Figure 5.4 shows the campy data. These data refer to the monthly number of cases of
campylobacterosis infections from January 1990 to the end of October 2000 in the north
of the Province of Quebec, Canada, see Ferland et al. (2006). The data were recorded
every 28 days for a total number of 13 times per year. Ferland et al. (2006 proposed
an INGARCH(1,1) model to fit these data and they used maximum likelihood to esti-
mate the model parameters. Fokianos and Fried (2010) studied the problem of detection
and estimation of sudden shifts and outliers in linear Poisson GARCH type models (IN-
GARCH) by application of their approach to the campy data. They find a level shift
around time point 84 and a spiky outlier at time 100. Fokianos and Fried (2011) reexam-
ined these data but by employing a log-linear model instead of a linear model for count
time series. Intervention effects in linear INGARCH are additive, but for the log-linear
model they are multiplicative. They noted that in most cases the intervention effects
detected in a time series when using the linear or the log-linear approach closely agreed.
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Table 5.3: Parameter estimates for the campy data (left) and for the cleaned campy data
(right)

estimates unclean clean
Estimators Bo o Bo A
condlikest 4.144 | 0.6474 | 4.533 | 0.4139
robPoisTStukey3 4.495 | 0.5720 | 4.524 | 0.4167

In our chapter as for the polio data, we consider that the campy data follow INGARCH(1,0)
model and fit this model non robustly and robustly to these data sets.

5.3.2 INGARCH(1,0) fit to the campy data

Here we use conditional maximum likelihood as a non robust estimation method, which
is computed by the function condlikest, and we use Tukey M-estimators with bias cor-
rection and robust initialization from an AR(1) model with k = 7 for robust estimation,
which is computed by the function robPoisTStukey3.

The left hand side of Table 5.3 gives the parameter estimates using the functions cond-
likest and robPoisTStukey3 for the campy data. For this data set, we have slightly larger
differences between condlikest and robPoisTStukey3 for 5y and «;.

5.3.3 INGARCH(1,0) fit to the cleaned campy data

We clean the campy data using the same approach as for the polio data. For more details,
see [Fokianos and Fried (2010}, Section 6).

Figure 5.5 illustrates the corrections performed in the iterative procedure for the campy
data. We detect a level shift (LS) of size 4.51 at time 84 (recall that ¢ is set to 1), and a
transient shift (TS) of size 8.32 at time 100 (recall that ¢ is set to 0.8).

The right hand side of Table 5.3 gives the parameter estimates using the functions condlik-
est and robPoisTStukey3 for the cleaned campy data (after removing intervention effects).
There are negligible differences between condlikest and robPoisTStukey3 for both 3, and
oy after we clean this data set from outliers. Also note that the robust estimates for the
contaminated data are closer to the estimates for the cleaned data than the non robust
estimates.
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Figure 5.5: Campy data (solid black line) and data after removal of outliers (dashed green
line). Step 1: LS at time 84 (vertical red line), step 2: TS at time 100 (vertical blue line).
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Table 5.4: Parameter estimates for the artificial campy data (left) and for the cleaned
artificial campy data (right)

estimates unclean clean
Estimators Bo o Bo &
condlikest 2.0927 | 0.8264 | 4.4239 | 0.4218
robPoisTStukey3 2.3496 | 0.7891 | 4.3944 | 0.4252

5.4 Analysis of artificial campylobacterosis data

In order to know whether the INGARCH(1,0) model is a good model for the campy data,
we generate a data set from the final INGARCH(1,0) model with outliers fitted to the
campy data. We compare the parameter estimates using the functions condlikest and
robPoisTStukey3. Then, we clean the artificial polio data from the outliers using the
same approach as for the campy data, and compare again our parameter estimates.

5.4.1 INGARCH(1,0) fit to the artificial campy data

We generate a data set with sample size 140 from the final INGARCH(1,0) model with
parameters Gy = 4.5 and «; = 0.4, and with an LS at time 84 and a TS at time 100.
The left hand side of Table 5.4 gives the parameter estimates using the functions cond-
likest and robPoisTStukey3 for the artificial campy data generated from the final IN-
GARCH(1,0) model with outliers. The difference between condlikest and robPoisT-
Stukey3 is small for a;, but we have larger differences for f.

5.4.2 INGARCH(1,0) fit to the cleaned artificial campy data

We clean the artificial campy data from outliers using the same approach as for the campy
data. From Figure 5.6, we detect a transient shift (T'S) at time 100 and a level shift (LS)
at time 84. We find exactly the intervention effects introduced into the data. The right
hand side of Table 5.4 illustrates the results for the cleaned artificial campy data. The
differences between condlikest and robPoisTStukey3 are negligible for 3, and «;. Here,
the differences between the results for the contaminated and for the cleaned data are
rather large, what can be explained by the large effects of level shifts on the estimates.
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Figure 5.6: Artificial campy data (solid black line) and data after outliers removal (dashed
green line). Step 1: TS at time 100 (vertical red line), step 2: LS at time 84 (vertical
blue line).
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Chapter 6

Summary, conclusions and outlook

The goal of our thesis was robust modelling of count data. Poisson models provide a stan-
dard framework for the analysis of this type of data. We constructed new M-estimators
based on the Tukey function as modified versions of maximum likelihood estimators to
estimate the parameters of such models in the case of independent data and INGRACH
models for time series. To achieve this goal, we organized our thesis into six chapters,
with Chapter 6 being this summary. Chapter 1 and Chapter 2 were introduction and
basic concepts for location M-estimators. The main three chapters are Chapters 3 to 5.
Chapter 3 and Chapter 4 presented M-estimation in the case of independent and depen-
dent Poisson data, respectively. Chapter 5 gave two real data application examples in
the medical field, and two artificial data examples.

This chapter is devoted to give a summary and some conclusions for our three main
chapters. Also this chapter gives our ambition to what we want to do afterwards.

In Chapter 3, we introduced modified Tukey M-estimators with bias correction for esti-
mating the mean of the Poisson distribution. We have developed a new algorithm for this
estimation, which is based on the Tukey function. We modified the R-function glmrob
by adding a bias correction term and external weights. We considered an alternative
estimator based on adaptive trimming as a solution to the problem of combining high
robustness against outliers and high efficiency relatively to the sample mean when the
true mean is small.

Our simulation results indicated that the modified version of glmrob with external weights
gives the best robustness properties among all estimation procedures based on the Huber
function. The modified Tukey M-estimator provided improvements over the other pro-
cedures which depend on the Tukey function and also those which depend on the Huber
function, particularly in case of moderately large outliers and very large outliers. An
adaptive trimming estimator provided even better results at small Poisson means.

In Chapter 4, we treated robust M-estimation for the parameters of INGARCH(1,0) and
INGARCH(1,1) models as special variants of INGARCH models, where we modified the

classical estimation approach by giving robust estimators for the parameters of these
models with bias correction and with robust initialization from the AR(1) model in case
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of the INGARCH(1,0) model and with robust initialization from the ARMA(1,1) model
in case of the INGARCH(1,1) model. We conjectured the asymptotic normality of the
robust M-estimator in the INGARCH(1,0) model. We implemented some new functions
in R, which are based on the Huber function and the Tukey function, respectively, to
compute these estimates.

Our simulation results indicated that in case of the INGARCH(1,0) model, the bias-
corrected Tukey M-estimators give better results than those which are based on the
Huber function. The bias-corrected Tukey M-estimators with robust initialization from
the AR(1) model show good performances relatively to other functions. In case of the
INGARCH(1,1) model, our simulation results indicated that the Tukey M-estimators
provide robustness for the estimation of 3y and «q, but not for (31, in the presence of
additive outliers. The bias-corrected versions with initialization from an ARMA(1,1) fit
and a large tuning constant additionally performed almost as good as the conditional
maximum likelihood in case of clean data.

Chapter 5 presented two real data examples in the medical field and two artificial data
examples generated to resemble the two real data examples, so that we could compare
the results to the ground truth. We concluded that the robust estimators give similar
results as the non-robust estimators in case of clean data. The robust estimates gave bet-
ter results than the non-robust ones in the presence of outliers. Using the artificial data
examples indicated that the INGARCH(1,0) model with intervention effects is adequate
for these data.

Future work should be to modify Tukey M-estimators or to develop other robust estima-
tors for the INGARCH(1,1) model or higher order models. The asymptotic properties of
these estimators should be derived. Applications to other real data examples should be
given.



Appendix A

Asymptotic properties of
M-estimators for INARCH(1)
Parameters

Here we investigate the background of Conjecture 4.1, which is given in Chapter 4.
Let:

0 = (o, a1)" denote the vector of the parameters of the INARCH(1) model,

o be the value of 6 for which the expectation of the left hand side of (4.31) equals 0,
0 = (Bo, @1)" denote the vector of the estimators,

A

Gn(0,,) denote the left hand side of (4.30) with bias correction B = (ag, a1)’

6o = (o) ) = 00 (A1)
and let
G(0) = —Ep, (X1(0)) (A.2)
where
YA ) 1 1 a \ (0
60 = 0052 55 (o ) 02 )~ () = (5)
and . Yoo\ .
Gu0) =30 (M2 o - (A3)

Cro(6) = §¢ ( Vo ) le (w (YHU_ A) + /\> (=T,  (A4)

with v being a bounded, continuous and monotone function as for the Huber ¢ function.
To proof this, we note first that when a; < 1, (V;) is stationary and ergodic, see [Doukhan
et al. (2012).
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By using Theorem 3.5.8 in Stout (1974), we can prove that (X;) is stationary and ergodic,
namely:

Theorem 3.5.8: Let {Y;,i > 1} be stationary ergodic and ¢ be a measurable function
¢ R — Ry. Let X; = o(Y;,Yiq1,...) define {X;,7 > 1}. Then {X;,i > 1} is stationary
ergodic.

Under this theorem, X; as a function of (Y;,Y; 1) is also stationary and ergodic.

Second to prove (a) and (b) in Conjecture 4.1, we need to establish all the conditions
given in Theorem 4.1.2 and Theorem 4.1.3 in Amemiya (1985)).

e Check the assumptions as in Theorem 4.1.2
(A1): For model (4.2), the parametric space © is compact with

O={0<pF <k 0<ag <kK*<1}
where ¢, k are finite positive constants and 6, is an interior point in ©.

(A2): G,(0) is a measurable and continuous function (this follows under (A1) for
every continuous 1 function, since the composition of continuous functions is also
continuous).

(A3): ——5G,(0) converges to G(6) in probability uniformly in © for all § € ©,
and G(0) has a unique root.

First: we can establish the validity of the uniform convergence in two steps

1. Proving E(supgeg | X:(0)]) < 0o

X))
1

o2 oy ) = (o))

We have the following inequalities, which are to be read componentwise:

1 A0max
< E(Sup(ééﬂoﬁn,0§a1<n*) |:1/Jmax\/1% ( O'maxwmax + )\max ) - ( Ao >:|)
1 a
< 1 . Omax
- E({wmaX\/g ( O-maxq/)max + Amax > < almax ) :|> < CX)

where

E<SUP969 ‘Xt(e)o = E<SUP(5gﬁogn,oga1 <K*)

- E<Sup(as5ogn,0@1<ﬁ*>

A = g A = g0/ (=)l < o

_ _ 2 2
Omax = IAX 0 = 1ax \//\(1 +ai/(1—af)) < oo

Aomax = Max{|ag(0)|: 0 € O}
A1 max = max{|ai(0)|: 0 € O}
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and
7v/}rnax = r?gﬁ? W(7”)| <

(this follows for bounded 1) functions)

2. From 1, we have E(supyee |X¢(0)|) < co. Using the ergodic theorem in |Jensen
and Rahbek (2007) and arguments given in Section 2.2 in |Straumann (2005),
we have ——1-G,(#) converges to G(6) in probability uniformly in © for all

1
0 € ©, see Lemma 3 in |Zhu and Wang (2009).

Second: To prove that G(#) has a unique root, it is sufficient to prove that 0 =
Wi (0) = —X;(0) has a unique root, and for simplicity we exclude the bias correction.
Proof:

To prove this, we investigate the monotonicity of W;(0) = —X,(0)

Let
Wi(0) = ( %Egi ) = ( :ﬁgggg ) |

o)

= (A.5)
t— ¢ 11—\
v (45) (o0 () +)
Let 01 = (Bo1, 11) and Oy = (Boz, 1) be any two parameter vectors with
0y > 01 (Boz > Bor, 012 > anr).
We have
Wi (02) = Wia(61) = X (61) — X (62) (A.6)

_ 1 (yz — (Bor + 041191)) _ 1 (?Jz — (Bo2 + oqul))
(

(Bo1 + c11th) (Bo1 + c11th) Boz + c1241) (Boz + c1211)
(A.7)

Let a = y2—(Bor1+a11y1) db= y27(502+a12y1). Ifb>0th >p>0.
cha (Bo1+a11y1) an v (Bo2+ai2y1) - ena=v=

let ¢ be Huber’s ¥ function. Then we need to distinguish several cases:

1. a, be[-k k]

2. a, be |—o0,—k[.

3. If b > k, then necessarily yo — (Bo2+c12y1) > 0and a > b > k, so a,b € [k, o00].
4. b€ [~k k] and a € [k, oo

5. b €] —o0,—k[ and a € [k, 0.

6. be |-k, k| and a €] — o0, —k[.
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7. b €] — oo, —k[ and a € [k, k.

1. a, be[—kk]
For Huber’s ¢ function, we have ¥ (a) = a and ¥ (b) = b, and
a b
Wi (02) — Wi (1) = - , (A.8)

\/(501 + anyi) \/(502 + a12y1)

_ <y2 — (Bo1 + @nyl)) _ <y2 — (Boz + 04121/1)>

(Bor + c1111) (Boz + c1211)

(B2 + 12y1) — (Bor + an1y1)]yo
(Bor + a11y1)(Bo2 + a12y1)

[(Boz — Bo1) + (o2 — aa1)vh]ye
(Bo1 + ca1y1) (Boz + ca211)

Wi (02) — Wi (61) > 0 if Boa > Bor , a1z > oax, (Bor, a11) # (Boz, 12), except
if y; = 0 or yo = 0, but then at least Wy (65) — Wy (01) > 0.

2.a, be |—o0,—k|
Here we have ¥(a) = —k and ¢ (b) = —k, and

Wi (02) — Wi (6h) = K - —* (A.9)

\/(501 + oq1) \/(502 + a2y1)

k(\/(ﬁoz + ap9y1) — \/(501 + Oényl))

= <0

\/(501 + 041191)\/(502 + a291)

From 2, we have Wi (02) < Wy (6;), then Wy(0) is not monotone and we do not
need to check the other cases. Also to be sure that W;(6) is not monotone, we plot
equation (A.5) considering the following cases:
1. y1 =2, yo = 3, fixed By = 1 and «a; € [0.1,0.2, ..., 0.9], see Figure A.1 (top left)
2. y1 =2, y, =3, fixed a; = 0.4 and [y € [1,2,...,9], see Figure A.1 (top right)

3. y1 =3, ys =2, fixed By =1 and o € [0.1,0.2,...,0.9], see Figure A.1 (bottom
left)

4. y1 = 3, yo = 2, fixed a; = 0.4 and Gy € [1,2,...,9], see Figure A.1 (bottom
right)
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W_tatyl1=2, y2=3, fixed beta_0=1 W_tatyl=2, y2=3, fixed beta_1=0.4
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Figure A.1: Equation (A.5)
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From Figure A.1, we conclude that W;(#) is not monotone, so that (4.27) can have
more than one solution. Therefore a good choice of the initial estimate in the iter-
ative numerical algorithm used to solve these estimating equations is essential.

Thus, we need to assume existence of a unique root of G(6) for establishing the
conditions in Theorem 4.1.2 in |Amemiya (1985)), so that part (a) of Conjecture 4.1
holds (6,, converges to 6, in probability).

Check the assumptions as in Theorem 4.1.3

(A4) U,(0,) = 808”9(9) ~ exists and is continuous. The continuity follows under

=0n

(A2) and we can prove the existence as follows:

0G,1(0) 0G,1(0)
A~ aﬁo Gzén aal H:én
Un(en) = (AlO)
0G2(0) 0G,2(0)
06y lo=é, day  lo=d,

(A.10) is finite, where by direct differentiation without including the bias correction
we have

8%259) 0—6, é agow (n\/_yjt> jA—t (A.11)
Let
o=z (") 5
then

1.2 (Yi—N\ 1 0 Y, — N\

when we use Huber’s ¢ function with |(Y; — \;)/v/A¢| < k then

() ()
0o \ V) 08\ V) ks ()<




127

SO
2 (Yi=N 1 Yy
— —)\.2 N U — A.12
Q= gh ‘”( VA ) [2)\t+2>\§] (ks (22 ) <y (A12)
and hence 0G1(0) .
nl
pu— A-13
Similarly, we calculate
0G,1(0) 0 (Yt—)\t> 1
= A14
dor i, 2300\ VA ) VA Ay
bet 0 Y, — A 1
R — t— At
t aﬁ( oy >\/T
then

1, =2 Yi— N L 0 (Y-
:—7A2Y—
fe= g t”(m)*maaﬁ”(@)

when we use Huber’s ¢ function, then

aw Y- MY _ 0 (Yi-NM),
dor \ VA ) O \ V&) ks ()<

1 = Y.V, ; =3
— |- Y - EE T
(hs (22t )<k
then
1 = Y, — N Yioi YV
Ri=—=\2Y,_ - =Y, A.15
t ot Tt 1¢< N ) {2)% IN? ] {—k<(Yi/_T’:t)<k} -1Q¢ ( )
and hence 0G4 (0) . .
nl
= R, = Y, A.16
Doy o, 1;2 t t:ZQ 1@ ( )

In the same way

aGn2(0> - "0 Y, — M 1 Y, — A
o lo=b, tZ 8ﬁow ( oV ) N (U@/’ ( - ) +A> (A.17)

I|
N
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Let

0 Yi— M) 1 Yioi—A
= e () o (oo (572 )
then

e () s () o ()

(A.18)
where
Q: = a%ow (Yi/;%‘t) %\t is defined in (A.12).
Let
0 Y1 — A
= A

=g (0 (5) )

then
Sy = [0 + ]
T ( v o60) " 0,

where .,
do _ 9 Bo _ 8,2 _ 1
9B 060 \/ (1—a1)(1—af) — T = I

2((1a1)(1a§)> 2(ﬂ0(1a1)(1a§))
and

o\ B 0 0o B 1

860 8/60 (1 — &1) (1 — Oél)
Let
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then
St: |:O'wt+'l7b(Ytol__)\) ( 1 %):| + 1 L
2<ﬁ0(1a1)(1a§))

using S; and @)y, then

M, = (w (Y“U_ A) 4 A) Qv+ (KJA_?) jA_tSt

and hence

Similarly, we calculate

0G2(0) - 0 Y, — N\ 1 1 — A
Doy een_;3a1¢<\/)\_t>\/)\_t<¢( >+)\>
Let
0 Y;f—)\t 1 Y;—l_)\
e () e ()
then

Ne= (o0 (%522) +2) Bt v (U73) e (o0 (F57) +)

where
R, = 8%1 (Yi/t\f\t) ﬁ is defined in (A.15).
Let
Y, . —
7= (o (272) 4]
3041 2
then 0 A A\ O O\
— Y1 — Y1 — o
e = [08a1¢< o >+¢< o ) 8al}+8a1

where

D _0( by

0041 8041 1-— (0%} (1 - 051)2
and

[N

88(31 - 6i1 ((1 — oq??l — a%))

(A.19)

(A.20)

(A.21)



130 Asymptotic properties of M-estimators for INARCH(1) Parameters
_1< Bo )21[—@0(304%—2041—1)]
- — — .
2\ (1 —a1)(1 —af) ((1 — )1 - a%))
then )
9o —Bi(Bai — 20 —1)
8061 N %
2((1 —an)(1— a%))
Let

0 Yi1—A
e o (M)
(05] o

when we use Huber’s ¢ function, then

d Y;—l —A 0 Y;j_l - A
= — I v 3
Ht 8a1¢ ( o ) aal < o > {—kg(%k)gk}

_ 1 —a 3 ﬁ()%(}/t—l —A)(3a2 = 2a; — 1)
(2t (s,

then )
—B2(302—2q7 —

Zt — O'Ht"‘w (Yt_;_A) [ ﬂo 8 12 1)% + ((1621)2)
2((1—a1><1—a%))

using Z; and Ry, then
Yioi—A Yi— A\ 1
N; = — |+ | R + VA
t<(w<0> >t¢<\/7t>\/7tt

0Cina (0) = an N,. (A.22)

day o=, 1=
Using (A.13), (A.16), (A.20) and (A.22), then
( Y@ o Ry )

S My Yo N

and hence

Un(0,) = (A.23)

(A5): n=1U,(07) converges to a finite nonsingular matrix A(6y) = lim En~1U,(6,)
in probability for any sequence 6 such that plim 6 = 6. This assumption follows
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by using the ergodic theorem in [Jensen and Rahbek (2007)).
We can estimate A(6y) by n™'U,(6,) using (A.23) as follows:

- ( nTYE,Qr nT YR, Ry )

A(6o) = (A.24)

n! 2?22 M, n! Z?:z Ny

(A6): n2Gn(0)) — N(0,B(6)), where B(6y) = lim, o En G, (00)Gyr(6o) .
This assumption follows using the results of Martingale Central Limit Theorem
(MCLT), see Theorem 3 in |Sethuraman (2002).

Remark 1: To estimate B(fy), we use Theorem A in Serfling (1980, Page 14),
namely:

If we suppose that Z, < N(0, B(6,)), then

ZoZy, % B(0o)x?

If the sequence {7, Z,,n € N} is uniformly integrable, then

E(Z,Z,) — E(B(8)x}) = B(bh)

Using (A6) and Remark 1, we can estimate B(6y) as follows:

I

B(fy) = n™' G, ()G (6) (A.25)
Now assuming part (a), we can prove part (b) of Conjecture 4.1 as follows:
Using a first-order Taylor expansion, we obtain
0= Gn(0) = Gul(00) + Un(6;) (0, — 6o) (A.26)
where 6* lies in between 6, and 6.
Rewrite (A.26) as follows:
A U0\t 1
(0, — 00) = (n_l 30(, >) (3G, (00)) (A.27)

where + denotes the Moore-Penrose generalized inverse, see Amemiya (1985, Page 112).
Under assumptions (A5) and (A6), apply Slutsky’s theorem and the results of the
MCLT, then we have

VB = 80) 4 N (0, A(60) " B(60) (A(680) 1)) (A.28)

The asymptotic covariance matrix A(6y) "' B(6y)(A(fy) ') can be estimated by

—

A(0y)*B(6,)(A(6y)~1)!, where this estimate is guaranteed to be at least positive-
semidefinite by construction.
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Appendix B

Results of the functions

robPoisTShuber2 and
robPoisTShuber3
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relative efficiency for beta_0 at fixed beta_0=1, =200 relative efficiency for alpha_1 at fixed beta_0=1, n=200
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Figure B.1: Simulated biases (bottom) and relative efficiencies (top) of corrected and
uncorrected Huber M estimator with different tuning constants k relatively to the condi-
tional maximum likelihood estimator for fy (left) and a4 (right) as a function of the true

a1, for By = 1 and n=200.
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Figure B.2: Simulated biases of the conditional maximum likelihood estimator and of
corrected and uncorrected Huber M-estimators with different tuning constants k& for (3,
(left) and oy (right) in case of an additive outlier of increasing size with true values fy = 1
and oy = 0.4, sample size n=200.



136 Results of the functions robPoisTShuber2 and robPoisTShuber3

bias for beta 0 bias for alpha_1

. S
o o]

B cond ML B cond ML

B Huberuncor2, k=1.8 B Huberuncor2, k=1.8

O Huberuncor2, k=2.5 O Huberuncor2, k=2.5
o B Hubercor, k=1.8 o B Hubercor, k=1.8
o | @ Hubercor, k=25 o 7 | B Hubercor, k=2.5
N N
(o] [e]
o | o |
o [e]
o o
o o
| |
N N
O o
| |

T T T T T T T T T T
0 5 10 15 2 0 5 10 15 20
a transient shift of increasing size a transient shift of increasing size

Figure B.3: Simulated biases of the conditional maximum likelihood estimator and of
corrected and uncorrected Huber M-estimators with different tuning constants k& for (3,
(left) and a; (right) in case of a transient outlier of increasing size with true values fy = 1
and oy = 0.4, sample size n=200.
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Figure B.4: Simulated biases of the conditional maximum likelihood estimator and of
corrected and uncorrected Huber M-estimators with different tuning constants k& for (3,
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Figure B.5: Simulated biases of the conditional maximum likelihood estimator and of
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