

Channel Coding for Highly Efficient Transmission
in Wireless Local Area Network

Zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

von der Fakultät für Elektrotechnik und Informationstechnik
der

Technischen Universität Dortmund
genehmigte

Dissertation

von

Deny Hamdani

aus Bandung, Indonesien

Tag der mündlichen Prüfung: 21.03.2012

Hauptreferent: Prof. Dr.-Ing. Rüdiger Kays
Koreferent: Prof. Dr.-Ing. Jürgen Götze

Für meine Eltern und Deniras

ACKNOWLEDGMENT

 i

ACKNOWLEDGMENT

First of all, I would like to express my sincerest gratitude to my Doktorvater, Prof.
Dr.-Ing. Rüdiger Kays, for his inspiring guidance revealed during my doctoral education at
the Technische Universitaet Dortmund. I am really grateful to him for all his fruitful help
and for his inspiring insights that supported this work very much. I would like also to
gratefully thank Prof. Dr.-Ing. Jürgen Götze for co-supervisory of this thesis and his
recommendation for my DAAD scholarships. I thank also sincerely to examiners: Prof.
Dr.-Ing. Christian Rehtanz and Prof. Dr.-Ing. Peter Krummrich, for their advisory opinion.

I wish to thank my roommate Dr.-Ing. Wolfgang Endemann for his charming
friendship and many fruitful discussions as well as his support in finishing-touch of this
dissertation. Many thanks also to my labmates for their help and friendship: Yasser Al-
Nahlaoui, Christian Schilling, Beatriz Aznar, Dominik Lubeley, Thomas Jäger, Oliver
Hundt, Dirk Seebeck, Harald Gebhard, Klaus Jotschulte, Heidrun Schettke, Helga
Scheffler, Jürgen Marsch and also, last but not least, Stefan Nowak. They made Lehrstuhl
fuer Kommunikationstechnik to become an incredible, pleasant environment for research
and study.

I am grateful to all my friends in Ruhrgebiet, Aachen and Karlsruhe for making my
stay in Germany a very pleasant one, especially, Supriyanto, Nurrakhman Yulianto, and
Aulia Rahman, who have cordially helped me in finishing my study. I also wish to thank
gratefully Mrs. Barbara Schwarz-Bergmann and DAAD for their cordial assistance and
scholarships during my study in Germany. I am also grateful to Prof. Dr. Suwarno, Dr.
Djoko Darwanto Gitokarsono and Prof. Dr. Ngapuli Irmea Sinisuka for their support,
guidance and encouragement in my professional life. Special thanks also to Dr. Sony
Suhandono and Dr. Endra Susila for valuable discussion and their grammatical review on
technical English writing of this dissertation.

Finally, I would like to express special thanks to my family. I sincerely thank my
parents, Mamah and Bapa, for their everlasting love, pray, encouragement, and support
which led me to possibly earn such high educational degree. No words are sufficient to
show my appreciation and respect for them. My wife, Dr.-med Ira Safitri, has always
supported and encouraged me during my study. Her true love and cordial support have
encouraged me to finish my study. I am especially grateful to her for taking such a loving
care of our beloved sons Farhan, Fauzan and Fathur Denira. I also wish to thank Amah and
Apah for their cordial support, and also my sister, all sisters- and brother-in-laws who
helped us in many ways. I greatly appreciate their thoughtful support. My gratitude goes
also to my late teacher Pak Muslim for teaching me about the blessed life.

ACKNOWLEDGMENT

 ii

ABSTRACT

 iii

ABSTRACT

Since their rediscovery, Low Density Parity Check (LDPC) codes sparked high
interests due to their capacity-approaching performance achieved through their low
decoding complexity. Therefore, they are considered as promising scheme for channel
coding in future wireless application. However, they still constitute disadvantage in their
high encoding complexity. The research on practical LDPC codes with good performance
is quite challenging. In this direction their potential characteristics are explored with
respect to the technical requirement of wireless local area network (WLAN).

This thesis is focused on three topics, which correspond to three major issues in the
research of LDPC codes: code characterization with girth degree distribution, low
encoding complexity with structured construction, and higher decoding convergence with
two-stage decoding scheme.

In the first part of the thesis, a novel concept of girth degree is introduced. This
concept combines the idea of the classical concept of girth with node degree. The proposed
concept is used to characterize the codes and measure their performance. A simple tree-
based search algorithm is applied to detect and count the girth degree. The proposed
concept is more effective than the classical concept of girth in measuring the performance.
It shows that the girth degree plays more significant role than the girth it self, in
determining the code performance. Furthermore, the existence of short-four-cycles to some
extent is not harmful to degrade the code performances.

The second part deals with a simple method for constructing a class of LDPC codes,
which pose relative low encoding complexity but show good performance. The
combination of the stair structure and the permutation matrices, which are constructed
based on the proposed method, yields very simple implementation in encoding process
within encoder. The resulting encoder can be implemented using relatively simple shift-
register circuits. Their performance is comparable with that of irregular MacKay codes. In
short code length, they outperform some well-established structured codes. The
performance of the proposed codes is comparable with the optional LDPC codes for
WLAN at higher code rates. However, the proposed codes are relatively suboptimal at
lower code rate. Such performance is achieved by the proposed codes in lower encoding
complexity

In the third part, a method for enhancing the decoding convergence for high coded
modulation system is introduced. The two-stage decoding scheme is proposed to improve
bit reliabilities in decoding process leading to reduced decoding iteration without
performance losses. This is achieved by making use of the output from the first decoding
stage as the additional input for the second decoding stage. The optimal combination of the
maximal iteration of both decoding stages is capable of reducing the average iteration.
This method shows its efficiency at the waterfall region of signal-to-noise-ratio.

ABSTRACT

 iv

KURZFASSUNG

 v

KURZFASSUNG

Seit ihrer Wiederentdeckung haben die Low Density Parity Check (LDPC) Codes ein
hohes Interesse erfahren, da sie mit niedrigem Aufwand für die Dekodierung fast die
Kanalkapazität erreichen. Daher sind sie ein vielversprechendes Kanalcodierungsschema
für zukünftige drahtlose Anwendungen. Sie weisen allerdings noch den Nachteil eines
hohen Enkodierungsaufwandes auf. Die Einwicklung eines mit geringem Aufwand
implementierbaren LDPC Codes mit guten Leistungen stellt noch eine große
Herausforderung dar. Die Nutzbarkeit der potenziellen Eigenschaften von LDPC-Codes im
Bezug auf die technischen Randbedingungen gerade bei drahtlosen lokalen Netzwerken
(Wireess Local Area Network - WLAN) wirft dabei besonders interessante Fragestellungen
auf.

Die vorliegende Dissertation konzentriert sich auf drei große Themen bezüglich der
Erforschung von LDPC Codes, nämlich die Charakterisierung des Codes mittels
Umfangsmaßverteilung (Girth Degree Distribution), den niedrigen Enkodierungsaufwand
mittels strukturierter Codekonstruktion sowie die verbesserte Decodierungskonvergenz
mittels eines Zwei-Phasen Dekodierungsverfahrens.

Im ersten Teil der Dissertation wird ein neues Konzept zur Beurteilung von Codes
eingeführt. Es basiert auf der Umfangsmaßverteilung. Dieses Konzept kombiniert die
Ideen des klassischen Konzeptes - basierend auf dem Umfang (Girth) - mit denen des
Knotenmaßes (Node Degree) und wird zur Charakterisierung und zur Abschätzung der
Leistungsfähigkeit des Codes eingesetzt. Zur Erkennung und Berechnung des Umfangs
wird ein einfacher, baumbasierter Suchalgorithmus eingeführt. Dieses Konzept ermöglicht
eine effizientere Leistungsabschätzung als das der alleinigen Verwendung des Umfangs.
Es wird gezeigt, dass das Umfangsmaß bei der Ermittlung der Leistung des Codes eine
wesentlich größere Rolle spielt als der Umfang. Im Rahmen dieser Untersuchungen fällt
als weiteres Ergebnis an, dass die Existenz von kurzen Schleifen der Länge 4 die
Leistungsfähigkeit des Codes nicht beeinträchtigt.

Der zweite Teil der Dissertation beschäftigt sich mit einem einfachen Verfahren für
die Konstruktion einer Gruppe von LDPC Codes, die bei einem relativ niedrigen
Enkodierungsaufwand dennoch eine gute Leistung aufweist. Die Kombination einer
Treppestruktur in Verbindung mit Permutationsmatrizen führt zu einer sehr einfachen
Implementierung, ohne dass ein erheblicher Leistungsverlust auftritt. Der resultierende
Enkodierer kann ausschließlich mit einer sehr einfachen Schaltung aus Schieberegistern
implementiert werden. Die Leistungsfähigkeit des entstehenden Codes ist mit der des
unregelmäßigen MacKay-Codes vergleichbar. In kurzer Kodelänge übertreffen sie sogar
einige bekannte strukturierte Codes. Allerdings sind die vorgeschlagenen Codes
suboptimal im Vergleich mit den optionalen LDPC Codes für WLAN, sofern niedrige
Coderaten betrachtet werden. Sie erweisen sich aber als ebenbürtig bei höheren Coderaten.
Diese Leistungsfähigkeit wird von den hier vorgeschlagenen Codes mit relativ niedrigem
Enkodierungsaufwand erreicht.

KURZFASSUNG

 vi

 Letztendlich wird im dritten Teil der Dissertation ist ein Verfahren zur Steigerung
der Decodierungskonvergenz beim Einsatz von LDPC Codes in Kombination mit
Modulationsverfahren hoher Wertigkeit vorgestellt. Das Zwei-Phasen Dekodierverfahren
wird zur Verbesserung der Bit-Zuverlässigkeit im Dekodierungsprozess eingeführt. Dieses
bewirkt eine Reduktion der benötigten Dekodierungsschritte ohne Leistungsverlust.
Erreicht wird dies durch die Verwendung der Ergebnisse einer ersten Dekodierungsphase
als erneute Eingabe für eine zweite Dekodierungsphase. Die optimale Kombination der
durchzuführenden Iterationen beider Dekodierungsphasen kann die Anzahl der insgesamt
benötigten Iteration im Durchschnitt reduzieren. Dieses Verfahren zeigt seine Wirksamkeit
im Wasserfallbereich des Signal-Rausch-Verhältnisses.

CONTENTS

 vii

CONTENTS

ACKNOWLEDGMENT .. i
ABSTRACT ... iii
KURZFASSUNG...v
CONTENTS.. vii
LIST OF FIGURES .. ix
LIST OF TABLES .. xiii
LIST OF PUBLICATIONS ...xv

CHAPTER 1
INTRODUCTION...1

1.1 Motivation..1
1.2 Historical Review ..2
1.2.1 Channel Coding ..2
1.2.2 LDPC Coding ...3
1.3. Thesis Organization ..5

CHAPTER 2
BASIC THEORY ..7

2.1 Communication System...7
2.2 Channel Coding ...8
2.3 LDPC Codes ..10
2.3.1 Description..10
2.3.2 Code Construction ..12
2.3.3 Encoding ...14
2.3.4 Decoding...16
2.4 Wireless LAN ..20

CHAPTER 3
GIRTH DEGREE FOR CODE EVALUATION...25

3.1 Background..25
3.2 Concept of Girth Degree..25
3.3 Simulation Results ...32
3.4 Conclusion ...54

CHAPTER 4
CODE CONSTRUCTION WITH STAIR STRUCTURE57

4.1 Background..57
4.2 Code Structure ...58

CONTENTS

 viii

4.3 Construction Methods..62
4.3.1 Slopes Method ..62
4.3.2 Girth Degree Detection Method ...64
4.4 Encoder/Decoder Design...65
4.4.1 Encoder Design...65
4.4.2 Decoder Design ..71
4.5 Simulation Results ...73
4.6 Conclusion .. 108

CHAPTER 5
TWO-STAGE DECODING FOR ITERATION REDUCTION 111

5.1 Background... 111
5.2 Concept and Methods ... 111
5.3 Simulation Results .. 115
5.3.1 Two feedback parameters.. 117
5.3.2 Generality of Two-stage decoding .. 120
5.4 Conclusion .. 129

CHAPTER 6
CONCLUSION... 131

6.1 Thesis contribution ... 133
6.2 Future Work.. 133

ABBREVIATIONS .. xvii
REFERENCES.. xxi
APPENDIX ... xxxv

LIST OF FIGURES

 ix

LIST OF FIGURES

Chapter 2

Figure 2.1 General block diagram of coded systems for digital communications................7
Figure 2.2 A simplified model of channel coding system..9
Figure 2.3 Parity check matrix H of an LDPC code...10
Figure 2.4 Representation of LDPC codes ...11
Figure 2.5 Triangular parity-check matrix of MacKay (a) and Richardson (b)...................15
Figure 2.6 Message passing decoder of LDPC codes ..17
Figure 2.7 Signal constellation for 16-QAM with Gray labelling19
Figure 2.8 IEEE 802.11a transmitter PHY layer ..22

Chapter 3

Figure 3.1 Example for homogeneous local girth ..26
Figure 3.2 Example for heterogeneous local girth ...26
Figure 3.3 Two of six cycles of girth of four passing through the variable node 1.............28
Figure 3.4 An example of girth detection process in a parity check matrix (a) and a

bipartite graph (b)...30
Figure 3.5 An example of girth degree counting process for girth of four31
Figure 3.6 Girth distribution of MacKay code at code rate 3/4 as function of code length 32
Figure 3.7 Girth distribution of MacKay code at code rate 1/2 as function of code length 33
Figure 3.8 Impact of code length on the average girth at different code rate34
Figure 3.9 Impact of code rate on average girth degree in different code rate35
Figure 3.10 Performance of MacKay code in different code length (a) and code rate (b) ..36
Figure 3.11 Fraction of node with girth of six and eight of MacKay code to code length..37
Figure 3.12 Average girth of MacKay code to code length ...38
Figure 3.13 Girth degree distribution of girth 6 of MacKay code39
Figure 3.14 Girth degree distribution of girth-8 of MacKay code.......................................39
Figure 3.15 Girth degree average of MacKay code to code length40
Figure 3.16 Comparison of BER performance of MacKay code and array code with

column weight 3 at code length 1,200 bits and code rate 1/2....................................42
Figure 3.17 Code performance of the 648-length WLAN codes at different code rates.....43
Figure 3.18 Code performance of the 1296-length WLAN codes at different code rates...46
Figure 3.19 Code performance of the 1944-length WLAN codes at different code rates...48
Figure 3.20 Parity check matrices of WLAN codes [IEEE09] containing short-four-cycles

..51
Figure 3.21 Modified parity check matrix of IEEE802.11n codes without short-four-cycles

..52

LIST OF FIGURES

 x

Figure 3.22 Comparison of the WLAN codes with and without the short-four-cycles.......53
Figure 3.23 Modified parity check matrix of WLAN codes (code length 1296 bits and code

rate 2/3) with higher short-four-cycles ..53
Figure 3.24 Impact of girth degree on BER performance of the length-1944, rate-2/3 codes

..54

Chapter 4

Figure 4.1 LDPC staircase codes: parity-check matrix (a) and its corresponding graph (b)

..57
Figure 4.2 An identity matrix (a) and a singular cyclic shift submatrix (b)59
Figure 4.3 Submatrix with cyclic right-shifted slope s...59
Figure 4.4 Submatrix (a) with its corresponding graph (b)..59
Figure 4.5 Cascade structure: parity check matrix ...60
Figure 4.6 Lattice structure: parity check matrix ...61
Figure 4.7 Cascade and lattice submatrices..62
Figure 4.8 Presence of four-cycles in the cascade (a) and lattice structure (b)62
Figure 4.9 Parameters in the slope method...63
Figure 4.10 A pair of slope distance ...64
Figure 4.11 Algorithm of code construction with slope method..65
Figure 4.12 Algorithm of code construction with girth degree detection method...............66
Figure 4.13 Submatrix...67
Figure 4.14 Cascade structure: submatrix (a) and its cyclic-shift register (b)68
Figure 4.15 Implementation of the encoder of cascade structure ..68
Figure 4.16 Lattice structure: submatrices (a) ..69
Figure 4.17 Implementation of the encoder of lattice structure ...72
Figure 4.18 Block diagram of the decoder ...73
Figure 4.19 Impact of decoding iteration on the performance of the length-1200, rate-3/4

Stair Cascade code..74
Figure 4.20 Performance of Stair Cascade codes with code length 1,200 bits at different

code rates ..75
Figure 4.21 Impact of column weight on the performance of Stair Cascade codes with code

length 1,200 bits at code rate 1/2 ...76
Figure 4.22 Impact of column weight on the performance of Stair Cascade codes with code

length 1,200 bits at code rate 2/3 ...77
Figure 4.23 Impact of column weight on the performance of Stair Cascade codes with code

length 1,200 bits at code rate 3/4 ...78
Figure 4.24 Impact of decoding iteration on the performance of the length-1200, rate-3/4

Stair Lattice code..80
Figure 4.25 Performance of Stair Lattice codes with code length 1,200 bits at different

code rates ..81
Figure 4.26 Impact of column weight on the performance of Stair Lattice codes with code

length 1,200 bits at code rate 1/2 ...82

LIST OF FIGURES

 xi

Figure 4.27 Impact of column weight on the performance of Stair Lattice codes with code
length 1,200 bits at code rate 3/4 ...83

Figure 4.28 Impact of column weight on the performance of Stair Lattice codes with code
length 1,200 bits at code rate 3/4 ...84

Figure 4.29 Comparison of the performance of Stair Cascade and Stair Lattice codes with
code length 1,200 bits and code rate 3/4..86

Figure 4.30 Structure of parity check matrices of Stair Lattice codes with different code
rates...87

Figure 4.31 Performance of the length-1,200 Stair Latice codes at specific code rates.....87
Figure 4.32 Performance of Stair Cascade codes at high code rate88
Figure 4.33 Performance of the rate-3/4 Stair codes at different code length89
Figure 4.34 Comparison of the regular and irregular Stair Cascade codes at code length

1,200 bits and code rate 2/3 and 3/4 ..91
Figure 4.35 Comparison of the BER performance of Stair Codes with MacKay Codes92
Figure 4.36 Comparison of the performance of Stair Cascade codes and random MacKay

code at code length 1,200 bits, code rate 3/4. ..93
Figure 4.37 Comparison of Stair codes with MacKay code at code rate 200 and code rate

3/4 ...94
Figure 4.38 Comparison of Stair Cascade codes and difference families code..................95
Figure 4.39 BER performance of high-rate short-length LDPC codes on AWGN channel

with a maximum iteration 10 ...96
Figure 4.40 BER performance of high-rate long-length LDPC codes on AWGN channel

with a maximum iteration 10 ...97
Figure 4.41 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 1/2...98
Figure 4.42 BER performance of the improved Stair Cascade codes and WLAN code at

code length 1,296 bits and code rate 1/2..99
Figure 4.43 BER performance of the improved Stair Lattice codes and WLAN code at

code length 1,296 bits and code rate 1/2..100
Figure 4.44 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 2/3...100
Figure 4.45 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 3/4...101
Figure 4.46 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 5/6...102
Figure 4.47 BER performance of Stair codes and WLAN code at code length 648 bits and

code rate 5/6. ..103
Figure 4.48 BER performance of Stair Cascade codes and WLAN code at code length

1,296 bits and 1,944 bits and code rate 5/6..104
Figure 4.49 Error-floor performance of Stair codes at high code rate105
Figure 4.50 Impact of girth degree of four cycles on BER performance of the length-1,296,

rate-1/2 Stair Cascade codes ..107
Figure 4.51 Impact of girth degree of four cycles on BER performance of the length-1,296,

rate-3/4 Stair Lattice codes...107

LIST OF FIGURES

 xii

Chapter 5

Figure 5.1 Scheme of the two-stage decoding..112
Figure 5.2 Two-stage decoding in LDPC decoder ...113
Figure 5.3 Flow diagram of two-stage decoding algorithm ...113
Figure 5.4 Typical development of LLRs at the waterfall region......................................114
Figure 5.5 Development of LLRs depending on SNR ...115
Figure 5.6 Development of LLR of bit subject to fail decoded in generic decoding (a) and

its model denoting decoding improvement using feedback decoding116
Figure 5.7 Comparison of BER performance and Iteration by different weighting factor.

..118
Figure 5.8 Comparison of BER performance and iteration number by different

combination of iteration numbers ..119
Figure 5.9 Impact of feedback decoding in the 16QAM system, irregular codes with code

length 1,200 bits on BER performance and average number of iterations121
Figure 5.10 Impact of feedback decoding in the 64QAM system, irregular codes with code

length 1,200 bits on BER performance and average number of iterations123
Figure 5.11 Impact of feedback decoding in the 16QAM system, irregular codes with code

length 600 bits on BER performance and average number of iterations124
Figure 5.12 impact of feedback decoding in the 16QAM system, irregular codes with code

length 2,400 bits on BER performance and average number of iterations125
Figure 5.13 Impact of feedback decoding in the 16QAM system, array codes with code

length 1,200 bits on BER performance and average number of iterations126
Figure 5.14 Impact of the two-stage decoding on the reduction of iteration numbers for

different condition ..127
Figure 5.15 Model of LLR development during iterations for low and high numbers of

decoding iterations ...128
Figure 5.16 Model of the LLR development during iterations under influence of SNR...129

LIST OF TABLES

 xiii

LIST OF TABLES

Chapter 2

Table 2.1 Mode-dependent parameters...21
Table 2.2 OFDM parameters ..22
Table 2.3 Channel models...22
Table 2.4 Rate-dependent parameter of LDPC codes in the IEEE 802.11n Standard.........23
Table 2.5 MCS parameters in the IEEE 802.11n Standard ..24

Chapter 3

Table 3.1 Code length and girth distribution of MacKay code..38
Table 3.2 Girth degree distribution of MacKay code...38
Table 3.3 Average girth degree of the smallest girth of of MacKay code...........................40
Table 3.4 Code length and girth distribution of Array code ..41
Table 3.5 Girth degree distribution of array codes of the smallest girth of array codes......41
Table 3.6 Average girth degree of the smallest girth of array codes41
Table 3.7 Girth distribution of WLAN codes (code length = 648 bits)43
Table 3.8 Girth degree distribution of WLAN codes (code length = 648 bits)44
Table 3.9 Average girth degree of WLAN codes (code length = 648 bits)44
Table 3.10 Average girth degree distribution of WLAN codes (code length = 648 bits) ...45
Table 3.11 Girth distribution of WLAN codes (code length = 1,296 bits)45
Table 3.12 Girth degree distribution of WLAN codes (code length = 1,296 bits)46
Table 3.13 Average girth degree of WLAN codes (code length = 1,296 bits)47
Table 3.14 Average girth degree distribution of WLAN codes (code length = 1,296 bits)47
Table 3.15 Girth distribution of WLAN codes (code length = 1,944 bits)47
Table 3.16 Girth degree distribution of WLAN codes (code length = 1,944 bits)48
Table 3.17 Average girth degree of WLAN codes (code length = 1,944 bits)49
Table 3.18 Average girth degree distribution of WLAN codes (code length = 1,944 bits)49
Table 3.19 Average girth distribution of WLAN codes having girth 449
Table 3.20 Girth condition of WLAN codes in comparison ..50

Chapter 4

Tabel 4.1 Number of equation (Neq) depending on number of slopes per submatrix (Nsl)..70
Tabel 4.2 Number of equation (Neq) for number of submatrix (Nsm)70
Tabel 4.3 Comparison of both structures in number of equation per code rate...................71
Tabel 4.4 Comparison of both structures in number of submatrix per code rate.................71

LIST OF TABLES

 xiv

LIST OF PUBLICATIONS

 xv

LIST OF PUBLICATIONS

1. Deny Hamdani, Wolfgang Endemann, Ruediger Kays. A Class of LDPC Codes with

Very Efficient Encoder. International Conference on Electrical Engineering and
Informatics (ICEEI2007), 17-19 June 2007, Bandung, Indonesia.

2. Deny Hamdani, Wolfgang Endemann, Ruediger Kays. Measuring Performance of

LDPC Codes with Girth Degree. International Conference on Electrical Engineering
and Informatics (ICEEI2007), 17-19 June 2007, Bandung, Indonesia.

3. Deny Hamdani, Wolfgang Endemann, Ruediger Kays. Enhancing Performance of High-

Order Modulation with LDPC Codes using Feedback Mechanism. International
Conference on Electrical Engineering and Informatics (ICEEI2007), 17-19 June 2007,
Bandung, Indonesia.

LIST OF PUBLICATIONS

 xvi

CHAPTER 1 BASIC THEORY

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Mobile computing has been of great interest within information and communication
communities due to its tremendous growing resulting in a continuous influx of mobile
devices supporting modern human life-style in the last decades. The indispensable growth
in mobile computing is boosted by rapid development in device technology, affordable
prices and increasing mobility requirement. Wireless local area networks (WLAN) in form
of ad-hoc networks became the key technology in wireless networking of mobile
computing. The high-speed WLAN standardized in IEEE 802.11 was introduced to cope
with the development in area of mobile networking.

At the beginning of their development, the IEEE 802.11 wireless standards
incorporated a well-known convolutional code and the Viterbi algorithm as error
correcting channel code. At the time of the development of the standards this was the most
practical solution considering cost, complexity, power consumption, and decoding latency.
Unfortunately, convolutional codes and the Viterbi algorithm show inferior performance
with respect to the theoretical capacity limits.

To cope with these problems, it would have been possible to introduce Turbo codes to
the WLAN scheme. Although being capable of coming reasonably close to theoretical
capacity, Turbo were not applied to WLAN due to their performance degradation for short
blocks as well as their high decoding complexity. This fact led to the introduction of
another family of forward-error-correcting codes known as Low Density Parity Check
(LDPC) codes. By utilizing their advantageous very sparse matrix characteristics, a
significant improvement over the current coding system can be reasonably realized. LDPC
codes have been proven to outperform Turbo codes [RU03] and make reliable
communication in vicinity of the Shannon limit possible [Chun01]. Although a scheme of
LDPC codes has been officially incorporated in the recent WLAN Standard IEEE 802.11n
[IEEE09], it is always of challenging interest to elaborate and explore this rediscovered
coding technique for improving the performance of WLAN system.

This thesis deals with the investigation of LDPC codes as an efficient and reliable
channel coding technique, which best fit to the wireless channel within WLAN systems.
Some constraints concerning the environment and the application in WLAN shall be taken
into account, such as limited processing capability, limited battery power, small physical
form, demanded Quality of Service (QoS), and harmonious coexistence with other systems
working in the neighbored bands. A significant drawback of LDPC codes in their encoding
complexity has been the focus of this research to cope with aforementioned requirement.

CHAPTER 1 BASIC THEORY

 2

1.2 Historical Review

1.2.1 Channel Coding

The history of channel coding could be dated back to 1948 as Claude Shannon
published his seminal paper, A Mathematical Theory of Communication [Shan48]. He
proved that reliable communication can be established over a noisy channel using channel
codes provided that the information rate is not exceeding the so-called capacity of the
channel. He derived the limit of the information rate over a noisy channel and presented
channel codes with very long block length and optimal decoding that can achieve reliable
communication. However, his approach is practically prohibitive due to expensive
realization of both encoding and decoding.

The introduction of Shannon’s noisy coding theorem has been sparking the research
in field of coding theory. Practical capacity-achieving schemes found large interest within
the coding community. Over four decades after Shannon’s publication, none of a large
number of proposed coding systems could approach Shannon’s theoretical limit. The
breakthrough just came in the early of 90’s with the discovery of turbo codes [BGT93].
Thanks to their pseudorandom interleaver and iterative decoding algorithm, turbo codes
could operate near Shannon’s capacity limit with reasonable decoding complexity. The
discovery of turbo codes sparked the research interest in the field of codes on graphs and
iterative decoding. This fact led to the next breakthrough in 1995, that is, the rediscovery
of LDPC codes [KN95], which was firstly invented in 1962 by Gallager [Gall62] and
unfortunately, ignored thereafter. The main reason was that the state-of-the-art hardware
technology considered the realization of LDPC codes as impractical at that time.

In principal, the construction techniques of channel codes are based on algebraic
approach and convolutional approach. Further category of channel codes is derived from
the combination of both approaches. Therefore, based on their construction technique, the
channel codes can be classified into three categories [Li02]. The first category of channel
codes is block codes based on algebraic approach. This codes includes Hamming codes
introduced by Hamming in 1950 [Hamm50], BCH codes by Hocquenhem in 1959
[Hocq59] and independently by Bose and Ray-Chaudhuri in 1960 [BC60] and RS codes
by Reed and Solomon in 1960 [RS60]. Those codes are practical in hardware
implementation. However, there was no comfortable soft decoding algorithm.
Furthermore, those codes are not flexible in code lengths.

The second category of channel codes is convolutional codes which were firstly
introduced by Elias in 1955 [Elia55]. These codes are decoded by trellis decoding. They
operate on serial data and are usually described by their code rate and constraint length.
More powerful codes can be produced by longer constraint length, however, at cost of
exponentially increased maximum likelihood decoding complexity. Unlike block codes, it
is convenient to change code lengths of convolutional codes. The technique of puncturing
keeps the flexibility of convolutional codes in code rate without extra complexity. They
have efficient soft decoding algorithms, such as soft-output Viterbi algorithm [HH89] and
a posteriori probability algorithm [BCJR74], which are of great advantages on fading

CHAPTER 1 BASIC THEORY

 3

channels. As an alternative, convolutional codes can be decoded by trellis decoding
introduced by Ungerboeck [Unge82].

The third category of channel codes is the compound codes which combine block and
convolutional codes. They use iterative decoding. The discovery of this code is dated back
to 1966 as Forney [Forn66] concatenated an inner code and an outer code. This
construction makes the codes to have error probability that decreases exponentially at rate
less than capacity, while decoding complexity increases only algebraically. The
development of these codes was accelerated by the discovery of turbo codes by Berrou,
Glavieux, and Thitimajshima in 1993 [BGT93] and the rediscovery of LDPC codes by
MacKay and Neal in 1995 [KN95]. Their impressive near-capacity performance lead to
the introduction of other concatenated codes providing similar coding gains, such as
parallel concatenated convolutional codes [BM96], serial concatenated convolutional
codes [BMDP96] and hybrid concatenated convolutional codes [DP97]. Further codes
includes turbo product codes [Elia54, CT94], regular/irregular repeat-accumulate codes
[DJE98], and product accumulate codes [LNG01a]. These codes have common features
including the application of a (random) interleaver and decoding techniques.

The milestones of history of coding theory can be summarized as follows
1948 Shannon’s channel coding theorem [Shan48]
1950 Hamming codes [Hamm50]
1955 Convolutional codes [Elia55]
1959/60 BCH codes [Hocq59, BC60], RS codes [RS60]
1962 LDPC codes [Gall62], rediscovered in 1995 [KN95]
1982 Trellis-coded modulation [Unge82]
1993 Turbo codes [BGT93]

1.2.2 LDPC Coding

The history of LDPC coding began in the early 1960s when Gallager [Gall62, Gall63]
introduced a channel coding scheme providing the structural basis for codes with near-
shannon-limit performance. Gallager’s codes applied iterative decoding based on message-
passing decoding algorithms. However, such decoding demanded very intensive
computation, which could not be supported by the existing hardware technology at that
time. Hence, Gallager’s codes were considered as impractical to be implemented as
channel codes. It was about four decades later when LDPC codes were rediscovered in the
mid 1990s as MacKay [KN95] realized the immense potential of the codes due to their
near-Shannon limit performance.

Before the rediscovery of LDPC codes took place, a small number of researchers
worked with Gallager’s codes during the few decades after the first publication of
Gallager’s codes, including Zyablov and Pinsker [ZP75] and Margulis [Marg82]. In the
early 1980s, Tanner [Tann81] provided a graphical representation of LDPC codes and
other coding schemes. Tanner suggested the employment of a recursive approach for the
construction of LDPC codes and presented a graph representation of the parity check

CHAPTER 1 BASIC THEORY

 4

matrix of LDPC codes. In the same work, Tanner also introduced the min-sum decoding
algorithm.

In the early 1990s, channel coding research was sparked by the introduction of Turbo
codes which have shown the impressive near-shannon limit performance with relative
lower complexity. The application of iterative decoding in Turbo codes’s scheme has
accelerated the research of iterative decoding techniques leading to revisiting the work of
Gallager. However, in their initial development, Turbo codes were not considered in
connection with graphical representations. The iterative decoding techniques used for
decoding turbo codes have been linked by McEliece et al. [EKC98] to the principles of
belief propagation described by Pearl [Pear88], which was the basis of the decoding
techniques proposed by Gallager.

The work of Tanner and its developments by Wiberg et al. [Wibe94, WKL95,
Wibe96] provided the basis for the factor graph representation of codes in common use
recently. These graphs have been further highlighted by Kschischang et al [KFL98]. The
further usage of the graphs led Sipser and Spielman [SS96] to introduce LDPC codes
whose parity check matrix is based on expander graphs. The common interest in the
algorithms used for iterative decoding in the artificial intelligence community has led
MacKay and Neal [KN95] in the mid 1990s to the rediscovery of LDPC codes.

Since then, the research of LDPC codes has been focusing on the improvements of
the code performance. The general approach has been to modify the graph describing the
code. The performance of LDPC codes in the case of very long block sizes (around 105 to
107 bits) has outperformed Turbo codes and approached the Shannon bound to within
hundredths of decibel. Such techniques and their performance gains have been
demonstrated by Sipser and Spielman [SS96], Richardson et al. [RSU00, RSU01] and
Luby et al. [LMSSS97, LMSS98, LSMS01]. Chung et al. [CFRU01] showed that the
threshold for a code rate 1/2 on the AWGN channel is within 0.0045 dB of the Shannon
limit. Their simulation resulted within 0.04 dB of the Shannon limit at a bit error rate of
10-6 using a block length of 107 bits.

In coding research community, LDPC codes have been studied extensively in many
aspects. Richardson et al. [RU01a] proposed the density evolution algorithm to calculate
the asymptotic performance of a given LDPC code over AWGN channel. Chung et al.
[Chun00, CRU01] simplified the complex density evolution algorithm using Gaussian
Approximation. The bounds of code rate and performance of LDPC codes were studied by
Burshtein et al. in [BKLM02, Burs02, MiB01]. MacKay et al. [KN97, KN99] simulated
LDPC codes at high block length and illustrated that LDPC codes are capable of
outperforming the turbo codes when communicating over AWGN channel.

LDPC codes using higher decoding Galois field were also proposed by Davey et al.
[DK98, DK99, Dave99], Song et al. [SC03] and Nakamura et al. [NKS01]. Lentmaier
[Lent97] proposed the generalized LDPC codes by replacing the rows in the parity check
matrix of LDPC codes with a Hamming code and this also attracted the interest from
Zhang et al. [ZP01a, ZP01b], Hirst et al. [HH02a, HH02b] and Boutros et al. [BPZ99].
LDPC codes using higher decoding Galois field were also proposed by Davey et al.
[DK98, DK99, Dave99], Song et al. [SC03] and Nakamura et al. [NKS01]. Lentmaier
[Lent97] proposed the generalized LDPC codes by replacing the rows in the parity check

CHAPTER 1 BASIC THEORY

 5

matrix of LDPC codes with a Hamming code and this also attracted the interest from
Zhang et al. [ZP01a, ZP01b], Hirst et al. [HH02a, HH02b] and Boutros et al. [BPZ99].

Motivated by their outstanding performance, LDPC codes have been studied in many
other channels and employed with various modulation scheme. The performance of LDPC
codes over Rayleigh fading channel [HSM01, LWN02], Rician channel [LZW04],
Nakagami channel [MMØ02], Gilbert-Elliot channel [EKP03], Lorentzian channel
[STC00], partial-response channel [LNG01b] and binary erasure channel [NF04] are
evaluated. LDPC codes are elaborated for some communication scheme, such as OFDM
scheme [FO01, SNG03], MIMO scheme [BKA04], CDMA scheme [SKP00]. The
elaboration of LDPC codes within bandwidth efficient coded modulation schemes are
studied in [EO01, HSMP03]. In addition to exploring the performance issues, some
researchers are trying to reduce the complexity of encoding and decoding of LDPC codes
such as Richardson et al. [RU01a, RU01b], Kou et al. [KLF00, KLF01], Spielman
[Spiel96] and Pothier et al. [PBB99].

The research of LDPC codes leads to the design of their derivatives as Tornado
[BLMR98], LT [Luby02], and Raptor [Shok03], which were protected by patents.

The milestones of LDPC coding research can be summarized as follows
1948 Shannon Limit [Shan48]
1962 Invention of LDPC codes [Gall62]
1975 Quantification of LDPC codes complexity [ZP75]
1981 Graph representation on LDPC codes parity check matrix [Tann81]
1995 Rediscovery of near Shannon-limit performance of LDPC codes [KN95]
1998 Irregular LDPC codes [LMSS98]
2001 World record-breaking LDPC codes performance [CFRU01]

1.3. Thesis Organization

The thesis is structured as follows.
In Chapter 1 the introduction to this work, including motivation of the research,

historical review of LDPC codes, and the organization of the thesis, is given.
In Chapter 2 some basic concepts for theoretical basis of the research, including

transmission system, channel coding, LDPC codes, coded modulation and wireless LAN,
are discussed.

In Chapter 3 the thesis introduces the concept of girth degree that can be considered
an extension of the concept of girth in the theory of LDPC codes. The concept is used to
characterize LDPC codes and also to explore the role of girth in determining the
performance of LDPC codes. Girth detection and girth degree counting algorithms are
introduced. Some LDPC codes are characterized and evaluated using this concept. It is of
great interest that the existence of short-four-cycles is realized within some optional LDPC
codes in Standard IEEE 802.11n, which in fact suffer from no performance degradation.

In Chapter 4 the thesis discusses a simple method for code construction using the stair
structure to reduce encoding complexity, which is one of the drawbacks of LDPC codes.

CHAPTER 1 BASIC THEORY

 6

The proposed codes are based on permutation submatrices in cascade and lattice forms
concatenated with the identity submatrix to provide lower encoding complexity. The
permutation submatrices are determined by shift parameters, which are randomly
generated by a permutation process. The shift parameters are examined by two proposed
methods, i.e. slope method and girth degree method. These methods will realize the
possible existence of short-four-cycles that may degrade the code performance. Their
performance is investigated under different parameter of LDPC codes, such as weight
column, code rate, code length, etc. For benchmarking, their BER performance is put into
comparison with some well-established, such as MacKay codes and optional LDPC codes
in the IEEE 802.11n Standard. In the hardware implementation, their encoder/decoder
derived from parity-check equation can be implemented in simple shift-registers circuits.
One of the most interesting results is that the girth degree plays more significant role in
code performance than the girth does.

In Chapter 5 the thesis is focused on the simple method for improving decoding
process. A two-stage decoding using feedback mechanism is proposed. The method is
investigated within a high-order coded modulation system with different parameters
including types of LDPC codes, QAM bit-constellation level, and code length under
different maximal number of decoding iteration.

In Chapter 6 the result of this work is summarized. The contribution of this work is
cited. Some interesting topics are mentioned for advancing this work in the future.

CHAPTER 2 BASIC THEORY

 7

CHAPTER 2

BASIC THEORY

2.1 Communication System

In principal, a typical communication system consists of three major components that
are transmitter, receiver, and channel. The transmitter translates the information bits into
the signals that can be effectively transmitted over the channel. The channel, which is
mainly the physical medium over which the communication process takes place, passes the
signals to the receiver. The signals are then translated by the receiver to retrieve the
information.

Conceptually, the basic elements of a communication system are illustrated with the
general block diagram shown in Figure 2.1 [LC04]. As the input of the communication
system, the source information in the transmitter may be either analogue (time-continuous)
or discrete (symbol sequences). Symbol sequences can be produced from analogue signals
via sampling and the analogue-to-digital conversion process. Prior to transmission, the
source encoder removes redundancy from the source information. The symbol sequences
are assumed as a stream of statistically independent, equally likely discrete symbols
(binary digits) with a constant rate of Rs bits per second.

Information
source

Source
encoder

Channel
encoder

Digital
modulator

Information
user

Source
decoder

Channel
decoder

Digital
demodulator

Transmission
channel

Information
source

Source
encoder

Channel
encoder

Digital
modulator

Information
user

Source
decoder

Channel
decoder

Digital
demodulator

Transmission
channel

Figure 2.1 General block diagram of coded systems for digital communications

Furthermore, the symbol sequences are encoded by the channel encoder for error

correcting purpose before modulation. The encoder adds redundancy to information bits

CHAPTER 2 BASIC THEORY

 8

and produces data at a higher rate Rc. In case of encoding of a block code, the encoder
accepts information in successive k-bit blocks and for each k bits generates a block of n
bits, called a codeword, where n ≥ k. Thus the encoder outputs bits at a rate Rc = Rs · (n/k).

The modulator matches the encoder output to the transmission channel. The
modulator modulates binary or M-ary encoded symbols in form of waveforms appropriate
physically to the transmission channel. The modulator simply converts a binary digit or the
M possible encoded symbols to two or M possible waveform of equal duration.

The transmission channel passes the modulated waveform to the point just prior to
demodulation. During the transmission process noise is added to the transmitted
waveform. In received signals noise constitutes the most significant factor constraining the
performance of a communication system. Noise limits the ability of the demodulator to
reliably distinguish one modulated waveform from another, thereby producing errors in the
demodulator output. Thermal noise is always present in electrical circuitry. This noise is
broadband and steady in its power level, and has Gaussian amplitude statistics. The
resulting errors tend to occur independently from one signaling interval to the next. Other
impairments are impulsive noise and multipath interference.

At the receiver, the demodulator receives the noisy waveform. It computes and
delivers estimates of the transmitted data in each separate transmission symbol interval and
produces a number or a set of numbers that represent an estimate of a transmitted symbol.
Since the received waveforms are noisy, the symbol decisions are subject to be erroneous.

The channel decoder receives the demodulated outputs and converts them into
symbol decisions that reproduce, as accurately as possible, the data that was encoded by
the channel encoder. For block coding, the decoder accepts consecutive blocks of n
demodulator outputs and produces k decoded symbols for each block. The decoder
attempts to make definite symbol decisions that operate on hard-decision or soft-decision.
Error probability at the output of the decoder provides an important measure of the overall
performance of the communication system. The symbol-error-rate, which is the average
rate of occurrence of symbol errors, taken as a fraction of the total number of symbols
received over a long period of time become the measure of the quality of a communication
system.

Finally, the source decoder accepts the sequence of symbols from the channel
decoder. In accordance with the encoding method used in the transmitter it reconstructs the
information originally generated by the analogue source.

2.2 Channel Coding

The basic idea of forward error correcting in channel coding theory is to add
redundancy to the transmitted information in order to cope with channel errors. For a
binary block code the channel encoder divides the information sequence into message
blocks of k information bits each [LC04]. A message block is represented by the binary k-
tuple u = (u0, u1, ... , uk-1). A total of 2k different possible messages are available. Each
message u is transformed independently into n-tuple x = (x0, x1, ... , xn-1) of codeword. The

CHAPTER 2 BASIC THEORY

 9

set of 2k codewords of length n is called an (n, k) block code and the ratio R = k/n is called
code rate. The encoder is memoryless because each message is encoded independently,
which means the n-bit codeword depends only on the corresponding k-bit message. Hence,
the encoder is implemented with a combinational logic circuit.

For a convolutional code, the n-k redundant bits are also added to each message to
form a codeword. The channel encoder also transforms k-bit blocks of the information
sequence u into a code sequence v of n-symbol blocks. This transformation proceeds with
code rate R = k/n. In contrast to block code, the encoder of convolutional code is not
memoryless because each encoded block depends not only on the corresponding k-bit
message block at the same time unit but also on m previous message blocks. Hence, the
encoder is said to have a memory order of m. The encoder is implemented with a
sequential logic circuit.

In order to describe the mechanism of channel coding, a simplified model of a
channel coding system is depicted in Figure 2.2. The encoder transforms the information
sequences U into a discrete encoded sequence X called as codeword [LC04] and transmits
it over the noisy channel. The decoder receives the noisy sequence Y. The sequence Y is a
non-deterministic function of the channel input X, and the decoder tries to reconstruct the
input string Ū based on the knowledge of Y.

Decoder
ÛU X Y

Encoder Channel Decoder
ÛU X Y

Encoder Channel

Figure 2.2 A simplified model of channel coding system

A model for the channel is necessary to analyze such a system. In this model, it is

assumed that the output sequence Y of the channel has the same length as the input
sequence X, and depends on X via a conditional probability density function (pdf)
pY|X(y|x). For special cases, further consideration must be made.

In case of a memoryless channel, the channel output at any time instant depends only
on the input at that time instant, i.e., if y = y1 y2 … yn and x = x1 x2 … xn, then pY|X(y|x) =

∏ =

n

i iiXY xyp
1 |)|(. In this case, the channel is completely described by its input and

output bits, and the conditional pdf pY|X(y|x) for one time instant.
In this kind of channel, the output of the channel will be independent and identically

distributed copies of some random variable Y as the input to the channel is generated by
independent and identically distributed copies of a random variable X. Hence, the
information between random variable X and Y, I(X;Y), is a function of the pdf of X.

For analyzing the system, the additive white Gaussian noise (AWGN) channel is
commonly applied as the channel model, which is parameterized by a non-negative real
number σ. The channel output Y is given by X + N, where X is the channel input and N is
a Gaussian random variable with mean 0 and variance σ2. The conditional pdf pY|X(y|x) is
therefore a Gaussian pdf with mean μ and variance σ2.

CHAPTER 2 BASIC THEORY

 10

In case of a binary symmetric input channel, the channel is parameterized with a

parameter p (i.e. the crossover probability of the channel) and output binary alphabet
{0,1}.

By supposing that the input distribution of a binary-input channel conditioned on the
knowledge of the received value y, that is, a-posteriori probabilities Pr(X = 0|Y = y) and
Pr(X = 1|Y = y), their ratio can be computed using Bayes' rule

)1Pr(
)0Pr(

)1|(
)0|(

)|1Pr(
)|0Pr(

|

|

=
=

=
==
==

X
X

yp
yp

yYX
yYX

XY

XY (2.1)

Hence, the ratio

)1|(
)0|(

|

|

yp
yp

XY

XY is sufficient for the estimation of the input to the channel.

This quantity corresponding to the output y of a binary-input channel is called likelihood
ratio. Its logarithm

)1|(
)0|(

log
|

|

yp
yp

XY

XY is called the log-likelihood ratio (LLR).

2.3 LDPC Codes

2.3.1 Description

The ensembles of LDPC codes are defined by the set of parity-check matrices in a
non-systematic form with a small number of ones in each column and in each row (see
Figure 2.3). Since each row of the parity check matrix H is a single parity check, an LDPC
code can be viewed as the concatenation of (n-k) single parity check codes in parallel,
where n is the codeword length and k is the information bit length [Li02].

0

0

1

0

0

0

1 0

1

0

0

0

01

1

1

0

0

n

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

1

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

1

1

0

0

………………………………………………………………
n-k

0

0

1

0

0

0

1 0

1

0

0

0

01

1

1

0

0

n

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

1

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

1

1

0

0

………………………………………………………………
n-k

Figure 2.3 Parity check matrix H of an LDPC code

CHAPTER 2 BASIC THEORY

 11

Alternatively, LDPC codes can be represented by a Tanner graph [Tann81]. This
bipartite graph utilizes variable (or bit) nodes (illustrated as circle) and check nodes (box)
to represent the columns and rows of the parity check matrix H and uses inter-connecting
edges to represent the relations between variable and check nodes (see Figure 2.4). The
variable nodes represent elements of the codeword as variables, while the check nodes
represent constraints among these variables. For binary linear codes, the variable nodes
represent binary variables, and a check node assures that the binary sum of all its
neighbors is zero.

1
1

1

0
0

1

1 1
1

0
0

1

01
1

1
1

0

1 2 3 4 5 6

a
b
c

1
1

1

0
0

1

1 1
1

0
0

1

01
1

1
1

0

1 2 3 4 5 6

a
b
c

(a) Parity check matrix

(b) Bipartite graph
Figure 2.4 Representation of LDPC codes

Based on the fraction of non-zero elements in the columns of their parity-check

matrix, LDPC codes are categorized as regular and irregular. The regularity of LDPC
codes corresponds to the uniformity of their column weights and row weight as well. The
parameter of the regularity includes the column weight (corresponds to the variable node
degree in the bipartite graph) γ and the row weight (the check node degree) ρ . An LDPC
code is considered to be (γ,ρ)-regular if all column have weight γ and all rows have
weightρ. Meanwhile, irregular LDPC codes are not constrained to uniform row or column
weights. Their node degree profiles, γ(i) and ρ(i), are usually used to describe the
distributions of row weights and column weights, respectively. Another important
parameter of LDPC codes is the girth. It is defined as the length of the shortest cycle in the
bipartite graph. A cycle of length of four as the girth is highlighted by a dashed line in
Figure 2.4.b.

The regular LDPC codes have a minimum distance (averaged over the ensembles of
the code) which increases linearly with the block size, provided the column weight is at
least 3 [Gall63]. This implies that the codes have excellent asymptotic performance in the
code length. With carefully designed row and column degree profiles, irregular LDPC
codes can outperform regular LDPC codes [LMSS98, RSU01, CRU01].

The decoding of an LDPC code takes place using an iterative message-passing
algorithm. The algorithm is working based on belief propagation operating on the graph
representation of the code. The message-passing algorithm is also known as the sum-
product algorithm, where (soft) messages are passed from bit nodes to check nodes and
check nodes to bit nodes, vice-versa, in an iterative way until the message is correctly

CHAPTER 2 BASIC THEORY

 12

decoded before the maximal number of iterations is exceeded or failed otherwise. The
girth plays an important role in determining the performance of LDPC codes because the
performance of the message-passing algorithm is adversely affected by the existence of
short cycles. The convergence of a message-passing decoder is optimal in the ideal case
where the bipartite graph is tree-like or cycle-free. However, in practice, the existence of
short cycles within LDPC codes is difficult to be avoided in constructing the codes.
Nevertheless, the suboptimal decoder performs quite satisfactorily.

2.3.2 Code Construction

Based on their construction, LDPC codes can be divided into two categories: random

codes and structured codes. Random LDPC codes are constructed by computer search
based on certain design rules or graph structures, such as girth and node degree
distribution, while structured LDPC codes are constructed based on algebraic and
combinatorial methods.

In general, random LDPC codes with long code length perform closer to the Shannon
limit than their equivalent structured LDPC codes. However, the random LDPC codes do
not have sufficient structure to provide simple encoding and hence, is highly complex to
implement in hardware. The wiring structure of the encoder is very difficult. On the other
hand, structured codes are advantageous in encoding over random codes. LDPC codes in
cyclic or quasi-cyclic structure can be encoded with simple shift registers. Their encoding
complexity is linearly proportional to the number of parity-check bits for serial coding and
to the code length for parallel encoding. For practical lengths, in fact, LDPC codes with
well-designed structure are capable of equally performing well, even outperforming LDPC
codes with equivalent random structure.

The construction of random codes is mostly based upon random edge connections. A
common construction technique is to build the parity-check matrix using random
permutation matrices as described in [KWD99]. The random construction prohibits the
creation of cycles of length four by maintaining column weight and row weight to be
uniform. Gallager [Gall62] showed that the ensemble of such codes poses excellent
distance properties provided column weight of at least three and row weight is greater than
column weight. MacKay et al. [KN95] provided algorithms to generate semi-randomly
codes with sparse parity check matrices.

Richardson et al. [RSU01, RU01] and Luby et al. [LMSSS97, LMSS98, LSMS01]
define ensembles of irregular LDPC codes, in which column-weight and row-weight are
not uniform. These codes are parameterized by the polynomial of node degree distribution,
which can be optimized via density evolution algorithm. By relaxing the regularity code
constraint and allowing irregular degree sequences the performance of Gallager's original
LDPC construction could be improved. Several years before, MacKay et al. [KWD99]
have explored some examples of irregular construction. For finding good irregular
distributions for LDPC codes Feldman and Karger [FK02] applied linear programming
techniques to develop heuristics. Chung et al. [CFRU01] developed algorithms to compute
the capacity of randomly constructed LDPC codes and used these algorithms to provide
optimized irregular codes, which can achieve asymptotically 0.0045 dB of the Shannon

CHAPTER 2 BASIC THEORY

 13

limit and simulated performance within 0.04dB of the Shannon bound for a block length of
107 at a bit error rate of 10-6.

On the other hand, there have been some works to create some classes of LDPC codes
in structured form based on the algebraic approach. Margulis [Marg82] applied explicit
graph constructions to Gallager codes. Rosenthal et al. [RV00] extended this technique
using Ramanujan graphs to build LDPC codes. Bond et al. [BHS00] proposed circulant
matrices to build LDPC codes. Some types of LDPC codes employing the circulant
matrices are the following: array codes [Fan00], repeat accumulate codes [DJE98] and
their extension, irregular repeat accumulate codes [JKM00] and extended irregular repeat
accumulate codes [YLR02], then combinatorial codes [KD00, VM04, JW01], finite
geometry codes [KLF01], RS-based LDPC codes [DXGL03], convolutional LDPC codes
[FZ99, BPZ99], product accumulate codes [LRG04]. Ping et al. [PLP99] have shown how
the parity-check matrix can be built from separate deterministic and random components
with only a small loss in code performance. Tang et al. [TXKLG04] proposed hybrid
method to construct LDPC codes by combining several base constructions, i.e. Gallager
codes, finite geometries codes, and circulant codes.

In constructing LDPC codes there have been some issues that present the requirement
as follows

• Computation: the amount of computation in check nodes and variable nodes also
increases, if column weight and row weight increase, respectively. The critical
intensive computation is in the check nodes.

• Efficiency: the memory size is determined by the size of parity check matrix.
The small parity check matrix can save the required chip area necessary for
storing the memory.

• Flexibility: the rate adjustment is required to support many different code rates,
and also support H-ARQ mechanism. A single parity check matrix capable of
performing rate scalability can save memory size

In practice, the recent code design is targeting LDPC codes having excellent
performance and providing flexibility and low encoding/decoding complexity. Both
parameters are always trade-off in design. Their features can be summarized as follows

• Structured block: the matrix is composed of the same style of permutation
subblocks, which allows structured decoding leading to the reduction of decoder
implementation

• Low-complexity encoding: the encoding is performed in a structured, recursive
manner, without degrading the performance with multiple weight-1 columns

• Designed to match the OFDMA scheme: the matrices are provided in different base
matrices for exact code rate for different block sizes.

• Compact representation: The shift values for each block size are derived from the
largest block size of the code rate.

• Simplified decoder architecture: each base matrix has 24 columns, which perform
better, and provide a larger parallelization. The same number of columns between
code rates minimizes the number of different expansion factors that must be
supported.

CHAPTER 2 BASIC THEORY

 14

Some companies have proposed their practical schemes of LDPC codes for broadband
wireless access, such as Intel, Motorola, Nortel, etc. Intel [XJ04] proposed efficient
encoding technique using the triangular matrix structure and adapted the parity-check
matrix of extended irregular repeat accumulate. With this structure, the parity bits in
codewords are generated by a differential encoder. Motorola [BCB04] proposed the
modification of Intel’s LDPC codes by introducing the modified triangle matrix so that the
recursive encoding is enabled. Samsung [Kim04] applied Richardson’s efficient encoding
technique and adapted the permutation matrix for its parity-check matrix. Its idea is to
make use of the lower-triangular submatrix and make dimension of a submatrix as small as
possible. Nortel [PSJ04] adopted the encoding technique of π-rotation LDPC codes
[EC01]. The parity-check matrix is composed of several sub-matrices, which slopes are
rotated at certain degree.

 An informal LDPC group has been working on the goal of achieving consensus on
an optional advanced LDPC code for the OFDMA PHY [IEEE05]. A downselection
process was conducted to get best codes among eight candidates: Intel, LG, Motorola,
Nokia, Nortel, Runcom, Samsung, and TI. The candidates shared many desirable features.
After redesigning process, Motorola with its enhanced proposal came out as the winner
[IEEE05].

2.3.3 Encoding

It is well-known that the significant drawback of LDPC codes is their high encoding
complexity, which scales as a quadratic of the code block length. This fact has inspired
research into the area of structuring the codes in order to reduce encoding complexity,
which is practically of importance.

Basically, the encoding of LDPC codes proceeds using two methods, i.e. the encoding
with generator matrix derived from its corresponding parity check matrix and the encoding
with reduced encoding complexity. The latter method is proposed to reduce the complexity
of the first method, which is originally applicable for encoding linear block code.

In encoding with a generator matrix, the process of encoding an LDPC codes requires
the generator matrix G, which corresponds to the parity check matrix H by the expression
GHT = 0. The parity check matrix H is transformed via Gauss-Jordan elimination and
columns reordering into a systematic form HS = [PT I] where PT is a transposed parity-
check submatrix and I is an identity matrix. From this, a generator matrix G = [I P] is
produced. The encoding is performed by multiplying G and information vector u via the
relation x = GTu. The number of operations required to calculate each element of the
transmitted x is k multiplications and k-1 additions. Hence, the total number of operations
required by this process is n × k multiplications and n × (k-1) additions. This method
reveals the drawback of LDPC codes, in which the encoding complexity scales as a
quadratic of the block length. The other drawback is the parity-check submatrix P is
generally not sparse. These lead to long latency and high storage requirement.

CHAPTER 2 BASIC THEORY

 15

To overcome such drawbacks, the encoding complexity is reduced to a linearity-
approaching level. The modification of parity-check matrices takes place to introduce
more rapid encoding and smaller memory requirement in the encoder. The principal of
encoding LDPC codes using a parity check matrix having a structure which approaches
lower-triangular form is discussed by MacKay et al. [Kay99]. This method allows most of
the parity bits to be calculated in linear-time via back-substitution using sparse operations.
Their simulation shows that such codes have a performance which approximates the
regular random LDPC codes.

Some researchers published their LDPC codes with reduced encoding complexity.
Sipser and Spielman proposed a class of linear-time encodable and decidable expander
codes in [SS96]. Their approach involves using cascaded graphs to recursively build
irregular codes based upon simple subcodes at each stage of the graph. Error correcting
codes are built by recursively combining weaker error-reducing codes. Luby et al. built
codes related to these structures in [LMSSS97], exhibiting performance very close to that
of turbo codes.

MacKay and Neal [KN95] and Richardson and Urbanke [RU01b] proposed the
triangular parity-check matrices with reduced encoding complexity as depicted in Figure
2.5. The complexity of their parity-check matrices can be reduced by keeping the
dimension of submatrix g × g as low as possible. They define the gap g to be the
difference between the number of rows in the approximate upper-triangular form and the
number of rows in H. MacKay’s parity-check matrix requires the static memory
proportional to be m2 for encoding. This method allows the complexity to be lower
compared to m (n-m) for storing the generator matrix. The reduction of encoding
complexity is greater as the ratio g/m decreases.

n

0

g

m

g

n

0

g

m

g
(a)

0

g

g

m

n

0

g

g

m

n

(b)

Figure 2.5 Triangular parity-check matrix of MacKay (a) and Richardson (b)

Meanwhile, Richardson and Urbanke have shown that the parity-check matrix for

most LDPC codes can be manipulated such that the coefficient of the quadratic component
in the encoding complexity can be made very small. Their method involves using a pre-
processing stage, which rearranges H so that it is in approximate triangular form.
Encoding complexity is then shown to be proportional to n + g2. The idea of Richardson

CHAPTER 2 BASIC THEORY

 16

resulted in the reduction of the encoding complexity to 0.0172 n2 for (n,3,6) code. The
algorithms assumed that the rows of H are linearly independent. The codes could be
linear-timely encoded if dimension g is equal to their root square of m.

This recursive encoding technique using a triangular structure is widely recognized
and found many applications. In wireless local area networks, Intel [XJ04] is among the
first to introduce this technique, which is modified by Motorola [BCB04] to enable
recursive encoding. Meanwhile, Samsung [Kim04] makes use of the parity-check structure
of Richardson, which outperforms those of Intel and of Motorola. The idea of Richardson
also became the basis for the structure of the optional LDPC codes for the existing WLAN
IEEE 802.11n standard [IEEE09].

Some authors proposed a concatenated form of the parity check matrix to ease the
encoding process. Vasic et al. [VKK02] and Echard et al. [EC01] constructed their parity
check matrices in serial form. Oenning et al. [OM01] proposed them in parallel form by
making use of recursive characteristics of its concatenated submatrices. Haley et al.
[HGB02] proposed iterative encoding techniques using the Jacobi method, which adopted
the principle of message passing in decoding.

2.3.4 Decoding

The decoding of LDPC codes begins with calculating the most probable transmitted
codeword based on the received message from the transmission channel. The decoding
proceeds iteratively using belief-propagation based decoding schemes. This iterative
decoding is of the success keys that allow the performance of LDPC codes to approach the
Shannon-limit.

The first iterative decoding approach for decoding of LDPC codes was introduced by
the inventor of LDPC codes, Gallager [Gall62]. He proposed some decoding algorithms.
Among them are the bit flipping algorithm and the algorithm using message passing of
conditional probabilities. The message-passing algorithm belongs to the class of sum-
product algorithms and is widely known as belief-propagation. However, the powerful
performance of this iterative decoding algorithm in approaching Shannon-limit was
realized in [KN97] after over three decades due to the hardware constraints.

In the last fifteen years, a lot of papers proposing improvements of the decoding
schemes of LDPC codes or their alternatives were published. Some of them are worth to
be mentioned. Fossorier and Lin [FL95] introduced an ordered statistics soft decoder for
linear block codes. The complexity reduction of LDPC decoding algorithm was introduced
in [EMD01]. Belief-propagation algorithms were improved and/or optimized in [YHB04].
Several variations of bit flipping decoding algorithms can be found in [MF02]. A linear
programming decoding approach for LDPC codes was proposed in [FWK05].

In addition to the sum-product algorithm [Gall63] and its modified version, i.e. min-
sum algorithm [Wibe96], several approaches to LDPC decoding are proposed, such as bit-
flipping [SS96], maximum-likelihood [SM02], linear-programming [FK02], Turbo code
[MS03], soft bit [HGS04] and hybrid [ZB04].

CHAPTER 2 BASIC THEORY

 17

The decoding algorithm for LDPC codes is based on the idea of belief propagation
[Pear88]. Upon this idea, each node acts as an independent entity and communicates with
other nodes via a belief message passed through the edges. The message sent by a variable
node to a check node is its estimate of its own value. The message sent by a check node to
a variable node is its estimate of the value of the variable nodes. The update rules at the
nodes are essentially maximum a-posteriori estimators, given that the incoming messages
along the different edges are independent. Again, in order not to form short cycles in the
computation tree, the output along any edge is based only on the input from the other
edges.

For each edge of the underlying bipartite graph, the decoding algorithm iteratively
updates two types of message q and r as log-likelihood ratio of posteriori probability
[Kay99, RSU01]. The message q is sent from the variable node to the check node along a
connecting edge e. It is expressed as

)|1(
)|0(log

yxp
yxpq

=
=

= , (2.2)

where x denotes the value of the bit node, and y denotes the message coming from the
corresponding channel. The quantity r is sent from the check node to the variable node
along an edge e, which is expressed as

)|1(
)|0(log

vxp
vxpr

=
=

= (2.3)

where v denotes the messages coming from the edges connected to the check node, other
than edge e. During the message updating, the incoming message via edge e is excluded in
determining the outgoing message via edge e. This message-passing algorithm is
illustrated in Figure 2.6.

1 j3

i
qi

qjir3ir1i

1 j3

i
qi

qjir3ir1i

(a) Message passing from

variable node i to check node j

2

j

i

rji
qj4qj2

42

j

i

rji
qj4qj2

4

(b) Message passing from

check node j to variable node i

Figure 2.6 Message passing decoder of LDPC codes

CHAPTER 2 BASIC THEORY

 18

The condition of the parity-check matrix plays a significant role in supporting the
efficacy of the message-passing decoding algorithm. The exact LLR of all bits could be
produced after l iterations, if the bipartite graph defined by the parity-check matrix
contains no loops of length up to 2l [Kay99]. If the graph is assumed to be loop-free, the
decoding algorithm can be directly analyzed because the incoming messages to every node
are independent. Also, the decoder performance will converge to that of a corresponding
loop-free graph as the codeword length approaches infinity for almost all the graphs in a
code ensemble (λ,ρ) and almost all inputs according to the general concentration theorem
of [RU01a].

To figure out the iterative decoding algorithm analytically, as an example, a regular
(j, k) LDPC code is considered. Based on the facts that a) LDPC codes are linear block
codes, b) both the channel and the decoding algorithm are symmetric [RU01a], it is
assumed that the all-zero codeword is sent. Using BPSK modulation, the fraction of
incorrect messages that is passed is equal to the fraction of messages with negative signs.
The fraction of incorrect messages is averaged over all the bits of a codeword and passed
during iteration of the decoding algorithm.

Also, the message passed from the variable node to the check node is

∑
≠=

+=
j

jii
jrqq

,1
0 (2.4)

where q0 is the initial message conditioned on the channel output, and ri , i = 1,…, j, are
the incoming LLR messages from all the incident edges, other than edge from variable
node j.

The message r passed from the check node to the bit node is

∏
≠=

=
k

kii

iqr
,1 2

tanh
2

tanh (2.5)

where qi , i = 1, … , k are the incoming LLR messages from the neighbor edges, other than
edge from check node k. Logarithmic operations on both sides in the equation (2.5)
changes the product into a pair of summations.

() ()∑
≠=

=
k

kii
ii qr

,1
sgnsgn (2.6)

and

∑
≠=

=
k

kii

iqr
,1 2

tanhlog
2

tanhlog (2.7)

CHAPTER 2 BASIC THEORY

 19

where the sign function sgn(x) = 1 if x≥ 0, and sgn(x) = -1 otherwise.
If the code symbols mapped into the signal point w = (1-2x), the sampled matched

filter output y has the conditional probability density function (pdf)

)
2

)(exp(
2

1)|(2

2

2 σπσ
wywyp −

−= (2.8)

where

)/(2
1

0

2

NER b

=σ is the variance of the noise, and R is the code rate.

Due to the symmetric characteristics, Pr(x = 0) = Pr(x = 1) = 1/2, the message
observed from the channel can be expressed as

y
yxP
yxPq 20

2
)|1(
)|0(log

σ
=

=
=

= (2.9)

In case of multilevel coding, the mapping device maps a binary vector c = (c0 ,…,ct-1)

onto a complex symbol a ∈ A, where A is the signal set and |A| = 2t , where t is number of
symbol bits. At the receiver side, the channel output y will be taken into account to
produce LLR of symbol bits as decoder input. Figure 2.7 depicts Gray-mapped 16-QAM
signal constellation.

00 0000 01

01 0001 01

00 1100 10

01 1101 10

11 0011 01

10 0010 01

11 1111 10

10 1110 10

Q

I

c0c1 c2c3

00 0000 01

01 0001 01

00 1100 10

01 1101 10

11 0011 01

10 0010 01

11 1111 10

10 1110 10

Q

I

c0c1 c2c3

Figure 2.7 Signal constellation for 16-QAM with Gray labeling

The LLR of bits ci, i = 1, …, t of the received symbol, L(ci), can be defined as

[RMC03]:

CHAPTER 2 BASIC THEORY

 20

()
() ⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
yc
yc

cL
i

i
i |1Pr

|0Pr
log)((2.10)

The optimum decision rule is to decide, ci = 1 if L(ci) ≤ 0, and 0 otherwise. Define

two set partitions, Si
(0) and Si

(1), such that Si
(0) comprises symbols with ci = 0 and Si

(1)
comprises symbols with ci = 1 in the signal constellation. Then, the equation (2.10) can be
derived to

()
() ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

=
=

∑
∑

∈

∈

)1(

)0(

|Pr

|Pr
log)(

i

i

S

S
i ya

ya
cL

γ

α

γ

α
 (2.11)

Assume that all the symbols are equally likely and that fading is independent of the

transmitted symbols. Using Bayes’ rule, the LLR of symbol bit ci is

()
() ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

=
=

∑
∑

∈

∈

)1(

)0(

|

|
log)(

|

|

i

i

S ay

S ay

i ayf

ayf
cL

γ

α

γ

α
 (2.12)

with

() γα
σπσ

,;)
2

exp(
2

1| 2

2

2| =
−

−⋅== x
xy

xayf ay
 (2.13)

where ()xayf ay =|| is the Gaussian conditional probability density function for y as

complex-valued and the variance σ2 is assumed known.

2.4 Wireless LAN

Wireless Local Area Network (WLAN) is widely used as networking technology that
provides wideband wireless connectivity between devices as well as access to the core
network or the wider internet. It is currently applicable in corporate, public, and home
environments. It also supports the mobility for users to move within a local coverage area.
Thanks to its wireless technology, WLAN offers an easy way to configure computer
networks without the need for cable installation. WLAN is also considered as a potential
high-speed extension to cellular radio access networks.

Currently, WLAN technology operating in the 2.4 GHz industrial, scientific, and
medical (ISM) band is widely used. WLAN, which is initially based on the first official
“legacy” standard IEEE 802.11, provided an internationally accepted standard for WLAN
with data rates up to 2 Mb/s. A higher-rate extension to this standard, 802.11b, achieves
data rates of up to 11 Mb/s, operating within the same band. However, the relative high

CHAPTER 2 BASIC THEORY

 21

interference level in the operating band and the increasing demand for higher bit rates have
pushed the standard to seize the new dedicated spectrum at 5 GHz band with the capability
to support multiple transmission modes with raw data rates of up to 54 Mb/s. In North
America, the FCC has allocated 300 MHz of spectrum U-NII band with the extended
standard 802.11a developed by IEEE [IEEE99]. In Europe, the ERC have designated a
total of 455 MHz of spectrum with the HIPERLAN/2 standard developed by ETSI
[ETSI99]. Probably most widespread is IEEE 802.11g, which more or less shifted the
802.11a-Version into the 2.4 GHz ISM band.

In order to cope with frequency selective fading respectively typical indoor echo
situations, OFDM is applied as reliable transmission scheme in the PHY layers. As shown
in Table 2.1 the PHY layer modes with different coding and modulation schemes are
selected by a link adaptation scheme [Jush99].

Table 2.1 Mode-dependent parameters

Mode Modula-
tion

Coding
Rate R

Nominal
bit rate
(Mbps)

Coded bits
per sub-
carrier

Coded bits
per OFDM

symbol

Data bits
per OFDM

symbol
1 BPSK 1/2 6 1 48 24
2 BPSK 3/4 9 1 48 36
3 QPSK 1/2 12 2 96 48
4 QPSK 3/4 18 2 96 72
5 16-QAM 1/2 24 4 192 96
6 16-QAM 3/4 36 4 192 144
7 64-QAM 3/4 54 6 288 216
8 64-QAM 2/3 48 6 288 192

Referring to the diagram in Figure 2.8, the transmission mechanism in PHY layer of
the IEEE 802.11a at transmitter side can be highlighted as follows. The input data in the
form of packet data unit (PDU) frame come into a scrambler preventing long runs of 1s
and 0s with a pseudorandom sequence of length 127. The scrambled data is then processed
by a convolutional encoder. The encoder consists of a 1/2-rate mother code and subsequent
puncturing. The puncturing schemes support code rates 1/2, 2/3, and 3/4. In case of 16-
QAM, the coded data is interleaved in order to prevent error bursts from being input to the
convolutional decoding process in the receiver. The interleaved data is subsequently
mapped to data symbols according to BPSK, QPSK, 16-QAM, or 64-QAM constellation.
IFFT technique is applied for OFDM modulation, whose numerical value is presented in
Table 2.2. The transmitter output including 48 data symbols and 4 pilots is transmitted in
parallel in the form of one OFDM symbol.

CHAPTER 2 BASIC THEORY

 22

Scrambling 1/2-rate convolution
coding

Puncturing

OFDM Mapping Interleaving
PHY

PDU
Scrambling 1/2-rate convolution

coding
Puncturing

OFDM Mapping Interleaving
PHY

PDU

Figure 2.8 IEEE 802.11a transmitter PHY layer

Table 2.2 OFDM parameters

Parameter Value
Sampling rate (fs) 20 MHz
Useful symbol duration (Tu) 3,2 µs
Guard interval duration (Tg) 0,8 µs
Total symbol duration (TTotal) 4.0 µs
Number of data subcarriers (ND) 48
Number of pilot subcarriers (NP) 4
FFT size 64
Subcarrier spacing (Δf) 0.3125 MHz
Total bandwidth (B) 16.875 MHz

The 802.11a use different training sequences in the preamble. The training symbols

used for channel estimation are the same, but the sequences provided for time and
frequency synchronization are different. Decoding of the convolutional code is typically
implemented by means of a Viterbi decoder.

In the IEEE 802.11a, different channel models have been produced to represent these
different environments [MS98]. Table 2.3 summarizes the channel models, which are
wideband, with Rayleigh or Rician modeled tapped delay lines. Each tap suffers
independent Rayleigh or Rician (in the case of channel model D) fading with a mean
corresponding to an exponentially decaying average power delay profile.

Table 2.3 Channel models

Name RMS delay spread Characteristic Environment
A 50 ns Rayleigh Office NLOS
B 100 ns Rayleigh NLOS
C 150 ns Rayleigh NLOS
D 140 ns Rice LOS
E 250 ns Rayleigh NLOS

CHAPTER 2 BASIC THEORY

 23

In order to enhance network throughput over the widely used standard IEEE 802.11a
and 802.11g, in 2009, the IEEE 802.11n [IEEE09] was introduced. In this standard, LDPC
codes are considered as optional high-performance error-correcting code and the
complementary for the so far widely used convolutional code. LDPC codes shall support
the WLAN application with three different codeword lengths: 648, 1296 and 1944 bits,
transmitted at four coding rates: 1/2, 2/3, 3/4 and 5/6. The rate-dependent parameters to be
supported by LDPC codes are presented in Table 2.4.

Table 2.4 Rate-dependent parameter of LDPC codes in the IEEE 802.11n Standard

Coding
rate (R)

Information block length
(K in bits)

Codeword block length
(N in bits)

1/2 972 1944
1/2 648 1296
1/2 324 648
2/3 1296 1944
2/3 864 1296
2/3 432 648
3/4 1458 1944
3/4 972 1296
3/4 486 648
5/6 1620 1944
5/6 1080 1296
5/6 540 648

The IEEE 802.11n standard accommodates the significant increase in the maximum

raw data rate from 54 Mbps to 600 Mbps. This can be achieved by employing multiple-
input multiple-output (MIMO) and 40-MHz channels to the PHY (physical layer) and
frame aggregation to the MAC layer.

Various modulation schemes and coding rates are defined with a Modulation and
Coding Scheme (MCS) index value as listed in Table 2.4. This index constitutes the high-
throughput physical layer parameters that consists of modulation order: BPSK, QPSK, 16-
QAM and 64-QAM) and forward error correction coding rate: 1/2, 2/3, 3/4, and 5/6.

The maximum raw data rate of 600 Mbps is achieved with the maximum of four
spatial streams using a 40 MHz-wide channel with 400ns Guard-Interval and 64-QAM
modulation at code rate 5/6 The relationships between the variable allowing the maximum
data rate is presented in Table 2.5.

The encoding of LDPC codes proceeds systematically. The encoder encodes an
information block of size k into a codeword of size n by adding n-k parity bits. The block
length of a codeword is selected via the encoding process of packet data unit.

The parity-check matrix of LDPC codes is composed of square subblocks or
submatrices. The submatrices can be either cyclic-permutations of the identity matrix (so-

CHAPTER 2 BASIC THEORY

 24

called permutation submatrice) or null submatrix. Such structures of parity-check matrices
make the complexity of the encoding low. Some prototypes of parity-check matrices of all
optional WLAN codes for all coding rates and code rates are defined in the IEEE 802.11n
Standard as presented in Appendix.

Table 2.5 MCS parameters in the IEEE 802.11n Standard

Data Rate Mbps
20-MHz channel 40-MHz channel

MCS
Index

Spatial
Streams

Modulation
Type

Coding
Rate

800ns
GI

400ns
GI

800ns
GI

400ns
GI

0 1 BPSK 1/2 6.50 7.20 13.50 15.00
1 1 QPSK 1/2 13.00 14.40 27.00 30.00
2 1 QPSK 3/4 19.50 21.70 40.50 45.00
3 1 16-QAM 1/2 26.00 28.90 54.00 60.00
4 1 16-QAM 3/4 39.00 43.30 81.00 90.00
5 1 64-QAM 2/3 52.00 57.80 108.00 120.00
6 1 64-QAM 3/4 58.50 65.00 121.50 135.00
7 1 64-QAM 5/6 65.00 72.20 135.00 150.00
8 2 BPSK 1/2 13.00 14.40 27.00 30.00
9 2 QPSK 1/2 26.00 28.90 54.00 60.00
10 2 QPSK 3/4 39.00 43.30 81.00 90.00
11 2 16-QAM 1/2 52.00 57.80 108.00 120.00
12 2 16-QAM 3/4 78.00 86.70 162.00 180.00
13 2 64-QAM 2/3 104.00 115.60 216.00 240.00
14 2 64-QAM 3/4 117.00 130.00 243.00 270.00
15 2 64-QAM 5/6 130.00 144.40 270.00 300.00
16 3 BPSK 1/2 19.50 21.70 40.50 45.00
17 3 QPSK 1/2 39.00 43.30 81.00 90.00
18 3 QPSK 3/4 58.50 65.00 121.50 135.00
19 3 16-QAM 1/2 78.00 86.70 162.00 180.00
20 3 16-QAM 3/4 117.00 130.70 243.00 270.00
21 3 64-QAM 2/3 156.00 173.30 324.00 360.00
22 3 64-QAM 3/4 175.50 195.00 364.50 405.00
23 3 64-QAM 5/6 195.00 216.70 405.00 450.00
24 4 BPSK 1/2 26.00 28.90 54.00 60.00
25 4 QPSK 1/2 52.00 57.80 108.00 120.00
26 4 QPSK 3/4 78.00 86.70 162.00 180.00
27 4 16-QAM 1/2 104.00 115.60 216.00 240.00
28 4 16-QAM 3/4 156.00 173.30 324.00 360.00
29 4 64-QAM 2/3 208.00 231.10 432.00 480.00
30 4 64-QAM 3/4 234.00 260.00 486.00 540.00
31 4 64-QAM 5/6 260.00 288.90 540.00 600.00

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 25

CHAPTER 3

GIRTH DEGREE FOR CODE EVALUATION

3.1 Background

In the theory of LDPC codes, girth is an important parameter for LDPC codes, which
is strongly related to code performance. Girth can be defined as the size of the smallest
cycle of the bipartite graph. This parameter is considered as a determining factor in the
decoding process and therefore, used as one of the criteria in code construction. It has to be
kept as large as possible to hold the message-independence assumption, on which the
iterative message passing on a code graph is based. This assumption is valid as long as the
number of decoding iterations is smaller than half of the girth. Unfortunately, graphs of
good finite-length LDPC codes contain a large number of cycles, which typically have a
small girth [ETV99].

Cycles in the Tanner graphs prevent the sum-product algorithm from converging
[EMC98, ETV99]. Further, cycles, especially short cycles, degrade the performance of
LDPC decoders because they affect the independence of the extrinsic information
exchanged in the iterative decoding. Hence, LDPC codes with large girth are desired.
Some researchers proposed methods for constructing LDPC codes with large girth
[HEA01, ZM03]

This chapter introduces a novel concept of girth degree, which can be considered as
the extension of the classical concept of girth. The proposed concept combines the idea of
girth and node degree distribution. Girth degree as a tool for characterizing LDPC codes
and a measure of their performance is introduced in [HEK07a]. A tree-based algorithm for
detecting girth and counting girth degree is also discussed. The results show that the
concept of girth degree can be used as a tool to explore the characteristics and the
performance of LDPC codes. In some cases, the concept of girth degree is working more
effectively than the classic concept of girth.

3.2 Concept of Girth Degree

In graph theory, girth g is referred to as the length of the shortest cycle in the graph.
Mao and Banihashemi [MB01] extend the definition of girth for a variable node v in the
graph to be the length of the shortest cycle passing through that variable node. This girth is
referred to as local girth gv and its set {gv} is referred to as girth histogram. It follows that
the girth of the graph introduced beforehand is referred to as global girth g = min{gv}.
Because the graph is bipartite, all cycles must have even length and the minimum cycle is

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 26

four. Hereafter, the term girth is used in the same meaning with local girth if it is not
referred to other meaning.

Based on the definition of the local girth above, each variable node has a local girth.
It is interesting to characterize a code by considering the distribution of the local girth
among all variable nodes. If all variable nodes of the code have the same local girth, then
the code is referred to as having homogeneous local girth as shown in Figure 3.1, in which
the homogeneity is represented by two variable nodes having the same local girth of four
(g-4).

On the other side, the variable nodes may also have different local girth, for example,
some variable nodes have local girth of four and the others have local girth of six. Figure
3.2 depicts a simple representation, in which two variable nodes 1 and 2 have different
local girths: girth of four (g-4) and girth of six (g-6), respectively. If the variable nodes of
code have different local girth, then the code is referred to having heterogeneous local
girth.

Figure 3.1 Example for homogeneous local girth

Figure 3.2 Example for heterogeneous local girth

Instead of using the girth histogram [MB01], a polynomial expression for

representing the distribution of (local) girth is here introduced. The girth distribution
indicates the fraction number of variable nodes with certain number of local girth. The
girth distribution φ(y) can be described by two parameters: local girth gv and the fraction
of its corresponding variable node φgv.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 27

φ(y) = Σ φgv · ygv (3.1)

with φ = ngv/n, where ngv denotes number of variable nodes with local girth gv (gv is even
and gv ≥ 4) and n denotes total number of variable nodes.

A quantity, average girth Φgv referred to as the average number of local girth per
variable node, can be derived from (3.1) and is defined as follows

Φgv = Σ φgv · gv (3.2)

In order to understand the concept, an example is given. For instance, an LDPC code

with heterogeneous local girth has half the number of variable nodes with local girth of six
and the rest variable nodes with local girth of eight. Hence, the girth distribution of the
code can be expressed as

φ(y) = 0.5 y6 + 0.5 y8

Hence, the code has average girth Φgv = 7.

In [MB01, ZP01c] the girth distribution and the average girth are used as effective
criteria for searching good LDPC code over one code ensemble. Based on hypothesis of
independency in the iterative decoding, the larger average girth Φgv guarantees more
independency in decoding iterations, and therefore, better code performance can be
expected.

In addition to the concept of girth distribution above, a novel concept of (local) girth
degree distribution is introduced. This concept can be considered as an extension of the
theory of girth. This concept is meant to become a tool for characterizing an LDPC code in
terms of its girth condition. The concept includes an algorithm for girth detection that can
be used to assure that no short-four-cycles are included in the constructed LDPC code.

The idea of girth degree is dated back to the idea of node degree. Instead of vertices
emanating from a variable node in case of node degree, the cycles of local girth passing a
variable node are considered in case of girth degree. A terminology of girth degree is here
coined to refer to as the number of cycle of local girth passing a variable node.

In the graph a variable node may have a number of cycles of local girth. The cycles
are passing the node through different edges. As illustration, Figure 3.3 depicts two local
girth of four (g-4) passing through the first non-zero entry in the first column in the parity
check matrix. Correspondingly, in the corresponding bipartite-graph, the variable node 1 is
passed through by two local girths of four. Actually, there are still more cycles of local
girth of four passing the non-zero entries in the first column or variable node 1, which are
here not illustrated for clarity. Hence, the variable node 1 can be said to have girth degree
of six because it is passed through by six cycles of girth of four.

The distribution of girth degree is of interest for further characterizing the code. Girth
degree distribution is referred to as the fraction number of variable nodes with a certain
number of cycles of local girth. The girth degree distribution φ(x,y) can be described by a

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 28

polynomial with three parameters: local girth gv, girth degree gd and fraction of its
corresponding variable node φgd.

φ(x,y) = Σφgv (Σφgd xgd) ygv (3.3)

with φgd = ngd/ngv, where ngd denotes the number of variable nodes with girth degree gd in
the corresponding local girth gv, ngv denotes number of variable nodes with local girth gv
and n denotes total number of variable nodes. It is to note that gv is even and gv ≥ 4.

Figure 3.3 Two of six cycles of girth of four passing through the variable node 1

A quantity, average girth degree in polynomial form Φgd (y), referred to as the average

number of cycles of local girth at a variable node, can be derived from (3.3) and defined as
follows

Φgd(y) = Σ φgd · gd · ygv (3.4)

To get the picture of the average girth degree distribution, the equation (3.3) can be

simplified by taking the average girth degree into account instead of all girth degrees for
describing the girth degree condition of each girth in more compact form as follows

φ(x,y) = Σ φgv xΦgd(y) ygv (3.5)

where Φgd(y) denotes the average girth degree of girth gv.

In addition to that, the equation (3.3) can be also derived to get the whole picture on
how the girths with their girth degrees are distributed within all variable nodes. The
polynomial φ(x,y) shows the proportionality of variable nodes with girth degree of each
girth within all variable nodes.

 φ(x,y) = Σ (Σφgv φgd xgd) ygv (3.6)

In order to understand the concept, an example is given. It is to note that the number
applied here is simply made for clarity and do not reflect any real LDPC code. For
instance, an LDPC code has heterogeneous local girth consisting of girth-6 at a half
number of variable nodes with girth degree 5 and 10 (in fifty-fifty) and girth-8 at a quarter

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 29

of variable nodes with girth degree 10 and 20 (in fifty-fifty) and girth-10 at the rest of
variable nodes with girth degree 40, each. Hence, according to the equation (3.5) the girth
degree distribution of the code is

φ(x,y) = 0.5(0.5x5+0.5x10) y6 + 0.25(0.5x10 + 0.5x20) y8 + 0.25x40 y10

Hence, the polynomial of the average girth degree is

Φgd(y) = 7.5 y6 + 15 y8 + 40 y10

This states that average girth degree of girth-6, girth-8 and girth-10 is 7.5, 15 and 40,
respectively.

In more solid form, the average girth degree distribution of the code can be described
according to the equation (3.5) as follows

φ(x,y) = 0.5 x7.5 y6 + 0.25 x15 y8 + 0.25 x40 y10

This polynomial can be interpreted that the code has a half of variable nodes with girth-6
with 7.5 girth-cycles in average, a quarter of variable nodes with girth of 8 with 15 girth-
cycles in average and a quarter of variable nodes with girth of 10 with 40 girth-cycles in
average.

To get the picture of girth degree of each girth within all variable nodes, according to
the equation (3.6) the corresponding polynomial can be expressed as follows

φ(x,y) = (0.25 x5+0.25 x10) y6 + (0.125 x10 + 0.125 x20) y8 + 0.25x40 y10

This polynomial shows that girth-6 passes a quarter of variable nodes with 5 cycles, and
other quarter with 10 cycles, girth-8 passes one-eighth of variable nodes with 10 cycles
and other one-eighth with 20 cycles and girth 10 passes a quarter of variable nodes with 40
cycles.

In a code with heterogeneous local girth, the smallest local girth plays the most
important role in determining the code performance. Its girth degree influences strongly
the decoding performance. Their impact on the code performance is presumably stronger
than that of the local girth in average or that of global girth, which is theoretically
considered as determinant factor for the goodness of an LDPC code

Hypothetically, the code performance gets better as the average girth degree
decreases because the lower the average girth degree is, the higher is the independency of
variable nodes in the iterative coding, upon which the message-passing based decoding
algorithm is working for Shannon-limit-near performance.

3.2.1 Girth Degree Detection Method

Here, an algorithm for detecting girth degree is proposed. The work of the algorithm
consists of two parts, namely, girth detection and girth degree counting. The algorithm

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 30

begins with the detection of the girth of all variable nodes, and than, the cycles of the girth
are counted. From the work of the algorithm, the girth distribution as well as the girth
degree distribution can be obtained.

In the first part of the algorithm, in principal, the algorithm checks the shortest cycles
connecting the even number of non-zero elements in the parity-check matrix. In the
bipartite graph, this corresponds to an even number of edges, in which the first and the last
edge emanates from and incident onto the same variable node, respectively, in a closing
form.

The process of girth detection takes place at all variable nodes. The girth detection
begins with checking the smallest girth, i.e. girth 4, at each variable node. If the girth 4 is
not found, the girth detection continues with the next higher girth. Soon a girth is realized
at any column in the parity-check matrix or the corresponding variable node in the
bipartite graph, the girth detection takes place in the next column or its corresponding
variable node.

In the parity-check matrix, the girth is detected by tracing the non-zero elements in
column-wise and row-wise vice-versa. The algorithm of the girth detection process can be
described as follows. First, non-zero elements in the first column of the parity check
matrix or correspondingly the first edge emanating from the first variable node is checked
vertically as shown in an example depicted in Figure 3.4(a). There, three non-zero
elements are recognized. Then, the non-zero elements in the corresponding rows are
checked horizontally. From tracing in the first row, three non-zero elements, including the
first traced non-zero element, are recognized. This tracing process continues until the final
non-zero elements, which are in the same column with the first traced non-zero elements,
are found.

(a)

(b)

Figure 3.4 An example of girth detection process in a parity check matrix (a) and a
bipartite graph (b)

Referring to Figure 3.4(a), the girth detection process can be described as follows
1) Trace the first column to detect non-zero elements e1 and others
2) Trace row of non-zero element e1 to detect non-zero element e2 and others
3) Trace column of non-zero element e2, detect non-zero element e3 and others
4) Trace row of non-zero element e3, and check non-zero element

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 31

5) If a non-zero is detected in the first column, than a girth of four is found.
Otherwise go back to (2) to find other non-zero elements for a higher girth

Correspondingly, in the bipartite graph, the vertical tracing of non-zero elements
within the first column is represented by three edges emanating from the first variable
node as depicted in Figure 3.4(b). The following horizontal tracing of non-zero elements
within the third row is represented by two edges emanating from the third check code. The
tracing process continues until a girth is detected, or correspondingly, the edge reverts to
the first variable node, from which the first edge emanates, to form a closed cycle.

In the second part of the algorithm, soon after a girth is found, its cycles passing
through its associated variable nodes are counted. As the cycles of girth (or girth degree)
of all variable nodes are counted, the distribution of girth degree can be determined.

The algorithm of girth degree counting starts with the girth detection. As a girth is
detected, the number of its cycles is then counted. The algorithm counts the number of
girths emanating from a variable node or its corresponding column. Figure 3.5 shows an
example of the girth counting process for the first three columns. Each column has a girth
of 4 in the depicted part of the parity-check matrix. The number of girth cycles may
increase if the whole part of the parity-check matrix is considered. After the cycles of girth
at all columns are counted, the girth degree distribution can be determined

Figure 3.5 An example of girth degree counting process for girth of four

The girth degree counting process can be summarized as follows
1) Detect a girth of a variable nodes, starting with the first nodes
2) Count the number of cycles of the detected girth
3) Repeat the step 1 and 2 for the next variable nodes
4) After the girth degree counting for all variable nodes is done, present the girth

degree distribution.
In fact, counting the girth degree needs more computation than only detecting girth.

Counting the girth is a time-consuming process, especially if the dimension of the parity
check matrix is large. This algorithm can be also used to count the number of cycles that
are higher than the girth. However, more extensive computation is necessary. Referring to
the idea that a small cycle degrades the code performance significantly, only girth is
considered and hence, the other higher cycles can be ignored.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 32

3.3 Simulation Results

Here, the concept of girth degree is applied to characterize LDPC codes so that the
behavior of the codes is better understood. The codes are characterized by investigating
their girth distribution and its correlation with some code parameters, i.e. code rate and
code length. Moreover, the codes are characterized by their girth degree distribution.

Impact of code length and code rate on girth condition

First, the concept is applied to a well-known LDPC benchmark code, i.e. random
MacKay code [MN95]. It is interesting to investigate the girth distribution of the code with
column weight of three in different code lengths. Figure 3.6 shows girth distribution of the
MacKay code at code rate 3/4. In general, the girth distribution is heterogeneous for all
code lengths. The exception is applicable for code lengths between 200 and 800 bits,
where the girth distribution is homogenous with girth-6. The fraction of girths is changing
with the code length. As the code length increases, the fraction of larger girth increases
and the fraction of smaller girth decreases.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mackay Girth vs Code Length

Code Length

P
er

ce
nt

ag
e

Girth 4
Girth 6

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mackay Girth vs Code Length

Code Length

P
er

ce
nt

ag
e

Girth 6
Girth 8

Figure 3.6 Girth distribution of MacKay code at code rate 3/4 as function of code length

In very short codes (length up to 200 bits), the existence of harmful girth-4 (short four

cycles) is unavoidable. At this code length, the code has a heterogeneous girth distribution
and contains a fraction of girth of four (girth-4) and girth of six (girth-6). Here, the fraction

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 33

of girth-6 increases and the fraction of girth-4 decreases as the code length increases. In
code lengths between 200 bits and 800 bits, the code has a homogeneous girth distribution
with all girth-6. The girth distribution begins to become heterogeneous, where the fraction
of girth-6 decreases and the fraction of girth-8 increases as code length become longer.

 This fact proves that larger fraction of larger girth (or larger girth distribution)
corresponding to longer code length contributes to better code performance. As
theoretically proved, larger girth guarantees more independence of the extrinsic
information exchanged in the iterative decoding leading to better decoding convergence.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mackay Girth vs Code Length R=1/2

Code Length

P
er

ce
nt

ag
e

Girth 4
Girth 6
Girth 8

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mackay Girth vs Code Length R=1/2

Code Length

P
er

ce
nt

ag
e

Girth 6
Girth 8
Girth 10

Figure 3.7 Girth distribution of MacKay code at code rate 1/2 as function of code length

Furthermore, the impact of the code rate on the girth distribution of the code is

investigated. In Figure 3.7 the girth distribution of the code as a function of the code length
at code rate 1/2 can be observed. In comparison with the code at code rate 3/4, the girth
distribution of the code at code rate 1/2 is relative better. It means that the fraction of
larger girth is relative higher at the same code length. At very short code lengths (less than
200 bits) the code has quasi homogeneous girth distribution, in which girth-6 appears
strongly dominant over girth-8. At this code length, no harmful girth-4 exists, except at
code length of tens bits. As the code length increases, the code tends to become more
heterogeneous, in which the fraction of girth-6 decreases significantly and the fraction of
girth-8 increases. At the code length larger than 1,200 bits, the fraction of girth-10 begins
to contribute to the girth distribution and to substitute the lower girths. This is not the case

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 34

within the 3/4-rate code, in which girth-6 still plays a dominant role. Therefore, the 1/2-
rate code has better girth distribution.

The comparison of both codes with code rate 1/2 and 3/4 in terms of girth distribution
can be summarized in their average girth as shown in Figure 3.8. The average girth of both
codes increases as their code length gets higher. The average girth of the 1/2-rate code is
higher than that of the 3/4–rate code. For example, at code length of 2,400 bits, the 1/2-rate
code has average girth of 7.78. It is larger than that of 3/4–rate code by 1.62. This number
of average girth results from their girth distribution. The 1/2-rate code has the following
girth distribution

Φgd(y) = 0.19 y6 + 0.73 y8 + 0.08 y10,

while the 3/4-rate code has the following girth distribution

Φgd(y) = 0.92 y6 + 0.08 y8.

0 2000 4000 6000
6

6.5

7

7.5

8

8.5

Code Length

A
ve

ra
te

 G
irt

h

R=1/2
R=3/4

Figure 3.8 Impact of code length on the average girth at different code rate

It means that the 1/2-rate code has a smaller fraction of the smallest girth (girth-6) with
19% in comparison with that of the 3/4-rate code with 92%. In fact, in the code
performance, the 1/2-rate code outperforms the 3/4-rate code. This is achieved by the
better girth distribution of the first code, in which a higher average girth leads to better

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 35

performance of the message-passing based decoding algorithm. The average girth and the
fraction of the smallest girth can be applied to estimate the code performance.

Now, the concept of the girth degree is applied to characterize MacKay codes with
code rate 1/2 and 3/4. Figure 3.9 shows the average girth degree for each local girth, i.e.
girth-6, girth-8 and girth-10, for both code rates as a function of the code length up to
4,800 bits. In general, the average girth degree for all girth decreases as code length
increases. It means that the number of cycles of girth passing the variable nodes decreases
and asymptotically approaches one. The decrease of the girth degree allows the high
independency of variable nodes leading to better performance of the message-passing
based decoding.

0 100 200
0

5

10

15
Girth 4

Code Length

G
irt

h
D

eg
re

e

Rate 3/4
Rate 1/2

0 5000
0

5

10

15

20

25

30

35
Girth 6

Code Length

G
irt

h
D

eg
re

e

Rate 3/4
Rate 1/2

0 5000
0

10

20

30

40

50

60

70

80

90

100

110
Girth 8

Code Length

G
irt

h
D

eg
re

e

Rate 3/4
Rate 1/2

Figure 3.9 Impact of code rate on average girth degree in different code rate

Furthermore, by using the concept of girth degree, the codes can be characterized in

terms of girth degree distribution. For example, the code with code length of 1,200 bits and
code rate 1/2 has a heterogeneous average girth degree distribution

φ(x,y) = 0.36 x1.72 y6 + 0.64 x4.59 y8.

This polynomial means that 36% of variable nodes has girth-6, which passing them with
1.72 cycles in average and 64% of variable nodes has girth-8, which passing them with
4.59 cycles in average.

Meanwhile, the 3/4-rate code has heterogeneous average girth degree distribution

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 36

φ(x,y) = 0.99 x4.57 y6 + 0.01 x105 y8.

This polynomial means that 99% of variable nodes has girth-6, which passing them with
4.57 cycles in average and 1% of variable nodes has girth-8, which passing them with 105
cycles in average.

In comparison of both codes in terms of girth degree distribution, it is realized that the
smallest girth (girth-6) of the 1/2-rate code has smaller fraction of variable nodes as well
as smaller cycles (girth degree) than that of the 3/4-rate code. The smaller node fraction of
the smallest girth and its corresponding girth degree can lead to better independency of
variable nodes, upon which the message-passing based decoding perform better. In fact,
the 1/2-rate code outperforms the 3/4-rate code as shown in Figure 3.10.

0 1 2 3 4 5
10-6

10
-5

10-4

10
-3

10-2

10
-1

100
(a)

Eb/No

B
E

R

L=4800
L=2400
L=1200

0 1 2 3 4 5
10-6

10
-5

10-4

10
-3

10-2

10
-1

100
(b)

Eb/No

B
E

R
L=2400 R=1/2
L=1200 R=1/2
L=2400 R=3/4
L=1200 R=3/4

Figure 3.10 Performance of MacKay code in different code length (a) and code rate (b)

Similar to the average girth, the average girth degree of the smallest girth can be used

to estimate the code performance. As shown in Figure 3.10, the 1/2-rate code has better
girth degree distribution leading to a lower average girth degree than the 3/4-rate code.
Smaller average girth degree means less independence of the extrinsic information
exchanged in the iterative decoding leading to better decoding convergence.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 37

Impact of code construction method on girth condition

Some aspects of code are investigated using the concept of girth degree, including
girth distribution, average girth, girth degree distribution and average girth degree. Two
types of LDPC codes: random MacKay code and structured array code with column
weight 3 are characterized. It is of interest to observe the aspect of codes affected by their
code length. Three code lengths - 600 bit, 1,200 bit, 2,400 bit - are chosen. In terms of
code performance, it is of interest to observe the smaller girths, i.e. girths of six and eight,
according to the folk knowledge that belief propagation works well if the graph does not
contain too many short cycles.

Girth Degree Characterization of random MacKay codes

In case of random MacKay codes the girth distribution can be represented in form of
polynomials in Table 3.1 and in form of histogram in Figure 3.11. The histogram shows
the fraction of variable nodes based on their associated girth in random MacKay codes. It
shows that the number of variable nodes with girth-6 decreases as code length increases.
On the other side, the number of variable nodes with larger girth, i.e. girth-8, increases.
The average girth of the codes increases asymptotically as code length increases (see
Figure 3.12).

600 1200 2400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Code length

Fr
ac

tio
n

Girth 6
Girth 8
Girth 10

Figure 3.11 Fraction of node with girth of six and eight of MacKay code to code length

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 38

600 1200 2400
0

1

2

3

4

5

6

7

8

9

10

Code length

A
ve

ra
ge

 g
irt

h

Figure 3.12 Average girth of MacKay code to code length

Table 3.1 Code length and girth distribution of MacKay code

Code length (bits) Girth Distribution Average girth
600 0.61 y6 + 0.39 y8 6.78

1,200 0.36 y6 + 0.64 y8 7.28
2,400 0.21 y6 + 0.69 y8 + 0.10 y10 7.78

Table 3.2 Girth degree distribution of MacKay code

Code length
(bits)

Girth-6 (y6) Girth-8 (y8)

600 0.614 x1 +
0.268 x2 +
0.093 x3 +
0.025 x4

 0.004 x2 + 0.009 x3 + 0.017 x4 + 0.051 x5 + 0.111
x6 + 0.098 x7 + 0.191 x8 + 0.085 x9 + 0.094 x10 +
0.089 x11 + 0.089 x12 + 0.064 x13 + 0.055 x14 + 0.021
x15 + 0.009 x16 + 0.004 x17 + 0.004 x18 + 0.004 x20

 1,200 0.794 x1 +
0.180 x2 +
0.021 x3 +
0.005 x4

 0.052 x1 + 0.088 x2 + 0.168 x3 + 0.192 x4 + 0.182
x5 + 0.127 x6 + 0.096 x7 + 0.044 x8 + 0.031 x9 +
0.012 x10 + 0.003 x11 + 0.003 x12 + 0.001 x13 + 0.001
x16

2,400 0.890 x1 +
0.108 x2 +
0.002 x3

 0.268 x1 + 0.319 x2 + 0.209 x3 + 0.125 x4 + 0.059
x5 + 0.012 x6 + 0.007 x7 + 0.002 x8

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 39

Now, the girth degree of girth of MacKay codes is investigated. The observation is
restricted to girth-6 and girth-8, which are of interests because their smaller cycles play a
significant role in the decoding performance. The polynomial of girth degree distribution
of those girths is presented in Table 3.2, which is illustrated in Figures 3.13-3.14 for easier
analysis. The distribution of girth degree is more heterogeneously widespread and
concentrated around higher girth degrees at smaller code lengths. As the code length
increases, the fraction of smaller girth degree of each girth increases and therefore, the
distribution of the girth degree concentrates more homogeneous at a smaller girth degree.
Hence, the average girth degree decreases (see Table 3.3). It means that at larger code
lengths, a larger number of variable nodes are passed through by smaller girth cycles,
which reduces asymptotically to one cycle in average. It means that the node independency
gets higher as the number of short cycles in the bipartite graph is reduced and hence, the
message-passing based decoding performance increases.

Figure 3.13 Girth degree distribution of girth 6 of MacKay code

Figure 3.14 Girth degree distribution of girth-8 of MacKay code

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 40

Table 3.3 Average girth degree of the smallest girth of of MacKay code

Code length
(bits)

Average girth degree
of Girth 6

600 1.53
 1,200 1.23
2,400 1.16

The trend of girth degree distribution can be also realized in terms of average girth

degree as shown in Figure 3.15. Both girth-6 and girth-8 have decreasing average girth
degree with different decreasing rate, in which the average girth degree of girth-8
decreases relative fast exponentially. Both approach an average girth degree of one
asymptotically.

600 1200 2400

0

1

2

3

4

5

6

7

8

9

10

Code length

A
ve

ra
ge

 g
irt

h
de

gr
ee

Girth 6
Girth 8

Figure 3.15 Girth degree average of MacKay code to code length

Girth Degree Characterization of Array Codes

As benchmarking to random code, array LDPC codes [Fan00, EO01] as a
representative of structured LDPC codes is considered. The array LDPC codes are
constructed in three different code lengths: 600, 1,200 and 2,400 bits with column weight
3. The girth condition of the code is than characterized using the concept of girth degree.
The girth distribution of the code can be represented in form of polynomials as presented
in Table 3.4. It is realized that array codes have homogeneous girth distribution for all

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 41

code lengths examined. All variable nodes of the codes have girth-6 and no girth-8, and
hence, the average girth of the codes is 6.

Table 3.4 Code length and girth distribution of Array code

Code length (bits) Girth Distribution Average girth
600 1 y6 6

1,200 1 y6 6
2,400 1 y6 6

Now, the girth degree of girth of array codes is investigated. The polynomial of girth

degree distribution of the girth-6 is presented in Table 3.5. It is shown that the girth degree
distribution of girth 6 is homogeneous for all code lengths. Its girth degree 4, 6 and 8 are
each distributed to one-third of the variable nodes. Therefore, the average girth degree of
array code is fixed to six for all code rates (see Table 3.6).

Table 3.5 Girth degree distribution of array codes of the smallest girth of array codes

Code length (bits) Girth 6 (y6)
600 0.333 x4 + 0.333 x6 + 0.333 x8

1,200 0.333 x4 + 0.333 x6 + 0.333 x8
2,400 0.333 x4 + 0.333 x6 + 0.333 x8

Table 3.6 Average girth degree of the smallest girth of array codes

Code length
(bits)

Average girth degree
of Girth 6

600 6
1,200 6
2,400 6

From the simulation results, some aspects of codes of both random MacKay codes

and structured array codes can be put in comparison in viewpoint of the concept of girth
degree. As a random code, the MacKay code has a heterogeneous girth degree distribution,
which tends to become more homogeneous as code length increases. Correspondingly, its
average girth degree approaches asymptotically one for each girth. In contrary to that, the
array codes as regular, structured codes, constitutes homogeneous girth degree
distribution. Therefore, its average girth degree is constant at six for all code lengths.

In comparison with an array code, MacKay codes have larger average girth and
smaller average girth degree of girth of six. In terms of code performance, MacKay codes
outperform array codes at code length 1,200 bits, code rate 1/2 and column weight 3 (see
Fig. 3.16). It is here to note that the significant worse BER performance of array codes is

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 42

related to their low column weight established for fair comparison purpose. By higher
column weight the performance of array codes is comparable with MacKay codes [EO01].

0 1 2 3 4 5 6 7
10

-6

10
-5

10
-4

10-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

Mackay code
Array code

Figure 3.16 Comparison of BER performance of MacKay code and array code with

column weight 3 at code length 1,200 bits and code rate 1/2

Although there are several aspects influencing the code performance, especially the

number of check nodes (or column weight), the quality of girth plays also a significant
role. At the same column weight, the smaller average girth degree of the smallest girth
means less short cycles in the bipartite graph involved in belief propagation during
iterative decoding leading to better code performance.

Girth Degree Characterization of WLAN Codes

It is of interest to characterize the standard IEEE802.11n codes [IEEE09] (hereafter,
WLAN codes) in terms of their girth condition. The code characterization is applied for all
code rates, i.e. 1/2, 2/3, 3/4 and 5/6 as well as all code lengths, i.e. 648 bits, 1,296 bits and
1,944 bits. The girth condition of the WLAN codes includes girth distribution and girth
degree distribution.

In case of WLAN codes with code length 648 bits, girth 6 is dominantly passing
through the variable nodes as shown in Table 3.7. At code rate 2/3 and 5/6 all variable
nodes have girth-6, while, at code rate 1/2 the fraction of variable nodes with girth-6

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 43

reduces to 79% and girth 8 sizes 21% of variable nodes. Here, it is of interests that at code
rate 3/4 the short-four-cycles (girth 4) exist at about 17% of variable nodes. Therefore, the
average girth of the codes is dropped at this code rate. However, the existence of the girth
4 is harmless for code performance of the WLAN codes of code length 648 bits with code
rate 3/4 as shown in Figure 3.17.

Table 3.7 Girth distribution of WLAN codes (code length = 648 bits)

Code rates Girth distribution Average girth
 1/2 0.79 y6 + 0.21 y8 6.42

2/3 1 y6 6
3/4 0.17 y4 + 0.83 y6 5.66
5/6 1 y6 6

In terms of girth degree condition, the girth degree distribution of the girth 6 is more

widespread at higher girth degree as the code rate increases (see Table 3.8). For example,
at code rate 1/2 the girth degree is ranging from one cycle to 120 cycles, while at code rate
5/6 the range of the girth degree is between 32 cycles to 181 cycles. It is here to note that
the girth degree of all variable nodes with girth 4 at code rate 3/4 is one cycle. In addition
to that, the average girth degree of the girth 6 of the codes increases as the code rate
becomes higher (see Table 3.9).

0 1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=648,R=1/2]
WLAN [L=648,R=2/3]
WLAN [L=648,R=3/4]
WLAN [L=648,R=5/6]

Figure 3.17 Code performance of the 648-length WLAN codes at different code rates

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 44

Table 3.8 Girth degree distribution of WLAN codes (code length = 648 bits)

Code
rates

Girth 4
(y4)

Girth 6
(y6)

Girth 8
(y8)

1/2 0.105 x1 + 0.105 x2 + 0.105 x3 + 0.053 x4 +
0.0105 x8 + 0.105 x9 + 0.105 x10 + 0.053 x11 +
0.105 x12 + 0.053 x104 + 0.053 x109 + 0.053 x120

0.2 x112 + 0.2
x118 + 0.4 x131 +
0.2 x352

2/3

 0.042 x4 + 0.042 x6 + 0.042 x7 + 0.042 x8 +
0.042 x9 + 0.042 x10 + 0.042 x11 + 0.042 x14 +
0.042 x15 + 0.083 x18 + 0.083 x19 + 0.083 x23 +
0.042 x31 + 0.083 x32 + 0.042 x40 + 0.042 x46 +
0.042 x83 + 0.042 x133 + 0.042 x144 + 0.042 x149

3/4 1 x1 0.05 x10 + 0.05 x11 + 0.05 x12 + 0.05 x14 + 0.05
x24 + 0.05 x28 + 0.15 x32 + 0.10 x34 + 0.05 x64 +
0.10 x69 + 0.05 x72 + 0.05 x76 + 0.05 x142 + 0.05
x163 + 0.05 x165 + 0.05 x170

5/6 0.083 x32 + 0.042 x33 + 0.042 x88 + 0.042 x90 +
0.042 x171 + 0.292 x172 + 0.042 x174 + 0.083 x175 +
0.125 x176 + 0.083 x177 + 0.042 x178 + 0.042 x179 +
0.042 x181

Table 3.9 Average girth degree of WLAN codes (code length = 648 bits)

Code rates Girth 4 Girth 6 Girth 8
1/2 0 23.05 168.80
2/3 0 37.25 0
3/4 1 62.65 0
5/6 0 149.75 0

A more compact girth characterization of the 648-length WLAN codes can be

represented at their average girth degree distribution (see Table 3.10). For example, at
code rate 1/2 about 79% of the variable nodes of the code have girth 6 with girth degree
23.05 cycles in average and about 21% of the variable nodes have girth 8 with girth degree
168.80 cycles in average. At code rate 2/3 and 5/6 all variable nodes of the WLAN codes
are passed by girth 6 in 37.25 and 149.75 cycles in average. The interest lies in the WLAN
codes at code rate 3/4. About 17% of the variable nodes of the codes are passed by girth 4
with 1 cycle in average and about 83% of the variable nodes have girth 6 with girth degree
62.65 cycles in average. Other code rates, 2/3 and 5/6 all variable nodes of the codes have
girth 6 with girth degree 37.25 and 149.75 cycles in average, respectively.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 45

Table 3.10 Average girth degree distribution of WLAN codes (code length = 648 bits)

Code rates Average Girth distribution
 1/2 0.79 x23.05 y6 + 0.21 x168.80 y8

2/3 1 x37.25 y6
3/4 0.17 x1 y4 + 0.83 x62.65 y6
5/6 1 x149.75 y6

In case of the WLAN codes with code length 1,296 bits, girth 6 is again becoming the

most dominant girth (see Table 3.11). At code rate 1/2 girth 6 passes about 92% of
variable nodes and the girth 8 passes the rest variable nodes. The WLAN codes at code
rate 3/4 and 5/6 have all variable nodes with girth 6. It is of interests that at code rate 2/3
about 17% of variable nodes of the WLAN codes have the short-four-cycles (girth 4) exist.
The existing girth 4 leads to decreased average girth, which is lower than those of the
WLAN codes with higher code rate, 3/4 and 5/6. However, again, the existence of the girth
4 is harmless for the code performance of the 1296-length WLAN codes with code rate 2/3
4 as shown in Figure 3.18.

Table 3.11 Girth distribution of WLAN codes (code length = 1,296 bits)

Code rates Girth distribution Average girth
1/2 0.92 y6 + 0.08 y8 6.16
2/3 0.17 y4 + 0.83 y6 5.66
3/4 1 y6 6
5/6 1 y6 6

In terms of girth degree condition, the girth degree distribution of the girth 6 is again

more widespread at higher girth degree as the code rate increases (see Table 3.12). For
example, at code rate 1/2 the girth degree is ranging from one cycle to 38 cycles, while at
code rate 5/6 the range of the girth degree is between 12 cycles to 73 cycles. It is here to
note that at code rate 2/3 the girth degree of all variable nodes with girth 4 is one cycle. In
general, the average girth degree of the girth 6 of the codes increases as code rate becomes
higher (see Table 3.13). At code rate 1/2 the average girth degree is 6.95 cycles, while at
code rate 5/6 the average girth degree is 52.87 cycles.

The girth characterization of the 1296-length WLAN codes can be represented at their
average girth distribution (see Table 3.14). For example, at code rate 1/2 about 92% of the
variable nodes of the code have girth 6 with girth degree 6.95 cycles in average and about
8% of the variable nodes have girth 8 with girth degree 34 cycles in average. It is of
interest that at code rate 2/3 about 17% of the variable nodes of the code have girth 4 with

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 46

girth degree 1 cycle in average. At other higher code rates, 3/4 and 5/6, all variable nodes
of the codes have girth 6 with girth degree 32.50 and 52.87 cycles in average, respectively.

0 1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1944,R=1/2]
WLAN [L=1944,R=2/3]
WLAN [L=1944,R=3/4]
WLAN [L=1944,R=5/6]

Figure 3.18 Code performance of the 1296-length WLAN codes at different code rates

Table 3.12 Girth degree distribution of WLAN codes (code length = 1,296 bits)

Code
rates

Girth 4
(y4)

Girth 6
(y6)

Girth 8
(y8)

1/2 0.273 x1 + 0.318 x2 + 0.091 x3 + 0.091 x4 + 0.091 x5 +
0.045 x34 + 0.045 x37 + 0.045 x38

0.5 x29 + 0.5
x39

2/3 1 x1 0.05 x1 + 0.05 x2 + 0.05 x3 + 0.15 x4 + 0.10 x5 + 0.20
x7 + 0.05 x8 + 0.10 x9 + 0.05 x10 + 0.10 x11 + 0.05 x15 +
0.05 x54

3/4 0.083 x7 + 0.083 x8 + 0.125 x11 + 0.042 x12 + 0.042 x13
+ 0.083 x16 + 0.042 x17 + 0.083 x18 + 0.083 x19 + 0.042
x21 + 0.042 x75 + 0.042 x76 + 0.083 x78 + 0.042 x79 +
0.042 x80 + 0.042 x82

5/6 0.042 x12 + 0.042 x13 + 0.042 x15 + 0.042 x28 + 0.042
x32 + 0.042 x33 + 0.042 x36 + 0.042 x38 + 0.042 x57 +
0.042 x59 + 0.042 x60 + 0.042 x63 + 0.083 x64 + 0.042
x67 + 0.042 x68 + 0.125 x69 + 0.083 x71+ 0.042 x72 +
0.042 x73

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 47

Table 3.13 Average girth degree of WLAN codes (code length = 1,296 bits)

Code rates Girth 4 Girth 6 Girth 8
1/2 0 6.95 34
2/3 1 9.15 0
3/4 0 32.50 0
5/6 0 52.87 0

Table 3.14 Average girth degree distribution of WLAN codes (code length = 1,296 bits)

Code rates Average girth distribution
1/2 0.92 x6.95 y6 + 0.08 x34 y8
2/3 0.17 x1 y4 + 0.83 x9.15 y6
3/4 1 x32.50 y6
5/6 1 x52.87y6

Table 3.15 Girth distribution of WLAN codes (code length = 1,944 bits)

Code rates Girth distribution Average girth
1/2 0.87 y6 + 0.13 y8 6.32
2/3 0.17 y4 + 0.83 y6 5.66
3/4 1 y6 6
5/6 1 y6 6

In case of the WLAN codes with code length 1,944 bits, girth 6 is still the most

dominant girth (see Table 3.15). At code rate 1/2 girth 6 sizes about 87% of variable nodes
of the codes, while girth 8 appears at about 13% of variable nodes. The codes at code rates
3/4 and 5/6 have all variable nodes with girth 6. It is of interests that at code rate 2/3 about
17% of variable nodes have the short-four-cycles (girth 4) exist, what leads to decreased
average girth. Again, the existence of the girth 4 is however harmless for code
performance of the 1944-length WLAN codes with code rate 2/3 as shown in Figure 3.19.

In terms of girth degree condition, the girth degree distribution of the girth 6 is more
widespread at higher girth degrees as the code rate increases (see Table 3.16). For example,
at code rate 1/2 the girth degree is ranging from one cycle to 31 cycles, while at code rate
5/6 the range of the girth degree is between 2 cycles to 39 cycles. It is here to note that at
code rate 2/3 the codes have of a half of variable nodes with one-cycle-girth 4 and the
other half with three-cycles-girth 4. The average girth degree of the girth 6 of the codes
increases as code rate becomes higher (see Table 3.17). At code rate 1/2 the average girth
degree is 5.86 cycles, while at code rate 5/6 the average girth degree is 22.25 cycles.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 48

0 1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1944,R=1/2]
WLAN [L=1944,R=2/3]
WLAN [L=1944,R=3/4]
WLAN [L=1944,R=5/6]

Figure 3.19 Code performance of the 1944-length WLAN codes at different code rates

Table 3.16 Girth degree distribution of WLAN codes (code length = 1,944 bits)

Code
rates

Girth 4
(y4)

Girth 6
(y6)

Girth 8
(y8)

1/2 0.286 x1 + 0.333 x2 + 0.095 x3 + 0.143 x4 + 0.048 x25
+ 0.048 x29 + 0.048 x31

0.333 x26 +
0.333 x30 +
0.333 x34

2/3 0.5 x1 +
0.5 x3

0.150 x1 + 0.100 x2 + 0.250 x3 + 0.150 x4 + 0.150 x5
+ 0.050 x6 + 0.50 x23 + 0.050 x31+ 0.050 x47

3/4 0.042 x2 + 0.083 x3 + 0.083 x4 + 0.167 x5 + 0.083 x8
+ 0.125 x9 + 0.083 x10 + 0.042 x13 + 0.042 x33 + 0.042
x34 + 0.042 x35 + 0.042 x38 + 0.042 x40 + 0.042 x41

5/6 0.083 x2 + 0.042 x8 + 0.042 x10 + 0.167 x15 + 0.083
x17 + 0.042 x18 + 0.083 x22 + 0.042 x28 + 0.083 x30 +
0.042 x32 + 0.042 x32 + 0.042 x33 + 0.042 x37 + 0.083
x38 + 0.042 x39

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 49

Table 3.17 Average girth degree of WLAN codes (code length = 1,944 bits)

Code rates Girth 4 Girth 6 Girth 8
1/2 0 5.86 30
2/3 2 7.80 0
3/4 0 14.38 0
5/6 0 22.25 0

The girth characterization of the 1944-length WLAN codes can be represented at their

average girth distribution (see Table 3.18). For example, at code rate 1/2 about 87% of the
variable nodes of the code have girth 6 with girth degree 5.86 cycles in average and about
13% of the variable nodes have girth 8 with girth degree 30 cycles in average. It is of
interests that at code rate 2/3 about 17% of the variable nodes of the code have girth 4 with
girth degree 2 cycles in average and about 83% of the variable nodes have girth 6 with
girth degree 7.8 cycles in average. Other code rates, 3/4 and 5/6 all variable nodes of the
codes have girth 6 with girth degree 14.38 and 22.25 cycles in average, respectively.

Table 3.18 Average girth degree distribution of WLAN codes (code length = 1,944 bits)

Code rates Average girth distribution
1/2 0.87 x5.86 y6 + 0.13 x30 y8
2/3 0.17 x2 y4 + 0.83 x7.8 y6
3/4 1 x14.38 y6
5/6 1 x22.25 y6

As previously described, some WLAN codes contains short-four-cycles, i.e. the codes

in code length 648 bits with code rate 3/4, code length 1,296 bits with code rate 2/3 and
code length 1,944 bits with code rate 2/3 as summarized in Table 3.19. Those codes have
the same girth distribution, i.e. 17% of variable nodes with girth 4 and 83% of variable
nodes with girth 6. The girth degree of the girth 4 of the WLAN codes is one at code
length 648 and 1,296 bits and two at code length 1,944 bits.

Table 3.19 Average girth distribution of WLAN codes having girth 4

Code length (bits) Code rates Average girth distribution
648 3/4 0.17 x1 y4 + 0.83 x62.65 y6

1,296 2/3 0.17 x1 y4 + 0.83 x9.15 y6
1,944 2/3 0.17 x2 y4 + 0.83 x7.8 y6

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 50

The impact of girth and girth degree on the code performance is put in comparison as
presented in Table 3.20. It is a rule of thumb that the code performance gets worse as the
code rate increases. Moreover, the code performance has a strong correlation with the
girth. Some constructions of LDPC codes are established with higher girth to have better
code performance. In case of WLAN codes, it is difficult to make, either global girth or
(average) local girth, to become the determinant factor for code performance. Only the
codes with code rate 1/2 have relatively significant higher average girth. Hence, the rate-
1/2 codes show the best code performance. However, at higher code rates, the average
girth lies on 6, even lower than 6 in some codes because they include short-four-cycles.

Table 3.20 Girth condition of WLAN codes in comparison

648 bits 1,296 bits 1,944 bits Code
length/
Code
rates

Average
girth

Avrg Girth
degree of

girth 6

Average
girth

Avrg Girth
degree of

girth 6

Average
girth

Avrg Girth
degree of

girth 6
1/2 6.42 23.05 6.16 6.95 6.32 5.86
2/3 6 37.25 5.66 9.15 5.66 7.80
3/4 5.66 62.65 6 32.50 6 14.38
5/6 6 149.75 6 52.87 6 22.25

On contrary to the average girth, the girth degree shows its efficiency as a measure for

the code performance. The average girth degree of girth 6 increases as the code rate
increases which in turn leads to a worse code performance. This fact shows that the
number of cycles of girth plays more significant roles than girth in determination of code
performance.

It is of great interest to investigate the impact of the existence of four-short-cycles on
the performance of WLAN codes. The concept of girth degree has indicated the existence
of short four cycles within some WLAN codes shown before: the 648-length, 3/4-rate
code, the 1296-length, 2/3-rate code, and the 1944-length, 2/3-rate code. Their
corresponding parity check matrices withdrawn from the IEEE802.11n Standard [IEEE09]
are depicted in Figure 3.20.

In those parity-check matrices, the slope parameter indicating non-zero positions of
submatrices with girth 4 are marked with circle. The short four-cycles involves non-zero
elements in four submatrices forming a quadratic cycle form, in which the modulus
operation of the difference of non-zero positions between two submatrices in the same row
is the same as in the other ones. This principle is used to avoid short four-cycles in the
code construction method discussed in the chapter 4.

In case of the 648-length, 3/4-rate WLAN code, the short-four-cycles involves four
submatrices in two pair of column, i.e. column 1 with column 21 and column 9 with
column 19. In case of the 1296-length, 2/3-rate code, the short four-cycles also involves
four submatrices in two pair of column, i.e. column 1 with column 5 and column 2 with

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 51

column 3. In case of the 1944-length, 2/3-rate code, the short-four-cycles involves four
submatrices in a pair of column, i.e. column 1 with column 3.

(a) Code length 648 bits and code rate 3/4

(b) Code length 1,296 bits and code rate 2/3

(c) Code length 1,944 bits and code rate 2/3

Figure 3.20 Parity check matrices of WLAN codes [IEEE09] containing short-four-cycles

The objective is to compare the performance of the corresponding original WLAN

codes with those codes without and with more cycles of four-short-cycles. Two kinds of
modification of the WLAN codes containing four-short cycles are conducted. In the first
modification, their four-short cycles are alleviated by changing the slope parameters of the
affected submatrices. In the second modification, more four-short cycles are introduced to
the parity check matrices by also changing the slope parameters of other submatrices.
Either the original WLAN codes or the modified ones are simulated over AWGN channel
at the maximal iteration 20.

As shown in Figure 3.21, in the first modification, the change of slope parameter
takes place several submatrices (indicated by bold number). The selection of the slope
parameter is arbitrarily with the condition that no short-four-cycles are included. In case of

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 52

the length-648, rate-3/4 WLAN code, the modification of the slope parameter takes place
in the first and ninth column. In case of the length-1296, rate-2/3 WLAN code, the
modification of slope parameter takes place in the first and second column. In case of the
length-1944, rate-2/3 WLAN code, the modification of slope parameter takes place in the
first column.

(a) Code length 648 bits and code rate 3/4 without short-four-cycles

(b) Code length 1296 bits and code rate 2/3 without short-four-cycles

(c) Code length 1944 bits and code rate 2/3 without short-four-cycles

Figure 3.21 Modified parity check matrix of IEEE802.11n codes without short-four-cycles

As shown in Figure 3.22 the alleviation of short four-cycles improves the BER
performance. The significant improvement of code performance takes place in the length-
1944, rate-2/3 WLAN code. At the other codes, the alleviation of short four cycles
improves slightly.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 53

1 2 3 4 5 6 7
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R
Uncoded BPSK
WLAN [L=648,R=3/4]
WLAN [L=648,R=3/4] - no 4cycles
WLAN [L=1296,R=2/3]
WLAN [L=1296,R=2/3]- No 4cycles
WLAN [L=1944,R=2/3]
WLAN [L=1944,R=2/3]- No 4cycles

Figure 3.22 Comparison of the WLAN codes with and without the short-four-cycles

The impact of short four-cycles with higher girth degree is investigated. For this

purpose, as representative, the length-1296, rate-2/3 WLAN codes are modified such as
that their girth degree of short four-cycles (girth 4) becomes higher. For this purpose, the
girth degree is increased to 4. The modification of the slope parameter can be realized in
the Figure 3.23. As the result, the impact of girth degree on BER performance of the codes
can be considered as negligible as depicted in Figure 3.24. In this case, the assigned level
of girth degree can be considered as still not harmful enough to degrade the code
performance. However, up to a certain extent, higher girth degree can degrade the BER
performance significantly as shown in Chapter 4.

Figure 3.23 Modified parity check matrix of WLAN codes (code length 1296 bits and
code rate 2/3) with higher short-four-cycles

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 54

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1296,R=2/3]
Modified - No girth 4
Modified - Higher girth degree

Figure 3.24 Impact of girth degree on BER performance of the length-1944, rate-2/3

codes

3.4 Conclusion

In this chapter, a novel concept for LDPC codes, the concept of girth degree, has been
presented. The concept is used to evaluate LDPC codes by characterizing the codes in
terms of their shortest cycles (girth) passing through the variable nodes in order to realize
their impact on code performance. The concept considers the number of girth cycles (or
girth degree) of all variable nodes and their distribution as well.

In this concept, two algorithms are proposed to characterize the girth degree of LDPC
codes. The girth detection algorithm is used for detecting the existence of girths in the
parity-check matrix or the corresponding bipartite graph, and the girth degree counting
algorithm is applicable for counting the number of girth cycles passing through the
variable nodes.

Using the concept of girth degree, some types of LDPC codes are characterized in
terms of its girth degree distribution. In case of random MacKay codes, the concept shows
that the girth increases in average as the code length gets higher. Meanwhile, the girth
degree decreases in average, correspondingly. Their girth degree distribution becomes
smaller and more concentrated to lower girth degree.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 55

It is well-known in the theory of LDPC codes that the increasing code length leads to
better code performance. The increasing girth as well as decreasing girth degree could be
considered as to contribute to the better code performance because the increasing girth as
well as the decreasing girth degree guarantees the higher bit independency in iterative
decoding, which leads to a more effective and better decoding process.

In addition to that, the concept of girth degree also shows that the girth of random
MacKay codes decreases in average as the code rate increases. Meanwhile, their girth
degree gets higher in average, correspondingly. It is proven that LDPC codes at higher
code rate have poorer code performance. The reason for this could be correlated with the
decreasing average girth as well as the increasing average girth degree reducing the bit
independency in iterative decoding, which leads to a worse decoding process.

The concept of girth degree is also used to characterize structured array LDPC codes.
The array codes have fixed number of girth as well as girth degree in average as code
length increases. Their girth degree distribution is also relative constant. This girth
condition of the array codes may lead to poorer performance in comparison with random
MacKay codes.

The WLAN codes are also characterized using the concept of girth degree. It is of
interest that some WLAN codes contain short-four-cycles. Although those cycles exist, the
corresponding WLAN codes still perform well. It can be considered as a proof, that the
existence of short-four-cycles to some extent is not harmful enough to significantly
degrade the code performance.

Moreover, the girth degree shows its efficiency as a measure for code performance on
contrary to average girth. The average girth degree gets higher as code rate increases,
which in turn, this leads to worse code performance. This fact shows that the number of
cycles of girth plays a more significant role than girth in the determination of code
performance.

CHAPTER 3 GIRTH DEGREE FOR CODE EVALUATION

 56

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 57

CHAPTER 4

CODE CONSTRUCTION WITH STAIR
STRUCTURE

4.1 Background

In this chapter, a class of LPDC codes with very low encoding complexity and simple
code construction is introduced. The codes are generated by only cyclic-shift registers in
parallel processing. These codes are a trivial variant of LDPC staircase suggested in
[KN95]. However, instead of dual-diagonal structure, the idea of LDGM structure that
uses an identity matrix to ease encoding in linear time [OM01] is applied. Roca and
Neumann [RN04] shows that the staircase structure makes encoding/decoding for
applications with bandwidths of several hundreds of Mbps possible, which in turn, makes
it appropriate to communications over high-speed networks. Some researchers are
interested to employ the class of LDPC codes with staircase structure as Forward Error
Correction (FEC) codes for reliable multicast data transport in internet [RNF06].

The parity check matrix of LDPC staircase code makes use of the identity matrix for
the In-k matrix, in which its ones slope has staircase structure. The parity check matrix is
divided into two parts, namely the left side of the matrix, which defines equations
involving the source symbols and the right side of the matrix, which defines equations
involving the repairing (parity) symbols. Figure 4.1 depicts an example of the parity-check
matrix of LDPC staircase codes and its associated bipartite graph. The box nodes and
round nodes denote the check and variable nodes, respectively. The way they are
connected is defined by matrix H. In the bipartite graph, the connection is represented by
the edges connecting variable nodes to a check node.

1
1

1

0
0

0

1 1
1

1
1

1

01
1

1
0

0 0
0

0

1 0
1 01

1

0
b1 b2 b3 b4 b5 b6 p7 p8 p9

1
1

1

0
0

0

1 1
1

1
1

1

01
1

1
0

0 0
0

0

1 0
1 01

1

0
b1 b2 b3 b4 b5 b6 p7 p8 p9

(a)

b2 b3 b4 b5 b6

p7 p8 p9

b1 b2 b3 b4 b5 b6

p7 p8 p9

b1

(b)

Figure 4.1 LDPC staircase codes: parity-check matrix (a) and its corresponding graph (b)

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 58

The n-bit packet generated by the LDPC encoder is composed of the k-bit source
packet and the (n-k)-bit parity packet. In Figure 4.1, the k source packets constitutes the k
variable (information) nodes b, while the (n-k)-bit parity packet constitutes the (n-k)
variable nodes p. The check nodes represent relationships between the variable nodes. The
relationship constitutes a set of linear equations involving the value of the variable nodes.
The staircase structure makes it possible to produce the parity packet directly from the
relationship between the check node and its associated source node as follows.

 p7 ≡ b1⊕ b2⊕ b4⊕ b5

 p8 ≡ b2⊕ b3⊕ b5⊕ b6

p9 ≡ b1⊕ b3⊕ b4⊕ b6

In the staircase approach, all parity nodes are linked to exactly one check node. The
decoding algorithm for LDPC stair codes can be derived by applying belief propagation
[Gall62]. For this special case of LDPC codes there exist n-k parity nodes with node
degree 1 and k bit source nodes corresponding to the systematic bits. Therefore, the
messages propagated from the degree-1 parity bit node to the corresponding check node
will be always just the a priori probability of the corresponding bit. The recovery of the
systematic bit is more important in this case.

The proposed codes differ from LDGM codes by the type of permutation matrices
and encoding technique. Instead of multiplying the sparse generator matrix with the vector
composed of source packet, the encoding of the proposed codes are done directly from the
parity-check matrix. The design of permutation matrices is proposed in combination with
the staircase structure, which leads to extreme low encoding complexity without
performance degradation [HEK07b]. The appropriate structure of the permutation matrices
can be expected to lower the error floor [KN95].

4.2 Code Structure

In the proposed LDPC stair codes two kinds of structure of the systematic part of the
parity check matrix are presented. The systematic matrix consists of several permutation
matrices, which are arranged in different concatenation: cascade and lattice structures.
Recall that a permutation matrix is a square matrix composed of 0’s and 1’s, with a single
1 in each row and column. The permutation matrix is considered circulant because the i-th
row of the matrix is obtained by cyclically shifting the (i-1)-th row by one position to the
right.

The identity matrix acts as reference for circulant permutation matrix (hereafter,
shortly referred to as submatrix). Figure 4.2 depicts an identity matrix and a circulant
permutation matrix with a singular cyclic shift

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 59

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10000
01000
00100
00010
00001

iH

(a)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00001
10000
01000
00100
00010

iH

(b)

Figure 4.2 An identity matrix (a) and a singular cyclic shift submatrix (b)

In Figure 4.3 an important parameter to characterize a submatrix, namely, cyclic-shift
number s is introduced. This parameter (hereafter, referred to as slope parameter) denotes
how far the stair (hereafter, referred to as slope) of identity matrix is cyclic right-shifted. In
case of the identity matrix and a single cyclic shift submatrix in Figure 4.2, the cyclic-shift
number s = 0 and s = 1, respectively.

ss

Figure 4.3 Submatrix with cyclic right-shifted slope s

A submatrix can consist of some slopes, which is resulting from correspondingly

addition of some submatrices with one slope each. The number of slopes is associated with
the number of column weight and row weight of the parity check matrix. Figure 4.4 shows
the submatrix with three slopes and is characterized by its slope parameter s = 1, 2 and 4.

1
1

1
1

1

1
1

1

0 1
1

1
1

1
1

1

0
0

00
0

0
0

0

0
0

0
0

0
0

0 0 01 1 1

s=1 s=2 s=4

1
1

1
1

1

1
1

1

0 1
1

1
1

1
1

1

0
0

00
0

0
0

0

0
0

0
0

0
0

0 0 01 1 1

s=1 s=2 s=4

(a)

(b)

Figure 4.4 Submatrix (a) with its corresponding graph (b)

To simplify the representation of the proposed codes, a submatrix with the series of

the slope parameter of their submatrices in the systematic part of parity-check matrix can
be represented in the following form

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 60

[s1 + s2 + ... + sm]

where [...] = submatrix and sm = the-m-th slope parameter. A submatrix containing only
zero elements is represented by [-]. Serially concatenated submatrices are represented by
[...][...], while parallel concatenated submatrices are separated by sign ; and represented
by [...];[...]. For example, the submatrix illustrated in Figure 4.4 can be represented by
its slope parameter as [1+2+4], while an identity matrix can be represented by [0]

4.2.1 Cascade Structure

The cascade structure is constructed as follows. The parity check matrix H is given
by

H = [P I] (4.1)

where I denotes an identity matrix and P denotes p submatrices in cascaded format, which
is given by

P = [H1 H2 … Hp] (4.2)

where Hi denotes the submatrix i, where i = 1, 2 … p.

Each submatrix has quadratic dimension n/(t+1), where n is code length and t is the
number of the submatrix. The code rate is t/(t+1). The column weight and row weight
correspond to the number of slopes applied in the submatrices. In the quasi-regular case,
where the number of slopes in each submatrices is equal, the column weight in the left
submatrices and in the stair matrix is t x ns and 1 in the right part, respectively, and the row
weight is t x ns + 1, where ns is the number of slopes in a submatrix.

For example, a quasi-regular LDPC code is constructed with code rate 3/4 as shown
in Figure 4.5. The code consists of three submatrices and an identity matrix. The code has
row-weight 10 and column-weight 3 and 1 in systematic matrix and the identity matrix,
respectively. The corresponding parity check matrix is depicted in Figure 4.5.

Figure 4.5 Cascade structure: parity check matrix

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 61

4.2.2 Lattice Structure

The parity check matrix H of the lattice structure is the same as of the cascade one,
but with different construction of the matrix P, which denotes p×q submatrices in lattice
format. The transpose of matrix P is given by

PT = [H1 H2 … Hq] (4.3)

Hi is then partitioned into p submatrices.

Hi = [Hi1 Hi2 … Hip] (4.4)

where Hij denotes the submatrix ij for i = 1, 2 … q and j = 1, 2 … p.

Each submatrix has quadratic dimension mi×mi, with mi = m/i, where i is number of
submatrices in vertical arrangement. The code rate is t/(t+i), where t is number of
submatrices in horizontal arrangement. The column weight and row weight correspond
with the number of submatrices in vertical and horizontal, respectively. In the quasi-
regular case, the column weight in the left submatrices is t×ns and 1 in the right part,
respectively, and the row weight is i×ns + 1, where ns is number of slopes in a submatrix.

In this structure the parity-check consists of several smaller submatrices with an
identity matrix composed of a number of identity submatrices in its diagonal. Figure 4.6
depicts the parity check matrix for a quasi-regular LDPC code with code rate 3/4. The
code has row-weight 10 and column-weight 3 and 1 in the systematic matrix and the
identity matrix, respectively.

Figure 4.6 Lattice structure: parity check matrix

The lattice structure can be obtained by horizontally appending concatenated

submatrices at the cost of a prolonged code length. If the code length shall be held, a
submatrix is divided into smaller ones in quadratic form. Figure 4.7 shows a cascade
submatrix is broken into four and nine smaller quadratic submatrices (or lattice-4 and
lattice-9, respectively).

Based on this idea, the lattice structure can be seen as a derivation of the cascade
structure. The concatenation way of lattice structure makes it more flexible to cope with
any code length in comparison with cascade structure. However, lattice structure is more
complicated in the implementation of the encoder as described later.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 62

cascade

lattice-4

lattice-9

Figure 4.7 Cascade and lattice submatrices

4.3 Construction Methods

The proposed codes are constructed such that most possibly no short four-cycles exist
in the bipartite graph as illustrated in Figure 4.8. The presence of such cycles has to be
avoided to cope with degradation in decoding performance. However, to some extent, their
existence is not harmful enough to degrade code performance [TJVW04, ZZ04, ZP01d].

The construction method can be simply done in two ways. The first step is to generate
the value of the slope parameter using random permutation process. Then, the values of the
slope parameter are examined using two methods, namely slopes method and girth
detection method. If the requirement that no short-four-cycles found is not met, the
permutation process of the slope parameter is repeated. In case of high code rate or dense
column weight in systematic matrix, this requirement is hardly to meet. However, the
existing of short-four-cycles does not inhibit codes to perform well as described later.

∆s∆s

(a)

(b)

Figure 4.8 Presence of four-cycles in the cascade (a) and lattice structure (b)

4.3.1 Slopes Method

The slopes method takes two parameters into consideration, namely, the slope
parameters s and so-called slope distance ∆s. The slope distance is here defined as the
distance between any two slopes, either in a submatrix or in any two submatrices. The

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 63

slope method gives the principal rule to guarantee that no short-four-cycles exist in the
systematic matrix of the parity check matrix of the proposed codes.

si sjsi sj

(a)

si sj sk

∆sij ∆sjk

si sj sk

∆sij ∆sjk

(b)

si sj sn

∆sij ∆smn
smsi sj sn

∆sij ∆smn
sm

(c)

Figure 4.9 Parameters in the slope method

The principal rules of the slope method can be described as follows
1. Constructing a submatrix by determining shift parameter s

a. between slope and submatrix dimension

si ≠ p/2 (4.5)

b. between two slopes (see figure 4.9a):

si ≠ ½ (2.sj mod p) (4.6)

c. between more than two slopes (see Figure 4.9b):

si ≠ ½ ((sj + sk) mod p) (4.7)
∆ sij + ∆sik ≠ p (4.8)

 d. between two slope distance:

∆sij ≠ ∆sjk (4.9)

where ∆sij = |si-sj| , ∆sjk = |sj-sk| , si < sj < sk and p×p is submatrix dimension

2. Putting all permutation matrices together and consider the condition between
two slope distances in different matrices (see Figure 4.9c):

∆sij ≠ ∆smn (4.10)

 ∆sij + ∆smn ≠ p (4.11)

where ∆sij = |si-sj| and ∆smn = |sm-sn|

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 64

In case of lattice structure, an additional principal rule must be taken into account.
The slope method has to assure that no pair of slopes with the submatrix construction
illustrated in Figure 4.10 has the same slope distance ∆s. To achieve this objective, the
following condition has to be held

∆sik = mod(∆smo, p) (4.12)

where ∆sik = |sij-skl| and ∆smo = |smn-sop|

sij skl

smn sop

∆sik

∆smo

sij skl

smn sop

∆sik

∆smo

Figure 4.10 A pair of slope distance

As illustrated in Figure 4.11, the method of code construction using the slope method

can be simply described as follows:
Step 1. Determine the code parameters: code rate, code length and column weight
Step 2. Determine the type of code structure type: lattice or cascade
Step 3. Determine the number of submatrices and slopes referring to the code

parameters
Step 4. Determine the slope parameter in submatrices randomly using permutation

process
Step 5. Check if short four-cycles exists using slope method
Step 6. If short four cycles, go back to step 4, otherwise done

4.3.2 Girth Degree Detection Method

The proposed codes can be also constructed without the presence of four-cycle by

making use of the girth degree detection method as described in the previous chapter. As
illustrated in Figure 4.12, the construction method can be simply described as follows:

Step 1. Determine the code parameters: code rate, code length and column weight
Step 2. Determine the type of code structure type: lattice or cascade
Step 3. Determine the number of submatrices and slopes referring to the code

parameters
Step 4. Determine the slope position in submatrices randomly using permutation

process

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 65

Step 5. Check if short four cycles exist using girth degree detection method
Step 6. If short four cycles, go back to step 4, otherwise done

Figure 4.11 Algorithm of code construction with slope method

4.4 Encoder/Decoder Design

4.4.1 Encoder Design

a. Cascade Structure

The structure of such parity check matrix makes its implementation very simple. The
encoder can be derived analytically from the syndrome equation

H.cT = 0 (4.12)

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 66

Codeword c is partitioned into a number of subblock, which corresponds to the
partition of the parity check matrix H

c = [u1 u2 … up p] (4.13)

where ui for i = 1, 2, … p is sub-block of information bits and p is block of parity bits.

Figure 4.12 Algorithm of code construction with girth degree detection method

From the equation (4.12) and (4.13), a sum-product equation is obtained as follow

H1 u1

T + H2 u2
T + … + HP uP

T …. + I pT = 0 (4.14)

By considering p = I.pT, the vector of parity bits results in

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 67

pT = H1 u1
T + H2 u2

T + … + Hp up
T (4.15)

This equation can be simply implemented by parallel circuit of cyclic-shift registers.

Furthermore, the work is focused on analytical operation in a submatrix. To simplify the
description, only a slope containing non-zero entries in a submatrix is presented in Figure
4.13

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+−

+−

−

+

+

.............................
..................................

......................

.......................

.........................
.................................

........................

.........................

2)2(

1)1(

)(

)2(2

)1(1

ms

sm

sm

msm

s

s

i

h

h

h

h

h

h

H

M

M

Figure 4.13 Submatrix

where s is cyclic-shift number and m×m is dimension of submatrix. By multiplying
submatrix with information sub-block, the parity bit can be obtained

pi = hi(i+s).u(i+s) (4.16)

Due to hij = 1, no multiplication is necessary.

pi = u(i+s) (4.17)

Due to cyclic operation, the parity bit is as follow

⎩
⎨
⎧ −≤

=
−+

+

otherwiseu
smiu

p
msi

jsi
i

)(

)(, (4.18)

The parity bit of row i of a parity check matrix containing p submatrices with j slopes

is obtained by

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 68

∑∑ +=
P j

sii j
up (4.19)

Figure 4.14a shows a permutation matrix containing t slopes with cyclic-shift numbers sj,
where j = 1, 2 … t.

st

…

…

…s1 st

…

…

…s1

(a)

(b)

Figure 4.14 Cascade structure: submatrix (a) and its cyclic-shift register (b)

Figure 4.15 Implementation of the encoder of cascade structure

This permutation matrix is realized by a cyclic-shift register as depicted in Figure

4.14b. The cyclic-shift register of length n is initially occupied by information bits u. After
m cycles the parity bits p is generated and the information bits u are released.

For example, for the parity check matrix of the 3/4-rate code with cascade structure
and column weight 3 three cycle-shift registers connected by addition operation are
necessary to calculate all parity bits. The parity bits p is appended to the information bits u
= [u1 u2 u3] to build a valid codeword c as shown in Figure 4.15.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 69

b. Lattice Structure

The encoder for this structure can be derived analytically from the equation (4.12)-
(4.15). It differs from the cascade structure by number of permutation matrices. A lattice
matrix contains of q permutation matrices: Hj = [H1j H2j … Hqj]. The packet is again
partitioned accordingly for ui : ui = [ui1 ui2 … uip] and p = [p1 p2 … pq].

pi
T = Hi1 ui1

T + Hi2 ui2
T + … + Hip uip

T ; for i = 1,2,..q (4.20)

This equation can be simply implemented by parallel circuit of cyclic-shift registers,
whose analytical operation is presented by the equation (4.16)-(4.19).

By this construction we break each cascade matrix into nine smaller lattice matrices
or equivalently three concatenated permutation matrices. Each lattice matrix contains three
permutation matrices as depicted in figure 4.16a. Each permutation matrix contains a slope
with cyclic-shift numbers sj, where j = 1, 2 and 3.

These concatenated matrices are realized by a cyclic-shift register as depicted in
figure 4.16b. The cyclic-shift register of length n is initially occupied by information bits
u. After m cycles the parity bits p is generated and the information bits u is output.

s1

s2

s3

s1

s2

s3

(a)

(b)

Figure 4.16 Lattice structure: submatrices (a)

and its cyclic-shift register (b)

For the lattice structure it is necessary to have nine cycle-shift registers connected by

addition operation to calculate all parity bits as shown in Figure 4.17. The parity bits p is
appended to the information bits u = [u1 u2 u3] to build a valid codeword c.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 70

c. Comparison of Both Code Structures

The comparison of cascade and lattice structure can be described using the slope
method. Both structures are compared in terms of complexity and flexibility. Two types of
complexity are introduced, that is, the complexity in design and in realization. Here, the
complexity in design is meant to the number of equations involved in determination of
slope parameter leading to parity check matrix. While, the complexity in realization is
defined the number of shift registers needed in encoder circuit.

Basically, the complexity of the encoder depends on the number of slopes and the
number of submatrices. Both correspond to column weight and code rate. In Table 4.1 the
number of equation to check per a submatrix for each step of design of parity check matrix
is presented. While, Table 4.2 shows number of equation needed for checking short four-
cycles between submatrices.

Table 4.1 Number of equation (Neq) depending on number of slopes per submatrix (Nsl)

Number of slopes per submatrix Step 3 4 5
1.a 3 4 5
1.b 3 6 10
1.c 2x1 2x4 2x10
1.d 1 4 10
2.a 2x3x3 2x6x6 2x10x10

Table 4.2 Number of equation (Neq) for number of submatrix (Nsm)

Nsm Neq
2 1
3 3
4 6
5 10

Now, both structures are compared in terms of complexity in terms of number of

equation needed to determine the slope parameter and the number of shift register needed
for realization. For comparison, both structures are constructed with column weight 3 at
WLAN code rate, i.e. 1/2, 2/3 and 3/4. The number of equation needed by both structures
is put in comparison in Table 4.3. In fact, more equations are necessary to check for
constructing the lattice. Besides, the number of equation for the lattice rises in more
significant rate as the code rate increases.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 71

Table 4.3 Comparison of both structures in number of equation per code rate

Code Rate Cascade Lattice
1/2 9 9
2/3 36 45
3/4 54 108

In the realization, the number of submatrix for the lattice is three times larger than

that for the cascade as shown in Table 4.4. This number also corresponds with the number
of shift register needed for encoder circuit. In addition to that, the higher complexity in the
implementation of the lattice encoder can be realized in the previous section.

Table 4.4 Comparison of both structures in number of submatrix per code rate

Code Rate Cascade Lattice
1/2 1 3
2/3 2 6
3/4 3 9

Here, this flexibility is meant to the feature of code to support code rate. In fact, the

lattice support more types of code rate than the cascade, in which the latter only operates at
code rate t/t+1, where t is positive integer.

4.4.2 Decoder Design

The sparseness of the parity check matrix plays an important role in decoding
complexity. A non-zero entry corresponds to edge between a variable node and a check
node in the bipartite-graph. The parity check matrix we are considering has column-weight
3 and 1 and row-weight 10. Therefore, this code has 3000 edges in the bipartite graph.

For decoding the code, the sum-product algorithm (SPA) is commonly used. In this
algorithm, messages are exchanged iteratively between the variable and check nodes as
summarized as follows:

Step 1. Initialize. The decoder calculates LLRs for received bits y.
Step 2. Message passing from variable nodes to check nodes
Step 3. Message passing from check nodes to variable nodes
Step 4. Make hard-decisions
Step 5. Repeat steps 2-4 until either of the following termination criteria are met; (1)

if H.yT = 0, then the iterations are complete. (2) Otherwise, stop after a fixed
maximum number of iterations whether they are complete or not.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 72

The sum-product algorithm enables LDPC code to be decoded parallelly. Some

realization approaches for the parallel design were introduced in [HB01, KSM02]. The
parallel design of the decoder [KSM02] is composed of two types of computational blocks,
two interleavers, and two pipe-line registers (see Figure 4.18). The computational blocks
represent the nodes that are used to compute the messages. The interleavers represent the
edge structure of the bipartite graph. The pipeline registers are used to store the output of
the computational blocks. The vn blocks compute the message from variable nodes to
check nodes (step 2), in which the LLRs are available as the initial value of messages.
Their output are sent through v-c interleaver and then stored in the v-c pipeline registers.
The cn blocks compute the messages from check nodes to variable nodes (step 3). Their
output is stored in the pipeline c-v registers. They are sent to the c-v interleaver and fed
back into vn blocks for other iteration.

Figure 4.17 Implementation of the encoder of lattice structure

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 73

vn

vn

vn

vn

cn

cn

cn

cn

v-
c

in
te

rle
av

er

c-
v

In
te

rle
av

er

v-
c

re
gi

st
er

c-
v

re
gi

st
er

10

10

10

10

10

10

10

10
3

3

3

3

LLR

1200

3000

3000

vnvn

vnvn

vnvn

vnvn

cn

cn

cn

cn

v-
c

in
te

rle
av

er

c-
v

In
te

rle
av

er

v-
c

re
gi

st
er

c-
v

re
gi

st
er

10

10

10

10

10

10

10

10
3

3

3

3

LLR

1200

3000

3000

Figure 4.18 Block diagram of the decoder

4.5 Simulation Results

In this section, the proposed LDPC codes, including cascade structure and lattice
structure (hereafter, denoted as Stair Cascade and Stair Lattice), are simulated, analyzed
and put in comparison with some well-known benchmarking codes. For testing near-
capacity performance of the codes, the simulation is conducted using BPSK modulation
over additive white Gaussian noise (AWGN) channel. The sum-product decoding
algorithm is applied. It is expected that the simulation can explore the characteristics of the
codes and their weaknesses as well as their strength.

The simulation considers several important parameters of LDPC code and their
impact on the code performance, including decoding iteration, column weight, code length,
code rate. The performance of the proposed LDPC codes at high code rate and short code
rate is also taken into account. Those parameters are set in sense of their practicability in
wireless LAN application. Finally, the proposed LDPC codes are compared with some
benchmarking codes, such as random MacKay codes [MN95] and also IEEE802.11n
(WLAN) codes [IEEE09].

a. Cascade Structure

Maximal number of decoding iteration

The performance of the Stair Cascade codes at practical number of decoding iteration
is firstly investigated. The maximal number of decoding iteration up to 20 is considered.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 74

The simulated Stair Cascade code is designed with code length L = 1,200 bits, code rate R
= 3/4 and column weight 6. The code has the following slope parameter

[146+203+285+193+298+1][104+121+55+281+184+124] ...
[169+154+215+247+208+165][0]

Figure 4.19 shows the impact of decoding iteration on the performance of the Stair

Cascade codes. It is realized that the code still performs well in decoding with only
maximal two iterations. However, better performance can still be achieved at higher
decoding iteration. The simulation result shows that the code can achieve the optimal BER
performance with the maximal decoding iteration 10. More number of decoding iteration
brings only negligible contribution to the performance gain. Therefore, the maximal
decoding iteration 10 is selected as basis for further investigation.

1 2 3 4 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Cascade [L=1200,R=3/4,Iters=2]
Stair Cascade [L=1200,R=3/4,Iters=5]
Stair Cascade [L=1200,R=3/4,Iters=10]
Stair Cascade [L=1200,R=3/4,Iters=20]

Figure 4.19 Impact of decoding iteration on the performance of the length-1200, rate-3/4

Stair Cascade code

Code rate

The performance of the Stair Cascade codes is simulated at three different code rates,
i.e. 1/2, 2/3 and 3/4. The codes are constructed at code length 1,200 bits and column
weight 6. Their slope parameters are as follows.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 75

Code rate Slope parameter

1/2 [545+216+589+518+382+94][0]
2/3 [109+311+190+87+325+38][83+377+199+157+238+282][0]
3/4 [146+203+285+193+298+1][104+121+55+281+184+124] ...

[169+154+215+247+208+ 165][0]

Figure 4.20 shows the threshold performance of the Stair Cascade codes is subject to
get worse as the code rate increases. However, at the other side, the error floor
performance improves. The Stair Cascade code with code rate 2/3 can achieve a bit error
rate of 10-5 at about 3 dB which about 0.5 dB better than the code with code rate 3/4.
However, at higher signal-to-noise ratio, the Stair Cascade code with code rate 2/3 suffers
from the higher error floor. Meanwhile, the performance of the Stair Cascade code with
code rate 1/2 degrades significantly at higher signal-to-noise ratio due to poor error floor
performance. The high number of variables being part of the identity matrix could be
responsible for the high error floor at code rate 1/2.

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Cascade [L=1200,R=1/2]
Stair Cascade [L=1200,R=2/3]
Stair Cascade [L=1200,R=3/4]

Figure 4.20 Performance of Stair Cascade codes with code length 1,200 bits at different

code rates

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 76

Column weight

Concerning the poor error floor performance of the Stair Cascade codes at lower code
rates, it is interesting to investigate the impact of the number of the column weight on the
code performance. The Stair Cascade codes with code length 1,200 bits are constructed
with different numbers of column weights, i.e. 3, 6 and 9. The codes are the simulated at
different code rates, i.e. 1/2, 2/3, and 3/4.

First, the Stair Cascade codes are simulated at code rate 1/2 with the following slope
parameter

Column weight Slope parameter

3 [547+548+572][0]
6 [545+216+589+518+382+94][0]
9 [31+235+515+467+85+214+117+228+134][0]
12 [423+380+126+57+207+544+225+128+171+289+341+ 33][0]

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Cascade [L=1200,R=1/2,WC=3]
Stair Cascade [L=1200,R=1/2,WC=6]
Stair Cascade [L=1200,R=1/2,WC=9]
Stair Cascade [L=1200,R=1/2,WC=12]

Figure 4.21 Impact of column weight on the performance of Stair Cascade codes with

code length 1,200 bits at code rate 1/2

As shown in Figure 4.21 the increase of the weight of the column (WC) can improve
the performance of the Stair Cascade codes to some extent. At code rate 1/2 the Stair

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 77

Cascade codes improve their performance as the column weight increases up to 9.
However, more column weight cannot improve the code performance. Even, this leads to
the degradation of the code performance. The excessive increased column weight
contributes to higher cycles in the bipartite graph that reduce the node independence
leading to degraded decoding performance.

Furthermore, the impact of the increased column weight is investigated in case of the
Stair Cascade codes with code length 1,200 bits at code rate 2/3. The simulated codes are
constructed with the following slope parameter

Column weight Slope parameter

3 [195+323+100][128+345+54][0]
6 [109+311+190+87+325+38][83+377+199+157+238+282][0]
9 [346+102+173+362+190+124+84+131+234]

[105+2 40+192+186+186+140+194+164][0]

1 2 3 4 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Cascade [L=1200,R=2/3,WC=3]
Stair Cascade [L=1200,R=2/3,WC=6]
Stair Cascade [L=1200,R=2/3,WC=9]

Figure 4.22 Impact of column weight on the performance of Stair Cascade codes with

code length 1,200 bits at code rate 2/3

Figure 4.22 shows the impact of the increased column weight in the Stair Cascade

codes at code rate 2/3. Again, the increased column weight improves the code performance
to some extent. The codes perform best at column weight 6. More column weight leads to
negligible code performance.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 78

Finally, the impact of an increased column weight is investigated in the Stair Cascade
code with code length 1,200 bits at a higher code rate, i.e. 3/4. The codes are constructed
with the following slope parameter

Column weight Slope parameter
3 [202+50+88][241+191+206][83+127+210][0]
6 [146+203+285+193+298+1][104+121+55+281+184+124]

[169+154+215+247+208+165][0]
9 [155+51+54+219+11+133+64+227+149][273+280+275+220+297+...

89+21+151+282][230+235+186+138+124+240+152+86+229][0]

As shown in Figure 4.23 the Stair Cascade codes achieve their best performance at
column weight 6. The increase of the column weight is not enough to improve the
performance. Even this leads to worse performance

1 2 3 4 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Cascade [L=1200,R=3/4,WC=3]
Stair Cascade [L=1200,R=3/4,WC=6]
Stair Cascade [L=1200,R=3/4,WC=9]

Figure 4.23 Impact of column weight on the performance of Stair Cascade codes with

code length 1,200 bits at code rate 3/4

From the simulation result above, in general, the code with low column weight
suffers from a higher error floor. By increasing the column weight the error floor can be

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 79

effectively suppressed to some extent and therefore, the floor performance of the codes
improves. However, the high column weight leads to a degraded performance. At code rate
1/2 the codes performs best with column weight 9. Meanwhile, at higher code rates, a
column weight 6 would be more appropriate

To some extent, higher column weights can help the code in improving its
performance because more check nodes are involved, that lead to more reliable decoding.
However, the number of column weight is restricted by the rule of thumb in decoding, i.e.
node independence. Higher column weights could mean lower node independence, which
in turn can reduce the decoding performance. Conclusively, the choice of column weights
while designing codes must concern with code rate and code length as well.

b. Lattice Structure

Maximal number of decoding iteration

The impact of the number of decoding iterations on the performance of the Stair
Lattice codes is investigated. The number of maximal decoding iterations is practically set
up to 20. The Stair Lattice code is set to code length 1,200 bits, code rate 3/4 and column
weight 6. Each submatrix is composed by four smaller submatrices with column weight 3.
Its slope parameters are as follows

[[24+92+124][31+8+42];[120+21+118][99+145+91]] …
[[25+55+85][15+50+51];[27+30+94][39+26+146]] …
[[111+142+131][106+2+88];[[138+87+29][97+68+95]][0]

As shown in Figure 4.24 the Stair Lattice codes achieve their optimal BER

performance already at the maximal decoding iteration 10. More decoding iterations can
be considered as negligible for the performance improvement. Therefore, again, a maximal
number for the decoding iterations of 10 is selected as basis for further investigation of the
Stair Lattice codes.

Code rate

The performance of the Stair Lattice codes is simulated at three different code rates,
i.e. 1/2, 2/3 and 3/4. The codes are constructed at code length 1,200 bits and column
weight 6. Their slope parameters are as follows

Code rate Slope parameter

1/2 [[234+226+137][109+201+205];[291+293+60][267+180+151]][0]
2/3 [[126+57+128][171+33+89];[196+113+133][80+22+28]] ...

[[65+118+25][85+61+164];[125+24+183][109+162+21]][0]

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 80

3/4 [[7+25+89][141+133+91];[117+101+99][76+24+43]] ...
[[83+128+51][88+144+116];[18+104+16][132+52+50]] ...
[[106+108+111][55+31+96];[138+118+75][70+97+39]][0]

1 2 3 4 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Lattice [L=1200,R=3/4,Iters=2]
Stair Lattice [L=1200,R=3/4,Iters=5]
Stair Lattice [L=1200,R=3/4,Iters=10]
Stair Lattice [L=1200,R=3/4,Iters=20]

Figure 4.24 Impact of decoding iteration on the performance of the length-1200, rate-3/4

Stair Lattice code

Figure 4.25 shows that the threshold performance of the Stair Lattice codes is subject

to get worse as the code rate increases. However, at the other side, the error floor
performance improves. The Stair Lattice code with code rate 2/3 can achieve a bit error
rate of 10-5 at about 3 dB which is 0.5 dB better than the code with code rate 3/4. However,
at higher signal-to-noise ratio, the Stair Lattice code with code rate 2/3 suffers from a
higher error floor. Meanwhile, the performance of Stair Lattice codes with code rate 1/2
degrades significantly at a higher signal-to-noise ratio due to poor error floor performance.
A high number of variables being part of the identity matrix could be responsible for the
high error floor at code rate 1/2.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 81

1 2 3 4 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Lattice [L=1200,R=1/2]
Stair Lattice [L=1200,R=2/3]
Stair Lattice [L=1200,R=3/4]

Figure 4.25 Performance of Stair Lattice codes with code length 1,200 bits at different

code rates

Column weight

Concerning the poor error floor performance of the Stair Lattice codes at lower code
rates, it is interesting to investigate the impact of the number of column weight on the code
performance. The Stair Lattice codes with code length 1,200 bits are constructed with
different numbers of column weights, i.e. 4, 6 and 8. The codes are than simulated at
different code rates, i.e. 1/2, 2/3, and 3/4.

First, the Stair Lattice codes are simulated at code rate 1/2 with the following slope
parameters

Column weight Slope parameter

4 [[70+27][271+191];[266+35][117+73]][0]
6 [[234+226+137][109+201+205];[291+293+60][267+180+151]][0]
8 [[99+170+187+121][81+128+231+102]; ...

[37+189+280+183][137+191+161+242]][0]

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 82

As shown in Figure 4.26 the increase of the weights of columns (WC) can improve
the performance of the Stair Lattice codes to some extent. At code rate 1/2 the Stair Lattice
codes show their best performance with a column weigh of 6. More column weight cannot
improve significantly the code performance.

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Lattice [L=1200,R=1/2,WC=4]
Stair Lattice [L=1200,R=1/2,WC=6]
Stair Lattice [L=1200,R=1/2,WC=8]

Figure 4.26 Impact of column weight on the performance of Stair Lattice codes with code

length 1,200 bits at code rate 1/2

Furthermore, the impact of the increased column weight is investigated in case of the
Stair Lattice codes with code length 1,200 bits at a code rate of 2/3. The simulated codes
are constructed with the following slope parameters

Column weight Slope parameter

4 [[19+123][28+89];[103+31][194+106]] ...
[[159+71][42+48];[190+62][110+84]][0]

6 [[126+57+128][171+33+89];[196+113+133][80+22+28]] ...
[[65+118+25][85+61+164];[125+24+183][109+162+21]][0]

8 [[43+122+158+59][198+126+108+75];[71+29+17+140] ...
[155+162+193+72]][[85+66+135+134][12+116+20+150]; ...
[173+52+153+113][139+5+30+22]][0]

Figure 4.27 shows the impact of the increased column weight in the Stair Lattice

codes at code rate 2/3. Again, the increased column weight improves the code performance

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 83

to some extent. The codes perform best at column weight 6. More column weight leads to
negligible code performance.

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Lattice [L=1200,R=2/3,WC=4]
Stair Lattice [L=1200,R=2/3,WC=6]
Stair Lattice [L=1200,R=2/3,WC=8]

Figure 4.27 Impact of column weight on the performance of Stair Lattice codes with code

length 1,200 bits at code rate 3/4

Finally, the impact of the increased column weight is investigated in the Stair Lattice
code with code length 1,200 bits at higher code rates, i.e. 3/4. The codes are constructed
with the following slope parameters

Column
weight

Slope parameter

4 [[69+120][51+81];[25+149][56+98]] ...
[[79+125][64+37];[124+133][131+105]] ...
[[28+26][20+113];[135+34][40+147]][0]

6 [[7+25+89][141+133+91];[117+101+99][76+24+43]] ...
[[83+128+51][88+144+116];[18+104+16][132+52+50]] ...
[[106+108+111][55+31+96];[138+118+75][70+97+39]][0]

8 [[30+126+107+82][38+9+142+108];[75+81+76+94][103+19+45+1]] ...
[[57+49+48+25][64+139+23+91];[22+6+96+87][92+58+89+125]] ...
[[133+68+13+138][130+129+101+62];[135+33+98+41][12+31+131+140]][0]

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 84

As shown in Figure 4.28 the Stair Lattice codes achieve their best performance at

column weight 6. The increased column weight contributes to a higher number of short
cycles in the bipartite graph that reduce the node independency, leading to degraded
decoding performance. The weight is not enough to improve the performance. Even this
leads to worse performance.

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Lattice [L=1200,R=3/4,WC=4]
Stair Lattice [L=1200,R=3/4,WC=6]
Stair Lattice [L=1200,R=3/4,WC=8]

Figure 4.28 Impact of column weight on the performance of Stair Lattice codes with code

length 1,200 bits at code rate 3/4

From the simulation result above, in general, the codes with low column weight
suffer from higher error floors. By increasing the column weight the error floor can be
effectively suppressed to some extent and therefore, the floor performance of the codes
improves. However, high column weight leads to degraded performance. At all code rates,
column weight 6 would be more appropriate

To some extent, a higher column weight can help the code in improving its
performance because more check nodes are involved, that lead to a more reliable decoding.
However, the number of column weights is restricted by the rule of thumb in decoding, i.e.
node independence. Higher column weights could mean lower node independence, which
in turn can reduce the decoding performance. Conclusively, the choice of column weights
in designing codes must concern with code rate and code length as well.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 85

c. Comparison of Both Stair Codes

The structure of both Stair codes is put in comparison. In the same length and code
rate, the cascade structure has less complexity than the lattice structure. The lattice
structure is more flexible in code rate than the cascade structure, however, at cost of more
cyclic-shift register. For example, at code rate 3/4, the number of cyclic-shift register for
the lattice structure is three times than that of the cascade.

In addition to that, the code rate of the cascade is confined to R = j/k, where k = j+1
and j, k are integers. Parameter j denotes the number of submatrices of the parity check
matrix of the Stair cascade codes. Meanwhile, the lattice structure support more flexible
code rates R = j/k, where j < k and j, k are integers. However, more cyclic-shift registers
are necessary to cope with the more flexible code rate.

The performance of both structures is put in comparison. Stair Cascade code are
compared to two Stair Lattice codes, whose structure is determined by the number of
smaller submatrix forming submatrix. The submatrix of the first Stair Lattice code is
composed by four smaller submatrices. Meanwhile, that of the second one contains nine
smaller submatrices. The Stair codes with code length 1,200 bits, code rate 3/4 and column
weight 6 are simulated. The simulated structures of those Stair codes have the following
slope parameters

Type Slope parameter

Cascade [146+203+285+193+298+1][104+121+55+281+184+124]
[169+154+215+247+208+165][0]

Lattice-4 [[7+25+89][141+133+91];[117+101+99][76+24+43]] ...
[[83+128+51][88+144+116];[18+104+16][132+52+50]] ...
[[106+108+111][55+31+96];[138+118+75][70+97+39]] [[0][-];[-][0]]

Lattice-9 [[23+94][86+46][40+59];[70+92][74+48][36+24];[69+65][5+87][47+72]] ...
[[32+91][80+42][88+43];[58+17][90+20][97+71];[62+57][49+38][61+81]] ...
[[25+12][3+89][50+73];[15+29][93+30][26+27];[35+85][14+33][9+13]] ...
[[0][-][-];[-][0][-];[-][-][0]]

As shown in Figure 4.29 the performance of both Stair codes is comparable. The

similar results also appear by comparing the performance of both Stair codes in the
previous section. In term of realization, the Stair Cascade code becomes the choice due to
its more practical hardware implementation. However, this choice is valid only for certain
code rates the Stair Cascade code can cope with, i.e. code rate t/(t+1), where t is integer.

At specific code rates other than t/(t+1), where t is integer, the Stair Cascade code can
be applied. For this case, only the Stair Lattice code is applicable. To prove the
performance of the Stair Lattice code at those code rates, three Stair Lattice codes with
code length 1,200 bits are constructed at code rate 3/8, 4/8 and 5/8. The structure of their
parity check matrices can be figured out in Figure 4.30. The permutation submatrices of

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 86

the parity check matrices in the systematic parts contain one column weight each.
Therefore, the column weight of the parity check matrices is proportional to the number of
vertically arranged permutation submatrices. For instance, in case of the 3/8-rate Stair
Lattice code, the parity check matrix with three vertically arranged permutation
submatrices contains a column weight of three. Using one-column-weight permutation
submatrices the 4/8-rate Stair Lattice code contains a column weight 4 and the 5/8-rate
Stair Lattice code contains a column weight 5.

0 1 2 3 4 5
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Stair Cascade [L=1200,R=3/4]
Stair Lattice-4 [L=1200,R=3/4]
Stair lattice-9 [L=1200,R=3/4]

Figure 4.29 Comparison of the performance of Stair Cascade and Stair Lattice codes with

code length 1,200 bits and code rate 3/4

(a) Code rate 3/8

(b) Code rate 4/8

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 87

(c) Code rate 5/8

Figure 4.30 Structure of parity check matrices of Stair Lattice codes with different code

rates

Figure 4.31 shows the performance those Stair Lattice codes. The Stair Lattice code
with code rate 4/8 performs best among them. However, it suffers from error floor due to
its greater identity matrix, which constitutes more one-degree variable nodes. The
simulated codes have slope parameters as follows.

0 1 2 3 4 5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

Stair Lattice [L=1200,R=3/8]
Stair Lattice [L=1200,R=4/8]
Stair Lattice [L=1200,R=5/8]

Figure 4.31 Performance of the length-1,200 Stair Lattice codes at specific code rates

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 88

Code
rate

Slope parameter

3/8 [[128][124][88];[100][67][129];[99][40][6];[144][35][63];[71][62][58]] ...
[[0][-][-][-][-];[-][0][-][-][-];[-][-][0][-][-];[-][-][-][0][-];[-][-][-][-][0]

4/8 [[134][109][22][93]; [39][59][27][62];[44][80][144][119]; [142][56][84][72]] ...
[[0][-][-][-];[-][0][-][-];[-][-][0][-];[-][-][-][0]]

5/8 [[79][74][46][101][144];[121][89][41][20][81];[116][128][64][123][147]] ...
[[0][-][-];[-][0][-];[-][-][0]]

d. Code Performance of Special Constructions

High-rate and Short-length Performances

Furthermore, the performance of the Stair codes is investigated at higher code rates.
Typically, higher code rate include the case (n-1)/n, where n is integer. For this reason the
Stair Cascade codes are selected. The Stair Cascade codes with code length 1,200 bits and
column weight 6 are simulated at code rate 3/4, 7/8 and 19/20. The slope parameters of
their parity-check matrices are presented below. As shown in Figure 4.32, in general, the
performance of the codes becomes poorer as the code rate increases. However, the Stair
Cascade codes still demonstrates good performance at the very high code rate 19/20.

0 1 2 3 4 5 6
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

Uncoded BPSK
Stair Cascade [L=1200,R=3/4]
Stair Cascade [L=1200,R=7/8]
Stair Cascade [L=1200,R=19/20]

Figure 4.32 Performance of Stair Cascade codes at high code rate

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 89

Code rate Slope parameter
3/4 [146+203+285+193+298+1][104+121+55+281+184+124] ...

[169+154+215+247+208+165][0]
7/8 [77+49+141+145+120+91][112+129+126+26+110+103] ...

[69+4+140+125+46+116][114+139+97+12+7+62] ...
[88+29+21+111+101+132][81+86+127+34+31+19] ...
[95+53+130+52+41+94][0]

19/20 [12+2+0+51+54+45][21+8+25+1+28+53][18+37+11+30+33+7] ...
[34+13+38+50+44+42][26+6+40+55+23+39][19+9+31+34+4+35] ...
[29+52+57+3+32+46][49+41+20+10+14+43][15+48+56+36+17+22] ...
[16+27+59+47+5+58][0+5+30+46+24+14][47+36+56+42+18+3] ...
[48+43+26+53+28+31][1+49+22+11+33+50][54+32+20+45+2+25] ...
[34+6+59+52+55+4][17+35+44+12+41+29][7+21+10+9+38+39] ...
[13+40+57+27+19+37][0]

The performance of the Stair codes at different code length, especially at very short

code length is also investigated. The Stair Cascade codes at arbitrary code length i.e. 128,
576, 2304 and 6000 bits are simulated at code rate 3/4. The slope parameter of their parity-
check matrix is presented below. In general, the Stair Cascade codes perform better as the
code length increases as shown in Figure 4.33. Especially, at very short code length, the
code still has good performance.

0 1 2 3 4 5
10

-7

10-6

10
-5

10-4

10
-3

10-2

10
-1

10
0

Eb/No

B
E

R

Uncoded BPSK
Stair Cascade [R=3/4,L=128]
Stair Cascade [R=3/4,L=576]
Stair Cascade [R=3/4,L=2304]
Stair Cascade [R=3/4,L=6000]

Figure 4.33 Performance of the rate-3/4 Stair codes at different code length

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 90

Code length Slope parameter
128 [19+10+15+7+17+20][2+23+5+4+18+14][25+6+31+8+26+27][0]
576 [24+105+123+26+69+94][11+31+122+141+16+116][62+23+114+81+7+60][0]
2304 [177+134+378+298+426+43][373+95+530+87+435+496]

[45+510+71+142+438+55][0]
6000 [524+581+241+663+1354+332][571+864+676+928+1216+1150]

[1121+41+277+282+1122+988][0]

Irregular Codes

So far the Stair codes with “quasi regular” column weight are considered. It is also
interesting to investigate the performance of the Stair codes with really irregular column
weights. The irregular Stair codes contain different numbers of column weights in their
submatrices.

The performance of the “regular” and irregular Stair Cascade codes with code length
1,200 bits are simulated at code rate 2/3 and 3/4. Both types of codes are compared at the
same number of column weight. At code rate 2/3, the regular code is constructed with
column weight 6, while the irregular code is constructed with column weight 8 and 4 in
two submatrices. Those codes are constructed with the following slope parameters

[109+311+190+87+325+38][83+377+199+157+238+282][0]

and

[165+182+378+322+194+243+31+89][339+76+133+242][0]

respectively.

At code rate 3/4, the regular code is constructed with column weight 6, while the
irregular code is constructed with column weights 9, 5 and 4 in three submatrices. Those
codes are constructed with the following slope parameters

[277+246+53+102+84+73][190+ 208+213+146+107][4+295+200+38+199+249][0]

and

[273+144+22+270+138+228+149+31+263][200+192+283+8+7] ...
[60+110+126+111][0]

respectively.

The simulation results show that the performance of the irregular Stair Cascade codes
is poorer than that of the regular ones (see Figure 4.34). The irregular codes suffer from
higher error floor. Even, at lower code rates, the error floor performance is poorer in the
irregular codes.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 91

1 2 3 4 5 6 7
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Cascade [L=1200,R=2/3,CW=[6,6]]
Stair Cascade Irreg [L=1200,R=2/3,CW=[8,4]]
Stair Cascade [L=1200,R=3/4,CW=[6,6,6]]
Stair Cascade Irreg [L=1200,R=3/4,CW=[9,5,4]]

Figure 4.34 Comparison of the regular and irregular Stair Cascade codes at code length

1,200 bits and code rate 2/3 and 3/4

e. Code benchmarking

In order to measure the quality of the proposed codes, the performance of the Stair

codes is put in benchmarking with several well-known LDPC benchmark codes, e.g.
random MacKay code. The performance of the Stair codes at special conditions, such as
high code rate or with short code is also considered and compared with some published
codes. Furthermore, it is also interesting to compare the performance of the codes with that
of WLAN codes. For the purpose of code benchmarking, the code rate t/(t+1), where the
design parameter t is integer, is of interest due to its widespread application. For their
simpler implementation, again, the Stair Cascade codes are selected.

Comparison with Random codes

Random MacKay codes are well-known benchmarking codes due to their historical
role in LDPC reinvention and their near-capacity BER performance. The Stair codes in
Cascade and Lattice with code length 1,200 bits, code rate 3/4 and column weight 6 are

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 92

simulated with the maximal number of iteration of 20 and constructed with the following
slope parameters

[148+88+222+105+245+25][204+161+100+198+203+110] ...
[90+231+45+31+279+21][0]

and

[[120+146+132][143+86+119];[60+137+38][63+85+102]] ...
[[118+28+87][80+44+123];[56+116+41][122+4+88]] ...
[[14+31+17][10+90+52];[110+18+59][82+68+140]][0]

respectively.

The comparison of their BER performance and MacKay code with the same
parameter and column weight 3 can be seen in Figure 4.35. Both types of Stair codes show
comparable BER performance and are capable of challenging MacKay codes.

1 2 3 4 5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Random Mackay [L=1200,R=3/4]
Stair Cascade [L=1200,R=3/4]
Stair Lattice [L=1200,R=3/4]

Figure 4.35 Comparison of the BER performance of Stair Codes with MacKay Codes

This achievement is of great interest because it is gained by the structured codes with

low encoding complexity. However, more intensive computation is conducted by the Stair
Codes in the decoding process due to more non-zero elements contained in their parity-
check matrices. In this case, the Stair Codes involves 5.700 non-zero elements. It means
about 58% more non-zero elements are taken into account in the decoding computations in

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 93

comparison with MacKay code. But the well-structured construction of the Stair Cascade
code is an advantage with respect to encoding complexity.

Furthermore, it is interesting to investigate if the Stair codes could be comparable
with random MacKay code with lower column weight in order to reduce decoding
complexity. The Stair Cascade codes with code length 1,200 bits are simulated at code rate
3/4 and the maximal number of iterations is 10. For benchmarking with sparse random
MacKay codes, the Stair Cascade codes are constructed with different number of column
weight, i.e. 3, 4 and 6. As described in the previous section, the role of the column weight
for the Stair codes is important for the determination of code performance.

As shown in Figure 4.36, in spite of better threshold performance, the Stair Cascade
codes with the comparable column weight, i.e. 3 and 4, cannot compete with random
MacKay codes at higher SNR region due to the high error floor. Therefore, a higher
number of column weights are necessary to improve the performance. Here, the
performance of the Stair Cascade code with column weight 6 is comparable with that of
random MacKay code with column weight 4.

1 2 3 4 5 6 7
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Random Mackay [L=1200,R=3/4,WC=3]
Random Mackay [L=1200,R=3/4,WC=4]
Stair Cascade [L=1200,R=3/4,WC=3]
Stair Cascade [L=1200,R=3/4,WC=4]
Stair Cascade [L=1200,R=3/4,WC=6]

Figure 4.36 Comparison of the performance of Stair Cascade codes and random MacKay

code at code length 1,200 bits, code rate 3/4.

Comparison with Short Length Code

The BER performance of the Stair codes is investigated at short code length. The
codes with code length 200 bits, code rate 3/4 and column weight 6 are simulated over an
AWGN channel with the maximal iteration number of 20. The code performance is then

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 94

compared with that of MacKay codes. As shown in Figure 4.37 the BER performance of
the Stair codes is comparable with that of MacKay codes.

The Stair Cascade code is constructed with the following slope parameters.

[36+31+18+44+4+25][3+23+26+41+19+42][35+9+20+37+7+45][0]

Meanwhile, the Stair Lattice code is constructed with the following slope parameters.

[[9+5+19][22+24+17];[0+3+6][1+11+23]] ...
[[2+20+18][8+4+7];[1+16+4][7+24+17]] ...
[[10+15+21][14+2+23];[11+19+12][18+5+0]][0]

1 2 3 4 5 6 7
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

Uncoded BPSK
Mackay [L=200,R=3/4]
Stair Cascade [L=200,R=3/4]
Stair Lattice [L=200,R=3/4]

Figure 4.37 Comparison of Stair codes with MacKay code at code rate 200 and code rate

3/4

The performance of the Stair codes at the short code length 400 bits is compared with
a code from difference families codes [JW02] at code rate 3/4. The difference families
[404, 303] codes are constructed with four submatrices with column weight 5, 5, 3, 2,
respectively. The number of column weight of the Stair Cascade codes is selected to cope
with that of the difference families codes for comparable decoding complexity. Two Stair
Cascade codes are constructed with column weight 3 and 5, with the following slope
parameters

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 95

[74+ 21+72][18+79+7][83+9+57][0]

and

[54+4+86+ 65+ 60][99+7+97+36+72][90+61+95+27][0]

respectively.

As shown in Figure 4.38 the Stair Cascade codes outperform the difference families
codes. The Stair code with lower column weight suffers from a high error floor. This
deficiency can be improved by a higher column weight. With column weight 6 the
decoding complexity of the Stair code is slightly higher than that of difference families.
The Stair Cascade code has 1,600 non-zero-elements, meanwhile the difference families
has 1,515 non-zero elements.

1 2 3 4 5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

Uncoded BPSK
Diff. Families [404,303]
Stair Cascade [L=400,R=3/4,WC=3]
Stair Cascade [L=400,R=3/4,WC=5]

Figure 4.38 Comparison of Stair Cascade codes and difference families code

Comparison with High-Rate Code

The BER performance of the Stair Codes in high code rate is also interesting to be
investigated because high code rate leads to significant performance degradation.
Regarding to comparable performance but more simple implementation in code rate

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 96

t/(t+1), where t is integer, the Stair Cascade is chosen as representative for testing stair
codes.

Here, the Stair Cascade codes with column weight 6 are simulated on an AWGN
channel at the maximal number of iteration of 10 at short code length and long code length
at code rate higher than 0.85. At short code length a Stair Cascade Codes is constructed
with code length 420 bits and code rate 6/7 (0.857). The Stair Cascade code is composed
of 6 submatrices with column weight 6 and an identity matrix with the following slope
parameters. The Stair Cascade code has the following slope parameters

[32+40+22+34+35+6][55+3+16+11+54+30][45+0+51+33+7+38] ...
[58+42+28+17+41+47][14+46+56+8+59+5][48+53+29+34+25+52][0]

It is also interesting to investigate the performance of the Stair Codes at higher code

rate but with longer code length. A Stair Cascade code is constructed with code length 480
bits and code rate 7/8 (0.875). The Stair Cascade code is composed of 7 submatrices with
column weight 6 and an identity matrix with the following slope parameters. The Stair
Cascade code has the following slope parameters

[52+32+19+7+12+50][2+18+14+10+28+11][46+59+38+5+39+47] ...
[42+6+34+30+24+44][20+37+55+22+21+23][31+41+16+34+3+8] ...
[4+33+0+53+26+57][0]

1 2 3 4 5 6 7
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Random Mackay [416,351]
Unital LDPC [416,351]
Stair Cascade [420,360]
Stair Cascade [480,420]

Figure 4.39 BER performance of high-rate short-length LDPC codes on AWGN channel

with a maximum iteration 10

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 97

The BER performance of the Stair Cascade code is then compared to random
MacKay codes with column weight 3 and a structured Unital LDPC code [JW03] with
code length 416 bits and code rate 0.84375, each, as shown in Figure 4.39. The Stair
Cascade code with code rate 7/8 is comparable with random MacKay codes, but is still
suboptimal to the Unital LDPC code. But, it is to note that with longer code length but
higher code rate, the Stair Cascade code outperforms both benchmarking codes. However,
the decoding complexity of the Stair Cascade code is higher than that of both
benchmarking codes due to its twice higher number of non-zero elements involved in the
decoding computation. But, the Stair Cascade code offers the advantages in low encoding
complexity and more simple code construction.

At long code length the Stair Cascade code is constructed at code rate 0.93 with code
length 7,200 bits. The Stair Cascade code is composed of 14 submatrices with column
weight 6 and an identity matrix with the following slope parameters

[240+24+252+220+92+155][437+409+124+31+162+163][8+42+153+360+159+208] ...
[152+0+451+242+305+472][193+120+330+166+21+300][118+346+99+34+324+470]
[194+463+314+171+429+347][364+158+406+336+291+476] ...
[207+181+474+457+145+91][221+25+294+372+55+175] ...
[229+213+356+228+367+422][199+448+85+198+389+15] ...
[285+381+50+164+196+230][51+261+27+248+30+94][0]

1 2 3 4 5 6 7
10-7

10
-6

10-5

10
-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Random Mackay [7296,6783]
Unital LDPC [7296,6783]
Stair Cascade [7200,6700]

Figure 4.40 BER performance of high-rate long-length LDPC codes on AWGN channel

with a maximum iteration 10

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 98

As shown in Figure 4.40, the Stair Cascade codes perform comparably with random
MacKay code, but are suboptimal to Unital LDPC codes. Again, the Stair Cascade codes
are higher in decoding complexity, but simpler in encoding complexity and construction
method.

Comparison with WLAN Codes

The BER performance of the Stair codes is compared to the WLAN codes [IEEE09].
The comparison of the codes is done at different code rates at code length 1,296 bits over
AWGN channel at the maximal number of iterations of 20. All Stair codes are constructed
with column weight 6.

At code rate 1/2 the Stair Cascade codes are composed of a submatrix and an identity
matrix with the following slope parameters

[366+371+608+521+275+122][0]

Meanwhile, the Stair Lattice codes are composed of a four-devided submatrix and an
identity matrix with the following slope parameters

[[128+142+270][231+272+73];[101+249+16][320+293+277]][0]

1 2 3 4 5 6 7
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1296,R=1/2]
Stair Cascade [L=1296,R=1/2]
Stair Lattice [L=1296,R=1/2]

Figure 4.41 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 1/2.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 99

As shown in Figure 4.41 the Stair codes are suboptimal to the WLAN code.

Moreover, the Stair code suffers from a high error floor.
The improvement of the BER performance of the Stair codes is done by involving

more check variables or equivalently more column weigth. In case of the Stair Cascade
code, the column weight is increased to 9. As shown in Figure 4.42 the BER performance
of the Stair Cascade improves significantly. However, the error floor is still there. In case
of the Stair Lattice, the increase of the column weight is also capable of improving the
BER performance of the code, however with high error floor as shown in Figure 4.43.

1 2 3 4 5 6 7
10

-7

10
-6

10
-5

10-4

10-3

10-2

10-1

10
0

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1296,R=1/2]
Stair Cascade [L=1296,R=1/2,CW=6]
Stair Cascade [L=1296,R=1/2,CW=9]

Figure 4.42 BER performance of the improved Stair Cascade codes and WLAN code at

code length 1,296 bits and code rate 1/2.

At code rate 2/3 the Stair Cascade codes is composed of two submatrices and an

identity matrix with the following slope parameters

[189+206+402+346+429+218][267+55+113+363+100+13][0]

Meanwhile, the Stair Lattice codes is composed of two four-divided submatrices and an
identity matrix with the following slope parameters

[[103+97+153][137+126+41];[141+122+99][59+113+23]] ...
[[185+171+73][191+30+40];[214+25+206][133+197+129]][0]

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 100

1 2 3 4 5 6 7
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R
Uncoded BPSK
WLAN [L=1296,R=1/2]
Stair Lattice [L=1296,R=1/2,CW=6]
Stair Lattice [L=1296,R=1/2,CW=8]

Figure 4.43 BER performance of the improved Stair Lattice codes and WLAN code at

code length 1,296 bits and code rate 1/2.

1 2 3 4 5 6 7
10

-7

10
-6

10-5

10
-4

10
-3

10-2

10
-1

10
0

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1296,R=2/3]
Stair Cascade [L=1296,R=2/3]
Stair Lattice [L=1296,R=2/3]

Figure 4.44 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 2/3.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 101

The simulation result shows that the BER performance of the Stair codes are still

suboptimal to WLAN code, but closer up to about 0.5 dB at the BER 10-5 as shown in
Figure 4.44. However, the Stair codes still suffer from a high error floor.

At code rate 3/4 the Stair Cascade codes is composed of three submatrices and an
identity matrix with the following slope parameters

[45+159+276+72+161+211][50+174+221+273+81+311] ...
[87+125+41+105+261+271][0]

Meanwhile, the Stair Lattice codes is composed of three four-divided submatrices and an
identity matrix with the following slope parameters

[[7+19+16][60+68+54];[106+139+59][161+102+66]] ...
[[11+21+49][46+134+89];[147+138+48][3+152+158]] ...
[[42+87+145][88+4+109];[62+140+144][119+115+104]] [0]

As shown in Figure 4.45 the simulation result shows that the BER performance of the

Stair codes is still poorer to that of the WLAN code, but as close as about 0.5 dB at the
BER 10-5. However, the Stair codes still suffers from a high error floor.

1 2 3 4 5 6 7
10-7

10
-6

10-5

10
-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1296,R=3/4]
Stair Cascade [L=1296,R=3/4]
Stair Lattice [L=1296,R=3/4]

Figure 4.45 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 3/4

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 102

At code rate 5/6 the Stair Cascade codes is composed of five submatrices and an
identity matrix with the following slope parameters

[62+189+120+30+50+110][34+73+84+78+180+185][97+152+150+172+8+176] ...
[89+153+4+105+76+158][199+22+140+23+7+201] [0]

Meanwhile, the Stair Lattice codes are composed of five four-divided submatrices and an
identity matrix with the following slope parameters

[[78+16+21][105+27+85];[61+100+67][71+36+10]] ...
[[48+58+98][12+52+5];[19+11+103][7+84+81]] ...
[[72+75+20][90+89+95];[31+94+34][51+66+93]] ...
[[2+40+62][37+41+53];[33+73+13][64+92+22]] ...
[[87+65+74][59+49+101];[47+30+82][15+45+102]][0]

As shown in Figure 4.46 the simulation result shows that the BER performance of the Stair
codes is still poorer to that of the WLAN code, but closer as about 0.5 dB at the BER 10-4.
Here, the error floor performance of Stair codes is not clearly depicted.

1 2 3 4 5 6 7
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1296,R=5/6]
Stair Cascade [L=1296,R=5/6]
Stair Lattice [L=1296,R=5/6]

Figure 4.46 BER performance of Stair codes and WLAN code at code length 1,296 bits

and code rate 5/6

Regarding to their good BER performance at high code rate, it is interesting to

investigate the performance of the Stair codes at code rate 5/6. At short code length of 648

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 103

bits, the Stair Cascade code is composed of five submatrices with column weight 6 and an
identity matrix with the following slope parameters

[2+14+38+39+36+107][23+10+25+73+13+37][47+58+55+20+86+98] …
[68+46+24+40+52+105][28+74+77+67+90+57][0]

1 2 3 4 5 6 7
10-7

10
-6

10-5

10
-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=648,R=5/6]
Stair Cascade [L=648,R=5/6]

Figure 4.47 BER performance of Stair codes and WLAN code at code length 648 bits and

code rate 5/6.

As shown in Figure 4.47 the Stair Cascade code outperform significantly the WLAN

code by about 1 dB at the BER 10-4.
At longer code lengths, the performance of the Stair codes at high rate is put in

benchmarking with that of the WLAN codes. For code length 1,296 bits and 1,944 bits, the
Stair Cascade code is composed of five submatrices with column weight 6 and an identity
matrix with the following slope parameters

[62+189+120+30+50+110][34+73+84+78+180+185][97+152+150+172+8+176] …
[89+153+4+105+76+158][199+22+140+23+7+201][0]

and

[11+241+61+256+69+191][85+320+251+144+52+172][80+68+213+242+134+16] ...
[7+246+45+294+18+226][236+273+142+153+81+63][0]

respectively.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 104

As shown in Figure 4.48, at longer code lengths, the performance of the Stair Cascade
codes at code rate 5/6 is relatively more comparable with that of the WLAN codes. The
Stair Cascade code with code length 1,944 bits performs relatively better and approaches
closer the performance of WLAN codes.

1 2 3 4 5 6 7
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
WLAN [L=1296,R=5/6]
Stair Cascade [L=1296,R=5/6]
WLAN [L=1944,R=5/6]
Stair Cascade [L=1944,R=5/6]

Figure 4.48 BER performance of Stair Cascade codes and WLAN code at code length

1,296 bits and 1,944 bits and code rate 5/6

In addition to their BER performance, it is also of interest to investigate their error
floor performance. The Stair Lattice code with code length 648 bits and code rate 5/6 has
the following parameters

[[40+43+53][6+28+20];[22+24+23][25+7+8]] …
[[49+15+14][36+33+1];[52+26+0][21+32+17]] …
[[30+39+2][9+46+5];[50+38+5][28+53+35]] …
[[11+10+48][15+4+23];[2+0+24][31+26+40]] …
[[45+20+42][30+25+16];[27+18+12][46+47+43]][0]

The Stair Cascade code with code length 1,944 bits and code rate 5/6 is constructed with
the following slope parameters

[11+241+61+256+69+191][85+320+251+144+52+172][80+68+213+242+134+16] ...
[7+246+45+294+18+226][236+273+142+153+81+63][0]

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 105

At lower code rate 3/4, the error floor performance of the Stair Lattice code with code
length 1,296 bits was also simulated. The code is constructed with the following slope
parameters

[[7+19+16][60+68+54];[106+139+59][161+102+66]] ...
[[11+21+49][46+134+89];[147+138+48][3+152+158]] ...
[[42+87+145][88+4+109];[62+140+144][119+115+104]][0]

1 2 3 4 5 6 7
10-10

10-8

10-6

10-4

10-2

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Stair Lattice [L=648,R=5/6]
Stair Lattice [L=1296,R=3/4]
Stair Cascade [L=1944,R=5/6]

Figure 4.49 Error-floor performance of Stair codes at high code rate

As shown in Figure 4.49, at code rate 5/6 the shorter Stair Lattice code can achieve a

BER of about 5x10-9 at Eb/No of 6dB, however, with the error floor tendency. While the
longer Stair Cascade code can achieve a BER of about 7x10-10 at Eb/No of 5dB. At code
rate 3/4, the Stair Lattice code can achieve a BER of about 3.6x10-10 at Eb/No of 5dB,
however, with the error floor tendency.

Impact of Girth Degree on Code Performance

Most of Stair codes contain a number of four-cycles. It is difficult to create Stair codes
for code rate 3/4 and 5/6 without four cycles. However, the existing of four cycles does
not lead to significant degradation of the code performance. Even, at higher code rate the

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 106

Stair codes perform best in either BER performance or error floor performance. As
described in [TJVW04, ZZ04] not all short cycles are equally harmful if the cycle
conditioning is effectively done. In addition to that, the number of cycles of girth 4 is not
enough to possibly degrade the decoding performance [ZP01d].

It is of great interest to understand what number of four-cycles leads to degradable
code performance. Stair Cascade codes with code length 1,296 bits, code rate 1/2 and
column weight 6 in different girth degree are simulated over AWGN channel at the a
maximal number of iterations of 20. The Stair Cascade codes have the following slope
parameters

Code Slope parameter Average girth degree of girth 4

1 [101+293+240+436+564+290][0] 0
2 [366+371+608+521+275+122][0] 2
3 [10+20+30+40+60+80][0] 24
4 [10+20+30+40+50+60][0] 40

The first code has no girth 4, while the others have all variable nodes with girth 4.

The difference of the latter lies on average girth degree of girth 4, that is 2, 24 and 40. The
codes 1 and 2 are constructed using the proposed code construction methods. Meanwhile,
the other codes with some higher average girth degree of girth 4 are constructed by
breaking the rule of avoiding four-cycles. Such codes with very high average girth degree
of girth 4 are never resulting from the permutation of the slope parameter.

The impact of the existence of girth 4 on the code performance is investigated by
comparing code 1 and 2. As shown in Figure 4.50 the performance of code 2 with girth 4
is comparable with that of code 1 with no girth 4. It is a proof that to some extent, the
existence of four-cycles with only a relative low number is not harmful enough for the
BER performance. On the other hand, the codes with relative high average girth degree
show their poor performance.

Furthermore, Stair Lattice codes with code length 1,296 bits, code rate 3/4 and
column weight 6 in different girth degree are simulated over an AWGN channel at the
maximal number of iteration of 20. The Stair Lattice codes have the following slope
parameters

Code Slope parameter Average girth degree
of girth 4

1 [7+19+16 60+68+54; 106+139+59 161+102+66]
[11+21+49 46+134+89; 147+138+48 3+152+158]
[42+87+145 88+4+109; 62+140+144 119+115+104][0]

3

2 [10+20+30 111+67+6; 20+30+40 144+33+106]
[60+80+100 23+64+39; 30+50+70 45+94+26]
[50+70+90 115+52+117; 70+90+110 151+4+135][0]

24

3 [10+20+30 50+70+90; 20+30+40 60+80+100]
[60+80+100 70+90+110; 30+50+70 80+100+120]
[50+70+90 20+40+60; 70+90+110 50+70+90][0]

96

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 107

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
E

R

Uncoded BPSK
Avg. Girth degree = 0
Avg. Girth degree = 2
Avg. Girth degree = 24
Avg. Girth degree = 40

Figure 4.50 Impact of girth degree of four cycles on BER performance of the length-

1,296, rate-1/2 Stair Cascade codes

1 2 3 4 5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

B
E

R

Uncoded BPSK
Avg. Girth degree = 3
Avg. Girth degree = 24
Avg. Girth degree = 96

Figure 4.51 Impact of girth degree of four cycles on BER performance of the length-

1,296, rate-3/4 Stair Lattice codes

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 108

The first Stair Cascade code is constructed with the proposed code construction
method; meanwhile, the others are constructed by breaking the rule of avoiding four-
cycles to allow the codes to have very high girth degree. The latter codes are never
resulting from the permutation of slope parameter.

Again, as shown in Figure 4.51, to some extent, the existence of four-cycles is not
harmful enough for the BER performance.The Stair Lattice code with girth degree 3 shows
the acceptable BER performance. While, the Stair Lattice codes with very high girth
degree perform poorly.

In general, the simulation results show that the girth degree gives more significant
impact on code performance than the girth. With the same average girth, the average girth
degree makes difference in code performance.

4.6 Conclusion

The work in this chapter presented a class of low density parity check (LDPC) codes
with a very efficient encoder. Their construction methods as well as their characteristics
have been discussed. The Stair codes are designed such that the codes have very low
encoding complexity as a proposed solution for LDPC codes’ drawback without
degradation in code performance.

In principle, the proposed codes have a parity-check matrix designed by composing
permutation submatrices and an identity submatrix. The way of constructing the
permutation submatrices differentiate the codes into cascade and lattice structure. In
comparison of both types of structures, the lattice structure can support different code
rates, while the cascade structure can only cope with limited code rate. However, the
lattice structure requires more shift register and addition operation at the same code rate
than the cascade structure.

The identity submatrix becomes the characteristic core for the proposed codes. It
plays an important role that makes the encoding process very efficient at one side and at
the other side determines mainly the code performance. In the encoding process, the
identity submatrix produces directly the parity check bits for the encoded messages.

The permutation submatrices are simply constructed by positioning the non-zero
elements according to slope parameter generated by a random permutation process. The
choice of slope parameter shall guarantee that no short-four-cycles exist in the proposed
codes. Two code construction methods are proposed, namely, the slope method and the
girth degree method. Both methods serve for proving the possible existing of the short-
four-cycles.

In fact, the probability that the Stair codes contain the short-four-cycles with higher
code rate is increased. The Stair codes with code rate 1/2 and 2/3 are relatively easier to
generate without containing short-four-cycles. But, at higher code rate 3/4 and 5/6 the
existence of the short-four-cycles could not be avoided. However, it is of interest to note
that in spite of the existence of the short-four-cycles, the Stair codes are not suffering from
performance degradation. They show a performance comparable to some benchmarking
LDPC codes, such as random MacKay codes. Even, at short code length and high code

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 109

rate, the Stair codes are able to outperform the difference families codes and the WLAN
codes. This proves that the number of short-four-cycles in the Stair codes can be
considered as still harmless for decoding performance.

However, the drawback of the Stair codes is observed at lower code rate 1/2 and 2/3.
Although the codes show good threshold performance in the water-fall region, the codes
are suffering from high error floor at high SNR region. This poor floor performance is
correlated with the stair structure represented by the identity submatrix. The existing of
degree-1 variable (parity) nodes is considered as responsible for such unacceptable
performance. Their contribution to update of message passing during the iterative
decoding process is relative insignificant. They only bounce the message coming from
their associated single check nodes. In addition, the probability that the trapping sets
considered as source of poor error-floor performance is higher than the number of variable
(parity) node increases or correspondingly, the code rate decreases. To some extent, the
floor performance of the Stair codes could be improved by appropriately increasing the
column weight of the permutation submatrices. However, this improvement is achieved at
cost of higher decoding complexity. The improvement efforts have to be made and of
interests for the future work. At higher code rate, the Stair codes can achieve good floor
performance at BER 10-9.

In comparison with the WLAN codes, the Stair codes are still relative suboptimal,
especially at lower code rate 1/2 and 2/3. But, at higher code rate 3/4 and 5/6, the
performance of both codes can be considered as comparable. Even, at short code length
648 bits with high code rate 5/6, the Stair codes are capable of outperforming the WLAN
codes. In spite of poorer performance in general, the encoding complexity of the Stair
codes is relative lower than that of the WLAN codes. Thank to their stair structure of
degree-1 variable represented by the identity submatrix in the parity-check matrix, the
parity bits of the encoded message can be derived directly from the parity-check matrix.
Meanwhile, with their stair structure of degree-2 variable the WLAN codes do substitution
process to produce their parity bits, what leads to longer encoding latency time. However,
in decoding complexity, the Stair codes require relatively more intensive computation due
to their higher non-zero elements in their parity-check matrix.

In general, the proposed Stair codes show their best performance mostly at higher
code rate. Their relative simpler code construction and lower encoding complexity are the
main advantages of these codes and could be of the reasons to choose them for any WLAN
application requiring high-rate transmission.

Again, here it is shown that the code performance is not only determined by girth as
supposed in the graph theory, but also is derived by its girth degree. The latter parameter
gives even more significant impact on the code performance than the first one. With the
same average girth, the average girth degree can degrade the code performance when to
some extent its high number is large enough to reduce the nodes interdependency so that
the work of the message-passing based decoding algorithm can be not effective.

CHAPTER 4 CODE CONSTRUCTION WITH STAIR STRUCTURE

 110

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 111

CHAPTER 5

TWO-STAGE DECODING FOR ITERATION
REDUCTION

5.1 Background

In this chapter a novel simple method to enhance the performance of LPDC codes in
high-order modulation is presented. In this method a two-stage decoding process making
use of a feedback mechanism for improving the decoding convergence is discussed. By
making use of soft-output of decoder, the method is able to improve the reliability of log-
likelihood ratios (LLR) of bits in the decoding process, which leads to a reduction of the
average number of decoding iterations. The method is simulated under different conditions
of LDPC codes, including code length, code types, maximal iteration number, and bit
constellation as well. Regarding to its possible application in WLAN environment, it is
interesting to test the efficacy of the proposed method in case of short-length code, small
iteration number, and high-order modulation. The simulation over AWGN channel shows
that the two-stage decoding strategy contributes significantly to the reduction of decoding
iterations at the waterfall region without sacrificing the BER performance.

5.2 Concept and Methods

Several publications have proposed some methods to reduce the decoding complexity
by reducing the number of iterations, with or without negligible deterioration in error
correction performance. In [Zimm04], the authors used a threshold rule to decide whether
a variable node of LDPC decoder should update its information in subsequent iterations of
the decoding process or it can be considered as converged. [GP05] proposed a method of
reducing the number of iterations which is based on detecting the cycles in the soft-word
sequence and stopping the decoder when a cycle is detected. The proposed stopping
criterion assumes that a cycle is found, when a soft word is identical to a soft word of a
previous iteration. [LK08] proposed an algorithm to eliminate unnecessary parity check
computations by exploiting the structure of dual-diagonal LDPC codes. Once all data bits
are successfully decoded, the decoder can stop immediately without waiting for the
remaining parity bits to converge.

In this work, the two-stage decoding has the same objective, i.e. to reduce the number
of decoding iterations without significant deterioration in the BER performance
[HEK07c]. Inspired by the observation of the development of the LLR during decoding

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 112

process as described later, the idea of the proposed method is to improve the LLR of a
LDPC block by using the information of bit nodes (referred to as soft-output), from which
the decisions on the codeword bits are made in the standard decoding. By applying a
feedback mechanism after the first decoding stage, the decoding convergence in the
second decoding stage shall be improved. For this purpose, a different maximal number of
iterations are established in both decoding stages in such a way that the average number of
iterations becomes minimal. In practical sense, this idea shall reduce the number of
iterations needed to converge. Hypothetically, this additional information can be used to
enhance the bit reliability in the second decoding and therefore improves the system
performance with less decoding iterations.

The two-stage decoding can be described as following as shown in Figure 5.1. The
soft-input of the received LDPC block Li is fed into the decoder and iteratively decoded
with the sum-product algorithm. After a maximum number of decoding iterations is
achieved or the codeword is found, the soft-output vector Lo at the decoder output is
weighted with a constant weighting factor wo and fed back as additional information for
the original soft-input Li. The new soft-input is then fed back into the decoder and
iteratively decoded. After several numbers of feedback iterations, the hard-decision on the
codeword is made relatively faster. The problem investigated here is to find a good
weighting factor wo and a maximal number of iteration for the second decoding, which
leads to the enhancement of the system performance.

Symbol
Mapper LDPC

Decoder

ūu c y
LDPC

Encoder

AWGN
Channel

Lo

LiLLR
module

x

wo

Symbol
Mapper LDPC

Decoder

ūu c y
LDPC

Encoder

AWGN
Channel

Lo

LiLLR
module

x

wo
Figure 5.1 Scheme of the two-stage decoding

Mathematically, the scheme of the feedback decoding can be expressed as follows

Li-2 = Li + wo Lo (5.1)

where Li denotes the input LLR for the first decoding process, Li-2 denotes the input LLR
for the second decoding process, Lo denotes the output LLR from the first decoding
process, and wo denotes weighting factor for the soft-output.

For a better description, the two-stage decoding can be modeled by two decoding
stages as shown in Figure 5.2. The first decoding stage executes iteratively the decoding
process for the LLR of the information received from the transmission channel, Li. The
process at the first stage can be simply modeled as follows

Lo = decoding(Li) (5.2)

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 113

Figure 5.2 Two-stage decoding in LDPC decoder

Thereafter, the result of the first decoding stages Lo, is weighted by a scalar weighting

factor wo and then added to the received LLR Li. The process at the second stage can be
simply modeled as follows

Lo-2 = decoding (Li + wo × Lo) (5.3)

Figure 5.3 Flow diagram of two-stage decoding algorithm

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 114

The algorithm of two-stage decoding as depicted in Figure 5.3 can be summarized as
follows

1. The received information bits are softly decoded by calculating each Log-likehood
ratio P(0)/P(1) of each bit (respectively the LLR) and at the end, thresholding the
LLRs to bit value (+1 or -1)

2. Comparing received bits with transmitted codeword bits. If both are matched, the
decoding continues with new received bits. If no match is found and the first maximal
iteration number is not achieved yet, the LLRs are subject to further soft decoding by
going back to step 1.

3. If no match is found and the maximal iteration number is exceeded, the LLRs are
scalar-weighted and added to the initial LLRs in the feedback mechanism.

4. The new LLRs are softly decoded and thresholded.
5. If decoded bits do not match with the codeword bits, the LLRs are subject to further

decoding. If the maximal iteration number is exceeded, the decoding fails.

In the two-stage decoding, the number of iterations to decode a message block is the
sum of iteration numbers in two decoding processes. The setting of the maximal number of
iterations becomes important to achieve the significant reduction of decoding iteration.

The idea of the proposed method is coming from the observation of the development
of LLR during decoding process. As shown in figure 5.4, it is realized that there are six
curve types representing the development of LLR which is taken at a SNR in the waterfall
region. From the observation, it is realized that typically the LLRs of bits subject to
correction develop across the axis (LLR = 0) to be correctly decoded (line type 2 and 4 in
Figure 5.4). If this is not the case at the last iteration, the bits remain with false LLR.

1 2 3 4 5 6 7 8

-1

-0.5

0

0.5

1

Number of Iteration

LL
R Type 1

Type 2
Type 3
Type 4
Type 5
Type 6

Figure 5.4 Typical development of LLRs at the waterfall region

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 115

As highlighted before, the feedback mechanism involved in two-stage decoding is
used to reduce the number of iterations and therefore reduces the decoding complexity. As
shown in Figure 5.5 the development of LLR is almost not changing during the iteration
under conditions with low SNR leading to poor BER performance. The change of LLR
begins to become significant from the beginning of the waterfall region (in this case 9dB)
and gets higher as SNR increases. This change of LLR can be advantageous as additional
information to reduce the decoding iteration.

2 4 6 8 10
0

0.5

1

1.5

2

Number of Iteration

LL
R

Es/No = 7dB
Es/No = 8dB
Es/No = 9dB
Es/No = 9.5dB
Es/No = 10dB

Figure 5.5 Development of LLRs depending on SNR

The idea of feedback decoding in the proposed decoding scheme is to accelerate the

development of LLR of bits subject to false decoding into its corresponding correct
decoded value. Figure 5.6b depicts the simplified model of the development of LLR of a
bit subject to false decoding during the increased iteration number. Instead of following
the relative slower development of the LLR in generic decoding in feedback mechanism,
the first decoding stops after a certain maximal number of iterations and the resulting LLR
becomes a part of the LLR leading to an accelerated decoding process in the second
decoding stage.

5.3 Simulation Results

The objective of this part of research is to achieve comparable performance with less
iterations for LDPC codes working at lower SNR.

To prove the efficiency of the proposed method, the simulation is conducted as
follows

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 116

1. As simulation basis, the 16QAM system with irregular/random MacKay-Neal code
with column weight of three and code length of 1,200 bits is established to test the
efficiency of feedback decoding using an AWGN channel.

2. Two feedback parameters leading to the achievement of the objective are
investigated, i.e. the weighting factor and the combination of the maximal number of
iterations for two decoding stages.

3. The feedback decoding is tested on different condition, including type LDPC codes,
i.e. random/irregular and structured/regular codes, code length, i.e. short and
moderate ones, and on constellation number, i.e. 16QAM and 64QAM. This
procedure is to accomplish to prove the generality of the application of the proposed
method.

2 4 6 8 10
-1

-0.5

0

0.5

1

Number of Iteration

LL
R

(a)

(b)

Figure 5.6 Development of LLR of bit subject to fail decoded in generic decoding (a) and
its model denoting decoding improvement using feedback decoding

It is known that the all-zero codewords are adequate for assessing the performance of

a linear code with a symmetrical channel and a symmetrical decoding algorithm. However,

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 117

in case of a high-modulation system, due to the asymmetry of a signal set, i.e. QAM, the i-
th, i ∈{0, 1, ... , L - 1}, where L denotes constellation bit level, binary-input component
channel is not output symmetric [RU01], and thus, it cannot be assumed that the decoder
errors are in the same positions, regardless of which codeword is transmitted. A paper by
Hou et al. [Hou01, Lim03] developed a method to make the equivalent binary-input
component symmetric channels by introducing “independent and identically (i.i.d.)
channel adapters,”

An i.i.d. source generates i.i.d. random variables with ti ∈{0, 1}, i ∈{0, 1, ... , L - 1}
with P(ti = 0) = P(ti = 1) = 1/2. A modulo-2 adder adds LDPC-coded bit xi and the random
number ti to get di = xi ⊕ ti. The multiplier performs the following operation:,

()i
ii tqq 2100 −⋅= , where iq0 is the log a posteriori probability ratio (LAPPR) from the

channel output at coding level i. The new equivalent binary-input component channel
satisfies the required symmetry condition given by as verified in [Hou01], and hence, it
can be assumed that the all-zero codeword is transmitted when evaluating system
performance [RU01]. For each coding level i, the signal set wit the average signal energy
Es is transmitted over AWGN channel, the noise standard deviation is fixed at 2

iσ .

5.3.1 Two feedback parameters

Finding the best combination of two feedback parameters leading to the best
performance, i.e. the weighting factor and the maximal number of iterations for two
decoding stages would be an exhaustive effort. However, the finding process is simplified
in such way that the best value of one parameter is explored while fixing the other
parameter at certain values.

The best weighting factor is explored, while setting the maximal number of iterations
as high as possible in practical computation. For this, the value of 16 is chosen because
this lower number is quite challenging from a practical point of view in achieving higher
decoding speed. In exploring the best combination of the maximal number of iterations,
this number is divided into two maximal numbers of iteration for each decoding stage.

The best weighting factor

In order to find the best weighting factor, the maximal number of iterations for each
decoding is set to 8 each. Using a heuristics mechanism, some values for the weighting
factor w0 are investigated on the basic simulation, i.e. 0.1, 0.5, 2 and 10. The simulation
results show that the weighting factor of 0.5 gives the best achievement in terms of
iteration reduction and BER performance [see Figure 5.7]. It is also shown that by
applying appropriate weighting factors the two-stage decoding can achieve better BER
performance with less iterations.

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 118

8 9 10 11 12

10-4

10-3

10
-2

10-1

100

SNR, Es/No (dB)

B
E

R

Uncoded 16QAM
Standard [max.iter=16]
Two-stage [max.iter=8+8,w0=0.1]
Two-stage [max.iter=8+8,w0=0.5]
Two-stage [max.iter=8+8,w0=0.2]
Two-stage [max.iter=8+8,w0=10]

(a) BER performance

8 9 10 11 12

4

8

12

16

20

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=16]
Two-stage [max.iter=8+8,w0=0.1]
Two-stage [max.iter=8+8,w0=0.5]
Two-stage [max.iter=8+8,w0=0.2]
Two-stage [max.iter=8+8,w0=10]

(b) Average number of iterations

Figure 5.7 Comparison of BER performance and Iteration by different weighting factor.

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 119

The best combination of maximal number of iteration

Here, the optimal combination of the maximal number of iteration for two decoding
stages is investigated. A criterion for fixed maximal number of iterations for the first
decoding stage is established. The number is chosen so that it is able to contribute to small
numbers of the average number of iterations. The number is set as small as possible, but it
is still capable of indicating the LLR change as additional information for the second
decoding stage. On the other side, smaller fixed numbers of maximal iterations for the first
decoding stage makes that for the second decoding stage greater, which ensures more bit
reliability in the decision process.

Using the best weighting factor of 0.5, the combination of the maximal number of
iterations for both decoding stages is investigated by setting 2 and 14, 8 and 8 and 14 and 2
for the maximal number of iterations of 16. The simulation results show that the combined
iteration number of 2 and 14 gives the largest reduction of the iteration numbers [see
Figure 5.8]. The combination of smaller iteration numbers for the first decoding stage
gives also the best result in the iteration reduction for higher iteration numbers, i.e. 100.

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Uncoded 16QAM
Standard [max.iter=16]
Two-stage [max.iter=2+14]
Two-stage [max.iter=8+8]
Two-stage [max.iter=14+2]

 (a) BER performance (16 iteration)
8 9 10 11 12

4

8

12

16

20

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=16]
Two-stage [max.iter=2+14]
Two-stage [max.iter=8+8]
Two-stage [max.iter=14+2]

(b) Iteration (16 iteration)

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Uncoded 16QAM
Standard [max.iter=100]
Two-stage [max.iter=2+98]
Two-stage [max.iter=50+50]
Two-stage [max.iter=98+2]

 (c) BER performance (100 iterations)
8 9 10 11 12

0

20

40

60

80

100

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=100]
Two-stage [max.iter=2+98]
Two-stage [max.iter=50+50]
Two-stage [max.iter=98+2]

 (d) Iteration (100 iterations)
Figure 5.8 Comparison of BER performance and iteration number by different

combination of iteration numbers

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 120

This fact shows that the small maximal number of iterations in the first decoding

makes it possible to cut the useless decoding iteration. Instead, a higher number of
iterations for the second decoding stage is set, which leads the decoding processes to better
decoding convergence and in turn, less decoding iteration effort.

The simulation result proves that the reduction of average number of iteration can be
achieved without sacrificing the performance. This resulting decoding improvement takes
place in waterfall region.

5.3.2 Generality of Two-stage decoding

By investigating the feedback decoding on different conditions, the generality of the
application of the proposed method will be proven. Firstly, the feedback decoding is tested
on a higher modulation system, i.e. 64QAM. Furthermore, the impact of the code length
on the efficiency of the feedback decoding is investigated by applying the codes with code
length 600 bits and 2,400 bits. At the end, the efficiency of the feedback decoding is
investigated for structured codes, i.e. array codes. All simulations are conducted under a
different maximal number of iterations, whose reduction becomes the objective of the
proposed method. Three maximal numbers of iterations are set for the simulation, i.e. 16,
100 and 1000. In all cases, the feedback decoding takes the maximal number of iterations
of two for its first decoding stage, so that the simulations are controlled by three
combinations of a maximal number of iterations, i.e. 2 and 14, 2 and 98, and 2 and 998.

Simulation basis

The feedback decoding is investigated on the 16QAM system. The irregular code
based on the MacKay-Neal algorithm with column weight of three and code length of
1,200 bits is introduced. The simulation results show that the feedback decoding is
effective to reduce the average number of iterations. As shown in Figure 5.9, at the small
maximal number of iterations, i.e. 16, the iteration reduction can achieve 35%, however,
with no significant improvement in BER performance. The efficiency of the feedback
mechanism gets higher at higher maximal numbers of iterations, where better BER
performance can be achieved by lower numbers of iterations. The feedback mechanism
can reduce the iteration number up to 70% and 95% at the maximal iteration numbers of
100 and 1000, respectively.

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 121

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (a) BER performance (16 iterations)

8 9 10 11 12
0

4

8

12

16

20

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (b) Iteration (16 iterations)

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (c) BER performance (100 iterations)

8 9 10 11 12
0

20

40

60

80

100

120

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (d) Iteration (100 iterations)

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (e) BER performance (1000 iterations)

8 9 10 11 12
0

200

400

600

800

1000

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (f) Iteration (1000 iterations)

Figure 5.9 Impact of feedback decoding in the 16QAM system, irregular codes with code

length 1,200 bits on BER performance and average number of iterations

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 122

Higher Bit Constellation

The impact of the feedback mechanism on the iteration reduction is also investigated
at higher bit constellations, i.e. 64QAM. As shown in Figure 5.10, the simulation results
show that the feedback mechanism can reduce the iteration number up to 80% at maximal
number of iterations of 100 and 1000.

Code Length

The impact of the feedback decoding on the reduction of the decoding iterations is
investigated for different code lengths. The investigation started with short-length LDPC
codes. By applying irregular MacKay-Neal LDPC codes with code length of 600 bits as
test LDPC code, it is realized in Figure 5.11 that the feedback decoding contributes to the
reduction of decoding iterations without BER performance losses for different maximal
numbers of iterations.

13 14 15 16 17

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Uncoded 64QAM
Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (a) BER performance (16 iterations)

13 14 15 16 17
4

8

12

16

20

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (b) Iteration (16 iterations)

13 14 15 16 17

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (c) BER performance (100 iterations)

13 14 15 16 17
0

20

40

60

80

100

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (d) Iteration (100 iterations)

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 123

13 14 15 16 17

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (e) BER performance (1000 iteration)

13 14 15 16 17
0

200

400

600

800

1000

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (f) Iteration (1000 iterations)

Figure 5.10 Impact of feedback decoding in the 64QAM system, irregular codes with code

length 1,200 bits on BER performance and average number of iterations

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (a) BER performance (16 iterations)

8 9 10 11 12
0

4

8

12

16

20

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (b) Iteration (16 iterations)

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (c) BER performance (100 iterations)

8 9 10 11 12
0

20

40

60

80

100

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (d) Iteration (100 iterations)

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 124

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (e) BER performance (1000 iterations)

8 9 10 11 12
0

200

400

600

800

1000

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (f) Iteration (1000 iterations)

Figure 5.11 Impact of feedback decoding in the 16QAM system, irregular codes with code
length 600 bits on BER performance and average number of iterations

The impact of the feedback decoding on the reduction of decoding iterations for

LDPC codes with higher code length is investigated. With irregular MacKay-Neal LDPC
code with code length of 2,400 bits, it is shown in Figure 5.12 that the feedback decoding
is effective in reducing decoding iterations without BER performance losses.

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (a) BER performance (16 iterations)

8 9 10 11 12
4

8

12

16

20

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (b) Iteration (16 iterations)

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (c) BER performance (100 iterations)

8 9 10 11 12
0

20

40

60

80

100

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (d) Iteration (100 iterations)

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 125

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (e) BER performance (1000 iterations)

8 9 10 11 12
0

200

400

600

800

1000

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (e) Iteration (1000 iterations)

Figure 5.12 impact of feedback decoding in the 16QAM system, irregular codes with code

length 2,400 bits on BER performance and average number of iterations

Structured Codes

The impact of two-stage decoding on the reduction of decoding iterations in case of
structured codes is also investigated. As test code, an array LDPC code [Fan00, EO01]
with code length of 1,200 bits and a column weight 6 is considered. The two-stage
decoding shows its impact in reducing the number of decoding iterations for different
maximal numbers of iterations as shown in Figure 5.13.

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (a) BER performance (16 iterations)

8 9 10 11 12
4

8

12

16

20

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=16]
Two-stage [max.iter=2+14]

 (b) Iteration (16 iterations)

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 126

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (c) BER performance (100 iterations)

8 9 10 11 12
0

20

40

60

80

100

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n

Standard [max.iter=100]
Two-stage [max.iter=2+98]

 (d) Iteration (100 iterations)

8 9 10 11 12

10
-4

10
-3

10
-2

10
-1

10
0

SNR, Es/No (dB)

B
E

R

Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (e) BER performance (1000 iterations)

8 9 10 11 12
0

200

400

600

800

1000

SNR, Es/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

n
Standard [max.iter=1000]
Two-stage [max.iter=2+998]

 (f) Iteration (1000 iterations)

Figure 5.13 Impact of feedback decoding in the 16QAM system, array codes with code

length 1,200 bits on BER performance and average number of iterations

Maximal Number of Iteration

As the objective of the two-stage decoding is to reduce the number of decoding
iterations, the impact of the selection of the maximal iteration numbers on the performance
of the two-stage decoding becomes important. In the simulation, three values of the
maximal iteration numbers of the two-stage decoding are given, i.e. 2 and 14, 2 and 98,
and 2 and 998. Related to the objective, their resulting average iteration number is put in
comparison with that resulting from the standard decoding with the maximal iteration
numbers 16, 100 and 1000, respectively.

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 127

8 9 10 11 12
0

20

40

60

80

100

SNR, Es/No (dB)

Ite
ra

tio
n

re
du

ct
io

n
(%

) Max.Iters=2+14
Max.Iters=2+98
Max.Iters=2+998

 (a) MacKay code, 16QAM, 1200 bit

13 14 15 16 17
0

20

40

60

80

100

SNR, Es/No (dB)

Ite
ra

tio
n

re
du

ct
io

n
(%

)

Max.Iters=2+14
Max.Iters=2+98
Max.Iters=2+998

 (b) MacKay code, 64QAM, 1200 bits

8 9 10 11 1
0

20

40

60

80

100

SNR, Es/No (dB)

Ite
ra

tio
n

re
du

ct
io

n
(%

) Max.Iters=2+14
Max.Iters=2+98
Max.Iters=2+998

 (c) MacKay code, 16QAM, 600 bits

8 9 10 11 12
0

20

40

60

80

100

SNR, Es/No (dB)

Ite
ra

tio
n

re
du

ct
io

n
(%

) Max.Iters=2+14
Max.Iters=2+98
Max.Iters=2+998

 (d) MacKay code, 16QAM, 2400 bits

8 9 10 11 12
0

20

40

60

80

100

SNR, Es/No (dB)

Ite
ra

tio
n

re
du

ct
io

n
(%

) Max.Iters=2+14
Max.Iters=2+98
Max.Iters=2+998

 (e) Array code, 16-QAM, 1200 bits

Figure 5.14 Impact of the two-stage decoding on the reduction of iteration numbers for

different condition

As shown in Figures 5.14, in general, the reduction of average iterations occurs at
SNRs within the water-fall region. Greater reduction of the average iterations is achieved

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 128

at greater maximal iteration numbers. The peak of iteration reduction is obviously
achieved around the middle of the water-fall region. This is not shown clearly yet in case
of relative longer code lengths due to long simulation time (see Fig. 5.14.d, refer to Fig.
5.12). Furthermore, SNR values at the lower and higher part of water-fall region become
critical because at those regions the improvement in decoding is not obvious yet due to
relative constant development in LLR values (refer to Fig.5.5). This is the reason that in
some cases in Fig. 5.14 there are cross-sections between the curve of iteration reduction
within the lower and higher part of the water-fall region due to still unobvious efficiency
of the proposed decoding method in the reduction of average iterations within those
regions.

Figure 5.15 Model of LLR development during iterations for low and high numbers of
decoding iterations

The difference of the impact of the two-stage decoding depending on the maximal

number of iterations can be illustrated in Figure 5.15. The larger iteration reduction is
gained by the two-stage decoding at the higher number of decoding iterations because it
benefits from ineffective longer iterations.

5.3.4. General Observation

According to simulation results, the two-stage decoding is effective to reduce the
number of iterations necessary to decode the codeword in the water-fall region. In the
region before water-fall region (lower SNR), the number of iterations in the two-stage
decoding approaches the maximal number of iterations as well as that of normal decoding.
It means that the feedback decoding brings no improvement in reducing the iterations
during the decoding process at bad SNRs, at which no significant change in LLR values is
experienced as shown in Figure 5.16. Meanwhile, in regions after the water-fall region
(higher SNR), the number of iterations in the two-stage decoding is approximately similar
to that of the standard decoding approaching the very small number of iterations. It means
the change of the LLR value, which is excited by the two-stage decoding, gives only a
subtle impact on the greater change of the LLR value due to the high SNR.

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 129

Some results show that the feedback decoding gives also subtle improvements in
BER performance in the waterfall region. Such improvements are also given by [Zhe06]
that proposed the time-delay feedback control method for his LDPC decoding, which
controls signals formed from the difference between the current state and the state of the
system delayed by some time period.

Figure 5.16 Model of the LLR development during iterations under influence of SNR

In general, the two-stage decoding is capable of improving decoding process leading
to the reduction of iteration numbers. The iteration reduction means higher decoding
speed, which is important for broadband applications, and also reduced decoding
complexity, which saves hardware resources and cost.

Moreover, the two-stage decoding performs well at any condition of some system
parameters, i.e. code type, code length, bit constellation and decoding iterations. It means
that the performance of the two-stage decoding is independent of those system parameters.
The only condition influencing the performance of the two-stage decoding is the SNR
value, at which the system is working. As predicted in the idea, the two-stage decoding
gives good impact on the iteration reduction at the SNR in the water-fall region.

5.4 Conclusion

In this chapter, the two-stage decoding for reducing the average number of iterations
in case of high coded modulation has been presented. In principal, the proposed decoding
scheme makes use of the output message from the first decoding stage as additional
information for the second decoding stage. In order to achieve the objective, i.e. maximal
iteration reduction, the weighting factor for the output message as well as the combination
of the maximal number of iterations within two decoding stages must be appropriately
chosen.

CHAPTER 5 TWO-STAGE DECODING FOR ITERATION REDUCTION

 130

 The simulation results show that in comparison with the standard decoding, the two-
stage decoding needs less average number of iterations to achieve the comparable code
performance. The level of iteration reduction becomes more significant as the maximal
number of iterations is set higher. It means that in certain conditions prolonging iteration
brings no potential improvement leading to rightly decoded messages.

It is of interest that the iteration reduction resulting from the two-stage decoding
brings mostly no performance degradation. Even, in some cases, the proposed decoding is
capable of improving code performance in the water-fall region of the SNR. This is
strongly correlated with the simulation results showing the largest level of iteration
reduction takes place in the water-fall region of the SNR. In the other SNR regions, no
significant iteration reduction is achieved by the proposed method.

CHAPTER 6 CONCLUSIONS

 131

CHAPTER 6

CONCLUSION

This thesis consists of three topics. The first topic discusses theoretical aspect of
LDPC codes, i.e. a novel concept for code performance measure. The other topics discuss
practical aspects of LDPC codes, i.e. code construction and decoding improvement. The
latter topics are strongly developed in relation with the requirement of WLAN system,
while the previous one is used for analyzing the proposed codes and other codes in term of
code performance.

In the first topic, the novel concept on girth degree to characterize and evaluate LDPC
codes is introduced. This concept can be considered as the extension of the concept on
girth. This concept adopts the concept of node degree, in which the concept of degree
relies on girth. Instead of concerning edges within node degree concept, girth degree (or
the number of girth cycles) is considered as the determinant component for girth in
affecting the code performance. Intuitively, higher girth degree would result in higher bit
dependency in decoding process. In turn, it would degrade decoding performance.

In order to support the concept of girth degree, a method for detecting girth and a
method for counting the number of girth cycles are introduced. The girth-detection method
is used to detect the local girth of each variable node, while the girth-degree counting
method is used to count the number of girth cycles passing through each variable node
resulting in girth degree. The computation involved by those methods takes longer time
and runs more intensively as the code length or the column weight increase.

Some types of LDPC codes are characterized in terms of their girth degree
distribution to prove the efficiency of the concept of girth degree. In case of random
MacKay codes the concept of girth degree shows that as the code length increases the
average girth degree decreases as well as their girth degree distribution becomes smaller
and more concentrated to lower girth degree. Such a girth degree condition is also
applicable as code rate decreases.

In order to investigate the correlation between code performance and girth degree, the
girth condition of random MacKay codes and array LDPC codes is put in comparison.
With the same column weight and code length, random MacKay codes have better average
girth degree as well as girth degree distribution than those of structured array LDPC codes.
This girth degree condition allows MacKay codes to outperform array LDPC codes.

The concept of girth degree is used to characterize the optional LDPC codes of
WLAN. It is of interests that short-four-cycles are realized in some WLAN codes.
However, the existence of those cycles does not degrade the performance of the
corresponding WLAN codes. It can be considered as a proof that to some extent that the
existence of short-four-cycles is not harmful enough to significantly degrade the code
performance.

CHAPTER 6 CONCLUSIONS

 132

The simulation shows that the girth degree is more effective to be used as
performance measures than the girth. The average girth degree becomes higher as code
rate increases. In turn, this leads to worse code performance. This fact shows that the
number of cycles of girth plays a more significant role than the girth in determination of
code performance. This is quite reasonable that the girth degree indicates more precisely
on how dependent the relationship between the variable nodes is. The bit dependency
correlates with the number of cycles passing through the nodes.

In the second topic, a class of LDPC codes with a very efficient encoder is introduced
as proposed solution for LDPC codes’ drawback in encoding without degradation in code
performance. The proposed codes make use of stair structure in form of an identity matrix
in combination with permutation matrices, whose slope parameters are generated by a
random permutation process. The identity matrix allows the encoding process to be
implemented with low complexity. The resulting encoder is relative simply to realize. The
permutation matrices are constructed by two proposed methods, i.e. the slope method and
the girth degree method, which proves the possible existence of short-four cycles.

The construction methods introduce two structure types of the proposed codes, i.e.
cascade and lattice structure. Their comparison shows that the lattice structure can support
any code rate, while the cascade structure can only cope with limited code rate. However,
the lattice structure requires more shift registers and additional operations at the same code
rate as the cascade structure does. The performance of both codes is comparable.

In designing the codes, it is relative easier to produce the codes without short-four-
cycles at lower code rate, i.e. 1/2 and 2/3. While, at higher code rate 3/4 and 5/6 the
existence of short-four-cycles could not be avoided. Although short-four-cycles exist, the
codes do not suffer from performance degradation. The performance of the codes is
comparable with random MacKay codes. Even, at short code lengths and high code rates,
the codes are able to outperform the difference families codes and some WLAN LDPC
codes. This proves that the number of short-four-cycles in the codes can be considered as
still harmless for decoding performance. In addition, at higher code rates, the codes can
achieve good error floor performance at BER 10-9.

At lower code rates of 1/2 and 2/3 the codes shows good threshold performance in the
water-fall region, but are suffering from high error floor at high SNR regions. This poor
floor performance is correlated with the existence of degree-1 variable (parity) nodes of
the identity matrix in the stair structure. These variables do not contribute much to update
of message passing during the iterative decoding process. In addition, the probability that
the trapping sets considered as source of poor error-floor performance is higher as the
number of variable (parity) node increases or correspondingly, the code rate decreases. To
some extent, the poor performance of degree-1 variables can be compensated by
appropriately increasing the column weight of permutation submatrices to suppress the
error floor at cost of higher decoding complexity.

In comparison with the optional WLAN LDPC codes, the performance of the codes is
relative poorer at lower code rates of 1/2 and 2/3. But, the codes show comparable
performance at higher code rates of 3/4 and 5/6. At short code length of 648 bits with high
code rate 5/6, the codes are capable of outperforming the optional WLAN codes. In spite
of poorer performance in general, the encoding complexity of the codes is relative lower

CHAPTER 6 CONCLUSIONS

 133

than that of the optional WLAN codes. The codes can produce the parity bits of the
encoded message directly from the parity-check matrix. The optional WLAN codes do a
substitution process to produce their parity bits, what leads to relative long encoding
latency time. However, in decoding complexity, the codes require relatively more
intensive computation due to their higher number of non-zero elements in their parity-
check matrix.

In general, in addition to their relative simpler code construction and lower encoding
complexity, the codes show their strength at higher code rate. These could be a reason to
opt them for any WLAN application requiring high-rate/short-length transmission.

In the third topic, a feedback mechanism in a two-stage decoding process that
supports the enhancement of decoding performance is presented. The two-stage decoding
makes use of soft output from the first decoding stage to improve bit reliability for the
decoding process in the second decoding stage. The appropriate choice of a maximal
number of decoding iteration within two decoding stages will minimize average number of
decoding iterations for the whole decoding process. Moreover, the weighting factor for the
feedback mechanism should be chosen appropriately so that comparable BER performance
gain can be achieved by less decoding iterations.

The proposed two-stage decoding shows its impact in reducing decoding iterations in
the waterfall region. The magnitude of reduction of the iterations is more significant as the
maximal decoding iterations increases.

6.1 Thesis contribution

This thesis gives the following contribution
• a concept of girth degree, which proves the existence of harmless short-four-cycles

in some WLAN codes. This concept also proves that the girth degree plays a more
significant role than the girth in determining the code performance.

• a class of LDPC Stair codes, which allows very efficient encoding.
• a two-stage decoding scheme, which is able to achieve comparable BER

performance with less decoding iterations

6.2 Future Work

Some work could be proposed to do in the future in order to extend the works
presented in this thesis. Those works could be done to strengthen the theoretical basis of
the proposed method as well as to prove the generality of the applications of the proposed
methods.

In the first topic, as proved widely in the simulation results, the existence of short-
four-cycles is not harmful enough to cause degradation in code performance. Some
publications as well as some WLAN codes analyzed become the proofs. However, to some

CHAPTER 6 CONCLUSIONS

 134

extent, the number of short-four-cycles could be considered as significantly harmful for
the code performance and therefore, this must be taken into account.

To best knowledge, there is still no method that can exactly figure out on the quantity
of short-four-cycles that begins to give negative impact on the code performance. The
proposed concept of girth degree could be potentially applicable for exactly determining
the number of girth cycles as well as its distribution on the variable nodes that could lead
to the performance degradation.

In addition to that, the concept of girth degree could be used to characterize LDPC
codes as many as possible in terms of their girth condition in order to get more
understanding on the behaviour of LDPC codes. Furthermore, it is also interesting to
investigate the possibility of the concept of girth degree as the basis for searching the
codes with good performance.

In the second topic, the optimization effort could be done to produce the codes with
better code performance. So far, in code construction, the permutation for determining
slope parameter of parity check matrices is randomly generated. The generated slope
parameter performing best are then taken into account. In the future, it is quite challenging
to find systematically slope parameters leading to best performance. This systematic rule
of determining the slope parameter could be established on the basis of some rules for
code performance optimization. In addition to that, the floor performance of the codes with
high code rates is of interest for research topics in searching for channel codes dealing
with high-rate application.

In the third topic, so far, the proposed two-stage decoding is able to reduce the
average number of decoding iterations without (significant) code performance degradation.
The development of the concept is established using a practical based approach. In the
future, it is of interests to investigate the decoding process in the second stage of decoding
on more theoretical basis, especially as decoding process takes place in the water-fall
region, where the greater iteration reduction is mostly achieved. In addition to that, to
prove its efficiency in more general sense, the proposed two-stage decoding could be
tested upon other varieties of LDPC.

ABBREVIATIONS

xvii

ABBREVIATIONS

Acronym

ARIB Association of Radio Industries and Businesses
AWGN Additive White Gaussian Noise
BCH Bose-Chaudhuri-Hochquenghem
BER Bit Error Rate
BISC Binary Input Symmetric Channel
BPSK Binary Phase-Shift Keying
BRAN Broadband Radio Access Networks
CDMA Code Division Multiple Access
ERC Engineering Research Centers
ETSI European Telecommunications Standards Institute
FEC Forward Error Correction
H-ARQ Hybrid Automatic Repeat-reQuest
HIPERLAN HIgh PErformance Radio LA
HiSWANa High Speed Wireless Access Network type a
IEEE Institute of Electrical and Electronics Engineers
IFFT Inverse Fast Fourier Transform
ISM Industrial, Scientific, and Medical
LDPC Low Density Parity Check
LDGM Low Density Generator Matrix
LLR. Log-Likelihood Ratio
LOS Line Of Sight
MAP Maximum A Posteriori
Mbps Mega bit per second
MIMO Multiple-Input Multiple-Output
ML Maximum Likelihood
MMAC Multimedia Mobile Access Communication
NLOS Non-Line-Of-Sight
OFDM Orthogonal Frequency-Division Multiplexing
OFDMA Orthogonal Frequency-Division Multiple Access
PDU Protocol Data Unit
pdf probability density function
PHY PHYsical layer of OSI model.
PPDU Presentation Protocol Data Unit
QAM Quadrature Amplitude Modulation
QoS Quality of Service
QPSK Quadrature Phase-Shift Keying
RS Reed and Solomon

ABBREVIATIONS

xviii

U-NII Unlicensed National Information Infrastructure
WLAN Wireless Local Area Network

Notation

A signal set
An set of n-length strings over alphabet A
a a complex symbol
A submatrix
B submatrix
b information vector
C linear code
c codeword vector
ci i-th codeword bit
Eb Energy per bit
e connecting edge
F field
G generator matrix
g dimension of an optimized submatrix
gd girth degree
Hi circulant permutation matrix i
H parity check matrix
HS parity check matrix in a systematic form
I identity matrix
k dimension of the code
Li-n vector of log-likelihood ratio of input for n-th decoding
Lo vector of log-likelihood ratio of output
L(ci) log-likelihood ration of bits ci
m redundancy
No noise power spectral density
N gaussian random variable
n block code length, total number of variable node or code length.
ngd number of variable node with girth degree gd
p parity vector
p crossover probability of the channel
p×p submatrix dimension
Pr(X|Y) a posteriori probabilities
pY|X(y|x) conditional probability density function
pX(x) probability density function (pdf)
PT transposed parity check matrix
Q permutation matrices
q message sent from the variable node to the check node along a connecting
 edge

ABBREVIATIONS

xix

r message sent from the check node to the variable node along a connecting
 edge
Si

(ci) symbols with ci in the signal constellation
s cyclic-shift number
∆sij slope distances
t number of symbol bits
U input string of encoder
Û output string of encoder
u information vector
ui i-th information sub-vector
w signal point
wi weighting factor for LLR input
wo weighting factor for LLR output
X input random variables
X input string of channel
x input vector of channel
x value of the bit node
xi input of channel at that time instant i
x̂ output of the maximum likelihood decoder
Y output random variables
Y output string of channel
y output vector of channel
y received message vector coming from the channel and the edges connected

to the bit node, other than edge e.
yi output of channel at that time instant i
μ mean
σ2 variance
φ fraction of variable node
Φgd average girth degree
γ(i) distributions of row weights of row i-th
ρ(i) distributions of column weights of column i-th

ABBREVIATIONS

xx

REFERENCES

xxi

REFERENCES

[Burs02]

[BC60]

[BCB04]

[BCJR74]

[BGT93]

[BHS00]

[BKA04]

[BKLM02]

[BLMR98]

[BM96]

D. Burshtein. Bounds on the performance of belief propagation decoding.
IEEE Trans. Inform. Theory, 48:112–122, January 2002.

B.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Inform. and Control, 3(1):68-79, March 1960.

Y. Blankenship, B. Classon, and K. Blankenship. Motorola harmonized
structured LDPC proposal. Motorola submission to informal LDPC group,
13 August 2004.

L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimizing symbol error rate. IEEE Trans. Inform. Theory, IT-
20:284-287, March 1974.

C. Berrou, A. Glavieux, and P. Thitimajshirna. Near Shannon limit error
correcting coding and decoding: Turbo codes. In Proc. Int.l Conf. Comm.,
pages 1064-1070, Geneva, Switzerland, 1993.

J. Bond, S. Hui, and H. Schmidt. Linear-congruence construction of low-
density check codes”. In Codes, Systems and Graphical Models, IMA
123:83-100. Springer-Verlag, 2000.

S. ten Brink, G. Kramer, and A. Ashikhmin. Design of low-density parity-
check codes for modulation and detection. IEEE Trans. Comm., 52:670-
678, April 2004.

D. Burshtein, M. Krivelevich, M. Litsyn, and G. Miller. Upper bounds on
the rate of LDPC codes. IEEE Trans. Inform. Theory, 48:2437-2449,
September 2002.

J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distributor of bulk dat. In ACM SIGCOMM’98,
August 1998

S. Benedetto and G. Montorsi. Unveiling turbo codes: some results on
parallel concatenated coding schemes. IEEE Trans. Inform. Theory, IT-
42:409-428, March 1996

REFERENCES

xxii

[BMDP96]

[BPZ99]

[Chun00]

[Chun01]

[Clas04]

[CFRU01]

[CRU01]

[CT94]

[Dave99]

[DJE98]

[DK98]

[DK99]

S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara. Serial
concatenation of interleaved codes: Performance analysis, design, and
iterative decoding. JPL TDA Progress Report, pages 42-126, August
1996

J. Boutros, O. Pothier and G. Zemor. Generalized low density (Tanner)
codes. In Proc. IEEE Int. Conf. Comm., 1:441-445, 6-10 June, 1999.

S.Y. Chung. On the construction of some capacity-approaching coding
schemes. Ph.D Thesis, MIT,USA, 2000.

S. Chung et al.. On the design of low density parity check codes within
0.0045 dB of the Shannon limit. IEEE Comm. Letter., 5:58-60, February
2001.

B. Classon et al. Modified LDPC matrix providing improved performance,
IEEE C802.16e-04/102r1, Motorola, May 18, 2004

S.-Y. Chung, D.J. Forney Jr., T.J. Richardson, and R. L. Urbanke. On the
design of low-density parity-check codes within 0.0045 dB of the Shannon
limit. IEEE Trans. Inform. Theory, 47:58-60, February 2001.

S.Y. Chung, T.J. Richardson, and R.L. Urbanke. Analysis of sum-product
decoding of low density parity check codes using a Gaussian
approximation. IEEE Trans. Inform. Theory, 47(2):657-670, February
2001.

G. Caire and C. Taricco. Weight distribution and performance of the
iterated product of single-parity-check codes. In Proc. IEEE Global
Telecom. Conf., pages 206-211, 1994.

M.C. Davey. Error-correction using Low density parity check codes. Ph.D
thesis, University of Cambridge, UK, 1999.

D. Divsalar, H. Jin, and R. McEliece. Coding theorems for turbo-like
codes. In Proc. 36th Annual Allerton Conf. on Comm., Control, and
Computing, pages 201-210, September 1998.

M.C. Davey and D.J.C MacKay. Low density parity check codes over
GF(q). IEEE Comm. Lett., 2:165–167, June 1998.

M.C. Davey and D.J.C. MacKay. Low density parity check codes over
GF(q). In Proc. IEEE Inform. Theory Workshop:70–71, June 1998.

REFERENCES

xxiii

[DP97]

[DXGL03]

[Elia54]

[Elia55]

[EC01]

[EKC98]

[EKP03]

[EMC98]

[EMD01]

[EÖ01]

[ETSI99]

[ETV99]

D. Divsalar and F. Pollara. Serial and hybrid concatenation codes with
applications. In Proc. Intl. Symp. on Turbo Codes an Related Topics,
pages 80-87, Brest, Fance, September 1997.

I. Djurdjevic, J. Xu, and K.A-Ghaffar. A class of low density parity check
codes constructed based on Reed-Solomon codes with two Inform.
symbols. IEEE Comm. Letter., 7(7), July 2003

P. Elias. Error-free coding. IRE Trans. Inform. Theory, pages 29-37,
September 1954

P. Elias. Coding for noisy channels. IRE Int. Convention Record, 4:37-46,
1955

R. Echard and S.C. Chang. The π-rotation low-density parity-check codes.
In Proc. IEEE Global Telecom. Conf., pages 980-984, Nov. 2001

R.J. McEliece, D.J.C. MacKay, and J.F. Cheng. Turbo decoding as an
instance of Pearl's belief propagation algorithm. IEEE Journ. Select. Areas
Comm.., 16:140-152, February 1998.

A.W. Eckford, F.R. Kschischang, and S. Pasupathy. Designing very good
LDPC codes for the Gilbert-Elliott channel. In Proc. 8th Canadian
Workshop Inform. Theory, Waterloo, Ontario, Canada, 2003

R. J. McEliece, D. J. C. MacKay, and J.-F. Chen. Turbo decoding as an
instance of Pearl's belief propagation algorithm. In IEEE Journ Select.
Areas in Comm., 16(2): 140-152, February 1998

E. Eleftheriou, T. Mittelholzer, and A. Dholakia. Reduced-complexity
decoding algorithm for low-density parity-check codes. Electronics Letter,
vol. 37, pp. 102-104, Jan. 2001.

E. Eleftheriou and S. Olcer. Further results on the performance of LDPC
coded modulation for AWGN channels. In ITU-Telecomm. Standard.
Sector, May 2001.

ETSI. Broadband Radio Access Networks (BRAN): HIPERLAN type 2
technical specification: Physical (PHY) layer. August 1999.

T. Etzion, A. Trachtenberg, and A. Vardy. Which codes have cycle-free
Tanner graphs. IEEE Tans. Inform. Theory, 45(6):2173–2181, September
1999.

REFERENCES

xxiv

[Fan00]

[Forn66]

[FK02]

[FL95]

[FO01]

[FWK05]

[FZ99]

[Gall62]

[Gall63]

[GP05]

[Hamm50]

[Hocq59]

J. Fan. Array codes as low-density parity-check codes. In Proc. Int. Symp.
on Turbo Codes and Related Topics, pages 543-546, Brest, France,
September, 2000.

G.D. Forney. Concatenated codes. MIT Press, Cambridge, MA, 1966.

J. Feldman and D. R. Karger. Decoding turbo-like codes via linear
programming. In Proc. Annual IEEE Symp Foundations of Computer
Science, pages 251-260, November 2002.

M.P.C. Fossorier and S. Lin. Soft-decision decoding of linear block codes
based on ordered statistics. IEEE Trans. Inform. Theory, vol. 41, pp. 1379-
1396, Sept. 1995

H. Futaki and T. Ohtsuki. Low-density parity-check (LDPC) coded OFDM
systems. In Proc. IEEE 54th Vehicular Tech. Conf., pages 82-86, Atlanta
City, New Jersey, USA, October 2001.

J. Feldman, M.J. Wainwright, and D.R. Karger. Using linear programming
to decode binary linear codes. IEEE Trans. Inform. Theory, vol. 51,
pp.954-972, March 2005

A.J. Felstrom and K.S. Zigangirov. Time-varying periodic convolutional
codes with low-density parity-check matrix. IEEE Trans. Inform. Theory,
45:2181-2191, September 1999.

R. G. Gallager. Low-density parity check codes. IRE Trans. Inform.
Theory, IT-8:21-28, January 1962.

R. G. Gallager, Low-density parity check codes. Ph.D Thesis, MIT Press,
Cambridge, USA, 1963.

G. Glikiotis and V. Paliouras, “A Low-Power Termination Criterion for
Iterative LDPC Code Decoder,” IEEE Workshop on Signal Processing
Systems Design and Implementation, pp. 122-127, Nov. 2005.

R.W. Hamming. Error detecting and correction codes. Bell Sys. Tech.
Journ., 29:147-160, 1950.

A. Hocquenhem. Codes correcteurs d’erreurs. Chiffres, 2:147-156, 1959.

REFERENCES

xxv

[Hou01]

[HB01]

[HEA01]

[HEK07a]

[HEK07b]

[HEK07c]

[HGB02]

[HGS04]

[HH89]

[HH02a]

[HH02b]

J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Multilevel coding
with low-density parity-check component codes,” in Proc. IEEE Global
Telecommunications Conf., San Antonio, TX, Nov. 2001, pp. 1016–1020.

C. Howland and A. Blanksby. A 220mW 1Gb/s 1024-bit rate-1/2 low
density parity check code decoder. In Proc. IEEE Custom. Integrated
Circuits Conf. 293-296, 2001

X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold. Progressive edge-growth
Tanner graphs. In Proc. IEEE Global Telecom. Conf., pages 995-1001,
San Antonio, Texas, USA, November 2001.

D. Hamdani, W. Endemann, and R.Kays. Measuring Performance of
LDPC Codes with Girth Degree. International Conference on Electrical
Engineering and Informatics (ICEEI2007), 17-19 June 2007, Bandung,
Indonesia.

D. Hamdani, W. Endemann, and R.Kays. A Class of LDPC Codes with
Very Efficient Encoder. International Conference on Electrical
Engineering and Informatics (ICEEI2007), 17-19 June 2007, Bandung,
Indonesia.

D. Hamdani, W. Endemann, and R.Kays. Enhancing Performance of
High-Order Modulation with LDPC Codes using Feedback Mechanism.
International Conference on Electrical Engineering and Informatics
(ICEEI2007), 17-19 June 2007, Bandung, Indonesia.

D. Haley, A. Grant, and J. Buetefuer. Iterative encoding of low-density
parity-check codes. In Proc. IEEE Global Telecomm. Conf., Taipei,
Taiwan, November 2002.

S.L. Howard, V.C. Gaudet, and C.S Schlegel. Soft Bit Decoding of Low
Density Parity Check. Codes”, submitted to Comm. Letters, May 2004.

J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-decision
outputs and its applications. IEEE Trans. Inform. Theory, IT-13:260-269,
April 1989.

S. Hirst and B. Honary. Decoding of generalized low-density parity-check
codes using weighted bit-flip voting. IEE Proc. Comm., 149:1-5, 2002.

S. Hirst and B. Honary. Application of effcient Chase algorithm in
decoding of generalized low-density parity-check codes. IEEE Comm.
Letters., 6:385-387, 2002.

REFERENCES

xxvi

[HSM01]

[HSMP03]

[IEEE05]

[IEEE09]

[IEEE99]

[IK09]

[Jush99]

[JKM00]

[JW01]

[JW02]

[JW03]

J. Hou, P.H. Siegel and L.B. Milstein. Performance analysis and code
optimization of low density parity-check codes on Rayleigh fading
channels. IEEE Journ. Select. Areas in Comm., 19:924–934, May 2001.

J. Hou, P. H. Siegel, L. B. Milstein and H. D. Pfister. Capacity-
approaching bandwidth-efficient coded modulation schemes based on
low-density parity-check codes. IEEE Trans. Inform. Theory, 49:2141–
2155, September 2003.

IEEE 802.16 Broadband Wireless Access Working Group. LDPC coding
for OFDMA PHY. IEEE C802.16e-05/006r2, January 2005

IEEE Std 802.11n. IEEE Standard for Information technology-
Telecommunications and information exchange between systems – Local
and metropolitan area networks – Specific requirements. Part 11:
Wireless LAN Medium Access Control and Physical Layer (PHY)
Specification. 29 October 2009

IEEE Std 802.11a/D7.0-1999. Part11:Wireless LAN MAC and PHY
Specifications: High Speed Physical Layer in the GHz Band.”

M.R. Islam and J. Kim. Linear encoding of LDPC codes using
approximate lower triangulation with postprocessing. In the Proceeding of
PIMRC 2000, 13-16 Sept 2009. Tokyo

J. Khun-Jush et al.. Structure and Performance of HIPERLAN/2 Physical
Layer. IEEE Vehicle Tech. Conf., pages 2667–2671, 1999.

H. Jin, A. Khandekar, and R. McEliece. Irregular repeat-accumulate codes.
In Proc. Int. Symp. on Turbo Codes and Related Topics, pages 1-8, Brest,
France, September 2000.

S.J. Johnson, and S.R. Weller. Regular low density parity check codes
from combinatorial designs. In Proc. Inform. Theory Workshop, pages 90-
92, Cairns, 2001.

S.J. Johnson and S.R. Weller. Quasi-cyclic LDPC codes from difference
families. In Proceedings 3rd AusCTW, Canberra, Australia.

S.J. Johnson and S.R. Weller. High-rate LDPC codes from unital designs.
In Proceedings of the IEEE Globecom Conference, San Francisco, CA, 1-
5 December 2003

REFERENCES

xxvii

[Kay99]

[Kim04]

[KD00]

[KFL98]

[KLF00]

[KLF01]

[KN95]

[KN97]

[KN99]

[KSM02]

[KWD99]

[Lent97]

D.J.C. MacKay. Good error-correcting codes based on very sparse
matrices. IEEE Trans. Inform. Theory, 45(2):399-431, March 1999.

J. Kim et al. Samsung’s harmonized structured LDPC proposal. Samsung
submission to informal LDPC group, 17 August 2004.

D.J.C. MacKay and M.C. Davey. Evaluation of Gallager codes for short
block length and high rate applications. In Codes, Systems and Graphical
Models, IMA 123, pages 113-130. Springer-Verlag, 2000.

F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the
sum-product algorithm. IEEE Trans. Inform. Theory, July 1998.

Y. Kou, S. Lin and M. Fossorier. Low density parity check codes:
Construction based on finite geometries. In IEEE Global Telecomm
Conf., 2:825–829, November-December 2000.

Y. Kou, S. Lin and M. Fossorier. Low-density parity-check codes based on
finite geometries: A rediscovery and new results. IEEE Trans. Inform.
Theory, 47:2711–2736, November 2001.

D.J.C. MacKay and R.M. Neal. Good codes based on very sparse
matrices”,. in Cryptography and Coding: Proceeding of 5th IMA Conf.,
Lecture Notes in Computer Science 1025:100-111 Springer-Verlag,
Berlin, 1995.

D.J.C MacKay, and R.M. Neal. Near Shannon limit performance of low
density parity check codes. Electronics Letters, 33:457–458, March 1997.

D.J.C. MacKay and R.M. Neal. Good error-correction codes based on very
sparse matrices. IEEE Trans. Inform. Theory, 45:399–431, March 1999.

S. Kim, G. Sobelman and J. Moon. Parallel VLSI Architectures for a Class
of LDPC codes. IEEE Int. Symp. on Circuits and Systems, Arizona, May
2002,

D.J.C. MacKay, S.T. Wilson, and M.C. Davey. Comparison of
constructions of irregular Gallager codes. IEEE Trans. Comm.,
47(10):1449 – 1454, October 1999.

M. Lentmaier. Soft iterative decoding of generalized low density parity
check codes based on MAP decoding of component Hamming codes.
Diploma Thesis, University of Ulm, Germany, 1997.

REFERENCES

xxviii

[Li02]

[Lim03]

[Luby02]

[LC04]

[LK08]

[LMSS98]

[LMSSS97]

[LNG01a]

[LNG01b]

[LRG04]

[LSMS01]

[LWN02]

J. Li. Low-complexity, capacity-approaching coding schemes: Design,
analysis and application. PhD Thesis. Texas A&M University. 2002

P. Limpaphayom, Multilevel coding with LDPC component codes for
power and bandwidth efficiency. Ph.D Thesis, Univ. Michigan, Ann
Arbor, 2003

M. Luby. LT codes. In 43rd IEEE Symposium on Foundations in Computer
Science, November 2002

S. Lin and D.J. Costello, Jr. Error Control Coding. Prentice Hall. 2004

Chia-Yu Lin and Mong-Kai Ku, Early Detection of successful decoding
for dual-diagonal block-based LDPC codes, Electronics Letters, 6
November 2008, Vol 44, Issue 23, p. 1368-1370

M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman.
Improved low density parity check codes using irregular graphs and belief
propagations. In Proc. IEEE Int. Symp. Inform. Theory, page 117, 1998.

M.G. Luby, M.Mitzenmacher, M.A. Shokrollahi, D.A. Spielman, and V.
Stemann. Practical loss-resilient codes. In Proc. 29th Symp. Theory
Computing, pages 150-159, 1997.

J. Li, K.R. Narayanan, and C.N. Georghiades. A class of linear-
complexity, soft-decodable, high-rate, good codes: Construction,
properties and performance. In Proc. Intl. Symp. Inform. Theory, page
122, Washington DC, June 2001.

J. Li, E. Narayanan and C. N. Georghiades. On the performance of turbo
product codes and LDPC codes over partial-response channels. In IEEE
Int. Conf. Comm., 7:2176-2183, June 2001.

J. Li, K. R. Narayanan, and C. N. Georghiades. Product accumulate codes:
A class of capacity-approaching, low complexity codes. IEEE Transaction
on Inform. Theory, January 2004.

M.G. Luby, M.A. Shokrolloahi, M. Mizenmacher, and D.A. Spielman.
Improved low-density parity-check codes using irregular graphs. IEEE
Trans. Inform. Theory, 47:585-598, February 2001.

B. Lu, X.Wang and K.R. Narayanan. LDPC-based space-time coded
OFDM systems over correlated fading channels: Performance analysis and
receiver design. IEEE Trans. Comm., 50:74-88, January 2002.

REFERENCES

xxix

[LZW04]

[Marg82]

[MaB01]

[MiB01]

[MF02]

[MMØ02]

[MN95]

[MS98]

[MS03]

[Neal99]

[Nee99]

J.R. Lin, R.Q. Zhang and W.L. Wu. Performance of irregular LDPC Codes
on Rician fading channels. In Proc. 2nd Int. Conf. on Inform. Tech. and
Applications, Harbin, China, January 2004

G.A. Margulis. Explicit constructions of graphs without short cycles and
low density codes. Combinatorica, 2(1):71-78, 1982.

Y. Mao and A.H. Banihashemi. A heuristic search for good low-density
parity-check codes at short block lengths. In Proc. IEEE Int. Conf. Comm.,
Helsinki, Finland, June 2001.

G. Miller and D. Burshtein. Bounds on the maximum-likelihood decoding
error probability of low-density parity-check codes. IEEE Trans. Inform.
Theory, 47:2696-2710, November 2001

N. Miladinovic and M.P.C. Fossorier. Improved bit flipping decoding of
low-density parity check codes. In Proc. IEEE Int. Symp. On Inform.
Theory, p. 229, July 2002.

B. Myhre, V. Markhus and G.E. Øien. LPDC-coded adaptive modulation
on slowly varying Nakagami-fading channels. In Proc. European
Wireless, pages 822-828, Florenze, Italy, February 2002.

D. J. C. MacKay and R. M. Neal, C. Boyd. Good codes based on very
sparse matrices. Cryptography and Coding 5th IMA Conf., no. 1025,
pp.100 - 111, Springer, 1995.

J. Medbo and P. Schramm. Channel Models for HIPERLAN/2.
ETSI/BRAN doc. no. 3ERI085B, 1998.

M.M. Mansour and N.R. Shanbhag. High-throughput LDPC decoders.
IEEE Trans. on Very Large Scale Integration Systems, 11(6):976-996,
December 2003

R.M. Neal. Faster encoding for low-density parity check codes using
sparse matrix methods. IMA Workshop on Codes, Systems and Graphical
Models, Minneapolis, August 1999

R. Van Nee et al. New High-Rate Wireless LAN Standards. IEEE Comm.
Mag., 37(12):82–88, December 1999.

REFERENCES

xxx

[NF04]

[NKS01]

[OM01]

[Pear88]

[PBB99]

[PLP99]

[PSJ04]

[RMC03]

[RN04]

[RNF06]

H.P-Nik and F. Fekri. On Decoding of Low-Density Parity-Check Codes
Over the Binary Erasure Channel. IEEE Trans. Inform. Theory, 50:439-
454, March 2004.

K. Nakamura, Y. Kabashima and D. Saad. Statistical mechanics of low-
density parity check error-correcting codes over Galois fields. Europhysics
Letters, 56:610–616, November 2001.

T. Oenning and J. Moon. A Low Density Generator Matrix Interpretation
of Parallel Concatenated Single Bit Parity Codes. IEEE Trans. Magnetics,
37:737-741, March 2001.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. :Morgan
Kauffmann, San Mateo, 1988.

O. Pothier, L. Brunel and J. Boutros. A low complexity FEC scheme based
on the intersection of interleaved block codes. In Proc. IEEE 49th
Vehicular Tech. Conf., 1:274-278, Houston, USA, May 1999.

P. Li, W.K. Leung, and N. Phamdo. Low density parity check codes with
semi-random parity check matrix. Electronics Letters, 35:38-39, January
1999

N. Burns, A. Purkovic, S. Sukobok, B. Johnson. Algebraic low-density
parity check codes for OFDMA PHY layer. Nortel submission to informal
LDPC group, 13 August 2004.

M. Surendra Raju, A. Ramesh, and A. Chockalingam. BER Analysis of
QAM with Transmit Diversity in Rayleigh Fading Channels. In Proc.
IEEE Global Telecom. Conf., pages 641-645, San Francisco, November-
December 2003.

V. Roca and C. Neumann. Design, Evaluation and Comparison of Four
Large Blcok FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM
Triangle, plus a Reed-Solomon Small Block FEC Codes. Rapport de
recherche n˚ 5225. INRIA Rhone-Alpes, France. 9 June 2004.

V. Roca, C. Neumann and D. Furodet. Low density parity check staircase
and triangle forward error correction schemes", Internet-Draft, 18 July
2006

REFERENCES

xxxi

[RS60]

[RSU00]

[RSU01]

[RU01a]

[RU01b]

[RU03]

[RV00]

[Shan48]

[Shok03]

[Spiel96]

[SC03]

[SKP00]

I.S. Reed and G. Solomon. Polynomial codes over certain finite fields.
SIAM Journ. Applied Math., 8:300-304, 1960

T. J. Richardson, A. Shokrollahi, and R. Urbanke. Design of provably
good low-density parity-check codes. In Proc. Int. Symp. Inform. Theory,
page 199, Sorrento, Italy, 2000.

T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke. Design of
capacity-approaching irregular low-density parity-check codes. In Proc.
IEEE Trans. Inform. Theory, 47:619-637, February 2001.

T. Richardson, R. Urbanke. The capacity of low density parity check
codes under message-passing decoding. IEEE Trans. Inform. Theory,
47:599–618, February 2001.

T. J. Richardson and R. L. Urbanke. Efficient encoding of low density
parity check codes. IEEE Trans. Inform. Theory, 47:638-656, Febuary
2001.

T. Richardson and R. Urbanke. The renaissance of Gallager’s low density
parity check codes. IEEE Comm. Magazine, pages 126-131, August 2003.

J. Rosenthal and P.O. Vontobel. Construction of LDPC codes using
Ramanujan graphs and ideas from Margulis. In Proc. of 38th Allerton
Conf. on Comm., Control, and Computing, pages 248-257, October 2000.

C. E. Shannon. A mathematical theory of communication. The Bell system
Tech. Journ., 27:379–656, July 1948.

A. Shokrollahi. Raptor codes. Research Report DR2003-06-001. Digital
Fountain. 2003

D. A. Spielman. Linear-time encodable and decodable error-correcting
codes. IEEE Trans. Inform. Theory, 42:1723–1731, November 1996.

H. Song and J. R. Cruz. Reduced-complexity decoding of Q-ary LDPC
codes for magnetic recording. IEEE Trans. on Magnetics, 39:1081–1087,
March 2003.

V. Sorokine, F.R. Kschischang, and S. Pasupathy. Gallager codes for
CDMA applications - Part I: Generalizations, constructions, and
performance bounds. IEEE Trans. on Comm. 48(10):1660-1668, October
2000.

REFERENCES

xxxii

[SM02]

[SNG03]

[SS96]

[STC00]

[Tann81]

[TJVW04]

[TXKLG04]

[Unge82]

[VKK02]

[VM04]

[Wibe94]

[Wibe96]

H. Steendam, M. Moeneclaey. ML-performance of low density parity
check codes. In Proc of 23rd Symp. on Inform. Theory in the BENELUX,
pages 75-78 Louvain-la-Neuve, Belgium, May 2002

A.Serener, B.Natarajan and D.Gruenbacher. LDPC coded spread OFDM
in indoor environments. In Proc. of the 3rd IEEE Int. Symp. on Turbo
Codes & Related Topics, pages 549-552, France, September 2003.

M. Sipser and D. A. Spielman. Expander Codes. IEEE Trans. Inform.
Theory, 42:1710–1722, November 1996.

H. Song, R.M. Todd, J.R. Cruz. Low density parity check codes for
magnetic recording channels. IEEE Trans. Magnetics, 36(5), September
2000.

R. M. Tanner. A recursive approach to low complexity codes. IEEE Trans.
Inform. Theory, IT-27:533-547, September 1981.

T. Tian, C.R. Jones, J.D. Villasenor and R.D. Wesel. Selective avoidance
of cycles in irregular LDPC code construction. IEEE Trans. On Comm,
vol. 52, no.8, August 2004

H. Tang, J. Xu, Y. Kou, S. Lin, and K.A-Gaffar. On algebraic construction
of Gallager and circulant low-density parity-check codes. IEEE Trans.
Inform. Theory, 50(6):1269-1279, June 2004.

G. Ungerböck. Channel coding with multilevel/phase signals. IEEE Trans.
Inf. Theory, 28:55-67, January 1982.

B. Vasic, E.M. Kurtas, and A.V. Kuznetsov. Kirkman systems and their
application in perpendicular magnetic recording. IEEE Trans. Magnetics,
38(4), July 2002

B. Vasic and O. Milenkovic. Combinatorial constructions of low density
parity check codes for iterative decoding. IEEE Trans. Inform. Theory,
50(6):1156-1176, June 2004.

N. Wiberg. Approaches to neural-network decoding of error correcting
codes. Diploma Thesis, Univ. Linköoping, Sweden, 1994.

N. Wiberg. Codes and decoding on general graphs. PhD Thesis, Univ.
Linköping, Sweden, 1996.

REFERENCES

xxxiii

[WKL95]

[XJ04]

[YLR02]

[YHB04]

[Zhe06]

[Zimm04]

[ZB04]

[ZM03]

[ZP75]

[ZP01a]

[ZP01b]

N. Wiberg, R. Kötter, and H.-A. Loeliger. Codes and iterative decoding on
general graphs. European Trans. on Telecom., 6:513-525, September-
October 1995.

Bo Xia and Eric Jacobsen. Intel LDPC proposed for IEEE 802.16e. Intel
submission to informal LDPC group, 13 August 2004.

M. Yang, Y. Li, and W.E. Ryan. Design of efficiently-encodable
moderate-length high-rate irregular LDPC codes. In Proc. 40th Annual
Allerton Conf. on Comm., Control, and Computing, pages 1415-1424,
October 2002

M.R. Yazdani, S. Hemati, and A.H. Banihashemi. Improving belief
propagation on graphs with cycles. IEEE Communications Letters, vol. 8,
pp. 57-59, Jan. 2004

X. Zheng, F. C. M. Lau, C. K. Tse and S. C. Wong. Techniques for
improving block error rate of LDPC decoders. In the proceeding IEEE
International Symposium on Circuits and Systems. May 21-24, 2006,
Island of Kos, Greece, p. 2261-2264.

E. Zimmermann et al. Reduced Complexity LDPC Decoding using
Forced Convergence. In Proceedings of the 7th International Symposium
on Wireless Personal Multimedia Communications (WPMC04)

P. Zarrinkhat and A.H. Banihashemi. Hybrid hard-decision iterative
decoding of regular low density parity check codes. IEEE Comm.,
8(4):250-252, April 2004

H. Zhang and J.M.F. Moura. Large-girth LDPC codes based on graphical
models”, IEEE Int. Workshop on Signal Processing Advance for Wireless
Comm., Rome, Italy, June 2003

V. Zyablov and M. S. Pinsker. Estimation of the error-correcting
complexity of Gallager low-density codes. Problems of Info. Trans.,
11(1):23-26, 1975.

T. Zhang and K.K. Parhi. A class of efficient-encoding generalized low-
density parity-check codes. In IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, 4:2477-2480, May 2001.

T. Zhang and K.K. Parhi. High-performance, low-complexity decoding of
generalized low-density parity-check codes. In IEEE Global Telecomm.
Conf., 1:181-185, November 2001.

REFERENCES

xxxiv

[ZP01c]

[ZP01d]

[ZZ04]

T. Zhang and K.K. Parhi, VLSI Implementation-Oriented (3,k)-Regular
Low-Density Parity-Check Codes. In Proc. of the 2001 IEEEWorkshop on
Signal Processing Systems (SiPS), Antwerp, Belgium, September 26-28,
2001

T. Zhang and K.K. Parhi, Joint code and decoder design for
implementation-oriented (3,k)-regular LDPC codes. In Proc. of the 35th
Asilomar Conf. Signals, Systems and Computers, Pacafic Grove, CA, Nov
2001.

H. Zhong and T. Zhang. Joint code-encoder-decoder design for LDPC
coding system VLSI implementation. In Proc. Of ISCAS2004, 23-26 May
2004

APPENDIX

xxxv

APPENDIX

CHANNEL CODES USED

Chapter 3

MacKay code [MN95]
Array LDPC codes [Fan00, EO01]
IEEE802.11n codes [IEEE09] with code rates: 1/2, 2/3, 3/4 and 5/6 and code length: 648, 1,296
and 1,944 bits

WLAN codes with short-four-cycles

(a) WLAN code with code length 648 bits and code rate ¾ with short-four-cycles

(b) WLAN code with code length 1,296 bits and code rate 2/3 with short-four-cycles

(c) WLAN code with code length 1,944 bits and code rate 2/3 with short-four-cycles

APPENDIX

xxxvi

Modified WLAN codes without short-four-cycles

(a) Modified WLAN code with code length 648 bits and code rate 3/4 without short-four-cycles

(b) Modified WLAN code with code length 1296 bits and code rate 2/3 without short-four-
cycles

(c) Modified WLAN code with code length 1944 bits and code rate 2/3 without short-four-
cycles

Modified WLAN codes with higher short-four-cycles

Modified WLAN codes (code length 1296 bits and code rate 2/3) with higher short-four-cycles

APPENDIX

xxxvii

Chapter 4

Maximal number of decoding iteration
Stair Cascade code: code length 1,200 bits, code rate 3/4 and column weight 6

[146+203+285+193+298+1][104+121+55+281+184+124] ...
[169+154+215+247+208+165][0]

Code rates
Stair Cascade code: code rate. 1/2, 2/3 and 3/4, code length 1,200 bits, column weight 6

Code rate Slope parameter
1/2 [545+216+589+518+382+94][0]
2/3 [109+311+190+87+325+38][83+377+199+157+238+282][0]
3/4 [146+203+285+193+298+1][104+121+55+281+184+124] ...

[169+154+215+247+208+ 165][0]

Column weight
Stair Cascade code: code length 1,200 bits, column weight. 3, 6 and 9, code rate 1/2

Column weight Slope parameter
3 [547+548+572][0]
6 [545+216+589+518+382+94][0]
9 [31+235+515+467+85+214+117+228+134][0]
12 [423+380+126+57+207+544+225+128+171+289+341+ 33][0]

Stair Cascade code: code length 1,200 bits, , column weight. 3, 6 and 9, code rate 2/3

Column weight Slope parameter
3 [195+323+100][128+345+54][0]
6 [109+311+190+87+325+38][83+377+199+157+238+282][0]
9 [346+102+173+362+190+124+84+131+234]

[105+2 40+192+186+186+140+194+164][0]

Stair Cascade code: code length 1,200 bits, column weight 3, 6 and 9, code rate. 3/4

Column weight Slope parameter
3 [202+50+88][241+191+206][83+127+210][0]
6 [146+203+285+193+298+1][104+121+55+281+184+124]

[169+154+215+247+208+165][0]
9 [155+51+54+219+11+133+64+227+149][273+280+275+220+297+...

89+21+151+282][230+235+186+138+124+240+152+86+229][0]

Maximal number of decoding iteration
Stair Lattice code: code length 1,200 bits, code rate ¾, column weight 6

APPENDIX

xxxviii

[[24+92+124][31+8+42];[120+21+118][99+145+91]] …
[[25+55+85][15+50+51];[27+30+94][39+26+146]] …
[[111+142+131][106+2+88];[[138+87+29][97+68+95]][0]

Code rates
Stair Lattice code: code rate 1/2, 2/3 and ¾, code length 1,200 bits, column weight 6
Code rate Slope parameter

1/2 [[234+226+137][109+201+205];[291+293+60][267+180+151]][0]
2/3 [[126+57+128][171+33+89];[196+113+133][80+22+28]] ...

[[65+118+25][85+61+164];[125+24+183][109+162+21]][0]
3/4 [[7+25+89][141+133+91];[117+101+99][76+24+43]] ...

[[83+128+51][88+144+116];[18+104+16][132+52+50]] ...
[[106+108+111][55+31+96];[138+118+75][70+97+39]][0]

Column weight
Stair Lattice code: code length 1,200 bits, column weight 4, 6 and 8, code rate 1/2

Column weight Slope parameter
4 [[70+27][271+191];[266+35][117+73]][0]
6 [[234+226+137][109+201+205];[291+293+60][267+180+151]][0]
8 [[99+170+187+121][81+128+231+102]; ...

[37+189+280+183][137+191+161+242]][0]

Stair Lattice code: code length 1,200 bits, column weight 4, 6 and 8, code rate 2/3

Column weight Slope parameter
4 [[19+123][28+89];[103+31][194+106]] ...

[[159+71][42+48];[190+62][110+84]][0]
6 [[126+57+128][171+33+89];[196+113+133][80+22+28]] ...

[[65+118+25][85+61+164];[125+24+183][109+162+21]][0]
8 [[43+122+158+59][198+126+108+75];[71+29+17+140] ...

[155+162+193+72]][[85+66+135+134][12+116+20+150]; ...
[173+52+153+113][139+5+30+22]][0]

Stair Lattice codes: code length 1,200 bits, column weight 4, 6 and 8, code rate 3/4.

Column
weight

Slope parameter

4 [[69+120][51+81];[25+149][56+98]] ...
[[79+125][64+37];[124+133][131+105]] ...
[[28+26][20+113];[135+34][40+147]][0]

6 [[7+25+89][141+133+91];[117+101+99][76+24+43]] ...
[[83+128+51][88+144+116];[18+104+16][132+52+50]] ...
[[106+108+111][55+31+96];[138+118+75][70+97+39]][0]

8 [[30+126+107+82][38+9+142+108];[75+81+76+94][103+19+45+1]] ...
[[57+49+48+25][64+139+23+91];[22+6+96+87][92+58+89+125]] ...

APPENDIX

xxxix

[[133+68+13+138][130+129+101+62];[135+33+98+41][12+31+131+140]][0]

Comparison of Both Stair Codes
Stair codes: code length 1,200 bits, code rate ¾, column weight 6

Type Slope parameter
Cascade [146+203+285+193+298+1][104+121+55+281+184+124]

[169+154+215+247+208+165][0]
Lattice-4 [[7+25+89][141+133+91];[117+101+99][76+24+43]] ...

[[83+128+51][88+144+116];[18+104+16][132+52+50]] ...
[[106+108+111][55+31+96];[138+118+75][70+97+39]] [[0][-];[-][0]]

Lattice-9 [[23+94][86+46][40+59];[70+92][74+48][36+24];[69+65][5+87][47+72]] ...
[[32+91][80+42][88+43];[58+17][90+20][97+71];[62+57][49+38][61+81]] ...
[[25+12][3+89][50+73];[15+29][93+30][26+27];[35+85][14+33][9+13]] ...
[[0][-][-];[-][0][-];[-][-][0]]

Stair Lattice code with code rate 3/8, 4/8 and 5/8.
Code
rate

Slope parameter

3/8 [[128][124][88];[100][67][129];[99][40][6];[144][35][63];[71][62][58]] ...
[[0][-][-][-][-];[-][0][-][-][-];[-][-][0][-][-];[-][-][-][0][-];[-][-][-][-][0]

4/8 [[134][109][22][93]; [39][59][27][62];[44][80][144][119]; [142][56][84][72]] ...
[[0][-][-][-];[-][0][-][-];[-][-][0][-];[-][-][-][0]]

5/8 [[79][74][46][101][144];[121][89][41][20][81];[116][128][64][123][147]] ...
[[0][-][-];[-][0][-];[-][-][0]]

High-rate and Short-length Performances
Stair Cascade code: code length 1,200 bits, column weight 6, code rate 3/4, 7/8 and 19/20
Code rate Slope parameter

3/4 [146+203+285+193+298+1][104+121+55+281+184+124] ...
[169+154+215+247+208+165][0]

7/8 [77+49+141+145+120+91][112+129+126+26+110+103] ...
[69+4+140+125+46+116][114+139+97+12+7+62] ...
[88+29+21+111+101+132][81+86+127+34+31+19] ...
[95+53+130+52+41+94][0]

19/20 [12+2+0+51+54+45][21+8+25+1+28+53][18+37+11+30+33+7] ...
[34+13+38+50+44+42][26+6+40+55+23+39][19+9+31+34+4+35] ...
[29+52+57+3+32+46][49+41+20+10+14+43][15+48+56+36+17+22] ...
[16+27+59+47+5+58][0+5+30+46+24+14][47+36+56+42+18+3] ...
[48+43+26+53+28+31][1+49+22+11+33+50][54+32+20+45+2+25] ...
[34+6+59+52+55+4][17+35+44+12+41+29][7+21+10+9+38+39] ...
[13+40+57+27+19+37][0]

Stair Cascade code: code length 128, 576, 2304 and 6000 bits, code rate 3/4

APPENDIX

xl

Code length Slope parameter
128 [19+10+15+7+17+20][2+23+5+4+18+14][25+6+31+8+26+27][0]
576 [24+105+123+26+69+94][11+31+122+141+16+116][62+23+114+81+7+60][0]
2304 [177+134+378+298+426+43][373+95+530+87+435+496]

[45+510+71+142+438+55][0]
6000 [524+581+241+663+1354+332][571+864+676+928+1216+1150]

[1121+41+277+282+1122+988][0]

Regular vs Irregular
Regular Stair Cascade code: code length 1,200 bits, code rate 2/3 column weight 6,

[109+311+190+87+325+38][83+377+199+157+238+282][0]

Irrgular Stair Cascade code: code length 1,200 bits, code rate 2/3 column weight 8 and 4

[165+182+378+322+194+243+31+89][339+76+133+242][0]

Regular Stair Cascade code: code length 1,200 bits, code rate 3/4 column weight 6,

 [277+246+53+102+84+73][190+ 208+213+146+107][4+295+200+38+199+249][0]

Irrgular Stair Cascade code: code length 1,200 bits, code rate 3/4 column weight 9, 5, 4

[273+144+22+270+138+228+149+31+263][200+192+283+8+7] ...
[60+110+126+111][0]

Code benchmarking

Comparison with Random MacKay codes
Random MacKay code: code length 1,200 bits, code rate ¾, column weight 3

Stair Cascade code: code length 1,200 bits, code rate 3/4 and column weight 6

[148+88+222+105+245+25][204+161+100+198+203+110] ...
[90+231+45+31+279+21][0]

Stair Lattice code: code length 1,200 bits, code rate 3/4 and column weight 6

[[120+146+132][143+86+119];[60+137+38][63+85+102]] ...
[[118+28+87][80+44+123];[56+116+41][122+4+88]] ...
[[14+31+17][10+90+52];[110+18+59][82+68+140]][0]

Comparison with Short Length Differential families Code
Differential families [404, 303]: column weight 5, 5, 3, 2, code rate 3/4., code length 400 bits

Stair Cascade code with code length 200 bits, code rate 3/4 and column weight 6, maximal
iteration 20.

 [36+31+18+44+4+25][3+23+26+41+19+42][35+9+20+37+7+45][0]

APPENDIX

xli

Stair Lattice code with code length 200 bits, code rate 3/4 and column weight 6, maximal
iteration 20

[[9+5+19][22+24+17];[0+3+6][1+11+23]] ...
[[2+20+18][8+4+7];[1+16+4][7+24+17]] ...
[[10+15+21][14+2+23];[11+19+12][18+5+0]][0]

Stair Cascade code: code length 400 bits, column weight 3, code rate 3/4

[74+ 21+72][18+79+7][83+9+57][0]

Stair Cascade code: code length 400 bits, column weight 5, code rate 3/4

[54+4+86+ 65+ 60][99+7+97+36+72][90+61+95+27][0]

Comparison with High-Rate Code
Unital LDPC code [JW03] with code length 416 bits and code rate 0.84375

 Stair Cascade Code: code length 420 bits, code rate 6/7 (0.857)

[32+40+22+34+35+6][55+3+16+11+54+30][45+0+51+33+7+38] ...
[58+42+28+17+41+47][14+46+56+8+59+5][48+53+29+34+25+52][0]

Stair Cascade code: code length 480 bits, code rate 7/8 (0.875).

[52+32+19+7+12+50][2+18+14+10+28+11][46+59+38+5+39+47] ...
[42+6+34+30+24+44][20+37+55+22+21+23][31+41+16+34+3+8] ...
[4+33+0+53+26+57][0]

Stair Cascade code: code rate 0.93 with code length 7,200 bits

[240+24+252+220+92+155][437+409+124+31+162+163][8+42+153+360+159+208] ...
[152+0+451+242+305+472][193+120+330+166+21+300][118+346+99+34+324+470]
[194+463+314+171+429+347][364+158+406+336+291+476] ...
[207+181+474+457+145+91][221+25+294+372+55+175] ...
[229+213+356+228+367+422][199+448+85+198+389+15] ...
[285+381+50+164+196+230][51+261+27+248+30+94][0]

Comparison with WLAN codes
Stair Cascade code: code length 1,296 bits, code rate 1/2, column weight 6.

[366+371+608+521+275+122][0]

Stair Lattice code: code length 1,296 bits, code rate 1/2, , column weight 6.

[[128+142+270][231+272+73];[101+249+16][320+293+277]][0]

Stair Cascade code: code length 1,296 bits, code rate 2/3

 [189+206+402+346+429+218][267+55+113+363+100+13][0]

Stair Lattice code: code length 1,296 bits, code rate 2/3
[[103+97+153][137+126+41];[141+122+99][59+113+23]] ...

APPENDIX

xlii

[[185+171+73][191+30+40];[214+25+206][133+197+129]][0]

Stair Cascade code: code length 1,296 bits, code rate 3/4

 [45+159+276+72+161+211][50+174+221+273+81+311] ...
[87+125+41+105+261+271][0]

Stair Lattice code: code length 1,296 bits, code rate 3/4

 [[7+19+16][60+68+54];[106+139+59][161+102+66]] ...
[[11+21+49][46+134+89];[147+138+48][3+152+158]] ...
[[42+87+145][88+4+109];[62+140+144][119+115+104]] [0]

Stair Cascade code: code length 1,296 bits, code rate 5/6

 [62+189+120+30+50+110][34+73+84+78+180+185][97+152+150+172+8+176] ...
[89+153+4+105+76+158][199+22+140+23+7+201] [0]

Stair Lattice code: code length 1,296 bits, code rate 5/6
 [[78+16+21][105+27+85];[61+100+67][71+36+10]] ...

[[48+58+98][12+52+5];[19+11+103][7+84+81]] ...
[[72+75+20][90+89+95];[31+94+34][51+66+93]] ...
[[2+40+62][37+41+53];[33+73+13][64+92+22]] ...
[[87+65+74][59+49+101];[47+30+82][15+45+102]][0]

Stair Cascade code: code length 648 bits, code rate 5/6, column weight 6

[2+14+38+39+36+107][23+10+25+73+13+37][47+58+55+20+86+98] …
[68+46+24+40+52+105][28+74+77+67+90+57][0]

Stair Cascade code: code length 1,296 bits, code rate 5/6

 [62+189+120+30+50+110][34+73+84+78+180+185][97+152+150+172+8+176] ...
[89+153+4+105+76+158][199+22+140+23+7+201] [0]

Stair Cascade code: code length 1,944 bits, code rate 5/6

 [11+241+61+256+69+191][85+320+251+144+52+172][80+68+213+242+134+16] ...
[7+246+45+294+18+226][236+273+142+153+81+63][0]

Stair Latice code: code length 648 bits, code rate 5/6

[[40+43+53][6+28+20];[22+24+23][25+7+8]] …
[[49+15+14][36+33+1];[52+26+0][21+32+17]] …
[[30+39+2][9+46+5];[50+38+5][28+53+35]] …
[[11+10+48][15+4+23];[2+0+24][31+26+40]] …
[[45+20+42][30+25+16];[27+18+12][46+47+43]][0]

Stair Cascade code: code length 1,944 bits, code rate 5/6

[11+241+61+256+69+191][85+320+251+144+52+172][80+68+213+242+134+16] ...
[7+246+45+294+18+226][236+273+142+153+81+63][0]

APPENDIX

xliii

Stair Lattice code: code length 1,296 bits, code rate 3/4

[[7+19+16][60+68+54];[106+139+59][161+102+66]] ...
[[11+21+49][46+134+89];[147+138+48][3+152+158]] ...
[[42+87+145][88+4+109];[62+140+144][119+115+104]][0]

Stair Cascade code: code length 1,296 bits, code rate ½, column weight 6
Code Slope parameter Average girth degree of girth 4

1 [101+293+240+436+564+290][0] 0
2 [366+371+608+521+275+122][0] 2
3 [10+20+30+40+60+80][0] 24
4 [10+20+30+40+50+60][0] 40

Stair Lattice code: code length 1,296 bits, code rate 3/4 and column weight 6

Code Slope parameter Average girth degree
of girth 4

1 [7+19+16 60+68+54; 106+139+59 161+102+66]
[11+21+49 46+134+89; 147+138+48 3+152+158]
[42+87+145 88+4+109; 62+140+144 119+115+104][0]

3

2 [10+20+30 111+67+6; 20+30+40 144+33+106]
[60+80+100 23+64+39; 30+50+70 45+94+26]
[50+70+90 115+52+117; 70+90+110 151+4+135][0]

24

3 [10+20+30 50+70+90; 20+30+40 60+80+100]
[60+80+100 70+90+110; 30+50+70 80+100+120]
[50+70+90 20+40+60; 70+90+110 50+70+90][0]

96

Chapter 5

MacKay code [MN95]
array LDPC codes [Fan00, EÖ01]

