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A TWO-SCALE MODEL OF TWO-PHASE FLOW IN POROUS MEDIA
RANGING FROM PORESPACE TO THE MACRO SCALE

MARTIN HEIDA

Abstract. We will derive two-scale models for two-phase flow in porous media, with the micro-
scale given by the porescale. The resulting system will account for balance of mass, momentum
and energy. To this aim, we will combine a generalization of Rajagopal’s and Srinivasa’s assump-
tion of maximum rate of entropy production [39, 20, 21] with formal asymptotic expansion. The
microscopic model will be based on phase fields, in particular to the full Cahn-Hilliard-Navier-
Stokes-Fourier model derived in [23] with the boundary conditions from [20]. Using a generalized
notion of characteristic functions, we will show that the solutions to the two-scale model macro-
scopically behave like classical solutions to a system of porous media flow equations. Relative
permeabilities and capillary pressure relations are outcomes of the theory and exist only for spe-
cial cases. Therefore, the two-scale model can be considered as a true generalization of classical
models providing more information on the microscale thereby making the introduction of hysteresis
superfluous.

1. Introduction

Flow in porous media is an old topic dating back to the pioneering publication by Darcy [10]
who studied single phase flow in soil concluding that the velocity υ depends on pressure p and
gravitational potential g via

(1.1) υ = A (g −∇p)

where A is the permeability tensor. This relation has been investigated for a long time and has
even mathematically been proven correct using homogenization techniques [2, 3, 4, 27, 35, 43].

However, problems arise at the moment the simple case of single phase flow is replaced by flows
of at least two immiscible fluids, the root causes of these problems being capillarity effects: At the
microscopic boundaries between the constituents, in particular at the contact lines on the solid’s
surfaces, capillary forces become important as they act on the small menisci. These forces strongly
influence the evolution of microscopic geometry, which in turn has major impact on the soil’s
permeability for both fluids.

Capillary effects are usually taken into account by the following system of equations:

(1.2)

∂t (%aθa) + div (%aθaυa) = 0 ,

∂t (%wθw) + div (%wθwυw) = 0 ,

θa + θw = Φ < 1 ,

where Φ is the porosity (i.e. the volume fraction of the pore space) and θa and θw are the volume
fractions of air and water and %a and %w the densities, respectively. In many applications, it is
assumed that %a = const and %w = const . In line with (1.1), the constitutive equations for υa and
υw are assumed to be given through:

(1.3)
υw = Kw(. . . ) (%wg −∇pw) ,

υa = Ka(. . . ) (%ag −∇pa) ,
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where pa and pw are the pressures in the air and water phase. The permeability tensors Kw/a

depend on several quantities such as porosity, microscopic geometry, θw/a, %w/a and others, where
in most simple models, dependence of Kw/a is restricted to θw or related quantities. For an overview
over different models, refer to [26, 31, 42].

In order to complete the system, it is usually complemented with a constitutive relation between
pa and pw of the form

(1.4) pw − pa = pc(θw, . . . ) ,

where pc is the so called capillary pressure. In case the air phase is connected with the atmosphere,
it is commonly assumed that pa equals the atmospheric pressure patm: pa = patm. This assumption
leads to Richards’ equation, with air transport being neglected (as the mass of air is given by θw
and patm) and the velocity of water is given through

υw = Kw(. . . ) (%wg −∇pc(θw)) .

Often, above models are incapable to describe real world phenomena, as long as they are based on
a deterministic relation (1.4) and deterministic dependencies for Ka(θa) and Kw(θw). In particular,
the last two assumptions for capillary pressure and permeabilities have been proven insufficient in
many publications, refer to [17, 24, 28, 29, 30, 36, 37] and references therein.

In particular, it turns out that Ka and Kw are not only depending on θw but they are sensitive to
the history of the system, as macroscopic permeability is not only due to water content, but also to
microscopic distribution of phases, i.e. the microscopic geometry with its distribution of interfaces
between water and air, of contact lines and contact angles.

The problem has been known for a long time and scientists tried to solve it introducing hysteresis
operators. In particular the Preisach operator proved to be successful [13]. An overview over many
classical models can be found in standard text books (for example [26, 31, 41, 42]) and in the large
literature on the subject.

A mathematical introduction to hysteresis can be found in the book by Visintin [47]. Formally,
Visintin characterizes Hysteresis as a “rate independent memory effect”: the current state and
development of a system depends on its history, in particular on all former states but not on the speed
at which these states have been passed through. This applies for example to the “classically” used
hysteresis models in porous media flow, such as the Preisach model [13]. Accordingly, measurements
for drainage and imbibition curves are usually performed by measuring a series of steady states and
in the resulting models, it is assumed that the relation pc(θ) is independent on the speed of drainage
and imbibition. Indeed, this approach was successful to some extend [13].

However, such macroscopic hysteretic behavior can be expected if and only if the macroscopic
parameters like saturation and capillary pressure change slowly compared to the relaxation time on
the micro scale. Thus, the faster macroscopic drainage or imbibition progress, the less reliable are
the hysteretic models. In such cases, different approaches for the modeling of these memory effects
are needed. Remark that already Hassanizadeh and Gray [18] showed that this does not hold in
general and pointed out the limits of hysteresis approaches.

All these reflections point out that the usage of hysteresis operators or any macroscopic memory
effect, reflects a lack of knowledge about “hidden” parameters, namely the microscopic distribution
of the two phases, in particular the distribution of interfaces and contact lines on microscopic grain
boundaries.

The approach and the results of this paper differ significantly from the usual approaches: The
resulting system of equations will be defined on two scales and describe at the same time the
macroscopic and the microscopic evolution of the system. Thus, the equations contain much more
information about the system than in previous approaches. We will see further, that the resulting
model is a true generalization of (1.2) and (1.3) as averaging the solution of the two-scale model
yields macroscopic quantities that evolve according to equations of the form (1.2) and (1.3).
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This will be achieved, combining the theory from recent papers by Heida, Málek and Rajagopal
[23] and Heida [20] with formal asymptotic expansion. Note that the results from [20, 23] are ob-
tained using a method first introduced by Rajagopal and Srinivasa [39] and generalized to boundary
conditions in [20]. Shortly speaking, the paper is about homogenization of phase field models. We
will work with a phase field model with the order parameter given in terms of concentrations but
remark that generalization to more constituents, or to the description in terms of partial densities
is obvious with respect to [23, 20]1. The two constituents will be called water and air, for simplicity.

Note that the reasons for the choice of phase field models are threefold: In contrast with sharp
interface models, phase field models allow for topological transitions in the geometry, an important
effect in porous media flow. Also note that these are physical models, based on an early observation
by Van der Waals [45, 46], and are not to be mixed up with the heuristic levelset approach. Third,
in case of small pores, the effects due to the diffusive structure of the interface observed by Van der
Waals may no longer be negligible.

Of course, the validity of the resulting two-scale equations strongly depends on the validity of the
constitutive equations for the energy in bulk and on the microscopic boundaries. In particular, the
constitutive equations for the energy which are used below are assumed to be valid for moderate
temperatures as well as under moderate pressures. Also they only hold for a pore size which is
still large compared to the transition zone. For example, if the transition zone is of order 10nm,
the pores should be of a size of at least 1µm. For simplicity, we make the additional assumption
that the two phases and the soil matrix share a common temperature field, i.e. that there are no
temperature jumps on the microscopic boundaries. Finally, note that the soil matrix is assumed to
be rigid. In particular, this implies that the medium under consideration is not deformable, which
excludes effects like swelling.

To the authors knowledge, this is the very first attempt to derive such two-scale models for
multiphase flow starting from the porescale using formal asymptotic expansion methods. A former
attempt using REV-averaging can be found in in a recent paper by Papatzacos [38], but his approach
and results differ significantly: REV averaging the way it was used in [38], is not suited to macro-
scopically resolve processes happening on a scale smaller than the poresize. Therefore, Papatzacos
is not able to resolve the transition zone as phase interface inside the pore but he is restricted to the
case when the transition zone is, in some sense, large compared to the pore diameter. Therefore he
obtains a macroscopic Cahn-Hilliard system while we aim to recover macroscopic convective mass
transport with Darcy-like constitutive equations for the velocity fields.

Concerning simulations, we mention a similar idea developed first by Gray and Hassanizadeh
[14, 15, 16] who already stated that microscopic distribution of surfaces and contact lines is crucial
for macroscopic behavior of the flow. This idea was further developed by Hassanizadeh and other
coworkers like Celia, Dahle, Joekar-Niasar, Niessner, Norbotten and others [17, 28, 29, 30, 36, 37],
who performed numerical calculations on a periodic structure of cells and channels in order to get
macroscopic permeability depending on microscopic geometry and variation of geometry.

Hilfer [24, 25], initially also considering the microscopic distribution of interfaces as the main
cause of macroscopic memory effects, recently started a new approach in terms of volume fractions,
ending up with rate dependent pressure/saturation relations. Like for the present approach, he
states that relative permeabilities as well as capillary pressure should be an outcome of theory and
not an input.

Hassanizadeh and Gray as well as Hassanizadeh et.al. and Hilfer agree that capillary pressure is
not a static variable. Also they claim that a hysteretic dependence on saturation is not enough to
capture all dynamic phenomena. Rather they state that the capillary pressure is a dynamic variable
that depends on saturation as well as on the microscopic distribution of phase interfaces (menisci)

1Such a generalization can be found in Heida [19] for permafrost soil, a system with the constituents air, water,
ice and vapor.
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and contact lines. Once these phenomena are incorporated to the models, hysteresis is no longer in
need.

Finally, Hassanizadeh and Gray [18] state that capillary pressure can hardly be obtained from
microscopic point of view, as the pressure drop across the water/air interface strongly depends on
geometry. This is the reason why this article will abstain from providing explicit formulas for the
capillary pressure difference except for a small outlook in section 12 in case of Richards equation.
This topic is left for future investigations and for numerical experiments. Former investigations
from the theoretical point of view, also including averaging calculations, can be found in [36, 37]
among which the closest to the present approach is by Norbotten et. al. [37].

The structure of the article is as follows: In section 2 we will introduce some important standard
notations that will be frequently used throughout the article. In 3 we will introduce the formal
asymptotic expansion method for the derivation of two-scale models and exemplarily derive Darcy’s
law, also for the purpose of providing better understanding of sections 8-11. After that, we will
introduce abstract equations of continuum mechanics (section 4), describe how the abstract equa-
tions can be non-dimensionalized (section 5) and how thermodynamically consistent constitutive
equations can be derived using Rajagopal’s and Srinivasa’s assumption of maximum rate of entropy
production within the generalized framework by Heida [19, 20] and Heida, Málek and Rajagopal [21]
(section 6). Then, we will finally derive the microscopic model in the porespace 7 and the two-scale
model 8.

The coupled two-scale system in itself already is a complete model for two-phase flow in porous
media. Nevertheless, we also provide calculations to estimate the effective macroscopic behavior
of the solutions and yielding that solutions to the resulting two-scale equations show the expected
(and usually observed) macroscopic behavior in sections 10-11.

The resulting macroscopic balance of energy will consist of Fourier’s law with convection (section
10). The balances of mass for water and air will be given through convection equations (section 10).
The most problematic part is the derivation of constitutive equations for the macroscopic velocities
of water and air.

It will be shown, that once a solution to the two-scale equation is found, it is possible to split
up the balance of momentum into two separate equations for the velocity fields of air and water
(section 11). The basic idea of this splitting is, that the physics in the bulk differs significantly
from the physics close to the transition zone which will also be reflected in the new system. The
separated equations will be highly coupled through the transition zone and will only decouple in
case of stationary geometry.

Note that the equations point out that macroscopic equations like the Richard’s equation cannot
be obtained but in very special cases. Nevertheless, we will shortly discuss this topic in section 12.

2. Preliminaries

2.1. Geometric setting. Throughout this article, we will consider a bounded and open domain
Q ⊂ R3. Furthermore, consider Y := [0, 1[3, with Y = Y 1∪Y 2∪Γ such that Γ := ∂Y 1∩∂Y 2∩Y .
We expand Y , Y 1, Y 2 and Γ periodically to R3 assuming that the periodizations of Y 1 and Y 2 are
both simply connected and open in R3 and Γ := ∂Y 1 ∩ ∂Y 2. We multiply the resulting structures
by ε to obtain Y ε

1 = εY 1, Y ε
2 = εY 2 and Γε = εΓ. Finally, we define the following subsets of Q:

Qε
1 := Q ∩ Y ε

1, the pore space, and Qε
2 := Q ∩ Y ε

2, the solid matrix. Wherever it will not provoke
any confusion, we equally denote Γε := ∂Qε

1 ∩Q. The definitions are illustrated in figure 2.1. The
outer normal vector of Y 1 on Γ will be called nΓ and the outer normal vector of Qε

1 on Γε is denoted
as nΓε .

One should be very careful in not mixing up the periodic cell Y with the notion of a so called
“Representative Elementary Volume” (REV) that is used in applied sciences such as soil physics. The
REV is a volume that is big compared to micro structures but small compared to the macroscopic
scale. Therefore, a single cell εY is not suitable, neither Y . For example, Joekar-Niasar et. al.



HOMOGENIZATION OF TWO-PHASE FLOW IN POROUS MEDIA 5

1

ε

Γ

Y2

Y1

Γ
ε

Qε

2

Qε

1

Q

Y

Figure 2.1. Sketch of geometrical setting and notation.

[28] found in their simulations, that an REV is at least of the size 40 × 40 × 40 periodic cells. An
introduction to the REV-averaging method can be found for example in the book by Dormieux,
Kondo and Ulm [11]; it should not be mixed up with the present method of formal asymptotic
expansion.

However, given such Q, Y ε
1 and Y ε

2, we identify εL0 as the parameter describing the typical size
of a pore, where w.l.o.g. L0 = 1 is the macroscopic length scale. With respect to application, ε is
depending on the physical size of the pores and the complexity of the geometry, which is represented
by Y , Y 1 and Y 2. In any case, from the physical point of view, ε is a fixed parameter. In order to
derive two-scale models, it is important to seek for a suitable non dimensionalization of the physical
equations. This is topic of section 5.

2.2. Differential Operators on the Boundary. On Γ, let nΓ be the normal vector field and for
each arbitrary vector field a : Γ→ R3, we define the normal part an and the tangential part aτ via

an := a · nΓ, aτ := a− annΓ .

We define the normal derivative of a scalar quantity a through

∂na := ∇a · nΓ

and the tangential gradient ∇τ for such scalars through

∇τa := (∇a)τ = ∇a− nΓ∂na .

For any vector field f τ tangential to Γ, we define the divergence

divτf τ := tr∇τf τ .

and we find:
divf = divτf + ∂n(fn) .

The mean curvature of Γ is defined as

κΓ := trace (∇τnΓ)

and we find the following important result:

Lemma 1. (See for example [6]) For any f ∈ C1(Γ) holdsˆ
Γ
∇τf =

ˆ
Γ
fκΓnΓ +

ˆ
∂Γ
fν

where ν∗ := (n∂Q)τ and ν = |ν∗|−1 ν∗ is the unit vector tangent to Γ and normal to ∂Γ. Further-
more, for any tangentially differentiable field q holdsˆ

Γ
divτq =

ˆ
Γ
κΓq · nΓ +

ˆ
∂Γ
q · ν
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Note that the Laplace-Beltrami operator on Γ is then defined by

∆ττf = divτ∇τf

and Lemma 1 yields for any continuously differentiable and tangential vector field f = f τ on Γ

(2.1)
ˆ

Γ
divτf = 0 .

3. Asymptotic Expansion and Darcy’s Law

Asymptotic expansion, as it will be applied below, is not a mathematically rigorous but only
formal modeling tool. Given a microscopic geometry on Q by Y ε

1, Y
ε
2 and Γε, it starts from a

set of (partial) differential equations, the microscopic problem, which depends on the geometry and
on ε. It is the aim of homogenization to investigate the behavior of solutions to the microscopic
problem as ε→ 0 and to identify approximating macroscopic or two-scale problems. In particular,
the approximating problem often is not only defined on Q but on Q×Y although there are special
cases where a reduction to a problem on Q is possible. This will be the case for the derivation of
Darcy’s law below.

Note that there is big amount of literature on homogenization. Below, we will deal with ho-
mogenization of Cahn-Hilliard-Navier-Stokes-Fourier systems, thus we get in touch with Stokes and
Laplace operators. For former results on the homogenization of Navier-Stokes and Stokes flow, refer
to works by Allaire [1, 2, 3], Ene and Saint Jean Paulin [12], Marušić-Paloka [32], Mikelić [33, 35],
Sandrakov [44] and of course the pioneering work by Tartar in the appendix of [43]. For the ho-
mogenization of diffusion and diffusion with nonlinear boundary conditions, the reader is referred
to Amaziane, Goncharenko and Pankratov [5], Conca, Diaz and Timofte [9], Conca, Diaz, Liñan
and Timofte [8], Heida [19], Hornung [27], Mikelić and Primicerio [34] and the references therein.

Considering any ε-dependent unknown uε, the basic idea of asymptotic expansion is an ansatz

(3.1) uε =

∞∑
i=0

εiuεi ,

where the functions uεi have to be specified. Since the domain Q = Qε
1 ∪Qε

2 ∪ Γε is characterized
by, Q and Y = Y 1 ∪ Y 2 ∪ Γ and ε, it seems reasonable to assume that ui : [0, T ]×Q× R3 → Rk
with ui being Y -periodic in the third variable. In particular

ui : [0, T ]×Q× Y → Rk

(t, x, y) 7→ ui(t, x, y) ,

with
uεi (t, ·) := ui

(
t, ·, ·

ε

)
and (3.1) becomes

(3.2) uε(t, ·) =

∞∑
i=0

εiui(t, ·,
·
ε

).

Additionally, the following relations for the gradient and the divergence operators hold:

(3.3) ∇ = ∇x +
1

ε
∇y, div = divx +

1

ε
divy .

Inserting (3.3) together with (3.2) into the particular partial differential equation, separating powers
of ε, we obtain effective equations for the approximate behavior of uε(t, ·) ≈ u0(t, ·). We will start
by considering homogenization of the Stokes equations with the scaling introduced by Allaire [4]
(see also [27, chapter 3]).
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3.1. Homogenization of the incompressible Stokes equation: Dynamic case. We start
with the incompressible Stokes fluid. Incompressibility implies that the pressure pε is an unknown,
density is constant and the velocity υε has to fulfill the incompressibility condition (3.4b):

∂tυ
ε − ε2div (µ∇υε) +∇pε = gε on Qε

1(3.4a)
divυε = 0 on Qε

1(3.4b)
υε = 0 on ∂Qε

1(3.4c)
υε = 0 on Qε

2(3.4d)

With an additional initial condition on (0, T ]×Q of the form

υε(0, ·) = υ̃0(·, ·
ε

) .

We assume that gε(x) = g(x) and there is a family of functions

υi : [0, T ]×Q× Y → R3 0 ≤ i <∞
(t, x, y) 7→ υi(t, x, y)

pi : [0, T ]×Q× Y → R3 0 ≤ i <∞
(t, x, y) 7→ pi(t, x, y)

such that the solution υε and pε can be described by

υε(t, ·) =

∞∑
i=0

εiυi(t, ·,
·
ε

)(3.5a)

pε(t, ·) =

∞∑
i=0

εipi(t, ·,
·
ε

)(3.5b)

where the functions υi and pi are periodic in Y . The first coordinate reflects the macroscopic
behavior of the solution, while the second coordinate reflects microscopic variations due to presence
of microscopic geometry. The basic Idea is to insert (3.5) together with (3.3) into (3.4a) and separate
the terms by powers of ε such that equations (3.4) take the form

ε−1 (. . . ) + ε0 (. . . ) +O(ε) = 0 .

In particular, the result reads up to order 0:

(3.6a) ε−1∇yp0 + ε0 (∂tυ0 − divy (µ∇yυ0) +∇xp0 +∇yp1 − g) +O(ε) = 0

(3.6b) ε−1divy υ0 + divx υ0 + divy υ1 +O(ε) = 0

(3.6c)
∑
i

εiυi(t, x, ·) = 0 on ∂Y1,
∑
i

εiυi(t, ·, y) = 0 on ∂Q

For each power of ε, a new set of equations is obtained, which has to hold independently on ε.
Order −1 of (3.6a) yields ∇yp0 = 0. For order 0 of that same equation, the resulting system with

order −1 in (3.6b) reads

∂tυ0 − divy (µ∇yυ0) +∇xp0 +∇yp1 = g

divx υ0 = 0

divy υ0 = 0 .
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This is a complete two-scale model for υ0 and represents as such a solution to the homogenization
problem. Thus, we can consider either

υ0(·, ·
ε

) or υeff :=

ˆ
Y
υ0(·, y) dy

as an approximation of υε(·), where the quality of this approximation is measured in terms of∥∥∥υε(·)− υ0(·, ·
ε

)
∥∥∥
L2(Q)

or ‖υε(·)− υeff (·)‖L2(Q) .

However, in laboratory experiments and in nature, we are interested the macroscopic behavior of
υeff . To obtain a macroscopic description for the evolution of υeff , we consider ui solutions to

∂tui − divy (µ∇yui) +∇yΠi = ei on ]0, T ]× Y 1

divy ui = 0 on ]0, T ]× Y 1

ui(0, ·) = 0 on Y 1

ui(·, ·) = 0 on [0, T ]× ∂Y 1

where ei is the i-th standard basis vector of R3. We furthermore introduce υ̂ through

υ̂(t, x, y) :=

ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)]ui(t− s, x, y)ds .

Since

∂tυ̂(t, x, y) =

ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)] ∂tui(t− s, x, y)ds

+
∑
i

[∂t (g −∇xp0)i (t, x)]ui(0, x, y) ,

we find due to the initial conditions on ui:

∂tυ̂ − divy (µ∇yυ̂) = g −∇p0 −∇y
ˆ t

0

∑
i

[∂t (g −∇xp0)i (s, x)] Πids ,

and the velocity field can be split up into

υ0 = υ̃ + υ̂

where
∂tυ̃ − divy (µ∇yυ̃) +∇yq1 = 0 on (0, t)× Y 1

divy υ̃ = 0 on (0, t)× Y 1

υ̃ = 0 on (0, t)× Γ

υ̃(0, ·) = a(·) on Y 1 .

Defining

Ai,j := ∂t

ˆ
Y 1

ui · ej

one may check by partial integration, the initial conditions on ui and the assumption (g −∇p)
∣∣∣
t=0

=

0 that

υeff =

ˆ
Y 1

υ̃ +

ˆ t

0
A(t− s) (g −∇xp0) (s)ds ,

where υ̃ → 0 pointwise as t→∞. For a rigorous proof of this homogenization result refer to Allaire
[27, chapter 3].
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3.2. The Stationary Case. For the stationary case in (3.4), i.e. ∂tυε = 0, we end up with [27]

υeff =

ˆ
Y
υ0 = A (g −∇xp0)

where
Ai,j :=

ˆ
Y 1

ui · ej

and ui are solution to

−divy (µ∇yui) +∇yΠi = ei on Y 1

divy ui = 0 on Y 1

ui(x, ·) = 0 on ∂Y 1 .

4. Continuum Mechanics

We follow the outline of previous works by Heida, Málek and Rajagopal [23, 22] on phase field
models as well as [20], where the author introduced a new method to derive thermodynamically
consistent boundary conditions for phase field models.

4.1. The Porespace. Thus, on Qε
1, we assume the presence of a mixture consisting of two different

(almost) immiscible species, which we call without loss of generality water and air, having partial
densities %w and %a. Assuming mass conservation for both species and transported by partial
velocities υw, υa we obtain mass balance equations of the form

(4.1) ∂t%i + div (%iυi) = 0 i ∈ {a,w} .
In particular, we exclude production of air and water and chemical reactions, for simplicity. The
densities %a and %w add up to a total density % of the mixture and the momenta of air and water add
up to the total momentum %υ, introducing by the same time the mean velocity υ of the mixture
through:

% = %a + %w, υ :=
1

%
(%aυa + %wυw) .

Therefore, we can formulate the mixture’s balance of mass as

∂t%+ div (%υ) = 0 .

Defining the material derivative for scalars a and vectors f through

(4.2) ȧ := ∂ta+ υ · ∇a, ḟ := ∂tf + (∇f)υ

we get with
c :=

%w
%
, j := (υw − υ) %w

and (4.1)w:
%ċ+ div j = 0 .

Following the approach by Heida, Málek and Rajagopal [23, 22], we are not interested in the balance
of energy, momentum and angular momentum for each constituent but postulate that the mixture is
sufficiently described by the balance of energy, momentum and angular momentum for the mixture
as a whole. As pointed out in [23], this is useful if we are not interested in energy and momentum
exchange between the several constituents.

Thus, introducing the Cauchy stress T, the internal energy per mass u, the total energy per mass
E := 1

2

∣∣υ2
∣∣+ u, the diffusive heat flux jE , external energy supply s and external body force g, we

require the validity of the following set of equations:

∂t (%υ) + div (%υ ⊗ υ)− divT = g T = TT

∂t (%E) + div (%Eυ)− div (Tυ + jE) = s .
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As pointed out in [23], introducing
h := Tυ + jE

leads to the system

(4.3)
%̇+ %divυ = 0 %υ̇ − divT = g T = TT

%ċ+ div j = 0 %Ė − divh = s .

While up to now, these equations do not account for any interaction between the two constituents
water and air, note that such information will enter due to constitutive equations on T, j and h
which will be derived below.

4.2. The Solid Matrix. OnQε
2, the solid Matrix, the velocity field is zero, the density is stationary

and we do not consider any dynamics except for energy transport. Writing E2 for the energy per
volume in Qε

2 and h2 for the diffusive energy flux, the balance of energy reads

(4.4) ∂tE2 − divh2 = 0 ,

as we assume no external (external of Q) supply of energy to the solid matrix.

4.3. The Microscopic Boundary. Following [20], we assume the presence of a surface energy
field EΓ on Γε and assume that it evolves due to

(4.5) ∂tEΓ − divhΓ =
⊕
E

where hΓ is some surface energy flux and
⊕
E is supply of energy from the bulk to Γε. Note that EΓ

is not the trace of E or E2 on Γε. Indeed, E is measured in energy per mass, E2 is measured in

energy per volume and EΓ in energy per area. However, due to h, h2 and
⊕
E, there is an exchange

of energy between Qε
1, Q

ε
2 and Γε, as demonstrated in section 6.1.

As will be shown in section 7 we also have to account for an additional boundary condition for c
which is of the form

(4.6) %∂tc+ %υτ · ∇τ c =
⊕
c .

5. Non-Dimensionalization

The equations of balance for %, c and E in system (4.3) can be brought to a form

(5.1) ∂tφ+ div (υφ) + div jφ = 0 , φ ∈ {%, c, E}

while the balance of momentum takes the form

(5.2) ∂t (%υ) + div (%υ ⊗ υ)− divT = g .

We want to study the behavior of these equations with respect to the characteristic scales of the
physical setting: We assume that the characteristic scale of space is given by L0, the characteristic
scale of time is given by t0 and the characteristic scales of %, c, E, υ, jφ and T by %∗, c∗, E∗,
υ∗, j∗φ and T ∗ respectively. (Note that these scales may depend on ε as they may depend on the
ratio between macroscopic and microscopic length scales. Furthermore, note that υ∗, j∗φ and T ∗ are
scalars!) The non dimensionalized quantities are indicated by an upper index ε, thus by φε, υε, Tε,
jεφ. We find

φ = φ∗φε, υ = υ∗υε, T = T ∗Tε, jφ = j∗φ j
ε
φ ,

and insert these relations in (5.1) and (5.2), having in mind

div = L−1
0 div∗ , ∇ = L−1

0 ∇
∗ , ∂t = t−1

0 ∂∗t ,
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where div∗, ∇∗ and ∂∗t are derivatives with respect to x
L0

and t
t0
. We find

∂∗t φ
ε +

t0υ
∗

L0
div∗ (υεφε) +

t0j
∗
φ

L0φ∗
div∗jεφ = 0 , φ ∈ {%, c, E}(5.3)

∂∗t (%ευε) +
t0υ
∗

L0
div∗ (%ευε ⊗ υε)− t0T

∗

L0%∗υ∗
div∗T = g .(5.4)

It is one of the most crucial steps in homogenization to identify the correct scales of the factors

(5.5)
t0υ
∗

L0
,

t0j
∗
φ

L0φ∗
, and

t0T
∗

L0%∗υ∗
.

In classical approaches to homogenization, these scales are identified after the constitutive equa-
tions for j, h and T in (4.3) have been provided from theory.

However, there is one problematic issue connected with this approach: Even if constitutive equa-
tions have been derived from thermodynamic principles, it is by no means clear that the non-
dimensionalization and identification of ε yields thermodynamically consistent systems of equations
for all ε. If the scaling of the equations would lead to a violation of the second law for small ε, the
resulting homogenized equations would not be thermodynamically consistent and make the result
doubtable.

Therefore, we will follow a different path: We will start by identifying the reasonable scales for
(5.5). Then, we will directly derive non-dimensionalized constitutive equations for jε, hε and Tε,
using (5.3), (5.4) and the method of maximum rate of entropy production.

First note that the scaling in front of the convective term is the same for all quantities. We will
assume that convection is small on the macro scale, i.e. that infiltration rates to the porous medium
are low. Thus, it is assumed that

t0υ
∗

L0
= ε .

Concerning t0j∗

L0%∗c∗
in the balance equation for cε, note that we assume the transition zone to be

small even compared to the diameters of the pores. Since j and jε basically determine the thickness
of this transition zone, the scaling factor should be at least of order ε1:

t0j
∗

L0%∗c∗
= ε .

Similarly, Tε describes the interactions of the fluid inside the pores and we equally get
t0T
∗

L0%∗υ∗
= ε .

The dissipative energy flux, is a far reaching effect and behaves differently. In particular, we assume
in the following that

t0h
∗

L0%∗E∗
= 1 .

Furthermore, for simplicity of notation, we drop the upper index ∗ in the differential operators div∗,
∇∗ and ∂∗t and obtain the following non dimensionalized set of equations in Qε

1:

(5.6)

∂t (%εcε) + εdiv (%εcευε) + εdiv (jε) = 0

∂t%
ε + εdiv (%ευε) = 0

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− εdivTε = gε

∂t (%εEε) + εdiv (%εEευε)− divhε = gε · υε ,
where it is assumed that jε has its major impact on the porescale as well as Tε.

On Qε
2, we apply a similar procedure to the balance of energy (4.4) and obtain

∂Eε2 − divhε2 = 0 .
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Finally, on Γε, we obtain for balance of EΓ and c the non dimensionalized equations

∂tE
ε
Γ − εdivhεΓ =

⊕
E
ε

%ε∂tc
ε + ε%ευετ · ∇τ cε =

⊕
c
ε
.

Finally, remark that due to above non dimensionalization, also the material derivative becomes a
scaled operator and one obtains the following important relations:

ȧ = ∂ta+ ευε · ∇a for scalars a ,(5.7)
ȧ = ∂ta+ ε (∇a)υε for vectors a ,(5.8)

%ε∇̇cε =
∇%ε

%ε
(εdiv jε1)− % (∇cε)T (ε∇υε)− div [(εdiv jε1) I] ,(5.9)

where ∇̇cε denotes the material derivative of ∇cε and will be used in section 7.

6. The Assumption of Maximum Rate of Entropy Production

Following Callen [7], Heida, Málek and Rajagopal [23] and Heida [20], we assume the existence
of entropy fields ηε, ηε2 and ηεΓ having the following properties:

• ηε = η̃(Eε,υε, %ε, cε,∇cε), ηε2 = η̃2(Eε2), ηεΓ = η̃Γ(EεΓ, c
ε,∇τ cε)

• Keeping all other parameters fixed, η̃, η̃2 and η̃Γ are strictly monotone increasing in Eε,
Eε2 and EεΓ respectively. Thus, η̃(·,υ, %, c,∇c), η̃2(·) and η̃Γ(·, c,∇τ c) are invertible for fixed
parameters and we can assume

(6.1) Eε = Ẽ(ηε,υε, %ε, cε,∇cε), Eε2 = Ẽ2(ηε2) and EεΓ = ẼΓ(ηεΓ, c
ε,∇τ cε)

• 0 ≤ ϑε := ∂Eε

∂ηε , 0 ≤ ϑε2 :=
∂Eε2
∂ηε2

and 0 ≤ ϑεΓ :=
∂EεΓ
∂ηεΓ

are strictly increasing with Eε, Eε2 or EεΓ
respectively, where we will assume for simplicity, that all three quantities coincide on Γ. In
particular, for the traces of ϑε and ϑε2 on Γε holds

(6.2) ϑε|Γε = ϑε2|Γε = ϑεΓ on Γε .

Thus, we denote all three quantities by ϑε and call this quantity the temperature field of the
system.

Having in mind (6.1), we calculate the material derivative of E and time derivatives of E2 and EΓ

through:

(6.3)

%εĖε = %εϑεη̇ε + %ε
∂Eε

∂υε
· υ̇ε + %ε

∂Eε

∂%ε
%̇ε +

∂Eε

∂cε
ċε +

∂Eε

∂ (∇cε)
· ∇̇cε on Qε

1 ,

∂tE
ε
2 = ϑε∂tη

ε
2 on Qε

2 ,

∂tE
ε
Γ = ϑε∂tη

ε
Γ +

∂Eε

∂cε
∂tc

ε +
∂Eε

∂ (∇τ cε)
· ∂t (∇τ cε) on Γε .

Inserting (4.3), (4.4), (4.5), (4.6) and (5.9) into (6.3) yields new balance equations for η, η2 and ηΓ

of the form:

%εη̇ε = div
qε

ϑε
+
ξε

ϑε
on Qε

1 ,

∂tη
ε
2 = div

qε2
ϑε

+
ξε2
ϑε

on Qε
2 ,

∂tη
ε
Γ = divτ

qεΓ
ϑε

+
ξεΓ
ϑε

on Γε ,

where qεi and ξ
ε
i will be provided below in section 7.
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6.1. Global Balance of Energy and Entropy. For simplicity, we assume that Q is perfectly
isolated, which means that any flux of mass, energy or entropy through ∂Q is excluded. Let n∂Q
be the outer normal vector of Q, we thus obtain the following conditions on ∂Q:

hε · n∂Q = 0 hε2 · n∂Q = 0 hεΓ · n∂Q = 0

qε · n∂Q = 0 qε2 · n∂Q = 0 qεΓ · n∂Q = 0(6.4)
jε1 · n∂Q = 0 υ = 0

Furthermore, it will be assumed that there is no net mass flux through the boundary Γε, nor any
chemical reaction at the boundary, i.e.

(6.5) υε · nΓε = 0 and j1 · nΓε = 0 on Γε .

The total energy Eε and total entropy Sε of the system are given as the integral of the respective
fields on Qε

1, Q
ε
2 and Γε:

Eε =

ˆ
Qε1

%εEε +

ˆ
Qε2

Eε2 + ε

ˆ
Γε
EεΓ ,(6.6)

Sε =

ˆ
Qε1

%εηε +

ˆ
Qε2

ηε2 + ε

ˆ
Γε
ηεΓ ,(6.7)

where the boundary integrals are assumed to enter of order ε since

lim
ε→0

ε

ˆ
Γε

1 dx =

ˆ
Q

ˆ
Γ

1 dx dy .

Note that this can be realized by choosing appropriate scales for E∗Γ and η∗Γ. Global changes of
energy are assumed to be only due to work done by body forces. In particular, the global balance
of energy reads:

0 =
d

dt
Eε −

ˆ
Qε1

gε · υε =

ˆ
Qε1

%εĖε +

ˆ
Qε2

∂tE
ε
2 + ε

ˆ
Γε
∂tE

ε
Γ −
ˆ
Qε1

gε · υε

= ε

ˆ
Γε

(
1

ε
(hε − hε2) · nΓε + εdivτhεΓ +

⊕
E
ε
)
.(6.8)

Due to (6.4) and lemma 1 holdsˆ
Γε

divτhεΓ =

ˆ
∂Q∩Γε

hεΓ · n∂Q = 0 ,

and due to the reasons pointed out in [20], equation (6.8) implies the local energy conservation2

(6.9)
1

ε
(hε − hε2) · nΓε +

⊕
E
ε

= 0 .

The time derivative of global entropy with respect to time yields:

Ξε :=
d

dt
Sε =

ˆ
Qε1

ξε

ϑε
+

ˆ
Qε2

ξε2
ϑε

+ ε

ˆ
Γε

(
1

ε ϑε
(qε − qε2) · nΓε +

ξεΓ
ϑε

)
=

ˆ
Qε1

ξε

ϑε
+

ˆ
Qε2

ξε2
ϑε

+ ε

ˆ
Γε

ξεΓ,tot
ϑε

,(6.10)

2We shortly repeat the original argumentation with slightly modified formulas: As pointed out in [20], “the reason
why divτhεΓ does not appear in (6.9) is twofold: First, due to lemma 1, it is possible to add

´
Γ
εdivτfτ of any

tangential vector field fτ in (6.8) without violating the equality. In particular, we could equally derive a condition
1
ε

(hε − hε2) · nΓε +
⊕
E
ε

+ rεdivτhεΓ = 0 for any r ∈ R. Second, it is reasonable to assume that absorption is a local

process, i.e. that the energy supply hε ·nΓε is first absorbed by Γε through
⊕
E
ε

and then dissipated through hεΓ, instead
of being directly dissipated through hεΓ.”
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where the second law of thermodynamics requires

(6.11) Ξε ≥ 0 .

Note that 1
ε ϑε (qε − qε2) · nΓε , the exchange of entropy between Qε

1, Q
ε
2 and Γε, contributes to the

production of entropy, itself.

6.2. The Assumption of Maximum Rate of Entropy Production. It was the idea of Ra-
jagopal and Srinivasa [39] to make use of ξε in order to derive constitutive equations in the bulk
using an assumption of maximum rate of entropy production. This idea was generalized by the
author to ξεΓ [19, 20] and Heida, Málek and Rajagopal [21], i.e. to lower dimensional structures.

Being aware of the loss of generality, it is assumed that (6.11) can be split up into the local
conditions

ξε ≥ 0 pointwise in Qε
1 , ξε2 ≥ 0 pointwise in Qε

2 ,

ξεΓ,tot ≥ 0 pointwise on Γε .

The local rates of entropy production ξε, ξε2 and ξεΓ will be assumed to have the form

ξε =
∑
α

Jεα · fα(Aε)

ξε2 =
∑
β

Jεβ · fβ(Aε
2)

ξεΓ =
∑
γ

Jεγ,Γ · fγ,Γ(Aε
Γ)

where Jε∗ are the thermodynamical fluxes on Qε
1, Q

ε
2 or Γε respectively and Aε, Aε

2 and Aε
Γ are the

relevant thermodynamical affinities. In our context, the thermodynamical fluxes are given through
Tε, jε, hε, qε and similar quantities on Qε

2 and Γε, while the affinities are the unknowns of the
system, such as %ε, cε, υε and ϑε. For a more detailed explanation of thermodynamical fluxes and
affinities, refer to [20, 23].

In what follows, we assume that the rates of entropy production on Qε
1, Q

ε
2 and Γε are locally

given by ξ̃ε, ξ̃ε2 and ξ̃εΓ. In particular, ξ̃ε, ξ̃ε2 and ξ̃εΓ depend on the fluxes via:

ξε = ξ̃ε ((Jεα)α) , ξε2 = ξ̃ε2

((
Jε2,α

)
α

)
, ξεΓ = ξ̃εΓ

(
(Jβ,Γ)β

)
.

We then maximize ξ̃ε, ξ̃ε2 and ξ̃εΓ with respect to the local constraints

(6.12) ξ̃ε =
∑
α

Jεα · f εα(Aε) , ξ̃ε2 =
∑
α

Jε2,α · f ε2,α(Aε
2) and ξ̃εΓ =

∑
β

Jεβ,Γ · f εβ,Γ(Aε
Γ) .

According to the theory of Lagrange multipliers, the last problem is equivalent with finding λε1 such
that

(6.13)
∂ξ̃ε

∂Jεα
+ λε1

(
∂ξ̃ε

∂Jεα
− f εα(Aε)

)
= 0 ⇔ f εα(Aε) =

1 + λε1
λε1

∂ξ̃ε

∂Jεα
∀α .

and similarly we find λε2 on Qε
1 with

∂ξ̃ε2
∂Jε2,α

+ λε2

(
∂ξ̃ε2
∂Jε2,α

− f ε2,α(Aε
2)

)
= 0 ⇔ f ε2,α(Aε

2) =
1 + λε2
λε2

∂ξ̃ε2
∂Jε2,α

∀α .

and λΓ for the boundary problem:

(6.14)
∂ξ̃εΓ
∂Jεβ,Γ

+ λεΓ

(
∂ξ̃εΓ
∂Jεβ,Γ

− f εβ,Γ(Aε
Γ)

)
= 0 ⇔ f εβ,Γ(Aε

Γ) =
1 + λεΓ
λεΓ

∂ξ̃εΓ
∂Jεβ,Γ

∀β .
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In the present work, only the simple quadratic case for ξ̃ and ξ̃Γ will be studied

ξ̃ε(Jεα) =
∑
α

1

γα
|Jεα|

2 , ξ̃ε2(Jε2,α) =
∑
α

1

γ2,α

∣∣Jε2,α∣∣2 , ξ̃εΓ(Jεβ,Γ) =
∑
β

1

γβ,Γ

∣∣Jεβ,Γ∣∣2
which yields together with (6.13) and (6.14)

(6.15) Jεα = γεαf
ε
α (Aε) , Jε2,α = γε2,αf

ε
2,α (Aε

2) , Jεβ,Γ = γεβ,Γf
ε
β,Γ(Aε

Γ) .

Note that similar to [20] we can also immediately pass to ξ̃ε, ξ̃ε2 and ξ̃εΓ being quadratic positive
definite bilinear forms.

7. The Complete Microscopic Model

7.1. Physical assumptions. We will now derive the microscopic model for two constituent flow in
porous media. As already mentioned in the introduction, we assume for simplicity, that the fluids
under consideration are water and air and that the transition zone is thin compared to the pore
diameter. Note that the considerations below will not consider phase transitions like evaporation,
condensation, freezing or thawing. We also do not account for any deformation of the solid matrix,
in particular we exclude swelling processes, such that the domainsQε

1 as well asQε
2 are not changing

with time.

7.2. The pore space. We directly start from system (5.6), assuming that the energy is given
through

(7.1)
Eε = E(υε, %ε, ηε, cε,∇cε) =

1

2
|υε|2 + Ẽ(ηε, %ε, cε) + Ê(%ε,∇cε) ,

with Ê(%ε,∇cε) =
1

2%ε
ε2σ |∇cε|2 .

Note that the characteristic scale of energy E∗ and velocity υ∗ are connected with each other,
through

Eε =
1

2

(υ∗)2

E∗
|υε|2 + · · · ,

implying the assumption (υ∗)2

E∗ = 1.
The scaling ε2 in Ê reflects the assumption that the interfacial energy ε2σ and the resulting

diffusive smoothing of the interface have their major impact on a scale which is much smaller than
the macro scale and the scale of energy.

Starting from (6.3), using (5.6) and (7.1) and introducing the notations

pε := (%ε)2 ∂E
ε

∂%ε
µε :=

∂Eε

∂cε
∂zE

ε :=
∂Eε

∂ (∇cε)
.

we obtain for the local balance of entropy in Qε
1

%εη̇ε − div
qε

ϑ
= ξε ,

where, following [20, 23], the rate of entropy production ξε and the heat flux qε can be identified as

ξε = ε(Tε + Tεc) · Dυε +
qε

ϑε
· ∇ϑε + pεεdivυε − εjε1 · ∇ (µεc + µε) ,(7.2)

qε = ε (µεc + µε) jε1 + ε∂zE
εdiv jε1 + hε − εTευε ,(7.3)

with

(7.4) µεc := −div (∂zE
ε)− ∂zEε

∇%ε

%ε
and Tεc :=

(
σε2∇cε ⊗∇cε

)
.



HOMOGENIZATION OF TWO-PHASE FLOW IN POROUS MEDIA 16

Finally, define mε := 1
3tr (Tε + Tεc) and Sε := Tε + Tεc −mεI to obtain

ξε = εSε · Dυε +
qε

ϑ
· ∇ϑ+ (mε + pε) εdivυε − εjε1 · ∇ (µεc + µε) .

Now, in order to apply the assumption of maximum rate of entropy production, let ξε be given
through

ξε = ξ̃ε(Sε, (mε + pε), qε, jε1) =
1

νε
|Sε|2 +

3

νε + 3λε
(mε + pε)2 +

1

κε1ϑ
ε
|qε|2 +

1

Jε
|jε1|

2 .

Then, maximizing ξ̃ε with respect to

ξ̃ε = εSε · Dυε +
qε

ϑ
· ∇ϑ+ (mε + pε) εdivυε − εjε1 · ∇ (µεc + µε)

leads to the resulting set of constitutive equations:

Tε = −ενεDυε − ελεdivυεI + pεI + σε2∇cε ⊗∇cε ,
jε1 = −εJε

(
∇µε − ε2σ∇∆cε

)
,

hε = κε1∇ϑε − ε (µεc + µε) jε1 − ∂zE [εdiv jε1] + εTευε ,

and the full system in Qε
1 reads:

(7.5)

∂t (%εcε) + εdiv (%εcευε)− ε2Jεdiv
(
∇µε − ε2σ∇∆cε

)
= 0

∂t%
ε + εdiv (%ευε) = 0

∂t (%ευε) + εdiv (%ε (υε ⊗ υε))− ε2div (νεDυε) + ε∇ (pε − ελεdivυε)
+εdiv

(
σε2∇cε ⊗∇cε

)
= gε

∂t (%εEε) + εdiv (%εEευε)− div (κ1∇ϑε − ε (µεc + µε) jε1)

−div (−∂zE [εdiv jε1] + εTευε) = gε · υε .

Note that the parameters νε, λε, Jε or κε1 may depend on the variables %ε, cε, or ϑε. This will be
important for the asymptotic expansion of κε1, while for the other constants, this is not of importance
in the formal calculations.

7.3. A remark on scaling of pressure. Comparing with former papers by Allaire on derivation
of Darcy’s law from Stokes equation [4, 27], we could expect ∇pε to appear of order ε0 instead of
ε1. However, note that in [4, 27], pε is an unknown, due to incompressibility, and corresponds to
1
3trT

ε. Thus, incompressibility replaces thermodynamical pressure pε by the Lagrange multiplier
1
3trT

ε. For the present approach holds: fixing divυε = 0, no 1
3trT

ε becomes unknown. In case no
apriori condition is imposed on divυε, we find

3

νε + 3λε
(mε + pε) = divυε

where pε is thermodynamical pressure and thus a derived quantity.

7.4. The soil matrix. Since the soil matrix is a rigid body, we drop the balances of mass and
momentum and focus on the balance of energy, which reads

(7.6) ∂tE
ε
2 − divhε2 = 0 on Qε

2 ,

where Eε2 is the energy per volume in Qε
2 and hε2 is the corresponding heat flux. If the constitutive

assumption for Eε2 takes the form
Eε2 = Ẽε2(ηε2)
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with ηε2 the entropy per volume in Qε
2, and if it is assumed that ϑε =

∂Eε2
∂ηε2

, we easily find

∂tη
ε
2 − div

qε2
ϑε

= qε2 ·
∇ϑε

ϑε
,

where

(7.7) qε2 = hε2 = κε2∇ϑε .
In order to connect the balance of energy on Qε

1 and Qε
2 we need to take a closer look on the

boundary Γε.

7.5. Boundary conditions. Following [20], we start from the following abstract boundary condi-
tions3 on Γε:

(7.8)
%ε∂tc

ε + ε%ευετ · ∇τ cε =
⊕
c
ε

∂tE
ε
Γ − εdivτhεΓ =

⊕
E
ε

where %ε and cε are the traces on Γε of the corresponding fields in Qε
1, υετ is the tangential part of

υε on Γε, EεΓ is the surface energy on Γε, i.e. energy per area of Γε, hεΓ is the surface heat flux and
⊕
E
ε

is the rate of energy exchange between Γε and Qε
1, respectively Q

ε
2.

In order to proceed, consider the following constitutive assumption on the local surface energy
density EεΓ:

(7.9) EεΓ = EεΓ,0(ηεΓ) + FΓ(cε) +
1

2
ε2σΓ |∇τ cε|2

where FΓ is assumed to be independent on ε with

f εΓ := ∂cFΓ(cε)

and make use of the fact that

∂tE
ε
Γ = ϑε∂tη

ε
Γ +

∂EεΓ
∂cε

∂tc
ε +

∂EεΓ
∂%ε

∂t%
ε

using assumption (6.2), we follow [20] and obtain

∂tη
ε
Γ =

1

ϑε

(
εqεΓ ·

∇τϑε

ϑε
+
⊕
E
ε

− υτ ·
[
−ε%εµεΓ,2∇τ cε

]
− µεΓ,2

⊕
c
ε
)

+ εdivτ
(
qεΓ
ϑε

)
(7.10)

qεΓ = hεΓ − εσΓ∇τ cε ∂tcε ,
where

µεΓ,2 =

(
f εΓ
%ε
− 1

%ε
ε2σΓ∆ττc

ε

)
.

The total rate of entropy production then reads:
d

dt
S :=

ˆ
Qε1

(
ξε

ϑε
+ div qε

)
+

ˆ
Qε2

(
ξε2
ϑε

+ div qε2

)
+ ε

ˆ
∂Γ
∂tη

ε
Γ .

Using partial integration as well as (7.3), (7.7), (6.5) and (7.10), the last equality can be rewritten
as

d

dt
S =

ˆ
Qε1

ξε

ϑε
+

ˆ
Qε2

ξε2
ϑε

+

ˆ
∂Γ

ε

ϑε

[
qεΓ ·

ε∇τϑε

ϑε
− υετ ·

(
Ťετ + µευ,Γ

)
− µεΓ,c

⊕
c
ε
]
,

3In [20], the author also suggests different approaches to boundary conditions. However, the approach chosen in
the present calculations is most easy to handle and calculations for different abstract form of boundary conditions
may be performed similarly, following the presented outline.
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where Ťετ := (TεnΓε)τ is the tangential part of the surface stress TεnΓε and

(7.11) µευ,Γ = −%εµεΓ,2ε∇τ cε µεΓ,c =
(
µεΓ,2 + ∂zû

ε · nΓε
)

,

These equations yield the final constitutive equations

(7.12)

Ťετ = −αΓυ
ε
τ − µευ,Γ

%ε∂tc
ε + ε%ευε · ∇τ cε =

⊕
c
ε

= β∗Γ

(
σΓ

%ε
ε2∆τ c

ε −
µεΓ
%ε
− εσ∇cε · nΓε

)
qεΓ = κΓε∇τϑε

⊕
E +

1

ε
(hε − hε2) · nΓε = 0 .

8. Formal Asymptotic Expansion

We will now perform a formal asymptotic expansion of system (7.5) and (7.6) together with
boundary conditions (7.12). To this aim, we expand ηε, ηε2, ηεΓ, %

ε, cε, υε, ϑε and pε according to
(3.2) by

aε(t, ·) =

∞∑
i=0

εiai(t, ·,
·
ε

)

and define for any φ ∈ C1([0, T ]×Q× Y )

D0,y
t φ := ∂tφ+ υ0 · ∇yφ or D0,xy

t φ := ∂tφ+ ευ0 · ∇xφ+ υ0 · ∇yφ .
Formal asymptotic expansion yields for any such φ with φε(t, ·) := φ(t, ·, ·ε):

(8.1) φ̇ε → D0,y
t φ as ε→ 0 .

However, it is desirable to have macroscopic convective fluxes in the limit equations. Thus, we keep
the terms ευ0 · ∇xφ and replace D0,y

t by D0,xy
t in a sense that we replace (8.1) in the asymptotic

expansion by
φ̇ε  D0,xy

t φ as ε→ 0 .

This approach is further justified by improved formal error estimates, as shown in appendix B.
Note that in all experiments, a macroscopic pressure gradient is found either balancing macro-

scopic gravitational forces or causing a net macroscopic mass transport. Thus, for similar reason
as for the conservation of macroscopic flow field, it is reasonable to keep the macroscopic pressure
gradient ε∇xp0 in the limit equations. As stated in section 7, the parameters ν, λ, J or κ1 may
depend on the variables %ε, cε, or ϑε. Thus, we would formally also have to use an expansion for
these parameters. However, except for κ1, only the first order of the expanded coefficient is relevant
for the limit equations. For κ1, we will need the expansion up to order 2:

κε1 = κ1 + εκ1,1 + ε2κ1,2 +O(ε3)

and similarly also for κε2.
The zero order approximating system then reads

(8.2)

D0,xy
t %0 + %0divy υ0 + ε%0divx υ0 = 0

%0D
0,xy
t c0 − divy (∇yµ0 − σ∇y∆yyc0) = 0

%0D
0,xy
t υ0 − divy (νDyυ0) +∇y (p0 − λdivy υ0) + ε∇xp0 + divy (σ∇yc0 ⊗∇yc0) = g0

%0D
0,xy
t E0 + divy

(
(µc + µ) j1,0 + ∂zE0

[
divy j1,0

]
− T0υ0

)
−divx (κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0)

−divy (κ1∇xϑ1 + κ1∇yϑ2 + κ1,1∇yϑ1 + κ1,1∇xϑ0 + κ1,2∇yϑ0)− g0 · υ0 = 0 ,
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where we assumed κ1 = const for simplicity. Here, the homogenized stress tensor T0, and the other
quantities E0, µ0, j1,0and p0 are given through

T0 = −νDyυ0 + (p0 + λdivy υ0) I + σ∇yc0 ⊗∇yc0,

E = E0(η0, %0, c0) +
1

2
|υ0|2 +

σ

2%0
|∇yc0|2

and

(8.3) µ0 =
∂E0

∂c0
, j1,0 = −J (∇yµ0 − σ∇y∆yyc0) and p0 = %2

0

∂E0

∂%0
.

Additionally, we find the following equations of order ε−1 and ε−2 on Q× Y 1:

(8.4)
divy (κ1∇yϑ0) = 0

divy (κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0) + divx (κ1∇yϑ0) = 0 .

The microscopic boundary conditions finally read

∂tEΓ,0 − divτ,y hΓ,0 =
⊕
E

%0∂tc0 + %0υ0∇τ,yc0 =
⊕
c0

with a constitutive equation

EΓ,0 = EΓ(ηΓ,0) + FΓ(c0) +
σΓ

2
|∇τ,yc0|2

and the resulting two-scale constitutive equations.

(8.5)

Ťτ,0 = −αΓυτ − %0

(
σΓ

%0
∆ττ,yyc0 −

fΓ(c0)

%0

)
∇τ,yc0

⊕
c0 = β∗Γ

(
σΓ

%0
∆ττ,yyc0 −

fΓ(c0)

%0
− σ∇yc0 · nΓ

)
qΓ,0 = 2κ

∇τϑ
ϑ

= hΓ,0 − σΓ∇τ,yc0 ∂tc0 .

⊕
E = − (h0 − (κ1 − κ2)∇xϑ1 − (κ1 − κ2)∇yϑ2) · nΓ

+ ((κ1,1 − κ2,1) (∇yϑ1 +∇xϑ0) + (κ1,2 − κ2,2)∇yϑ0) · nΓ

where
Ťτ,0 = (T0nΓ)τ = ((νDyυ0 − σ∇yc0 ⊗∇yc0)nΓ)τ

is the tangential part of the surface stress vector and

h0 = (µc + µ) j1,0 + ∂zE
[
divy j1,0

]
− T0υ0 .

The first equation of (8.5) is but some generalized Navier-Slip condition on the microscale and the
second equation is the dynamic boundary condition for Cahn-Hilliard fluids.

The boundary conditions of order ε−1 and ε−2 which stem from (7.12)4 read

(8.6)
(κ1∇yϑ0 − κ2∇yϑ0) · nΓ = 0 ,

((κ1 − κ2)∇yϑ1 + (κ1 − κ2)∇xϑ0 + (κ1,1 − κ2,1)∇yϑ0) · nΓ = 0 .

On Q2 × Y , the balance of energy splits up into

(8.7)

∂tE2 − divx (κ2∇xϑ0 + κ2∇yϑ1 + κ2,1∇yϑ0)

−divy (κ2∇xϑ1 + κ2∇yϑ2 + κ2,1∇yϑ1 + κ2,1∇xϑ0 + κ2,2∇yϑ0) = 0

divy (κ2∇yϑ0) = 0

divy (κ2∇xϑ0 + κ2∇yϑ1 + κ2,1∇yϑ0) + divx (κ2∇yϑ0) = 0 ,
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where
E2 = Ẽ2(η2,0)

9. Some Important Remarks on Effective Macroscopic Equations

The two-scale model as such already is the solution we were searching for. Therefore, before
going into the details of the derivation of effective macroscopic equations, remark that it is not the
aim of the following two sections to derive explicit macroscopic equations that replace the obtained
two-scale model. It is also not possible to calculate the macroscopic permeabilities without knowing
the solutions of the two-scale model. Rather, it is the aim of the following calculations to investigate
the macroscopic behavior of the solutions of the two-scale model.

Thus, in all calculations below in sections 10 and 11, it will be assumed that there is a solution

(%0, c0,υ0, E0, ϑ0, ϑ1, ϑ2)

that solves the two-scale problem (8.2) with the corresponding constitutive assumptions from section
8. Then, the macroscopic behavior of this solution will be derived by averaging the equations over
Y .

10. Macroscopic Balance Equations of Mass and Energy

10.1. Mass balance equations. We will extract the information on the macroscopic transport of
air and water from the mixture’s velocity field using the total momenta and total masses of both
constituents in the pore space. With regard to section 4.1, water is characterized by c0 = 1 and air
by c0 = 0. Then, macroscopic partial density %w and macroscopic velocity ῡw of water are given
through

%̄w =

ˆ
Y

(c0%0) ῡw =
1

%̄w

ˆ
Y

(c0%0υ0 + jc,0)(10.1a)

Since the diffusive flux jc,0 is restricted to the thin transition zone, it has no major effect on the
total water flux on the macro scale. Thus, we assume

(10.1b) ῡw =
1

%̄w

ˆ
Y

(c0%0υ0)

Analogously, one obtains for the velocity ῡa and density %̄a of air:

%a :=

ˆ
Y

((1− c0)%0) , ῡa :=
1

%̄a

ˆ
Y

((1− c0)%0υ0) .(10.2)

Since the abstract mass balance equations read according to (8.2) and (8.3)

∂t (%0c0) + divy (%0c0υ0) + εdivx (%0c0υ0) + divy j0 = 0

∂t (%0 (1− c0)) + divy (%0 (1− c0)υ0) + εdivx (%0 (1− c0)υ0)− divy j0 = 0 ,

integrating these equations in the periodic coordinate over Y 1 will cause all terms divy (. . . ) to
vanish and we obtain:

∂t%̄w + εdivx (%̄wῡw) = 0(10.3a)
∂t%̄a + εdivx (%̄aῡa) = 0 .(10.3b)

Taking a look on section 3.1,we hope to find representations

υw,0 := c0υ0 = υ̂w + υ̃w υa,0 := (1− c0)υ0 = υ̂a + υ̃a

with υ̃i given through

υ̃i =

ˆ t

0

∑
j

[
∂t (g −∇xp0)j (s, x)

]
uj(t− s, y)ds .
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This will be topic of section 11.

10.2. Macroscopic balance of energy. Having a look on (8.4), (8.6) and (8.7)2,3, we find

divy (κ1∇yϑ0) = 0 on Q× Y 1

divy (κ2∇yϑ0) = 0 on Q× Y 2

(κ1∇yϑ0 − κ2∇yϑ0) · nΓ = 0 on Q× Γ ,

and thus ∇yϑ0 ≡ 0. Therefore, equations (8.4)2, (8.6)2 and (8.7)3 yield

divy (κ1∇xϑ0 + κ1∇yϑ1) = 0 on Q× Y 1 ,(10.4a)
divy (κ2∇xϑ0 + κ2∇yϑ1) = 0 on Q× Y 2 ,(10.4b)

((κ1 − κ2)∇yϑ1 + (κ1 − κ2)∇xϑ0) · nΓ = 0 on Q× Γ ,(10.4c)

which holds in case

ϑ1 =
3∑
i=1

φi∂iϑ0

where the φi are solutions to a decoupled cell problem:

divy (κ1∇yφi + κ1ei) = 0 on Y1 for all x
divy ((κ2∇yφi + κ2ei) = 0 on Y2 for all x(10.5)

(κ1 (∇yφi + ei)− κ2 (∇yφi + ei)) · nΓ = 0 on Γ for all x

In line with (6.6), the macroscopic energy per volume is defined as

E =

ˆ
Y 1

%0E +

ˆ
Y 2

E2,0 +

ˆ
Γ
EΓ .

Then, equations (8.2)4 and (8.7)1 together with (8.5)4 integrated over Y simply yield

∂tE + εdivx
ˆ
Y 1

(υ0%0E)− divx
(
κhom∇xϑ0

)
=

ˆ
Y 1

g · υ0 on Q

where the properties of φi as solutions of (10.5) yield:

κhomij :=

ˆ
Y 1

(∇yφi + ei) · (κ1 (∇yφj + ej)) +

ˆ
Y 2

(∇yφi + ei) · (κ2 (∇yφj + ej)) .

If it is assumed that g is the gravitational force

g = ĝ%0 ,

with the gravitational acceleration constant ĝ and using the notations introduced above in (10.1)
and (10.2), the macroscopic balance of energy simply reads

∂tE + εdivx
ˆ
Y 1

(υ0%0E)− divx
(
κhom∇xϑ0

)
= %̄wĝ · ῡw + %̄aĝ · ῡa on Q .

11. Decoupling of Phases: Macroscopic Permeability Tensors

As stated in section 9, the two-scale system, which was obtained in section 8 as such already is
a solution of the homogenization problem, meaning that it is a first order approximation, which
accounts for all important microscopic and macroscopic effects. However, since the common ap-
proach to two-phase flow in porous media is based on macroscopic transport equations (10.3) with
constitutive equations

ῡw = Aw(ρwg −∇pw)

ῡa = Aa(ρag −∇pa) ,
we will demonstrate that such equations can be obtained from the two-scale model in section 8.
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Therefore, in what follows, the two scale equation (8.2) with boundary condition (8.5)1 will
be separated into two macroscopic equations for the water and air velocities. The result will yield
approximate formulas for the dependence of macroscopic permeabilities on the microscopic geometry
and the dynamic changing of this geometry. However, note that we will not discuss the existence
of a capillary pressure, nor its dependence on saturation. For a very short and rough treatment
of capillary pressure, refer to the next section 12. Since the calculations are formal and we use
heuristic approximations, it is possible that numerical simulations will show that more effects have
to be taken into account.

Clearly, physics at the transition zone is different from physics outside of the transition zone. In
particular, capillary effects have their major impact on the flow field close to the transition zone.
Thus we will develop a formalism to split up the two-scale model into equations at the transition zone
and equations in the pure water and air regions. This will help to find effective permeability tensors
for both fluids. The resulting permeability tensors will then account for microscopic geometry and
its evolution.

11.1. Assumptions on the geometry. Note that the phase field model does not explicitly sep-
arate water and air transport, while sharp interface models and classical macroscopic models do.
Thus, in order to proceed, it is necessary to split the cell Y 1 and the microscopic domainQε

1 into the
regions that are occupied by air and water respectively. Since we also have to capture interactions
between air and water, we also have to introduce an “interfacial region”, which is related to the
transition zone. Note that the geometry is given by a smooth phase field and it therefore makes no
sense to characterize air, water and interface by classical characteristic functions attaining only the
values 0 and 1. Instead, smoothed characteristic functions for air, water and the interface will be
constructed.

To be more concrete assume that there are constants

0 < a0 < a1 < b1 < b0 < 1

and smooth functions $a, $w, $I with

$a(c) =


1 for c < a0

exp
(
− (a0−c)2

(c−a1)2

)
for c ∈ [a0, a1]

0 for c > a1

, $w(c) =


1 for c > b0

exp
(
− (b1−c)2

(c−b0)2

)
for c ∈ [b1, b0]

0 for c < b1

as well as
$I(c) = 1− ($a(c) +$w(c)) .

Then, the characteristic function of the air phase, the water phase and the interfacial region are
defined by

χεa(x) := $a(c
ε(x)), χεw(x) := $w(cε(x)), χεI(x) := $I(c

ε(x)) ,

and we find
χεw + χεa + χεI = 1 .

The formal asymptotic expansions of these functions read

χε∗(x) = $∗(c0(x,
x

ε
)) + ε$′∗(c0(x,

x

ε
)) c1(x,

x

ε
) +O(ε2) for ∗ = a,w, I ,

or, equivalently:

χε∗(x) = χ∗,0(x,
x

ε
) + εχ∗,1(x,

x

ε
) +O(ε2) for ∗ = a,w, I ,

where the definition of the χ∗,i are given implicitly by comparison and we note that

(11.1) χw,0 + χa,0 + χI,0 = 1 .
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Based on these smoothed characteristic functions, the three regions Y a, Y w and Y I are intro-
duced through:

Y ∗(x) = {y ∈ Y 1 : χ∗,0(x, y) > 0} for ∗ = a,w, I ,

which are the regions that are mostly occupied by air or water and the interfacial region Y I in the
cell Y 1.

Note that Y 1 = Y a ∪ Y w ∪ Y I and Y a ∩ Y w = ∅ but Y a ∩ Y I 6= ∅ and Y w ∩ Y I 6= ∅.
Furthermore, for any ε > 0 , we can introduce the sets Qε

a, Q
ε
w and Qε

I through

Qε
∗(x) = {y ∈ Q1 : χε∗(x) > 0} for ∗ = a,w, I , ,

11.2. Assumptions on the coefficients pε, gε and %ε. We will restart from the microscopic
balance of momentum (7.5)3. We assume that the densities of of water ρw and air ρa do not vary
much over the porescale, such that for these two density fields and an interfacial residual density %̃
such that we find:

(11.2a) %ε(x) = χεa(x) ρA(x) + χεw(x) ρW (x) + χεI(x) %̃(x, cε(x)) +O(ε) ,

as well as

(11.2b) %0(x, y) = χa(x, y)ρA(x) + χw(x, y)ρW (x) + χI(x, y)%̃(x, c0(x, y))

for the limit two-scale density field %0. Here, ρA and ρW are some functions

ρA , ρW : Q→ R>0

with ρA < ρW , representing the macroscopic density fields of air and water and

%̃ : Q× [0, 1]→ R>0

(x, c) 7→ %̃(x, c) ∈ [ρA(x), ρW (x)]

is the c-dependent density distribution in Y I or Qε
I
4. The body force is assumed to be due to

gravitation and therefore reads

gε = %εg .

Since the pressure is given through (compare for (8.3))

pε = (%ε)2 ∂E

∂%ε
, respectively p0 = (%0)2 ∂E

∂%0
,

assumption (11.2) suggests to split pε into

pε = p̃εa + p̃εw + p̃εI

ε∇pε = χεa(x)ε∇ (p̃εa + p̃εI) + χεw(x)ε∇ (p̃εw + p̃εI) + χεIε∇ (p̃εI + p̃εa + p̃εw) ,

where

p̃εa := χεap
ε, p̃εw := χεwp

ε and p̃I := χεIp
ε .

4Clearly, these assumptions on % imply a kind of “incompressibility” in y, which enters the system aposteriori.
However, the way this assumption enters, it is no limitation to the two-scale model but simplifies the present calcu-
lations. An a-priori assumption on incompressibility of water and air would have made it necessary to work within
the framework of quasi-incompressible mixtures, see [23].
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Using a formal asymptotic expansion ansatz

p̃εa(x) = p̃a(x) +

∞∑
i=1

εp̃a,i(x,
x

ε
)

p̃εw(x) = p̃w(x) +

∞∑
i=1

εp̃w,i(x,
x

ε
)(11.3)

p̃εI(x) = p̃I(x,
x

ε
) +

∞∑
i=1

εp̃I,i(x,
x

ε
) ,

the resulting two-scale model would read according to section 8:

(11.4) %0D
0,∗
t υ0 − divy (νDyυ0)−∇y (λdivy υ0) + χaε∇x (p̃a + p̃I) + χwε∇x (pw + p̃I)

+ χI∇y (p̃I + εp̃a,1 + εp̃w,1) + divy (σ∇yc0 ⊗∇yc0) +O(ε2) = g%0 .

In particular, p̃a, p̃w, p̃I and p0 are related by

p0 = p̃a + p̃w + p̃I .

In what follows, for simplicity of notation, we introduce

pk = εp̃k and pk,i = εp̃k,i ∀k ∈ {a,w} .

11.3. The relations between ρa and %̄a and between ρw and %̄w. Comparing the quantities
ρA and %̄a and ρW and %̄w, we see that ρa and ρw are the physical densities of water and air at point
x ∈ Q while the quantities %̄a and %̄w are the physical densities multiplied by the volume fractions
which are occupied by air and water respectively. Thus, since χw ≈ c0 and χa ≈ (1− c0) except for
the transition zone, we find with

Φa :=

ˆ
Y
χa, Φw :=

ˆ
Y
χw

the relations

%̄a ≈
ˆ
Y 1

χaρA = ΦaρA %̄w ≈
ˆ
Y 1

χwρW = ΦwρW

11.4. Formal decoupling. Equations (7.5)3, respectively (11.4) describe the evolution of the ve-
locity field of the whole mixture. However, as stated above, we are interested in separating air and
water transport and thus in those parts of the velocity field υ0 which belong to c0 ≈ 1 and c0 ≈ 0.

This is achieved splitting up the velocity field υ0 into the velocities υ0,a of air, of water υ0,w and
of the interface υ0,I :

(11.5) υ0,a := χaυ0, υ0,w := χwυ0 and υ0,I := χIυ0 ,

with

υ0,a + υ0,w + υ0,I = υ0 .

Also, we multiply each of the terms

∂t(%0υ0), divy (ν∇yυ0) , ∇y (λdivy υ0) , divy (Tc0) , %0g
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with (11.1) and reorganize the equation in terms of χw,0, χa,0, and χI,0 to obtain

(11.6) χa,0

(
∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) +∇ypa,1 +∇xpa − ρag

)
+ χa,0

(
∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0)

)
+ χw,0

(
∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w) +∇ypw,1 +∇xpw − ρwg

)
+ χw,0

(
∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0)

)
+ χI,0

(
∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w)

)
+ χI,0

(
∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a)− %̃(x, c0)g

)
+ χI,0

(
∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) +∇ypI + divy (Tc0)

)
= 0

For the boundary conditions, we may proceed in the same way with (8.5)1introducing the notation

F := %0

(
σΓ

%0
∆ττ,yyc0 −

fΓ(c0)

%0

)
,

and using (11.1) and (11.5):

(11.7) χa
[
((νDy (υ0,a + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,a + υ0,I)τ + F∇τ,yc0

]
+ χw

[
((νDy (υ0,w + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,w + υ0,I)τ + F∇τ,yc0

]
χa
[
((νDy (υ0,a + υ0,I + υ0,w)− Tc0)nΓ)τ + αΓ (υ0,a + υ0,I + υ0,w)τ + F∇τ,yc0

]
= 0

11.5. The separated two-scale problems. We rewrite equation (11.6) as

χafa + χwfw + χIfI = 0

and boundary condition (11.7) as

χaBa + χwBw + χIBI = 0

with obvious implicit definition of fa,w,I and Ba,w,I . Then, due to the definition of χa, χw, χI ,
equation (11.6) can hold only if

(11.8) fa = 0 on Y 1\ (Y w ∪ Y I) , fw = 0 on Y 1\ (Y a ∪ Y I) , fI = 0 on Y 1\ (Y w ∪ Y a) .

The last condition is necessary for (11.6) to hold, but not sufficient. As a sufficient condition, we
assume for simplicity that

fa = 0 on Y a(x), fw = 0 on Y w(x) and fI = 0 on Y I(x) ,

which in turn is much stronger than the necessary condition (11.8). Similarly, the boundary condi-
tion (11.7) is split up into

Ba = 0 on Γ ∩ ∂Y a(x), Bw = 0 on Γ ∩ ∂Y w(x) and BI = 0 on Γ ∩ ∂Y I(x) .

Additionally, we have to account for

υ0,a = 0 on Y 1\Y a(x), υ0,w = 0 on Y 1\Y w(x) and υ0,I = 0 on Y 1\Y I(x) .

Then, the equation on Y a(x) reads

(11.9a) ∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) +∇ypa,1 +∇xpa − ρag
+ ∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0) = 0
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with the boundary conditions

υ0,a = 0 on ∂Y a(x)\Γ(11.9b)
((νDy (υ0,a + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,a + υ0,I)τ + F∇τ,yc0 = 0 on ∂Y a(x) ∩ Γ .(11.9c)

The equation on Y w(x) reads

(11.10a) ∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w) +∇ypw,1 +∇xpw − ρwg
+ ∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0) = 0

with the boundary conditions

υ0,w = 0 on ∂Y w(x)\Γ(11.10b)
((νDy (υ0,w + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,w + υ0,I)τ + F∇τ,yc0 = 0 on ∂Y w(x) ∩ Γ .(11.10c)

And finally, the equation on Y I(x) reads

(11.11a) ∂t(%0υ0,I)− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) +∇ypI − %0g

+ ∂t(%0υ0,w)− divy (ν∇yυ0,w)−∇y (λdivy υ0,w) + divy (Tc0)

+ ∂t(%0υ0,a)− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) = 0

with the boundary conditions

υ0,I = 0 on ∂Y I(x)\Γ(11.11b)

((νDy (υ0,w + υ0,a + υ0,I)− Tc0)nΓ)τ + αΓ (υ0,w + υ0,a + υ0,I)τ + F∇τ,yc0 = 0 on ∂Y I(x) ∩ Γ
(11.11c)

11.6. The stationary phase filed and stationary geometry problem. We will now derive
effective macroscopic permeability tensors using above splitting of (11.6). In a first approach, we
consider stationary phase fields i.e. ∂tc0 = 0. Due to the definition of χI , we expect that

(11.12) (1− χI)∇yc0 ≈ 0 .

Thus, in Y a(x) and Y w(x), capillarity plays a minor role for the evolution of the velocity field. Also,
since we are interested in the stationary geometry case, υ0 is assumed to vanish in the transition
zone, since otherwise the transition zone could move. The mathematical implication is

(11.13) υ0,I = χIυ0 ≈ 0

as well as

(11.14) υ0,w = χwυ0 ≈ c0υ0 on Y w and υ0,a = χaυ0 ≈ (1− c0)υ0 on Y a .

Using these approximations in (11.9)-(11.11) yields:

−divy (µ∇y(υ0,a))−∇y (λdivy (c0υ0,a)) +∇ypi,a +∇xpa = ρag on Y a

−divy (µ∇y(υ0,w))−∇y (λdivy (c0υ0,w)) +∇ypi,w +∇xpw = ρwg on Y w

with the boundary conditions

υ0,a = 0 on ∂Y a\Γ
υ0,w = 0 on ∂Y w\Γ

as well as

((νDy (υ0,a))nΓ)τ + αΓ (υ0,a)τ = 0 on Γ ,

((νDy (υ0,w))nΓ)τ + αΓ (υ0,w)τ = 0 on Γ .
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Following section 3.1, we look for ui,a and ui,w satisfying

(11.15)

−divy (µ∇yui,a)−∇y (λdivy ui,a) +∇yΠi,a = ei on Y a(x)

divy (%0ui,a) = 0 on Y a(x)

ui,a ≡ 0 on (Y w(x) ∪ Y I(x))

and

(11.16)

−divy (µ∇yui,w)−∇y (λdivy ui,w) +∇yΠi,w = ei on Y w(x)

divy (%0ui,w) = 0 on Y w(x)

ui,w ≡ 0 on (Y a(x) ∪ Y I(x))

with the boundary conditions

ui,a = 0 on ∂Y a\Γ
ui,w = 0 on ∂Y w\Γ

as well as

((νDy (ui,a))nΓ)τ + αΓ (ui,a)τ = 0 on Γ ,

((νDy (ui,w))nΓ)τ + αΓ (ui,w)τ = 0 on Γ .

Comparing with section 3.1, we see that

(1− c0)υ0 ≈ υ0,a :=
∑
i

ui,a (ρag −∇xpa)i

c0υ0 ≈ υ0,w :=
∑
i

ui,w (ρwg −∇xpw)i

which yields with (10.1b) and (10.2):

ῡw ≈
1

%̄w

∑
[(ρAg −∇xpw)i (x)]

ˆ
Y 1

%0ui,w(y)dy = Aw (ρAg −∇xpw)

ῡa ≈
1

%̄a

∑
[(ρWg −∇xpa)i (x)]

ˆ
Y 1

%0ui,a(y)dy = Aa (ρWg −∇xpa)

with ρA and ρW taken from (11.2), where

(Aw)i,j = aw,ij =
1

%̄w

ˆ
Y 1

%0ui,w(y) · ej ds, (Aa)i,j = aa,ij =
1

%̄a

ˆ
Y 1

%0ui,a(y) · ej ds .

Note that above formulas for Aw and Aa only have approximate character and are not to be
taken for exact formulas. However, if the neglected terms are small, the above approximation is
close to the true macroscopic behavior.

11.7. The quasi stationary flow. In contrast to 11.6, we will now consider the case that υ0,I is
not negligible but still ∂t(%0υ0) ≈ 0. This turns out to be the mathematically most complex case.
Note once more, that we start from υ0, υ0,a, υ0,w and υ0,I and we seek for a representation of the
macroscopic permeability tensor in terms of these microscopic quantities.

Having a look on the stationary problem of (11.9a)

− divy (ν∇yυ0,a)−∇y (λdivy υ0,a) +∇ypa,1 +∇xpa − ρag
− divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0) = 0

and comparing with section 3.1, one could get the idea that the resulting problems for ui,a read

(11.18) −divy (µ∇yui,a)−∇y (λdivy ui,a) +∇yΠi +Giei = ei ,
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where

Gi =
1

(ρag −∇xpa)i
[−divy (ν∇yυ0,I)−∇y (λdivy υ0,I) + divy (Tc0)] · ei .

However, note that we would run into serious troubles if (ρag − ∇xpa)i = 0, in particular, if the
system approaches the case of zero air flux.

Thus, we seek for another ansatz: Remembering

υ0,a/χa = υ0 = υ0,I/χI on Y a(x) ∩ Y I(x) ,

and using this formula in (11.9a), assuming ∇yc0(x, y) ≈ 0 on Y a(x), leads to

−divy
(
ν∇y

(
υ0,a

(
1 +

χI
χa

)))
−∇y

(
λdivy

(
υ0,a

(
1 +

χI
χa

)))
+∇ypa,1 +∇xpa − ρag = 0 .

We perform a transformation of variables

(11.19) υ̃0,a := υ0,a

(
1 +

χI
χa

)
and obtain

−divy (ν∇yυ̃0,a)−∇y (λdivy υ̃0,a) +∇ypa,1 +∇xpa − ρag = 0

together with the boundary condition (11.9b) replaced by

(11.20) υ̃0,a = υ0,I(x, y0) on ∂Y a\Γ .

Then, the cell problems on Y a(x) read

−divy (µ∇yui,a)
−∇y (λdivy ui,a) +∇yΠi,a = ei on Y a(x)

divy [%0ui,a] = 0 on Y a(x)

with the boundary conditions

(11.21) ((νDyui,a)nΓ)τ + αΓ (ui,a)τ = 0 on Γ

and on ∂Y a(x)\Γ we prescribe in case υ0,I(x, y0) · ei 6= 0:

(11.22) ui,a =


(υ0,I(x,y0)·ei)
(ρag−∇xpa)i

ei if (ρag −∇xpa)i 6= 0

limδ→0
(υ0,I(x,y0)·ei)

δ ei if (ρag −∇xpa)i = 0
on ∂Y a\Γ ,

for a choice δ �
∣∣∣υ0,I(x, y0) · ei

∣∣∣.
The cell problem on Y w(x) can be constructed similarly. The macroscopic velocity fields ῡw and

ῡa defined in (10.1b) and (10.2) can then be obtained using

c0υ0 ≈ c0(υ0,w + υ0,I) and (1− c0)υ0 ≈ (1− c0) (υ0,a + υ0,I) .

Since υ0,I is restricted to the small transition zone, it has only minor impact on the macroscopic
quantities ῡa and ῡw. Therefore, we are not interested in cell solutions of (11.11). According to
the above calculations, υ0,w and υ0,a are approximately given through

υ0,a =
∑
i

(1 + χI/χa)
−1 ui,a(ρAg −∇xpa)i

υ0,w =
∑
i

(1 + χI/χw)−1 ui,w(ρWg −∇xpw)i .
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Then, the resulting constitutive equations for ῡw and ῡa read according to (10.1b) and (10.2):

ῡw =
1

%̄w

ˆ
Y

(1 + χI/χw)−1

(
%0c0

∑
i

[(ρWg −∇xpw)i]ui,w + %0c0υ0,I

)

ῡa =
1

%̄a

ˆ
Y

(1 + χI/χa)
−1

(
%0(1− c0)

∑
i

[(ρAg −∇xpa)i]ui,a + %0(1− c0)υ0,I

)
.

Since the transition zone is thin, even on the pore scale, it can be assumed thatˆ
Y

∣∣%0υ0,I

∣∣ ≈ 0

and the resulting equations for ῡa and ῡw read

ῡw = Aw (ρWg −∇xpw)

ῡa = Aa (ρAg −∇xpa) .

with

(Aw,ij)ij =
1

%̄w

ˆ
Y

(1 + χI/χw)−1 (c0%0ui,w · ej) and (Aa,ij)ij =
1

%̄a

ˆ
Y

(1 + χI/χa)
−1 ((1− c0)%0ui,a · ej) .

Even though the moving of the microscopic interface seems to have no influence on the macroscopic
equations, note that this is not the case: due to the microscopic boundary conditions for ui,a and
ui,w, these functions strongly depend on the velocity field υ0,I and therefore also the permeabilities.

11.8. The dynamic case. In case ∂t (%0υ0) ≈ 0 is no longer justified, the above calculations in
11.7 could be repeated with (ρAg − ∇xpa) and (ρWg − ∇xpw), replaced by ∂t(ρAg − ∇xpa) and
∂t(ρWg − ∇xpw). Using (11.19) and (11.20), the function ui,a has to solve the non-stationary
problem

∂t (ρa (ui,a))− divy (µ∇y (ui,a))

−∇y (λdivy (ui,a)) +∇yΠi,a = ei on Y a(x)

divy [%0ui,a] = 0 on Y a(x)

ui,a(t = 0, ·) = 0 on Y 1

with boundary conditions (11.21) and (11.22). Additionally, we would need a function υ̂ as a
solution of

∂t (%0υ̂)− divy (ν∇yυ̂) +∇yp1 = 0 on (0, t)× Y 1

divy (%0υ̂) = ∂t%0 on (0, t)× Y 1

υ̂(0, ·) = υ̂0(·) on Y 1

where υ̂0 is the initial value of υ0:
υ0(t = 0, ·) = υ̂0(·) .

Then, following section 3 and the above calculations, we obtain

ῡw ≈
1

%̄w

ˆ
Y

(
c0%0υ̂ + c0%0

ˆ t

0

∑
[∂t (ρWg −∇xpw)i (s, x)]

(
1 +

χI
χw

)−1

ui,w(t− s, y)ds

)
.

ῡa ≈
1

%̄a

ˆ
Y

(
(1− c0)%0υ̂ + (1− c0)%0

ˆ t

0

∑
[∂t (ρAg −∇xpa)i (s, x)]

(
1 +

χI
χa

)−1

ui,a(t− s, y)ds

)
.
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12. Capillary Pressure and Richard’s Equation

If the air is assumed to move freely in the porous medium and is always at atmospheric pressure,
it is often possible to neglect air transport and to focus on water transport only. Water transport
is then described by the velocity field

(12.1) ῡw = Ac(ρWg −∇pc) ,
with

pc := pw − pa .
Equation (12.1) is called Buckimham-Darcy law and pc is known as capillary pressure. The
Buckingham-Darcy law inserted into (10.3a) yields the so called Richards equation[40]:

∂t%̄w + εdivx (%̄wAc(ρWg −∇pc)) = 0 .

This system usually is complemented by a relation pc = p̃c(%̄w). The author agrees with Hilfer
[25], who states that capillary pressure should be an outcome of theory, not an input, appearing only
in special cases. We assume that such a case is given by only slowly varying microscopic geometry in
the Richards setting. However, the question remains how the capillary pressure pc can be calculated
from above two-scale model.

Classically, pc is assumed to be related to the pressure jump across the microscopic interfaces.
Since the phase field model does not contain interfaces but only a transition zone, there is also no
pressure jump but only a pressure gradient.

For any pressure field p and any two points x1, x2 ∈ R3, the pressure difference between these
two points is given by

p(x1)− p(x2) =

ˆ 1

0
∇p(x1 + s(x2 − x1)) · (x2 − x1) ds .

Comparing with above approach in section 11, we get the approximation

pc(x) ≈

(ˆ
Y I(x)

|∇ypc,0|

)
/

(ˆ
Y I(x)

)
.

Here, pc,0 is the mean normal stress across the transition zone:

pc,0 = εp0 +
1

3
σtr (∇yc0 ⊗∇yc0) ,

where one should be aware of the fact, that p0 itself depends on ∇yc0.

13. Outlook

We discussed the homogenization of porous media twophase flow combining the assumption of
maximum rate of entropy production with formal asymptotic expansion. The calculations are rather
simple and can be easily performed, modified and adapted to much more general situations.

The approach as well as the resulting model are new and look different from any previously
published model. At a second glance, under some assumption on the evolution of geometry, one
can show that the model leads to the expected macroscopic behavior as well as to the classical
macroscopic models. Thus, the two-scale model is a true generalization of existing macroscopic
models.

The author believes that theoretical considerations on the basis of the above methods might help
to find new and efficient algorithms for numerical simulations. Such simulations may complement
and enrich existing approaches as they allow for implementation and quantification of interactions
between micro and macro scale.

As the assumption of maximum rate of entropy production can be formulated on a very general
level, further development can be expected for multiphase systems (see also Heida [19]), to erosion
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or to swelling. However, note that the entropy method used in this paper is not yet at a level of
generality to treat such problems and some effort also has to be put onto this subject.

Appendix A. Asymptotic expansion of the balance of entropy

In order to obtain two-scale entropy balance equations, we use a Taylor expansion in
1

ϑε
=

1

ϑ0
− 1

ϑ2
0

(
εϑ1 + ε2ϑ2

)
+

1

ϑ3
0

(
εϑ1 + ε2ϑ2

)2
+O(ε3)

qε = ε−1q−1 + q0 + εq1

with
q̃ε :=

qε

ϑε
= ε−1q−1

ϑ0
+
q0

ϑ0
+
q−1

ϑ2
0

ϑ1 + ε

(
q1

ϑ0
− q0

ϑ2
0

ϑ1 +
q−1

ϑ3
0

ϑ2
1

)
+O(ε2)

and define
q̃−1 :=

q−1

ϑ0
, q̃0 :=

q0

ϑ0
+
q−1

ϑ2
0

ϑ1 q̃1 :=

(
q1

ϑ0
− q0

ϑ2
0

ϑ1 +
q−1

ϑ3
0

ϑ2
1

)
.

Then, one obtains

∂t (%0η0) + divy (%0η0υ0) + divx (%0η0υ0) + divx (q̃0) + divy (q̃1) =
ξ0

ϑ0
,

with

ξ0 = (T + Tc,0) · Dyυ0 + q̃0 · (∇xϑ0 +∇yϑ1) + q̃1 · ∇yϑ0

+ q̃−1 · (∇xϑ1 +∇yϑ2) + p0divy υ0 − j1,0 · ∇y (µc + µ) ,

q0 = κ1∇xϑ0 + κ1∇yϑ1 + κ1,1∇yϑ0 ,(A.1)
q1 = κ1∇xϑ1 + κ1∇yϑ2 + κ1,1∇yϑ1 + κ1,1∇xϑ0 + κ1,2∇yϑ0

q−1 = κ1∇yϑ0

and we find additionally

divy
(
q̃−1

)
= q̃−1 · ∇yϑ0(A.2a)

divy (q̃0) + divx
(
q̃−1

)
= q̃−1 · (∇xϑ0 +∇yϑ1) + q̃0 · (∇yϑ0) .(A.2b)

On Q× Y 2, we find with the notations

q̃ε2 :=
qε

ϑε
= ε−1q2,−1

ϑ0
+
q2,0

ϑ0
+
q2,−1

ϑ2
0

ϑ1 + ε

(
q2,1

ϑ0
−
q2,0

ϑ2
0

ϑ1 +
q2,−1

ϑ3
0

ϑ2
1

)
+O(ε2) ,

q̃2,−1 :=
q2,−1

ϑ0
, q̃2,0 :=

q2,0

ϑ0
+
q2,−1

ϑ2
0

ϑ1 q̃2,1 :=

(
q2,1

ϑ0
−
q2,0

ϑ2
0

ϑ1 +
q2,−1

ϑ3
0

ϑ2
1

)
the local balance of entropy

∂t (%0η2,0) + divy (%0η2,0υ0) + divx (%0η2,0υ0) + divx (q̃0) + divy (q̃1) =
ξ2,0

ϑ0
,

where the coefficients are given in a similar way to (A.1), except for the missing terms due to υ = 0
and % = const, and we find additionally

divy
(
q̃2,−1

)
= q̃2,−1 · ∇yϑ0(A.3a)

divy
(
q̃2,0

)
+ divx

(
q̃2,−1

)
= q̃2,−1 · (∇xϑ0 +∇yϑ1) + q̃2,0 · (∇yϑ0) .(A.3b)

On Q× Γ holds:

∂tηΓ,0 =
1

ϑ0

(
qΓ,0 ·

∇τ,yϑ0

ϑ0
+
⊕
E − υ0,τ · [−%0µΓ,2∇τ,yc0]− µΓ,2

⊕
c

)
+ divτ,y

(
qΓ,0

ϑ0

)
qΓ,0 = κΓ0∇τ,yϑ0 ,
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Note that ∇τ,yϑ0 = 0 since ∇yϑ0 = 0.
Interestingly, the lower order balance of entropy equations (A.2) and (A.3) are identical with

(10.4).

Appendix B. Formal error estimates

We will compare formal error estimates for vanishing and non-vanishing macroscopic convection
in order to give more justification for the approach in section 8.

B.1. Vanishing macroscopic convection. We consider the system

(B.1)
∂t%

ε + εdiv (%ευε0) = 0

∂t(%
εcε) + εdiv (%εcευε0)− ε2∆cε = 0

where υε0(t, x) := υ0(t, x, xε ) with a given υ0 with bounded divergence:

‖divx υ0‖L∞ + ‖divy υ0‖L∞ ≤ Cυ <∞
and zero flux boundary condition

υ0 · ν = 0 on ∂Q× Y
υ0 · nΓ = 0 on Q× Γ .

The homogenized system for the first order approximations %0 and c0 reads
∂t%0 + divy (%0υ0) = 0

∂t(%0c0) + divy (%0c0υ0)−∆yyc0 = 0

We use
∇ = ∇x +

1

ε
∇y and div = divx +

1

ε
divy

and find for %ε0(x) := %0(x, xε ) and cε0(x) := c0(x, xε ):

(B.2)
∂t%

ε
0 + (εdiv − εdivx ) (%ε0υ

ε
0) = 0

∂t(%
ε
0c
ε
0) + (εdiv − εdivx ) (%ε0c

ε
0υ

ε
0)− (εdiv − εdivx ) (ε (∇−∇x) cε0) = 0 .

Assuming that all functions posses enough regularity the difference of (B.1)1 and (B.2)1 reads:

∂t(%
ε
0 − %ε) + εdiv ((%ε0 − %ε)υε0) = εdivx (%ε0υ

ε
0)

which yields by testing with (%ε0 − %ε) and partial integration
1

2

ˆ
Qε1

∂t
(
(%ε0 − %ε)2

)
+ ε

ˆ
Qε1

1

2
υε0 · ∇

(
(%ε0 − %ε)

2
)

= ε

ˆ
Qε1

divx (%ε0υ
ε
0) (%ε0 − %ε)

and finally
d

dt

ˆ
Qε1

(%ε0 − %ε)2 +

ˆ
Qε1

(%ε0 − %ε)2εdivυε0 ≤ ε2 ‖divx (%ε0υ
ε
0)‖2L2(Qε1) + ‖%ε0 − %ε‖

2
L2(Qε1) .

The last equation can be brought into the form
d

dt

ˆ
Qε1

(%ε0 − %ε)2 ≤ ε2C2
υ + (1 + εCυ) ‖%ε0 − %ε‖

2
L2(Qε1)

such that Gronwall’s inequality yields

(B.3) ‖%ε0(t)− %ε(t)‖2L2(Qε1) ≤ ε
2C2
υt+ ‖%ε0(0)− %ε(0)‖2L2(Qε1) exp ((1 + εCυ) t)

Now, build the difference of equations (B.1)2 and (B.2)2 to obtain

%ε0∂t (cε0 − cε) + (%ε0 − %ε) ∂tcε + ε%ε0υ
ε
0∇ (cε0 − cε) + ε (%ε0 − %ε)υε0∇cε

− ε%ε0υε0∇xcε0 − ε2∆ (cε0 − cε)− ε2divx∇cε0 − ε2div∇xcε0 − ε2∆xxc
ε
0 = 0
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which yields after testing with (cε0 − cε):

1

2

d

dt

ˆ
Qε1

%ε0 (cε0 − cε)
2 −
ˆ
Qε1

εdiv (%ε0υ
ε
0) (cε0 − cε)

2

+

ˆ
Qε1

(%ε0 − %ε) [∂tc
ε + ευε0 · ∇cε] (cε0 − cε)−

ˆ
Qε1

ε%ε0υ
ε
0 · ∇xcε0 (cε0 − cε)

+

ˆ
Qε1

ε2 |∇ (cε0 − cε)|
2 + 2

ˆ
Qε1

ε2∇xcε0 · ∇ (cε0 − cε)−
ˆ
Qε1

ε2∆xxc
ε
0 · (cε0 − cε) = 0 .

The best estimates can be obtained if it is assumed that %0, υ0, ∇xc0 and ∆xxc0 are essentially
bounded. In this case, using (B.1)2, Hölder’s inequality and ‖cε0 − cε‖L2(Qε1) ≤, we get

(B.4a)
1

2

d

dt

ˆ
Qε1

%ε0 (cε0 − cε)
2 +

1

2

ˆ
Qε1

ε2 |∇ (cε0 − cε)|
2

≤
ˆ
Qε1

%ε0 (cε0 − cε)
2 + C1 + C2

ˆ
Qε1

(cε0 − cε)
2

with

C1 = ε2

ˆ
Qε1

(
|%ε0υε0 · ∇xcε0|

2 + 2 |∇xcε0|
2 + (ε∆xxc

ε
0)2 +

(
ε

%ε
∆cε (%ε0 − %ε)

)2
)

(B.4b)

C2 = 1 + |εdivx (%ε0υ
ε
0)|+ |divy (%ε0υ

ε
0)| .(B.4c)

Since ε2∆cε and (%ε0 − %ε) is of order O(ε) (due to (B.3)), C1 formally is of order O(ε): C1 = O(ε)
and C2 = O(1).

B.2. Macroscopic convection in the limit equations. We consider the same system of equa-
tions but keep a convective term ε∗divx (%0υ0) in the limit equations. The approximating system
for the first order approximations %0 and c0 then reads

∂t%0 + ε∗divx (%0υ0) + divy (%0υ0) = 0

∂t(%0c0) + ε∗divx (%0c0υ0) + divy (%0c0υ0)−∆yyc0 = 0

For suitable boundary conditions, we find

∂t%
ε
0 + (εdiv − εdivx ) (%ε0υ

ε
0) = 0

∂t(%
ε
0c
ε
0) + ε∗divx (%0c0υ0) + (εdiv − εdivx ) (%ε0c

ε
0υ

ε
0)− (εdiv − εdivx ) (ε (∇−∇x) cε0) = 0

We assume that all functions possess enough regularity and start by comparing the convective
equations:

∂t(%
ε
0 − %ε) + εdiv ((%ε0 − %ε)υε0) = (ε− ε∗) divx (%ε0υ

ε
0)

which yields by testing with (%ε0 − %ε) and partial integration

d

dt

ˆ
(%ε0 − %ε)2 +

ˆ
(%ε0 − %ε)2εdivυε0 ≤ (ε− ε∗)2 ‖divx (%ε0υ

ε
0)‖2L2 + ‖%ε0 − %ε‖

2
L2

or
d

dt

ˆ
(%ε0 − %ε)2 ≤ (ε− ε∗)2 ‖divx (%ε0υ

ε
0)‖2L2 + (1 + |εdivυε0|) ‖%ε0 − %ε‖

2
L2

which is for ε = ε∗ the optimal estimate:

‖%ε0(t)− %ε(t)‖2L2(Qε1) ≤ ‖%
ε
0(0)− %ε(0)‖2L2(Qε1) exp ((1 + εCυ) t) = 0 ,

if %ε0(0)− %ε(0) = 0.
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Now, build the difference of the diffusion equations to obtain

%ε0∂t (cε0 − cε) + (%ε0 − %ε) ∂tcε + ε%ε0υ
ε
0∇ (cε0 − cε) + ε (%ε0 − %ε)υε0∇cε

− ε%ε0υε0∇xcε0 + ε∗%ε0υ
ε
0∇xcε0 − ε2∆ (cε0 − cε)− ε2divx∇cε0 − ε2div∇xcε0 − ε2∆xxc

ε
0 = 0

which yields after testing with (cε0 − cε) and in case ε = ε∗:

1

2

d

dt

ˆ
%ε0 (cε0 − cε)

2 +

ˆ
(%ε0 − %ε) [∂tc

ε + ευε0∇cε] (cε0 − cε)

+

ˆ
ε2 |∇ (cε0 − cε)|

2 + 2

ˆ
ε2∇xcε0 · ∇ (cε0 − cε) +

ˆ
ε2∇xcε0 · ∇x (cε0 − cε) = 0

which yields again much better estimates since the convective errors have disappeared. In particular,
(B.4) reads:

(B.5)
1

2

d

dt

ˆ
Qε1

%ε0 (cε0 − cε)
2 +

1

2

ˆ
Qε1

ε2 |∇ (cε0 − cε)|
2

≤
ˆ
Qε1

%ε0 (cε0 − cε)
2 + C1 + C2

ˆ
Qε1

(cε0 − cε)
2

with

C1 =

ˆ
Qε1

(
2ε2 |∇xcε0|

2 +
(
ε2∆xxc

ε
0

)2)(B.6)

C2 = 1(B.7)

Note that the error is of the same order as for the first approach but the sources of errors are less.
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