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Abstract

In this thesis we test the validity of the Standard Model of particle physics by
studying the exclusive rare decays B̄ → K̄(∗)ℓ+ℓ−. We calculate the angular
distribution of the decay B̄ → K̄∗ℓ+ℓ− in the most general basis of effective op-
erators. We obtain results for the angular distribution in the kinematic region of
low hadronic recoil. Based on our results for the angular distribution, we pro-
pose observables which exhibit no or only very weak dependence on hadronic
matrix elements. Beyond CP-averaged observables, we also investigate direct
and mixing induced CP asymmetries at low hadronic recoil. We conclude our
investigation of exclusive decays by studying the decay B̄ → K̄ℓ+ℓ−, where
we find a relation between the CP asymmetry of the rates of B̄ → K̄(∗)ℓ+ℓ−.
Standard model results for a majority of our analytic results are given. Beyond
that, we perform a model-independent analysis based on available experimen-
tal data and obtain constraints on the Wilson coefficients C9 and C10, as well
as lower bounds on the zero-crossing in the B̄ → K̄∗ℓ+ℓ− forward-backward
asymmetry. Based on recent LHC data we find two disjoint solutions for the
Wilson coefficients. One of the solutions is in good agreement with the Stan-
dard Model, but sizable deviations are still allowed.

Zusammenfassung

In der vorliegenden Dissertation überprüfen wie die Gültigkeit des Stan-
dardmodells der Teilchentheorie an Hand der exklusiven seltenen Zerfälle
B̄ → K̄(∗)ℓ+ℓ−. Dazu betrachten wie die Winkelverteilung der Zerfallsrate
des Zerfalls B̄ → K̄∗ℓ+ℓ− unter Berücksichtigung der vollen Basis effek-
tiver Operatoren. Weiterhin berechnen wir die Winkelverteilung für die kine-
matische Region mit großem hadronischen Rückstoß. Auf Basis der vor-
angegangenen Ergebnisse zur Winkelverteilung konstruieren wir neuen Ob-
servablen, welche nicht bzw. nur schwach von den hadronischen Matrixele-
menten abhängen. Zum Abschluss unserer Analyse exklusiver seltener Zerfälle
studieren wir den Zerfalls B̄ → K̄ℓ+ℓ−, wobei wir Zusammenhänge zwis-
chen den CP-Asymmetrien der Raten beider Zerfälle B̄ → K̄(∗)ℓ+ℓ− aufzeigen.
Zusätzlich präsentieren wir unsere numerischen Ergebnisse im Standardmod-
ell für einen Teil der zuvor diskutierten Observablen. Über die analytische Ar-
beit hinaus untersuchen wir modellunabhängig die verfügbaren Experimen-
taldaten, um damit die Parameterbereiche der Wilsonkoeffizienten C9 und C10
einzuschränken. Auf Basis dieser Untersuchung berechnen wir eine untere
Grenze für die Vorwärts-Rückwärts-Asymmetrie der Zerfallsrate von B̄ →
K̄∗ℓ+ℓ−. Unter Berücksichtigung aktueller LHCb-Daten ergeben sich zwei dis-
junkte Lösungen für die Wilsonkoeffizienten. Eine der beiden Lösungen stimmt
mit den Standardmodellervorhersagen gut überein, allerdings sind große Ab-
weichungen immer noch erlaubt.
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1. Introduction

Since the days of Rutherford the investigation of the fundamental interactions between
elementary particles has been a driving force for Physics and physicists all over the
world. We have come to an understanding that nature can be described by a set of four
fundamental forces: gravity, electromagnetism, the weak nuclear force and the strong
nuclear force. The latter three can be modeled on microscopic scales, or equivalently at
high energies, by quantum field theories. However, a quantum theory that successfully
models gravity has not yet been developed. Unification of electromagnetism and the
weak force into a combined electroweak force was a major milestone on a road that is
expected to lead to the unification of all four forces into one Grand Unified Theory. This
road is paved with a multitude of models that aim to improve on our understanding of
the current model, the Standard Model (SM) of particle physics. Although the SM has
passed many experimental tests so far, such as the successful prediction [1] of the bottom
quark [2] and the top quark [3, 4], we do know that it has also a number of shortcomings.
Its failure to describe the fact that neutrinos do have nonvanishing masses and thus are
capable to mix and oscillate [5] is certainly one of the vexing problems. The lack of a
candidate particle that constitutes dark matter[6] is another. It is an ongoing scientific
endeavor to formulate new models which encompass the predictive power of the SM
while simultaneously explaining the differences between SM predictions and nature.

In a large number of the successful tests of the SM, experiment and theory compete to
measure and predict observables to ever higher precision. This race towards precision
physics is ongoing, and especially the parts that suffer from contributions by the strong
interaction prove to be quite daunting and daring. Among these, weak decays that
involve transitions from bottom (b) to strange (s) quarks are of special interest, since they
arise only at the one-loop level in the SM. It is therefore expected that New Physics (NP)
effects are easily noticeable, since they do not need to compete with leading SM terms.
Here, the rare semileptonic decays b→ sℓ+ℓ− provide a particularly promising and rich
phenomenology. The first observation of an exclusive b→ sℓ+ℓ− decay was reported by
the Belle collaboration [7]. Over time, BaBar [8] and CDF [9] confirmed this observation,
and more observables beyond the branching ratio were studied as well. With the advent
of first results from the LHCb collaboration, one of the main experiments at CERN’s
Large Hadron Collider (LHC), we have the opportunity to go further down the road,
towards finding hints of the SM’s successor.

In this thesis, we investigate mainly the interesting class of exclusive semileptonic rare
b decays. The theory description of exclusive decays involves non-perturbative hadronic
matrix elements which describe the transition to the final state meson. Hence, their cal-
culations are affected by a larger theory uncertainty than the calculations for inclusive
decays which can be calculated perturbatively. Here, we understand inclusive decays
as processes for which the final state strange hadron is not fully specified. The situa-
tion is the opposite from the experimental point of view, and as a matter of fact only
experiments at e+e− colliders can measure inclusive processes at all. However, the first
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1. Introduction

generation of B factories KEKB and PEP-II (and their respective experiments Belle and
BaBar) have already been shutdown. In the case of KEKB, an upgrade to a second gen-
eration B factory is ongoing since 2010, and first data taking with the upgraded Belle II
detector is expected late in 2015 [10]. Therefore, theorists must make the best out of the
available data, especially data on exclusive decays from experiments at hadron colliders.
With the shutdown of the Tevatron and its experiments CDF and D0 late in 2011, LHCb
is the only running experiment capable of measuring (exclusive) b→ sℓ+ℓ− decays. The
results from LHCb’s 2011 run alone yield the most powerful constraints on the effective
couplings in b → sℓ+ℓ− decays so far. Improving upon the theoretical handling of ex-
clusive b→ sℓ+ℓ− decays to make full use of the available data is therefore an important
endeavor.

The layout of this thesis is as follows. We begin in Chapter 2 by examining the un-
derlying theory to model-independently describe b→ s transitions, and how the parton
level decays relate to the observable processes involving b hadrons. We continue in
Chapter 3 with the phenomenology of the decays B̄ → K̄∗ℓ+ℓ− and B̄ → K̄ℓ+ℓ− in the
kinematic region of low hadronic recoil. Here, we pay special attention to the construc-
tion of observables that strongly benefit from the characteristic properties of the afore-
mentioned decays at low recoil. After that, we calculate and present numerical results
for the these observables and their theory uncertainties within the SM in Chapter 4. In
Chapter 5, a model-independent analysis of the effective short-distance couplings that
govern b→ sℓ+ℓ− decays follows suit. We conclude in Chapter 6.
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2. Theory of b → sℓ+ℓ− Transitions

Within the SM, change of flavor is always associated withW± boson exchange, i.e., with
a charged current. However, in the SM Flavor Changing Neutral Current (FCNC) me-
diated processes arise at the one-loop level [11]. In this chapter we review the theory
of |∆B| = 1 FCNCs in the SM (Section 2.1) and within the framework of an effective
field theory (Section 2.2). Following that, we discuss the transition from the partonic to
the hadronic environment in Section 2.3. We conclude the chapter in Section 2.4 by con-
sidering the implications of long-distance Quantum Chromo Dynamics (QCD) effects in
form of intermediate bound states – in particular the radial excitations of the c̄c bound
states – on both the theoretical and experimental handling of semileptonic b → sℓ+ℓ−

transitions.

2.1. Standard Model FCNCs

The SM of particle physics is a renormalizable Quantum Field Theory with a local gauge
symmetry based on the symmetry group

GSM = SU(3)C × SU(2)L × U(1)Y . (2.1)

It can be described by the following Lagrangian density

L = ψ̄i /Dψ − 1

4


AaµνA

µν
a +BµνB

µν +GbµνG
µν
b


(2.2)

− ψ̄LŶ φψR + (Dµφ)
∗(Dµφ)− V (φ) ,

where we omit gauge-fixing and ghost terms. We do no discuss these terms, as well
as the technical points of field quantization since they are not relevant to the work pre-
sented in this thesis. For a detailed description we refer to the literature, cf. e.g.[12].
Within Eq. (2.2) we use the covariant derivative

Dµ = ∂µ − ig′
σa

2
Aaµ − igY Bµ − igs

λA

2
GAµ (2.3)

and the field strength tensors

Aaµν = ∂µA
a
ν − ∂νA

a
µ − g′εabcAbµA

c
ν , (for the SU(2)L) (2.4)

Bµν = ∂µBν − ∂νBµ , (for the U(1)Y) (2.5)

GAµν = ∂µG
A
ν − ∂νG

A
µ − gsf

ABCGBµG
C
ν , (for the SU(3)C) . (2.6)

The quantities g, g′ and gs are the coupling constants of U(1)Y, SU(2)L and SU(3)C in
this order. The σa and λA denote the Pauli and Gell-Mann matrices, respectively, and
εabc and fABC denote the structure constants of the nonabelian groups SU(2)L and the

3



2. Theory of b → sℓ+ℓ− Transitions

Name Symbol SU(3)C SU(2)L Y

Gauge Fields

Gluons GAµ , A = 1, . . . , 8 8 1 0

SU(2)L Fields Aaµ, a = 1, 2, 3 1 3 0

Hypercharge Field Bµ 1 1 0

Matter Fields

Left-handed quarks QL = (uL, dL) 3 2 +1/3

Right-handed up quarks uR 3 1 +4/3

Right-handed down quarks dR 3 1 −2/3

Left-handed leptons LL = (νL, eL) 1 2 −1

Right-handed charged leptons eR 1 1 −2

Symmetry Breaking Fields

Higgs field φ 1 2 +1

Table 2.1.: The field content of the SM. The columns SU(3)C and SU(2)L refer to the
group representations in which the respective fields live, while the column Y
lists the hypercharge of the respective fields. For the sake of readability we
have suppressed the family indices of the matter fields.

SU(3)C, respectively. The nonvanishing structure constants give rise to self-interaction
between the gauge fields associated with the respective groups. Moreover, the Dirac
spinors ψ represent the matter fields – quarks and leptons – and we suppress any in-
dication of multiplet or generation affiliation. The subscript L (R) denotes a left-chiral
(right-chiral) projection of the spinor. The vector fields Aaµ (a = 1, 2, 3), Bµ and Gbµ
(A = 1, . . . , 8) represent the three SU(2)L gauge fields, the hypercharge gauge field and
the eight strong gauge fields, respectively. The hypercharge operator Y is related to the
electric charge operator Q and the weak isospin operator I3 via

Y

2
= Q− I3 . (2.7)

The complex-valued scalar field φ and its potential

V (φ) = −µ2 |φ|2 + λ |φ|4 (2.8)

break the gauge symmetry spontaneously by means of the Higgs mechanism [13, 14, 15,
16].
The electroweak part of the SM was first proposed by Glashow and Weinberg[11] and
Salam1 in 1961 and 1967, respectively, and awarded with the Nobel Prize in Physics in
1979. Using data from their 2010/11 runs with an integrated luminosity of ∼ 5fb−1,
the LHC experiments ATLAS [18] and CMS [19] found indications of a Higgs mass
peak around 123 − 125GeV. The most prevalent component of both their searches is

1There is no written record of A. Salam’s contribution to the electroweak part of the SM. However, he
discussed the workings of a SU(2)×U(1) gauge theory in a graduate course at Imperial College, London
[17].
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2.1. Standard Model FCNCs

mu md ms mc mb mt

∼ 0.003 ∼ 0.005 ∼ 0.1 ∼ 1.3 ∼ 4.2 ∼ 170

Table 2.2.: The approximate quark masses in GeV based on experimental measurements
[22]. Due to the nature of the strong interaction, the definition of the quark
masses inherently depends on the used renormalization scheme. We intend
this table only to illustrate the large hierarchy between the masses, which
spans five orders of magnitude between the top and the up quark.

the decay channel h → γγ, which is further backed up by searches in the channels
h → ZZ∗ → ℓℓ̄ℓ′ℓ̄′ and h → WW ∗ → ℓν̄ℓ̄′ν ′. Besides these radiative and leptonic decay
channels, CMS and the Tevatron experiments [20] CDF and D0 have taken into account
decays into b jets. In combination with the LEP results [21], the experiments exclude a
SM like Higgs for masses . 600GeV at 95%CL, with the exception of a small window
around the aforementioned mass peak. No determination as to the nature of this appar-
ent Higgs boson has been achieved yet. Both ATLAS and CMS hope to gather sufficient
data in their 2012 runs, in order to find or exclude an SM-like Higgs boson with a signif-
icance of more than 5σ.

In principle, the theory as described above could be considered complete when using
the aforementioned field content with just one generation of matter fields. However,
experiments have shown conclusive evidence – e.g. discovery of the τ lepton [23] and
discovery of Z decay into three types of neutrinos [24] – that the matter fields appear in
at least three distinct families, i.e., three sets of matter fields with identical gauge prop-
erties but of different masses. We refer the reader to Tab. 2.1 for details of nomenclature
and properties of the various gauge and matter fields. As a consequence, discrimination
by mass is the only viable way to distinguish between these fields, and this gives rise
to the concept of flavor. Disregarding the lepton sector, we switch from the basis with
states ũ and d̃ to the so-called mass basis by simultaneous orthogonalization of the quark
mass terms

L ⊇ v

¯̃uLŶuũR +

¯̃
dLŶdd̃R


(2.9)

= v

¯̃uLUuDuV

†
u ũR +

¯̃
dLUdDdV

†
d d̃R


(2.10)

≡ v

ūLDuuR + d̄LDddR


, (2.11)

with

vDu = diag(mu,mc,mt) , vDd = diag(md,ms,mb) . (2.12)

The quark masses are given in Tab. 2.2. Here the Ŷu,d represent the 3×3 Yukawa matrices
for up-type and down-type quarks, respectively, and v is the vacuum expectation value
of the Higgs field φ. We denote the diagonalized Yukawa matrices by Du,d, and the uni-
tary orthogonalization matrices for left-chiral and right-chiral quarks by Uu,d and Vu,d,
respectively. We remark that two independent unitary matrices Ui and Vi arise when
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2. Theory of b → sℓ+ℓ− Transitions

diagonalizing Ŷi, since the latter are in general not Hermitian.

Within the framework of the SM, changes of flavor are realized by coupling of theW±

gauge fields to a charged fermion current. We suppress charged currents in the lepton
sector, which are not relevant to this work. For the quark sector and in the mass basis,
charged currents are described in the Lagrangian by the term Lcc,

L ⊇ Lcc = − g′√
2
VijQ̄iσ

+W+
µ γ

µPLQj + h.c. , (2.13)

with

W±µ =
A1
µ ∓ iA2

µ√
2

, σ± =
σ1 ± iσ2

2
, (2.14)

to which only the left-chiral doublets couple, while the right-chiral singlets do not. This
discrimination based on chirality implies maximal parity violation in charged current
decays. First considered in 1956 [25], parity violation was experimentally confirmed
only one year later by Wu et al. [26]. Within Lcc, the relative coupling of a genera-
tion j = 1, 2, 3 down-type quark to a generation i = 1, 2, 3 up-type quark is given by
the matrix element Vij = (UuU

†
d)ij . The matrix V is known as the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. The inverse process (up-type quark i to down-type quark j) is
described by the Hermitian conjugate part within Lcc, and thus its coupling is given by
V ∗ij . Since exactly one up-type quark index and one down-type quark index are relevant
to selecting a CKM matrix element, we can rewrite the indices in terms of i = u, c, t and
j = d, s, b, and the CKM matrix then reads

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2.15)

In 1983, Wolfenstein proposed [27] a parametrization in terms of four real-valued pa-
rameters A, λ, ρ, η. Of the former only A is of order one, and the remaining parameters
λ, ρ, η ≪ 1. Wolfenstein proposed an expansion in λ ≈ 0.22, and to order λ4 the CKM
matrix reads

V =

 1− λ2/2 λ Aλ3(ρ̄− iη̄)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2 1

+O

λ4

. (2.16)

Here we employ the barred quantities ρ̄, η̄, which are defined via

ρ+ iη =
(ρ̄+ iη̄)

√
1−A2λ4√

1− λ2(1−A2λ4(ρ̄+ iη̄))
, (2.17)

and using them instead of the original parameters ρ, η ensures that the expansion of the
CKM matrix stays unitary to all orders in λ, cf. e.g.[28]. For the numerical values of the
Wolfenstein parameters we refer to Tab. 4.2.
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2.1. Standard Model FCNCs

W

t

W

ν

b

s

ℓ

ℓ

(a)

t

W

b

s

γ

(b)

Figure 2.1.: Exemplary Feynman diagrams that describe contributions (a) to b → sℓ+ℓ−

decays and (b) to b→ sγ decays.

In the SM there are no charge-neutral changes of flavor at tree-level. However, they
can be realized by loop processes where a virtual W boson couples twice to a quark
line, a process which is known as an FCNC. Amplitudes involving FCNCs exhibit the
structure (here exemplary for b→ s FCNCs),

A = VubV
∗
usf(m̂

2
u) + VcbV

∗
csf(m̂

2
c) + VtbV

∗
tsf(m̂

2
t ) , m̂q ≡ mq/MW , (2.18)

where f(m̂2) denotes an unspecified loop function which is process dependent. Examples
for Feynman diagrams which contribute to b→ s FCNC amplitudes are given in Fig. 2.1.
Due to the Feynman rule for the evaluation of loops involving the SU(2)L gauge fields,
loop functions are usually suppressed by a factor of (g′/4π)2. Amplitudes that emerge
only at the one-loop level are therefore known to be loop suppressed. Moreover, we can
apply the CKM unitarity relation

VcbV
∗
cs = −VtbV ∗ts − VubV

∗
us (2.19)

to remove the CKM factors VcbV ∗cs from Eq. (2.18):

A = VtbV
∗
ts


f(m̂2

t )− f(m̂2
c)

+ VubV

∗
us


f(m̂2

u)− f(m̂2
c)

. (2.20)

The above amplitude is simultaneosuly suppressed by the CKM matrix elements and
for degenerate quark masses. This mechanism of suppression is known as the Glashow-
Iliopolus-Maiani (GIM) mechanism [11], and amplitudes that suffer from its suppression
are known to be GIM suppressed. In the SM, one finds VubV ∗us/VtbV ∗ts ≃ (1+ 2i)× 10−2. In
addition, the loop function can be expanded around m̂2

c,u ≪ 1, and one obtains

f(m̂2
u)− f(m̂2

c) =

m̂2
u − m̂2

c


f ′(0) +O


m̂4
c,u


(2.21)

= O

m̂2
c


= O


10−4


.

On the other hand, the difference of loop functions [f(m̂2
t ) − f(m̂2

c)] is generically un-
suppressed. One therefore finds that the terms ∝ VubV

∗
us are suppressed in comparison

to the leading terms by a factor of ∼ 10−6 and can safely be removed as long as CP con-
serving observables are considered. However, these contributions are essential when
considering CP violating observables, cf. Eq. (3.95). In addition to the above loop and

7



2. Theory of b → sℓ+ℓ− Transitions

GIM suppression, one further finds that b → s FCNCs in the SM suffer from mild CKM
suppression due to the numerically small combination VtbV

∗
ts ∝ λ2. Taken together, one

finds that in the SM the decays b → s {γ, ℓ+ℓ−, g} are very rare decays, with branching
fractions of the order 10−4 (e.g.B → Xsγ) down to 10−9 (e.g.Bs → µ+µ−). While the
branching ratios of these rare decays are very small and thus experimentally challeng-
ing, several of them have been discovered. On the other hand, FCNC decays of top
quarks (t) have not yet been discovered. For them, the GIM suppression is worse then
for b quarks. We show this explicitly for t→ c FCNCs, where

A(t→ cX) ∼ V ∗tbVcbf(m̂
2
b) + V ∗tsVcsf(m̂

2
s) + V ∗tdVcdf(m̂

2
d) (2.22)

= V ∗tbVcb

f(m̂2

b)− f(m̂2
d)

+ V ∗tsVcs


f(m̂2

s)− f(m̂2
d)


(2.23)

= V ∗tbVcbm̂
2
bf
′(m̂2

b) + V ∗tsVcsm̂
2
sf
′(m̂2

s) +O

m̂2
d


(2.24)

= O

λ2m̂2

b


≈ 10−4 . (2.25)

Here the unitarity relation V ∗tdVcd = −V ∗tbVcb−V ∗tsVcs has been used. It follows that in the
SM the branching ratios are several orders of magnitude smaller than for b→ s FCNCs,
and they range from 5 × 10−12 for B(t → cg) to 10−14 for B(t → cZ) [29]. Even within
extensions of the SM the t FCNCs remain rare, cf. e.g.[30] for a recent study within the
Minimal Supersymmetric Standard Model where B(t→ cX) < 10−8 for X = g, γ, Z.

2.2. Effective Field Theory

Effective Field Theories, such as Chiral Perturbation Theory [31], Heavy Quark Effec-
tive Theory (HQET) [32] and Soft Collinear Effective Theory (SCET) [33], are widely
used tools within the field of elementary particle theory, especially in cases where per-
turbative approaches to QCD face problems. Their common concept is the separation
of different energy scales by means of a set of local field operators Oi and their associ-
ated scalar couplings Ci, the so called Wilson coefficients. An effective Lagrangian can
be constructed from both the local operators and Wilson coefficients. This effective La-
grangian is systematically expanded in some smallness parameter, e.g., 1/mb in the case
of HQET, and a soft momentum scale λ in the case of SCET. This expansion is known
as an Operator Production Expansion (OPE). Effective theories are, however, not pre-
dictive theories in their own rights. In order to achieve predictive power, one has to
calculate the a priori unknown Wilson coefficients. In the cases of HQET and SCET this
can be achieved by comparing the results of the effective theory with those of the full
theory in its perturbative regime, a process that is known as matching.

In the case of semileptonic |∆B| = 1 FCNCs, an OPE in 1/M2
W is employed to arrive

at the following effective Hamiltonian, see for instance [28],

Heff = −4GF√
2

VtbV ∗ts 
i ̸=1u,2u

CiOi + VubV
∗
us (C1 (O1c −O1u) + C2 (O2c −O2u))

 (2.26)

+ · · ·+ h.c. .
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2.2. Effective Field Theory

Here GF is the Fermi constant,

GF =

√
2(g′)2

8M2
W

, (2.27)

and we suppress the dependence on the renormalization scale µ of both the local oper-
ators2 Oi as well as their associated Wilson coefficients Ci. The ellipses indicate terms
of higher order in 1/M2

W (or equivalently in GF), which are not taken into consideration
within this work. The CKM structure of Eq. (2.26) is tailored toward the SM results. In
particular, CKM unitarity has been employed by means of Eq. (2.19) to remove terms
∝ VcbV

∗
cs.

In the paradigm of the performed OPE, we describe the light degrees of freedom, i.e.,
all fields with masses m ≤ µ, as part of the local operators Oi, while the heavy degrees
of freedom have been integrated out, i.e., their effects are completely described by the
Wilson coefficients. Taking the SM as an example, the top quark and the heavy gauge
bosons W±, Z0 are integrated out. We note here that by treating the Wilson coefficients
as generalized couplings one can accommodate for the effects of Beyond the Standard
Model (BSM) particles which are heavier than µ in a model-independent way. For non-
hadronic |∆B| = 1 FCNCs, it is common to define the following SM basis of operators,
which is the set of relevant operators whose Wilson coefficients are neither vanishing
nor negligible within the SM. We do not consider the electroweak penguin operators.
The SM basis reads

O1c = [s̄γµT
aPLc] [c̄γ

µT aPLb] , O2c = [s̄γµPLc] [c̄γ
µPLb] , (2.28)

O1u = [s̄γµT
aPLu] [ūγ

µT aPLb] , O2u = [s̄γµPLu] [ūγ
µPLb] ,

O3 = [s̄γµPLb]


q [q̄γ
µPLq] , O5 = [s̄γµγνγρPLb]


q [q̄γ

µγνγρPLq] ,

O4 = [s̄γµT
aPLb]


q [q̄γ

µT aPLq] , O6 = [s̄γµγνγρT
aPLb]


q [q̄γ

µγνγρT aPLq] ,

O7 =
e

(4π)2
mb [s̄σ

µνPRb]Fµν , O9 =
e2

(4π)2
[s̄γµPLb]


ℓ̄γµℓ


,

O8 =
gs

(4π)2
mb [s̄σ

µνPRT
ab]Gaµν , O10 =

e2

(4π)2
[s̄γµPLb]


ℓ̄γµγ5ℓ


.

Here, the operators O1...6 are defined as in [34]. For the operators O7...10 we use the
definitions of [35]. The chirality structure of the above operators reflects very well the
maximal parity violation through coupling to W bosons in the SM, which arises from
the vector/axial vector (V − A) nature of the weak interaction. The set of operators
needs to be enlarged when we consider models beyond the SM, i.e., models in which
there is no restriction to the V − A structure. In this work we refer to the SM’ basis as
the union of the SM basis with the chirality-flipped operators O′i, i = 7, 9, 10. Here, the
operators O′i are obtained from the corresponding operators Oi by the exchange PL ↔
PR. Moreover, models beyond the SM can also accommodate for FCNCs of (pseudo-
)scalar and (pseudo-)tensor nature. In order to handle such models, we define the SM’+

2While in general only the hadronic matrix elements of the operator Oi depend on the renormalization
scale µ, in our choice of the basis Eq. (2.28) the operators O7,8 exhibit an explicit scale dependence
through the MS mass of the b quark.
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2. Theory of b → sℓ+ℓ− Transitions

basis which includes the operators

O(′)
S =

e2

(4π)2

s̄PR(L)b

 
ℓ̄ℓ

, O(′)

P =
e2

(4π)2

s̄PR(L)b

 
ℓ̄γ5ℓ


, (2.29)

OT =
e2

(4π)2
[s̄σµνb]


ℓ̄σµνℓ


, OT5 =

e2

(4π)2
iεµναβ

2
[s̄σµνb]


ℓ̄σαβℓ


,

in addition to those of the SM’ basis. The above definition of OT5 has been chosen to
facilitate the calculation of amplitudes for exclusive decays, as both its hadronic and
leptonic currents coincide with those that occur in OT . It coincides with the definitions
used in [36, 37]. Furthermore, we find for D = 4 dimensions

OT5 =
e2

(4π)2
[s̄σµνb]


ℓ̄σµνγ5ℓ


, (2.30)

which agrees with the definition used in [38].

In order to calculate the amplitudes of b → sℓ+ℓ− processes, one needs to evaluate
both the matrix elements of the local operators and the Wilson coefficients at a common
renormalization scale µ. As µ is an unphysical quantity, the result would not depend on
the concrete value of µ if one worked to all orders in perturbation theory. However, as
we can only work to fixed, finite order in the perturbative expansions we can observe a
residual dependence on the value of the renormalization scale. Due to logarithmic terms
of the form

LWi,j = αis ln
j


µ2

M2
W


, Lbi,j = αis ln

j


µ2

m2
b


(2.31)

with 0 ≤ j ≤ i, the convergence of the perturbative expansion is impaired for QCD
corrections to the matrix elements of the local operators when µ ≈ MW , and conversely
for the calculation of the Wilson coefficients when µ ≈ mb. This problem can be solved
by resummation of the most relevant logarithmic terms. Here, one understands resum-
mation of all logarithms Li,i as working to leading-logarithm, and resummation of all
logarithms Li,i≥j≥i−1 as working to next-to-leading-logarithm. In |∆B| = 1 FCNCs, re-
summation of large logarithms is accomplished by evolution of the Wilson coefficients
from the high scale µ0 to the low scale µb ≈ mb as governed by the Renormalization
Group Equations (RGE). This technique is known as RGE-improved perturbation the-
ory, and makes use of the µ dependence of the Wilson coefficients Ci, which can be
written as

dCi
d lnµ

= γji Cj ,
d gs
d lnµ

= β(gs). (2.32)

with the solution [35]

Ci(µb) = Uij(µb, µ0) Cj(µ0), µ0 ≥ µb , (2.33)

Uij(µb, µ0) = exp

 gs(µb)

gs(µ0)
dg′

γji(g
′)

β(g′)
. (2.34)
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2.2. Effective Field Theory

Here the anomalous mass dimension matrix of the operator basis γ and the beta function
of QCD β are functions of the strong coupling gs. We briefly derive the resummation
of large logarithms to leading logarithm (LL) for a single operator O with anomalous
dimension

γO = γ(0)
g2s

16π2
+O


g4s

, (2.35)

and its associated Wilson coefficients C . Our derivation of the resummation is based on
Ref. [28], to which we refer the reader for an in-depth discussion of LL and NLL results
in b→ s FCNCs. Using the LO results for the QCD beta function

dgs
d lnµ

= β(gs) = −β(0) g3s
16π2

+O

g5s

, β(0) = 11− 2

3
nf , (2.36)

where nf is the number of active quark flavors, we can rewrite Eq. (2.32)

dC
dgs

=
dC

β(gs)d lnµ
=
γ(gs)

β(gs)
C . (2.37)

Inserting the LO results for both β and γ yields

dC
dgs

= − γ(0)

gsβ(0)
C . (2.38)

The above differential equation can be solved by separation of dC and dgs,

dC
C

= −γ
(0)

β(0)
dgs
gs

, (2.39)

and subsequent integration. The solution reads

C(µb) = ηaC(µ0), with η =
αs(µb)

αs(µ0)
, a = − γ(0)

2β(0)
. (2.40)

We can now use the LO results for the running strong coupling

αs(µb) =
αs(µ0)

1− β(0) αs
4π ln

µ2b
µ20

(2.41)

and find that the factor η resums all leading logarithms αis ln
i(µ2b/µ

2
0):

ηa ≃

1− β(0)

αs

4π
ln
µ2b
µ20

 γ(0)

2β(0)

(2.42)

= 1− γ(0)

2

αs

4π
ln
µ2b
µ20

+O

α2
s ln

2 µ
2
b

µ20


. (2.43)

Within the SM, the Wilson coefficients Ci and the anomalous mass dimension matrix γ
associated with the operators of the SM basis have been calculated to next-to-next-to-
leading order (NNLO) in αs [35]. In combination with the N3LO-computation of the
beta functions of QCD, this allows the resummation of large logarithms in the RGE up
to next-to-next-to-leading logarithm (NNLL) [35].
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2. Theory of b → sℓ+ℓ− Transitions

2.3. From Partons to Hadrons

While the previous sections discuss the calculation of b → s FCNCs at the parton level,
the more difficult question is how the latter relate to |∆B| = 1 decays of b hadrons. Since
the remainder of this work concentrates on decays of B mesons, we will abstain from
discussing baryonic processes.

We begin with the nomenclature of B mesons, where we stick to the Particle Data
Group convention, and define the B̄q mesons to contain as valence partons one b quark
and one q = u, d, s antiquark. The antipartner of the B̄q is labeled Bq, where all va-
lence partons are replaced by their respective antipartners. The theory of B̄q decays is
divided into two concepts of decays, which are known as inclusive and exclusive decays.
In the former, the initial state and parts of the final state are fixed, while the remainder of
the final state is understood to contain all hadronic states that fulfill a certain criterion.
Exclusive decays, on the other hand, fully specify both the initial and the final state.
As an example for an inclusive decay we consider B̄d → Xsγ, which is understood
as the radiative decays of the B̄d to all hadronic final states that contain at least one s
quark. Both B̄d → Xsγ and B̄d → Xsℓ

+ℓ− decays can be calculated with very small
theory uncertainties to next-to-next-to-leading order (NNLO) in the strong coupling αs
[39, 35]. However, the experimental measurement of inclusive rare decays of the B̄d is
notoriously difficult and can so far only be achieved by experiments at electron-positron
colliders such as Belle and BaBar. The advent of the Belle II [40] (and the planned Super-
B [41]) experiment will improve on the measurements of the inclusive decays. SuperB
states the aim of reducing the overall experimental error on B(B̄ → Xsℓ

+ℓ−) from 23%
down to 4% – 6% [41]. Conversely, exclusive decays are experimentally clean. In the
absence of neutrinos in the final state, their properties can also be measured by exper-
iments at hadron colliders. In point of fact, the LHCb experiment has so far provided
the most precise measurements in the area of several exclusive rare b decays, such as
B̄ → K̄∗ℓ+ℓ− [42] and B̄s → J/ψφ [43]. Unfortunately, the theoretical calculation of
exclusive B decays is hampered by the fact that the necessary hadronic matrix elements
cannot be obtained from perturbative QCD calculations. For the semileptonic decays,
several nonperturbative techniques, such as Light Cone Sum Rules (LCSR) and Lattice
QCD (LQCD), provide mutually consistent results for these nonperturbative hadronic
quantities. For a comparison of LCSR and (preliminary) LQCD results for the B → K(∗)

matrix elements, cf. Appendices B and C, respectively. However, both techniques yield
results which are affected by considerable uncertainties [44, 45]. In order to reliably
extract information on the underlying short-distance physics, it is of paramount impor-
tance to construct observables of exclusive decays in which the hadronic uncertainties
are partially or even completely removed. In the remainder of this work we will show
that exclusive rare B decays at low recoil provide very clean observables, and are thus
ideally suited as probes of |∆B| = 1 short-distance physics.

2.4. Long-Distance Effects

The theoretical description of semileptonic |∆B| = 1 decays – as reviewed in this chap-
ter – suffers from pollution through long-distance contributions by the 4-quark operators
O1...6 and by the chromomagnetic operator O8. Specifically, they arise from intermedi-
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ℓ
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Figure 2.2.: Examples of loop diagrams which arise from intermediate quark-antiquark
loops in the process b → sℓ+ℓ−. The black squares denote insertions of the
local operators O1,2 (q = c) and O3...6 (q = u, d, s, c, b).

Resonance J/ψ(1S) ψ′(2S) ψ(3770)

M [MeV] 3096 3686 3772

Γ [MeV] 0.093± 0.003 0.304± 0.009 27.3± 1.0

Bℓℓ [%] 5.93± 0.06 0.77± 0.08 (9.7± 0.7)× 10−4

Resonance ψ(4040) ψ(4160) ψ(4415)

M [MeV] 4039± 1 4153± 3 4421± 4

Γ [MeV] 80± 10 103± 8 62± 20

Bℓℓ [%] (1.07± 0.16)× 10−3 (8.1± 0.9)× 10−4 (9.4± 3.2)× 10−4

Table 2.3.: Masses M , total decay widths Γ and branching ratios Bℓℓ for the decay to
ℓ+ℓ− final states of the radially excited charmonia with JP = 1−. All values
are taken from Ref. [22].

ate production of q̄q pairs, where q = u, c for the current-current operators O1q,2q, and
q = u, d, s, c, b for the QCD penguin operators O3...6. Exemplary Feynman diagrams of
the emerging contributions to leading and next-to-leading order in αs are depicted in
Fig. 2.2(a) and Fig. 2.2(b), respectively.

The contributions from the current-current operators enter the b → sℓ+ℓ− matrix el-
ements with numerically large Wilson coefficients C1,2 and therefore need careful treat-
ment. Especially for the production of c̄c pairs, one has to consider the resonant produc-
tion of bound states with matching quantum numbers and quark contents, i.e., charmo-
nia with JP = 1−. Their relevant properties are compiled in Tab. 2.3.

For the purpose of this thesis, we categorize these resonances as narrow (J/ψ, ψ′) and
wide (ψ(3770), ψ(4040), ψ(4160), ψ(4415)), which can directly be inferred from their re-
spective total decay widths. The narrow resonances are vetoed in the experimental re-
sults by means of phase space cuts. Currently, the collaborations Belle, CDF and LHCb
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2. Theory of b → sℓ+ℓ− Transitions

use identical cuts3 [46, 47, 42] for the exclusion of both the J/ψ and the ψ′ resonances:
8.68GeV2 ≤ q2 ≤ 10.09GeV2 and 12.86GeV2 ≤ q2 ≤ 14.18GeV2, respectively. How-
ever, the tails of these resonance peaks still affect the observables outside the experi-
mental cuts. A recent study [48] finds for q2 ≤ m2

ψ′ contributions to the amplitudes of
up to 5% (20%) for B̄ → K̄(∗)ℓ+ℓ− decays, which stem mainly from soft-gluon effects.
We emphasize that these effects have not been taken into account in the present work.

In the region of large hadronic recoil, QCD Factorization (QCDF) can be employed
to perturbatively compute long-distance effects from quark loops [49]. Although QCDF
was originally employed to compute B decays into two light hadronic final states [50],
it can be applied to the calculation of semileptonic rare B decays. The basic result of
QCDF is the following (schematic) decomposition of the matrix element M(B → hV )

M(B → hV ) = C · ξ + φB ⊗ T ⊗ φh . (2.44)

where h stands for the final state meson and V for either a photon or the electromagnetic
coupling to a pair of charged leptons. Here C represents the factorizable contributions,
multiplied by the B → h form factor ξ. Furthermore, the hard scattering kernel T con-
tributes nonfactorizing terms that are convoluted with the Light Cone Distribution Am-
plitudes (LCDAs) φB and φh of both the initial and final state mesons. Both C and T can
be calculated perturbatively. The region of validity for the application of QCDF is ap-
proximately 1GeV2 ≤ q2 ≤ 6GeV2, which effectively excludes narrow resonances that
stem from either ūu or c̄c loops. Results for B → {K∗, ρ, ω} ℓ+ℓ− [49, 51] and B → K∗γ
[52] have been obtained up to next-to-leading order (NLO) in the strong coupling αs.
Since within the virtual two-loop functions Fij [53] the renormalization scheme of the
quark masses is not fixed, one can choose the quark mass scheme for the intermedi-
ate quark loops. In Refs. [44, 45], the charm quark mass was taken in the MS scheme,
mc(mc) = 1.27GeV. However, this choice leads to an early onset of the c̄c threshold ef-
fects at q2 = 4m2

c ≃ 6.5GeV2, well below the mass square of the J/ψ, m2
J/ψ ≃ 9.6GeV2.

Instead, in this work we always use the pole mass scheme when computing observables
by means of QCDF, with mpole

c ≃ 1.59GeV. Here, the onset of threshold effects occurs
only at q2 ≃ 10.1GeV2, which matches the physical resonance much better.

For the low recoil region, the inclusion of quark-loop contributions is handled by
means of an OPE, which is described in detail in Section 3.2.

3The inter resonance bin of LHCb differs by 0.04GeV2 from the Belle and CDF bin. However, this devia-
tion is irrelevant for this thesis, as the corresponding bin is not used in any of the presented analyses.
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at
Low Hadronic Recoil

Exclusive semileptonic |∆B| = 1 decays provide a large number of observables which
can be measured both at (Super-)B factories and at the LHC. Previous works on the
phenomenology of these decays focused on the kinematic region of large hadronic re-
coil [49, 51, 38, 54]. In contrast, in the course of this chapter we concentrate on the
phenomenology of the exclusive decays B̄ → K̄(∗)ℓ+ℓ− and B̄s → φℓ+ℓ− in the kine-
matic region of low hadronic recoil, i.e., for small energy Es of the final state meson,
Es −m . Λ. Here and throughout, we denote by Λ a smallness parameter for expan-
sions in 1/mb, where Λ = O (ΛQCD). First, we introduce the kinematics and common
notations for both decays in Section 3.1. Next, we examine the low recoil framework
as put forward in Ref. [55]. It consists of an OPE (discussed in Section 3.2) and a set
of improved Isgur-Wise form factor relations for the individual decays (discussed in
Section 3.3). Subsequently, we study the spectrum and phenomenological application
of observables within the low recoil region for B̄d,s →


K̄∗, φ


ℓ+ℓ− and B̄ → K̄ℓ+ℓ−

decays in Section 3.4 and Section 3.5, respectively.

3.1. Kinematics and Notations

Before we turn to the individual decays B̄ → K̄∗(→ K̄π)ℓ+ℓ− and B̄ → K̄ℓ+ℓ−, we lay
some groundwork by introducing notations and kinematics which are common to both
decays. We begin by assigning the four-momenta p, k, p± and the polarization vector η
to the participating particles,

B̄(p) → K̄(k)ℓ+(p+)ℓ
−(p−) , B̄(p) → K̄∗(k, η)ℓ+(p+)ℓ

−(p−) , (3.1)

and introduce the four-momentum q of the lepton pair, which reads q = p++p− = p−k.
For both the vector and the pseudoscalar decay channel, we follow the literature [38]
and define θℓ as the angle between the negatively charged lepton and the B̄ meson in
the dilepton rest frame. It is usual to use q2, the invariant mass of the lepton pair, as
a further kinematic variable. For the decay B̄ → K̄ℓ+ℓ−, which is a 1 → 3 decay, the
two kinematic variables q2 and θℓ suffice. On the other hand, B̄ → K̄∗(→ K̄π)ℓ+ℓ− is
a 1 → 4 decay. For its description three additional variables are needed. Following the
literature [57] we choose θK∗ , the angle between the final state kaon and B̄ meson in the
K̄∗ rest frame, φ, the angle between the decay planes of the K̄-π system and the lepton
pair in the B̄ rest frame, and finally k2, the invariant mass of the K̄-π system. The angles
are schematically presented in Fig. 3.1. The full kinematically-accessible phase space is
given by

4m2
ℓ 6 q2 6 (MB −MK)2 , −1 6 cos θℓ 6 1 (3.2)
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Figure 3.1.: Schematic of the kinematic angles within B̄ → K̄∗(→ K̄π)ℓ+ℓ− decays.
Figure taken from Ref. [56].

for B̄ → K̄ℓ+ℓ− decays, and by

4m2
ℓ 6 q2 6 (MB −MK∗)2 , −1 6 cos θℓ 6 1 , (3.3)

−1 6 cos θK∗ 6 1 , 0 6 φ 6 2π (3.4)

for B̄ → K̄∗ℓ+ℓ decays. No bounds on k2 are given since we consider the K∗ meson
to decay on-shell, cf. also the details on the small width approximation in Section 3.4.1.
In both cases, mℓ and MB denote the mass of the charged leptons and the B meson,
respectively. We further introduce the kinematic function

λ(a, b, c) ≡ a2 + b2 + c2 − 2(ab+ ac+ bc) , (3.5)

which is used to calculate spatial components of the used four-momenta. Furthermore,
we use

βℓ =

1− 4m2

ℓ/q
2 (3.6)

to denote the lepton velocity in the dilepton rest frame.

3.2. Operator Product Expansion

As previously discussed in Section 2.4, the theory predictions for exclusive b → sℓ+ℓ−

processes suffer from pollution through intermediate quark loops, especially charm
loops, which contribute via nonlocal electromagnetic coupling to the lepton current
je.m.µ ≡ −ieℓ̄γµℓ. Grinstein and Pirjol first noticed [55] that for low hadronic recoil this
nonlocal contribution can be handled approximately like the inclusive production pro-
cess e+e− → hadrons, where an OPE applies for large center of mass energy [58]. In
particular, they consider the four-momentum qµ that flows through the intermediate
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charm loop correlator. For a sufficiently slow moving final state hadron, Es − m . Λ,
which corresponds to a hard momentum qµ, they find that the nonlocal contributions

T (i)
µ = i


d4xeiq ·x


K̄∗
T Oi(0), j

e.m.
µ (x)

 B̄ , i = 1, . . . , 6, 8 , (3.7)

can be expanded simultaneously in the bottom quark massmb and the invariant dilepton
mass


q2 by means of the expansion

T (i)
µ (q2) =


k≥−2


j

C
(k)
i,j (q

2/m2
b , µ)


O(k)
j (µ)


µ
. (3.8)

Here, the effective operators O(k)
j are power-suppressed by 1/Qk, where Q = mb,


q2,

and the C(k)
i,j are the corresponding Wilson coefficients1. They find that contributions at

leading order and power-suppressed terms of order m2
c/Q

2 rely on the same hadronic
matrix elements as the leading contributions from O7,9,10, which is in agreement with a
later study [59]. Furthermore, all Λ/Q corrections that arise in the OPE are suppressed
by an additional factor of αs. The long-distance contributions up to O(αsΛ/Q,Λ

2/Q2)
can therefore be absorbed into effective Wilson coefficients Ceff

7,9. In the notation of Ref. [60],
these read

Ceff
7 = C7 −

1

3


C3 +

4

3
C4 + 20 C5 +

80

3
C6


(3.9)

+
αs
4π


(C1 − 6 C2)A(q2)− C8F

(7)
8 (q2)


,

Ceff
9 = C9 + h(0, q2)


4

3
C1 + C2 +

11

2
C3 −

2

3
C4 + 52 C5 −

32

3
C6


(3.10)

− 1

2
h(mb, q

2)


7 C3 +

4

3
C4 + 76 C5 +

64

3
C6

+

4

3


C3 +

16

3
C5 +

16

9
C6


+
αs
4π


C1

B(q2) + 4C(q2)


− 3 C2


2B(q2)− C(q2)


− C8F

(9)
8 (q2)


+ 8

m2
c

q2


4

9
C1 +

1

3
C2

(1 + λ̂u) + 2 C3 + 20 C5


and include the NLO QCD matching corrections and doubly Cabibbo-suppressed contri-
butions [60] ∝ λ̂u = VubV

∗
us/(VtbV

∗
ts). The latter give rise to CP violation in b → sℓ+ℓ−

transitions in the SM, which is tiny.

In the development of the OPE, Grinstein and Pirjol primarily use HQET [55]. Only
in the final step, they reformulate their results in terms of QCD currents, which are ob-
tained by reversing the NLO matching relations between QCD and HQET. Conversely,
the study by Beylich et al. [59] formulates the expansion completely in terms of QCD
currents. There, operators that involve covariant derivatives are removed by apply-
ing the QCD equations of motion. Furthermore, they explicitly compute some of the
power-suppressed contributions, and find that isospin breaking effects arise only at the

1 For details of the calculation, we refer the reader to Ref. [55]
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

O(Λ3/Q3) level and are thus negligible at the present level of both theoretical and exper-
imental accuracy.

As mentioned above, the OPE is assumed to be valid for low hadronic recoil Es−m .
Λ and up to duality violating effects. The latter are originally estimated [55] to be power
corrections of the order Λ/Q. Beylich et al. studied the effects of local duality violation by
applying a resonance model [61] to the nonlocal charm quark correlator that arises from
Eq. (3.7). Their ansatz exhibits the well known effect of oscillating and exponentially
decreasing contributions that is known from the behavior of the R factor [58],

R(q2) =
dσ (e+e− → q̄q) /dq2

dσ (e+e− → µ+µ−) /dq2
. (3.11)

They conclude that integration over a sufficiently large part of the low recoil phase
space smooths out most of the effects of local duality violation. As a lower bound
q2 ≥ 15 GeV2 is proposed, which excludes the ψ(3770) resonance and lies above the
threshold for open charm production [59]. Furthermore, they estimate the global dual-
ity violation (i.e., duality violation after integration) to be of the order of 2% [59].

However, the performance of the OPE can ultimately only be tested through experi-
mental measurement. In Section 3.4 we therefore propose new observables H(1,...,5)

T , one
of which (H(1)

T ) is designed to test the magnitude of local duality violation in the low
recoil region.

3.3. Form Factors and the Improved Isgur-Wise Relations

The calculation of matrix elements for processes which involve quarks is complicated
by the fact that QCD is only asymptotically free at large scales µ & mb. Hadroniza-
tion, however, is a process for which the typical scales are of the order ΛQCD. Therefore,
hadronization effects cannot be calculated in perturbative QCD. In order to cope with
this problem in exclusive processes, one parametrizes the hadronic matrix elements of
the various local currents in terms of so-called form factors. The hadronic matrix el-
ements must fulfill a number of exact and approximate symmetries of QCD, such as
symmetry under discrete Lorentz transformations or heavy quark symmetry, which can
be used to reduce the number of independent form factors. By using symmetry under
parity transformation and transversity of massive vector mesons, it is possible to restrict
the set of independent hadronic matrix elements and parametrize them in terms of the
hadronic momenta and polarization vectors. In this thesis, we only consider semilep-
tonic decays of the form

B̄ → K̄ℓ+ℓ− , B̄ → K̄∗ℓ+ℓ− . (3.12)
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3.3. Form Factors and the Improved Isgur-Wise Relations

In the case of pseudoscalar mesons we can parametrize all nonvanishing hadronic ma-
trix elements as [62]

K̄(k)
 s̄b B̄(p)


=
M2
B −M2

K

mb +ms
fBK0 (q2) , (3.13)


K̄(k)

 s̄γµb B̄(p)

= fBK+ (q2)(p+ k)µ +


fBK0 (q2)− fBK+ (q2)

M2
B −M2

K

q2
qµ ,

(3.14)
K̄(k)

 s̄σµνb B̄(p)

= i

fBKT (q2)

MB +MK
[(p+ k)µqν − qµ(p+ k)ν ] . (3.15)

with independent form factors functions fBKi (q2). The QCD equation of motion for the
quark fields,

i /Dq(x) = mqq(x) , (3.16)

provides an exact relation between the scalar current in Eq. (3.13) and the vector current
in Eq. (3.14), thereby reducing the number of independent form-factors to three. Sim-
ilarly, one obtains for pseudoscalar-to-vector transitions [63], such as in B̄ → K̄∗ and
B̄s → φ, the parametrization

⟨V (k, η)| q̄γ5b |B(p)⟩ = 2iMV

ms −mb
(η∗ · q)A0(q

2) , (3.17)

⟨V (k, η)| q̄γµb |B(p)⟩ = 2V (q2)

MB +MV
εµρστη

∗ρpσkτ , (3.18)

⟨V (k, η)| q̄γµγ5b |B(p)⟩ = iη∗ρ


2MVA0(q

2)
qµqρ
q2

(3.19)

+ (MB +MV )A1(q
2)


gµρ −

qµqρ
q2


−A2(q

2)
qρ

MB +MV


(p+ k)µ −

M2
B −M2

V

q2
(p− k)µ


,

⟨V (k, η)| q̄iσµνqνb |B(p)⟩ = −2T1(q
2)εµρστη

∗ρpσkτ , (3.20)

⟨V (k, η)| q̄iσµνγ5qνb |B(p)⟩ = iT2(q
2)

η∗µ(M

2
B −M2

V )− (η∗ · q)(p+ k)µ


+ iT3(q
2) (η∗ · q)


qµ −

q2

M2
B −M2

V

(p+ k)µ


. (3.21)

Here Eq. (3.16) has, again, been used to express the hadronic matrix element of the pseu-
doscalar current in terms of the form factor A0, which also contributes to the hadronic
matrix element of the axial vector current. Note that by parity invariance the hadronic
matrix element ⟨V (k, η)| q̄b |B(p)⟩ = 0. For large hadronic recoil, one can apply both an
expansion in 1/MB and use Large Energy Effective Theory [64], thereby reducing the
number of independent hadronic matrix elements further from seven to two universal
soft form factors, cf. Appendix B. The validity of these relations is given, as long as q2 is
not too close to the zero-recoil point. Unfortunately, the latter condition renders them
unusable for studying the low recoil region.
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

In order to find further relations between the individual form factor functions for both
decays, we employ the operator identity

i∂ν(s̄iσµνb) = −mbs̄γµb+ i∂µ(s̄b)− 2s̄i
←
Dµb , (3.22)

withmb, the MS mass of the b quark, and where we neglect terms proportional toms, the
strange quark mass. Eq. (3.22) follows directly from Eq. (3.16). By taking the hadronic
matrix elements of both sides of Eq. (3.22) in the case of B̄ → K̄∗ (B̄ → K̄) transitions,
one obtains an exact relation [55, 44, 45] between the dipole form factors T1, T2, T3 (fT ),
the axial vector and vector form factors V,A1, A2 (f+, f0) and the matrix elements of the

dimension-4 current s̄
←
Dµb. In a further step, the relations are expanded simultaneously

in 1/Q, Q = mb,

q2. For B̄ → K̄∗ transitions, the results for the improved Isgur-Wise

relations of the dipole form factors read [44]

T1(q
2) = κV (q2) +O


Λ

Q


, T2(q

2) = κA1(q
2) +O


Λ

Q


, (3.23)

T3(q
2) = κA2(q

2)
M2
B

q2
+O


Λ

Q


,

in agreement with previous works [55]. We note here that the kinematical factor M2
B/q

2

in the results for T3 is of order one in the expansion in 1/Q and therefore kept. However,
preliminary results from LQCD [65] suggest that large corrections for T3 can arise, cf.
Appendix B. Furthermore, for B̄ → K̄ transitions the dipole form factor reads [45]

fBKT (q2, µ) =
MB (MB +MK)

q2


κ(µ) fBK+ (q2) +O


Λ

mb


, (3.24)

which agrees with the result in [66]. We remark that in Eq. (3.23) and Eq. (3.24) we
neglect the mass of the strange quark ms and HQET form factors that are subleading in
the expansion in 1/Q. We use further a common scale-dependent factor

κ(µ) =


1 + 2

D
(v)
0 (µ)

C
(v)
0 (µ)


mb(µ)

MB
, (3.25)

which reflects the renormalization scale dependence of the dipole form factors. Here,
we employ the HQET Wilson coefficients C(v)

0 , D
(v)
0 [55]

s̄γµb = C
(v)
0 s̄γµhv + C

(v)
1 s̄vµhv +O (1/mb) , (3.26)

s̄i
←
Dµb = D

(v)
0 mbs̄γµhv +D

(v)
1 mbq̄vµhv + q̄i

←
Dµhv +O (1/mb) , (3.27)

which can be calculated perturbatively. Using their perturbative results to NLO in αs
[55, 32], we obtain

κ = 1− 2
αs
3π

ln


µ

mb


. (3.28)

The performance of the improved Isgur-Wise relations given in Eq. (3.23) and Eq. (3.24)
is subject to a detailed analysis in the Appendices B and C, respectively, where the rela-
tions are confronted with theory inputs from both LCSR and LQCD.
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3.3. Form Factors and the Improved Isgur-Wise Relations

For B → K∗ at low recoil, we find that the application of the improved Isgur-Wise re-
lations drastically simplifies the structure of the hadronic matrix elements. In particular,
it leaves only dependences on the following combinations of hadronic form factors

f⊥(q
2) =

√
2λ

MB +M∗K
V (q2) , (3.29)

f∥(q
2) =

√
2(MB +MK∗)A1(q

2) , (3.30)

f0(q
2) =

(M2
B −M2

K∗ − q2)(MB +MK∗)2A1(q
2)− λA2(q

2)

2MK∗(MB +MK∗)

q2

, (3.31)

which are further used in Section 3.4.1, and where λ ≡ λ(M2
B,M

2
K(∗) , q

2). The indices
0, ⊥ and ∥ here indicate that the dilepton pair the final state vector meson are in a state
of angular momentum J = 0, 1, 2, respectively, and correspond to the indices of the
transversity basis, cf. also Appendix A. Therefore, these combinations also arise when
expressing Bd,s → {K∗, φ, ρ} form factors in the helicity basis [67].
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

3.4. The Decay B̄ → K̄∗ℓ+ℓ−

We continue by studying the angular distribution of B̄ → K̄∗ℓ+ℓ− decays in Section 3.4.1,
and subsequently use it in the examination of existing observables (Section 3.4.2). After
that, we turn to the construction and study of new observables in the low recoil region,
within the SM (Section 3.4.3) and beyond (Sections 3.4.4-3.4.6). We conclude our studies
on the phenomenology of B̄ → K̄∗ℓ+ℓ− decays by examining the sensitivity of the low
recoil observables towards small NP effects in Section 3.4.7.

3.4.1. Angular Distribution

We calculate the decay amplitude for the resonant production of an intermediate (real)
K̄∗ meson2, and thus parametrize the propagator of the K∗ as

Dµν
K∗ =

−i

gµν − kµkν

k2


k2 −M2

K∗ + iMK∗ΓK∗
, (3.32)

where we employ ΓK∗ , the decay width of K∗ → Kπ,

ΓK∗ =
g2K∗Kπ

6π
MK∗ |p⃗K |3 (3.33)

as given, e.g., in Ref. [69], with the the effective coupling gK∗Kπ, and the momentum of
the kaon in the K∗ rest frame |p⃗K | as given in Eq. (A.3). Then, we apply the small-width
approximation

1

(k2 −M2
K∗)2 +M2

K∗Γ2
K∗

→→ 1

MK∗ΓK∗
δ

k2 −M2

K∗


(3.34)

to the square of the matrix element, thereby removing the dependence on gK∗Kπ and
restricting k2 to M2

K∗ , the mass square of the K∗(892) vector meson. We arrive at the
complete differential decay width

d4Γ

dq2d cos θℓd cos θK∗dφ
=

3

8π
J(q2, cos θℓ, cos θK∗ , φ), (3.35)

The dependence of the decay distribution in Eq. (3.35) on the angles θℓ, θK∗ and φ can
be made explicit as

J(q2, θℓ, θK∗ , φ) = J1s sin
2 θK∗ + J1c cos

2 θK∗ + (J2s sin
2 θK∗ + J2c cos

2 θK∗) cos 2θℓ

+ J3 sin
2 θK∗ sin2 θℓ cos 2φ+ J4 sin 2θK∗ sin 2θℓ cosφ

+ J5 sin 2θK∗ sin θℓ cosφ+ J6s sin
2 θK∗ cos θℓ + J6c cos

2 θK∗ cos θℓ

+ J7 sin 2θK∗ sin θℓ sinφ+ J8 sin 2θK∗ sin 2θℓ sinφ

+ J9 sin
2 θK∗ sin2 θℓ sin 2φ, (3.36)

where the angular coefficients Ji(a) ≡ Ji(a)(q
2) for i = 1, . . . , 9 and a = s, c are functions

of the dilepton mass.

2For nonresonant decays B̄ → K̄J(→ K̄−π+)ℓ+ℓ−, cf. Ref. [68]
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3.4. The Decay B̄ → K̄∗ℓ+ℓ−

When considering contributions from all operators within the SM’ basis, we derive
the following structure of the angular coefficients:

4

3
J1s =

2 + β2ℓ
4


|AL⊥|2 + |AL∥ |

2 + (L↔ R)

+

4m2
ℓ

q2
Re

AL⊥A

R∗
⊥ +AL∥A

R∗
∥


+ 4β2ℓ


|A0⊥|2 + |A0∥|2


+ (16− 12β2ℓ )


|At⊥|2 + |At∥|2


+ 8mℓ


2

q2
Re

AL∥ +AR∥


A∗t∥ −


AL⊥ +AR⊥


A∗t⊥

 (3.37)

4

3
J1c = |AL0 |2 + |AR0 |2 +

4m2
ℓ

q2

|At|2 + 2Re


AL0A

R∗
0


+ β2ℓ |AS |2

+ (16− 8β2ℓ )|At0|2 + 8β2ℓ |A∥⊥|2 + 16
mℓ
q2

Re

(AL0 +AR0 )A

∗
t0

 (3.38)

4

3
J2s =

β2ℓ
4


|AL⊥|2 + |AL∥ |

2 + (L↔ R)− 16

|At⊥|2+|At∥|2+|A0⊥|2+|A0∥|2


(3.39)

4

3
J2c = −β2ℓ


|AL0 |2 + |AR0 |2 − 8


|At0|2 + |A∥⊥|2


(3.40)

4

3
J3 =

β2ℓ
2


|AL⊥|2 − |AL∥ |

2 + (L↔ R) + 16

|At∥|2−|At⊥|2+|A0∥|2−|A0⊥|2


(3.41)

4

3
J4 =

β2ℓ√
2
Re

AL0A

L∗
∥ + (L↔ R)− 8

√
2

At0A

∗
t∥


+A∥⊥A

∗
0∥


(3.42)

4

3
J5 =

√
2βℓRe


AL0A

L∗
⊥ − (L↔ R)− 2

√
2At∥A

∗
S

− mℓ
q2


AL∥ +A

R
∥


A∗S+4

√
2A0∥A

∗
t + 4

√
2

AL0 −AR0


A∗t⊥−4


AL⊥−AR⊥


A∗t0

(3.43)

4

3
J6s = 2βℓRe


AL∥A

L∗
⊥ − (L↔ R)

+ 4mℓ


2

q2


AL⊥ −AR⊥


A∗t∥ −


AL∥ −AR∥


A∗t⊥

 (3.44)

4

3
J6c = 4βℓRe


2At0A

∗
S +

mℓ
q2


AL0 +AR0


A∗S + 4A∥⊥A

∗
t


(3.45)

4

3
J7 =

√
2βℓ Im


AL0A

L∗
∥ − (L↔ R)− 2

√
2At⊥A

∗
S

+
mℓ
q2


AL⊥+A

R
⊥

A∗S+4

√
2A0⊥A

∗
t + 4

√
2

AL0 −AR0


A∗t∥−4


AL∥ −A

R
∥


A∗t0

(3.46)

4

3
J8 =

β2ℓ√
2
Im

AL0A

L∗
⊥ + (L↔ R) + 8

√
2

A0,⊥A

∗
∥⊥ −At⊥A

∗
t0


(3.47)

4

3
J9 = β2ℓ Im


AL⊥A

L∗
∥ + (L↔ R) + 16


At⊥A

∗
t∥ −A0⊥A

∗
0∥


. (3.48)

Within Eqs. (3.37)-(3.48) we express the B̄ → K̄∗(→ K̄π)ℓ+ℓ− matrix element in terms

23



3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

of the well-known transversity amplitudes [57]

AL,R⊥ =
√
2N

√
λ


C9+C′

9


∓

C10+C′

10

 V

MB +MK∗
+

2Mb

q2


C7+C′

7


T1


(3.49)

AL,R∥ = −N
√
2(M2

B −M2
K∗) (3.50)

×


C9 − C′
9


∓

C10 − C′

10

 A1

MB −MK∗
+

2mb

q2


C7 − C′

7


T2


,

AL,R0 = − N

2M2
K∗


q2


C9 − C′

9


∓

C10 − C′

10


(3.51)

×

(M2

B −M2
K∗ − q2)(MB +MK∗)A1 −

λ

MB +MK∗
A2


+

2mb

q2


C7 − C′

7


M2
B + 3M2

K∗ − q2

T2 −

λ

M2
B −M2

K∗
T3


,

At = N


2

C10 − C′10


+

q2

mℓ (mb +ms)


CP − C′P

 λ

q2
A0 , (3.52)

which are obtained by assuming factorization. Results for both the large recoil and the
low recoil region can be found by replacing C7,9 with the respective effective Wilson
coefficients Ceff

7,9. Additionally, we use the scalar amplitude

AS = −2N

CS − C′S

 √
λ

mb +ms
A0 , (3.53)

which was introduced in [69]. Their recent erratum3 agrees with our result. Moreover,
we introduce [70] the tensorial transversity amplitudes

A0⊥ (t⊥) = 2NCT (T5)


λ

q2
T1 , (3.54)

A0∥ (t∥) = 2NCT (T5)
M2
B −M2

K∗
q2

T2 , (3.55)

A∥⊥ (t0) = NCT (T5)
1

MK∗


M2
B + 3M2

K∗ − q2

T2 −

λ

M2
B −M2

K∗
T3


, (3.56)

which arise only after introducing the operators OT,T5. Here, the two indices denote the
transversity state of the two polarization vectors which comprise the rank-two polariza-
tion tensor used in the calculation. The individual transversity states combine to angular
momenta J = 0, 1, 2 for the indices (∥⊥, t0), (0 ⊥, t ⊥) and (0 ∥, t ∥), respectively. For
the definition of the tensorial amplitudes, cf. also Eq. (A.1). The normalization factor N
that is used in all of the above amplitudes reads

N = GFαeVtbV
∗
ts


βℓq2

√
λ

3 · 210π5M3
B

. (3.57)

3 We refer here to revision v5 or later of the arXiv eprint.
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For details on our parametrization of the hadronic matrix element in terms of the transver-
sity amplitudes, especially regarding the newly introduced tensorial amplitudes, we re-
fer the reader to Appendix A.

In order to further study the behavior at low recoil, we now apply the improved Isgur-
Wise form factor relations Eq. (3.23) to the transversity amplitudes. By doing so, we re-
duce the dependence on hadronic matrix elements from seven to four independent form
factors, up to corrections of order Λ/Q. From this we obtain the transversity amplitudes
at low recoil

A
L(R)
0 = −NCL(R)

− f0 , (3.58)

A
L(R)
∥ = −NCL(R)

− f∥ , (3.59)

A
L(R)
⊥ = +NC

L(R)
+ f⊥ , (3.60)

with the short-distance coefficients

C
L(R)
− =


Ceff
9 − C′9


+ κ

2mbMB

q2


Ceff
7 − C′7


∓

C10 − C′10


, (3.61)

C
L(R)
+ =


Ceff
9 + C′9


+ κ

2mbMB

q2


Ceff
7 + C′7


∓

C10 + C′10


. (3.62)

Here, we also make use of the low recoil OPE and replace C7,9 →→ Ceff
7,9. For the tensorial

transversity amplitudes, we obtain

A0⊥ (t⊥) =
√
2NκCT (T5)

MB +MK∗
q2

f⊥ , (3.63)

A0∥ (t∥) =
√
2NκCT (T5)

MB −MK∗
q2

f∥ , (3.64)

A∥⊥ (t0) = 2NκCT (T5)
MB +MK∗

q2
f0 . (3.65)

The amplitudes At and AS depend only on the form factor A0 and remain the same as
in Eq. (3.52) and Eq. (3.53), respectively.

3.4.2. Observables in the SM basis

While the angular decomposition of the B̄ → K̄∗ℓ+ℓ− decay rate provides with the
Ji a set of well-defined observables in their own right, their theory predictions suffer
strongly from the uncertainties of the hadronic form factors, the partially unknown
subleading contributions of order Λ/MB , and the uncertainties of the Wolfenstein pa-
rameters of the CKM matrix. Much effort has therefore been dedicated toward find-
ing more sophisticated observables which are theoretically cleaner [69, 71]. As far as
spin-averaged measurements are concerned, all of these observables can be expressed
as functions of the Ji, whereby the aforementioned dominant theoretical uncertainties
may cancel in parts or even completely.

We start with the single-differential decay rate dΓ/dq2, which can be written as

dΓ/dq2 = 2J1s + J1c −
2J2s + J2c

3
. (3.66)
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

No cancellations between uncertainties occur, and thus the decay rate suffers from the
same theoretical problems as the Ji themselves. However, there are further observables,
two of which are inspired by the double-differential decay rates

dΓ

d cos θldq2
=

1

2


2J1s + J1c +


2J6s + J6c


cos θl +


2J2s + J2c


cos 2θl


, (3.67)

dΓ

d cos θK∗dq2
=

3

2


J1s −

1

3
J2s


sin2 θK∗ +


J1c −

1

3
J2c


cos2 θK∗


. (3.68)

From Eq. (3.67) one can infer the observable

AFB(q
2) ≡ 1

dΓ/dq2

 0

−1
−
 +1

0


d cos θℓ

dΓ

d cos θldq2
=
J6s +

1
2J6c

dΓ/dq2
, (3.69)

which denotes the forward-backward asymmetry of the negatively charged lepton with
regard to the B meson direction within the dilepton center of mass frame. Furthermore,
within Eq. (3.68) the term ∝ cos2 θK∗ collects all contributions that stem from longitu-
dinally polarized K̄∗ states. This can be readily inferred from Eqs. (A.4)-(A.7) where
the amplitudes AS , At, A

L(R)
0 , A∥⊥ and At0 only enter in combination with a factor of

cos θK∗ . One can therefore model-independently define two observables, see Eq. (3.68),
which read

FL ≡
J1c − 1

3J2c

dΓ/dq2
, FT ≡ 1

2

J1s − 1
3J2s

dΓ/dq2
, FL + FT = 1 , (3.70)

which are the fraction of longitudinally (transversally) polarized K̄∗ mesons. Hence,

1

dΓ/dq2
dΓ

d cos θK∗ dq2
=

3

2
FL cos

2 θK∗ +
3

4
(1− FL) sin

2 θK∗ . (3.71)

When further assuming mℓ = 0 and within the SM’ basis of operators, one finds J1s =
3J2s and J1c = −J2c, and we can therefore write

1

dΓ/dq2
dΓ

d cos θl dq2
=

3

4
FL(1− cos2 θl) +

3

8
(1− FL)(1 + cos2 θl) +AFB cos θl .

(3.72)

This parametrization is used in the most recent experimental studies by BaBar [72], Belle
[46], CDF [47] and LHCb [42]. Using the same assumption, we find that the triple-
differential decay rate

1

dΓ/dq2
d3Γ

d cos θℓ d cos θK∗ dq2
=

3

4


(J1s + J6s cos θℓ + J2s cos 2θℓ) sin

2 θK∗ (3.73)

+ (J1c + J6c cos θℓ + J2c cos 2θℓ) cos
2 θK∗


can also be expressed in terms of FL, FT , AFB,

1

dΓ/dq2
d2Γ

d cos θl d cos θK dq2
=

3

4

3
4
FL(1− cos 2θl) cos

2 θK (3.74)

+


3

16
FT (3 + cos 2θl) +AFB cos θl


sin2 θK


.

26



3.4. The Decay B̄ → K̄∗ℓ+ℓ−

In addition, so called transverse asymmetries A(i)
T , i = 2, . . . , 5 have been constructed

for the large recoil region [71] in order to probe right-handed currents. Their definition
in terms of the transversity amplitudes4 reads

A
(2)
T ≡

|AL⊥|2 + |AR⊥|2 − |AL∥ |
2 − |AR∥ |

2

|AL⊥|2 + |AR⊥|2 + |AL∥ |2 + |AR∥ |2
=

1

2

J3
J2s

, (3.75)

A
(3)
T ≡

|AL0AL∗∥ +AR∗0 AR∥ |
|AL0 |2 + |AR0 |2


|AL⊥|2 + |AR⊥|2

 =


4J2

4 + β2l J
2
7

−2J2c(2J2s + J3)
, (3.76)

A
(4)
T ≡

|AL0AL∗⊥ −AR∗0 AR⊥|
|AL∗0 AL∥ +AR0 A

R∗
∥ |

=


β2l J

2
5 + 4J2

8

4J2
4 + β2l J

2
7

, (3.77)

A
(5)
T ≡

|AL⊥AL∗∥ −AR∗⊥ AL∥ |
|AL⊥|2 + |AR⊥|2 + |AL∥ |2 + |AR∥ |2

=


16J2

1s − 9J2
6s − 36


J2
3 + J2

9


8J1s

. (3.78)

The representation of the transverse asymmetries as functions of the Ji holds only ap-
proximately, i.e., it holds for mℓ = 0 and within the SM’ basis of operators. These ob-
servables benefit from strongly reduced uncertainties at large hadronic recoil [71] and
essentially encode short-distance information only. Furthermore, they exhibit a large
sensitivity to NP effects from right-handed currents. However, when turning to the low
recoil end of the spectrum, we find a distinctively different behavior which will be dis-
cussed in the following section.

3.4.3. Low Recoil Observables in the SM Basis

As shown in Eqs. (3.58)-(3.60), at low recoil and in the SM’ basis the transversity am-
plitudes AL(R)

∥,⊥,0 factorize into common short-distance factors CL,R± , which depend on the
leptons’ helicities, and functions fi, which depend on the hadronic matrix element and

kinematic quantities. In the SM basis, the short-distance factors further unify CL(R)
±

C′i→0
→

CL(R), where

CL,R =


Ceff
9 + κ

2m2
b

q2
Ceff
7


∓ C10 . (3.79)

Since the Ji parametrize the rate of the spin-averaged decay, it follows that only two
combinations of the CL,R can occur. These are

|CL|2 + |CR|2 ≡ 2ρ1 , (3.80)

|CL|2 − |CR|2 ≡ 4ρ2 , (3.81)

4The transverse asymmetry A
(1)
T will not be discussed in this work, since its definition relies on the mea-

surement of the lepton helicities. Therefore it cannot be expressed in terms of the Ji at all, since the
latter parametrize the spin-averaged decay rate.
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

which in turn yield for the angular observables

4

3β2ℓ
(2Js2 + J3) = 2ρ1f

2
⊥ ,

4
√
2

3β2ℓ
J4 = 2ρ1f0f∥ , J7 = 0 , (3.82)

4

3β2ℓ
(2Js2 − J3) = 2ρ1f

2
∥ ,

2
√
2

3βℓ
J5 = 2ρ2f0f⊥ , J8 = 0 , (3.83)

− 4

3β2ℓ
Jc2 = 2ρ1f

2
0 ,

2

3βℓ
Js6 = 4ρ2f∥f⊥ J9 = 0 . (3.84)

When plugging these results into Eqs. (3.75)-(3.78), we obtain for AFB and FL

AFB = 3
ρ2
ρ1

× (f20 + f2⊥ + f2∥ ) , FL =
f20

f20 + f2⊥ + f2∥
, (3.85)

and for the transverse asymmetries

A
(2)
T =

f2⊥ − f2∥

f2⊥ + f2∥
, A

(3)
T =

f∥

f⊥
, (3.86)

A
(4)
T = 2

ρ2
ρ1

× f⊥
f∥

, A
(5)
T =


1− 4

ρ22
ρ21

×
f∥f⊥

f2∥ + f2⊥
. (3.87)

At low recoil none of the above observables is free of hadronic uncertainties. Inter-
estingly, A(2,3)

T as well as FL do not exhibit any dependence on the short-distance coeffi-
cients to O (Λ/Q). We remark here that the latter fact makesA(2,3)

T and FL ideal probes to
test theory predictions of the hadronic form factors, be it extrapolations of LCSR results
at small q2 or results of lattice QCD calculations at large q2 [44]. A recent study [73] ex-
tracts ratios of the form factor parameters from available data, and the authors find good
agreement between data and theory predictions. On the other hand, the short-distance
free observables can also be included in a global analysis of the available data on exclu-
sive b → sℓ+ℓ− processes. Here a Bayesian analysis can be employed, by which we can
simultaneously constrain the form factor parameters and reduce the allowed ranges for
the parameters of interest [74]. However, with regard to extracting short-distance infor-
mation, the remaining transverse asymmetries A(4,5)

T are at low recoil only marginally
better suited than the decay rate, and rather on par with the forward-backward asym-
metry AFB.

In order to fully exploit the structure of the transversity amplitudes at low recoil, we
define [44]

H
(1)
T ≡

√
2J4

−J2c (2J2s − J3)
=

Re(AL0A
L∗
∥ +AR∗0 AR∥ )

|AL0 |2 + |AR0 |2

|AL∥ |2 + |AR∥ |2

 , (3.88)

H
(2)
T ≡ βlJ5

−2J2c (2J2s + J3)
=

Re(AL0A
L∗
⊥ −AR∗0 AR⊥)

|AL0 |2 + |AR0 |2

|AL⊥|2 + |AR⊥|2

 , (3.89)

H
(3)
T ≡ βlJ6

2

(2J2s)2 − J2

3

=
Re(AL∥A

L∗
⊥ −AR∗∥ AR⊥)

|AL∥ |2 + |AR∥ |2

|AL⊥|2 + |AR⊥|2

 . (3.90)
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Contrary to the transverse asymmetries A(i)
T in Eqs. (3.75)-(3.78), we define the H(i)

T in
terms of the angular coefficients Ji in order to account for amplitudes beyond AL,R⊥,∥,0.
Within the SM basis of operators we find that5

H
(1)
T = sgn f0 , H

(2)
T = 2

ρ2
ρ1
, H

(3)
T = 2

ρ2
ρ1
. (3.91)

With these results the low recoil region provides two important phenomenological qual-
ities. First, the relations |H(1)

T | = 1 and H
(2)
T = H

(3)
T provide an important test of the

low recoil framework itself, chiefly to test the performance of the OPE. Sizable devia-
tions from this relation would signal either increased deviation from the OPE or pos-
sible contributions from operators beyond the SM basis. The latter is studied in depth
in the following sections. Second, the observables H(2,3)

T are free of hadronic inputs to
O (αsΛ/MB, C7Λ/C9MB), which makes them ideal probes of short-distance physics. In
point of fact, bothH(2,3)

T provide theoretically cleaner access than the forward-backward
asymmetry AFB to the very same short-distance information. In addition to accessing
the short-distance information, the low recoil region also provides clean access to infor-
mation on the hadronic physics involved. In particular, we can form ratios of observ-
ables that do not exhibit dependence on the short-distance couplings, thereby probing
ratios of form factors f0,⊥,∥ similar to the results for FL and A

(2,3)
T , cf. Eq. (3.85) and

Eq. (3.86). We find that

f0
f∥

=


−J2c

2J2s − J3
=

−J2c√
2J4

=

√
2J4

2J2s − J3
=

√
2J5
J6

, (3.92)

f0
f⊥

=


−J2c

2J2s + J3
, (3.93)

f⊥
f∥

=


2J2s + J3
2J2s − J3

=


−J2c (2J2s + J3)√

2J4
. (3.94)

Since the short-distance information only cancels in ratios of the angular observables,
the hadronic form factors f0,⊥,∥ can only be extracted in the above ratios and not on
their own.

In addition to the above observables, which are defined for the decay B̄ → K̄∗ℓ+ℓ−,
we can also turn to CP asymmetries of the decay. For this we employ the additional
short-distance combinations ρ̄1, ρ̄2, which are obtained from ρ1, ρ2 by complex conju-
gation of the weak phases, i.e., the Wilson coefficients and the CKM factor λ̂u. Any CP
violating quantities can therefore be parameterized in terms of the following building
blocks

∆ρ1 ≡ ρ1 − ρ̄1 = 4 Im{Y } Im


C9 + κ

2mbMB

q2
C7 + λ̂uY

(u)
9


,

∆ρ2 ≡ ρ2 − ρ̄2 = 2 Im{Y } Im{C10} ,
(3.95)

5Here, the sign of the form factor term f0 is +1 for the central values of the form factor extrapolations from
both Ref. [63] and Ref. [48]. However, when varying the form factors A1 and A2 within their theory
uncertainties, one finds that f0 may flip its sign.
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Figure 3.2.: The imaginary parts of Y (solid, blue) and Y9 (dashed, red) in the OPE [55]
including NLO αs-corrections as functions of q2 in the low recoil region.
The LO result, where ImY = ImY9, is given by the dashed-dotted (orange)
curve. The cc̄-resonance curve (dotted, black) based on the data in Tab. 2.3
shows the imaginary part of Y9 from e+e− → hadrons data [75, 22]. Figure
taken from [60].

where the complex-valued term

Y ≡ Y9 + κ
2mbMB

q2
Y7 (3.96)

emerges from the QCD long-distance contributions within the effective Wilson coeffi-
cients (Eq. (3.9), Eq. (3.10)). We decompose the latter as

Ceff
7 = C7 + Y7 , Ceff

9 = C9 + Y9 + λ̂uY
(u)
9 . (3.97)

Here, we suppress the q2 dependence of the effective Wilson coefficients and the Yi.
Since the absorptive parts Im{Yi} ∝ sin δs, with the strong phase δs, drive the mag-
nitude of ∆ρ1,2, we pay closer attention to the Yi. Their q2 dependence is shown in
Fig. 3.2. Note that Y (u)

9 is real-valued. At leading order in the perturbative calculation,
we can infer from Eq. (3.9) that Im{Y7} vanishes while Im{Y9} is governed by the one-
loop function h(mq = 0, q2) and the numerically large Wilson coefficients C1,2. When
taking the NLO matching corrections into account, Im{Y9} experiences strong suppres-
sion by about 50%, and Im{Y } is reduced by about one order of magnitude. As an al-
ternative to the perturbative calculation, one can assume factorization of the correlator
Tµ (Eq. (3.7)) and fit a Breit-Wigner ansatz [75] to the available data on the charmonium
peaks of J/ψ, ψ′ within e+e− → hadrons measurements. Here, previous studies [76]
found sizable discrepancies between the the measurement of B(B → K∗J/ψ(→ ℓ+ℓ−))
and the theory results based on the aforementioned ansatz. Assuming naive factoriza-
tion [76], the amplitude for B → K∗ {J/ψ, ψ′} (→ ℓ+ℓ−) decays is proportional to the
short-distance coefficient

C(0) =
4

3
C1 + C2 + 6C3 + 60C5 (3.98)
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and a sum which collects the individual Breit-Wigner functions

J/ψ,...,ψ(4415)
n

ΓnBℓℓnMn

q2 −M2
n + iΓnMn

(3.99)

where Mn, Γn and Bℓℓn can be obtained from Tab. 2.3. This discrepancy was cured by the
ad-hoc introduction of a fudge factor [76] ζ via

C(0) →→ ζC(0) . (3.100)

However, contemporary data on B(B → K∗J/ψ(→ ℓ+ℓ−)) [22] and the NNLL results at
the low scale C(0)(µb) = 0.590 (cf. Tab. 4.1) do match very well. We therefore compute
Im{Y c̄c} from the aforementioned Breit-Wigner ansatz and without any fudge factor.
The result is shown in Fig. 3.2. We find that, after integration over the complete low
recoil phase space, the LO and the resonance result agree quite well, while the NLO
result deviates from the resonance result approximately by a factor of three [60]. We
therefore conclude that the CP violating quantities ∆ρ1,2 are affected by considerable
model-dependent uncertainties.

From the ρ1,2, ρ̄1,2 we can construct two independent CP asymmetries,

a
(1)
CP =

ρ1 − ρ̄1
ρ1 + ρ̄1

, a
(2)
CP =

ρ2
ρ1

− ρ̄2
ρ̄1

ρ2
ρ1

+ ρ̄2
ρ̄1

, (3.101)

where in the SM basis a(1)CP can be obtained [60] from the decay rate dΓ/d q2, and a
(2)
CP

is identical to the CP asymmetry of the forward-backward asymmetry AFB. No further
independent ratios of the building blocks ρ1,2, ρ̄1,2 can be formed at low recoil. However,
we find that the denominator of a(2)CP is not positive definite for a generic BSM scenario,
thus tainting this observable for model-independent analyses. We therefore propose a
further observable to test ∆ρ2,

a
(3)
CP =

ρ2 − ρ̄2
ρ1 + ρ̄1

, (3.102)

which is finite in BSM scenarios, but not independent of a(1,2)CP . Moreover, a(3)CP can be
obtained from untagged measurements of the previously introduced observablesH(2,3)

T ,
and in terms of the angular observables Ji it reads

a
(3)
CP =


J5−J̄5√

−2(J2c+J̄2c)[2(J2s+J̄2s)+(J3+J̄3)]
for H(2)

T

J6s−J̄6s
2
√

4(J2s+J̄2s)2−(J3+J̄3)2
for H(3)

T

. (3.103)

Beyond the decay B̄0 → K̄∗(→ K̄π)ℓ+ℓ−, we can additionally consider the SU(3)F
related decay Bs, B̄s → φ(→ K+K−)ℓ+ℓ−. Within the latter, the final state is a CP eigen-
state with CP eigenvalues η0,∥ = +1 for the transversity amplitudes A0,∥ and η⊥ = −1
for A⊥. We account for mixing of the two possible initial states Bs, B̄s through explicitly
time-dependent transversity amplitudes

AL/Ra (t) ≡ AL/R(B̄s(t) → φ (→ K+K−)al
+l−) ,

ĀL/Ra (t) ≡ AL/R(Bs(t) → φ (→ K+K−)al
+l−) . (3.104)
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Here AL/Ra (t)(Ā
L/R
a (t)) denotes the amplitude for a B̄s (Bs) at the origin t = 0, which

decays through the transversity state a =⊥, ∥, 0 at a later point t of its eigentime. For
later use, we define

ξL/Ra = e−iΦM
A
L/R
a (0)

A
L/R
a (0)[δW → −δW ]

, (3.105)

where [δW → −δW ] implies the conjugation of all weak phases in the denominator. This
can easily be accommodated for by the replacement prescription for CP conjugation of
ρ1,2 earlier in this section. Moreover, ΦM denotes the Bs–B̄s mixing phase whose SM
value ΦSM

M = 2arg(V ∗tsVtb) = O

λ2


is very small. According to Ref. [77] we can now
express the untagged, CP averaged partial rates as

dΓ(t) + dΓ̄(t) ∼


a,b=0,⊥,∥

Āa(t)Ā
∗
b(t) +Aa(t)A

∗
b(t) (3.106)

with the time dependent building blocks

Āa(t)Ā
∗
b(t) +Aa(t)A

∗
b(t) =

1

2
Āa(0) Ā

∗
b(0) (3.107)

×

(1 + ηaηb ξaξ

∗
b )

e−ΓLt + e−ΓH t


+ (ηaξa + ηbξ

∗
b )

e−ΓLt − e−ΓH t


.

Here the chirality indicesL,R are suppressed for brevity, and ΓL(H) denotes the width of
the lighter (heavier) mass eigenstate of the Bs system. We do not consider CP violation
via mixing, since it is constrained by measurements of the semileptonic, flavor-specific
CP asymmetry |AsSL| . O(10−2) [78]. After time integration of Eq. (3.107) we obtain ∞

0
dt

Āa(t)Ā

∗
b(t) +Aa(t)A

∗
b(t)

=
Āa(0) Ā

∗
b(0)

Γ(1− y2)
[1 + ηaηb ξaξ

∗
b − y (ηaξa + ηbξ

∗
b )] ,

(3.108)

where Γ = (ΓL+ΓH)/2 and ∆Γ = ΓL−ΓH denote the average width and the width dif-
ference of theBs system, respectively, and y = ∆Γ/(2 Γ) is the reduced width difference.
The structure of the transversity amplitudes at low recoil, in particular the factorization
into hadronic and short-distance terms, implies that the previously defined factors ξL(R)

a

simplify

ξL(R)
a →→ ξL(R) ≡ e−iΦM

C9 ∓ C10 + κ2m̂b
ŝ C7 + Y + λ̂uY

(u)
9

C∗9 ∓ C∗10 + κ2m̂b
ŝ C∗7 + Y + λ̂∗uY

(u)
9

. (3.109)

Both for vanishing strong phases (i.e.for Im{Y9} = 0) as well as for vanishing weak
phases (i.e.for Im{Ci} = 0, Im


λ̂u


= 0) we find |ξL(R)| = 1. In the SM, we find that

|ξL(R)| − 1 = O

(m2

c/m
2
b) Im


λ̂u


.

We now concentrate on how such mixing-induced CP violation can be measured in
the experiments. For this, we recall that CP-odd observables allow measurement of CP
asymmetries without tagging of the B meson, a quality which is known as self-tagging.
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We note that self-tagging can be hampered by a nonzero production asymmetry of the
Bs and B̄s mesons. The angular distribution offers in principle four CP-odd angular
observables J5,6s,8,9 [79, 54], of which two (J8,9) vanish at low recoil in the SM basis. We
therefore construct in the following – schematically – two mixing-induced, self-tagging
CP asymmetries. For J5 we obtain at low recoil from Eq. (3.108): ∞

0
dtRe


ĀL0 (t)Ā

L,∗
⊥ (t) +AL0 (t)A

L,∗
⊥ (t)− (L→ R)


= f0f⊥ × Amix

Γ(1− y2)
(3.110)

with

Amix ≡ 2ρ2(|ξL|2 + |ξR|2 − 2) + ρ1(|ξR|2 − |ξL|2) . (3.111)

The formula for J6s is identical after changing the transversity index 0 to ∥. Similar to
H

(2,3)
T we can now remove the form factors terms f0f⊥ (f∥f⊥ in the case of J6s). For this,

we introduce the normalizing quantities

ni ≡
 ∞
0

dt

|ĀLi (t)|2 + |ALi (t)|2 + (L→ R)


= f2i × (Bmix − 2ηiy Cmix)

Γ(1− y2)
, (3.112)

which can be obtained from the angular observables J1,2,3, see also Eqs. (3.89)-(3.90),
where we use

Bmix ≡ ρ1(|ξL|2 + |ξR|2 + 2) + 2ρ2(|ξR|2 − |ξL|2) , (3.113)
Cmix ≡ ρ1Re{ξL + ξR}+ 2ρ2Re{ξR − ξL} . (3.114)

We remark that Cmix is the only contribution dependent on the mixing phase ΦM . By
normalizing Eq. (3.110) to √

n⊥n0 we obtain the mixing-induced CP asymmetry

amix
CP =

Amix
(Bmix)

2 − 4y2 (Cmix)
2
, (3.115)

and the same CP asymmetry can by obtained from the angular observable J6s when
normalized to n∥n⊥. We remark amix

CP is insensitive to the sign of the reduced decay
width difference y, and simultaneously, the sensitivity to ΦM is very low since it enters
via Cmix only. We find that for y → 0

amix
CP =

Amix

|Bmix|
= −2

(ρ21 + 4 ρ22)ρ̄2 − 2ρ1ρ2ρ̄1 + (ρ̄21 − 4 ρ̄22)ρ2
(ρ21 + 4 ρ22)ρ̄1 − 8ρ1ρ2ρ̄2 + (ρ̄21 − 4 ρ̄22)ρ1

. (3.116)

For ∆ρi ≪ ρi, ρ̄i this simplifies further to

amix
CP = a

(3)
CP . (3.117)

We note that amix
CP is insensitive to the Bs-mixing parameters y and ΦM , especially when

considering the most recent measurement y = 0.094±0.033 [43]. We find that |⟨amix
CP ⟩/⟨a(3)CP⟩−

1| < 3% after q2-integration. Hence, the measurement of any difference between both
asymmetries is highly unlikely, at least by current and currently planned experiments.
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

3.4.4. Including Chirality-Flipped Operators

As seen from Eqs. (3.58)-(3.60), the universal structure of the transversity amplitudes is
broken by the inclusion of chirality-flipped operators within the SM’ basis. In this case,
the relations Eqs. (3.82)-(3.84) are modified and now read

4

3β2l
(2J2s + J3) = 2 ρ+1 f

2
⊥,

4
√
2

3β2l
J4 = 2 ρ−1 f0f∥, J7 = 0, (3.118)

4

3β2l
(2J2s − J3) = 2 ρ−1 f

2
∥ ,

2
√
2

3βl
J5 = 4Re(ρ2)f0f⊥,

4
√
2

3β2l
J8 = 4 Im(ρ2)f0f⊥,

− 4

3β2l
J2c = 2 ρ−1 f

2
0 ,

2

3βl
J6s = 4Re(ρ2)f∥f⊥, − 4

3β2l
J9 = 4 Im(ρ2)f∥f⊥.

where ρ1 and ρ2 from Eqs. (3.80)-(3.81) have been generalized to

ρ±1 ≡ 1

2


|CR± |2 + |CL±|2


, ρ2 ≡

1

4


CR+C

R∗
− − CL−C

L∗
+


. (3.119)

We can observe that nonvanishing right-handed currents give rise to two major changes:

1. In the SM basis we have J2c, (2J2s ± J3) ∼ ρ1, whereas now we obtain J2c, (2J2s −
J3) ∼ ρ−1 , while (2J2s + J3) ∼ ρ+1 .

2. In the SM basis J7,8,9 = 0, whereas now only J7 = 0 while J8,9 ∼ Im(ρ2) ̸= 0 in
general.

As a consequence, in the presence of chirality-flipped operators the relations

H
(1)
T = sgn f0, J7 = 0 (3.120)

still hold, and a measurement of deviations would signal violations of the low recoil
OPE. The previously defined low recoil observables H(2,3)

T now read

H
(2,3)
T = 2

Re(ρ2)
ρ−1 ρ

+
1

, (3.121)

and remain free of hadronic input. Furthermore, we obtain two additional observables
free of hadronic input,

H
(4)
T ≡

√
2 J8

−J2c (2J2s + J3)
= 2

Im(ρ2)
ρ−1 ρ

+
1

, (3.122)

H
(5)
T ≡ −J9

(2J2s)2 − J2
3

= 2
Im(ρ2)
ρ−1 ρ

+
1

. (3.123)

From Eq. (3.121) and Eqs. (3.122)-(3.123) it follows that chirality flipped operators pre-
serve the relations

H
(2)
T = H

(3)
T , H

(4)
T = H

(5)
T , (3.124)
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which had already been obtained within the SM operator basis [44], where H(4,5)
T = 0.

We conclude that a measurement of nonzero H
(4,5)
T indicates the presence of nonvan-

ishing Wilson coefficients for the chirality-flipped operators. In addition, the T-oddness
of J8,9 gives optimal access to CP violation in the presence of small strong phases [54].
Since both J8,9 are also CP-odd, H(4,5)

T can be measured from B meson samples without
tagging, and give rise to a fourth long-distance free CP asymmetry which reads

a
(4)
CP = 2

Im(ρ2 − ρ̄2)
(ρ+1 − ρ̄+1 )(ρ

−
1 − ρ̄−1 )

. (3.125)

In terms of the angular observables, it is defined as

a
(4)
CP =



√
2(J8 − J̄8)

−(J2c + J̄2c)

2(J2s + J̄2s) + (J3 + J̄3)

 for H(4)
T

− J9 − J̄9
4

J2s + J̄2s

2 − J3 + J̄3
2 for H(5)

T

. (3.126)

Furthermore, the generalization of a(3)CP reads

a
(3)
CP = 2

Re(ρ2 − ρ̄2)
(ρ+1 + ρ̄+1 )(ρ

−
1 + ρ̄−1 )

. (3.127)

Due to the splitting ρ1 → ρ±1 , the number of CP asymmetries is doubled and we gener-
alize a(1,2)CP to

a
(1,±)
CP ≡ ρ±1 − ρ̄±1

ρ±1 + ρ̄±1
, a

(2,±)
CP ≡

ρ2
ρ±1

− ρ̄2
ρ̄±1

ρ2
ρ±1

+ ρ̄2
ρ̄±1

. (3.128)

In this case the rate asymmetryACP can neither be related to any of a(1,±)CP , nor is it free of
hadronic input. However, from Eq. (3.118) it is straightforward to read off strategies to
relate these form factor free CP asymmetries to the angular observables Ji. In particular
a
(1,−)
CP can be extracted from ratios involving J2c, (2J2s − J3), J4, whereas a(1,+)

CP requires
the use of (2J2s + J3). Short-distance free ratios of form factors can still be formed for
f0/f∥ in the presence of chirality-flipped operators as given in Eq. (3.92), and we obtain
further

f0
f∥

=

√
2J8

−J9
. (3.129)

However, due to (2J2s + J3) ∝ ρ+1 there are no short-distance free ratios that involve f⊥
in the SM’ basis.

3.4.5. Including Scalar and Pseudo-Scalar Operators

In the presence of (pseudo-) scalar operators, the angular observables receive unsup-
pressed contributions to J1c. This leads to scalar contributions to the longitudinal polar-
ization FL of the K∗ mesons, as defined in Eq. (3.70). Moreover, the relation J1c = −J2c
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3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

is broken, and thus the usual assumption is invalidated that FL can be extracted in a
combined fit to the distribution in cos θℓ, cf. Eq. (3.72). We remark that presently the
latter is used in all experimental measurements. However, FL and FT can be model-
independently extracted from the distribution in cos θK∗ , cf. Eq. (3.71). Deviations be-
tween FL as extracted from the distribution in cos θℓ, and FL as extracted from the dis-
tribution in cos θK∗ would therefore indicate the presence of NP.

Furthermore, the presence of (pseudo-) scalar operators induces helicity suppressed
interference terms between vector and scalar operators in J5,6c,7. This means that the
relationH(2)

T = H
(3)
T , cf. Eq. (3.91), is broken. The magnitude of the breaking is controlled

by CS and the helicity suppression factor mℓ/

q2. Moreover, the relation J7 = 0 is

broken if additionally CPV beyond the SM is realized. However, since J2s,2c,3,4,6s are
unaffected by the additional operators, we still find that H(1,3)

T remain free of hadronic
input.

3.4.6. Including Tensor Operators

In the presence of tensor operators, cf. Eq. (2.29), the angular observables Ji receive
(i) contributions which do not interfere with other operators in J2s,2c,3,4,8,9, and (ii) in-
terference terms suppressed by mℓ/


q2 in J1s,1c,5,6s,6c,7. Both changes arise from the

additional six tensor transversity amplitudes At0,⊥∥, t⊥, t∥, 0⊥, 0∥ introduced in Eq. (3.54).

The angular observables still factorize,

4

3β2ℓ
(2J2s + J3) = 2


ρ1 −

MB +MK∗

MB −MK∗
ρT1


f2⊥ , (3.130)

4

3β2ℓ
(2J2s − J3) = 2


ρ1 −

MB −MK∗

MB +MK∗
ρT1


f2∥ ,

− 4

3β2ℓ
J2c = 2


ρ1 −

MB +MK∗

MB −MK∗
ρT1


f20 ,

4
√
2

3β2ℓ
J4 = 2


ρ1 − ρT1


f0f∥ ,

2
√
2

3βℓ
J5 = 4Re {ρ2} f0f⊥ +O


mℓ
q2


,

2

3βℓ
J6s = 4Re {ρ2} f∥f⊥ +O


mℓ
q2


,

−4
√
2

3β2ℓ
J8 = 4 Im


ρ2 +


1 +

MK∗

MB

2

ρT2


f0f⊥ ,

− 4

3β2ℓ
J9 = 4 Im


ρ2 +


1−

M2
K∗

M2
B


ρT2


f∥f⊥ ,

36



3.4. The Decay B̄ → K̄∗ℓ+ℓ−

Scenario H
(1)
T = 1

H
(2)
T

H
(3)
T

= 1
H

(4)
T

H
(5)
T

= 1 J7 = 0 J8,9 = 0

SM X X X X X

SM ⊗ S ⊗ P X mℓ/QRe

CL,R
− C∗S


X mℓ/Q Im


CL,R
+ C∗S


X

SM ⊗ T m2
K∗/Q2ρT1 mℓ/QRe


ρT2


mK∗/QIm

ρT2


mℓ/Q Im{CiC∗T5} Im

ρT2


SM ⊗ S ⊗ P ⊗ T m2
K∗/Q2ρT1 Re{CT5C∗S} mK∗/QIm


ρT2


Im{CT5C∗S} Im

ρT2


SM’ X X X X Im

CiC′∗j


SM’ ⊗ S ⊗ P ⊗ T m2

K∗/Q2ρT1 Re{CT5C′∗S } mK∗/Q Im

ρ
(T )
2


Im{CT5C∗S} Im


CiC′∗j



Table 3.1.: Overview of NP scenarios and corresponding theory predictions for the re-
lations amongst the low recoil observables, and the terms that break these
relations. Here S,P,T stand for scalar, pseudoscalar and tensor operators, re-
spectively. A Xdenotes at most corrections of order αs/mb and C7/(C9mb). We
use the shorthand notation Q ∈


mb,


q2


.

where the tensor operators introduce the additional short-distance coefficients

ρT1 ≡ 16κ2
M2
B −M2

K∗

q2


|CT |2 + |CT5|2


, (3.131)

ρT2 ≡ 16κ2
M2
B

q2
CT C∗T5 . (3.132)

In the presence of the tensor operators H(1)
T reads

H
(1)
T = sgn(f0) sgn(ρ

−
1 − ρT1 )


1−

4M2
BM

2
K∗

M2
B −M2

K∗

ρ−1 ρ
T
1

ρ−1 − ρT1
2
−1/2

(3.133)

≈ sgn(f0) sgn(ρ
−
1 − ρT1 ) +O


M2
K∗

M2
B


. (3.134)

As for the case without tensor operators, form factors cancel, i.e., H(1)
T is free of hadronic

input. Additionally, |H(1)
T | = 1 holds in the OPE up to kinematically suppressed terms

of O

M2
K∗/M2

B


≈ 0.03. Furthermore, H(2,3)

T remain free of hadronic input, and H
(2)
T =

H
(3)
T still holds up to helicity suppressed terms mℓ/QRe


CiC∗j


.

3.4.7. Performance of Low Recoil Observables

When considering the complete set of operators, all of the previously presented relations
are broken to varying degree. A complete overview of how the individual relations are
broken is presented in Tab. 3.1 for all scenarios considered in this thesis. We emphasize
that ratios of the low recoil designer observables H(i)

T are broken only by kinematically
or helicity suppressed terms. However, the angular coefficients J7,8,9 gain contributions

37



3. Phenomenology of B̄ → K̄(∗)ℓ+ℓ− at Low Hadronic Recoil

Scenario H
(1)
T H

(2)
T H

(3)
T H

(4)
T H

(5)
T

SM X X X — —

SM ⊗ S ⊗ P X A0 X — —

SM ⊗ T X X X — —

SM’ X X X X X

SM’ ⊗ S ⊗ P ⊗ T X A0 X X X

Table 3.2.: Overview of NP scenarios and which of the low recoil designer observables
remain free of hadronic input. A Xdenotes at most corrections of order αs/mb

and C7/(C9mb), while A0 denotes breaking through terms involving the cor-
responding B → K∗ form factor. Observables marked with — vanish in the
considered scenario.

which are generically unsuppressed. The factorization of the angular observables

Ji ∼ ρifkf
∗
l (3.135)

into short-distance terms ρi and form factor terms fk,l, cf. Eqs. (3.29)-(3.31), can also be
affected when extending the operator basis. An overview is presented in Tab. 3.2. In
particular, we find that factorization is broken by the emergence of operators S and P,
and by interference terms (S,P) × (SM,T,T5). The former only affect J1c and J6c, while
the latter break factorization only in J5 and J7. Exemplary, we find that

J1c =
3

2
(ρ1 − ρT1 )f

2
0 + 4

CS − C′S
2 λ

m2
b

A2
0 +O (MK∗/MB) . (3.136)

However, the angular observables J2s,2c,3,4,6s,8,9 still factorize. We therefore conclude
that H(1,3,4,5)

T remain free of hadronic inputs, even when considering the complete set
of operators. This conclusively shows the model-independent merits of the low recoil
observables H(i)

T . |H(1)
T | = 1 proves to be a very stable relation in all possible extensions

of the basis of local operators. Hence it presents itself as a reliable tool to probe the per-
formance of the OPE. We present an evaluation of H(1)

T in the SM for both the large and
the low recoil region in Fig. 3.3.

The decay B̄ → K̄∗ℓ+ℓ− at low recoil exposes only a limited number of independent
short-distance couplings (ρ±1 −ρT1 , ρ2, ρT2 , |C

(′)
S,P |2 and interference terms), while it offers a

large amount of observables. This allows model-independent analyses to over constrain
the parameter space of the Wilson coefficients C(′)

9,10, see e.g. [44, 45, 80, 81]. However,
recent experimental results from LHCb [82] indicate that NP effects in (semi)leptonic
|∆B| = 1 processes appear to be small in comparison to the SM contributions. We
therefore study how sensitive the low recoil observables H(2,3)

T are to NP effects in the
Wilson coefficients C9,10 within the SM basis of operators, especially in comparison to

AFB, which is sensitive to these. At low recoil and in the SM basis, H(2,3)
T and AFB
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Figure 3.3.: H(1)
T in the SM basis, including theory uncertainties (shaded red bands) from

subleading contributions and form factor inputs, as a function of q2 in both
the large and the low recoil region (blue, solid lines). We extrapolate our
results beyond the respective regions of validity (blue, dashed lines).
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Figure 3.4.: The theory uncertainty of the binned observables AFB (blue shaded band)
and H

(2,3)
T (red shaded band) normalized to their respective SM values ver-

sus C9/C10. The bin covers the complete low recoil region q2 ≥ 14GeV2.
In addition, a hypothetical measurement of the respective observables at
(90± 5)% is drawn (black dashed lines).
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depend only on the ratio

ρ2
ρ1

∼ r

1 + |r|2
, with r =

C9
C10

, (3.137)

where we understand the Wilson coefficients to be evaluated at the scale µb = 4.2GeV.
We show the behavior of ⟨H(2,3)

T ⟩14,19.21 and ⟨AFB⟩14,19.21 as functions of the ratio C9/C10,
normalized to their SM values, and including their respective theory uncertainties in
Fig. 3.4. In order to probe the sensitivity, we compare the SM results with hypotheti-
cal measurements of the observables which correspond to (90± 5)% of their SM central
values. We find for the forward-backward asymmetry that such a measurement is in-
distinguishable from the SM result within its theory uncertainty. Within the latter, by
far the biggest offender is the lack of knowledge of the hadronic matrix elements, which
only partially cancel. Moreover, we find that, given the current understanding of the
hadronic form factors for B → K∗ transitions, any experimental measurement must ex-
clude values larger that 0.85×ASM

FB in the low recoil region to conclusively indicate any
deviation from the SM. However, a similar measurement of either of H(2,3)

T is a clear
indication of NP, as can be inferred from Fig. 3.4. In particular, the 10% deviation in the
central value would correspond to two disjoint solutions r ≃ 0.8 and r ≃ 1.8, respec-
tively, which is a sizable deviation from the SM value rSM ≃ 1.03.
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3.5. The Decay B̄ → K̄ℓ+ℓ−

We study the angular distribution of B̄ → K̄ℓ+ℓ− decays in Section 3.5.1. The observ-
ables, which arise from the angular distribution, are explored for both massless (ℓ = e, µ)
and massive (ℓ = τ ) final states in Section 3.5.2.

3.5.1. Angular Distribution

Using the kinematic variables as defined in Section 3.1, the fully differential decay width
of the decay B̄ → K̄ℓ+ℓ− can be parametrized [38] as

d2Γℓ[B̄ → K̄ℓ+ℓ−]

dq2 d cos θℓ
= aℓ(q

2) + bℓ(q
2) cos θℓ + cℓ(q

2) cos2 θℓ , (3.138)

with angular observables aℓ, bℓ and cℓ. Within the SM operator basis one finds bℓ = 0 up
to small QED corrections [38, 83]. The remaining angular observables read

aℓ

Γ0

√
λβℓf

2
+

=
λ

4


|FA|2 + |FV |2


+ 2mℓ(m

2
B −m2

K + q2)Re(FPF
∗
A) + 4m2

ℓ m
2
B|FA|2 + q2|FP |2 ,

cℓ

Γ0

√
λβℓ(f

BK
+ )2

= −β2ℓ
λ

4


|FA|2 + |FV |2


(3.139)

where we make use of λ ≡ λ(M2
B,M

2
K , q

2) and

Γ0 =
G2

Fα
2
e|VtbV ∗ts|2

29π5m3
B

, (3.140)

Here, the coefficients FA,V,P parametrize the hadronic matrix element [38]

iM = i
GFαe√

2π
VtbV

∗
tsf+


FV p

µ(ℓ̄γµℓ) + FAp
µ(ℓ̄γµγ5ℓ) + FP (ℓ̄γ5ℓ)


. (3.141)

At low recoil and after application of both the low recoil OPE and the improved Isgur-
Wise relation, cf. Eq. (3.24), we find [45]

FV = Ceff
9 + κ

2mbMB

q2
Ceff
7 , (3.142)

FP = −mℓ


1 +

M2
B −M2

K

q2


1− fBK0

fBK+


C10 , (3.143)

FA = C10 . (3.144)

We obtain for ℓ = e, µ – i.e.for negligible lepton masses mℓ –

aℓ = Γ0

√
λ
3

4
f2+ ρ1 , cℓ = −aℓ , (3.145)

with ρ1, the only emerging combination of short-distance coefficients, identical to the
one obtained for B̄ → K̄∗ℓ+ℓ− decays in Eq. (3.80) [45]. This fact leads to heightened
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statistical power when combining the constraints on the Wilson coefficients C9,10 as ob-
tained from both decays and at low recoil. For the massive case of ℓ = τ the angular
observables read

aτ =
Γ0

4
(
√
λ)3 βτf

2
+


ρ1 −

4m2
τ

q2
|C10|2F0


, cτ = −Γ0

4
(
√
λ)3 β3τf

2
+ ρ1 , (3.146)

where we use the shorthand notation

F0 ≡ 1−
(M2

B −M2
K)2

λ

f20
f2+

, (3.147)

As the helicity factor m2
τ/q

2 is bounded by

0.6 . 4m2
τ/q

2 . 0.9 (3.148)

for q2 ∈ [14, 23] GeV2, the additional contributions ∝ |C10|2 are not suppressed within
decays to τ final states. This allows – in principle – to constrain the magnitude of C10
from comparison of B̄ → K̄τ+τ− and B̄ → K̄ℓ+ℓ−, ℓ = e, µ decays [84].

3.5.2. Observables

Compared to the decay B̄ → K̄∗ℓ+ℓ−, the decay B̄ → K̄ℓ+ℓ− has fewer angular ob-
servables and thus correspondingly lower potential for probing |∆B| = 1 FCNCs. As
far as CP conserving observables are concerned, one finds [38] for ℓ = e, µ the single-
differential decay width

dΓℓ[B̄ → K̄ℓ+ℓ−]

dq2
= 2


aℓ(q

2) +
1

3
cℓ(q

2)


. (3.149)

The double-differential decay width can expressed as [85, 86]

1

Γℓ

d2Γℓ
d cos θℓ dq2

=
3

4


1− F ℓH


sin2 θℓ +

1

2
F ℓH +AℓFB cos θℓ . (3.150)

Here, the forward-backward asymmetry reads

AℓFB(q
2) =

bℓ(q
2)

dΓ/dq2
, (3.151)

and for the flat-term we one obtains

F ℓH =
2aℓ(q

2) + 2cℓ(q
2)

dΓ/dq2
. (3.152)

which can be obtained experimentally be means of an angular analysis. Using the ear-
lier results for the angular observables in Eq. (3.145) we obtain for the decay rate into
massless leptons ℓ = e, µ

dΓℓ[B̄ → K̄ℓ+ℓ−]

dq2
= Γ0

√
λ
3

3
f2+ρ1 , (3.153)
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3.5. The Decay B̄ → K̄ℓ+ℓ−

and the forward-backward asymmetries AℓFB and the flat-term F eH vanish. Moreover,
we obtain the CP asymmetry of the decay rate, AℓCP, as

AℓCP[B̄ → K̄ℓ+ℓ−] =
dΓℓ/dq

2 − dΓ̄ℓ/dq
2

dΓℓ/dq2 + dΓ̄ℓ/dq2
(3.154)

=
ρ1 − ρ̄1
ρ1 + ρ̄1

= a
(1)
CP[B̄ → K̄∗ℓ+ℓ−] .

The CP asymmetry a
(1)
CP was identified in Eq. (3.101) as a form factor free quantity in

B̄ → K̄∗ℓ+ℓ− decays [60], and the results and discussion of the strong phase δs within
Section 3.4.3 apply here likewise. In addition to decays into massless leptons ℓ = e, µ, we
study the flat term for massive leptons ℓ = τ . In terms of the short-distance coefficients
we obtain

F τH(q
2) =

6m2
τ

q2
× ρ1 − |C10|2F0

ρ1 +
2m2

τ
q2

(ρ1 − 3|C10|2F0)
. (3.155)

Thus, for ℓ = τ the flat term can become sizable. We remark that both ρ1 and |C10|2 could
in principle be extracted through a global fit to B̄ → K̄µ+µ− and B̄ → K̄τ+τ− data,
cf. Ref. [84]. However, the quality of the fit results will crucially depend on the theory
control of the ratio f0/f+, which dominates the theory uncertainty of the flat term F τH .

We present SM results for both the decay rate and the flat term in Chapter 4. How-
ever, we abstain from providing results for the forward-backward asymmetry since it
vanishes in the SM operator basis, cf. also earlier comments on bℓ in Section 3.5.1.
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4. Standard Model Results

In this chapter we present the SM results for B̄ → K̄(∗)ℓ+ℓ− decays. We start by de-
scribing all necessary components for the precision calculation of the observables. Our
results are obtained by means of EOS [89], a high energy physics program for the calcu-
lation of flavor observables. We specifically use the eos-evaluate client to calculate
all results within this chapter.

First, we evaluate the |∆B| = 1 Wilson coefficients at NNLO in the SM [35] numer-
ically at an initial (high) scale µ0. We decide to use µ(t)0 = 120GeV for the top sector
Wilson coefficients, and µ(c,u)0 = 80GeV for the charm and up sector Wilson coefficients
in order to minimize emerging logarithms ln(µ0/MW ) and ln(µ0/mt). Further input pa-
rameters are the mass MW of the W bosons and the sine square of the Weinberg angle
sin2 θW . By means of unitarity the Wilson coefficients as defined in Eq. (2.26) are inde-
pendent of any CKM matrix elements. Next, the Wilson coefficients are run down to the
low scale µb = 4.2GeV as governed by Eq. (2.33). For this step we use the NNLO results
for the anomalous mass dimension matrix as given in [35]. Hence, large logarithms are
resummed to NNLL. As an intermediate result, we present the numerical values of the
Wilson coefficients of the SM basis at the low scale µb in Tab. 4.1.

In addition to the low recoil framework for B̄ → K̄(∗)ℓ+ℓ− decays, we have also im-
plemented the QCDF results [49, 51, 38] for the angular observables of both decays. With
regard to the nonfactorizing contributions, we implement all the leading order terms as
well as the numerically significant subleading terms. These nonfactorizing contributions
contain isospin breaking spectator effects, which play a crucial role in the differences be-
tween the neutral and charged decay modes. QCDF is assumed to be valid within the
kinematical range 1GeV2 ≤ q2 ≤ 6GeV2. However, we give results beyond this range,
which are to be understood as extrapolations only. Differences between our numerical
results and the results in Ref. [45] stem from an analytic implementation of the QCDF

C1 C2 C3 C4 C5
−0.288 +1.010 −0.006 −0.086 <10−3

C6 C7 C8 C9 C10
+0.001 −0.327 −0.177 +4.276 −4.151

Table 4.1.: The numerical SM values of the Wilson coefficients C1...10 in the NDR scheme
and for µb = 4.2GeV, µ(t)0 = 120GeV and µ

(c,u)
0 = 80GeV. The numerical

input is listed in Tab. 4.2.
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4. Standard Model Results

A 0.812+0.013
−0.027 [87] λ 0.22543± 0.00077 [87]

ρ̄ 0.144± 0.025 [87] η̄ 0.342+0.016
−0.015 [87]

αs(MZ) 0.11762 τB+ 1.638 ps [22]
αe(mb) 1/133 τB0 1.525 ps [22]
mc(mc) (1.27+0.07

−0.09) GeV [22] MB+ 5.2792 GeV [22]
mb(mb) (4.19+0.18

−0.06) GeV [22] MB0 5.2795 GeV [22]
mpole
t (173.3± 1.1) GeV [88] MK+ 0.494 GeV [22]

me 0.511 MeV [22] MK0 0.498 GeV [22]
mµ 0.106 GeV [22] MK∗+ 0.89166 GeV [22]
mτ 1.777 GeV [22] MK∗0 0.89594 GeV [22]
MW (80.399± 0.023) GeV [22]
sin2 θW 0.23116± 0.00013 [22]

Table 4.2.: The numerical input used in our analysis. We neglect the mass of the strange
quark. τB0 (τB+) denotes the lifetime of the neutral (charged) B meson.

convolution integrals, as well as a switch from the MS to the pole mass scheme for the c
quark mass. For the latter, see also earlier comments on the charm quark mass scheme in
Section 2.4. We note that the implementation yields numerically more stable results than
the previous one. We remark also that the convolution integral X⊥(q2) – see Ref. [52] for
the definition – is regulated by a cutoff for the entire large recoil region. We follow
Ref. [52] closely and regularize only the potentially divergent part of X⊥(q2). The pro-
cedure of regularizing X⊥ for the entire region of large recoil ensures that observables
such as the isospin asymmetry AI(q2) exhibit a smooth transition from B → K∗ℓ+ℓ− to
B → K∗γ, i.e., in the limit q2 → 0.

With regard to B → K form factors, we use extrapolations of LCSR results as given
in Ref. [48]. The results there have the virtue of stating explicit uncertainties for each of
the form factors f+ and f0. The latter are directly used in the computation of the theory
uncertainties.

While the authors of Ref. [48] also give results for B → K∗ form factors, we abstain
from using these. Our decision is based on the fact that Khodjamirian et al. employ a
different ansatz for the calculation of the B → K∗ form factors than usually found in
the literature. Instead of interpolating the B meson by a heavy-light quark current, they
choose to interpolate the light K∗ meson. While this calculation is an important cross
check against previous LCSR calculations of B → K∗ form factors, their results exhibit a
considerably larger theory uncertainty that, e.g., the results obtained by Ball and Zwicky
[63]. We therefore choose to use the latter results in our evaluation of B̄ → K̄∗ℓ+ℓ− ob-
servables.

We present SM predictions for a subset of the observables that were previously dis-
cussed in Section 3.4 and Section 3.5. The same binning as used by Belle [46] is em-
ployed in order to achieve comparability with the experimental measurements. The
numerical input used for our results are given in Tab. 4.2. We give the binned results
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Observable Bin [ GeV2] B̄0 → K̄0ℓ+ℓ− B− → K−ℓ+ℓ−

107 × ⟨B⟩

4m2
µ − 2.0 0.64+0.21

−0.11 0.69+0.22
−0.11

2.0− 4.3 0.75+0.26
−0.13 0.81+0.28

−0.14

4.3− 8.68 1.37+0.51
−0.25 1.48+0.55

−0.27

1.0− 6.0 1.62+0.56
−0.27 1.75+0.60

−0.29

14.18− 16.0 0.34+0.18
−0.08 0.37+0.19

−0.09

16.0− q2max 0.63+0.38
−0.18 0.68+0.41

−0.19

⟨FH⟩

4m2
µ..2.0 0.103+0.006

−0.012 0.103+0.006
−0.12

2.0..4.3 0.024+0.002
−0.003 0.024+0.002

−0.003

4.3..8.68 0.012+0.001
−0.002 0.012+0.001

−0.002

1.0..6.0 0.025+0.002
−0.004 0.025+0.002

−0.004

14.18..16.0 0.007+0.001
−0.002 0.007+0.001

−0.002

16.0..q2max 0.008+0.002
−0.003 0.008+0.002

−0.003

Table 4.3.: SM predictions for B̄0 → K̄0ℓ+ℓ− andB− → K−ℓ+ℓ− decays in q2 bins which
are compatible with existing measurements. For the large recoil region q2 ≤
8.68GeV2, we use the QCDF results [49, 38], and include all known power-
suppressed contributions [51], see text. For the low recoil region 14.18GeV2 ≤
q2 ≤ q2max = (MB−MK∗)2 we use the low recoil framework [45]. In both cases
we use extrapolations of the B → K form factors [48].

for B → Kℓ+ℓ− decays in Tab. 4.3, while results for B → K∗ℓ+ℓ− decays can be found
in Tab. 4.4. In the latter case we give the results for A(2)

T only for the low recoil region,
since at large recoil A(2)

T ≃ 0 in the SM up to small corrections, and the relative theory
uncertainties are very large. In both cases we present CP averaged observables for both
isospin modes of the respective decays. In addition, we present the differential observ-
ables in Figures 4.1 to 4.3. All given theory uncertainties are part of one of the following
uncertainty budgets:

CKM The CKM budget encompasses the input uncertainties of the Wolfenstein CKM
parameters λ,A, ρ̄ and η̄.

FF The form factor budget consists of uncertainties that arise from the extrapolation of
the respective LCSR results. For the results from [48], we use the given (asymmet-
ric) uncertainty ranges. For the results from [63], we vary the input parameters by
±15% as suggested there.

SD The short-distance budget includes uncertainties that arise from the measurement
of the top pole mass mt, the sine squared of the weak mixing angle sin2 θW , the
mass of the W bosons MW , and the variation of the low scale mb/2 ≤ µb ≤ 2mb.

47



4. Standard Model Results

SL This budget estimates the influence of contributions to the B → K(∗) decay ampli-
tudes which are subleading in the 1/mb expansion.

We obtain an overall theory uncertainty by adding all of the above budgets in quadra-
ture.

Due to the strong dependence on the strong phase δs and its associated model-dependent
uncertainty (cf. Section 3.4.2), we deliberately abstain from providing SM results for the
low recoil CP asymmetries a(1,2,3)CP in the same manner as for the CP conserving observ-
ables. However, we are able to provide approximate results. In the SM, CP violating
effects only arise from the small weak phase of the terms ∝ VubV

∗
us. From Eq. (3.10)

one can infer, that the leading order CP violating contributions arise only at the order
m2
c/q

2λ̂u ∼ 10−3. Furthermore, in the SM only T-even CP asymmetries appear, which
are further suppressed by the sine of the small strong phase sin δs ≈ δs. We therefore
estimate that at low recoilA(1,2,3)

CP

 ≤ 10−4 . (4.1)

In addition to the tabulated results, we also provide an update to the QCDF results [51]
for the zero-crossing point q20,n of the forward-backward asymmetry AFB for the neutral
decay channel B̄0 → K̄∗0ℓ+ℓ−. We quickly summarize the changes to EOS [89] and the
consequent changes to the numerical value for the neutral decay. First, we change the
numeric input for the B̄0 decay constants fB̄0 to 0.212GeV, according to recent lattice
results [90], which increases the value of q20,n by 1.7%. Second, we now include the
subleading HSA terms [51] which additionally affect the zero-crossing point by 0.3%.
Lastly, we switch to using the charm mass in the pole mass scheme (cf. also Section 2.4),
which increases the q20,n even further by 0.3%. In the end, we obtain for the neutral decay
mode a zero-crossing point of

q20,n =

4.07+0.25

−0.25

GeV2 , (4.2)

which corresponds to a shift from the previous result [45] of 2.3%. Furthermore, due to
the inclusion of the weak annihilation contributions [51] which only affect the charged
decay mode B− → K∗−ℓ+ℓ−, we can calculate its zero-crossing point

q20,c =

4.01+0.24

−0.22

GeV2 . (4.3)

The budget that contributes most to the overall theory uncertainties is SD, to which the
renormalization scale µ contributes dominantly.

LHCb has recently measured the zero-crossing point q20,n for the first time [91], and
their result

q20,n,LHCb = (4.9+1.1
−1.3)GeV2 (4.4)

is still affected by a considerable error. Since the precision of this measurement will im-
prove over time, controlling the theory uncertainty of the SM prediction becomes very
important. Here one might be able to reduce the large residual dependence on the renor-
malization scale by computing the NNLO αs contributions.
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Since we use the inclusive branching ratio for B̄ → Xsµ
+µ− for our model indepen-

dent analysis in Chapter 5, we also provide the corresponding SM result. The latter
is obtained from the EOS [89] implementation of the NNLO calculation [92], and the
central value reads 6 GeV2

1 GeV2
dq2

dBSM

B̄ → Xsµ

+µ−


dq2
= (1.55± 0.11)× 106 . (4.5)
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Figure 4.1.: (a) The differential branching ratio dB/dq2 for ℓ = µ, (b) the flat term F ℓH
for ℓ = µ, τ and (c) the branching ratio d B/d q2 for ℓ = τ for the decay
B+ → K+µ+µ− in both the large and the low recoil region using extrapo-
lations of the form factors according to Khodjamirian et al. [48] (blue solid
and dashed lines). In (a) and (c) the color coded uncertainties arise from the
budgets CKM (yellow), FF (blue), SD (cyan) and SL (red), see text. In (b) the
theoretical uncertainties from all budgets are added in quadrature. The ver-
tical gray bands are the experimental veto regions to remove contributions
from B̄ → K̄J/ψ(→ µ+µ−) (left-hand band) and B̄ → K̄ψ′(→ µ+µ−) (right-
hand band) in (a) and (b). The vertical gray band in (c) is the experimental
cut as used in a recent BaBar search [93]. Figure adapted from Ref. [45].
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Figure 4.2.: (a) The differential branching ratio dB/dq2, (b) the forward-backward asym-
metry AFB and (c) the fraction FL of longitudinally polarized kaons for the
decay B̄0 → K̄∗0µ+µ− in both the large and the low recoil region using
extrapolations of the form factors according to Ball and Zwicky [63] (blue
solid and dashed lines). The color coding for the theory uncertainties is the
same as in Fig. 4.1. The vertical gray bands are the experimental veto regions
to remove contributions from B̄ → K̄∗J/ψ(→ µ+µ−) (left-hand band) and
B̄ → K̄∗ψ′(→ µ+µ−) (right-hand band). Figure adapted from Ref. [44].
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Figure 4.3.: (cont. of Fig. 4.2) The transverse asymmetries (a)-(c)A(2,3,4)
T in both the large

and the low recoil region. All further remarks in Fig. 4.2 apply likewise to
this figure. Figure adapted from Ref. [44].
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Observable Bin [ GeV2] B̄0 → K̄∗0ℓ+ℓ− B− → K∗−ℓ+ℓ−

107 × ⟨B⟩

4m2
µ − 2.0 2.16+0.44

−0.39 2.26+0.45
−0.41

2.0− 4.3 1.05+0.25
−0.23 1.15+0.27

−0.25

4.3− 8.68 2.45+0.52
−0.49 2.66+0.56

−0.53

1.0− 6.0 2.46+0.55
−0.51 2.68+0.60

−0.56

14.18− 16.0 1.26+0.40
−0.34 1.35+0.43

−0.37

16.0− q2max 1.46+0.45
−0.39 1.57+0.48

−0.42

⟨AFB⟩

4m2
µ − 2.0 +0.11+0.02

−0.02 +0.11+0.02
−0.02

2.0− 4.3 +0.09+0.03
−0.03 +0.08+0.03

−0.03

4.3− 8.68 −0.18+0.05
−0.05 −0.18+0.04

−0.05

1.0− 6.0 +0.05+0.03
−0.03 +0.04+0.03

−0.02

14.18− 16.0 −0.44+0.07
−0.07 −0.44+0.07

−0.07

16.0− q2max −0.38+0.06
−0.07 −0.38+0.06

−0.07

⟨FL⟩

4m2
µ − 2.0 0.36+0.07

−0.07 0.380+0.07
−0.07

2.0− 4.3 0.78+0.05
−0.06 0.786+0.05

−0.06

4.3− 8.68 0.66+0.07
−0.08 0.660+0.07

−0.07

1.0− 6.0 0.73+0.06
−0.07 0.736+0.06

−0.07

14.18− 16.0 0.36+0.05
−0.06 0.362+0.05

−0.06

16.0− q2max 0.34+0.03
−0.03 0.338+0.03

−0.03

⟨FT ⟩

4m2
µ − 2.0 0.64+0.07

−0.07 0.620+0.07
−0.07

2.0− 4.3 0.22+0.06
−0.05 0.214+0.06

−0.05

4.3− 8.68 0.34+0.08
−0.07 0.340+0.07

−0.07

1.0− 6.0 0.27+0.07
−0.06 0.264+0.07

−0.06

14.18− 16.0 0.64+0.06
−0.05 0.638+0.06

−0.05

16.0− q2max 0.66+0.03
−0.03 0.662+0.03

−0.03

⟨A(2)
T ⟩

14.18− 16.0 −0.37+0.20
−0.18 −0.37+0.20

−0.18

16.0− q2max −0.60+0.15
−0.13 −0.60+0.15

−0.13

Table 4.4.: SM predictions for B̄0 → K̄∗0ℓ+ℓ− and B− → K∗−ℓ+ℓ− decays in q2 bins
which are compatible with existing measurements. For the large recoil region
q2 ≤ 8.68GeV2, we use the QCDF results [49], and include all known power-
suppressed contributions [51], see text. For the low recoil region 14.18GeV2 ≤
q2 ≤ q2max = (MB −MK∗)2 we use the low recoil framework [55, 44]. In both
cases we use extrapolations of the B → K∗ form factors [63].
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5. Model Independent Analysis

We confront the available experimental data on B → {Xs,K,K
∗} ℓ+ℓ− decays with the

SM by performing a model independent analysis, i.e., we treat the Wilson coefficient
C7,9,10 as free parameters and scan over the complete parameter space. In the following,
we find that B → K∗ℓ+ℓ− observables in the low recoil region play a crucial role in con-
straining the parameter space. Our analysis uses EOS [89], a HEP flavor program which
was created by the author for this very use case. Specifically, we use the client programs
eos-scan-polynomial, eos-find-cr and eos-marginalise to obtain all results
within this chapter. For an introduction to EOS we refer the reader to Appendix D

The experimental data onB → K(∗)ℓ+ℓ− decays as used in this analysis is compiled in
Tab. 5.11. In addition to this data, we use the inclusive branching ratio B


B̄ → Xsℓ

+ℓ−


as measured by both BaBar [96] and Belle [97], 6 GeV2

1 GeV2
dq2

dBBaBar

B̄ → Xsℓ

+ℓ−


dq2
= (1.8± 1.2)× 10−6 , (5.1) 6 GeV2

1 GeV2
dq2

dBBelle

B̄ → Xsℓ

+ℓ−


dq2
=

1.49+0.92

−0.83

× 10−6 . (5.2)

To constrain the parameter space we perform a scan over the moduli and phases of
the Wilson coefficients C7,9,10. The inclusion of complex phases allows us to model-
independently account for generic CP violation beyond the SM. The B(B̄ → Xsγ) data
strongly constrain the magnitude |C7| to a narrow range of values around |CSM

7 | ≈ 0.33,
however, they do not constrain the phase of C7. We therefore restrict both the scan in-
terval and granularity of |C7| accordingly. In particular, we perform the scan on the
six-dimensional grid

|C7| ∈ [0.30, 0.40] ∆|C7| = 0.02 , φ7 ∈ [0, 2π) ∆φ7 =
π

16
,

|C9| ∈ [0, 15] ∆|C9| = 0.25 , φ9 ∈ [0, 2π) ∆φ9 =
π

16
, (5.3)

|C10| ∈ [0, 15] ∆|C10| = 0.25 , φ10 ∈ [0, 2π) ∆φ10 =
π

16
,

which necessitates approximately 6 × 108 evaluations of all observables. In order to
shorten the computation time, we make use of that fact that all observables considered in
this analysis are polynomials of degree two in the Wilson coefficients. We can therefore

1We remark that the Belle data on B → K(∗)ℓ+ℓ− stems from an unknown admixture of B+ and B0 decay
modes. However, we explicitly test that the interpretation of the data as pure either B+ or B0 modes
affect the scan results only by the order of the scan resolution. We note that with improving statistical
significance of the LHCb results this ambiguity will become even less important. In this work, our
results are always presented for the B+ hypothesis.
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5. Model Independent Analysis

Observable Bin [GeV2] Belle [46] CDF [47, 94] LHCb [42]

B̄ → K̄∗ℓ+ℓ−

107 × ⟨B⟩
1.00− 6.00 1.49+0.45

−0.40 ± 0.12 1.42± 0.41± 0.12 0.39± 0.06± 0.02

14.18− 16.00 1.05+0.29
−0.26 ± 0.08 1.34± 0.26± 0.08 0.59± 0.10± 0.03

16.00− 19.21 2.04+0.27
−0.24 ± 0.16 0.97± 0.26± 0.07 0.48± 0.08± 0.03†

⟨AFB⟩‡
1.00− 6.00 −0.26+0.30

−0.27 ± 0.07 −0.43+0.37
−0.36 ± 0.06 +0.10+0.14

−0.14 ± 0.05

14.18− 16.00 −0.70+0.22
−0.16 ± 0.10 −0.42+0.16

−0.16 ± 0.09 −0.50+0.09
−0.06 ± 0.03

16.00− 19.21 −0.66+0.16
−0.11 ± 0.04 −0.70+0.25

−0.16 ± 0.10 −0.10+0.13
−0.13 ± 0.06†

⟨FL⟩
1.00− 6.00 0.67+0.23

−0.23 ± 0.05 0.50+0.27
−0.30 ± 0.03 0.57+0.11

−0.10 ± 0.03

14.18− 16.00 −0.15+0.27
−0.23 ± 0.07 0.55+0.17

−0.18 ± 0.02 0.33+0.11
−0.08 ± 0.04

16.00− 19.21 0.12+0.15
−0.13 ± 0.02 0.09+0.18

−0.14 ± 0.03 0.28+0.10
−0.09 ± 0.04†

B+ → K+ℓ+ℓ−

107 × ⟨B⟩
1.00− 6.00 1.36+0.23

−0.21 ± 0.08 1.41± 0.20± 0.10 -
14.18− 16.00 0.38+0.19

−0.12 ± 0.02 0.53± 0.10± 0.03 -
16.00− 19.21 0.98+0.20

−0.18 ± 0.06 0.48± 0.11± 0.03 -

Table 5.1.: Experimental data for B → K(∗)ℓ+ℓ− decays in both the large and low re-
coil regions which are used in the analysis. †: The max. q2 for these bins is
19.0GeV2 and used accordingly in the scans. ‡: The experimental convention
for AFB differs from our convention by a sign.

compute the polynomial coefficients for arbitrary input parameters from a few evalua-
tions of the observables. This procedure is implemented within EOS as part of the client
program eos-scan-polynomial [89].

The numerical results, as obtained for the scanning process, are naturally subject to
theory uncertainties. Most of these uncertainties stem from incomplete knowledge of
the input parameters, such as for example the Wolfenstein parameters of the CKM ma-
trix, the form factor parameters, or the bottom and charm quark massesmb andmc. Fur-
thermore, theory uncertainties can arise from unknown subleading contributions, which
need to be estimated. For the treatment of the subleading contributions to B̄ → K̄(∗)ℓ+ℓ−

decays at low recoil, we use the fact that subleading terms only arise from the OPE,
where they are additionally suppressed by at least one power of αs(µb)/π ∼ 0.07, or
from the improved Isgur-Wise relations, where they are additionally suppressed by a
factor C7/C9 ∼ 0.1. This suppression of subleading contributions makes the low recoil
observables superior to those at large recoil with regard to theory uncertainties. For the
large recoil region, we follow [71] closely for the parametrization of unknown sublead-
ing terms.

In order to determine the theory uncertainty of a given observable X , we set each of
the variable input parameters to its maximally and minimally allowed value, thereby
collecting deviations from the central value of X . By


∆+(−)2, we denote the sum of
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Figure 5.1.: Constraints on the complex-valued Wilson coefficients C9,10. The red (blue)
shaded areas correspond to the 68% CL (95% CL) regions when using all
available data. The dotted (solid) contours show the 68% CL (95% CL) re-
gions without the available data on B → Kℓ+ℓ− observables. The green
square marks the SM. Plots taken from Refs. [45] and [95].

the squares of these deviations towards larger (smaller) values, respectively. In order to
calculate the goodness of fit in each parameter point, we define the following χ2 func-
tion,

χi


Cj


≡


|Xi−Ei|−∆+

i
σi

Ei ≥ Xi +∆+
i

|Xi−Ei|−∆−
i

σi
Ei ≤ Xi −∆−i

0 otherwise

, (5.4)

χ2 ≡

i

χ2
i , (5.5)

where the index i iterates over the available observables and their respective measure-
ments, and E and σ are the experimental result and the associated experimental uncer-
tainty, respectively. We then obtain the (unnormalized) likelihood function

−2 lnL = χ2 , (5.6)
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5. Model Independent Analysis
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Figure 5.2.: Constraints on the real-valued Wilson coefficients C9,10 for (a) an SM-like
sign of C7 and (b) for a flipped sign of C7 with respect to the SMvalue. The
red (blue) shaded areas correspond to the 68% CL (95% CL) regions when
using all available data. The letters A through D denote the four principal
solutions, of which solution B has been disfavored at the 99% CL by recent
LHCb data [42]. The green square marks the SM. Plots taken from Ref. [45].

on the full six-dimensional parameter space. This method was introduced in Ref. [98]
under the name Range Fit (Rfit).

The scans presented here allow us to constrain the values of the coefficients C9 and C10
under the assumption that there are neither right-handed, scalar nor tensor contribu-
tions, and that the Wilson coefficients C1...6,8 retain their respective SM values. In order
to visualize the constraints, we first find the 68% and 95% confidence regions within the
six-dimensional parameter space by means of numerical integration of the likelihood.
The points P68,95 that comprise the confidence regions are found by solving

x∈P68%

L(x) = 0.68×

all x

L(x) ,


x∈P95%

L(x) = 0.95×

all x

L(x) . (5.7)

We obtain

2.3 ≤ |C9| ≤ 6.5 (1.0 ≤ |C9| ≤ 7.0) , (5.8)
2.3 ≤ |C10| ≤ 5.3 (1.8 ≤ |C10| ≤ 5.5) (5.9)

as allowed ranges at 68% CL (95% CL). In a further step, we then project these regions
onto the planes |C9|–|C10|, |C9|–φ9, |C10|-φ10 and φ9–φ10. The results of our scan are shown
as these projections in Fig. 5.1. We remark that the constraints from B̄ → K̄∗ℓ+ℓ− in the
low recoil regions are presently much more powerful than all other constraints [44].
Furthermore, the first LHCb measurements [42] provide the most constraining power
when compared with all other experimental inputs. Unfortunately, at the time of this
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Figure 5.3.: Zero-crossing of the forward-backward asymmetry in B̄0 → K̄∗0ℓ+ℓ− de-
cays as a function of |C9| for both signs of C7. The green rectangle marks the
SM value. Plot taken from Ref. [45].

writing there have been no LHCb results on B → Kℓ+ℓ− decays. We expect that with
the inclusion of the latter, the global constraints on C9,10 will grow considerably stronger.

Building on top of our scan results for complex-valued Wilson coefficients, we can de-
rive results for real-valued Wilson coefficients by discarding all parameter points which
do not fulfill φ7,9,10 = 0, π. We present these results for both signs of C7 in Fig. 5.2.
We find three disjoint solutions which are labeled A, C and D. The disappearance of
the previously allowed solution B [44, 69] can be traced back to the inclusion of recent
LHCb measurements, in particular the measurements of both the branching ratio and
the forward-backward asymmetry at large recoil. Here, the fact that the very precise
LHCb data are compatible with a zero-crossing within AFB disfavors solution B and C
strongly. With the first (preliminary) measurement of the zero-crossing by LHCb [91] we
can now exclude solution C. However, differentiating between solutions A and D is a
more complicated task. One possible approach would be to conduct precision measure-
ments at a level where the observables become sensitive to the differences Ceff

7(9) − C7(9)
[44]. While the difference for C9 can be accessed through observables in both kinematical
regions, the sensitivity to the difference for C7 is highest in the large recoil region and in
B̄ → K̄∗γ decays.

The solutions A and D both exhibit a zero-crossing in the forward-backward asym-
metry AFB, which allows us to derive a lower bound on the crossing point [99, 45]. We
obtain for µb = 4.2GeV

q20 > 2.6GeV2 (q20 > 1.7GeV2) (5.10)

for an SM-like (flipped) sign of C7,9,10 when using the 95% CL bound on |C9|. We note that
our bounds are consistent with the recent (preliminary) data on, cf. Eq. (4.4). Moreover,
the functional dependence of the lower bound on |C9| is given in Fig. 5.3.
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6. Conclusion

In this thesis we have studied for the first time the importance and the benefits in the
phenomenology ofB → K(∗)ℓ+ℓ− decays at low hadronic recoil. Thanks to the existence
of an OPE this kinematic region is under good theory control. The strong suppression
of subleading power corrections reduces the theory uncertainties in the low recoil re-
gion to a level below the uncertainties for the large recoil region. The factorization of
short-distance and hadronic terms at low recoil offers many phenomenological oppor-
tunities, such as precision fits of the Wilson coefficients C9,10 and the measurement of
form factor ratios. In the light of the former, we introduce a number of designer observ-
ables H(1,2,3,4,5)

T for the low recoil region, of which H
(1,3,4,5)
T are free of hadronic input

in all conceivable extensions of the operator basis. We have shown that |H(1)
T | = 1 even

beyond the SM, unless tensor operators are involved. Any deviation from this rela-
tion therefore indicates breaking of the low recoil OPE. Furthermore, we have shown
that probing the short-distance couplings with H

(2,3)
T is superior to using the forward-

backward asymmetry AFB, especially when BSM physics effects are very small in com-
parison with the SM results.

In addition to the analytic work on the decays B̄ → K̄∗ℓ+ℓ− and B̄ → K̄ℓ+ℓ−, we
have performed a global, model-independent analysis of both inclusive and exclusive
semileptonic and radiative rare b decays. Our analysis yields strong constraints on the
Wilson coefficients C9 and C10. Three solutions arise, which correspond to one SM-like
solution (A), one solution for which the signs of C7,9,10 are flipped (D) and a further,
disfavored solution with C9,10 SM-like and the sign of C7 flipped (C). The latter solution
has recently been excluded by a preliminary LHCb measurement [91] at the time when
this thesis was completed. The obtained constraints provide valuable input for further
model-dependent studies.

In order to constrain the parameter space even further, more and more precise data
is needed. We find that with one nominal year run time, i.e., using the 2010 and 2011
data set, LHCb has already surpassed the precision and constraining power of BaBar,
Belle and CDF. Preliminary results by LHCb provide a strong indication that the zero-
crossing of the forward-backward asymmetry exists [91], and solution (C) would there-
fore be excluded. Future works should rather concentrate on distinguishing between
solutions (A) and (D). For this, both precision measurements and precision calculations
will be needed. With regard to exclusive measurements, LHCb is already the leader of
the field after over-taking the first generation B factory experiments BaBar and Belle.
However, estimations of how LHCb will improve on the existing data are notoriously
uncertain, as they depend on the overall performance of the LHC before the year-long
technical stop in 2013 and the planned LHCb upgrade in 2017. Furthermore, the theo-
retical calculations of the exclusive decays is still hampered by the necessary hadronic
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6. Conclusion

input. Inclusive decays, on the other hand, do not suffer from this problem but cannot
be studied at hadron colliders. Here, the upcoming Belle II experiment will be able to
contribute after the first collisions, expected at the end of 2015 [10]. With an integrated
luminosity of 5ab−1 after the first year, the statistical error will be reduced1 by a factor
of six compared to the current Belle measurements [97]. It will be interesting to observe
what will come first: Sufficient reduction of the theory uncertainties in exclusive de-
cays, or improved measurements on the inclusive decays. Beyond this race for precision
measurements and calculations, however, data is needed which is complementary to
the existing measurements. Here, we have shown that the exclusive decays clearly have
their benefits, since they provide powerful new types of constraints from observables
which have severely reduced theoretical uncertainties. However, all currently measured
observables restrict almost exclusively the magnitudes of the short-distance couplings.
The phases of the Wilson coefficients, however, are only weakly constrained. To remedy
that situation measurements of the CP asymmetries such as in B → K(∗)ℓ+ℓ− decays
will be needed.

1Estimation based on the most precise measurement to date with 140fb−1 integrated luminosity.
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A. B̄ → K̄∗(→ K̄π) ℓ+ℓ− Matrix Element

In this Appendix we present our choice of parametrization of the hadronic matrix ele-
ment for the decay B̄ → K̄∗(→ K̄π) ℓ+ℓ−

M[B̄ → K̄∗(→ K̄π)ℓ̄ℓ] = F

XS


ℓ̄ℓ

+XP


ℓ̄γ5ℓ


+Xµ

V


ℓ̄γµℓ


(A.1)

+Xµ
A


ℓ̄γµγ5ℓ


+Xµν

T


ℓ̄σµνℓ

 
.

Here we collect all prefactors in F ,

F = i
GFαe√

2π
VtbV

∗
ts gK∗KπDV 2|p⃗K | , (A.2)

with p⃗K , the three-momentum of the K̄ meson in the K̄π c.m.s.,

|p⃗K | =


λ

M2
K∗ ,M2

K ,M
2
π


2MK∗

. (A.3)

The hadronic tensors read

XS = − i

4
cos θK AS , (A.4)

XP = +
i

2
cos θK

mℓ
q2
At, (A.5)

Xµ
V,A = +

i

4
cos θK ε

µ(0) (AR0 ±AL0 ) (A.6)

+
i

8
sin θK


εµ(+) e+iφ


(AR∥ +AR⊥)± (AL∥ +AL⊥)


+ εµ(−) e−iφ


(AR∥ −AR⊥)± (AL∥ −AL⊥)

 
,

Xµν
T = cos θK


At0 ε

µ(t) εν(0)−A∥⊥ ε
µ(+) εν(−)


(A.7)

+
sin θK√

2
εµ(t)


εν(+) eiφ (At∥ +At⊥) + εν(−) e−iφ (At∥ −At⊥)


− sin θK√

2
εµ(0)


εν(+) eiφ(A0∥ +A0⊥) + εν(−) e−iφ(A0∥ −A0⊥)


,

where we use the following explicit representation of the polarization vectors εµ(n) [69]

εµ(±) =
1√
2
(0, 1,∓i, 0), εµ(0) =

1
q2

(−qz, 0, 0,−q0), (A.8)

εµ(t) =
1
q2

(q0, 0, 0, qz)
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A. B̄ → K̄∗(→ K̄π) ℓ+ℓ− Matrix Element

in the B̄ meson rest frame. Here q0 (qz) denotes the timelike (spacelike) component of
four-momentum qµ and the polarization vectors fulfill

ε†µ(n) ε
µ(n′) = gnn′ ,


n,n′

ε†µ(n) εν(n
′) gnn′ = gµν (A.9)

with gnn′ = diag(+,−,−,−) for n, n′ = t, 0,±. We use the orthonormality relation to in-
sert the full set of polarization vectors εµ(n) between the hadronic and leptonic currents
– see for example [100] for more details. The polarization vectors of the intermediate
on-shell K̄∗ read

ηµ(±) =
1√
2
(0, 1,±i, 0), ηµ(0) =

1√
MK∗

(−qz, 0, 0,MB − q0) , (A.10)

where the z-axis in the B̄ meson rest frame has been chosen along the K̄∗ momentum
and qµ in the opposite direction.

The definition γ5 = −i/(4 !) εαβµνγαγβγµγν is used, such that

Tr[γαγβγµγνγ5] = −4 i εαβµν , σαβγ5 =
i

2
εαβµνσµν (A.11)

with the usual anti-symmetric σµν = i/2 [γµ, γν ]. The convention ε0123 = −ε0123 = 1 is
adopted when evaluating the squared matrix element (A.1) using the explicit represen-
tation (A.8) and (A.10) of the polarization vectors.
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B. B̄ → K̄∗ Form Factors

In this Appendix we discuss the state of nonperturbative calculations of the hadronic
matrix elements in B̄ → K̄∗ℓ+ℓ− decays. These matrix elements can be parametrized in
terms of seven q2-dependent form factors V,A0,1,2, T1,2,3, which are define in Eqs. (3.17)-
(3.21). In the following, we will consider results for the form factors which stem from
two different, nonperturbative approaches.

First, we consider LCSR results as presented in Ref. [63]. This technique yields analytic
results which are valid for large recoil of the final state kaon. In terms of the dilepton
mass square, the region of validity is approximately q2 . 14GeV2 [63]. In order to access
the low recoil region, the authors of Ref. [63] fit their analytic results to q2-dependent
functions that exhibit either one or two poles within the physical region, i.e., for q2 ≤
(MB − MK∗)2. While these functions successfully reproduce the LCSR results in the
large recoil region, their use for the low recoil region constitutes an extrapolation. For
completeness, we give here the parametrization of the form factors V,A1,2 from Ref. [63],

V (q2) =
r1

1− q2/m2
R

+
r2

1− q2/m2
fit

, (B.1)

A1(q
2) =

r2
1− q2/m2

fit

, (B.2)

A2(q
2) =

r1
1− q2/m2

fit

+
r2

(1− q2/m2
fit)

2
, (B.3)

which we use at both low and large recoil. The fit parameters r1,2,m2
R and m2

fit are given
in Tab. B.1. The resulting form factors are shown in Fig. B.1. We assume an overall,
uncorrelated theory uncertainty of 15% for each of the above form factors, as suggested
in Ref. [63]. We are compelled to remark that this treatment of the theory uncertainty
is very conservative, and most likely overestimates the overall theory uncertainty of
B̄ → K̄∗ℓ+ℓ− observables.

r1 r2 m2
R [GeV2] m2

fit [GeV2]

V 0.923 −0.511 5.322 49.40

A1 – 0.290 – 40.38

A2 −0.084 0.343 – 52.00

Table B.1.: The parameters of the form factors V,A1,2 taken from Ref. [63]. Figure taken
from Ref. [44].
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B. B̄ → K̄∗ Form Factors
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Figure B.1.: The B → K∗ form factors V,A1 and A2 from Ref. [63]. Figure taken from
Ref. [44].
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Figure B.2.: The form factors T1 (a) and T2 (b) forB → K∗ transitions from Ref. [63] (blue
bands) and LQCD results (3 data sets) [101]. Figure taken from Ref. [44].
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Figure B.3.: Comparison of the extrapolated LCSR form factors from [63] to the im-
proved Isgur-Wise relations in Eq. (3.23). Shown are R1 (blue dotted line),
R2 (red dashed line) and R3 (golden solid line) as given in Eq. (B.4) and
κ = 1+O(α2

s) for µ = mb(mb) (black thick line). Figure taken from Ref. [44].

Second, we consider quenched LQCD results, which are currently only available for
the form factors T1,2 [101]. We use their data sets for a variety of points with q2 ≥
11GeV2, and compare them in Fig. B.2 with extrapolations of the aforementioned LCSR
results. In light of considerable uncertainties of both LCSR extrapolation and LQCD re-
sults, we find agreement between both nonperturbative approaches. We explicitly check
that the preliminary results from unquenched calculations in Ref. [102] agree with the
LCSR extrapolations as well. We therefore decide to use the LCSR extrapolations for the
evaluation of B̄ → K̄∗ℓ+ℓ− observables at both large and low recoil.

We probe the performance of the improved Isgur-Wise relations in Eq. (3.23) with
three ratios

R1 =
T1(q

2)

V (q2)
, R2 =

T2(q
2)

A1(q2)
, R3 =

q2

M2
B

T3(q
2)

A2(q2)
, (B.4)

which should all be compatible with κ(µ = mb) = 1 + O

α2
s


if the relations hold.

Both the Ri as functions of q2, and κ are shown in Fig. B.3. We remark that similar
relations hold in the large recoil region. There R1,2 = 1 + O(mK∗/mB) and T3/A2 =
1 +O(mK∗/mB) [103, 64]. We find that the improved Isgur-Wise relations hold reason-
ably well for T1,2. The relation R3, however, exhibits a considerable q2 dependence and
shows deviations from κ by ∼ 50% for q2 = 14GeV2. While replacement of the factor
q2/M2

B in both the respective Isgur-Wise relation and R3 remedies this deviation, we
still keep it. This decision is justified by the fact that the dipole form factors T1,2,3 always
enter B → K∗ℓ+ℓ− observables with a suppression factor of C7/C9 ≃ 0.1.
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B. B̄ → K̄∗ Form Factors

For the low q2 form factors we employ a factorization scheme within QCDF where
the universal soft form factors ξ⊥,∥ are expressed in terms of the full QCD form factors
V,A1,2 [51]. They read

ξ⊥ =
MB

MB +MK∗
V, ξ∥ =

MB +MK∗

2EK∗
A1 −

MB −MK∗

MB
A2 . (B.5)
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C. B̄ → K̄ Form Factors

In this Appendix we discuss the state of nonperturbative calculations of the hadronic
matrix elements in B̄ → K̄ℓ+ℓ− decays. These matrix elements can be parametrized
in terms of three q2-dependent form factors fBK+ , fBK0 , fBKT . We drop the superscript
BK for the remainder of this appendix. For the concrete parametrization, we refer to
Eqs. (3.13)-(3.15). In addition to these three QCD form factors, we also define the sub-
leading HQET form factors δ(0)± (q2) via

K̄(k)
 s̄ i←Dµhv

B̄(p)

= δ

(0)
+ (q2)(p+ k)µ + δ

(0)
− (q2)qµ , (C.1)

with the HQET heavy quark field hν of the b quark. In the following, we will study re-
sults for the form factors which stem from several different, nonperturbative approaches.

As for the discussion of B̄ → K̄∗ form factors in Appendix B we use LCSR results for
the form factors. For B̄ → K̄ transitions, we rely on the findings of Ref. [48] for large
hadronic recoil. In the same work the results are also extrapolated to the region of low
hadronic recoil by means of the parametrization [104]

F (q2) =
F (0)

1− q2/M2
Bs(JP )


1 + b1


z(q2)− z(0) +

1

2


z(q2)− z(0)


, (C.2)

with

z(τ) =

√
τ+ − τ −

√
τ+ − τ0√

τ+ − τ +
√
τ+ − τ0

(C.3)

τ± = (MB ±MK)2 , (C.4)
τ0 = τ+ −

√
τ+ − τ−

√
τ+ . (C.5)

The poles of F (q2) at M2
Bs(JP )

correspond to the resonances with quark content s̄b that
match the angular momentum and parity eigenvalue of the interpolating currents. This
is B∗s (1−) for the form factors f+ and fT , while for f0 no resonance exists below q2 = τ−.
For the parameters bi1 and Fi(0) as well as their uncertainties we refer the reader to [48].
The q2 dependence of the form factors is shown in Fig. C.1.

We follow the procedure of Appendix B and define the quantity

RT (q
2) =

q2

MB(MB +MK)

fT (q
2)

f+(q2)
(C.6)

to probe the performance of the improved Isgur-Wise relation Eq. (3.24) to its lowest
order. Here RT ≃ κ = 1 +O


α2
s


indicates a good performance of the relation. We find
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Figure C.1.: Extrapolation to high-q2 of the form factors f+, fT and f0 for B̄ → K̄ tran-
sitions as given by [48]. The shaded bands show the respective form factor
uncertainties. Figure taken from Ref. [45].

that RT agrees well with κ close to the zero recoil point. However, for q2 ≃ 14GeV2,
the deviations from κ of both the LCSR results as well as preliminary LQCD points
[65] approach 50%. RT is shown within the low recoil region in Fig. C.2. When we
include the subleading form factors δ(0)+ the situation grows worse [45]. However, the
apparent breaking of the improved Isgur-Wise relation does not surprise when we study
the nature of the parametrizations of the involved form factors f+ and fT . Schematically,
one has an expansion in powers of z ≡ z(q2) which reads

f+(q
2) =


n anz

n

q2 −M2
B∗

s

(C.7)

fT (q
2) =


n bnz

n

q2 −M2
B∗

s

(C.8)

with the coefficients an, bn determined by fits to, e.g., the LCSR results. When plugged
into Eq. (C.6), one finds naturally

RT (q
2) =

q2

MB(MB +MK)

b0
a0

+O(z) , (C.9)

and thus a strong q2 dependence with RT . Unfortunately, we cannot extract the shape
of fT from experimental data, since in all observables fT only enters with a numerically
small factors C7/C9. Further input from, e.g., LQCD is needed to determine the best
choice of form factor parametrization [45]. On the other hand, the low sensitivity to fT
allows us to apply the improved Isgur-Wise relation to our model-independent analysis
without adverse effects. Furthermore, choosing the form factors from Ref. [48] appears
justified, since they match the preliminary LQCD results in the low recoil region, further
LCSR results [62] in the large recoil region, and results from relativistic quark model
[100] for the both kinematic regions. We show a comparison of the individual form
factors results in Fig. C.3.
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lattice calculations [65] (points), normalized to the corresponding quantities
derived from Ref. [48] and as used in this work. Figure taken from Ref. [45].
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D. Introduction to EOS

The development of EOS [89], a framework for the evaluation of flavor observables,
was instrumental to the work presented in this thesis. The most recent source code
can be downloaded from http://project.het.physik.tu-dortmund.de/eos/
source. In this Appendix we would like to present an overview of this framework.
For this overview, we expect the reader to have a working knowledge in object oriented
programming with the C++ programming language. The EOS source code makes heavy
use of C++ features, some of which have only been introduced in the recently enacted
C++2011 standard. Readers interested in the development of EOS should further be
familiar with software design patterns. We start our tour with EOS’ use cases in Sec-
tion D.1. After that, we give insights into the nomenclature and concepts of the source
code in Section D.2. We conclude the chapter in Section D.3 with a brief description how
extensions to EOS can be developed by interested users.

D.1. Use Cases

EOS has been developed with two distinct use cases in mind. First, it is meant to nu-
merically evaluate flavor observables of several processes, for a large number of input
parameters and for varying kinematic variables. All these evaluations are intended to
be possible via a UNIX-like command line and within shell scripts. This use case is
achieved by means of the client eos-evaluate. It accepts a list of observables, their
associated kinematics and input parameters, and outputs the numerical values and as-
sociated theory uncertainties. Input parameters whose numerical values shall be varied
can be grouped into uncertainty budgets. An example on how to invoke this client for
one observable and with two uncertainty budgets, including the generated output, is
listed in Fig. D.1. We refer to Tab. D.1 for an overview of the set of flavor observables
that have been implemented within EOS at the time of this writing.

Furthermore, EOS is meant to constrain input parameters based on existing experi-
mental results. For this use case, the evaluation of observables needs to be reasonably
fast. Moreover, in order to effectively store samples of the parameter space from a multi-
threaded computation, a suitable storage backend is needed. For the latter, EOS uses the
HDF5 library. This use case is handled by the eos-scan family of clients. For the scans
presented in this thesis, the eos-scan-polynomial client has been used. Its usage
is restricted to scanning the complex-valued Wilson coefficients C7,9,10, and it will be
deprecated once development of the eos-scan-mc client has been completed. The lat-
ter client will be universally usable, i.e., it will allow to perform a Bayesian analysis by
means of Monte Carlo sampling of the complete Parameter space. We abstain from
listing examples on how to invoke the eos-scan or eos-scan-polynomial clients.
However, the scripts used to generate the data as used in Chapter 5 can be obtained
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D. Introduction to EOS

$ eos-evaluate \
--kinematics "s" "15.0" \
--observable "B->Kˆ*ll::H_Tˆ3(s)@LowRecoil,model=SM,form-factors=KMPW2010" \
--budget "FF" \
--vary "B->Kˆ*::FˆV(0)@KMPW2010" \
--vary "B->Kˆ*::FˆA1(0)@KMPW2010" \
--vary "B->Kˆ*::FˆA2(0)@KMPW2010" \
--vary "B->Kˆ*::bˆV_1@KMPW2010" \
--vary "B->Kˆ*::bˆA1_1@KMPW2010" \
--vary "B->Kˆ*::bˆA2_1@KMPW2010" \
--budget "SD" \
--vary "mu" \
--vary "mass::t(pole)" \
--vary "mass::W" \
--vary "GSW::sinˆ2(theta)"

(a)

# B->Kˆ*ll::H_Tˆ3(s)@LowRecoil:
# s central FF_min FF_max SD_min SD_max delta_min delta_max
15 -0.983845 8.59975e-16 1.11022e-16 0.00734327 0.00602218 0.00734327 \

0.00602218 (-0.746386% / +0.612107%)
(b)

Figure D.1.: Example (a) invocation and (b) output of the eos-evaluate client to nu-
merically evaluate the observable H(3)

T for the decay B̄0 → K̄∗0µ+µ− for
s ≡ q2 = 15.0GeV2. For the theory uncertainty, two budgets are defined,
each of which contains a number of input parameters that are varied within
their respective uncertainty regions.

from the author upon request.

Common to both use cases is the computation of running masses, couplings and the
underlying physical observables, as well utilities such as numerical integration, multi-
threaded computations and file storage. These common features are bundled in a set of
libraries and form the core of the EOS framework.

D.2. Concepts and Implementation

At the core of EOS’ design stands the concept of an Observable, which does not fully
coincide with the physical definition. For EOS, every quantity that is meant to be nu-
merically evaluated and presented to the user is an Observable. This includes, among
others, physical observables such as branching ratios and angular observables, but be-
yond those also form factors and short-distance couplings, e.g., ρ1,2(q2). EOS constructs
Observables at run time from an ObservableName via an abstract factory. For the
construction the factory further needs a set of Parameters, a set of Kinematics and
a set of Options. After construction, the Observable itself is immutable, and it can
evaluated. Changes to the Parameters object that was used in the Observables con-
struction will affect the evaluation. This enables EOS to efficiently accomplish both of
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the aforementioned use cases.

ObservableName is a standard C++ string with a fixed format. It consists of four
parts,

PROCESS::NAME@SUFFIX,KEYVALUELIST (D.1)

of which PROCESS and NAME are mandatory, SUFFIX can be used depending on the
PROCESS and KEYVALUELIST is always optional. As examples consider

B->Kˆ*gamma::S Kˆ*gamma ,

referring to a time-dependent CP asymmetry in B, B̄ → K∗0(→ Ksπ
0)γ decays, and

B->Kˆ*ll::A FB@LowRecoil ,
B->Kˆ*ll::A FB@LargeRecoil .

as the forward-backward asymmetry in B̄ → K̄∗ℓ+ℓ− decays at low and large recoil, re-
spectively. The SUFFIX is used to distinguish between observables for the same process,
e.g., when several kinematic regions demand different approaches to the calculation, or
when a switch to the next order is made for perturbative calculations.

Kinematics represents the set of kinematic variables, which are organized as a string
key and a double-precision floating-point value. All EOS clients allow building of the
Kinematics from the command line interface by preceding each --observable com-
mand by zero or more --kinematics commands. The syntax for the latter reads
--kinematic NAME VALUE. Note that the kinematics can only be used once for the
next --observable command. For repeated use of the same kinematics we recom-
mend using a shell script.

Options represents a set of key-value pairs: the key is a string with a (per Process)
unique identifier, and the value is also a string. Options are used as multi-value switches,
to select for instance form factor results, as well as lepton and quark flavors. The semilep-
tonic |∆B| = 1 Observables all recognize the following Options:

model Selects the Model class which shall be used for the evaluation. Valid values are
SM and WilsonScan.

form-factors Selects the form factor class which shall be used for the evaluation.
Valid values depend on the concrete Observable.

q Selects the final state quark flavor. Valid values are s and d.

l Selects the final state lepton flavor. Valid values are e, mu and tau.

Parameters represents a set of key-value pairs, which are organized as a string key
and a three-tuple of double-precision floating-point values. By default, each parameter
is initialized with a minimal, a central and a maximal value. The default Parameters
can be obtained from the named constructor Parameters::Default(). For a com-
plete list of Parameters we refer the reader to the eos-list-parameters client.
The latter accepts --kinematics / --observable commands, which restricts the list
of parameters to only those which are used by the Observable(s) at hand.
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Model represents a physical model for which an observable is evaluated. It provides
access to the running quark masses, CKM matrix elements and |∆B| = 1 Wilson coef-
ficients. By default, all observables are created with the SM Model. However, for the
determination of the |∆B| = 1 Wilson coefficients, the WilsonScan Model should be
used.

D.3. Development

EOS is meant to be expanded by interested parties, and its design reflects the wish to
reduce the amount of work needed for such expansions. An interested developer might
most likely want to add further Observables to EOS.

The requirements for adding a further Observable are few. First, one needs to im-
plement the numerical evaluation of the underlying process within a new class1, named
NewProcess in the following. Each exported Observable should correspond to one
public const method of NewProcess. All input parameters used in the evaluation
must be UsedParameter members of NewProcess’s implementation. In a last step,
the Observable factory within eos/observable.cc needs to be made aware of the
new Observables by linking the class’ methods to its unique ObservableName. The
kinematic variables must be provided to the methods as const double references, and
they are associated by name and order through a list of unique identifiers. A hypotheti-
cal example for the cross section of a process AB → CD, as a function of s, the center of
mass energy squared, is given in Fig. D.2. Once the above steps are completed, all EOS
clients that accept --observable as a command line argument will be able to use the
newly introduced Observable.

1For details on the class structure, we refer to the EOS source code. The source file
eos/rare-b-decays/exclusive-b-to-dilepton.cc and its eponymous header file should be
a good start for a relatively simply-structured decay. For processes with a larger number of observables,
see eos/rare-b-decays/exclusive-b-to-s-dilepton-low-recoil.cc for instance. Readers
of the source code should be advised that EOS makes extensive use of the private implementation de-
sign pattern.
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#include <eos/utils/parameters.hh>

class ABToCD
{

UsedParameter g;
ABToCD();
double diff2_sigma(const double & s, const double & theta) const;
double diff1_sigma(const double & s) const;

};

(a) New file eos/a-b-to-c-d.hh

#include <eos/a-b-to-c-d.hh>

class ABToCD
{

UsedParameter g;

ABToCD(...) :
g(p["g"], u)

{
}

double diff2_sigma(const double & s, const double & theta) const
{

return g * g / (4.0 * M_PI) / s * std::sin(theta);
}

double diff1_sigma(const double & s) const
{

return g * g / (3.0 * M_PI) / s;
}

}

(b) New file eos/a-b-to-c-d.cc

// At the top of the file
#include <eos/a-b-to-c-d.hh>
...

// Inside the std::map’s initializer list within Observable::make()
make_observable("AB->CD::sigma(s,theta)", &ABToCD::diff2_sigma,

std::make_tuple("s", "theta")),
make_observable("AB->CD::sigma(s)", &ABToCD::diff1_sigma,

std::make_tuple("s")),

(c) Within eos/observable.cc

// Within the std::initializer_list inside Parameters::Defaults()
Parameter::Template{ "g", -1.0, +0.1, +1.0 },

(d) Within eos/utils/parameters.cc

Figure D.2.: Example on how to add two observables (a double-differential and a single-
differential cross section) for a hypothetical process AB → CD to EOS. For
any yet undeclared parameter used by the new process, an addition similar
to (d) must be made.
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EOS Name Suffixes Kinematics Symbol Ref

B->Kˆ*gamma::BR — B(B̄ → K̄∗γ) [51]

B->Kˆ*gamma::S Kˆ*gamma — SK∗γ [51]

B->Kˆ*gamma::C Kˆ*gamma — CK∗γ [51]

B->Kˆ*gamma::A I — AI [52, 51]

B->Kˆ*ll::BR LargeRecoil, LowRecoil smin, smax B(B̄ → K̄∗ℓ+ℓ−) [51, 44]

B->Kˆ*ll::A FB LargeRecoil, LowRecoil smin, smax AFB [51, 44]

B->Kˆ*ll::F L LargeRecoil, LowRecoil smin, smax FL [51, 44]

B->Kˆ*ll::A Tˆi LargeRecoil, LowRecoil smin, smax A
(i)
T [51, 44]

B->Kˆ*ll::H Tˆi LargeRecoil, LowRecoil smin, smax H
(i)
T [51, 44]

B->Kˆ*ll::a CPˆi LowRecoil smin, smax a
(i)
CP [60]

B->Kˆ*ll::A I LargeRecoil smin, smax AI [52, 51]

B->Kll::BR LargeRecoil, LowRecoil smin, smax B(B̄ → K̄ℓ+ℓ−) [38, 45]

B->Kll::F H LargeRecoil, LowRecoil smin, smax F ℓH [38, 45]

B->Kll::R K LargeRecoil, LowRecoil smin, smax Re,µK [38, 45]

Table D.1.: List of observables that are implemented within EOS at the time of this writing. We give the EOS base name, the applicable
suffixes, the needed kinematic variables, as well as the usual symbolic representation and a reference for the numeric
implementation (see also references therein) for each observable. In the case of B̄ → K̄(∗)ℓ+ℓ− observables, we only list
the (partially) s ≡ q2 integrated observables. For the q2 differential observables, the name must be appended by (s), and
the kinematic variable reads likewise.
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List of Acronyms

BSM Beyond the Standard Model

CKM Cabibbo-Kobayashi-Maskawa

FCNC Flavor Changing Neutral Current

HQET Heavy Quark Effective Theory

LHC Large Hadron Collider, not to be confused with a Large Hardon Colluder

LCSR Light Cone Sum Rules

LQCD Lattice QCD

NP New Physics

OPE Operator Production Expansion

QCD Quantum Chromo Dynamics

QCDF QCD Factorization

SCET Soft Collinear Effective Theory

SM Standard Model
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