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Abstract

This thesis introduces a description of altered dispersion relations and CPT-violating effects
in neutrino oscillations and charged lepton decays. Such phenomena can arise, e.g., in the
early Universe and models with extra spatial dimensions.

We develop a perturbation theory for the coherence vector description of neutrino oscilla-
tions and propose a unified approach to adiabatic and nonadiabatic two-flavor oscillations
in neutrino ensembles with finite temperature and generic potential terms. We neglect en-
semble decoherence and solve the associated quantum kinetic equations. Eventually, we
apply the methodology of said perturbation theory to neutrino ensembles in the presence
of decohering interactions.

Moreover, we develop a nonadiabatic perturbation theory for oscillations involving an ar-
bitrary number of neutrinos and antineutrinos. We include lepton-number violation in the
approach and treat it as a small perturbation parameter. We find that small lepton-number
violation in vacuo can be enhanced in CP-odd matter and apply the formalism to the two-
generation case.

Finally, we investigate low-energy CPT-violating modifications in charged current weak
interactions. We analyze muon and antimuon decays and, using the difference in their
lifetimes, put bounds on the CPT-violating parameters. We also elaborate on muon and
antimuon differential decay rates.

Zusammenfassung

Die vorliegende Dissertation behandelt eine Beschreibung verdnderter Dispersionsrelatio-
nen und CPT-verletzender Effekte in Neutrinooszillationen und dem Zerfall geladener
Leptonen. Solche Phianomene konnen unter anderem im frithen Universum und in Mod-
ellen mit zusdtzlichen Raumzeitdimensionen auftreten.

Wir entwickeln eine Storungstheorie fiir den Kohidrenzvektorformalismus von Neu-
trinooszillationen und einen vereinheitlichten Zugang fiir adiabatische und nicht-
adiabatische Neutrinooszillationen zwischen zwei Generationen in Neutrinoensembles
mit endlicher Temperatur und generischen Potenzialen. Dabei vernachldssigen wir
Dekohdrenz des Ensembles und 16sen die quantenkinetischen Gleichungen. Schliefllich
wenden wir die Methodik der Storungstheorie auf Neutrinoensembles an, in denen
Dekohdrenz auftritt.

Dariiberhinaus entwickeln wir eine nichtadiabatische Stérungstheorie fiir Oszillationen
zwischen einer beliebigen Anzahl von Neutrinos und Antineutrinos. Wir beziehen dabei
Verletzung der Leptonzahl mit ein und behandeln diese als kleinen Stérungsparameter. Es
zeigt sich, dass eine kleine Leptonzahlverletzung im Vakuum verstirkt werden kann in
Materie, welche die CP-Symmetrie bricht. Wir untersuchen weiterhin den Fall von Oszil-
lationen zwischen zwei Neutrinogenerationen.

Schliefslich betrachten wir Modifikationen von geladenen schwachen Stromen durch Ver-
letzung der CPT-Symmetrie bei niedrigen Energien. Wir untersuchen Zerfille von My-
onen und Antimyonen und verwenden die Vorhersage fiir deren unterschiedliche Lebens-
dauern, um die Groéfsenordnung der CPT-verletzenden Parameter einzuschranken. Weit-
erhin untersuchen wir die differentiellen Zerfallsraten von Myonen und Antimyonen.
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1 Introduction

The physics of neutrino oscillations must per se be considered physics beyond the stan-
dard model of particle physics, since the latter does not allow for neutrino masses. Neu-
trino masses, however, are essential for neutrino-flavor oscillations. This is one of the
shortcomings of the standard model of particle physics, which leads us to explore novel
pathways beyond the established picture.

One promising environment to study the ramifications of nonvanishing neutrino mas-
ses is the early Universe: elementary particles form a hot, interacting plasma, in which
frequent scattering among its constituents is taking place. In such an environment neu-
trinos are considered as a quantum ensemble with finite temperature [2]. The frequent
scattering of neutrinos off particles from the background plasma results in a small mean
free path of neutrinos and introduces decoherence into the ensemble. The time evolution
of such neutrino ensembles is encoded in their coherence vector [3].

The possibility of CPT violation can be thought of as another such endeavor to under-
stand physics beyond the standard model and it comes in close conjunction with the en-
deavor of understanding neutrino oscillation anomalies, which we shall discuss shortly.
Much theoretical prejudice goes in the favor of CPT invariance. This may be attributed to
the fact that all Poincaré-invariant field theories are found to be CPT-invariant [4]. Other
consequences of CPT invariance, such as the equality of masses and lifetimes for par-
ticles and antiparticles, have been scrutinized experimentally to a fairly good accuracy
[5]. However, the question of whether CPT violation manifests in observables is again
ultimately an experimental one and it is conceivable that effects of CPT violation are
disguised by the current experimental threshold of accuracy. Also there are attempts to
explain neutrino oscillation anomalies by means of CPT-violating neutrino oscillations. It
is therefore an interesting exercise to consider effective quantum field theories which are
not invariant under CPT as well as ramifications of such theories in neutrino oscillation
phenomena [6].

Altered dispersion relations are a feature which both neutrino ensembles in the early
Universe as well as CPT-violating effects in neutrino oscillations have in common. Dis-
persion relations describe the connection between the energy E, momentum p'and mass
m of a particle. In their standard form they are just given by the relativistic expression
E? = p% + m?. This simple expression is modified in the early Universe and in mod-
els with CPT violation. In the former case such altered dispersion relations arise, e.g.,
because of effective potentials neutrinos are subject to due to their scattering off back-
ground particles [7]; in the latter case violation of CPT introduces nonstandard energy
dependences into the oscillation Hamiltonian and thereby gives rise to altered disper-
sion relations [6]].



1 Introduction

We shall elaborate further on the questions of neutrino ensembles in the early Universe,
violation of the CPT symmetry and consequences of altered dispersion relations in the
course of this thesis. Before doing so, however, let us recapitulate the history of the
neutrino as it dates as far back as the year 1930 despite it being such an elusive particle.

In the year 1930 Pauli postulated the existence of a neutral particle in order to rec-
oncile the findings by Chadwick that electrons emitted in radioactive 3 decay reveal a
continuous energy spectrum with the principle of energy conservation. It took, however,
another four years before Fermi developed a theory of 8 decays [8] which introduced
the electroweak scale and overcame the misconception that the neutrino should be a par-
ticle bound in atomic nuclei rather than being created in a decay process. After more
than twenty years later the first direct detection of neutrinos was performed [9] and the
observed neutrinos were identified to be left-handed particles [10] in 1958. In the 1960s
Pontecorvo suggested the idea of neutrino oscillations [11] and as of the 1970s the Home-
stake experiment began to measure the solar neutrino flux [12]. Eventually, by the end of
the 1980s first evidence for atmospheric neutrino oscillations began to show in the data
of the Kamiokande experiment [13]].

In fact atmospheric [14, 15] and solar [16] [17] neutrino oscillation data are, besides
reactor experiments [18| 19, 20, 21], still the main source for the extraction of neutrino
oscillation parameters. The atmospheric (Am3;) and solar mass splitting (Am?,) as well as
the solar (012), atmospheric (023) and reactor (613) mixing angles are being measured with an
ever increasing precision [22]]. Recent measurements of the Daya Bay reactor experiment
[21] even suggest the first conclusive evidence for a nonvanishing mixing angle 6,3, and
therefore pave the way for exploring the possibility of CP violation in the lepton sector.
The CP-violating Dirac phase § cannot currently be accessed by existing experiments.

The picture of neutrino oscillation phenomena is, however, far from being complete
or consistent. It is, for instance, yet unknown whether neutrinos obey a normal or in-
verted hierarchy, i.e., whether the first or third mass eigenstate is the lightest. There is
currently no information about possible CP violation in the lepton sector, i.e., the value
of the CP-violating phase in neutrino oscillations is completely unknown. Moreover,
there are long-standing neutrino oscillation anomalies. The latter notion refers to neutrino
oscillation experiments which cannot be reconciled with the standard description of neu-
trino oscillation phenomena. Among those exceptional experiments are LSND [23] and
MiniBooNE [24, 25]. The LSND collaboration finds a third mass splitting for neutrinos,
whereas the MiniBooNE collaboration observes as yet unexplained excesses in both the
neutrino and antineutrino oscillation data. The latter data are also consistent with the
LSND findings but not with expectations in the standard neutrino oscillation picture. As
deviations from an expected outcome are always interesting since they may point to-
wards new physics, there has been a plethora of theoretical speculations as to the nature
of such neutrino oscillation anomalies. These speculations range from additional light
sterile neutrino species, nonstandard neutrino interactions [26], and extra spatial dimen-
sions [27, 28] to CPT violation in the lepton sector [6} 29]. It is possible that the reported



neutrino oscillation anomalies might not last and may eventually be refuted by future
oscillation experiments. The question, however, whether physics beyond the established
picture of flavor oscillations in neutrinos with similar signatures exists, is ultimately an
experimental one. It is therefore a sensible exercise to further our understanding of neu-
trino oscillations and possible explanations of anomalies in this sector on the theoretical
frontier.

In this thesis we pursue different strategies. We provide and develop novel techniques
to treat neutrino oscillations by means of a perturbation theory in a suitably small quan-
tity, which we specify in each application correspondingly. We then utilize these novel
techniques to study a framework for neutrino oscillations in which lepton-number is not
conserved and also CPT violation is possible. The possibility of CPT violation in neutri-
nos is then extended to charged current weak interactions and we study the impact of
CPT nonconservation on muon and antimuon decays.

The structure of this thesis hence assumes the following form. In chapter 2l we gather
the necessary preliminaries for the subsequent studies. We focus on the introduction of
the standard picture of neutrino oscillations, mathematical means such as the Magnus
expansion and the coherence vector as a convenient formalism to describe neutrino oscil-
lations. We conclude this chapter with an account on CPT violation in both the neutrino
sector and charged current weak interactions. In chapter [8|we develop an adiabatic and
nonadiabatic perturbation theory for the coherence vector description of neutrino oscil-
lations. We focus on a two-flavor system and pay special attention to the methodology
of this novel technique. We also briefly present an application of the perturbation theory
methods in an early Universe framework. In chapter 4 we turn our attention to lepton-
number violation in neutrino oscillations and develop a novel perturbation theory, which
treats lepton-number violation as a small effect relative to the standard description of
neutrino oscillations. We derive neutrino oscillation probabilities for a system of an ar-
bitrary number of neutrino flavors and exemplify how lepton-number violation affects
one- and two-generation oscillations. In order to furnish the to some extent abstract con-
siderations of developing perturbation theories with some phenomenological thoughts,
we briefly present two different models for neutrino oscillations with altered dispersion
relations in section Eventually, in chapter |5 we study CPT-violating modifications
in charged current weak interactions and apply them to muon and antimuon decays.
We derive expressions for the difference in lifetimes and the differential decay rates. We
conclude our analysis in chapter [6]






2 Physical and mathematical preliminaries

In the following sections we collect both mathematical and physical preliminaries which
are essential for an understanding of the work presented in this thesis. In order to keep
the notational burden to a minimum and facilitate readability, we shall mostly entertain
the idea of a descriptive introduction to the topic rather than dwelling upon details of
derivations and mathematical proofs. We give references where the latter can be found
and restrict our attention to conveying the basic concepts.

2.1 Neutrino oscillations and the standard model

Let us begin our introductory remarks on physical and mathematical preliminaries with
a concise review of the aspects of the standard model which are essential for our under-
standing of neutrino oscillation phenomena. While we shall briefly discuss the issues of
neutrino masses in the standard model and the associated difference between mass and
weak eigenbases, we shall not give a detailed description of neutrino mass models and
their possible origins in physics beyond the standard model.

The standard model of particle physics is based on the concept of gauge invariance. The
three relevant types of interactions — electromagnetic, weak and strong — are associated
with three different gauge groups. The strong interaction features a SU(3)¢ color symme-
try, the weak interaction comes with a left-chiral SU(2);, and the electromagnetic inter-
action is described by a U(1)y with hypercharge Y as the associated quantum number.
Such is the situation before spontaneous symmetry breaking via the Higgs mechanism
[30, 131,132, 33]. The question of whether fermions are affected by any of the three funda-
mental interactions then is one of their representation under the aforementioned groups.
Neutrinos are neutral fermions which neither participate in the electromagnetic nor the
strong interactions; they are singlets under the associated gauge groups of the standard
model. There are three active neutrinos in the standard model, which are left-handed
and are part of the lepton doublet in the chiral representation of SU(2)r,. We denote the
doublets of neutrino v; and electrically charged lepton I;” Dirac spinors as

Li:<l”_"> , (2.1)
/L

where ¢ = 1,2,3 is a flavor index labeling the different lepton flavors e, 4,7 and the
subscript L denotes a projection onto left-chiral states via the projection operator P, =
%(1 — 75). Since the electrically charged fermions are part of the chiral representation of
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the gauge group, their mass terms are generated via Yukawa interactions. We write the
Lagrangian density for the leptonic Yukawa couplings as

£Yukawa = _Y;lj L1¢Rj + h.c. s (22)

where Yzl] is the leptonic Yukawa coupling, ¢ is the standard model Higgs doublet and
R; are the three right-handed charged fermion singlets under the chiral gauge group
SU(2). The Higgs field assumes a vacuum expectation value (¢) = (0,v/v/2)" and
thereby breaks the SU(3)c x SU(2)1, x U(1)y symmetry down to SU(3)c X U(1)em. In the
process of spontaneous symmetry breaking, the Yukawa interactions give rise to charged
fermion masses; neutrinos, however, remain massless [34].

The standard model also has several shortcomings such as the fine-tuning problem of the
Higgs mass and unification of gauge couplings to mention only a few [35]. Therefore, it
is sensible to think of the standard model of particle physics as an effective low-energy
theory, which is valid up to some scale A which characterizes the onset of physics beyond
the standard model. If we take this viewpoint [36, 37, 38], we have to write down also
nonrenormalizable terms in the Lagrangian. There is a dimension-five operator, which is
consistent with the gauge symmetry of the standard model,

z,

and which leads to neutrino masses given by

AR
MM Zu 2.4
) 2 A ( )

upon symmetry breaking. One might expect similar terms induced by loop corrections
in a purely standard model framework. Such terms, however, do not arise since lepton-
number conservation is an accidental symmetry of the standard model. From the theoret-
ical point of view such neutrino mass terms are very attractive. Since the dimension-five
operator is a generic one, we conclude that neutrino masses are likely to appear in ex-
tensions of the standard model and they will be suppressed by v/A, which may serve as
an explanation of the smallness of neutrino masses. Eventually, such a term also breaks
total lepton-number as well as lepton-flavor symmetry, if Z; has nondiagonal entries.
Violation of CP and lepton mixing are therefore likely to occur in the lepton sector. The
most prominent example, that gives rise to the kind of dimension-five operator discussed
here, are seesaw models [39, 40].

Such is the situation if we consider the standard model as a low-energy effective the-
ory in which only left-handed neutrino states (and their associated antiparticles) are
present. Those neutrinos can be given a mass via the nonrenormalizable operator dis-
cussed above. The picture changes if the existence of new fields beyond the standard
model particle content is assumed. In the most natural extension, the right-handed coun-
terpart vr; for each left-handed neutrino vy, of flavor i is added. Two different types of
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mass terms arise

— 1— 1
_ _— D D ¢ MR, ML ¢
Linass = —VLi Myj vrj — vi; Mi; vg; — 3 LM vRy — iyLzMz‘j vg; +hec. (2.5)

They are labeled Dirac (M,L]jD ) and Majorana (M;}A by, (M%’R) mass terms, respectively,
and v¢ denotes the charge-conjugated field v = Cv", where C is the charge conjugation
operator. The mass terms in Eq. represent the most general situation in which both
left- and right-handed neutrinos are present and in which neutrinos have both a Dirac
and a Majorana mass. The Dirac mass term can be generated from Yukawa couplings
connecting the left-handed lepton doublets, the charge-conjugated Higgs field, as well
as right-handed neutrinos after spontaneous symmetry breaking in analogy to charged
fermion masses. Furthermore, it conserves total lepton-number. The Majorana mass term
can be generated from nonrenormalizable Yukawa interactions as indicated above. On
the other hand, such a mass term can be generated effectively by integrating out heavy
right-handed v, giving rise to various versions of the seesaw mechanism. Such models
have a number of attractive features, which we shall not discuss here as they do not add
any insight where lepton mixing is concerned. A Majorana mass term violates lepton-
number by two units and hence such terms are only allowed if neutrinos do not carry
any conserved (additive) charge.

Let us focus on the Dirac mass term for the time being. Suppose the charged lepton mass
term has been diagonalized. We then need only consider diagonalization of the Dirac
neutrino mass term by means of a rotation in flavor space. This rotation is different for
left- and right-handed neutrinos

Vi, = Uij Vﬁj, (26)
vRi = Vijug, (2.7)

implying that the diagonal mass term 1/, (Ifiag is given as
MR,, = ViIMPU. (2.8)

The diagonalization of the Majorana mass term can be done along similar lines with the
exception that only one diagonalization matrix is needed [34].

The fact that weak interaction (or flavor) and mass eigenstates are two distinct concepts
for neutrinos has consequences both for charged current weak interactions as well as
neutrino propagation in vacuo.

Using the mass eigenstates 1/, the leptonic charged current weak interaction Lagrangian
[41), 142]] reads

9 —— -
Lec = —\ﬁ’/ﬁi(UT)iﬂ”leWJ the., 29)
where [ ; are the charged left-handed leptons. Now, U T is the unitary lepton mixing ma-
trix, which is named PMNS matrix after Pontecorvo, Maki, Nakagawa, Sakata [43]. The mix-

ing can be parametrized using three independent rotations in flavor space each through
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an Euler angle 0, and one CP-violating Dirac phase J. Choosing the abbreviatory nota-
tion c;, = cos 0, and sj;, = sin 6, one possible parametrization for U is found to be

—1d

c12€13 512€13 s13€
_ i i
U = | —s12c23 — C12523513€"°  C12¢23 — S12523513€" 523¢13 | » (2.10)
i i
512823 — C12C23513€"°  —C12823 — S12C23513€"  €23513

where we have omitted two Majorana phases since those do not affect neutrino oscillation
probabilities [44, 45].

The different mixing angles have different common names for historical reasons. The an-
gle 617 is termed solar mixing angle since this angle has been measured in solar neutrino
oscillation experiments for the first time. The energy source of the sun is nuclear fusion.
In the sun’s core neutrinos are produced, e.g., via the 4He reaction: 4p+2e~ — ‘He + 2v,.
The total neutrino spectrum emitted by the sun is complex due to the fact that different
reaction cycles exist which produce neutrinos [38].

The angle 653 is also commonly known as the atmospheric angle. Again this is because
it was measured for the first time in an experiment designed to study atmospheric neu-
trinos. Atmospheric neutrinos are produced in collisions of cosmic rays with the nuclei
of air in the Earth’s atmosphere [38]. These collisions produce pions, which decay into
muons and neutrinos (e.g., via the reaction 7t — p*wv,). Due to the relativistic dilata-
tion factor the muons travel some distance before they decay into electrons and neutrinos
(e.g., via the reaction ut — etr.,).

Eventually, 6,3 is the most elusive of the three neutrino mixing angles and has only
recently been determined to be nonvanishing [21]. Reactor mixing angle is another name
for 013 since reactor experiments turn out to be most suitable to measure it. The idea be-
hind reactor experiments is that nuclear fissions in the reactor’s core produce low-energy
v, abundantly, which then can be measured by a detector near the nuclear power plant.

In experiments involving neutrinos the flavor eigenstates are most relevant. A neutrino
produced by electroweak interactions is not a mass but a weak interaction eigenstate. Let
us therefore consider the propagation of a neutrino flavor eigenstate in vacuo [11) 34, 46].
In the case of off-diagonal entries in the neutrino mass matrix, a flavor eigenstate v, in
vacuo is a linear combination of mass eigenstates v/, which evolve in time. Therefore, we
can write the flavor eigenstate v, at time ¢ according to

ZU@

We can then construct the transition probability [46] for a flavor v, converting into a

V). (2.11)

flavor v via

P(ve — v5) = | (vg]va(t) Z iU U, Upje BBt (2.12)
where we use the usual approximation of the neutrino wave functions as plane waves.
There are some subtleties concerning the formulation of quantum mechanics for neu-
trino oscillations, which we do not discuss here. The reason for our omission of such a
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discussion is that the expressions for the neutrino oscillation probabilities obtained from
a plane wave ansatz are reproduced in a more careful treatment using, e.g., wave packets
[47,48]. The energies E; of the neutrino states can be taken to be ultra-relativistic in all

P —— m2
Di

Furthermore, it is justified to assume p; ~ p; = p for the neutrino momenta such that the

relevant cases

parameters determining neutrino oscillations are the ingredients of the lepton mixing ma-
trix (three mixing angles and one CP-violating phase) and two mass-squared differences.
It is important to understand that neutrino oscillation phenomena do not discriminate
between Dirac and Majorana neutrinos. For both cases the formalism describing neu-
trino oscillations is identical [44), 45]. We can further rewrite [49] the vacuum neutrino
oscillation probability P(v, — v5) making use of assumption (2.13). We have

Am2.L Am2.L
P(va — 1v3) = b — 4ZReJ;f sin? <4EJ> + 2ZImJgﬂ sin <2EJ> . (2.14)
i>j i>]

We have introduced the expression ij‘ﬂ = U.;UgU,;Us,;, which has been termed quartic
rephasing invariant [50]. Furthermore, we have written the mass-squared differences be-
tween the neutrino mass eigenstates as Am?j =m? — m? and replaced the travel time ¢
of the neutrinos by the distance L between the source and the detector, which is justified
for ultra-relativistic particles. Note, eventually, that the term in the oscillation probability
proportional to the real part of the rephasing invariant is CP-conserving, whereas the one
proportional to its imaginary part violates CP. Neutrino flavor oscillations are hence sen-
sitive to neutrino mass-squared differences, mixing angles and leptonic CP violation. The
different mixing angles have already been commented on. Let us add that there are two
linearly independent mass-squared differences, namely the solar mass splitting Am?,
and the atmospheric mass splitting Am3,. The sign of the mass splittings determines the
hierarchy of the neutrino mass eigenstates. It is known from solar neutrino experiments
that the mass splitting Am?, has positive sign and that hence the first mass eigenstate is
lighter than the second one. The sign for the atmospheric splitting, however, still eludes
us. It is therefore as yet unknown whether neutrinos obey a normal (m; being the lightest
mass eigenstate) or inverted (m3 being the lightest mass eigenstate) hierarchy.

Moreover, the standard picture of neutrino vacuum oscillations, as described here, pre-
dicts a certain spectral dependence of the oscillation probability on L and E, which is a
direct consequence of the neutrino dispersion relation. The latter gives the connection
between neutrino momentum, energy and mass and for vacuum oscillations leads to
a spectral dependence, which is just L/E. This simple relation need not hold for, e.g.,
CPT-violating extensions of the standard picture of neutrino oscillations as we shall see
in due course.

We shall not delve into further details of neutrino oscillations in vacuo or matter since the
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upcoming considerations entail sufficient information and formal developments in this
direction.

2.2 The Magnus expansion

The bulk of the work presented in this thesis heavily relies upon a certain mathematical
technique which is termed Magnus expansion and which we shall use to provide novel
calculational tools for different areas in the physics of neutrino oscillations. In this sec-
tion we shall briefly review the main ideas of this perturbative expansion and provide the
necessary means for its application to the physics scenarios studied in the course of the
upcoming sections. The Magnus expansion is a mathematical tool used for obtaining per-
turbative solutions to nonautonomous linear differential equations for linear operators.
One example for this type of equations is the Schrédinger equation for neutrino oscil-
lations. According to Magnus’ theorem the solution to such an equation can be written
as a matrix exponential for the Magnus operator. The latter is calculated from the evo-
lution matrix of the system by means of a series expansion as shall be seen shortly. We
shall mention some reasons why the Magnus expansion is a convenient way of treating
neutrino oscillations in this section; among other things it allows to treat systems with an
arbitrary number of neutrino generations as we shall show in chapter

In the following consideration we shall abstain from mathematical rigor when it comes
to proving the results which we present. The proofs of the theorems to be stated can be
found in the literature [51] and do not add any additional insight as far as applications of
and the assignment of physical meaning to the theorems are concerned.

In order to achieve compact appearance and readability of the upcoming expressions, we
introduce some convenient notations first. For our purposes it shall suffice to consider
a finite n-dimensional Lie algebra g of matrices. In this algebra we define the associated
Lie bracket as the usual matrix commutator [4, B] = AB — BA, where A, B € g. We can
then associate with any element A € g a linear operator ad4 : g — g which acts upon any
element B of the Lie algebra as

adaB = [A,B], ad4B=[A,ad}'B], ad}B =B, i€N, A Beg (215

Moreover, it is important to have the notion of some type of matrix norm at one’s dis-
posal. A matrix norm is a real, non-negative number ||A|| ascribed to any matrix A €
C™*™, which satisfies the following properties

@) [|A]l >0 VAe€gaswellas||A|| =0iff A=0.
(i) [JeAll = laf]|A]] VYo eC.

(iii) [[A+ Bl <[[A]l + [|BI].

10



2.2 The Magnus expansion

Different types of matrix norms exist. However, in a Lie algebra of finite-dimensional
matrices, all such norms are found to be equivalent and related by certain inequalities.
We shall hence focus on one particularly useful matrix norm, the Frobenius norm

IAl[p = tr (474) 2.16)

for any A € g and where trA is the trace of the matrix A. An interesting feature of the
Frobenius norm is that it is unitarily invariant. By this we mean ||[UAV|| = || 4| for uni-
tary matrices U and V" as can be inferred from the norm’s definition.

After this preliminary introduction of terminology and notation let us start describing the
nature of the Magnus expansion and its applications. The Magnus expansion is a tool for
perturbatively solving nonautonomous linear differential equations for linear operators.
To be more precise, consider the linear evolution equation

dY (¢

dv(e) _ A)Y (1) (2.17)
dt

for the operator Y () supplied with the initial condition Y (¢ = tp) = 1 and in which A(%),

henceforth termed the evolution matrix, is a known function of ¢. The Magnus theorem

[52] then states that Y (¢) can be written as a true exponential of the Magnus operator €(t)

according to
Y (t) = exp Q(t) (2.18)

and that under this assumption 2(t) satisfies the following differential equation
Qo K1 ;
5 = > o BiadoA, (2.19)
i=0

where B; are the Bernoulli numbers. The first few nonvanishing Bernoulli numbers are
By=1,B1 = —%, By = %, By = —%. It is understood that Magnus’ proposal immedi-
ately poses the question of existence of a true exponential solution for certain values of
t and certain operators A. Existence of a true exponential solution can be ensured under
fairly general assumptions, which we shall state in due course. Let us for now elaborate
on how to solve the subsidiary evolution equation for the Magnus operator by means of
a perturbative expansion. To this end, suppose the operator A contains a smallness param-
eter ¢, which can be factored out in such a way that substituting A by €A is possible. In
this case suppose furthermore the Magnus operator can be written as a series expansion
according to

Qt) = i (1), (2.20)
=1

such that each Magnus approximant Q;(t) is of order ¢'. This series expansion for the Mag-
nus operator can now be substituted into the underlying subsidiary differential equation
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2 Physical and mathematical preliminaries

for (t) along with the replacement of A by ¢A. Doing so and equating corresponding
powers in ¢ on the right hand side and left hand side of the resulting equation reveals
explicit expressions for the different approximants. The original Magnus expansion is
then obviously recovered by setting ¢ = 1. The first two approximants are then found to
obey

t
Q) = / dr A7), 2.21)
to
t t1
D) = /t at, / dt [A(h), A(ta)] 2.22)

Higher-order terms can be obtained and have been worked out in the literature [51, 53].
We leave the question untouched how to efficiently construct higher-order terms and
whether a closed-form expression for €;(t) exists. We shall also not state higher-order
terms here since the upcoming considerations only involve the Magnus expansion up to
second order in the approximants. We shall, however, remark that all such terms con-
tain nested commutators of the evolution matrix evaluated at different times. Hence, the
Magnus expansion gives the exact solution to the differential equation under considera-
tion already in first order if the evolution matrix is self-commuting at different times (e.g.,
if the time dependence can be factored out of the matrix). This is, for instance, the case
for a time-independent evolution matrix. The latter fact motivates a manner of speaking
in which the Magnus expansion for nonautonomous linear differential equations can be
regarded as a (time-dependent) perturbation expansion around the autonomous (static)
solution (the case in which the evolution matrix is time-independent and hence the dif-
ferential equation easily solved by mere exponentiation).

The fact that we write the Magnus operator as a series immediately leads to another
issue, which has to be addressed in a rigorous treatment, namely for which values of ¢
and for which operators A does the series actually converge. We do not go into detail
when it comes to addressing the questions of existence and convergence of the Magnus
expansion but simply state the answer to these issues for the case, which is of interest
for the purposes which concern us here [51]. Let us therefore consider the differential
equation on a finite-dimensional Hilbert space with the initial condition Y (¢ =
to) = 1, and suppose A(t) is a bounded operator on this space, i.e., its matrix norm is
finite. In this case the Magnus series Q(t) = >_>°; Q;(¢) with the approximants ©;(¢) (as
given above for the first two orders), converges in the interval ¢ € [to, t.[ such that

te
/ dr ||A(T)|| <« (2.23)
to
and the sum of the approximants, i.e., the Magnus operator satisfies Y (t) = exp §(t).
This integral expression involving the convergence bound t. is particularly helpful if one
aims at discriminating between two solutions for reasons of their convergence proper-
ties. Note, also, at this stage of our analysis that using the Frobenius norm for the matrix
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2.2 The Magnus expansion

norm implies that unitary transformations of A(t), e.g., a change of basis in the differen-
tial equation determining Y'(¢), does not alter the convergence properties. The statement
about convergence and existence of the Magnus expansion on finite-dimensional Hilbert
spaces is, of course, easily applied to the space of finite-dimensional matrices we are con-
cerned with.

As a matter of fact, there is some virtue in a change of basis prior to attempting to solve
the actual differential equation [51]]. Suppose the matrix A(t) can be decomposed into an
exactly solvable part Ay(t) and a perturbation € A;(¢) according to A(t) = Ag(t) + €A (1)
with a small perturbation parameter €. In such a situation it is possible to integrate out
the exactly solvable part. In general, one may decompose the matrix A(¢) by means of a
linear transformation F'(t) according to

A(t) = F(t)Ap(t)F(to). (2.24)

In the new basis, which we shall refer to as the F-picture henceforth, the evolution equa-
tion for Yr(¢) reads

dYi(t)
dt

= Ap(t)Yp(t)  with  Ap(t) = FT(#)AQ)F(t) — FT(t)dZit). (2.25)

Suppose for now F'(t) is a unitary transformation. In that case the matrix norm of the first
term in the expression for Ar(t) is clearly identical to the matrix norm for A(t). It is only
by virtue of the time dependence of the linear transformation F'(¢) that the matrix norm
of Ap(t) is altered with respect to the matrix norm of the evolution matrix in the original
basis — as can be seen from the second term in the expression for Ar(t). Hence, it is seen
that a linear transformation prior to solving the differential equation can in fact improve
the domain of convergence as well as the accuracy of the perturbation expansion. We
shall also see in due course that such changes of basis can add to understanding physical
properties of the system it is applied to and reveal quantities suitable to characterize the
physics of the system under consideration. It shall then also become clear that a succes-
sion of different linear transformations prior to solving the differential equation has its
merits, too.

There is another attractive feature about the Magnus expansion, which shall not go un-
mentioned here. Suppose we were to apply it to a Schrodinger-type evolution equation,
as we shall do extensively in the upcoming analysis, of the form

w =—1H(t)U(t), (2.26)
dt

where U(t) is some time evolution operator for the system and H(¢) its Hamiltonian.

The Magnus approximants for this system are easily read off from Egs. -R22). 1t

is also obvious from these equations that each Magnus approximant is anti-Hermitian,

Qj(t) = —Q,(t). Therefore, the solution for the time evolution operator U(t) of the sys-

tem is unitary to each order of the perturbation expansion. Put another way, using the
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Magnus expansion for Schrodinger-type evolution equations guarantees conservation of
probability to each order of the perturbation series regardless of the order one chooses to
truncate it at. We shall explicitly show in one of the upcoming analyses that this is indeed
the case.

Let us finally observe that the Magnus expansion presents an interesting alternative to
the customary diagonalization procedure in standard Schrédinger quantum mechanics.
In the area of neutrino physics, the latter typically seeks a solution to the Schrodinger
equation by diagonalizing the Hamiltonian by means of an effective mixing matrix from
which oscillation probabilities can be constructed using eigenvalues and eigenvectors of
the Hamiltonian. The former, however, does not rely on such notions as it transmutes
this issue of diagonalization into integrating the Hamiltonian with respect to time and
the calculation of a matrix exponential of an operator while retaining the essential fea-
tures of the customary solution. We shall further elaborate on this later on.

We have mentioned many an application and advantage of the Magnus expansion when
it comes to analyzing neutrino oscillations in different contexts and we shall exploit these
features and furnish them with a physical interpretation.

2.3 The coherence vector

Apart from the Magnus expansion a good deal of the following analysis relies on the
notion of a coherence vector and that of a density matrix in neutrino oscillations. We shall
therefore briefly introduce said notions in this section. At the same time those means
typically find application in, e.g., the early Universe. We shall use the early Universe
framework as motivation for the novel formal calculational tools provided hereafter. We
shall see how to apply parts of them in such a physics context. The coherence vector is a
quantity that comes into play when the density matrix of a quantum mechanical system
is rewritten in a certain way. The dynamics of quantum ensembles are governed by a
von Neumann equation for the density matrix of the system. This equation can be given
a geometrical interpretation by rewriting it with the help of the coherence vector which,
instead of a von Neumann equation, obeys a gyroscope-type equation. The latter is well-
known from classical mechanics and can be studied in close analogy.

A convenient and established way to deal with neutrino flavor oscillations is to encode
this effect in a Hamiltonian formulation in which the oscillatory behavior is captured in a
Schrodinger-type equation for a wave function in neutrino flavor space. This formalism,
in principle, applies to an arbitrary number of neutrino generations and is also capable of
incorporating medium effects on neutrino propagation such as coherent elastic forward
scattering in, e.g., stellar matter [54, 55, 56] encoding it in an effective potential in the
Schrodinger equation. It was soon realized that the Hamiltonian formalism for neutrino
oscillations can be given a geometrical interpretation in a N2 — 1-dimensional space for
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N neutrino flavors [57]. This approach to neutrino oscillations sees equations of motion
for a coherence Vectoﬂ in that the Schrodinger-type equation of motion can be rephrased
as a gyroscope equation, i.e., a formal equivalent to, e.g., the precession of a magnetic
moment in an external magnetic field. Besides its apparent usefulness when it comes
to picture neutrino oscillations there is also a purely formal merit to the gyroscope-type
equations in that they are introduced by means of decomposing the Hamiltonian in terms
of the generators of the associated SU(N), e.g., the Pauli matrices for a two-flavor sys-
tem. We shall see to the derivation of this gyroscope-type equation for the coherence
vector from the density matrix in a moment.

The decomposition procedure is also most convenient when the notion of a wave func-
tion is not suitable any more to describe the physics of neutrino oscillations. A typical
situation in which the breakdown of the wave function formalism is expected are quan-
tum ensembles with a finite temperature or neutrino ensembles with a finite temperature
and an interacting background plasma [58] 59]. The latter situation is encountered, e.g.,
in the early Universe prior to big bang nucleosynthesis [60, 61, 62]. Let us dwell upon
this subject further and qualitatively sketch the main features of neutrino interactions
in the presence of a background plasma. First of all we understand that neutrinos only
very weakly interact with matter. However, it is those interactions, which give rise to
interesting physics. It is hence most convenient to treat them by means of a perturba-
tive expansion, which assumes that to first order the neutrino and background fields are
not correlated at all and hence the evolution factorizes into a neutrino part and a back-
ground part. This part of the perturbation gives the forward scattering or refractive part
of the interaction. To second order in this perturbation theory neutrinos do interact with
the background particles and are produced and absorbed by the medium as well as scat-
tered off its ingredients. This part of the perturbation is termed non-forward scattering or
collision part of the interaction. In order to consistently describe a neutrino ensemble,
e.g., in the early Universe in full generality one must account for both oscillation and
collision effects at the same time. Interaction terms of neutrinos with the background
plasma must include scattering v, X — 1 X', production (mediated via charged cur-
rents) X — X'v,, absorption (mediated via charged currents) v,X — X', pair produc-
tion (mediated via neutral currents) X — X'v,0, and pair absorption (mediated via
neutral currents) v,y X — X' as well as self-interactions (mediated via neutral currents)
VpVy — VgVy, where X and X' each represent a number of particles from the background
before and after the interactions, respectively; a subscript p,p’, ¢, ¢ denotes the neutrino
four-momentum. It is understood that each of these processes has an antineutrino equi-
valent and that interactions obtained from crossing are also to be taken into account (such
as pair creation v,y — vp1,). The frequent interactions of neutrinos in the presence
of a background plasma give rise to a small mean free path of the neutrinos and hence

'Different names exist for the coherence vector depending on the area of physics it is used in. Bloch vector
is most common in solid state physics, whereas polarization or coherence vector is more common in
particle physics applications.
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the breaking of coherence of the ensemble. It is essentially for this reason that the wave
function formalism must fail in describing neutrino oscillations and interactions now.

The appropriate description is then given by the density matrix formalism. The density
matrix p(p,t) of the neutrino ensemble obeys a von Neumann equation and the differ-
ent contributions to the effective Hamiltonian are given by collisions (non-forward scat-
tering), with particles from the background medium, which introduce decoherence, the
vacuum oscillatory part and eventually the refractive part. Avoiding any unnecessary
notational burden, we shall briefly sketch the composition of the equations of motion in
a pictorial manner

p(p,t) = standard oscillatory (vacuum) terms
+ refractive terms
+ forward and non — forward scattering terms, (2.27)

where the dot represents a derivative with respect to time. There are three distinct
cases for neutrino interactions in a plasma apart from the oscillatory and the refractive
part. Firstly, charged current interactions exchange lepton-number between the back-
ground plasma and the neutrino ensemble; secondly, neutral current interactions con-
serve lepton-number for the ensemble and the background separately; and thirdly, neu-
trino self-interactions mediated by neutral currents can occur even without the presence
of a background of interacting particles.

There is another technical subtlety when it comes to the equations of motion for a neu-
trino ensemble in the presence of a background plasma — the distinction between quantum
kinetic equations and quantum rate equations. We shall, however, not reiterate the details of
the derivation of the former, since they do not contribute much to the understanding of
the upcoming analysis [59]].

The dynamics of the neutrino ensemble are determined by the quantum kinetic equa-
tions, which present a generalization of the Pauli-Boltzmann equations. The former
evolve quantum amplitudes as is indispensable if a consistent description of particle
oscillation phenomena, which are inherently nonclassical, is sought. The latter evolve
probabilities rather than amplitudes. This procedure is essentially classical since quan-
tum mechanics only enters the problem when it comes to calculating cross sections for
the various possible reaction channels. The resultant quantum rate equations are inap-
propriate when neutrino oscillations occur. Thus, in order to obtain the quantum kinetic
equations the full density matrix for all particles in the plasma is evolved forward in time
by means of the S-matrix and tracing over all degrees of freedom other than the neutri-
nos under consideration yields the equation of motion for the system’s density matrix,
the quantum kinetic equations, which do reduce to quantum rate equations in the appro-
priate limit [59]. The variable of interest in the quantum kinetic equations is, as described
above, the one-body reduced momentum-dependent density operator, which is conve-
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niently decomposed in terms of the generators of the associated SU(N).

The purpose of the analysis to come is to describe the evolution of a two-flavor neutrino
ensemble with generic potentials at a finite temperature. We account for a brief motiva-
tion on how to obtain the quantum kinetic equations from the density matrix formalism
in the case of coherent forward scattering (which also dominates the bulk of the studies to
follow on this subject) and how to relate the solutions of the quantum kinetic equations,
i.e., the coherence vector, to physical observables of interest [3]].

Let us denote the density matrix by p(p, t). It obeys a von Neumann equation

p(p,t) = =i [H(p,t), p(p,t)], (2.28)

where p is the neutrino four-momentum, H a generic Hamiltonian for the system. We
can now decompose both the density matrix and the Hamiltonian making use of the
SU (2) generators, which form a basis for two-dimensional matrices. Denoting the Pauli
matrices by o, this yields

1 1 _

P=5 trp[l 4 tr(po;) o] = §P0 [1 + P&'} , (2.29)
1 1 -

H = SwH[l+tr(Ho)o] =V [1 n v&} , (2.30)

where repeated indices are to be summed over and we have introduced the following
shorthand identifications

Py = trp, P=tr (pa), (2.31)

Vo = trH, V=tr(He), (2.32)

and ¢ = (0,,0y,0,). Here P is the coherence vector [63, 64]. Using this notation, it is
straightforward to recast the von Neumann equation as a differential equation for the
coherence vector

b= [—voeﬂkv’f] Pl (2.33)

In this expression we identify the evolution matrix of the neutrino ensemble

0o V. V
Siy=—VoeurVF  or  S=V| V. 0o -V,|. (2.34)
-V, Vi 0

Note, that the matrix S as defined here does not coincide with the S-matrix of the plasma
mentioned before. Since we will not refer to the latter explicitly any more, no confusion
should arise from this notation. The quantum kinetic equations can now be written in

matrix notation as
d -

P = S(t)P(t). (2.35)
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Note, that this equation can also be given as %15 — Vo V x P using the cross product in
three-dimensional Euclidean space. We remark that this aforementioned gyroscope-type
equation for neutrino oscillations presents a convenient way to interpret neutrino oscilla-
tions geometrically. However, when it comes to solving the quantum kinetic equations it
is appropriate to treat them as a nonautonomous system of coupled differential equations
as shall be seen in due course and has been alluded to in the discussion of the Magnus
expansion.

The entries of the effective potential vector V = (V, Vy, V.) are functions of the elements
of the effective Hamiltonian of the system. They can be obtained straightforwardly by
making use of its defining equation as well as the two-dimensional neutrino oscillation
Hamiltonian. We find
2

A
VoVi = fB=2ReHps = - sin26p, (2.36)

VoV, = 2ImH;y =0, (2.37)
2

VoVz

A= (Hn — H22) = —AQW; cos 260y + V, (238)
where H;; are the elements of the Hamiltonian H, Am? is the mass-squared difference
of the two neutrino states. The vacuum mixing angle between the two flavors, which
we shall denote as v, and v}, for definiteness, is written as 6. The difference of potential
terms affecting v, and v, respectively, is V,,. Using the diagonal part of the 2 x 2 neutrino
oscillation Hamiltonian in flavor space,

Am? (— cos 20y +V, sin 290) , (239)

4p sin 26, cos 26y

for H we have obtained the last equality. The component V}, is set to zero since it is pro-
portional to the imaginary part of the off-diagonal entry of the Hamiltonian. There are
no physical phases in a two-flavor system. Note, also, that all possible time dependences
for the effective potential vector have been suppressed for reasons of notational conve-
nience. It is, however, understood that all components of V depend on time in general
and we shall in fact use V,, = V,(t) and V, = V,(t) for the upcoming analysis.

In the coherence vector description the expectation values of the generators of the asso-
ciated SU(2) are promoted to observables of interest. All information about the system
can thus, in principle, be extracted from a solution to Eq. for P(t). Some comments
related to this issue are in order. The diagonal entries of the density matrix simply give
the probability to find the system in one or the other state, i.e.,

1

prob (v = v,) = §P0 1+ P, (2.40)
1

prob (v, = 1) = §P0 1-P,], (2.41)

if the density matrix is considered in its one-particle interpretation. It can be easily seen
how these relations emerge. Suppose we decompose the density matrix p(p, t) in terms
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of the neutrino wave function |¢(p, t)) (in the one-particle interpretation the notion of a
wave function still is a sensible one) according to

0.1) = g 1V 0) (W0 242)

where NFQ(p, 0) is some time-independent normalization function which we shall inter-
prete shortly. Furthermore, for a two-state system we can additionally decompose the
wave function itself as |¢(p,t)) = a(p,t) |va) + b(p,t) |1p). With this definition the diag-
2 as well as |b(p, t)|?, which is but
the probability to find the system in one state or the other. Using the decomposition of
the density matrix in terms of the coherence vector then results in the expressions for the
oscillation probabilities as given above.

onal entries of the density matrix are given by |a(p, t)

In the ensemble interpretation of the density matrix the diagonal entries give the relative
number densities N, (p) and Ny (p) for the different neutrino flavors. These number densi-
ties are normalized to the equilibrium Fermi-Dirac number distribution at zero chemical
potential 1 according to

Nap) = SB[+ PIN™(p,0), 243
Nip) = SRll - PIN"(p,0), (2.44)

1 p?
N"(p,p) = — (2.45)

2777214—6%

where T is the temperature of the ensemble [65]. Inverting these relations, it is possible
to ascribe a physical meaning to both ) and P.. These quantities are found to read

Na+Nb
R o= S5 (2.46)
N, — N,
P, = —— 2.47
. = T 47)

and hence P, is connected to conservation of probability and, in a broader context, also
lepton-number [66]. Note, also, that Py = 1 corresponds to a closed thermodynamic sys-
tem, whereas Py # 1 describes an open thermodynamic system such as for a neutrino
ensemble in the presence of a background plasma. It is important to note that oscillations
merely swap neutrinos from one flavor to another such that 7 does not evolve in time,
unless repopulation effects from some background plasma have to be taken into account
as is the case, e.g., in the early Universe. On the other hand P, parametrizes the asym-
metry of the system. It gives the excess of v, over v;. The latter fact also motivates the
way of speaking in which P,, P, are called coherences, which encode the amount of de-
coherence in the system. Therefore, the time evolution of P, is of special interest in most
applications.
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2.4 CPT violation

Besides the seemingly abstract and formal considerations about the Magnus expansion
and the coherence vector, we now delve into a more phenomenologically relevant part.
The discussion shall focus on the topic of Lorentz and CPT violation in neutrinos. We
shall also briefly comment on how possible CPT violation manifests in charged current
weak interactions.

Needless to say that CPT invariance is one of the cornerstones of any relativistic field
theory. It can be shown under fairly general assumptions that all Poincaré-invariant field
theories are also CPT-invariant [4]. As for the opposite case, theories in which CPT in-
variance is violated, also violate Poincaré invariance [67]. There are certain consequences
of CPT invariance, such as the equality of masses and lifetimes for particles and antipar-
ticles, which have been tested experimentally to a fairly good accuracy [5].

And yet, regardless of how much prejudice goes in the favor of CPT conservation, the
question of whether CPT is violated in nature should ultimately be an experimental one.
It is conceivable that the ramifications of CPT violation are detectable in observables,
which have been measured already, below the current experimental threshold of accu-
racy. On the other hand, also as yet unseen channels might exist, in which CPT violation
could be present at an observable level. Even if one considers such possibilities as remote,
there still is a great deal to be learned from pushing the boundaries of our theoretical un-
derstanding of physics and its fashions in model building beyond the beaten tracks.

Let us therefore plunge into discussing how violation of Lorentz and CPT invariance
affects neutrino oscillation phenomena [6]. In order to account for Lorentz- and CPT-
violating interactions, the standard model Lagrangian is augmented with all conceivable
terms, which can be constructed with standard model fields and which introduce break-
ing of the Lorentz and CPT symmetries. Such additional terms in the form of Lorentz-
and CPT-violating operators with Lorentz indices are coupled to newly introduced co-
efficients with Lorentz indices. These coefficients (or rather linear combinations thereof)
are observables in a standard model extension with Lorentz and CPT violation. How-
ever, the standard model is a rather successful description of most of particle physics
at scales well below the Planck scale. Therefore, any signals of Lorentz and CPT viola-
tion appearing at low energies must come from an effective quantum field theory, which
contains the standard model. Different mechanisms can be held responsible for the gen-
eration of low-energy Lorentz- and CPT-violating operators. Here, we only mention a
few, since the provenience of such terms is of no further relevance when it comes to their
phenomenological implications. In string theory the spontaneous violation of Lorentz or
even CPT symmetry presents a generic mechanism [68), 69]; noncommutative field the-
ory [70,171,72] and non-string approaches to quantum gravity [73,[74,75] also feature the
breakdown of Lorentz and CPT symmetry.
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2.4 CPT violation

Focussing on renormalizable Lorentz- and CPT-violating operators and studying their
impact on neutrino physics, we can write [6] all possible Dirac and Majorana couplings
of freely propagating left- and right-handed neutrinos in a Dirac equation of the form

(T4 0y — My,) vy = 0. (2.48)

In this notation we assemble both the neutrino fields and their CPT conjugates in the
symbol v = (ve, vy, Vr, ..., Ve, Uy, Ur, ... ) and the subscripts a, b hence label both the fla-
vor of neutrinos as well as antineutrinos. This equation of motion is a generalization of
the usual Dirac equation for freely propagating neutrino and antineutrino states. The
matrices I, and M, can be expanded in the basis of Dirac matrices as

. 1
T = M oa + by + i vsy + ey + i fh s + 595;" Pous, (2.49)
. 1
Mab = mab + 2m5ab’y5 + azb’)/y + befy5ﬂyV + §H3I;80'aﬁ. (250)

In these expressions all tensors of even rank (m, ms, ¢, d, H) are CPT-conserving, whereas
all remaining tensors of odd rank are CPT-violating. However, the coefficients ¢, d, H are
Lorentz-violating. Additionally, we impose Hermiticity of the equations and (2.50),
which translates to the fact that all coefficients are Hermitian in flavor space. Hermiticity
is assumed in order to be able to construct meaningful observables from the Hamiltonian.
We note that assembling neutrino fields and their CPT conjugates in one symbol gener-
ates interdependencies between the Lorentz- and CPT-violating coefficients under charge
conjugation. Using the enhanced Dirac equation, we arrive at the following Hamiltonian

H = Ho+oH (2.51)
= = (0 - Mo) - % (7087 Ho + Moy 5T°) = ° (36T 0, — 61 ) .

In this expression only leading order terms d# in the Lorentz- and CPT-violating co-
efficients have been kept. This expression therefore constitutes the basis for studying
leading-order effects of Lorentz and CPT violation in neutrinos. It can be shown that the
mass terms m and ms in the Lorentz- and CPT-conserving Hamiltonian Hy do indeed
reproduce the usual Dirac and Majorana masses [6]].

With the Hamiltonian #H at our disposal, we can eventually begin deriving the neutrino
(antineutrino) oscillation Hamiltonian h.g. To this end, a few more assumptions are con-
venient in order to simplify the as yet cumbrous expressions. We assume that there are
only three propagating neutrino (antineutrino) flavors and that neutrino (antineutrino)
masses are generated via a standard seesaw mechanism. The latter assumption hampers
the propagation of heavy, sterile neutrino (antineutrino) states. Restricting attention to
the light, active (left-handed) states, we can decompose the neutrino (antineutrino) fields
into their Fourier modes and use the Hamiltonian H to obtain the oscillation Hamiltonian
heg in its mass-diagonal basis. The calculations are cumbersome [6] and we shall not re-
produce them here. Instead we give the neutrino (antineutrino) oscillation Hamiltonian
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to first order in the Lorentz- and CPT-violating coefficients.
The neutrino (antineutrino) oscillation Hamiltonian for freely propagating states of three

flavors in the presence of Lorentz- and CPT-violating operators of renormalizable dimen-
sion is given by

B 10 1 ((m?), 0
(heff)ay = P Oab (0 1) + 3 ( 0 b (mQ):b) (2.52)
1 [(aL)Mpu - (CL)Wpupv}ab —i\/ipu(5+),, (9" *Pa — H“V)C}ab
p \+iv2pu(e1); [(9"*pa + H*)Cy, [—(ar)"pu — (cL)" pupvly, '

Obviously, a few comments concerning notation are in order. The matrix structure in
this equation resembles the neutrino-antineutrino basis, which we adopted in writing
down the equations of motion. As a substructure in these matrices, the Lorentz- and
CPT-violating coefficients also bear flavor indices a, b. The neutrino three-momentum is
denoted by p = |p] and shorthand notations for (c1)!}y = (¢ + d)" and (ar)h, = (a + b)",
have been introduced. The neutrino four-momentum may be written as p, = (p,p) to
first order and the Lorentz-conserving mass term stems from the usual seesaw mecha-
nism such that m? = mlm;, where m, is the light-mass matrix. The vectors (¢4)* and
(e_)* = (e4)"" emerge in analogy to the common photon helicity basis. This reflects that
the active neutrinos (antineutrinos), being almost massless, have a near-definite helicity.
Eventually, C is the charge conjugation in flavor space. The coefficients a;, and ¢y, are the
leading-order Lorentz- and CPT-violating contributions to neutrino (antineutrino) mix-
ing. These coefficients respect the standard model gauge invariance. The coefficients gC
and HC violate the gauge invariance of the standard model and induce lepton-number
violating neutrino-antineutrino mixing.

A few more comments as to the nature of the oscillation Hamiltonian are in order. It
reveals a nonstandard energy dependence. Except for the correction of 1/p which multi-
plies both the mass term as well as the Lorentz- and CPT-violating part, the latter scales
as p and p?; the conventional oscillation term originating from the mass difference in
neutrinos (antineutrinos), however, scales as p”. This altered energy dependence can
give rise to resonances in neutrino (antineutrino) vacuum oscillations [27, 29, [76], but
it also covers the well-known Mikheev-Smirnov-Wolfenstein resonance in matter. Besides
the nonstandard neutrino (antineutrino) dispersion relations, the oscillation Hamiltonian
also features a direction dependence via the polarization vector (¢ )*. The appearance of
such a term gives rise to direction-dependent oscillation phenomena as well as, e.g., side-
rial variations in neutrino (antineutrino) oscillation experiments [6} 77, [78]. Moreover, in
CPT-violating extensions of the standard model, conversions between active neutrinos
and active antineutrinos become possible. The latter violate lepton-number. We remark
that even for CPT-conserving oscillations there can be terms in the oscillation Hamilto-
nian, which violate lepton-number. Moreover, the conservation of CPT results in certain
interdependencies between the oscillation probabilities for neutrinos and antineutrinos.
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2.4 CPT violation
We shall derive said properties in the course of our analysis.

We shall study the ramifications of a Lorentz- and CPT-violating neutrino oscillation
Hamiltonian and aspects concerning its solution in greater detail in the upcoming sec-
tions. Let us now turn our attention to CPT violation in charged current weak interation
processes. To this end, we commence by giving a brief sketch of the CPT theorem [4].
Let us preface these considerations with the observation that violation of the CPT sym-
metry (such as dropping the assumption of fields governed by a local, Lorentz-invariant
Lagrangian or the fact that fields with half-integer spin obey Fermi-Dirac statistics [79])
would lead to a complete reformulation of quantum field theory [80, 81, 82]. It would
also include the emergence of novel fields and associated particles.

The upcoming analysis of CPT-violating charged current weak interactions in the stan-
dard model takes a different viewpoint. A vector field, such as the photon, is odd un-
der CPT. Fermion fields in the Lagrangian must appear in bilinear combinations of the
spinor fields. Studying the CPT properties [83] of such bilinear combinations reveals that
those with an even number of Dirac matrices are even under CPT, those with an odd
number of Dirac matrices are odd under CPT. Put another way, field operators with an
even (odd) number of Lorentz indices are even (odd) under CPT. In order to obtain a
Lorentz scalar for the Lagrangian density such combinations of operators have to be con-
tracted with some tensors inherent of spacetime. In the common Minkowski spacetime
the only tensors at hand are the metric tensor 7, and the totally antisymmetric tensor
€uvap- Therefore, the number of indices carried by fields and bilinears must be even. This,
in turn, implies that also the Lagrangian must be even under CPT. The situation changes,
however, if the assumption is put forward that spacetime is additionally endowed with
characteristic tensors of odd rank. If such tensors do exist, they can appear in the Dirac
structure of various currents in the standard model, such as the charged current weak in-
teractions, which we shall study. There are two possible approaches to such novel terms.
On the one hand, one might assume such terms to be present in the Lagrangian den-
sity of the standard model and derive the consequences of such an assumption as has
been sketched for the neutrino sector above. On the other hand, one can assume that
the free Dirac equation is not altered in the presence of CPT violation, but only some
interactions are. In our case, these preferred interactions are the charged current weak
interactions. This assumption introduces additional terms in the leptonic current of the
charged current interactions and is hence responsible for different lifetimes and decay
rates for particles and antiparticles as shall be seen in our analysis.
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3 Adiabatic and nonadiabatic perturbation
theory for coherence vectors

The discussion of the Magnus expansion and the coherence vector in the previous para-
graphs now puts us into a position to develop on these grounds a novel adiabatic and
nonadiabatic perturbation theory for the coherence vector description of neutrino oscil-
lations [84]. Both the adiabatic and the nonadiabatic regimes can be treated on the same
grounds; there is no need for different perturbation theories for these distinct physical
situations. As we have discussed in conjunction with the Magnus expansion, it is sensi-
ble to change the quantum mechanical picture of the evolution equation before solving
them explicitly. We shall use this fact in order to find a suitable expansion parameter for
the system under consideration here; we also understand that different changes of the
quantum mechanical picture reveal certain quantities (such as an adiabaticity parameter)
which are useful to characterize the physics of the system. We shall solve the quantum
kinetic equations explicitly for the coherence vector for a collision-free neutrino ensemble
with finite temperature and also extend our formalism to early Universe applications.

3.1 Adiabatic perturbation theory

The quantum kinetic equations for a two-flavor ensemble of neutrinos shall be written as

0 3

SP(t) = SOP@), (3.1)
0 —A®) 0

st = [A0 0 -8, (3.2)
0 B 0

for the upcoming analysis. Having mentioned that the matrix norm of the evolution
matrix of a system can add to its physical understanding, we calculate the Frobenius
norm to be

IISI[2 = tr (sTs) = 2wl (3.3)

It is straightforward to show that the effective oscillation length of the system is indeed
given by

27 e S
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

and that obviously the norm and the effective oscillation frequency are related or, as a
matter of fact, proportional to one another. If it was only for this statement, it might seem
academic to calculate the matrix norm of the evolution equation under consideration.
However, a comparison between matrix norms in different quantum mechanical pictures
can provide even further physical insight into the nature of the neutrino ensemble. We
shall see this as we proceed. Note, moreover, that both 5 and A are taken to be time-
dependent quantities. Two different time dependences for 3 and A can be identified for
the purpose of our analysis. On the one hand, both quantities scale as p~! in momentum
and in early Universe applications the neutrino momenta redshift as the Universe ex-
pands and hence introduce a time dependence. On the other hand, A can also depend on
time via the potential term V. In an early Universe environment, a time dependence can
be converted into a temperature 7" dependence using a standard paradigm from cosmol-
ogy, which derives a time-temperature relation using conservation of comoving entropy
and the Friedmann equations to obtain

dT
dt(T) = —Qmplﬁ (3.5)

with mp; = mp1, where mp) is the Planck mass and g, gives the effective degrees

of freedom at the epoch under consideration. Keeping this in mind all time dependences
occuring throughout our analysis can easily be converted into temperature dependences,
which might be more convenient in, for instance, early Universe applications. We shall

sketch how to treat such situations later on.

Furthermore, in order to get a grasp on how the oscillation length can be understood
physically, we transform the quantum kinetic equations to a basis, which resembles the
commonly encountered mass eigenbasis in the Mikheev-Smirnov-Wolfenstein framework.
To this end, it is only sensible to consider a generic time-dependent rotation in the zz-
plane by an angle ©(t) as the only nonvanishing entries of the effective potential vector
are V; and V. We parametrize the time-dependent rotation via

cosO(t) 0 sinO(t)

P(t)=R(t)Q(t)  with  R[O(t)] = 0 1 0 : (3.6)
—sin®©(t) 0 cosO(t)

where @ is the coherence vector in the new corotating frame and R(t) is the time-dependent
rotation matrix. The quantum kinetic equations in the new basis appear as

o - .
500 = Set)a(w), 67)
0 —Acos© — Bsin© —40
So(t) = | Acos®+ Bsin®© 0 —fcos© + Asin©
% B cos® — Asin © 0

Since we introduced ©O(t) as a generic time-dependent mixing angle, we may define it
according to our needs. It is seen that the (Sg),; and (Sg),, elements of the evolution
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3.1 Adiabatic perturbation theory

matrix can be eliminated by an appropriate choice of the mixing angle ©(t). The advan-
tage of this choice is the geometrical interpretation. In the Q-picture the motion of the
coherence vector is confined to the zy-plane, if there was not the additional perturbation
by the time derivative of the effective angle, which introduces a nonzero z-component
to the problem and forces the motion to exit the xy-plane as the ensemble evolves. The
smaller the change of the effective mixing with time, the smaller the urge of the coher-
ence vector to exit the zy-plane. Now, in order to eliminate said entries of the evolution
matrix, we fix the effective mixing angle by implicitly defining it via

Alt) p(t)
VAR() + (1) VAZ() + B2(t)
Although the transformation to the @Q-picture is done on the level of a coherence vec-

tor equation rather than a Hamiltonian, the effective mixing angle reveals that mixing
becomes maximal (O = 7/2) if the condition

cosO(t) = sin©(t) =

(3.8)

A(tres) =0 (3.9

is satisfied for the resonant time t.s. A vanishing A(t), i.e.,, maximal effective mixing,
hence coincides with the existence of a resonance in neutrino conversions, which can also
be equivalently rephrased for a resonant temperature T;.s, depending on the application
one has in mind. This behavior closely resembles what is expected for the Hamiltonian
treatment of neutrino oscillations. It is, nonetheless, a completely different framework
and thus notions such as that for resonant mixing have to be established anew.

We now recast the evolution matrix in the Q-picture as

0 —wet —57
SQ = | et 0 0 . (3.10)
doe 0 0

dt

Consider the matrix norm of this evolution matrix in the new quantum mechanical pic-

1+ i@ ?
Wegf dt

At first glance the above transformation seems to worsen the convergence properties due

ture

1Sollf = 2wl (3.11)

to the appearance of the additional

1 doe
= —— 3.12
V= o (3.12)
term. However, if this term is sufficiently small, v < 1, the convergence will only be
marginally altered. Moreover, the smallness condition can be understood physically as
well. The characteristic time scale of the system under study is Toys = 1 /wets, Whereas the

characteristic time scale of the interaction can be identified as 7,y = (d©/dt)~!. Hence,
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

the parameter v simply compares the characteristic time scale of the system to the char-
acteristic time scale of the interaction. A small v can be paraphrased as the system’s time
scale being much smaller than the interaction’s time scale. Put another way, the interac-
tion is adiabatic. The parameter v is thus interpreted and henceforth referred to as the
adiabaticity parameter for the system. We adopt here the notion of adiabaticity versus
nonadiabaticity of Refs. [85, 186, 87, [88]. The emergence of an adiabaticity parameter
from the quantum kinetic equations and by means of defining an effective mixing angle
through a change of the quantum mechanical picture, is a novel feature of our analysis
and shall come in handy once collision-affected systems are studied later on.

Introducing the adiabaticity parameter into the evolution matrix of the system leaves us
with

0 —Weff —YWeff
So=| wg 0 o |. (3.13)
Vet 0 0

There is one more minor caveat concerning the adiabaticity parameter, which we have to
comment on briefly before moving on with our analysis. It has been noticed that the effec-
tive mixing angle as defined above essentially resembles the one known from a Mikheev-
Smirnov-Wolfenstein framework for matter-affected neutrino oscillations. Note, how-
ever, that the effective mixing angle has a completely different interpretation in the co-
herence vector description. It is for this reason that the mixing angle as defined here
does not feature the common factor of two encountered in the Hamiltonian formulation.
Moreover, we understand that defining 1/~ as the adiabaticity parameter is also quite
common in the literature. The physics, however, is not altered by this convention. Also,
when comparing our analysis to other work it is important to notice that the adiabaticity
parameter lacks a factor of two as well due to our definition of the effective mixing angle.
We shall analyze the adiabaticity parameter further in section[3.2}

Note, that the concept of a Hamiltonian, in general, ceases to exist when quantum ki-
netic equations of thermal neutrino ensembles are considered. It is important to keep in
mind this point in order to fully appreciate our paradigm. In the adiabatic limit of taking
v — 0 the time-dependent rotation of the coherence vector by an angle O(¢) establishes
a basis in which the motion of the coherence vector is confined to the zy-plane. Apart
from its geometric interpretation, defining a mixing angle and an adiabaticity parameter
for the ensemble bears some similarity to the diagonalization of the underlying Hamil-
tonian for single neutrino states. The benefit of considering the equations of motion in
a coherence vector framework and determining effective mixing and hence adiabaticity,
however, is that it does not explicitly rely on the form of the time evolution matrix. The
adiabaticity parameter for the system under consideration can be found by employing a
suitable change of basis for the quantum kinetic equations without making any reference
to an underlying Hamiltonian of the system. This point can prove especially useful when
collision-affected neutrino conversions are considered; a system in which the Hamilto-
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3.1 Adiabatic perturbation theory

nian formulation ceases to be applicable as mentioned above.

Furnished with both its geometric interpretation as well as its appearance in the ma-
trix norm of the evolution equation in the Q-picture, v can serve as a small perturbation
parameter in the adiabatic regime of neutrino conversions. It thus feels harmonious to
struggle through just another transformation before solving the quantum kinetic equa-
tions. The additional change of basis is introduced to isolate the perturbation parameter
7 in a convenient way and such that fast convergence of the expansion to come is assured.
We work with the following transformation

—

O(t) = U)X (t),  where (1) = S§OU®),  Ulto) = 1, (3.14)

aU

in which we have decomposed the evolution matrix via

0 —wegr O 0 0 —ywes
Soq=85+8,=|wer 0 O]+ 0O 0 0 (3.15)
0 0 0 YWeff 0 0

in self-obvious notation. The subsidiary evolution equation for U(t) is solved and ex-
hibits an oscillatory behavior. We have

COS (:)eff — sin (Ijeff 0 t
U(t) = | sin@egg coswegg 0 and Wefr(t) = / AT Weg (7). (3.16)
0 0 1 o

The quantum kinetic equations take a new form, which is identified as

0

5 X0 = Sx()X(@), (317)
O 0 —YWeff COS (:)eff
Sx(t) = 0 0 YWeff SIN Wefs
YWeff COS Weff  —YWeff SIN Weff 0

and calculating the matrix norm yields
[15x[F = 29%weis (318)

It is evident now that the small parameter in the adiabatic regime, namely ~, has been
isolated and hence good convergence of the sought-after perturbation theory can be ex-
pected. This motivates a perturbative expansion in this basis (which is but an interaction
picture for the -basis).

The considerations in this section deal with two linear transformations R(t), U(t) from
the original P-basis to the - and X-basis. The reason for those transformations is
twofold. On the one hand changing the basis for the quantum kinetic equations discloses
the physics of the system we are dealing with and on the other hand it seems advisable
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

to find a basis for the quantum kinetic equations in which an approximate solution gives
accurate results. For convenience, we shall now recapitulate the meaning of the transfor-
mations introduced so far.

The first transformation (P @) is inherently physical. It gives a recipe how to establish
the concept of a mass eigenbasis in the coherence vector description of neutrino oscilla-
tions. The effective mixing angle defined in this way differs from the effective mixing
angle encountered in the common Mikheev-Smirnov-Wolfenstein formalism by a con-
ventional factor of two. In this quantum mechanical picture a clear path of approaching
the resonance in neutrino oscillations is found. A resonant conversion of neutrino flavors
is encountered for A(t) = 0. Moreover, the transformation to the matter eigenbasis sees
the introduction of an effective mixing angle, which is useful for defining the adiabaticity
parameter v subsequently layed open. Adiabatic neutrino conversion occurs for v < 1,
when the time scale of the system is much smaller than the time scale of the interaction.
The mathematical benefit of this transformation is that we get a grasp on the convergence
properties of the approximation we want to employ and we can give it physical meaning.
The convergence properties of the expansion get worse as the amount of adiabaticity vio-
lation increases. A fact which later will be useful to construct a nonadiabatic perturbation
theory. Also the change to the matter eigenbasis suggests that the adiabaticity parameter
7 should be the appropriate small quantity to expand in.

The second transformation (Cj U X ) is convenient from a mathematical point of view. It
removes an exactly integrable part of the evolution matrix and thus the matrix norm for
the latter is directly proportional to the small expansion parameter . This truly renders
7 into the sought-after perturbation parameter and the envisaged expansion converges
fast. Put another way, already the first approximant should provide a good approxima-
tion for the exact solution.

However, one final comment regarding the terminology is in order. The terms quantum
mechanical picture or rather change of the quantum mechanical picture are used to denote a
distinct basis for the time evolution matrix of the quantum kinetic equations or a basis
change from one basis of the quantum kinetic equations to another, respectively. This is
to be understood as a manner of speaking motivated by standard Schrodinger quantum
mechanics.

Note, eventually, that no attempt for solving the quantum kinetic equations has been
made so far. We have merely changed the quantum mechanical pictures to unfold the
underlying physics. The paradigm of our analysis is that a careful treatment of the quan-
tum kinetic equations, i.e., a succession of different changes of the quantum mechanical
pictures already allows to extract important information about the system under consid-
eration without explicitly solving the quantum kinetic equations.
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3.1 Adiabatic perturbation theory

In the newly established X-basis the quantum kinetic equations are finally solved to first
order in the Magnus expansion by

TW(t) = exp [ /t “ar SX(T)] % (to). (3.19)

The formal solution for the coherence vector P(t) to first order in the Magnus expansion
is thus obtained as

t
PWO(t) = R(HU(t) exp [ / dr SX(T)] R™(to) P(to). (3.20)
to
In order to streamline notation, we write the terms contained in the matrix exponential
as
t
L) = [ drwsing, (3.21)
t
"
Jo(t) = / AT YWes COS Wegt (3.22)
to
as well as

|J| =/ J2+ J2. (3.23)
The resultant expression for the coherence vector assumes a form

cosO(t) 0 sinO(t) COSWeff —SINWegs 0

ﬁ(l)(t) = 0 1 0 SINWefr  COSWegr 0 | X
—sin©O(t) 0 cos® 0 0 1
J2+ J2cos|J| —JoJs (=1 +cos|J|) —J.|J|*sinc|J]|
X—5 | =JeJs (=1 +cos|J|) J2 4+ J%cos|J| J |J?sinc|J| | x
Il J.|J|% sinc |7 |72 sine | J| 171 cos| |

cos®@p 0 —sinBO
X 0 1 0 P(tp). (3.24)
sin®p 0 cosOy

Additionally ©(to) = O and sincz = #2Z have been defined. This expression looks cum-
bersome at a first glance. It does, however, present an analytic, yet perturbative, solution
to the quantum kinetic equations as given in Egs. - for a generic potential, i.e.,
for a generic time (or equivalently temperature in early Universe applications) depen-
dence of both § and ), as long as the transition can be considered adiabatic (y < 1). In
the one-particle interpretation oscillation probabilities can be extracted from this formal
solution and oscillating contributions to this very probability can be studied since there
is no inherent averaging over rapidly oscillating contributions as is usually considered in
the derivation of the oscillation probability in the Mikheev-Smirnov-Wolfenstein frame-
work. Still, to fully appreciate this result a thorough discussion of various limiting cases,
such as the adiabatic limit, is called for [85]. We postpone this endeavor until section
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

3.2 Nonadiabatic perturbation theory

We proceed by developing a nonadiabatic perturbation theory. It shall be seen that such
a perturbation theory for the nonadiabatic regime of neutrino conversions can be for-
mulated on the same grounds as the foregoing adiabatic formalism. To this end, it is
instructive to further elaborate on the adiabaticity parameter as defined in Eq.
and write it explicitly as a function of the parameters 5 and A. Such rephrasing of the
notion of adiabaticity allows for a better understanding of the underlying physics. It is
straightforward to express «y in terms of 5 and \. We find

pr d. B
t)=— —In—. 3.25
From this relation also the adiabaticity parameter at the neutrino conversion resonance
(A = 0) can be obtained. It is this quantity, which is of foremost interest in physical

applications and it is calculated to be

1 dA

Vres = V(tres> = _W a . (3.26)
res t=tres

Two important pieces of information can be gathered. The adiabaticity of the system is
determined by the time variation of the matter profile d\/dt (or the shape of the matter
potential, if it is interpreted as a function of the experimental baseline). This is expected
from the Mikheev-Smirnov-Wolfenstein framework and recovered in our treatment for
neutrino ensembles. Large variations of the matter profile with time clearly drive the
system towards nonadiabaticity. Besides this contribution, also the term 1/3? is famil-
iar. It states that a small 3 at the neutrino conversion resonance is incompatible with an
adiabatic perturbation expansion to some extent. This observation, however, does not
hold true when repopulation of the neutrino ensemble from a background plasma is con-
sidered as we shall see shortly. In this case, obviously, the application of adiabatic and
nonadiabatic perturbation theory as developed here runs into difficulties and a thorough
treatment of such cases is called for. However, for the purposes of this section, a small
B indicates nonadiabatic transitions and we shall also refer to this regime as the sudden
regime henceforth.

It is then obvious that § itself can be adopted as a small perturbation parameter in a
nonadiabatic perturbation expansion. Recalling the quantum kinetic equations according
to Egs. (3.1]-[3.2), we split the evolution matrix S into two different submatrices thereby
isolating the parameter in which we seek a perturbative solution to the quantum kinetic
equations. The evolution matrix reads

0 —=XAt) 0 0 0 0
St)y=8xt)+Ssgt)=|[At) 0 O0of+|0 0 =B (3.27)
0 0 0 0 B(t) 0

in obvious notation. The S subsystem of this evolution equation can be integrated ex-
actly, which again gives rise to an oscillatory behavior — this time in the time-integrated
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3.2 Nonadiabatic perturbation theory

coefficient \. Integrating out the exactly solvable part can be achieved by changing the
quantum mechanical picture for the evolution equation by means of the following trans-
formation

Pt)=V@®)Y(t)  with ;V(t):SA(t)V(t). (3.28)

Solving the subsidiary evolution equation gives

cosA —sinA 0 ‘
V(t)=|sinA cosA 0 and At) = / dr A(7), (3.29)
0 0 1 o

which rephrases the quantum kinetic equations as

0

5 (1) = SyOY(), (3.30)
0 0  —fBsinA
Sy(t) = 0 0 —Bcos A\

Bsin A Bcos\ 0

The new quantum mechanical picture is just the interaction picture and calculation of the
matrix norm reveals isolation of the small perturbation parameter

ISy [IF = 28%. (3.31)

Since the smallness parameter has been isolated by one change of basis only, we can start
solving the quantum kinetic equations for Y (¢). To first order, the Magnus expansion
gives the solution for the coherence vector as

PU(t) = V(t) exp [ /t t dr sy(r)} P(to) (3.32)

and it is thus sensible to define time-integrated quantities in analogy to the adiabatic case
and in order to streamline notation

t ~
Ks(t) = /dTﬁsin)\, (3.33)

to

K. (t) = / th B cos \. (3.34)

to

Also the notation

K| = K2+ K2 (3.35)

comes in handy as it mimics the notation introduced above for the adiabatic perturbation
theory. Making use of said notations, the coherence vector to first order in the Magnus
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

expansion is calculated to be

cosA —sinA 0

PUO@t) = |sinA cosA 0] x (3.36)
0 0 1
K2+ K2cos|K| K.K,(—1+cos|K|) —K,|K|*sinc|K]|
X — | KeKs(=1+cos|K|) K2+ KZcos|K| —K.|K[*sinc|K| | P(to).
KT\ K, |KPsinc|K| K. |K|sinc|K]| K% cos | K|

This is the analytic perturbative solution to the quantum kinetic equations in Egs. (3.1}
- with generic potential and time dependence for 5 and A as long as the evolution
can be considered nonadiabatic. This is equivalent to saying that 3 is a small quantity to
expand in. Again, this result can only be fully appreciated once the associated limiting
cases are recovered. We shall see to this in the next section [86) 87, 188].

3.3 Perturbation theory ingredients and limiting cases

We understand that our method for obtaining adiabatic and nonadiabatic solutions to
the quantum kinetic equations in Egs. (3.1-[3.2) for a two-flavor neutrino ensemble is a
generic one: it is model-independent in so far as it does not make any explicit reference
to the physics scenarios it can be applied to. For this reason, it is also apparent that the
main ingredients of the perturbation theory, namely the integrals J,/(t), K./(t), have
to be evaluated in each application separately. Both integrals do depend on time via the
time dependence of \(t) and /(t). General statements about these integrals are obscured
by the model-independent formulation of the perturbation theory, but not entirely im-
possible. This is due to the fact that neutrino conversions reveal a resonance at A = 0.

In any case, however, it is still necessary to demonstrate that the Magnus expansion does
give exact results in the various physical limits. We shall do so by evaluating the different
ingredients of the perturbation theory for certain physics scenarios.

3.3.1 The integrals J./,(t) and K./(t)

The integrals J,/(t) and K./4(t), for the adiabatic and nonadiabatic case, respectively,
have in common certain characteristic features. For the adiabatic case the integrand in
Jess(t) is proportional to the expansion parameter ywes safe for an oscillatory function.
This also holds true for the nonadiabatic case in which K /(t) is proportional to 3. So
at a first glance both integrals seem to be similar. On second thought, however, there is
a crucial difference encoded in the oscillatory term in K /,. Because of the neutrino con-
version resonance, it has a stationary phase (d)\/d¢ = 0 at resonance), whereas J,/; does
not.
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3.3 Perturbation theory ingredients and limiting cases

Let us therefore evaluate K./, by means of the stationary phase method. Suppose the
two main assumptions needed to apply the stationary phase method are realized in the
physics scenario under consideration. This assumption does, of course, rely on the nature
of the ensemble under investigation and hence assumes an explicit underlying model.
However, we shall assume that the oscillatory behavior of the integrand is rapid enough
to suppress all large contributions to the integral, which might come from g(¢). If this
is so, the latter can simply be evaluated at resonance. There is yet another requirement,
which has to be met so that the stationary phase method can be applied. The resonance
has to happen in a small region around tes. Put another way, the smallness of the afore-
mentioned region is determined by whether the substitution ¢t - —oo and ¢ — oo is
justified in this region or not. For the sake of discussion, we shall suppose that these two
requirements are met. We can then evaluate the integrals in question to find

|Ks| = 0, (3.37)
2
/71‘85.

K| ~ (3.38)

Using these results also allows determining their linear combination termed |K|. It obvi-
ously obeys

2T
Vres .

|K| ~ (3.39)
This result is reassuring, since it gives the main ingredient of the nonadiabatic perturba-
tion theory as the reciprocal value of the adiabaticity parameter at resonance. The latter
expression is a small quantity in the sudden regime.

Let us turn to the integrals J,/; now. The first step that comes to mind here is integration
by parts. We get

t 3 d’y
Js(t) = —7ycosef| + / dT — COS Weft, (3.40)
to t dr

0

t t d")/
Jo(t) = ysindeg —/ dr =L sin G- (3.41)
to t dr

0

If the variation of + in the interval [to, t] is sufficiently mild, the main contribution to the
integrals is expected to come from the first term on the right hand side. This signifies that
also the integrals J./, are small in an appropriate sense, since in an adiabatic regime v is
a small quantity (and the additional oscillatory part is bounded by one).

Given these arguments the integrals K./,, J./, reveal a common trademark. Both inte-
grals turn out to be small. In the nonadiabatic case K/, is proportional to the inverse
of 7res, which, in a nonadiabatic perturbation theory is a large quantity. Likewise, in the
adiabatic perturbation theory + is the small quantity to expand in and again the integrals
J./s turn out to be proportional to ~. This first check for consistency obviously works out
fine.
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

3.3.2 Limiting cases

Yet another check for consistency of the perturbation theory is whether the appropriate
limits are recovered. Let us see to studying this now and begin with the adiabatic case.

1. Adiabatic perturbation theory: The vacuum limit

This limit to Eq. is probably the most intuitive one. We confine ourselves
to the one-particle interpretation and understand that for an exactly solvable sys-
tem the first-order Magnus term should already give the exact result. This implies
P (t) = P(t). Let us examine how this works out here. Firstly, we discard the
potential term V,,. This does away with the potential term in A and leaves us at

Am?

A — =55~ cos20p. The quantity (5 is left unchanged by this modification. It still

reads 3 = AQ—’ZQ sin 26y. Hence, for consistency, we must take the adiabatic limit of

v — 0. It immediately implies J.,; — 0. Moreover, we can define the common os-

. . 2 . . .
cillation frequency w = %—’Z and set ¢y = 0 (as no resonance time exists, the choice

of t( is arbitrary). This means Weg — wt. Finally, it follows directly from the defini-
tion of the effective mixing angles that ©(¢) — 26, for all times. All this reduces the

coherence vector to

s+ 2coswt  esinwt 2scsin? %t
PO @) = csinwt cos wt —ssinwt P(tp), (3.42)
2scsin? %t —gsinwt %+ s2coswt

where we have used ¢ = cos 26y and s = sin 26y. Suppose we start with a v, flavor
such that P(to) = (0,0,1). The probability to find the neutrino in the same/the

other state after time ¢ is then using Eqs. (2.40|—[2.41)) as well as Eq. (3.42) given by

t
prob(v, = v,) = 1-— sin? 26, sin® %, (3.43)
t
prob(v, — 1) = sin” 26 sin? % (3.44)

This is just the common probability for neutrino oscillations in vacuo. Note, more-
over, that this result was obtained solely by using the truncated Magnus expansion
as given above and that it accounts for probability conservation. Put another way,
unitarity is guaranteed by means of the expansion itself and does not have to be
imposed by hand.

We next turn our attention to the nonadiabatic case, which also has some interesting

limiting cases. Two interesting limits can be identified.
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1. Nonadiabatic perturbation theory: The sudden limit

The sudden limit of taking 3 — 0 renders the quantum kinetic equations (3.1-[3.2)
into formally exactly solvable differential equations such that the Magnus expan-
sion should give an exact result. Let us see how this works out here. The limit
B — 0 enforces wegg = |A|. Therefore, we must have cos® = 1, sin©® = 0, which in
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turn implies v — 0. The coherence vector assumes a form

cosA —sinA 0
P(t)=|sinA cosA 0| P(to). (3.45)
0 0 1

The coherences of the ensemble are oscillating as a function of time (the ensem-
ble is incoherent) and the flavor is frozen to its initial value. Put another way, in
physical situations in which the evolution of the ensemble happens in a way that
with increasing time also 3 increases, the unfreezing of the ensemble can be stud-
ied using nonadiabatic perturbation theory since it treats 3 as a small perturbation.
We shall point out in section that this scenario of unfreezing is typically of
interest in early Universe applications. There is, however, a twist when it comes to
early Universe applications. In such systems collisions become a dominant source
of decoherence at high temperatures and thus the notion of adiabaticity is expected
to get modified. Put another way, a small § in early Universe environments aug-
mented by the presence of decohering collisions might as well allow for an adiabatic
perturbation theory (see section 3.3.3|for some more details).

. Nonadiabatic perturbation theory: The slab model limit

Let us consider a one-particle application also for nonadiabatic situations. To this
end, suppose that we start the evolution of the neutrino ensemble from a purely v,
state. This means P(t) = (0,0, 1). We then obtain for the coherence vector

(=K cos X+ K,sin \) sinc |K]|
PO(t) = [ —(K.cos A + K,sin A) sinc |K]| |, (3.46)
cos | K|

and the flavor oscillation probability is written as

prob(v, — v,) = cos? % |K|. (3.47)

Let us reshape this result further in order to render it into a well-known result in
neutrino oscillations in the nonadiabatic regime. To do so, suppose the situation as
described above to estimate the K-type integrals holds, i.e., the resonance in neu-
trino conversions happens in a narrow time interval centered around ¢,.s. Applying
the stationary phase approximation, we then obtain

1
prob(v, — v,) = cos? 4/ gfy . (3.48)
res

This result is the oscillation probability for the slab model as outlined in Ref. [89].
The slab model was originally conceived in order to account for neutrino flavor
conversions in the sun via the Mikheev-Smirnov-Wolfenstein effect. It assumes a
small mixing angle in vacuo and that the neutrino conversion occurs within a thin
region (the slab) around the resonant matter density region. It is found that this
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

model describes the solar neutrino data reasonably well within the region of its
validity which is just given by the nonadiabatic regime. So the relevant limit is
respected in this situation.

3.3.3 Applications and higher order corrections

It is an easy task now to extend the Magnus expansion to higher orders by means of
summing the associated approximants according to Q(¢) = Q;(¢) + Q2(t) + . ... In order
to a grasp on how this prescription unfolds, we take a look at the second-order Magnus
approximant and briefly comment on its shape. We find

0 Jb 0
QLt)=|-J0) 0 0], (3.49)
0 0 0

where J (t) is given by

1 t t1
Jad(t) = 2/ dtl/ dtg y(t1)y(t2)wes(t1 )wett(t2) sin [Defr(t2) — Wetr(t1)] (3.50)
to to
for the adiabatic case and
1 t t1 ~ ~
Tualt) =5 [ dtn [ dte B(e)B(e)sin [M(e) ~ A1) (3.51)
to to

for the nonadiabatic case, respectively. The calculations are performed in the X-picture
for adiabatic transitions and in the Y-picture for nonadiabatic transitions. Two things are
easily inferred. The second-order approximant is indeed O(7?) and O(3?) for adiabatic
and nonadiabatic corrections, respectively, as is expected. Moreover, it is seen that the
second order populates the (23) and (32) entries of the Magnus operator (.

We shall now briefly elaborate on the complications which arise when ensemble deco-
herence is to be taken into account. This typically happens in early Universe applica-
tions in which the time evolution of neutrinos is governed by three distinct physical pro-
cesses: firstly, the expansion of the Universe; secondly, coherent oscillations governed by
a matter-dependent effective Hamiltonian, which results from coherent forward scatter-
ing processes of neutrinos off the background particles; thirdly, scattering processes with
the background plasma of elementary particles. These collisions, or non-forward scatter-
ing processes, with particles from the background medium typically introduce decoher-
ence effects into the neutrino ensemble. In our analysis we have neglected the ensemble
decoherence due to non-forward scattering.

The epoch of foremost interest in studying neutrino oscillations in the early Universe is

the one between muon decoupling at ' ~ m,, ~ 100 MeV and neutrino decoupling, i.e.,
prior to big bang nucleosynthesis, at about 7' ~ 1 MeV, since during this time the initial
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3.3 Perturbation theory ingredients and limiting cases

conditions for nucleosynthesis, the electron neutrino abundance, are set, which then di-
rectly influence the neutron-to-proton ratio at the onset of big bang nucleosynthesis via
B processes p + e~ = n + v,.. The primordial plasma during this epoch thus consists
of electrons, positrons, neutrinos and antineutrinos [60, |61} 62]. Note, however, that an
additional restriction in the derivation of the quantum kinetic equations emerges. If a
treatment using the S-matrix is employed, it is understood that the initial and final scat-
tering states evolve as free states. This is only the case if the plasma is sufficiently dilute
and the quanta do not spend most of their time interacting. For the case of a weakly in-
teracting gas of relativistic particles a rough estimate yields that the approach using the
S-matrix should be valid for temperatures 7' < 100 GeV [59]. The temperature regime
under consideration here has 7' < 100 MeV, so this requirement is fulfilled and the for-
malism we are dealing with is applicable.

The density matrix p for the system of interacting and oscillating neutrinos encodes ra-
tios of number density distributions and hence the expansion of the Universe does not
directly contribute to the time evolution of the density matrix. However, the momenta
of the particles are redshifted and the equilibrium number distributions N¥Q(p, 0) thus
depend on time through this redshifting.

An interesting application of the approach developed here exists in scenarios as discussed
in, e.g., Refs. [65]90| 91} 92], namely active-sterile flavor oscillations. The latter are inter-
esting since active-sterile oscillations would populate the additional sterile species and
thus contribute significant additional energy density, which in turn would trigger an
accelerated expansion of the Universe and hence lead to a higher weak freeze-out tem-
perature [93,2,194]. This again would result in a higher neutron abundance and therefore
a higher abundance of “He. However, the correct prediction of the primordial Helium
abundance is one of the cornerstones of big bang nucleosynthesis and therefore can con-
strain such models as discussed here.

The coherent part of matter-affected active-sterile oscillations splits into two contribu-
tions. One isjust the leading order density-dependent contribution (the Mikheev-Smirnov-
Wolfenstein [54] 55| 56] part). This part is only temperature-dependent indirectly via
the cosmological redshifting of fermion number density. The second contribution comes
from leading order finite temperature gauge boson effects, which cannot be neglected at
the temperatures considered here.

The loss of coherence is due to neutrino collisions with the background medium. The
decoherence (or damping) function for this process in thermal equilibrium turns out to
be proportional to the total collision rate for the neutrino with momentum p under con-
sideration.

The epoch of interest can now be decomposed into three distinct domains. At high tem-
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3 Adiabatic and nonadiabatic perturbation theory for coherence vectors

peratures finite temperature gauge boson effects [7] dominate. Repopulation effects from
the background plasma can be neglected since at high temperatures thermal equilib-
rium for all relevant species is rapidly established. At intermediate temperatures lepton-
number production starts and the forward scattering contribution comes into play as a
small perturbation. Finally, prior to the onset of big bang nucleosynthesis, at low tem-
peratures, collisional effects and finite temperature gauge boson contributions cease to
be important and coherent neutrino oscillations are the dominant process.

In each of the aforementioned temperature domains the quantum kinetic equations should
be solved to determine the evolution of the neutrino ensemble. It is obvious that deco-
herence and repopulation effects modify the underlying quantum kinetic equations and
complicate their analysis by introducing new physical scales into the system.

While the early Universe framework in principle deserves a more careful treatment, we
do, however, understand that our paradigms for obtaining the oscillation frequency, the
effective mixing as well as the adiabaticity parameter of the system do not necessitate
a full solution for the coherence vector. Hence, we take a first glance at such collision-
affected neutrino conversions using our formalism.

The time evolution matrix for a collision-affected two-flavor active-sterile neutrino en-
semble in the early Universe is given by

D) -At) 0
St =| Aty -D(t) —B) (3.52)
0 B(t) 0

in the framework described above. The potential term A(¢) now contains the Mikheev-
Smirnov-Wolfenstein potential from coherent elastic forward scattering of neutrinos on
the background plasma as well as a finite temperature W-boson contribution. Moreover,
D(t) gives the decoherence (damping) function, which is proportional to the total colli-
sion rate for the active neutrino flavor. Applying our paradigm to this system, we find
for the effective oscillation frequency

Weff = VA2 + B2 + D2, (3.53)

which reduces to the well-known expression in the collision-less limit of taking D — 0.
Moreover, we demand that effective mixing still have the property of being maximal at
the resonance (A(tyes) = 0) and give way to the standard coherent oscillation results as
discussed in our analysis above. We thus find
cosO(t) = A) (3.54)
VN + 70 + DD
B2(t) + D2(t)

sinO(t) = NeEOETED ESE0h (3.55)
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3.3 Perturbation theory ingredients and limiting cases

Since now we have an effective mixing angle at our disposal, we can identify an adia-
baticity parameter via

1 de

= — 3.56
VE A (3.56)

which can be calculated to yield

1 BA dg DX dD 3 dA
= |t —— -V DZ—— 57
"o\ Urrpa  yrrpa VO dt] (3:57)
or rather at the resonance
1 dA

res — N . 3.58
k 62 (tres) + DQ(tres) de t=tres ( )

Two things are observed. Firstly, this result reduces to the standard paradigm of an adi-
abaticity parameter in the collision-unaffected regime (D — 0) and secondly, it entails an
intriguing modification of adiabaticity in the presence of collisions. The latter means that
a small 3 does not necessarily coincide with nonadiabatic neutrino conversions any more.

As has been mentioned before, an explicit solution for the coherence vector in a collision-
affected regime demands good care and is beyond the scope of this work.
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4 Lepton-number violating effects in
neutrino oscillations

In the following considerations we study a system of an arbitrary number of neutrino
flavors and introduce lepton-number violating terms into the oscillation Hamiltonian.
Note, in this context, that there is a crucial difference between lepton-number violation
in the Lagrangian of a model (e.g., in Majorana mass terms) and lepton-number violation
in the oscillation Hamiltonian for neutrinos. Lepton-number violation in either of them
does not necessarily result in lepton-number violation in the other. We also comment on
the CPT properties of the underlying Hamiltonian and derive explicit expressions for the
various oscillation probabilities. Thereafter, we exemplify how lepton-number violation
manifests in one- and two-flavor oscillations and add further insight as to the nature of
the developed perturbation theory [95].

4.1 Perturbation theory

Inspired by the structure of the Lorentz- and CPT-violating neutrino oscillation Hamil-
tonian in section we write the most general Schrédinger equation for oscillations
involving both active neutrino and active antineutrino states in flavor space. The left-
chiral neutrino fields are collectively denoted by v = (v, vy, V7, ... ); the abbreviatory
notation for right-chiral antineutrino fields is & = (7., U, 7~ . . . ). With this notation, we
have for the Schrodinger equation

d (v(t)) v(t)
3 (50) - (2). "

where H is the Hamiltonian. Suppose a seesaw mechanism is held responsible for neu-
trino mass generation. In this case the energy of the neutrino beams as encountered in,
e.g., BEarth-bound oscillation experiments is too small to excite the heavy sterile neutrino
states and thus those states dynamically decouple and do not participate in neutrino fla-
vor oscillations. Given the form of the equations of motion in flavor space, it is convenient
to split the Hamiltonian into block-diagonal and block off-diagonal parts. We hence write

the Hamiltonian as
~ (H() © 0 B(t)
w0 = (% )+ (o V)

= Ho(t) + 6H(2). (4.2)
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4 Lepton-number violating effects in neutrino oscillations

The states in the vector v are assigned lepton-number equal to +1, whereas the associated
antineutrino fields & have opposite lepton-number —1. Therefore, our notation separates
the lepton-number conserving part Hy of the Hamiltonian from the lepton-number vio-
lating part 6H. Moreover, we assume that all neutrino states are stable and do not decay.
This implies that the Hamiltonian H is Hermitian. Hermiticity of the Hamiltonian H is
then also handed down to its block-diagonal entries H and H , which are also both Her-
mitian. No further information on B can be gained from Hermiticity, though. Moreover,
H and H are generically different since neutrino and antineutrino states can experience,
e.g., CP-nonconserving interactions as is the case, for instance, in elastic forward scatter-
ing of neutrinos off background particles [54].

Further constraints on the elements of the Hamiltonian H can be obtained by supposing
that CPT be an exact symmetry of the system. Keeping in mind that the active neutrino
states are but the CPT transforms of the active antineutrino states and denoting the CPT
operator as O, we can study matrix elements of a given operator O(t). Let |a) and |b) be
arbitrary state vectors, then

(8a| O(t) |©0) = (b O'(t) |a) = (a] O(t) |b)" (4.3)

under the action of CPT and writing © |b) for |©b). We are concerned with active neutral
fermions in our studies and hence we can choose the phases as well as the ordering of
the states such that

O |va) = [Va) - (4.4)

Let us now apply these relations to the Hamiltonian H. Making use of Hermiticity we
find

(val H(t) [5) = (Oup| H(t) |Ova) = (| H(?) [7a) - (4.5)

Making use of the block-diagonal structure of the Hamiltonian introduced in Eq. (4.2),
we understand that CPT imposes additional restrictions on the block entries according to

A~

H(t)=H'(t), (4.6)

thence relating neutrinos and antineutrinos in the lepton-number conserving part of the
Hamiltonian. Similar steps yield a similar restriction for the block off-diagonal lepton-
number violating terms

B(t) = B'(t), 4.7)

i.e., the block B(t) is symmetric. It is interesting to note that conservation of CPT does
not imply that there cannot be lepton-number violating terms in the oscillation Hamil-
tonian. Even if CPT is an exact symmetry of the Hamiltonian, lepton-number violating
neutrino oscillations are still possible [96, 97, 98], but obviously have to have a different
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4.1 Perturbation theory

origin than CPT violation. In the one-generation case, we shall see that the mere exis-
tence of lepton-number violation is not enough for neutrino-antineutrino oscillations to
develop; one additionally needs CP or even CPT violation in neutrinos and antineutrinos.
We shall discuss this issue in due course. Of course lepton-number violating neutrino-
antineutrino oscillations can occur in scenarios with CPT violation, in which case the
identities above need not hold.

Different origins for genuine lepton-number violation are conceivable. In the upcoming
analysis we predominantly have in mind Lorentz- and CPT-violating extensions of the
standard model as the underlying physics as described above and in, e.g., Ref. [6]. We
shall, however, stick to a model-independent parametrization of lepton-number violat-
ing effects and analyze different genuine ramifications thereof, rather than delving into
specific physics models.

Instead of dealing with the Schrédinger equation for state vectors, we find it to be more
convenient to introduce the time evolution operator U(¢, ¢y) for the system according to

v(t)) v(to)
(1) - (1) s

The equations of motion in flavor space take the form

%U(t,to) — HEGU o). 49)

Henceforth, we shall often take ¢, = 0 and omit it in the notation. The CPT properties
of the time evolution operator are worth looking at since they permit further insight into
the CPT properties of neutrino oscillation probabilities. The CPT symmetry for the time
evolution operator implies the following condition

ouU(t) =U(-t)O (4.10)
such that we find
(©a| U() |©b) = (a| U(—t) [b)" (4.11)
for expectation values. Applied to neutrino states this relation translates to
(7]7a(t)) = (Wlva(=1))" = (valr(1)) (4.12)

Put another way, the oscillation probability of an 7, going to 7, is the same as that of a v,
going to v, such that

P(Da — Up; t) = P(l/b — I/a;t). (4.13)

Additionally, we find a similar expression for lepton-number violating oscillations, which
reads

P(vg — mp;t) = P(vp — g t). (4.14)
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4 Lepton-number violating effects in neutrino oscillations

We adopt the paradigm that lepton-number violating neutrino-antineutrino couplings B
are small compared to the lepton-number conserving terms H and H and we shall there-
fore treat B as a small quantity for a perturbative solution of the equations of motion
[77]. To this end, we decouple the evolution of neutrinos and antineutrinos from the evo-
lution of the neutrino-antineutrino system by introducing a (subsidiary) time evolution
operator G(t) for the neutrino and antineutrino systems. The latter is then used to trans-
form the time evolution equation for U(¢, tp) to what we shall, henceforth, refer to as the
interaction picture. Establishing this line of action, we write

Ut to) = G(t, to)Ui(t, to) (4.15)

with the underlying equation of motion

%G(t, to) = —iHo(, 20)G(t, to), (4.16)

where the subscript I indicates the associated quantity in the interaction picture. It is seen
that the time evolution equation in the interaction picture can be recast as

%Ul(t,to) — iH (ULt to) 4.17)

with the Hamiltonian in the interaction picture given by
Hi(t) = G~ (¢, t0)0H(t)G(t, to). (4.18)

The Hamiltonian Hj is lepton-number conserving, and therefore the solution to Eq. (4.16)
obviously takes the form

G(t,to) 0
G(t,to) = A . 419
(t, to) ( 0 t0)> (4.19)
Making use of this expression, we can write the interaction Hamiltonian according to
0 G~1(t,t0) B(t)G(t, to)
Hi(t, to) = | 4 . 4.20
1t to) (G-lu, ) B (Gt to) 0 (420

Perturbatively solving the time evolution equation in the interaction picture can now be
easily achieved by employing the Magnus expansion. We use a matrix exponential for its
solution and write

Ui(t, to) = €410, (4.21)

where the Magnus operator is the sum of the Magnus approximants, as discussed at
length in chapter 2| We shall see in our analysis that neutrino-antineutrino oscillation
phenomena only enter the oscillation probabilities in second-order perturbation theory.
Suppose that the time evolution for the lepton-number conserving oscillations, which
have been separated into G, can be obtained by solving its evolution equation, such that
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4.1 Perturbation theory

we have it at our disposal for further calculations. Our objective here is to comment
on how lepton-number violating effects manifest in neutrino (antineutrino) oscillations.
Reversing the transformation to the interaction picture for the time evolution operator
U(t, tp) now yields

U(t, tg) = G(t, to)e 1), (4.22)

We can use the block structure of the interaction Hamiltonian to calculate the Magnus
operator up to second-order perturbation theory. We find

(2) [ C(tto) —iB(tto)
Q 2 (t,tO) - <—ZBT(t7tO) D(t7t0) , (423)

where we have made use of the shorthand notations

t
B(t,ty) = /t dr G~Y(r, 70)B(1)G(7, 70), (4.24)
t 38 5 -
Clt,tg) = —;/ dtl/ dtz{B(tl)BT(tQ)—h.C.}, (4.25)
to to
t t1 3 3
D(t,tg) = —;/t dtl/t dtg{BT(tl)B(tg)—h.c.}. (4.26)

A dot indicates a derivative with respect to time. Note, that the quantities C/(¢, %) as well
as D(t, to), which appear on the diagonal of the Magnus operator, are quadratic in B(t, o)
and therefore in the lepton-number violating parameter B in the Hamiltonian. Then, up
to second-order expressions in B, we can obtain the matrix exponential of the Magnus
operator by truncating its power series. We obtain

)~ 1 4 Q(t,to) + %QQ(t,to) +0(0?%)

1+ 0@ (t,ty)  —iB(t, o)
— 2 b N S 4.27
( SiBl(t) 1400t T 42

In this expression we have introduced second-order operators for neutrinos O®)(t,t,)
and antineutrinos O®)(t, t,), which decode the deviation from unity (lepton-number con-
serving oscillations) in the diagonal entries of the exponential of the Magnus operator.
Those read

0@ (t,tg) = C(t,to) — =B(t, to) B (¢, to), (4.28)

N = N~

These operators reveal how lepton-number violating neutrino-antineutrino mixing as in-
troduced by B(t) affects the neutrino and antineutrino sectors, respectively. We have
now assembled all ingredients which are necessary to give the various oscillation proba-
bilities. The oscillation probabilities for common lepton-number conserving oscillations
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4 Lepton-number violating effects in neutrino oscillations

are denoted by
Po(va = v t) = |Gra(t) (4.30)
Po(Va — y;t) = |Gra(t)*. (4.31)

Up to second order in lepton-number violating terms, the lepton-number preserving
probabilities get modified according to

Plvg = vyit) = Po(va — vpit) + 2Re{G§a(t) < (GO (t))ba} . @3)
P(va = mit) = Polta = m5t) + 2Re{ G, (1) x (GOOD (W)} (433)

There is no summation of recurring indices implied here or elsewhere in this chapter.
Lepton-number violation in the Hamiltonian also gives rise to lepton-number violating
oscillations for which the probabilities now read

P(va = m;t) = [(G)B())eal, (4.34)
P(0g — wpit) = [(G()B(1))bal* (4.35)

A few comments concerning the nature of these expressions for the oscillation probabili-
ties are in order.

As has already been pointed out in the discussion of the virtues of the Magnus expan-
sion, the oscillation probabilities can be obtained without resorting to the effective mixing
matrix at any stage of the calculations. This can be considered a convenient feature, espe-
cially for systems of three or more flavors. Itis, atleast in principle, also possible to derive
oscillation probabilities by diagonalizing the entire lepton-number violating Hamiltonian
and to extract oscillation probabilities from the eigenvalues and eigenstates. The essential
features of the solution, however, are retained in our approach. Another notable charac-
teristic is found in the fact that diagonalization of a 2NV x 2NN system (/N denoting the
number of neutrino flavors) is reduced to a matrix multiplication for N x N matrices,
since the perturbation expansion only involves block entries from the original Hamilto-
nian H(¢).

One would expect that truncation of the exponential series of the Magnus operator results
in loss of unitarity. However, truncating the series in a way that only keeps second-
order terms in the small perturbation B(t), does in fact imply that also the time evolution
operator is unitary up to second order in this quantity. It is straightforward to verify
this by invoking the unitarity condition on U(t,ty). Yet another way to explicitly test for
unitarity is to study the oscillation probabilities given above. Let us begin by taking the
sum on all final flavor states in the oscillation probability P(v, — v4;t). We find

S Plva = wyit) = 1+22Re{aga(t)x(G(t)o<2>(t))ba}
b b

1+ 2Re{GT (DGO (t)}

aa

- 14 2Re{0<2> (t)} : (4.36)

aa

48



4.1 Perturbation theory

where we have used that G(¢) is a time evolution operator and hence unitary. Further
simplifications can be made. The expression for O(?)(t) reveals that the diagonal entries
of this matrix must have a negative real part. This is due to the fact that the diagonal
elements of C are purely imaginary and those of BB must be real and positive. We can
hence write the sum on all final state flavors for lepton-number conserving oscillations
according to

S Plva - vpit) =1 - {B(t)BT(t)} . (4.37)

aa
b

This sum is less than unity as one would expect since also lepton-number violating oscil-

lations are possible in our scenario. Let us therefore look at the lepton-number violating
oscillations from a flavor v, to all possible antineutrino flavors. It is found to be

S Py = mit) = Z(é(t)éf(t)>* (é(t)BT(t))ba
b b

ba
- (E(t)@T(t)é(t)BT(t))

- (B(t)BT(t)) , (4.38)

aa

aa

again using the unitarity of G. Assembling the lepton-number violating and lepton-
number conserving part, we obtain

ZP(Va — vp;t) + ZP(I/a — Up;t) = 1. (4.39)
b b
In the presence of lepton-number violation, the lepton-number conserving oscillation
probabilities decrease, making room for lepton-number violating oscillations.

The Magnus expansion allows us to give an approximate solution to the time evolution
operator, which implies that the structure of the oscillation probabilities is also of a per-
turbative manner. It is therefore a viable question for which baselines (or times ¢) the
approximation can actually be considered a good one. We find that this is the case if the
relation | B|t < 1is satisfied. Here | B| indicates the magnitude of any nonzero eigenvalue
of B. We will see later how this condition is realized, when we study a simple two-flavor
model, which can be solved exactly and by means of the perturbation theory introduced
here.

Let us, however, put aside such technicalities and begin a description of the physics of
the oscillation probabilities for now. The oscillation probabilities are illustrative in a way
that they are reducible to the standard lepton-number conserving neutrino oscillation
results in the limiting case of vanishing neutrino-antineutrino coupling, i.e., B(t) — 0.
The appearance of the oscillation probabilities for v, — 7}, and 7, — 1} can also be in-
terpreted in an intuitive way. Reading Egs. and from right to left they state
that Bf(t) [B(t)] switches the initial neutrino (antineutrino) state to the associated an-
tiparticle and G(t) [G(t)] then evolves the antiparticle (particle) state until its detection.
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4 Lepton-number violating effects in neutrino oscillations

So, neutrino-antineutrino oscillations are clearly a signal for lepton-number violation in
the neutrino sector. Note, that this statement is a general one. All oscillation probabili-
ties come with B(t) and derivatives thereof. Put another way, in an approach in which
neutrino-antineutrino couplings are treated as a small perturbation to all other potential
enhancements in the neutrino and antineutrino sector respectively, one cannot have mod-
ifications in the neutrino-neutrino and antineutrino-antineutrino probabilities without
introducing neutrino-antineutrino conversions at the same time. The oscillation proba-
bilities for v, — 3, and v, — 14 are generically different by virtue of the generic difference
between G(t) and G(t). Even if the respective Hamiltonians H and H do not discrimi-
nate between particles and antiparticles [e.g., H(t) = H(t)] there still is a difference due
to the fact that neutrino-antineutrino coupling can be complex and not self-adjoint, i.e.,
B(t) # B1(t) in general.

A similar situation applies for v, — 1, and 7, — 1, oscillations. They differ in the
time evolution operators for neutrinos and antineutrinos but also in the second-order
operators O?)(t) and O@(t). Those operators are, in general, not identical, which is
again due to the fact that B(t) does not have to be self-adjoint. This statement translates to
the fact that lepton-number violating neutrino oscillations discriminate between particles
and antiparticles even if there is no difference in the respective Hamiltonians H and H
for neutrinos and antineutrinos.

4.2 The one-generation case

Having established an approach to neutrino oscillations in which lepton-number viola-
tion is considered a small effect, let us now elaborate on the physical notion underlying
this framework. For such purposes, we begin by studying the one-generation case of
neutrino oscillations, since already in this case lepton-number violation allows neutrino-
antineutrino oscillations to develop. Making use of the formalism, we obtain

t _
B(t,to) = / dr B(r) A (M), (4.40)
t

0

where we have defined

t

Aﬁ(t)z/tth AH(T)Z/

0 to

dr [H(T) — A7) (4.41)

as the difference between (CP-nonconserving) potential terms in the neutrino and antineu-
trino sectors. Clearly, if the difference in such potential terms vanishes for some time
t = tres, the integral has a stationary phase and we can evaluate it by means of the
saddle point approximation. This yields

- s 1
B~ b)) [T 2 (4.42)
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4.2 The one-generation case

Here we have introduced the adiabaticity parameter at resonance ~s, which we shall prop-
erly define and explain shortly. To this end, let us start from the lepton-number violating
Hamiltonian and notice that for a simple two-dimensional case, we can always easily
find a unitary transformation (for a two-dimensional problem, phases are irrelevant and
the unitary transformation amounts to a time-dependent rotation in flavor space), which
entails an effective mixing angle ©(t) fixed via

_ AH() 2|B(1)]

cos O(t) = , sin©(t) = . 4.43
( ) Weff (t) ( ) Weff (t) ( )

The effective oscillation frequency weg(t) of the system is here given by
wert (t) = /4| B(1)|2 + AH2(t). (4.44)

It is interesting to note that the effective mixing becomes maximal and neutrino conver-
sions undergo a resonance, in the case of vanishing AH (t), i.e., AH (t;es) = 0 at some res-
onance time ¢,s. Put another way, mixing between neutrinos and antineutrinos becomes
maximal when the difference between potential terms for the two species is minimal (or
in fact vanishing at the resonance time). This is also corroborated by the fact that for
identical neutrino and antineutrino potentials mixing is always maximal. Obviously, for
the case of CP-conserving neutrino and antineutrino potentials the difference between
those vanishes at all times since they are identical to begin with. However, in the case of
CP-nonconserving matter potentials, the difference is generally nonzero and can be vary-
ing with time — the latter effect is crucial for some physics implications of the resonance
structure. It is also conceivable to allow for CPT-violating potential terms, which then
generate a nonvanishing difference AH (¢). Note, eventually, that both a lepton-number
violating coupling B(t) as well as a CP-violating difference in neutrinos and antineutri-
nos has to be assumed in order for neutrino-antineutrino oscillations to develop. This
can be understood by comparing the one-generation case of neutrino-antineutrino oscil-
lations with standard flavor oscillations between two neutrinos in vacuo. In the latter
case oscillations can only develop if there is a difference in neutrino masses for the two
states; in the former situation there also has to be some difference between neutrinos and
antineutrinos (which obviously cannot be the mass) which mimicks the effect of neutrino
masses in vacuum flavor oscillations. CP or CPT violation takes this role here and along
with lepton-number violation neutrino-antineutrino oscillations can develop.

With the effective mixing at our disposal, we write the adiabaticity parameter at reso-
nance as

1 dO(t) 1 dAH(®)

'7( res) Vres Wt dt e 4| B(t) ’2 dt e ( )

We have already discussed in chapter B|how this expression for the adiabaticity parame-
ter can be understood physically by comparing the system’s time scale to the interaction’s
time scale.
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4 Lepton-number violating effects in neutrino oscillations

For ~.es > 1 we encounter nonadiabatic neutrino-antineutrino conversions; Jyes < 1
gives the adiabatic case. So roughly speaking (neglecting the derivative of the potential
term for the time being) the smaller B(¢), the larger the nonadiabaticity of the neutrino-
antineutrino system and hence if we start the evolution with only v, (7,) states present
the transition v, — v, (¥, — 7,) prevails. The lepton-number violating oscillation chan-
nel v, — v, (Vs — v,) gets more and more suppressed as the nonadiabaticity increases.
If, however, the change of the difference in matter potentials is small with time, this effect
can partially compensate a small neutrino-antineutrino coupling, driving the evolution of
the system towards adiabatic transitions opening the lepton-number violating oscillation
channel v, — 7, (7, — 1v,) again. Note, also, that the suppression of the lepton-number
violating oscillation channel depends on the time dependence of the potential terms in
the Hamiltonian.

Substituting the result for the adiabaticity parameter v,cs in the expression for B and
at the same time keeping in mind that the oscillation probability P(v, — 74;t) is di-
rectly proportional to BT, it is seen that interpreting lepton-number violating (neutrino-
antineutrino) couplings as a small perturbation to lepton-number conserving neutrino
oscillations in the one-generation case is equivalent to assuming that neutrino-antineu-
trino oscillations occur nonadiabatically. Nonadiabaticity hence closes the lepton-number
violating oscillation channel v, — 7, but at the same time improves the perturbative ex-
pansion as outlined above.

These results for the one-generation framework make the case for referring to the pertur-
bation theory as a nonadiabatic perturbation expansion.

From the definition of the adiabaticity parameter ~,¢s another interesting feature emerges.
Suppose we assume small lepton-number violating couplings B(t) between neutrinos
and antineutrinos in the oscillation Hamiltonian. This means that oscillations between
particles and antiparticles are suppressed by the large nonadiabaticity of the transitions
giving rise mostly to the lepton-number conserving oscillation channel v, — v,. If, how-
ever, the time variation of the difference in matter potentials at the resonance is suffi-
ciently mild, it is seen that the presence of such matter along the neutrino (antineutrino)
propagation path can drive the system towards adiabaticity thus opening the oscillation
channel v, — 7,. Put another way, the presence of CP- (or even CPT-) nonconserving
matter of a varying density (easily reinterpreted as a time dependence of the potential
terms) can enhance lepton-number violating neutrino oscillations as compared to the
case in vacuo. Note that this statement holds true regardless of the nature of the pertur-
bation theory since it is merely a result obtained from the adiabaticity parameter v;.s and
the latter does only need the Hamiltonian of the system as a prerequisite.

We have not explicitly written down the steps leading to a solution for the Schrodinger
equation by means of the standard procedure of diagonalizing the effective Hamiltonian
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4.2 The one-generation case

since this does not add to the understanding of either the perturbation theory developed
here or the physics of the neutrino-antineutrino system under consideration.

We shall, however, give a simple geometrical interpretation of neutrino-antineutrino os-
cillations in the one-generation case using the methods developed for treating neutrino
oscillations in the coherence vector framework. In this approach, as presented in chapter
we were dealing with a density matrix in flavor space for neutrinos since the system
under consideration reveals flavor oscillations. However, if we are interested in neutrino-
antineutrino oscillations, we write the Hamiltonian and thus also the density matrix in
a state space in which the distinct states stand for particles or antiparticles of a specific
flavor. This entails a reinterpretation of the density matrix in this context. In the one-
particle interpretation of the density matrix its diagonal elements now give the probabil-
ity to find the system in the particle or antiparticle state (rather than in one flavor or the
other) and thus give the occupation numbers for particles and antiparticles (at a given
momentum), respectively. This amounts to saying that the density matrix (up to a time-
independent normalization) can be decomposed as p(p,t) ~ |[¢(p,t)) (¢(p,t)| using the
states |¢(p,t)) = a(p,t)|v) + b(p,t) |V) consisting of particles and antiparticles. We omit
the flavor index since we are dealing with a one-flavor system after all.

The time evolution equation for the coherence vector P(t) of the system can then be
obtained in analogy to the analysis in section[2.3} We find for the equations of motions

d - .
SP(t) = SP(),
0 AH(t)  2ImB(%)
S(t) = Sau(t)+ St =| AH®) 0  —2ReB(t)|, (446)
—2ImB(t) 2ReB(t) 0

where we have decomposed S(t) into its matter-affected, lepton-number conserving part
Sam(t) and its lepton-number violating neutrino-antineutrino part S, (t). Note, that this
equation is written in a basis of particle and antiparticle states rather than flavor states.

Let us further analyze these equations of motion. Since the lepton-number conserving
term Sap is self-commuting at different times, it can be integrated exactly, hence pro-
viding a solution for the time evolution of a system of matter-affected neutrinos and
antineutrinos in the absence of lepton-number violation. We write

0
aT(t) = San()T(t) (4.47)
and have for its solution
cos AH(t) —sinAH(t) 0
T(t)= | sinAH(t) cosAH(t) 0]. (4.48)
0 0 1
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4 Lepton-number violating effects in neutrino oscillations

Such a shape for the solution in 7'(t) is easily interpreted, keeping in mind that we are
operating in a state space of particles and antiparticles rather than flavor space. The oscil-
latory part in the upper left 2 x 2 matrix states that the system is oscillatory in P, and P,
and hence completely incoherent. The one in the lower right entry of the matrix tells us
that the system is also frozen to its initial » — v distribution. No transitions between neu-
trinos and antineutrinos can occur as is, of course, expected if lepton-number violating
terms are inexistent. Put another way, a neutrino (antineutrino) ensemble with vanishing
(or rather negligible) neutrino-antineutrino couplings is frozen to this configuration and
completely incoherent.

We can use T'(t) to introduce a new coherence vector Q(t) via P(t) = T(t)Q(t), which
yields equations of motion

SA0 = Sed),

0 0 2TmB(1)
Sq(t) = 0 0 —2ReB(t) |- (4.49)
—2ImB(t) 2ReB(t) 0

where we recover the integral quantity B(t,t) as given above for the one-generation
case.

The solution for P(t) to first order in a perturbation theory in B(t) and around the sta-
tionary solution for the equations of motion is given by

—

t
PW(t) = T(t) exp { / dr SQ(T)} P(ty), (4.50)
to
wherein P(ty) = (0,0, 41) is the initial neutrino-antineutrino distribution in which the
plus sign describes an ensemble of pure neutrino states and the minus sign one with
only antineutrino states present. The observable of interest thus is P,(t) as it gives the
time evolution of the neutrino-antineutrino ensemble or rather the excess of particle over
antiparticle states. We find

PO (t) = sgn [P (to)] (1 — 2sin? |B(t) ) : (4.51)

This expression can be interpreted geometrically. The z-component of the coherence vec-
tor is fixed to its initial value except for a correction that goes with the absolute value of
the integral quantity B(t). We have seen in the foregoing considerations that B can be
related to the adiabaticity parameter of the system at resonance. Substituting this result
in the expression for the time evolution of Pz(l)(t), it is seen that interpreting neutrino-
antineutrino coupling as a small perturbation to lepton-number conserving neutrino os-
cillations is equivalent to assuming that neutrino-antineutrino oscillations occur nonadi-

abatically.

54



4.3 The two-generation case

The oscillation probabilities are now easily obtained. We have

1 1
prob(v — v;t) = 5 [1 + P.(t)] = cos? g%es,
_ 1 9 [m 1
prob(v — v;t) = 3 [1—P,(t)] =1—cos 55 (4.52)
ZYI'GS

where obviously we have set Py = 1 since we are dealing with a closed system. We
see that unitarity is also preserved in this solution and in accordance with the discussion
above, neutrino-antineutrino conversions cease to exist as the system gets more and more
nonadiabatic.

4.3 The two-generation case

After having analyzed the one-generation case for neutrino-antineutrino oscillations, let
us turn our attention to the two-generation case in vacuo. Neglecting terms proportional
to the unit matrix, the Hamiltonian for flavor oscillations in neutrinos as well as antineu-
trinos can be decomposed in terms of the Pauli matrices o; (i = 1,2,3) and the mixing
angle 6 in the absence of lepton-number violating terms

N Am?
H=H = 4m (04 sin 26y — o, cos 26y)
D
= w(o,sin26y — o, cos26p) . (4.53)

It directly follows that also the time-evolution operators for neutrino and antineutrino
states are identical. They are found to obey

G(t,tg = 0) = G(t,to = 0) = coswt — i (0, sin 20p — o cos 20 ) sin wt. (4.54)

In order to encorporate effects of lepton-number violation, let us parametrize the matrix
B(t) using the Pauli matrices via

B(t) = bo(t) + bi(t)O'i, (455)
where
bo(t) = %tr B(),  bi(t) = %tr (0:B(1)). (4.56)

We have b,(t) = 0 for the case of CPT-conserving oscillations. It is now straightforward
to see

B(t) = fo(t) + Bilt)os, 457)
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4 Lepton-number violating effects in neutrino oscillations

where
Bo(t) = bo(t),

B(t) = sin26 [bw (t)sin 20g — b, (t) cos 2«90} + cos 2wt cos 26, [bz (t) cos 260 + b, (t) sin 26
—by(t) sin 2wt cos 26y,

By(t) = by(t) cos 2wt + sin 2wt [bz(t) cos 20p + b (t) sin 290] ,
B.(t) = —cos26y [bx (t)sin 20 — b,(t) cos 290} + cos 2wt sin 26 [bx (t) cos 26y +
+b.(t) sin 290} — by (t) sin 2wt sin 26, . (4.58)

Let us assume that the lepton-number violating part B(t) of the Hamiltonian is time-
independent and hence also independent of baseline. The above expression can then be
easily integrated to give B(t) and the resulting expressions can be used to calculate vari-
ous oscillation probabilities.

For the most general B, however, the expressions are cumbrous. So rather than working
through the full expressions, we focus on a simple example, which shall further clarify
the nature of the perturbation theory at hand since it can be tackled both analytically,
which gives an exact solution, and perturbatively. Suppose B is proportional to the unit
matrix, which means that lepton-number violation is flavor blind. This implies that all
b; = 0 such that we are left with a nonzero contribution from only b;. We hence find
that B is simply given by byt times the unit matrix. Using the formulae for the various
oscillation probabilities of the neutrino-antineutrino conversions, we find

P(vg — 0y t) = [bo[*t? X Po(va = i), (4.59)
whereas for the lepton-number conserving oscillations we have
P(vg = wit) = (1 — |b0|2t2) X Py(vg — w3 t). (4.60)

It is only just to comment on the nature of these oscillation probabilities. In the absence
of lepton-number violating contributions to the Hamiltonian, the oscillation probabili-
ties exhibit an oscillatory nature with respect to time (or baseline for that matter). The
periodic maxima and minima of this oscillation all come with the same amplitude. If,
however, lepton-number violating effects come into play, this periodicity is modulated
by a time-dependent function (1 — |by|?t?) and as the propagation distance of the neu-
trino on its path from the source to the detector increases, the successive maxima and
minima of the oscillation get more and more suppressed. Keeping in mind, though, that
the perturbation expansion is only valid in a regime where |byt| < 1, the oscillation prob-
ability is not liable to ebb away completely.

As a matter of fact, for the two-state system under consideration here the oscillation prob-
abilities can be obtained by exactly solving the underlying Schrodinger equation. For
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4.4 Some phenomenology of models with altered dispersion relations

such purposes we hearken back to the fact that G = G for the Hamiltonian Hy and hence
the 2 x 2 block structure of the Hamiltonian Hj in the interaction picture can be written

0 by 0 e
Hy = = |b | , 4.61
I (b;g 0> |bo <6_m 0 ) (4.61)

where by = |bp|e’®. Moreover, out of all Magnus approximants only the first term Q; is

as

actually nonzero. We find that it is given by
Qt) = Qi (t) = —iHyt. (4.62)

The matrix exponential for this expression can be done exactly. We have

10 {0 e
) = <0 1) cos |bo|t — @ (em 0 ) sin [bg|t. (4.63)

With the exponential of the Magnus operator at our disposal, the evolution operator of
the system is easily obtained and we find for the oscillation probabilities

P(vy — mp;t) = sin? |bolt x Py(vg — vy t),
P(vg — vpst) = cos? |bolt x Po(va — wp;t). (4.64)

The expressions given in Eqs. (4.59) and (4.60) are nothing but the first order approxi-

mations of the exact oscillation probabilities for |by|t < 1. The expressions for the os-
cillation probabilities given in Eq. are valid for all ¢. We finally remark that the
general formulae for the oscillation probabilities as given in Egs. - hold for
time-dependent systems as well, e.g., for matter-induced oscillations involving neutri-
nos and antineutrinos.

4.4 Some phenomenology of models with altered dispersion
relations

Before we further our analysis by means of beginning a discussion of CPT violation in
decays of charged fermions, we pause with the intention of furnishing the seemingly ab-
stract considerations concerning the development of perturbation theories for neutrino
oscillations in models with altered dispersion relations with some thoughts on the phe-
nomenology of said class of models.

To this end, we shall focus the discussion on the work previously published in Refs.
[28] 29] by the author of this thesis and used for his Diploma thesis. Let it be decisively
clear that the results previously published in the articles [28] 29] are not a part of the re-
sults of this Ph.D. thesis. They are, however, closely related and may thus serve as an
illustrative example for possible phenomenologies of the wide range of models to which
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4 Lepton-number violating effects in neutrino oscillations
the perturbation theories developed here apply.

In those works, we are dealing with two very different kinds of models for neutrino
oscillations with altered dispersion relations. On the one hand, we shall discuss the im-
pact of an asymmetrically-warped spacetime geometry on active-sterile neutrino oscil-
lations and the resultant phenomenological implications for neutrino oscillation experi-
ments [28]. This model serves as an example of Lorentz-violating, but CPT-conserving
scenarios. On the other hand, we shall present a model with generic violation of CPT
which gives rise to neutrino-antineutrino oscillations between electron and muon neu-
trino flavors [29].

Let us begin our endeavor with the discussion of baseline-dependent neutrino oscilla-
tions with extra-dimensional shortcuts. In models with large extra spatial dimensions
spacetime is typically composed of a 3+1-dimensional Minkowskian brane, which is em-
bedded in a bulk formed by the additional dimensions. In such models particles which
are singlets under the gauge group of the standard model are assumed to be allowed
to travel freely within the brane as well as the bulk. The remaining standard model
particles are then confined to the Minkowskian brane. Suppose now we introduce an
asymmetrically-warped metric

dr? = dt? — e 2l dg;da’ — du? (4.65)

for the brane-bulk system, such that e=2#l“l is the warp factor with k some presently
unknown constant of nature and u denotes the coordinate of the extra spatial dimen-
sion. It is easily understood that active and sterile neutrinos behave differently in such
an asymmetrically-warped spacetime. While the propagation of the active neutrino is
confined to the brane, the sterile state can have off-brane trajectories. Since the extra di-
mension is warped (the spatial coordinates of the brane are shrunken relative to the time
and bulk coordinates ¢ and u), longer travel times (or baselines for that matter) for a neu-
trino on the brane leave room for the geodesic of the sterile state to penetrate deeper into
the bulk. The deeper the penetration of the bulk, the greater the warp experienced by the
sterile state. For a brane-bound observer it will appear as if the sterile neutrino is taking
a temporial (i.e., superluminal) shortcut through the bulk. As the travel times for active
and sterile states are different in an asymmetrically-warped spacetime, a new phase dif-
ference in neutrino propagation emerges. On the one hand, there is the common phase
difference of td H = LAm?/2E, where H is the Hamiltonian of the system, L the baseline,
E the neutrino energy and Am? the mass-squared difference. On the other hand, there
now is a second phase difference Hdt = Ht(dt/t) due to the difference in travel times of
the active and sterile states. It is convenient to capture the relative difference in travel
times in the shortcut parameter ¢ = 6t /t = (tPrane — ¢bulk) ybrane The two phase differences
may conspire in a way as to produce resonant oscillation phenomena. As the shortcut
parameter depends on the neutrino baseline, so does the resonance behavior in neutrino
oscillations.
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4.4 Some phenomenology of models with altered dispersion relations

The derivation of the probability of oscillation between active and sterile states is a subtle
affair and we shall sketch its main ingredients here without going into too much detail.
A detailed derivation can be found in Ref. [28]. An analysis of the geodesic equations for
the spacetime under consideration reveals that there exists a countably infinite number of
geodesics for the sterile neutrino connecting two points on the brane. In a semi-classical
approach to path-integral quantum mechanics a path-integral weighted sum over all pos-
sible classical trajectories must be performed. Multiple geodesics contribute and there-
fore also multiple resonances are expected in the oscillation probability. Whether these
additional resonances contribute significantly depends on the initial distribution of sterile
neutrino velocities transverse to the brane. The fact that there can be initial momentum
components of the neutrino transverse to the brane is a consequence of the uncertainty
principle. We assume that the distribution of such sterile neutrino momenta along the
extra dimension obeys a Gaufiian shape. The width of this Gaufian distribution is then
related to the brane thickness.

It turns out that for resonant oscillations to develop, the experimental baselines have to be
short on the scale of the warp factor kE~L. In this case, it is seen that the resonance condi-
tion is that the product of baseline and neutrino energy, L, be an integer multiple of the
resonant product (LE)res k~1vAm?2. In this way, brane-bulk resonances are determined
by a product of baseline and energy rather than energy alone. The phenomenology of
such novel L E-resonances can be understood as follows. Above the resonance active and
sterile states decouple; at the resonance effective mixing becomes maximal and below the
resonance vacuum oscillations are recovered. As higher-resonances are suppressed, also
active-sterile mixing is suppressed for values of LE above its resonant value. In long-
baseline experiments sterile states taking shortcuts through the extra-dimensional bulk
decouple from active states on the brane. Consequently, there is no signal of active-sterile
neutrino mixing expected in atmospheric data, for instance.

The model for active-sterile neutrino oscillations in asymmetrically-warped spacetimes
predicts a modified spectral dependence of the oscillation probability. Instead of a L/E-
dependence we find a LE-dependence. This fact can be traced back to the observation
that we are dealing here with a model with altered dispersion relations. The effective
Hamiltonian of the neutrino system contains an additional effective potential term which
scales as ¢ E in energy. The apparently superluminal behavior of sterile neutrinos also in-
dicates that the model constructed here obviously violates Lorentz invariance. However,
the model is CP-symmetric as the origin of the altered dispersion relations is a purely
gravitational one and gravity does not discriminate between particles and antiparticles.

Let us in addition also explore a model with altered dispersion relations based on the
CPT-violating extension presented in section We begin by considering the effective
Hamiltonian of Eq. for the first two neutrino generations, electron and muon neu-
trinos. We allow for Lorentz- and CPT-violating interactions which modify both the neu-
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trino and antineutrino sectors and additionally introduce neutrino-antineutrino mixing.
The effective potential term V' (E) in the Hamiltonian assumes a form

—Cee 0 be 0

E 0 —c 0 b
V(E)=— e . . 4.66
(B) 2 be 0 —Cee 0 ( )

0 bu 0 —Cup

This potential is written in a flavor basis (ve, vy, Ve, 7). The cee, ¢y coefficients are
Lorentz-violating parameters, whereas b, b, are both Lorentz- and CPT-violating. The
b-type coefficients introduce neutrino-antineutrino mixing; the c-type coefficients are res-
ponsible for altered dispersion relations in the neutrino and antineutrino sectors. Using
this potential term and the vacuum oscillation Hamiltonian for neutrinos and antineutri-
nos, it is seen that switching from the flavor basis to a basis of charge-conjugation eigen-
states block-diagonalizes the four-dimensional effective Hamiltonian. Instead of flavor
eigenstates v; and 7;, the charge-conjugation states v, = %(uZ — ;) and 1/;“ = %(Vl +7;)
are used. Here v; is odd under charge conjugation, whereas ;" is even. Each sector
of charge-conjugation eigenstates can then be diagonalized separately. This introduces
an effective mixing angle for each sector and depending on the values of the Lorentz-
and CPT-violating parameters, resonances do occur in one or both sectors. The result-
ing resonance energies in the charge-conjugation odd and even sectors are different in
general. Keeping in mind that CPT violation discriminates between particle and antipar-
ticle states, this is easily understood. Another interesting observation is that introducing
matter effects into the system under consideration invalidates the approach via charge-
conjugation eigenstates. Matter effects explicitly break the charge-conjugation symmetry
between neutrinos and antineutrinos.

This simple CPT-violating framework for neutrino-antineutrino mixing allows for new
resonances in neutrino (antineutrino) oscillations in vacuo, which are suitably analyzed
in terms of charge-conjugation even and odd states. The linear dependence of the effec-
tive potential on energy generates altered dispersion relations. The model also predicts
daily and seasonal variations of the neutrino (antineutrino) oscillation probabilities via
the coefficients b and c. In Lorentz-violating models the Sun-centered celestial equatorial
frame (in which the Earth’s rotational axis is lying along the z-direction) is introduced as a
standard frame of reference in which neutrino oscillation experiments can compare their
findings. The coefficients of the model presented here only depend on the celestial colat-
itude O such that ¢y, o< 1+ cos? © and b,  sin ©. Therefore CPT-violating models do not
only modify the dispersion relations of neutrinos (antineutrinos), but typically they also
introduce a directional dependence. It is obvious that the model introduced here is one
example for lepton-number violating neutrino oscillations as discussed in this chapter.
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Up until now we have been occupied with studying effects of lepton-number and also
CPT violation in neutral fermions. However, standard model interactions involving
charged fermions might also be subject to CPT violation. In the following, we shall con-
sider CPT-violating effects in low-energy muon and antimuon decays. To this end, we
augment the standard model charged current interactions by CPT-violating vertex oper-
ators. This enhancement results in different lifetimes for muons and antimuons. Making
use of the experimental bounds on those lifetimes, we constrain the CPT-violating coup-
lings introduced in our approach. In addition to this, we study decay rates differential
in electron energy and and spatial angles. Those quantities provide suitable new observ-
ables, which have the potential to further constrain effects of CPT violation in charged
lepton decays [99].

5.1 Lifetimes

Let us begin our considerations by writing the charged current part of the standard model
Lagrangian

Low = —%JAWA fhe., (5.1)

where the leptonic current is given by

JN = Z [Py, (5.2)

l:(i,M,’T

The chirality projection operator is defined as usual via

P,=-(1-7). (5.3)

DN |

We entertain the idea that the expression for the leptonic current is enhanced by ad-
ditional tensors of odd rank in order to establish CPT violation in the charged current
interactions. Hence, we substitute

A=Y i(yAPL n (W) ” (5.4)

l=e,u,T

and suppose that some of these extra terms 6I'* are CPT-violating. The effects of such
additional terms on, e.g., the lifetime of muons and antimuons can be considered to be
very small due to the existing experimental constraints [5]. This fact motivates that only
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first order contributions of 6T can be considered relevant and thus we neglect all terms
O (0T'?). We shall see how to explicitly parametrize the additional couplings 6T and ac-
tually quantify the smallness of the odd rank tensors entailed therein. Having laid down
our paradigm for CPT violation in leptonic currents, we can now delve into applications
and explore its consequences on observables such as muon and antimuon lifetimes. We
begin by assigning momenta for the particles involved in muon decays as follows

= (p) = e (p) + vu(k) + ve(K). (5.5)

For the corresponding particles in the antimuon decay the momenta are assumed to be
the same. We can write the matrix element of the muon decay process in a four Fermi
ansatz since all masses involved in the process are much smaller than the W-boson mass.
We have

M~ — e ) = 2V2Gy [a(p’)r%(k')] [a(k)rw(p)}, (5.6)

using a shorthand notation T* = 4*P;, + 6T'* in order to streamline notation. The spin-
averaged squared matrix element for the muon decay can then be written as

_ __ 1 _ .
<|M(ﬂ — € Ve’/,u)’z> = 52‘/\4(” — e Veyu)|2

spins

— 4G tr {PA(;H m#)fp%} r {O\KT ), (5.7)

where ™= 'yOFAHO is the Dirac adjoint, m,, is the muon mass. We neglect the masses of
all final state decay particles in the following considerations. The corresponding matrix
element for the antimuon decay can be obtained by swapping any u-spinor with the
associated v-spinor and vice versa. The only difference for the spin-averaged squared
matrix element for the antimuon is a switch in the sign of the mass term. This observation
suggests that standard model interactions can be subtracted by taking the difference in
decay rates for muon and antimuon. This procedure isolates the CPT-violating effects.
Put another way, CPT violation manifests in the different lifetimes for the muon and
antimuon. Following this train of thought, we introduce the difference in spin-averaged
matrix elements squared §M? for muon and antimuon decays. We obtain

M2 = <\M(/uf — e*DeVu)|2> — <]/\/l(;fr — e*yeﬂu)|2>
= 8GEm, tr {T Tk}t {TAKT, 9} (5.8)
This expression clearly vanishes for standard model interactions in which 6T* = 0, since

the first trace in this case only contains an odd number of Dirac matrices.

However, interference between terms with an even number of Dirac matrices and the
usual (V—A) structure of the current can give rise to a nonvanishing trace in the expres-
sion above. Hence, we parametrize the CPT-violating part of the current according to

oT* = A* + BA50%7, (5.9)
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5.1 Lifetimes

where A* and B* 5 are a set of real constants. Apparently, by definition, B*,5 = —B*3,.
As for nomenclature, we shall refer to A as the vector part and to B3 as the dipole part
of the CPT-violating terms. Given this parametrization for CPT violation, we can write
the difference in spin-averaged squared matrix elements to first order in 6T as

SM? = 16GEm, (k:&p'p + kPN =k P gn — ié‘)\apﬁk/ap/5>
X tr {5F’WAPL% n 'prL(SF’\k} : (5.10)
wherein the Levi-Civita tensor is used with the convention ep123 = +1. Calculating the
remaining trace does not pose too big a problem; it contains but a single power of the
neutrino four-momentum k. The difference in decay rates AI' can now be easily obtained

by phase space integration. The latter factors into different tensorial contributions and
we write it as

G% d3p/

Al =575 | opiles

(@) [T5°6) + T3] - (5.11)
There is one tensorial expression for each of the CPT-violating terms given as

T3°0) = p AP, (5.12)
T5°0) = e (QBA“”gﬁ“p’” + (BPrvy'e — PP )gm) : (5.13)

and the integration over neutrino and antineutrino momenta is contained in

& [P
g) = / o / W (q— k — K )kakly (5.14)

in which ¢ = p—p’. This neutrino phase space integral is well-known from the calculation

of muon decay rates in the standard model [4]. Taking into account that the expression
for the difference in spin-averaged matrix elements is already linear in the CPT-violating
terms, we can use the usual expression [4] for the neutrino phase space

T
(q Jap + ZQaQB) (515)

This tensor is symmetric in its indices and we have already made use of this property to
get rid of the antisymmetric parts in the tensorial expressions T’y f (p') and Tgﬁ (p').

Given these prerequisites the rest of the calculations is straightforward. We arrive at the
following form for the difference in muon and antimuon decay rates in their rest frame

G
19273

AT = (Ao EOijkBij’f) . (5.16)

Clearly, both the vector and the dipole part violate CPT invariance and thus trigger the
difference in muon and antimuon lifetimes. Although the tensor B*,4 is antisymmetric
in its last two indices only, its completely antisymmetric part contributes to the decay rate.
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5 CPT-violating effects in muon decay

It is seen that for the case in which spacetime is endowed with characteristic odd-rank
tensors, there is CPT violation. We can restrict the magnitude of the CPT-violating cou-
plings, which we introduced, by making use of the known bounds on lifetime differences
of the muon and antimuon. To the 1o level [5] we have

+
") _ 1 00002 + 0.00008, (5.17)
(™)
which implies
Ap <107, egBYF <1077 (5.18)

The experimental data for the lifetime of the tau also provide similar constraints. How-
ever, those constraints are less restrictive.

5.2 Differential decay rates

We can gain more insight when it comes to the CPT-violating parameters if we study the
differential decay rate with respect to the energy of the charged particle in the final state
of the process. For such purposes, we integrate out the angular variables in the difference
in decay rates. We first consider the vector part. It is given by

dAT A G%mi

2
= 1-— X A 519
1z 1673 T ( ) 0> ( )

with x a dimensionless energy variable defined via

2F'
= (5.20)
my

The distribution vanishes at the kinematic boundaries of + = 0 and « = 1. It attains a
maximal value at 2peax = % Both these properties are independent of the explicit CPT-
violating parameter Ay and yet for Ay = 0, i.e., in the absence of CPT violation, the energy
dependence of the difference in muon and antimuon decay rates does not exist. Put an-
other way, CPT-violating effects (here: a preferred direction) also shift the energy spectra
of electrons and positrons emergent from muon and antimuon decays relative to one an-
other. This difference is proportional to the time component of the preferred four-vector
of spacetime. Irrespective of the value of Ay, the difference in spectra peaks at Zpeak = 3
or equivalently £ ., = % provided the only CPT-violating effects are coming from A*.

The differential decay rate for the dipole part can be obtained in a similar way. We find

de  48x3

1 ..
:132 <1 - 31’> €0ijkB”k. (521)

The difference in energy distributions stemming from the dipole part does vanish at
xz = 0, but within the kinematic region it does neither vanish nor peak anywhere else.
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5.2 Ditferential decay rates

The sum of both the vector part and the dipole part contributions leaves us with another

observation. The difference in electron and positron energy spectra from muon and an-
99/200157;7
n = €0ijxBY* provided this value of z is within the kinematic region 0 < z < 1. The
difference is largest at zpeax = gﬁg:z, if this is within the kinematic region. Otherwise,
it will be largest for x = 1. We eventually notice that the total decay rate cannot restrict
in any way the spatial components of A* and the components of B**® with any of the
indices equal to the time component. We have, however, not yet fully exploited all infor-
mation, which can be gained from the decay rates. It is also possible to integrate out the

momentum variable p’ and arrive at decay rates differential in the spatial angle d2.

where

timuon decay definitely vanishes at + = 0. It may also vanish at z =

Let us now state the result for the decay rate differential in the spatial angle first for the
vector part. We find

dAFA _ G%mi
dQ 76874

(Ao — | A cos 19) , (5.22)

where ¥ is the angle between the electrons (positrons) emergent from the muon (an-
timuon) decays and the preferred direction A. Put another way, not only does CPT vio-
lation enforce a slight difference in energy spectra for electrons and positrons, but it also
alters their angular distributions with respect to one another. The angular dependence is
proportional to the spatial components of A*. The direction and magnitude of A can then
in principle be determined from the angular dependence. The angular dependence for
the dipole part is found to intricately depend on both the azimuth as well as the zenith
angle

= — s Bl] P BO]k N2
dQ 19274 | 240Uk T 5 C0ik 5D
1 1 o
- ggimpBﬂ)\pp” - gEOijkBl] M| (5.23)

where p" is a unit vector which can be written in spherical coordinates according to
P = (sind cos ¢, sin ¥ sin ¢, cos¥). Two observations are made. The dipole part shows
a rich angular dependence. Statements about the time components of B*, 3 now become
possible by analyzing the decay rate differential in the spatial angles.

Both the vector and the dipole part reveal interesting phenomenological consequences
on their own. If both effects are to be considered simultaneously, one again simply adds
the respective contributions.
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6 Conclusion

Let us summarize the results of this thesis.

The first part of the thesis is presented in chapter 3l Our analysis contained in this chap-
ter treats flavor oscillations in neutrino ensembles with a finite temperature by means
of the coherence vector formalism. In situations with quantum ensembles with a finite
temperature or systems in which the constituents of the ensemble are subject to scatter-
ing processes with a background plasma, the usual approach to flavor oscillations using
particle wave functions fails. It is replaced by the coherence vector description. We be-
gan describing such systems by studying a two-flavor neutrino ensemble with generic
matter potentials. We solved the underlying quantum kinetic equations perturbatively
for adiabatic and nonadiabatic neutrino conversions leaving aside effects of ensemble
decoherence for the time being.

Our approach for solving the quantum kinetic equations is model-independent and
allows defining effective mixing angles and an adiabaticity parameter without explicitly
solving for the coherence vector. The fact that our analysis is model-independent also en-
tails as a consequence that the adiabatic and nonadiabatic perturbation theory are treated
on the same ground; the two distinct physical situations do not have to be studied with
two distinct perturbation theories.

Eventually, we illustrate how the ideas developed for a system unaffected by collisions
can easily be generalized for systems of collision-affected neutrino conversions in the
early Universe.

In the second part of the thesis in chapter 4, we developed a novel way of dealing with
lepton-number violation in neutrino and antineutrino flavor oscillations.

We treat lepton-number violation as a small effect as compared to common lepton-
number conserving flavor oscillations and develop a practical and efficient nonadiabatic
perturbation theory, which gives the various oscillation probabilities up to second order
in the perturbation. Assuming lepton-number violation in neutrino oscillations to be a
small effect is justified by and compatible with experimental findings. We therefore give
illustrative examples of how lepton-number violation affects neutrino oscillations for one
and two neutrino generations.

We found that the one-generation case already allows for neutrino-antineutrino os-
cillations to develop. These oscillations can be resonant in a CP-nonconserving matter
environment and therefore a potentially small lepton-number violation in vacuo can be
enhanced.

For the exactly solvable two-generation case of time-independent and flavor-blind
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6 Conclusion

lepton-number violation in vacuo, we understand that in the presence of lepton-number
nonconservation the common flavor oscillation probabilities are periodically modulated
with a frequency given by the lepton-number violating coefficient.

Moreover, we have introduced a coherence vector description for the one-generation
case of neutrino-antineutrino oscillations and perturbatively solved this system by means
of the Magnus expansion. For such purposes, we have used the perturbation theory de-
veloped in chapter 3|

In the last part of this thesis, we were concerned with CPT violation in charged current
weak interactions. CPT violation in muon and antimuon decays can manifest in many
different ways. For instance the masses of muon and antimuon could be different, which
would result in different decay rates.

The paradigm of the considerations in chapter[5, however, has been a different one. We
assume that CPT violation occurs only through interactions and that the free part of the
Lagrangian is left untouched by CPT-violating modifications. To this end, we enhance the
standard model charged current weak interactions by additional nonstandard couplings.
As spacetime is now endowed with additional characteristic odd-rank tensors, namely
a vector and a dipole contribution, the decay rates of charged fermions are altered with
respect to the standard model results. We calculated the decay rates to first order in
these novel CPT-violating parameters and find that comparing decay rates for particles
and antiparticles isolates effects of CPT violation. The difference in decay rates and the
difference in decay rates differential in the energy of the final state charged fermion can
constrain the time component of the vector part as well as the totally antisymmetric part
of the dipole part. In order to obtain further information on the remaining components
of the characteristic tensors, the angular-dependent differential decay rate can be consid-
ered.

Our approach is an effective one, though, and the newly introduced currents do not
respect the gauge invariance of the standard model. We infer from our analysis that in
principle the CPT-violating couplings can be determined by measuring the total as well
as differential rates of the decay of both muon and antimuon.
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