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Abstract

The receiver in a wireless communication system has the task of com-
puting good estimates for the data symbols that have been transmitted.
The best (optimum) detector is the Maximum Likelihood (ML) detec-
tor. However, it requires a high computational complexity. This work
aims to efficiently detect the transmitted symbols with a reduced com-
plexity.

In order to produce a near optimum receiver, two methods are pre-
sented. These methods are obtained by convex optimization relaxations
which yield global optimum solutions. The relaxations are combined
with the idea of using the structure of the channel matrix to reduce
the computational complexity. The channel matrix exhibits a banded
Toeplitz structure.

In each case, the dual problem of the convex optimization relaxation
is solved to estimate the noise power. Gradient descent algorithm is
used to solve the dual problem in the first relaxation while the bisection
method is applied for the second relaxation. In both cases, the result is
a Generalized Minimum Mean Squared Error (GMMSE) detector which
has a form similar to the Minimum Mean Square Error (MMSE) detec-
tor and a performance almost the same as the MMSE detector, but it is
not require the knowledge of the noise power. The GMMSE detectors
can be used in scenarios where adapted or blind adaptive detection is
not suitable, for instance when the channel is rapidly changing. Using
a circular approximation of banded Toeplitz matrix the Fast Fourier
Transform (FFT) can be applied to reduce the computational complex-
ity of the detectors.

Finally, the local search method is applied to enhance the perfor-
mance of the proposed GMMSE detector. The proposed detector is a
near optimum detector with low computational complexity.
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1 Introduction

1.1 Overview

The problem of designing the receivers in wireless communication sys-
tems is the data detection from noisy measurements of the transmitted
signals. The receiver makes occasional errors due to distortions and
noise. Therefore, designing a receiver that has minimal probability of
error is appealing.

Unfortunately, these kinds of designs produce the computational com-
plex receivers. Therefore, they are often abandoned in favor of computa-
tionally more efficient, but suboptimal receivers. There is a substantial
gap in performance between suboptimal and optimal receivers. Only
this problem makes the optimal receivers interesting. Convex optimiza-
tion is one technique that tries to close the gap.

Throughout history, people have faced optimization problems and
made great efforts to solve them. In general, optimization is the pro-
cess that finds the best way to use available resources, while at the
same time it is not violating any of the proposed constraints. Opti-
mization can be a problem of searching the product with minimum cost
or a problem of finding the nearest school from your apartment that
is suitable for your children. These kinds of problems can be solved
by the intuition and they are not hard to find the optimum solution.
All previous problems are considered as simple optimization problems.
Unfortunately, there are many important optimization problems that
can not easily solved by the intuition. Some problems such as, how to
find the optimal route for an airplane to minimize the fuel consumption
or how to allocate the production of a product to different machines
(with different capacities, startup cost and operating cost) to meet the
production target at minimum cost. In these cases, it is impossible to
solve this problem by intuition. Instead, the problem must be modeled
mathematically [41, 44], then the problem is solved based on the model
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using one of the efficient optimization algorithms [114].

Elements of an Optimization Model

Any mathematical optimization model has three main elements [77]:
o Decision variable: x.

e Objective function: f(zx) to be minimized or maximized over the
variable. It can be thought as, what do you want? That is, what
is your objective.

e (Constraints: two types of constraints where both, one or none of
them can exist:

— FEquality constraints: h;(x) = 0,9 =1,...,m.
— Inequality constraints: g;(x) < 0,i=1,...,p.

When the objective function is minimized, the problem is called a mini-
mization optimization problem and a maximization problem is the prob-
lem of maximizing the objective function. Equality constraint problem
is the problem that only has equality constraints and the inequality
constraint problem has only inequality constraints. An unconstrained
optimization problem is the problem without constraints.

As we had classified the problem with respect to the kind of the con-
straints, we also present two classifications of optimization problems
that depend on the variable x. When x is a scalar, i.e., z € R or x € C,
the problem is said to be a one-dimensional optimization problem, but
if the variable is a vector @, the problem is called a multi-dimensional
optimization problem (We will consider these kinds of problems).

The general mathematical optimization problems could be very hard
to solve, especially when the number n of decision variables, collected
in the vector & = (2, 2®, .27 is large [88]. The reasons of these
difficulties are:

e The problem "terrain” may be riddled with local optima.
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e It might be very hard to find a feasible point (i.e., an & which sat-
isfies all the constraints), in fact, the feasible set could be empty.

e Stopping criterion used in general optimization algorithms are of-
ten arbitrary.

e Optimization algorithms may have poor convergence rates.

e Numerical problems could cause the optimization algorithm to
stop all together or wander.

Convex Optimization Problem

The convex optimization problem [96] is obtained if the objective
function f(z) and the inequality constraints g;(x) are convex. In addi-
tion the equality constraints h;(x) must be affine. In case of the convex
optimization problem, the first three problems stated above disappear
which means that:

e The solution is a global optimum solution.

e Feasibility of convex optimization problems can be determined
unambiguously, at least in principle.

e Very precise stopping criteria are available using duality.

There are many various applications of convex optimization techniques
in signal processing and communication. Successful examples of this
kind include detection and estimation [3, 26, 54, 92], channel equaliza-
tion [24, 49, 68], circuit design [2, 19, 20, 95, 108], digital beamform-
ing [53, 103] and communication system design [59, 104, 110].

Convex optimization is used in this thesis for detection problems in
wireless communication . Because the Maximum Likelihood (ML) prob-
lem has a high complexity [107, 109], sub-optimum detectors such as
Least Squares (LS) and Minimum Mean Square Error (MMSE) are em-
ployed to design receivers for wireless communication systems [111].
The problem of these methods is that the bit error rate (BER) per-
formance is poor compared to that of ML detector. Also, Generalized
Minimum Mean Squared Error (GMMSE) detector has a performance



4 Introduction 1

which is almost the same as that of MMSE, but it does not require
the knowledge of noise power o2 [112]. So it can be used in scenarios
where adapted or blind adaptive detection is not suitable, for instance
when the channel is changing rapidly, and the ambient noise power is
unknown. Although the computational complexity of LS, MMSE and
GMMSE is much lower than ML, they are still computationally de-
manding in virtue of their realization in communication systems. Fur-
thermore, their performance is lower than ML detector.

In this thesis, a near optimum ML receiver is considered by using
convex optimization. Concerning the efficiency of using convex opti-
mization in wireless communication problems, the reader is referred to
the common and well-known references [57, 60] for more details. Two
convex relaxations are proposed to solve the ML problem. Both relax-
ations are solved using the dual optimization problem and the resulting
detectors have almost the same performance as MMSE detector, but
the computational complexity is still high. To achieve this results, we
relax the ML detection problem which is a discrete problem into a con-
tinuous (convex) problem. Then, we solve the dual problem (which is
a single valued problem) of the relaxation problem. We take this solu-
tion as an estimation of the noise power 2. In the first relaxation, we
use the gradient descent algorithm to solve the extracted dual problem
while the second relaxation uses the bisection method to solve the dual
problem.

Structured Convex Optimization Problem

One of the most efficient ways to reduce the computational complexity
is finding a way or a method to make use of the matrix structures [29],
which occur in the channel convolution matrix and the respective detec-
tion problem. We use the Toeplitz structure [4] of the channel matrix
which enables us to use Eigenvalue Decomposition (EVD) to solve the
dual problem. The gradient descent algorithm or the bisection method
in this case runs over diagonal matrices and the multiplications opera-
tions are reduced. This approach has reduced the overall computational
complexity of the detection problem, but the complexity of computing
EVD still requires considerable efforts [16]. These efforts are further
reduced using the approximation of the Toeplitz structure by a circular
structure [22]. Then, we apply Fast Fourier Transform (FFT) method
which is a well known computational tool [13, 78]. The EVD of a circu-
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lar matrix can be obtained by using FF'T, such that the computational
complexity is reduced from O(n?) to O(n logn). The performance anal-
ysis of the proposed solution is also given [74]. The resulting detector
is a reduced complexity form of GMMSE detector [70, 72, 73].

Near Optimum Receiver

The GMMSE detector has a reduced complexity, but it does not pro-
vide the performance of the ML detector. We enhance its performance
using the local search algorithm to find the global solution of the prob-
lem. Local search moves in the domain of solution from local optimum
to another until it finds the global optimum for the detection problem.
Then, the performance of the presented detector is near to that of ML
detector [71].

1.2 Outline

This section outlines the chapters of this thesis.

Chapter 2 begins with the basic definitions in the field of convex
optimization such as convex set, convex function and convexr optimiza-
tion problem. The purpose of this introduction is to show how we relax
some constellation sets such as Binary Phase Shift Keying (BPSK) and
Quadrature Phase Shift Keying (QPSK) to convex sets and to relax
the detection problem to a convex optimization problem. This chap-
ter also covers Lagrangian duality, which plays a central role in convex
optimization. Lagrangian duality converts the constraint primal detec-
tion problem into unconstrained dual problem. The classical Karush-
Kuhn-Tucker optimality conditions are given. Interior point methods
are briefly discussed in this chapter which can efficiently solve this dual
problem.

Chapter 3 discusses two main problems in the field of signal pro-
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cessing and wireless communications. The first problem is the detection
problem or the problem of deciding which signal from multiple possible
signals was transmitted. Bayes criterion is presented in both binary hy-
pothesis and M hypotheses. The second problem is the estimation prob-
lem. Parameter space, observation space, probabilistic mapping from
parameter space to observation space and estimation rule concepts are
presented. Random parameter estimation such as Bayes estimation,
MMSE estimation and Maximum a Posteriori (MAP) estimation are
discussed. Nonrandom Parameter estimation such as ML is presented.
Digital modulation schemes such as BPSK and QPSK are discussed in
this chapter. The description of the system of transmitted bits through
a simple channel or a fading channel with the presence of an Addi-
tive White Gaussian Noise (AWGN) is presented. Some sub-optimum
receivers are given such as LS, MMSE, GMMSE, and semidefinite re-
laxation.

Chapter 4 focuses on the convex relaxation of MPSK (especially
BPSK and QPSK) constellation sets [23], so the ML problem is relaxed
to a constrained convex optimization problem. The resulting detector
is GMMSE detector with a performance that is almost the same as
MMSE detector, but it does not require the knowledge of noise power

o2. This relaxation is combined with the idea of using the structure

n
of the channel matrix (banded Toeplitz) to reduce the computational
complexity. To achieve that, the EVD of the channel matrix is used.
Circular approximation of the Toeplitz structure is used to further re-
duce the complexity by using FFT decomposition of the channel matrix.
Gradient descent algorithm as one of the interior point methods is ap-
plied to solve the dual problem of the relaxed convex problem. The
solution of this problem is taken as an estimation of the noise power,

then it is substituted in the MMSE solution.

Chapter 5 presents hidden convexity relaxation to solve ML prob-
lem. The bisection method is applied to solve the dual problem for
this relaxation. Bisection method is one of the bracketing methods
that has two basic properties. It is always convergent and its error
can be controlled. The solution of bisection method is again the noise
power estimation. As in chapter 4, combined with the banded Toeplitz
structured of the channel matrix a GMMSE solution is given. Then,
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approximating this structure by circular structure, the reduced form of
GMMSE detector is again produced. The simulation results for QPSK
constellation is presented. In this simulation, BER performance is com-
pared for LS, MMSE, and the presented GMMSE

Chapter 6 presents a detector that has the form of the GMMSE
detector with complexity nearly the same as GMMSE detector with bit
error rate (BER) performance is enhanced using the local search algo-
rithm. The overall computational complexity of the proposed detectors
is presented. This complexity includes the complexity of finding the
solution and the complexity of all three used algorithms, gradient de-
scent, bisection method and local search.

Chapter 7 provides a summary of this thesis and gives a discussion
on topics that could be relevant for future work.
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2 Convex Optimization

Convex optimization problem is a special class of the mathematical op-
timization problems, which has been developed for about a century.
Interior point methods were developed in the 1980s in order to effi-
ciently solve these kinds of problems. These solution methods are re-
liable enough to be embedded in a computer-aided design or analysis
tool. After these developments, researchers in many different fields such
that automatic control systems, electronic circuit design, data analysis
and modeling, statistics, finance, estimation and signal processing, and
communications and network are interested to solve their problems us-
ing this powerful mathematical optimization tool. A very important
advantage of using convex optimization techniques is that we can effi-
ciently find the global solution for the problem.

The following sections introduce the basic concepts which cover the
elements of convex optimization problems. Much of the material in this
chapter is heavily based on the book, 'Convexr Optimization’ [11].

2.1 Convex Set

In this section, we begin our discussion of convex optimization with
some vital notations in this field. The most important notation is convex
set.

Affine Set: If the line through any two points in a set S C R" lies in
S, i.e., for any x1, o € S and A € R, we have

Axy + (1 —)\)wg €N,

then the set S is said to be an affine set. This definition can be stated
as, the linear combination of any two points in S that is contained in
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S, provided the coefficients in the linear combination sum to one. In
general (more than two points), an affine set contains every affine com-
bination of its points, i.e., if S is an affine set, x1, xo,...,x; € S, and
A+ Ao+ ...+ A = 1, then the point A&+ Aoxo+ ...+ A\ also belongs
to S.

Geometrically, an affine set is simply considered as a subspace that is
not necessarily centered at the origin.

Example: The solution set of the system of the linear equations,
S = {x: Ax = b} where, A € R™" and b € R™ is an example of
affine sets. To prove that suppose x,xo € S, ie., Ax; = b, Axy = b.
Then for any A € R, we have

AAx; 4+ (1 = N)xg) = Az + (1 — N Axzy = b+ (1 = \)b=0b,

which shows that the affine combination Ay + (1 — \)x; is also in §.

Affine Function: A function f : R" — R™ is affine if it has the form
linear plus constant f(x) = Az + b. If F is a matrix valued
function, i.e., F' : R" — RP*? then, F' is affine if it has the form
Flx)=Ay+xWA + .. +x™A, A; e R ;=01,..,n.

Convex Set: If the line segment between any two points in S lies com-
pletely in S, i.e., if for any @, xs € § and any A with 0 < A < 1,
we have

)\ZB1—|—<1—>\)$2 ~ S,

then the set S is said to be conver set. The square which includes its

(a) (b) (c)

Figure 2.1: Convex and non-convex sets.

boundary in Figure 2.1a is convex, the set in Figure 2.1b is not convex
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since the line segment between the two black points in the set is not
contained in the set and in Figure 2.1¢, the square that contains some
boundary points, but not others is not convex. Any point of the form
M1+ Noxo+...+ @y, where A\j+Xo+... A\, =1land \; > 0,1 =1,2,....k
is a convex combination of the points xi, xo, ..., xr. Generally, it can
be shown that a set is convex if and only if it contains every convex
combination of its points. Some important convex sets are, Euclidean
ball, norm ball, polyhedral, and the positive semi-definite cone.

We note that the intersection of two convex sets is a convex set.

Convex Cone: If a set S C R” contains all rays passing through its

points which emanate from the origin, as well as all line segments
joining any points on those rays, i.e.,

x,yc S, \u>0,= x+puyes,

where, 1 € R then this set is said to be convez cone.

Geometrically, ¢,y € S means that S contains the entire pie slice be-
tween « and y as shown in Figure 2.2. The set " = {X € §"|X > 0}

Figure 2.2: Convex cone.

of symmetric positive semidefinite (PSD) matrices is an example of a
convex cone [39].
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2.2 Convex Function

In this section, the definition of the convex function and some impor-
tant examples and techniques are introduced to the reader for verifying
convexity.

In mathematics, a function f : R” — R is convez if it is defined on a
convex domain (convex set) and if for all 1,20 € domf (where domf
is the domain of the function f), and A with 0 < A < 1, we have

fOxi+ (1 =XNx) <A (1) + (1= N) f(x2).

Geometrically, this definition can described as the line segment between
(x1, f (x1)) and (9, f (x2)) lies above the graph of f in Figure 2.3.
f is concave it —f is convex where, the line segment between the men-
tioned two points lies below the graph of f as shown in Figure 2.4.

A
(x,,f(x,)) AMf (%) +(1=-2)f(x,)

(x2>>

X Ax+(1-2)x,

Figure 2.3: Graph of the convex function.

2.2.1 First-Order Conditions

Let f be differentiable (i.e., its gradient V f exists at each point in the
domain of f, which is open). Then f is convex if and only if its domain
is convex and

fy)=f@)+ V@) (y-=), (2.1)
holds for all &,y € domf. Figure 2.5 illustrates the inequality (2.1).
f(x)+ Vf(x) (y—x)is the first-order Taylor approximation of f
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A f(Ax,+(1-2)x,)

Xy Ax,+H(1-4)x, X3
Figure 2.4: Graph of the concave function.

near . The inequality (2.1) states that for a convex function, the first-
order Taylor approximation is a global under-estimator of the function.
At the other hand, if the first-order Taylor approximation of a function
is a global under-estimator of the function, then the function is convex.
The most important property of convex functions is that we can derive
global information from local information about a convex function. As
an example, the inequality (2.1) shows that if V f (x) = 0, then for all
y € domf, f(y) > f(x), i.e., © is a global minimizer of the function
f. The proof of first-order conditions can be found in [6].

2.2.2 Second-Order Conditions

In case of a twice differentiable function f, the Hessian V?f of f exists
at each point in the domain of f (which is open). Then, f is convex
if and only if domf is convex and its Hessian is positive semi-definite,

i.e., for all x € domf,

Vif (z) > 0. (2.2)
For a defined function f on R, this condition becomes very simple, i.e.,
f'(x) > 0 and domf is convex. The following is an example of the
second-order conditions.

Quadratic Function: The function f : R" — R, with domf = R", is
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Figure 2.5: First-order conditions for convexity.

given by
f(z)=(1/2)" Pz +q'z+r,

with P € S",q € R", and r € R. Applying the condition (2.2) to this
function, we find that V2f (z) = P for all x, f is convex if and only if
P = 0 which is satisfied from the restriction P € S".

2.3 Convex Optimization Problems

2.3.1 Mathematical Optimization

Consider the problem

minimize [y (x)
subject to fi(x) <0, i=1,...m (2.3)
h@' (%) :0, ’L:l,,p

Problem (2.3) is the general form of the mathematical optimization
problem. The description of the problem is that, how to find an @
that minimizes fjy(x) among all vectors that satisfy the conditions
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fi(x) <0,i=1,....,m, and h; (x) = 0,7 = 1,...,p. Here we have basic
elements of the mathematical optimization problem. The first element
is called the optimization variable, € € R", while the second element
is called the objective function or the cost function, fy : R" — R.
The third element is called inequality constraints, f; () < 0. The last
element of a mathematical optimization problem is called equality con-
straints h; () = 0. If there are no constraints (inequality and equality
constraints) the problem (2.3) is called unconstrained problem. Now we
present some important definitions in the field of mathematical opti-
mization problems.

Optimization Problem’s Domain: The domain of any optimization prob-
lem is the set of points for which the objective and all constraint
functions are defined,

m P
D = ﬂ dom f; N ﬂ domh,;.
i=0 i=1

Feasible Point: A point @ € D is feasible if it satisfies the constraints
fi(x) <0,i=1,....m,and h; () = 0,7 = 1,...,p. The set of all
feasible points is called the feasible set.

Optimal Value: The optimal value of the problem (2.3) is defined as

pr=inf{fo(x)|fi(x) <0,i=1,...mhi(x)=0,i=1,.. p}.

Optimal Point: x* is said to be an optimal point, or solves the problem
(2.3), if it is feasible and fy (x*) = p*.

Feasibility Problem: It is a problem of the form,

find T
subject to fi(x) <0, i=1,...m
hi(x) =0, i=1,..,p.

The feasibility problem is thus to determine whether the con-
straints are consistent, and if so, find a point that satisfies them.

Local Optimum and Global Optimum: A local optimum of an opti-
mization problem is the optimum solution within a neighboring
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set of solution, while a global optimum is the optimum solution
among all possible solutions. Figure 2.6 describes these two terms

el

\ Local minimum

/

Global minimum

Figure 2.6: Local optima and global optimum.

Maximization Problem: The Maximization problem

mazximize fo(x)
subject to fi(x) <0, i=1,...m
hi (:13) :0, 1= 1,...,p,

can be easily solved by minimizing the function — fj.

Problem (2.3) is in general very hard to solve, especially when the num-
ber of decision variables in @ is large (this is the case in most applica-
tions). There are several reasons for this difficulty:

1.

The problem can be riddled with local optimum.

. In many cases, it is very hard to find a feasible point, in fact the

feasible set, which needs not even be fully connected, could be
empty.

. Stopping criteria that used in general optimization algorithms are

often arbitrary.

. Optimization algorithms often have very poor convergence rates.
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5. Numerical problems may cause the minimization algorithm to
stop all together or wander.

2.3.2 Convex Optimization Problems

Convex optimization is the technique that is used to avoid the difficul-
ties that are presented at the end of the Subsection 2.3.1.

Convex optimization problems have three important properties that
make these kinds of problems fundamentally more tractable than non-
convex optimization problems:

1. Each local optimum is necessarily a global optimum.

2. Exact in-feasibility detection that is achieved by using duality
theory (we will present it later in this chapter), hence algorithms
are easy to initialize.

3. Efficient numerical solution methods that can handle very large
problems.

A conver optimization problem is a mathematical problem that takes
the form,
minimize [ (x)
subject to fi(x) <0, i=1,...m (2.4)
afx =69, i=1, . p,

where fy, ..., fm are convex functions. Looking at problem (2.4) and
comparing it with problem (2.3), we find that, a convex optimization
problem has three additional requirements:

e The convexity of the objective function.
e The convexity of the inequality constraint functions.

e The affine property of equality constraint functions

hi(x) = ale — b = 0.
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It is well known that if f; are convex, and h; are affine, then the first
three problems of the mathematical optimization problem which are
mentioned in the Subsection 2.3.1 disappear. In the following, we
present the proof of each local minimum in a convex optimization prob-
lem is global (which is the most important property of convex optimiza-
tion as shown in Figure 2.7).

Theorem 2.1 Let f : R" — R be a convex function and S C R"
be a convex set. Given a point x* € S, suppose that there is a ball
B(x*,€) C S such that for all x € B(x*,€) we have f(x) > f(x*). Then
flx*) < f(x) forallx € S.

Proof: Let & € S. Since f is convex over S, for all A € [0, 1] we have
fOx" 4+ (1 = Nzx) < Af(z*) + (1 — A)f(x). Notice that there exists
A € (0,1) such that A\x* + (1 — A\)x = = € B(z", ¢). By the convexity of
f we have f(x) < A\f(x*) + (1 — \)f(x). After rearrangement we get,
xT) — \f(x*
fiay > (@)

Since T € B(x*,¢), we have f(Z) > f(x*), thus

f(z") — Af(x")
T— A

flz) = = f(z"),

as required.

From our remark at the end of Section 2.1, the intersection of con-
vex sets is a convex set, we can say that the feasible set of a convex
optimization problem is a convex set.

2.4 Duality Problem

Assume that the domain D of the optimization problem (2.3) is nonempty.
The variable & € R" in this problem has n components, so when n is
large we have a large optimization problem. To solve this problem,
we must find n decisions. Duality problem is an easy technique that
reduces the number of decisions. We denote the optimal value of the
problem (2.3) by p* and we do not assume that the problem is convex.



2.4 Duality Problem 19

Figure 2.7: The fact that f(a*) is the minimum in B(x*,€) is enough to show that
for any point « € S, f(x*) < f(x).

2.4.1 The Lagrange Dual Function

Using Lagrangian duality converts the constrained problem such as (2.3)
into unconstrained problem by augmenting the objective function with
a weighted sum of the constraint functions.

Lagrangian: The Lagrangian £ : R" x R™ x R? — R associated with
the problem (2.3) is stated as,

m p

L v)= fol@)+ Y Afi@) + Y vOhi(a),

with dom £ = D x R™ x RP. The parameter A is known as the La-
grange multiplier associated with the ith inequality constraint f;(x) < 0
and v as the Lagrange multiplier associated with the ith equality con-
straint h;(x) = 0.

Dual Variable: The dual variables or Lagrange multiplier vectors as-
sociated with the problem (2.3) are the vectors A and v.

Lagrange Dual Function: The Lagrange dual function
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g : R™ x RP — R is defined as the minimum value of the Lagrangian
over  for A € R™ and v € RP,

g (AN v)=inf £L(x,\,v) = inf (fo (x) + Z AD £ () + Z v, (m)) :

xeD xeD - -
Z:l =1

If the Lagrangian is unbounded below in @, then the dual function tends
to —oo. The most important property of the dual function is that it
is concave even when the primal problem (2.3) is not convex. That is

because the dual function is the point-wise infimum of affine functions
of (A, v).

2.4.2 Lower Bounds on Optimal Value

We can look at the dual function as the lower bounds on the optimal
value p* of the problem (2.3), so for any A > 0 and v we get

g v) <p". (2.5)

We can easily verify this property. Let the problem (2.3) has & as a
feasible point, i.e., f;(Z) < 0 and h;(&) = 0, with A > 0. Then we have

m p

ZA(i)fi(i) + Z vhi(2) <0,

i=1 =1

since each term in the first sum is non-positive, and each term in the
second sum is zero,

Then,
g\ v) = in{I; L(x,\v) < L(x,\v) < folx).
xre

The inequality (2.5) is satisfied because of, g (A, v) < fo(&) holds for
every feasible point .

When g(A,v) = —oo, the inequality (2.5) holds, but is vacuous. If
A > 0 and (A, v) € dom g, then we have a nontrivial lower bound on
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p*ie., g\ v) > —oc.

A pair (A,v) with A > 0 and (A, v) € dom g is referred as the dual
feasible.

Example: Linear Program (LP) in standard form

Consider a LP in standard form

minimize —clx
subject to Ax =0b (2.6)
x > 0.

This problem has the inequality constraint functions
filx) = -2 i=1,.. n

We introduce the multipliers A for the n inequality constraints and
the multipliers ) for the equality constraints. The Lagrangian is given

by
L A\v) =clx—> Az0) 4+ T (Ax — b)
i=1
= blv+(c+tAlv -z

The dual function in this case is,
g\ v)=infL(x, A\ v)=-b'v+inf(c+ ATv — XNz

This function can analytically determined. When we have a linear func-
tion such that it is identically zero, it must be bounded from below, i.e.,
g(A\,v) = —00 except in case of ¢ + A'v — X = 0, in this case, it is
—blw: . .
-bv, A v—A+c=0
V)= ’ :
g(Av) =1 —00, otherwise.
The dual function g is finite only on a proper affine subset of R x RP.
The lower bound property (2.5) is nontrivial only when A and v satisfy

XA > 0and ATv — A+ ¢ = 0. Then, the lower bound on the optimal
value of the problem (2.6) is —b” v.

2.4.3 The Lagrange Dual Problem

The lower bound on the optimal value p* of the problem (2.3) for each
(A, v) such that A > 0 is the Lagrange dual function. From this point,
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the parameters A\,v have the most important role to determine the
lower bound. One can ask, how can we find the best lower bound that
can be obtained from the Lagrange dual function? This question leads
us to the following optimization problem.

mazimize g\, V)

subject to A = 0. (2.7)

Problem (2.7) is called the Lagrange dual problem associated with prob-
lem (2.3). The original problem (2.3) is called the primal problem. If
(A, v) is feasible for the dual problem (2.7) then we refer to (A*,v*)
as dual optimal for the problem (2.7). The advantage of the Lagrange
problem is that it is a convex optimization problem, since the objec-
tive function is concave and the constraint is convex. This is the case
whether the primal problem (2.3) is convex or not.

Explicitly of the Dual Constraints

It may happen that the domain of the dual function,
dom g = {(A7V) : g(A7V) > _00}7

has a dimension that is smaller than m + p. Let us discuss the case
(which often occurs) when we identify the affine hull of dom ¢, and
represent it as a set of linear equality constraints. This means that the
equality constraints which are implicit can be identified in the objec-
tive function g of the dual problem (2.7). The result is an equivalent
problem such that the equality constraints are given explicitly as con-
straints. This idea can be demonstrated using the following example.
Example: Lagrange dual problem of the LP in standard form

by, ATv—A+¢=0
—00, otherewise (2.8)
subject to A2 0.

mazimize g\, v)=/{

Here, ¢ is finite only when ATv — X + ¢ = 0. The equivalent problem
is formed by making these equality constraints explicit:

maximize b
subject to ATv —A+¢=0 (2.9)
A= 0.
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Then, this problem can be expressed as

maximaize by

2.1
subject to ATv +e¢> 0, (2.10)

which is LP in inequality form, since A can be viewed as a slack vari-
able [11]. The Lagrange dual of the standard form LP (2.6) is the
problem (2.8), which is equivalent to the problem (2.9) and (2.10).

Weak Duality

The optimal value d* of the Lagrange dual problem is the lower bound
on the optimum solution p* of the primal problem. The weak duality
property is simply expressed as,

& < p, (2.11)

which holds even when the original primal problem is not convex. The
weak duality inequality (2.11) holds if both d* and p* are infinite. As
an example, when we have unbounded below primal problem such that
p* = —oo, we have d* = —oo. This condition means the infeasibility of
the Lagrange dual problem. When we have an unbounded above dual
function, such that d* = oo, we have p* = oo. This condition means
the infeasibility of the primal problem.

The difference between the primal solution and the dual solution,
p* - d*a

is referred as the optimality duality gap of the original problem, since it
is the gap between the primal problem solution and the greatest lower
bound on it which can be obtained using the Lagrange dual function.
This gap is always nonnegative. The inequality (2.11) can be used to
find a lower bound on the difficult problem since the dual problem is
always convex which in many cases can be efficiently solved to find d*.

Strong Duality

Strong duality
d* = p~,
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holds when the optimality gap is zero. Which means that the Lagrange
dual function obtains a tight best bound.

In general, the strong duality does not hold, but it holds only in case
of the convexity of the primal problem (2.3) as defined in (2.4), which
can also written as,

minimize  fo(x)
subject to fi(x) <0, i=1,...,m,
Ax =b.

The functions fy, ..., fi, are defined as convex functions. we often (but
not always) have strong duality. There are some results which verify
conditions on the problem, beyond convexity, under which strong dual-
ity holds. These conditions are known by the constraint qualifications.
Slater’s condition is a simple constraint qualification which is stated as:
There exists @ such that

filx) <0,i=1,...m, Ax =b.

The point @ is named strictly feasible, since the inequality constraints
hold with strict inequality. Slater’s theorem states that the strong du-
ality holds, if Slater’s condition holds (and the problem is convex).

Consider that we have some of the inequality constraints functions f;
such that they are affine, Slater’s condition can be refined. Slater’s
condition and its refinement imply strong duality for convex prob-
lems. In addition, they also imply that the dual optimal value is at-
tained when d* > —oo, i.e., there exists a dual feasible (A", v*) with
g(A",v*) = d* = p*. The proof of Slater’s condition was presented
in [11] using the separating hyperplane theorem for convex sets.

2.5 Optimality Conditions

We note that, we do not assume the problem (2.3) is convex, unless
explicitly stated.
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Sub-Optimality and Stopping Criteria

The lower bound p* > ¢g(A,v) on the optimum value of the primal
problem is established if the dual feasible (A, v) exists. Thus a dual
feasible point (A, v) provides a proof that p* > g(A,v).

Even if we do not know the exact value of p*, the dual feasible points
allow us to bound how suboptimal a given point is. If & is a primal
feasible and (A, v) is a dual feasible, then

folx) —p* < fox) — g(A,v).

In particular, this proves that « is e-suboptimal, € = fy(x) — g(A, V).
(It also proves that (A, v) is e-suboptimal for the dual problem). There
is a duality gap associated with the primal feasible point  and dual
feasible point (A,v). Such gap is the gap between the primal and the
dual objectives, fo(x) — g(A,v). If we have a zero duality gap of the
primal dual feasible pair «, (A, v), i.e., fo(x) = g(A,v), then x is primal
optimal and (A, v) is dual optimal.

In optimization algorithms, we can use these observations in order
to provide non-heuristic stopping criteria. If there is an algorithm that
produces a sequence of primal feasible @ and dual feasible (A, vy), for
k=1,2, .., and €, > 0 is given required absolute accuracy, then the
stopping criterion (i.e., the condition for terminating the algorithm)

Jo(xr) — g(Ap, Vi) < €aps,

guarantees that when the algorithm terminates, x; is €,s-suboptimal.
(Strong duality must hold if this method works for arbitrarily small
tolerance €gps).

Complementary Slackness

Let the values of the primal and dual optimal be attained and equal
(which means that, we have strong duality condition). Suppose x* is
a primal optimal and (A*,v*) is a dual optimal point, so the following
condition holds.

A f(x)=0,i=1,...m.

This condition is called complementary slackness. The condition holds
for any primal optimal * and any dual optimal (A", v*) (when strong
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duality holds). The complementary slackness condition can be ex-
pressed as

ADT > 0= fi(z*) =0,
or, equivalently, .

filz®) < 0= 20" =,

which means that the 7th optimal Lagrange multiplier is zero unless the
1th constraint is active at the optimum.

KKT Optimality Conditions

Consider the functions fo, ..., fm, A1, ..., by in problem (2.3) are differen-
tiable. From this property, we can say that, their domains are open.
Note that, there are no assumptions about the convexity.

Suppose x* and (A*,v*) are any primal and dual optimal points re-
spectively with zero duality gap. Since x* minimizes L(x, A", v*) over
x, it follows that its gradient must vanish at x*, i.e.,

m p
V fo(z*) + Z A fi(x") + Z v hi(x*) = 0.
i=1 i=1
Thus we obtain
fz(m*) < 07 [/ 17 )
(x*) =0, i=1,..,

(2.12)

which are known by Karush-Kuhn-Tucker (KKT) conditions.

To conclude, if the strong duality holds for any optimization problem
with differentiable objective and constraint functions, primal and dual
optimal points must satisfy the KKT conditions (2.12).

In case of a primal convex optimization problem, the KKT conditions
are also sufficient for the points to be primal and dual optimum. Or
we can say, when problem (2.3) has convex functions f; and affine func-
tions h;. If £, A and U are any points that satisfy the KKT conditions
(2.12), then & and (A, ) are primal dual optimal with zero duality



2.5 Optimality Conditions 27

gap. If a convex optimization problem with differentiable objective and
constraint functions satisfies Slater’s condition, then the KKT condi-
tions provide necessary and sufficient conditions for optimality. Slater’s
condition implies that the optimal duality gap is zero and the dual op-
timum is attained, so « is optimal if and only if there is a pair (A, v)
together with x satisfy the KK'T conditions.

The KKT conditions are important in optimization problems. In
some special cases it is possible to solve the KKT conditions (and hence,
the optimization problem) analytically. To generalize, many algorithms
for convex optimization can be interpreted as methods for solving the
KKT conditions.

Example: Convex quadratic minimization with equality constraints
Consider the quadratic programming (QP) problem

minimize (1/2)x! Pz +q'x +r

subject to Ax = b, (2.13)

where P € S'}. The KKT conditions for this problem are
Ax*=b, Px*+q+ ATv* =0,

which can be written as,

P A" [z*] [-q

LB
We can find the optimal primal and dual variables for problem (2.13)
by solving this set of m + n equations in the m 4 n variables x*, v*.
This set of equations is called the KKT system for equality constrained
quadratic optimization problem (2.13). The coefficient matrix is known
as the KK'T matriz. When this matrix is nonsingular, we can say that
there is a unique optimal primal-dual pair (x*, v*), while if this matrix
is singular, but the KK'T system is solvable, then any solution yields an
optimal pair (x*,v*). In case of the KKT system is not solvable, the

quadratic optimization problem is unbounded from below. In this case
there exist v € R" and w € R? such that

pv+ATw =0 Av=0, —q'v+blw>0.
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Suppose that @ is any feasible point. The point x = & + twv is feasible
for all ¢ and

f(@ +tv) = f(z) +t(v' Pz + q"v) + (1/2)*v  pv
= f(a) + t(—2' ATw + q"v) — (1/2)Pw* Av
= f(a) + t(=b'w + q'v),

which decreases without bound at ¢t — oo.

Solving the Primal Problem via the Dual

If strong duality holds and a dual optimal solution (A*, v*) exists, then
any primal optimal point is also a minimizer of L(x, A", v*). So, we can
get the primal optimal solution from the dual optimal solution.

Propose that we have strong duality and a known optimal solution,
(A", v*). Propose also that the minimizer of the function L£(x, X", v*),
i.e., the solution of

m p

minimize fo(x) + Z A fi(x) + Z v n(x), (2.14)

1=1 1=1

is unique. (For a convex problem this is always the case, for example, if
L(x, \*,v*) is a strictly convex function of &). Then, if the solution of
(2.14) is primal feasible, it is a primal optimal; if it is not primal feasi-
ble, then there is no primal optimal, so we can conclude that the primal
optimum is not attained. We can say that, this observation is power-
ful when the primal problem is harder to solve than the dual problem,
for example the dual problem can be solved analytically or it has some
special structure that can be exploited (as we will present later in this
thesis). The following simple example shows how this can be used in
decomposition of a large problem into small subproblems.

Example: Minimizing a separable function subject to an equality
constraint.
Consider the problem

minimize folz) = Y1, fi(z®)
subject to a’x =0,
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where a € R",b € R and f; : R — R are differentiable and strictly
convex. The objective function is called separable objective function
since it is a sum of functions of individual variables £, ..., 2. Assume
also that the domain of fj intersects the constraint set, i.e., there exists
a point &y € domf with a’xy = b, which implies the problem has a
unique optimal point x*.

The Lagrange of this problem is

:Zfi(w(i))—FV Tx —b) —bz/+z fi(xD) + vallz?),
i=1

which is also separable, and then the dual function is

n

g(v) = =bv +inf(}_(fi(z") + vaz)

1=1

= —bv + Z 1nf (fi(xD) + vaDz)
i=1
where f¥(—va™) = inf ) (fi(2?)+va2®). The dual problem is thus
mazrimize — bv — Z f(—val),
i=1

with a scalar variable v € R.

Propose that f,7 = 1,...,n are easy to evaluate, therefore the dual
problem is easy to solve. Propose also that we found an optimal dual
variable v*. (At that point, there are many methods or algorithms can
solve a convex problem with one scalar variable, such as the gradient
descent algorithm and the bisection method). Since each f; is strictly
convex, the function L(x,r*) is strictly convex in @, and so it has a
unique minimizer . But we also know that «* minimizes L(x, ), so
we must have & = x*. We can recover * from V L(x,v*) =0, i.e., by
solving the equations f;(z®") = —v*a(®.
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2.6 Interior Point Algorithms

During the last thirty years, there has been a revolution in methods
to solve the optimization problems. In the early 1980s, quadratic pro-
gramming and augmented Lagrangian methods were favored for non-
linear problems, while simplex method was basically unchallenged for
linear programming. Since then, modern interior point methods have
infused virtually every area of continuous optimization.

In this section, we present a summary of the barrier method as a
special class of interior point methods. These kind of methods have
much advantages such that, the implementation of them is simple and
they have a good performance. In this context, we focus on the key
algorithmic components for practical implementation of interior point
methods. These key components are backtracking line-search and the
newton method for equality constrained minimization.

We will present that, the duality role is very efficient in these algo-
rithms. In particular, we will get an exact stopping criteria by using the
duality, interior point methods. The desired tolerance of these meth-
ods can be determined and when the search terminates, the returned
decision vector is guaranteed to be within the specified tolerance of the
optimum. This is completely different from the case of other meth-
ods which terminate simply when the rate of progress becomes slow,
but without any guarantees on the optimality of the returned decision
vector.

2.6.1 Descent Methods and Line Search

Let us try to solve the following unconstrained optimization problem,
minimize f(x), (2.15)

where f : R" — R is a twice continuously differentiable convex function,
and its domain, dom f is open. Let this problem be solvable, i.e., there
exists an optimal point x*. Let the optimal value denoted by p*.

As we supposed f is differentiable and convex, a necessary and suffi-
cient condition for a point &* to be optimal is

Vf(x)=0. (2.16)
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Now, to solve the unconstrained minimization problem (2.15) we can
easily find the solution of (2.16), which is a set of n equations in the
n variables M, ..., ™. In many cases, we can find a solution to the
problem (2.15) by analytically solving the optimality equation (2.16),
but usually the problem must be solved by an iterative algorithm. That
means an algorithm which computes a sequence of points xg, x1,... €
domf with f(x;) — p* as k — oco. Such a sequence of points is called a
minimizing sequence of the problem (2.15). The algorithm is terminated
when f(x)) — p* < €, where € > 0 is some specified tolerance.

Descent Methods

In this section, we described the algorithms that produce a minimizing
sequence xj, k=1,..., where

k
Ty = T + Az,

and t* > 0 (¥ = 0 only when x; is optimal). A vector Az in R” is
the step or the search direction and k = 0,1, ... denotes the number of
iterations. The scalar t* > 0 is the step size or the step length at k

(even though it is not equal to ||xy+1 — x| unless ||Axy| = 1).
These methods are called descent methods, that means
f(wk‘—i—l) < f(wk‘)a

except when xj is optimal. Then, for all k¥ we have x; € S, where S is
the initial sub-level set and hence x; € dom f. We know from convexity
that V f(x;)T (y—x;) > 0 implies f(y) > f(x;), so the search direction
in a descent method satisfies

Vf(ack)TAa:k < 0,

i.e., it makes an acute angle with the negative gradient. This direction
is named the descent direction (for f, at xy).

The gradient descent algorithm operates as follows. It has two basic
steps, the first step determines the descent direction Az, and the sec-
ond step selects the step size t.

The selection of the step size t determines where along the line
x +tAx :t € R, the next iterate will be. Then the second step of
the gradient descent algorithm is called the line search.
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Algorithm General descent method.
given a starting point « € domf.
repeat

1. Determine a descent direction Awx.
2. Line search. Choose step size .
3. Update. © .= x + tAwx.

until stopping criterion is satisfied.

Backtracking Line Search

Among all line search methods is a backtracking line search which is
very simple and effective method. It depends on two constants a and
£ with 0 <a<05,0<f<1.

The line search starts with unit step size and then reduces it by the
factor B until the stopping condition f(z+tAz) < f(x)+atV f(z)l Az
holds. Hence, it has the name backtracking. Since Ax is a descent
direction, V f(x)T Az < 0, we have for small ¢

flx+tAzx) = f(x) +tVf(x) Az < f(x) + atV f(z)' Az,

which shows that the backtracking line search eventually terminates.
The constant « can be considered as the fraction of the decrease in f
predicted by the linear extrapolation. For more details about how can
we choose the parameters ¢, «, and [ you can follow [11].

The descent direction Ax is computed using the Newton method for
equality constrained minimization.

2.6.2 Newton Method for Equality Constrained
Minimization

One of the most powerful methods that solve an equality constrained
convex optimization problem is the Newton method. Consider the prob-
lem,

minimize  f(x)

subject to Ax = b, (2.17)
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where f : R"” — R is a twice continuously differentiable and convex, and
A € RP*" is of rank A = p < n. Hence, the number of equality con-
straints are less than the number of variables, taking into account that
the equality constraints are independent. By noting the assumption of
existence of an optimization solution x*, the optimal value is denoted
by p* such that,

p* = inf {f(z)|Az = b} = f(x").

By eliminating the equality constraints, the equality constrained min-
imization problem can be equivalently transformed to unconstrained
problem. However, we can focus on the extension of Newton’s method
which deals with equality rather than those methods that eliminate the
inequalities. There are many reasons of that, the first reason is the
problem structure such as sparsity is destroyed by elimination or even
by forming the dual. While in the other hand, the method that deals
with equality constraints can exploit the problem structure. The second
reason is conceptual: methods that deal with equality constraints can
be thought as methods that solve the optimality conditions,

Az =b, Vf(x*)+Av* =0, (2.18)

Instead of solving the equality constrained optimization problem (2.17),
it is much easier to find the solution of KKT equations (2.18), which
is a set of n + p equations in the n + p variables x*,v*. There are
a few problems for which we can analytically solve these optimality
conditions as the unconstrained optimization. The quadratic function
f is an important case.

The Newton Step

Almost Newton’s methods are used in all interior point methods to
find the descent direction. Newton’s method presents the fastest con-
vergence rates among all known techniques that compute the descent
direction. This superior performance is because the Newton method
uses second derivative information from the Hessian of the objective
in its computation of the descent direction. The direction is chosen
along the set that defined by the equality constraints, which minimizes
a local quadratic approximation of the objective function at the last
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iteration. The Newton step Ax,; is simply what is added to x to solve
the problem when the quadratic approximation is used in place of f in
(2.17). The Newton step Az, for the optimization problem (2.17) is
characterized by,

7 -l

where w is the associated optimal dual variable for the quadratic prob-
lem. We only define the Newton step at points for which the KKT
matrix is nonsingular. Consider the unconstrained problems, when the
objective function f is exactly quadratic, the Newton update x + Ax,;
solves the equality constrained minimization problem. The vector w
is the optimal dual variable for the original problem. Then, when the
objective function f is nearly quadratic, * + Ax,; should be a good
estimate of the solution *, and w should be a good estimate of the dual
solution v*. Newton’s method in unconstrained minimization problems
reduces to solve,

Az, = —(VQf(w))_1Vf(w).

Feasible Directions and Newton Decrement

For the equality constrained problem, the Newton decrement is defined
as,

AMx) = (AmgtVQf(m)Amm)l/Q.

The term A(x)?/2 gives an estimate of f(x)— p* and A\(x) serves as the
basis of a very good stopping criterion.

If Av = 0, then we say that v € R" is feasible direction. Let Ax = b,
so each point of the form x + tv is also feasible, i.e., A(x + tv = b).
If for small t > 0, then f(x + tv) < f(x), v is said to be a descent
direction for f at ax.

The Newton step is feasible descent direction except when @ is optimal,
in such case Ax,; = 0. The second set of equations that defines Ax,,;
are AAx,; = 0, which shows that it is a feasible direction. It is a de-
scent direction follows from the property that the directional derivative
of f along Ax,; is negative which is exactly —\(x)?.
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Newton Method with Equality Constraints

The Newton method with equality constraints is given by the following
algorithm:

Algorithm Newton’s method for equality constrained minimization.
given starting point * € domf with Ax = b, tolerance € > 0.
repeat

1. Compute the Newton step and decrement Ax,;, A\(x).
2. Stopping criterion, quit if \?/2 < e.
3. Line search, choose step size t by backtracking line search.

4. Update, x := x + tAx,;.

Since all the iterates are feasible, with f(xy11) < f(x) (unless xy
is optimal), the method is called a feasible descent method. Newton’s
method requires that KK'T matrix be invertible at each x.
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3 Signal Detection, Estimation and
Modulation

In this chapter, an introduction to detection theory, estimation theory
and modulation schemes will be given. The aim is to demonstrate how
they can be used to solve the communication problems discussed in this
thesis. Much of the material in this chapter is based on [50, 84].

A simple digital communication system can be considered as shown
in Figure 3.1. As a simple description of this system, the source gener-

Digital Signal r(t)
Source -  Transmitter | —————pw! Channel | — pp»
sequence sequence

Figure 3.1: Digital communication system.

ates a binary digit every time interval (T seconds). The problem now
is how to transmit this sequence of digits from the source to some other
destination. The channel is the medium that used in this transmission.
As an example of the channel that transmits this sequence is the radio
link. In general, when we need to transmit information through the
channel, we must convert them into a form that is suitable for propaga-
tion over the channel. A direct method would be to establish a device
that generates a sine wave,

s1(t) = sin wyt,
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for T seconds in case if the source generated a 'one’ in the previous
interval, and a sine wave with different frequency,

So(t) = sin wyt,

for T seconds in case of the source generated a ’zero’ in the previous
interval. The frequencies are chosen such that the signals sy(t) and s1(t)
will propagate over the radio link. The output of the device transmits
through the channel. In this context, we present a simple transmission
system that can easily written as,

r(t) = sq,(t) + n(1),

if s1(t) was transmitted, where, r(t) is a waveform which in this case
is produced every T-second interval and n(t) is the addition noise. If
so(t) was transmitted, we have,

r(t) = sq,(t) + n(t).
We can generally write these equations as
() = sq,(t) + n(t),

where, sq.(t) is a sample function from a random process centered at
w;, in case of i = 0 or ¢ = 1.

Detection Problem

The problem of deciding which of the two possible signals was trans-
mitted is named a detection problem. The processor is the device that
decides which signal was transmitted. It observes r(¢) and then accord-
ing to some set of principles it determines which of sq, (¢) and sq,(t) was
sent. We presented a special case that has only possible source of error
(the additive noise) to decide. This case is a simple case of detection
problems, which is characterized by the shortage of any deterministic
signal component. The difference in the statistical properties of the
two random processes from which sq. () is obtained plays an important
role in the designing a decision procedure. We just mentioned that we
must decide which of two alternatives is true, then this kind of detec-
tion problems is called binary detection problems. In general, problems
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that decide which of M (M > 2) alternatives is true are called M ary
detection problems.
Estimation Problems

Now we will present the idea of the second area of our discussion in
this chapter named estimation problem. Consider the received signal

r(t) = so(t,a) + n(t),

where sq(t,a) is a sample function from a random process and a is its
amplitude. The receiver has to observe r(t) and uses the statistical
properties of both sq(t,a) and n(t), it estimates the value of a. This
kind of process is an example of an estimation problem.

3.1 Detection Theory

In this section we will study the basic terms in classical detection theory.

3.1.1 Binary Hypothesis

A simple decision theory problem as shown in Figure 3.2 has four com-
ponents:

e Source.
e Probabilistic transition mechanism.
e Observation space.
e Decision rule.
The source is the first component that generates the output. As we

presented when we defined the detection problem, we will continue in
the same direction, i.e., we first consider the simplest case in which the
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H]
> Probabilistic
Source Transition Observation
F— mechanism space
H, P

Decision
rule

Decision

Figure 3.2: Components of a decision theory problem.

output is one of two choices. Through this chapter, we denote these
two choices by Hy and H;. A digital communication system is a typical
source mechanism, it transmits information by sending zeros (Hy) or
ones (H;). We do not know which hypothesis is true.

The Probabilistic transition mechanism is considered as the second com-
ponent of a decision theory problem. Indeed, the transition mechanism
can be proposed as a device that decides which hypothesis is true and
hence, it generates a point in the observation space (the third compo-
nent of the decision theory problem) according to some probability law.
Consider a simple example that is given in Figure 3.3a. In case of H;
is true, +1 will be generated by the source and when H, is true the
source generates —1. Now, consider if an independent discrete random
variable n has probability density p, (V) is added to the source output
as shown in Figure 3.3b. The observed variable r is the sum of the
source output and n. Under our two hypotheses, we have,

H: r=1+n,
Hy: r=—-1+n.

Figure 3.3b also shows the probability densities of » on these two hy-
potheses p, g, (R|H;) and p,g,(R|Hp). In this case, any output can be
plotted on a line, so the observation space is one-dimensional.

As an extension of this case, consider when the source generates two
numbers in sequence. A random variable n; is added to the first number
and an independent random variable ns is added to the second number.
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Figure 3.3: A simple decision problem.

Thus
Hli 7’1:1—1—711
r2:1+n2,

Hol r1:—1+n1
ro = —1 4+ no.

The observation space in this extension case is two dimensional space
and any observation can be represented as a point in a plane.

In this section, we only discuss the problems in which the observation
space has finite-dimensional. In other words, the observation consists
of a set of N numbers and can be represented as a point in an N
dimensional space.

A decision rule is the last component of the detection problem. We
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just observe the outcome of the observation space, then we guess which
hypothesis was true, and to accomplish this, we develop decision rules
that assign each point to one of the hypotheses.

Simple Binary Hypothesis Tests

In the following, we will study the decision problem when each of the two
sources outputs corresponds to a hypothesis. Each hypothesis in this
case maps into a point in the observation space. Assume that the obser-
vation space corresponds to a set of N observations: r(l), ’r(Z), e,
So each set can be represented as a point in an N- dimensional space
and it can be given by a vector r:

Accordance to the two known conditional probability densities p,x, (R|H;)
and py s, (R|Hp), the probabilistic transition mechanism generates points.
To develop a suitable decision rule we must use these information.

Decision Criterion

In the binary hypothesis problem we know that either Hy or H is
true. So, when the experiment is conducted, one of the following four
cases can happen:

1. Hj is true; choose Hy.

2. Hj is true; choose H;.

3. H is true; choose H;.

4. Hy is true; choose H,.

The first and the third cases describe the correct choices while the sec-

ond and the fourth cases describe the errors. The method of processing
the received data r depends on the decision criterion which we select.
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Bayes Criterion

Two assumptions are made in using Bayes criterion. The first is the
probability of occurrence of the source outputs (as a simple case, two
source outputs), which is known. The second assumption is the assigned
cost to each possible decision. Let p; and pg be the a priori probabilities
of occurrence of hypothesis H; and Hj respectively. There are four
decision cases, then there is a cost that assigned to each case. The cost
for these four cases is denoted by Cyy, Cig, C11 and Cyy, respectively.
The first subscript refers to the chosen hypothesis while the second
subscript refers to the true hypothesis. The objective of Bayes criterion
is to design a decision rule so that the average cost which is also known
as the risk R, is minimized.

R = Coopopr (say Ho|Hy is true)
+Chopopr (say Hy|Hy is true)
+Cup1pr (say Hi|Hy is true)
+Co1p1pr (say Ho|Hy is true),

where, p,(: | ;) is the probability that a particular case of action will be
taken. Let Z be the whole observation space and we proposed that we
only have two decision rule H; or Hy. So we can consider this rule as
dividing the whole space Z into two subspaces Zj and Z; [5] as shown
in Figure 3.4. If an observation falls in Z; then we say Hj, and if an

Say H,

Source

Z : Observation space

Figure 3.4: Decision regions.

observation falls in Z; then we say H;. Using the transition probabilities
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and the decision regions, the expression of the risk can be written as,
R = Coopo [, Prim,(R|Ho) dR

+Cropo [, Prim,(R|Ho) dR

+Ciip fZl pr|H1(R’H1) dR

+Co1 D1 on Dr|H, (R|Hy)dR

(3.1)

Assume that the cost of making a wrong decision is higher than the cost
of making a correct decision, or it can be stated as,

Cio > Coo,

3.2
Coi > Chi. (3:2)

To find the Bayes test, the risk must be minimized, so let this aim in
the mind and try to choose the decision regions Z, and Z; in a way that
achieves this aim. Each point from R in the observation space Z must
be assigned to Z; or to Z;. Thus,

Z=27y+71% ZyU Z,.
Rewriting (3.1), we have

R = po Coo fZU pr\Ho(R’HO) dR + py Cho fZ_ZO pr\HO(R\Ho) dR

3.3
+p1 Cot [, prja, (RIH1) AR+ p1 O [, prjm, (R|H1) dR. (3:3)

Observing that,

/pT|H0(R‘H0)dR:/pT‘|H1(R|H1)dR:17
Z Z

(3.3) reduces to
R =poCio+p1Cn
+ ; {[p1(Cor — C11)prim, (R|H1)]
— [Poo(Clo — Coo)pr i, (R|Hyp)] } dR.

We observe that the first two terms represent the fixed cost which is
independent of how points are assigned in the observation space. The
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only variable quantity is represented by the region of integration Z
which is the cost controlled by those points R that we assigned to
Zp. From (3.2), the two terms inside the brackets are both positive.
Therefore, the risk is minimized by choosing the decision region Zj to
include only points of R for which the second term is higher, and hence
the integrand is negative. Similarly, when the first term is greater than
the second term, all values of R will be excluded from Z; (assigned
to Z;) because they will contribute a positive amount to the integral.
There are some values of R can be assigned arbitrarily, such values are
the values where the two terms are equal so they have no effect on the
cost. We assume that these points are assigned to H; and ignore them
in our subsequent discussion. Hence, the decision regions are defined

by the statement:
If

p1(Cor — C11)pra, (R[Hy) = po(Cro — Coo)pr|a, (R|Hy),

assign R to Z; and consequently say that H; is true. Or, assign R to
Zp and say that Hj is true.
We can also write,

Pri, (R Hyp) ~m, Po(Cio — Cio)

) 3.4
Primy (R Hy) =0 pi(Cor — Cy) (34)

The quantity on the left is called the likelihood ratio and denoted by
®(R),

P, (R[H)

a pr\Ho(R‘HO).

The likelihood ratio is a ratio of two functions of a random variable, so

it is also a random variable. The right side of (3.4) is the threshold of
the test and it is denoted by ¢&:

_ po(Clo - Coo)
pl(C()l - 011)'

Thus Bayes criterion leads to a Likelihood Ration Test (LRT)

O(R)

O(R) 2} €. (3.5)

We observe that, the likelihood ratio test is performed by processing the
receiving vector to get the likelihood ratio and then comparing it with
the threshold. In practical cases, the cost and the a priori probabilities
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may change, the threshold changes but the calculation of the likelihood
ratio is not affected. Because the natural logarithm is a monotonic
function, and both sides of (3.5) are positive, an equivalent test is

In®(R) 23 In¢.

3.1.2 M Hypotheses

Now, we consider the case in which the choice is one of M hypotheses,
Ho, Hy,...,Hy—1. In this case, there are M? possible alternatives. The
Bayes criterion assigns a cost to each alternative. We assign for each
alternative the a priori probabilities pg, p1, ..., par—1 respectively and the
aim is to minimize the risk.

Bayes Criterion

The cost of each case is defined as Cj;. The first subscript indicates
that the ith hypothesis is chosen while the second subscript indicates
that the jth hypothesis is true. The risk in this case defined as,

Source

Z: Observation space

Figure 3.5: M hypotheses problem.
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—1M-1

R = Z ijcij /Z pria;(R|Hj) dR,

7 Jj= ¢

where, Z; is the region of observation space in which H; is chosen and p;
is a priori property as shown in Figure 3.5. To verify our aim (optimum
Bays test) we vary the Z; in order to minimize R. As an extension
of the technique that is used in the binary case, the likelihood ratio in
M-hypotheses as derived in [5] is

pT|H0(R‘H0)

In the communication problems, it is common to have the costs,

?;(R) =12, M—1.

Oz? = 07

and,

Cij = 1.

The notation is simplified as: consider the case in which M = 3, the
Bayes test will be,

Po

1(R) Z g0,

D1

HyorH, PO

o(R) 2y 0rm, —-
P2

When we transit to In ®¢, In &5 plan, the Bayes test equations will be,

HiorH Po
In®(R) 25 5 In -
Do

In @2(R) Ziiors, In >,

3.2 Estimation Theory

We considered in Section 3.1 the detection problem where the receiver
receives a noisy signal and decides which hypothesis among all M possi-
ble hypotheses is true. As the simplest case which occurs in the binary
decision, the receiver decides between the hypothesis Hy and the alter-
native hypothesis Hj.
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In this section, we discuss the parameter estimation problem in which
the decision is made by deciding the true hypothesis. Some parame-
ters associated with the signal may unknown. The problem is how to
estimate those parameters. The problems in such scenario are called
estimation problems.

A model of the general estimation problem is shown in Figure 3.6. The
model has the following four components:

e Parameter Space: The output of the source is a parameter (or
variable). We look at this output as a point in the parameter
space.

e Probabilistic Mapping from Parameter Space to Obser-
vation Space: This is the probability rule that maps a selected
value 6 from the parameter space onto observation space.

e Observation Space: It is the set of all outcomes of the mapping
of a parameter onto an observation. This will generally be a finite
dimensional space. An observation is denoted by R.

e Estimation Rule: We observe R then, we estimate the value

A

of . This estimation is denoted by #(R). This mapping of the
observation space into an estimate is called the estimation rule.

Estimation
rule

Probabilistic Pé(R)

mapping to
Observation space

Observation space
\ Parameter ;

space

Figure 3.6: Estimation model.
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Probabilistic Mapping from Parameter Space to Observation Space is
known from the detection theory. The new features now are the pa-
rameter space and the estimation rule. Two cases arise in description
of the parameter space. In the first case, the parameter is a random
variable. It means that the behavior of this parameter is governed by
the probability density. In the second case, we have unknown quantity
(the parameter) but in this case, it is not a random variable.

3.2.1 Random Parameters: Bayes Estimation

In the Bayes estimation, the cost C/(6, §) is assigned to all pairs (6, 0(R)).
We consider the cost as a nonnegative real valued function of two ran-
dom variables # and #(R). The average value of the cost is known as
the risk function that is defined as,

R=E {0[9, é(R)]} ,

where E is the expectation over the random variable # and the obser-
vation variables. In order to obtain #(R), we must minimize the risk
function. The error between the estimate and the true value is defined
as,

0.(R) = 6(R) — 6.

The single variable function C'(6,) is known as the cost function. We

study three cases and their corresponding sketches which are shown in
Figure 3.7.
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c(o,)
> 0.
(a)
c(o,.)
> 0,
(b)
c(o,)
1
—> - A
> 0,

Figure 3.7: Cost functions.

In Figure 3.7a, the cost function is the square of error:
C(0.) = 6°. (3.6)

This cost is commonly referred to as the squared error cost function. In
Figure 3.70, the cost function is the absolute value of the error,

C(ee) - |‘95|

In Figure 3.7¢, we assign a zero cost to all errors —A/2 < 6, < A/2.
In other words, an error less than A/2 in magnitude is as good as no
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error. If . > A/2, we assign a uniform value:

A
C(Qe) =0, |06| 5
é

C0) =1, |6 >

After we have defined the cost function and the a priori probability
(denoted by pg(A)), the expression of the risk can be written as,

R=E {O[e,é(R)]} - /OOdA /OOC[A,é(R)]pQ,T(A,R)dR. (3.7)

For costs that are functions of one variable only, equation (3.7) becomes

R — / A / " C1A = 0(R)Jpor (A, R)dR. (3.9)

Minimum Mean Square Error

Substituting (3.6) into (3.8), we get

R / JA / dR[A — 0(R)por(A, R), (3.9)

where, R, is the risk for the mean-square error. We can write the joint
density as,
Po.r (A7 R) = pr(R)p9|r(A|R)'

Using this relation, (3.9) will be,

Rons = /_ h dRp,(R) / oodA[A — 0(R)*pyr(A|R). (3.10)

0 —00

We can minimize R,,; by minimizing the inner integral because the
inner integral and p,(R) are non-negative. The way to find this estimate

(denoted by 6,,s(R)) is differentiation of the inner integral with respect
to (R) and then equalize the result to zero, we get

—f dA[A = 0(R)*py(A|R) =
-2 /7 Ap0|r(A’R) dA+20(R) [ por(AIR) dA
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We set the result equal to zero and observe that the second integral
equals 1, we have

Oms(R) = /_ A Apg(A|R). (3.11)

The term in the right side of (3.11) is known as the mean of the a

posteriori density (or the conditional mean). If O(R) in (3.10) is the
conditional mean, the inner integral is just the a posteriori variance.
So, the minimum of R, is considered as the average of the conditional
variance over all observations R.

Minimum Mean Absolute Value of Error Estimate

Our aim in this subsection is to find the Bayes estimate for the absolute
value criterion in Figure 3.7b. To achieve this aim we first write

Rae = [ dRp(R) [ 0414 0(R)] pop(AIR)

(0.¢] —0o0
To minimize the inner integral, we write

oo

0(R) .
1) = [ a0 - Ay alR) + [

Q(R)dA[A — O(R)]pyr (A R).

We differentiate T(R) with respect to §(R) and set the result equal to
zero, we get

gabs(R) o0
| AR = [ dAmaAR)
- eabs(R)

oo

This is the definition of the median of the a posteriori density.

Maximum a Posteriori Estimation

The uniform cost function is the last criterion in Figure 3.7c. In this
case, we express the risk as:

00 Oung(R)+A/2
—00 Oung(R)—A/2
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We have to maximize the inner integral in order to minimize this equa-
tion [50]. We consider A is an arbitrarily nonzero small number. The
a posteriori density is shown in Figure 3.8.

Maximum

Figure 3.8: An a posteriori density.

The value of A at which the a posteriori density has its maximum
is the best choice for é(R) The estimate in this case is denoted as
Omap(R), the mazimum a posteriori estimate (MAP). To find Op,q,(R),
the location of the maximum of py,.(A[R) must be given. The loga-
rithm is a monotone function, so we can find the location of the maxi-
mum of In py|,.(A[R). If the maximum is interior to the range of A and
In pg)-(A|R) has a continuous first derivative then a necessary condition
for a maximum is obtained using the differentiation of In py,.(A|R) with
respect to A and equalizing the result to zero:

alnp@h“(AlR) —0
OA ‘A:é(R) o

(3.12)

Equation (3.12) is named MAP equation. In each case we have to check
to see if the solution is an absolute maximum. The expression py,(A|R)
can be rewritten to separate the role of the priori knowledge and the
observe vector R:

prio(R|A)po(A)
pr(R) .

p9|r(A’R) =
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Taking logarithms,
In pgr(A|R) = Inpyrig(R|A) + Inpy(A) — Inpr(R). (3.13)

In MAP estimation, our interesting is only to find the value of A where
the left-hand side is maximum. The last term on the right hand side of
(3.13) is not a function of A, so we can consider just the function

I(A) = Inpyy(RIA) + Inpy(A).

The first term gives the probabilistic dependence of R on A and the
second describes a priori knowledge. The MAP equation can be written
as

Ol(A) Olnp,p(R|A) Olnpy(A)
6—A|A:é(R) - oA ’A:é(R) + 8—A|A:é(R) = 0.

(3.14)

3.2.2 Nonrandom Parameter Estimation

Assume that the parameter to be estimated is nonrandom, and we aim
to design an estimation procedure. Using the Bayes estimation in this
case fails to lead to useful results [84]. We must consider some other
measures of the quality of the estimate.
The expectation of the estimate is the first measure of quality to be
considered. o
EO(R) = [ 0(R)pu(RIA) dR

—00
There are three possible values of the expectation that can be grouped
into three classes

1. If E[(R)] = A, for all values of A, we say that the estimate is
unbiased. In fact, this estimate means that the estimated average
value equals the quantity we are trying to estimate.

~

2. If E[0(R)] = A+ B, where B is not a function of A, we say that

A

the estimate has a known bias. By subtracting B from E[0(R)]
we always obtain an unbiased estimate.
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A

3. If F[A(R)] = A+ B(A), we say that the estimate has an unknown
bias. Because the bias depends on the unknown parameter, we
can not simply subtract it out.

The expectation of an estimate is not very satisfactory since it can lead
to large errors if the a posteriori density has a large second moment [50].

Maximum Likelihood Estimation

The wvariance of estimation error is the second measure of the qual-
ity. When we have a small variance, it indicates that we have a good
estimate. The maximum likelihood estimation (ML) satisfies this con-
dition. In this procedure, the aim is to maximize the likelihood func-
tion pyp(R|A), which is a function of A. We work with the logarithm,
In p,p(R|A) which is denoted by log likelihood function. The value of
A at which the likelihood function is maximum is the maximum likeli-
hood estimate 6,,;(R). If the maximum is within the range of A, and
In p,s(R|A) has a continuous first derivative, then we obtain the nec-

essary condition on 6,,(R) by differentiating ,;(R) with respect to A
and set the result equal to zero:

81npr G(RlA)
(9|A |44, (r) = 0- (3.15)

Equation (3.15) is called likelihood equation. If we compare (3.14) and
(3.15), then we see that ML estimate corresponds mathematically to the
limiting case of MAP estimate in which the priori knowledge approaches
Zero.

In order to know how effective the ML is, we simply compute the
bias and the variance but, this is difficult to do [50]. Instead, we can
derive the lower bound on the variance on any unbiased estimate. Then
we see how the variance of 0,,;(R) can compared to this lower bound.
We state without proof the Cramer-Rao Inequality. If éml(R) is any
unbiased estimate of A, then

Varlf(R) — Al > (E { lalnpgﬁR‘A)] 2})1. (3.16)
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Or, equivalently,

(3.17)

) O Inp,(RIA)T
Va?"[emz(R)—A]Z—E[ %ﬁé | )] 7

where the following conditions are assumed to be satisfied:

8pT|9(R|A) 82pr\0(R|A)
9A and A

exist and they are absolutely integrable. Inequalities (3.16) and (3.17)
are referred to as Cramer-Rao bound. Cramer has proved that, the
equality holds when é(R) is a sufficient statistic for the estimate of the
parameter. The efficient estimate is any estimate satisfies the bound
with an equality. The Cramer-Rao Inequality is proved in [50].

3.2.3 Multiple Parameter Estimation

May be, we want to estimate more than one parameter in many prob-
lems of interest. A good example of a parameter estimation is the
communication application, the problem may be how to estimate ar-
rival time, the amplitude, and a carrier frequency of a received signal.
Therefore, the parameter estimation concepts will be extended to mul-
tiple parameters. If there exist k parameters, 9(1),9<2), ....,O(k), a pa-
rameter vector 8 such that 6 = (0(1), 0(2), - H(k))T in a K dimensional
space can describe these parameters. As an extension of the results that
were presented, we present Mean Square (MS), MAP and ML estima-
tions.
The mean square estimation is given by

émS(R) = / Aper(A|R) dA

In MAP estimation we have to find the value of A that maximizes
p9|r(A\R) If the maximum is interior and Z22orAR) yists at the
maximum then we obtain a necessary condition ?rom the MAP equa-
tions. We take the logarithm of pg,.(A|R), differentiate with respect to

each parameter A(i),i = 1, ..., k, and set the result equal to zero. The
result is a set of K simultaneous equations:
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Olnpg|r(AlR .
Opelrl i) =0, i=12..k (3.18)

We can write (3.18) as a single vector equation,

Vallnpe|r(A|R)]| g =0,

map (R)

where,

0 0 0 T
oA 9432 T HAE) I
Similarly, for ML estimates we have to find the value of A that max-
imizes prg(R|A). If the maximum is interior and %‘W exists at
the maximum then we obtain a necessary condition from the likelihood

equations:

Va=]

V4 [lnpe(R|A)] | A, (r) = 0-

3.3 Digital Modulation

In this section, we present some details about digital modulations, espe-
cially Phase Shift Keying (PSK) modulation that is used in this context.
Users exchange information by the transmission of signals. The values
of data are represented by the signal parameters. In digital transmis-
sion, the most important types of signals are the periodic signals. The
sine waves as carriers can be considered in general form as

s(t) = a; sin(27 fit + ¢y).

This signal has three parameters, amplitude a;, frequency f;, and phase
shift ¢. The amplitude changes over the time, thus it is represented
by a;. The frequency f; expresses the periodicity of the signal with the
period T' = 1/f;. (We can denote the frequency by w instead of 27 f).
The frequency f may also change over the time, thus it is represented
by f;. Finally, the phase shift determines the shift of the signal relative
to the same signal without a shift.

In digital modulations, data (’0" and ’1’) are required to be trans-
formed into an analog signal. This kind of modulation is important
when the digital data has to be transmitted over a medium that only
allows the analog transmission. Digital transmission is used for example



58 Signal Detection, Estimation and Modulation 3

in wired local area networks or within a computer [34, 90]. In wireless
networks, however, digital transmission can not be used. Here, the bi-
nary bit-stream has to be first converted into an analog signal. We are
not interesting in this work with analog modulations, but the reader
is referred to [34, 89] for more details about these analog modulation
schemes.

3.3.1 Phase Shift Keying

In Phase Shift Keying (PSK), data are represented by shifting in the
phase of signals.

Figure 3.9: Phase Shift Keying (PSK).

Figure 3.9 shows a phase shift of 7w as ’0’ follows "1’ or as "1’ follows
'0’. This simple scheme shifts the phase by 7 each time the value of
data changes. It is also called Binary PSK (BPSK).

Quadrature Phase Shift Keying (QPSK)

We described the simple PSK scheme (BPSK) that can be improved in
many ways. The basic BPSK scheme only uses one possible phase shift
of m.
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Figure 3.10: BPSK and QPSK in the phase domain.

The left side of Figure 3.10 shows BPSK in the phase domain. The
right side of Figure 3.10 shows Quadrature PSK (QPSK), one of the
most common PSK schemes. In this scheme, we achieve higher bit
rates for the same bandwidth by coding two bits using one phase shift.
Alternatively, one can reduce the bandwidth and still achieves the same
bit rates as for BPSK.

PSK schemes including QPSK can be realized in two ways. The
phase shift can always be relative to a reference signal (with the same
frequency). If this scheme is used, a phase shift of 0’ means that the
signal is in phase with the reference signal. A QPSK signal exhibits a
phase shift of 7/4 for the data ’11°, 3w /4 for '10°, 57 /4 for '00’, and
7n /4 for '01” with all phases shifts being relative to the reference signal.
To reconstruct data, the receiver compares the incoming signal with the
reference signal.

It is worth mentioning that other modulation schemes yield different
discrete constellation sets, but the presented methods in this thesis can
be applied to all possible constellation sets.
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3.4 Linear Detection

Let us describe the channel model that is used in this thesis. The n x 1
vector & represents the data to be transmitted through the channel, and
it is chosen from a finite equiprobable set S. The channel interference
is modeled as linear interference, represented the multiplication of &
with a 77 x 7 channel matrix H. The channel noise is composed of
the superposition of many independent actions. Using the central limit
theorem [42], the noise can be modeled as a zero mean complex-valued,
Additive White Gaussian Noise (AWGN) vector . We can obtain the
m X 1 vector 7 at the receiver as

P = H& + n. (3.19)

We are concerned with detection at the receiver of the transmitted vec-
tor & based on knowledge of 7, H and the statistics of %n. We assume
that H and the statistics of 7 are known at the receiver.

The equivalent real-valued transmission model is much useful to deal
than the complex model (3.19). By separating the real and the imagi-
nary parts in (3.19), we can equivalently write [94],

R(r)| _ [RH) —S(H)| [R(2) L | Rl)
S(A)] T |SH) REA) ] [S@)] [S()]”
which gives an equivalent m x n-dimensional real model of the form,

r=Hx +n, (3.20)

where, m = 2m and n = 2n with the same definition of », H, @, and
n.

Consider a system model as described in (3.20). The receiver has to
detect the transmitted signal x from » = Hx + n, i.e., it constructs
an estimate @, given r and H. The diagram of Figure 3.11 describes
this operation. We assume that the detector, i.e., the receiver in the
transmission system has perfect knowledge of the channel matrix H.
The data symbol vector £ = [2), 2@ .. £™]T to be transmitted is
selected from the constellation set S", with

S={e%: a; =2mi/M,Vi=1,..,M},

where M is the order of modulation, i.e. M = 2 for BPSK, M = 4 for
QPSK, and so on.
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Figure 3.11: General Detection Setup.

In this section, various optimum and sub-optimum detectors are pre-
sented using theories and knowledges from chapter 2 and previously
discussions in this chapter.

3.4.1 Optimum Detector

We discuss the optimum decision rule on the observation vector r. Our
objective in this discussion is making a decision on the transmitted
signal based on the observation vector r such that the probability of
correct decision is maximized. This operation as we discussed before is
named a signal detection. To achieve this aim, we consider a decision
rule based on the computation of the a posteriori probabilities that
defined previously as,

p(xp|r),m=1,2 .. M.

Corresponding to the maximum of the set of a posteriori probabilities
{p(x;,|7r)}, the signal is selected. This is done by maximizing the prob-
ability of a correct decision and, hence, minimizing the probability of
error. This decision criterion as we discussed is called the marimum a
posteriori probability (MAP) criterion.

We can express the a posteriori probabilities using Bayes’ rule,

p(r|@n)p(xm)
p(r)

where, p(r|x,,) is the conditional pdf of the observed vector r given x,,
and p(x,,) is the a priori probability of the mth signal that transmitted.

p(xm|r) = (3.21)
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We can also express the denominator of (3.21) as,

p(r) = plr|@n)p(@n). (3.22)

We observe from (3.21) and (3.22) that the computation of the a poste-
rior probabilities p(a,,|r) requires knowledge of the a priori probabilities
p(x,,) and the conditional pdfs p(r|x,,) for m =1,..., M.

In the (MAP) criterion some simplification occurs when the M signals
are equally probable a priori, i.e., p(x,,) = 1/M for all M. In addition,
the dominator in (3.21) is independent of which signal is transmitted.
Consequently, the decision rule based on how to find a signal that max-
imizes p(x,,|r) is the same as how to find the signal that maximizes
p(r|x,).

From the meaning of the Likelihood function, the conditional pdf p(r|x,,)
or any monotonic function of it, is called the Likelthood function. The
mazimum-likelihood (ML) criterion is the decision criterion based on
the maximum of p(r|x,,) over M signals. We observe that when the
a priori probabilities p(x,,) are all equal, i.e., the signals x,, for all
m = 1,..., M are equiprobable, a detector based on the MAP criterion
and one that is based on the (ML) criterion make the same decisions.

In case of AWGN channel, the likelihood function p(r|x,,) is given by

1 "L (e — :cgf))Q
p(r|Tm) = (WO2)n/2€xp [ 2: 2 ’

where, o2 is the noise power spectral density [81]. We may work with
the logarithm of p(r|x,,) to simplify the computations. Thus,

n

1 1 < 2
Inp(r|e,) = —§nln(7702) - = (r(k) — a:(k>) :

The maximum of In p(r|x,,) over x,, is equivalent to find the signal x,,
that minimizes the Euclidean distance

" 2
d(r,x,) = Z (r(k) - a:gj)) :
k=1

We call d(r,x,,),t = 1,2,..., M, the distance metrics. So, for the
AWGA channel, the decision rule based on the ML criterion reduces
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to find the signal x,, that is closest in distance to the received signal
vector r. We can write this problem in the form

r— Hz|?. (3.23)

T = arg min
xzes"

The minimization of (3.23) requires the comparison of 2" differences [99],
so its complexity is exponential in n. In fact, the least-squares problem

in (3.23) has been shown also in [99] to be nondeterministic polynomial-
time hard (NP-hard).

3.4.2 Some Well-Known Detectors

The high complexity of the ML detector has invariably precluded its use
in practice, so lower-complexity detectors that provide exact and ap-
proximate solutions to (3.23) are used. Among these detectors, Branch
and Bound, which is a general discrete search method [52]. In [56], an
optimal algorithm based on the branch and bound method with an it-
erative bound update was proposed. Another way of detection named,
Sphere Decoding algorithm was first introduced in [28] and it has been
used in space time block codes [18, 62]. Sphere decoding has been first
applied in the context of communication in [101] and it is also used
in the context of multi-carrier CDMA systems in [14]. A Generalized
Sphere Decoder specially adapted to multiple antenna system has been
proposed in [17]. In the following, we will review the linear detectors
that are more related to our work.

Least Squares Detector

The ML problem in (3.23) can be equivalently written as

T = arg mgnn e’ H'Hx — 2r"Hax. (3.24)
xe

Problem (3.24) has an objective function f(x) = 2’ H? Hx — 2r" Hx
and the constraint & € S". The constraint is discrete, so problem (3.24)
is not convex (see chapter 2).
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To use the benefits of convex optimization, we relax the constraint
set to be the whole space R". Problem (3.24) takes the form,

2 =argmin ' H' Hx — 2r" Ha. (3.25)

AN

Problem (3.25) is an unconstrained convex optimization problem, which
enables us to apply the following theorem [11].

Theorem 3.1 Suppose that the objective function f in an unconstrained
convex optimization problem s differentiable, so the well-known neces-
sary and sufficient optimality condition is

Vf=0. (3.26)

Applying condition (3.26) to problem (3.25), the necessary and sufficient
optimality conditions give the solution

zis = (H'H) " H"r

which is the well-known least squares solution.

Minimum Mean Squared Error (MMSE) Detector

When the noise power o2 is known, using the same relaxation (the whole
space) we get the minimum mean square error solution

e = (HPH + 02I) " Hr. (3.27)

Generalized MMSE Detector

One of the convex optimization applications is a generalized minimum
mean squared error detection [112]. We will discuss in details about
GMMSE detector in the next chapter. Here, we only present the form
of GMMSE solution which is,

Tinnrse = (HPH +6°1) " Hr,

where, 0* is a kind of noise power estimation.
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The Semidefinite Relaxation Detector

The semidefinite relaxation (SDR) is a vital convex optimization tool
that solves many engineering problems. In the field of signal processing
and communications, SDR was introduced in 2000. SDR is known as an
efficient high performance approach in MIMO detection [47, 63, 64, 65,
69, 91, 93]. It is also efficiently used for blind MIMO detection [66]. SDR
approximation accuracies relative to the ML have been investigated in
MIMO detection [48].

The optimization problem of (3.23) for BPSK constellations can be
written as )

o =g min v = Hol},

which is equivalently be obtained through
& =arg min ' H'Hx - 2r"Hz. (3.28)
xe{—1,+1}"
This problem has a computational complexity which increases exponen-
tially with n.

In order to use the solution of semidefinite programming, we relax
problem (3.28) into a convex optimization one by reformulating it as [37]

~

d=arg min d'Ld, (3.29)
de{—1,+1}"""
such that,
I H"H —H"r
| -rH 0

For d € {-1, -|—1}"+1 the matrix D = dd’ is positive semidefinite, its
diagonal entries are equal to 1, and it is of rank one [37]. Let D be a
matrix which satisfies these three characteristic properties, then we can
rewrite (3.29) as

A

D = arg ml%n LD, diag(D) = ey, rank(D)=1,D = 0, (3.30)

where e; is an all ones vector of length n + 1. Dropping the rank
one constraint yields a convex optimization problem which is the basic
semidefinite relaxation of (3.30) [37],

A~

D, = arg mgn LD,diag(D) = e;,D = 0. (3.31)
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This form is known as a semidefinite program in the matrix variable
D, because it is a linear problem in D with the additional semidefinite
constraint D > 0.

A semidefinite program (3.31) can be solved by employing the primal-
dual path-following algorithm [38] as a basic optimization tool. Then
the solution of the original problem (3.29) is the selection of d to be the
sign of the eigenvector corresponding to the largest eigenvalue of D;.
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The Maximum Likelihood (ML) detection problem is equivalent to the
problem of optimizing a quadratic function over the corners of a hyper-
cube [100]. Unfortunately this problem is in general non-deterministic
polynomial hard (NP-hard) [99]. This observation resulted in the devel-
opment of many receivers that have reasonable complexity with near-
optimum performance [15, 25, 67, 93, 98], e.g., the well-known Least
Squares (LS) and Minimum Mean Squared Error (MMSE) detectors as
the most simple cases [61, 67].

The quadratic optimization problem is a discrete optimization prob-
lem. It is usually computationally demanding to provide the optimum
solution. The general approach is to approximate the solution by work-
ing on an easier problem that can be efficiently solved. The easier
problem to be solved is a relaxation of the original problem. The solu-
tion of the relaxed problem is then mapped to the solution set of the
original problem. One good relaxation of these kinds of problems is the
convex optimization [58, 60, 112]. Recently convex programming has
been successfully employed to convert the discrete optimization prob-
lems into continuous ones [11]. Generalized Minimum Mean Squared
Error (GMMSE) detector is one important detector that uses convex
programming to solve the detection problem using unconstrained gra-
dient descent algorithm [112]. The GMMSE solution has the form of
MMSE solution as shown in equation (3.27), but it does not require the
knowledge of the ambient noise power level. Thus, it can be used in
scenarios where adapted or blind adaptive detection is not suitable, for
instance when the channel is changing rapidly, and the ambient noise
power is unknown. The disadvantage of the GMMSE detector is the
higher computational complexity compared to the MMSE detector.

In this chapter, we introduce a new detector that is a structured form
of GMMSE detector. This detector is named Structured GMMSE detec-
tor which keeps the GMMSE’s performance, but it has a lower compu-
tational complexity than MMSE. First the banded Toeplitz structure of
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the channel convolution matrix is taken into consideration. This banded
Toeplitz matrix is approximated by a circular matrix in order to sig-
nificantly reduce the computational complexity. We also analyze the
performance of the GMMSE detector and its circular approximation.
The noise enhancement of these two cases and thus the quality of the
estimates which depends on the matrix condition number is analyzed.

Furthermore, simulation results for different types of channels using
BPSK constellation are given.

4.1 Detection Problem and its Relaxations

Consider the system model (3.20) as presented in Section 3.4 as
r=Hx+n,

where, the transmitted symbols & € R" are drawn from Binary Phase
Shift Keying (BPSK) constellation, i.e. © € {—1,+1}".

Under the white Gaussian noise assumption the Maximum Likelihood
(ML) detector of x is given by

& =arg min |r— Hezl|;,
ze{-1,+1}"

and it can be equivalently written as

#=arg min a'HYHzx - 2rHzx. (4.1)
ze{-1,+1}"

Substituting the value of the matched filter output

Yy = Hr
into (4.1), we get
& =arg min a"HY"Hzx - 2y"x. (4.2)
ze{-1,+1}"

Problem (4.2) is NP-hard and solving it by exhaustive search yields a
complexity that grows with 2" [99]. This makes computationally less
complex solutions of (4.2) interesting.
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We use the advantages of convex programming as an important math-
ematical optimization tool to solve problem (4.2) by relaxing its con-
straint set. The constraint set @ € {—1,+1}" that contains only the
corners of the unit hypercube is not a convex set. Therefore, we relax
this constraint set into a convex set.

I
(-1,1) \ (1,1)

('11'1)

(1,-1)

Figure 4.1: Convex relaxations.

Figure 4.1 shows the relaxed constraint sets for n = 2 taking into
account that the original problem contains only the corners of the unit
hypercube. Three relaxations are considered:

e Relaxation of the constraint set to the whole unit hypercube (re-
gion T).

e Relaxation of the constraint set to the sphere which covers the
unit hypercube (region I + I7).

e The relaxation to the whole space (region I + I1 + I11).
Region [ is the constraint set of the soft interference canceler detec-

tor [76, 112, 113] which is not in our interest. The second relaxation is
region I + II, which yields the GMMSE solution as we will discuss in
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the following section. Region I + I'1 4+ I1] means that the problem has
no constraints and the resulting solution is the MMSE solution as we
discussed in Section 3.4.2. In general, the solution in each case can be
mapped to the feasible set of the original problem by taking the sign of
each component of the relaxed solution vector.

4.2 Generalized MMSE Detector

The constraint on each (") € {—1,1} is equivalent to (z")? = 1 which
implies ”x = n. If we relax the constraint set in problem (4.2) to be
the sphere which contains the unite hypercube, (region I+ 1) then the
detection problem takes the form

& =arg min " H ' Hax — 2y"x. (4.3)

zHx<n
Since problem (4.3) has a convex objective function,
flx)=a"H"Hax — 2y"z,

(because, it satisfies the second order condition (2.2)) over a convex
constraint set £’ < n, it is a convex optimization problem and it has
a unique minimum [10, 11, 83]. The convex duality theorem guarantees
that no duality gap exists and one can solve for the dual problem in-
stead [55, 75].

As discussed for the duality problem in Section 2.4, we can express
the Lagrange dual function of (4.3) as

L(z,0)=z"H"Hz —2y"z+6 (z"z—n), (4.4)

where, 0 € R is the Lagrange multiplier associated with the single
constraint £« < n. Problem (4.4) is minimized over £ and maximized
over ¢ > 0. Solving for x in terms of 6 we get

T = (HHH + 51)_1y.
Substituting back into (4.4), we obtain the dual problem,

max —y (H"H +6I) y—on, (4.5)
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which is a one-dimensional optimization problem. Problem (4.5) can
be solved by different iterative algorithms [35]. A simple unconstrained
gradient descent algorithm (see Section 2.6) is given by

S(t+1)=8()+p(y" (HTH+50 1) y—n). (4.6)

It converges to ¢ for a reasonable choice of the step size p. The solution
of (4.5) is given by ¢* = maxz(0,d). Then, the unique minimizer of (4.3)
is

* w7\ 1
ziyse = (HTH +61) " y. (4.7)

When 6* = 02, the GMMSE detector reduces to the MMSE detector.
GMMSE does not require the knowledge of the noise power o2 if training
or blind adaptation is not desired [40]. However, GMMSE detector as we
mentioned has the disadvantage that it requires a higher computational
complexity than MMSE detector. The existing of this disadvantage
makes it reasonable to think about a way to reduce this computational
complexity.

4.3 Structured Problem

Many important problems in engineering can be reduced to matrix prob-
lems as we have previously seen. Moreover, different applications can
introduce a special structure of the corresponding matrices, such that
their entries can be presented by a certain compact form. These kinds
of structures allow us to obtain elegant solutions to mathematical prob-
lems and also to design more efficient algorithms for a variety of applied
engineering problems. The most important advantage of making use of
the structure of the matrices is reducing the computational complex-
ity [79].

In this section we use the circular approximation of the banded Toeplitz
channel matrix H [85, 102] to reduce the computational complexity of
GMMSE detector. Before we describe the method, we present some
definitions and properties of two important kinds of structure.
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4.3.1 Toeplitz Structure

A Toeplitz matriz or a diagonal-constant matriz is a matrix in which
each descending diagonal from left to right is constant. In general, a
Toeplitz matrix is an n X n matrix,

T = [tm b =0 0 5 ={0,1,..n — 1}} ,

which takes the form,

4n—1) 30

The m x n matrix is said to be rectangular Toeplitz if their entries
ti; =t with (1 <i<m,1 <j <n,n<m). There are numerous
other applications for this kind of structure in mathematics, information
theory, estimation theory, etc. The most common and complete refer-
ence that discuss how to use the Toeplitz structure in these applications
is found in [33].

4.3.2 Circular Structure

Circular matrices are used both to approximate and explain the behav-
ior of Toeplitz matrices. A circular matrix C' is one has the form

c(l) c(n) c(n_l) o e 0(2)
c? o0 o0

C = c? W N (4.8)
) @ 0

Each row of C' is a cyclic shift of the row above it. The matrix C' is
itself a special type of Toeplitz matrix. In [21, 32, 51], the reader can
find the properties of Toeplitz and circular matrices.

In the following, we will use the characteristics of these kinds of ma-
trices to find a closed structured form of the detection problem (4.3).
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4.4 Toeplitz GMMSE Problem

Consider we generate a rectangular banded Toeplitz channel matrix H
that has a size of m X n, such that, m = n + L — 1, where, L is the
channel length as shown by (4.9).

h? RO
h®) K2 RO
h®) R2 -
H=| : h® rY | . (4.9)
| NCOR h®
hL) h®)
\ BV

We express the matrix H H by its Eigenvalue Decomposition (EVD),
H"H =VAV"Y

where V is the matrix whose columns are the eigenvectors of HY H
and A is a diagonal matrix that contains the corresponding eigenvalues.
Problem (4.3) can be rewritten as

& = arg min " (VAVY)z —2y"z. (4.10)

rxHx<n
The Lagrangian dual function can be easily expressed as,
Lz, \) =z (VAVT)x — 292 + ) (z"z —n),

which is also minimized over & and maximized over A > 0. Solving for
x in terms of A we get

x=V(A+ M) 'Viy (4.11)
The dual problem for problem (4.10) takes the form

H H -1
max —y (VAVY) + M) y— An. (4.12)
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Problem (4.12) is a convex optimization problem subject to A > 0,
where, A € R, which is a one-variable optimization problem. This prob-
lem is also called a one-dimensional convex optimization problem which
is easier to solve than a multi-dimensional optimization problem [7]. We
apply the same strategy as in Section 4.2 to solve problem (4.12). The
unconstrained gradient descent algorithm is one (another algorithm is
shown in the next chapter) of the efficient algorithms to solve this prob-
lem and it takes the form,

M+ 1) = X0 +p(y"V (A+AO D) VY —n).  (413)

Using unconstrained gradient descent algorithm, we get the optimal
value of A, which is denoted by A*. To solve problem (4.12), we easily
substitute the value of A* in (4.11). The GMMSE solution in this case
1s

Expressing the matrix H? H by its EVD, the gradient descent algo-
rithm (4.13) only works on the diagonal matrix A which has a less
number of computations to find A*, but the gradient descent algorithm
in (4.6) has to do more efforts to find §*. So, the solution in (4.14) is
less complex than that in (4.7).

4.5 Circular Approximation GMMSE Problem

We present an algorithm that is based on fast convolution method, us-
ing the well-known Fast Fourier Transform (FFT) as the basic compu-
tational tool. As we will discuss, the FFT algorithm can transform the
problem of multiplying with a cyclic convolution matrix to the easier
problem of multiplying with a diagonal matrix. We will also formalize
this idea, extend it to compute an approximation to the GMMSE solu-
tion.

The well-known fast convolution method [82] can be used in its most
basic form to efficiently compute the convolution of a finite sequence d of
length n with an infinite, but repeating sequence ¢ with periods of length
n. Such a convolution is called a cyclic convolution [80]. The result of
the cyclic convolution is again infinite, periodic sequence with periods
of length n, denoted by s. Let the vector ¢ = [¢M),e?, ..., ™" € C"
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contain the elements of one period of the sequence ¢ and let d, s contain
the elements of the sequence d and one period of s, respectively. The
result of the cyclic convolution can then be expressed in matrix notation
as

s =0Cd, (4.15)

where C' is a circular matrix given by (4.8).

The computation of s as a matrix/vector product requires n? multi-
plications when the structure of C' is not exploited. The fast convolu-
tion method reduces this number to O(nlogn) by transforming d and
c into the frequency domain where the convolution can be performed
by a point-wise multiplication of their spectra. The sequence s can be
found by transforming the resulting spectrum back into the time do-
main. In this basic form, the method works only when one sequence is
infinite and periodic since otherwise its spectrum would not be discrete
and can not be accurately computed with the FFT, which performs a
Discrete Fourier Transform (DFT) [87, 106]. We can express the DFT
of the vector d into dp, as a matrix/vector product using the Fourier
Transform matrix F. € C"*",

ch:cha

with F [i, k] = w(D00 ) = e~ 7, where j denotes the imaginary
unit. The product F'. d can be efficiently computed with FFT algo-
rithm. We keep in mind that the computation of the matrix/vector
product F. d needs only 2 logn multiplication instead of n2.

2
The computation of s in the frequency domain can be expressed as

s=F.'AF.d, (4.16)

with A. = diag(F. ¢) € C"" where, diag(z) denotes the construction
of a diagonal n xn matrix that contains the elements of z on its diagonal.
Multiplying the diagonal matrix A. with the vector F'. d corresponds
to the point-wise multiplication of the two spectra. The subsequent
multiplication with F, ' transforms the result back into the time domain
with an inverse DF'T that can again be implemented as an inverse FF'T
with § logn multiplications. Comparing (4.16) with (4.15), we find the
factorization,

C =F_'AF,, (4.17)

and hence, FCC'FC_1 = A.. All details about FFT can also be found
in [12]
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The construction (4.17) works for any circular matrix, so using this
fact, the circular matrices can be diagonalized with the Fourier trans-
form matrix. We can reduce the computational complexity of GMMSE
detector as we will show in the following.

The banded rectangular Toeplitz matrix H in (4.9) can be approxi-
mated by a circular structure H by adding L—1 columns to the Toeplitz
matrix,

(h(l) RL Ry h(2)\
| NI NQY | NCOR N VN N )
| NCI NI NCY
| NCI Ne))
H=| : h® h
hL h?
hL) h®)
\ RO L) p(L-2) Ly

Now, we will reformulate problem (4.3) by using the circular approx-
imation H. Note that, the size of H isn+ L —1 xn+ L — 1. Using

~ H ~
the FFT factorization in (4.17) and the fact that H H is a circular
matrix, we express it as,

H"H = FUAF,

where F' is the discrete Fourier transform matrix (computed by FFT)
and ) .
A = diag (F (HYH(, 1))) ,

where, (fj HE (:,1)) is the first column of the circular matrix HYH.
Problem (4.3) can be reformulated as,

& = arg min x (FH[XF) x — 2y (4.18)

zHx<n

Again, we construct the Lagrange dual function of (4.18) as,

L(x,\) =z (FH[XF> z—2y"z+\(z"x—n),
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which is also minimized over & and maximized over A > 0. Solving for
x in terms of A\, we get,

~ -1
x = Fl <A + )\I> Fy, (4.19)
and substituting back, we obtain the dual problem,
_ -1
max —yH ((FHAF) + )\I> Yy — An. (4.20)

This problem as we stated before, is a one dimension-optimization prob-
lem, so it is easy to solve it than problem (4.18). A simple unconstrained
gradient descent algorithm is given by,

At+1)=A(t) +pu (yHFH <A+X(t)1)_2Fy—n> . (4.21)

After solving the dual problem (4.20) using (4.21), we get the optimum
value \*. Substituting this value into (4.19), we obtain the GMMSE
solution,

- -1

It is worthwhile to note that, EVD which used in (4.21) is not only
the reason to reduce the complexity to find A\* (as in Toeplitz case),
in addition, using the FFT algorithm. The products y” F¥ and Fy in
(4.21) can efficiently computed with the FFT algorithm. We will discuss
the computational complexity of the proposed detector in Chapter 6.
We just now keep in mind that the matrix/vector product Fz needs
only O(n log n).

4.6 Performance Analysis

When h = [h(l),h@), ...,h(L)]H is not a zero vector, the columns of
matrix H are linearly independent. Actually, the Toeplitz channel con-
volution matrix H of size (n + L — 1) X n always has full rank. The
channel correlation matrix H” H therefore also has full rank. So its
inverse exists. Therefore, when the channel matrix is multiplied by its
pseudo inverse, the identity matrix is obtained,

H'H=(H"H) ' (H"H) =1,
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where, H' is the pseudo inverse of H. This means that the least squares
estimate is computed by

=Hr=x+ Hn.

We observe that the least squares estimate is composed of the true data
and the noise term. Therefore, in noise-free environments, perfect data
detection is guaranteed. In noisy environments, however, the quality
of the estimation depends on the noise and its enhancement by H'.
Assuming a fixed noise power, we measure the noise enhancement and
thus the quality of the estimates by the condition number of H'. A
large condition number indicates large noise enhancement, whereas a
small condition number indicates low noise enhancement.

Now, we consider the circular matrix H obtained by the circular ap-
proximation of H. The first n columns corresponding to the Toeplitz
channel matrix are linearly independent. The additional L — 1 columns
may be linearly dependent. Actually, a circular matrix H has a max-
imum of L — 1 eigenvalues equal to zero. Therefore in contrast to the
Toeplitz case, the existence of the inverse is not guaranteed. The pseudo
inverse obtained by least square estimation, is identical to the inverse,
if it exists,

g -mE'm e =g '5B"H =

Therefore, estimates can be computed for channels, where the inverse
circulant matrix exists (note, that for practical channels, this is usual
the case):

- - ]
=H r=x+H n.
As for the Toeplitz case the quality of the least squares estimate can be

measured by the condition number of H . We compute the condition
numbers of the (pseudo) inverse of the Toeplitz and circular matrices
for Rayleigh fading channel as specified in [43, 86]. Here, the condition
number is the ratio between the largest and smallest singular value.
The occurring condition numbers are then assigned to specific bins in
the histogram shown in Figure 4.2. Here, the Toeplitz matrix averages
a lower condition number than the circulant one. Noise enhancement is,
therefore, lower in the Toeplitz case. The highest measured condition
number of the Toeplitz matrix lies in the bin [40 80|, while in circular
case, condition numbers above 320 occur. How this degradation of the
condition influences the BER performance is shown by the following
simulations.
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Figure 4.2: Relative frequency of condition numbers for Toeplitz and circular ma-
trices with n = 100 using a fading channel of length L = 15.

4.7 Simulation Results

Error rate is a function of the signal to noise ration (SNR), which is com-
monly defined as the logarithmic ratio of signal power to noise power
at the matched filter output [82]. Assuming uncorrelated zero-mean
transmit symbols & and noise samples n, the transmit power and the
noise power can be defined by their variances as 02 and o2 respectively.
Without loss of generality, the transmit power is assumed to be nor-
malized to unit power, i.e. o2 = 1. Hence, if the transmission is only
affected by an Additive White Gaussian Noise (AWGN), the SNR can
be expressed as the ration of the transmit power o2 and the noise power
o2, i.e.
o2 1
SNR[dB] = 10log;y(—=) = 1010g10(0—2).
n

2
On

Simulations results are generated in Matlab [1]. The bit error rate
(BER) performance of the different detectors is discussed for BPSK
constellation. In the simulation we compare the BER performance for
LS, MMSE, and GMMSE detectors, taking into account that we have
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two different structures, banded Toeplitz and its circular approximation.
We applied this simulation using two channels:

e Channel (1): is a channel that specified in [36] as,
hD =0.5% (1 + cos(2m/w (i —2)));i=1,2,..., L,
where w determines the distortion.

e Channel (2): is a Rayleigh fading channel as specified in [43, 86].

The equalization problem for each channel was simulated for different
SNR using L = 5,15 and n = 100, 1000.

Figures 4.3, 4.4, 4.5 and 4.6 show that GMMSE detector has almost
the same performance as MMSE detector. We see that the circular
approximation only slightly degrades the performance of the detectors.
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Figure 4.3: BER for structured LS, MMSE, and GMMSE detectors using channel
(1) with a channel length L = 5, (a) n = 100, (b) n = 1000 (¢: Toeplitz case; c:

Circular case).
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Figure 4.4: BER for structured LS, MMSE, and GMMSE detectors using channel
(1) with a channel length L = 15, (a) n = 100, (b) n = 1000 (¢: Toeplitz case; c:
Circular case).
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Figure 4.5: BER for structured LS, MMSE, and GMMSE detectors using channel
(2) with a channel length L = 5, (a) n = 100, (b) n = 1000 (¢: Toeplitz case; c:
Circular case).
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Figure 4.6: BER for structured LS, MMSE, and GMMSE detectors using channel
(2) with a channel length L = 15, (a) n = 100, (b) n = 1000 (¢: Toeplitz case; c:
Circular case).



5 Structured GMMSE Using Hidden
Convexity

One of the most popular relaxation methods of the ML problem (4.2),
is semidefinite programming (SDR) (3.31). It is a convex optimization
problem that can be solved in polynomial time [97], it provides a good
approximation of the ML solution [64, 105]. However, its practical ap-
plications are limited since, its computational load is very high. This
high complexity urged us to think about how can we use convex relax-
ations to produce a receiver that has a performance near to ML with a
reduced complexity.

In Chapter 4, we relaxed problem (4.2) to a convex relaxation (4.3)
and we solved this problem by using the circular approximation. The
resulting solution (4.22) has the same structure and performance as
MMSE detector and it does not require the knowledge of the noise
power.

In this chapter, we relax the ML problem (4.2) to a convex optimiza-
tion problem again. We solve its dual problem to find what is named,
the estimation of the noise power to get the same solution form as
(4.22). The main difference between (4.22) and the proposed solution
in this chapter is the way how the dual problem is solved. The bisection
method [45] is used to solve the dual problem.

The advantages of the bisection method are:

e The bisection method is always convergent.

e The error can be controlled.
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5.1 Hidden Convexity Relaxation

In this section, we propose a relaxation whose bit error rate performance
is almost the same as MMSE detector and it has a solution form as in
our proposed detector (4.22). Using hidden convexity methodology [9],
we show that problem (4.2) can be rewritten as,

:&:arg”rrlein " H Hx — 2y"x. (5.1)
||“=n

Let V be the matrix whose columns are the eigenvectors of H? H and

A = diag AV, A? | A™) contains the eigenvalues of H¥ H with
x = Vz, problem (5.1) is equivalent to

_ Qb(j)z(j))7 (5.2)

where b = VHy. The following lemma enables us to convert problem
(5.2) to a convex optimization problem [27].

Lemma 5.1 Let w = (wW, w®@, .. w™) be an optimal solution of
HII||12in q(z) where, q(z) = Z?zl(/\(j)z(j)2 —2b6Y20)). Then wWbY) > 0
for1<j<n.

Proof: Let w; = (w(l),w<2), D () (k1) ...,w(”)). Then,
|wie|l* = ||w||* = n, so that wy, is feasible. Since w is optimal, ¢(w) <

q(wy) for 1 < k < n, which implies that

_ Zgb(j)w(j) < - Z 26 ) 4 9pF) k),
Jj=1 j=1,j#k

Therefore, b*) e ®) > 0, and the result follows.

Using lemma 5.1, we can define a new objective variable (change of
variables) u such that, z) = sign(b¥)vul), with u) > 0. Problem
(5.2) is now written as,
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n

min » “(AVul) = 26V |Vaul)) Y ;= n. (5.3)
j=1

ul) >0 4
J

Since problem (5.3) is convex with linear constraints, we develop the
dual problem using its Lagrangian,

Llu,n) =Y AV +nu? — 29| Vul) —n. (5.4)

J=1

Differentiating (5.4) with respect to uY) and equating to zero yields,

_ (J)
’U/(]) :b—al S]STL,
()\(J) +1)?
subject to n > —AY) for 1 < j < n. The dual function is
42
. n b7
h(n) - u%lgoﬁ(u’ 77) - ; ()\(j) n 77) —nn,

and the dual problem of (5.3) is

max h(n) :n > a,
n

where a = max;<j<, {—AV}.

Differentiating h(n) with respect to n and equating to 0 yields,

n b7
Z ()\(j) +1)? -
j=1 n
Denoting
() En a (5.5)
G(n) = — N, 5.5
=ECREIE

it follows that the optimal n* is the root of G(n). Since G(n) is contin-
uous and monotonically decreasing for n > «, there is only one root in
the domain (a, 00). One of the most efficient methods that solves this
problem is the bisection method.
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5.2 Bisection Method

In this section, we give a summary of the bisection method. Bisection
method is an algorithm that solves nonlinear equations by finding roots
of these equations. The method is based on the following theorem [46].

Theorem 5.2 An equation f(x) = 0 Vx € R, where f(x) is a real
continuous function, has at least one root between x; (lower bound) and

x, (upper bound) if f(x;)f(x,) <O.

There are some possible cases as:

e First case: if f(z;)f(x,) > 0, there may or may not be any root
between x; and x,.

e Second case: if f(z;)f(z,) < 0, then there may be more than
one root between x; and x,,.

Figure 5.1 shows the theorem. Figure 5.2 and Figure 5.3 represent the
first case, while Figure 5.4 is an example of the second case.

Bisection method as described in [45, 46] is based on how to find the
root between two points, so it is one of the bracketing methods. Because
the root is bracketed two points z; and x,, we can find the midpoint x,,
between x; and z,. This property gives us two new intervals [x;, x,,] and
[, x,]. We have to determine, if the root is in [x;, x,,] or in [z,,, ,].
Then, find the sign of f(z;)f(x,,), and if f(z;)f(z,,) < 0, then the new
bracket is between x; and x,,, otherwise, it is between z,, and x,. So,
we are literally halving the interval. By repeating this process, we can
let the width of the interval [z;, z,] to be smaller.

Bisection Method Algorithm

The bisection algorithm steps that find the root of the equation
f(x) =0 are:
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Figure 5.1: At least one root exists between the two points.

1. Choose x; and z, as two guesses for the root such that

S @) faa) <0,

which means that f(x) changes its sign between x; and x,,.

2. Find an estimate z,, for the root of the equation f(z) =0 as the
mid-point between z; and z, as

T, 5

3. Check the following

o If f(x;)f(z;) < 0, then the root lies between z; and x,,; then
x; = x; and T, = .

o If f(x;)f(x,;,) > 0, then the root lies between z,, and z,;
then x; = z,, and z,, = x,,.

o If f(x;)f(x;) =0, then the root is x,,, stop the algorithm.
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Figure 5.2: Roots of equation may still exist between the two points.

4. Find the new estimate of the root

I
Ty = 5

Find the absolute relative approximate error as

new old

)

m
leall = 11
pnew
m

where, 2" is the estimated root from the present iteration while,

29 is the estimated root from the previous iteration.

5. Compare the absolute relative approximation error ||¢,|| with the
pre-specified relative error tolerance ||es||. If ||€,|| > €5, then go to
step 3, else stop the algorithm.

Example: Find a root of the nonlinear equation f(z) = 0, where,
f(x) = 23-0.1652°+3.993x107%. In this example, the lower initial guess
is ; = 0 and the upper initial guess is x, = 0.11 as shown in Figure 5.5.
Figures 5.6 - 5.8 show the first three iterations of the bisection method
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Figure 5.3: There may not be any roots between the two points.

for this example [46]. The task of the bisection method in the example
at the first iteration is presented in Figure 5.6 as:

e Listimates,
T = (T4 + 27) /2 = 0.055.

e (Calculates,

Fx) = 0.0003993; f(z,) = —0.0002662; f(z,,) = —6.655¢ — 05.

e Checks the root lies in (x;, ) or (z,, x,).
e Chooses, r, = 0.11 and x; = 0.055.

Figure 5.7 shows the second iteration for this example. In this iteration,
the algorithm task is:

e LEstimates:
Ty = (x, + x7) /2 = 0.0825.

e Calculates,

f(x;) = 6.655e — 05; f(z,) = —0.0002662; f(x,,) = —0.00016222.
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/7N
! \/

Figure 5.4: More than one root may exist between the two points.

e Approximates the error (absolutely relative),

ea = abs((z"" — 229 /2"") = 0.3333.

m

e Checks the root lies in (x;, ) or (z,, ).
e Chooses, r, = 0.0825 and x; = 0.055.

Figure 5.8 shows the third iteration for this example. In this iteration,
the algorithm task is:

e Listimates,
T = (T4 + 1) /2 = 0.06875.

e Calculates,

fx) = 6.655¢—05; f(z,) = —0.00016222; f(z,,) = —5.5632e—05.

e Approximates the error (absolutely relative),

ea = abs((z" — 2%9) /2" = 0.2.
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Figure 5.5: Bisection algorithm: Initial guess.
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Figure 5.6: Bisection algorithm: First iteration.

e Checks the root lies in (z;, xy) or (T, xy,).

e Chooses, r, = 0.06875 and z; = 0.055.

5.3 Hidden Convexity GMMSE Detector

The solution of (5.1) is @ = V z where, 2 = b9 /(AY) 4+-1), b = VHy,
and n* > « is the unique root of G(7n) (given by the bisection method),
then the GMMSE solution takes the form,

Tiase = VA+0 ) VY. (5.6)

Using the circular approximation H of the banded Toeplitz channel
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Figure 5.7: Bisection algorithm: Second iteration.
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Figure 5.8: Bisection algorithm: Third iteration.

matrix H, where IEIHfJ = FH[XF, b = Fy, and « = Fz, the
GMMSE solution is given by

xivmse = FT(A+ 0" 1) Fy. (5.7)

5.4 Simulations Results

We applied the presented algorithms to the same detection problems
which are presented in the previous chapter. Figures 5.9 and 5.10
present the simulation results using the first channel, while Figures
5.11 and 5.12 are the results for the fading channel. GM M S Eq refers
to GMMSE solution using the gradient descent algorithm to get n* and
GM M S Ep indicates of using bisection method to get n*.
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Figure 5.9: BER performance, using channel(1), n = 1000 with L = 5.
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Figure 5.10: BER performance, using channel(1), n = 1000 with L = 15.
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Figure 5.11: BER performance, using channel(2), n = 1000 with L = 5.
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Figure 5.12: BER performance, using channel(2), n = 1000 with L = 15.



6 Near Optimum Detector and
Computational Complexity

A structured GMMSE detector was presented in the last two chapters
using two different convex relaxations. This detector has a bit error rate
(BER) performance almost the same as that of MMSE detector with
a lower computational complexity than the standard GMMSE detector
(as we will see in this chapter).

However, the performance of the structured GMMSE is not close to
the BER performance of the optimum Maximum likelihood (ML) detec-
tor. Combining the proposed relaxations with a local search algorithm
results a detector whose performance is near to that of the ML receiver.
Its computational complexity is of the same order as that of the pro-

posed GMMSE detector.

6.1 Near Optimum Detector Using Local
Search Algorithm

Local search is a mathematical method for solving computational hard
optimization problems. It can be used for problems that can be formu-
lated to find a solution among a number of candidate solutions. Local
search algorithm moves from a local optimum to another in the search
space until a global solution is found. Local search moves in Figure
6.1 from xq to xg passing through xs. All these three points are local
optimum, but only x5 is the global one.

Problem (4.2) is non-convex NP-hard and there is no efficient algo-
rithm to solve this problem. Therefore, we relaxed it to convex opti-
mization problems (4.3) and (5.3). So, the resulting solution in each
case is a solution of a relaxed problem not the solution of the original
problem. The domain of the original problem is a subset of the domain
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Figure 6.1: Local search moves from local optimum to another.

of its relaxation, hence, we can use the resulting solution of the relaxed
problem to be a good initial guess for the local search method.
In this section, we apply the local search method to problem (4.2),

#=arg min «"HY Hzx -2y "z,
re{-1,+1}"

which is non-convex optimization problem. Because of the non-convexity
property, this problem may have more than one local solutions (convex
problem has only one global solution). The solution in (4.22),

. 1
iy = FI (A + /\*I) Fy,
or the solution in (5.7),
zinse = FP(A+n°1) ' Fy,

can be improved by local search algorithm. The local search algorithm
for a problem of the form minge(_11y»g(x) is defined as follows:

e Initial step: Choose an arbitrary guess x

e General step: If there exists z € {—1,1}", which is different from
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x in one component and satisfies g(z) < g(x) then & := =z, oth-
erwise STOP.

We apply the method for both cases, Toeplitz and circular, but to avoid
the redundancy we only present the circular case. In this case,

g(x) =z FIAFx — 29"z

and the initial guess of the local search method x; is chosen as the
solution of (4.22) or (5.7). In each update of the algorithm to move
from local minimum to another, the problem must satisfy the necessary
optimality conditions [§]

XFIAFXe - Xy < Diag(H'H),

where, X = diag(x) and e = (1,1, ...,1)7. We note that each iteration
of the local search algorithm requires O(n) operations.

6.2 Simulation Results

In this section, we apply the local search algorithm using the global
optimization matlab toolbox to solve problem (4.2). The simulation
has four scenarios:

e Using channel (1): Choose initial guess using the gradient de-
scent algorithm.

e Using channel (2): Choose initial guess using the gradient de-
scent algorithm.

e Using channel (1): Choose initial guess using the bisection
method.

e Using channel (2): Choose initial guess using the bisection
method.

In all scenarios, we used channel length L = 15 for both channel (1)
and channel (2) as introduced in Section 4.7. We compare the bit error
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rate performance of the enhanced GMMSE detector (we refer it by
NML) with the standard GMMSE and ML detectors. Figures 6.2 to
6.5 represent these four scenarios. The enhanced GMMSE (NML) has
BER performance close to that of ML detector.

BER

SNR [dB]

Figure 6.2: BER performance: Initial guess for local search is a solution of GMMSE
using gradient descent algorithm for channel (1).

6.3 Computational Complexity

The computational complexity of the maximum likelihood detector is 2"
which is extremely high compared to the sub-optimum receivers. The
MMSE detector is one example of these sub-optimum detectors, but it
has a high computational complexity. Using the Toeplitz structure of
the channel matrix enables us to approximate the problem by using the
eigenvalue decomposition which reduce the computational complexity
of the proposed detector. The eigenvalue decomposition itself requires
an extra effort, so it also has a required computational complexity. To
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Figure 6.3: BER performance: Initial guess for local search is a solution of GMMSE
using gradient descent algorithm for channel (2).

produce further reduction of the computational complexity, we approx-
imated the Toeplitz structure by a circular structure which enables us
to use the FF'T decomposition.

We discuss the computational complexity of NML detector which is
decomposed into two main parts:

e Part 1: The computational complexity to find the GMMSE so-
lution (as the initial guess of the local search).

e Part 2: The computational complexity of the local search method.

Taking into account that, the complexity of part one is also composed
in two sub-parts:

e Part la: The complexity of the solution of the system of equa-
tions (4.7), (4.14), (4.22), (5.6) or (5.7), which is the same as for
MMSE.
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BER
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Figure 6.4: BER performance: Initial guess for local search is a solution of GMMSE
using bisection method for channel (1).

e Part 10: The complexity of the iterations required for the gradient
descent algorithm to find 0* in case of (4.7), or to find A* in case
of (4.14) or (4.22) and the complexity of the bisection method to
find * in case of (5.6) or (5.7).

In part la, the system is banded without structure then, the solution is
obtained by the Cholesky algorithm with complexity nL?+8nL+n [30].
When there is a banded Toeplitz structure as in (4.14) or (4.22), the
solution is given by the Schur algorithm with complexity 4Ln [31]. If we
approximate the banded Toeplitz matrix by a banded circular structure
as in ((5.6) and (5.7)), the solution is obtained using the FFT decom-
position with complexity 2(n+ L —1)log(n+ L — 1)+ (n+ L — 1) [30].
Therefore, the circular approximation results in a significantly reduced
computational complexity.

In part 1b, the gradient descent algorithm adds some complexity.
However, for the structured cases (4.13) or (4.21), the iterations of the
gradient descent algorithm are only applied to diagonal matrices (A) or
(A) such that the computational complexity is only of O(n) per itera-
tion. We solve problem (5.5) using the bisection method. This method
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Figure 6.5: BER performance: Initial guess for local search is a solution of GMMSE
using bisection method for channel (2).

is linear in the size of the problem so, it requires only O(n). Figure 6.6
shows the mean number of iterations for the gradient descent algorithm
(Part (a) for channel (1) and part (b) for channel (2)). Figure 6.7 shows
the mean number of iterations for the bisection method (Part (a) for
channel (1) and part (b) for channel (2)). In both cases, the number
of iterations is small. Therefore, the complexity can be neglected com-
pared to the complexity of part la.

In part 2, the local search algorithm has a complexity of O(n). The
overall complexity of the proposed NML detector is given in Figure 6.8
and Figure 6.9. We note that, the curves that represent the banded
circular case in both two figures are almost congruent.
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Figure 6.6: Mean number of iterations for gradient descent algorithm, (a) for channel
(1) and (b) for channel (2).
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Figure 6.7: Mean number of iterations for bisection method, (a) for channel (1) and
(b) for channel (2).
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Figure 6.8: The overall computational complexity when the transmitted signal size
varies between 1 and 1000 with two different channel lengths, L = 15 and L = 5.
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Figure 6.9: The overall computational complexity when the channel length varies
between 1 and 40 with two different transmitted signal sizes, n = 1000 and n = 500.
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7 Conclusions

Approaches to solve the detection problem for wireless communication
system using convex optimization were presented. The resulting near
optimum Maximum Likelihood (NML) detector has significantly less
computational complexity than ML. Binary Phase Shift Keying (BPSK)
and Quadrature Shift Keying (QPSK) constellation sets were relaxed
into convex sets. Using these relaxations the ML problem was relaxed
to convex optimization problems. For solving the convex optimization
problems Generalized Minimum Mean Squared Error (GMMSE) algo-
rithms were presented. The dual problem of the relaxed problem was
solved using the gradient descent algorithm and the bisection method
respectively. Reducing the computational complexity was achieved by
using the structure of the channel matrix.

First, the banded Toeplitz structure of the channel matrix was used.
Using Eigenvalue Decomposition (EVD) of the banded channel matrix
the algorithms were executed on diagonal matrices which reduced the
number of multiplication operations. The computational complexity
was reduced from nL? 4+ 8nL + n for the banded channel matrix (with-
out structure) by applying the Cholesky algorithm to 4Ln by applying
the Schur algorithm for the banded channel matrix with Toeplitz struc-
ture.

Second, circular approximation of this banded Toeplitz channel ma-
trix was used. The dual problem was again solved using the above
mentioned algorithms. EVD of circular matrices, which can be de-
termined by using the Fast Fourier Transform (FFT) significantly re-
duced the computational complexity. So, using the fact that the com-
putational complexity of the FFT is O(n log n), the computational
complexity of the proposed GMMSE solution using circular matrices is
3(n+L—1)log(n+L—1)+ (n+L—1).

In addition to this complexity, the complexity of both gradient de-
scent algorithm or the bisection method was taken into consideration.
This computational complexity in both cases was of O(n) per iteration.



110 Conclusions 7

The difference between these two algorithms is that: The initial step in
gradient descent algorithm is perfectly chosen while the initial step of
the bisection method depends on the bracketing the domain of solution
which may take more iterations than the gradient descent algorithm.
Both algorithms, in general, only require a small number of iterations
to solve the dual problem, so their computational complexity can be ne-
glected compared to the complexity of the entire GMMSE algorithms.

Third, the local search algorithm was used to enhance the solution
of the proposed GMMSE detector. The relaxed problem is a convex
optimization problem, but the original problem is not. So the proposed
GMMSE solution is a solution of the relaxed problem (which is global
only for the relaxed problem) and may or may not be global for the
original problem. The initial guess of the local search algorithm was
taken as the solution of the proposed (GMMSE) solution. Then, the
local search algorithm was applied to the original problem with its well-
known strategy that it moves within the domain of solution from local
optimum to another until the optimality conditions are satisfied. The
computational complexity of the local search algorithm is of O(n) which
is also neglected compared to the overall solutions complexity. The re-
sult is a Near Optimum ML (NML) detector with significantly reduced
computational complexity.

Further research can be done to solve the Maximum Likelihood (ML)
detection problem using Semidefinite Programming Relaxation (SDR).
This method has BER performance almost the same as ML, but it has
a computationally complex solution. As we have seen in this work, us-
ing the structure of the channel matrix is a good way to reduce the
complexity. Applying the presented technique combined with SDR is
appealing. Furthermore the methodologies and algorithms that were
proposed in this thesis can be applied to Code Division Multiple Access
(CDMA) and Orthogonal Frequency Division Multiplex (OFDM).



A Notation and Abbreviations

Notation

x Scalars

X Constant, scalar system parameters
x Vectors

X Matrices

X Sets

() The 7th element of vector x

X The element in row ¢, column j of matrix X
A Conjugate transpose of A

AT Transpose of A

Al Inverse of A

Al Pseudo-inverse of A

E{-} Expectation operator

diag(a) Diagonal matrix with elements of a on diagonal
Abbreviations

AWGN Additive White Gaussian Noise
BER Bit Error Rate

BPSK Binary Phase Shift Keying
CDMA Code Division Multiple Access
DFT Discrete Fourier Transform
FET Fast Fourier Transform
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GMMSE
KKT
LP

LS
MAP
MIMO
ML
MMSE
MS
NP
OFDM
Pdf
PSD
PSK
QP
QPSK
SDR
SNR

Notation and Abbreviations

Generalized Minimum Mean Square error
Karush-Kuhn-Tucker

Linear Program

Least Square

Maximum a Posteriori Estimate
Multiple-Input, Multiple-Output
Maximum Likelihood

Minimum Mean Square Error

Mean Square

Non-deterministic Polynomial
Orthogonal Frequency Division Multiplex
Probability density function

Positive Semidefinite

Phase Shift Keying

Quadratic Programming

Quadrature Phase Shift Keying
Semidefinite Relaxation

Signal-to-Noise Ratio
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