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Abstract

Since its proposal in 1975 the numerical renormalization group (NRG) has developed
to a widely used standard tool to simulate quantum impurity systems (QISs) at low
temperatures. The three essential steps of this method are to discretize the bath on a
logarithmic mesh, map it to a Wilson chain, and then diagonalize this chain iteratively.
There are numerous extensions to the NRG two of which are of relevance in this work:
the treatment of bosonic reservoirs and the investigation of real-time dynamics. With
the bosonic NRG we find wrong critical exponents for a quantum phase transition
(QPT) of the spin-boson model (SBM) and we observe a discrepancy between the real-
time dynamics of a system with a continuous and a discretized bath.

The iterative diagonalization of the Wilson chain neglects at each iteration the rest-
chain. For bosonic systems this leads to an iteration dependent renormalization of the
critical coupling. On the basis of the sub-ohmic SBM we show that this effect leads to
wrong critical exponents. We show by density-matrix renormalization group (DMRG)
calculations that one recovers the correct results by taking the rest-chain properly into
account. This requires an optimal bosonic basis which we determine in the course of
the DMRG variationally.

On the basis of nonequilibrium calculations for the resonant-level model (RLM) we
show that the logarithmic discretization leads to unphysical results of the impurity
occupation number. We attribute these to internal reflections of a charge wave within
the Wilson chain. We propose an optimal chain construction avoiding these reflections.
These chains consist of two Wilson chains patched together.

Because the separation of energy scales is lost for such systems the NRG is rendered
unsuitable. Hence, we develop a new hybrid method: the NRG is used to construct an
effective low-energy Hamiltonian which, in turn, is simulated with the time-dependent
density-matrix renormalization group (TD-DMRG). This allows to simulate the system
on time scales unreachable with the TD-DMRG. The new method is tested on the basis
of the RLM. As a first application of the new method it is applied to the interacting
resonant-level model (IRLM). For this model we find interaction-enhanced oscillations
and new time scales which are not present in the thermodynamics. The results of the
new hybrid method are in excellent agreement with analytic predictions based on an
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expansion in ;. Our new hybrid method yields not only correct results for U — 0 and
U — co but it is applicable in the whole parameter regime.



Zusammenfassung

Die Numerische-Renormierungsgruppe (NRG) hat sich zu einem Standardwerkzeug
zur Simulation von Quantenstortstellensystemen bei tiefen Temperaturen entwickelt.
Fiir solche Simulationen sind drei Schritte notwendig: das Bad wird logarithmisch dis-
kretisiert, auf eine Wilson Kette abgebildet und diese wird iterativ diagonalisiert. Fiir
die NRG existieren zahlreiche Erweiterungen, von denen zwei fiir diese Arbeit rele-
vant sind: zum einen die Behandlung bosonischer Systeme und zum anderen die Un-
tersuchung von zeitabhdngingen Prozessen. Wir stellen fest, dass die bosonische NRG
falsche kritische Exponenten fiir den Phaseniibergang des Spin-Bose-Modells (SBM)
liefert und dass bei Nicht-Gleichgewichtsrechnungen Diskrepanzen zwischen den Er-
gebnissen eines kontinuierlichen und eines diskretisierten Bades bestehen.

Durch die iterative Diagonalisierung der Wilson-Kette wird auf jeder Iterationsstufe
eine Restkette vernachléssigt. Bei bosonischen Systemen fiihrt dies zu einer iterations-
abhangigen Renormierung der kritischen Kopplung. Anhand des Spin-Bose-Modells
im sub-ohmischen Regime zeigen wir, dass dieser Effekt zu falschen kritischen Ex-
ponenten fiithrt. Mit Dichtematrix-Renormierungsgruppe (DMRG) Rechnungen zeigen
wir, dass man, unter Beriicksichtigung der Restkette, die korrekten kritischen Expo-
nenten bestimmen kann. Dies setzt eine optimierte bosonische Basis voraus, die wir
wéhrend der DMRG variationell bestimmen.

Anhand von Nicht-Gleichgewichtsberechnungen fiir das Resonant-Level-Model
(RLM) zeigen wir, dass die logarithmische Baddiskretisierung zu unphysikalischen Er-
gebnissen der Storstellenbesetzung fiihrt. Die Ursache hierfiir fithren wir auf interne
Reflektionen einer Ladungswelle in der Wilson-Kette zuriick. Um diese zu vermeiden,
schlagen wir einen optimierten aus zwei aneinandergehidngten Wilson-Ketten Ketten-
aufbau vor.

Da es bei diesen Systemen keine klare Trennung der Energieskalen mehr gibt, ist
die NRG nicht fiir die Berechnung solcher Systeme geeignet. Daher entwickeln wir
eine neue Hybrid-Methode, bei der die NRG einen effektiven Niederenergie-Ham-
iltonoperator erzeugt, der anschlieffend mit der zeitabhéngigen Dichtematrix-Renorm-
ierungsgruppe (TD-DMRG) simuliert wird. Durch dieses Schema erreicht man Zeit-
skalen, die sonst mit der TD-DMRG unerreichbar bleiben. Die neue Methode wird am
RLM getestet. Als erste Anwendung der neuen Methode wird diese auf das wech-

vii



viii Zusammenfassung

selwirkende Resonant-Level-Modell (IRLM) angewendet. Bei diesem Modell beobach-
ten wir durch die Wechselwirkung hervorgerufene Oszillationen und neue Zeitskalen,
die keine thermodynamische Entsprechung haben. Die Ergebnisse der neuen Hybrid-
Methode reproduzieren analytische Vorhersagen basierend auf einer {; Entwicklung.
Die neue Hybrid-Methode liefert nicht nur in den Grenzwerten U — 0 und U — oo
korrekte Ergebnisse, sondern ist im vollstindigen Parameterregime anwendbar.
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Introduction

When in 1934 de Haas, de Boer, and van dén Berg brought their gold samples to low
temperatures and measured an unexpected minimum of the electrical resistance at
T = 3.7K [1], one could hardly imagine the profound impact this discovery would
have on the field of condensed matter physics and beyond until the present day. Not
only did experiments like theirs inspire physicists to carry out further low-temperature
experiments, but theoretical tools devised to understand the observed effect are indis-
pensable today.

Soon it became clear that the resistance minimum is due to impurity atoms diluted
in the host metal. But it took another 30 years before Jun Kondo provided a physical
explanation of the observations [2, 3] and since then it is usually referred to as the
Kondo effect.

The Kondo effect is only one of many important discoveries in the field of low-
temperature physics. Another prominent example is the discovery of superconduc-
tivity by Kamerlingh-Onnes in 1911 [4] and its explanation by Bardeen, Cooper, and
Schrieffer in 1957 [5]. A phenomenon similar to superconductivity is provided by Bose-
Einstein condensation, but the history of its discovery is just the opposite: it was first
theoretically predicted — by Bose and Einstein in 1924/25 — and then experimentally
observed in 1995 in ultracold gases [6, 7], sparking a vast research activity in the field
of ultracold gases [8, 9]. These experiments include studying Mott insulators [10, 11]
or exploring the path towards quantum simulators [12, 13] and may lead to nonequi-
librium experiments simulating complicated Hamiltonians [14].

Besides impurity atoms diluted in host metals another physical realization of quan-
tum impurity systems (QISs) has recently gained a lot of attention: the so-called quan-
tum dots (QDs) [15]. Usually a QD is a charged semiconductor device. The key feature
of a QD is that the charge carriers are confined in all space dimensions and therefore
exhibit discrete energy levels. Hence, one sometimes refers to QDs as artificial atoms.
If the number of energy levels is reduced to just two, one can store one qubit with a
QD. A Iot of research aims at building quantum computers with qubits realized by
QDs [16, 17, 18].

If one uses a spin in a QD as a qubit (like in all physical realizations of qubits) it is
technically important to have coherent control over the spin and that the spin relaxes
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slowly [19]. An experimental example for the transfer of an electron onto a QD and
the measurement of the electron’s spin relaxation rate is given in Ref.

As techniques to experimentally simulate or theoretically describe realistic systems
for long times are still limited, one has to revert to simple model systems. An archetyp-
ical model Hamiltonian in this field is the so-called Kondo model which describes a
single impurity atom represented as one spin diluted in an uncorrelated host metal.
Of high relevance for this thesis are furthermore the spin-boson model (SBM) [21] and
the interacting resonant-level model (IRLM) [22, 23].

The SBM is used to model any two-level system in a dissipative environment. The
IRLM is well suited to carry out nonequilibrium studies of a QD: the QD is represented
by a single electronic level tunnel-coupled to a lead. Furthermore, the interaction due
to the Coulomb repulsion between the dot and the lead electrons is taken into account.

One can theoretically describe a QD coupled to some leads by the Anderson impurity
model [24]. This model, which has attracted a lot of interest by itself [3], contains,
in a limiting case, the Kondo model and hence the Kondo effect is experimentally
observable in a QD [25, 26, 27].

It is astonishing that in the Kondo model a single impurity can have such a strong
effect on a considerably larger system. At the time of its proposal [2] none of the
available methods succeeded at explaining this behavior. Treating the model with
perturbative methods fails for temperatures below the so-called Kondo temperature
Tx. Therefore, theoretical methods to solve the Kondo model and to understand the
reason for this unexpected behavior have been devised in the 1970/80s [3].

In 1975 Wilson succeeded with his numerical renormalization group (NRG) in ex-
plaining the Kondo effect [25] and proposed a new method capable of solving a certain
class of problems, quantum impurity systems (QISs), in which the Kondo model falls.
Since then the NRG was used to investigate several different QISs [29]. A few years
later, in 1980, Bethe ansatz calculations by Andrei [30] and Vigman [31] yielded an
exact solution for the Kondo model.

When simulating the Kondo model with the NRG the host metal is modeled as a
continuous bath of fermions. Thus, the total systems has an infinite number of degrees
of freedom. This poses a challenge for numerical simulations, as the dimension of
the Hamilton matrix is infinite. In order to reduce the number of degrees of freedom
one discretizes the continuous bath by selecting only some energy levels to represent
the whole energy spectrum [28]. However, the Hilbert space of the system grows
exponentially with the number of selected energy states and, therefore, only small
systems are treatable.

The way the NRG approaches the issue of an exponentially growing Hilbert space
is to let the system grow iteratively and truncate the Hilbert space to an upper dimen-
sion by discarding high-energy states at each iteration step [25]. A different approach,
inspired by this idea, is taken by the density-matrix renormalization group (DMRG):
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here one discards the eigenstates of the density matrix with a low weight [32]. This
conceptual difference in the truncation scheme has profound consequences on the re-
sults and the treatable models: the NRG calculates some low-energy states and is only
applicable to QISs, whereas the DMRG determines the ground state and is applicable
to generic one-dimensional systems with short-range interactions.

For QISs both methods have in common that one has to discretize the continuous
bath and map it to a chain: for the NRG this is a necessarily a so-called Wilson chain
[26], whereas the DMRG is able to handle Wilson as well as other chains. In any case
one neglects an infinite number of bath states causing discretization artifacts [33, 34, 35]
which may eventually corrupt the results of the simulation.

It is the objective of this thesis to calculate nonequilibrium real-time dynamics for
QISs very accurately and to determine critical exponents of the SBM. In the course of
these simulations we identify discretization artifacts appearing due to the neglect of
some parts of the bath. Hence, we propose new ways how to eliminate these artifacts.
These proposals are implemented and extensively tested on the basis of the SBM and
the IRLM.

In the SBM the discretization errors are due to the neglect of the rest-chain at a given
NRG iteration. This results in the so-called mass-flow error [36] causing the NRG to
calculate critical exponents [37, 35] not agreeing with predictions based on a mapping
of the SBM to an Ising model. This discrepancy started a discussion in the literature
whether the NRG results are correct or wrong.

Despite the mismatch between NRG and the Ising model results, there are authors
arguing that the NRG results are correct [39]. We claim that an NRG calculation yields
indeed the wrong critical exponents and that this failure could be cured by taking the
rest-chain properly into account. This is accomplished by simulating the system with
the DMRG. Furthermore, to calculate correct results one has to employ an optimal
bosonic basis and we propose a way how to determine this basis efficiently.

Our nonequilibrium simulations of the dynamics of the IRLM show that due to
discretization artifacts one observes an unphysical behavior of the occupation number
of the local level: instead of a thermalization after a sudden local quench one observes,
even on short time scales, wiggles in the time-dependent occupation number. We show
that these are caused by internal reflection within the Wilson chain of the charge wave,
which is injected into the chain due to the change of the occupation number of the
local level after the sudden quench. To reduce these artifacts we leave the pure Wilson
discretization of the bath. This, however, means that the system is no longer treatable
with the NRG.

The elimination of this obstacle is one of the central results of this thesis: we propose
a new hybrid method combining the merits of the NRG and the DMRG. The NRG
is used to calculate an effective low-energy Hamiltonian which is simulated with the
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DMRG. This facilitates the simulation of strongly correlated systems in parameter
regimes and on time scales inaccessible by the NRG or the DMRG on their own.

This thesis is organized as follows: in Chapter 1 we give a brief overview of nu-
merical methods relevant for the simulation of QISs. We present the NRG and DMRG
in more detail, as these methods are extensively employed in this thesis. Chapter 2
analyzes the effect of the iterative diagonalization and bath discretization of the NRG
on the SBM. In some preliminary studies we first investigate the effect of the truncated
bosonic basis and the mass-flow error on toy models. With these results one under-
stands why the NRG fails at reproducing the correct critical exponents for the SBM.
These findings are used to set up a DMRG yielding the correct critical exponents.

The following chapters deal with the nonequilibrium dynamics of the IRLM after
a sudden local quench. In Chapter 3 we investigate an exactly solvable model, the
resonant-level model (RLM), to investigate the effects of the bath discretization on the
time-dependent impurity occupation number. We find a qualitative deviation between
the results for the model with a continuous and a discretized bath. However, by em-
ploying new discretization schemes we are able to fix this mismatch and to reproduce
the results of a continuous bath with a discretized one. As the NRG cannot han-
dle these new discretization schemes we propose in Chapter 4 a new hybrid method,
which allows to hybridize the NRG with a suitable other method. In our case this sec-
ond method is the DMRG and we establish the reliability of this new hybrid method
by means of RLM results. Finally, in Chapter 5 we apply the new hybrid method to
the IRLM and find oscillations with a frequency and damping rate depending on the
Coulomb repulsion. We compare the numerical with analytic results of a strong cou-
pling treatment for the model. The new hybrid method does not just yield excellent
results in the strong coupling limit or in the non-interacting case, but it is capable of
simulating the IRLM in whole parameter regime.

As a final note we want to mention that throughout this thesis the convention 1 =
kg = 1 is used; here, 7 denotes the reduced Planck constant and kg the Boltzmann

constant.



Chapter 1

Numerical Methods

Over the last decades quantum impurity systems (QISs) have attracted a lot of atten-
tion. Historically the first QIS examined consists of a few iron ions solved in gold. This
setup shows an unexpected behavior of the electrical resistance at low temperatures
[1] which ultimately lead to the Kondo problem [3] and its solution by Wilson [ ].1
A more recent example of a QIS is an electron spin trapped in a quantum dot (QD)
coupled to some leads [16, 17].

Common to all QISs is that they consist of a small subsystem (iron ion, electron
spin, etc.) and a large subsystem (gold, leads, bosonic bath, etc.). The small subsystem
is called impurity and the large subsystem is called bath, reservoir, (conduction) band
or just environment. These expressions are used synonymously throughout this work;
though when referring to a band, most likely a fermionic band, and when referring to
a reservoir, most likely a bosonic reservoir will be meant.

For both subsystems on their own most, if not all, properties can easily be calcu-
lated. The environment consisting of an infinite number of non-interacting modes is
usually already given in its eigenbasis. The impurity is by definition small enough to
be diagonalized exactly very easily. However, the situation changes once one couples
the impurity to the environment. Due to interactions between the impurity and the en-
vironment or non-trivial couplings, the compound system is not necessarily efficiently
solvable” and new many body properties might emerge.

This chapter deals with numerical methods designed to investigate many body sys-
tems. It helps to understand the simulations carried out in the following chapters and
lays the foundation of a new hybrid method developed in Chapter 4. After giving a
short overview of numerical methods used in the field of condensed matter physics,
with a special focus on QISs, we turn to the two methods implemented in this work: the
numerical renormalization group (NRG) [28] and the density-matrix renormalization
group (DMRG) [32]. As both methods can be formulated in the language of matrix

In 1982 Wilson was awarded the Nobel prize for this work [40].

A quantum system is efficiently solvable if the numerical effort to simulate the system on a classical
computer scales polynomially with the number of degrees of freedom [41].
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product states (MPSs) we discuss some concepts of these states before presenting the
NRG and DMRG in more detail.

In the following chapters these methods are applied to two models. One is the so-
called spin-boson model (SBM), describing a spin coupled to a bosonic bath [21]. The
second is the interacting resonant-level model (IRLM). Here, a single fermionic level is
coupled to a fermionic bath and a Coulomb repulsion is taken into account. For both
models we need numeric methods to produce results. Furthermore, we investigate

some toy-models which are exactly solvable.

1.1 Overview of methods

Even though there is no general exact solution to all QISs a wide variety of methods
has been developed to analytically and numerically solve these system approximately.3
In the following we present a short overview of methods related to the methods used

in this work.

1.1.1 Exact diagonalization

Conceptually the simplest way to simulate a QIS — or any other quantum system — is to
numerically diagonalize the Hamilton matrix [44]. Once all eigenstates are determined
one can calculate all properties or the time-evolution of an arbitrary initial state. How-
ever, all involved calculations are very demanding regarding CPU time and memory
consumpation and therefore not feasible for systems living in a large Hilbert space.

There are some cases in which one can save computational resources. If one is
only interested in the ground state of the system it is not necessary to completely
diagonalize the Hamilton matrix. One can use e.g. the Lanczos algorithm [44, 45]
instead. For example, with this method it is possible to simulate a fermionic Hubbard
model with up to 24 sites [46].

With a completely diagonalized Hamilton matrix one has access to all excited states
and hence it is straightforward, but still very resource demanding, to calculate the
time evolution of a system. An alternative is to expand the time-evolution operator in
Chebyshev polynomials, the so called Chebyshev expansion technique (CET) [47]. This
limits the time up to which one can faithfully describe the system but is very accurately
up to this point.

Since exact diagonalization methods are demand a lot of CPU time and memory
these methods are in general, with a few exceptions e.g. Ref. 48 , not used to to
simulate QISs. However, in this thesis important insights are gained by solving some
toy models by completely diagonalizing the Hamilton matrix, albeit the Hilbert space
dimension of these systems is small enough.

3 Standard textbooks covering these topics are e.g. Refs. 42,
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1.1.2 Renormalization group

The renormalization group (RG) is a framework to examine the physics of many-body
problems [49]. One observes phenomena where effects on different scales are impor-
tant. An example is a system close to or at a quantum critical point (QCP): here the
correlation length ¢ diverges and therefore quantum fluctuations of all length scales
become important [50].

The RG approach is to find an effective low-energy description of the system: succes-
sively high-energy degrees of freedom are integrated out and the physical parameters
— the coupling constants and the fields — are renormalized in order to keep the physical
properties invariant under the RG transformation. This procedure produces a so-called
RG flow reaching eventually a fixed point where the effective system becomes invari-
ant under the RG transformation. By using the Keldysh formalism one can even treat
time-dependent systems [51].

1.1.3 Quantum monte carlo

One standard method to simulate quantum many-body systems is quantum Monte
Carlo (QMC), though it is hard to refer to it as one method (for a review see Ref. 52 ).
More precisely it is a class of methods like variational and diffusion QMC [53] or the
loop algorithm [54].

To simulate QISs one can use the algorithm by Hirsch and Fye [55]. With this method
one calculates the impurity Green’s function by discretizing the system’s action on
the imaginary time axis. After applying some transformations on this quantity one
calculates the Green’s function by a stochastic Monte Carlo sampling. However, the
Hirsch-Fye method suffers from some problems connected with the imaginary time
discretization or a lack of generality: a transformation needed for the algorithm, the
Hubbard-Stratonovich transformation, may become complex and as a consequence the
stochastic sampling gets difficult.

One way to avoid some of the Hirsch-Fye problems is to avoid the discretization of
the imaginary time; this leads to the continuous time QMC [56]. As with all QMC
methods one may encounter the so-called sign problem: in QMC algorithms one has to
calculate weights which are interpreted as probabilities. These weights can, especially
for fermionic systems, become negative and therefore the interpretation as probability
fails. Due to the sign error the complexity of the problem grows exponentially with
decreasing temperature and increasing system size [56].

Examples of QMC applied to QISs are given Refs. 57,

1.1.4 Numerical and density-matrix renormalization group

The NRG was designed to solve the Kondo problem [28] and is nowadays applicable
to a large variety of different QISs [29]. The NRG starts by mapping the bath onto



8 Chapter 1. Numerical Methods

a Wilson chain. Then the compound system consisting of the impurity coupled to
the Wilson chain is solved iteratively. Since the Hilbert space of the system grows
exponentially with the number of chain sites an exact solution is only possible for a
few lattice sites. In order to continue the iterative diagonalization the Hilbert space is
truncated by keeping only a certain number of low-energy states. The NRG reveals its
RG character by renormalizing the effective energy scale at each iteration step. Hence,
with each iteration step one zooms in more on the low-energy sector.

The DMRG [32] is more versatile in the sense that it is not limited to the solution
of Wilson chains, but it is applicable to 1D chains with short-ranage interaction. The
Wilson chain is just a special case of valid systems and therefore when dealing with
QISs one can solve a Wilson chain with the DMRG. The DMRG and the NRG share
some basic concepts, one of which is the truncation of the Hilbert space to keep the
computational cost feasible. In contrast to the NRG the DMRG does not keep the low-
energy states, but it keeps the states with a large weight in the density matrix. As a
consequence the DMRG does not yield an effective low-energy Hamiltonian, but the
ground state of the system.4

Both methods are extensively used in this thesis and are therefore discussed in detail
in sections 1.3 and 1.4. One main result of this work is the combination of both methods
(cf. Chapter 4), by employing the NRG to generate an effective low-energy Hamiltonian
which, in turn, is solved with the DMRG.

1.1.5 Dynamical mean-field theory

A mean field theory approximates a complicated many-body system by an effective
single-particle system: the effect of the other particles are encapsulated in effective
tields applied to the single remaining particle. Technically, the simplest way to achieve
this is to take a many-body Hamiltonian and replace the operators of all but one par-
ticle by the corresponding mean values; these mean values have to be determined
self-consistently.

The dynamical mean field theory (DMFT) [59, 60] is a mean-field theory which re-
tains quantum fluctuations. This is achieved by mapping a lattice model to a QIS with
an effective bath. This system is then solved by the method of choice (QMC, DMRG,
NRG, non-crossing approximation, ...). In this process the impurity Green’s function
is determined self-consistently: the impurity is coupled to an effective medium, which
depends on the impurity Green’s function. The self-consistency loop, that is, deter-
mining the impurity Green’s function by solving an impurity model with an effective
medium and then using this function to determine an effective medium for the next
iteration, is repeated until the impurity Green’s function converges.

R general, the DMRG is capable of targeting other states as well; however, in this thesis we are only

interested in the ground state.
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1.2 Matrix product states

The main results of this work are obtained with the NRG and DMRG. Both methods
can be formulated in the language of matrix product states [61, 62, 63]. Though not the
traditional way of presenting the NRG we follow this approach. In a recent publication
[64] it was noticed that the use of MPSs even allows to formulate the NRG as a varia-
tional method making it possible to borrow the concept of sweeping, that is, iteratively
improving the state (see Sec. 1.4.2), from the DMRG. Hence, there is a close connection
between both methods.

The main idea of matrix product states (MPSs) is to associate one matrix with three
indices — a so-called A-matrix — with each lattice site of the system. The wavefunction
can then be written as a product of these A-matrices, hence the name. An advantage of
writing a state as a MPS and not expanding the state in the basis of the total system and
saving the coefficients is that local operators applied to one site affect only the A-matrix
of this site. If one writes the state as a linear combination of basis states and applies
a local operator, in general, all coefficients change. Furthermore, in a certain gauge, it
is technically easy to calculate expectation values or reduced density matrices. When
discussing the DMRG in Sec. 1.4, MPSs show their real merit: MPSs support naturally
the DMRG truncation scheme.

In this section we summarize the most relevant properties of MPSs without explicit
derivations. A more thorough presentation of MPSs, especially in connection with the
DMRG, is given in Refs. 63, 65 . After establishing the MPSs as a tool we continue to
present the NRG (Sec. 1.3) and DMRG (Sec. 1.4) using MPSs.

1.2.1 A-matrix representation

We start by considering a quantum mechanical system consisting of a chain with N
lattice sites. A state |¢) of this system is then given by

[y = Y clsusa - sN)Is1)1 @202 @ - @sy)n e(s1,82,--.,8y) € C. (L)
51/52,+-8N

The local Hilbert space of the ith site is of dimension d;. Hence a local basis of the
ith site is formed by the vectors {|s);|]1 < s < d;}. The sum in Eq. (1.1) runs over
all basis states. The main idea behind MPSs is to write the coefficients ¢(sq, s, ..,Sy)
as a product of matrices. This is achieved by making extensive use of the Schmidt
decomposition [66, 67, 68]: step by step one eliminates the dependency of ¢ on one
physical index s;. As a result, after N — 1 steps one arrives at a form in which for each
site i all physical relevant information is encoded in a matrix A;. This matrix has three
indices: two so-called bond indices and one physical index.” The bond indices connect

> In our notation the bond indices are written as subscripts and the physical index is given in square

brackets.
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Al A2 A B? B!

Figure 1.1: Diagrammatic representation of an MPS for a chain with four sites. Each circle
represents a matrix and each line an index of the matrix. One sums over lines
connecting two circles: this represents a matrix-matrix multiplication. Matrices
with three indices are so-called A-matrices: the horizontal lines indicate bond- and
the vertical lines physical-indices. In the following diagrams the labels of the open
indices are omitted. A-matrices denoted by A (B) are left (right) orthonormalized,
Eq. (1.3).

two neighboring A-matrices, while the physical index enumerates the basis states of
the local basis. Hence, one has d; two-index matrices at each site i, where d; is the
dimension of the local Hilbert space at site .

Furthermore, we split the chain at an arbitrary site L and denote matrices of the left
(right) block with A (B). The state of Eq. (1.1) is now given in its MPS form by [69]

gy =Y Alls)]--- AN JAB [sp ] Blsyllsi)1 ® [s2)a ® - @ [sn)n. (12)

51,50,./5N

Later we assume an implicit summation over the physical indices {s,...,s; } and omit
the basis state [s1); ® [s;), ® -+ ® |sy)n- Furthermore, in Eq. (1.2) the indexing of
the A-matrices A’ and B’ assumes that the left and right block are of equal sizes. In
general, both blocks can have arbitrary sizes.

When constructing a MPS one has a gauge freedom which is fixed by introducing
the center matrix A and demanding the orthonormalization

) A'[s]A[s] =1  in the left block
S

. (1.3)
and ) B[s]B'[s] =1 in the right block.

The center matrix A has two indices. Because it is diagonal one is effectively left with
one index. If the orthonormalization Eq. (1.3) is satisfied the norm of |¢) is given by

(plp) = Tr[A]. (1.4)

The bond separating the left from the right block is not fixed: by rotating the center
matrix A to the left or right [63] it is possible to let one block grow while the other one
shrinks. This is of relevance in the sweeping phase of the DMRG (cf. Sec. 1.4.2).
Instead of writing down the equations it is often easier to use an equivalent dia-
grammatic representation of MPSs (cf. Fig. 1.1). The key idea is to represent matrices
by circles and each index is represented by a line connected to this circle. If a line
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(a) (b)

b

Figure 1.2: (a) Diagrammatic representation of a two-site operator O acting on a MPS.
(b) Rotation of the operator O into a new basis.

connects two circles, one has to sum over this index; effectively this is a matrix multi-

plication. Therefore the diagram in Fig. 1.1 shows the term

25 Ayls1] Az g[s2) Ap, Bis[ss] Bj [sa). (1.5)
apy

In this equation the physical indices are left open while one contracts over the bond
indices. Eq. (1.5) does not exploit that A is diagonal; this would cancel out the summa-
tion over either 8 or 1.

Usually, when physical indices are left open in a diagram we assume, as in the
mathematical notation, that one multiplies the term with the corresponding basis state.
As a further convention we declare that in diagrams physical indices are indicated by
vertical lines and if circles representing A-matrices are ordered in two rows one has to
take the complex-conjugate of A-matrices in the lower row.

1.2.2 Application of an operator

The application of an operator O on the MPS alters only A-matrices associated with
the sites on which the operator acts. Assuming that the operator O acts only on two

consecutive sites i and i + 1, its matrix elements are defined via

0= Z Z Zﬂss,ﬂ (Ish) @ Isiza)) ({sil © (si4al) - (1.6)

Si Sl Sit1 S1+l

Here, {|s;)} is the basis of the ith site. To calculate the action of the operator O on the
A-matrices associated with site i and i + 1, A and B respectively, one has to contract
the MPS depicted in Fig. 1.2a. This yields the tensor

®1x'y[51151+1 Z Z Atxﬁ AﬁﬁBﬁ'y[ 1+1]Osi5i+1/5;s;+1' (1-7)

ﬁ SiSit1
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(a) (b)

Figure 1.3: (a) Evaluation of the expectation value of a two-site operator O. (b) Reduced
density matrix of left block.

By calculating the singular-value decomposition (SVD) [68, Sec. 2.1.10] of ©® one gets
the new A-matrices A and B which are properly orthonormalized, i.e. they obey Eq.
(1.3),

Ols;,si1] = Als;]AB[s;1]. (1.8)
Here the SVD is merely a tool to calculate the Schmidt decomposition of ©.

1.2.3 Change of basis

Any operator O is defined in a certain basis. This could, for example, be the occupation
number or the spin s, component. However, often it is convenient to perform calcula-
tions in the eigenbasis of some other operator Q; this could be the Hamiltonian (in the
NRG) or the density matrix (in the DMRG). The rotation matrix from one basis to the
other can be formulated as an A-matrix A.

If an A-matrix is a rotation matrix, it fulfills the orthonormalization condition Eq.
(1.3). The rotation of an operator O is defined by (cf. Fig. 1.2b)

O =Y A'5J0Afs). (1.9)

In the new basis the operator is given by O. In general, this rotation is not unitary. If
one does this rotation for the operator Q, then Q is by definition diagonal.

1.2.4 Expectation values

In a similar fashion one can calculate the expectation value of the operator O, (|O|y).
Conceptual this is done in two steps: first the operator is applied to the state |i).
This yields the new state |¢') = O|). In a second step one has to calculate the scalar
product (ip|y’). For a two-site operator O the states |¢') and |¢) differ only in two
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A-matrices. Exploiting the orthonormalization conditions Eq. (1.3) one can trace out
the rest of the chain and gets (cf. Fig. 1.3a)

@loly) =3 Y ). Aaﬁ[sl]A:a[SHA/%,BA'WB[%[SZ]B;W[S/Z]Oslsz,s;sé (1.10)

apyds152 6 sh
This concept can easily be extended to operators acting only on one site or on more
than two sites.
1.2.5 Reduced density matrix

Suppose the operator O acts only on sites of the left block of the MPS. One can therefore
write it as O = O, ® 1. Here O, denotes a local operator of the left block. With the
density matrix p = [ip) (1| of the total system the expectation value of O is given by

(O) =Tr[pO] = Tr [p0, @ 1]. (1.11)

The trace is evaluated with the states [s) = [s5) @ |sg), with |s5) (|sg)) being the
eigenstates of the left (right) block:

(O) = ) _(sa5B]0O0A ® 1]s5p) (1.12)
= Z<SA|PAOA’SA>/ (1.13)
with p, = Trg o] =) (splplss)- (1.14)

5B

Here we have introduced the reduced density matrix p, [68, Sec. 3.4.3].

To calculate the reduced density matrix of one block one has to trace out the other
block. For simplicity we show how to calculate the reduced density matrix of the left
block for an MPS consisting of only two sites in total and, therefore, one site in each
block. The generalization to the right block and larger block sizes is straightforward

[63].
The MPS is given by

) = ) Als1]AB[s,][s15,), (1.15)

5152

where A and B are A-matrices orthonormalized according to Eq. (1.3). The density

matrix reads

p=19) (¢l = Y Y Als1]AB[s3] B [s] A A" [51] [s152) (s152- (1.16)

/N
518, 5152
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To calculate the reduced density matrix one has to trace over the eigenstates |sg) of the
right block (cf. Fig. 1.3b)

pa=Trp[p] = SZB;s/Zs;SlXS;Z A1 AB[s5]B"[55] AT A"[s,] (ss1s5) (s152]8) (1.17)

:‘SsB,slz s1) :552/513 (51

= Y AlsJAATAT[sy]]s1) (51 - (1.18)

!
5151

The calculation of the reduced density matrix for a block with more than one site is
shown below in Fig. 1.10.°

Fidelity

Suppose we have two reduced density matrices p and ¢. These could be for the ground
states of two different Hamiltonians with the same Hilbert space. To measure the
distance between the states we define the fidelity

F(p,0) =Tr [W] . (1.19)

This value can takes values in the range 0 < F(p,0) < 1. For ¢ = p the fidelity is
F(p,p) = 1. If the density matrices describe pure states, p = |¢)(¢| and ¢ = |¢)(¢],
the fidelity is equivalent to the modulus of the overlap, F(|¢) (¢, |¢)(¢]) = [(¢|$)|. In
this case it is obvious that the fidelity vanishes for orthogonal states. More properties
of the fidelity are given in Ref. 65, Sec. 9.2.2.

This work employs the fidelity as an indicator if a subsystem, described by the time-
dependent reduced density matrix p(t), thermalizes after a sudden local quench. To
this end the fidelity F(p(t), o) is calculated. Here, ¢ is thermal reduced density matrix
of the same subsystem. If a subsystem thermalizes one obtains

lim F(p(t),0) = 1. (1.20)

t—o0

Von Neumann entropy

Another important quantity one encounters when bipartioning a system is entangle-
ment [70, 71]. Though this quantity is an essential ingredient in the understanding of
why the concept of MPSs works for DMRG [72] we do not discuss this vast field in
detail. At this point we merely introduce the von Neumann entropy,

S = —Tr[plog, p] (1.21)

6 Note, that this figure is for the NRG and shows no A matrix as this is not needed in the NRG.
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for the density matrix p. For an MPS one can calculate this quantity easily from the
eigenvalues A, of the density matrix [63],

S=-Y Adog, A, (1.22)

Only terms with A, > 0 enter the sum. The eigenvalues A, are calculated in the course
of the DMRG easily as they are given as the squared singular values in the SVD.

The von Neumann entropy is a measure for entanglement and it assesses the spec-
trum of the density matrix: if the density matrix has only one non-vanishing eigenvalue
the von-Naumann entropy vanishes and the entanglement is zero. For a maximally en-
tangled state all eigenvalues of the density matrix are equal. As a consequence for the
DMRG it gets harder to simulate the system with increasing entanglement. Then again,
the ground state of a system with S = 0 can be calculated exactly with the DMRG.

1.3 Numerical renormalization group

A long persisting issue in the field of condensed matter physics was the Kondo problem
[3], lacking a solution until Wilson developed the numerical renormalization group
(NRG) [28]. This new method proved to be suited for other systems as well, e.g.
the single impurity Anderson model (SIAM) [73], and has become an essential tool
for examining QISs [29]. Numerous extension to the NRG were proposed and are
commonly implemented nowadays. Here we restrict our discussion to the two variants
used in this work: the bosonic NRG [74, 75] and the time-dependent numerical renorm-
alization group (TD-NRG) [76, 77]. A recent summary of the NRG with its different
variations and with a special focus on MPS is given in Ref.

The NRG consists of three major steps: (i) discretization of the bath, (ii) mapping
the discretized bath to a lattice model, and (iii) iteratively solving the lattice model. In
principle, for solving a QIS with the DMRG the same steps apply. However, the way
the model is iteratively solved in third step differs for both methods.” Our discussion
of the NRG steps follows the presentation of Ref.

1.3.1 Discretization and mapping

The general Hamiltonian of a QIS is

H = Himp + Hcoup + Hbandl (123)

7 For the NRG the discretization and mapping has to be done as presented in the following; at this

point the DMRG is more flexible and allows for other schemes, e.g. determining the chain parameters
via a continued fraction expansion [79] of the hybridization function.
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where Hjy,, is the Hamiltonian of the impurity, Hp,nq of the band, and the coupling

between impurity and band is included in H,,. The band Hamiltonian is given by

oup*
1.
Hband = Zzevkcvkcvk' (124)
vk

The index v is the flavor index of the bath. In general this is a composite index denoting
different spins and different leads. The band’s energy dispersion is given by €, and
c::k (cyx) are the creation (annihilation) operators of flavor v in the energy mode k.

The impurity has some energy levels coupling to the band. The creation (annihila-
tion) operators of these levels are denoted by df (d,). The coupling Hamiltonian is then
given by

Hcoup = sz:vw’k (Ci’kdv + d: Cl/k) . (1.25)
vV

V., is the hybridization between the impurity and band level.

v

The following discussion does not depend on the specific form of Hjy,. The only
assumption playing an important role at the iterative diagonalization is that the dimen-
sion of Hiy,, is small enough so that exact diagonalization is feasible. Furthermore, if
the model has an interaction term between the impurity and the band, e.g. d]t d, CI/kCV/k,
this term is included in Hjy,,. In the discussion of the interacting resonant-level model
(Chapter 5) such a term is important. Even though the bath has to be, so far, fermionic,
the impurity can in principle have bosonic modes, for example a SIAM with a phonon
[50].

In the following discussion we drop the flavor index v for both the band and the
impurity. Effectively this means that we consider a spin-less impurity coupled to a
single spin-less band. However, the generalization to a spin-full model with more than
one lead is straightforward.

The effect the band has on the impurity is fully characterized by the band hybridiza-

tion function

Aw) =Y VEs(w — €). (1.26)
k

For a k-independent hybridization, V;, = V, this function is related to the density of
states (DOS) p(w) via

Alw) = nVp(w). (1.27)

We assume that the support of p(w) lies in the interval [—D, D] where 2D is the band-
width. Further, in the wide-band limit we can define the width of the impurity level
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(a) (b)

Aw) T Aw)
W : T

Figure 1.4: Discretization of the continuous band described by the hybridization function
A(w) and the bandwidth 2D. (a) The impurity couples to all energies of the contin-
uous band. (b) For each energy scale one representative energy state is selected:
the impurity couples to some discrete energy levels of the band.

due to its coupling to the band as I' = Im {A(—i0+)} . In the special case that V, =V
and with a constant DOS, p(w) = 550(|w| — D) the level width is given by
V2
r=25 (1.28)

In Chapter 3 the width I' is used as the energy unit. For the discussion of the NRG it
is more convenient to use D as the energy unit and therefore we set D = 1 henceforth.

With this definition of the hybridization function we reformulate the band and cou-
pling Hamiltonian in energy space [51],

H = Hipp, + /de g(e a a. + /de h(e <d+a€ +a;rd) . (1.29)

Here, a, ( a.) creates (annihilates) one fermion with energy € in the band. Furthermore,
g(€) is the dispersion and % (e€) is the hybridization. These function are related to the
hybridization function via

he(w))? (1.30)

with €(w) being the inverse function to g(e).

From Eq. (1.29) it is evident that the impurity couples to the whole energy spectrum
of the conduction band (cf. Fig. 1.4a). This corresponds to a Hamilton matrix of infinite
dimension. Numerically one cannot deal with this matrix and therefore one needs a
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strategy to eliminate degrees of freedom. Wilson proposed [25] to discretize the band
on a logarithmic mesh. This is defined by a set of discretization points

Xr=+A", n=0,12.... (1.31)

The parameter A is the so-called discretization parameter. The interval between two
points is of the width

x| -

x,il‘ =AT"1-ATY. (1.32)

This width shrinks logarithmically with the interval index n. Because (i) the discretiza-
tion points need to lie within the interval [—1,1], that is, within the band, and (ii) the
width of of the intervals has to be finite, d,, > 0, A has to fulfill the condition A > 1.

The impurity is now coupled to one representative energy level of each interval
(cf. Fig. 1.4b). Since the interval width decreases, the discretized DOS is more dense
around the Fermi energy and contains only a few high-energy states. This is justified
by the goal that we are eventually interested in the low temperature behavior of the
system and in this case the states close to the Fermi energy play the dominant role.

To transform the Hamiltonian of the continuous band Eq. (1.29) into a discretized
form, one defines a complete basis for each energy interval and expands the conduction
band operators in this basis [29]. At this point one has to distinguish between positive
and negative energy intervals in the spectrum and therefore the expansion yields two
sets of fermionic annihilation operators, a and b. With these operators the discretized
Hamiltonian is given by

H = Himp + Z ( ;a;an +€;bzbn> + % 2 <d+ (’)/;ran +’Y1;bn> + (7;‘12 + ’Yﬂ’;) d)
n=0 n=0
(1.33)
with
+,n
& = [ dede)e dif (€)e, (1.34)
Yn
+,n
'y,fz = de A(e) (1.35)

and the convention

“Xn41

xil
+.1 —n
/ de = /de , de = / de . (1.36)
X —Xy

n+1
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B

to tq

€0 €1 €2
Figure 1.5: Impurity couples to a Wilson chain. The chain parameters, ¢; and ¢;, and the

hybridization 4/ 5—73 depend on the bath. Each circle represents one chain site and
the lines indicate the coupling.

This completes the first step of the NRG procedure: the discretization of the conduction
band.

The second step of the NRG algorithm is to map the discretized Hamiltonian Eq.
(1.33) to a lattice Hamiltonian (cf. Fig. 1.5),

H = Hipp + \/% (d+Co + c8d> + Z (enclcn +t, (c,tcnﬂ + c,J,rchn)) (1.37)

n=0

1
with & = / deAfe) . (1.38)
1

The transformation from Eq. (1.33) to Eq. (1.37) is a Householder transformation, which
maps the operators 4, and b, to c,. The operators CZ and c, create and annihilate a
fermion on the n-th lattice site. Because this is a one dimensional lattice, this is called
a Wilson Chain. Thus the original system is mapped to a new system, consisting of the
impurity coupled to a semi-infinite Wilson chain.

The hopping parameters t, and the on-site energies €, depend on A(w) and, in
general, have to be calculated numerically [29]. However, for a hybridization function
constant in the interval [—1,1], A(w) = A, the hopping parameters are given by

- —n—1
A+Apa-a""
2\/1_/\72”71\/1_/\721173

t, = (1.39)

and the on-site energies are, as for all hybridization functions symmetric around the
Fermi energy, €, = 0. In the limit of large n the hopping parameters are

b, = % (1 +A*1) ATE (1.40)

Furthermore, for a k-independent hybridization, Eq. (1.27), the coupling between im-

So _
\E =V. (1.41)

purity and Wilson chain is given by
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It is standard procedure to use the factor
Ay = s——InA (1.42)

to correct V, V' = /A,V, in order to compensate the shortcoming of the NRG of
underestimating the hybridization function [33]. In this thesis all results are calculated
using this correction factor.

Note that the hopping parameters t,, decrease exponentially. This is due to the loga-
rithmic discretization of the conduction band and has a strong impact on the nonequi-
librium dynamics producing non-physical artifacts (Sec. 3.3). However, this property
is vital for the NRG, because that is how the separation of energy scales is guaranteed.
This is part of the discussion in the next section which focuses on the diagonalization
of the system.

1.3.2 Iterative diagonalization

To actually calculate properties of the system one has to diagonalize the Hamiltonian
Eq. (1.37). Doing this by exact diagonalization is impossible, as the dimension of the
Hamilton matrix is still infinite. However, since the system is described by an semi-

infinite chain, one can start with a finite chain with N lattice sites,
N1 t + R = t t
Hy=A7? | Hpp+V (d Co + c0d> + Z €,C,,Cpp + E t, (cnan + ancn) (1.43)
n=0 n=0
and take the limit

H=lim A~ 7 Hy. (1.44)
N—o0

Here we have introduced the scaling factor A" This originates from the RG character
of the NRG: at each RG step the energies are renormalized. This idea leads to the RG
transformation in the NRG, which adds one site to the Wilson chain,

N
Hyy1 = VAHy + A2 <€N+1c+N+1cN+1 +ty (C;\]CN+1 + C+N+1CN)> : (1.45)

The prefactor A? cancels the 1 dependency of t, out, resulting in an hopping parame-

ter of the order O(1). This means, that each NRG step is associated with a well-defined
N

energy scale A~ 2. Eq. (1.45) defines a series of Hamiltonians with the initial condition

Hy=A"? (Himp +eqcheg +V (chd+d'c ) ) - (1.46)
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Usually one wants to calculate the expectation values of a set of operators O; or the
spectral function of the system. Therefore one needs to diagonalize the Hamiltonian.
In the NRG this is done in an iterative manner: one starts with a system small enough
to be exactly solvable. Then one adds one site after another. Thereby the dimension of
the Hilbert space increases at each step. When the Hilbert space dimension exceeds a
certain threshold one employs a truncation scheme to keep the dimension below the
threshold: high-energy states are truncated. This implies that one has to diagonalize
the Hamiltonian at each iteration.

The first step is to diagonalize H, by calculating all eigenvectors and eigenvalues,
Hylr)y = E°|r),. These vectors set up the matrix U diagonalizing H,, U HyU =
diag(EJ, EY,...). In an MPS language one gets the A-matrix

AQgls] = Ugy g, (1.47)

associated with the first iteration. With this A-matrix we rotate the operators O;, the
band operators cg and ¢, and the Hamiltonian H, into the eigenbasis of H,. For any
operator O; this rotation is given by

0, =Y A'[s]O;A[s]. (1.48)
S

After this rotation one can construct the next Hamiltonian H; of the series according

to Eq. (1.45); in this step the rotated operators are used.

These three steps - diagonalization, rotation, and adding one site - constitute one
NRG iteration. The definition Eq. (1.44) demands to iterate infinite times; that is the
price one has to pay to work with a semi-infinite Wilson chain. However, in practice
that is not possible and therefore one has to stop iterating after reaching a certain chain
length. Below we discuss how to choose the length of the chain. Before that, the
question is, what is the maximum chain length reachable with the method discussed
so far?

On a computer one has technical limits set by the memory available to store Hy and
the time needed for the diagonalization. With d = dim(H)) the memory consumption
is of the order O(d”) and the CPU time for diagonalization is even of the order O(d°).
Since the dimension of the Hilbert space d grows exponentially with the number of
iterations N, the computational demands increase rapidly and one has to find a strategy
to keep those on a manageable level.

The approach the NRG takes is to truncate high-energy states. To justify this we
consider the density matrix at iteration N,

_ye PETR ()

Y e*ﬁ(Ei*Eo) ! (1.49)

ON
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where E; is the energy of the eigenstate |i). We assume that states are ordered by
energy, E; < E; Vi < j; thus E, is the ground-state energy. Furthermore, we have
introduced the inverse temperature  which is chosen to be = 1; this is equivalent to
lowering the temperature of the system with each iteration. At iteration N the system
has an effective inverse temperature

—N-1

Bn = %(1 +ATHATT (1.50)

In this sense iterating further is equivalent to cooling the system.

Due to the renormalization of energies at each NRG iteration step the lowest eigenen-
ergies are of order O(1). In Eq. (1.49) high-energy states are therefore exponentially
suppressed and have a vanishing weight in the density matrix. This concludes the
argument why truncating high-energy states is a good approximation.

The practical consequence of the truncation is that not all eigenstates of Hy; enter the
transformation matrix AY; only Nj states are kept at iteration N. With d = dimHy and
d)oc as the dimension of the local Hilbert space of the Nth site the truncated A-matrix
associated with iteration N is defined by

A%[S] = Usli,‘[% P with s € [1, dloc] , A€ |: d :| ’ and ‘B S [1, NS] . (151)

b dloc

There are two basic strategies to choose N;: (i) one fixes N; at a constant value
for all iterations or (ii) one defines a threshold energy and keeps all states below this
energy. Using the second variant the number of states can be different at each iteration
and therefore it is hard to predict the computational resources needed for a run. To
avoid problems resulting from the lack of computational resources the first variant
is preferred in practice. However, one has to be careful when choosing N and it is
advisable to repeat calculations with a different number of states to make sure the
results are converged.

Besides convergence with the number of states one usually wants the results to con-
verge with the number of iterations [52]. If that is the case the RG transformation has
reached a stable fixed point. At such a point the effective low-energy Hamiltonian is in-
variant under the RG transformation: it does not change with further iterations.® Thus
the energy spectrum of the Hamiltonian is invariant under a NRG step. Fig. 1.6 shows
some of the lowest eigenenergies E, of the interacting resonant-level model (IRLM) at

8 If one is interested in the physics at a certain temperature there is a different way to determine the

number of iterations. In this case the last NRG iteration is the one setting the desired temperature
scale according to Eq. (1.50).
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Figure 1.6: Level-flow of the lowest eigenenergies E, for the IRLM with A = 18,E; =

—T4, U = D,D = 10°T,. Shown are only the odd iterations. The meaning of
the parameters is not of interest at this point and is discussed in Chapter 5.

different iterations.” The level-flow of this model shows an unstable fixed point for
N < 20 and a stable fixed point for N 2 40.

Besides determining fixed points the energy spectrum is also useful to calculate ex-
pectation values of an operator O. This is achieved by evaluating

Oy denotes the operator O rotated in the basis at iteration N. The density matrix at
iteration N is given by (see also Eq. (1.49))

1

ON = 5 e_BEVM(r] , with Zy = Ze_BE’ . (1.53)
Zy r r

The eigenstates at iteration N are |r) with eigenenergies E,. Thus the density matrix
is diagonal. B is a positive number of O(1). The inverse temperature B for which
the density matrix is calculated is f = A¥E. The role of B is therefore to set the
temperature. If B deviates from 1 too strongly the effective temperature is tuned away
from the energy scale at the iteration N to a different energy scale. However, since at

®  The meanings of the model parameters given in the caption of Fig. 1.6 are not important at this point;

these parameters and the details of the model are further discussed in Chapter 5. At this point of the
discussion we merely want to show an example level-flow diagram.
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Figure 1.7: Logarithmic discretization of the bosonic spectral function J(w), Eq. (1.56). This
example shows s = 0.5 and A = 1.4. The vertical lines indicate the borders of the
energy intervals x,, Eq. (1.57). For each interval one energy state is selected to
represent the whole interval.

a given iteration one has only information about the system at a certain temperature,
tuning the temperature away from this scale yields unphysical results.

This concludes the short introduction of the NRG. Some important aspects are omit-
ted during the discussion, for example z-averaging [83] or the calculation of Green’s
functions [84, 85], as these are techniques not used in this thesis. Besides the standard
NRG, as discussed so far, two extensions are employed in later chapters: the bosonic
NRG and the time-dependent numerical renormalization group (TD-NRG). The next
two sections cover these topics.

1.3.3 Bosonic reservoir

Originally the NRG was designed to solve QISs with a fermionic bath. In this section
we discuss the extension to systems with a bosonic bath [74, 75], on the basis of the
SBM." This model describes a local spin coupled to the displacement of the bosonic
bath modes. However, the details of the model are irrelevant for the method and
therefore one could consider more complex models and even combine fermionic bands
and bosonic baths [86].

19 In this section we focus on the method; below in Sec. 2.1 the SBM is discussed in more detail.
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The Hamiltonian under consideration is
7, + +
H = Himp + E Z)\i(ﬂi + a; ) + Za]iai a;, (154)
i i

where Hj,, is the Hamiltonian of the impurity. This impurity consists of a spin rep-
resented by the Pauli matrix ¢,. The creation and annihilation operators of the ith
bosonic mode of the bath are a:-r and a;. The parameters A; and w; depend on the bath,
which is fully characterized by its spectral function

J(w)=nrY A\jé(w - w;) (1.55)

and we use the standard parametrization [21]

2maw’ tw, 0 < w < w,

J(w) = (1.56)

0 else

With this parametrization the bath depends on three quantities: the coupling strength
«, the cutoff frequency w,., and the bath parameter s. We choose w, as the energy unit
and set w, = 1 in the following.

The goal is, as with the standard NRG, to discretize the spectral function and map
it to a Wilson chain. Since the spectral function is strictly positive the discretization
points are given by (cf. Fig. 1.7)

x,=A" (1.57)
and the width of each interval is
d,=A"(1-A"). (1.58)

In contrast to the fermionic NRG, where one defines operators for the positive and
negative part of the spectrum, the bosonic spectrum is purely positive and — unlike the
fermionic Hamiltonian Eq. (1.33) — the discretized Hamiltonian consists of only one set
of operators,

H= Hirn + gnazan + z Ynla, +ay,), (159)
P 7y et )
AH AYI
with 7, = / dw J(w) and ¢, = v, / dw J(w)w. (1.60)

A—n+1 A7n+1
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The operators a,, are obtained by expanding the operators a; in a basis spanned by a
complete set of functions, which only have support in the nth interval.

The Hamiltonian (1.59) describes a system of a spin coupled to a bosonic mode at
each energy scale; this is the so-called star-topography. This is now mapped to a Wilson
chain, with the bosonic creation and annihilation operators b:; and b,,. The Hamiltonian
of the semi-infinite Wilson chain with the impurity is given by

o + - t + t
H= Hirnp + 1771(_)?2 (bO + bO) + Z (enbnbn + tn(bnanrl + bn+lbn)) : (1-61)
n
The structure of this Hamiltonian is of the same structure as the corresponding Hamil-

tonian of the fermionic NRG Eq. (1.37). The coupling between spin and bosonic bath
is given by

m = [ dwJ(@) (162

and in the case that the spectral function is of the form Eq. (1.56) the coupling param-

/ /2¢xw2

The chain parameters t,, and €, have to be calculated numerically [75]. One important

eter is given by

difference to the fermionic case is that these parameters fall off as A" and not as A2
The reason for this lies in the different discretizations: with each energy interval only
one (positive) energy interval is associated and not two (one positive and one negative)
as in the fermionic case.

The algorithm for the iterative diagonalization is almost the same as described in the
previous section, except for two changes: (i) all factors A%? have to be replaced by A"
and (ii) the number of bosonic modes has to be truncated. Each boson spans a Hilbert
space of infinite dimension. Numerically it is not possible to keep all modes and
therefore one has to restrict the bosonic Hilbert space to a few modes N,,. In practice
this number is usually N, < 20. As discussed below in Sec. 2.5.2 errors due to the
truncation of the bosonic basis can be reduced by choosing an optimal basis.

1.3.4 Time dependence

The TD-NRG was developed to track the real-time dynamics of QISs [76, 77]. Several
models are already investigated with this method: the resonant-level model (RLM)
and the SIAM [76], the SBM [77, 87], and the Kondo model [77, 88]. Furthermore the
TD-NRG paved the way for the development of the scattering-states NRG [89]. This
approach uses the same formalism as the TD-NRG, but instead of calculating the real-
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time dynamics of some observable, the t — co limit is performed analytically; this
allows to calculate steady-state currents."'

The TD-NRG simulates QISs with an abrupt quench at time t = 0. This quench
perturbs the Hamiltonian H', which is of the form Eq. (1.23), locally. The basic strategy
of the TD-NRG is to determine the equilibrium density operator before the quench
and calculate the time evolution of this operator with the perturbed Hamiltonian. For
this purpose one has to diagonalize both Hamiltonians with the NRG and one has to
calculate transformation matrices to change the basis from the initial eigenbasis to the
final eigenbasis.

The entire system is characterized by the density operator

_BH!
e P

- [e*ﬁﬂ (1.64)

Po =

at time t = 0, when a static perturbation AH is suddenly switched on: H(t > 0) =
H'+ AH = H'. Because H' is time-independent, the density operator evolves according
to

f

p(t) = e_itprOeitH (1.65)

for t > 0. The objective is to use the NRG to compute the expectation value (O)(t) of
a general local operator O. As shown in Refs. 76, 77, the result can be written as

trun

N . m m
O)(1) =Y Y "B EDorm pred (i), (1.66)

m s

where E;" and E;' are the dimension-full NRG eigenenergies of the perturbed Hamil-
tonian at iteration m < N, O:’fs is the matrix representation of the operator O at that

iteration, and pfrd(m) is the reduced density matrix defined for the NRG in Eq. (1.72)

below.'> The restricted sum over 7 and s requires that at least one of these states is
discarded at iteration m. N denotes the NRG chain length.

The derivation of Eq. (1.66) relies on two key ingredients: (i) The identification of a
complete basis set of the many-body Fock space of the Wilson chain based on the NRG
eigenstates at different iterations. (ii) Expectation values are obtained by explicitly

tracing over this complete basis set using a suitable resummation procedure.

Complete basis set

In this section, we review the complete basis set of the Wilson chain [76, 77] generated
by the NRG approach.

11
12

The following text of Sec. 1.3.4 has been published in [90] and is (©2012 American Physical Society.
The general definition is given in Eq. (1.14).
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Figure 1.8: The full Wilson chain of length N is divided into a subchain of length m and the
environment R,, y. The Hamiltonian H,, can be viewed either as acting only on
the subchain of length m, or as acting on the full chain of length N, but with the
hopping matrix elements ¢,, - - - ,f5_; all set to zero. The former picture is the
traditional one. In the TD-NRG one adopts the latter point of view.

The NRG targets the iterative solution of a finite chain of N bath chain links."” One
can view the NRG procedure as a set of operations, where at first all hopping matrix
elements along a given chain of fixed length m are set to zero, t, = 0 for n > m,
and at each successive step another hopping matrix element is switched on. The full
Hamiltonian Hy; is recovered once all hopping matrix elements have been switched
on. The entire sequence of Hamiltonians H,, with m < N act on the same Fock space
of the N-site chain, hence each NRG eigenenergy of H,, has an extra degeneracy of
dN"™ where d is the number of distinct states at each site along the chain. The extra
degeneracy stems from the N — m environment sites at the end of the chain, denoted
by R,, y in Fig. 1.8 which remain decoupled from the impurity at iteration .

When acting on the m-site chain, we label the NRG eigenstates and eigenenergies
of H,, by {|r;m)} and E,", respectively. Consider now the action of H,, on the full N-
site chain. Enumerating the different configurations of site i by {a;},_; 4, each of the
tensor-product states |r;m) ® |«,, .1, ..., ay) with arbitrary a,, 1, ..., ay is a degenerate
eigenstate of H,, with energy E,". To label these states we introduce the shorthand no-
tation |r, e; m), where the environment variable e = {«,,,¢,..., &y} encodes the N —m
site labels &, 1, ..., &y, and the index m is used to record where the chain is partitioned
into a subsystem and an environment (cf. Fig. 1.8).

In order to keet only a manageable amount of number of basis states, the high-
energy states are discarded after each iteration, which is fully justified in equilibrium
by the hierarchy of scales along the Wilson chain and the Boltzmann form the density
operator p,. It has been shown [76, 77] that the set of all those discarded states defines
a complete basis set of approximate NRG eigenstates for the full N-site chain.

To understand this important point, consider the first iteration m,;, at which states
are discarded. In order to keep track of the complete basis set of the N-site chain, the
eigenstates |r, e; m;,) can formally be divided into two distinct subsets: the discarded
high-energy states {|l, €; s ) gis } and the kept low-energy states {|k, ; ) ip - Ob-

3 Even though the chain has N + 1 sites we call it a chain of length N for a convenient notation.
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viously, the sum of both subset {|, ¢;myin)qis} and {[k, &; Mpin)ip} form a complete
basis set of the full chain."

At the next NRG iteration only the kept states are used to construct the NRG eigen-
states of H,, _ ., within the truncated subspace spanned by {|k, a,, 4, ¢;moi)}. The
resulting NRG eigenstates can again be divided into two subsets of discarded and kept
states which, when combined with the discarded eigenstates of iteration m,;,, form a
complete basis set of the Fock space Fy of the full N-site chain.

Repeating this procedure at all subsequent iterations, one continues to maintain a
complete basis set of Fy up to the final NRG iteration m = N. We thus arrive at the

following completeness relation:

N N
Y. YlLem)(leml = ) P, =1, (1.67)
M=Mpin l,e M=Mmin

where the summation over m starts from the first iteration m at which a basis-set

min

reduction is imposed. The summation indices [ and e implicitly depend on m, and the
projector onto the discarded states at iteration m,;, < m < N is defined as

A

P, =Y |l,e;m)(l,e;m| . (1.68)

lLe

The projector 1,, onto the retained subspace spanning H,,,; (m < N), defined as

1 =Y |k e;m)(k,e;m|, (1.69)
ke

must be obviously identical to

N
.= Y p,, (1.70)
m' =m+1

since all states retained at iteration m are necessarily discarded at some later iteration
m', because all states of the last iteration considered as discarded. In particular, 13;_;
coincides with I5N, and we set if\? = 0. Therefore, the completeness of our basis set
(1.67) can also be partitioned into

M
1= Y D,+1y (1.71)

m min

for any m;, <M < N using Eq. (1.69).

Y Inthe following, the subscripts 4;s and , are discarded: the labeling with ! (k) is sufficient to uniquely

identify discarded (kept) states.
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Figure 1.9: Calculation of the overlap matrix S(m) at iteration m. The overlap matrix is cal-
culated by contracting over a tensor-network consisting of the A-matrices of the
initial and final Hamiltonian.

Reduced density matrix and the TD-NRG algorithm

After a sudden quench, the Hamiltonian H governs the time evolution of the system
while the initial condition is determined by the density matrix p,. For QISs, all relevant
information on the initial condition is contained in Eq. (1.66) in the form of the reduced

density-matrices [76, 77] p;erd (m) defined as

pred(m) = Y (s, e;mlpolr, e; m) . (1.72)

e

Here the states |r,e;m) and |s,e; m) pertain to the Hamiltonian H', and the summa-
tion runs over the environment degrees of freedom e. The only approximation en-
tering Eq. (1.66) is the standard NRG approximation [28, 29] whereby Hyl|r,e;m) =~
H,,|r,e;m) = E;'|r,e;m), which leads to the simple time-dependent exponents it (B —ES),
Apart from this point, Eq. (1.66) constitutes an exact evaluation of (O)(t) on the dis-
cretized N-site chain.

Practical calculations hinge on the ability to accurately compute the reduced density-
matrices of Eq. (1.72). For a general p, this can be a daunting task. However, in the
case of interest where p, has the standard Boltzmann form of Eq. (1.64), the summation

: d
over ¢ can be carried out exactly. Hence pj,

(m) can be evaluated at the same level of
accuracy that p, is represented in the equilibrium NRG.

Technically this goal is achieved by implementing two independent NRG runs, one
for the unperturbed Hamiltonian H' to construct p, via Eq. (1.64), and another for the
Hamiltonian H'. The reduced density matrix p %" (m) is first evaluated with respect to
the eigenstates of the initial Hamiltonian, and then rotated [76, 77] to the eigenstates of

the full Hamiltonian using the overlap matrices
<qi;m‘r;m> = Sqi,r(m)' (173)

Here |r; m) denotes an NRG eigenstate of the full Hamiltonian at iteration m, and |g;; m)
is an NRG eigenstate of the initial Hamiltonian at the same iteration. Both NRG runs
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Figure 1.10: Calculation of the reduced density matrix pred(m) at iteration m in the basis of

HE. The density matrix 0o is determined at the last iteration of the NRG run for
the initial Hamiltonian, rotated in the final basis with the overlap matrix S(N),
and afterwards successively rotated through the Wilson chain with the final A-
matrices Af.

produce a MPS; we denote the A-matrix of iteration n (defined analogous to Eq. (1.47))
of the initial (final) run by A;' (Af). The practical calculation of the overlap matrix
S(m) is illustrated in Fig. 1.9. Figure 1.10 illustrates how to calculate the reduced
density matrix 0% (m) needed to calculate (O)(t) in Eq. (1.66). In practice, one has
not to contract over the whole tensor-network for each iteration, but one can calculate
Pl
a sum over the physical index (cf. Fig. 1.10).

m) recursively from 0" (m +1); this involves only two matrix-multiplications and

This concludes the discussion of the NRG. In Chapter 4 we use the presented for-
malism - especially the complete Fockspace basis - to formulate a new hybrid method.
This hybrid method combines the TD-NRG with any other suitable method, for exam-
ple the time-dependent density-matrix renormalization group (TD-DMRG). Therefore
we continue in the next section with a presentation of the DMRG and its extension to
time dependence.

1.4 Density-matrix renormalization group

The density-matrix renormalization group (DMRG) [91] was proposed by White in
1992 [32] to eliminate an essential drawback of the NRG: it cannot be applied to other
problems than quantum impurity systems (QISs). In particular, it is not possible to
solve general quantum lattice problems with the NRG. By overcoming this obstacle the
DMRG has established itself as widely used method for a large number of applications
[63, 91, 92], e.g. the simulation of ultracold gases [14] or QISs [93, 94, 95].

Later, a connection between DMRG and MPSs [96, 97] was found which lead to the
formulation of the DMRG in an MPS language [63, 69]. It was understood that MPSs
belong to a larger class of states, the so-called tensor networks [95], and based on this
concept new methods were developed [99] and the understanding of the DMRG was
deepened [100]. As the DMRG is limited to one dimensional systems there are propos-
als how to design methods based on DMRG and MPSs for higher dimensions. One pro-
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posal to simulate two dimensional systems are projected entangled pair states (PEPSs)
[99, , ]. One can view PEPSs as the extensions of MPSs to two dimensions:
instead of two bond indices each A-matrix has now four bond indices.

The objective of the DMRG is to calculate the ground state of a Hamiltonian acting
on a chain. This is achieved in two steps: (i) in the warm-up phase one finds a first
approximate ground state and (ii) in the sweeping phase the state is optimized; this
optimization aims at lowering the ground-state energy further. Subsequently, one can
calculate expectation values of the ground state or do a time evolution. In this section
the details of these steps are discussed.

1.4.1 Infinite DMRG

The DMRG was designed to solve models on a 1D chain and with Hamiltonians in-
cluding only operators acting on one site or on two neighboring sites. While the last
limitation can in principle be lifted, leaving a 1D chain is, with some exception e.g. lad-
der structures even with more legs [103], in general not possible; one example where
both is done is Ref.

The Hamiltonian under consideration in the discussion of the DMRG is of the form

N-1N, N-2 N,

H=Y Y eo,+ Y Y, 0 0. (1.74)

— — 7
i=0 v =0 vV

The complex constants ef, and tfw/ take numeric values depending on the model and
Ol is an operator acting only on site i; v labels different operators.]5 N is the length of
the chain and for simplicity we assume this number to be even. N, is the number of
different operators.

For example, if one wishes to describe a Wilson chain with Eq. (1.74) one could

choose
eh=el=0, é=¢, (1.75)
th =ty =t, th, =0 for m+n#1, (1.76)
O(i) = c:r, Oi =¢;, and Oé = cfci , (1.77)

where €; and t; are the Wilson chain’s on-site energies and hopping parameters respec-
tively. With these definitions the v-sums in Eq. (1.74) run over v = 0, 1, 2.

15 Note, that these operators can be fermionic or bosonic. A distinction between a fermionic DMRG

and a bosonic DMRG, as it was necessary for the NRG, is not needed. Of course, the number of
bosonic modes of the bosonic operators have to be truncated.
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Figure 1.11: Schematic representation of the infinite DMRG method. At the first iteration the
whole system consists only of a local block. At each iteration the local block is
optimized and afterwards one A-matrix of the local block is moved into the left
block and the other one into the right block; new A-matrices are inserted into
the local block. The size of the left and right block is increased until the desired
chain length is reached.

The infinite DMRG® starts with a small system and increases the system size until
the desired chain length is reached. The start Hamiltonian is given by

Hy= Y. Y0, +th,o° ol 1. (1.78)
ice{O,N-1} v
Analogous to the RG-step in the NRG, Eq. (1.45), the ground state of the whole chain
is calculated iteratively by adding further lattice sites step-by-step. In contrast to the
NRG where one site per iteration is added, the DMRG adds two sites at each iteration.
The Hamiltonian at iteration m is given by

H,, iZe OZ+ E Ze OZ+ZZtWO OZJrl
i=0 v i=0
Nzl y t 0, ol+1+ztw,o o=, (1.79)
i= mw

In other words, at each iteration two sites are inserted into the center of the existing
chain. This concept becomes more clear when considering the ground state at each
iteration.

The state of the system is an MPS defined by the matrices {AO, e, A%fl,A,Bgfl,. ..,
B}, (cf. Fig. 1.1). The idea of the DMRG is to partition the state into three blocks: left,
local, and right. At a given iteration m both the left and the right block represent m

16 The infinite DMRG is not to be confused with the iDMRG [105]; this method’s objective is to simulate

systems in thermodynamic limit with the DMRG and is closely related to the infinite time-evolving
block decimation (iTEBD) method [106].
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sites'” and the local block represents two sites. To calculate the ground state at this
iteration the A-matrices of the local block are optimized. After this optimization the
left (right) A-matrix of the local block is moved into the left (right) block and is kept
constant for the remaining part of the infinite DMRG run (cf. Fig. 1.11).

The crucial part of the algorithm is how the A-matrices of the local block are op-
timized. The optimization criterion is to minimize the energy of the state under the
constraints that the left and right block are held constant and the state is an eigenstate
of the Hamiltonian. To this end, one splits the Hamiltonian at iteration m into five
parts,

Hm = HL + HL. + Hoo + HoR + HR (180)
where

H; acts only on the left block,
H;, is the coupling between left and local block,
H,, acts only on the local block,
H,r is the coupling between local and right block,
and Hpy acts only on the right block.

As discussed in Sec. 1.2.2 an operator changes only the A-matrices of the sites it acts
on. This means that H; and Hy have only an effect on the left and right block. Con-
sequently, because the A-matrices of these blocks are constant at the optimization of
the local block, one can define the matrices E” and F", which describe the environ-
ment of the local block; each environment matrix depends on the Hamiltonian and
the A-matrices of the respective block. How these matrices are constructed explicitly
is shown below (cf. Fig. 1.14). Before going further into detail how to optimize the
local block, we first establish how to formulate the Hamiltonian as a matrix product
operator (MPO).

Matrix product operators

When using MPSs it is convenient to express Hamiltonians as MPOs [69, 107]. In this
spirit one associates one matrix W" with each site m. The matrix elements of W™ are

17" The first iteration is denoted by m = 0.
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The matrix W" for a Wilson chain with hopping parameters f,, and on-site
energies €,, is given by
1 0 0 0
W c 0 0 0
C 0 0 0
t t
€uCnCm  tmCm tmCm 1
Here, N, = 2, but as the Hamiltonian is particle number conserving W"
is a4 X 4 matrix and not 6 X 6 as the general W-Matrix, Eq. (1.81), for
N, = 2. Suppose the Wilson chain has only two sites, one can construct
the Hamiltonian of the total system by Eq. (1.82)
H=WWw'
first column, last row
1 0 0 0 1 0 0 0
|l ¢ 0 o0 o0 d 0 0 0
Co 0 0 0 Cq 0 0 0
€oCoco toCo toco 1 eicie; tel te, 1
0%0%~0 0%0 0%0 1%1%1 11 11 first column, last row
— egchco + €1ty + to(chey + cico).

Figure 1.12: Example how to construct W matrices for a Wilson chain.

operators acting only on site m. For a Hamiltonian of the form Eq. (1.74) with N, = 2
the MPO matrix W" is given by

1

Oo

Op

or

or
L,e0, 05 ol Oy Mo 1

(1.81)

The Hamiltonian of the total system is then given by the matrix element, corresponding
to the local Hamiltonian, of the product matrix of all W matrices,

= (ﬁw>

(1.82)

first column, last row
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A™ B™ ) A™ B™

G S G, G5

Figure 1.13: Application of the Hamiltonian to the local block. W™ and WY1 are the MPO
matrices representing the Hamiltonian; the influence of the left and right block is
encoded in E" ! and F"!. Contracting over the tensor network yields a tensor
© with four indices. Using a SVD © can be recast into a MPS. Notice that for W
the horizontal lines refer to the outer indices, that is, the cell of the matrix, and
the vertical lines refer to the inner indices, that is, the physical indices of the
operator in that cell.

Fig. 1.12 gives an explicit example how the W-matrices are constructed for a Wilson
chain. As mentioned above, in the DMRG one splits the Hamiltonian into three blocks

H= [ w" ] w" T[] w" . (1.83)
me&left block me&local block meright block
—— -

—.F . )
) =F first column, last row

Due to the special form the W matrices, that is, only the first column and the last
row have non-vanishing elements,'® only the last row of E’ and the first column of F’
contribute to the product. Therefore we define the environment vectors

E= E{ast row (184)
and F = Ff,irst column* (185)

With these definitions the Hamiltonian Eq. (1.82) is written as

H= Et-< I Wm>-P (1.86)
mé&local block

first column, last row

Optimization and truncation of the local block

At each iteration the A-matrices of the local block are optimized by using the Lanczos
algorithm [45] to calculate the ground state. For this algorithm one has to define the
matrix-vector multiplication H|¢) in the MPS formalism. The state |¢) is represented

8 This is only true for Hamiltonians with nearest-neighbor and local terms.
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by the A-matrices of the local block and the Hamiltonian by the W-matrices of the local
block and the E and F matrices of the environment. A diagrammatic representation of
the multiplication is shown in Fig. 1.13. The result of this multiplication © is a tensor
with four indices: two physical and two bond indices. For the Lanczos algorithm
this multiplication has to be repeated several time. Numerically the input data of the
Lanczos routine is therefore the ® tensor of the previous Lanczos iteration'” and a
functor routine multiplying © with H, that is contracting over the first tensor network
in Fig. 1.13.

After the running Lanczos routine, one uses a SVD to write the tensor ® as a product
of two A-matrices and thereby recapturing the MPS structure of the state. This yields
the optimized matrices A and B, by which the energy of the state is minimized.

The DMRG suffers from the same problem as the NRG: the dimension of the Hilbert
space grows exponentially with the system size. To limit the number of kept states
one has to truncate the Hilbert space. Technically the procedure to truncate the Hilbert
space is the same for the DMRG as it is for the NRG: one chooses a new incomplete
basis and rotates the state and all operators into this new basis. In this process infor-
mation is lost. The error due to this is called truncation error.

To keep the truncation error small one does not choose an arbitrary new basis, but
one which still captures the essential physical properties of the system. The question
is, what one considers the essential information. Here, the NRG and DMRG have a
different interpretation. The NRG aims at calculating an effective low-energy Hamil-
tonian, whereas the DMRG targets only the ground state of the system. Due to these
different goals, the truncated basis is chosen differently: the NRG rotates the state into
a basis spanned by the eigenvectors to low-energy eigenvalues of the Hamiltonian. On
the other hand, in the DMRG the basis is spanned by the eigenvectors of the reduced
ground-state density matrix with the largest eigenvalues.”

The most convenient way to calculate and truncate the eigenvectors of the reduced
density matrix is to use a SVD [69]. When calculating the SVD of the tensor © (cf. Fig.
1.13),
= Alsp]AB[sg], (1.87)

SA/SB

the resulting matrix A (B) contains the eigenvectors of the left (right) reduced density
matrix. The eigenvalues A; of the left and right reduced density-matrices are equal.
The center matrix A is given by A = diag()\%, A%, ... ). We assume that the eigenvectors
are ordered by the magnitude of the eigenvalues, A; > A;Vi < j. The DMRG truncation

19
20

For the first Lanczos iteration © is initialized with random numbers.

One reason why this procedure works is that states realized in nature usually live only in a very
small region of the Hilbert space [108].
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Am

Figure 1.14: The environment matrix E is iteratively calculated from the previous environ-
ment matrix, the A-matrices, and the Hamiltonian. Contracting over this tensor
network saves the Hamiltonian of the whole left block in E™ and transforms all
operators, including the newly calculated Hamiltonian, into the new basis.

scheme is to keep only the N states with the largest eigenvalues. Formally one achieves
this by defining the truncated matrices

ATs] = Alsl;i i < Ny, j < N, (1.88)
Alne — ATed G o N, (1.89)
and B™"[s];; = Bs];j i < Ny, j < Nj. (1.90)

The error induced by this truncation can be quantified by

e= Y AL (1.91)

i€trunc

Increasing the length of the chain

After optimizing the local block, the next step is to increase the chain length. Assuming
the chain consists of 2m sites, the optimization of the local block yields the matrices
A™ and B". For the purpose of increasing the chain length, one has to incorporate W"
(WN_m_l) in the left (right) block and thereby defining the next environment matrix E™
(F™). Furthermore one has to rotate the operators of the left (right) block into the new
basis defined by A™ (B™). Fig. 1.14 illustrates the calculation of the new environment
matrix E".*! After increasing the left and right block one inserts new A-matrices into
the local block and jumps back to the optimization.

By repeating these steps — optimization of the local block and calculating new block
matrices — the size of the chain is iteratively increased. So far the discussion was fo-
cused on the question how one calculates the environment matrices from the previous
ones. This leads to the question, how one initializes the first matrices E land F L. To
answer this question, a few words about the general structure of E and F are in order.

21 Roughly speaking, one has to flip this figure horizontally and replace E by F and A by B to calculate
.
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E has the same structure as the last row of a W-matrix: the first element is the local
Hamiltonian, in the case of E the Hamiltonian of the left block; the last element is
the identity operator; and all operators in between are for the coupling between the
sites.”” At the beginning of the DMRG run the left block is empty — thus all operators
for the coupling and the Hamiltonian of the left block is zero,

1 1 i=last element 1 1 i=first element
E " = , FE = . (1.92)
0 else 0 else

1.4.2 Finite DMRG

When building up a chain with the infinite DMRG the A-matrices are computed one
after another. This means that sites added later have no effect on the A-matrices of sites
already included in the chain. In other words, a site at a given iteration is not affected
by the rest-chain added later in the iteration process. However, the rest-chain can have
a significant impact on the site and therefore it cannot be neglected.

The way the DMRG deals with this problem is to use the infinite DMRG to built up
a chain and use the ground state as the initial state for the finite DMRG. This method
iteratively improves the ground state further by a process called sweeping. The idea is
to move the local block site by site through the chain, by letting one block grow and
the other one shrink (cf. Fig. 1.15). At a each position the local block is optimized as
discussed above. The initial guess vector for the Lanczos algorithm is given by the
already calculated A-matrices of the local block. At each sweep step the block matrix —
E or F - of the growing block is newly generated. Because one works at a fixed chain
length, the whole chain affects the local block.

In one complete sweep the local block is first moved from the center of the chain
leftwards until it reaches the left border, then it is moved to the right border and from
there back to the center.

1.4.3 Time-dependent DMRG

The discussion so far was focused on the core DMRG algorithm. Since its development
several extensions to the DMRG were made [63, 91, 92]; one extension is the adaptive
time-dependent density-matrix renormalization group (TD-DMRG) [109], which is dis-
cussed more deeply in this section. A different approach to calculate the time evolution
of a state is given in Ref. ; however, as this thesis does not implement this approach
we do not discuss it further.

Using the finite DMRG one can accurately calculate the ground state of the system.
Unlike the NRG the DMRG does not calculate the spectrum of the Hamiltonian. There-

2 15 principle the structure of F is the same but reversed.
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Figure 1.15: The state is improved by sweeping through the chain. This sketch shows the
first quarter of a whole sweep. The local block represented by the dark shape,
whereas the left and right block are represented by the light shape coupled to
the local block. Initially, the local block is in the center of the chain. After moving
the local block to the left end, it is moved to the right end and then back to the
center. At each step the A-Matrices of the local block are optimized.

fore one needs a different strategy to trace the time-evolution of a given state |¢). This
is accomplished by applying the time-evolution operator U(t) to the state,”

) (£) = U(t) ) = ™ |y). (1.93)

However, it is impractical to apply U(t) to the whole state at once. It is more convenient
to calculate the Trotter-Suzuki decomposition (TSD) [112, 113] of U(¢) and apply the
decomposed operator to the state. For this decomposition we write the Hamiltonian H
as

H= ) F+ ) G, (1.94)
i even i odd
with the operators F; and G; acting only on the two sites with index i and i + 1. If H is
of the form Eq. (1.74) writing it as a sum over two-site operators, Eq. (1.94), is possible
exactly. The TSD of U is given by

uGst) ="~ TT &5 [T % + 0 (o). (1.95)

i even i odd

2 Asaside note we wish to mention that if one replaces the real time ¢ by the imaginary time ¢t — it the

time-evolution if performed in imaginary time and thereby cooling the system; this is the approach
taken by the time-evolving block decimation (TEBD) method to calculate the ground state of a system

[111].
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This decomposition introduces a new error, because in general the operators do not
commute, [F;, G;] # 0. This is the so-called Trotter error. With this decomposition of
the time-evolution operator the state at time ¢ is given by

N
) (t) = (1‘[ T eiG"‘”> p) (1.96)

i even i odd

t
with the number of Trotter steps N; = 5P (1.97)

With the TSD the time-evolution is reduced to a multiple application of two-site oper-
ators as discussed in Sec. 1.2.2.

For a deeper understanding of the Trotter error we consider a minimal example with
the Hamiltonian H = A + B where A and B are some arbitrary operators. The time
evolution operator is hence given by

. . . 512 [A,B]
U= el(A+B)5t ~ elAételBéteT. (1.98)

This approximation gets exceedingly more correct for 6t — 0; however, this limit is in

practice not reachable.
512[A,B]

The exponential e 2~ is dominated by the largest eigenvalue of [A, B] — assuming
that [A, B] # 0. If the operators A and B mediate a hopping between two sites — as
will be the case for all Hamiltonians considered in this thesis — the largest eigenvalue
of [A,B] is of the order DDy, where D, (Dg) is the hopping parameter of operator
A(B). For modeling a bath the hopping parameters are of the order of the bandwidth
D. Hence the dominant term in the exponential is of the order StPD?. Therefore, to
keep the Trotter error small, the Trotter step 6t has to fulfill the condition 6t < 3.
This means, that with increasing bandwidth D the simulation gets more demanding.
Notice, that for 6 > % the TD-DMRG fails.

Besides reducing the Trotter step, another strategy to reduce the Trotter error is to
use a higher order TSD [63, 114]. In this thesis a second order TSD is employed.

1.5 Summary

This chapter discussed different numerical methods to simulate quantum mechanical
many-body systems. In this thesis two methods are employed: the numerical renorm-
alization group (NRG) [28, 29] and the density-matrix renormalization group (DMRG)
[32, 63, 91]. Both method can be formulated in the language of matrix product states
(MPSs) [78]. The core concept of these states is to associate one matrix with each site
of the system, a so-called A-matrix. For one dimensional systems an A-matrix has
three indices: two bond indices connecting A-matrices of neighboring sites, and one
physical index enumerating the basis states of the local basis at this site. We presented
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NRG DMRG
Control parameter Number of states Number of states
System Wilson chain with small 1D chain with
impurity NN interactions
Truncation criterion Energy Eigenvalues of density
matrix
Result Energy spectrum/density | Ground state
matrix
Improvement of result None Sweeping
Time-evolution Analytic Iterative
Error time-evolution No additional Trotter, Hilbert space
truncation

Table 1.1: Comparison of some properties of the NRG and the DMRG.

some basic properties and algorithms for these states, concentrating on those which
are important for this thesis, e.g. calculating expectation values or the reduced density
matrix.

For this thesis an existing NRG implementation by Anders was used and extended,
while a DMRG implementation was developed. Both methods share some similarities
and differ in some aspects (cf. Tab. 1.1): the issue of an exponentially growing Hilbert
space is in both methods resolved by iteratively increasing the size of the system and
truncating the Hilbert space if its dimension grows beyond some threshold. However,
the criterion which states to keep and which to discard differs for both methods: the
NRG keeps the low-energy eigenstates of the Hamiltonian while the DMRG keeps the
eigenstates of the ground-state density matrix with the largest weight. This allows
the NRG to generate an effective low-energy Hamiltonian of the system including all
excitations up to a certain threshold, whereas the DMRG targets only few states of
the system. The price one has to pay in the NRG is that one can only deal with a
certain type of chain — the so-called Wilson chain; the DMRG only requires short-range
interactions.

The different results of NRG and DMRG - on the one hand the low lying energy
states and on the other hand only the ground state or just a few states — have a profound
consequence for the time-evolution. Due to the knowledge about excited states there
is an analytic formula to calculate time-dependent expectation values with the NRG
[76, 77]. In the time-dependent density-matrix renormalization group (TD-DMRG),
however, time-dependent expectation values are calculated by explicitly evolving the
ground state in time. We presented how this in done employing a Trotter-Suzuki
decomposition (TSD). However, a discretization of time and the iterative evolution of
a state is a concept inherent to all TD-DMRG approaches [109, 110, 115].
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This concludes the discussion of the basic NRG and DMRG algorithms with the
extension to time-dependence and bosonic systems. In the next chapter these methods
are applied to the spin-boson model (SBM) and we discuss why both methods yield
different results. For other system, e.g. the resonant-level model (RLM), both methods
yield the same results for T — 0 but these are corrupted by discretization artifacts. The
source and a way to reduce these artifacts are discussed in Chapter 3. However, the
presented solution is incompatible with the NRG and therefore we propose in Chapter
4 anew hybrid method combining the advantages of the NRG with those of the DMRG.






Chapter 2

Bosonic Models

One particular interesting quantum impurity system (QIS) is the spin-boson model
(SBM) [21]. This model describes a spin—% coupled to a bath of non-interacting bosons.
The model and its several variations are used to examine the effects of dissipation in-
duced by the bath manifesting dephasing and decoherence [116] for example in double
quantum dots [117], solid-state qubits [118] or single-molecular magnets [119].

Our objective is to calculate critical exponents of the SBM with the numerical renorm-
alization group (NRG) and density-matrix renormalization group (DMRG). For these
calculations two difficulties arise: (i) the truncation of the bosonic basis and (ii) the
so-called mass-flow error. The truncation of the bosonic basis is necessary for the
employed numerical methods, because one has to represent the bosonic creation and
annihilation operators as matrices. For bosons the matrix dimension is infinite. Hence,
numerical applications cannot keep all bosonic states, but one has to truncate the ma-
trix representation of the bosonic operators. The problems induced by this truncation
are investigated in Sec. 2.3 at the example of a spin coupled to a single boson or to
a chain of two bosons. The insight gained by this investigation helps to improve the
bosonic basis by displacing the bosons.

The second problem, the mass-flow error, is due to an NRG iteration dependent
renormalization of model parameters, caused by neglecting the rest-chain at a given
iteration. This leads to the calculation of wrong critical exponents in some parameter
regimes. In Sec. 2.2 we investigate an exactly solvable toy model in which the mass-
flow effect is present and discuss the source of this effect. In Sec. 2.4 we show that the
NRG yields the correct phase-diagram of the SBM but fails at calculating the correct
critical exponents in some parameter regimes.

Unlike the NRG the DMRG is able to explicitly take the rest-chain into account. This
is accomplished by the DMRG sweeping. Hence, the DMRG does not suffer from the
mass-flow effect, but it still suffers from the truncation of the bosonic basis. Therefore
we propose a method how to determine the optimal displacement parameters needed
to represent the ground state with as few bosonic modes as possible. With this method
we calculate in Sec. 2.5 the correct critical exponents for the SBM.

45
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(a) (b)

Localized

Delocalized

s 1

Figure 2.1: (a) Schematic phase diagram of the SBM. The coupling strength is given by « and
the bath parameter by s. (b) Energy levels of the SBM. The energy difference
between the states in the left and in the right well is € and both states are tunnel-
coupled by A.

However, before we discuss the toy models and perform our numerical simulations,
we want to set the stage in the next section by introducing the SBM and highlighting
some of its important physical properties and applications.

2.1 Spin-boson model

In this section general aspects of the spin-boson model (SBM) are discussed. However,
before numerically solving this model with the NRG and DMRG in Secs. 2.4 and 2.5
the influence of the truncation of the bosonic Hilbert space and the discretization is
examined with suitable toy models in Sec. 2.3.

2.1.1 Model Hamiltonian

The SBM consists of an impurity coupled to a bosonic bath. Here the impurity is a
single spin with two states labeled ¢, = £1. The energy splitting between the states
is given by € and the states are tunnel-coupled via A (cf. Fig. 2.1b). Therefore the
impurity Hamiltonian is given by

A €
Hipypp = _EUX + EO—Z/ 2.1)

where 0, and o, are the usual Pauli matrices.

The bosonic bath consists of non-interacting bosons with the creation and annihila-
tion operators b:r and b;. The displacement of the bosons is coupled to the z-direction
of the impurity spin. The full Hamiltonian of the SBM is therefore given by
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€

A
H=——
ch+2

g, t t
20t 5%t 5 LA b))+ L wbib, 22)

where w; is oscillator frequency of the ith bosonic mode and A; is the coupling param-
eter between the spin and the ith bosonic mode.

The effect of the bosonic bath on the impurity is fully determined by the bath spectral
function

J(w) = nZA?&(w - w;). (2.3)

Of course, it is impractical to deal with the bath in this way, because, so far, the pa-
rameters A; are arbitrary; physically they depend on the investigated system [120]. It
is desirable to express J(w) as a function which still captures the essential physics of
most systems, but which does not depend on an infinite number of parameters A;. As
all the information is contained in the function J(w) one just has to find an appropriate
form for J(w).

The physical behavior is dominated by the low-frequency modes. For w — 0 real
systems show the behavior J(w) ~ «°. The standard parametrization [21] for J(w) is
given by

J(w) =

{27wcwgsws 0 < w < w, 2.4)

0 else

The bath is thereby parametrized by the bath parameter s, the coupling constant «, and
a high-frequency cutoff w.. This frequency is chosen as the energy unit in all following
calculations. The bath parameter s determines whether the bath is ohmic (s = 1),
subohmic (0 < s < 1) or superohmic (s > 1). This work is primarily concerned with
subohmic baths. Finally, the coupling constant « determines how strongly the bath and
the spin are coupled.

Using the methods of the bosonic NRG [74, 75] described in Sec. 1.3.3 the bath is
discretized and mapped to a Wilson chain. This discretized Hamiltonian is given by

€

A

Oz (1t R = t t
5 0, + VeV (bo + bo) + Y e bt + Yo, (bnan + bnﬂbn) .
=0

n=0 n

(2.5)

The operators bz (b,,) create (annihilate) a boson at site 7. The length of the Wilson chain
is given by N, €, are the oscillator frequencies, and ¢, the hopping parameters. These
parameters have to be calculated numerically [74, 75] and depend on the discretization
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parameter A and the bath exponent s. The hybridization strength between the spin
and the bath is given by /aV, with « being the coupling strength and

V2= / dw J(w), 2.6)

where J(w) is given in Eq. (2.3).

When modeling physical system the question if the model is actually a good descrip-
tion of the physical reality arises. If one wishes to make predictions about a certain
experiment this question is of vital importance. However, in this work the physical
modeling process is excluded to a certain extent: of course, one could consider the
discretization of the bath as part of the modeling process. In any case, the bath itself
is already just a model of the physical reality and hence it is not clear where to make
the distinction of what is part of the modeling process and what is part of the numer-
ical method. However, we do not concern ourselves with this question further: in this
thesis all models are considered as given and we do not make any explicit connection
to the physical reality. This is justified, as in this thesis we are mainly interested in
methodical questions and errors inherent to the discretization of the bath. We make no

connections or compare our data to real experiments.

2.1.2 Phase transition

For € = 0 the zero-temperature phase diagram of the SBM with a subohmic bath (s < 1)
shows two distinct phases: the so-called localized phase and the delocalized phase.
The first one is characterized by a spontaneously broken symmetry which results in
a degenerate ground state and |(0,)| > 0, whereas in the delocalized phase (c,) = 0
holds [74, 121]. The two phases are separated by a quantum phase transition (QPT)
at the critical coupling strength a., which depends on the bath-parameter s and the
model-parameter A. A schematic phase diagram is shown in Fig. 2.1a. The ohmic case
(s = 1) displays a Kosterlitz-Thouless transition between a localized and a delocalized
phase [122, I, whereas the system is delocalized in the whole parameter regime
A # 0 for a superohmic (s > 1) bath [121].

The reason for this QPT, or to be more precise, boundary QPT, lies in the renor-
malization of the tunnel splitting A caused by interactions with the bosonic bath. In
the following we are only interested in the subohmic regime: for s < 1 the bath per-
turbation is relevant and causes A to be renormalized to zero, A — 0, above a critical
coupling strength a, [50]. A vanishing tunnel splitting, A = 0, causes the spin to be
trapped in one of the two potential wells and therefore a localized phase emerges. As
there are two possible ground states the impurity entropy in the localized phase is
given by S = In2. In the delocalized phase, only one ground state exists, which is a
superposition of the spin-up and spin-down state, and thus the impurity entropy van-
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ishes, S = 0. For the same reason all eigenstates of the Hamiltonian in the localized
phase are two-fold degenerate, while the eigenstates in the delocalized phase are not
degenerate.

To characterize the QPT further we define the critical exponents § and p by [124]

1
Moo (e =a, T=0) « |e|? (2.7)
and M.(a > a, T =0,e=0) o (& —a)P. (2.8)

The local magnetization in z-direction, which is the order parameter, is defined by
Mloc = %<0-Z>'

In the literature has been a lot of discussion about the question what values these
critical exponents take in the subohmic (s < 1) regime. Especially the question if these
and other critical exponents take mean-field values for s < %, which are § =3 and 8 =
%, is disputed. There a two faction: one, to which we belong, claiming that one should
observe mean-field exponents for s < % and no mean-field exponents for % < s <1,
while the other faction claims that one does not observe mean-field exponents but
hyper-scaling relations in the whole subohmic regime. The discussion was started by
NRG calculations supporting the latter claim [124]. However, the discussion continued
though these findings were retracted [37].

A quantum-to-classical mapping [125] predicts mean-field exponents. The idea be-
hind this approach is to map the SBM to an one-dimensional Ising model with long-

range interactions J;; = . }II —. From analyzing this model it is expected that the SBM

obeys mean-field behavior for 0 < s < % [122, ]. However, the critical exponents
obtained with the first NRG calculations suggested that the quantum-to-classical map-
ping fails by showing non-mean-field critical exponent for s < 1 [124]. Subsequent
quantum Monte Carlo (QMC) [127], exact diagonalization (ED) [48], and DMRG stud-
ies [128] contradict the NRG results: these studies found a mean-field critical behavior
fors < %

Two errors responsible for not reproducing the quantum-to-classical mapping results
with the NRG have been identified [37]: the truncation of the bosonic Hilbert space
[129, ] and the mass-flow error [36], which is discussed in more detail in Sec. 2.2.4.
In Ref. it is shown that the interplay between both error sources is the reason that
the critical exponents calculated with NRG obey hyper-scaling relations even for s < 1.

Despite these insights there are still claims [131] that the original NRG data from
Ref. is correct, even though the authors of Ref. published an erratum, which
retracts the claim that the quantum-to-classical mapping fails [37]. In the studies by
Kirchner etal. [39, 151] the interpretation is that the quantum-to-classical mapping fails
and therefore the phase transition of the SBM is governed by non-mean-field exponents
in the whole parameter regime s < 1 and not just in the regime 1 < s < 1; this is in
contrast to the consensus in Refs. 36, 38, 48, , , ,
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In Sec. 2.4 the published NRG results [124] are reproduced and compared to the
results of the dissipative harmonic oscillator (DHO) in order to verify that the reason
for the failure of the NRG is the mass-flow effect. Then, in Sec. 2.5, the findings of the
toy-models on how to construct an optimized displaced bosonic basis are applied to
the DMRG to show that the quantum-to-classical mapping does not fail for s < 1 and
mean-field exponents are obtained.

2.1.3 Physical realizations

At the end of this section and before actually performing some calculations for the
SBM we want to briefly discuss some applications and physical realizations of the SBM
and similar models. Of course, this list is by no means complete.

Donator-acceptor system

Ref. discusses a model consisting of two electronic sites. The electronic Hamilto-
nian of the two sites corresponds to a Hubbard model: there is a hopping term between
the site, an on-site energy and Coulomb repulsion, and an inter-site Coulomb repul-
sion. Each site can be unoccupied, occupied with a spin-up or spin-down electron, or
doubly occupied. This electronic Hamiltonian has already been studied 35 years ago
[135]. However, the connection to the SBM is that the occupation of each site is cou-
pled to the displacement of a bosonic bath. The bosonic bath renormalizes the on-site
Coulomb interaction and energy dissipates from the two-site system into the bath. In
the single-electron subspace this model is equivalent to the SBM.

A physical realization of this model is the electron transfer in a DNA molecule.
Here the question arises if the dominant transfer mechanism is single-electron or
two-electron transfer. In Refs. 136, this question was examined using the time-
dependent numerical renormalization group (TD-NRG).

But what is the physical justification of the bosonic bath and how does the dissipation
process work? In reality the DNA strand is a long molecule, but the model considers
only one base pair. Figuratively speaking, the electrons of all other base pairs of the
strand give rise to an electronic cloud, which, by Coulomb repulsion, is coupled to the
electrons of the local base pair. By changing the occupation of the local site one excites
vibrational modes of the surrounding electronic cloud and therefore it is physically
justified to encapsulate the dissipative effects of the DNA molecule in a bosonic bath
coupled to the local site. Furthermore, the excitation of vibrational modes cost energy
and this is why energy dissipates from the local site into the bosonic bath.

Quantum phase transitions

The SBM can be used as a testbed to study QPTs [50]. Unlike classical phase tran-
sitions these are driven by non-thermal control parameters and the quantum critical
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point (QCP) occurs only at temperature T = 0, though signatures of the QCP are vis-
ible at higher temperatures. Phase transitions of classical systems are driven by the
temperature. As all thermal fluctuations freeze out at T = 0 one does not observe
phase transitions at T = 0 in classical models. Quantum models show the reverse be-
havior: here the phase transition depends on quantum fluctuations and these survive
even for the ground state of the system, that is at T = 0. For T > 0 one observes an
interplay between thermal and quantum fluctuations. Hence the SBM is well suited to
study QPTs as the bosonic bath can be used to model the quantum fluctuations.

One system suited to study the QPT is proposed in Ref. . This consists of a
mesoscopic ring with a small quantum dot coupled to an external circuit, which is
the source of the quantum fluctuations. The local two-level system of the SBM is
mapped to the charge degrees of freedom of the quantum dot. Through the ring flows
a persistent current used as an indicator of the QPT. The bosonic bath models the
quantum fluctuations of the electromagnetic field of the external circuit.

Quantum computing

Using the resources of quantum physics to build computers, which explicitly exploit
the entire Hilbert space of a many-particle system, leads to the idea of the growing
research field of quantum computation [15, 65]. A classical computer stores informa-
tion as a bit which can be in either of two states: |0) or |1). A physical realization
of one bit could be a cluster of as few as 12 iron atoms [139], but for practical appli-
cations like computer hard disks millions of atoms are involved. On the other hand,
a quantum computer stores information in so called qubits, which, in general, are in
a coherent superposition state |i) o« «|0) + B|1). Physical realizations of such systems
can in principle be any quantum mechanical two-state systems, e.g. a spin which could
be confined in a quantum dot [17] or in some other material [140], trapped atoms, or
superconductors to name but a few [18].

Among other problems quantum computation suffers from dephasing and dissi-
pation [141]: due to interaction with the environment the superposition state is per-
turbed, the coherent phase and thereby information is lost. Usually the dissipative
environment can be modeled by a bosonic bath: thinking of a spin-qubit the surround-
ing (electron or nuclear) spins add up to collective vibrational modes, which can be
described as a bosonic bath. A qubit in an dissipative environment can therefore be
described by the SBM.

Quantum computing algorithms consist of a sequence of so-called gates, which are
applied to the multi-qubit state. A gate is a unitary operator applied to the state. To
built a general quantum computer, however, it is sufficient to implement only one- and
two-qubit gates, as all gates involving more qubits can be decomposed into a series of
one- and two-qubit gates. Furthermore, of all possible two-qubit gates it is sufficient to
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implement the controlled not (CNOT) gate.] This gate rotates the first qubit depending
on the state of the second qubit.

In Ref. the effect of a dissipative environment on the application of the CNOT
gate, which was experimentally realized for the first time in a trapped atom in 1995
by Monroe etal. [143], is investigated. As the CNOT gate acts on two qubits, this
system is modeled by two Pauli matrices interacting with coupling strength J(¢) and to
each Pauli matrix the field Ej(t) is applied. The CNOT gate is decomposed in a pulse
sequence which determines the time-dependence of () and B}(t). The authors of Ref.

identify two errors due to the interaction to the bosonic bath: spin-flip errors and
phase errors. To model these errors, both the ¢, and the ¢, operator couple to the
bosonic bath. The bath is described by an ohmic spectral function. One finding of Ref.
is that the quality of the gate strongly depends on the interaction strength.

From these three examples we see that the SBM — with some extensions — is suitable
to model different physical systems. In all shown cases the bosonic bath is interpreted
differently: as charge, quantum, or spin fluctuations. However, despite these different
interpretations the underlying modeling is similar and that is one thing what makes
studying the SBM interesting.

Before actually studying the SBM in Secs. 2.4 and 2.5 and investigating the phase
transition discussed in this section we continue in the next sections with a toy model
showing the same QPT as the SBM in the sub-ohmic regime. As this model is exactly
solvable we can study the model without errors due to the truncation of the bosonic
Hilbert space.

2.2 Dissipative harmonic oscillator

As the SBM is not exactly solvable, we first present some results of a model using the
same bosonic bath but with the spin replaced by an harmonic oscillator: the so-called
dissipative harmonic oscillator (DHO).

The DHO describes an harmonic oscillator which is displacement-coupled to a bo-
sonic bath. As the Hamiltonian is bilinear, it is analytically solvable and does not suffer
from the errors due to the truncation of the bosonic Hilbert space. In this section we
investigate the phase diagram of this model and calculate a critical exponent. The
central result, however, is that we discover the mass-flow effect in this model and are
able to explain its source. We find different signatures of this effect which help us to
show that the mass-flow effect is present in the SBM as well.

! In classical computing this gate is equivalent to the two-bit XOR operator.
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2.2.1 Model

The Hamiltonian of the DHO with a continuous bosonic bath is defined as

H=Qa'a+ qub;bq +@ +a))Y A, (b; + bq) : (2.9)
q q

Here a' and a are the creation and annihilation operators of a local harmonic oscillator
with frequency ). The harmonic oscillator is coupled to a bosonic bath with the mode
frequencies w,. The coupling constants between the impurity and each bosonic mode
are A,; the creation and annihilation operators of the bosonic bath are b:; and b,. As for
the SBM, the bath is characterized by its spectral function

J(w) =Y A26(w - w,) (2.10)
q

and we use the parametrization [21]

J(w) =2maw’ ', O0<w<w, s>-L (2.11)
The frequency w, defines a sharp-cutoff frequency: for our considerations only the low
energy modes are important. The coupling strength to the bath is given by «.

The question is, whether it is possible to simulate the DHO with the NRG. This
method has two major sources of errors: one stems from the discretization of the
continuous bosonic bath and the other is the omnipresent truncation error of both the
bosonic Hilbert space and the high-energy eigenstates of the Hamiltonian. At this
point, we are mainly interested in the discretization error induced by the finite number
of states to represent an originally continuous bath.”

To investigate the effects of the error due to the discretization of the bath, we employ
the same discretization as the NRG, but we solve the model exactly on an operator
level in order to circumvent the truncation errors. Furthermore, to compare results,
the model is solved exactly with a continuous bath as well. Any deviations between
the solutions of the discretized bath and the continuous are solely due to the bath
discretization. By mapping the continuous bosonic bath to a discretized chain we

arrive at a discretized Hamiltonian
N-1 N-2
H=Qa'a+ av (a* n a) (bg n bo) + Y ebib,+ Y, (b;bn+1 n b,ﬁﬂbn) . (2.12)
n=0 n=0
The local Hamiltonian of the harmonic oscillator has not changed, but now we have

the new operators bz (b,)) which create (annihilate) a boson at chain site #n. In order to
discretize the bath the discretization parameter A > 1 is introduced. In the combined

2 The truncation of the bosonic Hilbert space is discussed in Sec. 2.3.
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limit A — 1 and N — oo and with properly chosen parameters V,¢, and t, both
Hamiltonians, Eq. (2.9) and Eq. (2.12), are equivalent.

Usually the chain parameters V, €, and ¢, are calculated numerically [75] and depend
on A and J(w). For convenience, the « dependence from the spectral function is shifted
into the Hamiltonian.

In Appendix A it is shown that the DHO shows two distinct phases: a stable and an
unstable one. The first is characterized by a finite occupation number of the impurity
harmonic oscillator while in the latter phase the occupation number diverges. The
phase transition is driven by the coupling strength «.

2.2.2 Occupation number

Analytically it can be shown (see Appendix A) that the model with a continuous bath
(2.9) is unstable at a coupling strength a, = §—SC. An indicator of this instability is a
diverging occupation number of the local harmonic oscillator n = (a'a). We want to
analyze if the discretized model (2.12) yields the same critical coupling strength uc? as
the continuous model. For this we have to calculate

(n) =Tr [ptfa} (2.13)
efﬁH H
where p is the density operator p = — and Z=Tr {e_ﬁ } (2.14)

the partition sum; the inverse temperature is given by f. The explicit calculations of
the occupation number for the discretized and the continuous case are presented in
Appendix A.

2.2.3 Results

In this section we discuss and summarize our numerical results. For all calculations
we set () = 0.1w,, and use w, as energy scale. All the other parameters (A, s, N, «) are
tuned according to the particular question. Throughout this section, unless otherwise
stated, the inverse temperature is — in the NRG spirit — set to f = wCAN .

Critical coupling

The numeric results for the discretized model are shown in Fig. 2.2a: the curves for
the occupation number show a divergence above a certain critical value uc]CD while for
& < af the results are dominated by numerical noise.” A discussion of the source of
the noise and an analytic derivation for the critical coupling strength of the continuous

3 The superscript D in tx? indicates that this notates the critical coupling strength of the discretized

model.
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A [N AN [[A[N]
1.04 [ 858 [[ 1.1 [ 353 [[ 1.7 [ 63
105 | 690 || 12| 185 | 1.8 | 57
1.06 | 577 | 1.3 | 128 | 1.9 | 52
1.07 | 497 || 1.4 | 100 | 2.0 | 49
1.08 [ 437 [ 15 | 83
1.09 (390 | 1.6 | 72

Table 2.1: Length of the Wilson chain depending on A. The criterion to choose N is that A~
is approximately the same for all A.
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Figure 2.2: (a) Occupation number of the harmonic oscillator versus coupling strength for
different values of s. The discretization parameter is A = 1.4 and the chain con-
sists of N = 100 sites. The critical coupling strength ucIC) is defined as the value
at which n4 diverges. (b) Relative error of the critical coupling strength ocCD, by
comparing the numerically determined values for the discretized bath zx? (see
left panel) with the analytic values «_, Eq. (2.15). Length of the Wilson chain N is

given in Tab. 2.1. The dash curved is a fit of f(A) = a(A — 1)b +ctothes=0.75
curve.

Hamiltonian (2.9) are presented in Appendix A. The analytic result for the s depen-
dence of the critical coupling strength for the continuous model, Eq. (A.18), is given
by

sQ)

= . 2.15
“C 8wc ( )

The critical coupling strength ocCD for the discretized Hamiltonian (2.12) is defined as the
largest value of a for which the matrix M defined in Eq. (A.30) exhibits no vanishing
eigenvalue. This condition is equivalent to the largest a for which the occupation
number of the local harmonic oscillator does not diverge.
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Figure 2.3: (a) Dependence of the critical coupling on the length of the chain. (b) Dependence
of the real part of the self-energy on the length of the chain. The coupling is set

toa = aCD(s,A). In both plots the numbers in the legend are of the format (A, s)

and the dashed lines are guides to the eye. The oscillator frequency is Q) = 0.1w...

Numerically this value is determined by slowly approaching the critical coupling
strength from the left, that is & < a. The coupling strength « is increased in steps of
a certain length until the occupation number diverges. At this point one decreases the
step length by one order of magnitude and restarts with the last value of « still in the
stable phase. The smallest step length is 10™"; thus this is the absolute numerical error
when determining the critical coupling strength for the discretized model al.

Fig. 2.2b shows the relative deviation of the numerical value from the analytical one.
The deviation depends on s and A. The Wilson chain length is chosen in such a way
that the energy of the last iteration is the same for all values of A (the values used are
given in Tab. 2.1).

The relative deviation shrinks for A — 1.1. However, for A close to one the curves
show an unexpected non-monotonic behavior and therefore a A — 1 extrapolation
is not possible for s # 0.75. The fit curve in Fig. 2.2b shows the function f(A) =
a(A — 1)b + ¢ which yields f(A =1) =4- 10~ — this is the extrapolated error of oD
for A =+ 1 and N — co. The extrapolated error is of the same order as the numeric
error and hence it is save to say that the discretization error vanishes within numerical

accuracy.

2.2.4 Mass-flow error

The critical coupling a2 used to calculate the data plotted in Fig. 2.2b is determined
for a fixed chain length N given in Tab. 2.1. But how does the critical coupling depend
on the chain length?

Fig. 2.3a shows the relative difference between the critical coupling strength ocﬁ\] de-
termined for a Wilson chain of length N < N, and the critical coupling strength
ocCD determined for a Wilson chain of length N, with N, taking the values given
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0 Wmin We

Figure 2.4: Sketch of bath spectral function J(w), Eq. (2.4).

in Tab. 2.1. The critical coupling depends on the length of the chain. This is due to
the so-called mass-flow error [36]: the continuous bath is approximated by a chain of
length N and this leads to an effective shift of real part of the self-energy X.

We associate with the chain length N a minimum energy scale w,;, (cf. Fig. 2.4).
Bath modes below this energy scale are not taken into account, yet. The real part of the

self-energy is given by

ReX(w) = nP/ do’ 1) nP/ do' 1) (2.16)

w — w

In this equation P denotes the principal value of the integral. We define the shift of the

real part as

Am = ReZ(0) (2.17)
We ](w/) Wmin ](w/)
= —niP / dw' ==+ — 7P / dw' =—2. (2.18)
Win “ 0 “
AmE“(wmin)

Hence, the shift AmEff(wmin) is not taken into account resulting in an chain length
dependent real part of the self-energy.

To actually recapture the continuum one needs the full semi-infinite Wilson chain in
order to take the limit w,;, = 0 = Ameff(wmin) — 0. Therefore at each iteration an
effective rest-chain — or an effective bath — is missing, which accounts for the discarded
states of the bath. Such a rest-chain would repair the discretization errors and thereby
fix the mass-flow error.

Since the bath spectral function is not symmetric and vanishes for negative frequen-
cies the real part of the bath propagator at w = 0 is not zero but depends on the
chain length. This induces an effective mass in the order parameter — hence the name
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mass-flow error — and renormalizes the critical coupling and the oscillator frequency.
The oscillator frequency is renormalized even for a continuous bath, but the important
point is that for a discretized bath the renormalization depends on the Wilson chain
length. In the NRG language one would say that the renormalization is temperature-
dependent.

The Green’s function of the dissipative harmonic oscillator reads

1

t _
<ala >>(Z)_Z—Q—Z(z)'

(2.19)
The self-energy %(z) accounts for all effects of the bath on the impurity. Hence, we
have to distinguish beteween the self-energy of the continuous model ¥ (2) and the
self-energy Z%s (z) of the discretized bath mapped onto a chain with N sites.

For the continuous bath the real part of self-energy, Eq. (A.5), is given by

. (@ +0) (A () + QA(w) + Alw) + A(w)?)
ReX“"(w —id) =

W 4200+ 2A, (w)w + O 4 20A,(w) + A (w)* + Ay(w)?*
(2.20)

Here A (w) and A;(w) are the real and imaginary part of the function A(z) = I'(z) +
I'(—z) which can be calculated using equation of motion techniques, see Appendix A.
Here, I'(z) is the bare bath propagator defined in Eq. (A.2).

For a Wilson chain the self-energy is given by Eq. (A.52) and for the real part of the
self-energy for a chain of length N = 1 we obtain

Vavie (w+Q)

dis .
ReXi®(w —16) = =2 .
—(,UZQ —+ Q€02 — 260\/&‘/2 — (U3 + (UeOZ

(2.21)

The condition for the critical coupling is that the denominator of Eq. (2.19) vanishes
for w =0,

1
—Q — ReX(—i0) —iImXE(—id) — 10"

< ala’ > (—ib) = (2.22)

As usual, the bare oscillator frequency is shifted by the real part of the self-energy. For
0 — 0 the imaginary part of the denominator vanishes, and if the real part vanishes as
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well the occupation number diverges and the system is unstable. For the continuous
bath this leads to

—Q = ReZ®"(0) = QQ+A;1(()<2)) (2.23)
_ 04,(0)

S0=-0 (1 + Q+Ar(0)> (2.24)

S Q= —24,(0) = e (2.25)

S

We use Eq. (A.52) to calculate the real part of the self-energy of a chain with N sites,
Rexis (0), and show the flow of the real part in Fig. 2.3b. Here ReroiS(O) is the value
obtained for the longest chain. Therefore, the dependence of the critical coupling on
the chain length is due to the mass-flow effect. This causes a chain length or — in NRG
language — temperature dependent renormalization of the oscillator frequency. This
renormalization depends on both s and A. However, as Fig. 2.3 shows, the dependence
on s is the dominant influence, as the curves with different s deviate stronger from each
other than the curves with different A. Since the corrections scale as (&) —al) o A~V
the mass-flow effect is stronger for smaller s.

The rest-chain, which is not yet taken into account, would generate an additional
shift in the real part of the self-energy. This has crucial effects on the NRG results.
At a given iteration the renormalized oscillator frequency differs from its values at
later iterations. In particular, it is different from its value if one would consider the
continuous bath. In the NRG, however, due to the truncation of the Hilbert space
the system is stabilized at a point with a wrong order parameter mass. Therefore the
bosonic NRG is prone to yield wrong results if one does not explicitly compensate the
mass-flow effect [36].

Critical exponent

We have seen that the DHO shows to distinct phases: a stable and an unstable one. In
this section we investigate how the system approaches the QPT. It is expected that the
occupation number of the impurity harmonic oscillator shows a power-law behavior in
the vicinity of the critical coupling strength

(n(éa)) o (da)”, S i=wa, —a < 1. (2.26)

The critical exponent p = —1 obtained from the analytic solution is independent of the
model parameters (see Sec. A.1.2). To check if the discretized model yields the same
critical exponent the impurity occupation number is calculated for different da.

As shown in Fig. 2.2a the occupation number suffers heavily from numerical noise,
because the occupation number depends on the difference of two terms f, and f,
which are of the same order of magnitude, (n(éa)) = f,(éa) — f,(0a) (cf. Eq. (A.47)).
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Figure 2.5: Determination of the critical exponent p. Shown are the terms f, and f, contribut-
ing to occupation of the impurity harmonic oscillator Eq. (A.47) in the vicinity of
the numerical critical coupling strength (xCD =9.37-10 ° for A = 1.6,5 = 0.75, and

different temperatures . The dashed line, sa”, is a guide to the eye.

xS — K

To circumvent the problem of the numerical subtraction we do not fit a function f(x) =
ax? to the expectation value (n(éa)) in order to determine p, but we do the fit prior
to the numeric subtraction. This allows us to perform the subtraction analytically and
thereby reducing numerical errors. Therefore the power-law is fitted to f,(da) and

fy(0a) independently,

f(6a) = a,da™ (2.27)
and f,(da) = ayoa’y. (2.28)

The critical exponent p of the expectation value is then determined by

ada” = adaP —ayoaly. (2.29)
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Figure 2.6: Critical exponent p for the DHO versus A determined with Egs. (2.33) by fitting
power-law functions to the g = 10* curves of £, and fy (cf. Fig. 2.5). The analytic
estiamte is p = —1.

To determine a and p from the fitting parameters a,, a,, p,, and p, we write Eq. (2.29)

as
0 = ada —ayoaPy — asa? (2.30)
— ou? (axaoﬁ’x*” — ayaly P — 11) (2.31)
~ Saf (ux —ay —a+In(da) (ux(px —p) +ay(py — p))) : (2.32)
As the result should be independent of da both bracketed terms must vanish. This
yields
aupx +a
a=a,—a, and p= u (2.33)
ay +ay

This derivation relies on the assumptions [p, — p| < 1 and [p, — p| < 1. For p we
eliminated the subtraction completely.

In Fig. 2.5 the curves f, and f, are shown. Both agree well with the critical exponent
p=—1uptoda ~ % : starting at this order of magnitude the curves show a power-law
behavior with a different exponent. Thus the assumptions for p, and p, are justified
and Egs. (2.33) can be used to determine the critical exponent p from two independent
fits to f, and f,.

The critical exponent p is determined employing Eqs. (2.33) for different values of
A (cf. Fig. 2.6). A A — 1 extrapolation is performed by fitting the function f(A) =
a(A—1)" + ¢ to the data points A < 1.5. This yields with f(A = 1) = —1.00189 a value
which is close to the expectation p = —1. The main error sources are due to the f, and
fy fits and numerical noise apparent in the f, data in Fig. 2.5. However, in the limit
A — 1 the analytic expectation, p = —1, is well reproduced. For A > 1 the critical
exponent is renormalized due to the bath discretization.
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Figure 2.7: Level-flow of eigenenergies w, and w; obtained with Eq. (A.34) at different energy
scales wCA’N. The bath parameter is s = 0.75 and the coupling strength is set

to the numerically determined critical coupling aCD obtained for the chain length
given in Tab. 2.1.

Level flow

In the NRG the level flow is used to identify the fixed points of the renormalization
group (RG) transformation. For these flow diagrams one plots the rescaled energies
of the lowest eigenstates versus the number of the iteration. A fixed point is reached
when the level positions at one iteration remain invariant under further NRG steps.

To mimic an NRG-like flow diagram Fig. 2.7 shows the lowest and one highest eigen-
value, wy and wj; respectively. Therefore, the system is exactly diagonalized with a
chain of N < N, sites. This yields the single particle energies w, > 0, Eq. (A.34). An
exactly solved chain of length N corresponds to the NRG iteration number N. The crit-
ical chain length N_;; coincides with the numbers given in Tab. 2.1 as for all iterations
N the coupling strength « is set to the critical coupling aCD(s, A, Nesit)-

The flow diagram Fig. 2.7 shows a softening of the lowest mode: for N — N
the lowest eigenvalue approaches zero (the actual zero value is not shown due to the
logarithmic scale), whereas the higher mode w; reaches a fixed point after a few it-
erations. The A = 1.1 curve shows an increase rather than a softening of w, for
wCAfN <15-10 " for increasing N. We suspect that this increase is unphysical and
due to numerical errors in the diagonalization procedure. The matrix to be diagonal-
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Figure 2.8: Iteration number N dependent occupation number of the last site in the chain
(dashed line) and the impurity (solid line). The symbols indicate the correspond-

ing matrix elements entering the calculation of the impurity occupation number,
Eq. (A.47). The same parameters as in Fig. 2.7 are used.

ized has entries ranging over of 14 orders of magnitude and numerical errors add up
for larger matrices. Furthermore, these errors provoke the unexpected behavior of the
critical coupling strength in Fig. 2.2b.

Occupation of last site

The results of the exact diagonalization can be used to evaluate expectation values. Fig.
2.8a shows the occupation of the local oscillator and occupation of the last chain site
for increasing chain length. At each iteration the temperature is set to g = w AN

The level flow shows a fixed point after a few iterations. This behavior is reflected
in the occupation of the last chain site (dashed lines in Fig. 2.8a): once one reaches the
fixed point, the occupation number of the last chain site is independent of the chain
length N. When approaching the critical chain length, the lowest mode is softened.
Consequently, the Bose function in Eq. (A.47) of this mode diverges. Hence, the occu-
pation numbers of all chain sites and of the impurity diverge. This is not visible in Fig.
2.8, because the last iteration, N = N, is not shown. This indicates the QPT from the
stable to the unstable phase.
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According to Eq. (A.47) the impurity occupation number depends on the level spec-
trum w,, and the matrix elements X and Y. At the fixed point the renormalized level
spectrum is independent of N and, since the temperature is tuned accordingly, the
Bose functions in Eq. (A.47) do not depend on N. Therefore, the N-dependence of the
impurity occupation number is generated only by the matrix elements of X and Y.

To a good approximation, the Bose function of the lowest mode w, dominates the
impurity occupation. In particular, this is the case because this is the mode which is
softened at the QPT. We checked that the matrix elements associated with this mode
decline with N proportionally to the impurity occupation: the dots in Fig. 2.8 are the
matrix elements, Eq. (A.49), entering the calculation of the impurity occupation for the
lowest mode. Obviously the impurity occupation follows the matrix elements up to
the point where numerical errors start to dominate.

As expected the occupation number shows the same numerical artifacts for A = 1.1
and close to N; as seen in the level flow. Especially the drop of the occupation number
of the last site is connected to this error.

From the discussion of the DHO we learn that this model exhibits a stable and an
unstable phase. The analytic and the numerical analysis agree well on the critical
coupling strength and the critical exponent. However, the critical coupling strength
depends on the number of chain sites due to the mass-flow effect. This effect plays
crucial role when performing NRG calculations and is further discussed in Sec. 2.4.

Prior to this we want to address another issue when dealing with bosonic systems:
the truncation of the bosonic Hilbert space. The results of this section were obtained by
exactly diagonalizing the Hamiltonian on an operator level. Therefore it is not necessary
— and not even possible without violating bosonic commutation relations — to truncate
the bosonic Hilbert space. However, for the bosonic NRG and DMRG the infinitely
large Fockspace of a harmonic oscillator has to be truncated. In the next section the
effects of this truncation are analyzed on the basis of toy models.

2.3 Toy models

One advantage of the DHO is that this model is exactly solvable on an operator level:
errors due to the truncation of the bosonic Hilbert space do not occur. When solving
the SBM with the NRG or DMRG these errors play an important role. Before solving
the SBM with these methods it is therefore in order to further examine the effects of
the bosonic Hilbert space truncation. We investigate the effects of the chosen bosonic
basis on the numerical results on the basis of two toy models: a displaced harmonic
oscillator and a spin coupled with one or two bosonic modes.

To gauge the influence of the bosonic basis we compare numerical results, which
are obtained by using a truncated bosonic basis, with analytic results. We find that
the number of kept bosonic states Ny, is crucially important: for a high accuracy one
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Figure 2.9: Expectation values of the (a) occupation operator, b'b, and (b) the displacement
operator, b + b, of an displaced harmonic oscillator versus the displacement
model parameter 6 for different dimensions of the bosonic Hilbert space, 6. The
Hamiltonian for this system is given by Eq. (2.34) and the system is diagonalized
exactly. The dashed lines indicate the analytic results, Eq. (2.37) and Eq. (2.39).

needs more bosonic states. As the computational demands grow with N, we present a
way how to reduce N, by employing an optimal basis by displacing the original basis.
We investigate the effects of the displacement and propose a method how to choose
optimal displacement parameters.

If one fixes the number of bosonic states N, it is clear how many but not which
bosonic modes to select. Our first results are all obtained by selecting the eigenstates
of a (displaced) harmonic oscillator with the lowest occupation number eigenvalues.
At the end of this section we explore some prospects of different state selections.

All these questions are examined on the basis of two models: a displaced harmonic
oscillator and a spin coupled to one or two bosons. In a truncated bosonic basis one
can numerically diagonalize both models exactly, whereas only for the first model an
analytic solution is available. The second model is a first step towards the full SBM as
it represents a spin-1 with one or two Wilson chain sites.

2.3.1 Displaced oscillator

The model under inspection in this section is a displaced oscillator b described by the
Hamiltonian

g = 0(b" +b) +b'D. (2.34)

We use () as the energy unit and set () = 1 in the following. The transformation
b = b + 0 diagonalizes the Hamiltonian,

H=>0"— 6% (2.35)
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Figure 2.10: Value of threshold displacement 64, at which the numerical data starts deviating
from the analytic data in Fig. 2.9.

We denote the ground state of H by |0), and in this state the following expectation

values are given:

(0|6"B|0) = 0 (2.36)
= (0[b"b|0) = 6? (2.37)
(0[5" +BJ0) =0 (2.38)
= (0|b" + b|0) = —26. (2.39)

To examine the effect of the truncation of the bosonic Hilbert space the Hamiltonian
(2.34) is numerically diagonalized using a truncated bosonic basis. The expectation
values are compared with the analytic values given in Egs. (2.37) and (2.39). One
observes (cf. Fig. 2.9) that for |6| > 64 the numeric curves deviate from the analytic
results. The so defined threshold displacement 84 depends on the number of bosonic
states Nj,.

To find an analytic estimate for the maximum displacement 64 a bosonic basis can
describe for a given basis dimension N, we first note from Egs. (2.37) and (2.39) that

]<0|b+ +b|o>) —2./(0|6"b|0) (2.40)

and we make the assumptions that for a truncated bosonic basis

lim (0[b'b|0) e N, (2.41)
f—o0
and  lim (06" + b]0) 6. (2.42)
—00

The first assumption reflects that a bosonic basis with the N, lowest occupation number
states cannot describe states with an occupation number larger than Nj,. The second
assumption states that the maximum value of the displacement achievable with this
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Figure 2.11: (a) Test of assumption Eq. (2.41) and (b) Eq. (2.42).
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Figure 2.12: (a) Measured displacement and (b) ground-state energy of the Hamiltonian Eq.
(2.34). The bosonic basis is displaced by «. The ground-state energy E, shows a
minimum plateau for v ~ —6 which is symmetric around v = —6. The dashed
lines indicate the analytic results, Eq. (2.37) and Eq. (2.39); these are indepen-
dent of « as this value only influences the basis employed for numerical calcu-
lations.

basis coincides with the value of 6 where the numerical and analytical values start
deviating. With these assumptions the threshold value of the displacement is given by
(cf. Fig. 2.10)

03 o 4N,,. (2.43)

To test the validity of this estimate we show by comparison with numerical data that
the assumptions are correct. Fig. 2.11 shows that a linear fit-function reproduces the
numerical data well. Moreover, if one uses the fit-functions to calculate 62 for differ-
ent N, one recovers the numerically extracted data (not shown). Therefore, we are

confident that the assumptions are correct.
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This mean that only in a window of the width O(/N,) in which the physical dis-
placement of the system and the displacement of the bosonic basis agree the results are
reliable. In this toy model, the physical displacement is set by the parameter 6. To test
the behavior of the numerics the Hamiltonian (2.34) is numerically diagonalized in a
displaced basis, b = b + . We measure the displacement expectation value (0]bJr +0|0)
and the ground-state energy (cf. Fig. 2.12). We notice that the results are only correct
if ¥ = —6, whereby the allowed tolerance is, as expected, of the order O(\/Ny). If the
basis displacement -y deviates too strong from the physical displacement 6, the ground-
state energy and the displacement expectation value deviate from the analytic value,
because the bosonic basis is no longer capable to faithfully represent the ground state.
To describe a strong displacement higher bosonic modes are excited which results in
an increasing ground-state energy and a linearly deviating displacement expectation
value.

The conclusion of this section is two-fold: (i) if the physical system is displaced by 6
one needs approximately 6 bosonic states to numerically represent this displacement;
and (ii), if one chooses a displaced bosonic basis with a displacement equal to the
displacement of the physical system it is numerically possible to represent this system
exactly. In such a basis the effective displacement vanishes and therefore no numerical
error due to the truncation of the bosonic Hilbert space is induced. The main obstacle
is that usually, when constructing the basis, one has no knowledge about the physical
displacements. This point is further discussed in the next section.

2.3.2 Spin with bosons

In the previous section we have shown the importance of the an optimal bosonic basis.
However, in general the optimal displacement parameter v is a priori unknown. This
section proposes a way to estimate the displacement parameter and shows the limita-
tions of this estimate. To this end, we make a first step towards the SBM by considering
the local spin with the first two Wilson shells; this is equivalent to H, defined by Eq.
(2.5). The spin is described by the Pauli matrices o, and ¢, and two bosons, b; and b,.
The Hamiltonian of this model is given by

2
H= %ax + %az + ac, (bY + by) + A(biby + biby) + 21 w;blb;. (2.44)
iz
The tunnel-coupling between both spin states is given by A and the energy-splitting
between the spin-up and spin-down state by €. The spin couples with the strength «
to the displacement of the first boson. The coupling strength between both bosonic
modes is A and w; are the oscillator frequencies. As we do not solve this model with
the NRG we do have not make assumptions about the parameters, e.g. w; « A" does
not have to be fulfilled.
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Optimal displacement

To determine the optimal basis the Hamiltonian Eq. (2.44) is written in terms of the
displaced operators b; = b; + ;. With these operators the Hamiltonian takes the form

H :%ax + (% — Za'yo) 0, + (a0, — Ayy — wyo) (E(’; + EO)

2
+ A(Bgby + biby) + Zwib?bi — (Ao +wim) (bir + bl) +Eo(70,71)-  (245)
i=1

The constant energy shift Ey(7,, ;) is taken into account in the following calculations
but the details are of no interest at this point. In Eq. (2.45) one can identify two terms
of the form (b} + b;) generating a displacement of the bosons. If one chooses 7; in
such a way that these terms vanish, the oscillators b; are not displaced but are centered
around zero, as there is no source term for a displacement anymore.

To make these terms vanish one has to make sure that the prefactors of these terms
are zero. In general, this is not possible as one prefactor depends explicitly on the
operator ¢,. Here we make a mean-field like approximation and replace the operator
by its expectation value, 0, — (c,). The validity of this approximation is discussed
below. This yields the equations

a(0,) = Ay — woyp =0 (2.46)

We interpret the solution for these equations as conditional equations for the displace-
ment parameters

al(o, A
Yo = < Ziz and 1= —%. (2.48)

Below, in Sec. 2.5.2, this idea is generalized to a Wilson chain. These equations have to
be solved self-consistently. If these conditional equations are fulfilled the expectation
values of the bosonic displacements are given by

(bY +05;) =0= (b} +b;) =27, (2.49)

The achievement is that in a parameter regime where the mean-field approximation
o, = (0,) is valid the numerical self-consistent solution of these equations does not
depend on N; in other words, finding a solution is possible even for small N, and
once one has found a solution there is no error at all due to the truncation of the
bosonic basis.
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Figure 2.13: Ground-state energy of the Hamiltonian Eq. (2.44) versus displacement param-
eters, v, and -y, of bosonic basis to iteratively solve the self-consistent Egs.
(2.48). (a) 7, scan is performed with o, = 0. With a polynomial fit up to fourth
order (only even orders) the position of the energy minimum is determined. (b)
Yo is set to the position of the energy minimum and a ; scan is performed.
These two steps are iterated until the parameters converge. The parameters
area=4,A=0,wy=€e=1andw; =A=0.1.

We proceed by providing numerical evidence that the statements from above are
correct. For the moment we consider only the case A = 0. We start by finding optimal
values 7; which minimize the ground-state energy and then show, that these values
solve the Egs. (2.48). The optimal values are determined by setting y; = 0 and varying
Yo to minimize the ground-state energy (cf. Fig. 2.13). This value is then used for 7,
when a 7; scan is performed. The procedure of independently determining an optimal
7; while holding the other value constant is iterated until convergence is reached.

Fig. 2.13a shows that the value of the energy minimum at the first iteration, that is,
with all displacement parameters set to zero, depends on N,,. At the second iteration
when varying 7y; the plot does not resolve differences of this value between different
Np. This means that the first guess for < is close to the actual optimal value.

Once the optimal displacement parameters are found it is expected that the ground-
state energy does not depend on N, anymore. As Fig. 2.14 shows, this is indeed
the case: with an undisplaced basis the ground-state energy depends on the number of
bosonic states N,,. For small N, the basis cannot represent the ground state faithfully as
the ground state consists of a fully polarized displacing the bosonic modes. According
to Egs. (2.48) with the parameters of Fig. 2.13 the displacement parameter is given by
7o = 2. Therefore the expectation value of the displacement operator is (b" +b) =
27y ~ 4.4. With an undisplaced basis the results converges to this value, whereas the
optimized basis yields this value for any N, (cf. Fig. 2.14b). This means that Eqs. (2.48)
yield the optimal displacement parameters for the bosonic basis.

In the case A # 0 this picture changes. Unlike in the A = 0 case, the commu-
tator [H,0,] does not vanish anymore and therefore the two subspaces 0, = £1 are
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Figure 2.14: (a) Ground-state energy and (b) expectation value of the displacement operator
versus N, for Hamiltonian Eq. (2.44) calculated with an optimal displaced and
an undisplaced basis: with an optimal basis the results are independent of Nj,.
The parameters are as in Fig. 2.13.
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Figure 2.15: Ground-state energy E, of Hamiltonian Eq. (2.44) versus the displacement pa-
rameter of the bosonic basis v, for a spin coupled to one boson. The parameters
are a = 4,e = wy = 1. The tunnel-coupling is set to (a) A =0, and (b) A = 1.

connected. Eigenstates of H are not anymore eigenstates of ¢, but are, in general, su-
perpositions of ¢, eigenstates. As the displacement of the first harmonic oscillator is
coupled to 0, this harmonic oscillator is now in a superposition of being displaced in
positive and negative <y direction. It is therefore more difficult to find an optimal basis
by displacing the basis in one direction.

To illustrate this we consider the case w; = A = 0. Effectively this reduces the model
to a spin coupled to a single bosonic site: this is just the spin with the first Wilson shell.
From the previous discussion one could expect that there exists a -y, independent of N,
which displaces the bosonic basis optimally. Fig. 2.15a shows the expected behavior:
for A = 0 the minimal ground-state energy is independent of N, and found at the same
value of 1 for all N;,. However, for A # 0 (cf. Fig. 2.15b) this not the case; the value
and the position of the minimal ground-state energy depend on Nj,.
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Figure 2.16: (a) Minimal ground-state energy E, and (b) expectation value of displacement
operator of Hamiltonian Eq. (2.44) at the point of the minimal ground-state en-
ergy for different number of bosonic states N,,. The same parameters as in Fig.
2.15 are used. The crosses show the displacement calculated from (c,,) by using
Eqgs. (2.49) and (2.48).

This dependence is further analyzed in Fig. 2.16. Fig. 2.16a shows the minimum of
Ey for a 7y scan. Unlike the A = 0 case, where the minimum ground-state energy
is independent of N, for A # 0 this value shrinks with increasing N,. A similar
observation is made for the expectation value (b" +b): for A = 0 and with an optimal
basis this value is independent of Nj,. Even if the basis is optimized for each value of
N, by setting 7, to the value minimizing the ground-state energy;, (b" +b) depends on
Np. As a consequence, since the optimal basis is defined by ; = %(bf +1;), the optimal
displacement parameter depends on Nj,,. This is in stark contrast to the A = 0 case.

The derivation of the self-consistent equations (2.48) for the optimal displacement
parameters does not depend on o,. Hence, these equations are still valid for A # 0. To
show this the displacement parameter is set to the value minimizing the ground-state
energy and o, is measured. The result is used in Eqgs. (2.48) to calculate the optimal
displacements 7y,. From these the expectation value of the displacement operator is
calculated with Eq. (2.49) and the results are shown in Fig. 2.16b for A = 10 as points:
there is a perfect agreement between the measured displacement and the displacement
needed to fulfill the self-consistent Eqgs. (2.48). Therefore, these equations are valid for
A #0.

The displacement expectation value (b" + b) shrinks with increasing A (cf. Fig. 2.16).
The reason for this behavior is that for € # 0 # A the ¢, and o, operators compete:
for the o, (0,) operator a fully (un-)polarized spin in z direction is energetically favor-
able. For £ finite the spin is in a superposition of the |1) and |]) states. Hence, for
increasing |A| the value |(c,)| shrinks and thereby reducing the bosonic displacement.
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To illustrate this for a decoupled spin, & = 0, the spin polarization can be calculated
analytically and leads to

B € (\/A2+€2+e>

(0,) = (2.50)

Y

A <\/A2—|—e2—|—e>

and (oy) = . (2.51)

A+ +eVA +é

These equations are consistent with the aforementioned limits
A

P 0= |{c,)| = 1, (o) =0 (2.52)
and % 0= (0,) =0, [{c)| = 1. (2.53)

For A # 0, the ground state of the spin is a superposition of |1) and |/). The weights
of both states depend on the ration £. The effect of this superposition is, that the boson
is in a superposition of being displaced in positive v direction and negative -y direction.
At our construction of the bosonic basis only one displacement direction is taken into
account. This is the reason for the N, dependence shown in Fig. 2.16: the basis is
only optimized for the displacement in one direction. To faithfully represent the boson
displaced in the other direction one needs more basis states. To further improve the
results one option is to change the way the bosonic basis is constructed.

Construction of the bosonic basis
The matrix elements of the displaced bosonic creation operator bfy =b" + 1 are given

by

vn+1l m=n+1

0% m=n

(m|bl|n) = (2.54)

The state |m) is an eigenstate of b'b with eigenvalue m. Numerically the operator b;
is stored as an N}, X N, matrix M. So far we truncated the bosonic Hilbert space by
keeping only the states with the lowest occupation numbers,

Myw = (m|pln) 0 <m,n <N, (2.55)

This strategy is well justified for A = 0, since due to the optimal displacement the occu-
pation number is low. Choosing the bosonic basis in this fashion usually does not yield
low bosonic occupation numbers for A # 0, hence this strategy is questionable in this
case. In the following different selections of bosonic states are compared: keeping the
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states with even occupation number 21 and with an exponential increasing occupation
2" -1,

M;‘iin =V 2n5m,n+1 + Vém,n (2'56)
and Myb =+/2"—16, 1 +90,, 1<mn<N,—1 (2.57)

So far N, has two meanings: it denotes (i) the number of bosonic states — that is the
dimension of the matrix M — and (ii) the largest possible occupation number. From
now on, we have to distinguish between both meanings. Hence, we have introduced
the parameter Ny, which solely denotes the matrix dimension of the truncated operator
and N, solely denotes the maximum occupation number.

To justify this procedure of selecting states one can imagine to write down M}ﬁv,‘q’ with
dimension 2N, X 2N, and then erase all odd columns and rows of this matrix to arrive
at M,,5". Note that the truncation of the bosonic modes is done before the operators
are displaced.

By selecting only a few states the canonical bosonic commutation relation [b, b+] =1
is not fulfilled anymore. By selecting only the lowest states, Eq. (2.55), the matrix
representation of the commutator is given by

[MIOW Mlow’f} _ O m,n < Ny, —1 (2.58)
m,n _(Nb — 1)5771,11 m,n = Nb —1

Hence in the matrix representation of this selection the matrix element of the last row
and the last column is wrong: it is not one but (1 — N,). If one selects only the even

states the matrix representation of the commutator is given by

[ Meven Meven‘i‘} = 5 [ MO pplow t ] (2.59)

mn

and for the exponential selection

[Mexp Mexp 1‘i| _ (2” _ 1)(5m,n m,n < N]; —1

, (2.60)
mn (12N, mn=N,—1

As a rule, we see that the diagonal elements except the last are given by the number of
omitted states plus one. The last diagonal element need some special treatment: it is
connected to Ny, and it has a different sign compared to the other diagonal elements.
In Fig. 2.17 the three different ways to select the bosonic states are compared. Shown
is (S,) = 1(0,) calculated with an optimal displacement. This displacement is found
by performing a 7, scan an selecting the value at which the ground-state energy is
minimal. Fig. 2.17a depicts the expectation value (S,) for different operator matrix sizes
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Figure 2.17: Convergence of the expectation value (S,) with (a) Ny, bosonic states and (b) the
maximum bosonic occupation N, for different selections of kept bosonic states.
The parametersaree =A=w; =1,a =4,w, = A =0.

N,. Other expectation values, like the ground-state energy, follow the same qualitative
behavior. With an exponential selection of states the matrix dimension needed to reach
convergence is two orders of magnitude lower compared to the other two selections.
When just keeping the lowest states the matrix dimension is about twice the size than
with even states.

However, when comparing the results for a fixed N,, — that is the highest available
mode” — the basis selecting the lowest states yields the best results (cf. Fig. 2.17b),
because for this selection the total number of states is the largest and therefore the
bosonic truncation error is the smallest. Hence keeping only the lowest states yields
the best precision on the cost of a large matrix dimension. On the other hand, for a
fixed matrix dimension N}, selecting the lowest states is not necessarily the optimal
selection.

Admittedly, the protocol presented here to construct the basis by truncating some
states from the operator matrix is an ad hoc approximation which is not justified rig-
orously. For example, in the original basis one has only matrix elements connecting
states differing in occupation by one. By truncating some states one implicitly con-
structs matrix elements connecting states differing in occupation by more than one. As
a result some bosonic states are never occupied and can therefore be discarded from
the bosonic Hilbert space. This reduction of dimensionality reduces the demands on
the computational resources.

4 Technically this is just a rescaling of Nj,. For the lowest states selection Nj, = Nj,, for the even states

selection Nj, = 2N}, and for the exponential selection Nj, = 2N _ 1 holds.
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A different way to achieve that some states remain unoccupied is to replace a sin-
gle application of the bosonic creation operator — and analogously the annihilation
operator — by two applications,

bt ="' (2.61)

This does not allow for an occupation of states with an odd occupation number. The
advantage of this construction is that one does not have to tune the matrix elements in
an uncontrolled way. The results using this construction are shown in Fig. 2.17 labeled

b'b'. As a matter of principle one could generalize this idea to bt = (b * and thereby
occupying only states with an occupation being an integer multiple of k. However, k
must not be too large, otherwise too few low-energy states are kept to have a good
resolution of the low-energy sector. For very large k even the high-energy states which
apparently dominate the results for this toy-model are discarded and this approach
breaks down.

The possibility to discard a large number of low lying states suggests that the results
depend on high energy excitations as well. Despite common assumptions, these kind
of excitations seem to play a major role. Exploiting the fact that each level of the
harmonic oscillator lives on a different energy scale and with the observation that all
energy scales contribute one could think of constructing an RG like scheme to further
improve the handling of the truncated bosonic basis.

Bulla etal. proposed in Ref. an optimal bosonic basis by describing a harmonic
oscillator in a superposition of being displaced by  and —. Since the o, term gen-
erates such displacements it might turn out to be advantageous to use a bosonic basis
respecting this. If one wishes to keep the matrix dimension of M at N, x N, this new
basis is constructed by two bosonic oscillator — one centered at — and one at y — with
% bosonic modes each. Using the optimal basis from Ref. 75 to calculate ground state
properties of the Hamiltonian Eq. (2.44) we do not see significant improvements of the
results (cf. Fig. 2.18).

Our basis choice is limited to the eigenbasis of the b'p operator. A different valid
choice are the coherent states |a). = S(«)|0) = e“bt“*bm}. Alvermann et al. propose in
Ref. to construct so-called shifted oscillator states by orthonormalization of the set
of states

|no), = S(no)|0) n=0,1,...N, — L. (2.62)

The parameter ¢ plays a similar role as our displacement parameter. According to Ref.

this basis allows to consider large displacements with just a few bosonic modes if
the guess of the displacement ¢ is not too far from the physical realized displacement.
Again the difficulty that one does not know the optimal displacement a priori emerges.
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Figure 2.18: Basis constructed according to Ref. compared with selection of some states.
The divergence of the negative/positive displaced basis is due to numerical er-
rors occurring when constructing the basis. Same parameters used as in Fig.
2.17.

Concluding we note that, in general, there is no optimal basis selection. Selecting
other bosonic states than the N, lowest might improve the results, but so far it is not
clear how to generate an optimal set of bosonic states. Further research could examine
the effects of state selection more deeply with the goal the generate a method which
yields an optimal selection for a given purpose. As this method is not available yet, in
the remaining part of thesis bosonic bases are constructed by the lowest bosonic states:
for a sufficiently large number of bosonic states N, this selection yields good results.
As it is not a priori clear what sufficiently large means one has to carefully choose Ny,.

2.4 Numerical renormalization group results

In this section the NRG is employed to solve the SBM Hamiltonian Eq. (2.5). The SBM
tulfills all requirements for being solvable with the NRG: the impurity is small enough
for being exactly solvable and in the form of Eq. (2.5) the bath is mapped to a Wilson
chain. We calculate the phase diagram and critical exponents. By comparing these to
the mean-field expectations one could conclude that the quantum-to-classical mapping
(cf. Sec. 2.1.2) fails for s < % However, the central result of this section is, that this is
an error inherent to the NRG due to the neglect of the rest-chain at a given iteration.

2.4.1 Choice of parameters

The accuracy of the bosonic NRG method depends on two parameters: the number of
kept states N and the number of bosonic modes Nb.5 A typical choice is Ny ~ 100 and
N, ~ 8 [75]. After asserting that the results to not change significantly for more states,
we choose N; = 100 to keep the numerical effort manageable.

> For the truncation of the bosonic Hilbert space only the states with the lowest occupation number

are kept.
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Figure 2.19: Deviation of (S,) obtained with N, bosonic states from calculations with N, = 18
bosonic states. Results are for the SBM solved with the NRG. As the curve
saturates for N, > 10, the results are not improve further by keeping more
bosonic states. The parameters are N, = 100,s = 05,A = 2,N = 40,a =

8.025-10 %A = 0.1w,, and € = 10" w,.

As discussed in Sec. 2.3.2 one has to take special care how to choose Nj,. Fig. 2.19
shows the deviation between (S,(N,)) and (S,) calculated with N, = 18 bosonic
modes. This value saturates for N, > 10, meaning that one cannot improve the re-
sults further by increasing Nj,. In the following calculations N, = 10 bosonic modes
are kept.

2.4.2 NRG level flow

The localized fixed point is not only characterized by a finite value of (S,) but also
that the eigenstates are two-fold degenerate. On the other hand, the eigenstates are not
degenerate in the delocalized phase. Therefore the two phases can be distinguished in
the NRG level flow diagram.

Fig. 2.20 shows the first few excited eigenstates above the ground state for different
values of the coupling strength «. At low iteration numbers the system is influenced
by both thermal and quantum fluctuations but for N — oo, which is equivalent to
T — 0, the effects of the QCP become visible and the quantum fluctuations dominate.
That is why for high energies the state flow starts at approximately the same value for
different a but the paths to the fixed points and the fixed points are different.

For « > a_ the levels are not degenerate for N < 10. At later iterations two states
pair up and finally the fixed point is two-fold degenerate: unlike the &« < a, curves,
there are only three lines visible for « > a. at N = 40 with Ey; > 0. For « < a. one can
distinguish all shown states above Ey > 0.

For & # w. the level flows converges to one of the two stable fixed points: the
delocalized or the localized one. However, Fig. 2.20 shows that for a = «, a third fixed
point emerges, though this critical fixed point is infrared unstable. This is only true
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Figure 2.20: NRG level flow diagram for s = 0.5,A = 2,N, = 100, N, = 10, and « € {a. =
0.1062556, 8.025 - 10_2, 0.25}. Shown are the first 7 excited states above the
ground state.

in the sub-ohmic regime. For an ohmic dissipation, s = 1, a critical fixed point is not
observed due to the Kosterlitz-Thouless phase transition [74, 75].

2.4.3 Phase diagram

Rigorously, the QPT is only present in thermodynamic limit. For finite systems — such
as a Wilson chain — the QPT is smeared out to a cross-over from the one phase to the
other. Hence in the following we define a turning point through the cross-over scale
and interpret this point as the critical coupling.

In Sec. 2.1.2 several differences between the localized and the delocalized phases are
pointed out which one could use determine to phase border. One criterion is the fixed
point of the level flow as this is different below, at, and above the critical coupling. As a
different option one could scan for the coupling strength at which the level degeneracy
is lifted. However, one has to keep in mind that one is only able to observe a cross-over
between the phases and therefore these points are not necessarily well defined. For this
reason we define a criterion to determine the critical coupling strength which allows
us to explicitly observe the cross-over from the delocalized to the localized phase.

To determine the critical coupling strength «. separating both phases a very small
symmetry breaking field € = 1077w, is applied and the point at which the transition



80

Chapter 2. Bosonic Models

0.0001

0.001
o

0.01 0.1 1

Figure 2.21: « scan for the SBM with NRG. The left panel shows (S,) and the right panel
shows the derivative. The maximum of the derivative indicates the turning point
of (S,)(«). We interpret the turning point as the critical coupling strength. The

parameters are A = 2,A = 0.1w,, € = 10 " w,, N, = 10, N, = 100, and N = 40.
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Figure 2.22: (a) Phase diagram of the SBM calculated with the NRG. Same parameters as
Fig. 2.21. (b) e scan for « detuned from «_ for s = 0.2 to observe when (S,)(¢)
behaves non-linear: the closer « is to a. the smaller is the linear range of (S,) (¢).
The dashed lines show a fit f(e) o e.

from (S,) ~ O (5) < 3 to (S,) = 1 occurs is located. This is achieved by finding the
maximum of the derivative of log(S,),

dlog(s,)®)|  _,

o (2.63)

a=a,

since at the phase transition (S,) drops over some orders of magnitude. To this end an
« scan is performed with care taken to put more points in region where the derivative
on a logarithmic scale is high (cf. Fig. 2.21). The critical coupling strength « is then
determined by the numerical derivative of the interpolated data. The values for the
critical coupling strength for different s determined in this fashion are shown in the
phase diagram Fig. 2.22a.
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2.4.4 Critical exponent

The critical exponent ¢ is determined by setting the coupling strength to its critical
value, performing an € scan, and fitting the function f(e) = g€’ to the numerical data
(cf. Fig. 2.23). Both a and ¢ are free fitting parameters. This fit is only valid in a certain
region: for € ~ w, the expectation value (S,) saturates at (S,) = 3; and there is a
linear regime, (S,) o« ¢, for € < 10 %w,. This is due to the limited numerical precision
of a.: the numerically determined value of a. deviates from the real physical value.
Therefore one needs a finite € to see the effect of the QCP. To see this effect Fig. 2.22b
shows an € scan for « detuned form the critical value. For an increasing detuning the
threshold value of €, up to which the curves show a linear behavior, grows.

For a value of € too small for the spin to feel the presence of the QCP one can treat
the spin as effectively quasi-free — of course with a renormalized value for A — and
expand Eq. (2.50) around € = 0,

1 A
_ Lsgnd

{oz) = 5% +0(e?), (2.64)

to see that there is a linear dependence.6 By fitting a linear function to the (S,) data in
the range 1072 < = < 107® (cf. Fig. 2.22b) it is possible to determine the renormalized
tunnel-coupling A, in the delocalized phase. At the critical point and in the localized
phase the tunnel-coupling is renormalized to A, = 0.

The values determined by the fits (cf. Fig. 2.23) for § and A, are shown in Fig. 2.24.
For & one expects the hyper-scaling relation 6 = 1 for s > 1 and a mean-field expo-
nent § =3 for s < 1. At s = ] both relations yield 6 = 3. However, as Fig. 2.24a shows
the hyper-scaling relation is fulfilled in the whole parameter regime s < 1. When this
was first observed in Ref. it was believed that, despite different expectations, the
quantum-to-classical mapping fails for the SBM. As we know today, the reason for the
unexpected critical exponents is that the NRG suffers from the mass-flow error [ 17
In the following sections more evidence for this error is presented.

2.4.5 Flow of critical coupling strength

When discussing the DHO in Sec. 2.2.4 we noticed that the oscillator frequency is
shifted by the real part of the bath spectral function. This leads to a renormalization
of the critical coupling strength. Fig. 2.25a shows that the same effect is present in the
NRG as well: the critical coupling strength depends on the length of the chain. Both
Fig. 2.3 and Fig. 2.25a show the same functional dependence between « and s. In Sec.

This argument holds only if the numerical critical coupling strength is below the true one. Due to the
way «. is determined here, this is always the case. However, the main prerequisite for this argument
to hold - that is, to treat the spin as free — is the linear dependence between € and (S,) for small e.

A different view is presented in Ref.
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Figure 2.23: € scan to determine critical exponent §. The dashed lines are fits of the function
fle) = aet in the interval 107 < £ < 10, The coupling strength is set to
a = a.. Same parameters as Fig. 2.21.

2.2.4 it was shown that this dependence is due to the mass-flow effect. Therefore we
conclude that this effect is also present in the NRG.

The mass-flow induces a temperature-dependent renormalization of the tunnel-coup-
ling A. If the system is at its critical point for T = 0, meaning that « = «, or, equiv-
alently, A = A, one observes two different trajectories for T — 0 with and with-
out mass-flow (cf. Fig. 2.25b): without the mass-flow effect the renormalization of
A is temperature-independent and therefore the trajectory in the phase diagram is a
straight line. On the other hand, with the mass-flow effect the order parameter ac-
quires a temperature dependent mass inducing a different renormalization of A for
each temperature T: the trajectory in the phase diagram is curved.

To explicitly calculate the flow of the renormalized tunnel-coupling A, one can per-
form an € scan for a chain with N sites. With a linear fit to the data-points € < 10 8w,
one can extract A, with the method proposed in the previous section. Plotting A, for
different chain lengths (cf. Fig. 2.26) shows the typical s and N dependence already
seen in Fig. 2.3 and Fig. 2.25a and sketched in Fig. 2.25b. This, again, shows that the
mass-flow effect is present in the NRG.

The reason why the presence of the mass-flow effect leads to an error of the NRG
is the following: the Wilson chain is built up iteratively. With each iteration the tem-
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Figure 2.24: Linear fit parameters of Fig. 2.23. (a) s-dependence of the critical exponent
6 (the dashed line indicates the hyper-scaling relation) and (b) renormalized
tunnel-coupling A, in the delocalized phase. This values are determined by fit-

ting Eq. (2.64) to the (S, )(e) curves for 10712 < e < 10" °. Same parameters as

Fig. 2.21.
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Figure 2.25: (a) Flow of critical coupling zxi\’ at iteration N. Same parameters as Fig. 2.21. (b)
Schematic phase diagram with (dashed line) and without (solid line) mass-flow
effect.

perature is lowered and A is renormalized. Hence the NRG follows the curved line
of Fig. 2.25b. As the NRG truncates (Nbl:,is)Ns states at each iteration, the NRG targets
the wrong subspace of the total Hilbert space. Hence the subspace in which the real
ground state of the system lies is no longer reachable after a few NRG iterations. The
ground state calculated by the NRG is therefore wrong and shows non-mean-field crit-
ical exponents. To cure the mass-flow error one has to take into account the effects of
the rest-chain and thereby eliminating the temperature dependent renormalization of
A.

One way to cure the mass-flow could be to construct an effective bath coupled to
the last Wilson chain site at iteration N in such a way that the bath propagator of the
Wilson chain with this effective bath at frequencies w < A Nw, is the same as the

~

continuous bath propagator. So far it is not clear how this can technically be achieved.
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Figure 2.26: Temperature dependent renormalization of tunnel-coupling parameter in the de-
localized phase. The values of ArN are determined by fitting Eq. (2.64) to the
(S,)(€e) curves, as in Fig. 2.21b, for different N. The dashed lines are no fits, but
show the curve f(N) = AN®, with A being the bare tunnel-coupling A = 0.1w,.

A different cure is to take the rest-chain explicitly into account. As the NRG relies on
the assumption that lower energy scales have no effect on higher energy scales — that is,
the separation of energy scales — it is not only technically difficult to take the rest-chain
into account, but one encounters the conceptual obstacle that energy scales would mix.
As, unlike the NRG, the DMRG does not rely on the separation of energy scales, this
method can employ a sweeping technique to make sure that correlations can spread
over the whole chain. Thereby the whole chain is taken into account.

2.4.6 Numerical errors

As all other numerical methods the NRG suffers from inevitable numerical errors,
besides the errors which are inherent to the modeling process. The most fundamental
ones are due to the discretization of real numbers: on a computer a real number can
only be stored up to a certain precision. This limits the numerical accuracy. However,
the relative error due to this effect is of the order 107 and is therefore negligible in
most cases.

The dominant numerical error in the NRG is the truncation of states at each iteration.
The truncation error is estimated by evaluating expectation values and deducing error
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margins from these values. The upper estimate of the error margin is given by Fig. 2.19.
From this we conclude that the error is (9(10_5). The lower estimate is determined by
performing a NRG calculation deep in the delocalized phase with € = 0. The analytic
result is (S,) = 0, whereas the NRG gives (S,) ~ O(10 ). Therefore it is save to say
that the absolute error of an (S,) measurement is not larger than 10~*. However, we
want to emphasize that this is not a statistical error but a systematic one: the NRG is a
deterministic method, meaning that if one starts several runs with the same selection
of parameters each run yields exactly the same results.

Another important quantity in this section is the critical coupling strength «.. This
is defined by the coupling at which the derivative of log(S,) has a maximum and is
determined by an «a scan. Hence, for this method of determining the critical coupling
strength, the error of &, is given by the scanning interval width. This error is minimized
by scanning on an adaptive mesh where more points are inserted in a region where the
slope of log(S,) is large. The resulting absolute error of the given . values is O(10°)
for small s < 0.6 and grows up to O(107°) for s = 1.

For increasing s the decay of log(S,) is broadened - see Fig. 2.21 and notice the
logarithmic a-axis — resulting in an increasing error for «.. Because the calculations are
not performed in thermodynamic limit the decay of (S,) has a certain width resulting
in a systematic error in the determination of a.. To further increase the precision of «,
one would have to take the limit A = 1 and N — co.

A lower limit of the relative error of the critical exponent ¢ is the relative error the
fit yields. In this sub-ohmic regime these errors are in the range 1%-5%. This error
does not take into account any other errors. We claim that the error on «, is negligible:
we have seen that for € large enough it is not important to set a precisely to its critical
value (cf. Fig. 2.22b). Furthermore, the error on (S,) is some orders of magnitude
smaller than the error due to the fit. Hence, the effect of the (S,) error on the ¢ error is
negligible as well.

2.5 Density-matrix renormalization group results

We have shown that the effect of the rest-chain at a given NRG iteration is crucial to
characterize the phase transition of the SBM correctly. Furthermore the truncation of
the bosonic Hilbert space limits the accuracy of the NRG results: in the localized phase
the bosons of the Wilson chain are strongly displaced. As a consequence one needs
a large bosonic Hilbert space to represent this displacement numerically correct [75].
Because the displacement of the bosons grows exponentially with the chain site index
i, the occupation number of the Wilson chain sites diverges [35],

(bib;) o (0,)%€; . (2.65)



86 Chapter 2. Bosonic Models

2 4 6 8 10 12 14 16 18
Np,

Figure 2.27: Relative ground-state energy for different number of kept (N,) and bosonic (N,)
states. The reference ground-state energy E,;, Was determined by a DMRG
run with Ny = 40 and N, = 18. The model parameters are « = 0.106,¢ =

10’7wC,A = 0.1w,, s = 0.5, A = 2, and chain length N = 40.

The result is that with this naive approach one needs an infinite number of bosonic
modes — this is, of course, not possible.

However, a more sophisticated approach employs an optimized basis which elim-
inates the problem of the truncation of the bosonic Hilbert space. This method is
introduced in the following section and then applied to the DMRG to calculate the
phase diagram and critical exponents of the SBM. Using the DMRG in this fashion
reduces both problems of the NRG: (i) the truncation of the bosonic Hilbert space
and (ii) the effects of the rest-chain at a given iteration. Therefore, the DMRG results
show mean-field critical exponents for s < 3 and non-mean-field critical exponents for
% <s<L

2.5.1 Choice of parameters

In general, the accuracy of the bosonic DMRG relies vitally on the number of states
N; kept in the Hilbert space and on the number of bosonic modes Nj,. The op’cimal8
choice of these parameters is determined by comparing the ground-state energy E, for
a given (N, Ny) with E_;, (cf. Fig. 2.27). The energy E,;, is the ground-state energy of
a (N, = 18, N, = 40) calculation.

As Fig. 2.27 shows, the relative error of the ground-state energy shrinks for increas-
ing N, up to N, = 8 when the error saturates. This saturation is due to the inherent
DMRG errors, specifically due the accuracy of the Lanczos algorithm used to calculate
the ground state. As the DMRG is a variational method and this error is purely of nu-
meric nature it is no surprise that the relative error of the ground-state energy shows
fluctuations, yet on a small scale. This means that the ground state is not improved by
increasing N, further and therefore we choose N, = 10 for all DMRG calculations in

8 Optimal in this sense means to minimize the number of kept states to reduce the computational

demands with the constraint that the results are still reliable.
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this section. Since the accuracy of the method does not depend on the number of kept
states for Ny > 20 (cf. Fig. 2.27) we use N, = 24.

Because one is most interested in properties at or in the vicinity of the critical cou-
pling strength «., Fig. 2.27 shows results for & ~ a.. Of course, if one examines the
regime & >> . being deep in the localized phase one needs to keep considerably more
bosonic modes for the relative error to saturate.

2.5.2 Optimal bosonic basis

For the DMRG calculations one has to choose a truncated bosonic basis. Here the
bosonic Hilbert space is built up by the N, bosonic states with the lowest occupation,
Eq. (2.55). As discussed in Sec. 2.3.2 it is advantageous to optimize the bosonic basis
by a displacement. One advantage of the DMRG over the NRG is that it is possible to
change the bosonic basis in the course of the simulation. In the NRG the local basis
of each site is fixed once the next site is added. In the DMRG, however, the sweeping
phase permits to change the basis of the local block. This allows to optimize the basis
of the bosons with respect to the rest-chain.

One proposal how to implement this was made in Ref. . The idea proposed in this
reference is to change the bosonic basis in some optimal way at each sweeping step. We
present an alternative approach: the basis is not optimized at each sweeping step but
after one DMRG run. This gives us some deeper insight how the displacement of the
bosons is generated. To validate our results we compare the displacement parameters
obtained with our new scheme with those obtained by variationally optimizing the
displacement parameters of the local block at each sweeping step.

The optimization criterion is to find a basis in which the expectation value of the
displacement operators <l~13 + by) is minimized’ for the symmetry broken phase € >
0. As in Sec. 2.3.2 the displaced basis is defined by bl = b+, and b; = b; + 1,
where the displacement parameters 7; have to be determined for each Wilson chain
site individually. With Egs. (2.48) we already have a set of equations which have to be
solved self-consistently in order to determine the displacements for a chain consisting
of two sites. The aim of this section is to extend this approach to longer chains.

In the displaced basis the SBM Hamiltonian Eq. (2.5) reads

A ~ ~
HN = — EO'X + go'z + \/&VO.Z <b2)- + bO) - 270\/&‘/02 + EO({,)/Z})
+ X e (81— (B +B) +7)
i=0

N, (it L gt gt it 7 T
+ )t (bi bit1 +biybi —via (bi + bi) =i <bi+1 + bi+1) + 2%‘%‘+1) . (2.66)
i=0

More precisely, |(b} + by)| is minimized. In this section, minimized is used in the sense that the
absolute value is minimized; in other words, the value is as close to zero as possible.
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As we are not interested in the shift of the ground-state energy Ey({7;}), we neglect
this term in following derivations; however, in the numerical calculations this term is
present.

The Hamiltonian Eq. (2.66) can be divided into two parts Hy = Hé\{s + Hllim,dis. In
Hé\ils all displacement inducing terms are collected, whereas Hﬂm,dis contains all other
terms. As the optimal basis is supposed to minimize the expectation values (b} + b;)
all displacement source terms, E;r + b;, must vanish and hence -; must be chosen such

that Hé\i[s =0. Hé\i[s is given by
N T
Hgis = (VaVo, — voeq — tg71) (bo + bo)
N—1 L
=Y (emi+tria(M =6, n1) +tiavi1)) <bi + bi) . (2.67)
i-1

For this operator to vanish all summands have to vanish independently. Again, we
replace the operator o, by its expectation value (c,). This leads to the matrix equation

€ th 0 0 ...\ [ —v/aV{c,)
ty € t 0 ... 0
0o &1 hL T _ . (2.68)
0 t1 €y tz - Y2 0
M

The displacement parameters 7y, are then calculated by multiplying this equation with
M. For a chain with N = 2 sites the displacement parameters are given by

o= TYVAG) g g, = VAV ) (2.69)

2 2

€ — Z—‘i €o€1 — £

These equations are equal to Egs. (2.48). For an N-site chain the displacement param-
eter of the first Wilson chain site is given the continued fraction

—aV(c,)
YTo=—+— (2.70)
to
f
€1 _ —

€y —
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Figure 2.28: Convergence of spin-expectation value with iteration number of the self-
consistency loop by which Eq. (2.71) is solved. The parameters are N, = 8, N, =
32,0 = ua.(s),A = 01w, e = 0.0003w, N =40, and A = 2.

and the other displacement parameters can be calculated recursively

Yi = —%Yi-1 5 1 <i<N. (2.71)

By formally defining tz_l = /aV and y_; = (0,) one could use the second equation
for n = 0 as well.

Since the operator o, is replaced by its expectation value one has to find a self-
consistent solution for these equations. This solution then fixes the displacement pa-
rameters ;. To determine these the following self-consistency loop is iterated.

The aim of optimizing the basis is to minimize the expectation values of the dis-
placement operators in the displaced basis. Using this optimal basis, defined by the

10
parameters 7},

the DMRG run calculates the ground state of the system taking into
account all quantum fluctuations. With the ground state expectation value (c,) and Eq.
(2.71) new displacement parameters <y} 1 are calculated. With these the next DMRG
run is performed. By the last step the self-consistency loop is closed. This procedure is
iterated until convergence of <l~7+ + b) is reached. Initially all displacement parameters
are set to 'y? =0.

The expectation value (S,) used to calculate the displacement parameters Y for
the successive iteration is shown in Fig. 2.28. After a few iterations the value of (S,)
converges. The closer the expectation value at the zeroth iteration — that is with an
undisplaced basis - is to the converged value the fewer iterations are necessary to

reach convergence.

10 Here, the superscript n denotes the self-consistency loop iteration number.
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Figure 2.29: Expectation value of the site-dependent displacement operator for different iter-
ations. The parametersare N, =8,N, =32,s =04, N =40, A =2, a0 = a,, A =
0.1, and (a) € = 0.1w,, (b) € = 10 "w,. Plotting the same data without taking
absolute value would show the alternating sign of (b1 + b,) = (—1)"|(b + b;)|.

The optimal basis minimizes the expectation value of the displacement operator
(E;r + b;) at each site i of the Wilson chain. Fig. 2.29 shows the expectation values
measured during the self-consistency loop iteration. At iteration number O the basis
is not displaced. The value (b:r + b;) calculated exactly — that is with N; — oo and
N, — co —would be equal to the optimal values for 7; which solve Eq. (2.68).

Due to the logarithmic discretization of the bath and the resulting exponential de-
crease of chain parameters, the displacement parameters -; are expected to grow ex-
ponentially with i. Fig. 2.29a shows that the DMRG solution of the zeroth iteration is
far away from the exact solution: (bf + ;) grows only exponentially for a few sites and
then saturates for the same reason why the displacement expectation value of the dis-
placed harmonic oscillator saturates (cf. Fig. 2.9): connected with a certain number of
modes in the bosonic basis is the maximum occupation and this allows only a certain
maximum displacement.

After the first iteration (cf. Fig. 2.29a) the basis is already better adapted to the prob-
lem and therefore it only saturates at the end of the chain; after the second iteration the
basis is very well adapted to the system and the expectation value is now dominated
by numerical noise. That the expectation value (f?j + b;) is very close to zero after a
few iterations shows that the self-consistency loop iterations indeed yield the optimal
results.

Fig. 2.29b shows (b} + b;) in the course of the self-consistency loop iterations for
€ = 1077wc. This results in a smaller value for (0,) and therefore the bosons are not
displaced as strongly as for € = 0.1w,. The saturation of (b} + b;) is now only visible at
the end of the chain and decreases after a few iterations. No saturation at the maximum
value means that the basis is capable of faithfully describing the state.
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Figure 2.30: (a) Expectation value of site-dependent displacement operator in displaced ba-
sis after different number of sweeps. (b) Relative difference between variation-
ally determined parameters +; and -y: calculated from Eq. (2.68). For both plots
the parameters s = 0.5,N = 40,A = 2,¢ = 0.0lw_,A = 0.1, N, = 32, N, = §,
and « = a_ are used.

So far, the optimal basis is determined iteratively by tuning the displacement param-
eters depending on (S,). After a few iterations the self-consistent Eq. (2.68) is fulfilled.
Now we want to show that if one has found a basis with displacement parameters -;
in which all (b} 4 b;) are minimized, solving Eq. (2.68) reproduces ;.

The first step is to find a basis minimizing the displacement expectation values at
each site. To this end, at each DMRG sweeping step after optimizing the local block the
displacement parameters of both sites of the local block are set to y; = %(b:r +b;). Fig.
2.30a shows, that after a few DMRG sweeps this procedure minimizes the displacement
expectation values of all chain sites evaluated in the new basis.

The next step is to calculate (0,) with this variationally optimized basis and use
Eq. (2.68) to calculate the displacement parameters 7. In Fig. 2.30b the displacement
parameters <y; which are variationally determined in the DMRG run are compared with
those parameters 7; Eq. (2.68) yields. Fig. 2.30b shows that these are up to numerical
accuracy equal. Hence, the proposed method to determine the optimal displacement
parameters yields results consistent with variationally optimizing the basis.

In this section we have proposed an iterative method optimizing the displacement
parameters of the bosonic basis. This procedure yields the same results as variationally
optimizing these parameters in the DMRG sweeping phase. However, as we have
found an analytic set of equations we have gained a deeper insight in the cause of the
bosonic displacements. Unlike the variationally method we realize that the exponential
growth of the displacement parameters is due to the chain parameters. Furthermore,
our equations show that all chain parameters have an influence on the displacment of
each Wilson chain site. Hence, the optimal displacement parameters explicitly depend
on the chain length. This is a conclusive hint that for the simulation of bosonic systems
employing a Wilson chain the effect of the rest-chain is vitally important.
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Figure 2.31: (a) DMRG calculations of the (S,) for different « and s. (b) Determination of «,
for s = 0.5. The fit-function is given in Eq. (2.72). The parameters for both plots

are A =2,N=40,N, =24,N, =8,A =0.1w, and ¢ = 10_7wc. Three iterations
to optimize the bosonic basis are carried out.

2.5.3 Phase diagram

In order to calculate critical exponents for the SBM we need to calculate the numeric
value of the critical coupling a.. This is achieved in two steps: first we perform an «
scan (cf. Fig. 2.31) to roughly determine the position of the phase transition.'’ After-
wards an a scan with a smaller step size for different values of € is carried out.

In the delocalized phase the expectation value (S,) vanishes, and it is finite in the
localized phase. This transition occurs rapidly and (S,) shows a steep increase at the
phase border (cf. Fig. 2.31). The critical coupling is the a value at which this increase
occurs. Numerically this point is found by a first rough a scan and subsequently
calculating more data points at the steep increase (cf. Fig. 2.31b). To determine the
critical value the best fit of the function

(a—a)’
fla) = (dg —dy) exp <— - ) +d; a>a. 272)

d o <

to the data points is calculated. The free fitting parameters are a, and a; dy and d; are
the calculated data points for & = 0 and a = 1 respectively.

However, this way to determine «, does not yield the desired precision and therefore
is only a first estimate. The critical coupling strength is then determined by conducting
an € scan. One expects (S,) o |e]% for @ = a, and thus for a = a, the curve of (S,)(¢€)
is a straight line in a log-log plot. By varying « in small steps — the smallest step size
is 6n = 1077 — & is defined as the value at which (S,)(e) is as close as possible to a
straight line on a log-log scale.

" As discussed in Sec. 2.4.3 one actually observes a cross-over here. Nevertheless, we continue calling

it a phase transition.
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Figure 2.32: With DMRG calculated phase diagram of the SBM. The same parameters as in
Fig. 2.27 are used. The dashed line indicates the NRG results from Fig. 2.22a.

The phase diagram determined in this fashion is shown in Fig. 2.32. There is a good
agreement with the values determined by NRG calculations.

2.5.4 Critical exponents

Besides the critical coupling it is as well interesting how the system approaches the
critical point. This is described by the critical exponents of observables such as the
order parameter, in this case the local magnetization My,.(A, €,a) = (S,) = 1(0,). Two

critical exponents, ¢ (cf. Eq. (2.7)) and B (cf. Eq. (2.8)), are defined

[(S,)| o |e|% for a=a, (2.73)
and  [(S)| & (& — )P for a > a.and e =0. (2.74)

The mean-field exponents for s < J are § = 3 and = 3. Since the DMRG targets only
the ground state, a critical exponent describing the temperature dependent approach
to the critical point, e.g. for the susceptibility y o« T ", is not accessible.

The fits determining ¢ and B are shown in Appendix B (Fig. B.2 and Fig. B.1 respec-
tively). The results of the fits are presented in Fig. 2.33: this figure shows that, with the
DMRG calculations, for s < 1 the mean-field exponents, § = 3 and B = 1, are recap-
tured. This is the central result of this section: by taking the rest-chain into account and
employing an optimized bosonic basis one gets the correct mean-field exponents. For
these calculations several (up to 19) iterations to optimize the bosonic basis are carried
out: the process is iterated until the results converge.

We want to emphasize that our methods do not bias the results in any direction:
there are no a priori assumptions of the optimal displacement parameters and as the
DMRG determines the ground state variationally in the whole Hilbert space there is
no a priori selection of possible ground states.
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Figure 2.33: Critical exponents of the sub-ohmic SBM. The dashed lines indicate the mean-
field expectation. (a) Magnetization exponent % (b) Order parameter exponent
B. The determination of both critical exponents by fitting a power-law function
to the data points are shown in Fig. B.1 and Fig. B.2.
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Figure 2.34: ¢ scan for « = a_. without DMRG sweeps. At the warm-up phase N, = 40
states are kept. Four iterations to improve the bosonic basis are performed.
The dashed line is a guide to the eye.

2.5.5 Without DMRG sweeping

The source of the mass-flow error in the NRG is the neglect of the rest-chain. The
DMRG does not suffer from this error, as in the sweeping phase the whole chain is
taken into account. To simulate the effect of not taking the whole chain into account
Fig. 2.34 shows DMRG results calculated without sweeping.

In this case one does not get mean-field critical exponents. Thus it is vital for bosonic
systems to take into account all effects of the rest-chain. However, one cannot directly
compare the DMRG results shown in Fig. 2.34 with the NRG results shown in Fig.
2.23, as both methods neglect different parts of the rest-chain: the NRG neglects all
sites i > N, with N being the current iteration, whereas the DMRG builds up a chain
of length L by inserting sites in the center. Therefore at iteration N the DMRG neglects
the sites i € [N, L — NJ.
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2.5.6 Numerical errors

The DMRG suffers from two major error sources: (i) the precision of the Lanczos
method to calculate the ground state and (ii) the truncation of the Hilbert space.

When optimizing the local matrix product state (MPS) block the Lanczos method
is used to iteratively calculate the ground state. The iterations are stopped when the
ground state has converged. The convergence criterion is that the relative change of the
ground-state energy between two iterations is less than 10~°. Thus we do not expect
the DMRG calculations to be more precise than this value.

After the optimization of the local block eigenstates of the density matrix are trun-
cated. As the sum of all eigenvalues p; of the density-matrix is one, the sum of all
truncated eigenvalues is a measure for the truncation error, Eq. (1.91). When keeping
N = 24 states the maximum truncation error during the final sweep for the presented
calculations ranges from € ~ 10 M toe~ 1075,

However, the truncation error and the Lanczos precision just give a lower limit for
the error we expect for the observables. Both errors occur when optimizing the local
block. Therefore these errors occur at each site of the chain. Furthermore it is not
clear how both errors interact. An error estimate relying on the numerical data is to
measure how the ground-state energy changes with an increasing number of states.
Without numerical errors one expects that in this case the relative ground-state energy
difference between two calculations with N; and N + 6N; states shrinks continuously
and finally approaches zero for N, — (Né\] +2); here, N is the number of Wilson chain
sites and N, the dimension of the local Hilbert space at each chain site. However, Fig.
2.27 shows that relative ground-state energy difference saturates at O(10™°). Hence,
this value is a lower limit for the numerical precision.

A further — and indeed the most reliable — test is to measure (S,). Deep in the
delocalized phase one expects this value to vanish for e = 0. Observed are values
(S,) ~ ©(107®). In the localized phase (S,) = 1 is expected and 3 — [(S,)| ~ O(107°)
is found."” The maximum error of the DMRG calculations is therefore estimated to be
107°. This is consistent with the data shown in Fig. B.2: if = is below the numerical
resolution of the DMRG setup one observes the emergence of fluctuations.

Like in the NRG calculations the main error of the critical exponents é and f is due to
the fitting-error. The fits for both critical exponents yield errors in the range 0.5%—2.5%.
This is the same relative difference by which the numerical found critical exponents and
those found by the quantum-to-classical mapping deviate in Fig. 2.33. As the analytic
values lie within the margin of error of the DMRG values we are confident that we
reproduce the expected critical exponents with our DMRG calculations.

2 In the localized phase the |1) and || ) states are degenerate for € = 0. Here fluctuations of the initial

random guess wavefunction determine if the |1) or ||) state is the DMRG ground state. To avoid this
random selection in the DMRG calculations a small field e = 10_7a)C is present.
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2.6 Summary

This chapter dealt with different toy models to investigate the effect of truncation of
bosonic states. We showed that the results depend on the selection of bosonic states.
Furthermore, we showed the presence of the mass-flow effect in the dissipative har-
monic oscillator (DHO) and explained this effect by a shift in the real part of the
bosonic self-energy. This effect is also present in the spin-boson model (SBM) and
can be cured by taking the effects of the rest-chain into account.

It was shown that the quantum-to-classical mapping does not fail for s < 1 by
extracting mean-field critical exponents from the density-matrix renormalization group
(DMRG) data. There are two advantages of the DMRG over the numerical renormali-
zation group (NRG) for this model:

(i) The DMRG sweeping process explicitly takes into account the effect of the whole
chain. The NRG neglects at each iteration the rest-chain. This leads to a tempera-
ture dependent renormalization of model parameters — the so-called mass-flow effect
— through which the NRG targets the wrong subspace.

(ii) For the DMRG an optimal way to construct the bosonic basis was proposed. This
optimization relies on the displacement of the bosonic modes and fails for the NRG,
because the displacement parameter of a given site depends on the rest-chain. Hence,
if one would employ this iterative optimization scheme for the NRG the displacement
parameters would only be optimal for the last iteration. This, again, leads to a targeting
of the wrong subspace.

In contrast to the optimal basis proposed in Ref. , our approach only needs a
single observable, (S,), to calculate all displacement parameters. The procedure of Ref.

relies on optimizing the basis at each sweeping step and takes the displacement
expectation value <b:r + b;) of site i as a guess for the optimal displacement at each
sweeping step. Finally this leads to the optimal displacement. As our method, this
method relies on an iterative improvement of the bosonic basis. However, in Ref.

this is reduced to a numerical optimization problem, while in our formulation
physical insight is gained by identifying the underlying mechanism responsible for the
displacements.

This concludes the discussion of the SBM. We have seen that there is a conceptual
error in the NRG due to the neglect of the rest-chain. In the next chapters we discuss a
different effect which comes along with the neglect of the rest-chain or, in other words,
with the neglect of part of the bath: in the time-dependent numerical renormaliza-
tion group (TD-NRG) one observes unphysical features in time-dependent expectation
values which are due to the truncation of the bath.



Chapter 3

Discretization Artifacts in the
Resonant-Level Model

Gaining insight in the nonequilibrium dynamics of strongly correlated condensed mat-
ter systems poses a great challenge. The interest in such systems is on the one hand
driven by the fundamental question of the interplay between coherent single particle
dynamics with environmental induced decoherence; and, on the other hand, recent
experiments with ultracold atomic gases [14, 5] and quantum dots (QDs) [20, , ]
succeeded in developing and probing such systems. Furthermore, new time scales
might emerge not present in equilibrium.

One class of quantum systems suitable for studying nonequilibrium physics are ul-
tracold atomic gases in optical lattices [3]. These systems allow the simulation of the
dynamics of a many-body Hamiltonian under precisely tunable conditions. A recent
example is the simulation of the one dimensional Bose-Hubbard model with both an
ultracold gas in an optical lattice and the time-dependent density-matrix renormali-
zation group (TD-DMRG) [14]. Here, the system is prepared in a state with every even
site occupied and every odd site unoccupied. Starting at ¢t = 0 the state is evolved with
the Bose-Hubbard Hamiltonian for a time ¢ after which some observables are mea-
sured. The measured values of the TD-DMRG simulation and the experimental data
agree very well. However, the reachable time scales of the experiment exceed those
of the TD-DMRG considerably rendering this setup a demonstration of a dynamical
quantum simulator.

Another prominent example of highly controllable nonequilibrium quantum systems
which were recently experimentally realized are QDs with a time-dependent gate volt-
age [16, 17]. The setup of Elzerman et al. consists of a semiconductor QD in an external
magnetic field coupled to a bath [20]. The external magnetic field splits the up- and
down-spin levels of the QD by the Zeeman energy. By manipulating the gate voltage
it is possible to change the energy of the two levels relative to the Fermi energy. The
objective of this experiment is to measure the direction and relaxation rate of the spin

of an electron which tunnels out of a reservoir onto the QD.
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One can control the tunneling process of electrons from the bath to the QD by ma-
nipulating the gate voltage. Initially, the gate voltage is set to a value such that both
levels are above the Fermi energy thereby emptying the QD. Then the gate voltage is
increased, lowering both states below the Fermi energy and allowing one electron with
unknown spin to tunnel on the QD; this process happens on the time scale ¢. Double
occupancy of the dot is prevented by operating in the Coulomb blockade regime.

Now that the dot is filled with one electron the gate voltage is tuned to such a value
that the Fermi energy lies in the gap between the spin-up and spin-down states. For
the spin-up state it is energetically favorable and for the spin-down state energetically
unfavorable to be occupied. Hence, if the QD is occupied by a spin-up electron the
state does not change. However, if the QD is occupied by a spin-down electron this
electron hops back into the bath and, subsequently, a spin-up electron hops onto the
QD. Therefore, one can distinguish both initial states by detecting the hopping process.
The measurement of the current at a quantum point contact shows different signatures
whether a hopping process occurs or not and thereby allows the distinction if the QD
is initially occupied by a spin-up or spin-down electron. Furthermore, by varying the
delay time between the filling of the quantum dot and the shift of Fermi energy in the
gap between both states, this experiment allows to measure the spin-relaxation rate of
the spin-down state.

Petta et al. demonstrated in Ref. that it is possible to create a qubit with two QDs.
Here, again, the key ingredient of the preparation and manipulation of the qubit state
is the control of the gate voltages and the read-out relies on spin-to-charge conversion.
In a more advanced setup it was shown that one can realize a qubit with three QDs
[146].

In our treatment the QD is modeled using the interacting resonant-level model
(IRLM) [23, 147]. This model accounts for a gate voltage, a hopping term between
the dot and the lead, and a Coulomb interaction between the dot electron and the lead
electrons. Thus, it is used to describe a single QD coupled to a single lead. The model
can be generalized to the case of more than one lead [145]. However, in this work
we are mainly concerned with presenting a numerical method suited for treating such
models and we therefore restrict ourselves to the simplest case of just one lead.

When the IRLM was first proposed by Vigman and Finkel’shtein in 1978 [147] and
by Schlottmann in 1980 [23] the interest was mainly driven by the desire to deepen the
understanding of Kondo physics: indeed, Ref. 23 shows a mapping of the IRLM to the
anisotropic Kondo model. The advent of fabrication techniques for nanodevices lead
to experiments showing that the Kondo effect can be detected in QDs as well [25, 26].
Hence, it is not surprising that the IRLM is not just a model which appears in the
context of Kondo physics but which is also a model for a QD dominated by charge
fluctuations.



3.1. Objective of the studies 99

3.1 Objective of the studies

We are interested in the nonequilibrium dynamics of the IRLM. In preliminary stud-
ies we show that employing the standard time-dependent numerical renormalization
group (TD-NRG) [76, 77] one observes artifacts due to the discretization of the contin-
uous conduction band. We investigate the role these artifacts play in TD-NRG simu-
lations and how to reduce these. Unlike other approaches dealing with discretization
artifacts for numerical renormalization group (NRG) calculations [33, 34, 83, , ]
we do not stick to a Wilson chain [28] but explore the use of different types of chains.

This chapter and the following relate to each other. In this chapter we examine the
non-interacting resonant-level model (RLM) in nonequilibrium: a single fermionic level
is coupled to a conduction band and the level energy is suddenly switched from E; to
E; at time t = 0. This model is exactly solvable for both a continuous conduction band
and a discretized band mapped to a Wilson chain. This allows to quantify artifacts due
to the discretization of the continuous conduction band. These artifacts are present in
all TD-NRG simulations.

The artifacts are caused by the limited energy resolution with which the conduction
band is sampled. In a nonequilibrium impurity system coupled to a Wilson chain the
discretization artifacts manifest as reflections of a charge wave within or at the end of
the Wilson chain. To minimize discretization errors we investigate different ways of
the discretization of the conduction band by proposing the use of hybrid chains. For
the first time, we explore the use of a special hybrid chain, the so-called double Wilson
chain (DWC), instead of a Wilson chain. A DWC consists of two Wilson chains with
different discretization parameters patched together. We find that this construction is
the most advantageous as it not only minimizes the discretization errors but it also
allows to simulate the system on longer time scales as compared to a pure Wilson
chain.

When discretizing the continuous conduction band one has to make sure that the
discretized version of the band is a good representation of the continuous band. We
show that one recovers with the DWC the results for the continuous model on arbitrary
long time scales. For practical calculations, this is not possible with a Wilson chain. A
Wilson chain yielding results comparable to the continuous solution or a DWC needs
a discretization parameter A very close to one and, consequently, the number of chain
sites increases exponentially. In an NRG run, this would lead to a number of kept
states out of reach for modern computer systems.

Hence, it is unfeasible to solve hybrid chains with the TD-NRG. Therefore we pro-
pose in Chapter 4 a new hybrid method combining the advantages of the TD-NRG
and the TD-DMRG. This method employs an NRG run by which an effective low-
energy Hamiltonian is constructed. Diagonalized this Hamiltonian forms the so-called
hyper-impurity. One then employs a second method to simulate the time evolution of
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a system consisting of this hyper-impurity coupled to a second chain. In our case this
second method is the TD-DMRG, but one could use other methods like the Chebyshev
expansion technique (CET) [90] as well.

The new method bipartitons the Hamiltonian in a high- and low-energy sector.
Only the high-energy sector is treated with the NRG. For the low-energy sector the
TD-DMRG is employed: this method simulates a system with an effective bandwidth
some orders of magnitudes below the bandwidth of the original system. The require-
ment of the TD-DMRG for a Trotter timestep at least one order of magnitude below the
inverse bandwidth renders the TD-DMRG inefficient for systems with a large band-
width. Therefore, in the wideband-limit the original system is not solvable with the
TD-DMRG on its own. Besides presenting the new method, Chapter 4 also benchmarks
this method on basis of the RLM. Here one finds an excellent agreement between the
new method and exact results.

Finally, in Chapter 5 we turn to the IRLM. After discussing the model in more de-
tail, time-dependent expectation values are calculated using the new hybrid method.
We discover that in the impurity occupation number oscillations develop with charac-
teristics determined by the interaction strength. These oscillations are explained in a
strong coupling treatment of the model: in the strong coupling limit the new method
yields results agreeing with the analytic predictions. However, for intermediate values
of the coupling strength no analytic results are available but as our method works in
the whole parameter regime we obtain reliable results for this regime as well.

3.2 Resonant-level model

In this section we examine the RLM. This model serves as effective low energy model
for the strong coupling fixed point of the single impurity Anderson model (SIAM)
[3]. One of the first experimental relevant applications of the RLM is the fitting of a
theoretical model to the experimental data of the magnetization curve of AgFe [151].
For the RLM the current through the impurity for a resonant-level coupled to two
lead [152] can be calculated exactly. Furthermore, with a similar purpose as in this
work, the RLM is used in Ref. to benchmark the accuracy of the TD-DMRG with
time-dependent Hamiltonians.

However, in this section we are mainly interested in the RLM as it is exactly solvable
and thus allows us to (i) detect errors due to the discretization of the conduction band,
which is necessary to treat the RLM with the NRG; and it allows us (ii) to compare
the results of numerical methods with the exact results in order to quantify numerical

errors.
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3.2.1 Model Hamiltonians

The RLM describes one single fermionic level coupled to a bath of fermions, which in
the following are considered to be spinless. The Hamiltonian is given by

H(t) = Eq(t)d'd + \/‘;\]—l ; (d+fk +f1:rd) + ;ekfljfk- (3.1)

The operators d" and d create and annihilate a fermion on the local level, while the
operators f,:r and f; create and annihilate a fermion in momentum state k of the bath.
The time-dependent energy of the local level is E4(t), V is the hybridization, and ¢, the
dispersion of the bath. These parameters depend on the hybridization function which
defines the effect of the bath on the impurity. The number of k-modes is given by N;.

In the present formulation the impurity couples to all modes of a continuous bath.
For NRG calculations one has to discretize the bath. After mapping the discretized bath
to a Wilson chain of length N the Hamiltonian reads for a symmetric hybridization
function

N-2

Hy(t) = Eq(t)d'd +V <d+c0 + ch) + )t (c;cnﬂ + czﬂcn) . (3.2)
n=0

The operator cz (c,) creates (annihilates) a spinless fermion on the Wilson chain site
n. The hybridization V is defined in Eq. (1.41) and the hopping parameters t, for a
constant hybridization function with support in the interval [—D, D] are given by Eq.
(1.39).

In the following two sections exact expressions for the impurity occupation number
expectation value (ny) = (d'd) are derived for the continuous bath and the discretized
bath, in order to compare the continuum results with the results for the Wilson chain.

3.2.2 Green’s function solution for the continuous model

In this section the expectation value of the occupation of the local level (ny4) is calcu-
lated exactly in the wide-band limit. As the energy of the local level is time-dependent
this expectation value is in general time dependent as well, (1g)g ) (t). However, be-
fore allowing time-dependence we calculate the equilibrium occupation (ngq) with
E4(t) = E4.

Using an equation-of-motion ansatz one can calculate the equilibrium Green’s func-
tion of the local level

o
Z—Ed—Z(Z)

2
with the self-energy X(z) =) m
A Z — €

< d|d' > (z) =
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For V = 0 these equations yield the Green’s function of a free level with a J-like spectral
function peaked at Ey: the lifetime of a single level is infinitely long. When turning on
the hybridization term the spectral function is broadened and the lifetime takes a finite
value.

In the remaining chapters we assume a constant density of states (DOS) for the bath,

A |w| <D

pl) = Dol —e) = {ZD

, (3.5)
0 |w| > D

where 2D is the bandwidth. The imaginary part of the self-energy %(z) is connected
to the DOS by

lim Im(w +i6) = —nV2p(w) =: Zi(w) (3.6)

and the real part for this DOS is obtained by the Kramers-Kronig relations and reads

V> |w-D
ReX(w) = D In o D| =: 2 (w). (3.7)
The spectral function of the local level is given by
Alw) = 1 limIm < d|d" > (w + i6) (3.8)
7T 6—0
= ~ lim 0~ Ziz(‘”) - (3.9)
o0 (w — BEg — Zp(w))” + (6 = Zi(w))
In the wide-band limit one can neglect the real part and obtains a Lorentzian
V2
Alw) = 2D : (3.10)

(w— Ed)2 + (7%2)2

with width I' = 7%2 centered at the position of the impurity level, w = Eg. Since this is
the same result as Eq. (1.28), the width of the local level is the same for the continuous
and the discretized model. Consequently, the decay rates of a local level coupled to a
discretized and a continuous bath are the same.

For T = 0 the equilibrium occupation of the local level is given by

0

(ng) = / A(w) dw = % - %arctan <]if1> . (3.11)
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For finite temperatures one has to integrate over the whole w-axis and insert the Fermi
function into the integral similar to Eq. (3.12) below.

In Ref. the result is generalized to systems out of equilibrium. Here the model
parameters Ey and V are assumed to be time-dependent and by using the Keldysh
technique Ref. gives an analytic expression to calculate (n4), r, (t) after a quench
at t = 0. This expression, Egs. (50) and (51) in [76], is used extensively in the following
and reads

2
(e, (1) = pr [ fo(€)|Ke,z, (e 1) de (312
i 14 (i 14 %4
ith K _ et (iE+T)t i .
with Keplet) =e " p g —oy e T+i(E—e) T+i(E—e)
(3.13)

With (ng)g g (t) we denote the time-dependent occupation number of the level for a
quench from the initial value E; to the final value E; att = 0, E4(t) = E;®(—t) + E{O(t);
all other parameters are constant in time." pr is the DOS at the Fermi energy, in this
case pp = 5, and fg(€) is the Fermi function at inverse temperature f = 1. For T #0
the integral in Eq. (3.12) has to be solved numerically, whereas for T = 0 an analytic
solution is given by Eq. (53) in [76].

After quenching the impurity energy from E; to E; we expect the system to evolve
to the thermal state of the level being at the energy position E;. This means, that for
t — co the level occupation is supposed to be

(nq)g, g (t = ) = (ng)g g (t = 0). (3.14)

To show that this is indeed the case, Eq. (3.12) is used to reformulate the condition
given in Eq. (3.14)

2 2
lim ‘KEi,Ef(& t)‘ = ‘KEf,Ei(&O)} (3.15)
1w o 016

To(e—E) 4T T (e—E) 4TV
Hereby we have shown that after the quench the system approaches a new thermal
state, which is the same state as if the system had been prepared in the state with

2
, Eq. (3.10), is a Lorentzian of
2

E4(t) = E;. For t — oo the function ‘KEi,Ef(e,t — 0)

width T, as one expects from the discussion above. In this case |Kg p (€, — o)

1 Note that Egs. (50) and (51) in [76] are slightly different and are more general as they allow a quench
of V as well.
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Figure 3.1: The function |K(e, )|, where the integral kernel K(e, t) is defined in Eq. (3.13), at
different times. The system is quenched from E; = —I' to E = —I'att = 0. The
dashed lines indicate the position of E; and E;.

coincides — up to a normalization factor — with the spectral function A(w) of thermal
state with E4(f) = E;.

In Ref. it is noted that the decay of the impurity occupation is governed by the
two relaxation rates 2I' and I'. This result is deduced from an exact expression for
(ng)(t) at T = 0.> We want to show that this still holds for finite temperatures.

In this case the impurity occupation number is calculated by Eq. (3.12). As the Fermi
function does not depend on time, the decay is due to |K(e, t)|. The function |K(e, t)|?
has a peak at € = E; for t = 0 and for t — oo there is one peak at € = E;. At all other
times it has two peaks located in the vicinity of € = E; and € = E;, where the first peak
shrinks in time while the other one grows (cf. Fig. 3.1). The exact positions of the two
peaks for intermediate times depends on overlying oscillations. However, to measure

the decay the position of the peak is not important but the value of |K(e, t)|* for € = E;,

e 2T (rzeztr +(E - Ei)z)

|K(E;, t)] — (r2 T EOZ)

(3.17)

This shows that the relaxation rate of the first peak is given by 2I'. In the same way one
can show that the built-up rate of the second peak is 2I" as well.

For € ¢ {E; E} one observes overlying Rabi oscillations with frequency E;. For
example, for € = 0 one obtains

=il KODP =e T (B~ E)* + (EX +17)

+e T (2T sin (tE¢) (Ef — E;) + 2E; cos (tE¢) (Ef —E;)). (3.18)

2 Inthe following, the subscripts E; and E; are dropped.
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An explicit expression for the factor C(0) is given below in Eq. (3.19).

Eq. (3.18) shows that the Rabi-type oscillations with frequency E; decay with the
relaxation rate I'. For € ¢ {E;, E; 0} one obtains an expression similar to Eq. (3.18)
but with additional terms o cos(et)e " and « sin(et)e " and further e dependencies.
These terms decay on the time scale {. Furthermore, for an arbitrary € the factor C(0)
in Eq. (3.18) is replaced by

2DT

o= m (124 (B —e)’) (1 + (B —e)°)

(3.19)

Hence, we can calculate the limit |K(|e| — oo, t) |2 — 0.

3.2.3 Exact diagonalization of the discretized model

To calculate the nonequilibrium impurity occupation expectation value (n4)(t) for the
discretized model one could approximately diagonalize the Hamiltonian Eq. (3.2) with
the NRG. This induces truncation errors and when comparing (n4)(t) for the dis-
cretized model with the continuous solution it is not clear to what extend the devia-
tions are due to the discretization or due to the truncation.

However, as the Hamiltonian Eq. (3.2) is bilinear one can efficiently diagonalize it
exactly. The derivation of an exact expression for the impurity occupation after a
sudden local quench, E4(t) = E;®(—t) + E©O(t), is presented in Appendix C. The
central result is that the occupation of the mth site of the chain, where m = 0 denotes
the impurity and m > 1 denotes the Wilson chain site m — 1, is given by

1 k=1 ; f N-1
m m
(n,)(t)=Y_ Y 2cos ((ek — ek/)t> O + Y 0. (3.20)
k=1k'=0 k =0

The eigenvalues of the final Hamiltonian are e,f{ and the matrix elements of ®" de-
pend on the inverse temperature p, the site index m, the eigenvalues of the initial
Hamiltonian e}{, the eigenstates of the final Hamiltonian, and the overlap between the
eigenstates of the initial and the final Hamiltonian. A formula to calculate ®" is given
in Eq. (C.23).

Unlike the occupation of the continuous model, Eq. (3.20) does in general not ap-
proach a steady-state for t — co. For a steady state all oscillating terms have to cancel
each other out. This is trivially fulfilled for ®;,, = 0; in this case there is no time de-
pendence, E4(t) = E. In other words, the initial Hamiltonian, H' = H(t < 0), and the
final Hamiltonian, H' = H (t > 0), are the same, H = H.
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. w .
If all frequencies wy, = e,f( — elf{/ are mutually commensurable, that means % is a
1

rational number for all k,k’,1, and I’, there is a time t* at which the state returns to the
initial state,

() (pt") = (m) (qt")  p,q € Ny, (3.21)

This is the opposite scenario to a thermalized state as the system does not equilibrize.

However, the time scale t* can be orders of magnitudes longer than all other relevant

27
wkk/

time scales. The maximum value is t* = [T,

In general, some frequencies might be close to commensurability while most others
are not. This leads to small oscillations in the occupation for most times but at some
points in time the almost commensurable oscillations add up to larger peaks or dips
in the occupation number. Nonetheless, as not all frequencies are involved the peaks
or dips do not gain the height of the initial occupation and because the frequencies
are usually not strictly commensurable the peaks and dips are broadened in time. The
exact behavior depends on the details of the chain and is subject to the discussion
below.

3.3 Reflections within the chain

Strictly speaking, when solving the discretized RLM numerically all frequencies are
commensurable, as the numerical precision is limited. This means that after the time
t* the system returns to the initial state. However, the time t* is several orders of
magnitudes larger than all relevant time scales of the system. Therefore this effect is
neglected.

Relevant recurrences are due to conservation laws, the discretization of the continu-
ous bath, and the finiteness of the system. For a quench of E4(t) the occupation of the
local level changes. The operator of the total occupation N = d'd+ YNt cle, com-
mutes with the Hamiltonian Eq. (3.2), [H, N] = 0. Hence the total charge is a conserved
quantity and changing the local occupation inevitably changes the occupation of the
Wilson chain sites. By shifting the local level position E; — E; the local occupation
changes and the chain has to compensate the excess charge: a charge wave is injected
into the chain and propagates through the chain, governed by the continuity equation.

The details of this propagation depend on the choice of the chain parameters. If one
sets all hopping parameters to the same value which is of the order of the bandwidth
one ends up with a tight-binding chain. These chains are characterized by a constant
velocity of the charge wave and no internal reflections. The chain has to be sufficiently
long to reach a good energy resolution of the conduction band at low-energies.

If one wants to reach this resolution with a short chain, one can opt for a Wilson
chain. Here, the conduction band is sampled on a logarithmic mesh resulting in expo-
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nentially decaying hopping parameters and therefore the velocity of the charge wave is
decreased as it moves along the chain. This results in internal reflections, as discussed
below.

To avoid internal reflections we propose the concept of hybrid chains: combining
one discretization scheme for high-energies with another discretization for the low-
energy sector. In practice, this results in a short Wilson chain with a large discretization
parameter A reducing the effective bandwidth of the system rapidly over a few sites.
This chain is, in turn, coupled to a second chain, with arbitrary parameters: these
can be constant, exponentially decreasing, or be determined by the continued fraction
expansion (CFE) [79] of the effective bath needed to restore the continuum at the last
Wilson chain site.

We investigate two different hybrid chains: (i) a Wilson tight-binding hybrid chain
(WTBC) and (ii) a double Wilson chain (DWC). Both chains consist of a Wilson chain
coupled to a (i) tight-binding chain or (ii) a second Wilson chain with a discretization
parameter very close to one. The difference between both approaches is that in a WTBC
the charge wave propagates within the second chain with a constant velocity propor-
tional to the effective bandwidth. In the DWC, however, the charge wave is slowed
further down resulting in longer simulation times. Another advantage of the DWC
over the WTBC is the improved energy resolution at the low-energies. The following
sections examine these different kinds of chains in more detail.

3.3.1 Tight-binding chain

In this section we investigate a simple tight-binding chain f, = D, where 2D is the
bandwidth. Only in this case it is possible to transport the whole excess charge, which
is transferred from the impurity to the first Wilson chain site, from the first to the
last chain site: if not all hopping parameters ¢, are equal only a fraction of the whole
charge is transported through the chain. To make this claim plausible we consider a
chain consisting of three sites with the Hamiltonian

1
H=Yt, (c:rlan + cjlﬂcn) . (3.22)
n=0

At t = 0 the system is prepared in a state in which the total charge n is located at the
site n = 0, while the two other sites are unoccupied, (chc,) = 1y and (cic;) = (chey) =
0. For the RLM this corresponds to the state just after the quench, when the charge
ny was transferred from the impurity to the first Wilson chain site, assuming that this
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process is infinitely fast, I' — co. The time-dependent occupation numbers of the first
and last site are computed to be

2
<t12 + toz COSs (\/ toz + t12t>)

(cheo) (£) = ng R (3.23)

(107 +17)

2
t12t02 <cos (\/ toz + t12t> — 1>

(e262) (1) = mg A (3.24)

(1 +17)

The maximum occupation numbers are
max (cpco) (t) = ng (3.25)
2,2

and max (chc,) () = ng At (3.26)

(té n t%)z'

Equation Eq. (3.26) has the same form as the Breit-Wigner formula, which can be used
to calculate the transmission of a QD coupled to two leads [153, Sec. 5.4.3]. Here, one
has to identify the hopping parameters with the transition rates to the left and right
lead: f§ « I'z and ] o« T. Hence, this toy model — consisting of three sites — yields
the same functional form of the transmission coefficient as a QD coupled to two leads.
One can therefore consider the central site as the QD and the right and left site as
a representation of the left and right lead and calculate the current through the QD
[154]. This current is maximal for a symmetric coupling to the left and the right lead,
I, =Ty

From Eq. (3.26) follows that the whole charge 1, does reach the second site if and
only if |fy] = |t1]|. Hence, only in a tight-binding chain the charge n, is transferred
from the first to the last chain site. In all other cases only a fraction of the initial charge
reaches the last site. In this calculation and for all following results in this chapter we
set the temperature to T = 0.

Physically, in the RLM the charge propagates through the chain as a wave package
with an initial width o L until it reaches the end of the chain. Due to conservation
of charge the wave package is reflected and moves back to the impurity (cf. Fig. 3.2a).
Since for a tight-binding chain the hopping-parameters are all the same, the velocity of
the wave package is constant and its form does not change while propagating through
the chain as shown in Fig. 3.2b. At the first and last sites the right and left moving
parts of the wave package add up to a larger occupation. Therefore, at both ends of
the chain the form of the wave package is different.
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Figure 3.2: Site and time-dependent occupation of chain sites for Hamiltonian Eq. (3.2) with
tight binding chain calculated with Eq. (3.20). (a) Color coded is the occupation
calculated with Eq. (3.20). (b) Cuts through the left panel at certain times. Only
even sites are shown. The parameters are —E; = E, =T, D = 10I, T =0,N =
150, and the tight-binding hopping parameter ¢, = D.

The maximum simulation is defined as the time, when the charge wave package
reaches the impurity again for the first time. For a tight-binding chain this time scales
linearly with the number of chain sites and the inverse bandwidth.

For our considerations the tight-binding chain is analogous to classical wave me-
chanics: imagine a waveguide with one hard end and a linear dispersion. If one injects
a wave package at the other end it travels through the waveguide and is reflected at
the hard end. Due to the linear dispersion the group velocity equals the phase veloc-
ity, hence all frequencies travel with the same velocity and the wave package remains

form-invariant.

3.3.2 Wilson chain

For a tight-binding chain recurrences occur due to reflections at the end of the chain:
because it is energetically unfavorable to deposit the charge at the last site, the charge
wave reverses direction and moves back to the impurity. In this section we show that
for Wilson chains reflections within the chain play the major role.

Internal reflections

Unlike for a tight-binding chain, the chain parameters ¢, decrease with the site index

2,2
n for a Wilson chain and Eq. (3.26) states that in this case only the fraction Wig“

(tﬁ+t11+1)2
of the charge is transferred from site n to site n + 2. For a Wilson chain the hopping
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parameters are f, « A and thus the fraction v of the charge transferred from site n
to site n + 2 is given by

V= % (3.27)

(A+1)

Of course, this equation is not strictly true for an arbitrary site within the Wilson chain,
since the effect of the rest-chain is neglected, but it describes the qualitative behavior
well. For A — 1 one recovers the continuum limit and the Wilson chain coincides
with a tight-binding chain. However, for A > 1 a fraction (1 — v) of the charge is
reflected within the chain and propagates back to the impurity. A small fraction of this
back-moving charge can get reflected once more and thus again reverses its moving

direction. In principle one has consider an infinite number of reflection processes.
4

T is close enough to one in order to
neglect all but the first reflection in the discussion. Of course, in the numerical solution

However, for the values of A considered here

all reflection processes are present.

As shown in Appendix C, the velocity of the charge wave is proportional to the
hopping parameter, Eq. (C.32), and therefore the charge wave slows down while prop-
agating through the Wilson chain. Furthermore, it increases in amplitude and eventu-
ally enough charge accumulates at a few sites that the fraction of the charge that gets
reflected becomes significant and is visible as a back-moving wave.

The round-trip time T;Ound*trip

it takes a fraction of the charge to travel from the first
Wilson chain site to site m, get reflected, and travel back to the first Wilson chain site
can be estimated very accurately. At the core of this estimate is an expression for the
time fy,,, it takes one fermion to hop from one to the next site. The round-trip time
time is twice the sum of all hopping times from the impurity to the site m. The hopping
time #,,, is given in Eq. (C.32).

The time TP it takes the charge wave to arrive at site m is given by

1 round —trip trip = i =
~TX =ToP = E thop = Z (3.28)
i=0

2 i=0 6ti .
Fig. 3.3a shows the occupation of site m versus time t. Obviously the analytic curve
indicates the position of the charge wave front and therefore the analytic estimate for
the wave velocity agrees well with the numerical results.

Fig. 3.3b shows that the occupation of the impurity declines on time scales of the
relaxation rate I'. For A = 1.05 the occupation reaches a new equilibrium value and is
constant on the shown time scale. However, for larger values of A oscillations emerge,
and thus the impurity occupation does not equilibrate. These oscillations are due to
internal reflections within the Wilson chain. The fraction of the reflected charge v
shrinks for increasing A and for A — 1 the total charge is transferred as v — 1. This
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Figure 3.3: Occupation number results for the RLM calculated with Eq. (3.20). (a) The time-
and site-dependent occupation (c! ¢, ) of a Wilson chain with A = 2 and N = 81
is shown color coded without impurity and only sites m < 20. The curve shows
the propagation of the charge wave calculated with Eq. (3.28). (b) The occupation
of the impurity for different values of A. The chain lengths are tuned according

to A‘g ~5-10"'2. The arrows in the left panel indicate, for the A = 2 curve, the
same positions as the arrows in the right panel: the positions of the peaks of the
impurity occupation number are at the same time, when the back-moving waves
reach impurity. The parameters for both plots are —E; = E; =T, D = 10T, and
T =0.

means for larger values of A the internal reflections become more pronounced. In
Fig. 3.3a the reflected wave is apparent as back-moving occupation. The points on
the time-axis when it hits the impurity are indicated by arrows; the position of these
arrows coincide with those points on the time-axis at which the impurity occupation is
peaked, Fig. 3.3b. Hence, the dominant source of errors is due to reflections within the
Wilson chain: this is a discretization artifact.

Comparing this phenomenon with classical wave mechanics, one could think of a
water wave approaching the coast: as the water wave enters shallow water the water
depth dependent velocity causes an increase of the amplitude due to particle conserva-
tion. This can lead to tsunamis. In analogy the charge wave propagating through the
Wilson chain is sometimes referred to as NRG tsunami [155].

To illustrate this further Fig. 3.4 shows the occupation number of the Wilson chain
sites at different times. At short times, the charge wave moving through the chain is
visible as a pronounced peak gaining in amplitude as it propagates through the chain.
However, eventually it reaches a site at which a significant fraction of the charge is
reflected and moves back headed for the impurity, while the rest occupation of the
peak continues the slowed down movement through the chain. In Fig. 3.4 the back-
moving peak is indicated with an arrow pointing to the left; this portion of the charge
travels back to the impurity and prevents the impurity occupation to reach thermal
occupation of the final state permanently.
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Figure 3.4: Occupation of the Wilson chain at different time steps calculated with Eq. (3.20).
The arrows at the peaks indicates the direction in which the corresponding peak
is moving. The parameters are A = 1.6,N = 120,—E; = E; = I, T = 0, and
D =10T.

Comparison between discretized and continuous model

The analytic solution for the occupation number of the impurity level (ny), Eq. (3.11),
is valid in the wide-band limit. In order to compare the impurity occupation number
of the model with a discretized bath, Eq. (3.2), with the solution for the continuous
bath we have to determine a value for D for which the wide-band limit is fulfilled.
Therefore the equilibrium value of (n4)g, is calculated for different level positions Eq
and values of the bandwidth D (cf. Fig. 3.5). As expected, the curves for the discretized
model approach the continuum solution for increasing D. To quantify this, a fit of the
function

n(Eq) = % - %arctan <]1::‘j> (3.29)
is carried out. The only free fitting parameter is I',. This function has the same form
as the analytic occupation in the wide-band limit Eq. (3.11), except that I is replaced
by the renormalized value I'.. Hence we expect I'. — I' for D — oo. Fig. 3.5b shows
that this is indeed the case. Note, that the curves depend only very weakly on the
discretization parameter A.

The relaxation rate I' is defined as the width of the impurity spectral function. This
function depends on the bath and is therefore different for a discretized and a contin-
uous bath. To get comparable results one has to make sure that the effective relaxation
rates for both models are equal. Hence, for the discretized bath the effective relaxation
rate I'yg is introduced. Usually this means, that one has to tune the bare model parame-
ter I' in order to make sure that both models operate with the same effective relaxation
rate I'.s. However, in the current setup the difference is small enough to neglect the
distinction between I' . and I'; instead we use I'ys = I'. However, in the next sections,
when dealing with hybrid chains, this an issue one has to take care of.
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Figure 3.5: (a) Impurity occupation number for a Wilson chain with A = 1.8 and N = 96 sites
in the ground state. The continuum solution is calculated with Eq. (3.11), all other
curves with Eq. (3.20). (b) T', determined by fitting the function Eq. (3.29) to (ng),

curves (left panel). The parameter N is chosen such that the energy scale of the
last iteration is the same as in the left panel.

Fig. 3.6 shows the time-dependent occupation number of the impurity after a sud-
den local quench of the impurity level position E; — E; at t = 0. For all choices of the
discretization parameter A and impurity level energies the discretized model yields on
small time scales ~ I'yi the same behavior as the continuous model. However, even-
tually charge is reflected within the Wilson chain, propagates back to the impurity (cf.
Fig. 3.4), and manifests as peaks in the time-dependent impurity occupation number.
These peaks are unphysical and the result of discretization artifacts which vanish for
A —1.

For A close enough to one, it is possible to faithfully simulate the system up to a
certain time. This time does not only depend on A but on E; and E; as well: the
larger the difference between thermal initial and thermal final impurity occupation is
the more charge the Wilson chain has to absorb. Hence the amplitude of the charge
wave is higher and more charge is reflected at each Wilson chain site; significant back
reflections occur earlier in the chain reducing the time scale on which one can faithfully
simulate the system.

3.3.3 Hybrid chains

Generally, it is possible to simulate the RLM using a Wilson chain albeit the simulation
time is limited for values of A which are commonly used for NRG calculations. To
reach longer time scales one has to avoid the internal reflections and reflections at the
end of the chain. To this end we propose the use of hybrid chains: the first part of the
chain of length Nj is a Wilson chain with discretization parameter A;; for the second
part, which consists of N, chain sites, one employs a different discretization scheme.
This is realized by using a second Wilson chain with discretization parameter A,, a
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Figure 3.6: Time-dependent impurity occupation number (ny) for different values of A cal-
culated with Eq. (3.20) for T = 0. (a) —E; = E; = I'y¢. The continuum curve lies
almost on top of the A = 1.01 curve. (b) —E; = E; = 10T .. For both panels the
chain length N is chosen as in Fig. 3.5.

tight-binding chain with constant hopping parameters, or even a chain with arbitrary
hopping parameters.

The general goal of all hybrid chain approaches is to find a chain which is a good
representation of the continuous bath with a minimum number of chain sites: we want
to reproduce the continuum solution with a minimum of numerical effort. Therefore
we propose three different kinds of hybrid chains, two of which we investigate further.

Employing a so-called double Wilson chain (DWC) allows one to discretize the con-
duction band in the low-energy sector, which is defined by the energy scale of the last
Wilson chain site of the first Wilson chain, with a higher resolution. Therefore the sec-
ond discretization parameter A, is closer to one than A. The dynamical properties of
the systems we are considering are determined mostly by the low-energy sector and a
high energy resolution of this sector improves the results considerably.

We call the second kind of hybrid chains we investigate Wilson tight-binding hybrid
chain (WTBC). Here, a tight-binding chain is coupled to the first Wilson chain. The
tight-binding chain hopping parameters are given by the effective bandwidth at the
last Wilson chain site. The WIBC and the DWC are equal in the limit A, — 1.

Furthermore, we allow for the second chain to have completely arbitrary chain pa-
rameters with the requirement that the total hybrid chain is a good representation of
the continuous band. Here, we propose an idea how one could determine the chain
parameters of the second chain and fulfill this requirement: the parameters are calcu-
lated employing a CFE [79] of an effective bath which restores the continuum on the
energy scale of the last Wilson shell.

This bath is constructed in the following manner. At each NRG iteration one selects
two representative levels of the continuous bath. Thereby the spectral function of the
continuous bath is different form the spectral function of the Wilson chain: in the latter
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case, the spectral function consists only of J-peaks. To recover the continuum one
could couple an effective bath to the last Wilson chain site which is constructed in such
a way that the spectral function of the Wilson chain including this effective bath and
the spectral function of the continuous bath are the same at energy scales of and below
the energy scale of the last NRG iteration. Employing a CFE one can then calculate the
chain parameters needed to map such a bath to a chain with all hopping parameters
being of the same order of magnitude.

The difference between the WTBC and this approach lies in the DOS of the bath the
second chain describes for N, — co: for a tight-binding chain the DOS is semielliptical
with a bandwidth defined by the tight-binding hopping parameters. On the other
hand, with the CFE one makes sure that the DOS of the second chain is optimally
chosen such that the total chain recovers the DOS of the original band in the energy
interval [_tNl—lr tNl—l]/ where ty _; is the last hopping parameter of the first Wilson
chain. However, this thesis does not pursue this idea further.

Another way of adaptively discretizing the band is investigated in Ref. 62 . Here the
authors select some representative energy levels of the conduction band on a logarith-
mic mesh, just like the NRG does [25], up to some energy scale B. Below this energy
scale the states are selected on a linear mesh. With this selection of states the usual
Householder transformation is carried out to map this system to a chain. This results
in a modified Wilson chain which the authors of Ref. 62 solve with variational matrix
product states.

Wilson tight-binding hybrid chain

For a WTBC we construct a chain starting with N; Wilson chain sites with discretization
parameter A, which are followed by N, sites with constant hopping trg = A_%tNl_l
where ty, _; is the last hopping parameter of the Wilson chain. This corresponds to a
logarithmic discretization of the bath up to the energy scale 5, _; and an approximately
linear discretization on lower energy scales.

A priori it is not clear how to choose N; and N,. However there are some constraints
which have to be fulfilled: (i) the chain length N; has to be short enough so that there
are no internal reflection; and (ii) N, has to be sufficiently long in order to reach the
needed energy resolution of the bath. The larger N; is, the smaller N, needs to be
to get a sufficient energy resolution. With the tight-binding chain one has to sample
the energy interval [—Af%tNl,l,Af%tNl,l] of the conduction band. When doing this
on a linear mesh one needs more points than on a logarithmic mesh and hence it is
advisable to use the logarithmic discretization to get to low energy scales. Therefore,
the goal is to maximize N; without getting reflections and thereby minimizing the total
chain length N; + N,.

Finally, (iii) N, has to be sufficiently long to avoid reflections at the end of the chain
on the time scales one is interested in. For decreasing N; the hopping parameter of the



116 Chapter 3. Discretization Artifacts in the Resonant-Level Model

(a) (b)
0.64 = 056 ‘
20 E 062 =< 3
0.6 g 0.55
15 | 0.58 Ui 054 E
TR 056+ 053 :
=10 F 054 ~
: 052 1 052 ]
5 F 0.5 ;/; 0.51 ;
048 <
0 ! 046 £ 00 ]
0 20 40 60 80 100 120 —i~ 0.49 ‘ ‘ ‘ ‘ ‘ ‘

0 20 40 60 80 100 120 140

Chain site m m

Figure 3.7: Hybrid chain consisting of N; = 34 Wilson chain sites with A = 1.8 and N, = 100
tight-binding chain sites. Results are calculated with Eq. (3.20). The parameters
are —E;=E;=-TI,D = 105F, and T = 0. (a) Time- and site- dependent occupa-
tion number. The full line indicates the position of the wave-front calculated with
Eq. (3.28) while the vertical dashed line indicates the position of N;. (b) Occupa-
tion number of chain sites m (averaged over two sites) at different time steps:
without the average this would be horizontal cuts through the left panel.

tight-binding chain frg increases and hence the velocity of the charge wave increases
as well. This results in an increased chain length N, for decreasing N; if one wants to
hold the time at which the charge wave is reflected at the end of the chain constant.

However, so far we have no good estimate how to guess the optimal N;. It depends
on E;, E;, and I': the more charge is deposited in the chain the smaller one has to choose
Nj; and the faster the charge is transferred into the chain, the lower is the index of the
site at which reflections occur and hence the smaller one has to choose Nj.

The length of the first Wilson chain N; should be chosen such that the last Wilson
chain hopping parameter ty, _; is comparable to the hybridization, fy,_; ~ V. As long
as the transfer velocity ~ t, fulfills t, > V, the amount of charge x can be transferred
from site n to site n 4+ 1 in one time unit. However, for ¢, < V it is not possible to
transfer the charge x in one time unit completely from site n to site n + 1. Hence,
more charge flows from the site n — 1 to n than from site n to n 4- 1. Therefore charge
accumulates at site 7 and is partly reflected.

However, this argument is incomplete as it does not take quantum mechanical effects
into account; it treats the hopping from site n to site n + 1 as a classical hopping
process with rate the t,,. Quantum mechanical one has to consider both, transmission
and reflection even if £, > V.

Fig. 3.7a shows the time- and site-dependent occupation of a WIBC following a
quench. After the charge waves reaches the site N; it propagates with constant velocity
until it reaches the end of the chain as seen in Fig. 3.7a. The form of the wave pack-

> This is analog to a quantum mechanical particle scattering at a potential barrier: even if the energy

of the particle is larger than the potential height a fraction of the wavefunction is reflected.
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Figure 3.8: (a) Determining the value of T in order to keep I'; at the same value as the
continuous model. (b) Time-dependent impurity occupation number: the t = 0
values agree perfectly with the continuum solution, while there is a small devia-
tion for the thermal values. This is even true for exchanging E; <+ E;. Here, the
I' value determined in the left panel is used. In both panels the parameters are
T=0A=18N; =34,N, =500,and D = 1051"eff. The impurity occupation
number (ny) is calculated with Eq. (3.20).

age does not change during this propagation (cf. Fig. 3.7b). Furthermore, the chain
occupation (c! c,,)(f) at tT = 1 shows that at this time not the whole charge has been
transferred into the chain as, obviously, the area of the peak of the tI' = 1 curve is
smaller than the area of the other peaks (cf. Fig. 3.7b).

The next step in the analysis of this hybrid chain is to compare the WTBC results
to those of the continuous model. As mentioned above, the bath discretization renor-
malizes the effective value of the level width I. We use the effective level width I' ¢
as the energy unit and tune the bare model parameter I' in such a way that I'.; of the
discretized and the continuous model are equal. This is achieved by performing a T’
scan for the discretized model with Ey = —TI and selecting the value of I" at which the
occupation is (ng4) = 3, see Fig. 3.8a, which is the corresponding value of the impurity
occupation number of the continuous model.

This procedure makes sure that the initial value of (ny)(t) is the same as the one for
the continuous model. The time-dependence is qualitatively correct (cf. Fig. 3.8b) and
shows no reflections on long time scales.” However, the occupation number does not
reach the proper thermal value, but is slightly detuned; on exchange of E; and E; and
keeping all other parameters constant, the same qualitative behavior is observed: the
initial value is correct, but the thermal value is not. In principle, it is therefore possible
to determine the correct thermal occupation number for the final Hamiltonian, but the
time-evolution does not evolve to the correct state.

The system does not reach the thermal value because the tight-binding chain is too
short and therefore the energy resolution at which the conduction band is sampled is

Y In Fig. 3.8b the first reflections would be visible at tI' ¢ ~ 105.
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Figure 3.9: (a) Bare value of T' value determined as shown in left panel of Fig. 3.8 in order
to keep effective level-width fixed at I'y; = 1. (b) Thermalized occupation of
impurity after quench —E; = E; = T',4. The thermalized expectation value of
the continuous model is given by Eq. (3.11), (n4(E¢)) = 0.25. The parameters are
A =18,N, =34,D = 10°T .

too low. For the time-evolution all energy scales are important. Unlike the logarithmic
discretization, the tight-binding chain keeps a lot of states at a certain energy scale but
neglects states at other energy scales. If these states are relevant in the time-evolution
the reached thermal state has evolved missing some frequencies and hence does not
reach thermal state of the final Hamiltonian.

For N, — oo one restores the continuum limit in an energy range determined by
the tight-binding hopping parameter and the impurity occupation number is able to
thermalize, Fig. 3.9b, if the quench strength is not too large.

For a continuous bath I' = I'.¢ holds; Fig. 3.9a shows that for increasing N, the bare
I' needed for I'y¢ = 1 approaches I' — 1*.° This shows that one recovers the continuum
limit with a WTBC, albeit the length of the total chain is large.

Double Wilson chain

The WTBC has the advantage over the pure Wilson chain, that one can push the oc-
currences of internal reflections to arbitrary time scales by extending the length of the
tight-binding chain. Thereby it is possible to actually see a subsystem, which in this
case consists only of the impurity, thermalize.

However, for systems deprived of the possibility of an efficient exact diagonaliza-
tion, the tight-binding chain has to be small enough in order to be solved with other
methods. As this limits not only the simulation time but also the accuracy we propose
to hybridize the first Wilson chain with a second Wilson chain, using a discretization
parameter A, which is an order of magnitude closer to one than the discretization pa-

> Thisis only true for N, even. Otherwise ' <1and I' — 1~ for N, — co.
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Figure 3.10: Schematic representation of double Wilson chain.

rameter A; of the first Wilson chain. We call this hybrid approach a double Wilson
chain (DWC).

Hopping parameters

The chain parameters of a DWC are determined by patching two separate Wilson
chains together. The first N; chain sites are connected by the usual Wilson hopping
parameters f,, Eq. (1.39), calculated with the discretization parameter A;. The second
subchain consists of N, chain sites and the discretization parameter A, is used. In
order to get a smooth transition, the first N, sites of the second subchain use a de-
creasing discretization parameter. The hopping parameters of the second subchain are
calculated by (cf. Fig. 3.10)

tNpn =An Ptyn o for m >0 (3.30)
A=D1 1) n< N,
with A, ={ ' N ( ) mter (3.31)
AZ n Z Ninter

Chain occupation

The time- and site-dependent occupation for one example DWC calculation is shown in
Fig. 3.11a. Unlike the WTBC, the form of the charge wave changes while propagating
through the chain after site N; because the velocity is not constant (cf. Fig. 3.11b). As
a consequence there are some minor reflections within the chain. The charge wave
reaches the end of chain on the shown time scales. For an optimal set of parameters
the chain site at which the dominant internal reflections occur is the last site of the total

chain.

Comparison with continuous model

To compare the results of the DWC to the continuous model one has to determine I' in
order to keep I'.y = 1. This is carried out in the same manner as discussed above (cf.
Fig. 3.8). Using the so determined value for the bare I' the time-dependent occupation
number of the impurity is calculated and compared with the solution of the continuous
model, Eq. (3.12). Fig. 3.12a shows that for large values of A, one gets results which are
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Figure 3.11: DWC consisting of N; = 34 Wilson chain sites with A; = 1.8 and N, = 100 Wil-
son chain sites with A, = 1.06. The parameters are —E; = E; = —I',T =0, and
D = 10°T. The results are calculated with Eq. (3.20). (a) Time and site depen-
dent occupation number. The full line indicates the position of the wave-front
calculated with Eq. (3.28) while the vertical dashed line indicates the position
of N;. (b) Change of occupation number of the chain sites m at different time
steps.

similar to a pure Wilson chain. Here the short time behavior of the impurity occupation
agrees with the results of the continuous model, but after the first decay the occupation
number is dominated by small wiggles, which are due to reflections within both Wilson
chains.

For A — 1 the second Wilson chain behaves as a tight-binding chain and hence we
see the typical signatures of such a chain: since for these calculations N, is low com-
pared to values needed to restore the continuum (cf. Fig. 3.9), one observes a deviation
between the final thermal value of the discretized and continuous model; furthermore,
after the first decay the curve of time-dependent occupation number is flat except for
peaks due to reflections at the end of the chain.

For intermediate values of A,, e.g. A, = 1.05, the curve is almost flat, there are no
reflections at the end of the chain, and the thermal value is correct. The small wiggles
vanish, because these are due to internal reflections, which do not occur anymore for
this choice of parameters. Since the hopping parameters of the second chain are not
constant but shrink, the velocity of the charge wave is slowed and hence it does not
reach the end of the chain on the shown time scales. From Fig. 3.11a one can estimate
that the charge wave reaches the end of the chain for A, = 1.06 at tI' = 100. By using a
second Wilson chain the energy resolution at low energy scales is improved compared
to a WTBC and thereby allowing the impurity to thermalize.

In Fig. 3.11b the optimal value of A, is determined by comparing the results of the
discretized model to those of the continuous model. As the curves of the discretized
model oscillate the value of (ng4)(t) is averaged over times 10 < T < 60. Furthermore,
the plot shows the standard deviation calculated for the same time interval. The mean



3.3. Reflections within the chain 121

(a) (b)
0.8 A— n 0.1
ANr=14 — < 0.09
0.7 11 — 1 | o008
0.6 105 — E 3 8-82
. v 0.
305 1.01 — E £ 0.05
~ { Continuum = 0.04 E
‘ Y003
= 0.02
3 0.01
= 0 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 1 11 12 13 14 15 16 1.7 18
et An

Figure 3.12: Impurity occupation number for the DWC calculated with Eq. (3.20). (a) Time-
dependent impurity occupation number for different values of A,. (b) Mean dif-
ference to occupation number of continuous model. The vertical lines indicate
the standard deviation and are not related to numerical errors. Same parame-
ters as Fig. 3.11.

value is a measure for the accuracy: the closer this gets to the continuum result, the
smaller are the errors due to the discretization. Whereas the standard deviation is a
measure how constant this value is in time: the larger the standard deviation is, the
more pronounced are the present wiggles. Hence, the goal is to minimize both values.
The optimal value is A, ~ 1.05. We want to stress, that here the standard deviation is
not a measure for numerical errors, but for errors due to the discretization of the bath.

Discretization parameters and chain length

The choice of the chain parameters has a great effect on the results. The smaller A,
and A, are the better is the energy resolution, but one needs more chain sites to iterate
to low energy scales. Furthermore, for A, close to one the chain length of the second
Wilson chain N, can be used to control the time scale on which the charge being
reflected at the end of the chain, returns to the impurity. Fig. 3.13a shows that for
increasing N, (i) the thermalized occupation(’ approaches the continuum value and (ii)
the occurrence of the reflection peak is shifted to longer times.

The first effect is further investigated in Fig. 3.13b: here the quadratic deviation
between the numerical simulation and the continuum solution is plotted versus N,.
As the numerical simulation shows small oscillations the plotted values are averaged
over the time interval 5 < tI';¢ < 15. One can interpret this deviation as the simulation
error due to the discretization of the bath. With increasing N, one keeps more bath
states, hence the representation of the bath is improved, and the errors due to the
discretization shrink. For increasing quench strengths AE = E; — E; the error increases,

6 The thermal occupation is the constant value reached before the reflection peak emerges.
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Figure 3.13: Impurity occupation number of the DWC under variation of the second Wilson
chain length N, calculated with Eq. (3.20). (a) Time-dependent impurity occupa-
tion number for different values of N,. (b) Relative quadratic deviation between
the final impurity occupation number calculated for the discretized model and
the continuous solution ng, Eq. (3.11). The value is averaged over the time
interval 5 < tI'.¢y < 15. The energy difference is given by AE = E; — E;. (c)
Difference between continuous and discretized impurity occupation number in
equilibrium. If not stated otherwise, the parameters used in all panels are:
T=0,N; =34,A; =18 Ay =1.01,—E = E = —T ¢ and D = 10T .

as in this case the overlap of the initial state and thermal state shrinks and one needs
more high-energy excitations in order to evolve to thermal state.

Interestingly, the error is the smallest for AE = 2I., that is for a quench form
E; = —T'¢ to E¢ = I'e. To illustrate this further Fig. 3.13c shows the deviation of the
equilibrium occupation from the discretized to the continuous model versus the level
position E;. For E; = £ this deviation vanishes, because the effective level width I' 4
is defined by enforcing that the occupation for E; = £I'. is the same for the discretized
and the continuous model.

By setting I'oy = 1 it is ensured that the width of the spectral function is the same for
the discretized and the continuous model, but the form is different: for the continuous
model the spectral function is a Lorentzian, but this form changes when discretizing
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Figure 3.14: (a) Maximum simulation time ™ for different sizes of the second Wilson chain.
The dashed line is of the form Eq. (3.33) and indicates the maximum simulation
time, if the charge is reflected at the end of the chain. The saturation of the
curves shows at which chain length N, the dominant reflections occur within
and not at the end of the chain. (b) Dependence of t"® on quench strength.
Same parameters as Fig. 3.13.

the bath — an effect already visible in Fig. 3.5a. Furthermore, Fig. 3.13c shows that
the deviation from a Lorentzian shrinks with decreasing impurity level energy E; and
increasing number of chain sites N,: this is another reason for the growth of the dis-
cretization error with increasing quench strengths (cf. Fig. 3.13b).

Besides the accuracy of the impurity occupation number the maximum simulation
time depends on the length of the second Wilson chain as well. Fig. 3.13a shows that
with increasing N, the time at which the reflection peak occurs is pushed to longer time
scales: for a longer chain, the time needed for the charge wave to propagate through the
chain and back to the impurity grows. Fig. 3.14a shows the maximum simulation time
™, which is defined as the time at which the reflection peaks emerges in the impurity
occupation number. The dependence of ™ on the chain length can be estimated with
(3.28),

fmax . 3.32
« ) . (3.32)

The hopping parameters are f; «c A, ? and thus

Nl o pf
Mo YA = — 2 (3.33)
i=0 1— A2

The curves in Fig. 3.13a follow this form up to a AE dependent value of N, at which

" saturates. Because the derivation of (3.33) assumes that the charge is reflected

at the end of the chain, this means that beyond the point of saturation the reflections
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Figure 3.15: Impurity occupation number for the RLM with a Wilson chain calculated with
Eqg. (3.20). (a) Time-dependent impurity occupation number for different values
of N;. The dashed horizontal lines marks the final thermal occupation for the
continuous model. (b) Mean difference to occupation number of continuous
model. The vertical lines indicate the standard deviation. The parameters are

T=0,A=105—E = E = To, D = 10°T .

within the chain become the dominant error. Hence, further increasing the chain length
does not increase to simulation time.

The chain length at which the internal reflections are dominant depends on the en-
ergy difference AE (cf. Fig. 3.14b): if a great amount of charge is injected into the chain,
the internal reflections within the chain occur at a site closer to the impurity, because
a large charge needs large hopping parameters to be completely transferred from one
site to the next in one time unit. The saturation in Fig. 3.14b for small energies is due to
reflections at the end of the chain, which occur on time scales independent of AE. For
large AE the maximum time is independent of the chain length N,, because here the
internal reflections are dominant and corrupt the impurity occupation number before
the charge is reflected at the end of the chain.

Because the goal is to reproduce the continuum solution with the discretized model,
the chain parameters have to chosen in such a manner that discretization artifacts do
not occur in the time interval one is interested in. To see the difference between the
chain parameters of a conventional Wilson chain and a DWC, we determine the chain
parameters needed to recapture the continuum dynamics with a pure Wilson chain.
Here one needs a chain with N; ~ 500 sites and the discretization parameter A = 1.05
to get an agreement as good with the continuum solution in the chosen time interval
as with the DWC (cf. Fig. 3.15). For the same set of model parameters the total length
of the DWC N = N; + N, = 34 + 100 is shorter than the conventional Wilson chain
(cf. Fig. 3.12); the discretization parameter A, of the second subchain was chosen to be
equal to the discretization parameter of the conventional Wilson chain A.

The reason for the two different approaches to differ so strongly in chain length is
due to discretization artifacts. The pure Wilson chain results for large values of A are
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Figure 3.16: Impurity occupation number for the RLM with a DWC and different lengths of the
first Wilson chain N; calculated with Eq. (3.12) and Eq. (3.20). The parameters

are T = 0,A; = 1.8, A, = 1.01,N, = 200,D = 10°T,, (a) —E; = E; = I, and
(b) _Ei = Ef == 10Teff.

corrupted by reflections within the chain. To push the occurrences of these reflections
to longer time scales one needs a small value of A. In the DWC, however, the cut
between the two chains is set to a site N;, at which the influence of reflections is
negligible. As the discretization parameter of the first part A, is larger than A,, the
effective bandwidth at site N; is strongly reduced. Starting at this reduced bandwidth
one does not need as many Wilson chain sites in the second to reach the same final
energy scale as one needs with a pure Wilson Chain.

Chain length of first Wilson chain

The accuracy of the simulation and the maximum simulation time depend on the
length of the first Wilson chain N;. As an example, Fig. 3.16 shows the impurity occu-
pation number for different values of N; and quench strengths AE. If the first Wilson
chain is too short one does not iterate to low energy scales and due to the small value
of A, the second Wilson chain reduces the energy scale only by a factor ~ 0.3. At large
temperatures the occupation probability of the initial state is of the same order of mag-
nitude as the occupation probability of the final state. Hence one observes oscillations
between these both states.” If the first Wilson chain is too long internal reflections in
the first Wilson chain occur rendering the simulation useless.

In between there is an optimal value of N; for which the discretized model shows
results close to the continuum model on the time scales one is interested in. The value
of the optimal N; does not just depend on the discretization parameter A; but on
E; and E; as well: the more charge the chain has to adsorb the earlier in the chain
internal reflections occur. Generally, the goal is to choose N; as large as possible,
but the simulation accuracy does not crucially depend on N;. As long as no internal

7 For presentational reasons such a short chain is not shown in Fig. 3.16.



126 Chapter 3. Discretization Artifacts in the Resonant-Level Model

reflections occur one can slightly vary N; by compensating these variations with the
choice of A, and N,. For —E; = E; < 10T a choice in the interval Nj € [28, 34] turned
out to work well.

The reason why to choose N, as large as possible is that increasing N; decreases the
effective bandwidth at the end of the first Wilson chain. On the one hand this turns out
to be advantageous for the hybrid method presented below in Sec. 4; on the other hand
this reduces the hopping parameters of the second Wilson chain allowing for longer
simulation times, because it takes the charge wave longer to reach the end of the chain.
This is why in Fig. 3.16a the reflection peak of the N; = 24 curve occurs earlier than the
reflection peak of the N; = 30 curve. In Fig. 3.16b the reflection peak of the N; = 30
curve has vanished; instead the curves shows small wiggles. This indicates that the
charge wave is not reflected at the end of the chain but the internal reflections become

dominant.

Transition from Wilson chain to double Wilson chain

If one knows for which Wilson chain parameters A and N the results are sufficiently
accurate, one can estimate® the parameters for a DWC. Of course, one can find many
sets of parameters for the DWC, which reproduce the results of a pure Wilson chain.
Therefore we make some assumptions: (i) the discretization parameter of the second
Wilson chain A, equals the discretization parameter of the pure Wilson chain, A = A,,
and (ii) one has already found values for A; and N; so that no reflections occur. Our
criterion is then, that the final energy scales, ty and ty, ,y,, of the pure and the DWC
are equal,

ty = DAN? = DA ZAL N2, (3.34)

The length of the second Wilson chain is thus given by

log A

Nz — N—NllogAZ.

(3.35)

Given the numbers of Fig. 3.12 and Fig. 3.15, N = 500, N; = 34,A; = 1.8, and A, =
1.05, one expects, according to this equation, the length of the second chain to be
N, ~ 90. This agrees well to the numerical value N, = 100. One can use Eq. (3.35)
as well to estimate the length of a Wilson chain needed to reproduce the results of a
DWC.” However, replacing a DWC by a Wilson chain reduces the simulation time and
the accuracy.

The given equations are just estimates, because the effect of the gradually lowering of A over N, o,
sites is neglected.

In this case one should use N; = Nj + Nior and Ny = N + Niir to compensate the fact that the
discretization parameter is decreased over several sites.
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Figure 3.17: Different discretizations of the DOS: two Wilson chains and one DWC. Shown are
only the positive frequencies: the DOS is axially symmetric to «w = 0. Each verti-
cal line represents a frequency w of Eg. (3.38). The bare Wilson chains (top and
bottom) show the same energy resolution over the whole spectrum, whereas the
DWC (middle) shows a good energy resolution only for low-energies, hence the
number of states is reduced while keeping the resolution good in the important
range.

3.4 Density of states

The purpose of the chain — no matter, if it is a pure Wilson chain, a tight-binding chain,
or a hybrid chain - is to be a good representation of the continuous bath. The coupling
of the bath to the impurity is described by the propagator

Vz
Z — Wy

I(w)=Im)_ = 1V?p(w) (3.36)
k

as defined in Eq. (3.4). Here we use the DOS p(w) as defined in Eq. (3.5): for a

continuous bath this is a constant function with support in the interval [—D, D] and in

the discretized form it is a sum of -functions at discrete energies wy. One can represent

the Green’s function at the first Wilson chain site by a continued fraction [156]

<L coled > (z) = (3.37)
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This form can easily be derived by an equation of motion ansatz. The function

1
Pgis(W) = — (lsh% ;Im < coled > (w+16) = Y cpd(w — wy) (3.38)
—
%

is the DOS of the discretized bath and consists of a sum of § peaks at positions w; with
the weight c,. The positions of the peaks are given by the roots of the denominator of
Eq. (3.37) or by the eigenvalues of the matrix M, which has the elements ¢, on the first
diagonal above and below the main diagonal.

For a Wilson chain and in the limit A — 1, N — oo the distribution of the peaks
becomes dense and one recaptures the continuous function p(w). However, for A > 1
one observes discrete peaks: Fig. 3.17 shows the positions of w; for three different
ways of discretizing the bath. For a pure Wilson chain the positions of the peaks
are equidistant on a logarithmic mesh, axially symmetric to w = 0, the peak for the
highest energy is at ~ D, and the peak for the lowest energy is at ~ DA™ ? : the energy
resolution is determined by A and the lowest resolved energy scale is determined by
A and N. The number of peaks is given by N, whereas one has the same number of
peaks at positive and negative frequencies; for odd N one has a peak at w = 0. The
high energy peaks of the hybrid chain are the same as for a pure Wilson chain with
the same parameters. However, the merit of the hybrid chain is to improve the energy
resolution at low energy scales without inserting more high-energy states.

3.5 Summary

This concludes the examination of discretization artifacts in the numerical renormali-
zation group (NRG). By comparing the results of the exactly solvable resonant-level
model (RLM) for a continuous and a discretized bath we have shown that in nonequi-
librium calculations these artifacts manifest as reflections within the Wilson chain and
thereby corrupting the simulation. As A — 1 restores the continuum one strategy to
eliminate discretization artifacts is to operate with a discretization parameter A very
close to one. This strategy is not feasible for practical NRG calculations. Hence we
have proposed hybrid chains by which the discretization artifacts are minimized while
keeping the chain length on a manageable level.

The central result of this chapter is that by using a double Wilson chain one can
minimize the discretization artifacts which are due to internal reflections within the
Wilson chain and a limited energy resolution. However, in the present formulation the
NRG can only handle pure Wilson chains and to keep the number of kept states on
a manageable level the discretization parameter A has to be sufficiently large; Wilson
chains with A = 1.05, for which the negative effects of the discretization are acceptably
small for the investigated parameters, are therefore out of reach for the NRG. In the
next chapter we propose a new method which overcomes these obstacles.



Chapter 4

Hybrid Method

Only a few models relevant in condensed matter physics are exactly solvable. For
most others one needs methods which rely on different approximations or work only
in certain parameter regimes. One numerical method is the numerical renormalization
group (NRG) [28, 29] which is designed to investigate the low-temperature proper-
ties of quantum impurity systems (QISs): the NRG is well suited for studying the
resonant-level model (RLM) coupled to a Wilson chain, as discussed in the previous
chapter. However, the discretization artifacts discovered there are present in all time-
dependent numerical renormalization group (TD-NRG) calculations. Our proposals
which eliminate the discretization artifacts do not work for the NRG as these propos-
als leave the concept of a pure Wilson chain, an thereby the required separation of
energy scales is in general not fulfilled.

In this chapter we extend the NRG to a new hybrid method which picks up the idea
of the hybrid chain: a hybrid chain consists of two chains, with the first one being
a Wilson chain. Without the second chain it is therefore possible to solve the system
with the NRG. Thereby the Hamiltonian of the impurity coupled to the first Wilson
chain is diagonalized by an NRG run: since the high-energy states are discarded in the
course of the NRG, this yields an effective low-energy Hamiltonian. We understand
this diagonal Hamiltonian as a hyper-impurity: it is like a RLM but with more than
one non-interacting levels which all couple differently to the second chain. This new
effective system — the hyper-impurity coupled to the second chain — is then solved with
a different method.

In this chapter we discuss the new hybrid method for the general case in detail;
we make no assumptions regarding the impurity or the chain, except that the first M
sites of the chain form a Wilson chain. In Ref. we hybridized the NRG with the
Chebyshev expansion technique (CET). However, in Ref. no hybrid chains were
used and therefore we had the usual setup of an impurity coupling to a Wilson chain.

In this work we explicitly show how to hybridize the NRG with the density-matrix
renormalization group (DMRG): we call this scenario the numerical renormalization
group density-matrix renormalization group hybrid (NRG+DMRG) method. By com-
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paring NRG+DMRG results with the exact results for the RLM we show that this new
numerical method indeed yields the correct results.

4.1 Description of new hybrid method

The original TD-NRG approach, summarized above in Sec. 1.3.4, tracks the quench
#E"~ED and the

reduced density-matrices p;erd(m) assigned to each NRG iteration m. Although quite

dynamics of a quantum-impurity system in terms of the phase factors e

elegant and useful, it is less transparent how to incorporate ideas from methods such
as the time-dependent density-matrix renormalization group (TD-DMRG) or CET, as
these deal with wave-functions directly. To develop a convenient and flexible interface
between the TD-NRG and these vastly different approaches we reformulate the former
approach from a wave-function perspective.]

4.1.1 Wave-function formulation

Let us commence with accurately stating the problem from a wave-function perspec-
tive. We are interested in tracking the time evolution of some initial state |¢,) under the
dynamics defined by the Hamiltonian H acting on a finite Wilson chain of length N.
We shall not concern ourselves at this stage with how the initial state |¢,) is generated,
but will elaborate on this important point later on.

Formally our task boils down to computing

—iHt

[9(8) =e g - (41)

Application of the completeness relation of Eq. (1.71),

M
1= Y B,+1y (4.2)
=Mmin

m

to the state |(t)) leads to its partitioning according to

M
[p(t)) = :Z’!q>m<t>>+|xM(t>> (4.3)
where ¢, (t)) = P, |1p(t)) (4.4)
and |xp(t)) = Tal(t)) (4.5)

are the projections of |i(t)) onto the subspaces defined by P,, and 1}, respectively. Eq.
(4.3) simply converts the general state |((t)) into a concrete representation in terms of
our complete basis set.

1 The text of this paragraph and of Secs. 4.1.1 - 4.1.3 has been published in [90] and is (92012 American

Physical Society.
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4.1.2 Evaluation of expectation values

Given the time-evolved wave function of Eq. (4.3), we proceed to compute time-dependent
averages of physical observables A

A(t) = (p(t)|Alp(t)) (4.6)

To this end, we use the completeness relation of (1.71) to decompose any arbitrary

operator A into
M . R M . . . . . .
A=Y BAP,+ Y {B, TG + 1A, | + 1AL, 4.7)
m

where the summations over m and m’ start from m
the right-hand side of Eq. (4.7) as

min- Writing the first two terms on

M M
Yy |B,AP, +D,A ( Y. P, +ix4> + ( Y. B, +ix4> AD, (4.8)
M=Mmin m' =m—+1 m'=m—+1
and noting that
A~ M A ~
=Y P,+1y (4.9)
m =m+1
the operator A is recast in the exact form
M
A=Y A(m)+A, (4.10)
M=Mpyin
where A(m) = P,AP, +1, AP, + P,1, (4.11)
and A, =1yAly. (4.12)

Here the index M can take any value in the range m_;, < M < N. Explicitly, the
operator A(m) has the formal representation

trun
A(m) =Y Z\r,e;m}(r,e;m|A|s,e';m>(s,e/;m|, (4.13)

1,8 e,e’

where the restricted sum Zﬁr;l n implies, as before, that at least one of the states 7 and s

is discarded at iteration m.
As in the original TD-NRG, we focus hereafter on local operators A that act solely
on degrees of freedom that reside either on the impurity itself or on the first m,,;, sites
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along the Wilson chain [77]. For any such local operator, the matrix elements in Eq.
(4.13) are diagonal in and independent of the environment variables e and e:

(r,e;m|Als,e';m) = AJ6, . (4.14)

Substituting the operator decomposition of Eq. (4.10) into Eq. (4.6) and using the defi-
nition |x(t)) = 1,7 (t)) of Eq. (4.5), the time-dependent expectation value takes the
form

M
A(t) = :Z | (PO1Am) (1) + am () Alxm(t))- (4.15)

This general expression reduces for a local operator to

trun
A(t) = <XM(t)‘A|XM + Z 2 Arspsr (4.16)
where p(t) =) (s, e;m|p(t)) ((t)|r, e;m) (4.17)

e

is the reduced density matrix at iteration m.

Three comments should be made about Egs. (4.16) and (4.17). First, these expressions
are both general and exact for the real-time dynamics on the discretized chain. Apart
from the restriction to local operators, no further approximations or assumptions are
involved. Second, Egs. (4.16) and (4.17) can be easily extended to a statistical admix-
ture of initial states {|y;) } with the statistical weights {w;}. This requires the simple
substitutions

(xm () Alxm(t) —>Zw (X (D1 ALx (1)) (4.18)

and p(t) = [p(t)) (¢ |—>Zwi\¢i ) (i (8] (4.19)

in Egs. (4.16) and (4.17), respectively. Third, the conventional TD-NRG approach is
recovered from Egs. (4.16) and (4.17) by (i) setting M = N, (ii) realizing that A, = 0 for
N = M, and (iii) adopting the standard NRG approximation H|r,e;m) ~ E;"|r,e;m),
which simplifies p,(t) to el(Br —E )tpred( ) with

ot (m) =Y (s, e m| o) (yo|r, e m). (4.20)

e
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A natural generalization of the TD-NRG is to apply the NRG approximation H|r, e; m)
E}'|r,e;m) to the early iterations m < M only, converting Eq. (4.16) and Eq. (4.17) to

trun

M . m m
Aly= Y Y e ETE AT 0 ) (Oppg(8) Al (1)) (4.21)

M=Mpmpin 7,8

This equation, which constitutes one of the central results of this chapter, interpolates
between the TD-NRG, corresponding to M = N, and the exact time-dependent expec-

tation value, obtained for M = m Of course, the latter statement assumes an exact

evaluation of |x(t)), which is an impractical task for M = m_;,. As discussed below,
a proper choice of the parameter M allows for an improved evaluation of |x(t)) us-
ing alternative methods such as the TD-DMRG or CET, with minimal loss of accuracy
at the early iterations to which the NRG approximation is applied. Furthermore, by
resorting to methods that do not rely on the special structure of the Wilson chain to
evaluate |x;(f)), one can abandon the exponential decay of the hopping matrix ele-
ments beyond site M, reducing thereby the discretization errors inherent to the Wilson
chain. These principles form the core of the hybrid approach. We now turn to elaborate
on the technicalities of how M is selected, the interface with the hybridized method,

and the way in which the initial state |¢) is constructed.

4.1.3 Interface between the TD-NRG and the hybridized approach
Hierarchy of energy scales and the time evolution of |x,,())

To turn Eq. (4.21) into an operative platform for hybridizing the TD-NRG with alter-
native methods of computing the real-time dynamics of |x,(t)), it is useful to go back
to the partitioning of |(t)) specified in Eq. (4.3) and gain a deeper insight into the
energy scales encoded into the projectors P,,. Applying the operator decomposition of
Eq. (4.10) to the Hamiltonian H, the latter is written as

M
H= ) H(m)+h, (4.22)
M=Mmin
where H(m) = P,,HP, + P,,Hi,, + 1, HP, (4.23)
and h, =1yH1}, . (4.24)

It is rather easy to see that the different Hamiltonian terms that appear in Eq. (4.22) gen-
erally do not commute with one another, i.e., [H(m),h,] # 0 and [H(m), H(m')] # 0
if m # m'. According to the NRG philosophy, however, the off-diagonal terms P,,H pm/
with m # m’ are expected to be small, as these couple excitations on different energy

~
~
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scales. Consequently, one can approximate H(m) with h,, = P,HP, to obtain the

approximate Hamiltonian

M
H~ Y hy,+h,. (4.25)

M=Mmin

Evidently, Eq. (4.25) becomes exceedingly more accurate the smaller is M, acquiring
the status of an identity for M = m,;,, since H = h, in this case. Furthermore, since
the Hamiltonian terms h, and h,, with m < M are confined to the subspaces projected
out by 1}; and P,,, respectively, the Hamiltonian of Eq. (4.25) is block-diagonal in these
subspaces with [k, h /] = [hm,hx} = 0. This allows us to write the time-dependent
state |ip(t)) within this approximation as

M . .
Py =Y e ™ Igu) +e ) (4.26)

m

where |¢,,) = P,|¢y) and |xp) = 13|1y) are the projections of the initial state onto
the subspaces defined by P,, and 1}, respectively. In other terms, it suffices in this ap-
proximation to first project out |x;) and |¢,,) from the initial state, and then propagate
them separately in time, each according to its own Hamiltonian.

Physically, Eq. (4.26) prescribes a decomposition of the desired time-dependent state
into independent components, each associated with a different time scale ¢,, = Di ~

m

A™? and evolving according to its own reduced Hamiltonian (either £, or £, ). In the

case of spinless fermions the reduced Hamiltonian #,, has the explicit form
N-1 )
- A A
hy = Y EP|Le;m)(Le;m|+ Y t, (Pm o fub + H.c.) , (4.27)
Le n=m

where f,;r creates an electron on the nth site of the Wilson chain, t,, is the dimension-
full hopping matrix element between sites n and n + 1 along the chain, [ runs over the
NRG eigenstates discarded at iteration m, and E;" denotes their corresponding NRG
eigenenergies. Note that the projection operators P,, in the right-most term are attached
in practice only to f,, and f,,, as all other operators f, with n > m do not possess any
matrix element that takes us out of the subspace defined by P,,. The Hamiltonian h, is
nearly identical, except that the index m is replaced with M and the discarded states
|, e;m) are replaced with the NRG eigenstates retained at the conclusion of iteration M.
In the presence of additional bands the Wilson orbitals i acquire an additional flavor
index v, which may label the spin ¢, an orbital channel &, or the spin-channel tuple
v = (0,a) as in two-channel Kondo models (see, e.g., Ref. ). Other than setting
f; — f,;rv and adding a suitable summation over v, the very same equations carry over
to the general multiband case.



4.1. Description of new hybrid method 135

Physical role of the parameter M

The Hamiltonian of Eq. (4.27) can be interpreted as modeling a hyper-impurity with the
localized configurations |I) and eigenenergies E;", which are tunnel-coupled to a chain
of length N — m. The size of the impurity is equal to the number of states discarded

at iteration m. Thus, the calculation of |¢,,(t)) = e Vit

|$,,) becomes exceedingly more
affordable with larger m due to the exponential reduction of the Fock space of the
chain R, y attached to the hyper-impurity. We stress, however, that the dimension of
the subspace associated with pmmm is comparable in size to that of the full Wilson chain,
hence an accurate evaluation of |¢,, (#)) is similar in complexity to the calculation of
the full state |{(t)).

There is little computational gain in implementing Eq. (4.26) if all components of the
wave function must be accurately computed. Fortunately, this generally is not the case
for the class of problems of interest, where |¢) is some low-lying eigenstate (typically
the ground state) of an initial Hamiltonian H !, Under these circumstances ) typically
has only negligible overlap with the high-energy states of H, i.e., (¢,,|¢,,) < 1 for the
initial NRG iterations. Overlap becomes significant only upon approaching a character-
istic energy scale D), where the spectra of the full and the unperturbed Hamiltonians
begin to notably deviate from one another. Usually this happens at some characteristic
low-energy scale of the problem, e.g., the Kondo temperature Ty in case of the Kondo
Hamiltonian.

Consequently, the initial NRG iterations with m < M can be treated using further
approximations such as setting ¢, = 0 in Eq. (4.27), corresponding to the standard
NRG approximation. Since the reduced density matrix p;, (t) requires only the matrix
element (1p(t)|r, e; m), one can implement e*'!|r, ¢; m) instead of propagating |¢,,(f)) in
time, which simplifies the exact result of Eq. (4.16) to the approximate expression of
Eq. (4.21). The computational effort can therefore be focused on evaluating |x,(t)),
which dominates the expectation value A(t). Most importantly, given the initial state
|xm) and the effective Hamiltonian 1, generated by the NRG, the state |x(f)) can be
computed using one’s method of choice.

The physical role of the integer M, which so far served as a mere parameter, is
now disclosed: it defines the NRG iteration M beyond which the time-dependent state
should be accurately computed. Moreover, this partitioning can be used to improve the
discrete representation of the continuous bath as noted above. For example, one can use
a hybrid chain introduced in Sec. 3.3.3. Such a chain is impractical for pure NRG-based
calculations, but is made possible by resorting to alternative methods for tracking the
time evolution of |x,,(#)). In this manner discretization errors are significantly reduced
at the energy scale D,,, corresponding to the time scale t;; = Dl—M. The crucial point to
notice is that the reduced Hamiltonian h, has the effective bandwidth D), o A M2 «
D and acts on a reduced chain of length N, = N — M. This enables access to long
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time scales of order t,; > & using techniques such as the TD-DMRG or CET, which
otherwise are restricted to far shorter times.

The only remaining uncertainty pertains to a suitable choice of the iteration number
M. In the absence of a sharp mathematical criterion, the choice of M should be con-
sidered on a case-by-case basis. Qualitatively, one expects the scale D, to correspond
to max{T, |e4]} for the RLM, and to the Kondo temperature [28, 29] Tk for the Kondo
model. The case of an Anderson impurity is clearly more subtle, as spin and charge
relax on different time scales [76]. Here a different optimal choice of M may apply to
observables acting on the spin and charge sectors.

Construction of the initial state |y,)

So far, we have assumed the decomposition of the initial state |¢y) according to Eq.
(4.3), but did not specify how |¢) is obtained in practice. The construction of |)
and its projection |x,) onto the low-energy subspace defined by 1;; depends in detail
on the method hybridized with the TD-NRG. Our discussion below covers both the
TD-DMRG and CET.

We begin with the initial NRG run, which provides us with the low-energy Hamil-
tonian hi?C = if MHiiif M corresponding to the initial Hamiltqnian H'. Here iif M denotes
the projection operator onto the low-energy subspace of H' retained at the conclusion
of iteration M. As detailed in Eq. (4.27), h;c comprises of a hyper-impurity, a residual
chain of length N, = N — M, and a tunnel coupling between both parts of the system.
In the next step the ground state |¢) of h;( is computed. In case of the TD-DMRG this
is done using the standard DMRG algorithm, Sec. 1.4, while for the CET (for which a
shorter chain R, y is employed) the Davidson method [155] can be used. At the con-
clusion of this step one has the initial state |¢)) at hand, expressed via the kept NRG
eigenstates of Hiy:

Yo) = Yk, elki e M) . (4.28)
k,’,f?

Given |¢y), the state |x,,) is obtained by projecting |¢,) onto the low-energy subspace
of the full Hamiltonian defined by 13;. This in turn yields

X)) = ) beelk e M) (4.29)
ke

with bk,e = ZSZi/k<M)Ck1’r5 ’ (430)
k;

where S(M) is the overlap matrix defined in Eq. (1.73). This state is then propagated
in time according to |x(t)) = e Mt ) using either the TD-DMRG or CET and fed
into Eq. (4.21). As for the reduced density-matrices pfrd(m) entering Eq. (4.21), these
are computed recursively from |iy) using the standard TD-NRG algorithm [77].
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4.1.4 Hybrid NRG+DMRG

To summarize the statements from above and to present a concrete application we
now show how to hybridize the TD-NRG with the TD-DMRG. This method, the
NRG+DMRG method, is employed in the remaining part of this thesis to solve QISs.
Results of the NRG hybridized with the CET are presented in Ref.

Of course, for a double Wilson chain (DWC) one could consider to hybridize the
NRG with itself: using a first NRG run one creates an effective low-energy Hamil-
tonian of the impurity coupled to the first Wilson chain. This effective low-energy
Hamiltonian is, in turn, coupled to the second Wilson chain which defines h)(‘ The
system consisting of the hyper-impurity coupled to the second Wilson chain is then
solved with a second NRG run. However, as the discretization parameter A, of the
second Wilson chain is close to one, one has to retain a lot of states in the second NRG
run rendering this approach impractical.

The system considered in the following is an impurity coupled to a DWC consisting
of two Wilson chains, where for the first N sites the discretization parameter A; and
for the second chain, consisting of N, sites, the discretization parameter A, is used.
Hence, the total chain length is N = N; + N, and the above introduced iteration num-
ber M, after which one switches from the NRG to the DMRG, is given by M = N, 2

The procedure can formally be divided into three steps: (i) the TD-NRG forward it-
erations, (ii) an intermediate TD-DMRG run, and (iii) the TD-NRG backward iterations
(cf. Fig. 4.1).

In the forward TD-NRG iterations, Fig. 4.1a, the initial and final Hamiltonian of the
impurity coupled to the first Wilson chain are diagonalized,

stl ) ] )
Hy, = Y Eulgn) (¢ (4.31)
n=0
N,—1
and HAy = Y Enlyh)(yhl, (4.32)
n=0

where E! (Ei) and |1[J,11> (\gb,f1>) are the eigenenergies and eigenstates kept at the last
NRG iteration of the initial (final) Hamiltonian. Using this diagonal Hamiltonian as
hyper-impurity with N, degrees of freedom, where N is the number of kept states
at the last NRG iteration, one constructs an effective low-energy Hamiltonian of the
complete chain,

Hy = Hy, + Hy, + Hiixo (4.33)
N;+N,—1 , .
with HN2 = 2 ty (fnfn+1 + fnJrlfn) (4.34)
Tl:Nl

In general, for the NRG+DMRG approach M has to fulfill M < N;. However, in the all following
calculations are with M = N; and therefore the parameter M is not used anymore.
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(a) (b)

Figure 4.1: Sketch of the NRG+DMRG method. (a) Forward TD-NRG run: the initial, H;, and
final, H;, Hamiltonian are diagonalized and represented as a hyper-impurity. (b)
The hyper-impurity is coupled to the second Wilson chain and the ground state
|) of H; is calculated using the DMRG. (c) The time-evolution of |i(t)) is cal-

culated by applying the time-evolution operator U = exp(—in\,t) of the final
hyper-impurity attached to the second Wilson chain to |¢,). (d) Calculation of
the reduced density matrix p,.4 which is fed into the backward iterations of the
TD-NRG.

3 I 3
and  Hpy = ty,_1 ((flj\clll) N, +flt]1flj\clll> , (4.35)

where x = i,f. The operator f,;r with n > Nj creates a fermion at site n of the original

DWC. With ( fff,l_l)Jr we denote the creation operator of the last chain site of the first

Wilson chain, that is at site n = N; — 1, rotated in the basis in which Hfﬁ;l is diagonal.
The TD-DMRG run, Fig. 4.1b, starts by calculating the ground state of Hy,’

Ny—1

Ny—1
o) = A’A' ... AT ABTT ... B, (4.36)

Since the DMRG only targets the ground state all NRG+DMRG results are at temper-
ature T = 0. This state describes a system consisting of a hyper-impurity coupled to
a Wilson chain. Here A" is the A-matrix corresponding to the site N; +n for n > 1

3 In this equation we implicitly assume a summation over the physical indices {sg,s;,...,sy_1} and

a multiplication with the basis state |s;s,...sy_1). Written out, the ground state has the form Eq.
(1.2).
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and B" is the A-matrix corresponding to site N; + N, — n — 1 of the original DWC. The
basis of the A-matrices of the sites n > 1 is formed of the eigenstates of the number
operator at this site; the basis at site n = 0 is the basis in which H; is diagonal and
hence A is associated with the hyper-impurity.*

For the TD-DMRG one has to apply the time-evolution operator U = e_ngV * to this
state. As described in Sec. 1.4.3, the Trotter-Suzuki decomposition (TSD) of U is cal-
culated and the two-site operators are consecutively applied to the matrix product
state (MPS) |¢y). As |¢y) and HY, are not in the same basis on has to rotate |tpg). This
concerns only the A-matrix corresponding to the hyper-impurity A" as all other A-
matrices share the same basis with the corresponding matrix product operators (MPOs)

of Hf\, The rotation is carried out by replacing A° by

Al = Y A"S]S, (N — 1), (4.37)

Here, S(N; — 1) is the overlap matrix of the last iteration of the forward NRG iteration
(cf. Fig. 1.9). This matrix connects the Hilbert space of the initial Hamiltonian with the
Hilbert space of the final Hamiltonian and is calculated in the course of the TD-NRG.
Note, that due to the truncation of the Hilbert space this rotation is in general not
complete: the complete Fock-space is only recovered after summing up the terms at
all NRG iterations [77]. Formally, the rotation of A and the application of the time-
evolution operator U is depicted in Fig. 4.1c. This figure does not show the TSD of
u.

With the TD-DMRG one can now calculate the low-energy contribution of a time-
dependent expectation value

{(Atow (1) = (W (1) Alp(2)). (4.38)

To compute the high-energy contribution one has to calculate the reduced density
matrix p..q of the initial ground state {AO, Al, R U Bl, BO} by tracing out all sites
n > 1, Sec. 1.2.5; the result is the reduced density matrix for the hyper-impurity, Fig.
4.1d, which is fed back into the backward iterations of the NRG. This yields the high-
energy contribution (A)y(t) and the expectation value of the observable A is given

by
(A) (1) = (A)ow(t) + (A nign(t)- (4.39)

The control parameters of the NRG+DMRG are the number of states kept in the
NRG NE RG the number of states kept in the DMRG N_P MRG "and the Trotter step dt. To

4 The superscripts of the A-matrices denote the position in the effective low-energy system — composed

of an hyper-impurity with one Wilson chain — whereas the indices of the operators and hopping
elements correspond to the original system and denote the position in the DWC.
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(b)

20 40 60 80 100120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
N; N;

Figure 4.2: Numerical accuracy of the NRG+DMRG method tested on the basis of the RLM.
(a) Comparison between the impurity occupation number calculated with the

NRG+DMRG, ny, and exact diagonalization (ED) results, n5° (cf. Eq. (3.20)).

The number of kept NRG states is NN""¢ = s_N.. The NRG results are for a
pure Wilson chain with N; sites. (b) DMRG Truncation error €, Eq. (1.91), ver-
sus the number of kept DMRG states N,. The parameters for both panels are

A, =18,A, =1.05N, =29,N, = 101,E = —T, and D = 10°T.

reduce the available parameter space we set NP MRG _ smN;\IRG

and the state multiplier
Sy 1S an integer.

In the conventional TD-NRG one considers all states at the last iteration as discarded.
In contrast, for the NRG+DMRG method one has to keep some of the states of the last
NRG iteration to construct the hyper-impurity. In general the number of kept states
at the last iteration is arbitrary. For all results in this thesis all states are kept. If one
discards all states the TD-NRG is recovered.

In the next section we use the RLM as a testbed for the NRG+DMRG method.
As shown Sec. 3.2, this model is exactly solvable and hence it can be used to ex-
amine the capabilities of the NRG+DMRG. After establishing the suitability of the
NRG+DMRG for its purposes it in Chapter 5 is applied to the interacting resonant-
level model (IRLM). Unlike the RLM the IRLM is not exactly solvable: there are no
analytic results for the whole range of the interaction strength U, but we can compare
the numeric results with analytic results in the U — oo limit.

4.2 Hybrid method results for the resonant-level model

To benchmark the NRG+DMRG method presented above this section is devoted to
the comparison between exact results for the RLM and results obtained with the
NRG+DMRG method.
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4.2.1 Choice of parameters

In equilibrium the accuracy of the simulation is controlled by the number of kept NRG
states N2'" and the number of DMRG states N2MRC, For simplicity we only consider

DMR R
cases where NPMRG — 5 Ni\I G

s , and the state multiplier s, being an integer. Hence,

the two free parameters are the number of NRG states N and the state multiplier s ,.

In Fig. 4.2a the equilibrium occupation number of the impurity calculated with the
NRG+DMRG method are compared to the ED results for the same system. The accu-
racy tends to increase with the number of states. On the other hand, the effect of the
state multiplier on the accuracy is negligible: henceforth this parameter is set to s, = 1.
As expected, Fig. 4.2b shows that with an increasing number of states the DMRG trun-
cation error shrinks. As the state multiplier influences the number of DMRG states
the truncation error shrinks with increasing s.,. However, the accuracy of the Lanczos
algorithm to calculate the ground state is set to 107 and thus sets a lower bound of
the numerical accuracy, which is almost reached by the results in Fig. 4.2a. Because
of this and due to the observation that increasing s,, does not improve the results, we
presume that the main error is due to the NRG calculations.

To check this presumption Fig. 4.2a shows furthermore the error of a bare NRG
calculation for a system consisting of the impurity coupled to the first Wilson chain:
this is the hyper-impurity part of the NRG+DMRG calculation. For Ny < 100 the
accuracy of the bare NRG calculation is by one order of magnitude higher than for
the hybrid method. When further increasing the number of states, both methods yield
the same accuracy. Note that the NRG calculation only solves the impurity with the
tirst Wilson chain, whereas the NRG+DMRG method solves a system consisting of the
impurity and a DWC.

In the following we are not interested in highly accurate results, but rather want
to show the functionality of the NRG+DMRG method. If not stated differently, all
following calculations are carried out with Ny = 60 states and the state multiplier

Sm = L.

4.2.2 Norm of initial state

The initial state |¢y) of the TD-DMRG time evolution is the ground state of a system
consisting of the hyper-impurity and the second Wilson chain. This state is calculated
with the DMRG in the basis of the initial Hamiltonian. For the time evolution this
state has to be rotated in the basis of the final Hamiltonian. This can be done with the
overlap matrix S of the last NRG iteration, Eq. (4.37).

The transformation from the initial to the final basis is unitary if and only if no states
are discarded in the course of the NRG (forward) iterations. As this is in general not the
case the transformation does not conserve the norm of the initial state, i.e. ({y|yy) < 1.

The norm of |¢;) depends on various parameters:
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Figure 4.3: Norm of the initial state |y,), i.e. the ground state of H', after its rotation in

(i)

(i)

the basis of the final Hamiltonian for different parameters. (a) The length of the
system is held constant, N; + N, = 42, and the partition site M is varied. The

results are for a RLM coupled to a Wilson chain with A; = A, = 1.8, and D = 10°T.

The numbers in the legend give the energy difference AE = % = —% and the

number of kept states N in the form (%,NS). The state multiplier between the
number of NRG and DMRG states is s, = 1. (b) For the symmetric switch the
energies are given by —E; = E; = £ and in the asymmetric case E; = AE, E; = 0.
The chain parameters are Ny = 34,N, =5,A; = A, =18,N, = 70,5, = 1, and
D =10T.

Chain partition: Fig. 4.3a shows the norm for different chain partitions. Here the
total length of the chain is kept constant, N; + N, = 42, and the partition site
is moved through the chain. The first N; sites of the chain are solved with the
NRG to built the hyper-impurity and the DMRG solves a system consisting of the
hyper-impurity and N, sites; the underlying physical model is independent of the
partitioning.

All curves in Fig. 4.3a show the same principle behavior: the deviation of the
norm from 1 rises with for N; 2 20 and show a plateau for 7 < N; < 20. The
norm of the initial state |¢)) depends on the overlap matrix S. If one retains all
states during the NRG run this matrix is unitary, no norm is lost in the rotation
from the initial to the final basis, and hence the (|¢y) = 1. However, in general
one does not retain all states and therefore the loss of spectral weight is due to an
incomplete rotation with the S matrix. If one increases the chain length N; in total
more states are truncated and this implies that the overlap between the subspaces
of H; and H; shrinks.

Number of states: The more states are retained in the NRG run, the greater is
the overlap between the truncated H; and H; subspaces. Therefore the norm gets
closer to one if one increases the number of retained states (cf. Fig. 4.3a).
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Figure 4.4: Norm of the initial state |y) after its rotation in the basis of the final Hamiltonian
for different E;. The chain parameters are D = 1051",N1 = 15,N, = 27, and
A; = A, = 18. Ny = 110,s,, = 1 states are kept. The initial energy is E; = —E;.
The analytic curve is calculated with Eq. (4.41) and V = 5.7-10° is the best-fit
parameter.

(iii) Energy difference: It is clear that the completeness of a rotation with the overlap
matrix S has to depend somehow on the similarity between the initial Hamilto-
nian H; and the final Hamiltonian H; = H; + dH. If the difference /H is small one
expects that the truncated subspaces of both Hamiltonians should almost be the
same, whereas one expects to find large deviations for strong differences.

To estimate the dependence of the overlap on the energy we consider a system
consisting only of the impurity level and the first Wilson chain site,

H=Et)d'd+V(d'cy+cld). (4.40)

The annihilation operators on the two sites are d and ¢ respectively, V is the hy-
bridization and E(t) = E;®(—t) + EO(t) is the impurity energy. For a symmetric
switch,—E; = E; = E, the overlap (1,08|1/J6> of the ground states of the initial and
the final Hamiltonian is given by

Ly 2
<¢’0|l/70>— \/W
V2

Of course, this estimate is very crude and does not take any truncation effects or

(4.41)

influences from the rest-chain into account. However, the qualitative shape of the
curve is correct (cf. Fig. 4.4) and proves the claim that the difference between the
initial and final Hamiltonian has an effect on the overlap matrix elements. To be
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precise, the difference is caused by the overlap of the eigenstates and is therefore
a result of the energy difference.

For large energy differences and symmetric switching the limit of Eq. (4.41) is
given by

Lim (o) = 0. (4.42)

However, in the case of an asymmetric switch, if one switches from an arbitrary
E; < 0 to E; = 0, the overlap of the ground states is given by

2V +E +/E>+4V?
(4.43)
\/E +E\/E2+4V*4+4V?

and in this case the limit is given by

(polyh) =

Jim (yolyo) = *f (4.44)

In this case the overlap does not vanish for large E;.

By the loss of norm of the initial state one can distinguish different regimes. Fig.
4.3b shows that for a symmetric switch the overlap vanishes for large AE = |E; — E||
and approaches a constant in the asymmetric case. This is in agreement with the
analytic estimates, Eq. (4.43). Furthermore, one can identify three different regimes:
(i) disregarding numerical noise, the overlap (¢y|y) = 1 for AE < T : in this case
only the effective low-energy Hamiltonian is relevant and there is no need for the
NRG backward iterations. (ii) In the range I' < AE < D the overlap is of the order
1 — (Polwy) ~ O(107®). Hence, there are small corrections due to the coupling be-
tween high-energy and low-energy states. (iii) For D < AE and a symmetric switch
the overlap vanishes, ({|1y) = 0 : the low-energy states are negligible as all the dy-
namics happens in the high-energy sector and in this case there is no advantage of the
NRG+DMRG method over a conventional TD-NRG run. However, in the asymmetric
case the final state lies in the low-energy sector and therefore one cannot discard this
sector.

This means that if both energies fulfill E;, E; < T it is save to neglect the backward
NRG iterations; for D < E;, E; one can perform a conventional TD-NRG run with only
the first Wilson chain; and in all other cases one has to use the hybrid method in order
to allow for excitations between the high- and low-energy sectors.

Concluding, the loss of norm is caused by the truncation of states. In general one
needs all states of the initial Hamiltonian to represent one state of the final Hamil-
tonian. Due to the truncation the high energy states are not available anymore and
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Figure 4.5: Time-dependent impurity occupation number (n4) for —E; = E; = % for the

RLM. (a) Comparison of NRG+DMRG with ED (cf. Eq. (3.20)) results: the curves
lie on top of each other. (b) Relative difference of the curves shown in the left
panel. The chain parameters are N; = 30, N, = 101, A; = 1.8, A, = 1.02, Ny = 60,
s =1,and D = 10°T.

therefore the representation in the initial basis is incomplete. In the NRG one recovers
the complete basis by taking into account terms on all energy scales [77].

4.2.3 Time-dependence

The results presented in the previous sections are merely for the equilibrium case.
The main advantage of the NRG+DMRG method is to track the real-time dynamics of
strongly correlated systems with a large bandwidth. Hence in this section we show
the accuracy of this method by demonstrating that it reproduces the ED results of the
RLM. Once the reliability of the method is proven, the method can be we applied to
models lacking an exact solution.

In this section we focus on comparing the NRG+DMRG with the ED results obtained
for the RLM with Eq. (3.20); we no longer compare the results to the continuum so-
lution as it was already shown in Sec. 3.2 that by using a DWC one can reproduce
the continuum results. In the following all calculations are carried out for an impurity
coupled to a DWC.

As argued in Sec. 1.4.3 the Trotter time step of the TD-DMRG has to be chosen
smaller than the inverse bandwidth D. As a consequence an increasing bandwidth
makes it harder to perform the simulation for the TD-DMRG. We want to show that the
NRG+DMRG method is able to simulate systems with a large bandwidth (compared
to I') very accurately and therefore show results for D = 10°T.

Impurity occupation number

Fig. 4.5a shows the time-dependent impurity occupation after a sudden local quench, at
which the position of the impurity level position is shifted E; — E; at t = 0. The chain
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is solved with ED, Eq. (3.20), and these results are compared with the NRG+DMRG
results: both curves lie on top of each other. To quantify this further, Fig. 4.5b shows the
relative difference between the curves. This value is for t = 0 of the order (9(1076) —
©(10°) and for I > 0 it approaches O(10°). The AE = 2T curve in Fig. 4.5a shows
at tI' = 17.6 a peak of almost the height of the initial occupation. This indicates that
the charge-wave propagates through the whole chain and is reflected at the end of the
chain: almost no charge is reflected internally. This is different for the larger quench,
AE = 20T for tI' 2 15 small wiggles appear. Hence, not the whole charge is reflected
and these wiggles are therefore due to reflections within the Wilson chain.

Before the reflections arrive at the impurity the impurity occupation number in Fig.
4.5a reaches a steady-state value. This value depends on the final impurity level E;. If
the system shows true thermalization the steady-state value of the impurity occupation
for the time-evolution is equal to the equilibrium impurity occupation number of the
final system. As size of the system is finite it cannot thermalize as a whole; however,
it is possible that a subsystem thermalizes [159]. For thermalization all expectation
values have to be time-independent and must take the equilibrium values of the final
system. In general, it is not enough to define thermalization just over one expectation
value, e.g. the impurity occupation number. Because it is cumbersome to calculate
and compare all independent expectation values we use the fidelity F, Eq. (1.19), to
quantify the degree of thermalization.

Fidelity

The fidelity measures the distance between two reduced density matrices. Here, these

density matrices correspond to the time-dependent density matrix p(t) = e it poele ,
1 ,—BH;

with pg = ze ", calculated by the TD-DMRG and the equilibrium density matrix
o= Zife_ﬁ He of the final system. Here Z, is the partition sum for the initial (x = i)
and the final (x = f) system and, since the DMRG targets the ground state, the inverse
temperature is f — oo.

As only a subsystem is able to thermalize we partition the whole system in two sub-
system, where the system part is formed by the hyper-impurity and the environment
by the second Wilson chain. Thus, the reduced density-matrices are obtained by tracing
over the environment degrees of freedom.

Technically the reduced density matrix pg(t) = Trg [p(t)] is obtained from the A-
matrix corresponding to the hyper-impurity; this is the A-matrix AP of the time-depen-
dent MPS (cf. Fig. 1.3b). To obtain the reduced density matrix og = Trg [¢] of the final
system one has to calculate the ground state of H; employing an additional equilibrium
DMRG run. An additional NRG run is not necessary as for the TD-NRG both the initial
and the final Hamiltonian are diagonalized in any case.

The time evolution of the fidelity for two different quenches is shown in Fig. 4.6a.
The value at t = 0 gives the fidelity for the initial and final system. For an increasing
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Figure 4.6: Fidelity F, Eq. (1.19), of the subsystem consisting of the impurity with N; Wilson
chain sites for the time-dependent reduced density matrix and thermal reduced
density matrix of the final Hamiltonian. (a) Time-dependent and (b) maximum
fidelity with chain and model parameters from Fig. 4.5.

energy difference AE the ground states of the final and initial Hamiltonian move away
from each other and thereby lowering the fidelity. With the time evolution the fidelity
approaches the value F = 1 indicating that the system thermalizes. For AE = 2I" one
can still observe the reflection at the end of the chain as a dip in the fidelity. The reason
for the oscillations of the fidelity in the AE = 20T curve is that in this case charge is
transferred into the first Wilson chain due to internal reflections; with regard to the
reduced density matrix pg(t) this part of chain is the considered the system and thus
charge moving into and from the system creates oscillations in the fidelity.

The maximum fidelity F for different number of sites in the second Wilson chain N,
and energy differences is shown in Fig. 4.6b. For smaller energy differences the initial
and final state are closer to each other and therefore the maximum fidelity is larger. A
long second Wilson chain is better suited to represent the continuous bath; hence, the
fidelity grows with increasing N,.

However, for large N, the curves saturate at a AE dependent value. One reason are
the numerical errors during the time-evolution which prevent the initial state to evolve
into the final state. Another reason is the first Wilson chain: the discretized high-
energy modes of the bath are represented by the first Wilson chain. The importance of
these states for the time-evolution grows with the energy difference AE, as for a large
quench more high-energy states are excited than for a small quench. Hence, the fidelity
for N, — oo cannot reach one, but approaches one for AE — 0.

These studies of the fidelity show that the system equilibrates into a thermal state,
which is equal to the equilibrium ground state of the final Hamiltonian.
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Figure 4.7: Time-dependent difference of von Neumann entropy S,, = S,,(t) — S,,(t = 0), Eq.
(1.22), of the mth bond of the second Wilson chain. Same parameters as Fig. 4.5.

Von Neumann entropy

To visualize the propagation of the charge wave through the second chain Fig. 4.7
shows the von Neumann entropy calculated with Eq. (1.22). The plot shows the dif-
ference of entropy between t = 0 and t for a bipartitioning of the system at bond m.
The propagation of the charge wave is clearly visible and follows the expected form
(cf. Fig. 3.11a). Note, that Fig. 4.7 shows only the second Wilson chain of the DWC as
the first chain is incorporated in the hyper-impurity. Thus bond m = 0 in Fig. 4.7 is the
bond connecting the hyper-impurity with the second Wilson chain. The plot shows,
that the time at which the von Neumann entropy wave reaches bond m = 0 is almost
the same at which the fidelity drops (cf. Fig. 4.6a) and the impurity occupation shows
a peak (cf. Fig. 4.5a).

4.3 Summary

The purpose of this chapter was to introduce the new hybrid method and to show its
applicability. After introducing and discussing the new versatile hybrid method for
the general case — with unspecified impurity, chain, and second method — we explic-
itly showed how to hybridize the numerical renormalization group (NRG) with the
density-matrix renormalization group (DMRG). Here, the NRG generates an effective
low-energy Hamiltonian which is, in turn, solved with the DMRG. This scheme allows
to solve models employing the concept of hybrid chains introduced in Chapter 3.
Using the numerical renormalization group density-matrix renormalization group
hybrid (NRG+DMRG) method we first discussed the loss of norm of the initial state
due to the incomplete basis rotation needed to rotate the state from the eigenbasis of
the initial into the eigenbasis of the final Hamiltonian. We ascribed the loss of norm
to the overlap between the Hilbert spaces of the initial and final Hamiltonian. This
depends on the number of kept NRG states, the initial and final positions of impurity
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level, and the length of the Wilson chain. Due to the complete Fock space summation
the loss of norm is compensated in the subsequent backward NRG iterations.

We showed data for the time-dependent impurity occupation number calculated
with the NRG+DMRG method and compared these with exact diagonalization (ED)
data: here we found an excellent agreement. To prove that the time-evolution of the
NRG+DMRG evolves the initial state into the ground state of the final Hamiltonian we
calculated the fidelity. Lastly, the bond-dependent von Neumann entropy showed that
the charge wave propagates through the chain as expected from preliminary studies in
which the resonant-level model (RLM) was solved exactly (cf. Chapter 3).

Conclusively, we have provided plenty of evidence that the new hybrid method
works excellent. In the next chapter this method and the concept of hybrid chains is
applied to the interacting resonant-level model (IRLM), a model which is not exactly
solvable.






Chapter 5

Nonequilibrium Simulations of the
Interacting Resonant-Level Model

In the previous chapter it was shown that the numerical renormalization group density-
matrix renormalization group hybrid (NRG+DMRG) method yields excellent results
for the resonant-level model (RLM). As the RLM is exactly solvable it is perfectly
suited to benchmark our new method. Now we add an interaction term, accounting
for the Coulomb repulsion U between the impurity electron and the lead electrons, to
the RLM Hamiltonian in order to construct the interacting resonant-level model (IRLM)
[23, ]. This model is no longer exactly solvable and, therefore, one has to rely on
approximative methods or limiting cases to make statements about physical properties.
Hence, before presenting the results of our studies we shortly give a brief overview of
other studies dealing with the IRLM.

The renormalization group (RG) and functional RG [160] approaches have proven
fruitful for dealing with the IRLM. Using the real time RG [161] it is possible to
calculate transport properties: a quantum dot (QD) is coupled to two leads and is
therefore described by an IRLM with two conduction bands. By shifting the chemi-
cal potential of both bands in different directions a voltage is applied to the QD. In
the regime of strong charge fluctuations [162, ] or in the scaling limit [164] some
nonequilibrium properties for this setup can be determined employing the real time
RG or functional RG respectively. Using the time-dependent density-matrix renorm-
alization group (TD-DMRG) the current and conductance are measured for the same
setup [165, , ] or for a similar model in which a single Hubbard site is coupled
to two leads [94]. Refs. , investigate the IRLM with a different number of leads
employing bosonization, the Anderson-Yuval approach, and the numerical renormali-
zation group (NRG). Other methods applied to the IRLM include Bethe ansatz [22, 169]
or perturbative methods [170].

When considering the two ground states of the IRLM with two different interaction
parameters U; and U; or the two ground states of the RLM with two different level
positions — for example the initial and the final state of the quench dynamics discussed

151
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in Sec. 4.2 - these ground states are orthogonal in the thermodynamic limit. This is
the so-called Anderson orthogonality catastrophe [171]. In Refs. 172, the IRLM
served as testbed to examine the effects of the Anderson orthogonality catastrophe in
the NRG.

With the concept of the Anderson orthogonality catastrophe in mind one might ask
the question how a system is able to thermalize; or in other words, how is it possible to
start from the ground state |I) of the initial Hamiltonian and to let this state unitaryly
evolve under H; until it equilibrates in the ground state |F) of the final Hamiltonian,
even though |I) and |F) are orthogonal?' Of course, the answer is that this is not
possible. Nevertheless one observes thermalization, for example in Fig. 3.12. However,
what one observes is not thermalization of the total system but only of a subsystem
and this is possible even though the total system does not thermalize [159, 174]. This
is why our fidelity graphs — Fig. 4.6 and Fig. 5.6 below — show the distance between
two reduced density-matrices and not between the time-dependent density matrix of
the total system and the equilibrium density matrix of the final Hamiltonian.

In this chapter we first present the IRLM and then discuss renormalization effects for
the level width I' due to the Coulomb repulsion U. Using the NRG+DMRG method,
the renormalized I is determined numerically. Accounting for the renormalization of
I' we calculate the time-dependent impurity occupation number for different values
of U after a sudden local quench and discover the emergence of oscillations. These
are explained in a strong coupling treatment of the model. The results of the strong
coupling treatment for the oscillation frequency and damping rate agree for large U
excellent with the numerical data. However, the NRG+DMRG method is capable of
solving the IRLM in the whole parameter regime.

Furthermore, we calculate the fidelity to show that the initial state evolves into the
ground state of the final Hamiltonian. At the end of the chapter we discuss the nu-
merical errors thereby justifying some of our parameter choices and briefly discuss our
expectations if one would simulate the same systems with the TD-DMRG.

5.1 Model Hamiltonians

The Hamiltonian of the IRLM is given by
H=Ed'dt Y (c;d + d*ck) +u (d*d - 1) Ly e 4 Yede. 61)
VNI T 2) N X k

Here d' creates an electron on the level and c;: creates a band electron with momentum
k. Nj is the number of k-values. The energy of the local level, which we later assume
to be time-dependent, is E4 and the band dispersion is given by €;. V is the coupling

Strictly speaking the states are only orthogonal in thermodynamic limit.
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strength between the impurity and the band. : chk/ 1= c,tck/ — (5k,k/9(—ek) stands for
normal ordering with respect to the filled Fermi sea. The contact interaction U accounts
for the capacitive coupling between the local level and the band.

For the IRLM to be treatable with the NRG the bath has to be mapped to an finite
Wilson chain, Sec. 1.3.1. Essentially, this yields the discretized Hamiltonian of the RLM,
Eq. (3.2), with an additional interaction term. Thus the Hamiltonian of the discretized
IRLM with a constant and symmetric density of states (DOS) reads

1 1 N-1
Hy =Egd'd+V <d+co + cgd) +Uu (d+d — 2) <c$co — 2) + Y t, (chnH + cZch) :
n=0

(5.2)

Now, c:rl and ¢, denote the creation and annihilation operators of the nth Wilson chain
site. As we are interested in a bath with a constant DOS the parameters t, are, for
a Wilson chain, given by Eq. (1.39). For other choices of chains one has to take the
appropriate chain parameters as discussed in Sec. 3.3. Through our preliminary studies
based on the RLM we know that the optimal choice for the bath discretization is a
double Wilson chain (DWC); hence, this kind of hybrid chain is employed in this
chapter.

In this section this Hamiltonian is solved with the NRG+DMRG method. As for
the RLM, we are interested in tracking the time evolution of the impurity occupation
number n4(t) = (d'd)(t) after a quench at t = 0 from Eq = E; to Eq = Ey.

5.2 Fixed point properties

At low energies the Coulomb repulsion U causes a renormalization of the level width
I' [23] and the IRLM has the same fixed point as the RLM. The crossover from the
free orbital fixed point to the low energy fixed point is governed by an effective I'. The
effective level width I'y can be tuned by varying the bare model parameter I'. These
two quantities are connected by [90]

ry ke
ta=0(5) 5:3)

where I' = 7rpV2 is the non-interacting hybridization width and

< 2 u
w =26 — 5 with 6 = — arctan <7tp> . (5.4)
s 2
As the IRLM and RLM share the same low energy fixed point the thermodynamic
properties are the same and, therefore, one could expect that dynamic properties are
the same as well. This is not the case: due to the repulsive Coulomb interaction the
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Figure 5.1: Numerical accuracy of the NRG+DMRG method for solving the IRLM. (a) Deriva-
tive of the impurity occupation number. (b) Truncation error ¢, Eq. (1.91). The
parameters for both panels are A; =1.8,A, =1.02,N; =29,N, = 151,E = T,
and D = 10°T.

IRLM favors both the impurity and the first Wilson chain site to be half filled, in
addition it suppresses charge fluctuations. This leads to Rabi-like oscillations (see
Appendix D) and introduces a new U dependent time scale.

To measure transport properties one can extend the IRLM to the case of two leads. In
particular, the case in which one applies a voltage and calculates the steady-state cur-
rent is interesting. As expected, increasing the voltage increases the current. However,
one observes a negative differential conductance as well: in some cases the current
decreases with increasing voltage [165]. Perturbative treatments suggest that this effect
is due to a renormalization of the hopping amplitude [168, 175].”

This work considers only the IRLM with one lead, because we are mainly interested
in a proof-of-principle for our new hybrid method. However, we are confident that
the hybrid method is also applicable to the case of two leads and could make valuable

contributions.

5.3 Choice of parameters

Unlike the RLM the IRLM is not exactly solvable and thus one cannot compare the
NRG+DMRG results to exact diagonalization (ED) calculations as in Sec. 4.2.1. Hence,
one has to compare results for different number of states N; and state multipliers s,
to determine the optimal parameters. Optimal in this sense is that the number of kept
states is as low as possible to reduce the numerical demands and that increasing the
number of states does not improve the results further.

Fig. 5.1a shows that the change of the occupation number with the number of state
Nj is the same for s,, = 1 and s, = 2 for Ny < 60. For Ny > 60 the derivative is of

2 A different explanation is given in Ref.
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Figure 5.2: Equilibrium impurity occupation ny versus interaction strength U for different T
for the ground state of the IRLM calculated with the NRG+DMRG method. The
position of the impurity level is E; = —107°D. The bandwidth D serves as energy
unit. The chain parameters are A; = 1.8, A, = 1.02, N; =29, and N, = 151.

the same order as the Lanczos error and furthermore, occasionally, it changes its sign
(not visible in the plot). That the s, = 1 and s,, = 2 curve start deviating at Ny = 60
indicates that the change of the occupation at the precision ~ 1077 is dominated by
numerical errors. Hence, for all following calculations we choose N; = 60 and s, = 1.
This choice is justified, as well, by the truncation error, which is below the Lanczos
error (cf. Fig. 5.1b).

5.4 Determining effective I

As argued in Sec. 5.2 the RLM and IRLM share the same low energy fixed point, with
a renormalized level width I'. depending on U. To produce comparable results for
different values of U all calculations are carried out with an equal effective level width
I'y for all U values. Hence for each set of parameters the bare I' has to be tuned in
such a way that I'.¢ = 1. This sections shows how this is achieved.

The numerical value of the parameter I' for which I'y; = 1 holds does not just depend
on U, but, in principle, depends on the choice of the chain parameters. However,
because I' is determined in equilibrium this dependence is very weak. Furthermore,
when one chooses a value for I' which is slightly off the value needed for this chain
this would cause a small shift in the impurity occupation and a slightly detuned time
scale. The qualitative behavior of the system does not change.

As the repulsive Coulomb interaction favors the impurity level to be half-filled we
expect for Ey < 0 a shrinking impurity occupation ny = (d'd) for increasing U; that
this is indeed the case is shown in Fig. 5.2. Furthermore, for the bare T — 0" the
hybridization V shrinks resulting in a completely filled impurity for E; < 0 (cf. Fig.
5.2).
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Figure 5.3: Determining effective I'. (a) I' scan for IRLM. To keep I'y; constant, I is set to the
value at which the impurity occupation of the U # 0 and U = 0 case coincide.
This figure shows an example of a T scan for U = 5 - 10°T ¢, which has to be done
for each value of U. The horizontal dashed line indicates the U = 0 occupation.
(b) Numerical determined T which implies I'y; = 1 for different U. The analytical

curve was calculated solving Eq. (5.3) for T; this yields rL“ = (%)a. The chain
parameters of both plots are the same as Fig. 5.2.

When increasing U the parameter I' is tuned in such a way that I'.¢ is the same for
all values of U. To achieve this, a I' scan is performed for each U value (cf. Fig. 5.3a)
and the impurity occupation is compared to the non-interacting case. As in Sec. 3.3.3,
to find the value at which the occupation of the interacting case coincides with the
occupation of the non-interacting case, we interpolate the data points with a power-
law function. Comparing the numerical values for I' with the analytic values calculated
with Eq. (5.3) shows a good qualitative agreement (cf. Fig. 5.3b).

In the following calculations, for all different sets of chain parameters the bare value
of I is set to the value which implies I'.¢ = 1; hence, I' 4 serves as the energy unit.

5.5 Time dependence

As for the non-interacting case, we investigate the behavior of the IRLM after a sud-
den quench at t = 0, when the local level is shifted from E; to E;, by tracking the
time-evolution of the impurity occupation number n4(t) (cf. Fig. 5.4). Since the non-
interacting and the interacting model operate with the same effective level width I' .4
the initial value ny4(t = 0) is independent of the Coulomb repulsion U. The final
steady-state value reached after a quench at t = 0 for U > 0 coincides with the thermal
expectation value of the final Hamiltonian.

For U > 0 damped oscillations emerge due to which the thermal value of the final
Hamiltonian is reached at later times as compared to the U = 0 case. For increasing U
the time needed to reach the steady-state increases. In Fig. 5.4a for U = 3D the charge,
which is reflected at the end of the DWC, arrives at the impurity before the system
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Figure 5.4: Time-dependent impurity occupation number for the IRLM with different interac-
tion strengths U calculated with the NRG+DMRG method with (a) —E; = E; = Ty
and (b) —E; = E; = 10T .. Same chain parameters as in Fig. 5.2.

reaches the steady-state. Comparing the AE = 2I'y; data (Fig. 5.4a) to the AE = 20T 4
data (Fig. 5.4b) shows that the damping and frequency of the oscillations, and the
decline of the envelope depend on the quench strength AE.

One observation is that in Fig. 5.4a, this means for a small quench, both the U = 0
and the U = D curves reach the steady-state. Furthermore the reflection peak due to
the charge reflected at the end of the DWC appears in the impurity occupation number
in both cases at the same time. In contrast to that, for a large quench, Fig. 5.4b, the
reflections within the Wilson chain of the U = 0 arrive earlier at the impurity than
for U = D: due to the interaction, the rate at which the charge is injected into the
chain is suppressed. The current injected into the DWC is therefore smaller and thus
the reflections occur at later sites of the DWC. This means that, unlike for a small
quench, for a large quench, when the reflections occur within rather than at the end of
the DWC, the time scale on which the back-moving charge wave reaches the impurity
depends on U.

We want to test if for a small quench, that is, the dominant reflections occurs at the
end of the DWC, the time scale on which the reflections reach the impurity depend on
U. Therefore, Fig. 5.5 shows the time-dependent impurity occupation number for three
different values of U and different sizes of the second Wilson chain N,. By increasing
the length of the second Wilson chain the reflection peak is moved to longer time
scales. For all three values of U the curves with different N, lie on top of each other up
to a certain time ti}ax at which the N, = 81 curve starts to deviate from the other two
curves: the short-time behavior is recaptured faithfully even with small chains, but if
one is interested in the behavior on long times scales one has to choose a chain with
enough sites to delay the reflections. By comparing the different U curves one observes

that the deviation time .

max 1S the same for all values of U: this indicates that the time
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Figure 5.5: Time-dependent impurity occupation number for increasing second Wilson chain
length N, with different values for the interaction strength U. The quenchis —E; =
E; =T and the chain parameters are as in Fig. 5.2.

scale at which the reflection occurs is for a small quench U independent. A definite
proof of this claim is given in the next section by analyzing the fidelity curves.

5.5.1 Fidelity

To further investigate this point, Fig. 5.6a shows the time-dependent fidelity F(t) of
the reduced density matrix of the hyper-impurity during the time evolution with the
equilibrium reduced density matrix of the hyper-impurity for the final Hamiltonian.
It is important to notice that the fidelity grows during the time evolution and that the
maximum fidelity depends on N,; hence we expect that in the limit N, — o0, A; — 1
and tI'yy — oo the fidelity approaches F — 1. This shows that on can indeed observe
thermalization of a subsystem for the IRLM with the NRG+DMRG.

For finite system sizes reflections at the end of the chain set an upper bound to the
maximum fidelity. Fig. 5.6a shows that the fidelity curves for different N, lie on top of

each other, up to the time tﬁ{gx at which the Nj curve starts to deviate from the curves
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Figure 5.6: Time-dependent fidelity F, Eq. (1.19), for —E; = E; = I'y. For calculating the re-
duced density-matrices to determine the fidelity the hyper-impurity constitutes
the system and the second Wilson chain the environment. The fidelity is calcu-
lated with the time-dependent reduced density matrix and the thermal reduced
density matrix of the final Hamiltonian. (a) Different values for the chain length
N, for U = 3D. (b) Maximum simulation time determined by the time at which
the fidelity curves (left panel) start to deviate from the N, = 301 fidelity curve.
For both panels same chain parameters as in Fig. 5.2 are used.

corresponding to chains with more chain sites. As for the impurity occupation number
the reason for this deviation are the reflections at the end of the DWC.

Furthermore the maximum fidelity approaches F = 1 with increasing N,. To calcu-
late the fidelity the system is partitioned in a system, in this case the hyper-impurity,
and a bath, in this case the second Wilson chain. By increasing N, the relative size of
the bath increases in comparison to the system. When tracing out the bath states one
is left with less information and this allows for a better thermalization [159].

Fig. 5.6b shows the maximum time ¢, for which a fidelity curve of given N, and
U lies on top of a curve with N, = 301 sites: the time for which one can faithfully
simulate the IRLM with the NRG+DMRG is independent of U. All U dependencies
visible in Fig. 5.6b are solely due to the numerical method employed to extract f,,
from the fidelity F(t) curves.

5.5.2 Von Neumann entropy

In the case of the exactly solvable RLM the occupation of each chain site can easily be
calculated. In principle, one could calculate the time-dependent occupation number of
each chain site of the second Wilson, because this part is solved with the TD-DMRG.
Hence one could track the propagation of the charge wave through the second Wilson
chain similar to Fig. 3.11. However, instead of the occupation number we show the von
Neumann entropy, as the numerical effort to calculate this quantity is not as high as
calculating expectation numbers.
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Figure 5.7: Difference of time-dependent von Neumann entropy S,, = S,,(t) — S,,(t = 0)
of the mth site of the second Wilson chain for U = 3D, (a) AE = 2T and (b)
AE = 20T 4. The occupation number of the impurity is shown in Fig. 5.4. Same
parameters as Fig. 5.2.

In Fig. 5.7a the propagation of the charge wave through the second Wilson chain is
clearly visible. The occupation number of the impurity shows a damped oscillation
(cf. Fig. 5.4a) and in each oscillation period one further charge wave is injected into the
DWC. At tI' ~ 16 the first charge wave reaches the end of the chain, is reflected, and
at tI' . ~ 32 it arrives at the hyper-impurity. At this point the decline of the impurity
occupation number stops and the occupation number rises (cf. Fig. 5.4a); furthermore,
at this time the fidelity drops (cf. Fig. 5.6).

For the larger quench, —E; = E; = 10, the oscillations are smaller and faster, and
the decay of the impurity occupation number is slower compared to the smaller quench
(cf. Fig. 5.4b). Hence, Fig. 5.7b shows a first wave propagating through the chain with
the same velocity as in Fig. 5.7a. However, due to the fast oscillations of the impurity
occupation one cannot as clearly distinguish the subsequent charge waves injected into
the chain as in Fig. 5.7a.

5.5.3 Analytic frequency and damping

Unlike the RLM the IRLM lacks an exact solution and hence we cannot compare the
NRG+DMRG results to ED results. However, for U — co one can derive an expression
for the frequency Q) of the oscillations of the impurity occupation number and for the
damping T of the oscillations,

QO = \/E} +4V? (5.5)

2
8DV
T= i (ﬁ) . (5.6)
(E¢/2)* + V?
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Figure 5.8: Fit of the function Eq. (5.7) to the numerical data of the impurity occupation num-
ber for U = 10D to determine the frequency Q) and damping rate 7 of the oscil-
lation. The model parameters are (a) —E; = E; = Ty and (b) —E; = E; = 10T .
Same parameters as Fig. 5.2.

The time-dependent impurity occupation number is then given by

ng(t) =A (e_er cos(Qt)\/l —eT cos(0)* — e sin(9)>
+ (1 —nyg) (1 - e_£> + noe_%, (5.7)

with the initial occupation ny = ng4(t = 0) and the parameter 6. The derivation of
these equations is sketched in Appendix D. To compare the analytic expressions for
Q) and T with the NRG+DMRG results Eq. (5.7) is fitted to the NRG+DMRG data
for the impurity occupation number, where all parameters are regarded as free fitting
parameters (cf. Fig. 5.8).

The fit results are shown in Fig. 5.9. Note, though Eq. (5.5) does not explicitly depend
on U the analytic results given in Fig. 5.9a depend on U: to assure I'.¢ = 1 one has
to U dependently tune the hybridization V and thus (2 depends implicitly on U. Fig.
5.9 shows a good agreement between the analytic and the numeric results for U — oo.
As expected the agreement is poor for small U, because the analytic expressions for ()
and T are only valid in the large U limit. However, the NRG+DMRG is applicable in
the whole parameter regime.

5.6 Numerical errors

In Sec. 5.3 the criteria to determine the optimal numerical parameters are the equi-
librium occupation number of the impurity and the density-matrix renormalization
group (DMRG) truncation error. With this choice of parameters nonequilibrium results
consistent with the ED results for U = 0 were obtained, e.g. the obtained reflection
times are the same. However, so far there is no rigorous justification that the optimal
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Figure 5.9: Fitted (a) frequency Q) and (b) damping . The function Eq. (5.7) is fitted to the
impurity occupation number for 0 < tI'y, < 15 (cf. Fig. 5.8). The crosses indicate
the numerical data and the lines the analytical strong coupling estimates, Eq.
(5.5) and Eq. (5.6). Same parameters as Fig. 5.2.

value for the number of kept states obtained by an equilibrium calculation is suited for
a nonequilibrium calculation.

The TD-DMRG suffers from two major error sources: the truncation and the Trotter
error [177]. The truncation error is due to the weight of the density matrix discarded at
each application of the time-evolution operator. Fig. 5.10a shows the truncation error
€ measured at the central bond of the second Wilson chain during the time-evolution:
for all parameter choices the truncation error is bounded from above by (’)(10_6) on
the time scales one is interested in, that is, before the reflections reach the impurity.
This indicates that the truncation error for a single application of U is negligible.

Due to the Trotter-Suzuki decomposition (TSD) one has to apply the time-evolution
operator U multiple times to the matrix product state (MPS) and at each step one
discards some weight of the density matrix. Hence, the important quantity is not just
the truncation error, but the cumulative truncation error. To estimate this error we
let the system evolve up to time t = £ and then reverse the direction of the time by
changing the sign of the Trotter time step 6t — —4t in Eq. (1.95). Afterwards we let
the system evolve up to time T. In total we have applied the time-evolution operator
N7 times, thus the total evolution time is T = Ny |0f| . However, due to the reversion
of the time direction at t = I the effective system is t = 0: the system has evolved back
to its initial state. The Trotter errors from the forward and backward iteration cancel
each other out [177], thus the deviation of the impurity occupation numbers at ¢t = 0
and t = T is only due to the accumulated truncation error.

Fig. 5.10b shows that on the time scales one is interested in, that is TT 4 < 30, the
relative error is (’)(10_3). The relative error is measured by the relative deviation of
the initial value and the value after the forward and backward run. If one would
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Figure 5.10: (a) Truncation error ¢ measured at the central bond of the second Wilson chain.
The numbers in the legend are of the form (AE, U). (b) Forward and backward
run. Shown is the relative difference between the impurity occupationatt =0

and t = TT 4. At t = % the direction of time is reversed by changing the sign
of time-step 6t — —4t in Eq. (1.95). This is a measure of the cumulative Trotter
error. Same parameters as Fig. 5.2.

like to reduce this error further, one has to increase the number of states during the
time-evolution. For the purposes of this thesis this error is sufficiently small.

Besides the truncated weight the other major error source of the TD-DMRG is the
Trotter error. This error depends on the Trotter time step Jt: for 6t — 0 the Trotter
error shrinks. However, the smaller 4t is the more applications N;, Eq. (1.97), of the
time evolution operator are needed to reach the time ¢, hence the cumulative truncation
error grows.

The dependence of the numerical error on the Trotter time step Jt can be quantified
by the derivative of the impurity occupation number n4(t, 6t) with respect to the Trotter
time step,

dng(t,6t)  ny(t,ot) —ng(t,ot")

TR 5ot . (5.8)

This derivative is evaluated at different Trotter time steps and model parameters in
Fig. 5.11. For dt < 0.01T . the numerical value of the derivative saturates and therefore
decreasing 0t does not significantly improve the accuracy of the simulation. That is
why all simulations presented in this chapter are carried out with 5t = 0.01T o

It is important that the Trotter time step is below the inverse of the effective band-
width. The chain parameters used in all simulations of this section are given in Fig.
5.2. With these parameters the effective bandwidth is given by

Ny

Deff ~ Z)[\l_T ~ ZOFeff. (59)
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Figure 5.11: Derivative of the impurity occupation number with respect to the Trotter time
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as in Fig. 5.2.

Hence the upper bound for the Trotter step is

o 1 005
X Deg Lo

(5.10)

Since 4t > ot the requirement that the Trotter step is below the inverse effective
bandwidth is fulfilled.

Concluding, for our NRG+DMRG calculations errors are present. But on the time
scales on which the simulations yields physical meaningful results these errors are
reasonable small. The time scale on which the simulation yields physical meaningful
results is bounded above from the time the first reflection peaks occur in the impurity
occupation number. As argued in Chapter 3 this time scale is set by the chain parame-
ters and the quench strength. Hence, the maximum simulation time is not bounded by

numerical but by discretization errors.

5.7 Comparison to TD-DMRG

The discretization errors are eliminated by using hybrid chains; hence, one cannot use
the NRG anymore and that is why we proposed the new hybrid method. However, the
DMRG is more flexible than the NRG as one can simulate chains with arbitrary chain
parameters: it should be possible for the TD-DMRG to simulate the IRLM with hybrid
chains.

In principle this is true, but it is very hard to simulate systems with a bandwidth
as high as in our studies. We focused on systems with the bandwidth D = 105Feff.
For TD-DMRG simulations of such systems the Trotter step has to be at least one
order of magnitude below the inverse bandwidth, JtI'.¢ = 10°. In our NRG+DMRG
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simulations the Trotter time step is 6tI'. = 0.1: simulating the same system with the
TD-DMRG one needs 10° more time steps to reach the same time scales. Assuming
that the CPU time scales linearly with the number of time steps, this would boost the
needed CPU time from a few hours to decades!

In this work we employed the so-called adaptive TD-DMRG [109], which relies on
a TSD of the time evolution operator. However, other proposals to implement a time
evolution with the DMRG discretize the total simulation time in single time steps,
which have to be below the inverse bandwidth, as well [110, ]. Thus, the CPU
time needed by these methods is of the same order of magnitude as for the adaptive
TD-DMRG. Hence, all TD-DMRG methods are not suited well for the simulation of
systems with a large bandwidth.

Besides the huge computational resources needed, we expect the accumulated trun-
cation error to grow as the number of applications of the time evolution operators is
10° times as high as compared to the NRG+DMRG. Hence we expect the time scales
on which one can simulate the system reliably to be drastically reduced.

5.8 Summary

In this chapter we have investigated the real-time dynamics of the interacting resonant-
level model (IRLM). Therefore we applied the numerical renormalization group density-
matrix renormalization group hybrid (NRG+DMRG) method to the IRLM. Before we
could calculate the time-dependent impurity occupation number we had to numeri-
cally determine the bare model parameter I', which is renormalized due to the inter-
action, in such a way that the effective level width I'.¢ is equal for all simulations in
order to make the results comparable.

With the NRG+DMRG method we were able to simulate the IRLM in the whole
parameter regime: from a small to a large bandwidth, from a vanishing interaction
strength, over moderate interactions up to the strong coupling limit, and from small to
large quenches. Here we observed that oscillations in the time dependent impurity oc-
cupation numbers emerge for a non-vanishing interaction. We could not only explain
the origin of these oscillations in a strong coupling treatment, but were also able to
derive analytic expressions for the oscillation frequency and the damping rate in the
large U limit: a comparison between the numerical frequency and damping rate and
the analytic values shows a perfect match. Interestingly, the frequency of these oscilla-
tions introduces a new time scale not present in the thermodynamic properties of the
IRLM. This explains, why, though the resonant-level model (RLM) and the IRLM share
the same fixed point and therefore the thermodynamic properties of both models are
equal, the real-time dynamics of RLM and the IRLM are different.

By the use of double Wilson chains (DWCs) we reduced discretization errors con-
siderably. On the one hand, this improves the numerical accuracy. On the other hand,
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the NRG+DMRG approach allows us to access exceptionally long times scales out of
reach for the time-dependent density-matrix renormalization group (TD-DMRG). In
the TD-DMRG simulations the Trotter timestap has to be at least one order of mag-
nitude below the inverse bandwidth. This renders the TD-DMRG unfeasible for large
bandwidth calculations the. However, the merit of the hybrid method is, that the nu-
merical renormalization group (NRG) produces an effective low-energy Hamiltonian
which the TD-DMRG can easily simulate.

In this chapter the NRG+DMRG has proven itself as versatile and reliable method
which allows to simulate the IRLM in parameter regimes and on time scales inaccessi-
ble by other methods.
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Conclusions

We made a good deal of progress in improving techniques to simulate quantum impu-
rity systems (QISs) in and out-of equilibrium. These improvements are made possible
by the deeper understanding we developed of the implications the bath discretization
has for numerical renormalization group (NRG) calculations. Our results have un-
doubtedly shown that discretization artifacts corrupt the nonequilibrium simulation
of QISs if the discretization of the bath is carried out in the usual Wilsonian manner.
In equilibrium, for bosonic systems the discretization and the iterative diagonalization
cause a dynamic renormalization of the critical coupling strength, due to which the
NRG yields wrong critical exponents: this is the so-called mass-flow error.

For both issues we presented solutions. We demonstrated that (i) for nonequilibrium
calculations one can recover the real-time dynamics of the continuous bath with a
modified bath discretization; and (ii) for equilibrium calculations the correct critical
exponents of the spin-boson model (SBM) are calculated by the density-matrix renorm-
alization group (DMRG)

The solution of the mass-flow error is to take the rest-chain properly into account: at
each NRG iteration a part of the Wilson chain is neglected. However, in the sweeping
phase the DMRG is able to respect the effect of the rest-chain — a feat not accomplish-
able with the NRG, yet. Thereby the DMRG is able to eliminate the mass-flow effect
and our DMRG calculations yield the correct critical exponents of the sub-ohmic SBM.

The success of our DMRG calculations for the SBM is made possible by optimizing
the truncated bosonic basis by displacing the basis states. One way which we inves-
tigated to determine the displacement parameters is a variational optimization in the
DMRG sweeping phase. After a few sweeps the so determined displacement param-
eters converge. Furthermore, we proposed an alternative algortihm based on a mean-
tield scheme to calculate the optimal displacement paramters. By this semi-analytic
approach we gained a deeper insight in the cause of the bosonic state displacements.
We believe that this approach is as well applicable to other Hamiltonians containing
terms which generate a displacement of the bosons. These results are of relevance

167
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for all bosonic DMRG and NRG calculations, as these suffer from a truncation of the
bosonic Hilbert space.

With traditional nonequilibrium simulations of the resonant-level model (RLM) we
discovered severe problems due to the mapping of the bath to a Wilson chain. After
a sudden local quench a charge wave is injected into the Wilson chain and propagates
along the chain. Due to the logarithmic discretization of the bath the Wilson hopping
parameters decay exponentially and we showed that this decay leads to internal reflec-
tions of the charge wave within the Wilson chain. A fraction of the charge propagates
back to the impurity corrupting, for example, the results of the impurity occupation
number.

As a solution, we proposed to use hybrid chains consisting of a Wilson chain coupled
to a second chain with arbitrary hopping parameters in order to enhance the accuracy
and accessible time scales of the simulations. Here, the double Wilson chain (DWC)
turned out to yield the best results. The idea of a DWC is to patch two Wilson chains
with different discretization parameters together: the discretization parameter of the
second Wilson chain is significantly closer to one than the discretization parameter of
the first Wilson chain. By exactly solving the RLM we demonstrated that this setup
yields results in excellent agreement with a continuum solution.

Since for hybrid chains the separation of energy scales is not ensured anymore, the
NRG is not able to handle such chains. Therefore, as a central result of this the-
sis, we proposed a new hybrid method which enables us to hybridize the NRG with
other suitable methods. Explicitly, we showed how to hybridize the time-dependent
numerical renormalization group (TD-NRG) with the time-dependent density-matrix
renormalization group (TD-DMRG). An NRG run constructs an effective low-energy
Hamiltonian which is regarded as a hyper-impurity. The hyper-impurity is then cou-
pled to the second Wilson chain and this system is simulated with the TD-DMRG. This
boosts the accessible simulation times of the TD-DMRG to magnitudes out of its usual
reach. By comparing results we obtained by exact diagonalization (ED) and the new
hybrid method for the RLM we established the reliability of the new method.

In a next step we calculated the real-time dynamics of the interacting resonant-level
model (IRLM) with the new hybrid method. We analyzed interaction-enhanced os-
cillations of the impurity occupation number and compared these to analytic results
obtained in the strong-coupling limit. In this limit, both methods yield the same re-
sults, whereas the hybrid method is able to simulate the IRLM in the whole parameter
regime. We measured the fidelity to show that the time-evolved reduced density matrix
of the impurity thermalizes.

With the numerical renormalization group density-matrix renormalization group hy-
brid (NRG+DMRG) method we have devised a technique to simulate systems on time
scales out of reach of pure TD-NRG or TD-DMRG simulations. A pure TD-NRG sim-
ulation suffers from discretization artifacts leading to unphysical results. This is not
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a problem for TD-DMRG simulations as one could simulate DWCs with this method.
However, the TD-DMRG is unfeasible for systems with a large bandwidth, as the Trot-
ter timestep has to be one order of magnitude below the inverse bandwidth. For large
bandwidth simulations this leads to excessive demands of CPU time.

This thesis had an explicit technical focus: new numerical techniques were devised
and applied to few physical systems as a proof-of-principle. Of course, the story does
not end here. Hence, in the following we give a brief outlook of possible future appli-
cations.

An optimal bosonic basis is important for all simulations of bosonic systems in which
one has to truncate the bosonic Hilbert space. Hence, it is worthwhile to follow our
ideas how to construct such a basis up. Furthermore, it would be desirable to conceive
a way how to take the rest-chain — or, in general, the rest-bath — into account at a given
NRG iteration. This would not only cure the mass-flow error, but we also believe that
one could extend such an approach to a technique which allows to determine the NRG
broadening parameter for calculating spectral functions.

We are confident that the outstanding capabilities of the new hybrid method open
the door to investigate systems in regimes which were inaccessible before. A natural
extension of the presented work is to apply the NRG+DMRG method to an IRLM with
two leads to measure transport properties and to investigate the negative differential
conductance observed in the IRLM [165, 168, 175].

Furthermore, one could investigate the single impurity Anderson model (SIAM): for
the IRLM we have seen that there is one relevant time scale I' for the charge fluctuations.
In the SIAM there is an additional time scale due to spin fluctuations. It would be
interesting to examine if the concept of hybrid chains still works in the presented
manner. Finally, the new hybrid method does not only allow single quenches but one
could consider varying model parameters at arbitrary times. This would, for example,
render the simulation of pulses applied to quantum dots (QDs) with the NRG or the
hybrid method possible.

Though the first experiments pioneering the field of low-temperature physics and
impurity systems were performed over a century ago there are still open questions
today, e.g. the way how small systems interact with large environments is not fully
understood or building large scale quantum computers is still an unresolved chal-
lenge. Ahead of us lies a very vivid research field with a lot of exciting discoveries and
groundbreaking technical progress to come.






Appendix A

Diagonalization of the
Dissipative Harmonic Oscillator

In this appendix we exactly diagonalize the dissipative harmonic oscillator (DHO).
This is first done analytically for the continuous bath and afterwards numerically for
the discretized bath.

A.1 Continuous bath

The Hamiltonian of the DHO with a continuous bath is given by

H=0a'a+ (o' +a) LA, (0] +5,) + L w,bib, (A1)
N—_—— ] q
Xﬂ
X

Our goal is to calculate the critical coupling a, and the critical exponent p for this
model. The following derivation is a summary of [178].

A.1.1 Critical coupling
The bath is described by the propagator

A
[(z) = ; = (A.2)
which is defined
ImI (w —i6) = Y A28 (w — w;) = J(w) (A.3)
q
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with the standard parametrization

2mxwi*sws 0<w<w,
J(w) = - (A4)
0 otherwise
Using an equation of motion ansatz one gets for the impurity Green’s function
) (W +0+A(w)) (& = Q(Q+24,(w))) — 2047 (@)
<ala > (w—1) = 5
(w2 —QQ+ 2Ar(w))) + 402 A% (w)
2
+iA () Qrw) (A5)
(w2 —QQ+ 2Ar(w))) + 407 A% (w)
with the definition
A(z) =T(z) +T(—=z), (A.6)
A (w) =ReA(w —1if), (A7)
and Aj(w) =ImA(w —1d) = J(w) — J(—w). (A.8)
Hence the spectral function is given by
Q 2
770,(w) = Im < ala’ > (w — i) = A;(w) Qraw) .
(w2 — QO+ 2Ar(w))) + 402 AR (w)
(A.9)
Rel'(w) is determined by the Hilbert transformation
We s
Rel (w) =2 1*SP/ S Al
el'(w) = 2aw, J dew—e (A.10)

By considering the two cases |w| > w, and |w| < w, separately one can find an analytic
expression for the integral:

B ’(U’ S (o) 1 w n
Rel(w) = 2aw.C, < o, 20w, r;) 5=\ (A.11)
with 7 :=sign(w A12
g
1 o0 r1’l
and CT = g +2S ZO m. (A.13)
—
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The DHO shows a phase transition from a phase with a finite occupation number to
one in which the occupation number diverges. Since the occupation number is defined

by

[ee]

1
n, = / deo g pu ) (A.14)

—0o0

the model is unstable if, for an arbitrary finite w, the denominator of Eq. (A.9) vanishes,
2 2 2.2 !
(w —QQ+ 2Ar(w))) + 407 A% (w) = 0. (A.15)
To make the second term vanish we choose w =0

= 0% (Q+24,(0))* =0 (A.16)

= O =-24,(0) = % (A.17)

Therefore the critical coupling is given by

sQ)
= . A.18
IXC ch ( )

A.1.2 Critical exponent

To determine the critical exponent p the deviation of the oscillator frequency from its
critical value is defined as

wg=0Q—-0. (A.19)

By using that the bare oscillator frequency gets renormalized by the bath the spectral
functions for w — 0 and wy < 1 is given by

20wy |wl (1+ %)S

p(w) = sign(w) - 2 » 2 0 (A.20)
(wd—|—4tch B|w] ) + 1670wy |w
Here B = C, + C_ is a constant. We identify the two regimes
wl?
(i)  4aw.B <> > wy (A.21)
wC

2
and (ii) 4o B <‘:j‘> < wy (A.22)

C
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and define the crossover scale w,, by

2
daw,B <“"m|> = wy. (A.23)

C

The spectral function in these regimes is then given by

b () = s 1 w7
and (i) pW(w)= sign(w)zaic;C <’w’>s (A.25)
Wy We

The integral to calculate the occupation Eq. (A.14) is split at the crossover scale into
two parts and the Bose function is approximated by 1. This leads with the variable
substitution x = Bw to

(U .
(1)
/ o(Tx) / dx P ECTx) (A.26)
0 Bw,,
~ T(Cywy + Cuwgl) = wy' (A.27)
with two constants C; and C,. Thus the critical exponent is p = —1.

A.2 Discretized bath

The numeric solutions aims at solving the Hamiltonian of the DHO with a discretized
bath Eq. (2.12). The central result of this section is an equation to calculate the occupa-
tion of the impurity and the bath oscillators by numerically diagonalizing the Hamilton
matrix. To calculate (n4) we want to transform the Hamiltonian

t t t = s = t t
H=Qaa+VaV (a + a) (ao +tz0> + Y euapa, + Yty (anbnﬂ + anﬂan) (A.28)
n=0 n=0
into a diagonal form
H=Y w,bb, (A.29)
n

In a matrix representation the Hamiltonian (A.28) has the general form'

H= %**Maz — Tr[A] (A.30)

! In the calculation we use the method presented in Section 3.2 of [179].
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A B + T
where M = T A=A ,B=B8B, (A.31)

(A.32)

=y
I
L
)
]
Q.
I
VR
S
.
S
o
2
S
2
S
o
S
S
N———

In the special case of the Hamiltonian (A.28) the matrices A and B are defined as

Q vav o 0 0 0 aVv 0 0 0

Vav e tp 0 0 Vav o 000

A=1]0 to, € t O and B= 0 0 000

0 0 Lo b 0 0 000

0 0 0t - 0 0 00
(A.33)

Here a and a' are the impurity operators and a4; and a) are the chain operators.
To diagonalize the Hamiltonian we have to solve the eigenvalue problem

WMV, = w,V,, (A.34)
with the metric

1 A B
-1 —B* —A"

Here one can see the fundamental difference between a fermionic and a bosonic
model. Unlike the fermionic case, the bosonic case requires the above defined metric
to fulfill the proper commutation relations. As a consequence the matrix M is of di-
mension 2N x 2N, where N is the number of degrees of freedom in the model, e.g. in
our case the number of sites. Because the Hamilton matrix of the original model has
N eigenvalues, the 2N eigenvalues of M cannot be independent. There are N positive
eigenvalues and N negative eigenvalues with the relation w, = —w, y,n < N.
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Using the para—eigenvectors‘2 V,, we can define the creation and annihilation opera-
tors of the normal modes

b:; = EZJriy v, for w, >0 (A.36)
and b, =V na for w, >0 (A.37)

Now one can write the Hamiltonian in the diagonal form of Eq. (A.29)

H= Y w,bib,+E, (A.38)
n with w,>0
with Ep— Y, w,— In [A] (A.39)
o 2 n,w, >0 " 2 . .

Special care should be taken about the zero modes w, = 0 [181, ], which indicate
the instability of the model. When one eigenvalue vanishes the occupation number
diverges. Since we are only interested in finite occupation numbers we neglect the case
of vanishing eigenvalues. Indeed the lowest a for which there is a vanishing eigenvalue
is our criterion for the critical coupling strength ol

Calculation of the occupation number

Now we turn back to the calculation of the occupation of the impurity harmonic oscil-
lator,

Tr [e_ﬁHa+a}
(ng) = — (A.40)

In order to evaluate this expression, we have to express a'a through the operators in
the new basis:

—

3 b t =
np = o Vi, (A.41)

where V is the matrix containing the paravectors of M to both positive and negative
paravalues as column vectors. V' has the form

X Y
V= . (A42)
Yy X*

2 The para notation is introduced in [180]. In short, we define a paravalue of the matrix M as an

eigenvalue of the matrix #M. A paravector of M is the corresponding eigenvector of M. For the
eigenvalue w, = 0 the corresponding paravalue is w, = 0.
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By inverting Eq. (A.41) we obtain

a=Xob+ Yib'. (A.43)
and a' = Yb+ X0 (A.44)

With X, (Y,) we denote the first vector of the matrix X (Y).
Using Egs. (A.43), (A.44) and (A.40) we calculate the occupation number of the
impurity:

Tr [e_ﬁHb,:rbk/} Tr [e_ﬁkubZ/}

(na) = ¥ ———— XX + ¥ ——— VYo (A.45)
kK N————— kK
5k,k’g(wk)

Tr [efﬁHb,tbk] +Tr [efﬁHD}

= (X diag (g() g(w), ) X') | + 1 Z YoiYor
g(wp)+1=—g(~wy)
(A.46)
= (X diag (g(wp), g(@p),-..) - X') = (Y- diag (g(@r),glws),..) - Y') .
=ify =,
(A.47)

where g(w) is the Bose function at temperature B. The occupation number of any chain
site n is calculated analogously and the result is

(aha,) = (X - diag (g(wr), g(wn), ) - X) | — (Y- diag (g(er),g(ws), o) YT)

nn nn

(A.48)
with n :=n+1.

Fig. 2.8 shows the matrix elements 1, of the impurity occupation. These are calculated
by

gy = (X.diag(l,o,...) -X“)OO - (Y-diagu,o,...) -Y+)OO. (A.49)

Notice that in Eq. (A.46) for the second term the negative paravalues w; have to be
taken. Since we just use the positive paravalues in Eq. (A.47), the minus sign of the
paravalue cancels out and we use only the positive paravalues for the Bose function.
However, the minus sign of the second term in Eq. (A.47) remains, causing numerical
errors if both terms are of the same order of magnitude and the difference is some
orders of magnitude lower. In this regime the results are dominated by numerical noise
and it is possible that the expectation value drops below zero. The plots displaying
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this value use a logarithmic scale, which does not allow values below zero. Thus in the
numerical noise regime the plots show the absolute value of (ala,) instead: the sign
of the value is not correct but by plotting the absolute value one is able to make the

numerical error visible on the logarithmic scale.

A.2.1 Green’s function

Since the Hamiltonian Eq. (A.28) is bilinear one can solve it with Green’s function.
We are interested in the impurity Green’s function < a0|a$ >, which is given by Eq.
(A.5) for the case of a continuous bath. An equation of motion ansatz yields the matrix

equation
z-Q 0 —aV —av 0 0 < aglah > 1
0 z+Q Vav  av 0 0 < aj|ap > 0
—VaV —\/aV z—¢ 0 ~ty 0 < aplad > 0
vav o av 0 z+e O to <dilag>|=10
0 0 —t, 0 z—¢ 0 | |<alaf> 0
0 0 0 o 0 z+¢ < adlad > 0
G
(A.50)
This can be solved with a matrix inversion,
< aplat > (2) = Ga)gd = — 1 (A51)
z—Q—3%(z)
and the self-energy X is then given by
+
5(z) = (z—-0) < aOJr|a0 > (z) 1' (A52)
< aglag > (z)
For example, the self-energy for a chain with length N = 1 is given by
2
Q
Y(z) = -2 VeV 24 Q) (A.53)

—220 —+ 0602 — 2€0 \/&Vz — 23 +Z€02'



Appendix B

Fits of
Critical Exponents

In this appendix the fits are shown by which the critical exponents B (cf. Fig. B.1) and ¢
(cf. Fig. B.2) are determined for the SBM. To this end a power-law function is fitted to
the data points calculated with the DMRG. The results of these fits are shown in Fig.
2.33.

100 . : : . .

1071 |

(S2)

10_2 L 1 L 1 L
10° 104 103 102

(X—DCC

Figure B.1: Determination of the critical exponent g by fitting of the function f(e) = aef
to the data points. The chain parameters are A = 2 and N = 40. In the DMRG
calculation N, = 24 states and N, = 8 bosonic modes are kept. The bosonic basis
is optimized until convergence is reached. The model parameters are A = 0.1w,,
and e = 10_7wc.
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Figure B.2: Determination of the critical exponent ¢ by fitting of the function f(e) = ae?
to the data points. The chain parameters are A = 2 and N = 40. In the DMRG
calculation Ny = 24 states and N,, = 8 bosonic modes are kept. The bosonic basis
is optimized until convergence is reached. The model parameter is A = 0.1w..



Appendix C

Diagonalization of
Resonant-Level Model

In this appendix the RLM Hamiltonian is exactly diagonalized and the occupation of
the chain sites are calculated. After that we give an estimate of the time it takes a
charge to move through the chain.

C.1 Level occupation

The discretized Hamiltonian of the RLM Eq. (3.2) can be written as

Hy = &' M(1)7, (C.1)
d
C
with @=| and &'=(dt o). (C2)

The Hamilton matrix M(t) is defined by

Et) VO 0 0
V 0 4
M(t) = 0 # 0 t O (C.3)
0 0t O
0 0 O

Unlike Hy the dimension of this matrix grows linearly with the system size N and
therefore one can efficiently diagonalize it,

M(t) = U(t) diag(e; (), e (t), ... )U(H). (C.4)
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For the quench E4(t) = E;®(—t) + E¢O(t) the diagonal form of the Hamiltonian reads

H(t <0) Zenfn f and H(t > 0) Zenfn fn (C.5)

With the new operators
i i it Pt
fo = L Uay fo =i, (C6)
] ]
t t
and f, =) Uney far =L aU, (€)
]

1

Here U' (llf) and eL (efl) are the eigenvectors and eigenvalues of the initial (final)
Hamilton matrix.
We define the occupation operator of the mth site as

R d'd m=0
My = Byl = § . (C.8)
Cm—1Cm—1 M 2 1

The expectation value of this operator is given by
(1) (8) = Te [o(£)n,], (C9)
and the time-dependent density operator
o(t) = e gttt (C.10)

The initial condition is

—BH; —BLp€nfn f
e e
po="5= — . (C.11)
TI' |:e.52n€nfn fn:|
= (n,)(t) =Tr [e*intpOeintnm} [poelet e (C.12)
n,,(t) = ey, e 1 (C.13)
=Y, el uf, (C.14)
l’lVl
— Zeletf e let letf let u u / (C,15)
711’1 ¢
fn (t) fn’(t)
fon f L f
Qufu(t) =i [Hp f1(D)] = —ielfu(t) (C.16)

= fit) = e gl (C.17)
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From Eq. (C.12) and Eq. (C.15) follows
£ =Y el )Ty [po A } ut, uf, (C.18)

Using Eq. (C.6) and Eq. (C.7) to transform f,fZJr and f{r in the initial basis yields

:%%eﬂ Ty [pofn I }ukmu (uu )nk (ufui*)k,n, (C.19)
f(€i,)5,,n/
- Z U U Zf ( f+>nk (ufui*)k,n (€.20)
= Y el eyl ub, Z(u u )knf(ein) (v u“)nk (C21)
134
= Ze t@z;(/ = i i 2cos ((e,f{ — ) )@Z;(/ + Z 0, (C22)
k=1K=0 k=0

with O = uf, up,, - (u'u") diag (f(e}), f(eh),..)) (uu")) . (€23)

C.2 Propagation time

To calculate the time it takes a particle to hop from one site a to the next site b we start
with a simple model Hamiltonian describing this hopping process

Hpop = V (a*b + b*a) . (C.24)

a+,a and b+, b are the fermionic creation and annihilation operators for the both sites
and V is the hopping parameter. Hopping can only occur in the subspace with one
electron. We denote the base vectors for this subspace with |1,0) and |0, 1). The Hamil-
ton matrix in this subspace is given by

H= (C.25)
vV o0

with the eigenvalues A = £V and the eigenvectors

g, - L1 (C.26)
R AETE '
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The base vectors are thus given by

11,0) = V2 (vy +v_) and  [0,1) = \f (v, —v_). (C.27)

To determine the time #y,, it takes a particle to hop from site 4 to site b we prepare the
system in the state |1,0) and calculate the time when the probability to find the particle
in the state |0,1) is one.

Prepared in the initial state |1,0) the time-dependent state of the system is given by

p(t)) = e"]1,0). (C.28)
Solving the equation
21
(0,19 (thop))| =1 (C.29)
yields the hopping time. The overlap is given by
(0, 1¢p(tnop)) = ot ey, + ot ey = 2isin(Vt). (C.30)

The time-dependent probability to find the particle on site b is therefore

2
‘(0, 1y¢(th0p)>‘ = 4sin?(Vt). (C.31)
With Eq. (C.29) we find for the hopping time

. s
sin(Viyop) = 5 = thop = v (C.32)

Summing up the hopping times for a chain with N sites gives the recurrence time:

N-2 ; N-2 T
Trec =2 Z thop = 3t (C.33)
i=0 i=0 !

i

For a Wilson chain, t; ~ % (1 + A1) A2, this yields

N—

= T (C.34)

~ T £
3D (1 +A*1) =



Appendix D

Strong Coupling Treatment of
Interacting Resonant-Level Model

In the U — co limit one can derive for the IRLM an equation for the damping rate, the
oscillation frequency, and the functional form of the time-dependent impurity occupa-
tion. The following presentation is a summary of [183].

The Hamiltonian of the IRLM mapped to a Wilson chain is given by (5.2) and reads

H = Hloc + Hmix + Hchain (Dl)
1 1
with H,,, = Eqd'd+V (d*co + c$d> +u <d*d - 2> <cgc0 - 2) , (D.2)
H. i =t (cgcl + CICO) , (D.3)
and  Hpain = Z ty (C;Cn—&-l + C;_ch) . (D4)
n=1

We start by diagonalizing H),.. The total occupation operator of the impurity and
the first Wilson chain site is given by N = dtd + cgco. Because N commutes with Hj,
[N, Hyy.] = 0, we diagonalize H,. in the three different particle number sectors,

N = 0: One state

u
|0) = [ng = 0,1y =0),Ey = n (D.5)
N = 2: One state
u
12) = [ng =1,ny =1),E; = Eq + " (D.6)

N =1: Two states |1,0) and |0,1). The eigenstates and eigenenergies are

E Eq\?
@) =alL,0)+p0,1), B, =T (L) e (D7)
2 4 2
2
b) = B0y —alo1), By =2t (E;‘) L2 (D8)

185



186 Appendix D. Strong Coupling Treatment of Interacting Resonant-Level Model

The parameters a and B are defined by

W Hp=1 (D.9)

and 2af = —L (D.10)

(1)

For U — oo the N = 0 and N = 2 states decouple from the chain. As the first site
of the Wilson chain is included in H,,. we end up with an effective new chain starting
from the second chain site. For this chain the mapping of the bath onto a Wilson
chain is reversed resulting in an effective bath with a reduced bandwidth. Hence
we end up with a two-state system coupled to an effective bath. For this setup the
decay rate T of the state |b) to the state |a) can be calculated with Fermi’s golden rule.
To calculate the matrix element (a|H|b) needed to evaluate the transition probability
with the golden rule the Schrieffer-Wolff transformation [42, Sec 1.4] is employed to
eliminate the coupling to the bath in linear order of ¢, and only the quadratic order
terms are taken into account. In this transformation the large U limit is exploited. The
decay rate of the state |b) is then given by

2 2
!l =4n ( 4D ) 4 (D.11)

U /(E7_d>2+V2.

For U — oo the decay rate diverges, T 50 indicating that the H),. decouples from

the chain: the system shows coherent Rabi-like oscillations without decay.
To determine the functional form of n4(t) one writes the state of the system as a
product of local and bath states,

[9(8)) =ca(B)]@) @ [t (£))parn + €5 (£)|D) © [ (£) bt (D.12)

The impurity occupation number is then given by

ng(t) =(p(t)ld"dly(t)) (D.13)
= ((ga (Dl ales (t) + (o (O1(bles (1) )d'd (Ipa(t)|)ea () + [y () [b)es (1))
(D.14)

= lea(t)[” (ald"d|a) + |c,(t)[* (b]d"d|b)
e (£)ey (£) ald" d|b) (a(5) [, (£)) + e (£)e (£) (bld" dla) (y (D) [ (£)).  (D-15)
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From the Fermi’s golden rule argument from above we know that the coefficient ¢, ()
decays with the rate T and since the norm of |¢(t)) is conserved the equations

(O =1—|cy(0)Pe™s  and  [e,(t)* = |y (0) e " (D.16)

hold. Hence the first two terms in Eq. (D.15) generate a decay with rate 7. In the last
two terms in Eq. (D.15) we neglect the time dependence of |¢,(t)) and |y, (f)) and,
furthermore, notice that in general (,|¢,) # 0. From Eq. (D.16) we know c;(t) o
e * and therefore the products ¢, (t)c,(t) and ¢, (t)c,(t) in Eq. (D.15) generate, among
others, terms decaying with the rate 27 thereby introducing a second time scale for the
system.

Finally, the time-dependent impurity occupation number contains terms e ¥ and
xe 7 and from Eq. (D.15) one can deduce the form

ng(t) =A <e2tT Cos(Qt)\/l —et cos(0)* —e 7 sin(6)>
+(1-ny) (1 - e*ﬁ) +ge T (D.17)

In the calculation the parameters

Ao [y (0)] (#a(0) |94 (0)) (D.18)
and B = |c,(0)|* =: cos® 6 (D.19)

are introduced.
Thus the impurity occupation number decays with rate T and this decay is overlayed
with damped Rabi oscillations with frequency

2

Q=E, —E, =2 <Ez@‘> +Vv? (D.20)
and decay rate 27. In the non-interacting case one can observe damped Rabi oscillations
as well (cf. Eq. (3.18)). However, here the frequency only depends on final impurity
energy E;. In the U — oo limit the frequency () is renormalized by the hybridization,
Eq. (D.20). In both cases, U = 0 and U — oo, the decay of the occupation number is
twice as fast as the damping of the Rabi oscillations. The reason that the model shows
the same behavior in these cases is that for low energies the IRLM is equivalent to the
RLM with renormalized parameters.
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