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Chapter 1

Introduction

The study of limit theorems on hypergroups began in the 1960s with Haldane’s and

Kingman’s articles [15] and [23]. They studied methods which allowed the investi-

gation of rotation-invariant random vectors and generalised them to non-integral

”dimensions”. For this purpose, a continuous series of commutative hypergroups

on [0, ∞[ was introduced. These hypergroups structures are closely related with

a product formula for Bessel functions and are therefore called Bessel-Kingman

hypergroup; c.f. Section 3.4 of [6]. In 1976, the mathematical structure of a

hypergroup was reintroduced, under the name of a ”convo,” and systematically

studied by R.I. Jewett [19] in his article ”Spaces with an Abstract Convolution of

Measures”. It is unsurprising that probability theory on this class of hypergroups

is so well developed.

Let (K, ∗) be a hypergroup in the sense of Jewett [19]. The convolution ∗
allows the notion of random walks on (K, ∗) by saying that a (time-homogeneous)

Markov chain (Sn)n≥0 is a random walk on (K, ∗) with law ν ∈ M1(K) if

P(Sn+1 ∈ A|Sn = x) = (δx ∗ ν)(A) (1.0.1)

for all n ≥ 0, x ∈ K and Borel sets A ⊂ K. A lot of research was carried out in

this setting, such as, for example, on recurrence, laws of large numbers (LLNs),

large deviation principles (LDPs), and central limit theorems (CLTs); see e.g. [5],

[23], and [38]-[43]. However, there are also many issues where the representation

of Sn as a sum of independent and identically distributed (i.i.d.) random variables

is useful. Typical examples are laws of large numbers where truncation methods

are used, see [46] and Section 7.3 of [6].

On a hypergroup, there is in general no deterministic operation corresponding
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to the convolution of measures as it is in the classical case of locally compact Haus-

dorff groups. Consequently, sums of hypergroup-valued random variables cannot

be defined directly. This obstacle was overcome in a particular case by Kingman

[23]. He applied the concept of randomized addition, in such a way that, as in the

classical case, the distribution of the sum of two independent K-valued random

variables equals the convolution of the distributions of the summands. Later, this

construction was generalised by Zeuner [46] under the name of concretisation.

In the study of limit theorems, the modified moments of a random variable,

which are adapted to the hypergroup operation, were introduced to formulate

the conditions under which a particular limit theorem holds, and to calculate the

actual value of the limit. The notions of moments of the first and second order and

of dispersion were introduced for special cases by Tutubalin [37]. Later, the idea

of dispersion appeared in the work of Faraut [9] and Trimèche [36]. The modified

moment functions on Sturm-Liouville hypergroups and polynomial hypergroups

were studied by Zeuner [46] and Voit [38], respectively. A systematic study of this

subject on an arbitrary hypergroup has been carried out by Zeuner [47].

Today, there is a wide range of limit theorems for random walks on hypergroups

in general as well as for special cases available. For an overview on these results,

we refer to the monograph [6] and references cited there.

Outline of this Thesis and main Results

In this thesis, we shall investigate a special type of limit theorem for some classes

of hypergroups. To describe the common roots of these limit theorems, let us con-

sider the following example: Let ν ∈ M1([0, ∞[) be a fixed probability measure.

Then for each dimension d ∈ N there is a unique rotation-invariant probability

measure νd ∈ M1(Rd) with ϕd(νd) = ν, where ϕd(x) = ‖x‖2 is the norm mapping.

For each d ∈ N consider i.i.d. R
d-valued random variables Xd

k , k ∈ N, with law

νd as well as the associated radial random walks (Sd
n :=

∑n
k=1 Xd

k )n≥0 on R
d. The

process (‖Sd
n‖2)n≥1 is a random walk on the so-called Bessel-Kingman hypergroup

([0, ∞[, ∗α) of parameter α := d/2 − 1. The aim is to find limit theorems for

the random walks (Sα
n )n≥0 on the Bessel-Kingman hypergroup ([0, ∞[, ∗α) for n,

α → ∞ in a suitably coupled way.

More generally, let (K, ∗α) be a sequence of hypergroups, where the convolution

∗α depends on a parameter α ∈ I with I ⊂ R. For each “dimension” parameter α

consider a time-homogeneous Markov-chain (Sα
n )n≥1 on the hypergroup (K, ∗α).
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We now ask for limit theorems for (Sα
n )n≥1 when n, α → ∞ in a suitably coupled

way.

This thesis is set out in three main sections. In Chapter 2, after recalling

necessary preliminaries on hypergroups in general, we derive in Proposition 2.3.9

useful algebraic identities for the modified moments of randomized sums. More-

over, we establish some inequalities between moment functions of the first and

second order (see 2.3.10). As an application of these inequalities, we prove a weak

LLN and the associated strong LLN for randomized sums on a general hypergroup

in an efficient manner.

In Chapter 3, we present sharp estimates and asymptotic results for moment

functions on so-called hypergroups of the Jacobi type on [0, ∞[ of index (α, β).

Further, we use these estimates to prove a central limit theorem for random walks

(S(α,β)
n )n≥1 on Jacobi hypergroups ([0, ∞[, ∗α,β) with growing parameter α → ∞.

As a special case, we obtain a CLT for radial, time-homogeneous random walks

on hyperbolic spaces Hd(F) of growing dimension d over the fields F = R, C or

the quaternions H. In addition to these results, we also derive associated strong

laws of large numbers.

Chapter 4 is devoted to the study of rotation invariant random walks (Sd
n)n≥1

on R
d, which are defined as in the representative example from above. Here,

for an arbitrary sequence of dimensions dn → ∞, we investigate the asymptotic

behaviour of random variables ‖Sdn
n ‖2 as n → ∞. In this chapter we derive two

complementary CLTs for the functional ‖Sdn
n ‖2 with normal limits under disjoint

growth conditions for dn, namely for n/dn → ∞ and n/dn → 0. Moreover, we

present a CLT for the case n/dn → c ∈ (0, ∞). Besides these results, we shall

also prove associated strong laws of large numbers. An essential ingredient for the

proofs of all limit results is an explicit formula for moments of radial distributed

random variables on R
d with d → ∞.

In the last chapter we deal with orthogonal invariant random walks on the

space Mp,q(R) of p×q matrices instead of Rp for p → ∞ and some fixed dimension

q > 1. The main result in this chapter generalises CLTs from Chapter 4 and is

presented in Theorem 5.9.1. The proof of this result relies on asymptotic formulas

for moment functions of orthogonal invariant probability measures on Mp,q as well

as on some identities for matrix-variate normal distributions.

Part of this thesis has been accepted by the Journal of Theoretical Probabil-

ity and is due to appear under the title ”Moment Functions and Central Limit

Theorem for Jacobi Hypergroups on [0, ∞[”.
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Chapter 2

Random walks on hypergroups

In this chapter we first give a brief introduction to the concepts of concretisation

and randomized sums, which are fundamental for the construction of random

walks on hypergroups. Although on a hypergroup is in general no deterministic

pointwise operation, these concepts enable us to construct “sums” of hypergroup

valued variables which are consistent with the underlying convolution structure.

Furthermore, we recall the concept of moment functions on hypergroups, which we

then use to study limit behaviour of partial randomized sums Sn of hypergroup-

valued random variables. In particular, we derive weak LLNs and the associated

strong LLNs for Sn as n → ∞.

2.1 Preliminaries

In this section we collect the definitions and properties of hypergroups which we

will need throughout this work. The material is mainly taken from [6]. For a

general background on hypergroups, the reader is referred to the fundamental

article [19].

For a nonvoid locally compact Hausdorff space K let M1(K) and Mb(K) de-

note the set of probability measures on the Borel algebra B(K) and the set of

bounded Radon measures, respectively. The space of continuous functions on K

is denoted by C(K). Superscripts are used to declare differentiability while sub-

scripts are used to declare other properties: Ck(K) are the functions which are

k-times continuously differentiable. Cb(K) resp. Cc(K) are continuous functions

which are bounded resp. with compact support. The combination of upper and

lower indices is to be read as follows: C2
b (K) are the bounded twice continuously

differentiable functions.
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Definition 2.1.1. Let K be a a nonvoid locally compact Hausdorff space and

∗ a bilinear, binary operation on Mb(K), such that (Mb(K), +, ∗) is an algebra.

Then (K, ∗) will be called a hypergoup if the following conditions are satisfied:

(H1) Given x, y ∈ K, δx ∗ δy ∈ M1(K) and supp(δx ∗ δy) is compact.

(H2) The mapping (x, y) 7→ δx ∗ δy of K × K into M1(K) is continuous with

respect to the weak topology on M1(K).

(H3) The mapping (x, y) 7→ supp(δx ∗δy) is continuous from K×K into the space

of compact subsets of K provided with the Michael topology, cf. [6, Section

1.1] and [27].

(H4) There exists a neutral element e of K such that δx ∗ δe = δe ∗ δx = δx for all

x ∈ K.

(H5) There exists an involution (a homeomorphism x 7→ x̌ of K onto itself with

the property (x̌)∨ = x for all x ∈ K) such that (δx ∗ δy)∨ = δy̌ ∗ δx̌ for all

x, y ∈ K where µ∨ denotes the image of µ under this involution.

(H6) For x, y ∈ K, e ∈ supp(δx ∗ δy) if and only if x = y̌.

The operation ∗ will be called convolution. A hypergroup K is called com-

mutative if δx ∗ δy = δy ∗ δx for x, y ∈ K; i.e. if (Mb(K), +, ∗) is a commutative

algebra. A hypergroup for which the involution is the identity mapping is called

hermitian. It is evident that every hermitian hypergroup is commutative, since

δx ∗ δy = (δx ∗ δy)∨ = δy̌ ∗ δx̌ = δy ∗ δx.

We will often write for a hypergroup (K, ∗) simply K when no confusion can arise.

Moreover, we will denote the n-fold convolution power of a measure ν ∈ M1(K)

with respect to the convolution ∗ by νn. It is clear that the neutral element e and

the involution ∨ are necessarily unique. Furthermore the convolution product of a

hypergroup is uniquely determined if δx ∗ δy is known for all x, y ∈ K. Obviously,

conditions (H4) and (H5) carry over to arbitrary bounded measures instead of the

point masses δx and δy. Namely, for µ, ν ∈ Mb(K) we have

µ ∗ ν =
∫

K

∫

K
δx ∗ δydµ(x)dν(y),

see [19] Sections 2.3-2.5 for more details.
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Remark 2.1.2. a) Every locally compact group G is a hypergroup with the usual

convolution structure on Mb(G).

b) In general, hypergroups have no algebraic structure of their own.

Definition 2.1.3. A nonzero measure ωK ∈ K is called left (resp. right) Haar

measure if δx ∗ ωK = ωK (ωK ∗ δx = ωK) holds for all x ∈ K. A left and right Haar

measure is called Haar measure.

The following theorem ensures the existence of Haar measure for two large

classes of hypergroups.

Theorem 2.1.4. Let K be commutative or compact hypergroup. Then K admits

a Haar measure.

It is well known that a Haar measure on an arbitrary hypergroup is unique up

to a positive multiplicative constant. We remark that if K is a compact hypergroup

and ωK(K) = 1 then ωK ∗ ωK = ωK, that is the normalized Haar measure of a

compact hypergroup is an idempotent.

Definition 2.1.5. A closed nonvoid subset H of a hypergroup K will be called a

subhypergroup if Ȟ = H and H ∗ H ⊂ H.

It is clear that e ∈ H for every subhypergroup H. If µ, ν ∈ Mb(H) then µ, ν

can be regarded as members of Mb(K), and since H is closed under convolution

it follows that µ∗ν may be regarded as a member of Mb(H). With this operation

H is also a hypergroup having the same identity and involution mapping as K.

For commutative hypergroups the powerful tool of the Fourier transform is

available. As in the classical case, its enables to describe the weak convergence of

probability measures.

Definition 2.1.6. Let K be a commutative hypergroup. A continuous function

χ : K → C is called multiplicative if

a) χ(e) = 1 and

b) χ(x ∗ y) = χ(x)χ(y) for all x, y ∈ K.

If in addition χ is bounded and χ(x̌) = χ(x) for all x ∈ K then χ is called a

character. The dual K̂ of K is the set of characters on K and endowed with the

topology of the uniform convergence on compact sets a locally compact Hausdorff

space.

6



Definition 2.1.7. Let K be a commutative hypergroup with Haar measure ωK.

a) The Fourier transform µ̂ of a measure µ ∈ Mb(K) is defined as the complex

valued continuous function on K̂ by

µ̂(χ) :=
∫

K
χdµ, χ ∈ K̂.

The map µ 7→ µ̂, Mb(K) → Cb(K̂) is known also as the Fourier transform (on

K).

b) The Fourier transform of a function f ∈ L1(K) is defined on K̂ by

f̂(χ) := (fωK)∧(χ) =
∫

K
fχdωK, χ ∈ K̂.

Theorem 2.1.8 (Levitan-Plancherel). Let K be a commutative hypergroup with

Haar measure ωK. There exists only one possible measure πK ∈ M+(K̂), such

that ∫

K
|f |2 dωK =

∫

K̂

∣∣∣f̂
∣∣∣
2

dπK

for all f ∈ L1(K) ∩ L2(K). The measure πK is referred to as the Plancherel

measure of the hypergroup K.

Definition 2.1.9. Let K be a commutative hypergroup with Haar measure ωK

and Plancherel measure πK.

a) The inverse Fourier transform of σ ∈ Mb(K̂) is defined on K by

σ̌(x) :=
∫

K̂
χ(x)dσ(χ), x ∈ K.

b) The inverse Fourier transform of a function f ∈ L1(K̂) is defined on K by

f̌(x) :=
∫

K̂
f(χ)χ(x)dπK(χ), x ∈ K.

For the rest of this section we give some concrete examples of hypergroups and

their properties, which shall be required later.

Double coset hypergroups

Let K be a hypergroup and H ⊂ K a compact subhypergroup with Haar measure

ωH ∈ M1(H). The double cosets of H are just the sets H ∗ {x} ∗ H where x ∈ K.
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For simplicity of notation, we denote them by HxH. The collection of double

cosets of H will be denoted by K//H, i.e.

K//H := {HxH : x ∈ K} .

It is clear that K//H is a decomposition of K into compact subsets. The collection

K//H will be given the quotient topology with respect to the natural projection

defined by

pH : K → K//H, x 7→ HxH. (2.1.1)

With this topology K//H is closed in C(K) and hence locally compact. The

projection pH is open, proper and closed. Moreover, pH can be extended to a

mapping

pH : Mb(K) → Mb(K//H), µ 7→ pH(µ)

where pH(µ) is the image measure of µ under pH. The mapping pH restricted to

the space of H-invariant bounded measures on K

Mb
H(K) := {µ ∈ Mb(K) : ωH ∗ µ ∗ ωH = µ}

is bijective. The inverse of this restricted mapping is the unique continuous

positive linear mapping p∗
H : Mb(K//H) → Mb

H(K) that satisfies p∗
H(δHxH) =

ωH ∗δx ∗ωH for each x ∈ K. A convolution structure can be defined on Mb(K//H)

via

µ ∗ ν := pH(p∗
H(µ) ∗ p∗

H(ν)), µ, ν ∈ Mb(K//H).

With this convolution K//H is a hypergroup with identity H and involution given

by (HxH)∨ = Hx̌H. Moreover, if there exists a Haar measure ωK on K then

ω
′

K :=
∫

K δHxHdωK(x) is a Haar measure on K//H.

Sturm-Liouville hypergroups

Sturm-Liouville hypergroups represent important class of hypergroups, which

arise from Sturm-Liouville boundary value problems on the nonnegative real line.

In order to build up the Sturm-Liouville operator basic to the construction on

hypergroups one introduces the Sturm-Lioville functions.

Definition 2.1.10. a) A function A : R+ → R a called Sturm-Liouville function

if A is continuous on [0, ∞[, differentiable and strictly positive on ]0, ∞[.

b) A Sturm-Liouville operator LA associated with a given Sturm-Lioville function
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A is defined for all f ∈ C2(R∗
+) as

LAf := −f ′′ − A′

A
f ′, f ∈ C2(R∗

+).

The differential operator l on C2(]0, ∞[2) is defined by

l[u](x, y) := (LA)xu(x, y) − (LA)yu(x, y)

for all x, y > 0 and u ∈ C2([0, ∞[2), where the subscripts indicate variables

with respect to which LA is taken.

Let A be a Sturm-Liouville function with

A′(x)

A(x)
=

α0

x
+ α1(x) (2.1.2)

for all x in a neighborhood of 0, with α0 ≥ 0 and such that

(SL1) One of the following additional conditions holds:

(SL1a) α0 > 0 and α1 ∈ C∞(R) is an odd function (which implies that

A(0) = 0).

(SL1b) α0 = 0 and α1 ∈ C1(R+) (which implies that A(0) > 0).

(SL2) There exists a function β ∈ C1(R+) such that β(0) ≥ 0, and A′

A
− β is

nonnegative and decreasing on ]0, ∞[, and q := 1
2
β′ − 1

4
β2 + A′

2A
β is decreasing

on ]0, ∞[.

(SL3) A′

A
≥ 0 is decreasing and A is increasing with limx→∞ A(x) = ∞.

Definition 2.1.11. A hypergroup (R+, ∗) is said to be a Sturm-Liouville hyper-

group if there exists a Sturm-Liouville function A such that for every real-valued

function f on R+, which is the restriction of an even nonnegative C∞-function on

R, the function uf defined by

uf (x, y) :=
∫

R+

fd(δx ∗ δy) x, y ∈ R+

is twice differentiable and satisfies the partial differential equation

l[uf ] = 0, (uf )y(x, 0) = 0 for all x > 0.

9



In the following theorem we collect some known facts, which can be found in

[6] and [47].

Theorem 2.1.12. Let A be a Sturm-Liouville function satisfying conditions (2.1.2)

and (SL2). Then there exists a unique hypergroup operation ∗ on R+ such that

(R+, ∗) is a Sturm-Liouville hypergroup. Moreover, (R+, ∗) has following proper-

ties

a) The neutral element is 0.

b) The hypergroup is hermitian.

c) ωR+
:= AλR+

is a Haar measure of (R+, ∗).

d) ρ := lim
x→∞

A′(x)
2A(x)

exists with ρ ≥ 0; it is called the index of (R+, ∗). Moreover,

the growth of (R+, ∗) is determined by ρ. If ρ > 0 then the hypergroup is of

exponential growth; if ρ = 0 then it is exponentially bounded.

e) A continuous function ϕ : R+ → C is multiplicative if and only if ϕ is a

solution of the initial value problem

LAϕ = sϕ, ϕ(0) = 1, ϕ′(0) = 0 with s ∈ C.

A multiplicative function is a character on (R+, ∗) if and only if the eigenvalue

s of LA lies in R+. The dual of (R+, ∗) consists of the functions ϕλ, where

λ ∈ R̂+ := R+ ∪ i[0, ρ] and ϕλ is the unique solution of the initial value

problem

LAϕλ = (λ2 + ρ2)ϕλ, ϕλ(0) = 1 and ϕ′
λ(0) = 0.

f) The hypergroup admits a Laplace representation, i.e. every character ϕλ has

the following representation: For every x ∈ R+ there exists a probability

measure νx on [−x, x] such that

ϕλ(x) =
∫

e−t(ρ+iλ)dνx(t). (2.1.3)

Furthermore, the measure τx(t) := e−ρtdνx(t) is a symmetric subprobabil-

ity measure on R which depends continuously on x in the weak topology on

M1(R).

Definition 2.1.13. A Sturm-Liouville hypergroup with defining Sturm-Liouville

function A which satisfies the conditions (2.1.2), (SL1a) and (SL3) will be called

Chébli-Trimèche hypergroup.
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Let (R+, ∗) be a Chébli-Trimèche hypergroup with defining function A. It is

proved in [7] that λ 7→ ϕλ(x) is an analytic function for every x ∈ R+. The

derivatives of ϕλ(x) with respect to λ were established as the most important tool

for defining modified moments for each probability measure on R+ in a way, which

is consistent with the convolution structure (cf. Section 2.3 and [6, Section 7.2]).

Definition 2.1.14. For every λ ∈ C, x ∈ R+ and k ∈ N0 let

ϕk,λ(x) :=
∂k

∂µk
ϕλ+iµ(x)|µ=0 and mk(x) := ϕk,iρ(x). (2.1.4)

We recapitulate from [6, Section 7.2] some facts about ϕk,λ and mk. By dif-

ferentiating the equation LAϕλ = (ρ2 + λ2)ϕλ with respect to λ we obtain





LAϕk,λ = (ρ2 + λ2)ϕk,λ + 2ikλϕk−1,λ − k(k − 1)ϕk−2,λ,

ϕk,λ(0) = ϕ′
k,λ(0) = 0 for k ≥ 1.

and especially 



LAmk = −2kρmk−1 − k(k − 1)mk−2,

mk(0) = m′
k(0) = 0 for k ≥ 1.

(2.1.5)

For k = 0 we have ϕiρ ≡ 1 and thus m0 ≡ 1. It follows from the Laplace

representation (2.1.3) that

mk(x) =
∫ x

−x
tkdνx(t) =

∫ x

0
tk
(
etρ + (−1)ke−tρ

)
dτx(t) (2.1.6)

for x ∈ R+, λ ∈ C and k ≥ 1. In particular, mk is non-negative and in the case

ρ = 0 it is clear that mk = 0 if k is odd.

In the following proposition we collect some properties of functions mk.

Proposition 2.1.15. Let (R+, ∗) be a Chébli-Trimèche hypergroup with defining

function A. The functions mk, (k ∈ N0) defined by (2.1.4) are real valued and an-

alytic on ]0, ∞[. Moreover, (mk)k∈N0
forms a sequence of functions with following

properties

a)
∫

K mk(z) dδx ∗ δy(z) =
∑k

j=0

(
k
j

)
mj(x)mk−j(y) for all k ∈ N and m0 ≡ 1.

b) m2
1(x) ≤ m2(x) for all x ∈ R+.

and in the case of subexponential growth (i.e. ρ = 0)
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c) m2k−1 ≡ 0 for all k ≥ 1 and limx→∞ m2(x)/x = ∞

or in the case of exponential growth (i.e. ρ > 0)

d) limx→∞ m′
1(x) = 1

e) m−1
1 exists and is differentiable.

f) limx→∞(m−1
1 )′(x) = 1

Proof: We only proof the properties c) and d); all the rest can be found in [6,

Section 7.2]. At first we prove that m′
1(x) > 0 for all x ∈]0, ∞[. Suppose that

m′
1 takes values in ] − ∞, 0]. Since m′′

1(0) = 2ρ/(α + 1) > 0 there exists ξ > 0

such that m′
1(ξ) > 0, m′′

1(ξ) < 0 and m′′′
1 (ξ) < 0. This implies that m′

1
A′

A
and

m′′
1 are strictly decreasing in a neighborhood of ξ. But this is impossible since

m′′
1 + m′

1
A′

A
= 2ρ by (2.1.5). From this contradiction we conclude that m′

1(x) > 0

for all x ∈]0, ∞[. In particular, m1 is strictly increasing and hence m−1
1 exists on

R+. From c) we get limx→∞ m1(x) = ∞ and therefore limy→∞ m−1
1 (y) = ∞. By

the inverse function theorem and c) we obtain

(m−1
1 )′(y) =

1

m′
1(m

−1
1 (y))

ց 1 as y → ∞ (2.1.7)

Orbital morphisms

Let (K, ∗K) and (J, ∗J) be hypergroups and Φ : J → K a mapping.

Definition 2.1.16. a) Φ : J → K is called orbital mapping if it is a proper and

open continuous surjection. In this case, the compact sets Φ−1(y) will be

called the Φ-orbits.

b) A recomposition of an orbital mapping Φ : J → K is a weakly continuous

mapping x 7→ qx, K → M1(J) such that supp(qx) = Φ−1(x) for all x ∈ K.

If there exists a measure l ∈ M+(J) such that

l =
∫

J
qΦ(y)dl(y)

then this recomposition is said to be consistent with l.

12



c) A orbital mapping Φ : J → K is called a generalised orbital morphism asso-

ciated with the recomposition (qx)x∈K if qx− = q−
x and Φ(qx ∗J qy) = δx ∗K δy

whenever x, y ∈ K. If (qx)x∈K is consistent with a Haar measure of J (pro-

vided this exists) then the associated generalised orbital morphism Φ is said

to be an orbital morphism.

Obviously, every injective generalised orbital morphism is a hypergroup iso-

morphism.

Radial random walks

Let G be a locally compact Hausdorff group, H a compact subgroup of G and π

the canonical projection from the left cosets G/H onto double cosets G//H

π : G/H → G//H, gH 7→ HgH (g ∈ G).

Definition 2.1.17. a) A measure µ ∈ M1(G/H) is called H-radial or H-invariant

if

µ(hB) = µ(B) for all h ∈ H and B ∈ B(G/H).

The set of all H-radial measures will be denoted by M1
rad(G/H).

b) A measure ν ∈ M1(G//H) on G//H is called radial part of µ ∈ M1
rad(G/H)

if

π(µ)(B) = ν(B) for all B ∈ B(G//H).

c) Let µ ∈ M1
rad(G/H) with radial part ν ∈ M1(G//H). A stochastic process

(Sn)n∈N on G/H with start in H (i.e. S0 = H) is called radial random walk

associated with µ if

P(Sn+1 ∈ HB| Sn = Hx) = µ(Hx−1B) = ν(Hx−1BH).

Theorem 2.1.18. Let ν ∈ M1(G//H). Then there exists a unique H-radial

measure µ ∈ M1
rad(G/H) such that ν is radial part of µ.

Proof: The proof is given in [42].

13



2.2 Concretization of hypergroups

The forming of sums of K-valued random variables is not directly possible, as

there is no deterministic operation on K in general. It is clear, that the convolu-

tion PX ∗ PY of two independent random variables X and Y should be the law

of an analogy for their sum. In this section we recapitulate the construction of

the randomized sum of K-valued random variables using the concept of the con-

cretization of hypergroups (see [6, Chapter 7]). We start with the definition of an

increment process on the hypergroup K.

Definition 2.2.1. Let I 6= ∅ be a totally ordered parameter set and (Xt)t∈I a

K-valued stochastic process on (Ω, A,P) with canonical filtration (Ft)t∈I . The

process (Xt)t∈I is said to be an increment process on (K, ∗) if for all s, t ∈ I with

s < t there exists ηs,t ∈ M1(K) such that

P(Xt ∈ A|Fs) = (ηs,t ∗ δXs)(A) P − a.s.

whenever A ∈ B(K). In the case I ⊂ R+ an increment process (Xt)t∈I is called

stationary if ηs,t = η0,t−s for all s < t in I.

It can be easily checked that increment processes on K have the elementary

Markov property, i.e.

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs) P − a.s.

whenever A ∈ B(X) and s < t from I. The probability measures ηs,t ∈ M1(K)

form a so-called hemigroup, i.e. for s ≤ t ≤ u ∈ I, we have ηs,t ∗ ηt,u = ηs,u.

Moreover, for t ∈ I, the law of Xt is given by PX0
∗ η0,t as in the group case.

On the other hand, standard arguments on the construction of Markov processes

ensure that for a given initial law and a given hemigroup (ηs,t)s≤t∈I ⊂ M1(K) there

always exists an associated increment process on a suitable probability space.

Definition 2.2.2. A time-homogeneous Markov process (Sn)n∈N0
is called a ran-

dom walk on the hypergroup (K, ∗) with law ν ∈ M1(K) if

P(Sn+1 ∈ A|Sn = x) = (δx ∗ ν)(A)

for all n ∈ N0, x ∈ K, and Borel sets A ⊂ K.

Clearly, a random walk (Sn)n≥1 on (K, ∗) is an increment process with I = N

14



and ηm,n (m ≤ n ∈ N) is the n − m fold convolution product of some probability

measure η ∈ M1(K), i.e. ηm,n = ηn−m.

We next turn to the concept of concretisation on hypergroups, which makes

possible to define an analogy of a sum for K-valued random variables.

Definition 2.2.3. Let K be a hypergroup, µ a probability measure on a compact

set M, and let Φ : K × K × M → K be Borel-measurable. The triple (M, µ, Φ) is

called a concretization of K if

µ{Φ(x, y, ·) ∈ A} = (δx ∗ δy)(A)

for all x, y ∈ K and A ∈ B(K).

Since δx ∗ δe = δe ∗ δx = δx for all x ∈ K, we obviously have

Φ(e, x, ·) = Φ(x, e, ·) = x µ − a.s. (2.2.1)

For a list of examples of concretisation we refer to [6, Section 7.1] and [46].

The following result guarantees the existence of concretization for a large class of

hypergroups.

Theorem 2.2.4. Let K be a second countable hypergroup. Then there exists a

measurable mapping Φ from K × K × [0, 1] into K such that ([0, 1], λ[0,1], Φ) is a

concretization of K.

The proof of this theorem is given in [6, Theorem 7.1.3] and in [46, 47]. In the

sequel, let (M, µ, Φ) be a concretization of the hypergroup (K, ∗).

Definition 2.2.5. For any two K-valued random variables X and Y on (Ω, A,P)

and an auxiliary M-valued random variable Λ on (Ω, A,P) such that Λ is inde-

pendent of the random variable (X, Y ) and has distribution L(Λ) =: µ we define

the randomized sum of X with Y by

X
Λ
+ Y := Φ(X, Y, Λ).

Obviously, X
Λ
+ Y is a K-valued random variable on (Ω, A,P). As in the

classical case, one has the following relation.

Proposition 2.2.6. Let X, Y and Λ be as in the Definition 2.2.5. If X, Y and

Λ are independent, then

L(X
Λ
+ Y ) = L(X) ∗ L(Y ). (2.2.2)
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For a proof see [6, Proposition 7.1.6] and [46].

Remark 2.2.7. a) A concretisation is not uniquely determined by the hyper-

group and hence the randomized sum X
Λ
+ Y depends on the particular

choice of the underlying concretisation of K.

b) The joint distribution of the random variables X, Y and X
Λ
+ Y is independent

from the particular choice of concretisation. (see [6, Proposition 7.1.8] and

[46].)

c) In contrast to the group case the randomized sum of deterministic random

variables need not to be deterministic.

In order to define partial sums Sn with values in K we will need the following

assumption.

Assumption 2.2.8. Let (Xn)n≥1 be a sequence of K-valued random variables

and (Λn)n≥1 of M-valued random variables on (Ω, A,P) such that X1, Λ1, X2, Λ2,

. . . are independent, PXj
= νj and PΛj

= µ for all j ≥ 1.

The definition of randomized sum in 2.2.5 can now be extended to sequences

(Xn)n≥1 of K valued random variables and (Λn)n≥1 of M-valued auxiliary random

variables as in the assumption above.

Definition 2.2.9. The randomized sum Sn is recursively defined by S0 = e and

Sn :=





X1 for n = 1,

Φ(Sn−1, Xn, Λn−1) for n > 1.
(2.2.3)

Clearly, Sn is a K-valued random variable on (Ω, A,P) with

Sn = Sn−1

Λn−1

+ Xn = (Sn−2

Λn−2

+ Xn−1)
Λn−1

+ Xn

= (. . . (((X1

Λ1

+ X2)
Λ2

+ X3)
Λ3

+ X4)
Λ4

+ . . .)
Λn−1

+ Xn.

We see that (Sn)n≥1 is a (in general non homogeneous) Markov chain with tran-

sition kernels

Nn(x, A) := δx ∗ νn(A) for PSn−1
-almost all x
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on (K, B(K)), which is clear from

(δx ∗ νn) (A) =
∫

K
δx ∗ δy(A)dνn(y) =

∫

K
µ(Φ(x, y, ·) ∈ A)dνn(y)

= P (Φ(x, Xn, Λn−1) ∈ A) = P

(
Sn ∈ B

∣∣∣Sn−1 = x
)

.

Remark 2.2.10. a) If the random variables X1, X2, . . . are identically distributed,

then (Sn)n∈N is a random walk on K with law ν := PX1
in the sense of the

Definition 2.2.2.

b) A random walk (Sn)n∈N on K is a stationary increment process with ηm,n :=

νn−m for m < n where ν := PX1

c) Forming randomized sums is in general not an associative operation although

convolution of distributions obviously is.

Definition 2.2.11. Let j ≤ n from N. The randomized sum Sn(j, R) where

the j-th term Xj is replaced by a K-valued random variable R on (Ω, A,P) is

recursively defined by

Sn(j, R) :=





Φ(Sn−1(j, R), Xn, Λn−1) for j < n,

Φ(Sj−1, R, Λj−1) for j = n,

Sn for j > n.

(2.2.4)

For instance, if n = 5 and j = 3 then

S5(3, R) = S4(3, R)
Λ4

+ X5 = . . . =
((

(X1

Λ1

+ X2)
Λ2

+ R
) Λ3

+ X4

)Λ4

+ X5.

Clearly, for R ≡ e the randomized sum Sn(j, e) coincides P-a.s. with the ran-

domized sum Sn, where the j-th term is omitted. It is easy to check that the

distribution of PSn(j,R) is given by

PSn(j,R) = ν1 ∗ . . . ∗ νj−1 ∗ PR ∗ νj+1 ∗ . . . ∗ νn.

For ν ∈ M1(K) and n ∈ N we denote the n-fold convolution power of ν with

respect to the convolution ∗ by νn. If X1, X2, . . . are identically distributed, say

PXn = ν for n ≥ 1 then

PSn = νn and PSn(j,R) = νj−1 ∗ PR ∗ νn−j (j, n ∈ N, j ≤ n).

17



2.3 Moments on hypergroups

We recapitulate the concept of moment function introduced by Zeuner; see [46, 47]

and [6, Section 7.2].

Definition 2.3.1. Define the function m0(x) = 1 for x ∈ K.

a) A finite sequence (mi)i=1,...,n of measurable and locally-bounded functions mj :

K → C (j = 1, . . . , n) is called a sequence of moment functions of length

n ∈ N if ∫

K
mi(z) dδx ∗ δy(z) =

i∑

j=0

(
i

j

)
mj(x)mi−j(y) (2.3.1)

for all i = 1, . . . , n and all x, y ∈ K. Moreover, the function mj (j = 1, . . . , n)

is called a moment function of j-th order (associated with the sequence

(mi)i=1,...,n).

b) A sequence of moment functions (mi)i=1,...,n has the property (MF1) if mi are

real valued for all i ∈ {1, . . . , n} and m2
1(x) ≤ m2(x) for all x ∈ K.

c) For a fixed sequence (mi)i=1,...,n of moment functions, introduce the space

M1
n(K) :=

{
µ ∈ M1(K) : mi ∈ L1(K, µ) for all 0 ≤ i ≤ n

}

of probability measures for which all moments up to the n-th exist.

Proposition 2.3.2. Let (mi)i=1,...,n be a sequence of moment functions on K of

length n ∈ N and µ, ν ∈ M1(K). Then

a) mi(e) = 0 for i = 1, . . . , n.

b) All mi are continuous

c) If mk is bounded for an k ∈ {1, . . . , n} then mi ≡ 0 for all i ≤ k.

d) Let k ∈ {1, . . . , n}. Then µ ∗ ν ∈ M1
k(K) if and only if µ, ν ∈ M1

k(K).

Proof: Properties a),b) and c) are known from [28, Section 4].

Property d) will be shown by induction on k ∈ {1, . . . , n}. The case k = 1 is

proven in [47, Lemma 5.9]. Assume that assertion holds when k is replaced by

k − 1 ∈ {1, . . . , n − 1}. For y ∈ K we set

fk(y) :=
∫

K
|

k∑

j=0

(
k

j

)
mj(x)mk−j(y)|dµ(x) ∈ [0, ∞].
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When µ ∗ ν ∈ M1
k (K), we obtain the inequality

∫

K
fk(y)dν(y) =

∫

K

∫

K

∣∣∣∣
∫

K
mkdδx ∗ δy

∣∣∣∣dµ(x)dν(y)

≤
∫

K

∫

K
|mk|dδx ∗ δydµ(x)dν(y) =

∫

K
|mk|dµ ∗ ν < ∞

Hence, by Fubini’s theorem there exists y0 ∈ K with fk(y0) < ∞. This implies

∫

K
|mk(x)|dµ(x) ≤

∫

K

∣∣∣∣
k∑

j=0

(
k

j

)
mj(x)mk−j(y0)

∣∣∣∣+
∣∣∣∣
k−1∑

j=0

(
k

j

)
mj(x)mk−j(y0)

∣∣∣∣dµ(x)

≤ fk(y0) +
k−1∑

j=0

(
k

j

)
|mk−j(y0)|

∫

K
|mj(x)|dµ(x) < ∞

and by symmetrie,
∫

K |mk|dν < ∞. The reverse implication is clear.

Here and subsequently, let (mi)i=1,...,n be a sequence of moment functions of

length n ≥ 2 with the Property (M1); cf. Definition 2.3.1, b). We now turn to the

introduction of modified moments of K-valued random variables on a probability

space (Ω, A,P) following H. Zeuner’s notion from [47].

Definition 2.3.3. Let k ∈ {1, . . . , n} and X, Y be a K-valued random variables

on (Ω, A,P) such that m1(X) and m1(Y ) are integrable.

a) If mk(X) ∈ L1(Ω, A,P) then

E
∗
k(X) := E(mk(X)) =

∫
mk(X)dP

will be called the k-th modified moment of X (with respect to the moment

function mk). We write E∗(X) for a modified moment of first order and refer

to a modified expectation.

b) X and Y are called ∗k-uncorrelated if and only if PX ,PY ∈ M1
k+1(K) and

E(mi(X)mj−i(Y )) = E
∗
i (X)E∗

j−i(Y )

for all i, j ∈ N0 with i ≤ j ≤ k. If k = 0, then ∗0-uncorrelatedness just means

that m1(X) and m1(Y ) are integrable.

Obviously, if two random variables X and Y are independent and PX , PY ∈
M1

k(K) for some k ∈ N, then they are ∗k-uncorrelated.
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Remark 2.3.4. In a certain sense, the concept of modified moments on hyper-

groups generalised the classical concept of moment functions. In fact, the func-

tions mk(x) := xk, k ∈ N form a sequence of moment functions on K := R, where

Mb(R) is equipped with the usual convolution.

As in the classical case, there is a binomial identity for a modified moments of

a randomized sum X
Λ
+ Y of independent random variables X, Y and Λ, which

has been proven in [46]. The same identity but under the weakened assumptions

of the ∗k-uncorrelatedness instead of the independence, is established by our next

proposition.

Proposition 2.3.5. Let X, Y and Λ be random variables as in the Definition

2.2.5 such that X and Y are ∗n−1-uncorrelated for an n ∈ N. Then mn(X
Λ
+ Y )

is integrable and

E
∗
n(X

Λ
+ Y ) =

n∑

k=0

(
n

k

)
E

∗
k(X)E∗

n−k(Y ). (2.3.2)

In particular, E∗(X
Λ
+ Y ) = E(X) + E(Y ).

Proof: By assumption and the Proposition 2.3.2, mn(X
Λ
+ Y ) is integrable.

Moreover, the independence of (X, Y ) and Λ together with the Equation (2.3.1)

and ∗n−1-uncorrelatedness of X and Y implies that

E
∗
n(X

Λ
+ Y ) = E

(
E(mn(X

Λ
+ Y )|X, Y )

)
= E

(∫

K
mnd(δX ∗ δY )

)

= E

( n∑

k=0

(
n

k

)
mj(X)mn−j(Y )

)
=

n∑

k=0

(
n

k

)
E

∗
k(X)E∗

n−k(Y )

Remark 2.3.6. Let µi ∈ M1
k(K) (i = 1, 2, 3). By a straightforward calculation

we obtain following commutativity property

∫

K
mk(x)d(µ1 ∗ µ2 ∗ µ3)(x) =

∫

K
mk(x)d(µσ(1) ∗ µσ(2) ∗ µσ(3))(x) (2.3.3)

for any permutation σ of the set {1, 2, 3}.

In order to define the modified variance of a random variable X on a hyper-

group K, a function v has been introduced by Zeuner in [47, Section 6] by

v : K × R → C, v(x, ξ) := m2(x) − 2ξm1(x) + ξ2.
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Definition 2.3.7. For any K-valued random variable X such that PX ∈ M1
2(K)

we call

V∗(X) := E

(
v(X,E∗(X))

)
= E

∗
2(X) − E∗(X)2

the modified variance of X (associated with (m1, m2)).

Is (m1, m2) a sequence of moments with Property (MF1) (cf. the Definition

2.3.1), then the function v is non negative. Moreover, for every random variable

X such that PX ∈ M1
2(K) the function ξ 7→ E(v(X, ξ)) on R takes its minimum

at ξ = E∗(X), this value being V∗(X) ≥ 0. Clearly, the modified variance of a

deterministic random variable is in general different from 0. This is consistent

with the fact that randomized sums of deterministic random variables need not

to be deterministic.

Remark 2.3.8. Let X, Y and Λ be random variables as in the Definition 2.2.5

such that X and Y are ∗1-uncorrelated (w.r.t. the moment functions m1, m2).

Then, by the same arguments as in the Proposition 2.3.5 we obtain

V∗(X
Λ
+ Y ) = V∗(X) + V∗(Y ). (2.3.4)

If m2
1 ≤ m2 on K, then the usual variance of m1(X) is upper bounded by the

modified variance of X, i.e.

Var(m1(X)) = E(m1(X)2) − E(m1(X))2 ≤ V∗(X). (2.3.5)

In the remainder of this chapter let (Xn)n≥1 and (Λn)n≥1 be sequences as in

the Assumption 2.2.8. By (Sn)n≥1 we abbreviate the associated Markov chain

introduced in Definition 2.2.9. The following observation will be the key for the

moment estimate in Theorem 2.3.10 below.

Proposition 2.3.9. Let (Xn)n≥1 and (Λn)n≥1 be sequences as in Assumption 2.2.8

such that PXi
∈ M1

k(K) for all i ∈ N and some k ∈ N. Moreover, let Sn be the

corresponding randomized sum. Then

E(mk(Sn)|Xj) =
k∑

l=0

(
k

l

)
ml(Xj)E

∗
k−l(Sn(j, e)) P − a.s.

for all n ∈ N, j ∈ {1, . . . , n}. In particular, for k = 1 we have

E(m1(Sn)|Xj) = m1(Xj) + E∗(Sn(j, e)) P − a.s.
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Proof: For a set B ∈ B(K) consider the truncation map

χB : K → K, χB(x) =





x for x ∈ B,

e for x /∈ B

as well as the random variable Sn(j, χB(Xj)). Obviously, by the definition of χB

we have

Sn(j, χB(Xj))(ω) =





Sn(ω) for ω ∈ {Xj ∈ B}
Sn(j, e)(ω) for ω /∈ {Xj ∈ B} .

This and the independence of Xj and Sn(j, e) clearly forces

E(1{Xj∈B}mk(Sn)) = E
∗
k(Sn(j, χB(Xj))) − E(1{Xj /∈B} · mk(Sn(j, e))) (2.3.6)

= E
∗
k(Sn(j, χB(Xj))) − P(Xj /∈ B)E∗

k(Sn(j, e)).

On the other side, by Remark 2.2.10, Eq. (2.3.2) and (2.3.3) it follows that

E
∗
k(Sn(j, χB(Xj))) =

∫

Ω
mk(x)d(PχB(Xj) ∗ νn−1)(x) (2.3.7)

=
k∑

α=0

(
k

α

)
E

∗
α(χB(Xj))E

∗
k−α(Sn(j, e)).

Taking (2.3.6) and (2.3.7) into account we obtain

E(1{Xj∈B}mk(Sn)) =
k∑

α=0

(
k

α

)
E

∗
α(χB(Xj))E

∗
k−α(Sn(j, e)) − P(Xj /∈ B)E∗

k(Sn(j, e)).

Since m0 ≡ 1, we see at once that E
∗
0(χB(Xj)) − P(Xj /∈ B) = P(Xj ∈ B).

Moreover, we have 1{Xj∈B}ml(Xj) = ml(χB(Xj)) for all l ∈ N, which is due to the

fact that ml(e) = 0. This gives

E(1{Xj∈B}mk(Sn)) =
k∑

α=1

(
k

α

)
E

∗
α(χB(Xj))E

∗
k−α(Sn(j, e)) + P(Xj ∈ B)E∗

k(Sn(j, e))

=
k∑

α=0

(
k

α

)
E(1{Xj∈B}mα(Xj))E

∗
k−α(Sn(j, e)).

Clearly, a moment function m1 of the first order is in general not linear. An upper

bound of the deviation of m1(Sn) from the linearisation
∑

m1(Xj) in L2-sense is
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established by our next theorem.

Theorem 2.3.10. Let (m1, m2) be a sequence of moment functions such that

0 ≤ m2
1(x) ≤ m2(x) for all x ∈ K. Let (Xn)n≥1 and (Λn)n≥1 be sequences as in the

Assumption 2.2.8 such that PXi
∈ M1

2(K) for all i ∈ N. Moreover, let (Sn)n≥1 be

the associated process of randomized sums. Then

Var
(
m1(Sn) −

n∑

j=1

m1(Xj)
)
≤

n∑

j=1

E(m2(Xj) − m1(Xj)
2) (2.3.8)

Proof: We define Zn := m1(Sn) −∑n
j=1 m1(Xj) and calculate

Z2
n = m1 (Sn)2 − 2m1 (Sn) ·

n∑

j=1

m1 (Xj) +
{ n∑

j=1

m1 (Xj)
}2

.

Since the random variables X1, . . . , Xn are independent, the property (MF1)

(m2
1 ≤ m2) yields

E(Z2
n) ≤ E∗,2(Sn) − 2

n∑

j=1

E(m1(Sn)m1(Xj))+ (2.3.9)

+
n∑

i6=j

E∗(Xi)E∗(Xj) +
n∑

j=1

E(m1(Xj)
2).

Using Proposition 2.3.9 and Equation (2.3.2) we obtain for j ∈ {1, . . . , n},

E(m1(Sn)m1(Xj)) = E(m1(Xj)E(m1(Sn)|Xj))

= E(m1(Xj){m1(Xj) + E∗(Sn(j, e))})

= E(m1(Xj)
2) +

∑

i∈{1,...,n}\{j}
E∗(Xj)E∗(Xi).

Iterative application of (2.3.2) to Em2(Sj

Λj

+ Xj+1) (j = 1, . . . , n − 1) leads to

E
∗
2(Sn) = E

∗
2(Sn−1) + 2E∗(Xn)E∗(Sn−1) + E

∗
2(Xn)

= E
∗
2(Sn−2) + 2E∗(Xn−1)E∗(Sn−2) + E

∗
2(Xn−1)+

+ E
∗
2(Sn−1) + 2E∗(Xn)E∗(Sn−1) + E

∗
2(Xn) = . . . =

=
n∑

i6=j

E∗(Xi)E∗(Xj) +
n∑

j=1

E∗,2(Xj)
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Therefore, we obtain from (2.3.9)

E(Z2
n) ≤

n∑

j=1

E(m2(Xj) − m1(Xj)
2).

On the other hand, by Proposition 2.3.5 we have E∗(Sn) =
∑n

k=1 E∗(Xk) and

hence Var(Zn) = E(Z2
n).

Remark 2.3.11. a) In the situation of the theorem above, we have for identically

distributed random variables Xj, j ∈ N

Var(m1(Sn) −
n∑

j=1

m1(Xj)) ≤ nE(m2(X1) − m1(X1)
2) ≤ nV∗(X1)

b) While the randomized sum Sn clearly depends on the particular choice of

the underlying concretization on K, this is not the case for the conditional

expectation in Proposition 2.3.9 and thus in the estimation (2.3.8).

Corollary 2.3.12. Suppose that all assumptions of Theorem 2.3.10 hold. Let

(bn)n∈N be a sequence of positive numbers with limit ∞ such that
∑∞

n=1
1

bn
V∗(Xn) <

∞. Then
1√
bn

(
m1(Sn) −

n∑

k=1

m1(Xk)
)

→ 0 in L2.

Proof: Let Zn := |m1(Sn) −∑n
j=1 m1(Xj)|/

√
bn. By Theorem 2.3.10 we obtain

E(Z2
n) ≤ 1

bn

n∑

j=1

V∗(Xj).

Thus, by Kronecker’s Lemma, Zn converges in L2 to 0 as n → ∞.

Corollary 2.3.13. Suppose that all assumptions of Theorem 2.3.10 hold and
∑∞

n=1
1

n2V∗(Xn) < ∞. Then

1

n

(
m1(Sn) − E∗(Sn)

)
→ 0 in L2 and a.s.

Proof: By Inequality (2.3.5) we get
∑∞

n=1
1

n2Var(m1(Xn)) < ∞. Hence

1

n

n∑

k=1

(m1(Xk) − Em1(Xk)) → 0 P − a.s. (2.3.10)
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by the classical law of large numbers for independent random variables. On the

other hand, according to the above corollary, we have

1

n

(
m1(Sn) −

n∑

k=1

m1(Xk)
)

→ 0 in L2. (2.3.11)

Combining this with (2.3.10), the corollary follows.

If m1 ≡ 0 then the statement (2.3.8) being empty. For this case we prove the

following theorem.

Theorem 2.3.14. Let (mk)k be a sequence of moment functions such that m1 ≡ 0

and 0 ≤ m2
2 ≤ m4. Suppose that assumptions of Proposition 2.3.9 hold. Then

E

(
{m2(Sn) −

n∑

j=1

m2(Xj)}2
)

≤
n∑

j=1

E(m4(Xj) − m2(Xj)
2)

+ 2
∑

j 6=i

E
∗
2(Xj)E

∗
2(Xi). (2.3.12)

Proof: Let Zn := m2(Sn) − ∑n
j=1 m2(Xj). Since m2

2 ≤ m4 and m1 ≡ 0 we

calculate

E(Z2
n) ≤ E

∗
4(Sn) − 2

n∑

j=1

E(m2(Sn)m2(Xj))+

+
n∑

i6=j

E
∗
2(Xi)E

∗
2(Xj) +

n∑

j=1

E(m2(Xj)
2). (2.3.13)

In the same way as in the proof of Theorem 2.3.10 we obtain

E(m2(Sn)m2(Xj)) = E(m2(Xj)
2) +

∑

i∈{1,...,n}\{j}
E

∗
2(Xj)E

∗
2(Xi).

Iterative application of (2.3.2) to E(m4(Sj)
Λj

+ Xj+1) (j = 1, . . . , n − 1) leads to

E
∗
4(Sn) = E

∗
4(Sn−1) + 6E∗

2(Xn)E∗
2(Sn−1) + E

∗
4(Xn)

= E
∗
4(Sn−2) + 6E∗

2(Xn−1)E
∗
2(Sn−2) + E

∗
4(Xn−1)+

+ E
∗
4(Sn−1) + 6E∗

2(Xn)E∗
2(Sn−1) + E

∗
4(Xn) = . . . =

= 3
n∑

i6=j

E
∗
2(Xi)E

∗
2(Xj) +

n∑

j=1

E
∗
4(Xj)
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Therefore, we obtain from (2.3.13) the asserted inequality (2.3.12).

Let (Sn)n≥1 be a random walk on a hypergroup K. As in the most classical

case where K = R, one can construct martingales in a canonical way from the

random walk (Sn)n≥1 involving moment functions on K. Here is a result for the

first and second moment function due to [46], which can be easily checked.

Theorem 2.3.15. For any increment process (St)t∈I on a hypergroup K we have

the following statements.

If E∗(St) exists for all t ∈ I then (m1(St) − E∗(St))t∈I is a martingale. In

addition if I := R+ or Z+ and E∗(St0
) ≥ 0 for some t0 ∈ I then (m1(St))t∈I

is a submartingale.

If V∗(St) exists for all t ∈ I then (v(St,E∗(St)) − V∗(St))t∈I is a martingale. In

addition (v(St,E∗(St)))t∈I is a submartingale.

In the following proposition we derive a sufficient condition for the convergence

of submartingales.

Proposition 2.3.16. Let (Xk)k∈N be a nonnegative submartingale. If there exists

an α < 2 such that E(X2
k) = O(kα) for all k, then Xk/k converges a.s. to 0.

Moreover, for any ε > 0 one has

P( sup
m≤k<∞

Xk/k > ε) = O(mα−2).

Proof: For an ε > 0 and m ∈ N let τm := inf{k ∈ N : Xk/k > ε and k ≥ m}.

It is clear that

ε2
P(m ≤ τm ≤ n) ≤

n∑

k=m

1

k2

∫

τm=k
X2

kdP =
n∑

k=m

1

k2

(∫

τm>k−1
−
∫

τm>k

)
X2

kdP

≤
∫

τm>m−1

X2
m

m2
dP +

n−1∑

k=m

[
1

(k + 1)2

∫

τm>k
X2

k+1dP − 1

k2

∫

τm>k
X2

kdP
]

for m, n ∈ N with m < n. Therefore, noting that

1

(k + 1)2

∫

τm>k
X2

k+1dP − 1

k2

∫

τm>k
X2

kdP ≤ 1

(k + 1)2

∫

τm>k
(X2

k+1 − X2
k)dP
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for m ≤ k ≤ n − 1, we get

ε2
P(m ≤ τm ≤ n) ≤ 1

m2
E(X2

m) +
n−1∑

k=m

1

(k + 1)2

∫

τm>k
(X2

k+1 − X2
k)dP.

By submartingale property and assumption E(X2
k) = O(kα) it follows that

ε2
P(m ≤ τm ≤ n) ≤ 1

m2
E(X2

m) +
n−1∑

k=m

1

(k + 1)2
E(X2

k+1 − X2
k)

≤
n−1∑

k=m

[
1

k2
− 1

(k + 1)2

]
· E(X2

k) +
1

n2
E(X2

n)

≤ C ·
n−1∑

k=m

kα

k3
+

1

n2
E(X2

n),

where C > 0 is a positive constant independent from m, n and k. Now, as n → ∞,

we obtain

P( sup
m≤k<∞

Xk/k > ε) ≤ P(m ≤ τm < ∞) ≤ C

ε2
mα−2+δ ·

∞∑

k=m

1

k1+δ

for 0 < δ < 2−α. Thus, Xk/k converges a.s. to zero with the claimed convergence

rate.

Corollary 2.3.17. Suppose that assumptions of Theorem 2.3.10 hold and X1,

X2, . . . are identically distributed. Then |m1(Sn) − E∗(Sn)|/n converges a.s. to 0.

Moreover, for any ε > 0 and δ > 0 one has

P( sup
m≤k<∞

1

n
|m1(Sn) − E∗(Sn)| > ε) = O(mδ−1).

Proof: Let Zn := m1(Sn) − ∑n
j=1 m1(Xj) and Yn :=

∑n
j=1 m1(Xj) − E∗(Sn).

Since the random variables m1(Xj), j = 1, 2, . . . are i.i.d., we have

E(Y 2
n ) = n · E((m1(X1) − E∗(X1))

2) = O(n).

Thus, by Cauchy-Schwarz inequality and Theorem 2.3.10 we obtain

E((m1(Sn) − E∗(Sn))2) ≤ E(Z2
n) + 2

√
E(Z2

n)E(Y 2
n ) + E(Y 2

n ) = O(n).

Now, the assertion follows by Proposition 2.3.16.
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Chapter 3

Moment functions and limit

theorems for Jacobi hypergroups

In this chapter, we derive sharp estimates and asymptotic results for moment

functions on so-called Jacobi type hypergroups on [0, ∞[. Moreover, we use these

estimates to prove limit theorems for random walks on Jacobi hypergroups of index

(α, β) where α tends to infinity. As a special case, we obtain limit results for radial,

time-homogeneous random walks on hyperbolic spaces of growing dimensions.

We first collect the necessary background information on hyperbolic spaces

and Jacobi hypergroups and indicate the connection between them. The material

is mainly taken from [25]. We also refer to [9] and [17].

3.1 Hyperbolic spaces

Let k ≥ 2, and F = R, C, or the skew field of the quaternions H with real

dimension d = 1, 2 or 4. We denote with U(k,F) the orthogonal, unitary or

symplectic group, respectively. Moreover, we consider

U(1, k,F) :=
{
A ∈ GL(k + 1,F) : A∗I1,kA = I1,k

}
,

with the diagonal matrix I1,k = diag(−1, 1, . . . , 1). It is easy to see that U(1, k,F)

is a group of right linear operators on F
k+1 which leave invariant the Hermitian

form

q(x, y) := −x0y0 + x1y1 + . . . + xkyk, x, y ∈ F
k+1.

The map θ : U(1, k,F) → U(1, k,F), θ(g) = (g∗)−1 (g∗ denoting F-hermitian

adjoint of g) is an involutive automorphism of U(1, k,F). Let Kk be the subgroup
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of elements fixed under θ, i.e.

Kk := U(1,F) × U(k,F) :=






x 0

0 y


 |x ∈ U(1,F), y ∈ U(k,F)



 .

The hyperbolic space of dimension k over F may be regarded as the symmetric

space

Hk(F) := Gk/Kk,

where Gk := U(1, k,F). In all cases, the double coset space Gk//Kk can be

regarded as the interval [0, ∞[ by identifying t ≥ 0 with the double coset

KkatKk with at =




ch (t) 0 . . . 0 sh (t)

0 0
... Ik−1

...

0 0

sh (t) 0 . . . 0 ch (t)




;

(see [9] and [25, Ch. 3]) We define the hyperbolic distance on Hk(F) by

dist(xKk, yKk) := ϕk(Kky−1xKk), for x, y ∈ Gk,

where ϕk : KkatKk 7→ t is the homeomorphism between Gk//Kk and [0, ∞[.

Moreover, let πk be the canonical projection from Gk/Kk = Hk(F) onto the double

coset space Gk//Kk. It is clear that ϕk(πk(y)) = dist(y, Kk) for all y ∈ Gk/Kk.

Let us now fix a probability measure ν ∈ M1([0, ∞[). Then there exists a

unique radial (i.e. Kk-invariant) measure νk ∈ M1(Hk(F)) with ϕk(πk(νk)) = ν

(see in a more general context [42] and references cited there). In this way, we

introduce the time-homogeneous radial random walks (Sk
n)n≥0 associated with the

νk by Sk
0 := Kk ∈ Hk(F) and

P(Sk
n+1 ∈ A · Kk | Sk

n = x · Kk) = νk(x−1AKk)

for n ≥ 0, x ∈ Gk, and A ⊂ Gk a Borel set. It is well known (see e.g. Lemma 4.4

of [31] or [42]) that the image process (dist(Sk
n, Kk))n≥1 is a time-homogeneous

Markov chain on [0, ∞[ starting at time 0 in dist(Sk
0 , Kk) = 0 with transition

probabilities

P(dist(Sk
n+1, Kk) ∈ A | dist(Sk

n, Kk) = x) = δx ∗k,d ν(A) (3.1.1)
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for n ≥ 0, x ≥ 0 and A ⊂ [0, ∞[ a Borel set, where ∗k,d denotes the double coset

convolution on Gk//Kk ≃ [0, ∞[.

Among other results, we shall derive the following central limit theorem for

the random walk (Sk
n)n≥0 on Hk(F) where for a fixed field F, the dimension k and

the number of steps n tends to infinity.

Theorem 3.1.1. Let (kn)n≥1 ⊂ N be an increasing sequence of dimensions with

limn→∞ kn = ∞ and fix F as above. Let ν ∈ M1([0, ∞[) with a finite second mo-

ment. For each dimension k ≥ 2, consider the Kk−invariant time-homogeneous

random walk (Sk
n)n≥0 on Hk(F) such that for all n, k, the variables dist(Sk

n+1, Sk
n)

have distribution ν. Then, rj :=
∫∞

0 (ln(ch x))jdν(x) < ∞ exist for j = 1, 2, and

1√
n

(
dist(Skn

n , Skn
0 ) − nr1

)

tends in distribution for n → ∞ to the normal distribution N (0, r2 − r2
1).

The above theorem will be proven by considering the moments of the distri-

butions of
(
dist(Sk

n, Sk
0 )
)

n≥0
on the spaces Gk//Kk ≃ [0, ∞[ equipped with the

associated double coset convolutions ∗k,F. These convolutions may be regarded

as special cases of the so-called Jacobi convolution ∗α,β on [0, ∞[ depending on

indices α ≥ β ≥ −1/2 which were investigated by Koornwinder in [25]. The same

result, but with some restrictions on the growth of k = k(n) in dependence of n

was derived by M. Voit in [42, 43] by using different methods.

3.2 Jacobi functions and Jacobi hypergroups

For fixed parameters α ≥ β ≥ −1
2

we define the function Aα,β : R+ → R by

Aα,β(x) := sh (x)2α+1ch (x)2β+1, (x ∈ R+).

It is easily seen that Aα,β is a Sturm-Liouville function which satisfies the condi-

tions (2.1.2), (SL1), (SL2) and (SL3) of the Section 2.1. The associated Sturm-

Lioville operator Lα,β := LAα,β
is given by

Lα,βf = −f ′′ − A′
α,β

Aα,β

f ′ = −f ′′ −
(
(2α + 1)coth + (2β + 1)tanh

)
f ′ (3.2.1)

for f ∈ C2([0, ∞[) with f ′(0) = 0.
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According to the Theorem 2.1.12 there exists a unique hypergroup operation

∗α,β on K := [0, ∞[ such that (K, ∗α,β) is a hypergroup; c.f. [25] as well as [7], [36],

[46] in a general context of Chébli-Trimèche hypergroups. We denote (K, ∗α,β) and

∗α,β as the Jacobi hypergroup and the Jacobi convolution on [0, ∞[ with parameter

(α, β), respectively.

For certain parameters α := α(k, d) and β := β(d) with

α = d · k/2 − 1, β = d/2 − 1, (3.2.2)

the operator −Lα,β is the radial part of the Laplace-Beltrami operator on Hk(F) =

Gk/Kk, and the Jacobi functions ϕ
(α,β)
λ are spherical functions of the Gelfand pair

(Gk, Kk). Moreover, the double coset convolutions ∗k,d on Gk//Kk ≃ [0, ∞[ for

the hyperbolic space Hk(F) are given by the Jacobi convolutions ∗α,β with the

parameters α and β as in (3.2.2).

In the following proposition, we collect some known facts about Jacobi hyper-

groups which can be found in [6] and [25].

Proposition 3.2.1. Let α ≥ β ≥ −1
2

and (K, ∗α,β) be the Jacobi hypergroup of

index (α, β). Then the neutral element of this hypergroup is 0, and the inversion

is the identity mapping. Moreover, (K, ∗α,β) has the following properties:

a) The hypergroup (K, ∗α,β) admits a Lebesgue absolutely continuous convolution

which for Dirac measures δx and δy with x, y ∈ [0, ∞[ can be represented as

δx ∗α,β δy(f) =
∫ 1

0

∫ π

0
f(arch |ch x · ch y + reiϕsh x · sh y|)dmα,β(r, ϕ)

for f ∈ Cb([0, ∞[) and for the probability measure mα,β with

dmα,β(r, ϕ) =
2Γ(α + 1)(1 − r2)α−β−1(r sin ϕ)2β · rdrdϕ

Γ(1/2)Γ(α − β)Γ(β + 1/2)
(3.2.3)

for α > β > −1/2. For α > β = −1/2, the measure degenerates into

dmα,−1/2(r, ϕ) =
Γ(α + 1)(1 − r2)α−1/2dr · d(δ0 + δπ)(ϕ)

Γ(1/2)Γ(α + 1/2)
(3.2.4)

and for α = β > −1/2 into

dmα,α(r, ϕ) =
2Γ(α + 1) sin2α ϕdϕ · dδ0(r)

Γ(1/2)Γ(α + 1/2)
. (3.2.5)
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b) The index of this hypergroup is given by ρα,β := α + β + 1.

c) The multiplicative functions are precisely the Jacobi functions

ϕ
(α,β)
λ (t) := 2F1((ρα,β − iλ)/2, (ρα,β + iλ)/2; α + 1; −sh 2(t)), (λ ∈ C)

which are the unique solutions to the Sturm Lioville problem

Lα,βϕ
(α,β)
λ (x) = (ρ2

α,β + λ2)ϕ
(α,β)
λ , ϕ

(α,β)
λ (0) = 1,

(
ϕ

(α,β)
λ

)′
(0) = 0. (3.2.6)

Moreover the dual of (R+, ∗α,β) is given by

R̂+ =
{
ϕ

(α,β)
λ | λ ∈ R+ ∪ i[0, ρα,β]

}
.

d) The Jacobi function ϕ
(α,β)
λ admits the following Laplace representation

ϕ
(α,β)
λ (t) =

∫ 1

0

∫ π

0
|ch t + reiϕsh t|iλ−ρα,β dmα,β(r, ϕ) (3.2.7)

with the probability measure mα,β introduced in (3.2.3), (3.2.4) and (3.2.5),

respectively.

e) ωK := Aα,βλ1
|[0,∞[ is a Haar measure of (K, ∗α,β).

f) Plancherel measure πK associated with Haar measure ωK is given by

dπK(t) :=
1

|cα,β(t)|2 dλK(t)

with Harish-Chandra’s c-function

cα,β(t) :=

√
2π2−itΓ(it)Γ(α + 1)

Γ
(

ρα,β+it

2

)
Γ
(

ρα,β+it

2
− β

) , (t ∈ [0, ∞[).

For a fixed measure ν ∈ M1([0, ∞[) consider the associated random walk

(S(α,β)
n )n≥0 with law ν on the Jacobi hypergroup of index (α, β) (on the construc-

tion of random walks on arbitrary hypergroups cf. Section 2.2). Theorem 3.1.1

then can be regarded as a special case of the following central limit theorem:

Theorem 3.2.2. Let β ≥ −1
2

and let (αn)n∈N ⊂ [β, ∞[ be an arbitrary increasing

sequence with limn→∞ αn = ∞. Let ν ∈ M1([0, ∞[) with a finite second moment
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∫∞
0 x2dν(x) < ∞. Consider the associated Jacobi random walk (S(αn,β)

n )n≥0 on

[0, ∞[ with law ν. Then

1√
n

(
S(αn,β)

n − E(S(αn,β)
n )

)

tends in distribution for n → ∞ to N (0, r2 − r2
1), where r1 and r2 are defined as

in Theorem 3.1.1.

The proof is essentially based on the general Theorem 2.3.10 as well as on some

sharp estimates and asymptotic results (for large indices α) for moment functions

on Jacobi hypergroups.

3.3 Moment functions on Jacobi hypergroups

Let (K, ∗α,β) be a Jacobi hypergroup on [0, ∞[ with defining function Aα,β for

parameters α ≥ β ≥ −1/2. Since (K, ∗α,β) belongs to the general class of Chébli-

Trimèche hypergroups, the Jacobi function ϕ
(α,β)
λ is an analytic function of λ (see

2.1). Let (mk)k=0,...,n, (n ∈ N) be the sequence of functions defined by

m
(α,β)
k (x) :=

∂k

∂µk
ϕi(ρα,β+µ)(x)|µ=0,

as in Definition 2.1.14. If no confusion is possible, we will suppress the parameters

α, β in expressions concerning (K, ∗α,β), i.e. we will simply write ∗, L, ϕλ, ρ,

mk, · · ·
From Section 2.1 we obtain the following facts about mk. For k = 0 we have

ϕiρ ≡ 1 and thus m0 ≡ 1. It is easily verified that for any n ∈ N the tuple

(mk)k=1,...,n is a sequence of moment functions of the length n in the sense of

Definition 2.3.1. The cases n = 1 and n = 2 are proven in [47, Section 5 and 6].

By differentiating the equation (3.2.6) with respect to λ, we obtain

Lmk = −2kρmk−1 − k(k − 1)mk−2, mk(0) = m′
k(0) = 0 (3.3.1)

for k ≥ 1. It follows from the Laplace integral representation for Jacobi functions

(3.2.7) that

mk(x) =
∫ 1

0

∫ π

0

(
ln |ch x + r · eiϕsh x|

)k
dmα,β(r, ϕ) (3.3.2)
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for x ≥ 0 and k ≥ 1. In particular, mk is non-negative.

Next, we prove a series of statements about the moments mk, which are needed

in the following section.

Lemma 3.3.1. For all k ∈ N the functions mk are recursively given by

mk(x) =
∫ x

0

∫ y

0

Aα,β(z)

Aα,β(y)
(2kρmk−1(z) + k(k − 1)mk−2(z)) dzdy. (3.3.3)

Proof: We first notice that the integral in (3.3.3) exists as for 0 < z < y we

have 0 ≤ aα,β(z)/aα,β(y) ≤ 1. Now let w denote the function on [0, ∞[ defined by

w : [0, ∞[→ R, w(x) :=
∫ x

0
b(t)F (t, x)dt,

where b(t) := 2kρmk−1(t) + k(k − 1)mk−2(t) and F (t, x) = Aα,β(t)/Aα,β(x). By

using Leibniz integral rule, it is easy to check that the function w satisfies the

differential equation

y′ = −A′
α,β

Aα,β

y + b, y(0) = 0. (3.3.4)

On the other hand, we conclude from (3.3.1) that t 7→ m′
k(t) also satisfies the

initial value problem (3.3.4). Hence, Picard-Lindelöf theorem leads to w ≡ m′
k.

Now, by integrating the equation above, we obtain the asserted recursion formula

for mk.

Remark 3.3.2. Let α ≥ β ≥ −1/2 and x ≥ 0. By using the recursion formula

(3.3.3), we obtain for the moment function of the first order

m
(α,β)
1 (x) = 2ρα,β

∫ x

0

∫ y

0

Aα,β(z)

Aα,β(y)
dzdy. (3.3.5)

Let Bα,β denote the function y 7→ ∫ y
0 Aα,β(z)dz on [0, x]. For β = 0 we check at

once that Bα,0(y) = sh (y)2(α+1)/(2α + 2) and hence

m
(α,0)
1 (x) = 2ρα,0

∫ x

0

Bα,0(y)

Aα,0(y)
dy = ln(ch x). (3.3.6)

For α = β = −1/2 the identity (3.3.5) makes it obvious that m
(−1/2,−1/2)
1 ≡ 0 and

hence m
(−1/2,−1/2)
2 (x) = x2 by (3.3.3).
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Lemma 3.3.3. For all k, l ∈ N with l > 1 we have

mk(x)l ≤ mkl(x) ≤ xkl for every x ≥ 0.

In particular, m1 and m2 satisfy the growth condition (MF1) of Definition 2.3.1.

Proof: According to the Laplace representation of mk in Theorem 2.1.12, for

every x ≥ 0 there exists a probability measure νx on [−x, x] such that mk(x) =
∫ x

−x tkdνx(t) for all k ∈ N. Furthermore, the measure τx with dτx(t) = e−ρt · dνx(t)

is a symmetric subprobability measure on R. Thus,

mk(x) =
∫ x

0
tk(eρt + (−1)ke−ρt)dτx(t).

Since the integrand t 7→ tk(eρt +(−1)ke−ρt) is convex on [0, ∞[, the first inequality

follows from Jensen’s inequality. The second inequality is a consequence of the

fact that the measure νx in (2.1.6) is supported by [−x, x].

Lemma 3.3.4. For β ≥ −1/2 there exists a positive constant cβ (dependent only

on β) such that for all x ≥ 0 and all α ≥ β + 1,

(
1 − cβ

α

)
ln(ch x) ≤ m

(α,β)
1 (x) ≤

(
1 +

cβ

α

)
ln(ch x). (3.3.7)

Proof: Let x ∈ [0, ∞[. Firstly, we consider the case 0 ≤ β ≤ α. By the

monotonicity of ch , we see at once that Aα,β(z)/Aα,β(y) ≤ Aα,0(z)/Aα,0(y) for all

0 ≤ z ≤ y. Hence, from (3.3.5) and (3.3.6) we deduce

m
(α,β)
1 (x) ≤ 2ρα,β

∫ x

0

∫ y

0

Aα,0(z)

Aα,0(y)
dzdy =

2ρα,β

2ρα,0

m
(α,0)
1 (x) =

(
1 +

β

α + 1

)
ln(ch x).

On the other hand, using ch z/ch y ≥ sh z/sh y for 0 ≤ z ≤ y we have

m
(α,β)
1 (x) ≥ 2ρα,β

∫ x

0

∫ y

0

Aα+β,0(z)

Aα+β,0(y)
dzdy =

ρα,β

ρα+β,0

m
(α+β,0)
1 (x) = ln(ch x). (3.3.8)

We now turn to the case β ∈ [−1/2, 0[. In a similar manner as above, by using

the inequality Aα,β(z)/Aα,β(y) ≤ Aα+β,0(z)/Aα+β,0(y) for 0 ≤ z ≤ y, we conclude

from (3.3.5) that

m
(α,β)
1 (x) ≤ 2ρα,β

∫ x

0

∫ y

0

Aα+β,0(z)

Aα+β,0(y)
dzdy =

ρα,β

ρα+β,0

m
(α+β,0)
1 (x) = ln(ch x).
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For 0 ≤ z ≤ y we get (ch z/ch y)2β ≥ 1. Hence,

m
(α,β)
1 (x) ≥ ρα,β

ρα,0

m
(α,0)
1 (x) =

(
1 +

β

α + 1

)
ln(ch x),

which completes the proof.

Lemma 3.3.5. There is a constant C > 0 such that for all x ≥ 0 and all α,

β ∈ R with α ≥ β + 3/2 ≥ 1,

−C ≤ m
(α,β)
1 (x) − ln(ch x) ≤ C.

Proof: The inequality 0 ≤ x − ln(ch x) ≤ ln(2) and Lemma 3.3.3 imply

mα,β
1 (x) − ln(ch x) ≤ ln(2).

We now turn to the second inequality. In the case β ≥ 0, we deduce from

(3.3.8) that m
(α,β)
1 (x) − ln(ch x) ≥ 0.

Finally, we consider the case β ∈ [−1/2, 0]. Let x ≥ 0 and r ∈ [0, 1[. Then

ln(1 + r tanh(x)) ≥ ln(1 + r) ≥ 0 and

ln(1 − r tanh(x)) ≥ ln(1 − r) ≥ −(e · (1 − r))−1.

Therefore, using the integral representation in 3.3.2 of m
(α,−1/2)
1 , we obtain

m
(α,−1/2)
1 (x) − ln(ch x) =

∫ 1

0

∫ π

0
ln(|1 + reiϕ tanh(x)|)dmα,−1/2(r, ϕ)

≥ − Γ(α + 1)

Γ(1/2)Γ(α + 1/2)

1

e

∫ 1

0
(1 − r)−1(1 − r2)α−1/2dr

≥ − Γ(α + 1)

Γ(1/2)Γ(α + 1/2)

2

e

∫ 1

0
(1 − r2)α−3/2dr.

After substitution r2 = u, we see that the last integral is given (up to a constant)

by the beta function B(α − 1/2, 1/2) = Γ(α − 1/2)Γ(1/2)/Γ(α). Hence, using the

functional equation for gamma function, we get

m
(α,−1/2)
1 (x) − ln(ch x) ≥ −α/(e(α − 1/2)) ≥ −2/e.

From (3.3.5) we see at once that

m
(α,β)
1 (x) ≥ ρα,β

∫ x

0

∫ y

0

Aα+β+1/2,−1/2(z)

Aα+β+1/2,−1/2(y)
dzdy = m

(α+β+1/2,−1/2)
1 (x).
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It follows that m
(α,β)
1 (x) − ln(ch x) ≥ −1, which completes the proof.

Lemma 3.3.6. There is a constant C > 0 such that for all x ≥ 0 and all α,

β ∈ R with α ≥ β + 3/2 ≥ 1,

−C ≤
(
m(α,β)

)−1
(x) − x ≤ C.

Proof: By using Lemmas 3.3.3 and 3.3.5 as well as the inequality 0 ≤ x −
ln(ch x) ≤ ln(2), we obtain

0 ≤ x − m
(α,β)
1 (x) ≤ (x − ln(ch x)) + (ln(ch x) − m

(α,β)
1 (x)) ≤ C (3.3.9)

with a suitable constant C > 0. Since the graph of (m
(α,β)
1 )−1 is obtained by

reflecting the graph of m
(α,β)
1 across the line y = x, the inequality follows imme-

diately from (3.3.9).

Lemma 3.3.7. Let α ≥ β ≥ −1/2 with (α, β) 6= (−1/2, −1/2) and x ≥ 0. Then

m1(x)2 ≤ m2(x) ≤ m1(x)2 +
1

ρ
m1(x), (x ≥ 0). (3.3.10)

Proof: Because of Lemma 3.3.3 we have only to verify the second inequality.

From Remark 3.3.2 we obtain m′
1(x) = 2ρAα,β(x)/aα,β(x). Hence, by Lemma

3.3.1 and integration by parts, we observe

m2(x) = 4ρ
∫ x

0

∫ y

0

aα,β(z)

aα,β(y)
m1(z)dzdy +

1

ρ
m1(x)

= 4ρ
∫ x

0

Aα,β(y)

aα,β(y)
m1(y)dy − 4ρ

∫ x

0

∫ y

0

Aα,β(z)

aα,β(y)
m′

1(z)dzdy +
1

ρ
m1(x)

≤ 2
∫ x

0
m′

1(y)m1(y)dy +
1

ρ
m1(x) = m1(x)2 +

1

ρ
m1(x).

In order to formulate and to prove limit theorems in Section 3.4 the following

notation is useful. For j ∈ N0, −1/2 ≤ β ≤ α and ν ∈ M1([0, ∞[) we define

rj :=
∫ ∞

0
ln(ch x)jdν(x), r̂j(α) :=

∫ ∞

0
m

(α,β)
j (x)dν(x),

r̃j :=
∫ ∞

0
xjdν(x), řj(α) :=

∫ ∞

0
m

(α,β)
1 (x)jdν(x).
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Remark 3.3.8. a) If ν ∈ M1([0, ∞[) admits j-th moment, i.e.
∫∞

0 xjdν(x) <

∞, then rj, r̂j(α) and řj(α) exist in [0, ∞[, which is clear from Lemma 3.3.3.

b) From Lemmas 3.3.4 and 3.3.7 we obtain for k = 1, 2

lim
α→∞ r̂k(α) = rk = lim

α→∞ řk(α). (3.3.11)

Lemma 3.3.9. Let k ∈ N0 and α ≥ −1/2. Then

m
(α,α)
k (x) = 2−km

(α,− 1

2
)

k (2x) (x ≥ 0). (3.3.12)

Proof: The idea of the following proof goes back to Koornwinder (see Section

5.3 of [25]). For α ≥ β ≥ −1/2 let L(α,β) be the differential operator as in (3.2.1).

For a function g ∈ C2(R+) with g′(0) = 0 we define a function g̃ by g̃(t) := g(2t),

(t ≥ 0). By a straightforward calculation one obtains

(
L(α,α)g̃

)
(t) = 4

(
L(α,− 1

2
)g
)
(2t). (3.3.13)

For k = 0 the Formula (3.3.12) is obviously true. Let k > 0; we set f(t) :=

m
(α,α)
k (t) and h(t) := 2−km

(α,−1/2)
k (2t). Since (2.1.5) we have

(
L(α,α)f

)
(t) = −2k(2α + 1)m

(α,α)
k−1 (t) − k(k − 1)m

(α,α)
k−2 (t).

On the other hand, we calculate

(
L(α,α)h

)
(t) = 4

(
L(α,− 1

2
)h̃
)
(2t) = 4 · 2−k

(
L(α,− 1

2
)m

(α,− 1

2
)

k

)
(2t)

= 4 · 2−k
(

−2k(α +
1

2
)m

(α,− 1

2
)

k−1 (2t) − k(k − 1)m
(α,− 1

2
)

k−2 (2t)
)

= 4 · 2−k
(

−2k(α +
1

2
)2k−1m

(α,α)
k−1 (t) − k(k − 1)2k−2m

(α,α)
k−2 (t)

)

= −2k(2α + 1)m
(α,α)
k−1 (t) − k(k − 1)m

(α,α)
k−2 (t).

By the uniqueness of the solution of the underlying initial value problem, we

finally conclude that f ≡ h.

3.4 Limit theorems for growing parameters

Let (S(α,β)
n )n≥0 be the time-homogeneous random walk on Jacobi hypergroup

([0, ∞[, ∗α,β) with law ν. In particular, (S(α,β)
n )n≥0 is a time-homogeneous Markov
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process on [0, ∞[ starting in 0 with transition probability

P(S
(α,β)
n+1 ∈ A | S(α,β)

n = x) = δx ∗α,β ν(A) (3.4.1)

for n ≥ 0, x ≥ 0 and A ⊂ [0, ∞[ a Borel set.

In this section, we study the asymptotic behaviour of (S(α,β)
n )n≥0 for increasing

“dimension” parameter α. From this moment onwards, we will suppose that

the variables X1, X2, . . . are i.i.d. with finite second moment
∫∞

0 x2dν(x) <

∞. It is known that for a fixed parameter β ≥ −1/2, in the case of the finite

second moment
∫∞

0 x2dν(x) < ∞ under strong requirements on the growth of the

sequence (αn)n∈N ⊂ [β, ∞[, namely n/
√

αn → 0, the random variable

1√
n

{
S(αn,β)

n − n · r1

}

tends in distribution for n → ∞ to the normal distribution N (0, r2 − r2
1) (see [42,

Theorem 4.2]). In analogy with the radial limit theorems on R
αn for αn → ∞ (see

[41, 42]) one might suspect that, also in our situation, the case n >> αn would

establish another limit distribution as in the case n << αn. However, we shall

prove:

Theorem 3.4.1. Fix any β ≥ −1/2 and let (αn)n∈N ⊂ [β, ∞[ be an arbitrary

increasing sequence with limn→∞ αn = ∞. Let ν ∈ M1([0, ∞[) be a probability

measure with a finite second moment
∫∞

0 x2dν(x) < ∞ and consider the associated

Jacobi random walks (S(αn,β)
n )n≥0 on [0, ∞[ with law ν. Then

1√
n

(
m

(αn,β)
1 (S(αn,β)

n ) − nr̂1(αn)
)

(3.4.2)

tends in distribution for n → ∞ to the normal distribution N (0, r2 − r2
1).

Proof: In the first step, we show that the random variables

Zn :=
1√
n

(
m

(αn,β)
1 (S(αn,β)

n ) −
n∑

j=1

m
(αn,β)
1 (Xj)

)

converge to zero in the L2-sense. For this purpose, we conclude from Theorem

2.3.10 that

E

(
Z2

n

)
≤ E

(
m2(X1)

)
−E

(
m1(X1)

2
)
= r̂2(αn) − ř2(αn).
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Now, the claimed convergence follows by using Remark 3.3.8.

Let Yn denote the random variable in (3.4.2). For an α > β we define Ξn,α by

Ξn,α :=
1√
n

n∑

j=1

ξj,α with ξj,α := m
(α,β)
1 (Xj) − r̂1(α)

and denote the distribution of Ξn,α by µn,α. In the following, we write τ , τα instead

of the normal distribution N (0, ř2(α) − r̂1(α)2) and N (0, r2 − r2
1), respectively.

Since Yn = Zn − Ξn,αn it remains to prove that for all bounded and uniformly

continuous functions f ∈ Cu
b (R) on R the integral

∫∞
0 fdµn,αn tends for n → ∞ to

the integral
∫∞

0 fdτ .

Let ε > 0 and f ∈ Cu
b (R). For an α ≥ −1/2 and an n ∈ N we have

∣∣∣∣
∫

fdµn,αn −
∫

fdτ

∣∣∣∣ ≤
∣∣∣∣
∫

fdµn,αn −
∫

fdµn,α

∣∣∣∣+ (3.4.3)

+
∣∣∣∣
∫

fdµn,α −
∫

fdτα

∣∣∣∣+
∣∣∣∣
∫

fdτα −
∫

fdτ
∣∣∣∣.

Now we show that each of the three terms on the right hand side of (3.4.3) become

arbitrarily small provided the involved parameters α and n are large enough. We

start with the first term. Let α and γ be fixed parameters greater or equal to β.

The random variables ξi,α and ξj,γ are independent for any i 6= j and in the case

α = γ, they are identically distributed. Moreover, ξj,α are centered with variance

ř2(α) − r̂1(α)2. From this it follows that

0 ≤ E

(
(Ξn,αn − Ξn,α)2

)
= E

(
Ξ2

n,αn
− 2Ξn,αnΞn,α + Ξ2

n,α

)

=
1

n

{
nE(ξ2

1,αn
) − 2nE(ξ1,αnξ1,α) + nE(ξ2

1,α)
}

= ř2(αn) − r̂1(αn)2 − 2E(ξ1,αnξ1,α) + ř2(α) − r̂1(α)2. (3.4.4)

By using the estimate of m1 in Lemma 3.3.4 we get

E(ξ1,αnξ1,α) = E(m
(αn,β)
1 (X1)m

(α,β)
1 (X1)) − r̂1(αn)r̂1(α)

≥ (1 − cβ

αn

)(1 − cβ

α
)E(ln(ch X1)

2) − r̂1(αn)r̂1(α)

≥ r2 − r̂1(αn)r̂1(α) − Cβr2/ min(αn, α), (3.4.5)

where cβ and Cβ are positive constants dependent only on β. Therefore, taking
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(3.4.4) and (3.4.5) into account, we obtain

0 ≤ E

(
(Ξn,αn − Ξn,α)2

)
(3.4.6)

≤ ř2(αn) − r̂1(αn)2 + ř2(α) − r̂1(α)2 − 2r2 + 2r̂1(αn)r̂1(α) + c̃β/ min(αn, α),

where c̃β is a positive constant depending only on β.

For δ > 0 we set Aδ := {|Ξn,αn − Ξn,α| ≤ δ}. Clearly, for an ε > 0 and an

f ∈ Cu
b (R) there exists a δ > 0 such that

∫
Aδ

|f ◦ Ξn,αn − f ◦ Ξn,α|dP ≤ ε. On the

other hand, by Chebyshev’s inequality we get

∫

Ω\Aδ

|f ◦ Ξn,αn − f ◦ Ξn,α| dP ≤ 2 ‖f‖∞
1

δ2
E((Ξn,αn − Ξn,α)2).

Therefore, from (3.4.6) and (3.3.11) we conclude that there exist n0 := n0(ε, f)

> 0 and α0 := α0(ε, f) > 0 such that

∫

Ω\Aδ

|f ◦ Ξn,αn − f ◦ Ξn,α|dP ≤ 2ε ‖f‖∞ ∀ α ≥ α0, n ≥ n0.

Hence, we obtain the following estimation for the first term in (3.4.3)

∣∣∣∣
∫

fdµn,αn −
∫

fdµn,α

∣∣∣∣ ≤ ε(1 + 2 ‖f‖∞) ∀ α ≥ α0, n ≥ n0.

From the classical CLT, we deduce the following estimation for the second term

in (3.4.3):

∀ α ∃ n1 := n1(α, ε, f) :
∣∣∣∣
∫

fdµn,α −
∫

fdτα

∣∣∣∣ ≤ ε ∀ n ≥ n1.

Since ř2(α) − r̂2
1(α) approaches to r2 − r2

1 as α → ∞, the sequence of measures

(τα)α converges weakly to τ , and thus we obtain for the last term in (3.4.3)

∃ α1 := α1(ε, f) :
∣∣∣∣
∫

fdτα −
∫

fdτ
∣∣∣∣ ≤ ε ∀ α ≥ α1.

In summary, for ε > 0 and f ∈ Cu
b (R) there exists n0 := n0(ε, f) > 0 such that

∣∣∣∣
∫

fdµn,αn −
∫

fdτ
∣∣∣∣ ≤ ε(3 + 2 ‖f‖∞) ∀n ≥ n0.

Hence, Ξn,αn and therefore, finally Yn, converges to N (0, r2 − r2
1).
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Corollary 3.4.2. In the situation of Theorem 3.4.1,

1√
n

{
S(αn,β)

n −
(
m

(αn,β)
1

)−1
(nr̂1(αn))

}
(3.4.7)

tends in distribution for n → ∞ to the normal distribution N (0, r2 − r2
1).

Proof: Let xn := m
(αn,β)
1

(
S(αn,β)

n

)
and yn := nr̂1(αn). Adapted from the mean

value theorem there is a ξ between xn and yn such that

∣∣∣(xn − yn) − (m−1
1 (xn) − m−1

1 (yn))
∣∣∣=
∣∣∣xn − yn

∣∣∣·
∣∣∣1 − (m−1

1 )′(ξ)
∣∣∣.

Since
(
m−1

1

)′
(x) ց 1 as x → ∞ (see [46, proof of Lemma 5.7]) we obtain

∣∣∣(xn − yn) − (m−1
1 (xn) − m−1

1 (yn))
∣∣∣≤

((
m−1

1

)′(
min{xn, yn}

)
−1
)

·
∣∣∣xn − yn

∣∣∣.

Therefore, by the preceding theorem, the variable in (3.4.7) tends in distribution

for n → ∞ to the normal distribution N (0, r2 − r2
1).

Corollary 3.4.3. In the situation of Theorem 3.4.1,

1√
n

(
S(αn,β)

n − nr̂1(αn)
)

(3.4.8)

tends in distribution for n → ∞ to the normal distribution N (0, r2 − r2
1).

Proof: Let Yn and Zn denote the random variable in (3.4.7) and (3.4.8), re-

spectively. Then, using the Lemma 3.3.6, we see that

Yn − Zn =
1√
n

(
nr̂1(αn) − (m

(αn,β)
1 )−1(nr̂1(αn))

)

converges to zero for n → ∞. According to the Corollary 3.3.6, Yn tends in

distribution to N (0, r2 − r2
1), and hence so does Zn.

Remark 3.4.4. a) Theorem 3.2.2 follows by combining estimate (3.3.9) with

Corollary 3.4.3.

b) Let F be the field of R, C or the quaternions H with real dimension d = 1,

2 or 4. For a dimension k ∈ N consider the Jacobi random walk (S(α,β)
n )n≥1

with parameters α := α(k, d) and β := β(d) as in (3.2.2). Moreover, let

(Sk
n)n≥1 be the homogeneous radial random walk on hyperbolic space Hk(F)
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of the dimension k as it is described in Section 3.2. Since the double coset

convolution ∗k,d on Gd//Kd ≃ [0, ∞[ coincides with the Jacobi convolution

∗α,β, we conclude from (3.1.1) and (3.4.1) that the process (dist(Sd
n, Sd

0))n≥1

is also a Jacobi random walk of parameter (α, β). Therefore, Theorem 3.1.1

is a direct consequence of the Corollary 3.4.3.

In the CLT above, β is fixed and αn tends to infinity. It is natural to think

of variants of theorem 3.4.1 for αn and βn → ∞ in certain coupled ways (see

[42]). Usually, such kinds of CLT no longer have a geometric interpretation.

Nevertheless, we present here a CLT for the case βn → ∞ and αn = βn + c for

some constant c ≥ 0:

Theorem 3.4.5. Let c ≥ 0 be a constant, and let (βn)n∈N ⊂ [−1/2, ∞[ be an

arbitrary, increasing sequence of indices. Let ν be a probability measure on [0, ∞[

with second moment
∫∞

0 x2dν(x) < ∞. Then, η :=
∫∞

0 ln ch (2x)dν(x) < ∞ and

σ2 :=
∫∞

0

(
ln ch (2x)

)2
dν(x) < ∞ exist, and

1√
n

(
m

(βn+c,βn)
1

(
S(βn+c,βn)

n

)
−nη

)

tends in distribution for n → ∞ to N (0, σ2 − η2).

Proof: By (3.3.5), monotonicity of sh and Lemma 3.3.9 we obtain

m
(βn+c,βn)
1 (x) ≤ ρβn+c,βn

ρβn,βn

m
(βn,βn)
1 (x) =

ρβn+c,β

ρβn,βn

1

2
m

(βn,− 1

2
)

1 (2x).

On the other hand, by monotonicity of ch we get

m
(βn+c,βn)
1 (x) ≥ ρβn+c,βn

ρβn+c,βn+c

m
(βn+c,βn+c)
1 (x) =

ρβn+c,βn

ρβn+c,βn+c

1

2
m

(βn+c,− 1

2
)

1 (2x).

From Lemmas 3.3.4 and 3.3.7 it follows that

lim
n→∞ m

(βn+c,βn)
j (x) =

( ln ch (2x)

2

)j
for j = 1, 2 and x ≥ 0.

The proof of Theorem 3.4.1 can now be transferred word by word to the setting

above, which then leads to the proof of the assertion.

As a by-product of our previous results, we obtain the following LLN for

random walks on Jacobi type hypergroups (K, ∗α,β) with growing dimension α.
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Theorem 3.4.6. Fix any β ≥ −1/2 and let (αn)n∈N ⊂ [β, ∞[ be an increasing

sequence for which there exists an ε > 0 such that n−ε/αn → 0 as n → ∞. Let ν ∈
M1([0, ∞[) be a probability measure with a finite second moment

∫∞
0 x2dν(x) < ∞.

Then
1

n

{
m

(αn,β)
1 (S(αn,β)

n ) − E(m
(αn,β)
1 (S(αn,β)

n ))
}

→ 0 P − a.s.

Proof: Consider the random variables Zn := m
(αn,β)
1 (S(αn,β)

n )−∑n
j=1 m

(αn,β)
1 (Xj).

By Remark 2.3.11 and Lemma 3.3.7 we have

0 ≤ Var
( 1

n
Zn

)
≤ 1

n

(
E

(
m

(αn,β)
2 (X1) − m

(αn,β)
1 (X1)

2
)

≤ 1

n · ραn,β

E

(
m

(αn,β)
1 (X1)

)
.

Therefore, by using the assumption nε/αn → 0, we conclude that

0 ≤
∞∑

n=1

Var(
1

n
Zn) ≤ C

∞∑

n=1

n−1−ε < ∞

for some constant C > 0. Hence Zn → 0 P-a.s. by the Borel-Cantelli lemma. On

the other hand,

1

n

n∑

j=1

(
m

(αn,β)
1 (Xj) − E(m

(αn,β)
1 (Xj))

)
→ 0 P − a.s.

which follows from the classical law of large numbers for i.i.d. random variables

with finite expected value. Combining this with the convergence of Zn, the theo-

rem follows.

Corollary 3.4.7. In the situation of the preceding theorem one has

1

n
(S(αn,β)

n − nr̂1(αn)) → 0 P − a.s.

Proof: The proof is carried out using the same arguments as in the proofs of

Corollary 3.4.2 and 3.4.3 combined with the preceding theorem.
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Chapter 4

Radial limit theorems on R
p for

growing dimensions p

The results in this chapter are motivated by the following problem: Let ν ∈
M1([0, ∞[) be a fixed probability measure. Then for each dimension p ∈ N there

is a unique rotation invariant probability measure νp ∈ M1(Rp) with ϕp(νp) = ν,

where ϕp(x) := ‖x‖2 is the norm mapping; i.e. ν is radial part of νp. For each

dimension p ∈ N consider i.i.d. R
p-valued random variables Xp

1 , Xp
2 , . . . with law

νp as well as the associated radial random walks

(
Sp

n :=
n∑

k=1

Xp
k

)

n≥0

on R
p. We are interested in finding limit theorems for the [0, ∞[-valued random

variables ‖Sp
n‖2 for n, p → ∞ coupled in a suitable way.

In the first part of this chapter, we derive the following two associated central

limit theorems (CLTs) under disjoint growth conditions for p = pn.

Theorem 4.0.8. Assume that ν ∈ M1([0, ∞[) with ν 6= δ0 admits a finite fourth

moment. Let mk(ν) :=
∫∞

0 xkdν(x), k ≤ 4 and (pn)n be a sequence of dimensions

with limn→∞ pn = ∞.

CLT I: If limn→∞ n/pn = ∞, then

√
pn

n

(
‖Spn

n ‖2
2 − nm2(ν)

)

tends in distribution for n → ∞ to the normal distribution N (0, 2m2(ν)).
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CLT II: If limn→∞ n/pn = c ∈ [0, ∞[, then

1√
n

(
‖Spn

n ‖2
2 − nm2(ν)

)

tends in distribution for n → ∞ to the normal distribution N (0, m4(ν)−2cm2(ν)2).

Remark 4.0.9. Parts of this theorem were derived in [41] by using completely

different methods. More precisely, CLTs above were proven for sequences (pn)n

with some strong restrictions. The first CLT with the restriction n/p3
n → ∞,

i.e. n >> pn was identified by M. Voit as an obvious consequence of Berry-

Esseen estimates on R
p with explicit constants depending on the dimension p,

which are due to Bentkus and Götze [2, 3]. The proof of the second CLT with

the restrictions n2/pn → 0, i.e. n << pn was derived in [41] as a consequence

of asymptotic properties of so called Bessel convolutions (for a survey about the

Bessel convolutions on R+ we recommend [10]).

With the approach used in [41] one is not able to get rid of the strong conditions

on the growth of p = pn. In particular, the mixed case pn = c ·n for some constant

c, which builds a bridge between the CLTs with n << pn and n >> pn, was stated

there as an open problem.

In the second part of this chapter, we shall show that for all sequences (pn)n∈N

with pn → ∞,
1

n
‖Spn

n ‖2
2 → m2(ν)

in probability, provided the second moment of ν exists. Moreover, we derive

associated strong laws of large numbers (LLNs) for n >> p, n << p and n ∼ p

(cf. Theorem 4.0.22). In the case pn >> n, with an additional very strong

restriction that the dimensions pn grow faster than any polynomial, a strong LLN

has been proved by M. Voit and M. Rösler in [30].

Remark 4.0.10. The preceding problem (c.f. the beginning of this chapter) can

be generalised as follows: For a fix dimension p ∈ N the usual convolution on

R
p induces a probability-preserving Banach-∗-algebra isomorphism between the

space Mb,rad(Rp) of all bounded, rotation invariant Borel measures on R
p and

the space Mb([0, ∞[) of bounded Borel measures on [0, ∞[ via the norm map

ϕ : x 7→ ‖x‖2. The space [0, ∞[ together with this new convolution becomes a

commutative orbit hypergroup; see [6] and [19]. Moreover, one can easily verify
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that the convolution of point measures on [0, ∞[, induced from R
p, is given by

δr ∗α δs(f) :=
Γ(α + 1)

Γ(1/2)Γ(α + 1/2)

∫ 1

−1
f(

√
r2 + s2 − 2rst)(1 − t2)α−1/2dt, (4.0.1)

with α := p/2−1. The convolution on M1([0, ∞[) is just given by bilinear, weakly

continuous extension.

It was observed in [10] that equation (4.0.1) defines a commutative hypergroup

([0, ∞[, ∗α) for all indices α ≥ −1/2, where 0 is the neutral element and the invo-

lution is the identity mapping. The characters ϕλ of the hypergroup ([0, ∞[, ∗α)

are defined by ϕλ(x) := Λα(λx) for all x ∈ [0, ∞[ where Λα denotes the modified

Bessel function of order α. This type of hypergroups and associated random walks

were systematically studied by Kingman [23] and later by many others; cf. [6] and

references there. Therefore, ([0, ∞[, ∗α) is called a Bessel-Kingman hypergroup of

index α.

To get a first feeling of possible results, we begin with the well known case

where the dimension is fixed and n → ∞. Let us assume that ν admits a finite

second moment m2(ν) ∈ (0, ∞). The classical CLT on R
p implies that for n → ∞,

the random variables Sp
n/

√
n tend in distribution to some normal distribution

N (M, Σ), with M = E(Xp
1 ) ∈ R

p and Σ = Cov(Xp
1 ) ∈ R

p×p. Since νp = PXp
1

is rotation invariant, the covariance matrix Σ is invariant under all conjugations

with respect to orthogonal transformations. Therefore, Σ = cpIp with identity

matrix Ip and some constant cp. In particular, M = 0 ∈ R
p. As ν is the radial

part of νp, we obtain

m2(ν) =
∫ ∞

0
x2dν(x) =

∫

Rp
‖y‖2

2 dνp(y) = p · cp,

and hence Σ = m2(ν)
p

Ip. Now, the relation between standard normal distribution

on R
p and the χ2-distribution χ2

p with p degrees of freedom, clearly forces that

the random variables p
nm2(ν)

‖Sp
n‖ converge in distribution to χ2

p. Moreover, for

distribution function Fn,p of p
nm2(ν)

‖Sp
n‖ and Fp of the χ2

p-distribution, one has the

following Berry-Esseen-type estimation on R
p with explicit constants depending

on the dimension p

‖Fn,p − Fp‖∞ ≤ C · p3/2

√
n

for n, p ∈ N with a global constant C; cf. Theorem 2 of Bentkus [2].

On the other hand, it is well known that for χ2
p-distributed random variables
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Zp (with E(Zp) and Var(Zp) = 2p), the random variables (Zp − p)/(2p) tend to

the standard normal distribution N (0, 1) for p → ∞. A combination of the above

results implies the first CLT under an additional condition: n/p3
n → ∞.

Before beginning our systematic study, we need some notations. Let f :

C → C be a function and z = (z1, . . . , zp) ∈ C
p. We write f(z) for the tuple

(f(z1), . . . , f(zp)) ∈ C
p.

Definition 4.0.11. Let X = (x1, . . . , xp) be a R
p valued random variable with

distribution µ := PX ∈ M1(Rp).

a) We say that µ (or X) admits a k-th moment (k ∈ N) if

|µ|k :=
∫

Rp
‖x‖k

2 dµ(x) < ∞. (4.0.2)

b) Under the condition (4.0.2), for an κ ∈ N
p×q
0 with |κ| = κ1 + . . . + κp = k we

define the κ-th moment of µ (and also of X) by

mκ(µ) :=
∫

Rp
zκdµ(z) ∈ R.

In particular, for κ ∈ N0 and µ ∈ M1(R) one has mκ(µ) =
∫
R

xκdµ(x), as

a usual κ-th moment of µ. If necessary, we may use the notation mκ(X)

without risk of confusion.

c) For a fixed k ∈ N0, introduce the space

M1
k(Rp) :=

{
µ ∈ M1(Rp) : |µ|k < ∞

}

of probability measures for which all κ-moments with |κ| ≤ k exist. Moreover,

let M1
rad(Rp) denote the space of all radial (i.e. rotation invariant) measures

on R
p and M1

rad,k(Rp) := M1
rad(Rp) ∩ M1

k(Rp).

Here and subsequently, we consider the following geometric situation: Let ν ∈
M1([0, ∞[) be a fixed probability measure with finite second moment m2(ν) < ∞.

Moreover, let (pn)n≥1 ⊂ N be a sequence with limn→∞ pn = ∞. For each n ∈ N

let νpn be the unique radial probability measure on R
pn with radial part ν, i.e.

ϕpn(νpn) = ν, where ϕpn : Rpn → [0, ∞[, x 7→ ‖x‖2 is the norm mapping. Now,
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we consider triangular arrays of independent random variables

X
pn
j = (X

(1)
j , . . . , X

(pn)
j ) : Ω −→ R

pn , j ≤ n, n ∈ N,

with radial distributions X
pn
j ∼ νpn , n ∈ N as well as the associated partial sums

Spn
n =

∑n
j=1 X

pn
j , n ∈ N. If no confusion can arise we will omit the index pn. The

main object of study is the stochastic process

(
Ξn(ν) := ‖Spn

n ‖2
2 − nm2(ν)

)
n∈N

.

Notice that the distribution of Ξn(ν) depends only on the measure ν ∈ M1([0, ∞[).

The proof of Theorem 4.0.8 will be divided into two main steps: In the first

step we prove a reduced form of Theorem 4.0.8 assuming that ν has a compact

support. Along with this, we shall use the method of moments to establish the

desired convergence of the distributions
√

pn/n·Ξn(ν) and Ξn(ν)/
√

n, respectively.

In the second step, we will show how to get rid of the support condition for ν.

Both steps are based on the decomposition of Ξn(ν) via

Ξn(ν) = An(ν) + Bn(ν) (4.0.3)

where

An(ν) :=
n∑

i=1

Ai, with Ai := ‖Xi‖2 − m2(ν), (4.0.4)

and Bn(ν) :=
pn∑

i=1

Bi, with Bi :=
∑

α,β=1,...,n; α 6=β

X(i)
α X

(i)
β . (4.0.5)

Next, we shall prove that the random variables An(ν) and Bn(ν), up to some

suitable normalization factors, converge in distribution to some normal distribu-

tions (see Propositions 4.0.14 and 4.0.16). For a measure ν ∈ M1([0, ∞[) with

compact support, we establish these convergences by the method of moments.

Theorem 4.0.12 (Method of moments). Let Y, Y1, Y2, . . . be real valued random

variables. Suppose that the distribution of Y is determined by its moments mk(Y )

(k ∈ N), that the Yn have moments mk(Yn) of all orders, and that

lim
n→∞ mk(Yn) = mk(Y )

for k = 1, 2, . . .. Then the sequence (Yn)n converges to Y in distribution.
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Proof: See [4][Theorem 30.2.].

By calculating the moments of An(ν) and Bn(ν), we shall often deal with

expressions of the form (x1 + . . . + xn)k, k ∈ N. By using the multinomial formula

it is a simple matter to see that

(x1 + . . . + xn)k =
k∑

u=1

∑

λ∈C(k,u)

k!

λ1! · · · λn!

∑

µ∈W (n,u)

xλ1

µ1
· · · xλu

µu
, (4.0.6)

where

C(k, u) =
{

λ = (λ1, . . . , λu) ∈ N
u : |λ| :=

u∑

i=1

λi = k
}

,

W (n, u) = {µ = (µ1, . . . , µu) ∈ {1, . . . , n}u : µ1 < µ2 < · · · < µu} .

A generalisation of Formula (4.0.6) shall be proven in Theorem 5.2.1.

In the following theorem, we compute the moments of a radial measure νp.

The asymptotic behaviour of these moments for p → ∞ shall be exploited in the

proofs of Theorems 4.0.8 and 4.0.22.

Theorem 4.0.13. Let κ = (κ1, . . . , κp) ∈ N
p
0, l := |κ|/2, ν ∈ M1([0, ∞[) and

νp ∈ M1(Rp) be the corresponding radial probability measure on R
p which admits

the κ-th order moment. Then

mκ(νp) =





0, if ∃ j : κj is odd,
m2l(ν)

4l(
p
2

)l

∏p
j=1

(2lj)!

lj !
, if κ = (2l1, . . . , 2lp),

(4.0.7)

where (p/2)l = (p/2)(p/2 + 1) · · · (p/2 + l − 1) is the usual Pochhammer symbol.

In particular,

mκ(νp) = O(p−l) as p → ∞. (4.0.8)

Proof: Let κ = (κ1, . . . , κp) ∈ N
p
0 and l := |κ|/2. If there is a j ∈ {1, . . . , p}

such that κj is odd, then the κ-th moment of νp is zero, which is due to the fact

that νp is a radial probability measure.

Suppose that κ = (2l1, . . . , 2lp) with some li ∈ N0. Moreover, let Up
r denote

the uniform distribution on the Euclidean sphere Sp−1
r ⊂ R

p with radius r > 0.

One can easily show that νp enables the decomposition

νp(·) =
∫

Rp
Up

ϕp(x)(·)dνp(x) =
∫ ∞

0
Up

r(·)dν(r) ∈ M1(Rp).
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Hence, invoking Fubini’s theorem, we see that

mκ(νp) =
∫

Rp
xκ1

1 · · · xκp
p dνp(x) =

∫ ∞

0
mκ(Up

r)dν(r). (4.0.9)

In order to calculate the κ-th moment of νp, we first compute Ûp
r(y) for y ∈ R

p.

Since Up
r is a radial measure on R

p (i.e. invariant under rotations), there is no loss

of generality in assuming y = (0, . . . , 0, t) ∈ R
p, with t > 0. By straightforward

calculation we obtain

Ûp
r(y) =

∫

Rp
eitxpdUp

r(x1, . . . , xp) =
Γ(p

2
)

Γ(1
2
)Γ(p−1

2
)

∫ 1

−1
eitru(1−u2)p/2−3/2

du.

Let Jν and Λν denote the usual and modified Bessel functions of the first kind

of index ν, respectively i.e., Λν(z) = Γ(ν + 1)
(

2
z

)νJν(z) with ℜ(ν) > −1/2 and

| arg z| < π. From integral representation [26, Formula 5.10.2] of Jν (for ν =

p/2 − 1), we see that

Ûp
r(y) = Γ(p

2
)
(

2
tr

)p/2+1Jp
2

−1
(tr) = Λp

2
−1

(tr).

Now let Dκ denote the differential operator

Dκ :=
∂κ1

∂zκ1

1

· . . . · ∂κp

∂z
κp
p

.

The well known relation between moments of a probability measure and partial

derivatives of its characteristic function as well as the theorem about the inter-

changing of differentiation and summation yield

mκ(Up
r) =

∫

Rp
x2l1

1 · · · x2lp
p dUp

r(x) = (−1)lDκΛ p
2

−1(r ‖z‖)|z=0

= (−1)lDκ

( ∞∑

k=0

(−1)kr2k

(p/2)kk!4k
‖z‖2k

)
|z=0

= (−1)l
∞∑

k=0

(−1)kr2k

(p/2)kk!4k
Dκ

(
‖z‖2k

)
|z=0

.
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By multinomial theorem we have

Dκ

(
‖z‖2k

)
|z=0

=
∑

i1+...+ip=k

(
k

i1, . . . , ip

)
Dκ

(
z2i1

1 · · · z2ip
p

)
|z=0

= δl,k ·
(

k

l1, . . . , lp

)
(2l1)! · · · (2lp)!

where δl,k = 1 if l = k and 0 otherwise. Thus,

mκ(Up
r) =

r2l

4l(p
2
)l

p∏

j=1

(2lj)!

lj!
(4.0.10)

Finally, we conclude from (4.0.9) that

mκ(νp) =
1

4l(p
2
)l

p∏

j=1

(2lj)!

lj!

∫ ∞

0
r2ldν(r) =

m2l(ν)

4l(p
2
)l

p∏

j=1

(2lj)!

lj!
.

The formula (4.0.7) yields the following covariance structure of a νpn dis-

tributed random vector X = (X1, . . . , Xpn):

E(Xα) = 0, Cov(Xα,, Xβ) = δα,β · m2(ν)/pn. (4.0.11)

Now we compute the covariance structure of An(ν) and Bn(ν): Since the

random variables Ai (i = 1, 2, . . .) are independent and identically distributed, we

have

E(Ak) = 0, Cov(Ai, Aj) = δi,j(m4(ν) − m2(ν)2). (4.0.12)

This gives Var(An(ν))/n = m4(ν) − m2(ν)2. By the independence of random

variables Xk, k ∈ N and (4.0.11), we obtain

E(Bk) = 0, Cov(Bi, Bj) = δi,j
n(n − 1)

p2
n

2m2(ν)2. (4.0.13)

Thus, we get limn→∞ pn/n2 · Cov(Bn(ν)) = 2m2(ν)2.

We are now ready to establish CLTs for the random variables An(ν) and Bn(ν),

respectively. We start with An(ν).

Proposition 4.0.14. Assume that ν ∈ M1([0, ∞[) has compact support. Then

the asymptotic behaviour of An := An(ν) is given as follows:

a) If n/pn → c ∈ [0, ∞[ as n → ∞, then An/
√

n tends in distribution to
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N (0, m4(ν) − m2(ν)2).

b) If n/pn → ∞ as n → ∞, then
√

pn/n · An tends in distribution to δ0.

Proof: By the method of moments 4.0.12, it suffices to show that the k-th

moments of An/
√

n and
√

pn/n·An tend to the k-th moments of the corresponding

limiting distributions for every integer k ∈ N. By the multinomial formula (4.0.6),

we have

A
k
n =

k∑

u=1

∑

λ∈C(k,u)

k!

λ1! · · · λu!

∑

µ∈W (n,u)

Aλ1

µ1
· · · Aλu

µu
.

Since the random variables Aj, j = 1, 2, . . . are identically distributed, it follows

that E(Aλ1

µ1
· · · Aλu

µu
) = E(Aλ1

1 · · · Aλu
u ) for all tuples µ = (µ1, . . . , µu) ∈ W (n, u).

Thus

E

(
A

k
n

)
=

k∑

u=1

∑

λ∈C(k,u)

k!

λ1! · · · λu!

(
n

u

)
E

(
Aλ1

1 · · · Aλu
u

)
.

For u ∈ {1, . . . , k} and λ = (λ1, . . . , λu) ∈ C(k, u) we consider

T (λ) :=

(
n

u

)
E

(
Aλ1

1 · · · Aλu
u

)
. (4.0.14)

If λα = 1 for some α, i.e. Aα appears with multiplicity one in Aλ1

1 · · · Aλu
u ,

then T (λ) = 0 holds because E(Aα) = 0 and A1, A2, . . . are independent random

variables.

Suppose that λα ≥ 2 for each α and λα > 2 for some α. Then k > 2u, and since

ν has a compact support, we get T (λ) = O(nu). This clearly forces T (λ)/nk/2

and pk/2
n /nk · T (λ) in the cases n/pn → c ∈ [0, ∞[ and n/pn → ∞, respectively

tend to zero as n → ∞.

Now we turn to the case λ = (2, . . . , 2), in particular k = 2u. It follows that

lim
n→∞

1

nu
E(A2u

n ) = lim
n→∞

(2u)!

2! · · · 2!
T ((2, . . . , 2)) =

(2u)!

2uu!
E(A2

1) · · ·E(A2
u)

= 1 · 3 · · · (2u − 3) · (2u − 1) · (m4(ν) − m2(ν)2)u,

i.e. the 2u-th moment of An/
√

n converges to the 2u-th moment of N (0, m4(ν) −
m2(ν)2). Now, by the method of moments we obtain a).

If n/pn → ∞, then pk/2
n /nk · T (λ) = pu

n/nk · T (λ) converges to zero as n → ∞
and therefore

√
pk

n/n2k · E(Ak
n) does so. This completes the proof.
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Now we turn to the treatment of the random variable Bn(ν). First, we need

the following definition.

Definition 4.0.15. Let p ∈ N. We say that a monomial

M : Rp → R, x 7→ xκ = c · xκ1 · · · xκp , (c ∈ R, κ = (κ1, . . . , κp) ∈ N
p
0)

is even if all κi are even. Moreover, we say that a polynomial P : Rp → R is even,

if P is a linear combination of even monomials.

Proposition 4.0.16. Assume that ν ∈ M1(Πq) has compact support. Then the

asymptotic behaviour of Bn := Bn(ν) is given as follows:

(a) If n/pn → 0 as n → ∞, then Bn/
√

n tends in distribution to δ0.

(b) If n/pn → c ∈]0, ∞] as n → ∞, then
√

pn/n · Bn tends in distribution to the

normal distribution N (0, T 2(ν)).

Proof: As in the proof of Theorem 4.0.14, we show the convergence of the

corresponding moments, i.e. we prove that the k-th moments pk/2
n /nk ·E(Bk

n) and

E(Bk
n)/nk/2 converge to the corresponding moments of the limiting distributions

as n → ∞ for any k ∈ N. By the multinomial formula (4.0.6), we have

B
k
n =

k∑

v=1

∑

µ∈C(k,v)

k!

µ1! · · · µv!

∑

η∈W (pn,v)

Bµ1

η1
· · · Bµv

ηv
.

Since the random vectors X1,X2, . . . are independent and identically distributed,

it follows immediately from the definition of Bi (i = 1, . . . , pn) that Bµ1

η1
· · · Bµv

ηv

d
= Bµ1

1 · · · Bµv
v for all tuples η = (η1, . . . , ηv) ∈ W (n, v). Thus

E

(
B

k
n

)
=

k∑

v=1

∑

µ∈C(k,v)

k!

µ1! · · · µv!

(
pn

v

)
E

(
Bµ1

1 · · · Bµv
v

)
.

Let v ∈ {1, . . . , k} and µ = (µ1, . . . , µv) ∈ C(k, v). To investigate the product

Bµ1

1 · · · Bµv
v , we introduce the set

Ik,n =
{
(i1, j1, i2, j2, . . . , ik, jk) ∈ N

2k : 1 ≤ iα, jα ≤ n and iα 6= jα ∀ α
}

.

We see at once that

Bµ1

1 · · · Bµv
v =

v∏

j=1

(∑

α 6=β

X(1)
α X

(1)
β

)µj

=
∑

I∈Ik,n

S(I, µ) (4.0.15)
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where for an I = (i1, j1, i2, j2, . . . , ik, jk) ∈ Ik,n,

S(I, µ) =
µ1∏

α=1

X
(1)
iα

X
(1)
jα

·
µ1+µ2∏

α=µ1+1

X
(2)
iα

X
(2)
jα

· . . . ·
µ1+...+µv∏

α=µ1+...+µv−1+1

X
(v)
iα

X
(v)
jα

. (4.0.16)

For an a ∈ {1, . . . , n} and b ∈ {1, . . . , v} let multI,λ(a, b) be the number of

occurrences of X(b)
a in the product S(I, λ), i.e.

multI,µ(a, b) =
∣∣∣
{
l ∈ {1, . . . , k} : X

(b)
il

= X(b)
a or X

(b)
jl

= X(b)
a

}∣∣∣ ∈ {0, . . . , µb} .

The product S(I, λ) may be regarded as a monomial in the variables X(1)
a , . . . , X(v)

a ,

while the random variables coming from other indices are considered as constant,

i.e. with the notation of multI,λ we have

S(I, λ) =
v∏

b=1

(X(b)
a )multI,λ(a,b) · R = X

κ
a · R,

where κ = (multI,λ(a, 1), . . . , multI,λ(a, v)) ∈ N
v
0 and R is the product of some

X(β)
α with α ∈ {1, . . . , n}\{a}, β ∈ {1, . . . , pn}. By the independence of X1,X2, . . .

it is clear that ES(I, µ) = E(Xκ
a) · E(R). Now, if S(I, λ) = X

κ
a · R is not an even

monomial (i.e. if there exists b ∈ N such that multI,λ(a, b) is odd), we obtain from

Theorem 4.0.13 that ES(I, λ) = E(Xκ
a)E(R) = 0. Hence, defining

Jo := {I ∈ Ik,n : ∃ a, b ∈ N : multI,λ(a, b) is odd } ,

we observe that

ES(I, λ) = 0 ∀ I ∈ Jo. (4.0.17)

Let d(I) be the number of distinct elements in {I} := {i1, j1, . . . , ik, jk} and

Jm := {I ∈ Ik,n : d(I) = m} , (m ∈ N).

It is easy to check that d(I) ∈ {2, . . . , 2k} for all I ∈ Ik,n and Jm ⊂ Jo for all

m > k. Therefore,

E (Bµ1

1 · · · Bµv
v ) =

k∑

m=2

∑

I∈Jm

ES(I, λ). (4.0.18)

Since |Jm| ≤ C ·nm for a positive constant C, the number of terms in the last sum

is at most of the order O(nm). Moreover, according to (4.0.8), each term ES(I, µ)
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in (4.0.18) is of the order O(p−k
n ). This gives

∑

I∈Jm

ES(I, λ) = O
(nm

pk
n

)
, (m ∈ N). (4.0.19)

For v ∈ {1, . . . , k} and µ = (µ1, . . . , µv) ∈ C(k, v) we consider

T (µ) :=

(
pn

v

)
E

(
Bµ1

1 · · · Bµv
v

)
.

If µα = 1 for some α, i.e. Bα appears with multiplicity one in Bµ1

1 · · · Bµv
v , and

therefore each I ∈ Ik,n from the Representation (4.0.15) is necessarily from Jo,

and hence (4.0.17) gives T (µ) = 0.

Suppose that µα ≥ 2 for each α and µα > 2 for some α, i.e. in particular

k > 2v. From (4.0.18) and (4.0.19) we conclude that T (µ) = O(nk/pk−v
n ). Thus,

n−k/2T (µ) and pk/2
n n−kT (µ) in the cases n/pn → c ∈ [0, ∞[ and n/pn → ∞,

respectively tend to zero as n → ∞.

Now we turn to the case µ = (2, . . . , 2), in particular k = 2v. From (4.0.18)

and (4.0.19) we get

lim
n→∞

pk/2
n

nk
T (µ) = lim

n→∞
pk/2

n

nk

(
pn

v

)
E

(
B2

1 · · · B2
v

)

= lim
n→∞

pk/2
n

nk

(
pn

v

) ∑

I∈Jk

ES(I, µ)

Since X1,X2, . . . are i.i.d., we have

∑

I∈Jk

ES(I, µ) =

(
n

k

) ∑

I∈Jk∩{1,...,k}2k

ES(I, µ). (4.0.20)

Let I = (i1, j1, . . . , ik, jk) ∈ Jk ∩ {1, . . . , k}2k. If there is an α ∈ {1, . . . , v} with

{i2α−1, j2α−1} 6= {i2α, j2α}, then either multI,λ(i2α, α) = 1 or multI,λ(j2α, α) = 1.

Thus, by (4.0.17) we obtain ES(I, µ) = 0. Hence,

∑

I∈Jk

ES(I, µ) =

(
n

k

)∑′

ES(I, µ),

where
∑′

extends over the tuples I = (i1, j1, . . . , ik, jk) ∈ Jk ∩ {1, . . . , k}2k with

{i2α−1, j2α−1} = {i2α, j2α} for all α ∈ {1, . . . , v}. An easy combinatorial com-
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putation shows that the number of terms in the sum
∑′

is 2vk!. Moreover, by

independence of X1,X2, . . . and Formula (4.0.11), it is clear that

ES(I, µ) =
v∏

j=1

E

((
X

(1)
1

)2)
E

((
X

(1)
2

)2)
= m2(ν)k/pk

n.

Summarizing what has been shown before, we get

lim
n→∞

pk/2
n

nk
E

(
B

k
n

)
= lim

n→∞
pk/2

n

nk

k!

µ1! · · · µv!
T (µ)

= lim
n→∞

pk/2
n

nk

k!

µ1! · · · µv!

(
pn

v

)(
n

k

)
2vk!p−k

n m2(ν)k

=
k!

2vv!
(2m2(ν)2)v = 1 · 3 · · · (2k − 1) · (2m2(ν)2)v, (4.0.21)

i.e., the k-th moment of
√

pn/n · Bn converges to that of a centered normal dis-

tribution with variance 2m2(ν)2.

The proof is completed by showing that in the case n/pn → 0 the k-th moment

of Bn/
√

n tends to zero as n → ∞. The case where k ∈ N is odd, has already

been discussed. If k is even, (4.0.21) yields

lim
n→∞

1

nk/2
E

(
B

k
n

)
= lim

n→∞
nk/2

p
k/2
n

pk/2
n

nk
E

(
B

k
n

)
= 0.

The following asymptotic uncorrelation of random variables An and Bn shall

play a crucial role in the subsequent proof of Theorem 4.0.8.

Proposition 4.0.17. Assume that ν ∈ M1([0, ∞[) has compact support and that

limn→∞ n/pn = c ∈]0, ∞[. Then An and Bn are asymptotically uncorrelated, i.e.

for all 0 ≤ l ≤ k
1

nk/2

(
E(Al

n) · E(Bk−l
n ) − E(Al

n · Bk−l
n )

)

tends to zero as n → ∞.

Proof: From multinomial Formula (4.0.6), by using symmetry argument, we
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conclude

Fn(l, k) :=
1

nk/2

(
E(Al) · E(Bk−l) − E(Al · Bk−l)

)

=
1

nk/2

l∑

u=1

∑

λ∈C(l,u)

l!

λ1! · · · λu!

(
n

u

)
·

k−l∑

v=1

∑

µ∈C(k−l,u)

(k − l)!

µ1! · · · µv!

(
pn

v

)
Hλ,µ,

with

Hλ,µ = E

(
Aλ1

1 · · · Aλu
u

)
· E
(
Bµ1

1 · · · Bµv
v

)
− E

(
Aλ1

1 · · · Aλu
u · Bµ1

1 · · · Bµv
v

)
.

Let us keep the notations of Proposition 4.0.16. We have Bµ1

1 · · · Bµv
v =

∑′

S(I, µ),

where
∑′

extends over the tuples I = (i1, j1, . . . , ik−l, jk−l) ∈ Ik−l,n and S(I, µ) is

defined as in (4.0.16).

If µα = 1 for some α ∈ {1, . . . , v}, then each term S(I, µ) in the sum above is

not an even monomial (multI,µ(a, µα) = 1 for some a ∈ N) and thus, neither is

Aλ1

1 · · · Aλu
u · S(I, µ). Therefore, Hλ,µ = 0 by Theorem 4.0.13.

Suppose that µα ≥ 2 for each α. By Eq. (4.0.18) we have

Hλ,µ =
∑

I∈J2∪...∪Jk−l

{E
(
Aλ1

1 · · · Aλu
u

)
· ES(I, µ)+

− E

(
Aλ1

1 · · · Aλu
u · S(I, µ)

)}
. (4.0.22)

For M := {1, . . . , u} and G := {α ∈ M : λα = 1} we define the following subsets

of Ik−l,n:

JM := {I ∈ J2 ∪ . . . ∪ Jk−l : {I} ∩ M 6= ∅} ,

KG := {I ∈ J2 ∪ . . . ∪ Jk−l : G ⊂ {I}} .

It is easily checked that for the cardinalities of JM and KG, we have

|JM | ≤ Cnk−l−1 and |KG| ≤ Cnk−l−|G| (4.0.23)

with some constant C = C(k, l).

We consider the I-th term in the sum (4.0.22), which will be denoted by T (I).

Is I /∈ JM , i.e. {I} ∩ M = ∅, and thus A1, . . . , Au are independent from S(I, µ).

This clearly forces T (I) = 0. Is I /∈ KG, i.e. there exists τ ∈ G with τ /∈ {I},

and therefore Aτ is independent from Ai (i ∈ M \ {τ}) and S(I, µ). Thus, we get

T (I) = 0 from (4.0.12).
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Taking (4.0.23) into account, we see that the number of nonzero summands

in (4.0.22) is bounded above min(nk−l−1, nk−l−|G|). On the other hand, Theorem

4.0.13 yields that each of them is bounded above C/pk−l
n where C > 0 is a suitable

global constant. In summary, we get

|Hλ,µ| ≤ C · min(n−1, n−|G|). (4.0.24)

Since µ ∈ C(k − l, v) with µα ≥ 2 for all α ∈ {1, · · · , v} we have k − l ≥ 2v.

Moreover, since λ ∈ C(l, u) we get l ≥ 2u − |G|. Hence, by straightforward

calculation using n/pn → c ∈]0, ∞[, we conclude from (4.0.24) that for suitable

constants Ci,

|Fn(l, k)| ≤ C1

nk/2

l∑

u=1

k−l∑

v=1

∑

λ∈C(l,u)

∑

µ∈C(k−l,v)

(
n

u

)(
pn

v

)
min(n−1, n−|G|)

≤ C2

nk/2

l∑

u=1

k−l∑

v=1

∑

λ∈C(l,u)

nu+v min(n−1, n−|G|) ≤ C3√
n

.

This completes the proof.

Proof of Theorem 4.0.8 for ν ∈ M1([0, ∞[) with compact support: If n/pn → ∞
then

√
pn/n · An

d→ δ0 and
√

pn/n · Bn
d→ N (0, 2m2(ν)2) according to Proposi-

tions 4.0.14 and 4.0.16. This clearly forces
√

pn/n · Ξn(ν)
d→ N (0, 2m2(ν)2) by

Slutsky’s Theorem. Suppose that n/pn → 0. Then we get as above Ξn(ν)/
√

n
d→

N (0, m4(ν) − m2(ν)2). It only remains to check the convergence in the case

n/pn → c ∈]0, ∞[. Let k ∈ N. By (4.0.3) and Proposition 4.0.17

lim
n→∞E

((
1√
n
Ξn(ν)

)k)
= lim

n→∞
1

nk/2

k∑

l=0

(
k

l

)
E

(
A

l
nB

k−l
n

)

= lim
n→∞

1

nk/2

k∑

l=0

(
k

l

)
E

(
A

l
n

)
· E

(
B

k−l
n

)
.

Consider independent random variables Zi with distributions PZi
= N (0, σ2

i ),

i = 1, 2. It is clear that Z1 + Z2 is N (0, σ2
1 + σ2

2) distributed. Furthermore, for
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the k-th moment of Z1 + Z2 we have

mk(N (0, σ2
1 + σ2

2)) =
k∑

l=0

(
k

l

)
E(Z l

1)E(Zk−l
2 )

=
k∑

l=0

(
k

l

)
ml(N (0, σ2

1))mk−l(N (0, σ2
2)).

Propositions 4.0.14 and 4.0.16 now lead to

lim
n→∞E

((
1√
n
Ξn(ν)

)k)
= mk(N (0, m4(ν) − m2(ν)2 + 2cm2(ν)2)).

In order to get rid of the assumption that supp(ν) is compact, we introduce

for an a > 0 the truncated R
pn-valued random variables

X
pn

k,a :=




X

pn

k , if ‖Xpn

k ‖2 ≤ a,

0, otherwise
k = 1, 2, . . .

Let us denote by νa the distribution of ϕpn(Xpn
1,a) (which is not dependent on pn).

Obviously, the sequence Xpn

k,a, k ∈ N, are i.i.d. with the radial law νpn,a ∈ M1(Rpn)

which corresponds to νa ∈ M1([0, ∞[). We define Ξn(νa), An(νa), Aj,a (j =

1, . . . , n), Bn(νa) and Bj,a (j = 1, . . . , pn) according to (4.0.3), (4.0.4) and (4.0.5),

respectively by taking X
pn

k,a instead of Xpn

k , k ∈ N. As it used to be, we will omit the

index pn when no confusion can arise. Clearly, we have Ξn(νa) = An(νa)+Bn(νa).

In the following we show that Ξn(νa) is a ”good” approximation of Ξn(ν). To

formulate this exactly, we first fix some δ > 0 and a sequence (pn)n; we then

introduce the sequence (δn)n by

δn :=





δ · √
n, if n

pn
→ c ∈ [0, ∞[,

δ · n√
pn

, if n
pn

→ ∞.
(4.0.25)

In the next lemmas we show that the events

{|An(νa) − An(ν)| > δn} and {|Bn(νa) − Bn(ν)| > δn}

have arbitrary small probabilities for a and n large enough.

Lemma 4.0.18. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all
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n, a ∈ N with a ≥ a0 and n ≥ n0

P (|An(ν) − An(νa)| > δn) ≤ ε.

Proof: Let δ > 0 and (δn)n be a sequence as in (4.0.25). Since (Ai − Ai,a),

(i = 1, 2, . . .) are i.i.d., it follows by Chebychev inequality that

P (|An(ν) − An(νa)| ≥ δn) ≤ n

δ2
n

Var (A1 − A1,a) . (4.0.26)

Using triangle inequality, we obtain

sup
{
A2

1,a : a ∈ N

}
≤
(
‖X1‖2

2 + m2(ν)
)2 ∈ L1(Ω),

Therefore, the set {A2
1,a : a ∈ N} is uniformly integrable. On the other hand,

since the random variable |A1| is almost surely finite, A1,a converges almost surely

to A1 as a → ∞. Thus, we get

A2
1,a −→ A2

1 in L1. (4.0.27)

By taking (4.0.26) and (4.0.27) into account, the lemma follows.

Lemma 4.0.19. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all

n, a ∈ N with a ≥ a0 and n ≥ n0

P (|Bn(ν) − Bn(νa)| > δn) ≤ ε. (4.0.28)

Proof: Let δ > 0 and (δn)n be a sequence as in (4.0.25). By Chebychev

inequality it follows that

P (|Bn(ν) − Bn(νa)| ≥ δn) ≤ 1

δ2
n

pn∑

j,i=1

Cov (Bi − Bi,a, Bj − Bj,a) . (4.0.29)

Since X1,X2, . . . and X1,a,X2,a, . . . are both sequences of Rpn-valued i.i.d. random

variables with radial distributions ν and νa, respectively, one can easily see that

Cov
(
X

(i)
l , X

(j)
k,a

)
= δl,k · δi,j · Cov

(
X

(1)
1 , X

(1)
1,a

)
(4.0.30)

holds for all indices l, k, i and j. Moreover, by (4.0.11) we obtain

Cov
(
X

(1)
1 , X

(1)
1,a

)
=

m2(ν)

pn

−
∫

{‖X1‖>a}
X

(1)
1 X

(1)
1 dP.
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Cauchy-Schwarz inequality and Theorem 4.0.13 lead to

∫

{‖X1‖>a}
X

(l)
1 X

(1)
1 dP ≤

√
P

(
‖X1‖ > a

)
·
√

m(4,0,...,0)(νpn) ≤ C

a · pn

with a suitable constant C := C(ν) > 0. Thus, we get

Cov
(
Bi, Bj,a

)
=
∑

l1 6=l2

∑

k1 6=k2

Cov
(
X

(i)
l1

· X
(i)
l2

, X
(j)
k1,a · X

(j)
k2,a

)

= δi,j · 2n(n − 1) · Cov
(
X

(1)
1 , X

(1)
1,a

)2

≥ δi,j · 2n(n − 1) ·
(m2(ν)

pn

− C

a · pn

)2
.

Hence, Equation (4.0.13) yields

0 ≤ Cov (Bi − Bi,a, Bj − Bj,a) = δi,j · Cov (B1 − B1,a, B1 − B1,a)

= δi,j ·
(
Var(B1) − 2Cov(B1, B1,a) + Var(B1,a)

)

≤ δi,j · 2n(n − 1)
1

p2
n

(
m2(ν)2 − 2 ·

(
m2(ν) − C/a

)2
+ m2(νa)2

)

≤ δi,j · 2n(n − 1)
1

p2
n

(
m2

2(νa) − m2(ν) + 4Cm2
2(ν)/a − 2C2/a2

)
. (4.0.31)

Taking (4.0.29) and (4.0.31) into account, we obtain (4.0.28).

Corollary 4.0.20. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all

n, a ∈ N with a ≥ a0 and n ≥ n0

P (|Ξn(ν) − Ξn(νa)| > δn) ≤ ε.

Proof: For an δ > 0 we observe

P (|Ξn(ν) − Ξn(νa)| > δn) ≤ P

(
|An − An,a| >

δn

2

)
+P

(
|Bn − Bn,a| >

δn

2

)
.

Combining this with Lemmas 4.0.18 and 4.0.19, the corollary follows.

Proof of Theorem 4.0.8: Let us first prove the CLT I. In this case the normaliza-

tion is given by
√

pn/n and for the growth of pn we have the condition n/pn → ∞
as n → ∞. We set ξn :=

√
pn/n · Ξn(ν), and ξn,a =

√
pn/n · Ξn(νa) and denote

their distributions by µn and µn,a, respectively. Moreover, we write τν instead of
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N (0, 2m2(ν)). Using triangle inequality, we deduce that

∣∣∣∣
∫

fdµn −
∫

fdτν

∣∣∣∣ ≤
∣∣∣∣
∫

fdµn −
∫

fdµn,a

∣∣∣∣+ (4.0.32)

+
∣∣∣∣
∫

fdµn,a −
∫

fdτνa

∣∣∣∣+
∣∣∣∣
∫

fdτνa −
∫

fdτν

∣∣∣∣.

Let ε > 0, f ∈ Cu
b ([0, ∞[) be a bounded uniformly continuous function on [0, ∞[

and Aδ := {|ξn − ξn,a| ≤ δ} (δ > 0). It follows that

∃ δ > 0 :
∫

Aδ

|f ◦ ξn − f ◦ ξn,a| dP ≤ ε.

On the other hand, by Corollary 4.0.20,

∃ a0, n0 > 0 :
∫

Ω\Aδ

|f ◦ ξn − f ◦ ξn,a| dP ≤ 2ε ‖f‖∞ ∀ a ≥ a0, n ≥ n0.

This gives us the following estimation for the first summand in (4.0.32):

∃ a0, n0 > 0 :
∣∣∣∣
∫

fdµn −
∫

fdµn,a

∣∣∣∣ ≤ ε(1+2 ‖f‖∞) ∀ a ≥ a0, n ≥ n0. (4.0.33)

Since νa has a compact support, we conclude from 4.0.8 that µn,a converges weakly

to τνa (a > 0). Hence,

∀ a > 0 ∃ n0 > 0 :
∣∣∣∣
∫

fdµn,a −
∫

fdτνa

∣∣∣∣ ≤ ε ∀ n ≥ n0. (4.0.34)

Finally, it is evident that

∃ a0 > 0 :
∣∣∣∣
∫

fdτνa −
∫

fdτν

∣∣∣∣ ≤ ε ∀ a ≥ a0. (4.0.35)

Taking (4.0.33), (4.0.34) and (4.0.35) into account, we obtain

∃ n0 > 0 :
∣∣∣∣
∫

fdµn −
∫

fdτν

∣∣∣∣ ≤ ε(3 + 2 ‖f‖∞) ∀ n ≥ n0,

which completes the proof of CLT I in Theorem 4.0.8. The same proof works for

CLT II.

For the rest of this chapter, we devote ourselves to the laws of large numbers

for the functionals ‖Spn
n ‖2. Our first result in this direction is the following weak

law of large numbers:
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Theorem 4.0.21. Let ν ∈ M1([0, ∞[) with finite fourth moment m4(ν) < ∞
and (pn)n be a sequence of dimensions with limn→∞ pn = ∞. Then

1

n
‖Spn

n ‖2
2 −→ m2(ν)

in probability as n → ∞.

Proof: By Cauchy-Schwarz inequality, we have for any ε > 0,

P (|Ξn(ν)| ≥ ε · n) ≤ 1

ε2 · n2
E

(
Ξn(ν)2

)
.

From (4.0.12) and (4.0.13) we get

E

(
Ξn(ν)2

)
= E

(
An(ν)2 + 2An(ν)Bn(ν) + Bn(ν)2

)

= n(m4(ν) − m2(ν)2) + 0 + 2n(n − 1)p−1
n m2(ν)2,

and so the theorem follows.

We next turn to an associated strong law of large numbers.

Theorem 4.0.22. Let ν ∈ M1([0, ∞[) with finite eighth moment m8(ν) < ∞ and

(pn)n≥1 admissible sequence of dimensions. Moreover, let (an)n≥1 be a sequence

in ]0, ∞[ with an = n if n/pn → c ∈ [0, ∞[ and an = n2/pn if n/pn → ∞. Then

lim
n→∞ Ξn(ν)/an = 0 P − a.s.

Proof: Let ε > 0. By Markov inequality,

P (|Ξn(ν)| ≥ ε · an) ≤ P

(
|An(ν)| ≥ ε · an

2

)
+P

(
|Bn(ν)| ≥ ε · an

2

)

≤
( 2

εan

)4(∫

Ω
An(ν)4dP +

∫

Ω
Bn(ν)4dP

)
. (4.0.36)

Let us consider the first integral in (4.0.36). The integrand is

An(ν)4 =
∑

α,β,γ,δ

AαAβAγAδ (4.0.37)

where the four indices range independently from 1 to n. Depending on how the

indices match up, each term in this sum reduces to one of the following five forms,
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where in each case the indices are now distinct

A4
i ; A2

i A
2
j ; A3

i Aj; A2
i AjAk; AiAjAkAl.

Since
∫

AidP = 0, it follows by the independence of A1, A2, . . . that the expected

value of the summand vanishes if there is one index different from the three

others. Therefore, we have only to consider the terms of the form A4
i and A2

i A
2
j .

The number of occurrences in the sum (4.0.37) of the first form is n. The number

of occurrences of the second form is 3n(n − 1).

By Hölder’s inequality we get mi(ν) ≤ m8(ν)i/8, (i ≤ 8). Hence, from inequal-

ity Ai ≤ ‖Xi‖2 − m2(ν),

E(A4
i ) ≤

4∑

i=0

(
4

i

)
m2i(ν) · m2(ν)4−i ≤ 24m8(ν).

Thus, by Cauchy-Schwarz inequality we obtain

E(A2
i A

2
j) ≤ E(A4

1) ≤ 24m8(ν).

A term by term integration of (4.0.37) therefore gives

∫
An(ν)4dP ≤ 24m8(ν)(n + 3n(n − 1)) ≤ Cn2 (4.0.38)

with a suitable constant C>0.

We now turn to the second integral in (4.0.36). In analogy with (4.0.37),

∫
Bn(ν)4dP =

∑

α,β,γ,δ

∫
BαBβBγBδdP

where the four indices ranging independently from 1 to pn. By Theorem 4.0.13,

the summand
∫

BαBβBγBδdP vanishes if there is one index different from the

three others. This leaves terms of the form
∫

B4
i dP, of which there are pn, and

terms of the form
∫

B2
i B2

j dP for i 6= j, of which there are 3pn(pn − 1). Hence, by

symmetry,

∫
Bn(ν)4dP = pn

∫
B4

1dP + 3pn(pn − 1)
∫

B2
1B2

2dP. (4.0.39)

We proceed now with calculation of the integrals in (4.0.39). By the definition
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of Bi in (4.0.5),

∫
B4

1dP =
∑

α1 6=β1

∑

α2 6=β2

∑

α3 6=β3

∑

α4 6=β4

∫ 4∏

i=1

X(1)
αi

X
(1)
βi

dP, (4.0.40)

where the indices αi, βi with αi 6= βi, in each sum i = 1, 2, 3, 4, range from 1 to n.

Since E((X(1)
α )l) = 0 for all α and for all odd l ∈ N, it is clear that the expected

value of the product X(1)
α1

X
(1)
β1

X(1)
α2

X
(1)
β2

X(1)
α3

X
(1)
β3

X(1)
α4

X
(1)
β4

vanishes if there is one

index γ ∈ {α1, β1, . . . , α4, β4}, such that the number

|{v ∈ {α1, β1, . . . , α4, β4} : v = γ}| ∈ {1, . . . , 4}

is odd (i.e. X(1)
γ appears in the product with odd multiplicity). Therefore, the

sum in (4.0.40) reduces to one of the following three forms, where in each case

the indices are now distinct

∫
(X

(1)
i X

(1)
j )4dP;

∫
(X

(1)
i )4(X

(1)
j X

(1)
k )2dP;

∫
(X

(1)
i X

(1)
j X

(1)
k X

(1)
l )2dP.

The number of occurrences in the sum (4.0.40) of the first, the second and the

third form is bounded by C · n2, C · n3 and C · n4, respectively where C > 0 is a

suitable constant.

By using the Theorem 4.0.13, we obtain that there exists a universal constant

C > 0 such that each term in the sum (4.0.40) is bounded from above by C · p−4
n .

Consequently,

0 ≤
∫

B4
1dP ≤ C1

n4

p4
n

(4.0.41)

for some constant C1 > 0. In the same manner we can see that

0 ≤
∫

B2
1B2

2dP ≤ C2
n4

p4
n

(4.0.42)

for some constant C2 > 0. Taking (4.0.41), (4.0.42) and (4.0.39) into account, we

obtain that

0 ≤
∫
Bn(ν)4dP ≤ C

n4

p2
n

(4.0.43)

for some constant C > 0.

Combining (4.0.36) with (4.0.38) and with the preceding inequality we get

P (|Ξn(ν)| ≥ ε · an) ≤ Cε−4a−4
n

(
n2 + n4/p2

n

)
.
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Now, we obtain that P (|Ξn(ν)| ≥ ε · an) ≤ Cn−2ε−4. And so by the Borel-

Cantelli lemma, P (|Ξn(ν)| ≥ ε · an i.o.) = 0 for each positive ε. This completes

the proof.
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Chapter 5

Radial random walks on p × q

matrices for p → ∞

The main goal of this chapter is to derive a generalisation of the radial limit

theorems presented in Chapter 4. The extension concerns a matrix-valued version.

We consider the following geometric situation: For p, q ∈ N we will denote by

Mp,q the space of p × q-matrices over the field of real numbers R. Furthermore,

let Sq be the space of symmetric q × q-matrices. We will denote by Πq the cone of

positive semidefinite q × q matrices in Sq. We regard Mp,q as a real vector space

of dimension pq, equipped with the Euclidean scalar product 〈x, y〉 := tr(x′y) and

norm ‖x‖ =
√

tr(x′x) where x′ is transpose of x and tr is the trace in Mq := Mq,q.

In the square case p = q, ‖ · ‖ is just the Frobenius norm. The orthogonal group

Op acts on Mp,q by left multiplication,

Op × Mp,q → Mp,q, (O, x) 7→ Ox. (5.0.1)

By uniqueness of the polar decomposition, two matrices x, y ∈ Mp,q belong to

the same Op-orbit if and only if x′x = y′y. Thus the space M
Op
p,q of Op-orbits in

Mp,q is naturally parameterized by the cone Πq via the map

Opx 7→
√

x′x =: |x| , M
Op
p,q → Πq,

where for r ∈ Πq, the matrix
√

r ∈ Πq denotes the unique positive semidefinite

square root of r. According to this, the map

ϕp : Mp,q → Πq, x 7→
√

x′x
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will be regarded as the canonical projection Mp,q → M
Op
p,q.

In the case q = 1 we have Mp,1
∼= R

p, S1 = R, Π1 = [0, ∞[ and ϕp is the usual

norm mapping ‖ · ‖2 : Rp → [0, ∞[.

Let us now fix a parameter q ∈ N. By taking images of measures, ϕp induces

a Banach space isomorphism between the space MOp

b (Mp,q) of all bounded radial

(i.e. Op invariant) Borel measures on Mp,q and the space Mb(Πq) of bounded

Borel measures on the cone Πq. In particular, for each measure ν ∈ M1(Πq) and

parameter p there is a unique radial probability measure νp := νp,q ∈ M1(Mp,q)

with ϕp(νp) = ν.

Let ν ∈ M1(Πq) be a fixed probability measure and q ∈ N. As in the case

q = 1, we now consider for each “dimension” p ∈ N the associated radial measures

νp on Mp,q and the radial random walks (Sp
n :=

∑n
k=1 Xp

k)n≥0, i.e. Xp
k , k ∈ N are

independent νp-distributed random variables.

In this chapter, we are going to derive limit theorems for the Πq-valued random

variable (up to a normalization)

ϕ2
p(Sp

n) = (Sp
n)′Sp

n : Ω −→ Πq

for n, p → ∞ coupled in a suitable way. The proofs will rely on asymptotic results

for moment functions of so called radial distributed random variables on Mp,q for

p → ∞ as well as on some identities for matrix variate normal distributions. Parts

of these limit results were derived in [38] and [41] by using very different methods

(cf. Remark 4.0.9).

The organization of this chapter is as follows: In the first two sections, some

preliminaries for the proof of the main results 5.9.1 and 5.9.12 are presented. More

precisely, in Section 5.1, after recalling some basic facts about relevant matrix

algebra, we derive a generalisation of so-called permutation equivalence property

for Kronecker products. In 5.2, we introduce the notation of permutation on a

multiset and derive a multinomial theorem for non commutative operation. In

Sections 5.3 and 5.4, the background on Bessel functions on the cone Πq and on

polynomials of matrix argument is provided. In the following two Sections, we

recall the notion of random matrix and give a short overview over the concept

of moments for random matrices. Then we generalise the method of moments

to matrix-variate distributions. Sections 5.7 and 5.8 are devoted to the study of

matrix variate normal distributions and moments of radial measures, respectively.

In Section 5.9, our main result is formulated and proven.
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5.1 Matrix algebra

The aim of this section is to provide relevant facts about matrix algebra. The

material is mainly taken from [18]. We start with the notion of the Kronecker

product.

Kronecker product: Let ⊗ denote the Kronecker product over the field of

real numbers R, i.e. ⊗ is an operation on two matrices of arbitrary size over R

resulting in a block matrix. It is the matrix of the tensor product with respect to

a standard choice of basis. With that, the Kronecker product of A = [aij] ∈ Mm,n

and B = [bij] ∈ Mp,q is the block matrix

A ⊗ B := [aijB] ∈ Mmp,nq.

The Kronecker product is bilinear and associative but not commutative. However,

A⊗B and B⊗A are permutation equivalent, meaning that there exist permutation

matrices P and Q such that

A ⊗ B = P · (B ⊗ A) · Q. (5.1.1)

If A and B are square matrices, then A ⊗ B and B ⊗ A are even permutation

similar, meaning that we can take P = Q′. If A, B, C and D are matrices of such

size that one can form the matrix products A · C and B · D, then

(A ⊗ B) · (C ⊗ D) = A · C ⊗ B · D. (5.1.2)

This is called the mixed-product property, because it mixes the ordinary matrix

product and the Kronecker product. If two matrices P and Q are permutation,

orthogonal or positive definite matrices then it is also the Kronecker product

P ⊗ Q.

The k-th Kronecker power A⊗k is defined inductively for all positive integers

k by A⊗1 = A and A⊗k = A ⊗ A⊗(k−1) for k = 2, 3, . . .. This definition implies

that for A ∈ Mm,n, we have A⊗k ∈ Mmk,nk .

We now derive a generalisation of the permutation equivalence property, which

will be required for the proof of the Theorem 5.9.1.

Lemma 5.1.1. Let Ai ∈ Mpi,qi
(i = 1, . . . , k), p := p1 · · · pk and q := q1 · · · qk.

Then, for each permutation σ ∈ Sym({1, . . . , k}) there exist permutation matrices
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P ∈ Mp,p and Q ∈ Mq,q such that

Aσ(1) ⊗ . . . ⊗ Aσ(k) = P · (A1 ⊗ . . . ⊗ Ak) · Q.

Proof: Without loss of generality we can assume that k = 4, for the Kronecker

product is associative. Since (1)⊗M = M = M⊗(1) for any matrices M , it suffices

to show that A1 ⊗ A3 ⊗ A2 ⊗ A4 is permutation equivalent to A1 ⊗ A2 ⊗ A3 ⊗ A4.

For a matrix M let IM and IM denote the identity matrices of such size that one

can form the matrix products IM · M and M · IM . By the property (5.1.1) there

exist permutation matrices P and Q with A3 ⊗ A2 = P (A2 ⊗ A3)Q. Therefore,

using (5.1.2) we obtain by an easy computation

A1 ⊗ A3 ⊗ A2 ⊗ A4 = (IA1
⊗ P ⊗ IA4

) · (A1 ⊗ A2 ⊗ A3 ⊗ A4) ·
(
IA1 ⊗ Q ⊗ IA4

)
.

Clearly, both IA1
⊗ P ⊗ IA4

and IA1 ⊗ Q ⊗ IA4 are permutation matrices. This

completes the proof.

Hadamard product Let A = [aij] and B = [bij] be two matrices of the same

dimensions, say in Mp,q. The Hadamard product, also known as the entrywise

product of A and B is denoted by A ◦ B and is defined to be the matrix

A ◦ B := [aijbij] ∈ Mp,q.

The Hadamard product is commutative, associative and distributive over addition,

and is a principal submatrix of the Kronecker product. Moreover, the identity

matrix under the Hadamard multiplication of two matrices is a matrix (of the

same dimension) where all elements are equal to 1.

For a matrix M , let us denote by 1M the 1-matrix of the same dimension as

M , i.e 1M = (cij)ij with cij = 1 for all i, j. We will write it simply 1 when no

confusion will arise. It is clear that

A ⊗ B = (A ⊗ 1) ◦ (1 ⊗ B), (5.1.3)

B ⊗ A = (1 ⊗ A) ◦ (B ⊗ 1). (5.1.4)

Let P and Q be permutation matrices of such size that one can form the matrix

products P · A and A · Q. It is easy to check that

P (A ◦ B)Q = (PAQ) ◦ (PBQ). (5.1.5)
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Vectorization of a matrix: The vectorization of a matrix is a linear

transformation which converts the matrix into a column vector. In particular, the

vectorization of a matrix X ∈ Mp,q, denoted by vec(X), is the p · q × 1 vector

defined as

vec(X) = (x′
1, . . . , x′

q)
′ ∈ R

pq,

where xi, i = 1, . . . , q is the i-th column of X. The operation vec is compatible

with the inner product 〈, 〉 on Mp within the meaning

〈A, B〉 = vec(A)′vec(B) = tr(vec(A′)vec(B′)′) (5.1.6)

for all A, B ∈ Mp,q. We shall also use the vectorization together with the Kro-

necker product: for matrices A ∈ Mp,q, B ∈ Mq,n and C ∈ Mn,m one has

vec(ABC) = (C ′ ⊗ A)vec(B) = (Im ⊗ AB)vec(C) = (C ′B′ ⊗ Ip)vec(A).

Furthermore, vectorization is an algebra homomorphism from the space Mp,q to

R
pq both equipped with the Hadamard product ◦, i.e.

vec(A ◦ B) = vec(A) ◦ vec(B), A, B ∈ Mp,q.

5.2 Permutations on a multiset

In this section, we generalise the multinomial formula (4.0.6) in terms of the

Kronecker product instead of the usual multiplication. In order to do this, we

first recall the notion of the permutation on a multiset from [32, Chapter 1].

Let u ∈ N and k ∈ N0. We denote by C0(k, u) the set of all u-compositions of

k, i.e.

C0(k, u) =
{

λ ∈ N
u
0 : |λ| :=

u∑

i=1

λi = k
}

,

and write C(k, u) instead of C0(k, u) ∩ N
u. Moreover, we set Mu := {1, 2, . . . , u}.

For a λ ∈ C(k, u) a finite multiset Mult(λ) on the ordered set Mu is a set, where i

is contained with the multiplicity λi for all i ∈ Mu. One regards λi as the number

of repetitions of i.

A permutation π = (π1π2 . . . πk) on Mult(λ) can be defined as a linear ordering

of the elements of Mult(λ), i.e. an element i ∈ M appears exactly λi times

in the permutation π. The set of all permutation on Mult(λ) will be denoted

by S(λ). A permutation π = (π1π2 · · · πk) on Mult(λ) can be regarded as a
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way to place k-distinguishable balls in u distinguishable boxes such that the i-

th box contains λi balls. Indeed, if i (i = 1, . . . , u) appears in position j ∈
{1, . . . , k} of the permutation π, then we put the ”ball” πj into the box i. For

instance let u = 3, λ := (1, 3, 2) ∈ C(k, u) be a 3-composition of k = 6 and

π = (2 1 2 3 3 2) =: (π1 π2 . . . π6) be a permutation on Mult(λ) then we put π2

in the first box, π1, π3, π6 in the second box and π4, π5 in the third box. It is clear

that

|S(λ)| =

(
k

λ1, . . . , λu

)
=

k!

λ1! . . . λu!

Let mi ∈ Mpi,qi
(i = 1, . . . , u), λ ∈ C(k, u) and π = (π1, . . . , πk) ∈ S(λ).

We will write π(m1, . . . , mu) instead of mπ1
⊗ mπ2

⊗ · · · ⊗ mπk
. In the following

theorem, which will be used in Section 5.9 several times, we expand a Kronecker

power of a matrix sum in terms of powers of the terms in that sum.

Theorem 5.2.1. Let k ∈ N and x1, . . . , xn ∈ Mp,q. Then

( n∑

i=1

xi

)⊗,k

=
k∑

u=1

∑

λ∈C(k,u)

∑

µ∈W (n,u)

∑

π∈S(λ)

π(xµ1
, . . . , xµu), (5.2.1)

where W (n, u) = {µ = (µ1, . . . , µu) ∈ {1, . . . , n}u : µ1 < µ2 < · · · < µu}.

For p = q = 1 the Kronecker product coincides with the usual multiplication

on R and therefore (5.2.1) generalises multinomial formula (4.0.6). For indices

u ∈ {1, . . . , k}, µ = (µ1, . . . , µn) ∈ W (n, u), λ ∈ C(k, u) and π ∈ S(λ) let us

consider the associated summand

π(xµ1
, . . . , xµu) = xµπ1

⊗ . . . ⊗ xµπk
(5.2.2)

from (5.2.1). It is clear that the different matrices xµ1
, . . . , xµu , the numbers

of their repetitions and their exact positions in the Kronecker product (5.2.2)

are described by µ = (µ1, . . . , µu) ∈ W (n, u), λ = (λ1, . . . , λu) ∈ C(k, u) and

π = (π1, . . . , πk) ∈ S(λ), respectively. Proof: We proceed by induction on k.

For k = 1 there is nothing to prove. Next, suppose as induction hypothesis that

(5.2.1) holds with k − 1 instead of k. It gives

( n∑

i=1

xi

)⊗,k

=
k−1∑

u=1

∑

λ∈C(k−1,u)

∑

µ∈W (n,u)

∑

π∈S(λ)

π(xµ1
, . . . , xµu) ⊗

n∑

j=1

xj

=
n∑

j=1

k−1∑

u=1

∑

λ∈C(k−1,u)

∑

µ∈W (n,u)

∑

π∈S(λ)

π(xµ1
, . . . , xµu) ⊗ xj. (5.2.3)
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Consider a summand π(xµ1
, . . . , xµu) ⊗ xj of the sum above, i.e. j ∈ {1, . . . , n},

u ∈ {1, . . . , k − 1}, λ ∈ C(k − 1, u), µ ∈ W (n, u) and π ∈ S(λ). If there is

β ∈ {1, . . . , u} with j = µβ then π(xµ1
, . . . , xµu) ⊗ xj corresponds to a summand

in (5.2.1) associated with indices ũ = u, λ̃ = (λ1, . . . , λβ−1, λβ + 1, λβ+1, . . . , λu),

µ̃ = µ and π̃ = (π1, . . . , πk−1, β). In the other case, i.e. if j ∈ (µβ−1, µβ) for

a β ∈ {1, . . . , u + 1} with the convention µ0 := 0 and µu+1 = ∞ the term

π(xµ1
, . . . , xµu) ⊗ xj corresponds to a summand in (5.2.1) associated with indices

ũ = u + 1, λ̃ = (λ1, . . . , λβ−1, 1, λβ, . . . , λu), µ̃ = (µ1, . . . , µβ−1, j, µβ, . . . , µu) and

π̃ = (π1, . . . , πk−1, β). As the number of summands in both (5.2.1) and (5.2.3) is

equal to nk, the induction step follows.

5.3 Bessel functions of matrix argument

In the following, we introduce Sq-valued Bessel functions which generalise the

usual Bessel functions in one variable. The material is mainly taken from [29].

For a general background on matrix Bessel functions, the reader is referred to the

fundamental article [16] and the monograph [11].

Definition 5.3.1 (Spherical polynomials on Sq).

(a) A partition λ = (λ1, . . . , λq) is an q-tuple (q ∈ N) of non-negative integers

such that λ1 ≥ λ2 · · · ≥ λq. We write λ ≥ 0 for short.

(b) For a partition λ the power function on Sq is defined by

∆λ(x) := ∆1(x)λ1−λ2∆2(x)λ2−λ3 · . . . · ∆q−1(x)λq−1−λq∆q(x)λq , (5.3.1)

where ∆i(x) are the principal minors of the determinant ∆(x) = det(x).

(c) For a partition λ the spherical polynomial on Sq is defined by

Φλ(x) =
∫

Oq

∆λ(uxu−1)du, (5.3.2)

where du is the normalized Haar measure on Oq.

Remark 5.3.2. From the definition (5.3.1), we immediately see that power func-

tions ∆λ are homogeneous of degree |λ| = λ1 + . . . + λq, (i.e. ∆λ(tx) = t|λ|∆λ(x)

for all t ∈ R and x ∈ Sq) and hence so are Φλ. Moreover, (5.3.2) makes it obvious

that Φλ are invariant under conjugation by Oq. For the identity matrix Iq, we

have Φλ(Iq) = 1.
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There is a renormalization Zλ = cλ,qΦλ with constants cλ,q depending only on

λ and q such that

tr(x)k =
∑

|λ|=k

Zλ(x) (x ∈ Sq, k ∈ N0);

see Section XI.5. of [11]. The functions Zλ are called zonal polynomials. By

construction, the Zλ are homogeneous polynomials, which are invariant under

conjugation by Oq and thus depend only on the eigenvalues of their argument.

More precisely, for x ∈ Sq with eigenvalues ξ = (ξ1, . . . , ξq) ∈ R
q, one has

Zλ(x) = Cα
λ(ξ) with α = 2

where the Cα
λ are the Jack polynomials of index α in a suitable normalization (c.f.

[11],[29]). The Jack polynomials Cα
λ are homogeneous of degree |λ| and symmetric

in their arguments.

Definition 5.3.3. [Bessel functions on Sq ]

(a) For a partition λ and α > 0 the generalised Pochhammer symbol is defined

by

(µ)α
λ =

q∏

j=1

(
µ − 1

α
(j − 1)

)

λj

(µ ∈ C),

where (·)j denotes the usual Pochhammer symbol.

(b) For an index µ ∈ C satisfying (µ)α
λ 6= 0 for all λ ≥ 0 the matrix Bessel function

associated with the cone Πq of index µ is defined as 0F1-hypergeometric series

in terms of the Zλ by

Jµ(x) =
∑

λ≥0

(−1)|λ|

(µ)
1/2
λ |λ|!

Zλ(x). (5.3.3)

Remark 5.3.4. If q = 1, then Πq = [0, ∞[ and we have Jµ(x2/4) = Λµ−1(x),

where Λκ = 0F1(κ+1; −z2/4) is the usual modified Bessel function in one variable

(cf. Theorem 4.0.13).

5.4 Polynomials of matrix argument

Let p, q ∈ N. For κ = (κij)i,j ∈ N
p×q
0 (a composition) we set |κ| :=

∑
i,j κij

and Ri(κ) :=
∑q

j=1 κij, i = 1, . . . , p. Moreover, we write zκ :=
∏

i,j z
κij

ij ; zκ is a
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monomial of degree |κ|. The spaces of polynomials and even-row polynomials are

defined by

P := span
{

xκ : κ ∈ N
p×q
0

}
,

Pe := span
{

xκ : κ ∈ N
p×q
0 , ∀ i R(i) is even

}
,

respectively.

For the proof of our main result 5.9.1 we need the following elementary lemma.

Lemma 5.4.1. Let r ∈ Πq, and κ ∈ N
p×q
0 . Then

Ψr,κ : Mp,q → R, Ψr,κ(z) := ((zr)′(zr))κ

is an even polynomial of degree 2|κ|.

Proof: Since the product of two even-row polynomials is also a even-row poly-

nomial, the proof follows easily by induction on n = |κ|.

5.5 Random Matrices

In this section, we introduce the notion of random matrices and the concept

of moments in this surrounding. Part of this section corresponds to standard

treatment of the univariate case and its generalisation to a multivariate one. A

good references for matrix variate distributions is the book [14], for multivariate

statistical analysis see also [1].

We begin with the notion of a random matrix.

Definition 5.5.1. A p×q matrix X consisting of q ·p real valued random variables

x11, x12, . . . , xpq on the same probability space (Ω, A,P), is called a (real) p × q

random matrix.

Let X = (xij) be p × q random matrix and h = (hij) : Mp,q → Mr,s, i.e.

hij : Mp,q → R, i = 1, . . . , r, j = 1, . . . , s. Then the expected value of the function

h(X) is a r × s matrix defined by

E(h(X)) =
(
E(hij(X))

)
1≤i≤r, 1≤j≤s

when E(hij(X)) exists. From above it is an easy consequence that
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(i) E(A) = A, A constant matrix,

(ii) for A ∈ Mp,r and B ∈ Ms,q

E(Ah(X)B) = AE(h(X))B,

(iii) for A, B ∈ Mr,s

E(A ◦ h(X) ◦ B) = A ◦ E(h(X)) ◦ B,

(iv) for constant matrices A and B

E(A ⊗ h(X) ⊗ B) = A ⊗ E(h(X)) ⊗ B.

(v) for g = (gij) of the same order as h, i.e. g : Mp,q → Mr,s,

E

(
h(X) + g(X)

)
= E

(
h(X)

)
+ E

(
g(X)

)
.

Thus, for the p × q random matrix X, the mean matrix is given by

E(X) :=
(
E(xij)

)
1≤i,j≤q

∈ Mp,q.

The pq × rs covariance matrix of the random matrices X = (xij) in Mp,q and

Y = (yij) in Mr,s is defined by

Cov(X, Y ) := Cov(vec(X ′), vec(Y ′)) ∈ Mpq,rs.

Let x′
i and y′

j denote the i-th and j-th rows of the matrices X and Y , respectively,

i = 1, . . . , p and j = 1, . . . , r. By standard calculation we obtain

Cov(X, Y ) =




Cov(x1, y1) . . . Cov(x1, yr)
...

...

Cov(xp, y1) . . . Cov(xp, yr)




with Cov(xi, yj) ∈ Mq,s. Therefore, we consider Cov(X, Y ) as a block matrix with

p row and r column partitions. Moreover, we identify the entries of Cov(X, Y ) by

Cov(X, Y )(α,γ),(β,δ) :=
(
Cov(xα, yβ)

)
γ,δ

= Cov(xαγ, yβδ),
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where 1 ≤ α ≤ p, 1 ≤ β ≤ r, 1 ≤ γ ≤ q and 1 ≤ δ ≤ s. As a special case, we get

the covariance matrix of X as

Cov(X) = Cov(X, X) =




Cov(x1, x1) . . . Cov(x1, xp)
...

. . .
...

Cov(xp, x1) . . . Cov(xp, xp)


 ∈ Mpq,pq. (5.5.1)

Since Cov(X) is symmetric, we have Cov(X)(α,γ),(β,δ) = Cov(X)(β,δ),(α,γ) for all

admissible indices α, β, γ and δ. Moreover, it is clear that Cov(X) is positive-

semidefinite. The familiar calculating rules for covariance matrices in multidi-

mensional case can easily be transferred to matrix variate one. For p × q random

matrices X1, X2 and matrices A ∈ Mt,p, B ∈ Mw,r, C ∈ Mt,q we have

Cov(X, Y ) = Cov(Y, X)′

Cov(AX + C, BY ) = A ⊗ Iq · Cov(X, Y ) · B′ ⊗ Is

Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ).

By using Equation (5.1.6) we easily calculate the following useful relation between

covariance matrices and inner product on Mp,q:

tr(Cov(X1, X2)) = E 〈X1, X2〉 − 〈E(X1),E(X2)〉 . (5.5.2)

Now, we introduce the notion of the higher order moments for matrix valued

random variables.

Definition 5.5.2. Let X = (xij) be Mp,q valued random matrix with distribution

µ := PX ∈ M1(Mp,q). We say that µ (or X) admits a k-th moment (k ∈ N) if

|µ|k :=
∫

Mp,q

‖x‖k dµ(x) < ∞. (5.5.3)

Under the condition (5.5.3), we define the k-th moment of µ (and also of X) by

Mk(µ) :=
∫

Mp,q

x⊗,kdµ(x) ∈ Mpk,qk .

Moreover, for a κ ∈ N
p×q
0 with |κ| = k we set

mκ(µ) :=
∫

Mp,q

zκdµ(z) ∈ R,
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and also call mκ(µ) the κ-th moment of µ (or of X). If necessary, we may use the

notation Mk(X) and mκ(X) without risk of confusion.

Obviously, mκ(µ) represents an entry of the matrix Mk(µ). Let us now consider

a tuple I = ((i1, j1), . . . , (ik, jk)) with iα ∈ {1, . . . , p} and jα ∈ {1, . . . , q} for

α ∈ {1, . . . , k}. Then the I-th component Mk(X)I of Mk(X) is given by

Mk(X)I = E

(
xi1j1

· · · xikjk

)
∈ R.

In the following, µ̂ denotes the characteristic function of a probability measure

µ on Mp,q, i.e.

µ̂(x) =
∫

Mp,q

exp(i 〈x, y〉)dµ(y).

Let k ∈ N0 and κ ∈ N
p×q
0 with |κ| = k. If µ admits a k-th moment then we have a

well known relation between the characteristic function of µ and moment mκ(µ),

namely

mκ(µ) = (−i)|κ|Dκµ̂(x)|x=0, (5.5.4)

where Dκ is the differential operator ∂κ11

∂x
κ11
11

· ∂κ12

∂x
κ12
12

· · · ∂κpq

∂x
κpq
pq

.

5.6 Method of moments for random matrices

For some distributions, the characteristic function is unmanageable but moments

can nonetheless be calculated. In these cases, it is sometimes possible to prove

weak convergence of distributions by establishing that the moments converge.

For example, in the univariate case it is well known that a sequence of probability

measures (µn)n on R converges weakly to a measure µ ∈ M1(R) if the k-th

moment of µn converges to those of µ, provided all moments of µn and µ exist,

and µ is determined by its moments. In the literature, this approach is called the

method of moments; see [4].

The goal of this section is to generalise the method of moments to the ma-

trix variate case. For the convenience of the reader, we first repeat some basic

definitions from the classical probability theory in terms of our matrix variate

context.

Definition 5.6.1. Let S be a subset of positive bounded Borel measures on p× q

matrices over the field R.

(a) A real valued function g ∈ C(Mp,q) is said to be uniformly integrable with
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respect to (w.r.t.) S if

lim
r→∞ sup

µ∈S

∫

{‖x‖≥r}
|g(x)| dµ(x) = 0.

(a) S is said to be tight if the function g ≡ 1 is uniformly integrable.

The following two lemmas, which are a slight modification of [8], Section 8.1,

Corollary 6 and Corollary 7, respectively, will be needed for the proof of the

generalised method of moments 5.6.4.

Lemma 5.6.2. Let µ, µn ∈ M+
b (Mp,q) (n ∈ N) such that µn → µ vague. Let

g ∈ C(Mp,q) be uniformly integrable w.r.t. {µn : n ∈ N}. Then g ∈ L1(Mp,q, µk)∩
L1(Mp,q, µ) for all n ∈ N and

lim
n→∞

∫

Mp,q

gdµn =
∫

Mp,q

gdµ.

Proof: Without loss of generality we can assume that g is positive-valued. Let

(fn)n∈N ⊂ Cc(Mp,q) with 0 ≤ fn ≤ 1 for all n ∈ N and fn ր 1. It is clear that

for all k ∈ N the sequence (fk · µn)n converges vaguely to fk · µ. By dominated

convergence we obtain

0 ≤
∫

gdµ = lim
k→∞

∫
fkgdµ = lim

k→∞
lim

n→∞

∫
fkgdµn

≤ lim
n→∞

∫

{‖x‖<r}
gdµn + lim

n→∞

∫

{‖x‖≥r}
gdµn < ∞.

For an ε > 0 there exists a uε ∈ Cc(Mp,q) with 0 ≤ uε ≤ 1 and
∫

g(1 − uε)dµn ≤ ε

for all n ∈ N. Proceeding as in the inequality chain above with the function

g(1 − uε) instead of g, we get
∫

g(1 − uε)dµ ≤ ε. Finally, by triangle inequality

we deduce that

∣∣∣∣
∫

gdµn −
∫

gdµ

∣∣∣∣ ≤
∣∣∣∣
∫

g(1 − uε)dµn

∣∣∣∣

+
∣∣∣∣
∫

g(1 − uε)dµ
∣∣∣∣+

∣∣∣∣
∫

guεdµn −
∫

guεdµ
∣∣∣∣ ≤ 3ε

for n large enough.

Lemma 5.6.3. Let µ, µn ∈ M+
b (Mp,q) (n ∈ N) such that µn → µ vague. Let

a > 0 with supn∈N

∫ ‖x‖a dµn(x) < ∞. Then for all κ ∈ N
p×q
0 with |κ| < a,

lim
n→∞ mκ(µn) = mκ(µ).
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Proof: Let κ ∈ N
p×q
0 with b := |κ| < a. By assumption, for an r > 0 we obtain

∫

{‖x‖≥r}
‖x‖b dµn(x) ≤

∫

{‖x‖≥r}

‖x‖a

ra−b
dµn(x) ≤

∫

Mp,q

‖x‖a

ra−b
dµn(x) ≤ C

ra−b

with a constant C > 0 independent from n. We thus get g : x → xκ is uniformly

integrable w.r.t. {µn : n ∈ N}. The lemma is now a consequence of Lemma

5.6.2.

Now we turn to the generalisation of the (univariate) method of moments [4,

Theorem 30.2].

Theorem 5.6.4 (Method of moments). Let Y, Y1, Y2, . . . be Mp,q valued random

variables. Suppose that the distribution of Y is determined by its moments Mk(Y )

(k ∈ N), that the Yn have moments Mk(Yn) of all orders, and that

lim
n→∞ Mk(Yn) = Mk(Y ) (5.6.1)

for k = 1, 2, . . .. Then the sequence (Yn)n converges to Y in distribution.

Proof: Let µn and µ be the distributions of Yn and Y . Since all moments of Yn

exist and converge, there exists a constant C > 0 such that supn∈N E(‖Yn‖) < C.

Hence, by Markov’s inequality follows that the sequence {µn : n ∈ N} is tight.

Now let us assume that µn does not converge to µ. In particularly, there

is a sub-sequence N ′ ⊂ N such that for every sub-sequences N ′′ ⊂ N ′ we have

µn 9 µ along N ′′. On the other hand, every tight sequence of probability measures

contains a subsequence that converges weakly to a probability measure. Thus,

there exist a subsequence N ′′
0 ⊂ N ′ and a Borel measure µ̃ such that µn → µ̃

along N ′′
0 .

For all κ ∈ N
p×q
0 we have supn∈N

∫ ‖x‖2|κ| dµn(x) < ∞. Therefore, mκ(µn) →
mκ(µ̃) along N ′′ by Corollary 5.6.3. Hence, Mk(µn) → Mk(µ̃) along N ′′ for all

k ∈ N. However, by the Assumption (5.6.1) we also have Mk(µn) → Mk(µ). Since

µ is determined by its moments we have µ̃ = µ, a contradiction.

By the application of the method of moments one has a problem to decide

whether a distribution is uniquely determined by its moments or not. This prob-

lem, known as the moment problem, is reasonably well developed and understood.

A good general work here is [24], see also the references given there.

Let us now outline one usefull condition under which a distribution is uniquely

determined by its moments.
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Theorem 5.6.5 (Cramér condition). Let X be Mp,q-valued random matrix. If

the moment generating function GX(t) = E(e〈t,X〉) is well-defined in a proper

neighborhood of zero in Mp,q, then the set of moments M :=
{
mκ(X) : κ ∈ N

p×q
0

}

is well-defined. Moreover, the distribution of X is determined by its moments M.

Remark 5.6.6. The distributions with compact support are determined by their

moments.

5.7 Matrix variate normal distribution

In this section, we derive some results for moments of matrix variate normal

distributions. As a preparation, a short account on the relevant notions and facts

is included in the present section. For a general background on matrix variate

distributions, the reader is referred to the monograph [14].

Let X = (x1, . . . , xn)′ have the multivariate normal distribution, denoted by

X ∼ Nn(µ, C), with mean vector µ ∈ R
n and covariance matrix C = (cij) ∈ Mn,n.

The moment formulas mκ(X), (κ ∈ N
n
0 ) are well studied in the literature (see [35]

and references cited there). The Isserli’s theorem [35, Theorem 1] allows one to

compute higher-order moments of the multivariate normal distribution in terms

of its covariance matrix.

Theorem 5.7.1 (L. Isserlis). Let X = (x1, · · · , xn) be a zero mean multivariate

normal random vector with covariance matrix C = (cij) ∈ Mn,n. The k-th order

moment E(xi1
· · · xik

), with i1, . . . , ik ∈ {1, . . . , n} not necessarily distinct, of the

variable X is given as follows:

(a) If k is odd, E(xi1
· · · xik

) = 0.

(b) If k is even with k = 2 · u (u ≥ 1), then it is

E(xi1
· · · xi2u) =

∑∏
E(xiαxiβ

) =
∑∏

ciα,iβ
,

where the notation
∑∏

means summing over all distinct ways of partitioning

{xi1
, . . . , xi2u} into pairs. This yields 1

u!

(
2u

2,...,2

)
= (2u−1)!

2u−1(u−1)!
terms in the sum.

For instance, we compute the 4-order moments E(xi1
xi2

xi3
xi4

) of X, i.e. k = 4,
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u = 2 and 1
2!

(
4

2,2

)
= 3. One has the following five cases

E(x4
α) = 3c2

αα (α = i1 = i2 = i3 = i4),

E(x3
αxβ) = 3cααcαβ (α = i1 = i2 = i3, β = i4),

E(x2
αx2

β) = cααcββ + 2c2
αβ (α = i1 = i2, β = i3 = i4),

E(x2
αxβxγ) = cααcβγ + 2cαβcαγ (α = i1 = i2, β = i3, γ = i4),

E(xαxβxγxδ) = cαβcγδ + cαγcβδ + cαδcβγ (α = i1, β = i2, γ = i3, δ = i4).

These equations clearly show the mechanism of the above theorem. No matter how

high the order of central moments is required, it is remarkably easy to calculate

them, as long as the covariances cij are given. In the most classical case n = 1

, i.e. PX is a centered Gaussian distribution on R with covariance σ2 > 0, the

Isserlis’ identity in 5.7.1 reduces to the well known formula

E(Xk) =





0, if k is odd,
(2u)!
2uu!

σ2u, if k = 2u.

Now we turn to the generalisation of the multivariate case to a matrix variate

one. We begin with the definition of matrix variate distribution.

Definition 5.7.2. The random matrix Z on Mp,q is said to have matrix variate

normal distribution with mean matrix M ∈ Mp,q and covariance matrix Σ ∈ Πp·q

if vec(Z ′) ∼ Np·q(vec(M ′), Σ). We shall use the notation Z ∼ Np,q(M, Σ).

We now compute the moment generation function of the random matrix Z.

Lemma 5.7.3. If Z is Np,q(M, Σ)-distributed random matrix, then the moment

generation function GZ(t) := E(e〈t,Z〉), t ∈ Mp,q of Z is given by

GZ(t) = exp
(
〈t, M〉 +

1

2
vec(t′)′Σvec(t′)

)
, t ∈ Mp,n.

Proof: We know that vec(Z ′) ∼ Np·q(vec(M ′), Σ). Hence, from the moment
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generation function of a multivariate normal distribution, we get

GZ(t) = E

(
e〈t,Z〉

)
= E

(
e〈vec(t′),vec(Z′)〉

)

= exp
(
〈vec(M ′), vec(t′)〉 +

1

2
vec(t′)′Σvec(t′)

)

= exp
(
〈t, M〉 +

1

2
vec(t′)′Σvec(t′)

)
.

Remark 5.7.4. The moment generating function GZ : Mp,q → R, t 7→ GZ(t) of

Z ∼ Np,q(M, Σ) is well defined, and so the Cramér condition 5.6.5 implies that

all moments mκ(Z), κ ∈ N
p×q
0 exist and the distribution Np,q(M, Σ) is determined

by its moments.

In the following we consider a p · q × p · q matrix as a block matrix with p row

and q column partitions, i.e.

Σ =




Σ(1,1) . . . Σ(1,q)

...
. . .

...

Σ(q,1) . . . Σ(q,q)


 with Σ(i,k) ∈ Mp,p, i, k ∈ {1, . . . , q} ,

and identify the entries of Σ by

Σ(i,j),(k,l) :=
(
Σ(i,k)

)
j,l

, 1 ≤ i, k ≤ q, 1 ≤ j, l ≤ p.

If Σ is symmetric, then we clearly have Σ(i,j),(k,l) = Σ(k,l),(i,j) for all admissible

indices i, j, l and k.

In order to generalise the Theorem 5.7.1 we need some unusual notations:

Let u ∈ N, k = 2u, I = ((i1, j1), . . . , (ik, jk)) ∈ ({1, . . . , n} × {1, . . . , p})k, λ =

(2, . . . , 2) ∈ C(k, u) and π = (π1, . . . , πk) ∈ S(λ). For a tuple v = (v1, . . . , vj), we

will write {v} instead of the set {v1, . . . , vj}. We consider the sets

π(I)i := {(iµ, jµ) ∈ {I} : πµ = i} (i = 1, . . . , u).

Obviously, π(I)i (i = 1, . . . , u) forms a partition of {I} with |π(I)i| = 2. We

define for π, I and a p ·n×p ·n positive definite and symmetric covariance matrix

Σ,

π(Σ)I :=
u∏

i=1

Σ(αi,βi),(γi,δi) where {(αi, βi), (γi, δi)} = π(I)i.
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Example 5.7.5. Let u = 2, I = {(2, 1), (2, 2), (3, 2), (2, 1)}, λ := (2, 2) ∈ C(4, 2)

and π ∈ S(λ). Then

π = (1 1 2 2), π(I)1 = {(2, 1), (2, 2)} , π(Σ)I = Σ(2,1),(2,2) · Σ(3,2),(2,1)

π = (1 2 1 2), π(I)1 = {(2, 1), (3, 2)} , π(Σ)I = Σ(2,1),(3,2) · Σ(2,2),(2,1)

π = (1 2 2 1), π(I)1 = {(2, 1), (2, 1)} , π(Σ)I = Σ(2,1),(2,1) · Σ(2,2),(3,2)

π = (2 1 1 2), π(I)1 = {(2, 2), (3, 2)} , π(Σ)I = Σ(2,2),(3,2) · Σ(2,1),(2,1)

π = (2 1 2 1), π(I)1 = {(2, 2), (2, 1)} , π(Σ)I = Σ(2,2),(2,1) · Σ(2,1),(3,2)

π = (2 2 1 1), π(I)1 = {(3, 2), (2, 1)} , π(Σ)I = Σ(3,2),(2,1) · Σ(2,1),(2,2)

We can now formulate the generalisation of Isserlis’ Theorem 5.7.1.

Theorem 5.7.6. Let Z = (zij) be p × q matrix variate normal distributed ran-

dom variable with mean matrix zero and covariance matrix Σ ∈ Πp·q. The k-

th order moments Mk(Z)I = E(zi1,j1
· · · zik,jk

) with I = ((i1, j1), . . . , (ik, jk)) ∈
({1, . . . , n} × {1, . . . , p})k are given as follows:

Mk(Z)I =





0, if k is odd,

1
u!

∑
π∈S(λ)

π(Σ)I , if k = 2u, λ = (2, . . . , 2) ∈ C(k, u).
(5.7.1)

Proof: Let {(α1, β1), (γ1, δ1)} , . . . , {(αu, βu), (γu, δu)} be a partition of {I} into

two pairs. It is evident, that there are u! permutations π ∈ S(λ) with

Σ(α1,β1),(γ1,δ1) · · · Σ(αu,βu),(γu,δu) = π(Σ)I .

Therefore, by 5.7.1 and definition of matrix variate normal distribution, the the-

orem follows.

For instance, we compute the I-th entry of the 4th order moments M4(Z) with

I = {(2, 1), (2, 2), (3, 2), (2, 1)} (cf. Example 5.7.5 ).

M4(Z)I =
1

2!

∑
π∈S(λ)

π(Σ)I

= Σ(2,1),(2,2)Σ(3,2),(2,1) + Σ(2,1),(3,2)Σ(2,2),(2,1) + Σ(2,1),(2,1)Σ(2,2),(3,2).

The following two simple observations concerning the k-th moment of normal

distributed random matrix and a sum of two independent, normal distributed

random matrices, respectively will be needed for the proof of Theorem 5.9.1.
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Lemma 5.7.7. Let Z = (zij) be Np,q(0, Σ)-distributed random variable and Z1, Z2, . . .

independent copies of Z. The k-order moment of Z is given by

Mk(Z) =





0, if k is odd,

1
u!

∑
π∈S(λ)

E (π(Z1, . . . , Zu)) , if k = 2u

where λ = (2, . . . , 2) ∈ C(2u, u).

Proof: Let k ∈ N and I = ((i1, j1), . . . , (ik, jk)) ∈ ({1, . . . , n} × {1, . . . , p})k.

If k is odd, then it follows by (5.7.1) that Mk(Z)I = 0. Suppose that k = 2u,

(u ∈ N). For π ∈ S(λ), λ = (2, . . . , 2) ∈ C(k, u) and I as above, we have

π(Z1, . . . , Zu)I = (Zπ1
⊗ . . . ⊗ Zπk

)I . Let {(αi, βi), (γi, δi)} = π(I)i, i = 1, . . . , u.

By independence, it follows

E (π(Z1, . . . , Zu)I) = E ((Zπ1
⊗ . . . ⊗ Zπk

)I)

= E

(
Z1 ⊗ Z1

)
(α1,β1),(γ1,δ1)

· · ·E
(
Zu ⊗ Zu

)
(αu,βu),(γu,δu)

= Σ(α1,β1),(γ1,δ1) · · · Σ(αu,βu),(γu,δu) = π(Σ)I .

The lemma is now a consequence of Eq. (5.7.1).

Lemma 5.7.8. Let Zi (i = 1, 2) be independent random variables with distribu-

tions Np,q(0, Σi). Then

E

((
Z1 + Z2

)⊗,k
)

=
k∑

l=0

∑

π∈S((l,k−l))

E (π(Z1, 1)) ◦ E (π(1, Z2)) . (5.7.2)

Proof: By the definition of ◦-product and independence of Z1 and Z2 we have

E

(
(Z1 + Z2)

⊗,k
)

=
k∑

l=0

∑

π∈S((l,k−l))

E (π(Z1, Z2))

=
k∑

l=0

∑

π∈S((l,k−l))

E (π(Z1, 1) ◦ π(1, Z2))

=
k∑

l=0

∑

π∈S((l,k−l))

E (π(Z1, 1)) ◦ E (π(1, Z2)) .
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In the situation of the above lemma, for q = p = 1 it is obvious that

mk(N1(0, σ2
1 + σ2

2) =
k∑

l=0

(
k

l

)
ml(N1(0, σ2

1)mk−l(N1(0, σ2
2).

5.8 Radial measures on Mp,q and their moments

In this section, we study radial measures on the space Mp,q. In particular, we

derive asymptotic results for their moments as p → ∞. These results will play a

key role in the proof of Theorem 5.9.1. We start with the definition of a radial

measure on Mp,q.

Definition 5.8.1 (radial functions and measures on Mp,q).

(a) A function f : Mp,q → C is called radial if

f(Ox) = f(x) ∀ x ∈ Mp,q, O ∈ Op.

(b) A measure νp on Mp,q is called radial if it is invariant under orthogonal trans-

formation, i.e.

O(νp) = νp ∀ O ∈ Op.

Remark 5.8.2. For the classical case q = 1 the space Mp,q corresponds to R
p.

Here a function f : Rp → C is radial if and only if it is constant on each sphere

Sp−1
r ⊂ R

p with radius r > 0. In particular, for each F : R+ → C there exist a

unique radial function f : Rp → C with f(x) = F (‖x‖). Thus, there is one to one

correspondence between radial functions on R
p and functions on R+.

In order to study radial measures on Mp,q for q > 1 we need an analogue of a

sphere in our higher rank setting. For an r ∈ Πq we define a sphere of radius r as

the set

Σr
p,q =

{
x ∈ Mp,q :

√
x′x = r

}
.

Clearly, Σr
p,q is the orbit of the block matrix σr := (r 0)′ ∈ Mp,q according to the

operation of the orthogonal group Op on Mp,q via left multiplication (O, x) 7→ Ox.

By the definition 5.8.1, a function f : Mp,q → C is radial if and only if it is constant

on each sphere Σr
p,q ⊂ Mp,q with radius r ∈ Πq. Let us consider the map

ϕp : Mp,q → Πq, ϕp(x) =
√

x′x.
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By analogy to the case q = 1, there is a one to one correspondence between

functions F : Πq → C and radial functions f : Mp,q → C via

f(x) = F (ϕp(x)), x ∈ Mp,q.

Accordingly, there is one to one relationship on the level of measures. Namely,

each measure ν on Πq corresponds to a (unique) radial measure νp on Mp,q via

ϕp(νp) = ν; the measure ν is called radial part of νp.

In the following, for simplicity of notation, we write Σp,q instead of ΣIq
p,q, where

Iq ∈ R
q×q denotes the identity matrix. In the case q = 1 we identify Σr

p,1 with the

Euclidean sphere of radius r ∈ [0, ∞[. Moreover, let us denote by Ur
p the uniform

distribution on a sphere Σr
p,q.

One can easily show that a radial probability measure νp with its radial part

ν ∈ M1(Πq) enables the decomposition

νp(·) =
∫

Mp,q

Uϕp(x)
p (·)dνp(x) =

∫

Πq

Ur
p(·)dν(r) ∈ M1(Mp,q). (5.8.1)

In the sense of Jewett [19], the formula above is an example of a decomposition of

a measure (here νp) according to so-called orbital morphism (here ϕp). More pre-

cisely, ϕp is an orbital mapping which is a proper and open continuous surjection

from Mp,q onto Πq. The mapping r 7→ Ur
p from Πq to M1(Mp,q) is a recomposition

of ϕp which means that each Ur
p is a probability measure on Mp,q with support

equal to ϕ−1
p (r) (here = Σr

p,q), and such that νp =
∫
Mp,q

Uϕp(x)
p dνp(x).

Here and subsequently, νp denotes a radial probability measure on Mp,q with

the corresponding radial part ν ∈ M1(Πq) and X is Mp,q-valued random variable

with radial distribution νp. If ν admits a k-th moment (k ∈ N), then

rk(ν) :=
∫

Πq

xkdν(x) =
∫

Mp,q

ϕp(x)kdνp(x)

exists in Πq. In this case, we call rk(ν) the k-th modified moment of ν.

In the next lemmas, we explore the covariance structure of X and we compute

the asymptotic behaviour of the moments of νp for large dimensions p.

Lemma 5.8.3. Let ν ∈ M1(Πq) and νp ∈ M1(Mp,q) be the corresponding radial

probability measure on Mp,q which admits second moment. Moreover, let X =
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(xij)i,j be Mp,q-valued random variable with distribution νp. Then

E (X) = 0 and Cov(X) =
1

p
Ip ⊗ r2(ν).

Proof: For r ∈ R \ {0} let Mj,r and Si,j be p × p matrices produced by

multiplying all elements of row j of the identity matrix by r and by exchanging row

i and row j of the identity matrix, respectively. As Si,j is a symmetric involution

on Mp, we have Si,j ∈ Op. For r = ±1, the matrix Mj,r is also orthogonal. By

assumption, X and OX are identically distributed for any O ∈ Op. Therefore, we

have

E (X)ij = E (Mj,−1X)ij = −E (X)ij .

Thus, E(xij) = 0 for all indices i and j and hence E(X) = 0 ∈ Mp,q.

Choose i, k ∈ {1, . . . , q} and j, l ∈ {1, . . . , p}. If j 6= l, then we conclude from

E (xjixlk) = E ((Mj,−1X)ji(Mj,−1X)lk) = −E (xjixlk)

that E(xjixlk) = 0. Now, suppose that j = l. The transformation Mp,q → Mp,q,

A 7→ Si,jA, switches all matrix elements on row i with their counterparts on row

j. Therefore, from radiality of PX = νp it follows that

E(xjixjk) = E((Sj,1X)ji(Sj,1X)jk) = E(x1ix1k) for i, k ∈ {1, . . . , q}.

Let x′
i denote the i-th row of the matrix X, i = 1, . . . , p. From what has already

been proven, we conclude that

r2(ν) =
∫

Mp,q

X ′Xdνp(x) =
p∑

i,j=1

E(xix
′
i) = p · E(x1x

′
1) ∈ Mq.

Hence,

Cov(xi, xj) =
1

p
· δijr2(ν) ∈ Mq

for all i, j ∈ {1, . . . , p}. Now, the desired formula for the covariance of X is a

consequence of the Equation (5.5.1).

To derive formulas for the moments of radial distributed random variable, as

in the case q = 1, we first compute the characteristic function of the uniform
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distribution on Σr
p,q for r ∈ Πq.

Lemma 5.8.4. The characteristic function for the uniform distribution Ur
p on

the sphere Σr
p,q of radius r ∈ Πq is given by

Ûr
p(z) = Jµ

(
1

4
(zr)∗(zr)

)
, z ∈ Mp,q (5.8.2)

where µ = p/2 and Jµ is the Bessel function of index µ as in (5.3.3).

Proof: Let r ∈ Πq. Consider the map

Tr : Σp,q → Σr
p,q, y 7→ yr.

Since Tr(U
Iq
p ) = Ur

p, we get by substitution formula

Ûr
p(z) =

∫

Mp,q

ei〈z,y〉dUr
p(y) =

∫

Σp,q

ei〈z,yr〉dUIq
p (y).

On the other hand, according to Proposition XVI.2.3. of [11], we have

∫

Σp,q

ei〈y,x〉dUIq
p (y) = Jµ

(
1

4
x∗x

)
, µ =

p

2
,

for x ∈ Mp,q. By taking these two identities above into account, (5.8.2) follows as

claimed.

Remark 5.8.5. In the case q = 1, we obtain from Lemma 5.8.4 and Remark 5.3.4

the following formula for the characteristic function of the uniform distribution

Ur
p ∈ M1(Rp) on the sphere Sp−1

r ⊂ R
p

Ur
p(z) = Λ p

2
−1(r · ‖z‖), z ∈ R

p,

where Λλ is the modified Bessel function of index λ.

Lemma 5.8.6. Let κ ∈ N
p×q
0 , l = |κ|/2 and µ = p/2. The κ-th moment mκ(Ur

p)

of the uniform distribution on Σr
p,q is given as follows:

(a) If Ri(κ) =
∑q

j=1 κij is even for all i = 1, . . . , p, then l ∈ N0 and

mκ(Ur
p) =

1

4l |κ|!
∑

λ∈C0(l,q)

1

(µ)
1/2
λ

Dκ

(
Zλ((zr)

′

(zr))
)

|z=0
. (5.8.3)
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(b) If Ri(κ) is not even for some i = 1, . . . , p, then mκ(Ur
p) = 0.

Proof: By the Identity (5.5.4), the preceding lemma and (5.3.3) we have

mκ(Ur
p) = (−i)|κ|

∞∑

j=0

(−1)j

j!

∑

λ∈C0(j,q)

1

(µ)
1/2
λ

Dκ

(
Zλ

(1

4
(zr)∗(zr)

))
|z=0

. (5.8.4)

Let λ ∈ N
q
0 and pr : z 7→ Zλ ((zr)∗(zr)). Since Zλ is a homogeneous polynomial

of degree |λ|, Lemma 5.4.1 shows that pr is a homogeneous, even-row polynomial

of degree 2 |λ|. Therefore, each term on the right-hand side of (5.8.4) vanishes if

κ ∈ N
p×q
0 with Ri(κ) is odd for some i ∈ {1, . . . , p} or if |κ| 6= 2 |λ|. This proves

the assertion.

Unfortunately, the formula (5.8.3) for q > 1 can not be simplified as in the case

q = 1 (cf. 4.0.10). Nevertheless, we can easily indicate the asymptotic behavior of

mκ(Ur
p) for p → ∞: since each generalised Pochhammer symbol in the finite sum

(5.8.3) is of the order O(p−l), so is mκ(Ur
p). We now compute an upper bound for

the κ-th moment of a radial distribution νp as p → ∞.

Theorem 5.8.7. Let k, q, p ∈ N with p > 2q and νp be a radial probability

measure on Mp,q which admits k-th moment. Then there is a constant C > 0 such

that

‖Mk(νp)‖∞ ≤ C · p−k/2.

Proof: Let κ ∈ N
p×q
0 with |κ| = k. Since νp admits k-th moment, it is clear

that mκ(νp) exists. By the decomposition (5.8.1), we obtain

mκ(νp) =
∫

Πq

mκ(Ur
p)dν(r) (5.8.5)

where Ur
p is the uniform distribution on Σr

p,q and ν the radial part of νp. Thus,

according to the above lemma, we have

0 ≤ |mκ(νp)| ≤ 1

2kk!

∑

λ∈C0(l,q)

1

(p/2)
1/2
λ

∫

Πq

|Pλ(r)| dν(r), (5.8.6)

where l = k/2 and Pλ are functions on Πq defined by

Pλ(r) = Dκ

(
Zλ((zr)∗(zr))

)
|z=0

, λ ∈ C0(l, q).

For a polynomial P on Mq let Cmax(P ) be the highest absolute value of the
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coefficients of P in its monomial expansion. It is clear that Pλ is homogeneous

polynomial in the variable r on Πq of degree k and

Cmax(Pλ) ≤ k!Cmax(Zλ).

Since the number of terms in the monomial expansion of Pλ, λ ∈ C0(l, q) depends

only on q and k, there exists a constant C1 = C1(q, k) such that

∫

Πq

|Pλ(r)| dν(r) ≤ C1 · |ν|k .

Hence, the definition of the generalised Pochhammer symbol in 5.3.3 and Inequal-

ity (5.8.6) yield that for sufficiently large p,

|mκ(νp)| ≤ C2 · p−k/2

with a suitable constant C2 = C2(ν, q, k) which is independent of κ and p. From

this, we finally conclude that

‖Mk(νp)‖∞ = sup
κ∈N

p×q
0

:|κ|=k

|mκ(νp)| ≤ C2 · p−k/2.

Corollary 5.8.8. Let k ∈ N, κ ∈ N
p×q
0 with k = |κ| and νp ∈ M1(Mp,q) be a

radial probability measure on Mp,q which admits k-th moment. Then mκ(νp) exists

in R and has the following asymptotic as p → ∞:

(a) If Ri(κ) is even for all i = 1, . . . , p, then mκ(νp) = O
(
p−k/2

)
.

(b) If Ri(κ) is not even for some i = 1, . . . , p, then mκ(νp) = 0.

Proof: (a) is clear by the Theorem 5.8.7. The assertion (b) follows immediately

from (5.8.5) and Lemma 5.8.6.

Definition 5.8.9. Let (Dn)n∈N, (dn)n∈N be sequences of matrices from Mq and

positive real numbers, respectively. We write Dn = O(dn) as n → ∞, if and only

if ‖Dn‖∞ = O(dn) as n → ∞.

Remark 5.8.10. Let (pn)n∈N ⊂ N with pn → ∞. For an n ∈ N we consider

radial measure νpn ∈ M1(Mpn,q) associated with ν ∈ M1(Πq) and pn. Then

(Mk(νpn))n≥1 ⊂ Mqk and by Theorem 5.8.7, we have Mk(νpn) = O(p−k
n ) for n →

∞.
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5.9 Radial limit theorems on Mp,q for p → ∞
Let ν ∈ M1(Πq) be a fixed probability measure which admits the second order

moment. In particular, the modified moment r2(ν) =
∫

Πq
x2dν(x) exists in Πq. As

we have mentioned in Section 5.8, for each dimension p ∈ N there is a unique radial

probability measure νp ∈ M1(Mp,q) with ν as its radial part, i.e., ν = ϕp(νp). For

each p ∈ N consider i.i.d. Mp,q-valued random variables

Xk :=
(
X

(i,j)
k

)
1≤i≤p, 1≤j≤q

, k ∈ N

with law νp as well as the random variables

Ξp
n(ν) := ϕp(Sp

n)2 − nr2(ν), (5.9.1)

where Sp
n :=

∑n
k=1 Xk. Let (pn)n∈N ⊂ N be a sequence with limn→∞ pn = ∞. In

the first part of this section, we derive the following two complementary CLTs for

Mq-valued random variables Ξn(ν) := Ξpn
n (ν) under disjoint growth conditions for

the dimensions pn.

Theorem 5.9.1. Assume that ν ∈ M1(Πq) admits finite fourth moment.

CLT I: If limn→∞ n/pn = ∞, then
√

pn/n · Ξn(ν) tends in distribution to the

centered matrix variate normal distribution Nq,q(0, T (ν)) on Mq with covariance

matrix T (ν) := T1(ν) + T2(ν) ∈ Πq2 where

T1(ν)(i,j),(k,l) = r2(ν)i,kr2(ν)j,l and T2(ν)(i,j),(k,l) = r2(ν)i,lr2(ν)j,k.

CLT II: If limn→∞ n/pn = c ∈ [0, ∞[, then Ξn(ν)/
√

n tends to the centered

matrix variate normal distribution Nq,q(0, Σ(ν)+ cT (ν)) on Mq where Σ(ν) ∈ Πq2

is the covariance matrix of ϕ2
pn

(νpn) which is independent of pn.

The proof will be divided into two main steps: In the first step, we prove a

reduced form of Theorem 5.9.1 assuming that ν has a compact support. In the

second step, we will show how to dispense with the assumption on the support of

ν. Both steps are based on the decomposition of Ξn(ν) via

Ξn(ν) = An(ν) + Bn(ν)
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where

An(ν) :=
n∑

i=1

Ai, with Ai := ϕpn(Xi)
2 − r2(ν), (5.9.2)

Bn(ν) :=
pn∑

i=1

Bi, with Bi :=
n∑

α 6=β

[
X(i,j)

α X
(i,l)
β

]
1≤j,l≤q

. (5.9.3)

We compute the covariance structure of An(ν) and Bn(ν). Since the random

variables Ai, i ∈ N are independent and identically distributed, it is easily seen

that

E(Ak) = 0 and Cov(Ai, Aj) = δi,jΣ(ν). (5.9.4)

This gives Cov(An(ν)) = n · Σ(ν). By the independence of random variables Xk,

k ∈ N, using the Lemma 5.8.3, we obtain

E(Bk) = 0 and Cov(Bi, Bj) = δi,j
n(n − 1)

p2
n

T (ν). (5.9.5)

Hence, Cov(Bn(ν)) = n(n−1)/pn ·T (ν). Corollary 5.8.8, b) yields Cov(Ai, Bj) =

0 for all i and j. This clearly forces

Cov(Ξn(ν)) = Cov(An(ν)) + Cov(Bn(ν)) = nΣ(ν) +
n(n − 1)

pn

T (ν). (5.9.6)

In the following we will establish convergence in distribution of An(ν) and

Bn(ν) (after appropriate scaling) by the method of moments 5.6.4.

Proposition 5.9.2. Assume that ν ∈ M1(Πq) has compact support. Then the

asymptotic behaviour of An := An(ν) is given as follows:

a) If n/pn → c ∈ [0, ∞[ as n → ∞, then An/
√

n tends in distribution to matrix

variate normal distribution Nq,q(0, Σ(ν)).

b) If n/pn → ∞ as n → ∞, then
√

pn/n · An tends in distribution to δ0.

Proof: If we prove that for all k ∈ N0, the k-th order moments

Mk( 1√
n
An) =

1

nk/2
E(A⊗,k

n ) and Mk(
√

pn

n
An) =

pk/2
n

nk
E(A⊗,k

n ) (5.9.7)

tend to the k-th order moment of the corresponding limit distribution, then the

assertion follows by the method of moments 5.6.4. Therefore, we calculate (5.9.7)
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as n → ∞. Since the random variables Aj are identically distributed, Theorem

5.2.1 shows that

E(A⊗,k
n ) =

k∑

u=1

∑

λ∈C(k,u)

(
n

u

) ∑

π∈S(λ)

Eπ(A1, . . . , Au).

For u ∈ {1, . . . , k} and λ ∈ C(k, u) we consider

T (λ) :=

(
n

u

) ∑

π∈S(λ)

Eπ(A1, . . . , Au). (5.9.8)

If λα = 1 for some α, i.e. Aα appears exactly once in π(A1, . . . , Au), then each

summand in (5.9.8) vanishes, which is due to the facts that E(Aα) = 0 ∈ Mq and

Ai are independent.

Suppose that λα ≥ 2 for each α and λα > 2 for some α. Then k > 2u, and

since ν has compact support, we get T (λ) = O(nu). This clearly forces n−k/2T (λ)

and pk/2
n n−kT (λ) in the cases n/pn → c ∈ [0, ∞[ and n/pn → ∞, respectively

tend to zero as n → ∞.

Now we turn to the case λ = (2, . . . , 2), in particular k = 2u. Let Z1, . . . , Zu

be independent and Nq,q(0, Σ(ν)) distributed random variables. By Lemma 5.1.1,

for any π ∈ S(λ) there exist permutation matrices Pπ and Qπ with

Pπ · Eπ(A1, . . . , Au) · Qπ = E(A1 ⊗ A1 ⊗ . . . ⊗ Au ⊗ Au)

= E(Z1 ⊗ Z1 ⊗ . . . ⊗ Zu ⊗ Zu) = Pπ · Eπ(Z1, . . . , Zu) · Qπ.

Hence Eπ(A1, . . . , Au) = Eπ(Z1, . . . , Zu) for all π ∈ S(λ). Therefore, according

to the Lemma 5.7.7, we have

T (λ) =

(
n

u

) ∑

π∈S(λ)

Eπ(Z1, . . . , Zu) =
n!

(n − u)!
Mk(Z1).

This proves that the moments in (5.9.7) converge to those of Nq,q(0, Σ(ν)) and δ0

distributions on Mq, respectively.

We proceed to state the corresponding convergence result for the random vari-

able Bn(ν) as n → ∞.

Proposition 5.9.3. Assume that ν ∈ M1(Πq) has compact support. Then the

asymptotic behaviour of Bn := Bn(ν) is given as follows:
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a) If n/pn → 0 as n → ∞, then Bn/
√

n tends in distribution to δ0.

b) If n/pn → c ∈]0, ∞] as n → ∞, then
√

pn/n · Bn tends in distribution to the

matrix variate normal distribution Nq,q(0, T (ν)).

For the proof we need a couple of simple lemmas. We first introduce some

notation. Let k, n ∈ N and Ik,n the set of all 2k-tuples (i1, j1, . . . , ik, jk) of

positive integers less or equal n such that iα 6= jα for all α = 1, . . . , k. For an

I ∈ Ik,n and π = (π1, . . . , πk) ∈ N
k we consider the random matrix

S(I, π) :=
k⊗

l=1

[
X

(πl,αl)
il

X
(πl,βl)
jl

]
1≤αl,βl≤q

. (5.9.9)

Each entry of S(I, π) ∈ Mqk is a product with k factors and corresponds to the

tuple (
(i1, π1, α1), (j1, π1, β1), . . . , (ik, πk, αk), (jk, πk, βk)

)
. (5.9.10)

For (5.9.10) and two integers a, b we define

multI,π(a, b) = |{τ ∈ {1, . . . , k} : (iτ , πτ ) = (a, b) or (jτ , πτ ) = (a, b)}| .

It is clear that multI,π(a, b) does not depend on the indices ατ and βτ . Therefore,

multI,π(a, b) is the number of factors in an arbitrary entry of the matrix S(I, π)

which are coming from the b-th row of Xa. Moreover, we write d(I) for the number

of distinct elements in {I}. We consider the following subsets of Ik,n

Jm := {I ∈ Ik,n : d(I) = m} ,

J̃m := {I ∈ Jm : {I} = {1, . . . , m}} , (5.9.11)

Jo(π) := {I ∈ Ik,n : ∃ a, b ∈ N : multI,π(a, b) is odd} .

It is easy to check that d(I) ∈ {2, . . . , 2k} for all I ∈ Ik,n and that the cardinality

of Jm is at most of the order O(nm) for n → ∞.

Lemma 5.9.4. Let λ = (λ1, . . . , λv) ∈ C(k, v), µ = (µ1, . . . , µv) ∈ W (n, v) and

π ∈ S(λ). Then

π(Bµ1
, . . . , Bµv)

L
= π(B1, . . . , Bv).

Proof: By Theorem 5.1.1 it is sufficient to show that

B⊗,λ1

µ1
⊗ . . . B⊗,λv

µv

L
= B⊗,λ1

1 ⊗ . . . B⊗,λv
v . (5.9.12)
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Since Xk, k ∈ N are i.i.d. with radial law νpn we have Bµ
L
= B1 for any µ ∈

{1, . . . , pn}. Thus, we get (Bµ1
, . . . , Bµv)

L
= (B1, . . . , Bv). This clearly forces

5.9.12.

Lemma 5.9.5. Let λ = (λ1, . . . , λv) ∈ C(k, v) and π ∈ S(λ). Then there is a

constant C such that

sup
I∈Ik,n

‖ES(I, π)‖∞ ≤ C · p−k
n .

Proof: Let I ∈ Ik,n and π be as above. By the definition of S(I, π) and

Theorem 5.8.7, we obtain

‖ES(I, π)‖∞ ≤
v∏

j=1

∥∥∥M2λj
(νpn)

∥∥∥
∞

≤ C · p−k
n

for some suitable constant C > 0 which is independent of I and p.

Lemma 5.9.6. Let v ∈ N, k = 2v, µ = (2, . . . , 2) ∈ C(k, v), π ∈ S(µ) and

Z1, . . . , Zv be independent N (0, T (ν)) distributed random variables. Then

Eπ(Z1, . . . , Zv) =
pk

n

k!

∑

I∈J̃k

ES(I, π). (5.9.13)

Proof: According to the Theorem 5.1.1 there is no loss of generality in assuming

that π = (1, 1, . . . , v, v). We set

Jk,π :=
{
(i1, j1, . . . , ik, jk) ∈ J̃k : {iα, jα} = {iβ, jβ} if πα = πβ

}
.

It is easy to check that J̃k \ Jk,π ⊂ Jo(π). Therefore, by Eq. (5.9.16),

∑

I∈J̃k

ES(I, π) =
∑

I∈Jk,π

ES(I, π).

For a permutation σ ∈ Sym({1, . . . , k}) =: Sk and ε = (ε1, . . . , εu) ∈ Z
v
2 we

consider the following functions:

ϕσ :Jk,π −→ Jk,π, (i1, j1, . . . , ik, jk) 7→ (σ(i1), σ(j1), . . . , σ(ik), σ(jk))

θε :Jk,π −→ Jk,π, (i1, j1, . . . , ik, jk) 7→ (r1, t1, . . . , rk, tk),

where (r1, t1, . . . , rk, tk) is defined as follows: for any α, β ∈ Mk with α < β and
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πα = πβ ∈ Mv we have

(rα, tα, rβ, tβ) =





(iα, jα, iβ, jβ), if επα = 0,

(iα, jα, jβ, iβ), if επα = 1.

It is easily seen that ϕσ and θε are well defined. Let I0 := (1, 2, 1, 2, 3, 4, 3, 4, . . . , k−
1, k, k − 1, k) ∈ Jk,π. By standard verification we obtain a one to one correspon-

dence between Sk × Z
v
2 and Jk,π via the map Ψ : (σ, ε) 7→ ϕσ(θε(I0)). Since

X1,X2, . . . are i.i.d., we have for all σ ∈ Sk

ES(ϕσ(I), π) = ES(I, π) ∀ I ∈ Jk,π. (5.9.14)

For an ε ∈ Z2 we consider algebraic operation

ε(a, b) =





a, if ε = 0,

b, if ε = 1.

Let R(π) denote the right-hand side of Equation (5.9.13). Then, by Equation

(5.9.14), it follows that

R(π) =
pk

n

k!

∑

(σ,ε)∈Sk×Zv
2

ES(Ψ(σ, ε), π)

= pk
n

∑

ε∈Zu
2

ES(Ψ(id, ε), π) = pk
n

∑

ε∈Zu
2

ES(θε(I0), π)

=
∑

ε∈Zu
2

v⊗

j=1

p2
nE

([
X

(j,α)
2j−1X

(j,β)
2j

]
1≤α,β≤q

⊗
[
X

(j,α)
εj(2j−1,2j)X

(j,β)
εj(2j,2j−1)

]
1≤α,β≤q

)

=
∑

ε∈Zv
2

v⊗

j=1

εj(T1(ν), T2(ν)).

On the other hand, by the independence of Z1, . . . , Zv, we see that

Eπ(Z1, . . . , Zv) =
v⊗

j=1

E(Zj ⊗ Zj) =
v⊗

j=1

T (ν)

=
v⊗

j=1

(T1(ν) + T2(ν)) =
∑

ε∈Zv
2

v⊗

j=1

εj(T1(ν), T2(ν)).

This completes the proof.

Proof of Proposition 5.9.3: According to the Theorem 5.6.4, it suffices to show
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that the k-th moments of Bn/
√

n and of
√

pn/n · Bn tend to the corresponding

ones of the limiting distributions as n → ∞. By using very similar arguments

as in the proof of the Theorem 5.8.3, it is easily seen that Bi (i = 1, 2, . . .) are

identically distributed. From this and Theorem 5.2.1, we conclude that

E

(
B

⊗,k
n

)
=

k∑

v=1

∑

µ∈C(k,v)

(
pn

v

) ∑

π∈S(µ)

Eπ(B1, . . . , Bv).

For a v ∈ {1, . . . , k}, λ ∈ C(k, v) and π ∈ S(µ) we consider π(B1, . . . , Bv). The

definition of Ba (a ∈ {1, . . . , v}) in (5.9.3) enables us to write

π(B1, . . . , Bv) = Bπ1
⊗ . . . ⊗ Bπk

=
∑

I∈Ik,n

S(I, π), (5.9.15)

where each term S(I, π) with I = (i1, j1, . . . , ik, jk) is given by (5.9.9). For a

selected index c ∈ Mn, each entry of the k-fold Kronecker product S(I, π) may

be regarded as a monomial in the variables Xc (i.e. in X(α,β)
c with α ∈ Mpn ,

β ∈ Mq), while the random variables coming from other indices are considered as

constant. In this view, for any I ∈ Jo(π), each entry of S(I, π) is for some c ∈ Mn

and a ∈ Mv a monomial in the variable Xc, which is not even in row a. Hence,

Corollary 5.8.8 clearly forces

ES(I, π) = 0 ∀ I ∈ Jo(π). (5.9.16)

Therefore, since Jm ⊂ Jo(π) for m > k, we conclude from (5.9.15) that

Eπ(B1, . . . , Bv) =
k∑

m=2

∑

I∈Jm

ES(I, π). (5.9.17)

By the definition of Jm in (5.9.11), it is obvious that the number of terms

in the last sum is at most of the order O(nm). Therefore, by Lemma 5.9.5 and

Definition (5.8.9),

Eπ(B1, . . . , Bv) =
∑

I∈Jk

ES(I, π) + O

(
nk−1

pk
n

)
= O

(
nk

pk
n

)
. (5.9.18)

For v ∈ {1, . . . , k} and µ ∈ C(k, v) let us consider

T (µ) :=

(
pn

v

) ∑

π∈S(µ)

Eπ(B1, . . . , Bv). (5.9.19)
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If µα = 1 for some α, i.e for any π ∈ S(µ) the factor Bα appears exactly once in

the product π
(
B1, . . . , Bv

)
, and therefore, each I ∈ Ik,n from the Representation

(5.9.15) of π
(
B1, . . . , Bv

)
is necessarily from Jo(π). Hence, (5.9.16) gives T (µ) = 0.

Suppose that µα ≥ 2 for each α and µα > 2 for some α, i.e. in partic-

ular k > 2v. From (5.9.18), we conclude that n−k/2T (µ) = O
(
nk/2pv−k

n

)
and

pk/2
n n−kT (µ) = O

(
pv−k/2

n

)
tend to 0 in the case (a) n/pn → 0 and case (b)

pn/n → 0, respectively as n → ∞.

We now turn to the case µ = (2, . . . , 2), in particular k = 2v. By Equation

(5.9.18), it follows in the case (a) that n−vT (µ) = O((n/pn)k−v). Hence, n−vT (µ)

converges to zero as n → ∞. Since X1,X2, . . . are i.i.d., we have

∑

I∈Jk

ES(I, π) =

(
n

k

) ∑

I∈J̃k

ES(I, π).

Therefore, by using Equation (5.9.18),

T (µ) =
pn!

(pn − v)!

n!

(n − k)!

1

v!

∑

π∈S(µ)

1

pk
n

pk
n

k!

∑

I∈J̃k

ES(I, π) + O

(
nk−1

pk−v
n

)
.

Let Z1, . . . , Zv be independent and N (0, T (ν)) distributed random variables. Lemma

5.9.6 and Theorem 5.7.7 now lead to

lim
n→∞

pv
n

nk
T (µ) =

1

v!

∑

π∈S(µ)

Eπ(Z1, . . . , Zv) = Mk(Z1).

The required result then follows from the method of moments 5.6.4.

Proposition 5.9.7. Assume that ν ∈ M1(Πq) has compact support and that n/pn

tends to some positive constant c as n → ∞. Then An and Bn are asymptotically

uncorrelated, that is, for all 0 ≤ l ≤ k and all σ ∈ S((l, k−l)) the random variable

1

nk/2
[Eσ(An, 1) ◦ Eσ(1,Bn) − Eσ(An,Bn)] (5.9.20)

tends to zero as n → ∞.

Proof: Let F (n, σ) denote the expression (5.9.20). According to the Theorem

5.1.1, there is no loss of generality in assuming that σ = (1, . . . 1, 2, . . . , 2). From
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Theorem 5.2.1, by using symmetry argument, we conclude that

F (n; σ) =
1

nk/2

(
E(A⊗,l) ⊗ E(B⊗,k−l) − E(A⊗,l ⊗ B

⊗,k−l)
)

=
1

nk/2

l∑

u=1

k−l∑

v=1

∑

λ∈C(l,u)

∑

µ∈C(k−l,v)

(
n

u

)(
pn

v

) ∑

π∈S(λ)

∑

π′∈S(µ)

H(π, π′),

with

H(π, π′) = Eπ(A1, . . . , Au) ⊗ Eπ′(B1, . . . , Bv) − Eπ(A1, . . . , Au) ⊗ π′(B1, . . . , Bv).

If µα = 1 for some α ∈ {1, . . . , v}, then each entry of π′(B1, . . . , Bv) is not an

even polynomial and thus neither is π(A1, . . . , Au) ⊗ π′(B1, . . . , Bv). Therefore,

H(π, π′) = 0 by Corollary 5.8.8, (b).

Suppose that µα ≥ 2 for each α. By Equation (5.9.17), we have

H(π, π′) =
∑

I∈J2∪...∪Jk

{ Eπ(A1, . . . , Au) ⊗ ES(I, π′)+

− E(π(A1, . . . , Au) ⊗ S(I, π′))} . (5.9.21)

For M := {1, . . . , u} and G := {α ∈ M : λα = 1} we define

J∃(M) := {I ∈ J2 ∪ . . . ∪ Jk−l : {I} ∩ M 6= ∅} ⊂ Ik−l,n,

J∀(G) := {I ∈ J2 ∪ . . . ∪ Jk−l : G ⊂ {I}} ⊂ Ik−l,n.

It is easily checked that for the cardinalities of J∃(M) and J∀(G) we have

∣∣∣J∃(M)
∣∣∣ ≤ Cnk−l−1 and

∣∣∣J∀(G)
∣∣∣ ≤ Cnk−l−|G|, (5.9.22)

with some constant C = C(k, l). We consider the I-th term in the sum above,

which will be denoted by T (I). Is I /∈ J∃(M), that is {I} ∩ M = ∅, and thus

A1, . . . , Au are independent from S(I, π′). This clearly forces T (I) = 0.

Is I /∈ J∀(G), i.e. there exists τ ∈ G with τ /∈ {I}, and therefore Aτ is

independent from Ai (i ∈ M \ {τ}) and S(I, π′). We thus get T (I) = 0 from

(5.9.4).

Taking (5.9.22), the number of nonzero summands in (5.9.21) is bounded above

min(nk−l−1, nk−l−|G|). On the other hand, Lemma 5.9.5 yields that each of them

is bounded above C/pk−l
n where C > 0 is a suitable global constant. Summarized
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we get

‖H(π, π′)‖∞ ≤ C · min(n−1, n−|G|). (5.9.23)

Since µ ∈ C(k − l, v) with µα ≥ 2 for all α ∈ {1, · · · , v} we have k − l ≥ 2v.

Moreover, since λ ∈ C(l, u), we get l ≥ 2u − |G|. And hence, by straightforward

calculation and by using n/pn → c ∈]0, ∞[, we conclude from (4.0.24) that for

suitable constants Ci,

‖Fn(l, k)‖∞ ≤ C1

nk/2

l∑

u=1

k−l∑

v=1

∑

λ∈C(l,u)

∑

µ∈C(k−l,v)

(
n

u

)(
pn

v

)
min(n−1, n−|G|)

≤ C2

nk/2

l∑

u=1

k−l∑

v=1

∑

λ∈C(l,u)

nu+v min(n−1, n−|G|) ≤ C3√
n

.

This completes the proof.

proof of Theorem 5.9.1 for ν ∈ M1(Πq) with compact support.

If n/pn → ∞ then
√

pn/n · An
d→ 0 and

√
pn/n · Bn

d→ N (0, T (ν)) according to

Propositions 5.9.2 and 5.9.3. This clearly forces
√

pn/n · Ξn(ν)
d→ N (0, T (ν)) by

Slutsky’s Theorem. Suppose that n/pn → ∞. Then we get as above Ξn(ν)/
√

n
d→

N (0, Σ(ν)). It remains only to check the convergence in the case n/pn → c ∈
]0, ∞[. Let k ∈ N. By Theorem 5.2.1,

Mk(Ξn(ν)) = E

(
(An + Bn)⊗k

)
=

k∑

l=0

∑

π∈S((l,k−l))

Eπ(An,Bn).

Therefore, by Proposition 5.9.7,

lim
n→∞ Mk

(
1√
n

Ξn(ν)
)

= lim
n→∞

1

nk/2

k∑

l=0

∑

π∈S((l,k−l))

Eπ(An, 1) ◦ Eπ(1,Bn).

Consider independent random variables Z1, Z2 and Z with distributions N (0, Σ(ν)),

N (0, cT (ν)) and N (0, Σ(ν) + cT (ν)), respectively. Propositions 5.9.2, 5.9.3 and

Lemma 5.7.8 now lead to

lim
n→∞ Mk(Ξn(ν)) =

k∑

l=0

∑

π∈S((l,k−l))

E (π(Z1, 1)) ◦ E (π(1, Z2)) = Mk(Z).
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To dispense with the assumption: supp(ν) is compact, we introduce for an

a > 0 the truncated Mpn,q-valued random variables

Xk,a :=




Xk, if ‖ϕpn(Xk)‖ ≤ a,

0, else
k = 1, 2, . . .

Let us denote by νa the distribution of ϕpn(X1,a) (which is not dependent on

pn). Obviously, the sequence Xk,a, k ∈ N, are i.i.d. with the radial law νpn,a ∈
M(Mpn,q) which corresponds to νa. We define Ξn(νa), An(νa), Aj,a (j = 1, . . . , n),

Bn(νa) and Bj,a (j = 1, . . . , pn) according to (5.9.1), (5.9.2) and (5.9.3), re-

spectively, by taking Xk,a instead of Xk, k ∈ N. Clearly, we have Ξn(νa) =

An(νa) + Bn(νa).

Lemma 5.9.8. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all

n, a ∈ N with a ≥ a0 and n ≥ n0

P (‖An(ν) − An(νa)‖ > δn) ≤ ε,

where δn = δ
√

n if n/pn → c ∈ [0, ∞[ and δn = δn/
√

pn if n/pn → ∞.

Proof: Let δ > 0 and (δn)n be a sequence with δn > 0 for all n ∈ N. Since

(Ai − Ai,a), (i = 1, 2, . . .) are i.i.d., it follows by Chebychev inequality

P (‖An(ν) − An(νa)‖ ≥ δn) ≤ n

δ2
n

E

(
‖A1 − A1,a‖2

)
. (5.9.24)

By using triangle inequality, we obtain

sup
a∈N

‖A1,a‖2 ≤
(∥∥∥ϕ2

pn
(X1)

∥∥∥+ ‖r2(ν)‖
)2 ∈ L1(Ω),

Therefore, the set {‖A1,a‖2 : a ∈ N} is uniformly integrable. On the other hand,

since the random variable ‖A1‖ is almost surely finite, ‖A1,a‖2 converges a.s. to

‖A1‖2 as a → ∞. Thus, we get

‖A1,a‖2 −→ ‖A1‖2 in L1. (5.9.25)

Taking (5.9.24) with δn, as in the assumption (i.e. δn = δ
√

n or δn = δn/
√

pn)

and (5.9.25) into account, completes the proof.

Lemma 5.9.9. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all
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n, a ∈ N with a ≥ a0 and n ≥ n0

P (‖Bn(ν) − Bn(νa)‖ > δn) ≤ ε, (5.9.26)

where δn = δ
√

n if n/pn → c ∈ [0, ∞[ and δn = δn/
√

pn if n/pn → ∞.

Proof: Let δ > 0 and (δn)n be a sequence with δn > 0 for all n ∈ N. By

Chebychev inequality follows

P (‖Bn(ν) − Bn(νa)‖ ≥ δn) ≤ 1

δ2
n

pn∑

j,i=1

E (〈Bi − Bi,a, Bj − Bj,a〉) . (5.9.27)

Using Lemma 5.8.3, one can easily compute that

E (〈Bi, Bj〉) = δij · n(n − 1)

p2
n

q∑

l,k=1

r2(ν)l,lr2(ν)k,k + r2(ν)l,kr2(ν)l,k (5.9.28)

E (〈Bi,a, Bj,a〉) = δij · n(n − 1)

p2
n

q∑

l,k=1

r2(νa)l,lr2(νa)k,k + r2(νa)l,kr2(νa)l,k (5.9.29)

With the notation

r̃2(a; n) :=
(
E

(
X

(1,l)
1,a X

(1,k)
1

))
1≤l,k≤q

,

we see at once that

E (〈Bi, Bj,a〉) = δijn(n − 1)
q∑

l,k=1

r̃2(a; n)l,lr̃2(a; n)k,k + r̃2(a; n)l,kr̃2(n; a)l,k.

For l, k ∈ {1, . . . , q}, we obtain

r̃2(a; n)l,k =
1

pn

r2(ν)l,k −
∫

{‖X1‖>a}
X

(1,l)
1 X

(1,k)
1 dP. (5.9.30)

By Cauchy-Schwarz inequality and straightforward calculation we get

0 ≤
∣∣∣∣
∫

{‖X1‖>a}
X

(1,l)
1 X

(1,k)
1 dP

∣∣∣∣≤
c

apn

,

with some constant c > 0. From this and (5.9.30), we deduce

pnr̃2(a; n) = r2(ν) + O
(

1

a
1
)
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and hence

∀ ε > 0 ∃ M > 0 ∀ n ≥ M, ∀ a ≥ M : 0 ≤ p2
n

n2
E (‖Bi − Bi,a‖) ≤ ε.

Finally, this and (5.9.24) lead to the claim.

Corollary 5.9.10. For all ε > 0, δ > 0 there exist a0, n0 ∈ N such that for all

n, a ∈ N with a ≥ a0 and n ≥ n0

P (‖Ξn(ν) − Ξn(νa)‖ > δn) ≤ ε, (5.9.31)

where δn = δ
√

n if n/pn → c ∈ [0, ∞[ and δn = δn/
√

pn if n/pn → ∞.

Proof: For an δ > 0 we observe that

P (‖Ξn(ν) − Ξn(νa)‖ > δn) ≤ P

(
‖An − An,a‖ >

δn

2

)
+P

(
‖Bn − Bn,a‖ >

δn

2

)
.

Combining this with Lemmas 5.9.8 and 5.9.9, the corollary follows.

proof of Theorem 5.9.1: Let us first prove the CLT I. In this case the normalisa-

tion is given by
√

pn/n and for the growth of pn we have the condition n/pn → ∞
as n → ∞. We set ξn :=

√
pn/n · Ξn(ν) and ξn,a =

√
pn/n · Ξn(νa) and denote

their distributions by µn and µn,a, respectively. Moreover, we write τν instead of

N (0, T (ν)). Using triangle inequality, we deduce that

∣∣∣∣
∫

fdµn −
∫

fdτν

∣∣∣∣ ≤
∣∣∣∣
∫

fdµn −
∫

fdµn,a

∣∣∣∣+ (5.9.32)

+
∣∣∣∣
∫

fdµn,a −
∫

fdτνa

∣∣∣∣+
∣∣∣∣
∫

fdτνa −
∫

fdτν

∣∣∣∣.

Let ε > 0, f ∈ Cu
b (Πq) be a bounded uniformly continuous function on Πq and

Aδ := {‖ξn − ξn,a‖ ≤ δ} (δ > 0). It follows that

∃ δ > 0 :
∫

Aδ

|f ◦ ξn − f ◦ ξn,a| dP ≤ ε.

On the other hand, by Corollary 5.9.10,

∃ a0, n0 > 0 :
∫

Ω\Aδ

|f ◦ ξn − f ◦ ξn,a| dP ≤ 2ε ‖f‖∞ ∀ a ≥ a0, n ≥ n0.
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This gives us the following estimation for the first summand in (5.9.32):

∃ a0, n0 > 0 :
∣∣∣∣
∫

fdµn −
∫

fdµn,a

∣∣∣∣ ≤ ε(1+2 ‖f‖∞) ∀ a ≥ a0, n ≥ n0. (5.9.33)

Since νa has a compact support, we conclude from 5.9.1 that µn,a converges weakly

to τνa (a > 0), hence

∀ a > 0 ∃ n0 > 0 :
∣∣∣∣
∫

fdµn,a −
∫

fdτνa

∣∣∣∣ ≤ ε ∀ n ≥ n0. (5.9.34)

Finally, it is evident that

∃ a0 > 0 :
∣∣∣∣
∫

fdτνa −
∫

fdτν

∣∣∣∣ ≤ ε ∀ a ≥ a0. (5.9.35)

Taking (5.9.33), (5.9.34) and (5.9.35) into account, we obtain

∃ n0 > 0 :
∣∣∣∣
∫

fdµn −
∫

fdτν

∣∣∣∣ ≤ ε(3 + 2 ‖f‖∞) ∀ n ≥ n0,

which completes the proof of CLT I in Theorem 5.9.1. The same proof works for

CLT II.

For the rest of this chapter, we devote ourselves to the laws of large numbers

for the functionals Ξn(ν). Our first result in this direction is the following weak

law of large numbers:

Theorem 5.9.11. Assume that ν ∈ M1(Πq) admits forth moment. Then the

random variables n−1Ξn(ν) converge in probability to 0 ∈ Mq,q.

Proof: For any ε > 0, Cauchy-Schwarz inequality and Equation (5.5.2) yield

P (‖Ξn(ν)‖ ≥ ε · n) ≤ 1

ε2 · n2
E 〈Ξn(ν), Ξn(ν)〉 =

1

ε2 · n2
tr
(
Cov(Ξn(ν)

)

≤ 1

ε2

( 1

n
tr(Σ(ν)) +

1

pn

tr(T (ν))
)
.

and so the theorem follows.

Theorem 5.9.12. Assume that ν ∈ M1(Πq) admits eights moment and let

(an)n≥1 be a sequence in ]0, ∞[ with an = n if n/pn → c ∈ [0, ∞[ and an = n2/pn

if n/pn → ∞. Then a−1
n Ξn(ν) → 0 almost surely as n → ∞.
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Proof: For any ε > 0, by Markov inequality,

P (‖Ξn(ν)‖ ≥ ε · an) ≤ P

(
‖An‖ ≥ ε · an

2

)
+P

(
‖Bn‖ ≥ ε · an

2

)

≤
( 2

εan

)4
E

(
‖An(ν)‖4 + ‖Bn(ν)‖4

)
. (5.9.36)

In a similar way as in the proof of Theorem 4.0.22, it is easy to check that

E

(
‖An(ν)‖4 + ‖Bn(ν)‖4

)
≤ C · |ν|8 · (n2 + n4/p2

n) (5.9.37)

for some constant C > 0. Combining (5.9.36) with (5.9.37) we get

P (‖Ξn(ν)‖ ≥ ε · an) ≤ Cε−4a−4
n

(
n2 + n4/p2

n

)
= O(n−2).

By using the Borel-Cantelli lemma, P (|Ξn(ν)| ≥ ε · an i.o.) = 0 for each positive

ε. This completes the proof.
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