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Introduction

This thesis has two objectives; the first (Chapter 1), jump detection in a high frequency setting and,
second (Chapter 2 and 3), the analysis of certain jump dependence structures in a low frequency
setting. All used models are semimartingales that are of special interest in finance since they
provide a natural class for price processes, cf. Delbaen and Schachermayer [12, 13] and Shiryaev
[41].

The three chapters are summarised below in order to give the reader a quick overview. More
detailed introductions to the respective topics are given at the beginning of the respective chapters.

Ito6 semimartingales and jumps

The classical Black-Scholes model is a time continuous model with continuous sample paths, i.e. it is
not capable of modeling abrupt movements (jumps) in the financial market. Various investigations
confirm that there is an essential difference whether one works with a continuous model or if one
allows for jumps. It is therefore important to assess whether, for example, high frequency data (e.g.
returns of a stock-price) should be modeled with a continuous or a jump process. Barndorff-Nielsen
and Shephard [3] propose a nonparametric test to decide whether it suffices to use a continuous
stochastic volatility model or if an additional jump term is required.

We investigate and develop a test based on classical extreme value theory for the same purpose.
If there are no jumps and if the number of our observations tends to infinity on a fixed time interval,
our test converges weakly to the Gumbel distribution. If there are jumps, the test converges to
infinity. Simulation studies show that this technique results in a test with greater power than the
Barndorff-Nielsen and Shephard test.

Lévy processes and dependences

Let X be a d-dimensional Lévy process with Lévy triplet (X,v,«) and d > 2. Given the low
frequency observations (X;);=1,. n, the dependence structure of the jumps of X is estimated. The
Lévy measure v describes the average jump behaviour in a time unit. Thus, the aim is to estimate
the dependence structure of v by estimating the Lévy copula € of v, cf. Kallsen and Tankov [21].

We use the low frequency techniques presented in a one dimensional setting in Neumann and
ReiB [29] and Nickl and Reif [30] to construct a Lévy copula estimator €, based on the above n
observations. In doing so we prove

&n —-¢ n-ow

uniformly on compact sets bounded away from zero with the convergence rate (log n)fé This
convergence holds under quite general assumptions, which also include Lévy triplets with ¥ # 0
and v of arbitrary Blumenthal-Getoor index 0 < § < 2. Note that in a low frequency observation



scheme, it is statistically difficult to distinguish between infinitely many small jumps and a Brownian
motion part. Hence, the rather slow convergence rate (log n)fé is not surprising.

In the complementary case of a compound Poisson process (CPP), an estimator én for the
copula C' of the jump distribution of the CPP is constructed under the same observation scheme.
This copula C is the analogue to the Lévy copula € in the finite jump activity case, i.e. the CPP
case. Here we establish

én —(C, n—oow

with the convergence rate n"2 uniformly on compact sets bounded away from zero.
Both convergence rates are optimal in the sense of Neumann and Reif3 [29].

Copula relations in compound Poisson processes

We investigate in multidimensional compound Poisson processes (CPP) the relation between the
dependence structure of the jump distribution and the dependence structure of the respective
components of the CPP itself. For this purpose the asymptotic At — oo is considered, where A
denotes the intensity and ¢ the time point of the CPP. For modeling the dependence structures we
are using the concept of copulas. We prove that the copula of a CPP converges under quite general
assumptions to a specific Gaussian copula, depending on the underlying jump distribution.

Let F be a d-dimensional jump distribution (d = 2), A > 0 and let ¥(A, F') be the distribution
of the corresponding CPP with intensity A\ at the time point 1 . Next denote the operator which
maps a d-dimensional distribution on its copula as 7. The starting point for our investigation was
the validity of the equation

T(UV(\F)) =T(Y(\,TF)).

Our asymptotic theory implies that this equation is, in general, not true.
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Chapter 1

Itd semimartingales and jumps

In this chapter we have given high frequency observations from an underlying It6 semimartingale
process with a possible additional jump component. Hence, the model

dYy =ordWi+bedt +dJy, t20

is used, where W denotes a Brownian motion, ¢ > 0 a volatility process, b a drift coefficient and
J a possible additional (external) jump process. The goal of this chapter is the development and
investigation of a statistical test which, based on given high frequency observations, decides whether
Y possesses jumps (J # 0) or not (J = 0). J is, for example, a compound Poisson process. dW;
denotes the differential of an It6 integral. Korn and Korn [23] provide an introduction to the It
integral from a financial point of view. Further literature related to this subject can be found in
the following publications [20, 22, 32, 35].

Section 1 outlines some technical preparations. Note that this section uses the rather restrictive
Assumptions 1.1.1. These restrictions have the advantage of allowing us that we are able to derive
some useful inequalities in Proposition 1.1.4, by using a certain moment estimation technique.
Compare the proof of Proposition 1.1.4 for details. The restrictive assumptions are finally weakened
to the more natural Assumptions 1.2.3 in the second section. They basically claim that each path
w of the volatility ¢ — o;(w) has to be Holder continuous and that the drift coefficient has to be
pathwise bounded.

Section 2 contains the first important result of this chapter: Theorem 1.2.5 states the conver-
gence to the Gumbel distribution under the weakened Assumptions 1.2.3 of the statistic

anz(Tn — bnz), n — o

in the case J = 0, i.e. absence of external jumps. Compare Corollary 1.2.2 for the notations.

We show in Section 6 that this statistic converges to infinity, if there are any external jumps,
i.e. J # 0. Thus, this statistic can be used as a test to distinguish between the existence and
non-existence of external jumps. The divergence behaviour of this statistic in the case of existing
external jumps is also investigated in Section 6. Here the two main results are Theorems 1.6.1
and 1.6.3. The former covers infinite activity jumps (J is a general semimartingale), while the
latter, Theorem 1.6.3, investigates the case of finite activity jumps (J is, for example, a compound
Poisson process). Of course, different divergence types and rates are proven, depending on the jump
activity. In particular, two different spot volatility estimators (see Definition 1.1.3) are investigated
as to their nature in the presence of external jumps. For their finite sample behaviour, Proposition
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1.6.5 should also be noted.

Section 7 explores the finite sample behaviour of the above mentioned jump test using numerical
Matlab computer simulations. A comparison between this test and the test of Barndorff-Nielsen,
Shephard [3] is made.

A further interesting question is the behaviour of the test statistic, if the volatility process o
itself possesses any jumps. Section 5 is devoted to this point with the main results captured in
Theorem 1.5.3 and Corollary 1.5.7. If o possesses only small jumps that are not larger than a certain
boundary and there are no external jumps, Theorem 1.5.3 states that the statistic still converges
to the Gumbel distribution. On the other hand, Corollary 1.5.7 provides an counter example of
where the statistic diverges to infinity in the presence of an oversized jump. As a consequence, the
above mentioned boundary is sharp. In this section, for technical simplification we assume that
o is independent of W and b = 0. The technical benefits of these simplifications are discussed in
detail in Section 4.

As a by-product of the techniques developed in the Sections 1 and 2, we get a spot volatility
estimator, which converges uniformly and pathwise to the underlying true volatility process o.
This spot volatility estimator is investigated in Section 3. The optimal convergence rate of this
estimator is derived in Theorem 1.3.1 and a simple relationship between the convergence rate and
the smoothness of the volatility process ¢ is proven, cf. (1.42) and (1.43).

After completion of our research on this chapter, we became aware of a paper by Lee and
Mykland [26] that investigates a similar test statistic for jump detection as we found. The separate
research of an independent team with the same objective, emphasizes the importance and relevance
of this research topic. Lee and Mykland [26], however, approached the topic from an economic point
of view. We complement these investigations by an mathematically point of view with a much more
subtle analysis. In order to give a transparent overview, a concise comparison between their results
in [26] and ours in Chapter 1 follows:

The convergence to the Gumbel distribution, i.e. the case of no external jumps, is covered by
Lee and Mykland [26] under the following assumptions.

Assumptions of Lee and Mykland [26]. It holds for every e > 0 the asymptotic

(i)
— Op (n,(%,6)> , (1.1)

sup  sup
o<i<n i <t< i+1
n n

bt —bi

(iz)
—Op(n GO
sup  sup =0p(n 2
o<i<n igtgﬂ
n n

Ot — 04
n

for n — 0.

Recall for two families of random variables (X,,)nen and (Y5, )new with P(X,, =0) =0, n e IN
the notation

Ya
Y, =0p(X,) < Vi>03IK>0:supP||—
nelN Xn

ZK)§(5.

This is basically the same as claiming that the volatility process o and the drift coefficient b have

to be a-Holder continuous in a stochastic sense for every o < % Lemma 1 in [26] corresponds
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to Theorem 1.2.5 of this thesis. Here we prove the convergence in distribution to the Gumbel
distribution under Assumptions 1.2.3 which we restate below to facilitate a direct comparison:

Assumptions 1.2.3. Let the volatility o be pathwise Hélder continuous, strictly positive and let
the drift b be pathwise bounded. This means that there are two functions

a:Q— (0,1 and K :Q— (0,0)

such that
o (W) — os(W)| S K(W)|t —s]*@), 0<s,t<1, we

and
lor(w)| v b (w)] < K(w), 0<t<1, wel.

Note that our assumptions are much weaker since we do not have any Holder continuity re-
striction as in (1.1) concerning the drift coefficient, and ¢ — o4(w) simply has to be a(w)-Holder
continuous for every path. This means that « = a(w) does not have to be arbitrarily close to %
and even inf e a(w) = 0 is possible.

Concerning external jumps J, [26] requires J to have the special shape

dJ, = RydQ;, t=0

where @) is a counting process and R is the jump size. Furthermore, ) has to be independent of
W, and the jump sizes (R;); have to be i.i.d. and independent of W and @, compare the beginning
of the first paragraph in [26]. Concerning external jumps, we have proven more general results:
Theorem 1.6.1 is a statement regarding general semimartingales. In particular, external jumps of
infinite activity are possible. Moreover Theorem 1.6.3 treats finite activity jumps, but without any
dependency and distributive restrictions as in [26].

Finally, the interesting case where the volatility process o itself possesses any jumps is not dealt
with by [26]. This is covered in Section 1.5 in our investigations. As a by-product of our analysis,
we also get optimal convergence rates of an interpolation based spot volatility estimator in Section
1.3, cf. Theorem 1.3.1.

1.1 Technical preparations

Let (Q,F, (Ft)we[o], P) be a filtered stochastic space and let (W}),(or) and (b:) respectively be
(Fi)-adapted processes on this space. We assume here and throughout the chapter that the usual
hypotheses are fulfilled. W denotes a standard Brownian motion, o the volatility process, and b
the drift coefficient of the It6 semimartingales

t t t t
YtdéfJ o5 dWs, YtdéffadeS—l—Btd:effadeS—kfbsds, 0<t<l.

0 0 0 0

Throughout the chapter, we use the check notation }7, if we want to emphasize that this process
has a possible non-vanishing drift term. Note further that without loss of generality we always
consider the unit interval [0, 1] instead of an interval [0, 7] for some 7" > 0. This is only due to a
simpler notation.

In this section, the following assumptions (weakened to more natural ones in the following
sections of this chapter) are made:
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Assumptions 1.1.1. There are three global constants 0 <V < K < 0 and 0 < a £ 1, such that
we have for every w € €}

(i) o is pathwise bounded, i.e.
V<ow) <K, 0<t<l,

(ii) o is Holder continuous, i.e.

los(w) —or(w)| < K|t —s], 0<s,t<1,

(iii) t — by(w) is Lebesgue measurable and

b(w)| <K, 0<t<l.

We remark that any dependence structure between W, o and b is allowed.

In this chapter we are concerned with high-frequency statistical inference. To be more precise

we are working with the observation vector
N+1
(Y% (w0), Y (wo), -, Yy (wo)) eR (1.2)

for large N € IN and wg € Q. If there is a drift term, we observe of course the respective variant
with a check in (1.2). For our statistical experiment, this means, that we only observe one possible
realisation, i.e. we see only one trajectory w € 2 which we denote in (1.2) with wy. Furthermore,
we are not able to see the full trajectory, but only finite many dates at equidistant distance on the
timeline. In (1.2) the sampling positions are 0, %, ..., 1. This means that we observe exactly N + 1
dates on an equidistant grid and want to infer using this information.

In our approach we set N = n? for n € IN and interpret the above described grid of observations

as a double grid, in the sense that every observation position -5, I = 0,...,n? — 1 is uniquely
n
represented as
l kn+j .

So the grid on the unit interval separates to two scales: the rough one, which is indexed in (1.3) by
k, and the finer one, which is indexed in (1.3) by j. With this two-scale grid separation in mind,
the following abbreviations become natural:

Abbreviations 1.1.2. Let 0 < k,5 <n and 0 < ¢t < 1. We denote with

kn +j
T T

a point on our equidistant two-scale grid. The index k stands for the rough scale and j for the fine
one. Next, we approximate the volatility o with a step function via

n?—1
Et(w) = 2 ]1(

k=0

|

(00 5, @)

|

n

In doing so we can write the It integral

t
Y,; = f Ts AW, (1.4)
0
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in the closed-form expression

o thj B kn+j—1
Yi,, = G dW, = > o1 Wiy =Woo).

Next, regarding the increments of the finer scale, we set

AWkJJ = Wtk,j‘i’n% B Wtk,j’ Aka] = 1/;}6,]'4*”% B nk,j’ Aka] = Ytk,j"’n% _Ytk,j’
AByj =By, .1, — By,

and note that (1.4) yields
AYkJ = UtkyjAWk,j-

We further set
Zk,j = TLAW]CJ’

and observe that (Zy ;)o<k,j<n is a family of i.i.d. N(0, 1) distributed random variables, since W is
a Brownian motion. Finally, we set some abbreviations concerning the volatility:

Uk,j = Utk,j’ O = Uk,()a ek‘,j = Uk,j — Ok-

All abbreviations up to here are also defined with a check in an analogue manner.
Crucial in what follows are the following two high-frequency spot-volatility estimators:

Definition 1.1.3. Set for0 < k <n

& “ 2(n—1) Z |AY}, j|AYy j 1] (without drift),
J =0
n—2 - g

* = Z |AYy jl|AY | (with drift).

Note that the factor § in the above Definition 1.1.3 results from E|N(0,1)| = \/g Now we can
formulate our first essential proposition. In essence, this proposition makes the It6 integral for our
purpose mathematically feasible. The technique found in the proof is based on moment estimates
which follow from the It6 formula. This technique is motivated by the martingale moment inequal-
ities of Millar [27] and Novikov [31]. (See also Karatzas and Shreve [22][Chapter 3, Proposition
3.26]). Finally, the Markov inequality and elementary considerations yield the result:

Proposition 1.1.4. Set

def 2 . .

Ckj = OkjOkj+l — Ok, 0<k ,j<n, j<n-—1,
def -

F, = Uk n—l Z ok—l—ckj |Zk7]||Zk,]+1| 0<k<n,
def

Hkﬂ‘ = nAYkJ — (O‘k + Ek,j)Zk,j, 0<k,j<n.
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For every fized m € IN, there are two constants dy,ds > 0, such that the inequalities

dy
P(|Fy| Zz€) < Zam—Tgm’ 0<k<mn, (1.5)
do .

are true for every € > 0 and n € N. Furthermore, we have the trivial relations

3K?2

ne’

ler ] < —,  |ewyl < 0<k,j<n. (1.7)

ne’

Proof. We separate the proof into four steps. In the first step, we establish the already mentioned
moment inequalities. We prove (1.5) and (1.6) in the second and third step respectively. Finally,
(1.7) is verified in the fourth step.

STEP 1. Establishing the moment inequalities.

2m

N 2m tk’j+"712 _ ’UmK2m
k.j
with
U m"™(2m — 1)™.
To prove this, we apply Itd’s formula to f : z +— z?™ € C2(R) and
def ¢
M, = f (05 —Ts)dWs, tr; <t <1
t

k.
M is obviously a continuous martingale and f”(z) = 2m(2m — 1)z>™~2. This yields

th, it

the, i+ 5 B
M= (M) = [T st mem =) [ a2 a ),

nZ k,j tk,j
where (.) denotes the angle bracket, c.f. Jacod Shiryaev [20][p. 38 ff.]. Taking the expectation on
each side and using
S
(M), = J oy — T [2dr, tr; <s<1
tr,j
results in

oy 1
tkit s

EM?™ | EM?™ 2|0, —7,|* ds

tk,j""ﬁ

m(2m — 1) J
tg,j
K2 (trhitos
< m2m—1)— J EM?™2 ds
n*
K2 2m—2

< m(2m — I)WEMtk,j+%’ m > 1.

Note for the last inequality that (M2m~2 F,), is a submartingale. So we get (1.8) by iteration.
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Consider further

2m 9
U K™

, m=1 (1.9)

~

tk’j+n%
E f o5 dWy
t

k.j

with the same argumentation as in (1.8). So the Cauchy-Schwarz inequality together with (1.8)
and (1.9) yields

v K2m
E (JAY: ;™A j41 — AY 1 [™) < n;;mw m = 1.
Due to
- K2m def
EIAY o1 [ = 0F g BIAW a7 € =220 oy E BN, D™, m > 1,
we also get
1
— — (Vmpizm )2 K™
E(JAY i [M|AY; =AY ") < i — m2 1
STEP 2. Proof of (1.5). Note in this regard
2 n—2
s 2(? DAYk AT | (1.10)
7=0
2 n—2
™ — _
S o) IAYR jAY k1| = [A Yk A Y]l
7=0
2 n—2
™
m |AijAYk]+1_AijAij+l|
7=0
an n—2 . . .
s SV AYi A1 — AT |+ AT ke [[AYG — AT,
2(n—1) =

Moreover, we have together with the results of the first step and the Markov inequality

p (2 Z | Al |AY kg1 = A gjn |+ A Y1 [[AY — Ay | > ) (1.11)
n—2
1 2(n—1)
< [ <|AYI€J||AYk 1 =AY ] > 2 6)
= 2(n—1) mn
— — 1 2(n — 1)
Pl|AYg AY,: —AYri| >
+ <| kj+1 [|AY ki | 2n—1) n? 6)}
- UmKZmﬂ.anm (Umugm)%KQmﬂ.mn%n
=~ n2am-+2mem n n2am+2mem
dq
= nQam—lem’

and d; is defined over the last equality. Now (1.5) follows from the inequalities in (1.10) and (1.11)
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together with

2 "2 a2 2
oD 2 Ak AT kjur ] = g > 0k Ok 1| AW [ AW 41
2(”_1)].2;) J J 2(”—1);) JOk,j J J
T n—2
- 2 ) ) )
" 2 1) ;0(% + i) Zhl| 2k g1

and step 2 is accomplished.
STEP 3. Proof of (1.6). Consider for this purpose the decomposition
nAY]w' = nA ?k,j +7’L(AY/§J — A?k,j) (1.12)

(Ok + €hj) Zrj + n(AV}j — AYy )

and write, using the results in step 1 and the Markov inequality:

- 2m K2m d
P(In(AYy; — AY )| =) < ot

= e2mpdam+2m e2mpdam

where dj is defined over the last equality. Together with (1.12) this proves step 3.

STEP 4. Proof of (1.7). The first inequality in (1.7) follows directly from our Assumptions
1.1.1. The second inequality follows from the consideration

2K2 K? 3K?2

ne n2a

ekl = lok(erj + €rj+1) + €xjerjr1] <

and the proof is complete. O

Next, we prove two P-a.s. convergences. These follow from the above Proposition 1.1.4, Corol-
lary A.2 and Proposition A.3 in the appendix, and several Borel-Cantelli arguments. We use the
abbreviations

def

max fr = max fr, maxg - ax gri, neN
k o<k<n’"" Tkj T okgen”

for functions f resp. g with the domains {0 < k < n} resp. {0 < k,5 < n}. In addition f and g
may depend on w € Q.

Proposition 1.1.5. It holds for v < «
n? max [nAYy ; — opZy ;| = 0, P-as. (1.13)

and if additionally v < %, e y<aA %, we have, furthermore,

n’ max 62 — 02| -0, P-as. (1.14)

Proof. We separate the proof into two steps one for each equation.
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STEP 1. Proof of (1.13). We write, using the notation in Proposition 1.1.4,

n’max [nAYy ; — oxZy,j| = 0! max lex,; Zy,; + Hy,j| < Kn'™% max|Zy ;[ +n” max [Hy,|.
7.7 7] 7.7 ’J

Using Proposition A.3, (1.6) and the Markov inequality, this yields for n sufficiently large

P(n? max InAYy j — 012 | =€)
J

< P Krﬂ_o‘max|Z;€j|2E +P anax|ij|>E

kg 2 k.j ’ 2

2menm('yfa) en™ 7
< —mE(maX|ij + Z (|Hk7j| = 9 )
€ 0<k,j<n
om frm . 22m 2vm
< g (gm(log n?)2 + 2m!> + n2dy 2” n~dam
emn e=m

0] <;2) : (1.15)

for any fixed € > 0 and m large enough. The last equation holds because of v < « since
m(y—a) | —oo, 2ym—4am | —0, m T 0.
Next we set
Ay def limnsup {nV mkz;x InAYy j — 01 Z | = }} , lelN.
Then, because of Y _,n~2 < o0 and (1.15), the Borel-Cantelli lemma yields
P(A;) =0, leNN.
Since

© Cc
(U Al) = {n" max [nAYy j — oxZk, ;| — 0},
=1

)]

(1.13) is proven.

STEP 2. Proof of (1.14). In view of Proposition 1.1.4 we write

ml?X|8,% — o

n—2 n—2
T
<2(n_1) D Zkjl| Zk g | — 1> or + 2(? > kil Znjl| Zr gl + Fr

= max
k 3=0 =0
n—2 2 n—2
3K
< K? max Z |\ Zk | Zjia] — 1| + W Z max | Zg ;| max | Z 1]
+max|Fk|
def

= K? mkaxng ) + 12 +m]§x|Fk|. (1.16)
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Corollary A.2 and the Markov inequality imply

P <n7 m]iix ngk) > e) < Z P (ngk) > en*7> < nCe2mp2myp—m,
k=0

Using v < % we have
2my —m | —oo, m T oo,

so that the same Borel-Cantelli argument as in step 1 yields, for v < %, the convergence
n K> max 77§k) — 0 P-as. (1.17)

In order to apply the same argument to 72, we use Proposition A.3 and note that the random
variables maxy, | Zy, ;| and maxy, |Z ;11| are independent for every j = 0,...,n — 2. This yields

n—2
P (nv‘“ D, max | Zy j| max | Zy i1 | > e(n — 1)>

=0
n—2

< P (mgX|Zk,j|m§X|Zk,j+1| > 671&7)
=0

m
2

2
< (n=1) (2"(logn)¥ +2m!) e mnmO=e),

Since v < «, we have
1+m(y—a)l -0, m1tTowo

and Borel-Cantelli yields, for v < «, the convergence

n'ny -0 P-as. (1.18)

Finally, we consider (1.5) and estimate
n—1
P (n7 max | Fie| > 5) < Z P (|Fy| > en™) < ne~ MM dntT2em,
k=0

Again, since v < «
24+ym —2am | —o0, m T 0,

so that Borel-Cantelli once more yields, for v < «, the convergence
n’ max |Fr]| >0 P-as. (1.19)

Lastly, an application of (1.17), (1.18) and (1.19) to (1.16) proves the claim (1.14). O

Our next proposition is the first one which acts with the drift term. Note that this proposition
is itself interesting because it provides a possibility to estimate the spot volatility pathwise and
uniform on a grid. We provide a refinement of this result in Section 1.3 where we investigate a spot
volatility estimator, constructed via linear interpolation from the gridpoints.
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Proposition 1.1.6. We have for all v < a A 5 the convergence

n’ max |Gk —ok| > 0 P-as. (1.20)

)

Proof. First, we estimate

2 n—2
“2 o~ ™ - o
|Ul% -0l = m |AY | AYS i1 ] — |AY% 4] |AYE 1]
7=0
7TTL2 n—2 g = 5
S 3mo1) |AY j(AYg 41 — Ak j41) — AV i1 (AYj — AYg )
7=0
mn? n=2
< m |AY i ||ABy 1| + (|AYg j11| + |ABy j11])|ABg |
7=0
. n—2 B
< 2(n—1) (IAYk; =AYy [+ |AByj)|AB j 1] + |AYk ji1 — AY g jy1 [|ABy
7=0
7Tn2 n—2
IO |AY i l|ABy 41| + [A Yk jy1 [|ABy|
7=0
K "2 K -
< 2n—1) A =AY | + o5 Ak — AV | (1.21)
n =
ﬂ_KQ n—2
o =1y & [AWkal 1AWl
7=0

and write using (1.8)

n—2
(n” max ( 2 |AYkJ AYkJ | + |AYk7]’+1 - A?k,jJrl |> = 6) (1.22)
=0

€
< (|AYk9—AYm| =z on 7)
0
B n222mva2mn2m'y
= niam+2m2m
Further, we write
_ , _
T n—l g [AWij| +|AWgjnl) = n'™ max o —x ; | Zkj| + 1 Zk,j+1])
< nt

max |Zk7j|.
k.j
This implies together with Proposition A.3 the inequalities

P (n’y max Z |AW]§J‘| + |AWk7j+1|) = 6) < P(I%&X|Zk7j| = enlf"f) (123)
: 5]

nm(’y_l) m 2
g (2 (log n*)

m
2

/N

+ 2m!) .
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Finally, (1.22) and (1.23) yield, together with (1.21) and the same Borel-Cantelli argument as in
Proposition 1.1.5, for all v < 1 the convergence

n’ max |52 — 67| - 0 P-as. (1.24)

Now (1.20) follows from (1.24) together with (1.14) and

=2 9
-~ Op—0 _ ~ ~ ~
n” max |G — o] zanaxtk il <V I ( max |52 — 67| + max |67 — oF] | -
k ko + ok k k
Recall the definition of V' in Assumption 1.1.1 (i). O

1.2 Extreme value theory and jumps

Proposition 1.2.1. Let Assumptions 1.1.1 hold and let v < a A % be constant. Then, it holds

TMS§2'
nYmax |——2 — Z ;| >0 P-as. (1.25)
k,j O ’
Proof. Write
nAﬁ{ HAE{ nAKf _
max [——— —Zkjl < max|— 1 L4V 1max|nAij — 012 |-
k.j Ok ’ k.j Ok Ok k.j ’ ’

Based on (1.13) it suffices to prove for ¥ < a A 3 the convergence

n’ H];%X nA;;/k’j - nA:]:k’j — 0 P-as.
In order to prove this, note that
nt-0 H’iajx |AY ;| = 0 P-as. (1.26)
holds for every § > 0. Consider for this purpose
nt=0 max |AY; ;| <n™° max InAY}, ; — 032y j| + Kn™° max | Z ;] (1.27)

together with (1.13), Proposition A.3 and our standard Borel-Cantelli argument. Next, write

nAl?k,j nAYj, ;

W AYkjok — AYy,;5|
O o,

TkOk
n|(AYk,j — AY} j)op + AYy (o) — )|
GKO
2 ~
£ 4 n|AY, j|lok — 5%l

5k0'k

N

(1.28)
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Note further that we have because of (1.20) the convergence
max |Gron — o] < Km]?x |6k —ok] > 0 P-as.
This yields

2

mkin |Trok| = mkin(a,% — |Gror — oi]) =V — max |Grop — 0| > V2>0 P-as. (1.29)

Now choose § > 0 such that v+ 6 < a A % Then observe

),

K? - ~
n” max ( + n|AYy j|lok — ak|> < KX tgpls? max |AYy j|n7+0 max [oy — Tk |
n )]

— 0 P-as. (1.30)

where we get the convergence from (1.20) and (1.26). Finally, (1.28), (1.29) and (1.30) prove this
proposition. ]

Corollary 1.2.2. Set

def log(log N) + log(4n)
=4/2log N, by = — NelN 1.31
an 0g IV, N an 2 210gN ; ( )

and define a statistic T,, via

AYy
T, = nmax (J”) , nelN. (1.32)
k. Ok

Then, under the Assumptions 1.1.1 it holds the weak convergence
anz(Tn—bn2) —d>g, n — 0

where G denotes the Gumbel distribution, i.e. the unique distribution with the cumulative distribu-
tion function x — e ¢, z € R.

Proof. 1t is known from extreme value theory that

d
ang(rréaka,j —bye2) > G, n—ow,
7j

compare Example 1.1.7 in Haan, Ferreira [17]. This proves, together with Proposition 1.2.1, Slut-
sky’s theorem and Lemma A.7, our claim. O

Note that the notation of T}, does not distinguish between the presence or absence of a non-
vanishing drift term, i.e. there is no check notation. This is only due to a simpler notation and
should not cause any ambiguity.

Up to this point it was assumed that the Assumptions 1.1.1 hold. However, these assumptions
have the disadvantage that the two constants V' and K are chosen globally, i.e. they are independent
of the path w. Particularly (ii) in Assumptions 1.1.1 is a huge restriction. A path dependent
counterpart to the Assumptions 1.1.1 is, therefore, formulated which even allows « to depend on
the path.
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Assumptions 1.2.3. Let the volatility o be pathwise Hélder continuous, strictly positive and let
the drift b be pathwise bounded. This means that there are two functions

a: Q- (0,1 and K : Q- (0,00),
such that
o (w) — os(W)| S K(W)|t —s]*@), 0<s,t<1, we (1.33)

and
lor(w)| v b (w)] < K(w), 0<t<1, well (1.34)

Furthermore, we claim t — bi(w) to be Lebesque measurable for all w € .

Remark 1.2.4. Because every path is assumed to be continuous and strictly positive, it follows
from elementary analysis that

V(w) 4 inf o(w) >0, we.

o<t<1
We consider V' just like K as a function V' : Q — (0,00). Of course we still assume the processes

W, o and b to be resp. (F;) adapted.

In the following we generalize some of the results proved under the Assumptions 1.1.1 to the
weakened Assumptions 1.2.3. For this purpose we use stopping techniques and some properties
of the It6-integral. We start with the weak convergence to the Gumbel distribution as claimed in
Corollary 1.2.2.

Theorem 1.2.5. The statement of Corollary 1.2.2 still holds with the weakened Assumptions 1.2.3.

Proof. Define for each m € IN
of . 1 of .
Sﬁrp def inf {t =20:0.¢ {m,m]} , Sg) def inf{t >0 : |bs| > m}
and

S(3) défjnf{tzo cds <t oy — o4 >m|t—5|%}

with inf @ % 1. Clearly S and S are stopping times as outlined by Protter [35][p. 4].

Furthermore, S,(g’) is also a stopping time because of

1
P <tt= U A{low—0ul>mle-al=}er,
0<qq<qo<t,
q1,92€Q

taking into account that the Filtration (F;); is right continuous. Set
def (2 1
. .
Am = Q{ng{)=1}m{m<00<m}.
]:

Then (1.33) and (1.34) yield A,, T Q. Note that o5 is Holder continuous with exponent + and
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)

coefficient m. We only need to consider the critical case s < ¢ = S,(g to verify this:

1
— 04| Slimm‘&(j) —— =5
k k

|O'ST(3) — 0| = li]£n|057(3)_%

Next set S, def ST(,P A S,(T%) A 5’7(3) and
olm g (o0)oy™ —i—l]l 1 1¢(00)
t [7m] t m [ m]
0 1e b, 0<t<1, meN

Then o™ and b(™) fulfill the Assumptions 1.1.1 with

a=V=— K=m. (1.35)
As o™ is (F;); adapted and t — bgm) (w) is measurable, we can define

t t
o [ [, e
0 0

Using results of Jacod, Shiryaev [20]|[p. 46 ff.] and the fact that S,, is a stopping time and
]l[i m] (00) € Fo, we obtain for every m € IN and 0 < ¢t < 1 the P-a.s. equality

t
- 1
(m) — Sm _ . il
JO o dWs =11 1 (00) (Yi + L(s,, 11 () (We WSm)USm) 111 a1e(00) W

This yields
V(W) =Yiw), 0<t<1, weApyn NS,

for a family of negligible sets (V,,), so that we have for every r € R

Plan(TS™ —b,) <7) < Plan(T), — by) < 1) + P(A%), m,neNN. (1.36)
Write T3™ for the statistic T, in (1.32) with V(™) instead of Y. Then Corollary 1.2.2 yields

an(T™ =) 5G, n—w (1.37)
for all m e IN. From (1.36) and (1.37) follows
linilian(an(Tn —b,) <r)=G((—oo,r]) — P(4;,), meN,
so that we obtain because of AS | &
limnian(an(Tn —b,) <r)=G((—oo,r]), relR.

Similar considerations yield

limsup P(an(Ty, — by) <7) < G((—o0,7]), 7E€R,

n
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providing the final prove for Theorem 1.2.5. O

Next we generalize some P-a.s. convergence results to the weakened Assumptions 1.2.3 with a
fixed 0 < a < 1. To be more precise, we establish the following Corollary.

Corollary 1.2.6. Assume that the weakened Assumptions 1.2.3 hold with a function a independent
of the path w, i.e. a > 0 is constant. Then the P-a.s. convergences (1.13), (1.14), (1.20) and
(1.25) still hold.

Proof. First, note that the requirement on «, not to depend on the path w, is natural in view of
what we are going to verify in this corollary. We use the same stopping techniques and notations
as in Theorem 1.2.5 with the only difference that we replace ST(,?) with

SO L it >0 Is <t 1 |oy— 05| > mlt — |7} (1.38)
because « is a constant in our actual setting. Here, we only prove (1.20), i.e.

n’ max |G — o] > 0 P-as.
for all vy < a A % because the proof of all assertions is based on the same idea.
Define (5']E/,m))k=0,.‘.,n—1 as a function of (Aivf,g?))%k,j@ instead of (A}vfk,j)ogk,j@, ie.
n—2

2
~(m ™ o (m o(m
&) = =1 SN AVIINAY | 0<k<n, meN.
=0

Then, (1.20) states that we have for every m € IN, the convergence

n’ max |5,(§m) - U’gm)|(w) —0, n—ow, wedl, (1.39)

)

for a negligible set M,,. Crucial for this proof is, that we have
5" (w) = G " (w) = <k Am o NE N
. r(w), o (w)=0rw), 0<k<n, weA,nN,, mmnel, (1.40)
with A,, as in Theorem 1.2.5 and A,, T Q. Now fix any

weAd§f<U AmmN;>m<U Mm>c.

melN melN

Then there is a number m € IN with w € A4,, n NS, n MF,. Hence, (1.39) and (1.40) yield

w7 max [ — o (w) "2 max 5 = o)) 50, 0 o0
J J
Since A, T €2, we have P(A) = 1 and our claim is proven. O

Remark 1.2.7. The rate o /\% in (1.20) is optimal as described in the next Section 1.3. Concerning
the optimality of (1.13), choose the deterministic volatility

def
0, = 14s% 0<s<1.
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Then we get using the It6 isometry

limsup E (n®[nAYy -1 — 00Zon-1])° = 1.
n

For this reason n® maxy, j [nAY}, j — 01 Z ;| does not converge in L? to zero. We obtain this result
by considering the equations

i1 11
n  p2 n  p2

1 2 1
E(nAYyn—1 — UOZO’,Z_l)2 =n’E (Jn (o5 — 00) dWS> =n? Jn (05 — 00)? ds

and
1 1

! = 1 1 1 2« 1 1 2a 1 2«
2 2
Jl (05 = 00)"ds = J sds 2 n?2 <n a n2> T n? <n> <1 B n> ’

_ L L
n  n2 n p2

Finally, we state (1.25) itself as a theorem under the weakened assumptions because this result
is quite interesting in view of building a jump test in combination with Theorem 1.2.5.

Theorem 1.2.8. Let the weakened Assumptions 1.2.8 hold with a constant « > 0. Then we obtain
forall v < a % the convergence

AY}, nAYj,
n” [nmax vk’J —max Z j| < n” max |[— LY Zyj| =0 P-as.
kj Ok k.j ’ k.j Ok ’
Proof. This is a direct consequence of Corollary 1.2.6 together with Lemma A.7. O

1.3 Uniform and pathwise estimate of the spot volatility

In this section, we are going to present an estimator for the spot volatility process o, such that the
estimated spot volatility converges uniformly and pathwise to the true spot volatility. The optimal
convergence rate of this estimator is revealed. We emphasize that we only need very weak and
natural assumptions to establish the convergence. To be more precise we assume the Assumptions
1.2.3 with a fixed 0 < a < 1. Our estimator is a linear interpolation of the realised bipower
variation estimator in Definition 1.1.3 on the grid. Hence its calculation can be done very easily
and quickly. A similar approach with a kernel type estimator was also taken by Fan and Wang
[15]. They reach similar convergence rates as our test in the case a > % The case o < % is
not covered by their results. An interesting result in [15] is the weak convergence of a suitably
scaled supremum norm to the Gumbel distribution (Theorem 2 in their paper) which is valid in the
case that o is stationary. Nevertheless, we are interested in pathwise, uniform convergences under
consideration of the parameter o. Note also an interesting alternative approach by Hoffman, Munk
and Schmidt-Hieber [18]. They use a wavelet type estimator and consider the LP error, p < co.

In order avoid confusion with the notation, the time argument of all processes in this section
is denoted in brackets and the grid fineness is denoted with an index. For (1.41), this means, for
instance, &) is denoted as &, (%) Set
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Then the statement (1.20) in Corollary 1.2.6 yields, together with

5 (”;1) —U(Z)‘ <5, (”;1> o (”;1)‘ K (W),
5 (i) s (5)‘ 50, P-as. (1.41)

forall v < a A % Equation (1.41) is our starting point. Next, for every n € IN, a natural estimator

nY

the convergence

n”7 max
0<k<n

%, for the spotvolatility o is defined which is based on n?+1 equidistant high-frequency observations

at the time points 0, n—lg, %, ..., 1 of the underlying process Y, i.e. we have

Fn:QX[O,l]—)R.h n e IN.

For this purpose 7, is defined to be the linear interpolation of the points (5n (%))k:o 1 - This
formally means
1
70 05 (50) + (1= r0), (KO + 1) 0<t<1 e
n

with the two deterministic functions k,r : [0,1] — R+ defined via

t -1
ey g cn, e n
n n
and
1, tef{0,1,...,n—1
r(t) < et ! }, 0<t< L
[nt] —nt, else

An estimator 7,, in the case of a vanishing drift term is defined in an analogous manner. Note
that our interpolation-based estimators coincide with the estimators in Definition 1.1.3 on the grid
points. Next we define for every 0 < a < 1 the following sets

V, & {(g,b) : (o,b) satisfies Assumptions 1.2.3 with constant a}

and denote for any continuous function f : [0,1] —» R with

[l < sup{| F®)] : 0 <t < 1)

its supremum norm.

Now, a theorem concerning the convergence of the spot volatility estimator 7, can be formulated

Theorem 1.3.1. Let the Assumptions 1.2.3 hold with a fired 0 < a < 1. Then, we have for all
y<ana % the convergence
n |7 —0lw =0, n—ow P-as. (1.42)

and the upper bound a A % s sharp in the sense that

-a.S. 1
{ﬂ eR : n°|%, — o)l g for all (o,b) € Va} - (—oo, 5 A a} . (1.43)



1.3. UNIFORM AND PATHWISE ESTIMATE OF THE SPOT VOLATILITY 23

) . (anl
Hence, the optimal convergence rate is n (angz),

Proof. The proof is divided into two steps. The first one is devoted to the convergence result (1.42)
and the second one to the rate result (1.43).

STEP 1. Proof of (1.42). Using the linear interpolation approach, it holds for 0 < ¢ < 1

[Tn(t) =@ < [Ta(t) = Tn(R@)] + [T (k@) — o (RD)] + |o(k(t)) — o (D))

< e (i) + o) ot + 53
<! (Omkx 5 (7’2) 0 (?’2)‘ + K<w>) (D) — o (k1) +

which implies together with (1.41) the claim (1.42).

STEP 2. Proof of (1.43). Set for any 0 < a < 1
o(s) =14+s% 0<s<1,

i.e. o is positive, deterministic and the prototype of an a-Ho6lder continuous function. Furthermore,

set b = 0 and note that (o,b) € V,. Fix any § > «. In what follows we are going to prove the
pointwise divergence

07 = olw(w) =0, n—oo, wel (1.44)
This divergence to infinity is due to our interpolation approach. To prove it, we write for 0 <¢ < 1

~

m(t) = r®[o(k() = (o(k(t) — on(k(t)))]

o o )0 2) - (v )

which implies

Tn(t) —o@)] =

\%
<
—~~

o~
=~
Q
—~~
™
—
~
~—
S~—
|
Q
—~
~~
=
|
—~~
—_
|
<
—~~
o~
~—
S~—

so that we obtain

[0 = 0lloo = 3 sup {T(t)la(k(t)) —o(®)] =1 =r()

<t<1

- (k:(t) + :L) - J(t)‘} | (1.45)

Next, choose any 0 < A < g — 1 and set t, et ),=(1+N). Then we receive because of

th=(1—=n")-04+n nt
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the relations
k(t,) =0, r(ty)=1—n""

This yields
0 () loth)) = )] = (=)o () + ) = (e )
NG ((1 _ n-x) n—a(1+X) _ = (n—a _ n—a(1+x)>)

(1 — n”‘) p~HNFE _ pf=dma g pfAmalltN) o o o0 (1.46)

where the divergence to infinity holds since we have
—a(l+X) 4+ 3> max(f— X —«a,0).

Finally, note that (1.45) and (1.46) establish (1.44). With (1.44) in mind, it obviously suffices to
verify

P <nmsupné|¥n — 0o > 0) >0 (1.47)
n

for a pair (o,b) € V1 in order to establish our wanting claim (1.43). For this purpose, choose o = 1
and b = 0, i.e. Y is a standard Brownian motion and it holds obviously (o,b) € V;. Now, (1.47)
holds because of the classical central limit theorem (CLT) for i.i.d random variables. Nevertheless,
a rigorous proof of (1.47) is provided in the following: Note that

1 m?2 2 mmr "2 2
i SAY||AY | -1 = ZoillZo.ia] — 2 ) .
"\ 3o ;:OI 07| AY0 1] 1) ;:0 (| 0.411Z0,5+1] ﬁ)

Write Z; def Zyj, j € N and consider a decomposition as in (A.9), i.e. write

n
def 1 2
57(11)—’_57(12)—’_6” g n 2 2 (|Z‘7||Z]+1|_ﬂ—> s nelN (148)
j=1
&9 S NO,7), 7% SVarlZi||Zal, j=1.2
and

¢n — 0, P-as. and in L? (1.49)

in the limit n — oo respectively. Note next that

GRETRIE (1.50)

nelN

is a family of uniformly integrable (u.i.) random variables because of
Bl&D + 621 <8 (BIEON + Blg?|)
and Proposition A.1 together with (A.8). Now assume that (1.47) is not true. This and (1.49)

imply
V162 50 Pas.
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Since (1.50) is u.i. it necessarily follows
ElgD + 62712 =0, n— oo,

But this is a contradiction to (1.48) because of (1.49) and the equations

2
S 2 1 2 2
(Z (zlzal-2)) = & % B|(1z1201-2) (1220 - 2)]
j=1 0<j,k<n
1 22
= N E(|1Z,1Z1] - 2
228 (1l 2)

= Var|Z;||Z2| > 0.

SRS

This proves (1.43). Thus, the proof of this theorem is completed under additional consideration of
(1.44). O

1.4 Simplifications in the independent case

In this section it is assumed that the Brownian motion W, the volatility ¢ and the drift coefficient
b are independent. A proof of the quadratic variation version of Theorem 1.2.5 is stated with the
additional restriction that 0 < o < 1 is a constant, which, in this context, is the same as saying

inf a(w) > 0. (1.51)

wes)
Note that we estimate the spot volatility in the following Theorem 1.4.2 with the realised quadratic
variation, i.e. by using the squares of the increments and not the product of two neighbour incre-
ments (realised bipower variation) as in Theorem 1.2.5. Nevertheless, after a few minor changes,
the proof of Theorem 1.4.2 also holds with the realised bipower variation estimator of the spot
volatility. Vice versa, Theorem 1.2.5 is true with the realised quadratic variation estimator, i.e. in
this sense both estimators are equivalent. Concerning external jumps, both estimators, however,
are different. Their differences are investigated in more detail in Section 1.6. As already mentioned
above, a redefinition is performed.

Redefinition 1.4.1. Set for 0 < k <n

57 € n ) (AY;)? (without drift),
=0

n—1
57 C 0 Y (AYiy)?  (with drift).
j=0

Due to the independence of W, o and b, we are capable to give a direct and simpler proof than
the one of Theorem 1.2.5. The proof of Theorem 1.4.2 is based on the following representation (1.52)
which yields an immense technical simplification. For example, Proposition 1.1.4 is not required.
Representation (1.52) loosely states that we can assume w.l.0.g. that the volatility is deterministic.
In view of this interpretation our restriction (1.51) becomes natural. It is also customary to state
that we can condition on the volatility and drift processes.
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Theorem 1.4.2. The statement of Corollary 1.2.2 holds under the Assumptions 1.2.3 with constant
0 < a <1 and the Redefinition 1.4.1.

Proof. The proof is divided into three steps. The first one is based on the independence of W, ¢ and
b. Here, it is shown that we can work w.l.o.g. on another probability space which gives us a useful
representation of the stochastic integral. The second step contains a short proof of Proposition
1.1.5 without using Proposition 1.1.4 due to the representation (1.52). Finally, the third step
accomplishes the proof under citation of the proof of Proposition 1.2.1 from (1.28) downwards.

STEP 1. A new probability space. Let ((Nl, ]-N", IN’) be a probability space which possesses a sequence
(Zk.j) (k,j)emo x Wo» Zk,j ~ N(0,1) of i.i.d. random variables on it. Define

Q:Qxﬁ, .7:"2.7-"@.7?, P=pP®P
and set

51(@) = or(w), b(@) =bi(w), Bi(®) = JO bs(@)A(ds),  Zij(@) = Zp;(®)

where @ (w,@) € Q and ¢ € [0,1]. Then (5;), (Zx;) and (B,) are P-independent and the law of
(0¢) under P is equal to the law of (7;) under P. The crucial fact is that we have

tk,]""ﬁ 2 _ B d
(J o; dS) Zk,j; ABp = (AY%;, AByj)o<k,j<n- (1.52)
t

k,j .
0<k,j<n

See also (11) in Barndorff-Nielsen and Shephard [4]. This paper is based on the above representa-
tion. Since we intend to prove the weak convergence

a2 (Ty — by2) 5 G, (1.53)

we can consider w.l.o.g. the left hand side of (1.53) as a function of the left hand side of (1.52).
However, for a more convenient notation (£2, F, P) is written instead of (€2, F, P) and the overline
notations of the processes are not used.

STEP 2. An alternative proof of Proposition 1.1.5. First the two convergences

sz]

n 6mkax|Zk’j| — 0, P-as, 6>0 (1.55)
7‘7

1
n’ max — 0, P-as, (5<§, (1.54)

1

2
A2, the inequalities

(TL max > En_6>
1

and note that 20 —1 < 0 since § < 5. Thus, Borel-Cantelli yields the desired convergence. For

are established beginning with (1.54). Write for this purpose with § < 5, m € IN and Corollary

1 n—1
n i

2
2. Zh; 1
< n0672mn2m5n7m

~

LN
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proving (1.55), use the same argument with Proposition A.3. For completeness, we write for § > 0
and m € IN the inequalities

P <n_5 max | Zy, ;| = e)
k.j

N

€ M oM 2m logn ? +2m!)

= € "o (n*gm>
and note —% < 0 since § > 0. Next it is proven

nWI%axmAYk’j—Uka,ﬂ — 0, P-as., 7v<aq, (1.56)

5]

~ 1
n’ m]?x|a,% —0i — 0, P-as, y<ana 3 (1.57)

Starting with (1.56), we write using (1.52) the equality

2 tk"7+"% 2 ’ .
nAYkJ — (TkaJ = n Og ds — 0L Zkﬂ', 0< k,] <n.
t

k.j

Note that we obtain from the mean value theorem for Riemann-integrals the estimates

(67

k
Ekyj — —

b+
nQJ; " otds — o} |a§k’j — o] = |og,, + okllog,, — o] <2K - K

k.j

1
< 2K*—, 0<k,j<n (1.58)

ne’

where tg; < &y < trj + n% Next fix any v < o and § > 0 with 7 + é < « and consider the
inequality

L j‘l’%
2 s 2 2
n f o5 ds — oy,
t

k,j

n’ max [nAYy ; — opZy | <V~ L7+ max

-0
n~°max |Zy ;|.
k.j k.j k.,j | k7]|

This proves together with (1.55) and (1.58) the claim (1.56). Next, (1.57) is considered and for this
purpose it is stated

n—1 — 1
1 tei T oz
Uk—nE (AY;;)? nZ( Jt Ugds—az—i-Gi)Zij, 0<k<n

7=0 k.3

which implies

— -1 + .+L
1 1 e ki T
~2 E E 2 2 2 2
O Uk_ak (n : ’] E : n O'SdS Ok Zk,j

So we can estimate
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This yields together with (1.54) and (1.58) for v < a A 3 the inequality (1.57).

STEP 3. Drift analysis and handling the quotient. With the same argumentation as in the
proofs of Proposition 1.2.1 and Corollary 1.2.2, it suffices to verify

AV, nAY,
a2 max |l 2RI g pgs, (1.59)
k.j Ok Ok
To this end we first establish
nt=? H}€3X|Ayk,j| — 0, P-as., §>0, (1.60)
7]
- 1
n’ m’?x |6y —ok| — 0, P-as., y<ana 3 (1.61)

To prove (1.60) consider (1.27) and the statements (1.55) and (1.56). To prove (1.61) consider first
the analogue quadratic variation calculation to (1.21), i.e.

n—1
58 —5rl = n|X) AV, - IAYMIQ‘
§=0
n—1
< n ), ‘IAYk,j + AByj| — IAYk,jI‘ : ‘IAYk,j + AByj| + |AY )
7=0
n—1
< 1 ) [ABy;|(21AYh ] + [ABy)
j=0
K2
< 2K AY; |+ —. 1.62
max |AY ] + (1.62)

This implies for any fixed v < 1 because of (1.60) and (1.62) the convergence

n’ max |52 — 57| -0 P-as.

Now, we arrive together with (1.57) for v < a A % at the inequality

~ 5% — ok ~1 %2 A2 ~2 2
n”ml?x|ak—ak| anmI?xméV n’ ml?x|ak—ak|+m’?x|ak—ak|

which yields (1.61).
Having proven (1.60) and (1.61), the estimation of the quotient is exactly the same as in the
proof of Proposition 1.2.1 from (1.28) down to its end. O

1.5 Jumps in the volatility process

Jumps in the volatility process o cause some problems. Nevertheless, a positive result under
appropriate strong assumptions is our starting point.

Assumptions 1.5.1. Let the volatility o > 0 and the Brownian motion W be independent. Set
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further b = 0, i.e. absence of a drift, and assume

def .
= f e Q.
V{(w) ogtlgat(w) >0, w
Furthermore, fit 0 < e <1 and 0 < a < 1 and let t — oy(w) be caglad with, at most, finite many
jumps of size not larger than e(v/2 — 1)V (w) and a-Hélder continuous between the jumps for every

path w € Q. This means that there is a function N : Q — Ny and a sequence (S});=o of stopping

times with Sy def 0,

Sl(w) < Sl+1(w), 1< N(w),
Si(w) = oo, [ > N(w),

such that

holds for all
N(w)

(s,t) e | (Suw), Sra(w) A1), we
1=0
Here, N denotes the number of jumps in the respective path and (S;)1<i<n are the jump positions.
Furthermore, we claim

0< Ao, (W) <e(W2-1DV(w), 1<I<N, we®

and assume as usual
lov(w)] < K(w), 0<t<1, wel.

Remark 1.5.2. The volatility o is required to be caglad in the above Assumptions 1.5.1. This is
due to the needed predictable integrands in the Ito-calculus. However, since the Brownian motion
W has continuous paths, there is in fact no difference to the corresponding cadlag version, cf.
Karatzas, Shreve [22] or Jacod, Shiryaev [20].

Theorem 1.5.3. Corollary 1.2.2 holds under the Assumptions 1.5.1 with the spot volatility esti-
mator in Redefinition 1.4.1.

Remark 1.5.4. In general, Assumptions 1.5.1 say that sufficient small jumps with finite activity
in the volatility process are allowed. It turns out that the jump size bound (v/2 — 1)V is sharp in
the sense of Corollary 1.5.7 at the end of this section. We assume that W and ¢ are independent
to keep the technical overhead as small as possible. The independence has the advantage that we
can use the same technique as in the previous Section 1.4. In a way we generalize in what follows
the proof of Theorem 1.4.2.

Remark 1.5.5. For completeness, a formal proof is provided that such a sequence of stopping
times (S]);>0 as stated in the Assumptions 1.5.1 exists, N is measurable and that K can be chosen
as a measurable function. This is also important for the proof of Theorem 1.5.3. Assume for this
purpose that the Assumptions 1.5.1 hold and set for [ > 1
i) def {Position of the I-th jump in o(w), o(w) has at least | jumps,
Hw) =

0 else

)
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and set Sy 2. To understand that each S is a stopping time, an inductive argument is provided
Firstly, define for this purpose with r, s, u,v € @ and m,n € IN, the sets

def

Iu,'u,n

1
{(7“,5)6@2 u<r,s<wvand |r—s|<n},
def 1
Arsm = wel: o (w)—os(w)|>—7¢.

m

Sp is obviously a stopping time. Assume for the induction step that 5; is also a stopping time for
some [ € IN. Observe, furthermore, for ¢ > 0 and

Cuw & U ﬂ U Arsm €Fy, 0<u,v<1

meN nelN (r,s)ely v,n
the relation

{Sp<ty= |J (Si<s}nCirer

0<s<t,
seQ

which proves that (.S;) are stopping times due to the right continuity of the filtration (F;). Next

n

(N=n}=[1{Sm <o} {Sns1=0}eF, nel

m=1

yields that N is measurable. It remains to establish that K can be chosen as a measurable function
To understand this, set

o0
(o & Ot — 2 Adcg, ]l(Sl,l](t), 0<t<1, Aoy o 0
=1

and observe that v is (F;) adapted since o is (F;) adapted and (S;) are stopping times as proven
previously. Note that 1 is simply o without jumps. Since v is pathwise a-Holder continuous, we
can define

K(w) e sup [Ve(w) = ¥ (w)] v sup |op(w)| <o, we.
0<s<t<1, |7f — S|a 0<t<1,
s,teQ teQ

K is obviously measurable and fulfills the requirements of the Assumptions 1.5.1. Compare for

similar results in this context also Chapter I, Proposition 1.32 in Jacod, Shiryaev [20] or Chapter
I in Protter [35].

We assume w.l.o.g. P(S; =0) =0 and set

def
Kin = (InS]=1) Lyeny +n1g=ny,
def
Gl,n = {(gl,...,gl)e{O,l,...,n—l}l:gl<g2<...<gl},

I,n>=1.
Now we turn to the proof.

Proof of Theorem 1.5.3. Since the volatility ¢ and the Brownian motion W are independent ac-

cording to the Assumptions 1.5.1, we consider the same probability space as the one in the proof
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of Theorem 1.4.2. This briefly means that we can assume w.l.o.g.

N

tk’j+n% 9
AYy; = J osds | Zpj;, 0<k,j<n, nelN.
t

k.j

A precise consideration of the proof of Theorem 1.4.2 shows that we have proven

il—™0, n—ow, P-as.

where

N
k’e{O,l,...,n—l}—U{Klm}, jef{0,1,...,n—1}.
=1

Note that k' runs over all positions of the rough scaled grid in between the volatility does not
possess a jump. This implies that for proving this theorem, it suffices to establish the following
two convergences:

AYy ; AYys s
P<maXnAk’j—maank’]>0>—>0, n— o (1.63)
k.j Ok K. Ok
and
P (mkax Zij — max Ziy j > 0) —0, n— oo (1.64)
J A

This is due to the inequality
nAY;

"
max — — max Zy
k.j Ok k.j
nAYk/ i nAYk i nAYk/ ;
< max |——2 — Zp j| + | max — J _ max ——L | + max Zj ; —max Zy ; |, ne€N.
K'.j Ok ’ kj Ok Kj Ok kg 7 K'.j ’

The following is divided into three steps. The first two steps prove (1.63). The first step simplifies
the claim to a more elementary result which involves only the maximum of N(0,1) i.i.d. random
variables. This simplified result is proven in the second step. Finally, in the third step, the first
two steps are used in order to prove (1.64).

STEP 1. Simplification of the claim. Set

O — 0O
M o kak k Ck,j o nAYy; —oxZrj, 0<k,j<n
and define for any fixed 0 < v < a A %
£ N1 1 ¥
A {st s> L {v s (mn8) vai),
n
1=0
def 1 1 1 1
B, = max |— Z2 —1| < —, max|np| < —, max|(w | < —, maxZp; >0,
n { ko n & k.j R urg T |G 51 R
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def

with the notation {M;, My} = M; n My for any sets Mj, M. Furthermore, we have with

. N
ke | J{Kin}
I=1
the inequality
AY; AYy 5
P (maxn 2y —maxw > O)
k’j Uk k’vj Uk/
nAY; AYy
< Pl max— " > max "o A B, | + P(AS) + P(BS).
k,j 0% Kj o O

The proof of Theorem 1.4.2 shows P(BS) — 0, n — . Note also

limsup P(A{) < P(limsup AY) = P((liminf 4,)°) = P(&)

:O7

(1.65)

ie. P(AS) — 0, n — o0. Since we aim to verify (1.63), the above yields that it is sufficient to prove

that

nAY; AYy

o0
2 2 max k3 max >0, (Kin,.... K1) =9, N=1, Ay, B,
I=19eCh, oy Kj O

k.j k
tends to zero, if n tends to infinity. Define for this purpose

A = inf o5, 0<k<m,

5 def sup |Acs,| 1is,<1y < e(vV2—1)V.

Then we have for w € A, and every 0 < k < n, i.e. in particular for k

e k
Ae(w) € o5(w) € Ap(w) + 2K (@)™ + 6(w) € Ap(w) + 6n(w), -
This yields the estimates
1
A%EEZEJ >\k+5 ZZk], we A n
§=0

because of )
ti N e

k—nz (AY ;) —nZJ ! agdsZ,ij.

tk,j

Using this we can write with C), def A, n By, n € NN the inequalities

nAY; . nAYi ;
P maxik’]>maXA7k’], (K1, s K1) =9, N=1,C,
k.j oy kg (%

(1.66)
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1
1 2\ 2
n (=5 Ay +0,)%)2 Z5 . A )
< P | max (n2 kT )1 k’J>maxw,(K1n,...,Kln):g,N:l,C’n
B ey R ey e
(2 0-5)
)\N‘i‘(s Z Z/ L
< Plmax“E "R oy s 2 (K1, Kin) =g, N =1, C,
E.j Ax (1_%)5 ki 1+-5 V(l—ﬁ)

We have on A, for n large enough

Xy + 6, -3 21 o
MNptdn o 2V +e(+/2 )V=\/§+n—a

N v

—(V2-1)(1—e) <V2—k

for some constant £ > 0. So if g € G}, (1.66) is not larger than

No 1 2
Ve ——maxZyj — — | P(Kin,..., Ki) = g, N =1)

P nax
(1_%)5 ko 1+.5 K nz

where the latter maxima run over

l l
ke U{gj} resp. k'e{O,l,...,n—l}—U{gj}.
j=1 j=1

Here, we used the independence of Z and o. Define

g def V2 —K 2
D — —maxZ; > ——max Ly i — — Ibn=1,geGp,.
In T ax 4z 1 Wax 2 T b ; :
’ ( _%)5 k,j ’ 1+ = #, n
n

It suffices to prove P(D], ) — 0, n — oo with # = (0,1,...,l = 1) € G}, for every fixed [ > 1
because

18

P(Din)P((Kl,n7 LR 7Kl,n) =49, N = l)

T
—_
Q

m
2
3

[
M8

P(Df,) > P(Kipn,... Kin) =g, N=1)

=1 gEGlm
o0

< D P(D,)P(N =1)
=1

and

P(D},)P(N =1) < P(N =1), i PIN=))<l<w

holds. Finally, a dominated convergence argument, (1.65) and the results proven so far yields the
desired convergence (1.63).
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STEP 2. Convergence of (D[, )n. We know that

Qan def max Z~ by, =0, Bin def rilax Zy i —bn-yn > 0, n— o0 P-stoch.
k.j "2
Due to
P(Df,)
V2 —K 2
= P| ———(au+bim)> = (Bin +bn—iyn) — —x
_ 1y3 1+ = n2
( n“/) ny
V2 —kK 1 V2 —K 2
= P 1 1 &n — 1+ 7ﬁl n 1_"_7Lb(nfl)n - ibln T
-5 e i
and the stochastic convergence of (ay ), and (5;,)n to zero, it suffices to validate
1 V2 —
— b=ty — %bln — 00, n— 0. (1.67)
L =)
Substituting (1.31) in (1.67) yields
2log((n —I)n 2log(ln) + o(1), n — o
n"/
1+ 13?2 =
=, 2log | (n—Dn)( ) - 21og ((ln) m) +o(1).
Since ] 9 _
: 5 > 1, T 22-Kk<2, n-o oo,
(1+75) a7

step 2 is accomplished.

STEP 3. Proof of (1.64). Write as at the end of step 1

P(maXZk]—rEaXZk/ >0, A)
J

k.J

o0
< > D> P(Tza;xz%,nga;xzkgj, (Kip,..., K1) =g, N = z)

0
Z Z (maxZ~ >maka/ )P((K17n,...,Kl7n) g, N =1).
I=1g9eG

k,j

Again it suffices to establish

P (I%%X Zy ;> Iillajx Zk/,j> -0, n—oow (1.68)

for every fixed I € IN and g € Gy,,. It appears that the proof of (1.68) is a simpler version of what
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was performed for the second step (set xk = 1). O

In the following, we demonstrate that the bound (1/2 — 1)V is sharp in a certain sense. Our
main result in this context is Corollary 1.5.7 which is a stochastic generalization of the following
Proposition 1.5.6. We illustrate that the convergence to the Gumbel distribution does not have
to hold, if there is an oversized jump in the volatility process at some irrational position. Such
an irrational jump position causes some problems since our grid consists of equidistant rational
points. Compare the proof of the next Proposition 1.5.6 for an rigorous argumentation.

Proposition 1.5.6. Let h and c be two numbers, such that h > /2 and 0 < ¢ < 1 is an irrational
number. Set

tE hlpg(t) + 1), 0<t<1

and b = 0. Then, there is a sequence (n;); of natural numbers, such that n; 1 oo and

P(T,, —baz>e) —1, > (1.69)

ny
for all e > 0. This implies in particular
ap2(Ty, —b,2) G, n— oo

Proof. We use the fact that the spot volatility estimator 5 in Redefinition 1.4.1 estimates the

k k“]. Thus, if the spot volatility jumps in

average value of the spot volatility in the interval [
this interval, we make obviously an error depending on the jump size. Our intention in the following
is to make this error as large as possible to get the negative convergence result (1.69).

The proof is divided into two steps. Similar to the proof of Theorem 1.5.3, the first step
simplifies our claim, so that it remains to prove a more elementary result which involves only the

maximum of N(0, 1) i.i.d. random variables. We prove this result in the second step.

STEP 1. Simplification of the claim. We have

t hW, t<e
Y;tzf osdWs =
0 Wy —We.+hW,, t=>ec.

Let
fnt) = [n%t] —n|nt], 0<t<1

denote the fine scale position of ¢, compare with the beginning of Section 1.1, and choose 0 < k < n,
such that c e (k kzl) Then we can write

fn(c)—1 n—1

~ h2
Gp = n Y (A +eantn Y. (AVi,)’ 0<epn < Z,f Jn(e)
Jj=0 j=fn(c)+1
fn n—1
n? 1
- Z Zk:] n Z Zi 5+ ek
] fn(c)+1

Next set
r o= 7__ € (0, 1) (1'70)
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and note that Lemma A.5 implies that we have two sequences (n;); and (k;); of natural numbers,
such that

r ki ki +1
lznlJ < fo(0) < |rmy], ce <n17 o > ,leN

and n; T oo. This implies together with the weak law of large numbers

B2 [rn] n—1
a,%l < = 2 lez,j + - Z Zl%z,j —rh?’+(1—r), l— o (P-stoch.)
J=0 j=|rni]+1

which implicates

P@E z1+20h®-1) < P|=N2Z2,+— 3 22, —1-r(h®—1)|2r(h’—1)
nl 7=0 m j=|rng|+1
— 0, [— o0 (1.71)
Next define b
def
A 2
Tror(h2—1) V2

cf. (1.70) and

n 2 ng

And note that we have for arbitrary € > 0 the inequalities

AYy,
P (Tnl - bn? 2 6) 2 P (nl max # — bnl2 2 6)

Uéj<[%nlJ o-kl

> P()\ max Zkl’j—b%26,3z1<1+2r(h2—1)).

¥ n
o<g<ryng

Thus regarding (1.71), it suffices to establish

P()\ max Zkhj—nge)—)l, [ — 0.

- n
o<j<ryny l

We complete this in the second step.

STEP 2. Divergence to infinity of a A-scaled partial-maximum. Crucial in what follows is that
we have the lower bound A > \/i, which is due to the choice of r. The notations

def def
Ml = max Zkl,jv Al =

0<] <rin;

Aryng (Ml - bmnl) s =1

are used in the following. We know that A; E»Q, [ — oo, cf. Lemma 1.1.7 in Haan, Ferreira [17],
and write

P(AM,; — bnlz >e) = PM\A+ armlbrml) — Qyyn; b

1
= P (Al = X (anmbnf + armle) - annzbrmz) .

n2 Z Ay €)
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Obviously it suffices to establish

1
anlz — by, = —00, [ — o0

This follows after a substitution of (1.31), i.e.

bpz = Abpn, = r/2logn? — A\y/2log(riny) + o(1), 1 — o

= 2¢/logn; — V2 /logr; + logn; + o(1)

L log 1y

= 24/logn; | 1 — +1|+o(1
B V2 log e
1
> 1

— —w, | — 0.

Corollary 1.5.7. Let (Q,F,(Ft)o<t<1, P) be a filtered probability space. Furthermore, assume
that W is a (F¢)-adapted Brownian motion on this space and that there are two random variables
S,H : Q — R, such that (S, H) is Fo measurable and independent of W. Next assume that the
distribution of (S, H) has an atom at some point (c,h). To be more precise, it is stated

P((S, H) = (¢, 1)) > 0
for some pair (¢, h) with
0<ec<1l,c¢¢Q h>V2

Further set

S,H) def

o H 1po,51(t) + 1s11(t),

t
y(SH)  def J JSH g, 0<t<1
0
and define (T,ELS’H)) analogue to (T,)n as a function of (Yt(S’H)) . Then there is a sequence (n;)
n t

of natural numbers with n; T 00, such that
P (TT(”S’H) — bn? > e) -1, [—>w©
for all e > 0. This implies in particular

Ap2 (T7(LSVH) —by2) G, n—o oo

Remark 1.5.8. The assumptions of Corollary 1.5.7 basically say that the volatility jumps at the
position S with the jumpsize H —1if 0 < S < 1 and H # 1. Furthermore, there is a positive
probability that ¢ jumps at some irrational position with a jumpsize larger than /2 — 1. Note also
that the existence of a filtration as stated in Corollary 1.5.7 does not cause any problems. This is
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due to the fact that if H € F is a sub-o-algebra, which is independent of F7, then

def
(Wi, Heost<t, He=o(HUF), 0<t<1
is also a Brownian motion. We have to consider such technical subtleties because the construction
of the It6 integral needs o to be (F:): adapted.

Proof of Corollary 1.5.7. Using the independence of (S, H) and W, P((S,H) = (¢,h)) > 0 and the
statement of Proposition 1.5.6 we can write for any € > 0

n

P (T(S’H) b= e) - J P (T,QS:P” by > e‘ (S, H) = (s,u)) dPSH) (s, 4)
R
> P((S,H) = (c,h))P (T,(LS’H) — b2 > e‘ (S, H) = (c, h))

— P((S,H) = (c,h))P (T,gcm b e) .
This implies with the same sequence (n;); as in Proposition 1.5.6 the divergence
P (T,gfm — b,z > e) -1, l>w®

and the statement of the non-holding weak convergence to the Gumbel distribution follows from
Slutsky’s theorem together with a,2 T 00 as n — 0. O

1.6 External jumps and divergence to infinity

In this section, the additional existence of external jumps is investigated. The behaviour of the
statistic a2 (T, —b,,2 ) in the presence of external jumps is of particular interest in regard to Theorem
1.2.5 and Theorem 1.5.3. It turns out that this statistic converges to infinity under appropriate
assumptions, compare Theorem 1.6.1 and Theorem 1.6.3 in this section. So we can use this statistic
in order to distinguish between the jump case (convergence to infinity) and the non-jump case
(convergence to the Gumbel distribution). We investigate by use of numerical simulations the
finite sample behaviour of the resulting statistical test in the next Section 1.7. In order to get
asymptotic correct confidence intervals, we use the quantiles of the Gumbel distribution.

We begin with a quite general result about semimartingales. Note that semimartingales have
in general infinite activity jump paths. Observe for this that a Lévy process is some kind of a
prototype semimartingale, cf. Jacod, Shiryaev [20][Chapter II, § 4c] and that every Lévy process
which is not compound Poisson, has infinite activity jump paths, cf. Cont, Tankov [11][Proposition
3.3].

Theorem 1.6.1. Let (Xy, Ft)iefo,1] be a semimartingale with cadlag paths and

A weq : Aye(0,1] : AXy(w) > 0} (1.72)

Let v < % We assert the convergence
n Ya,2 (T, — by2) = o0 P-stoch. on A (1.73)

where ap, by, are defined as in (1.31), and T, is defined as in (1.32) with (X;); instead of (}v/t)t
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Proof. First, let us validate that A € F: Choose a sequence of stopping times (7}, ),en that exhausts
the jumps of X, cf. Chapter I, Proposition 1.32 in Jacod, Shiryaev [20]. Then,

A= U {AXTn>1}€f1§f.
m

n,melN

Define two functions k,j : (0,1] - {0,...,n— 1} by
k(t) = (Int] = 1), j(t) = ([n*t] = 1) =nM(t), te(0,1]

and set as usual

AXy; = X, ~ Xiy,, 0<kj<n.

1
kit 2

Choose @ € A and let 1) € (0, 1] be such that AX, (&) > 0. Then we have

lim inf max A Xy, (&) > liminf A X,
n k,j ’ n

G (@) = AXy(@) >0 (1.74)

where the equality sign above holds because the paths of (Xt)te[o,l] are cadlag. We establish for
arbitrary L €e R and v < % the convergence

P({nVa,2(Ty, —b,2) <L} nA)—> 0, n— o0
Suppose the opposite, i.e. the existence of a subsequence (n,), is assumed, such that
P({n, ap2(Tn, —bp2) < L} nA) >0 >0, r— o0 (1.75)
holds. Due to

n—1n—1
DY (AX;)? > [X,X]1, n—> o (P-stoch.),
k=0 j=0

cf. Chapter I, Theorem 4.47 in Jacod, Shiryaev [20], there exists a subsequence (my;); of (n;,),, such

that we obtain
m;—1m;—1

D DL (AN ) > [X, X]i, s— o (P-as),
k=0 j=0

This yields together with
[AXkj|IAX 1] < (AXkg)? + (DX j41)°

the equation

m;—1m;—2
P (limsup DD IAX I AX ja] < oo> = 1. (1.76)
L' k=0 j=0

Next consider the inclusions

lim sup{ml_7amlz (T, — bmlz) <L}nA
l

= limsup {Tml < — +bm12} N A
1 a
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c limsup{Ty, <m;"} nA
l
. \/Z/ml —1 AXkJ
= limsup max ——— T < m” A
z VIR (S AX | AX ki)
AXp
C limsup {max — uli - < Qmﬂ_é} N A
l R (il T 1AX il [AXEi11])2
mlfl mlfQ
-

2
lim sup { max AXk,j < 2ml'77% Z Z |AXk’j||AXk7j+1| N A. (177)
l k,j =0 =0

The P-measure of the set in (1.77) is zero because of v — 3 < 0, (1.74) and (1.76). Thus, the above
inclusions yield together with Fatou’s Lemma

lim sup P({mf”amlg (T, — bmlz) < L} n A) < P(limsup{my " am,(Tm, — bm,) < L} nA) =0,
l l

which is a contradiction to (1.75) because of (m;); S (n;),. O

Remark 1.6.2. Note that (1.76) is the crucial property that we need for the proof of the above
Theorem. This is a quite general assumption which is, for example, fulfilled by a semimartingal
as proven above. Naturally, this raises the question, whether we can improve the convergence rate
n"? in (1.73) under stronger assumptions. Assume for this purpose that we observe a process

vy

instead of a general semimartingale X. Here, Y is as usual and J denotes an additive, finite activity,
external jump process. Then we obtain the heuristic

n—2 n—2
n Z |AY]€7]‘||AY]€J+1| =n 2 |AYk7j + Jk7j||AYk,j+1 + Jk7j+1| = Op(1). (1.78)
=0 =0

Note for this that every couple of neighbouring increments possesses at most one jump if the
increment size is small enough, i.e. n is large enough. This is due to the fact that there are only
finite many jumps in each path. Using (1.78) we easily get the heuristic

AV,
nmax —0 = Op(n) (1.79)
kj Ok

with the self-explanatory notation (6%)o<k<n. Hence (1.73) should be true for each v < 1 instead
of v < %, i.e. we have the convergence rate n 1.
Note that, on the other hand, for the quadratic variation estimator in Redefinition 1.4.1 there

is the heuristic

n—1 n—1
5 =n ) (AVy;)® =n Y (AV,; + AJyj ) = Op(n),
j=0 §=0

so that only a convergence rate of n 2 can be expected, compare (1.79). Observe that the proof of
Theorem 1.6.1 also works with the quadratic variation estimator. Thus, the above heuristic implies
1

that Theorem 1.6.1 with the quadratic variation estimator yields the optimal convergence rate n™ 2,
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despite we have in general infinite activity jump paths.
The following Theorem 1.6.3 proves rigor to the above heuristic.

Theorem 1.6.3. Let Assumptions 1.2.83 hold. Assume furthermore that there are two families
(Hp)iew and (Rp)ew of random variables on the same probability space with

Rw)to, 0<Rw), RW)<Rp(w), [eN, we
and (Hj) arbitrary. Next, define a finite activity, pure jump process

o0
TN g, (), 0<t<1,
=1

set

VYV, +0, o<t<1

and define (T,,) in the usual manner as a function 0f17. Fiz any~y < 1. Then it holds the divergence
n Va2 (Th(w) —by2) >0, n—>w, weAnN (1.80)
for a negligible set N. See (1.72) for the definition of A.

Proof. The proof is divided into three steps. The first step proves two useful P-a.s. convergences
under the Assumptions 1.1.1. The second step proves this theorem under these Assumptions by
using the first step. Finally, the third step generalizes the results to the Assumptions 1.2.3.

STEP 1. Two useful P-a.s. convergences. Define two functions k,j : (0,0) x R — {0,1,...,n}
via
def

k(t,z) = (Int] = 1) Lo 1yx(0,00) () + 1 Li0,1]x(0,00)) (£, T),

. def

jtx) = ((InPt] = 1) = nk(t, ) Lo1)x (0,00) (> 2) + 1 L(0,1]x (0,00 (5 7)
and set

KUY k(R HY), iR (R HY), leN

and

def def

AYi; €AYy, €0, ifk¢{0,...,n—1}orj¢{0,....,n—1}.

We assume first the stronger Assumptions 1.1.1 with vanishing drift (i.e. b = 0) and show that
there exists a negligible set N € F, such that

n—2
W Y AY A s (@) = 0, n—o @ (1.81)

7=0
nVAYklR’leer(w) - 0, n—ow (1.82)

holds for every [ € IN, p € {—1,1} and w € N€¢ Starting with (1.81) and using the notation in
Proposition 1.1.4, we write

n—2
1 2
Wt IAY R A m ] < 0 mex |AY, |
=0 ’
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= 7 max | Hyj + (ok + e3) Z5°
7]
-1 2 2 2
< 2n (I%aX|Hk7j| + K mkax|ZkJ| ) (1.83)
7.] 7]

Note furthermore that we have, as stated in the Propositions 1.1.4 and A.3, for every m € IN the
upper bounds

do
P<%3X|Hk,]|2>6> < HZW, (184)
2™ (logn?)% + 2m!
P<f%a.x|2k,jlz>€> ¢ g )? xom! (1.85)
9. 62

Choosing m large enough and observing v —1 < 0, (1.83),(1.84) and (1.85) yield together with
Borel-Cantelli (1.81). Concerning (1.82) we write

n’Y|AYklR,le+p| <n¥ ! H'Ifj‘xmAYkﬂ <nvt (H/iix |Hk’j| + KHI}:)}X |Zk7j|) , pe{-1,1} (1.86)
and the claim is proven analogous to (1.81). Next we assume that the drift does not necessarily
vanish, and prove that also the check variants of (1.81) and (1.82) hold for some negligible set
which is w.l.o.g. equal to N € F. For this purpose, consider for (1.81) the following estimation of
the difference between the check and non-check variant:

n—2 n—2
n’ 2 |AYkﬁ7j||AYkﬁ7j+1| —n’ Z |AYkﬁ,j||AYkﬁ,j+1|
j=0 j=0
n—2 - -
< TL’Y Z ‘AYklR,jAYklR,jJrl — AYklR,jAYklR,jJrl‘
j=0
n—2 K K
j=0
2
< +2Kn" ! max |AY} ;.

n3—" k,j

This means, using the proof of (1.81), that the difference tends P-a.s. to zero. Hence, the check
variant of (1.81) is also established and the check variant of (1.82) is trivial because of the obvious
convergence

STEP 2. Divergence under the Assumptions 1.1.1. Set
AEA A Ne

with N as in the first step and set

1=10) Yinf{me N : Hyp(@) >0} =inf{meN : k8@) <n}, &eA.
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Assume w.l.o.g. v > 0. It obviously suffices to show that
A S liminf{n Ya,z2(T, — b,2) > L}
n
holds for all L > 0. Fix for this purpose any L > 0. Then we have

liminf{n Ya,2(T, —b,2) = L} n A

LnY ~
- liminf{TnZ n +bn2}mA

n

> liminf {T,, = n"} n A

= liminf{ﬁ n_lmax — éYk’j ~ i an}mf\
" VIR (T AV AT ka2

IJ
[NIES

n—2
~ 1 ~ ~ ~
A Y—=
hrr}llnf AYklRJZR =2n'"2 (2 |AYkﬁ,j||Aka,j+1|) N A
i=0

uJ

n—2
lim inf {A?klele + H; =2 <n2’71 (Z |AYkﬁ,j||AYkﬁ,j+1|> (1.87)

n i
}mx

Note that the last equality follows from 2y —1 < 1 and from the check variants of (1.81) and (1.82).
Consider for the last inclusion

N[

+Hln2771(|AYklR,le—1| + |AYklR7le+1|)>

- A

|AYklR,j||AYklR,j+1|
< (|AYkﬁ,j| + |A‘]klR,j|)(|AYklR,j+1| + |A‘]k:lR,j+1|)

= |AYkﬁ,j||AYkﬁ,j+1| + |AYkﬁ,j||AJkﬁ,j+1| + |AJkﬁ,j||AYkﬁ,j+1| + |AJklR,j||AJklR,j+1|7
and observe that we have for & € A and n large enough
ATy m (@) = Hi(©) >0, |AJpr ;@) =0, je{0,....n—1} = {jf}

because of Rj(®) 1 0.

STEP 3. Generalizations to the Assumptions 1.2.3. The same stopping techniques as in the
proof of Theorem 1.2.5 respectively Corollary 1.2.6 are used, but without the replacement (1.38).
Set

ym e yim g 0<t<1, mel.

We have proven so far that there exists a negligible set M,, for each m € IN, such that

n Va2 (T,(Lm) - bn2> (W) >0, n—ow, weAn M
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where T,(Lm) is in the usual manner a function of Y (™), Note that in the notation of Theorem 1.2.5

~

Fw) =Tifw), 0<t<1, wednn Ny, mnel

holds. Set

C
BY (U Am> N <U MmuNm> AA.
meN meN
Then we have with the same argumentation as the one in the proof of Corollary 1.2.6 that the
convergence
n Va2 (Th(w) —b

n2) = 0, n—>wo0, weB

holds. Finally, the claim of this proposition is proven by setting

N | M 0 N

melN

for the negligible set N in (1.80). O

As discussed above, we have shown that the bipower variation estimator is more suitable than
the quadratic variation estimator in the case of external jumps. Another interesting and natural
question is whether the bipower variation estimator converges even faster to the true volatility. It
will turn out that this is in general not the case. We want to analyse in what follows the exact
finite sample behaviour of both volatility estimators and assume for this that the volatility is the
constant 1, i.e. Y = W is a Brownian motion. Of course, this is a dramatical simplification, but,
nevertheless, this approach also provide some insight in more general volatility processes o: For
example, assume that o is independent of the Brownian motion W and that every path of o is a
regulated function. Then, we can condition on ¢ as described in Section 1.4 and, hence, assume
that o is deterministic. Finally, after an approximation of o by deterministic step functions, we
can use the results for the case o = 1.

We calculate in the following the L? distance of the respective volatility estimators to the true
volatility ¢ = 1. To not only have the two singular cases of the bipower and quadratic variation
estimators, we define a family

{r(n,p) : 0<p<1,0<k<n,nelN}

of volatility estimators which interpolate both cases in a natural way. Set for this purpose

52(n, p) < Z;L;(} | A P Ay [P (1.88)
k ) - .
B (X 1AV 47| AYi ')

and note that (62(n — 1,0))o<k<n yields the estimator in Definition 1.1.3 and (67 (n,1))o<k<n the
estimator in Redefinition 1.4.1.

Remark 1.6.4. To get a connection between the above discussed goal and the next Proposition
1.6.5, we have concerning the L? distance the equations (recall o = 1)

n—2

E (3 (n—1,0)—1) :E(z(nﬁ—nz

2
|nAYk’j||nAYk’j+1| - 1) = h(n - 1, 0) (189)
7=0
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and

n—1 2
E (3 (n,1) —1)* = (1 3 InAYi)? - 1) = h(n, 1) (1.90)

7=0

with h as in (1.91).

Proposition 1. 6 5. Let (Z-)0<j<n be a family of i.i.d. standard normal distributed random vari-
ables. Set for —s <p <3 3 andnelN

def 1 _
X % LS vz
j=0

and

h(n,p) < E <X(”p)) . 1>2. (1.91)

Then we obtain

h(n,p) flép)_i_fQ(f)’ _g<p<§’ nelN
where 2( ) ( )
1 sin® (£ 2 pr sin (BT
fie) = (]02_ ) cos(p2) +7sm(7)_3’ f2(p)—2<1— p2 )

and, in particular,

2

(f1(1), f2(1)) = (2,0), (f1(0), f2(0)) = <7; +7r—3,2—7r> ~ (2.609, —1.142).

Proof. Note first that in the strict sense, f; and fo are not defined on the whole interval ( 5 ‘;)
However, this causes no problems since we always consider the continuous continuations which
exist in this case. The proof is divided into two steps: first, some identities related to the Gamma
function are calculated, second, in order to derive the claims of this proposition, these identities

are used.

STEP 1. Identities related to the Gamma function. Denote with

u(r) € BIN(0, 1) efre™ de, r>—1

ol

the r-th moment of the standard normal distribution. Then we have using the substitution y = "””2—2

2 22 22 (* i 25 (r+ 1)
r)=— e 2 doe = — =2 leVdy="_T , r>-—1. 1.92
u) = — [ = v=2r (5 (1.92)
Note that the Gamma function fulfills the Euler reflection identity
T()T(1—z2) = — reC—17, (1.93)

sin(mz)’

cf. Theorem 1.2.1 in Andrews, Askey and Roy [1]. We require for the second step the functions

() L+ D=0, ) 2=, pe (<55)
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Now we can write using (1.92), (1.93) and the functional equation of the Gamma function
2 2 — 2 2 2

fp SEP\p (2P _fp (2P p 1_=*tp

T 2 2 m 2 2

2 1 2+p r 2+p rl1_ 2+p

s 2 2 2

- (—;’ Z’) \{0} (1.94)

vi(p)

|

s

3

N—
i
m

and

() 4F(3+2p>

(1.95)

[
3|
N
[\V]
|
= w
ol +
[\
S
— N——

|
Q|
o)

@ | |
NS
A%
e
m
|
DO | o
[\CR GV
N——
/
—
N | =
| =
——

Note that since v, v5 are continuous on (—3,3), the relations (1.94) and (1.95) hold on the whole
interval ( 5 2) if we consider as always the continuous continuation of the right-hand functions.

STEP 2. Calculation of the crucial moments. Starting with

EX2(n’p) — (EX(n,p))Q e (_3 3) neN
’ 2°2

Mp) = T X ()

(1.96)

the first and second moment of X (n,p) are calculated. This yields

1 - _
- Z |Zj|1+p|Zj+1|1 p) = v1(p).

n

For the calculation of the second moment, the random matrix

(12141 Zja | 7P| 20" P | Zppia | P)

0<j,k<n

is decomposed in its diagonal, two secondary diagonals and the remainder. This yields

EX*(n.p) = ZZ (121125l 721 26 P Zia | P)

( |Zo|2+2p|Zl |2—2p) + 2(n _ 1)E <|ZO|1+p|Z1|(1—p)+(1+p) |Z2|1—p)
2

n? == 2(n = V))E (%] 21| 77| 2| *7| 25 7))

- :\H -

= — () +2(n = D) + (0* = n = 2(n = 1)) (1 (2))?) -

Thus, we can rewrite (1.96) as

h(n,p)zi(W—3)+;(1—“11))), pe(—; ;) neN. (1.97)
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Now, (1.94) and (1.95) are substituted in (1.97) and it is calculated

_ n)eomb) 1ot (F) | sn(F)
nw = (v1(p))? 3_COS(p7r) P2 +2 P 3

(55 -1) e+ 2o () =
o(1- 1 o1 n (%)
( V1(P)> ( )

The remaining claims of this proposition concerning the values p = 0, 1 can be proven, for example,

fa(p)

by means of L’Hospital’s rule and a numerical calculation. O

Plot of f1 Plot of the L? distance with fixed p = 0, 1

i
Lo

o
.o,
25 1 ) .
- 2790000,
- TT%00
T PPP09000000000 Pe990

-15 -1 -0.5 o 0.5 1 15 o 5 10 15 20 25 30 35 20 a5
P n

Figure 1.1: Interpolation between the bipower-estimator and the quadratic-estimator

Remark 1.6.6. The left-hand side in Figure 1.1 is a plot of the function p — f;(p). Note Remark
1.6.4 and the definition of the function h in Proposition 1.6.5 to get the link to the finite sample
behaviour of the volatility estimators in (1.88). The quadratic volatility estimator possesses the
smallest L? distance to the true volatility o = 1 because of

The right-hand side in Figure 1.1 considers only the cases p = 0,1, i.e. our cases of interest. Here,
we have plotted the functions n — h(n,1) and n — h(n — 1,0), compare with (1.89) and (1.90).
Note that the quadratic term /: 2(p ) in h(n, p) particularly plays an important role for small n.

In conclusion, if external jumps are not of concern, the quadratic-volatility estimator is prefer-
able.
1.7 Simulation results

In this section, the efficiency of the test statistic (1.32) concerning a jump detection test is investi-
gated using numerical simulations. The resulting test is called the Gumbel test. Furthermore, the
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latter test is compared with a test developed by Barndorff-Nielsen and Shephard in [3], and both
tests are applied to a real dataset. For this purpose, some MATLAB functions were written.

First, consider the approximation to the Gumbel distribution in Theorem 1.2.5. For this purpose
the drift term is set zero and an Ornstein-Uhlenbeck process is chosen as the volatility process with
initial value @ = 1, mean reversion 4 = 1, mean reversion speed # = 0.5 and diffusion & = 0.2 which

is bounded away from zero, i.e.

dZ; = O(p—Zy)dt+o5dWy, Zp=a, 0<t<1, (1.98)
oy = maX(O.l,Zt). (199)

Here, W denotes a Brownian motion that is independent of the integrator W in Y; = Sé os AWy,

i.e. 0 and W are independent. In Figure 1.2, the grid sizes n—lg, n = 20, 50,200, 1000 are used and

the respective empirical distribution functions using 10000 paths for each n are calculated.

081

0.61

041

0.2

081

06F

041

021

Figure 1.2: Approximation to the Gumbel distribution

Next, set n = 50 and consider the additional jump process
Ny
Jo= YU, 0<t<1 (1.100)
i=0

where N,U, o, W are independent, N is a Poisson process with intensity A and (U;); are i.i.d. T’
distributed random variables with shape parameter k and scale parameter 6, i.e. J is a compound
Poisson process. Figure 1.3 presents four simulation plots with the respective settings A = 5,
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k= 10L? and 6 = ﬁ, L =1,2,3,4. This results in
L 1
EU;) = —, Var(U;) = .
(U) = 550 Varlli) = 3552

Note that it holds by the Chebyshev inequality

L 1 1
PlIWU——=|2 =)< —=
( ’ 50‘ 50) 10
and that, in the case of a constant, deterministic volatility ¢ = o9 > 0 and no external jumps
(J = 0), the process Y; = 0oW; is obtained. In this case, it follows that

00\/5_00\/5 1
nym /T 50

Hence, the jumps have a critical size in the sense that it is not clear whether they can be detected
or not. (recall @ =1 in (1.98))

E|Y@ —YL| ZU()E|WL| =
TL2 n2 7L2

0.8

0.61

0.4

0.2

10

0.8

0.6

0.4

0.21

20

Figure 1.3: Divergence from the Gumbel distribution

Next, the test proposed by Barndorff-Nielsen and Shephard in [3] is compared with the Gumbel
test. Barndorff-Nielsen and Shephard use the statistic

L2yl

Sp =
ﬁH,A‘Yn[l,l,l,l]
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with )
2
w= \/>, 9="" 4715
m 4
and
n?—1
v = AV, AY; =Yy - Y,
i=0 " "
n?—2
yib = |AY;[|AY 4],
i=0
n?—4
e |AY;]|AY;41||AY 42| [AY 5.
i=0

It holds according to Theorem 1 in [3]

S, % N(©0,1), n—o o
under certain conditions on ¢ which are fulfilled by the choice in (1.99). Furthermore, [3] states

Sn — —o0, n—ow P-stoch.,

if there is an additional external jump term J as in (1.100). Define the null hypothesis

Hy : there are no jumps
and the alternative hypothesis

H; : there are jumps (i.e. J in (1.100) is added).

We have the two errors types

Type I error : rejecting a true null hypothesis,

Type II error : failing to reject a false null hypothesis
and decide that a path @ possesses a jump on the significance level « € (0, 1), iff
G(ap2(Th(D) —by2)) =1 —a resp. F(Sp(®)) <« (1.101)

with
G(z) = G((—o0,z)), F(z)=N(0,1)((—00,2)), xzeR.

Figure 1.4 is based on a setting with the gridsize %, n = 50, the volatility process in (1.99) and

k5,1 =0,1,...,100
were simulated and it is verified that the Gumbel test is more sensitive than the test proposed in
3].

A =10, L = 4 for the jump process. Here, 2000 sample paths for each a =

In order to check whether the Gumbel test has a larger power, both tests were recalibrated so
that the type I error is exactly a for both tests. Hence G and F' are replaced by G, and Fj, in
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no jumps, Gumbel

no jumps, Barndorff-Nielsen
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Figure 1.4: Error types

(1.101) with
Go(2) ¥ P(a,2 (T — by2) < 2) = Gu(z), Fo(z) ¥ P(S, <z), zeR (n=50).

G, resp. F, were approximated with the resp. empiric distribution functions based on 10000
paths. Figure 1.5 shows the type I error calculated with 2000 paths per «. Observe the desired
approximation to the diagonal.
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Figure 1.5: Recalibrated type I error

As mentioned above, the power of the tests was calculated. It is defined by

power, = 1 — type II error,,
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with G, resp. F,,. For this purpose, we set A = 2,15 and L = 4.

0.7 1

oo 7
o6 | ) -
o 2 | 55 L 7
pp—— > e o8 o§ I
o, R g -
osf § s 7 - 7
é%@(s?o”)

oS " |

oal @S S |

2y © A‘

- osf 7

o3 -
o.af -

oz o -

S e ozl i

o -

.02 ©.0a ©.02 c.0a

Figure 1.6: Power of tests

In this sense, the Gumbel test clearly has more power than the test proposed by Barndorff-Nielsen
and Shephard in [3]. Nevertheless, note that only a special setting (here an OU-process as volatility
process and a I' distributed compound Poisson process as external jump process) can be simulated
and that the test statistic (1.32) has difficulties with jumps in the volatility process o, see Section
1.5.

usa

1975 1980 1985 1990 1995 2000 2005

Figure 1.7: Worldstock index

Finally, both tests are applied to a real dataset, i.e. the world stock indices of the USA and
Ireland. With

~

T =T, = a,2(Ty, — by2)
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the results

G(T™

Ireland

) =1, GTIym ) =1, G(TER,) = 0.99268, G(TI) =1

Ireland

and
F(Slreland) = 0, F(SUSA) = 0.81401

are achieved. Note that the Gumbel test not only indicates a jump but also states the position and
direction of the jump, i.e. whether we have an upwards or downwards jump. In order to detect
downwards jumps, we simply have to switch from Y to —Y and the maximum in the Gumbel test
statistic turns to a minimum . This, of course, is an enormous advantage over the Barndorff-Nielsen
and Shephard test.

The latter results indicate the following: Using the Barndorff-Nielsen and Shephard test the
world stock index for Ireland possesses a jump but that of the USA does not. Using the Gumbel
test, the index for Ireland possesses an upwards and downwards jump and that for the USA has a
downwards jump for sure and an upwards jump with high probability. The different results for the
indices of the two countries are not surprising considering that the Gumbel test is more sensitive
as discussed above.

We are grateful to Prof. Dr. Eckhard Platen for providing us the world stock index data set.
See in this context also the publications [19, 33] by Platen et al.
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Chapter 2

Lévy processes and dependences

In this chapter, we analyse the dependence structure of jumps in a multidimensional Lévy process.
This Lévy process is discretely observed in a low frequency scheme. To be more precise, let (X¢)i=0
be a d-dimensional Lévy process on a probability space (2, F, P ,,o) with the Lévy triplet (2, v, o).
Based on the equidistant observations (X¢(©));—o0,1,....n for some fixed path & € 2, we intend to
estimate the dependence structure of the jumps between the coordinates of X. Hence, we have a
statistical problem. Next, a rigorous formulation of what is meant by this dependence structure is
given:

First, we state a well-known concept proposed by Sklar [42]. In this context, see also the
monograph of Nelsen [28]. Given d random variables Yi,...,Yy : ((NZ,]-N", ]3) — (R,B), a well-
known concept to describe the dependence structure within (Y7,...,Yy) is provided by its copula
Cvyi,....y,- This is a d dimensional distribution function with uniform margins, such that we have

~

P(Yi <y1,... Y <ya) = Oy, (P <01), ..., POVg < wa)), w1,...ya€R.

Thus, a copula provides in a certain sense the additional information that is needed to obtain
the vector distribution from the marginal distributions. However, in this chapter, we deal with a
stochastic process

X :Ry xQ—>R?

and not with only finite many real valued random variables. Observe the notations
R, € 00,0), R* Y R\{0}, R* ¥R, ~R*.

Generally, it is problematic to determine the meaning of the dependence structure of X or even
the dependence structure between the coordinates of the jumps of X. Nevertheless, in the case of
a Lévy process X, a natural approach is reported by Kallsen and Tankov [21] which uses the fact
that X is characterized by its Lévy triplet (2, v, ). Here, v describes the jumps of X in the sense
that

v(A) = E|{te[0,1] : AX;e A}|, Ae B(R?),

cf. Sato [38][Theorem 19.2]. With the jump structure of X, we mean the dependence structure of
v. Observe the problem that v is in general not a probability measure, so that the copula concept
cannot be applied to v. However, it is at least known that

f |z|? A 1v(dz) < o
R4
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holds which implies v(A4) < oo for all A € B(R?) with 0 ¢ A. Thus, 0 € R? is the only possible
singular point. Based on these facts, Kallsen and Tankov [21] introduced the concept of Léuvy-
copulas. We concisely state in what follows the definition of a Lévy copula and the analogous
statement to Sklars theorem. We quote for this purpose the respective issues in [21]. See also this

paper for a detailed discussion on this topic.

St RE R o {0} and

sgn(x) def {

and write
(a, b] def (a1,b1] x ... x (agq,bq], a,be R

Definition 2.1. in [21]. Let F : S — R for some subset S < R For a,be S with a < b and

(a,b] € S, the F-volume of (a,b] is defined by

Vie((a,0]) & 3 (—)N@ F(u),

u€{ai,b1}x...x{aq,bq}

where N (u) def H{k : ugp = ag}|.

Definition 2.2. in [21]. A function F : S — R for some subset S < R? is called d-increasing if

Vr((a,b]) = 0 for all a,b e S with a < b and (a,b] < S.

Definition 2.4. in [21]. Let F : R'>Robea d-increasing function such that F(uy,...,uq) =0
if ui = 0 for at least one i € {1,...,d}. For any non-empty index set I < {1,...,d}, the I-margin
of F is the function F' : Em — R, defined by

Fl((w)ier) © 1lim 3 Fuy,...,uq) | | sen(us),

(us)iere€{—a,00} 11l iel®
where I¢ % {1,...,d}\I.
Definition 3.1. in [21]. A function € : R? 5 R is called a Lévy copula if
(i) C(uy,...,uqg) # 0 for (ui,...,uq) # (0,...,0),
(ii) €(uq,...,uq) =0 if u; =0 for at least one i€ {1,...,d},
(iii) € is d-increasing,

(i) €t (u) = u for everyie {1,...,d}, ueR.

Definition 3.3. in [21]. Let X be a R%-valued Lévy process with Lévy measure v. The tail integral
of X is the function U : (R\{0})¢ — R defined by

d d
U(z1,...,2q) def H sgn(z;)v (H I(ij)) .
i=1 j=1
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Definition 3.4. in [21]. Let X be a R%-valued Lévy process and let I € {1,...,d} be non-empty.
The I-marginal tail integral U' of X is the tail integral of the process X' def (XYier. To simplify

notation, we denote one-dimensional margins by U; def iy,

Theorem 3.6. in [21]. (i) Let X = (X',..., X% be a R%-valued Lévy process. Then there
exists a Lévy copula € such that the tail integrals of X satisfy

U'((zi)ier) = € ((Ui(x:))ier) (2.1)

for any non-empty I < {1,...,d} and any (z;)icr € (R\{OP/]. The Lévy copula € is unique
on ]_[;flzl Ran U;.

(ii) Let € be a d-dimensional Lévy copula and U;, i = 1,...,d tail integrals of real-valued Lévy
processes. Then there exists a R%-valued Lévy process X whose components have tail integrals
Ui,...,Uq and whose marginal tail integrals satisfy (2.1) for any non-empty I < {1,...,d}
and any (z3)ie; € R\{OD!!. The Lévy measure v of X is uniquely determined by ¢ and
Uy,i=1,...,d.

Proof. For the proof, refer also the paper of Kallsen, Tankov [21]. O

Our future assumptions in this chapter are going to ensure that the Lévy copula € has always
the special shape

Clu,v) = (2.2)

UU; (), Uy (v), w0 >0,
0, u<L0orv<0

where
Ulz,y) € v([z,0) x [y,0), Ui(@) € v(z,0) x Ry), Us(y) € v(Ry x [y,0)), @,y € Ry

Regarding this issue, also compare the remark in Kallsen, Tankov [21] below Theorem 3.6.

At this point we can specify the goal of this chapter: Our Aim is to construct and investigate
an estimator for the Lévy copula of v based on low frequency observations. The only existing
reference in this context is, to our best knowledge, the unpublished paper of Schicks [39]. This
paper, however, only deals with the compound Poisson case and will be discussed later in this
thesis in the next chapter. Note that also Biicher, Vetter [8] and Laeven [25] and Krajina, Laeven
[24] have published relevant information close to this subject. Nevertheless, all their approaches
work with the following high frequency observation scheme:

(Xe(@))t=0,8n,280,n8s DB =0, nAp — 0

which results in a completely different analysis than our low frequency observation scheme. Our
approach is mostly motivated by Neumann, Reif [29] and Nickl, Reif} [30] which provide the required
low frequency techniques for our needs.

This chapter is divided into three sections. In Section 1, we state an estimator 7, for the Lévy
measure v, which is based on the low frequency observations (X(@));—0,1,...,n. Our assumptions in
this section imply that the second moment of (7,,) and v exist, i.e.

f |lz|? v(dx) < oo, f |z|2 D (dzx) <o, nelN, well
R4 R4
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We prove in Theorem 2.1.5 the weak convergence of Borel measures
229 (d) S22 (da), 0 — co.

This means that we have P, 4-a.s. the convergence
f f(@)]a] D, (dx) — f f@)]a? v(dz), n— o0
R R

for all bounded, continuous functions f, i.e. f € Cy(R%). Our prove works only under the assumption
> = 0, i.e. with vanishing Brownian motion part. This is due to the fact that it is statistically
hard to distinguish between the small jumps of infinite activity and the Brownian motion part.
This issue is stated more precisely in Lemma 2.1.1. Note that Neumann and Reify [29] solve this
problem in the one dimensional case by estimating

de

Vo (dx) lef 0200(dz) + 2°v(dz), zeR, o2 def

instead of v. As a result, the exponent of the characteristic function gets the shape

ur 1—34
U, ofu) =iua + J e 5 i ve(dz), wueR,

R i
assuming that the second moment of v is finite, compare Section 4 in [29]. Unfortunately, such a
transition from v to v, does not work in the multidimensional case d > 2. Nevertheless, we aim to
estimate the Lévy copula of v under assumptions that do not exclude the existence of a Brownian
motion part, i.e. 3 # 0. Thus, we have to deal somehow with the small jumps of X.

This is described in Section 2. Here, everything is developed for the case d = 2. This is only due
to a simpler notation of the anyway high technical approach. We first construct an estimator Nn
based on the same n + 1 equidistant observations as 7, such that it holds under certain smoothness
and decay conditions on v

X —A a = M n —
PN CUIR(Oe b)) = Boa.)] = O, (PEEED) oo 23
with

R [0,0)2\{(0,0)},  n(a,b) ' |(a,0)] A |(a,b)[*

This is proven in Theorem 2.2.11. Note that the right hand side of (2.3) is independent of (a, b) € fR.
If |(a,b)] — 0, n(a,b) = |(a,b)|* — 0 slows down the convergence speed in (2.3). Vice versa
|(a,b)| — oo implies n(a,b) = |(a,b)|?
treating the small jumps is sufficient of getting satisfying results concerning the estimation of the

— o0 which accelerates the convergence speed. This way of

Lévy copula. Note that (2.3) also yields estimations for v([a, ) x R4) resp. v(R4 x [b,00)) by
setting @ > 0, b = 0 resp. a = 0, b > 0. Our assumptions in this section ensure that the Lévy
copula of v can be written in the form (2.2). We are capable to estimate U, Uy, U, with the use of
(2.3). Our intention is to create a plug-in estimator for (2.2), i.e. we also need an estimator for
U, !k =1,2. This basically works by building the pseudo inverse of the estimator of Uj. At this
point, we again have to pay attention to the small jumps. This inverting procedure is performed
by Corollary 2.2.13 which is the stochastic counterpart of Proposition 2.2.12. This proposition
contains the analysis needed for the inversion operation. Finally, Theorem 2.2.14 states that the
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resulting plug-in estimator &n uniformly converges on compact sets bounded away from zero with
1
a convergence rate (logn)~z, i.e.: It holds for two arbitrary and fixed numbers 0 < a < b < w0 the

asymptotic
~ (loglogn)g)
su C(u,v) — Cp(u,v)| = O —]. 2.4
s (€)= ()] = O, (FE2EE (2.4

The term (loglogn)? in (2.4) is not relevant in the sense that we have

(loglogn)?
(log n)

for all € > 0. Note that the convergence in (2.4) holds in a wide, non-pathologic class of Lévy
triplets which contains Lévy measures of every Blumenthal Getoor index 0 < 3 < 2, i.e. the test
can separate the small jumps from the Brownian motion part in a low frequency setting even in the
case 3 = 2. This is proven in Corollary 2.2.6. Furthermore, observe that [a,b] S [0, c0)? is bounded
away from zero. However, we have to treat the small jumps tending to zero in order to estimate,
for example, U, !k =1,2, compare the proof of Theorem 2.2.14. Apart from that, our technical
approach would easily yield a similar treatment of [a,b]? in the case a | 0, b1 o0 as in (2.3). The
respective  would then, however, depend on U, i.e. on v which is the unknown estimating entity.
Hence, such convergence rates are not statistically feasible and thus, we have not calculated them.

Finally, in Section 3, we apply the techniques developed in Section 2 to the compound Poisson
process (CPP) case. For simplicity we assume that the intensity A = v(IR?) is known. We propose
an estimator én for the copula C of the probability measure A~'v, which is based on n + 1 low
frequency observations. For this purpose, we show that everything developed in the previous Section
2 also works in this case. Here, we obtain the better and natural convergence rate n=2 as expected.

Namely, we show in Theorem 2.3.7 that

A (10gn)10)
sup |C(u,v) —Cyh(u,v)|=0p,, | —=—1], n—w®
aéu,ll))éb| ( ) ( )| P ( \/ﬁ ~

holds under certain assumptions in the CPP case.

Neumann and Reifl [29][Theorem 4.4] prove in a one dimensional setting that, in the case of a
non-vanishing Brownian motion part, a logarithmic convergence rate for estimating v, is optimal.
Furthermore, n~2 is the optimal rate in the CPP case. Hence, the convergence rates of our Lévy
copula estimators can be considered to be optimal in the sense that the optimal rates in the one
dimensional setting still hold in the multidimensional setting and after an inversion operation.

2.1 Estimating the Lévy measure

Let (X¢)i=0 be a d-dimensional Lévy process on a probability space (2, F, Py, , o) with the Lévy
triplet (3, v, ). Based on the equidistant observations (X(©))i—0,1,...,n for some fixed path & € €,
we intend to estimate the Lévy triplet (3, v, ). First of all note that it is statistical not possible
to distinguish between the existence of a Brownian motion part and an accumulation of infinitely
many jumps in a uniform consistent way. This is explained by the following lemma which is a
generalization of Remark 3.2 in Neumann, Reif} [29].
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Lemma 2.1.1. Set d =1 and write o = 2. Then we have

~ 1 1
sup Py, <|0’ —o| = > > 5

oV, 2

where & is any real valued random variable. For example & can be any estimator based on the above
low frequency observations.

Proof. Denote with Py, m > 1 the 2 — % symmetric stable law, i.e. the law with the characteristic
function
2=
Pm(u) =€ 2
As ¢, is Lebesgue integrable, P, has the Lebesgue density

1

T o

(@) f e () du.

Now consider the total variation (TV) between P, and Py, def N(0,1). Scheffé’s Lemma yields

P = Palirv = 5 [ @) = fol)] da (25)

We have f,,, — fo pointwise because of
(o) = £ < [ lom(w) = o) du

and the integrable L'(\!) majorant

u2/\\u\

[om(u) = o (u)| <2¢77=7, melN.

This implies together with

me(;v) dx = Jfoo(x) dr =1
and a theorem of Riesz, cf. [5][Theorem 15.4] that f,, — fo in L'(\), i.e. with (2.5)
| P — Po|7v = 0, m — o0.

Now consider the two sets

~ 1 ~ 1

Fix € > 0 and choose m large enough, such that |P,, — Px|l7y < €. Note that the Brownian part
o of P, is zero and the Brownian part of P is one. Assume that

1
P, (|8 —o| = 2) = Pp(Ao) <
Then we have Py (Ag) < % + € which yields because of Ag U A; = (2

1
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This results in

~ 1 1
Py, <|O‘—O’| > 2) = Py(A1) = 5 €

The lemma is proven since ¢ > 0 was chosen arbitrarily. O

We denote by

3

n
élz H(u,Xe=Xe1) 4 e RY
the empirical characteristic function of the increments and write, furthermore,
def ;
Py palu) = Es o (€Z<U’X1>> . uweRL

Next let w : R* - R>0 denote a weight function which is specified later. For the following we
only require that w is bounded and vanishes at infinity. Define the weighted supremum

1)l Ly 2 sup {w(u) |o(w)]}

ueRd

for mappings ¢ : RY — C. The following proposition is needed in order to prove Theorem
2.1.5. This theorem yields a consistent estimator 7, for the Lévy measure v as described in the
introduction of this chapter.

Proposition 2.1.2. For every (X, v, a) with Egﬂj,a|X1|4 < o, there exists a Ps, o negligible set
N, such that

Proof. The proof is divided into two steps. We have to address the problem that the negligible set
N has to be independent of u € R? in (2.6). R is uncountable and unbounded. Step 1 yields two
continuity inequalities, (2.7) and (2.8). These inequalities enable us to replace R? in the second step

al

oul -0
k

(&n(u) = npalu)) n—oow, =012 1<k<d (2.6)

)

L*{(w)

holds on N€.

by certain countable sets. The use of a weight function w solves the problem that R is unbounded.
Finally, in step 2, all necessary analyses are performed to complete the proof.
We set k =1, | = 2 to simplify the notation. Then (2.6) claims that

sup
ueRd

holds for all w € N¢ where X; ; € R denotes the first component of X; € R<.

n
l 2 (Xia( Xt,l,l(w))Qe““’Xt(w)_Xt*l(w» _ EZ,V,aXilei<u’Xl>

3

}—)0, n — o0

STEP 1. We show that there exists a constant C' > 0, such that we have for all u,v € R? the
inequalities

aZ@Z,V,a(U) 8290271,’&(?})

‘ e R < Clu—=o|(1 + [uf + |v]), (2.7)
%o 025,
<p2(u)_ 902(v) < (C+Y)lu—v[(1+ul+v]), neN (2.8)
aul 81}1
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for some random variables (Y},), with
Y, >0, n—ow (Pg,e-as.).

Consider with u,v € R?

n
< 1 Z(Xt,l — Xt—1,1)2 (u, Xe—Xe—1) ei<U7Xt_Xz_1> .

t=1

e

Using the identity

X
le—i—ia:—f (r—y)edy, zeR,
0

cf. Sato [38][Lemma 8.6], we can write

€i<u1Xt_Xt71> _ €i<U7Xt_Xt71>

(u, Xt =Xt 1) )
= i{lu—v, Xy — X 1) —J ((u, Xy — Xyp—1) —y)e dy
0
(v, X¢—Xt—1) )
+J ((v, Xy = X3_1) —y)e dy
0
(0, Xe—X¢ 1) )
= i(u—v,Xt—Xt1>+J (v—u, Xy — Xy1) e dy
0

(u, Xt —Xt—1) )
- ({0, Xi — Xo1) — y)e” dy.
<U7Xt_Xt—1)

This yields together with the Cauchy-Schwarz inequality

|el u Xt Xt71> _ ei<U,Xt—Xt,1>|

< [(u—v, X = Xp) [+ [(u— 0, Xy = Xy1) | (0, X — Xy—1) |
H(u =0, Xy = Xp1) [(| (u, Xo = Xy1) |+ [ (0, Xy = Xy1) )
< Ju—ol[IXe = Xeoa] + [ol| X = Xea[* + [Xe = X1 P(Jul + [0])]

= Ju—|IXe = Xea| + Ju = v|(Ju] + 2[v]) [ X; = Xia .

Thus, we have

1 n
< Ju-— v|ﬁ Z(Xm — Xp—11)? | X — X |
t=1

1 n
+u = v|(ful + 2[v]) = Z Xen — X 11)| X — Xoa|?
t=1

3

and the strong law of large numbers yields (2.8) which in turn implies (2.7). Set NV} e {Y, b 0}

STEP 2. We split the supremum in (2.6) as follows

62
ou?

%
s w(0)| £ (Bu0) = pmal))] < sup wl
ueR4 uy ueKny,

(@n(u) = s palu)) (2.9)
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62
+ sup w(u) | 3= (Pn(u) = Pspalu))|  (2.10)

ueKg au%
where K, € R? may depend on w, i.e. K, = K,(w). We choose K,, in such a manner that

R, définf{|u| cue K} — o0, n—o o

for all w e Q. Due to

2 .

n
a2 (@n(u) — wz,u,a(U))‘ <= > (X1 — Xim11)* + ExpaXiy,
1 t=1

SHES

the strong law of large numbers and
R,(w) >0, n—oow, wel

together with
w(u) =0, |u[ — oo,

(2.10) converges P, o-a.s. to zero, i.e. for all w € N§ for some negligible set Ns.

Next, we estimate (2.9). Set

- def d det 1
Km = [_mvm] ) Am = Wa

Define furthermore 4

deéf{% : zeZ} , fgdémeQO.

Then we have for any z € K,

1

2 2\ 2
. —Q 1 1 Vd
1nf{|x—y|:yeKm}<<<mQ) +,._+(mQ) ) =5

AsUr_, Fﬁ c R% is countable, there exists because of the strong law of large numbers a negligible
set N3, such that

82 A C > +—Q
&’TL%(Qpn(u)_SOE’V’Q(U)) -0, n—>ow, weN3, ue Ule
Now, (2.7) and (2.8) yield
0%
sup 0(0) [ (1) = 5000 (2.11)
ueK uy
2 Ja
< s { 1 |7 (@) = paa()| +2(C + W) 21+ 2am) |
’U,EKSL 8”1 m
We obtain
2 Gul) = gmma)| @) < L, wen: (2.12)
qugjé au% ©n U @E,V,a u W) x mv w 3 .
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for all n > N(m,w). We assume w.l.o.g. that N(-,w) T o for every w € NS. Set

N_l(n,w)difsup{meIN:N(m,w)<n}Too, n — oo, sup@défl, w € N3

and
K- , e N¢
K, = Kp(w) & TN e @5 s (2.13)
K, w € Ns.
Now, under consideration of (2.11) and (2.12), we obviously obtain
2 .
max w(u) |75 (Pn(u) — ¢sva(u)| — 0, n—00, we(NyuNyu N3,
ueKn, 8u1 ’7
ensuring together with (2.10) that everything is proven. O

Remark 2.1.3. Note that this proof is an illustrative straightforward proof in contrast to the proof
of Theorem 2.1.6 which is much more involved. With the latter, we prove a similar statement using
a deep result from empirical process theory.

Assumptions 2.1.4. The Lévy triplet (X,v,a) has a vanishing Brownian part and possesses a
finite fourth moment, i.e.

J|x|41/(dx) <o, X=0.

The above Assumptions 2.1.4 are motivated by Lemma 2.1.1 and Proposition 2.1.2. Note that
given the Assumptions 2.1.4 we do not need a truncation function in the representation of the
characteristic function of the Lévy process, i.e. we are going to use the representation

Pu.alt) = exp (z (u, ) + L{d(eﬂm —1—i(u,z)) V(dx)). (2.14)

Define the following metric on C?(R%) :

d d 2
0 0
AP (p1,02) € o1 = alruy + 2 |3 (1 —2))  + 3|5 (01— 2)
o el LT RO = L (w)

Let Assumptions 2.1.4 hold. Given the equidistant observations as described at the beginning of
this section, we introduce the minimum distance estimator (7, &) via

A (B, 05, 6,) <IfdP (B, o) +0n, neN, wel (2.15)

for a given sequence 6,, | 0. This means that (7, &y) are chosen in such a way that (2.15) and the
Assumptions 2.1.4 are fulfilled. This is exactly the multidimensional variant of (2.3) in Neumann,
Reiss [29].

Theorem 2.1.5. Let Assumptions 2.1.4 hold and let w be continuous and vanishing at infinity.
Then we have P, 4-a.s. the weak convergence

|z|?Dy, (dz) 5 |z > (dx).
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Proof. Proposition 2.1.2 yields

AN (pp, a0 Pv0) < dPpp, a8, Pn) + AP (Bns pua)
< 2d(2) (@TL, 901/,04) + 0,
— 0, P,,-as. (2.16)

It follows for any compact K < R?

u

-1
JK |00, an (1) — @ua(u)] )\d(du) < (1£If(w(u)> )\d(K)prman —Yvalrrw), we (2.17)

Note that

|60,.6n — Prale ) < dP(0o, 80, Pra) =0, Pyo-as.

Fix any v = (v1,...,vq) € R? and define
K, = K,(w) def [vi,v1 + €] X ... X [Vg,04 + €,] € RY nelN

for a sequence (€,), with €, | 0, which may depend on w € 2. Then we have because of the strict
positivity and continuity of w

C ¥ sup < inf w(u)>_1 - (inf w(u)) - < w.

nelN \uEKn ueKy
From (2.17), it follows that

1
o J;{ |‘Pﬁn,6zn (1) = pua(u)l /\d(du) < CH‘PDn,&n — Yualle (w) — 0, PBye-as. (2.18)
n n

As u = |¢p, 5, (w) = @ua(u)| is continuous, we can choose €, = €,(w) small enough that

1

2 | 1658, (0) = 9ral@)] X (d) = 99,5, (0) ~ puav]| <

n

This yields together with (2.18)

SO’V\'ma'n (U) - prya (U) PV’a_a'S'

and the negligible set is independent of v € R%. As a result, Lévy-Cramér yields that we have
P, o-a.s. the weak convergence
pX X4 pX
v,a*

VUn,0n

With (2.14), we have

d 2 2
~ 05, & 0°vo, a
2 _ Un,Qn _ Vn,On
fRd |z|” Up(dz) = E <8uk (0)) 75% (0)

=1

o

d 2 2
. Z(%“(o)) Sl = [ P o), P
Rd

= ouy,
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because of (2.16). It therefore suffices to prove the vague convergence, cf. Chung [10].
|22, (dz) 5 |z>v(dx), P, a-a.s.

Let f : R? - R be a continuous function with compact support. It remains to verify

J]Rd f(x)|z|*D,(dz) — L{d f@)|z*v(dz), P,a-as. (2.19)
For this purpose set
0, 0<r<j
he(r)E32(r—¢), S<r<e, r=0
1, r=e

and
ge(2) € h(lz]), zeR?

Fix any 0 > 0 and choose € = €(w) > 0 small enough that

|f|wsupf 22 P (dz) < 0, |f|ooj e u(dz) <6, Pya-as.
nelN J{|z|<e z|<e

x

This is possible because of Sato [38] Theorem 8.7.(2) and our assumption ¥ = S, = 0 on Q. Based
on this, we obtain

f flx)y(1— ge(x))|x|21?n(daz) < 0, J flx)(1— ge(yc))|:z|2 v(dx) <9, P,q-as. (2.20)
R4 Rd

On the other hand,  + f(x)|z|%g.(x), x € R? is a bounded, continuous function which vanishes
on a neighborhood of zero. Thus, Sato [38][Theorem 8.7.(1)] yields

f f(2)ge(2)|z)*Dp (dz) — f f(@)ge(x)|z?v(dx), P, q-as.
R4 R4
Hence, together with (2.20), we obtain

im sup \ | f@aPrun) - [ s@lefvn)

<20, P,q-as.

This proves (2.19) because § > 0 was chosen arbitrarily. O

Set Z;y = Xy — Xy_1, t € IN and define
Ap(u) def 2 Z (ei<“’Zt> —-F (ei<u’Zl>)) , ueRY nelN.
t=1

Next, we aim to establish a similar result as in Proposition 2.1.2 which will be useful for the next
Section 2.2. The difference to the previous result is that we are not interested in a Ps , o-a.s.
result, but in finding an upper bound for the expectation values as stated in the next theorem:.

Furthermore, A, (u) is scaled with n 2 and not with n~! as in Proposition 2.1.2. Therefore it is

not surprising that we have to make some further restrictions to the weight function w. To be more
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precise, we choose w as
1
w(u) = (log(e + |u|))_5_5, u e RY

for some fixed § > 0. This is the natural generalization to d dimensions of the weight function in
[29].

The proof of the next Theorem 2.1.6 uses a result from empirical process theory. We briefly
repeat in the following some definitions needed for this result. The respective notations in van
der Vaart [43] are used: Let (X, A, P) be a probability space and let F be a class of measurable
functions f : X - R in L?(P). Fix any € > 0 and let [,u : X — R be two functions in L?(P)
with {(I — u)2dP < €. Then,

[Lu] € {f : ¥ >R, measurable, < f<u}
is called an e-bracket. Denote further with NV i (e, F) the minimum number of such e-brackets needed
to cover F. Note that [ and u are not required to belong to F. Next

S
Jp(6, F) déffo r/log Npj(e, F)de, >0

is called the bracketing integral. Let (X;);ew be a sequence of i.i.d. X-valued and P distributed
random variables and set for n € IN

def 1

an_%

SFX) — BFED). [Gulr ™ sup |Gt
feF
i=1 €

Then we have

Corollary 19.35 in van der Vaart [43]. For any class F of measurable functions with envelope

function F, it holds
E*|Galls < J (4 | |F|2dP,f) . (2.21)

Note that < means not larger up to a constant which does not depend on n € IN. An envelope
function F is any L?(P) function, such that |f|(z) < F(z) holds for all x € X and f € F. Finally,
observe the star notation £* instead of E. This is due to certain measurability problems which are
typical in empirical process theory, compare for this the first chapter in van der Vaart and Wellner
[44]. Fortunately, we are not concerned with such measurability problems in our case and, thus,
can simply write F instead of E* in (2.21). In general, observe also the helpful monographs of
Pollard [34] and Dudley [14].

Now, we can prove the next theorem which is a generalization of Theorem 4.1 in Neumann,
Reif [29] to the multidimensional case:

Theorem 2.1.6. Let (3,v,a) be a Lévy triplet, such that E|X1|8tY < oo holds for some v > 0.
Then we have

sup EZ,V,&
nzl

L7 (w)

foralll =0,1,2,3,4 and 1 < k < d.

Proof. Write R(z) for the real part of a complex number z and (z) for its imaginary part. It
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suffices to prove the Theorem separately for the real and imaginary part because of

Here, we only treat the real part because the imaginary part can be proven in exactly the same

al
67%%‘(1%(@)

al
6%

al

7 An(u)
8uf,C

R(An(u))

<

+ ‘

L* (w) L*(w) L*(w)

way. We have
R(An(u)) = ne 2(cos(<u, 7)) — Ecos((u, Z1))), ueR%
t=1
Set l
G def {z — w(u)a—l cos({u,z)) : ue ]Rd}
ouy,

with [ = 0,1,2,3,4, 1 < k < d. Next, it is the crucial idea to apply the above Corollary 19.35 in
[43], i.e. empirical process theory. Here, we choose

fl,k(z) = |Zk|l, zZ € Rd

as envelope function for the set G ;. Then the cited corollary implies

< Jy (. |EZ2,, GM) (2.22)

L*(w)

al

ol
ouy,

R(An(u))

in the above Notation. With

M % M(e, 1, k) = inf {m >0 1 E(Z{% Lanwoy(|Z1])) < 62}

for € > 0, define

R L .
gji(z) def (w(u(]))l coS <<u(]),z>> + e|zk|l) Ljo,ar(l2]) £ EAE Lareo)(]2])

ouy,
for later defined fixed points u¥) € R?. This yields
Blgf (20) - g7 (21)* < E (428 10 (1Z1]) + 473, 13 (1 21]))
< AS(BEZY +1).
def

Set C' = 2,/ EZIQlk + 1. Then [gj_,g;.r] is a C - e-bracket. Since we are only interested in the

finiteness of the right-hand side of (2.22), we can assume w.l.o.g. C' = 1. Hence, [g;,g;f] is an
e-bracket. Next we perform some calculations in order to determine the points (), such that the
upper bound in (2.22) is finite. Obviously,

w(r) def (log(e + r))_%_(s, r=0
is Lipschitz continuous, so that we have

w(w) = w(v)] = [w!(Jul) = w'(jo))] < Lllul = o]| < Llu = v], u,veR?
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for some L > 0. With u, z € R? and |z| < M, we obtain the inequalities

‘ al l

w(u) 5 cos((u, z)) — w(“(j))jz o8 (<“(j)’ Z>) ‘

l
ouy, g,

N

w(u) - w(u)] \a‘f;c cos({u, 2)
+w(u)] ‘;uli cos((u, z)) — ;ulfc cos (<u(j), z>)‘
Llu—u| |z + ‘z,lg ((u, z) — <u(j),z>)‘

Llu — ul| |24 + fu — u |24 ['|2|

|z — w9 |(L + M)

N

NN

This yields that (2.23) is not larger than

|zk|lmin{\/g|u — U)o (L + M), w(u) + w(u(j))}, zeRe: |z| < M.

Set

N ™

U(e) A ing {u >0: sup w(v)<

veR?: [v|zu

and

def .

le
J(e) = 1nf{le]N : m ZU(G)}.

Now, we specify the points ul) as
WD I ez e < J ()

This choice guarantees that

Gii © U l97 7]

JEZA : |jlon<J(€)

To understand this, fix any u € R?. If

fuloo < J(€)e
VA(L + M)’
set

with |z| = —||z|], = < 0. Note that |j,|w < J(€). Then
Vid|u — w9 | (L + M) < €
and the corresponding function belongs to [gj_u,g;;]. If

J(€)e

|tu]oo > m > Ule),

(2.23)

(2.24)

(2.25)

(2.26)
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the corresponding function belongs to

Gu = (J(e),0,...,0) € Z¢

because of (2.24) and

w(lul) < w(lulw) <

N ™

i i (@ e
ol -t (O <

Note that (2.26) implies

Ny(e, Gri) < (2J(e) +1)% (2.27)
Next we establish
E|Zl|2l+v %
M < (62 ) . (2.28)

This is easily done by setting
~ def E|Zl|2l+7
m’ = ————
2

and considering the inequalities

E|Zl|21+7

\%

E (1P 1m (121
E (|Z1,k|21m7 ]]-(m,oo)(|Zl|)>

= m'E <|Zl,k|2l ]l(m,oo)(|Zl|)> :

\Y

(2.25) yields
U(e)Vd(L + M)

€

J(e) < +1. (2.29)

The special shape of w, furthermore, yields

—(6+3)71
€>( 2) +0(1), €—-0,

log(U(9)) = (5

so that we have together with (2.27), (2.28) and (2.29)
log(Npj(e,Gig)) < dlog(2J(e) +1)
-1
= O (67(5+%) + log (e_l_%)) , €—0.

As (6 + %)_1 < 2, we have established

NCZEn
J \/log(N[](e, th)) de < o0
0

and (2.22) is finite. O

Next, we define a C*(RY) metric

def (4 def (9 4 83 4ol ot
(1, 02) = dD (o1, 02) = dP (g1, 00) + > 973(901 — 2) +>° aﬁ(@l — ¢2)
i1 I U Lo(w)  f=q 10U L (w)
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Then, as a direct consequence of Theorem 2.1.6, it holds the following statement:

Corollary 2.1.7. Let (X,v,a) be a Lévy triplet such that E|X1|¥*7 < oo holds for some v > 0.
Then we have

~ 1
EZ,V,ad(SDny @E,y,a) =0 (TL 2) , N — 0.

2.2 Nonparametric low frequency Lévy copula estimation

We denote with F the Fourier transform of a function or a finite measure. To be more precise, we
set for u e R¢

(FF)(u) f ) f(2) N2 (), f e LI

Rd
and

(Fu) () % f &) u(dz),

R4
where 1 denotes a finite positive measure on the space (R?, B(R?)).

As described in the introduction of this chapter, we aim to estimate the Lévy measure v in order
to construct a Lévy copula estimator. Motivated by Nickl and Reif} [30], we do not estimate directly
v, but a smoothed version of v. The statistical estimation of this smoothed version is investigated
in the proof of Theorem 2.2.11. An upper bound of the error which we make by using a smoothed
version of v instead of v itself, is calculated in Lemma 2.2.7. We consider the convolution of v
with a Kernel K in order to get such a smoothed version of v, cf. Lemma 2.2.7. Such a Kernel, of
course, has to fulfill some assumptions which are stated next:

Assumptions 2.2.1. Let K : R? — R, be a kernel function with the properties
(i) K e L'(R?*) n L*(R?), (g K(z)\(dz)=1
(ii) supp(FK) < [-1,1]?

(iii) w — (FK)(u) is Lipschitz continuous.

It is natural to consider Lévy processes in the Fourier space because of the Lévy-Khintchine
formula. From this point of view, Assumption 2.2.1 (ii) is particularly useful because it provides
compact support for many important integrands we use.

Example 2.2.2. In the following example, we state a kernel function K which fulfills the Assump-
tions 2.2.1. First, set
Kl N ]R+

2
2 Sin(ﬂ)

(FK)(u1) = (L= |ua]) L—q1y(ur), wi€R.

A straightforward calculation yields

Set

K@) ¥ Ki(21) Ki(z2), z = (21,22) € R

This implies
(.7:K)(u) = (le)(ul)(le)(UQ), u = (ul,UQ)ER2.
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Note that K fulfills the desired conditions since
K(z)X*(z) = (FK)(0) = (FK1)(0) - (FK1)(0) =1

R2

and we have for u, v € R?

| FK(u) — FK(v)| | F K1 (u1)(FK1(u2) — FE1(v2))| + [FK1(v2) (FEK1(u1) — FKi(v1))]
|fK1(U2) —.7:K1(U2)| + |fK1(u1) — le(U1)|
|lug — va| + |u1 — vy

V2[u — vl

INCININ N

The remaining conditions are obviously true.

Next set for h > 0

Kn(z) € r2K(hta) = (W Ky (h t21)) - (b 'K (b '2s)), z € R

and observe that standard results from Fourier analysis yield
(FKp)(u) = (FK)(hu), ueR2
Recall the definitions
Ulz,y) = v([z,0) x [y,0)), Ui(x) = v([z,0) x Ry), Ua(y) = v(Ry x [y,0)), z,y€Ry
and R = R2\{(0,0)} from the introduction of this chapter. Define, furthermore,

def 1

Jap(T) = e Lja,m)xbooy (@1, 2),  (a,b) € R, x€ R

Assumptions 2.2.3. Next we state some assumptions concerning the Lévy measure v:
(i) v (R?\[0,00)?) =0, i.e. only positive jumps,
(i) 3y >0 : (|2 v(dz) < o0, i.e. finite 8+y-th moment,
(i) F((xF + 23)v)(u) S (1 + Jur]) 711 + uz))~t, we R2,
(iv) Uy : (0,00) = (0,00) is a Ct-bijection with U;, <0 and

inf |U(z)] >0, sup(lAzd)|U(zr)] <0, k=12 (2.30)

O<zp<1 x>0

Remark 2.2.4. Assumption 2.2.3 (i) assures that there are no negative jumps. This simplifies
the shape of the Lévy copula of v, cf. (2.2) and serves to keep the technical overhead as small
as possible. (ii) required to use the statement of Corollary 2.1.7. (iii) is perhaps the most non-
transparent assumption. It guarantees a certain decay behaviour of some integrands in the Fourier
space. Finally, (iv) is needed to build a pseudo inverse in order to estimate the Lévy copula of v
which is our final goal.

Proposition 2.2.5. Let f : ]R%r — R be a continuous function with the properties
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(i) f(x) >0, we ({0} xRL) x (RL < {0}),

(ii) |z)* < f(z) < (log|z|)~2, zeR2 : |z <4,

(iii) f(z) S (L+]a)"0+9, zeR2

for some € > 0. Then,

v(de) € 1g(e) (2t + 28) L f(2)N2(dx)

is a Lévy measure and fulfills the Assumptions 2.2.3 (i), (ii) and (iv).

Proof. First, observe that v is a Lévy measure since

1

1 o
f lz|? v(dz) S JQ r2r~4(logr) 2rdr + J r2r A1 4+ 7) " dr < 0
R 0

2
+ 2

holds. Next, we turn to the claimed Assumptions 2.2.3 (i), (ii) and (iv).

(i)
(i)

(iv)

This is obviously true due to R € R2.

Note that we have

0 ¢]
f 12372 v(da) < f l2|**2 f(x) N (dz) < f 51+ 1) 6 dr < o0,
R% R% 0
Hence, Sato [38][Theorem 25.3] yields that the (8 + 7)-th moment with ~ def 5 > 0 of the
corresponding Lévy process exists.
First, observe
0= lim Ul(l'l) < lim Ul({ljl) = 0 (231)
z1 100 z110
because of
[11,00) x Ry | &, 2110
and )
v(RY) = J (21 + 23) 71 f(2) N2(dz) 2 f2 4 r?rdr = o.
R2 0

+

Next, Uy(z1) > 0 follows from f(-,0) > 0 on (0,00) and the continuity of f. Hence (2.31)
yields that Uy : (0,00) — (0, 00) is a surjection. We, furthermore, have for z; > 0

U{(a:l):ail f fo (4 ) (y) dyo dyr = — jﬂ () o) dye (232)

Again due to the continuity of f and f(-,0) > 0, this implies U] < 0 on (0, 0). Hence, U, is
also injective, i.e. a bijection. Finally, (2.32) also implies (2.30) for £k = 1. Observe for this
purpose

Sxf?’, x1 >0

o0
2
U (21)] < |f|oof0 () dyy = W
1

and, with the use of Fatou’s Lemma,

0 Q0
fimin U] (o)| > | mingla! +53) o) dve = | 0 FO,00) dua > 0,
Tr1— 0

I1~>0 0
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Now, (iv) is verified since everything works equally with Us instead of Uj.
O

Corollary 2.2.6. It exists, for every 0 < 3 < 2, a Lévy measure vg with Blumenthal Getoor index
(BGi) (3, such that vg fulfills the Assumptions 2.2.3.

Proof. We treat the cases 0 < 8 < 2 and 8 = 2 separately in two steps:

STEP 1. The case 0 < 3 < 2. Set
fo(@) € 2B p ) zeR2

and

vg(dr)  1g(z) (2! + 23) ' fa(z) A2(da).

Then vg is a Lévy measure of BGi 3 because it holds for v >

1 1
J |z|" v({dz) < J P42 Brdr = J PP dr < oo
{lz|<1} 0 0

and for v =3
1

1
J 2| v(dx) 2 J rPr=4r2 =Py dr = J r~tdr = 0.
{|z|<1} 0 0

Furthermore, the Assumptions 2.2.3 (i), (ii) and (iv) are fulfilled because of Proposition 2.2.5 and

1
)2 < |z>Pe il < (log|z) 72, zeR2 : |z| < 5 0<f<2
Next, we show that v fulfills Assumption 2.2.3 (iii). Note for this after a straightforward calculation

the equations

Zﬂ{i(m) = T ((2 - ﬂ)riﬂ - Tliﬂ) 677‘7 k= 17 27
02
ax1£i2 = T1T9 (ﬁ(ﬁ —r P2 (268 =3P 4 7"_5> e "

Hence, it holds for z € R, r = |z| > 0 and k = 1,2

?fs
6m18x2

ofs
oxy

() 5 1(0,1)(7")7’1_[3 +re, (z) < 11(071)(7“)7“_/6 +r¥e "

Now, fix any 0 < § < 1. Then, Proposition B.2 yields

Aps 2
F(fs - Lso0y2) () < ] € (R¥) (2.33)
with
Q)afb a)ajb ang
Ags = 9ls
- |fﬁ(6’ o) +L oz (z1,0) oy + 5 0x2 (6, z2) do +£é,w)2 011072 Jdo

N

1 s 1 - 1
1 —i—f (3 +6%) 72 dn —i—f (6% +22) 2 dry —l—J rPrdr.
é 0 é
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If 0 < B <1, we have

1 B 1
Ags S 1+ ZJ (z2 + 1)¥ dzy + J =P dr < 0. (2.34)
0 0
If 1 < 8 <2, it holds
1 1
Ags <1+ 2f xi_ﬁ dxy —l—J P dr < . (2.35)
0 0

Note that the constants in the < sign are independent of 0 < § < 1 and that we obtain by dominated
convergence

F(fp - L wp2)(u) = F(f)(u), 610 (2.36)
pointwise for all u € R2. Thus, (2.33) - (2.36) yield together for fixed 3

F(fa)(w) S ——, ue (R (2.37)
|u1]|uz|

Hence, vg satisfies

1
F((z? + 2Dvg)(u) £ ———,
(( 1 2) /8)( ) |U1||UQ|

u e (R*)?

This proves together with Lemma B.5 (i) and the continuity of u — F((x] + 23)v)(u) the Assump-
tion 2.2.3 (iii) and, thus, the first step is accomplished.

STEP 2. The case 3 = 2. Let ¢ : RZ — [0,1] be a C* function with

8(z) = {1’ ol

reR2.
0, |z|>2’ -

IN[JCIN T

A detailed construction of such a function is given in Rudin [36][§1.46]. Set

fola) € o(r)(logr) 2+ (1= ¢(r))e™, r=lz, zeR

and observe that

va(dz) € Lon(z) (af + 28) ! fa(e) \(da)

is a Lévy measure of BGi 2 because we have

3 -1
J |z|? v(dx) < J4 r2r~4(log )" 2rdr = (log (4>) <
{lz/<1} 0 3

J > v(dz) 2 JZ r2=r~4(logr) 2rdr 2 J r =3 dr = o0
{lz|<1} 0 0

and

N =

for every v > 0. Note further that the Assumptions 2.2.3 (i), (ii) and (iv) hold because of Propo-
sition 2.2.5 and

[ < (log |21) 7 + e (1 — (l2]) < (logla)?, @ eRL : Jof <

N =

Next, we establish the Assumption 2.2.3 (iii). For this purpose, set Lr def rlogr, r > 0 and note
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that it holds for 0 < r < % and kK =1,2

gi(w) = ap(¢' (r)(Lr) 2r = 20(r)(Lr) 3r), k=1,2,
2
ajg = mwa(¢ () (Lr) 72 — 46/ (r)(Lr) 7 — ¢/ () (Lr) 21 + 6(r) (L)~

+4¢(r)(Lr) 371,
This implies for 0 < r < % the asymptotics

P f
6w18x2

o
6mk

(z) S v~ (logr) ™2, z) S r 2 (logr) ™2,

Observe that we have in the complementary case r > 1

ajé _ —1_—r

a—xk(a:) = TEr e,

52f2 -2 —3y T
30 = ma(r “+r e ",

This yields for » > 1 the asymptotics

0 02
ol @y se, 2 e
oxy, 01109
Now, we get the claim of Assumption 2.2.3 (iii) with the same procedure as in the first step. [

Denote with (K,\?) = ((#f + 23)v) in the following the convolution of the two finite Borel

measures d(Kp\?) € Ky dA? and d((a} + a$)v) < (af +a3) dv.

Lemma 2.2.7. Let the above Assumptions 2.2.1 and 2.2.3 (iii) hold. Then we have

v([a, @) x [b,0)) — J 2ga7b(x)[(Kh)\2) # (21 + 23)v)](dw)| < [hlog hl(|(a,0)|7 v [(a,b)[7")

R

for all (a,b) e R and 0 < h < %.

Proof. Write

v([a, ) x [b,®0)) — J}RQ Jap(@)[(KpX?) # (21 + 23)v)](dz)

[ gosto) ot + bl - [« (ot + o)}
1

47

(2.38)

JRQ (Fgap) (—u) (1 = (FEp) (W) F((a] + 23)v)(w) A*(du)

where we use Lemma B.6 and the fact that a convolution becomes a simple multiplication in the
Fourier space for the last inequality. Note further

1= (FER)(w)] = [(FK)(0) = (FK)(hu)| < min(hlul,1), ueR?,
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due to the Lipschitz continuity and our assumption that K is normalized. Hence, using Corollary
B.4 together with Lemma B.5 (i), (2.38) is up to a constant not larger than I1 + I with

L % h(a, b)|2ﬁ Tl )7 Jual) A ()
-1

)

and
L € |(a, b)|4f min(hful, 1)1+ Jur])2(1+ Juz]) 7> 3(du).
R

This finally proves under consideration of Lemma B.5 (ii), Fubinis theorem and
min(h|ul,1) < min(h|ui|, 1) + min(h|usl, 1), J (1+]2)) 2 A (d2) < 0
R
this lemma. ]

Lemma 2.2.8. Let 5, o be the characteristic function of an infinitesimal divisible two dimensional
distribution with Lévy triplet (3, v, ) and finite second moment. Then we have

prma(w)] = e Oy e R? (2:39)
with a constant C' depending only on the triplet (X, v, a).

Remark 2.2.9. Note, that the fast exponential decay to zero in (2.39) as |u| tends to infinity results
from a possible non-vanishing . Otherwise ¢y, , o(u) may possibly have a slower convergence rate
to zero. In this context, review the results in Neumann, Reiff [29]. In the case of a compound
Poisson process, it is even bounded away from zero, cf. Lemma 2.3.4.

Proof of Lemma 2.2.8. We have ¢(u) = exp(¥(u)) with

U(u) = —% (u, Su) + i (u, ) + Lp (ei<uw> —1—iu 7;>) v(dz), ue R (2.40)

Next, we estimate each summand of W separately:

| (u, Xu) | Jul|Su| < [2][uf?,

<
[(w,0)| < lallul, weR”
Furthermore, Sato [38][Lemma 8.6.] yields

| (u,2) |

TR u,z€R? O,,€C, | <1

) =1 i (u, ) + Oy

which implies

URQ(JW 1 —i(u,2)) v(da)

2 2 2
< | Vwa) Potde) < fu | jof v(da).

def

This yields with C = |a| + |S| + {2 [#]? v(dz) the estimate

=
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and this Lemma is proven. O

In the following we construct, based on low frequency observations, a uniform estimator for the

values

{v([a,0) x [b,©)) : (a,b) € R}.

Let us assume that the corresponding Lévy process has a finite fourth moment. Our motivation is
the following fact:

64\:[/21/04 84\1121/04
(Bae o)

out ouj

J etw) (gcél1 + x%) v(dx)
RQ

F((z +23)v)(u), ue R (2.41)

Remark 2.2.10. Note that we have to take at least the third derivations of ¥ in order to dump
the Brownian motion part. However, this seems not to be sufficient to deal with Lévy measures
with Blumenthal Getoor indices greater than one. That is why we take the fourth derivations of
V. Doing so, we are, for example, capable to prove Corollary 2.2.6.

A simple calculation yields for k = 1,2

2
Msva _ Psva 1 008ma PPnea o g (PRsa (2.42)
au;{% B aui E’”’a B auk auz E?”va - auz 271/,()[ :
agpz,y7a 2 829027V7OC -3 a@z,y,a —1 !
+12 ( aUk aui SOE,I/,O( —6 Tusz’y’a .

Note that we are going to estimate ¢y, o by

1 &
72 i(u,X¢— Xt1’ U,ER2.

3

Hence, we set for k = 1,2

ov G, OPn PP 328n 1\ 00n\” 0*Pn -
D Do o0 PPy (Bhu ) () Py
duy, ouy, ouy 6uk ouy, oug duy,
op 1 !
-6 =3,
(au o ) |
= 4
ie. a;%" is a function of derivatives of ¢, in exactly the same manner as 0 \Ia/ff’a is a function of
k k

the derivatives of ¢y, , o, compare (2.42). Of course we cannot write @y, (u) = e¥n(¥) gince ©n need
not be a characteristic function of an infinitesimal divisible measure for each w € €.
Considering (2.41), we set

Ny (a,b) %< JR2 Gap(x)F ! ((a;;" + ‘7;% ) th> (2) \2(dz), (a,b) e R (2.44)

for an estimator of v([a,o0) x [b,0)). Note furthermore that (2.44) is only well-defined on

v e . 1177
Ah,nd=f{we§2:s0n(u)¢0, forauuc—:{—h h” h>0, nelN
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because supp(FK}) € [—%, %]2 and @, has to be non-zero on supp(FK}). At the same time, we

~

have for w € Ay,
(a@n M,

] 12 22
5l aug>(°’) FK), € LM(R?) A LA(R?)

since the left-hand side is a continuous function with compact support. Thus, the inverse Fourier
transform in (2.44) is well-defined on Aj,,,. Set

ef )i~ 1 1177 ~
Ah7n d:f {|@n(u)| > §|§O(U)|, u e |:—h,h:| } c Ah,Tu h > 07 ne IN

Based on the above discussion, finally set

) FIL) () X(da), € A

0, wE Ai’n,

—1 (T, | &4V,
§ oty 2 | Smegmate) 7 (Tl + 55

for all (a,b) € R, h > 0, n € IN. Of course, the bandwidth h = h,, has to be chosen in an optimal

manner. It turns out that
def loglogn

eN
vlogn ’ "

hy,

yields a satisfying result:

Theorem 2.2.11. It holds, under the Assumptions 2.2.1 and 2.2.3 (i)-(iii), the asymptotic

(loglogn)?

sup_[(@.0F Al [plla, ) < 100)) = Fu(aut)| = On, (P52

) , n—oo. (2.45)
(a,b)eR

Proof. The proof is divided into three steps. The probability that the inverse Fourier transform
is well defined tends to one. This is shown in the first step. The second step estimates the
approximation error between \f/n and ¥. Finally, the third step uses these estimations together
with the statement of Lemma 2.2.7 to prove the desired convergence rate.

def

sTEP 1. First, we establish P(AS) — 0, n — oo with A, < Ay, ., ne Nand P ¥ Py,
def

Note for this that we have with B1 = [—%, %]2 and @ def ¥5v,a the inclusions
h

fulw) — ow)] _ 1
{H“EB# o] 22}

. d(@n; ) 1
{H“EBi el w()] 2}‘

N

- 1
o = {3ue By 5 801 < Jlot

in

Observe
w(u) = (log(e + [u]))~27% = e (2Tl 4 e B2,

so that together with Lemma 2.2.8 we obtain

()] [w(u)| > e €Dy e R (2.46)
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with a constant C > 0. This, finally, implies

{Hu € B1 : m = ;} c {d(@n,g})ec<1+\{?>2 > ;},

and, the Markov inequality yields together with Corollary 2.1.7

V32
P(A},,) < ”7%€C<1+TQ) 0(1) £ n*%e% — e zlognt , nelN
A substitution with h, l‘z/gILg” yields
1 AC 1 logn
—31 =51 10o—28" ., _» "
2 ogn + n2 5 ogn + (log log n)? — , N — 0,

so that (2.47) implies P(AS) — 0, n — 0.

STEP 2. Next, we consider the difference

M, U

Con T k=1,2, nel.
(?ui duy,

(2.47)

(2.42) and (2.43) consist of respectively five terms. Subtracting (2.42) from (2.43), results in five

difference terms. We rearrange for k = 1,2 these terms in (2.48) - (2.52) for our needs:

alSD -1 _ alSBn ~1

¥ . 1=1,2,3,4

&’ufk@ oul, n

5Z(SO — On) ~—1 5l80 —1/~ ~—1
= _— + _— s

o Pn ol ¢ (Pn — 9)Pn

0p Py o 0P PPn -2

Oy, ﬁuk Oug (%Lk

dp (00 4 0? On, ~—1 53‘% ~q {00 4 On ~—1
= —_— _— — + _— _— s

6uk('0 ((?uigp (%L% ¥n (?ui n 6uk('0 ouy, ¥n

2 ~ 2
627‘/’@—1 _ 0 not
ou? ouz 7"
6290 -1 82@71 ~—1 62()0 -1 82{5“ ~—1
+ A 9 - )
<6u%(p ou? ¥n 6ui¢ ou? ¥n
@ 53

2 n
U,

P 2o \* (2P
A—1 n ~—1 oY 1\ [ 9¥n 1
) ouz ((auk“’ ) (au,ﬁ”"

))

(2.48)

(2.49)

(2.50)

(2.51)



2.2. NONPARAMETRIC LOW FREQUENCY LEVY COPULA ESTIMATION 81

dp 4 ! OPn ~_1 !
— 2.52

o2 \*, (08n o \*\ [( 22 o\ (0801
((6%90 ) +(5uk¢” 6uk<'0 6uk<'0" '

Next, after some straightforward calculations, observe

;Z¢1 _ ;i, (2.53)
2 2 2

In what follows, we estimate the derivatives of W:
(u, Xu) = O'HU% + 2012u1ug + Uggug, u € R?

and the representation (2.40) yields

a—m(u) = —5(2u1011 + 2ug019) +iag + J]R2 (mle (wz) _ ml) v(dz)

which yields together with

) 1| < [ (u,2) | < Jullal, w,w e R?

and {p, |z|? v(dz) < oo the inequality

ov

— <1+|ul, uweR?
%1W) lul, u

where the constant in the < sign depends only on the Lévy triplet (X, v, «). Similarly we get

2\11 )
22 (u) = ‘—011 - J 22" y(dx)| < oy —i—J 23 v(dz) < o
ul R2 R2
and

> . 3 i(u,x) 3

| () = |=i| 1" v(dr)| < |z1|° v(dz) < o0,
5u1 R2 R2

o'

—~~
£
~—
|

J 2}t y(dx)
R2

< J ziv(dr) < .
R2
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The derivatives [ =1,2,3,4 yield analogous estimates. Hence, (2.53) - (2.56) imply

al?

e
87,1,5,C

(u) S (14 [u))l, weR? 1=1,234.

Additionally (2.57) yields together with (2.48) on A,

al@ -1 _ al@nA 1

é’l 71 .
l l n
ouy, ouy,

8

al ©n @ 1
T ¥n
ouy,

() <

(u) +

(u)

1 177
( |>(1+|u|)17 ue{_h’h}’ 1=1,2,3,4.

Hence, (2.42), (2.43) and (2.48) - (2.52) and (2.57), (2.58) finally yield on A,

A, oAU d(o, 2n) \? . 1 17
7= < _ N\ em) - =
Gul  dul (“)NZ(wwn >|) (L Jul)’ “e[ hn’hn} ‘

STEP 3. Next, observe with Sato [38][Proposition 2.5 (xii)]

fl<(f;4 +244>]:Khn>)\2 (Kn,A2) * ((f + 23)v).

Using the Plancherel identity, we get the following essential estimates:

oM, AU
J Gap(x)F (( 2 T2 )thn) () \(dw)
R2 Uy U2

— JR2 Jap(2)F " ((‘?@E + azf) me) () \*(de)
(

]1 A'n

0
2 4d
= L g |[ w3 T w0
=1
_ S de, 8a)
a 2 u 4)\2 u
< Lal(a.b) J[ ,;}2jzl<w<u>lw<u>l) (1 + Jul)* X2(a)
Note that
d(@v@n) = OP(n E)
and

(w(w)le()) 7 (1+ fu))* 5 0% 5 =1,2,34, ueR

hold for suitable C' > 0, compare (2.46). Hence, (2.59) is not larger than

_ ul)? 1
|(a,b)| 2J o ]2 eC(1+| D) )\Z(dU) . Op(n 2)
" hnhn

N
V2 C(147)2 |7

= @D [ Ok dr - Opnh) = (@b ©
; 2C

- Op(n~?)

(2.57)

(2.58)

(2.59)
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e -2 (440 2*%)1%” —2 3
= [(a,b)[2n"2em% - Op(1) = |(a, )| 2e\ Tostoxm) Op(1) = [(a,b)| “Op(n* 2)

for every € > 0. Together with Lemma 2.2.7 and

loglogn (loglogn)?
hplog h,| = ———=—(loglog1 —71 1 < ——
| log I | oz (logloglog n og logn) Jog
this proves this theorem. ]

The inverting operation

Considering the Lévy copula (2.2), our next goal is to establish an inversion operation. For this
purpose, we first define some function spaces and an inversion operation Z on those spaces: Set

¢ {g : (0,0) >R, geC, linolog(x) = 0},

Ds = {h:(0,00) > R4, hiscadlag, decreasing and hm h(z) =46}, >0,
U7s
>0
and N
Z: Cx(0,00) - D . . (2.60)
(0.:0) > (e inf{e =6 ¢ infyeyes g(y) < 2}).
Furthermore, let R : (0,00) — (0,00) be a function and (e,), (4,) be two sequences of positive

numbers, such that
def

Yn = R(0n)en =0, €, 10, 0,10, mn—ow
hold. Note that we have
Z(g,0) e Ds, geC, 6>0.

The next Proposition 2.2.12 investigates the behaviour of an approximation error under the
inversion operation Z. Note that Z is the pseudo inverse with the starting position § > 0, cf.
(2.60). The introduction of such an offset 6 > 0 is required for the subsequent treatment of the
small jumps. Note that we have A = oo (A in Proposition 2.2.12) in this section. The case A < o
is important for the investigations in the next Section 2.3 of the compound Poisson process case.

Proposition 2.2.12. Let f : (0,00) — (0,A), A € (0,00] be a Ct-bijection with

ff<0, inf |f(z)|>0

O<z<1

and let (fn)n S C bea family of functions, such that

sup |fn(z) — f(2)| < 0, meN

Q7>6n

holds. Fixz any 0 < a < b < A. Then it holds also for each n € N with 27, < a A (A —b) and
6n < f7Hb + 2v,) the inequality

a<z<b O<zgf~!

-1
sup |Z(fn, 00)(2) — £ (2))] <2’Yn< inf o) If’(fv)|> :
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Proof. Set
F. )% inf fu(y), he(2) € I(fr,00)(2), 2260, z>0.

On<y<z

Note that F, : [6,,0) — R4 is a decreasing, continuous function with F,,(x) — 0,  — oo for each
n € IN. First, we show the inequality

sup |f(z) — Fo(x)| < v, nelN. (2.61)

=0n

Note for this

and

~
—~
8
~
|
=
—
&
|
~

(w) - fn(ca:)
(@) = fulz)

f(cx) - fn(cm) < Tns

<
Z —Vn

=
2
|
=
2
Y%
\

for all n € IN. Next, fixany 0 < a <z < b < Aandn € N with 2y, <anr (A=b), 5, < fL{b+27,).

Set

ydéfz—%»g, Y E 2+ 2y, <A

and
e LT 2 E ) 2 T 2m) 2 6

(2.61) implies F),(z) < f(z) + v, which yields, since h,, is the pseudo-inverse of F,,
ha(2) = ha(f(2) +7m) Sz = f71(2 = ).
Equally, we have F,(z') = f(2') — v, > f(2') — 27, which implies
ha(2) = ha(f(2") = 2m) = 2’ = f7H(z + 270),
so that, altogether we have
FHz +2m) < ha(2) < F7H(z = ).
Using the mean value theorem, this yields, on the one hand,
ha(2) = f7H(2) < F7Hz =) = f7H(2) = —m(f7) (&)
and on the other hand
F7HE) = ha2) S F7HR) = F7H 4 27) = =27/ (&)

with
a
51752 € [Z — Yn, R + 2’771] < [§7A) .

Thus, we finally obtain
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O

Next, we state a stochastic version of Proposition 2.2.12, which is adapted to our later needs.
Corollary 2.2.13. Given a probability space (2, F, P) and a family of functions
2n Q- (?, ne N,
such that w — [én(w)](a:) is F-measurable for every n € N, x > 0 and such that

sup | Z(«) = f(x)] = Op(y), n— o0 (2.62)

holds with a function f as in Proposition 2.2.12. Then it also holds for any fited 0 < a <b < A

sup |Z(Zn,6,)(2) = /7 (2)] = Op(ya), n— 0.

a<z<b

Proof. Write (7, - Xp)nen instead of Op(vy,) in (2.62), i.e. (X,)y is a family of random variables,
which are uniformly bounded in probability. Set, furthermore,

A, 2y, X, <an (A=b), b6, < fHb+27.X,)}, nelN.

Then, Proposition 2.2.12 states that we have for w € A,
-1
sup [Z(Zn(w),00)(2) = f1(2)] < 290 Xn(w) inf |f'(@)]] < mXn(w).
a<z<b 0<:c<f*1(%)

This proves this Corollary since P(AS) — 0 for n — co. O

Denote with R (c) def R(c) v 0 the positive real part of a complex number ¢ € C. Finally, we

combine the statements developed so far and get the following main result:

Theorem 2.2.14. Let the Assumptions 2.2.1 and 2.2.8 hold and 0 < a < b < o be two fized

numbers. Set 6, = (loglogn)~! and

Then, it holds with the plug-in estimator
Culu,0) = No(Upy(w), Uz p(v), w,w >0

the asymptotic

~ (loglog n)?
¢ - & (u,v)| =0 — |, .
2 €000 = &) = O, (FFREEE)

Proof. First, note that we can replace ﬁfn by §R+ﬁn and (2.45) is still valid. This is due to the fact
that we have for all c € C and r € R4 the inequality

e =l =V R(c=1)2+ (S =1)2 = [Re 1) = [R(c) — 7| = [Ri(c) — 7],
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Observe, furthermore,

~

Ry Nu(-,0), Ry N, (0,-)eC, neN.

Set, )
def (loglogn) def 4

n v/logn

and note that 6
log 1
Yn = R(5n)€n = ( O\g/ilzsg) - 0, n — o0.

Theorem 2.2.11 states

Sup |%+J/\\fn(x’ O) - Ul (':U)| = OPE,V,a (’7”)7 n— w?

T20n

def 5 def

so that Corollary 2.2.13 implies with A = o0, Z, < R, N,(-,0) and Assumption 2.2.3 (iv)

sup |z71j;(u) —U; Yu)| = Opg, . (W), n— . (2.63)

a<u<b
Of course, exactly the same considerations yield the Us analogue of (2.63). Next, write

def 1 def 51
u, = U OUl,n(u)’ vy = UQOUQ’n(’U), a<u,v<bh

and note that the Lévy-copula € is Lipschitz continuous, cf. Kallsen, Tankov [21][Lemma 3.2].
More precise, we have

|€(u,v) — €/, 0)| < Ju—d'| + Jo =2, wu,v,0" > 0. (2.64)
Together with the mean value theorem and ﬁf 11 € Ds, we have fora <u <b
ju—up| = |Ur o Uy (w) = Uy o Uy (w)] = |U () = U @)||Uf ()], @ € [U7(B) A 60, 0).
Thus, (2.63) yields together with Assumption 2.2.3 (iv)

sup |u—up| = (5;30132’”7& (Yn), n — oo. (2.65)

a<u<b

Hence, (2.64) and (2.65) imply

sup | €(u,v) — C(up,v,)| < sup |u—u,|+ sup |v—uvy,| = 5;30132’”’&(%1), n — oo. (2.66)

a<u,v<b a<u<b a<v<bd

. } } 1 . } .
Theorem 2.2.11 yields because of Un€Ds,j =12 the asymptotic

sup  |€(un, vn) = Calu,0)| = sup |U(Uy, (), Uy, (v) = Nu(Uy, (u), Uz, (0))]
a<u,v<h a<u,v<h
= OPE,V,& (7”)7 n — oo. (267)

Finally, (2.66) and (2.67) prove this theorem. O
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2.3 The Compound Poisson Process Case

Note that we do not use the special shape of the weight function
w(u) = (logle + [u))727%, §>0, weR?

in the previous Section 2.2. Neither do we use the convergence rate n~ 2 obtained in Theorem 2.1.6.
In fact, the proofs in the previous section also work if we only had

e~CUHuD? < w(u), weR?

for some constant C' > 0 and, concerning Theorem 2.1.6,

<w, k=12 1=0,1,2,34

_1
n 2+€supEg,,,7a —
nz=1

L (w)

for some € > 0. This is due to the fast decay behaviour of ¢y, if ¥ # 0, cf. Lemma 2.2.8.
Therefore we cannot derive any benefit from these stronger results. However, if ¢y, decays
more slowly, we can benefit from these stronger results as we shall demonstrate in the case of a
compound Poisson process with drift. This is, in some sense, the complementary case of the one
we investigated in the previous section.

Assumptions 2.3.1. We state here the assumptions concerning v in the compound Poisson case:

(i) The corresponding Lévy process is a compound Poisson process with intensity 0 < A < o0 and
has only positive jumps, i.e.

0<A LR =v®R2) < o,

(i) 3y >0 : § |z v(dz) < o0, i.e. finite 8+y-th moment,
fii) F(( + ) £ (4 )= 0+ o)™, we R,
(iv) Uy, : (0,00) — (0,A) is a C'-bijection with Uj, < 0 and

inf ) |Up(zg)| >0,  sup (1 A xp)|Up(zp)| < 0, k=1,2.

O<‘rk< :Ek>0

Proposition 2.3.2. Let f : Ri — Ry be a continuous function with the properties
(i) f(z) >0, e ({0} xRY) x (R x {0}),
(ii) f(x) < |m|2(log|x|)_27 T E Ri D] < %,

(iii) f(z) < 1+ |z))=C9, ze R

for some € > 0. Then
v(dz) © An(x) (o + 23) 7 f(2) NP (de)

is a Lévy measure and fulfills the Assumptions 2.5.1 (i), (ii) and (iv).

Proof. We only highlight the deviations from the proof in Proposition 2.2.5:
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(i) We have

[V

Q0
7“_47“2(10g r)_27“ dr + J r~4rdr < oo.
0 1

0<A=uR2)S f 2[4 f (@) \(dz) < f
R2
(iv) Observe first
[xl,OO) XR-&-TR;}; XR-H .’Ello,

so that we obtain
Ui(z1) = v([z1,0) x Ry) » v(RY x Ry) = 1/(]R2+) =A.

This yields that U; : (0,00) — (0,A) is a surjection. Compare for this the argumentation in
Proposition 2.2.5. Finally, note that it holds for z; > 0

1

! * 4 4\—1 1 1 1
|Ui(z1)| = JO (] +y3) " f(z1,2) dy2 < Jo

Q0
-2 -4
d dys = — —
(71 +y2) szrJ1 vt dyr= - g

which implies
sup (1 A x1)|U; (z1)] < o0.
xr1>0

O]

Corollary 2.3.3. It exists a Lévy measure vy that fulfills the Assumptions 2.5.1 with the property

[ttt = oo
RZ
for all € > 0.

Proof. We imitate the proof of step 2 in Corollary 2.2.6. For this purpose, set
def ) _r def
Jo(z) = ¢(r)logr) =+ (1 —¢(r))e™, r =z, zeR

and

vo(dz) & 1o(z) (2 + 23 folz) A2(dz)

with ¢ as in the proof of Corollary 2.2.6 and
def
V(@) = |aPo(x) =ro(r), zek

Then Assumptions 2.3.1 (i), (ii) and (iv) are fulfilled because of Proposition 2.3.2. Furthermore,

we have )

|l’|_e Y (dx) > ’ e 42 (]0 2rdr > : -1-3 dr =
0 > gr) rdr 2 r r =00
R?2 0 0

for all e > 0. Concerning Assumption 2.3.1 (iii), note that it holds for r > 0

2rp(r) + 17/ (r),
20(r) + 4r¢/(r) +r°¢"(r),

< <

/\\ /\\
= 3

S’ A
| |
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Le. ] < 00, [l < o0 and ||| < 00. The remaining proof works exactly as step 2 in the
proof of Corollary 2.2.6. O

Note that Assumption 2.3.1 (iv) implies that the one-dimensional compound Poisson coordinate
processes also have the intensity A. Furthermore, we have the representation

Yua(u) = exp (z (u, ) + f (eXw) — 1) I/(dl‘)) , ueR?
R2
with a finite measure v and o € R2. Lemma 2.2.8 now turns into the following statement:

Lemma 2.3.4. Given a Lévy triplet (X,v,a) with ¥ = 0 and v(R?) < 00. Then it holds
inf |pya > 0.
Inf, [ov.a(u)]

Proof. We have

lpv,a(u)] =

exp (Jm (ei<w> - 1) y(dx))‘ > exp(—2v(R?)) > 0.

Using this, we can prove the following theorem with the same technique as Theorem 2.2.11. Set

def _ 1
h, & n"2.

Theorem 2.3.5. It holds under the Assumptions 2.2.1 and 2.3.1 (i)-(iii) the asymptotic

2 4 A7 (logn)®
sup _|(a,b)|” A |(a, b)[*[v([a, 0) x [b,0)) = Nn(a,b)| = Op,, , n—o.
(a,b)eR ’ \/n
Proof. We only note the changes in the proof of Theorem 2.2.11 :

First, we establish

P(A}) = P(A},, ) =P (A n) —0, n— oo

C
1
N

() 1 1 I\ 1+6
Acc{3ueB, : —~rwr) 5~ L 1 2 HOop(1) =1}, N,
pe e my i 2 3 © (e e Va0, 21, e

so that nfé(log n)%ﬂs — 0 yields P(AS) — 0. Note furthermore

ov

ur (w) $1, uweR? k=12

since

f |zg|v(de) < oo, k=1,2, cf. Assumptions 2.3.1 (i), (ii).
R2
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This is why (2.59) can be replaced by

o J[l ~ ,(log(e + [u])) 2| Fgqp(—u)| X (u)Op(n”2)

= 1, [(a,b)] 7 v |(a,b)|™*

G+ﬂ1lﬁMWWMMM+MDMHMWVmO@mb_@@

def

Set w.l.o.g. 0 = 7. Then, (2.68) is not larger than

1
1

1

a 2y l(a ~4(logn)3 &
L4, (@, B)] 2 v |(a, )| *(log ) (L

= 14, |(a,b)]2 v |(a,b)|*(logn)>Op(n~2).

2
(1+z)" Al(dx)> Op(n~%)

logn this theorem. O

Again this proves together with Lemma 2.2.7 and |hy, log h,| = NG

Note that we are interested in estimating the copula C of (v(R?)) v instead of the Lévy copula
¢ of v. Here, we do not need the principle of a Lévy copula because v has no singularity in the
origin. Nevertheless, we still treat the origin with our technique as a singularity point. This is due
to the fact that we have originally developed this technique for the setting of the previous Section
2.2. However, it is also possible to get some considerable results in case of the compound Poisson
with this technique without much extra effort.

Definition 2.3.6. Let Assumptions 2.2.1 and 2.5.1 hold. Set with the same notation as in Theorem
2.2.14, but 6, & (logn)~?

Viter) € AWw([0,21] x Ry),  Va(za) € ARy x [0,22]),  @1,@0 >0,
Vol € UDHAQ - w), Vintw) € 051 AQ —v), 0<uv<l
and
My(a,b) % 1+ AN (No(a,b) — No(a,0) — N,o(0,b), (a,b) € R,
Colu,v) € My (Vi w), Vo, (v), 0<uv<1,

Let furthermore C denote the unique copula of the probability measure A~ v, i.e.
Cu,v) = MV (u), V5 (v), 0<uv<l1
with
M(a,b) ¥ A=0([0,a] x [0,b]) = 1+ A~H(U(a,b) — U(a,0) — U(0,b)), (a,b) € R.
Note that Vi : (0,00) — (0,1), k = 1,2 is a bijection and that its inverse is
Vit (w) = U, Y (AL —w), ue(0,1).

Theorem 2.3.7. Set 5, & (logn)~! and let the Assumptions 2.2.1 and 2.8.1 hold. Then we have
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for arbitrary and fired 0 < a < b < 1 the asymptotic

~ (logn)lo)
sup |C(u,v) —Cp(u,v)|=0p,, | —=— ], n— 0.
a<u711?<17| ( ) ( )| P ( \/ﬁ

Proof. We imitate in the following the proof of Theorem 2.2.14. First Theorem 2.3.5 yields with

1 5
€n def (O\g/g) , R(z) def 4 >0
and the notation o
1
ndgf R((Sn)en = (Ogn) -0, n—>w

the asymptotic
sup [Ry Np(,0) — Ur(z)| = Op, (), n— 0.

=00

Next Corollary 2.2.13 implies, since the Assumption 2.3.1 (iv) holds

sup Vi (u) — Vi H(u)| = sup U7 (u) = U ()] = Op,. (), n—o0.  (2.69)
a<u<b A(1-b)<u<A(l—a)

Again as in Theorem 2.2.14, set

def S51 def S5—1
up = Vio Vi (u), v, =VaoVy (v), a<u,v<b

and note that a copula also is Lipschitz continuous, cf. Nelsen [28][Theorem 2.2.4.]. In particular,

we have
|IC(u,v) — C(W/,0")| < Jlu—d|+|v—"2"], 0<uu, v, <1. (2.70)

Together with the mean value theorem and

UpleDs, = inf Vi,!(u) > inf Up}(u) =4y, (2.71)

O<u<l1 Ln u>0

we have fora <u <b
[ —wn| = [Vio Vi () = Vie Vi ()] = [V Hw) = Vi s @)V ()], @€ [Vy (@) A dn,00).
So (2.69) yields together with the Assumption 2.3.1 (iv)

sup |u —up| =6, '0p, (W), n— . (2.72)

a<u<b

Hence (2.70) and (2.72) imply

sup |C(u,v) — Clup,vp)| < sup |u—uy|+ sup |v—ov,| = 5;1013”,&(7”), n—oo. (2.73)

a<u,v<b a<u<b a<v<b

Furthermore, Theorem 2.3.5 yields together with (2.71)

sup |C(un,vn) — Culu,0)| = sup  [M(V, (w), Va,l (v) = M (Vi (w), Vi, (v)]

a<u,v<b a<u,v<b

Op, (M), n— . (2.74)
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Finally, (2.73) and (2.74) prove this theorem.



Chapter 3

Copula relations in compound Poisson
processes (CPP)

Let (Ni)¢=0 be a Poisson process on a probability space (€2, F, P) with intensity A > 0 and let
Xj i (Q,F) = (R,B(RY), jeN

be a sequence of i.i.d. random variables, such that (Xj;)jew and (IV;);»o are independent. Set

F Y pXiand

Ny
NENX;, =0 (3.1)
j=1
Then Y is a Lévy process with Lévy triplet (X, v, a) = (0, AF,0), i.e. a compound Poisson process
(CPP). In Chapter 2, Section 3, we constructed for d = 2 an estimator C,, for the jump distribution
F was based on the n+ 1 low frequency observations (Y;(@))¢—o,1,... n, where & denotes our observed
path. Our approach in Chapter 2 based on the Lévy triplet estimation techniques by Neumann,
Reil [29] and further techniques motivated by Nickl, Reifl [30]. In the current Chapter 3, we
explicitly treat compound Poisson processes (CPP), i.e. (3,v,a) = (0,1,0), A = v(R%) < o0. In
this case, the paper of Buchmann, Griibel [7] also offers a possibility of estimating the Lévy triplet
under the same low frequency observation scheme for d = 1. The techniques in [7] do not, in
contrast to [29, 30], use any Fourier inversion operations, but are based on a direct deconvolution
approach. To get more acquainted with their approach, we quote Lemma 7 in [7]:

Lemma 7 of Buchmann, Griibel [7]. Let F' and G be probability distributions on R with
S(o o €Y G(dy) < e for some \,7 > 0 and

def def o N L
GEINF)E ey ZFY,

Then it holds

The convergence of the right-hand sum holds in some suitable Banach space D(7) introduced
in detail in Buchmann, Griibel [7].
Note that (3.1) implies the relation P¥! = (), F). Under this point of view, ® in the quoted

93
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Lemma 7 regains the jump distribution F' out of W(\, F'). Schicks [39] generalizes the paper of
Buchmann and Griibel [7] to the multidimensional case and estimates the copula Cr of the jump
distribution F' with this approach. As before, everything in this chapter is stated in the two
dimensional case d = 2 which again is only due to a simpler notation.

Given the assumption that the intensity A > 0 is known, Schicks proposes in [39] for a jump
distribution F with no negative jumps, i.e. F([0,00)2?) = 1, the following estimator for the copula
Cp:

CPC (u,v) € BN, Gu(GTL 0 Br, G5t 0 BV](u,0), 0<uv<1, nel, (3.2)

where the index BG stands for Buchmann, Griibel. Note that ® in (3.2) is applied to a two di-
mensional distribution. It can be shown in a straightforward consideration that a multidimensional
analogue of Lemma 7 also holds, cf. Schicks [39]. Nevertheless, it is unnecessary to indicate this in
our notation, i.e. we again simply write ®. We proceed in the same way with ¥. Further, we use
the notations

1 & .
Gjn = gz 0,2](Y; Yip-1), =0, j=1,2,
1 n
Gn(xvy) = g Z OI] Yk» — Yk 1) X,y = O’
E\, = ()\ U[O 1]),

where Y; 1, 7 = 1,2 denotes the coordinates of Y}, and U[0, 1] denotes the uniform distribution on
[0,1]. Finally, Gj_’%, j = 1,2 denote the respective pseudo inverse. (3.2) implies that it holds in the
limit n — oo the identity

CF = (I)()\, Cg(E,\,E)\)) — \I/(/\,CF) = CG(E)\,E)\),
if CA’fG is close to C'r in some sense. This is equivalent to
Cyineor) = Corr)- (3.3)

Thus, the estimator in (3.2) would only be correct under this heuristic point of view, if (3.3) were
true. For a better point of view, (3.3) is re-formulated by using the underlying compound Poisson
process: Let

N N
Yo= ) X, Bi=) 4
j=1 j=1

be two compound Poisson processes. Then (3.3) is true if, and only if,
CX1 = CAl — Cyl = CBl

holds. As we shall see from of the results in this chapter, (3.3) is in general false.

Nevertheless, this provides an interesting starting point to investigate the correlation of the
dependence structure (via copulas) between the components of (Y;) and the dependence structure
of the underlying jump distribution, i.e. C'x,. Concerning this, we prove some asymptotic results.
This chapter is divided into three sections:

Section 1 simply states some useful definitions for our needs. If F' is a two dimensional distribu-
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tion with continuous margins, i.e. F' € M€ we denote with 7 F its unique copula, cf. Proposition
3.1.1. Note furthermore that we use, in this chapter, the notation C for the set of all copulas and
not for the set of all continuous functions as in Chapter 2.

In Section 2, we consider the copula of a compound Poisson process Y under the asymptotic
At — o0, i.e. we consider the limit behaviour of

TPY = TU(\t, PX1), At — 0. (3.4)

Obviously, (3.4) implies that we can fix w.l.o.g. ¢ 4t 1 and consider only the intensity limit A — co.
In this context, Theorem 3.2.5 yields the convergence

TU\,F) > TN(0,%), A— o

which is uniform on [0, 1]2. Here, ¥ € R?*? denotes a positive definite matrix defined in Theorem
3.2.5. Hence, it follows that the copula of a CPP uniformly converges under this asymptotic to
the Gaussian copula 7N(0,3). To distinguish between the Gaussian limit copulas, we have to
investigate whether 7N (0,%) = TN(0,%’) holds for two positive definite matrices ¥, %' € R?*2.
This is done in Proposition 3.2.4: With the notations in Section 1 the entity

§zydF(z,y)

p(PX1) = p(F) =
\Sa2dF(e,9) Sy dF (2, )

determines the limit copula of the CPP with jump distribution F' = PX1. Using this asymptotic
approach, the statement of Corollary 3.2.6 implies that (3.3) is in general not true, compare Remark
3.2.7.

Finally, in Section 3, we analyse the resulting limit copulas of all compound Poisson processes
in a certain way. For this purpose, we investigate the map F' — p(F'). First, note that Cauchy
Schwarz yields for every F' the inequalities —1 < p(F) < 1. Note that p can be geometrically
interpreted as the cosinus of the two coordinates of X7 in the Hilbert space L?(€2, F, P). The first
interesting question is whether

PC)=p(MS) = (0,1]

holds where M€ denotes all two dimensional distributions F with F([0,0)?) = 1 and continuous
margins. To say it in prose: The question is, whether the set of jump distributions which consists
of the set of copulas C, can generate every limit copula, which belongs to a CPP with positive
jumps. Proposition 3.3.1 states that this is not the case because it holds

p(C) < {;1}

Thus, from the above geometric point of view, copulas always span an angle between 0 and 60
degrees. Additionally, Example 3.3.2 states that all limit copulas that are reachable by a copula
jump distribution are even obtained by a Clayton copula, i.e.

pliCa : 0 [=-LeeN(0}) o fm o () = | 5.1]

see Section 1 for the notation. Finally, Example 3.3.3 provides the answer to the question of how
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1
]
constructive procedure how to construct such jump distributions: Fix any 0 < € < 1. Simulate
two independent U[0, 1] distributed random variables U and V. If [U — V| > €, make the jump
(U,V) € R2. Else repeat this procedure until the difference between U and V is not less that e,

and make afterwards the jump (U, V) € R?. All necessary repetitions are performed independently

to obtain the remaining limit copulas which belong to p € (0 ) In this example, we describe a

from each other. Then, if € runs through the interval (0, 1), we get a set of corresponding p values

that includes (0, %) Note that the resulting jumps of the above procedure are all positive.

3.1 Basic definitions

We denote with M the set of all probability measures on (R?, B?). Here B2 are the Borel sets of
R?2. Furthermore write

FeM®: < FeMand F({z} xR)=FR x {z}) =0, zeR,
i.e. the case that the margins of F' are both continuous. If we have even
F([0,z] x R) = F(R x [0,z]) =2, 0<z<1,

we write I’ € C and call it a copula. Hence, we have defined a further subclass and have altogether
the inclusions

Cc M M.

Define next

M, Y {FeM: F(R2)) =0}, MG E M, AMe

and note C € M.

For a more convenient notation, we do not distinguish between a probability measure and its
distribution function, e.g. we shall write without confusion

F((—oo,z] x (—0,y]) = F(z,y), z,yeR, Fe M.
The definition of the map 7 in the following proposition is crucial for our purpose.
Proposition 3.1.1. There exists a unique map
7 : M°->¢C

with the property
F(z,y) = (TF)(Fi(2), F2(y), z,y€R.

Here, Fy, k = 1,2 denotes the k-th marginal distribution of F' € MEC.

Proof. This is a consequence of Theorem 2.3.3. (Sklar) in Nelsen [28]. O

T is a map that transforms a probability measure in its copula. We require the margins to be
continuous in order to get a unique map. Note that of course 7j¢c = idjc. We shall deal with the
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following concrete copulas. Let 0 < u,v < 1.

I(u,v) = uv independence copula,

W(u,v) = max(u +v —1,0) Fréchet-Hoeffding lower bound,

M(u,v) = min(u,v) Fréchet-Hoeffding upper bound,
1

Co(u,v) = {(max{u_e +v7%—1,0})7°? }66[_1700)\{0} family of Clayton copulas.

Furthermore, we define a function p via
SzydF(z,y)
V12 dF (2, 9)§ 52 dF (3, )

p(F) =

on the domain of all F' € M® which possess square integrable margins. We further write as in
Buchmann and Griibel [7]

——AZ F*"“‘ FeM.

3.2 Asymptotic results
Lemma 3.2.1. Given F, G M and A\ > 0. Then F « G € M and V(\, F) € M holds.
Proof. Fix any r € R. Then, Fubinis theorem yields
(FG(r}) = (FOG){(y) eR?: a+y=r}), j=1,
J J 1, (2) dF;(x) dG;(y)

= | Br- e
R
= 0.

In order to prove the second assertion note that we have

( —AE le*’f) ({r}), j=1.2
— f/\ Z F*kz )

=0

A, F);({r})

where the last expression equals zero because of what we have proven at the beginning. ]
Proposition 3.2.2. Let (F,,)nen, S M€ and
d
F, - Fy, n — oo.
Then we have

sup |(TF,)(u,v) — (T Fy)(u,v)| > 0, n— . (3.5)
u,v€[0,1]
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Proof. Set C, def TF, and let Fﬁ, j = 1,2 denote the two marginal distributions of F,,. Fix

(u,v) € (0,1)2. Then, there exist x,y € R with
Fy(z) =u, Fiy) =v.

We have
Fo(x,y) = Co(Fy (2), F§(y)) = Co(u, v).

Since, with the margins of Fy, Fy itself is also continuous, the assumption Fj, 4, Fy yields
Cn(Fy(2), F3(y)) = Fu(z,y) = Fo(z,y) = Co(u,v), n — . (3.6)
Next, it holds
|Cn(,v) = Co(Fy (@), EY(y))] < Ju— F(@)] + [ = F3(y)] = 0, n— o0 (3.7)

because every copula is Lipschitz continuous, cf. Nelsen [28][Theorem 2.2.4]. The latter convergence
to zero results from F 4 Fg , 7 = 1,2 which is a direct consequence of the Cramér-Wold Theorem.
The pointwise convergence in (3.5) follows from (3.6) and (3.7).

For the uniform convergence, fix ¢ > 0 and choose any m > %, m € IN. Then, we have for all

0<u,v<1and
def |um| L def |vm|

Um s m
m m

|Cr(u,v) = Clu,v)| < |Cn(u,v) — Co(tm, V)| + |Cr(tm; vim) — Ctm, vm)|
+|C(tm, ) — C(u, )]
< —+ max Cn(J,k)—C(‘],kﬂ
m  0<jk<m m’' m m’' m
< be
for all n € IN large enough. O

Observe also the paper of Sempi [40] for further results in this area.

Remark 3.2.3. Let ¥ € R?*2 be a positive-semidefinite matrix. Then, we obviously have
]\7(07 E) EM — 0110929 > 0.

Assume this is the case, i.e. 011092 > 0. Then

lo12] 1

(i) X is strictly positive definite, iff Torionm <

(i) TN(O,%) = W, iff 22— = —1.

(iii) TN(0,%) = M, iff 22— = 1.

Proposition 3.2.4. Let ¥, ¥/ € R?*? be two positive-definite matrices with o110 > 0. Then we
have

!
TN(0,%) = TN(0,Y) 2z _ %12 3.8
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Proof. First, we can assume because of the previous Remark 3.2.3 w.l.o.g. that 3 and ¥’ are strictly

positive definite. We have

TN(0,8)(u,v) = Px(¢y), (1), 65y, (v),  u,veE[0,1]

022

where ¢y resp. ¢,;; denotes the cumulative distribution function of N(0, X) resp. N(0,05;), j = 1,2.
Set further ¢ def ¢1. Considering the respective densities, the equality of the left hand side in (3.8)

is equivalent to

02 02
TN(,% =
—TN(0,%)(u,v)

/
u&vTN(O’E )(u,v), wu,ve]l0,1].

Note that
00, 00, Py

2

-1 _
6u51} @E(Qso'll (u)7 d)o'gg (U)) - au av axay

2 2 -1

Y 1 —
e 2;1_2022 e—§(x,y)2 1(;;)

27 /011022 27(det )2
011022 ei%zt(z—liD—Q)Z
det X

d£f<\/aTl 0 )

. ol -1 u
(=(Veii)

with
We have

o = (L) ool )

Furthermore, note

DI '—D D =D 'D—-T=(D'sDpH=t -1

_ 1 1 —a 7 adéf 012
1—&2 —a 1 ’ A/0110922

and det
¢ =1-ad°
011022
This proves, together with the fact that
(0, 1)2 — R?

(w,0) = (¢ H(u),¢ '(v)

is a surjection, our claim. O
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Theorem 3.2.5. Let F' € M€ be a distribution with square integrable margins, i.e.

J(I‘Q +y}) dF(z,y) < .

Then,
Sup |T\P()‘7F)_TN(O7Z)|_)Oa A — @

0<u,v<1
with
7 def sz dF(x7y) Xxde(:v,y)
= 2 .
SeydF(z,y) §y*dF(z,y)

Proof. Denote with Z;-V:t({\) X the corresponding compound Poisson process to U(A, F'), i.e.

O Nk xk
F
P =ty A — =Y\, F)

= k!
with

Ni(A

)
25 N X5, A>o.
j=1

Next, define a map
oy R? — R?
(xay) = \%((‘T,y)—EZ)\)

It suffices to show that
ox(Z3) 5 N(0,%), A oo (3.9)

because Theorem 2.4.3 in Nelsen [28] yields
TP = TP? = TU(\ F),

so that Proposition 3.2.2 proves this theorem. Note that the latter application of 7 is allowed
because of Lemma 3.2.1 and the fact that ) is injective.
We verify (3.9) by use of Lévy’s continuity theorem: For a convenient notation, first set
Y, ¥ (v, X)), veR2

Next, observe that we have

FN(0,%)(v) = exp (—”t2”> = exp (— EY“2> .

Hence, it suffices to establish for every v € R? the convergence

FIZ(w) - exp (—E;”) Ao

Write for this purpose

Blep(ilo(@) = B (o (.20 - AB (0.x))) )

N5
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. Ni(V)
exp 7 JZ: v, Xj) exp(—i\[\E (v, X1))

— exp (A(]—"[Y 1A~

m\»—- H

) — )) exp(—iVAEY,)

= exp ()\ (\/XEY - ﬁEY2 +o(\~ ))) exp(—iVAEY,)

EY}
= exp<— 2” —i—o(l)), A — 0.

This proves the desired convergence. Note that we used Sato [38][Theorem 4.3] for the third
equal sign and Chow, Teicher [9][8.4 Theorem 1] for the fourth equal sign.
O

Corollary 3.2.6. Let F' € M° be a distribution with square integrable margins. Then there exists
another such distribution G and a number A > 0, such that TF = TG, but

TUNF)#TIYNG), A=A
To be more precise, there exists ug, vy € (0,1) such that
/l\iTm [T\, F) — TU(\G)| (ug,v9) > 0.
0

Additionally, we can choose G € M if F'e M¢.

Proof. For any ¢,d > 0 set G def O(c,ay * ' € M and observe G € M$ if FF € M. Note that
because of Theorem 2.4.3 in Nelsen [28] we have TF = 7G. Next, let X be a random variable with
X ~ F, so that (X7 + ¢, X9 +d) ~ G. Due to Theorem 3.2.5 together with Proposition 3.2.4, we
only have to show that we can choose ¢ and d such that p(F) # p(G). For this purpose, note that

E(X1+¢)? = EX}+2EX +¢
E(Xo + d)? EX3 +2dEX;, + d?
E(X1 +C)(X2+d) = EX1 X9+ cEXy+dEX] + cd.

Set
p: RYE — [0,1]

2
N E(X1+c)(X2+d)
(C7 d) (\/E(X1+C)2E(X2+d)2)

and observe
(EX1X2 +cEXs +dEX + Cd)2

(EX? 4+ 2cEX, + )(EX2 + 2dEX5 + d?)’

ﬁ(ca d) =
Assume (¢, d) — p(c,d) is constant. Then

(EX3 + d)?

~ def ;. ~

is also constant. This implies

(EX2)?
EX3 =p(0) = };Trglop(d) 1
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which is only possible if VarXs = 0, i.e. X5 is a.s. constant which is a contradiction to the assumed
continuity of the second marginal distribution of F'. O

Remark 3.2.7. (3.3) is equivalent to (12) in [39]. Unfortunately, (12) in [39] does not hold in view
of Corollary 3.2.6. The equality in (12) is an important assumption of the test constructed in that
paper, i.e. (3.2). Nevertheless, we think that the basic ideas in [39] can still yield a useful Lévy
copula estimator. However, the limit distribution will probably depend on the margins of the jump
distribution in contrast to what is claimed in [39)].

3.3 Two examples
Consider the introduction of this chapter for the motivation of the following two examples.

Proposition 3.3.1. We have
<p(C)<1, CeC.

N |

Proof. The upper bound is a direct consequence of the Cauchy-Schwarz inequality. For the lower
bound suppose (U, V) ~ C, i.e. in particular U,V ~ U[0, 1]. We then have to show that

EUV >

| =

Cauchy-Schwarz yields
E(1-V)U < (E(1 — V)2EU?)2 = EU?.

This implies

| =

EUV > EU — EU? =

N | =
W

which proves the claim. O

Example 3.3.2. Let (Cy)oe[—1,00)\0} be the family of Clayton copulas. Then we have

(o : € [=LeoN(o}) u fm u (M) = | 5.1

Proof. First, we show the continuity of the map
0 p(Co), 0 [~1,2)\{0}. (3.10)

For this purpose, choose a sequence (6,,)nenw, S [—1,00)\{0} with 6,, — 6. The pointwise conver-
gence
Cy, (u,v) = Cyy(u,v), 0<u,v<1

yields the convergence of measures Cy,, A Cg,- Define the product function
H:[0,1? - [0,1], (u,v)— uv.
Since H is continuous, we have C’eli 4, C’elg , which implies

Cy,(H <t) > Cyo(H <t), 0,—0 (tae). (3.11)

n
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Finally we can write

UHdC’gn—fHng

1 1
fcgn(H>t)dt—f Cg(H>t)dt‘
0 0

N

1
J |Co, (H <t) —Cyp(H < t)|dt >0, n— w
0

where the last convergence holds because of (3.11) and dominated convergence. This proves the
claimed continuity. Next, observe the pointwise convergences

Cy, —» 1, 6,—0, 6,€e[-1,0)\{0},
an - M, 9n — 0

and C_; = W, cf. Nelsen [28] (4.2.1). This completes, together with the continuity of (3.10),

and Proposition 3.3.1, the proof. O

Example 3.3.3. Let {Uy : k€ N} U {V} : ke N} be a family of i.i.d U[0, 1] distributed random
variables and fix any 0 < e < 1. Set

T, Y inf{ke N : |U, — Vi| > €.

Then the following two statements are true:
(i) (Ur,, V1) ~ U(I.) with I. = {(u,v) € [0,1]% : |u —v| > €}.
(ii) Set

p: (0,1) — [0,1]
€ p(P(UT@VTe)).

It holds (0, 2) < ¢((0,1)).

Proof. To have an unambiguous notation in this proof, the two dimensional Lebesgue measure is
denoted in the following with (% instead of A2.

(i): Let A € B2. Then we have

P((Ur., Vr,) € A)

I
RgE

P((UTea VTE) € A|Te = k)P(Te = k)

T
I

I
18

P((U, Vi) € A|(Ur, V1) € IE, ..., (U1, Vie 1) € IE, (Ug, Vi) € 1) P(Te = k)

T
I

P((Uk, Vi) € A|(Ux, Vi) € 1) P(T. = k)

I
TPMs

~ =

P

(Ui,Vi)e An )
P((U,V1)el)
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Note that P(T. = o) = 0.
(ii): Obviously I2(1.) = (1 — €)? holds. Next, we obtain

EUZ (F(I )~ J u? 17, (u, v)d(u,v)

[0,1]2
1 pu—e 1 pv—e

= (1—¢72 (JJ u2dvdu+JJ u2dudv)
e JO e JO

62+1
6

wl

and

EUrVr) = (BI)™ J uv 17 (u,v) di*(u, v)

[0,1]2
1 pu—ce
= 2(1—€)72 uv dv du
e JO
_ (1=¢B+e
B 12

A symmetry argument yields E(V7) = E(U7,), so that we have

(1—¢€)(3+e¢)

ple) = 2(e2 + 2)

Continuity of ¢ and
0= 151%111 p(e) < leif{)l o(e) = Z

proves (ii).



Appendix A

Auxiliary results for Chapter 1

Proposition A.1. Let (H;)iew be a family of i.i.d. random variables with the property
Ir>0: B <o, te(—rr).

Then we have for every N € IN

n 2N
(\F > (H; — EHy) ) — E[N(0,Var H)]*N, n— o, (A1)

which in turn implies

( ZH EH1>2N=O(n1N), n — o. (A.2)

=1

Proof. First, we establish for all N € IN

n 2N
sup E (\/1% D U(H; — EH1)> < 0. (A.3)
i=1

nelN

Fix for this purpose any ¢ € (0,7) and note that because of

2N
vy (v

it suffices to verify

%\

n 2N .
Z H EH1)> <evm Zi:l(Hi—EHl)7 n,N e N,

oy (g
sup & (eﬁzi:l(m EHl)) < .
nelN

Further, since
n
E(eﬁ =1 (H: EH1>) [E(aﬁ(Hl‘EH“)], neN,

it is enough to prove
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for some constant C' > 0. Consider for this

t - 1 t :
E<€W(H1_EH1)) < 1+ Z — <) E(|H, —EH1|/<?)
|
=k \V/n
1 &tk k
< L+ - ) SEH —EH|", neN
n k!
k=2
e

and
C<E (et‘HleHﬂ) < et‘EH1| (E' (etHl) 4+ E (e*tHl)) < 0.

Next, Bauer [5][§21, Exercise 5] implies together with (A.3) the uniform integrability of

Lo 2N
(\/ﬁ Z(Hi - EH1)>
i=1

Moreover, the central limit theorem states

nelN

7 2 (H; — EHy) S N(0, Var Hy).

(A.5)

Finally Billingsley [6][Theorem 3.5.] proves together with the uniform integrability of (A.4) and

the weak convergence (A.5) the claim (A.1).

O]

Corollary A.2. Let (Z;)ien be a family of N(0,1) i.i.d. random variables and N € IN. Then there

is a constant C'= C(N) > 0 such that

n—2
T
Pl|lm—/—— E ZillZiv1| — 1| =

for everyne N and e > 0.

222—1

C
< 2NN

. C
€ -
S 2NN

and

Proof. Note that

1
*2 dr <o, t<—-.

v ;

Hence, (A.6) follows from the Markov inequality and Proposition A.1.

EetZ2

To prove (A.7), observe
2 tir2. 72 t 2\ 2
Bz 22] = 2, Bl % < s = (Bei”) <o, 1 <1
T

and decompose

n—2
T
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2([_1)2 (12071 - 2)

i=0
512 [31-2
m_2 2 2 2
~ 2ln-1 Z (|Z2i||ZQi+1| - 7r> + p— 2 <|ZQi+1||ZQi+2| - 7T> (A.9)
i=0 =
=2 Znsl| Ze | Tame(n) — ——— Ty (n)
o 114n— - n)— —F/———= n)|.
n—1 n—2||4n—1| 12N 7T(n — 1) 21N
Once again, (A.7) follows from the Markov inequality and Proposition A.1. ]

Proposition A.3. Let (Z;)iew be a family of i.i.d. random variables with Z; ~ N(0,1) and N € IN.
Then we have

N
2

N
E(max |Zl|) < 2V(logn)2 + 2N!

1<ig<n

for all sufficient large n € IN. To put a finer point on it, the above inequality holds at least for
n = 5H5.

Proof. The proof is divided into two steps. The first step derives some elementary inequalities.
Finally, the second step estimates the desired N-th moment of the maximum using the inequalities
in the first step.

STEP 1. Compilation of some helpful inequalities. First, we note the best-known inequality
1+y<exp(y), yeR. (A.10)
For the opposite direction, an analysis of the extrema of the function

ylog(l+y)—y+y? y>-—1

implies
1
log(1+y) =y —y>, —5 <y <o (A.11)
Further, we have
e o0 2
1 z? 1 22 1 e 2
P(Zi2t) = — e 2 dxr < Eeiidw——e 2, t>0,

which yields
OP(Z1>t) <A/==e 2 <ez, t>=1. (A.12)

41 . o . . . 2
If n > [e*] = 55, it follows 24/logn > 24/loge* = 4. Hence, t = 24/logn obviously implies & > t.
Due to this, we get for n > 55 the implications

2 2
t>=2 logn:>t2>4logn,Z>t:>et7*L t

so that we have 1
t = 24/logn, n = 55 = Zetze T, (A.13)
n

\%
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STEP 2. Estimate of the expected value. We have

o0
E(max |Z;|V) = NJ tN_1P<maX |Z|>t) dt

1<ign 1<isn
_ NJ V11— [P(12] < 0)]") e

NJ N1 = [1=2P(Z, = )] dt

(A.12) 2v/logn 0 o\ T
< NJ tNldt+ N N1 (1—(1—62) ) dt
0 2+/logn
(A.13)
<

N © e t\"
N(logn)2 + N N1 (1— (1—) ) dt.
2+/logn n
def ¢

With y = % inequality (A.11) yields

eft eft 67215
e )
n n n

—t\ " —2t (A.10) —2t
& o —t_ e ¢ &
(1 — ) >e ¢ noo=2 1l—et— —.

n n

so that

This yields, using the Gamma function,

00 e—t n —2t
Nf tN1(1—<1—>>dt < N tNl(et—i-)dt
2y/logn n

o [evreta s N [T
J +n2N
= N1+ —)(v-1)
B n2N '
< 2N!
which proves the claim. ]

Remark A.4. In view of the scaling constants that are needed to make the maximum of i.i.d.
normal distributed random variables converge to the Gumbel distribution, the upper bound in the
above Proposition A.3 seems natural.

Lemma A.5. Fiz any 0 < ¢, < 1 and let ¢ be an irrational number. Then there are sequences
(ny) and (k;) of natural numbers with the properties

ntoo, 0<k<mn

and k:
— 4+ —<c<—+4+—, 21 (A.14)

Remark A.6. Note that the statement of Lemma A.5 is wrong if ¢ € Q. To understand this,
assume

0286(0,1), p,q €N
q
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and note that (A.14) is equivalent to

qk; + q—; <pny <qgk;+qr, =1 (A.15)
Next, set
def 1
= — e (0,1
5 01)

and observe that ) )
ki + =, qgk; + = N =
@l+4ﬂl+2)ﬁ %}

since gk; € IN. This is a contradiction to (A.15) because of pn; € IN. Nevertheless, we are going to
prove that the lemma holds if ¢ ¢ Q.

Proof of Lemma A.5. Consider the function
g : IN—[0,1], n— nc—|nc|.

g(IN) is a dense subset of [0,1]. This is due to the irrationality of ¢ and can be proven by the
pigeon-hole principle, c.f. Arnold [2][§24, page 222]. Observe that (A.14) is the same as claiming

nic—kj € (g,r> , =1 (A.16)

Since (%,7) < [0,1] is open and g(IN) is dense in [0, 1], it follows that

9(M) A (5.7) € [0,1]

consists of infinite many points. So we can choose a sequence n; T 00 of natural numbers such that

r

ﬂnoe(iﬂ), 1>1 (A.17)

holds. Finally, we set
0§k‘ld§f[nlcj<nl, =1

and observe that this choice yields the equivalence of (A.16) and (A.17) which proves this lemma.
U

Eventually, let us state an easy, but useful lemma.

Lemma A.7. Fiz aq,...,an, b1,...,b, € R. Then, the following inequalities hold:

(i)

min(by,...,b,) < max(aj + by,...,an + by) — max(aq,...,a,) < max(by,...,b,)

(ii)

|max(ay + by, ...,a, + by) —max(a,...,a,)| < max(|bi],...,|bn])
Proof. (i) implies (ii), because

max(bi,...,by) < max(|bi],...,|bn])
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and
min(by,...,b,) = —max(—b1,...,—by) = —max(|b1],...,|bn]).

We therefore only have to show (i): Consider for this

max(ay + b1,...,a, +by) > max(a; + mkin by ...,an + mkinbk)
= max(ay,...,a,) +min(by,...,by)
and
max(aj + by, ...,an +b,) < max(mkaxak +b1,... ,m]?xak +by)

= max(a,...,a,) + max(by,...,by).



Appendix B

Auxiliary results for Chapter 2

Proposition B.2 is a generalization of the following Proposition B.1 which can be proven with
standard results from Fourier analysis.
Proposition B.1. Let f : R?> - R be a Schwartz space function. Then it holds

% f
5.1‘1 61'2

FFl(w) < —

< 2 )2, B.1
] Je A(dz), we (R¥) (B.1)

()

Proof. Due to Rudin [36][Theorem 7.4 (c)], it holds the equation

?f

6301 8952

uua(F f)(u) = —]—'( ) (u), ueR?

which implies

!
|u1us|

o2 f

2 %) 2
21079 M (dzx), wue (R*).

[ Ffl(w)

()

o f 1
<
7 (83016902) ‘ (u) = |U1UQ| R2

The situation is more involved in Proposition B.2 since f does not need to be a Schwartz space
function. Generally, it is not even a continuous function. The claim of Proposition B.2 states that,
in this situation, a similar result as (B.1) also holds. We only have to take the boundaries into
account. Here, we are going to provide, for completeness, an elementary proof of Proposition B.2,
although the technique is straightforward.

Proposition B.2. Let g : R%2 — R be a C2-function with

2

0
< —(1+¢) 9 12 .
@5 A+, e @), =12

99

L'(R?
ge ( -‘r)a 5%

for some € > 0 and define a function f : R?> - R via

fa) = {g(x), z € (R*)?, (B2
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Set
A, def 19(0,0) +J 991 (21,0) )\1(d$1)+f a9 (07332))\1(@2)_'_] %g () N2(dx).
R, oxr1 R, 0x9 R 0x10x2
Then it holds A, s
|Ffl(u) < gl ue (R*)”. (B.3)

Remark B.3. Note first that F f is, of course, independent of the values of f on the negligible set
def
No,0) = ({0} x Ry) u (Ry x {0}).

We only choose the representation in (B.2) for a more comfortable approach in the subsequent
proof.
Note furthermore that it holds for every y € R

Ffu) = e “DF(f(-+y)(w), ueR”
Hence, our discontinuity set could also have been

N & ({1} x [y2, ) U ([y1, ) * {ya})

and the above Proposition B.2 remains true. The choice y = 0 is only due to a simpler notation.

Proof of Proposition B.2. The proof is divided into three steps. In the first step, we approximate
f with a sequence of step functions and prove the L' convergence of the sequence to the given
function f. The second step calculates the Fourier transforms of those step functions in relation to
the Fourier transform of f. Finally, the third step combines the results of the first two steps and
proves the desired result.

STEP 1. Set for j,ke Z and n € IN

m—1m—1 .
e k
Tn,m () f Z f <j7 ) ﬂAzk($), reR? meN.

o) — F(2)] = V(%k)—f@)

because of
(424
=, — —x <7
n'n n

and the continuity of f on (0, N]?. Using the dominated convergence theorem with the constant
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L'((0, N]?) majorant

sup |f(z)| = sup [g(z)] <o,
2€(0,N]2 2€[0,N]?

we get 7 N — f, n— o0 in L1((0, N]?), i.e.

J |7'n,N~n($) — f($)|/\2(dx) — 0, n— oo.
[0,N]?

Set
def

ny < inf{l e NV - f I (@) — F(@)| N2(der) < —,
[0,N] N
and

def
TN = Tny,N-ny> N e NN.

Then, we have

|rx (@) = f(2)| N (dx) =
J J

2 R2\[0,N]? [0,N]?

ie. ry — fin L'(R%).

STEP 2. Write with u = (ug,u2) € R?

and set

Vn > 1}

()] X2(da) +j () — (@) A(dz) — 0,

def , (7 K def ;1 def ;& .
fj,k = f (7)7 a; = elHUIa bk = elnu27 ]7kEZ'

This implies

m m—1

1
From(u) = ———
2 5= k=0

—1
(aj+1 = aj) Y fiabrsr — br)-

Note next that it holds for arbitrary sg,...,$_1,t0,-..,t € C, [ € IN the equality

-1 -2 -2

-1
2 Sk(te1 — tr) = Z Sklry1 — 2 Sk+1try1 = s1-1t; — Soto — 2 b1 (Ska1 = Sk)-
k=0

k=0 k=-1 k=0

This yields, in particular,

déf(]) -0 -

m—1 m—2
2 Fik(brsr — br) = fim—1bm — fjobo — Z b1 (fip+1 — fik) -
k=0 k=0

Regarding (I) together with (B.4) we next consider

=0 m—2

m—1
2 fim-1(ajs1 —a;) = fom—1,m—1am — fom—100 — 2 aj+1(fj+1,m=1 — fim—1)

Jj=0 J=0

(B.4)

(B.5)
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(%)

A
e ~

= amfmfl,mfl - Z aj“rl(fj“rl,m*l - fj,mfl) _alfl,mfl-
j=1

Note that f,,—1,m—1 and f1,,—1 tends to zero, if % tends to infinity since f vanishes at infinity.

Next, there exists for each 1 < j < m — 2 a number 7); € [%, %] such that

10 —1
fj+1,m71 - fj,mfl f (773, ) .

n&x n

n 1+e€
m—1 ’

m—2 m n 1+e
S Z | fi+tm—1 = fjm—1| € — < ) .
o n \m-—1

Regarding (II) together with (B.4) and (B.5), we consider

This implies, together with our assumptions,

S|

| fittm—1 — fim—1| <

so that we have

m—2
i (firme1 = fjm—1)

j=1

1

m—
2 aj+1 —

—2

3

M

b1 (fik+1 — fik)

7=0 k:O
cf. (%) =0
m—2 m—2 )
= am Y. bkt (fmerkrt = fne1k) —a0 Y, bera(forer — for)
k=0 k=0
m—2 m—2
aj+1 Z b1 (fietk+1 — Fivrk — Figs1 + fin) -
7=0 k=0
et
So it remains to consider (IIT). Decompose for this purpose
m—2m—2
DT ket — Fiark — Fiksr + Finl
j=0 k=0
m—2
= |fi1—fio— fo1 + fool + Z |freer = fre —
k=1
m—2 m—2m—2
+ 7 1 = fivvo = fia + fol+ D0 D0 fiwresr — fierk — Fiker + fikl
i1 j=1 k=1

m—2m—2

= |fial + 2 |free1r = frel + Z i = Fial+ D0 D0 fivrksr = fivnk — Fiker + fixl

Jj=1 j=1 k=1
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Each addend of the above expression is considered separately. First, note

11
|f1,1| = ‘9 (,)‘
nn

Next consider

= (=} o9 | (1
D fiesr — frel < D) = sup F (,132) (B.6)
k=1 k=1 " Egap kel [OT2] N
and set
dof " 0 1
ho(z2) = sup ||| =, 22 ]l[ﬁ m)(@), w2 € (0, V]
k=1 ﬁ<z2<k+1 afBQ n n’ n

Set as in the first step m 4 N . and note that we have because of the continuity of 06792 on R%r

the pointwise convergence

hn(wg)ﬁ‘ag‘(o,m), n— oo, € (0,N].
61'2

The dominated convergence theorem with the constant L!((0, N]) majorant

o9

-_— < QO
2s (x1,22)

sup
(z1,22)€[0,1]x[0,N]

yields
g : 1
hp — |=—(0,:), n—o0 in L°((0,N]).
6952
This means that
N-n—2
1 0 1 0
Z . Sup A (71:2) - J 79 (07$2) Al(d$2)7 n — 0.
o1 T Ecapck[0T2] AR (0,7 |02

So (B.6) implies

n-N—2
. 0
msup 3 |fuer — fuel < J 29 (0,2) N (ds). (B.7)
" k=1 [0,N] | OF2
Equally, we get
n-N—2 ag
limsup Y |fj411 — fial < J ‘6 (x1,0) A (day). (B.8)
o= [0,N] | 011

Note further that we have for 1 < j,k < m — 2 and = (71, 22) € R? the estimate

it = Fiote = Fyos + Fil = U S 2aa) < L s |21 | ).
1,k j+1k g.k41 g,k s 5410%2 Y xeAﬁk 0,027
Hence, we get with a similar argumentation
lim sup (n.%m (”'%2) |f; —f. _f < g A2(d B.9
B PR ikl = firik = firrr + finl < f[O’N]Z P . (dx). (B.9)
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STEP 3. In view of (B.7) set

n-N—2
(1) def . . f g ‘ 1 1
ny’ = inf{le NN : — < — (0, z9) A" (dx2) + —, Vn =1}
N { ’;1 | fre+1 — fugl v, |33 (0,22) A" (dx2) N }

Set analogously ng\?) and ng\‘?) regarding (B.8) and (B.9). Finally, define
My def ny v ng\l,) v nf,) Vv ng\?;), fn def Tmy,Nmy, V€N,

Considering the results in the first step together with the estimates in the second step and (B.7),
(B.8) and (B.9), we have for u € (R*)?

(Ff)l < |F(f = fn))] + [ Fiv@)] < [f = falo+ |u11u2|ANa NeNN (B.10)

with a sequence (Ay)y independent of u € (R*)? and

limsup Ay < Ay, lim|f — fx|1 =0.
N N

Taking the limes superior on both sides of (B.10), finally, yields (B.3). O

Corollary B.4. Recall

) def 1

2
= m ﬂ[a,oo)x[b,oo)(fljb xz), (a, b) € 9‘{, rzeR

ga,b(ﬂf

and

def
R = 0,0)"\{(0,0)}.
It holds for all (a,b) € R and u € R? the inequality

[(a, b)]

Fgapl(u) <
| g,b|( ) ( |U1UQ|

Il(]R*)z(u)> A |(a,b)| 72

where the constant in the above < is independent of (a,b) € R.

Proof. Note that we have

1 1
Fgapl(u) < f ——— \%(dz) J — \2(dx
| ) [a,00) x [byo0) L1 + 23 (dz) [a,00)x [boo) 1[* (dz)

< f LA dr) = 27V (a,0)) 2
[(@.b)]c0) T

where we have used the norm equivalence in R? and a polar coordinate transformation.

Next, fix any u € (R*)? and apply Proposition B.2. Observe for this purpose that we have

o

0 1
ox1 2} + 25

1
at + vt

(ml,b)Al(d.’I;l):—f - A (dzy) =

[a,00) 67.%'1.%% + bt
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and analogously

0 1 0 1 1
— M (dzg) = — — ——— M(dxy) = —.
J[b,oo) 04 lel—i-x% (a, x2) A" (dx2) J[b,oo) 0o a4+x‘21 (dzo) at + b4
Finally, a similar consideration yields
0? 1
— (@) N2(dz) = —— < |(a,b)| %
f[a,oo)x[b,oo) 0r10x2 1:‘1* + x% (z) X(dz) a* + vt |( )|
O
Lemma B.5. This lemma states two simple but useful facts.
(i) We have with u € R? and |u1l, |uz| = 1 the inequality
1 4
< . B.11
furua] = 0+ furl) 0+ fua]) R
(ii) It holds for every 0 < h < 3
i 1
J minhlzh D) ) < hlog .
r(1+]z])
Proof. (i): Set
&l —120, j=1,2
(B.11) is equivalent to
!
(24 €1)(2+ e)<4(1 + €1)(1 + €2) = (2 + 2€1)(2 + 2¢2)
which is obviously true.
(ii): Write
. 1 o0
J min(h|z],1) g = 2Jh hz dz+2f dz
R (1+]z))? o (I+2)? 1 (1+2)?
1+h 2h
= 2h|(l -
<Og( h > 1 h>+1+h
= 2h(log(1l + h) —logh)
1
< |hloghl, 0<h< 3
[

Next, we state a version of the Plancherel theorem. The well-known classical Plancherel theorem
as stated in Rudin [36][Theorem 7.9] yields the equality

| F@a@) (o) = - | FD@ED @) () (B.12)
R2 7 R2

for all complex valued functions f,g € L?(A\?). Lemma B.6 establishes that an analogous version
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also holds for g replaced by a measure p under certain assumptions. The proof of Lemma B.6
demonstrates how to use the well-known result (B.12) in order to verify the claim (B.13).

Lemma B.6. Let pi be a finite positive measure on (R, B(R?)) and f : R2 — R be a measurable
bounded function, such that Fu € L?(\?) and f € L*(\?) hold. Then we have

1
| rau= - [ED-0Fnw 2@, (3.13)
Proof. First, note that the integral of the right-hand side in (B.13) exists:

ququww-Meﬁu%

z€R?2

implies f € L?(A\?) and therefore Ff € L2(\?). This yields together with the Hélder inequality
w e (F)(=u)(Fp)(u) € L'(N?),

The proof is divided into two steps. We assume in the first step that f is continuous and, finally,
drop this restriction in the second step.

STEP 1. Suppose, additionally, that f is continuous. Set
1 1
T <N (0,) ®N<O,)> ., nelN
n n

u2
J|}'Mn|d>\2 - J|fu|(u)e_2n A2 (du) < 0, nelN.

and note that we have

Hence, Sato [38][Proposition 2.5 (xii)] yields the existence of a bounded and continuous A\? density

dEf d,un

= d/\zeLl(/\Z), nelN.

J

The boundedness of f and f,, implies f, f,, € L2(\?), so that the classical Plancherel theorem (B.12)
yields

deun = fffndv = L;Tjﬁfffnd)\2, neN. (B.14)

Furthermore, the pointwise convergence
1 1
n n

o d .
implies p, — W, i.e.

ffduneffdu, n — o. (B.15)

Finally, dominated convergence and |FfFu,| < |FfFu| € L' (A\?) yield

Jffffn d\? = J}"ffun d\? - J]—"f]—"ud/\Q, n — o0.
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This accomplishes together with (B.14), (B.15) and Ff(-) = Ff(—) step 1.

STEP 2. Next, we drop the restriction on f to be continuous. Note that the space C. of contin-
uous functions with compact support is a dense subspace of L'(A? + p), cf. Rudin [37][Theorem
3.14]. Hence, there is a sequence of functions (g,), S C. with g, — f in L'(\% + u). We can
assume furthermore |gy oo < | fleo, 7 € IN because f is bounded. This yields in particular

gn — f in L'(p) and L2(\?). (B.16)

Since F is an isometric L?(\?) isomorphism, we, in particular, have Fg, — Ff in L?(\?) which
implies by using of the Holder inequality

f]—"gn(—-)}'u d\? — J]—"f(—-)]-"u d\?, n — . (B.17)

Finally, (B.16) and (B.17) prove together with step 1 the claim of this lemma. O
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Appendix C

Matlab listings

In the following, the Matlab source code files for the numerical simulations in Chapter 1, Section 7
are provided. The files are listed in alphabetical order and separated into Matlab macros and Matlab
function files. Further, a concise description of the meaning of the respective files is provided. Every
figure in Chapter 1.7 is created using exactly one macro file which is based on the stated function
files:

GApprox.m, GApproxJmp.m, errorTypes.m, GBNSCompRef.m, GBNSComp.m, realTest.m

create Figures 1.2 up to Figure 1.7, in this order. An execution of the file doAll.m creates all figures
in Chapter 1.7. However, the needed calculations may take several hours on a customary personal
computer with our parameter setting.

Explanations of the function files are as follows:

e approxBNScdf.m calculates the empirical distribution function of the test statistic by Barn-

dorff -Nielsen and Shephard. For this purpose, we sample the underlying unit interval with

the grid fineness 4 and use the jump diffusion process in Chapter 1.7 with the parameters
n

lambda, k = 10L? and 6§ = ﬁ' Thus, the jump distribution has expectation % and vari-
ance 10%. Finally, to get the empirical distribution function, the test statistic is evaluated

m times, based on m independent simulations of the underlying jump diffusion process. The
result is exported in the vector r which is, of course, discretized, i.e. we obtain r as a function
on —I,—1 +dt,—I + 2dt,--- ,2I with a suitable stepsize dt.

e approxGedf.m proceeds in the same way as approxBNScdf.m with the Gumbel statistic in-
stead of then Barndorff-Nielsen and Shephard statistic.

e CGamPoiss.m simulates a compound Poisson process with a Gamma distributed jump distri-
bution. Here, lambda is the intensity of the process and k, theta are the parameters of the
Gamma distribution. Again, # describes the sampling step size.

e getQuantile.m calculates the quantile function, i.e. the pseudo-inverse of a given distribution
function F' which is defined on the discretized interval [—1I,I] with step size dt.

e 0U.m simulates an Ornstein-Uhlenbeck process with the parameters: a starting point; mu
mean reversion level; theta mean reversion speed; sigma volatility. The parameter n is again
used for the grid fineness.

e powerBNS.m calculates the power of the Barndorff-Nielsen and Shephard test. For this pur-
pose, it is assumed that the test statistic has the finite sample distribution given by the
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quantile function q, if there are no jumps. Based on m independent simulations with the grid
fineness #, the power concerning the significance levels a,a + dt,a + 2dt, . .., b is calculated.
The underlying process is again the jump diffusion process in Chapter 1.7 with the jump
parameters L and lambda, cf. approxBNScdf.m.

powerG.m is the same as powerBNS.m, but based on the Gumbel test.

testBNS.m applies the Barndorf-Nielsen and Shephard test m-times on m independently
simulated jump diffusion processes or, alternatively, on a real dataset Y. Again, n is used for
the grid fineness and L, lambda is used for the compound Poisson jump process.

testG.m is an analogue to testBNS.m, but based on the Gumbel test.

Yf .m simulates the underlying jump diffusion processes.
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Matlab macros

errorTypes.m

%mi = 10000;

m2 = 2000;

n = 50;

I = 20;
(-I:0.0001:1);

z
alpha = (0:0.001:0.1);

G
F
qG
qF

exp(-exp(-2z));
normcdf (z) ;

errorlG = powerG(n,m2,9G,0,0.1,0.01,0,0);
errorlF = powerBNS(n,m2,qF,0,0.1,0.01,0,0);

error2G = 1 - powerG(n,m2,9G,0,0.1,0.01,4,10);
error2F = 1 - powerBNS(n,m2,qF,0,0.1,0.01,4,10);

figure(3);

subplot(2,2,1);

plot(alpha,erroriG,’.’,’Color’,’k’);

hold on;

plot(alpha,alpha,’Color’,’red’);
title(’no jumps, Gumbel’);

subplot(2,2,2);

plot(alpha,erroriF,’.’,’Color’,’k’);

hold on;

plot(alpha,alpha,’Color’,’red’);
title(’no jumps, Barndorff-Nielsen’);

subplot(2,2,3);

plot(alpha,error2G,’.’,’Color’,’k’); title(’jumps, Gumbel’);

subplot(2,2,4);

getQuantile(G,I,0.0001);
getQuantile(F,I,0.0001);

%Type I error

%Type II error

plot(alpha,error2F,’.’,’Color’,’k’); title(’jumps, Barndorff-Nielsen’);

set(gcf, ’PaperPositionMode’, ’Auto’);

GApprox.m
= 10000;
I=-3;
=7

x = (I:0.001:J);
y = exp(-exp(-x));
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F20 = approxGedf(20,m,0.001,1,J,0,0);

F50 = approxGcdf (50,m,0.001,1,J,0,0);
F200 = approxGcdf(200,m,0.001,1,J,0,0);
F1000 = approxGcdf(1000,m,0.001,1,J,0,0);

figure(1);

subplot(2,2,1); plot(x,F20,’r’,x,y,’k’); title(’n = 20°);
subplot(2,2,2); plot(x,F50,’r’,x,y,’k’); title(’n = 50’);
subplot(2,2,3); plot(x,F200,’r’,x,y,’k’); title(’n = 200°);
subplot(2,2,4); plot(x,F1000,’r’,x,y,’k’); title(’n = 1000’);

set(gcf, ’PaperPositionMode’, ’Auto’);

GApproxJmp.m
m = 10000;
I=-3;

x_1 = (I:0.001:10);
x_2 = (I:0.001:10);
x_3 = (I:0.001:15);

x_4 = (I:0.001:20);

y_1 = exp(-exp(-x_1));
y_2 = exp(-exp(-x_2));
y_3 = exp(-exp(-x_3));
y_4 = exp(-exp(-x_4));

F50_1 = approxGcdf(50,m,0.001,1,10,1,5);
F50_2 = approxGcdf (50,m,0.001,1,10,2,5);
F50_3 = approxGcdf (50,m,0.001,I,15,3,5);
F50_4 = approxGcdf (50,m,0.001,1,20,4,5);

figure(2);

subplot(2,2,1); plot(x_1,F50_1,’r’,x_1,y_1,’k’); title(’L
subplot(2,2,2); plot(x_2,F50_2,’r’,x_2,y_2,’k’); title(’L
subplot(2,2,3); plot(x_3,F50_3,’r’,x_3,y_3,’k’); title(’L
subplot(2,2,4); plot(x_4,F50_4,’r’,x_4,y_4,’k’); title(’L

]
Sw N e

set(gcf, ’PaperPositionMode’, ’Auto’);

GBNSComp.m
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ml 10000;
2000;
50;

I = 20;

=]
N
I

alpha = (0:0.001:0.1);

F = approxBNScdf (n,m1,0.0001,I,0,0);

gF = getQuantile(F,I,0.0001);

G = approxGcedf(n,m1,0.0001,-I,1,0,0);

qG = getQuantile(G,I,0.0001);

pF1 = powerBNS(n,m2,qF,0,0.1,0.01,4,2);
pF2 = powerBNS(n,m2,qF,0,0.1,0.01,4,15);
pGl = powerG(n,m2,9G,0,0.1,0.01,4,2);
pG2 = powerG(n,m2,9G,0,0.1,0.01,4,15);
figure(5);

subplot(1,2,1);
plot(alpha,pF1,’.’,’Color’,’r’);
hold on;
plot(alpha,pGl,’o’,’Color’,’k’);
title(’\lambda = 2’);

leg = legend(’Barndorff-Nielsen’,’Gumbel’);

set(leg,’Location’, ’SouthEast’);

subplot(1,2,2);
plot(alpha,pF2,’.’,’Color’,’r’);
hold on;
plot(alpha,pG2,’0’,’Color’, k’);
title(’\lambda = 15°);

leg = legend(’Barndorff-Nielsen’,’Gumbel’);

set(leg,’Location’, ’SouthEast’);

set(gcf, ’PaperPositionMode’,’Auto’);

GBNSCompRef.m

alpha = (0:0.001:0.1);
x = (0:0.0001:0.1);

F = approxBNScdf (n,m1,0.0001,I,0,0);

gF = getQuantile(F,I,0.0001);

G = approxGecdf(n,m1,0.0001,-I,1,0,0);
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qG = getQuantile(G,I,0.0001);

pF = powerBNS(n,m2,qF,0,0.1,0.01,0,0);
pG = powerG(n,m2,9G,0,0.1,0.01,0,0);
figure(4);

subplot(1,2,1);
plot(alpha,pF,’.’,’Color’,’k’);
hold on;

plot(x,x,’Color’,’r’);
title(’Barndorff-Nielsen’);

subplot(1,2,2);
plot(alpha,pG,’.’,’Color’,’k’);
hold on;

plot(x,x,’Color’,’r’);
title(’Gumbel’);

set(gcf, ’PaperPositionMode’, ’Auto’);

realTest.m

data = xlsread(’LogEWI104s_nonstandardized.xls’);
usa = data(:,1)’;
ireland = data(:,14)’;

usa = [0 cumsum(usa)];
ireland = [0 cumsum(ireland)];

N = 9372;
usa = usa(1:N+1);
ireland = ireland(1:N+1);

uG
iG

exp(-exp(-testG(93,1,-1,-1,usa)));
exp(-exp(-testG(93,1,-1,-1,ireland)));

uGMin = exp(-exp(-testG(93,1,-1,-1,-usa)));
iGMin = exp(-exp(-testG(93,1,-1,-1,-ireland)));

uBNS = normcdf (testBNS(93,1,-1,-1,usa));
iBNS = normcdf (testBNS(93,1,-1,-1,ireland));
figure(6);

x = 1973.6+(0:1/N:1)*(2005.6-1973.6) ;
plot(x,ireland,’k’,x,usa,’r’);

leg = legend(’ireland’,’usa’);
set(leg,’Location’, ’SouthEast’);
axis([1973.6 2005.6 -1 6])

%---- Print the test results ---
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set(gcf, ’PaperPositionMode’, ’Auto’);

doAll.m

GApprox;
GApproxJmp;
errorTypes;
GBNSCompRef ;
GBNSComp;
realTest;
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Matlab functions

approxBNScdf.m

function [r] = approxBNScdf(n,m,dt,I,L,lambda)
T = testBNS(n,m,L,lambda);

T = sort(T); fempirical distribution function
r = zeros(1,2*I/dt+1);

(1:m)

v = ceil ((T(j)+I)/dt);

if (v <= 2%I/dt)

r((max(v+1,1):end)) = r((max(v+1,1):end)) + 1;

for j

end

end

r = r/m;
r(end) = 1;

approxGedf.m

function [r] = approxGcdf(n,m,dt,I,J,L,lambda)

T = testG(n,m,L,lambda);
T = sort(T); fempirical distribution function
r = zeros(1,(J-I)/dt+1);
for j = (1:m)
v = ceil((T(j)-I)/dt);
if (v <= (J-I)/dt)
r((max(v+1,1):end)) = r((max(v+1,1):end)) + 1;
end
end
r = r/m;
r(end) = 1;
CGamPoiss.m

function [r] = CGamPoiss(n,lambda,k,theta)

N =n"2;
J = zeros(1,N+1); %n~2+1 row vector
jQuant = poissrnd(lambda); %quantity

jPos = sort(rand(1,jQuant),2); %position
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jSize = gamrnd(k,theta,1,jQuant); Ysize

jCumSize = cumsum(jSize);
pos = [ceil(jPos*N) N+1];
for k = (1:jQuant)
for h = (pos(k)+1:pos(k+1l))
J(h) = jCumSize(k);
end
end

getQuantile.m

function [r] = getQuantile(F,I,dt)

m = 1/dt;
q = zeros(1,m+1);
j=0;

for k = (0:m)
while ((j+1 <= size(F,2)) && (F(j+1) < k/m))
j= 3+t
end
q(k+1) = j;
end

r = 2xIxq/(size(F,2)-1) - I;

r(1) = -inf;
r(end) = inf;

OU.m

function [r] = 0U(n,a,mu,theta,sigma)

N =n"2;
dt = 1/N;
dW = sqrt(dt)*randn(1,N);

= (0:1/N:1);

= a * exp(-thetaxz) + mux(l-exp(-theta*z)); Ydeterministic part
J = sigma*exp(theta*z(l:end-1)).*dW; %stochastic integral
J = cumsum(J);
J = J.*xexp(-theta*z(2:end));

x + [0 J];

=
]
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power BNS.m

function [r] = powerBNS(n,m,q,a,b,dt,L,lambda)

A = 1/dt;
v = zeros(1,A+1);

for i = (0:4)
alpha = i * dt * (b-a) + a;

q(floor(alpha*(size(q,2)-1) + 1));
testBNS(n,m,L,lambda) ;

H o
non

v(i + 1) = sum(T >= Q) / m;

end
r=1-v;
powerG.m

function [r] = powerG(n,m,q,a,b,dt,L,lambda)

A
v

1/dt;
zeros(1,A+1);

for i = (0:4)

alpha = i * dt * (b-a) + a;

=)
1]

q(floor((1-alpha)*(size(q,2)-1) + 1));
testG(n,m,L,lambda);

—
]

v(d + 1) = sum(T <= Q) / m;

end

testBNS.m

function [r] = testBNS(m,m,L,lambda,Y)

theta = pi~2/4 + pi - 5;
mul = sqrt(2/pi);

T = zeros(1,m);
for j = (1:m) %produces m values of the statistic
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if (lambda >= 0)

Y = Yf(n,L,lambda);
end
dY = abs(Y(2:end)-Y(1:end-1));

dY2 = dY*dY’;
dY11 = dY(1:end-1)*dY(2:end) ’;
dY1111 = sum(dY(1:end-3) .*dY(2:end-2) .*dY(3:end-1) .*dY(4:end));

T(j) = (mul~(-2)*dY11l - dY2)/sqrt(theta*mul” (-4)*dY1111);

end

testG.m

function [r] = testG(n,m,L,lambda,Y)

2*sqrt (log(n)) ;
aa - (log(log(n)) + log(8*pi))/(4*sqrt(log(n)));

aa
bb

T = zeros(1,m);

for j = (1:m) %produces m values of the statistic
if (lambda >= 0)
Y = Yf(n,L,lambda);
end
dY = Y(2:end)-Y(1:end-1);
sigma = zeros(1,n"2);
for k = (1:n)
dYpartial = abs(dY((k-1)*n + 1 : kxn));
sigma(((k-1)*n + 1 : k*n)) = dYpartial(l:end-1)*dYpartial(2:end)’;
end
sigma = sqrt(pi/(2*(n-1))*sigma);
dY = dY./sigma;
T(j) = aa*(max(dY) - bb);

Yf.m

function [r] = Yf(n,L,lambda)

N =n"2;
dt = 1/N;
dW = sqrt(dt)*randn(1,N);
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sigma = max(0U(n,1,1,0.5,0.2),0.1);
y = cumsum(sigma(l:end-1).*dW);

J = 0;

if (L > 0) Ymean = L/n , variance = 1/(10n"2)
J = CGamPoiss(n,lambda,10*L"2,1/(10*L*n));

end

r=[0y] + J;
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