

Effect of strain rate on the forming behaviour of sheet metals

Patricia Verleysen and Jan Peirs

Department of Materials Science and Engineering, Ghent University, Belgium

DC06 1mm

Processes and materials of interest

• Electromagnetic pulse forming, hydroforming Strain rates upto 3500/s

 Deepdrawing, roll forming, bending Locally strain rates upto 100/s

DC04 (EN 10027-1)
 unalloyed deep-drawing steel
 used for body components in cars

CMnAl TRIP

laboratory made multiphase austenite transforms to martensite during plastic straining

- Experiments
- Modelling of high strain rate behaviour
- Calculation of high strain rate FLD
- Conclusions

- Experiments
- Modelling of high strain rate behaviour
- Calculation of high strain rate FLD
- Conclusions

Split Hopkinson tensile bar experiments

Split Hopkinson tensile bar experiments

Setup at Ghent University

- Uniaxial *tensile* load
- Adjustable **strain rate** up to ~2000 s⁻¹
- Loading time up to 1.2 ms
- Specimen *glued* between bars

Test results

Test results

- Experiments
- Modelling of high strain rate behaviour
- Calculation of high strain rate FLD
- Conclusions

Phenomenological modeling

Johnson-Cook

- Strain rate dependent hardening
- Temperature dependent softening

$$\sigma = \left(\mathbf{A} + \mathbf{B}\boldsymbol{\varepsilon}^{\mathbf{n}}\right) \left(1 + C \ln \frac{\dot{\boldsymbol{\varepsilon}}}{\dot{\boldsymbol{\varepsilon}}_{0}}\right) \left(1 - \left[\frac{T - T_{room}}{T_{melt} - T_{room}}\right]^{m}\right)$$

adiabatic heating

$$\Delta T = \frac{\beta}{\rho c} \int \sigma d \, \varepsilon_p$$

Voce

 Strain rate dependence and adiabatic conditions accounted for by the use of strain rate dependent parameters

$$\sigma = \sigma_0 + K(1 - e^{-n\varepsilon_p})$$

Modelling

Modelling

- Experiments
- Modelling of high strain rate behaviour
- Calculation of high strain rate FLD
- Conclusions

Marciniak-Kuczynski model

initial imperfection in sheet metal modelled by band of smaller thickness

during biaxial straining imperfection zone deforms more than uniform zone

when *strain localizes*, difference increases drastically

failure of sheet

For a certain predefined biaxial strain state critical strain calculated for all ψ angles Lowest strain value is **THE critical strain**

- Experiments
- Modelling of high strain rate behaviour
- Calculation of high strain rate FLD
- Conclusions

Conclusions

• Influence of strain rate on forming properties of DC04 and a CMnAl TRIP steel is studied

High strain rate tensile experiments are carried out

Johnson-Cook and Voce model parameters determined

Experimental results are used to calculate FLDs

based on Marciniak-Kuczynski model

• Forming limit diagrams show a non-negligible effect of the strain rate

DC04 *FLD shifts downwards* with increasing strain rate TRIP *FLD enhances* considerably if the strain rate is increased

Remarks

- Anisotropy not taken into account in FLDs
 Limitation due to implementation, not inherent to M-K model

 now Hill implemented
- Post-necking behaviour not taken into account
 Better results obtained with shear tests instead of tensile tests

Questions ??

More information:

Verleysen, P; Peirs, J; Van Slycken, J; Faes, K and Duchene, L (2011): Effect of strain rate on the forming behaviour of sheet metals. Journal of materials processing technology nr. 8, Vol. 211, 1457-1464

Department of Materials Science and Engineering Mechanics of Materials and Structures
Ghent University, Belgium
Patricia.Verleysen@UGent.be

