
Federated Capacity Planning
for Distributed Computing Infrastructures

Dissertation
zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Alexander Papaspyrou

Dortmund

2013

Tag der mündlichen Prüfung: 21.06.2013

Dekanin: Prof. Dr. Gabriele Kern-Isberner

Gutachter: Prof. Dr.-Ing. Uwe Schwiegelshohn (Technische Universität Dortmund)
Prof. Dr.-Ing. Ramin Yahyapour (Georg-August-Universität Göttingen)

To Nami, who escorted me
and Spyro, who passed amidst.

Preface

“The time has come,” the Walrus said,
“to talk of many things.”

—Lewis Carroll

Computing power has become the fifth utility for almost every ap-
plication area in science and industry, and its ubiquitous availability
is a key factor for advances in biotechnology, climate research, and

product design. To cater this need, various concepts for the comprehensive,
distributed provisioning of processing capacity have been developed over the
last decade, and the most well-known representatives arguably are academic
Grid computing and commercial Cloud computing. For that matter, both
approaches share a certain tension between consumers and providers: While
the former—researchers, engineers—express their desire for on-the-spot, reli-
able availability of computing power, the latter—academic computing centres,
commercial data centres—care about economic and manageable provisioning.

In this work, we explore this tension with respect to capacity planning.
To this end, we develop an appropriate model that reflects the needs of mod-
ern e-Infrastructures and embraces the results of three decades of distributed
computing research. Using that model, we analyse whether—and if so, in how
far—the building of federated infrastructures is reasonable from the stake-
holders’ (consumers and providers) perspective without disregarding their in-
dividual interests. In that context, we develop scheduling strategies for dif-
ferent architectures and approximate their limits. Finally, we evaluate the
prequisites that need to be fulfilled in the technical architecture in order to
transfer the afore discussed algorithms to real-world scenarios. To this end,
we elicit the requirements from two production environments and develop
a generalised interaction model that allows the application of the analysed
strategies. There, we show that, using two newly designed protocols, not only
the methods can be successfully transferred, but also—due to the extensibil-
ity of both the protocols and the architecture—envisage a manifold of other
application scenarios.

VIII Preface

Acknowledgement. Six years of intense research on a dedicated topic are—besides
being a necessary precondition for a university degree—first and foremost a lesson
in humility, as the trip to the edge of human knowledge turns out to be physically
and mentally demanding, even beyond the personal limits. This is mainly due to the
fact that the path that leads to the own, novel contribution, goes beyond this edge’s
boundaries into uncharted terrain and has many junctions, detours, and blind alleys.
In order to master the lack of direction when exploring foreign land, the arguably
most important thing is an environment that gives support, provides guidance and
grants freedom.

I would therefore like to thank my advisors, Prof. Dr.-Ing. Uwe Schwiegelshohn
and Prof. Dr.-Ing. Ramin Yahyapour, for giving me the opportunity to journey. Uwe
Schwiegelshohn allowed me to freely pursue my ideas and, at the same time, provided
the context for my research through real-world projects that required to build down-
to-earth solutions rather than staying in the ivory tower. Ramin Yahyapour piqued
my curiosity for distributed computing as an undergraduate already, opened the
doors for priceless opportunities to collaborate with the most excellent researchers
around the world, and introduced me to the majestic beauty of standardisation.

Traveling alone in modern research is all but possible. As such, I would like
to thank my colleagues at the Robotics Research Institute for being so enjoyable
throughout the whole time. Special thanks go to my close fellow Christian Grimme
and my peers Joachim Lepping and Alexander Fölling—the honest, positive, and
inspiring collaboration with such brilliant minds was most certainly one of the cor-
nerstones of successful research. Further, I would like to thank my students Tim
Dauer, Christian Fisseler, Christian Friem, Cesare Foltin, and Alexander Gumprich
for helping with the implementation and verification of the presented algorithms and
protocols. Andy Edmonds, Andre Merzky, Thijs Metsch, and Jochen Tösmann de-
serve my thanks for embarrassing me with the countless ambiguities and vaguenesses
they revealed in the written text during their review.

Finally, I would like to thank my family for their caring support and endless
patience. My deepest gratitude is due to my beloved wife Natalie Nami, who endured
my presence, tolerated my absence, and continuously backed my work with her
positive spirit and radiant mind.

Contents

1 Introduction . 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Structure . 4

Part I Modelling and Evaluation of DCI Environments

2 Classification of SRM in Modern DCIs . 11
2.1 State of the Art . 11
2.2 Taxonomy of Properties . 13
2.3 Classes of Deployment . 15
2.4 Considerations on a New Model . 17

2.4.1 Local System Level . 17
2.4.2 Federation Level . 21

2.5 Model Realisation . 26

3 Methodology for Evaluation of SRM in DCIs 29
3.1 Methods of Evaluation . 31

3.1.1 Theoretical Analysis . 31
3.1.2 Real-World Assessment . 32
3.1.3 Simulative Evaluation . 33

3.2 Selection of Input Data . 39
3.2.1 Synthetic Workload Traces . 39
3.2.2 Recorded Workload Traces . 40
3.2.3 Utilised Workload Traces . 42

3.3 Assessment Metrics . 47
3.3.1 Makespan . 47
3.3.2 Squashed Area . 48
3.3.3 Utilisation . 48
3.3.4 Average Weighted Response Time 49

X Contents

3.4 Reference Results for the Non-federated Scenario 51
3.4.1 Classic LRM Algorithms . 51
3.4.2 Discussion of the Results . 53

Part II Algorithms for Capacity Planning Problems

4 General Assumptions . 59
4.1 Layer Model . 60
4.2 Policy Model . 61

4.2.1 Location Policy . 62
4.2.2 Transfer Policy . 62

4.3 Architectural Considerations . 62
4.3.1 Interaction in Centralised Flavors 63
4.3.2 Interaction in Distributed Flavors 65

5 Selected Methods for Centralised Architectures 67
5.1 On the Prospects of Passive Workload Exchange 69

5.1.1 Pooling-aware Standard Heuristics 69
5.1.2 Experimental Setup . 70
5.1.3 Evaluation . 71
5.1.4 Related Work . 75

5.2 On the Influence of Active Decision Making 77
5.2.1 An Autonomy-centric Viewpoint on the Federation 78
5.2.2 Experimental Setup . 79
5.2.3 Evaluation . 80
5.2.4 Related Work . 81

5.3 On the Application of Hierarchical Capacity Planning 83
5.3.1 Shaking as a means of Capacity Planning 84
5.3.2 Adapted Algorithm . 85
5.3.3 Experimental Setup . 88
5.3.4 Evaluation . 88
5.3.5 Related Work . 90

6 Selected Methods for Distributed Architectures 91
6.1 On the Benefits of Workload Migration . 93

6.1.1 One-to-one Collaboration between SRM Systems 94
6.1.2 Experimental Setup . 94
6.1.3 Evaluation . 96
6.1.4 Related Work . 103

6.2 On the Robustness of Capacity Planning 105
6.2.1 Evolutionary Fuzzy Systems for Distributed Brokerage . 106
6.2.2 Realisation of the Policy Model . 110
6.2.3 Experimental Setup . 111
6.2.4 Evaluation . 113

Contents XI

6.2.5 Related Work . 120
6.3 On Resource-centric Capacity Planning in DCIs 123

6.3.1 Workload Management through Leasing of Resources . . 123
6.3.2 Experimental Setup . 126
6.3.3 Evaluation . 127
6.3.4 Related Work . 129

7 Discussion of the Results . 131
7.1 Comparison of Approaches . 133

7.1.1 Qualitative Analysis . 133
7.1.2 Quantitative Comparison . 136

7.2 Limits of Federation . 141
7.2.1 Preliminaries on Multi-objective Optimisation 141
7.2.2 Methodology. 144
7.2.3 Experimental Setup . 148
7.2.4 Evaluation . 150
7.2.5 Related Work . 152

Part III Blueprints for SRM in Federated DCIs

8 Lessons Learned from Modern Production Environments . . 157
8.1 Architectural Obstacles towards Modern SRM 158

8.1.1 Handling of Negotiation and Agreement 159
8.1.2 Provisioning of Infrastructure . 160
8.1.3 Standardisation of Interfaces . 161

8.2 A Blueprint for SRM in Federated DCIs . 162
8.2.1 The fedSRM Protocol . 162
8.2.2 Technology Considerations . 164

9 Protocols for Negotiating Authoritative Agreements 167
9.1 Background . 168
9.2 The Architecture of AoR . 169

9.2.1 Resources . 172
9.2.2 Representation . 176

9.3 Rendering of the Protocol . 177
9.3.1 Negotiation . 179
9.3.2 Agreement . 181

9.4 Evaluation . 183
9.4.1 Limitations . 184
9.4.2 Integration . 184

9.5 Related Work . 185

XII Contents

10 Standards for Differentiated Resource Provisioning 187
10.1 The Architecture of OCCI . 188

10.1.1 Core Model . 188
10.1.2 Infrastructure Extension . 191

10.2 Delineation from the Proxy Approach . 193
10.3 Usage of Web Technologies . 194
10.4 Impact of OCCI . 196

10.4.1 Application in the Infrastructure . 196
10.4.2 Adoption in other Areas . 197

11 Conclusion . 199
11.1 Synopsis . 199
11.2 Results . 200
11.3 Contribution . 201

11.3.1 Model Definition . 201
11.3.2 Algorithm Development . 202
11.3.3 System Design . 202

11.4 Outlook . 203

A The teikoku Grid Scheduling Framework 205
A.1 Foundation . 205

A.1.1 Component Structure . 205
A.1.2 Layer Interfacing . 206
A.1.3 The Notion of Time . 207
A.1.4 Parallelisation . 208

A.2 Runtime Environment . 210
A.3 Local Resource Management . 211
A.4 Federated Resource Management . 213

Acronyms . 217

References . 221

List of Figures

2.1 Taxonomy of properties in SRM systems . 13
2.2 Classes of deployments in SRM systems . 16
2.3 Structure of the sytem model’s LRM level . 20
2.4 Structure of the system model’s federation level 27

3.1 Architectural overview of tGSF . 36

4.1 Structure of the DCI in the federated case 60
4.2 Exchange policy based decision making . 61
4.3 Centralised active SRM federation structure 64
4.4 Centralised passive SRM federation structure 64
4.5 Distributed SRM federation structure . 65

5.1 Results for the two-participant setup f1 . 71
5.2 Results for the two-participant setup f2 . 72
5.3 Results for the three-participant setup f3 . 73
5.4 Results for the three-participant setup f4 . 74
5.5 Pool sizes for setups f1, f2, f3 and f4 . 74
5.6 Results for the three-participant setup f5 in scenarios 1 and 2 . . 80
5.7 Results for the four-participant setup f6 in scenarios 1 and 2 . . . 81
5.8 Results for the five-participant setup f7 in scenarios 1 and 2 . . . 81
5.9 Application example of the original Shaking algorithm 85
5.10 Creation of a shaking plan with the Shaking-G algorithm 86
5.11 Results for the two-participant setup f8 . 89
5.12 Results for the two-participant setup f9 . 89
5.13 Results for the two-participant setup f10 . 90

6.1 One-to-one migration strategies for brokering 95
6.2 Results for the three-participant setup f11, for RQF and ACF . . 97
6.3 Results for the three-participant setup f12, for RQF and ACF . . 97
6.4 Results for the five-participant setup f13, for RQF and ACF . . . 97

XIV List of Figures

6.5 Migrations from KTH96 in f11, for RQF and ACF. 99
6.6 Migrations from CTC96 in f11, for RQF and ACF 99
6.7 Migrations from SDSC00 in f11, for RQF and ACF 99
6.8 Migrations from KTH96 in f12, for RQF and ACF. 100
6.9 Migrations from SDSC03 in f12, for RQF and ACF 100
6.10 Migrations from SDSC05 in f12, for RQF and ACF 100
6.11 Number of migrations until final scheduling for f13 with RQF . . 103
6.12 General architecture of the EFS controller-based transfer policy 107
6.13 Rule encoding pattern in the EFS implementation 108
6.14 Characteristic curves of the optimised rule bases 115
6.15 AWRT changes against ACF and RQF (trained rule bases) 116
6.16 SA changes for the two-participant setups (trained rule bases) . . 117
6.17 AWRT and ΔSA for f17 (trained rule bases) 118
6.18 AWRT and ΔSA for f18 (trained rule bases) 119
6.19 AWRT and ΔSA for f19 (trained rule bases) 120
6.20 Decision process of the BLOS and CLOS policies 125
6.21 AWRT improvements for BLOS and CLOS in f20, f21, and f22 . 128
6.22 U changes for BLOS and CLOS in f20, f21, and f22 128
6.23 Leased SA, in percent of total for BLOS and CLOS policies 129
6.24 Leasing behaviour of KTH96 and CTC96 for f20 130

7.1 Process of workload merging into a single job stream 145
7.2 Individual encoding scheme and resulting workload partitioning 145
7.3 AWRT results for the setups f23 and f24 after 200 generations . . 150
7.4 AWRT results for the setups f25 and f26 after 200 generations . . 151

8.1 Core aspects of an SRM architecture for federated DCIs 158
8.2 fedSRM capacity planning session steps . 163

9.1 Overall architecture of AoR . 172
9.2 Resource structure within AoR . 173
9.3 Agreement state machine within AoR . 175
9.4 Offer state machine within AoR . 176
9.5 AoR negotiation and agreement protocol session 178

10.1 Component relationships in the OCCI Core model 189
10.2 Component relationships in the OCCI Infrastructure extension . 192
10.3 Mixin relationships in the OCCI Infrastructure extension 192
10.4 Replacement of proxy-based APIs with OCCI 193

A.1 Relationships within the simulation engine module of tGSF 206
A.2 The notion of time in tGSF . 207
A.3 Structure for different event processing paradigms of tGSF 209
A.4 Distributed parallel simulation performance of tGSF 209
A.5 Relationships within the runtime environment module of tGSF . 211
A.6 Workload data model of tGSF . 212

List of Figures XV

A.7 Relationships within the LRM module of tGSF 213
A.8 Relationships within the federation module of tGSF 214

List of Tables

3.1 Properties of the original workload traces used in this work 43
3.2 Properties of the shortened workload traces used in this work . . 44
3.3 Reference results for AWRT, U, and Cmax,k, using FCFS 51
3.4 Reference results for AWRT, U, and Cmax,k, using EASY 52
3.5 Reference results for AWRT, U, and Cmax,k, using LIST 53

5.1 Workload traces used for the analysis of setups f1 to f4 71
5.2 Workload traces used for the analysis of setups f5 to f7 79
5.3 Workload traces used for the analysis of setups f8 to f10 88

6.1 Workload traces used for the analysis of setups f11 to f13 96
6.2 Per-system and overall U data for setups f11 and f12 98
6.3 Migration matrices Mk of setups f11 to f13, for RQF and ACF . 102
6.4 Migration matrices MSA of setups f11 to f13, for RQF and ACF 102
6.5 Workload traces used for the analysis of setups f14 to f19 112
6.6 Workload traces used for the analysis of setups f20 to f22 127

7.1 Qualitative comparison matrix for the different SRM algorithms 134
7.2 Comparison of AWRT results for f3, f9, and f11 139
7.3 Comparison of U results for f3, f9, and f11 139
7.4 Comparison of AWRT results for f7 and f13 139
7.5 Comparison of U results for f7 and f13 . 139
7.6 Workload traces used for the analysis of setups f23 to f26 149

9.1 Operational impact of CRUD on AoR resource types 171

1

Introduction

“Begin at the beginning,” the King said gravely,
“and go on till you come to the end.”

—Alice in Wonderland

The availability of information technology on the large scale
has radically changed the way research and development is pursued.
In fact, the ubiquitous availability of computing power for science and

industry is nowadays considered the fifth utility: More and more applica-
tion areas rely on complex computations, and e-Infrastructure1 has become a
key factor for advances in biotechnology, climate prediction, product design,
and manufacturing. This naturally necessitates the operation of large-scale
resource centres, and in many universities, commercial research centres, and
even medium-to-large enterprises they can be considered a commodity service
for users. But although hardware performance has significantly increased, the
demand for more computing power is ever growing.

Additional processing capacity in such systems is typically acquired with
respect to the demand of the local user communities; that is, if the resources
are found to be constantly over-utilised, an investment into extending the sys-
tem is made. Naturally, this demand is subject to constant change: the usage
of a High Performance Computing system in research is typically bound to
fixed publication dates, and industrial data centres depend on the amount
of orders or certain—internal and external—projects. Hence, the load of such
systems fluctuates over time, which leads to two undesirable situations: Either
the available capacity is under-utilised, which harms the expected return on
investment of the centre or, in case of over-utilisation, the users are forced
into unacceptable delays due to a large backlog of work. With the cumulative
amount of operational expenditure that is independent from the utilisation on
the one hand, and the increasing expectations from important stakeholders
regarding on-the-spot availability of computing power on the other, the provi-
sioning of e-Infrastructure is always accompanied with the wish of satisfying
conflicting goals.

1 See Hüsing (2010) for an attempt to define the concept; here, we limit ourselves to
the computational aspect of IT infrastructure for solving problems from different
research domains.

2 1 Introduction

1.1 Motivation

From an operators’ point of view, the natural way to cope with this tension
would be the dynamic reconfiguration of their system in an on-demand fash-
ion: For example, if user-generated workload grows due to a conference dead-
line or a project deliverable, the operator would add additional resources to his
local system until the backlog shrinks again. Likewise, he could offer idle parts
of the system to other parts of his organisation, such as different departments
in an enterprise or cooperating institutes within a network of universities.
While such an approach ensures that the system is well-utilised—a funda-
mental performance benchmark for most operators and their institutions—
over time, it also delivers a higher level of service quality to the users due to
the adaptiveness to their workload.

The technical foundation for Distributed Computing Infrastructures (DCIs)
that are capable of providing such service has been laid during the late 1990s
with the emergence of Grid computing. In this area, a plethora of research
has been conducted with respect to sensible workload distribution. Due to
the architectural nature of Grid computing, much effort has been put into
mechanisms for the delegation of workload between participating compute
centres. In the industrial domain, a similar concept for moving away from
on-premises infrastructure arose at the beginning of the new millennium: Pi-
oneered by Amazon, a large, multinational electronic commerce company, the
focus shifted towards the business model of selling computing capacity in an
“as-a-service” fashion, and idea of Cloud computing as a different flavour of
Distributed Computing Infrastructure was born.

Over the last five years, both technical foundations have been largely sim-
plified and commoditised: With the advent of large production Grid infras-
tructures and the widespread offering of Cloud services, institutions’ CIOs
can now provision additional resources, e.g. compute, storage, and even net-
working, on demand without having to make a permanent investment into
extending the local facilities. This is especially interesting in as far as the
adaptation of capacity to the currently induced load can be handled with-
out capital expenditure: An elastic resource space could grow and shrink on
demand by reshaping available infrastructure.

With the availability of the technological foundation for doing so2, the
next logical step is to consider how these advances can be leveraged. Two
natural approaches to the demand based idea discussed above can be derived
very easily: When local resources are over-utilised, either load can be moved
away3, or external resources can be added to the local ones. This idea of
course presumes a general agreement between different resource centres to
(at the very minimum) collaborate in some way. If such a collaboration can
be achieved between a number of participants, a federation is born – resource

2 That is, through the commoditisation of virtualisation technology.
3 To under-utilised resources at a different resource centre, that is.

1.2 Goals 3

centres agree to, within the limits of their own objectives4, distribute workload
among the participants and temporarily provide their own resources to others
currently in need of more capacity.

Naturally, such federations open a multitude of interesting scientific and
technical challenges regarding Scheduling and Resource Management (SRM).
In order to make this general research problem of Federated Capacity Plan-
ning for Distributed Computing Infrastructures tangible, we narrow it down
to answering the following research questions:

Question 1. What does a suitable federation model that fits to the architecture
of current production infrastructures look like, and how can the technological
gaps between the model and real environments be addressed?

Question 2. How large is the infrastructural effort to build a federation of
resource centres, and how resilient are such systems towards change in the
participant structure, amount, and behaviour?

Question 3. Since participants of the federation are organisationally (and thus
financially) independent from each other, can we retain their autonomy in
the federation and still achieve a good overall performance, thus satisfy each
participant’s requirements?

Question 4. How much insight into the operational model of each participant
is necessary for being able to design and implement a well-performing fed-
eration, given that the disclosure of information such as system load, work
backlog, etc. is not necessarily desirable?

Question 5. Is it possible to determine lower and upper bounds for the gain
of a resource centre participating in a federation, and—if so—how close do
current SRM strategies approximate them?

1.2 Goals

In this work, we aim to find solutions to the specific problem of SRM in DCIs.
Our main goal is to provide a solid background for the decision whether it is
beneficial to participate in a loosely coupled federation of resource providers
for large-scale problem solving. Although necessarily making several simplifi-
cations on the model, we strive for lifelike assumptions on the benefits of such,
and at the same time search for practical solutions to technical problems. To
this end, we pursue three objectives.

4 Often, these limits are expressed by means of cost, which enables the partici-
pants to mutually compensate the effort. Buyya et al (2005) has adopted this
approach for both Grid and Cloud computing; for this work, however, the notion
of monetary cost is considered to be out of scope.

4 1 Introduction

First, we want to compile a realistic, yet manageable model of federated
DCIs for the evaluation of such environments, and build the tools and metrics
to make an assessment. This is necessary as it provides the foundation for the
further analysis of the possible benefits in such a system.

Second, we want to explore whether it is at all reasonable for a provider
to participate in such a federation. As each resource centre first and foremost
cares about its very own users, the gain resulting from a federated model
must be sufficiently large to justify the additional effort. As the gain is likely
depending on the characteristics of the collaboration, we assess different kinds
of algorithms for capacity planning with varying surrounding conditions. Also,
we approach the boundaries of the feasible to gain insight of how large the
gain can theoretically be.

Third, we want to identify and overcome the technological gaps in real
world implementations of production DCIs that hinder the building of the afore
discussed federations and propose a number of architectural blueprints that
address the discovered challenges. To this end, we discuss example environ-
ments regarding their architecture and technicalities, formulate the two major
challenges, namely negotiation and agreement, and provisioning, that need to
be addressed for being able to bridge the gaps, and develop a generalised
interaction model, which is implemented using two independent protocols.

Summarising, we want to provide a solid architectural, algorithmic, and
technical basis for constructing federations of Distributed Computing Infras-
tructures on the basis of currently available technology with a potential for
real world adoption.

1.3 Structure

The remainder of this work is subdivided into three parts.
Part I focuses on the modelling and evaluation of DCI environments.

In Chapter 2, we classify our work in the context of the state of the art and
discuss the overall model used for the further analysis. Next, in Chapter 3, we
introduce the methodology of evaluation used to assess the performance gain
reachable through SRM and present reference results for the non-federated
case as a basis of comparison with further algorithmic studies.

Part II introduces algorithms for capacity planning problems. In Chap-
ter 4, we make general assumptions on architecture and policy of federated
DCI environments. Then, we analyse centralised architectures and focus on
aspects of active and passive interaction as well as behaviour in hierarchical
setups in Chapter 5. Next, in Chapter 6, we evaluate distributed architectures
and review our algorithms with respect to migration of workload, robustness
under changing conditions, and leasing of capacity. Finally, in Chapter 7, we
compare the different approaches and explore the limits of federation for SRM
algorithms in the given model.

1.3 Structure 5

Part III introduces blueprints for the implementation of SRM in feder-
ated DCIs. In the light of the model and the gained results, we then discuss
the lessons learned from real-world implementations for climate research and
plasma physics in Chapter 8, identify the obstacles towards the implementa-
tion of the reviewed algorithms in production DCIs, and formalise an archi-
tecture and technology stack on the basis of electronic contracts that allows
to build loosely coupled federations in a standardised way. In Chapter 9, we
address the problem of authoritative agreements between participants in the
federation and develop a standardised means of negotiating electronic con-
tracts between them. Finally, in Chapter 10 we propose an interface for the
dynamic provisioning of arbitrary resources that exposes standardised mech-
anisms to manage the resources while at the same time having the potential
of differentiation.

Ultimately, we conclude our findings in Chapter 11, giving a short synop-
sis of our work, subsuming our results, and providing an outlook on further
research topics with respect to open questions.

Part I

Modelling and Evaluation of DCI Environments

In the following chapters, we address our first objective and build the
foundation for our analysis of SRM in DCI environments. As a starting
point, we discuss the state of the art in the area of distributed computing

and introduce the two main architectural paradigms currently used for the
structuring of DCI environments. Based on the taxonomies in literature, we
narrow our problem space and set the stage for the model of federated capacity
planning in DCIs which we use for our research.

Naturally, modelling without evaluation does not give any insight into the
performance of SRM and the potential benefits that can be achieved through
the federated approach. We therefore review potential methods of evaluation
regarding their applicability to the problem at hand. Based on the selected
approach of simulation, we discuss the input data used for further analysis
and its properties. For the measurement of gain and loss of federated SRM, we
introduce a number of assessment metrics and review their meaning with re-
spect to the tension of system responsiveness and efficiency. We then use them
to generate reference results with the selected input data for the non-federated
case, that is without interaction between the resource centres participating in
the federation.

2

Classification of SRM in Modern DCIs

If you ever need anything please don’t hesitate
to ask someone else first.

—Kurt Cobain

Any attempt to approaching a topic as comprehensive as SRM for
DCIs in its entire scope is obviously a futile act. As such, the very first
step for research considering to broaden the knowledge in this area is

to classify the environment in order to narrow the questions to a manageable
extent.

In the light of the worded goals, we first review the current state of the
art in Section 2.1. There, we revisit the history of distributed computing and
discuss today’s main flavours of the fundamental paradigm, namely Grid com-
puting and Cloud computing, that have emerged over the decades in research
and business. Against that background, we scope our efforts regarding SRM
for DCIs by classifying them within a widely accepted taxonomy of properties,
see Section 2.2. In addition, we discuss the infrastructure types under review
with respect to their classes of deployment, see Section 2.3.

On this ground, we formulate the model for federated DCIs that will serve
as the basis for all following findings. To this end, we introduce the formal no-
tation for describing the environment, separate two distinct layers we assume
for all participants in the federation, and discuss several detail aspects that
influence SRM in such infrastructures.

2.1 State of the Art

Resource management as a challenge of distributed computing engages re-
search for almost four decades now: Sullivan and Bashkow formulate the need
for large scale distributed computing already in 1977, as

“[. . .] there are certain classes of problems which are entirely beyond
the capabilities of the largest present day computers [including] certain
gaming problems, which arise in the evaluation of weapon systems,
[. . .] the modelling of complex [. . .] physical phenomena, for example,
[. . .] global weather prediction, [. . .] and other artificial intelligence
problems.”

12 2 Classification of SRM in Modern DCIs

Since then, a number of architectural paradigms for the general notion of
distributed computing have been developed. The prevalent one in the aca-
demic context stems from the concept of “metacomputing” as formulated
by Smarr and Catlett (1992), who then proposed a “[. . .] network of het-
erogeneous, computational resources linked by software in such a way that
they can be used as easily as a personal computer.” This was eventually re-
fined by Foster and Kesselman (1998) towards “Grid Computing” as “[. . .]
a hardware and software infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end computational capabilities.” Es-
pecially in the academic context, this is still used as the main paradigm for
distributed computing.

The other important strain emerged during the first decade of the new
millennium due to a schism in perception of e-Infrastructure: While the sci-
entific community still focuses on Grids (albeit now from a production point
of view), industry-oriented providers of Distributed Computing Infrastructure
coined the term “Cloud Computing” for a new, demand-oriented and highly
dynamic business model of resource provisioning. There have been many at-
tempts toward a definition1, but the most comprehensive one has been made
by the National Institute of Standards and Technology (Mell and Grance,
2011), which defines cloud computing as “[. . .] a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.”

On both topics, many surveys have been published which formulate re-
quirements, develop taxonomies, and discuss realisations of the two. For Grid
computing, Kertész and Kacsuk (2007) provide a comprehensive overview of
then current implementations and introduce several generic aspects of SRM in
such environments; Venugopal et al (2006) approach the same topic from the
perspective of data management. For Cloud computing, Zhang et al (2010)
survey the current market of products, describe architectural and business
models, and identify automated service provisioning and energy management
as the major research challenges in the context of SRM; Rimal et al (2009) at-
tempt a taxonomy by categorising implementations along the “Everything-as-
a-Service” pattern and highlight load balancing and interoperability as major
SRM problems.

Overall, a comparison of the two reveals that, especially in the context
of SRM, both concepts are—besides a strong notion on virtualisation in the
latter—facing mostly the same problems, see Foster et al (2008). As such,
we will classify this work along a more generalised model, namely distributed
computing and discuss two fundamental aspects here: properties of the SRM
decision strategies and structure of the participating resources.

1 See Vaquero et al (2008) for a survey.

2.2 Taxonomy of Properties 13

2.2 Taxonomy of Properties

Casavant and Kuhl give a comprehensive survey on approaches to SRM in
such environments for, as they state,

“[. . .] ideas and work in the area of resource management generated
in the last 10 to 15 years.”

as early as 1988.
In the course of their work, they propose a general model for SRM sys-

tems as being mediators between consumers and resources on the basis of a
policy framework and state that, for the evaluation of an SRM system, two
properties must be considered: performance (consumer-centric) and efficiency
(provider-centric2). Besides this, they introduce a comprehensive classification
scheme for SRM characteristics which is—including most of the examples—
surprisingly up-to-date and can be found in many subsequent publications in
this area of research.

Fig. 2.1 Taxonomy of SRM properties as proposed by Casavant and Kuhl (1988).
The free-floating ones on the bottom are considered ancillary and mixable with the
fundamental ones above.

More specifically, they develop a classification scheme for SRM systems
comprising of a hierarchical system of characteristics, see Figure 2.1, that
is accompanied by a small set of ancillary properties. In this scheme, they
distinguish several aspects that we will apply to the problem at hand:

2 Unfortunately, they err with their notion of consumer centricity: The efficiency
viewpoint is geared towards usage of the SRM system instead of considering the
question of utilisation; here, we rectify this point.

14 2 Classification of SRM in Modern DCIs

local vs. global

At the highest level, one needs to differentiate between the assignment of
indivisible workload to a single resource and the finding of a globally op-
timised allocation of divisible workload to a (sub-)set of resources.

static vs. dynamic

The next level in the hierarchy draws the distinction based on the time
at which workload is assigned to the resource. In static systems, the as-
signment is done in an offline fashion: All scheduling decisions are made
before the system is started. In dynamic systems, workload is injected
over time into the system, and the assignment is done in an online fash-
ion: The scheduling decisions are made repeatedly3 while the system is
already running.

optimal vs. suboptimal

This property simply separates strategies that yield optimal solutions from
those that do not.

approximate vs. heuristic

The former assumes approaches which re-generate solutions to the SRM
problem until a certain level of quality is reached, while the latter as-
sumes approaches that rely on a priori knowledge concerning the system
characteristics and parameters that affect this system in an indirect way.

distributed vs. non-distributed

This aspect introduces the question of the decision making location into
the dynamic SRM strategy: The latter case assumes that this process is
done on a single installation, while the former case assumes a physically
distributed approach.

cooperative vs. non-cooperative

Here, one distinguishes between individual decision makers in the SRM
process that make either dependent or independent decisions. This aspect
can also be seen as the degree of autonomy a certain decision maker in
the overall system has.

adaptive vs. non-adaptive

Adaptive solutions utilise strategies that can dynamically change algo-
rithms and parameters depending on the perceived behaviour of the over-
all system; nonadaptive ones cannot do this.

load balancing vs. bidding

In load balancing, the basic idea is to spread the load among a number of
resources in a system with the goal to achieve an equilibrium with respect
to a certain indicator. Bidding, in turn, assumes that each resource in the
system is responsible for offering to and/or claiming workload from other
participants in the system on its own.

3 That is, in a periodic fashion or on certain events.

2.3 Classes of Deployment 15

probabilistic vs. deterministic

This aspect denotes whether the SRM strategies have a randomised com-
ponent or not.

one-time assignment vs. repeated reassignment

In this classification, it is differentiated whether workload in the system
is scheduled once, and then never touched again, or multiple times, using
a reassignment mechanism that may supersede previous decisions.

In this work, we will focus on SRM strategies that are global; although
we rely on local strategies for making decisions on a single installation, these
are not subject to our findings, as the whole topic has been extensively in-
vestigated already, see Feitelson et al (2005). Further, we obviously rely on
dynamic strategies, as the workload induced into the DCI is not known in
advance: Even for very large High Performance Computing (HPC) centres,
which periodically construct “quasi-offline” schedules using the workload sub-
missions known so far, a pure static model would require the operators to
plan all allocations from the machine’s commissioning until removal from ser-
vice, before starting operations. Due to the fact that workload management in
DCIs is a derivative of multiprocessor scheduling, which is known to be NP-
complete, see for example Ullman (1975), we discuss suboptimal solutions
only. Mainly because of the online character of the problem, we follow the
heuristic approach in this work.

As different application scenarios require different infrastructures, see Hey
and Trefethen (2005), and build on different architectures, see Tonellotto et al
(2007), we investigate both distributed and non-distributed SRM systems here.
This also applies to the remaining properties listed above.

2.3 Classes of Deployment

The second major concern is the way the infrastructure is deployed: The
design, implementation, and evaluation of SRM strategies highly depends on
the structure of the DCI it is applied to, and in fact, newly developed SRM
strategies are usually tailored for a certain deployment model. Again, several
taxonomies considering such deployment classes have been developed. Braun
et al (1998) introduce a detailed platform model tailored to the structure of
HPC systems and focus on application and toolkit related issues rather than
on the design of SRM systems. Pugliese et al (2008) discuss a level-based model
for SRM systems and develop an architecture that addresses interoperability
issues in DCIs.

For this work, we will follow the classification proposed by Krauter et al
(2002), see Figure 2.2, which puts the design of SRM systems into focus and
splits the model into different aspects regarding the deployment model:

Machine Organisation

The organisation of machines defines the pattern of communication be-

16 2 Classification of SRM in Modern DCIs

Fig. 2.2 Taxonomy of SRM deployment classes as proposed by Krauter et al
(2002).

tween the different SRM systems, dictates the flow of information, and
therefore influences the decisions being made by the SRM strategies. Usu-
ally, machine organisation and resource management are characterised as
a single entity; here, these are independently defined. While the flat and
hierarchical organisation is obvious, the cell organisation acts as an in-
termediary: There, resources within a cell communicate in a flat manner,
with certain boundary machines acting as gateways to other cells.

Namespace Organisation

Namespace organisation dictates the pattern for finding potential part-
ners during the computation of an SRM decision and thus defines the
decision space. In relational namespaces, concepts from Relational Data
Base Management System (RDBMS) are reused; hierarchical namespaces
are usually organised around the infrastructure itself. The combination of
the two yields a hybrid namespace model which is common in network
directory-based environments. The most general model assumes a graph
structure, where each namespace element points to others, thus compris-
ing the global namespace.

Resource Discovery

The discovery of appropriate resources is the first step in any SRM strategy
in a DCI. Here, two possible approaches are introduced: query-based and
agent-based. While the latter assumes sending active code through the
infrastructure to autonomously discover the resource landscape’s shape,
the former relies on queries to already known partners in order to gather
information on the candidate resources.

In this work, we assume a hierarchical cell model: On each level of
modelled entities, communication between resources belonging to the same
cell on the next level is permitted, while other communication is forbidden.
This allows us to provide a strict separation of cells and thus model organisa-

2.4 Considerations on a New Model 17

tional autonomy of resource centres in the whole DCI. Regarding namespace
organisation, we use a graph-based approach, as it is the natural model for
the afore discussed aspect of repeated reassignment, see Section 2.2. For re-
source discovery, we follow the query model, as the agent model induces a
much higher complexity and raises additional questions around security and
trust (see Greenberg et al, 1998), which are not subject to the research ques-
tions covered in this work.

2.4 Considerations on a New Model

With the context regarding existing models being set, and in order to be able
to evaluate the performance of different SRM strategies in DCIs environments,
it is necessary to formulate our own, original model by further concretising the
properties discussed in the previous sections. On the highest level, we there-
fore start with machine organisation and assume two general cell levels: local
system and federation. The former describes the structure within a resource
centre that is participating in a DCI, and the latter describes the relationships
between the different resource centres. For the formal introduction of the dif-
ferent components, we use the scheduling notation introduced by Graham
et al (1979) and extended by Pinedo (2012), and additionally assume that a
federation F comprises a set of |K| local systems k ∈ K, where K is an index
set of all local systems.

2.4.1 Local System Level

While many different architectural models for the implementation of a re-
source centre in the context of DCIs are known, the most prevalent ones are
Massively Parallel Processing (MPP) systems and clusters.

MPP systems comprise a large number of identical machines that connect
to each other via a specialised high-speed network, see Grama et al (2003);
often, such systems are referred to as “supercomputers”. They provide a very
tight integration between the machines with low latency and high bandwidth,
effectively allowing inter process communication via message passing with
minimal delay. MPP systems involve very high capital and operational expen-
diture: Among the 500 fastest computers in the world, the “Kei (京) Com-
puter” as the leading system4 required a ¥ 112 bn investment and consumes
another ¥ 10 bn/yr for maintenance. With such high cost and the involved
need for specialised applications that are precisely tailored to the system to
deliver the highest possible performance, it is not surprising that only about
18 % of these machines are MPP systems; still, they are found in modern
production DCIs such as DEISA and PRACE, see Gentzsch et al (2011).

4 As indicated by the TOP500 list in November 2011, see http://www.top500.org/.

18 2 Classification of SRM in Modern DCIs

Clusters, in turn, can be classified as “networks of workstations,” realising
communication between the machines via commoditised interconnects, such
as 10GE or InfiniBand, see Pfister (2001). Although they are not capable of
delivering the same high-bandwidth/low-latency performance as found in MPP
systems, they still offer a low-cost alternative for delivering parallel comput-
ing. Clusters largely build on high-end, off-the-shelf components, and usually
cater standard engineering applications such as Computational Fluid Dynam-
ics (CFD) simulations. In the aforementioned TOP500 list, about 80 % of all
systems are clusters; systems with this architecture also are the backbone of
most production DCIs, see Ferrari (2011).

Considering the architectural level again, whether looking at Grid or Cloud
environments, we can assume that the vast majority of infrastructure providers
offer a more or less homogeneous environment. This is mainly due to the fact
that resources dedicated to a DCI environment are usually commissioned in
a single step. In HPC environments, this approach is crucial as the system
is highly specialised and precisely tailored towards providing maximal per-
formance as a whole. For commoditised resources such as clusters, economic
considerations and the complexity of the acquisition process leads to few, large
investments rather than many small. In Cloud environments, it is the busi-
ness model that requires homogeneity: The offers made to potential customers
need to be sufficiently simple and well-understood to be successful.

Machine Model

Although business considerations already indicate a homogeneous infrastruc-
ture, we can also infer this from current statistics. Looking at the TOP500
list, it shows that not only the system architecture is dominated by clusters,
but also the machines’ processors are very homogeneous: About 70 % of all
systems use one of the current Intel Xeon processor families as their sole pro-
cessor choice.As such, we can safely assume that within a single systems, all
resources are in the same order of magnitude regarding their performance.

Hence, we make our first simplification: All resources on the local system
level are considered to be identical. We therefore assume that a local system
k is built using mk identical resources. This means that any unit of indivisible
workload can be allocated on any subset of resources of the resource centre.
Moreover (and in contrast to many real-world installations), we do not allow
further partitioning of the resources within a single participant; since we are
striving for general-purpose algorithms in this work, we do not want to favour
certain machine configurations.

This overall setup is known as a Pm model, see Garey and Graham (1975).

Job Model

In any DCI environment, users induce workload into the system that is then
executed on a subset of resources in the infrastructure. As such, any indivisi-
ble unit of workload, further denoted to as a job, at the very least comprises a

2.4 Considerations on a New Model 19

runtime and the number of resources used. Since we assumed a homogeneous
resource space on the local level, each job j ∈ J (with J being an index set
of all jobs) can run on any subset of local resources. While it is technically
possible to allow either the job or the system to change its resource require-
ments on submission (being “moldable”), see Cirne and Berman (2001), only
a very small fraction of jobs use this feature. Changes during runtime (being
“malleable”) are even more seldom, see Kalé et al (2002). We therefore assume
all jobs to be rigid, that is the number of required machines 1 ≤ mj ≤ mk is
known at release time rj ≥ 0.

Every job requires exclusive access to the machines it has been assigned to;
the system is used in a space-shared manner, and each job’s processing time pj

is only known after completion. Note that this approach does not necessarily
hinder a cloud-based approach: For Clouds building on physical hardware,
the usage paradigm stays the same since at the end of any scheduling process,
some space-exclusive assignment per unit of workload is achieved, typically
on the core level. In virtualised systems, the virtual-to-physical assignment
is part of the hypervisor layer (which is out of scope of this thesis), and the
workload-to-resource assignment on the virtual level is the same as for the
physical-only case5.

In order to prevent faulty jobs from endlessly blocking assigned machines,
users are required to provide a runtime estimate p̄j after which the job is
forcefully terminated. In order to prevent premature abortion, users tend to
grossly overestimate this value, see Bailey Lee et al (2005); a side effect of this
is that this factor almost neglects the deviations from real-world systems that
are induced through the uniform resource model.

While most applications utilising such infrastructure are somewhat tai-
lored to the environment, especially in the context of precious compute time
on HPC systems, they do usually not allow interruptions during execution6.
With the advent of virtual machine technology, which is often used as the
foundation of Cloud computing infrastructures, the restriction of being non-
preemptible was somewhat relaxed; however, even nowadays, the concerted
preemption of a group of virtual machines, which is essentially equivalent to
a parallel job, is still an open research problem, see Anedda et al (2010). We
therefore do not allow preemptions at all, following Feitelson et al (1997).

Although the “job” concept originally stems from batch computing sys-
tems, it still is the prevalent unit of work in HPC/High Throughput Com-
puting (HTC) environments; interactive jobs are seldom as they encounter
many technical obstacles, see Talwar et al (2003). In Cloud infrastructures,
the term “job” has been ousted in favour of “virtual machine,” but the basic
property of occupation with respect to time and space on the infrastructure

5 When assuming a layer architecture with strict separation.
6 With the notable exception of some long-running HPC applications that support

checkpointing for recovery purposes, see Holl et al (2009).

20 2 Classification of SRM in Modern DCIs

remains the same and, from the SRM perspective, again we do not have any
interactiveness.

The afore discussed model is widely accepted for modelling the local system
level in our use case, see for example Hotovy (1996) or Song et al (2005b).

Scheduling System

At each resource centre, a software component known as the Local Resource
Manager (LRM) is responsible for the assignment of jobs to machines. Such
systems date back to the mainframe era in the late 1960s, where the manual
operation of such machines was replaced by automatic batch manager software
such as Operation Planning and Control (OPC)7. Nowadays, several software
solutions are available on the market; the most popular ones in the HPC/HTC
domain are Platform LSF, Univa Grid Engine and Altair PBS, while Open-
Stack, Citrix CloudStack, and VMware vCloud are the prevalent products in
Cloud computing.

Although over the years, LRM software has grown very powerful, address-
ing a great variety of use cases, the fundamental working principle has stayed
the same: Workload is submitted to the LRM by the user, enqueued until
a scheduling decision can be made, and eventually allocated to a subset of
machines within the underlying infrastructure. Technically, incoming jobs are
collected in one or more waiting queues, partly with different prioritisation,
and scheduling algorithms decide on the execution order for the jobs.

Fig. 2.3 Schematic depiction of the LRM model assumed in this work. For a given
resource centre k, it comprises a mk identical machines or processors, a single queue
Qk and schedule Sk, a scheduling algorithm, and the submission interface for user
workload.

7 Now known as IBM Tivoli Workload Manager.

2.4 Considerations on a New Model 21

While the model of different queues within the LRM is very valid for prac-
tical purposes and greatly simplifies the administration of such systems, it
is not strictly necessary to allow this explicit separation, as it often impairs
the overall utilisation (see Franke et al, 2010). We therefore make our second
simplification here by assuming a single queue Qk that contains all released
but not yet scheduled jobs and a single schedule Sk for the whole resource
centre k that reflects the temporal occupation of its machines. This structure
is depicted in Figure 2.3; additionally, our model comprises a submission inter-
face through which users induce their workload into the system, a scheduling
algorithm that takes care of assigning workload to resources (denoted by the
icon), and the bare resources mk that are exclusively managed by the LRM.

The scheduling algorithm is invoked periodically and allocates jobs from
the waiting queue to the schedule. The completion time of a job j in sched-
ule Sk is denoted by Cj(Sk). Note that, for the allocation itself, the scheduling
algorithm only has access to p̄j ; the real processing time pj is only known after
the job has completed. The wait time of j which defines how long the alloca-
tion took can then be derived as Cj(Sk) − pj − rj . Formally, we try to solve
a non-clairvoyant online job scheduling problem, see Tchernykh et al (2009).

So far, our model closely matches a typical environment that can be found
in most of the currently implemented real-world systems, see Feitelson et al
(2005).

2.4.2 Federation Level

As soon as different resource centres, whether in the same or different adminis-
trative domains, decide to cooperate regarding the management and execution
of workload, a federated environment emerges. Such federations have already
been successfully put into production for many times; Andronico et al (2011)
give a comprehensive overview on the world-wide “e-Infrastructure” imple-
mentation efforts over the last ten years. From these and other deployments,
we can derive a number of commonalities that will be used for shaping our
model on the federation level.

Sources of Workload

The first observation regards to the origin of the resources that are exposed
within the federation. In almost all cases, we see existing resource centres of-
fering machines that are part of their local infrastructure to users outside their
own community. This leads to two important assumptions: First, the work-
load induced to the overall federation has a local source; that is, users located
at the resource centres are submitting jobs to the infrastructure. Second, this
workload is then dispatched to either the local machines or, if covered by the
federation policies, delegated to other participants in the federation.

Both assumptions also comply with the concept of Virtual Organisa-
tions (VOs) that is found in Grid-related environments or “tenants” in the

22 2 Classification of SRM in Modern DCIs

domain of Cloud computing. In both models, users sharing a common goal
(such as working at the same company or investigating the same research
problem) are grouped under a common administrative domain. One purpose
of this approach is to allow users to use shared resources independent from
their affiliation, that is being able to collaborate without having to share the
same identity realm. For infrastructure providers, it enables domain-based ac-
cess control: With this model in place, they can permit resource usage to all
members of a VO, without having to know each member of it8.

Because of the grouping of consumers into ephemeral domains that serve a
community until the pursued goal is eventually reached9, we assume that each
resource centre k has its own source of workload comprising jobs j ∈ τk, essen-
tially catering the local10 user community. Naturally, this approach neglects
the fact that usually, users within a single VO or tenancy are not necessar-
ily located at the same geographical place. However, since our focus lies on
SRM, we allow this simplification, as characteristics stay the same and the
channelling of all workload from a certain domain through a single submis-
sion point is a common approach in many portal-based DCI environments,
see Oleksiak and Nabrzyski (2004).

Properties of Infrastructure

Our second observation concerns the infrastructure itself: All resource centres
within such a federation are independent from each other and only agree on
a loose integration. This is all natural: Since every proprietor of expensive
IT infrastructure has invested enormous amounts of money into its set-up,
he will mainly pursue his very own interests. As such, it is unrealistic that
the operator of a resource centre is going to cease control over the system by
allowing other participants to interfere with the LRM decisions, see Franke
et al (2006b). On the contrary, every participant will be interested in deliver-
ing good performance to the catered user communities while reaching a high
operational efficiency. From this fundamental idea, again we can deduce a
number of characteristics.

Resource Heterogeneity

Most importantly, we have to consider that the resource space is poten-
tially heterogeneous. Under the assumption of a loose federation, providers
will purchase their systems independent from each other, it is likely that,
beyond the local boundaries, the machines are similar, but not entirely

8 In fact, the decoupling enables both consumers and providers to delegate the
creation of credible trust relationships to the domain manager.

9 For example, the production of data for the Assessment Reports of the
Intergovernmental Panel of Climate Change (IPCC).

10 More specifically, we refer to those users that submit jobs to the system through
a certain resource centre’s LRM system.

2.4 Considerations on a New Model 23

equal. This would however necessitate to consider different job runtimes
pk

j �= pl
j for two different systems k, l, see Sabin et al (2003).

Unfortunately, the formulation of a model that correctly maps one to the
other is still an open problem with an area of research on its own. In fact,
even for processors of the same family, performance does not necessarily scale
in a linear fashion. For concrete production systems with well-known appli-
cations, Elmroth and Tordsson (2008) solve this problem by benchmarking.
Kishimoto and Ichikawa (2004) make a more general attempt to estimate run-
times in heterogeneous environments and combine offline benchmarking and
analytic modelling with a binning approach to generalise the estimations. A
benchmarking-free prediction is proposed by Iverson et al (1996), who build
upon an online-adaptive learning algorithm that uses non-parametric regres-
sion to provide approximated execution times. All approaches fail however to
provide a reliable model for the general case: Either, they are limited to certain
environments in the benchmarking case, or they require extensive parametri-
sation of the prediction algorithm, resulting in a meta-optimisation problem.

In the light of the similarity of performance per machine in the TOP500
list as discussed in Section 2.4.1 and the fact that the problem of runtime
estimation in distributed computing is still an open issue deserving its very
own regard, we choose to accept this deficiency of the model and assume all
machines in the federation equal, that is pk

j = pl
j .

Network Connectivity

Next, while having sufficiently fast interconnects within a resource centre,
this does not necessarily hold between resource centres in the federation, as
every participant will be willing to reuse the infrastructure he is offering to
its customers already, but not make additional investments for the sake of the
federation. Even in publicly funded research networks like GÉANT, see Uhlig
et al (2006), which provide bandwidths of up to 10 Gbit/s per link, one cannot
expect the same interconnection speed as within a local centre. This fact
presents an obstacle for federation usage.

From the computing perspective, parallel jobs cannot be executed in such
a way that they overlap resource centre boundaries. The reasons for this are
twofold: First, latency impairs communication between the parallel processes,
see Kielmann et al (2000), and second, technical issues such as firewall config-
uration complicate the setup, see Humphrey and Thompson (2002). As such,
a model where the whole federation behaves like a very large local system
(formally

∑
k∈K mk) must be considered infeasible, and execution of a job is

only allowed on the resources of one centre.
From the data perspective, two additional aspects must be considered.

Due to the federation character, the application is executed on a remote sys-
tem. This means that the linked object code needs to be either delivered on
submission or pre-installed on the remote system. For the model at hand, we
assume the latter: Even with the advent of ubiquitous provisioning techniques

24 2 Classification of SRM in Modern DCIs

through virtualisation, the proper adaptation to the local system environment
is still a challenge, see Dimitrakos et al (2003), as many aspects11 need to be
considered for achieving good performance. The other issue relates to input
and output data of the application. Although such data needs to be available
only after the final allocation of a job has been made, it still may require a
significant amount of time to conduct the necessary transfers. However, this
can often be hidden by pre- and post-fetching before and after the execution,
see Schley (2003). In that case, the overhead is not necessarily part of the
scheduling process. Together with the fact that data scheduling is a sepa-
rate topic not addressed in this work, we therefore assume an internetworking
model that, from the SRM perspective, is sufficiently fast for performing data
staging in negligible time, but not fast enough to allow cross-centre execution.

Information Policy

Finally, it is necessary to review the availability of information regarding the
dynamic state of each resource centre to the federation, as this data (or the
lack thereof) significantly influences the SRM algorithms’ decisions. For enter-
prise environments, i.e. federations that deliver infrastructure within a com-
pany, an extensive availability of information (e.g. current load, queue lengths,
response times) is usually given: The participating resource centres have an
established trust relationship and are part of a single administrative domain.

In the loose integration scenario, however, this cannot be expected. Es-
pecially metrics such as system utilisation are often considered sensitive, as
they can be important for future infrastructure funding: Future investment
decisions often base their reasoning on how well-used a local system is and
whether the distribution of applications, users and groups, or aspects like the
ratio between internal and external usage are along the lines of the centre’s
overall strategy, see Franke et al (2006b). Another important reason is secrecy:
In the context of businesses using e-Infrastructure, information on submitted
workload as it can be extracted from a publicly-visible queue may allow com-
petitors to recognise dedicated research and development efforts. Hence, data
is not easily disclosed, and—even within academic federations—kept strictly
confidential.

For our model, we therefore assume a strict information policy regarding
exchange of dynamic data about the infrastructure. That is, local metrics such
as the queue length or current utilisation are not disclosed. Instead, only static
data such as a resource centre’s size (mk) is freely available. Besides this,
only information strictly necessary for distributing workload is exchanged.
Specifically, this implies the characteristics of a job provided by the user at
submission time.
11 Starting from “hole punching” in the firewall and ending with file system mapping

for temporary data, that is.

2.4 Considerations on a New Model 25

Organisation of Participants

The manifold of DCIs implementations in both the scientific and enterprise
domain naturally exposes a great diversity in use cases, requirements, and
the underlying middleware. Regarding the organisation of these deployments,
however, it is possible to classify them into two coarse-grained SRM system
types: centralised and distributed architectures, see Lepping (2011).

From the users’ point of view, this seemingly requires them to adapt their
submission behaviour depending on the federation’s organisation. In order to
keep the model discussed in Section 2.4.2 as is and still allow the flexibility of
assessing both architectural paradigms, we make the organisation completely
transparent to the users. To this end, we assume that all workload requests
are channelled through an intermediate service that forwards the jobs to the
appropriate SRM component. In order to leave the users thinking that they
interact with their “local” provider (be it a research VO, or the company’s ten-
ant), we let this service offer the same interfaces as a traditional LRM would
expose for a resource centre. Strictly spoken, the latter violates the separation
of the local and the federation level at the resource centres. However, since
workload is either passed to the LRM level untouched or delegated to a re-
mote participant, we just channel through workload without any modification.
Technically, this can be achieved by providing tailored client Application Pro-
gramming Interfaces (APIs) implementations of user interface libraries such
as Distributed Resource Management Application API (DRMAA), see Tröger
et al (2007), the POSIX batch management family of commands12, or a proxy
tool like Apache libcloud, see Petcu et al (2012).

Centralised SRM

In this model, a centralised SRM system—often referred to as a “meta-
scheduler”—accepts the submission of all workload within the federated en-
vironment regardless of its origin. It then decides on the distribution among
those resource centres that fit the job’s requirements, and delegates the execu-
tion to the SRM system of the selected participant. The latter in turn performs
the job-to-machine assignment.

This model is very common in industrial setups, where usually all resource
centres are part of the same administrative domain, but also applies to aca-
demic DCIs (Jones, 2005; Barkstrom et al, 2003) and middlewares (Marco et al,
2009; Llorente et al, 2006), as it is easy to implement. An obvious speciali-
sation includes multiple levels, comprising a hierarchy of schedulers. There,
schedulers on a higher level assign work to schedulers on a lower level, typically
using mechanisms such as direct resubmission or decision negotiation.

The main advantage of this concept is the ability to incorporate different
scheduling strategies and policies on the different levels as well as a global
view of the top-level SRM layer regarding submitted workload. However, to
12 As described in Part 6 “Shell and Utilities” of DIN/EN/ISO/IEC 9945.

26 2 Classification of SRM in Modern DCIs

facilitate a globally effective and coordinated allocation, local resource centres
have to delegate administrative control to the federation layer; otherwise, only
best-effort Quality of Service (QoS) can be guaranteed for the DCI.

Distributed SRM

Contrary to the previous organisational type, each participating resource cen-
tre runs its own SRM component responsible for federation-level decision mak-
ing. Incoming workload, regardless whether originating from local or remote,
is either assigned to local machines or, by interacting with the other partici-
pants’ SRM systems, delegated to other centres.

This approach is especially popular in the context of Peer-To-Peer (P2P)-
based environments, where the environment changes rapidly, see Cirne et al
(2006), and in very large-scale installations that need to cater millions of
participants, see Kacsuk et al (2009). In both cases, decision making cannot
be left to a central component for obvious reasons, and it is necessary to
employ distributed SRM techniques.

The absence of any single point of failure is the main advantage of this
approach, making its implementations in theory more reliable: Possible break-
downs of one participant do not necessarily impair the performance of the
whole system. This strong point at the same time turns out to be the major
deficiency, as the absence of a global system view admittedly requires more
sophisticated SRM concepts.

2.5 Model Realisation

We define a DCI federation model for further use in our analysis as depicted
in Figure 2.4. Each resource centre caters to its own user community and
features separate components for local and federated resource management.
Users submit their workload to the federation component (albeit using the
same interface as for local submission, thus not changing their behaviour)
which in turn communicates with federation components of other resource
centres to coordinate workload distribution.

The inner workings of the federation model are left undefined for the mo-
ment, as they are specific to the architecture of the underlying DCI and the
implementation of the scheduling strategy. Regarding our modeling consid-
erations from Section 2.4, we however can make a number of assumptions
already:

• Local user communities at each participant submit a certain fraction of
the overall federation workload (j ∈ τk), see Section 2.4.2;

• Even beyond participant boundaries, the federation homogeneous re-
sources among the resource centres (pk

j = pl
j), see Section 2.4.2;

2.5 Model Realisation 27

Fig. 2.4 Schematic depiction of the federation model assumed in this work. Each
resource centre comprises the local structure as depicted in Figure 2.3, and addition-
ally offers interfaces for SRM system interaction between the brokers at each centre.
In the following, we will use a simplified version that omits the inner structure of
the resource centres.

• Network traffic that relates to data staging is not penalised with respect
to SRM decision making (effectively making data transfers “free”), but
cross-participant executions is forbidden, see Section 2.4.2; and

• The disclosure of information about the participants’ performance indi-
cators is strictly controlled, especially regarding dynamic data, see Sec-
tion 2.4.2

The afore depicted federation model is deliberately designed to be agnos-
tic of the participant organisation, see Section 2.4.2. That is, it makes no
assumptions on the architecture of a consuming DCI. This way, it fits to the
architecture of modern production DCIs, and we have a framework at our dis-
posal which can be refined for the concrete analysis later in this work. It also
answers Question 1 of our original research questions.

3

Methodology for Evaluation of SRM in DCIs

Profile. Don’t speculate.
—Daniel J. Bernstein

Assessing the possible performance gain achievable through feder-
ated capacity planning in DCI environments is a complex issue. Before
starting to investigate the various shapes of the introduced model and

their performance, it is necessary to define several aspects of evaluation to be
able to generate expressive results.

Most importantly, the method of evaluation needs to be selected, as this
is the predominant factor in the overall assessment process. In order to make
an informed decision on this, the benefits and drawbacks of different methods
are discussed in Section 3.1.

Another fundamental aspect lies in the selection of input data for the eval-
uation made: The quality of traces used for assessing different SRM techniques
for the different types of infrastructures discussed in Chapter 2 highly influ-
ences the quality of results. The background on this is discussed in Section 3.2.

The assessment of any system requires the definition of proper assessment
metrics. Depending on the environment in which these are being applied, it
is important to understand what they express for the given scenario and in
which context they can be compared. Since they depend on the evaluation
method and input data selection, the metrics used for the analysis in this
work are discussed in Section 3.3.

As a base for comparison, it is necessary to have reference results for
comparison. For this, a number of non-federated systems are evaluated with
regard to their performance when not collaborating in a DCI in Section 3.4.

3.1 Methods of Evaluation 31

3.1 Methods of Evaluation

For the assessment of the gain of SRM in the different architectural styles
of DCI environments discussed in Chapter 2, we consider three possible ap-
proaches for assessment and discuss their assets and drawbacks for the prob-
lem at hand.

3.1.1 Theoretical Analysis

The theoretical analysis of job scheduling for parallel machines has been thor-
oughly researched for at least three decades, and has yielded a manifold of
results for various kinds of machine models, workload characteristics, and al-
gorithms; Feitelson et al (1997) give a structured overview on the different
results.

When it comes to job scheduling in DCI environments, the vast majority
of publications has been made on Grid Scheduling; however, only very few of
those disclose results on theoretical issues: Schwiegelshohn et al (2008) have
shown that List Scheduling performs significantly worse in Grid environments
than on traditional multiprocessor machines and propose an algorithm on the
basis of “job stealing” with a competitive factor of 5. Tchernykh et al (2006)
use a similar model to the previous work and evaluate the performance of
two-stage algorithms with respect to makespan.

The extensive area of Divisible Load Theory (DLT), as surveyed by Bharad-
waj et al (2003), has been transported to Grid scheduling by Robertazzi and
Yu (2006), who outline the use of flow formulations for Divisible Load Schedul-
ing with multiple sources of (work)load. Other work has been conducted by Fu-
jimoto and Hagihara (2003), who discussed the problem of varying processor
speeds—e.g. in Desktop Grid systems such as SETI@home1—for sequential
independent jobs and propose a new criterion instead of traditional makespan.

Overall, it must be stated that, although provable performance bounds
would be the most favourable (and certainly most precise) kind of result in
terms of analysis, they have two drawbacks. First, the analysis is very com-
plex even for simple setups, and extremely hard or impossible to conduct for
the discussed federation scenarios in DCI environments. Second, performance
bounds address a fringe case from the practical point of view: Algorithms with
unacceptable worst case behaviour perform well2 in real world installations.
As such, it seems necessary to reach out for other means of evaluation to
approach the problem.

1 Which, in turn, is based on the Berkeley Open Infrastructure for Network Com-
puting (BOINC) architecture, see Anderson (2004).

2 First-Come-First-Serve (FCFS) is a good example.

32 3 Methodology for Evaluation of SRM in DCIs

3.1.2 Real-World Assessment

Examining the behaviour of a given system in the real world is, from a techni-
cal point of view, among the simpler means: Especially software systems used
in modern DCI environments offer—by definition of their production character
and the accompanying needs of usage audit—a plethora of trace data on their
usage.

Again, the prevalent infrastructure for assessment are Grid systems, with
a strong notion on compute-centric systems. For example, Iosup and Epema
(2006) introduced a framework for system analysis that allows for the auto-
matic generation and submission of workload3 to a given DCI environment and
the evaluation thereof. A similar tool set has been proposed by Frumkin and
Van der Wijngaart (2001), who created a tool for Grid space exploration on
the basis of data flow graphs. With a slant towards benchmarking, Tsouloupas
and Dikaiakos (2005) introduced an operation-centric approach that aims to
complement already available data from traditional Grid information ser-
vices4. Chun et al (2004) developed so-called “probes” that exercise basic
operations on a Grid in order to measure performance and variability.

In the field of production infrastructures—see Paisios et al (2011) for an
extensive list of use cases and underlying DCIs—significant assessment has
been conducted on the Worldwide LHC Computing Grid (WLCG) infrastruc-
ture, as described by Bonacorsi and Ferrari (2007), where both infrastructure
(mainly focusing on data bandwidth and latency of inter-tier transfers) and
service reliability and performance are measured. On the Grid’5000 testbed in
France, Netto and Buyya (2011) evaluated the performance of a newly devel-
oped (re-)scheduling algorithm for “Bag of Task”-style applications. Earlier
work by Berman et al (2003) featured the AppLeS project, using applications
with a self-scheduling approach5, and evaluated the performance on real-world
systems.

In the area of Cloud computing for scientific applications, most evalua-
tion has been conducted on the Amazon Web Services (AWS) infrastructure.
Here, Ostermann et al (2010) provided a performance analysis based on the
HPC Challenge benchmark for the 2009 Amazon Elastic Compute Cloud (EC2)
services, showing that the overall performance and reliability is still below
expectations of traditional HPC centre users. A more middleware-centric ap-
proach has been taken by Ostermann et al (2009) with the ASKALON work-
flow engine by orchestrating the submission of workload to the EC2 services.
Again, benchmarking applications such as LINPACK and Message Passing In-
terface (MPI) Chameleon were used, and certain benefits for very large work-
flows were discovered.

3 The data used is, however, limited to synthetically generated workload traces.
4 See for example Gombás and Balaton (2004); Czajkowski et al (2001); Cook et al

(2003).
5 That is, a master dispatches work in fixed-size units to workers using a greedy

approach; see also Hagerup (1997).

3.1 Methods of Evaluation 33

Summarising, it shows that most real-world assessments focus on bench-
marking and exploit “what-if” scenarios for job execution, but usually not re-
garding SRM. The few that have been conducted on production infrastructures
in order to evaluate the overall workload distribution performance either use
very simple strategies (e.g. random assignment or round-robin distribution) or
stay on the local level of traditional LRM systems, ignoring the federation as-
pect. Both approaches (with the only exception of the Cloud computing case)
have in common that, by nature of the real-world assessment, they are limited
in their evaluation period and do not exceed days of analysis. This, however,
comprises a period that is too short6 for the evaluation of SRM behaviour of
a given algorithm. Against this background, the great benefit of a produc-
tion environment as evaluation scenario is outweighed by the drawbacks of
impracticability.

3.1.3 Simulative Evaluation

Simulations are a good compromise for scientific evaluation where real-world
observations on the system to be assessed are impractical, while theoretical
analysis is too complex. Facing the problems described in the previous para-
graphs, it is therefore reasonable to focus on this method of evaluation. That
said, it is not surprising that a plethora of scientific research with respect to
questions of SRM in DCI environments,has been done already; Dong and Akl
(2006) give a comprehensive overview on the results with approximately 100
publications until 2005 alone.

Also in the area of simulation environments—specifically for the evaluation
of SRM in DCI environments—many systems have been proposed so far. The
most well-known one, GridSim, has been introduced by Buyya and Murshed
(2002) and is used in a wide area of simulation experiments focusing on cost:
For example, Deelman et al (2008) use GridSim for a cost analysis of applica-
tions on the Amazon EC2 services; Kurowski et al (2007) build an extended
framework for Grid scheduling on the basis of GridSim; and Singh et al
(2007) do cost optimisation on a seismic hazard application using best-effort
resource availability. A variant of GridSim with a stronger focus on Cloud
computing is CloudSim, see Calheiros et al (2011), which allows for a more
data centre-related view on infrastructure. Adoption of CloudSim, however,
is little at the moment, as its maturity has not been proven independently
from the original authors.

Other research groups developed and released similar tools. For exam-
ple, Casanova et al (2008) proposed SimGrid, a framework focusing on clus-
ter, Grid, and P2P system algorithms and heuristics. Dumitrescu and Foster
(2005) introduced GangSim, a simulator allowing to study the behaviour of
VO schedulers regarding scheduling and resource usage policies. Guim et al

6 See Feitelson (2002a) for details on long-term patterns in recorded workload
traces.

34 3 Methodology for Evaluation of SRM in DCIs

(2007) used the Alvio simulator to model the impact of resource sharing in
backfilling models, using different resource selection policies. Bell et al (2003)
took a slightly different approach with OptorSim, providing a simulator that
focuses on data replication issues. With all of the aforementioned simulation
tools, a significant number of results has been produced and published over
the last ten years.

While simulation is the method of choice for many researchers, it has sev-
eral drawbacks. First, preciseness and practicability of a model are conflicting
aspects, and finding a good compromise between them in order to make sim-
ulations feasible and results interesting at the same time is a challenging task
which requires great care in the design of the model. Second, simulations rely
on input data that induce the system behaviour, and although such data is
often available, its use needs additional consideration regarding its impact on
the simulation, as certain aspects in the model might not be part of the input
recording, and vice-versa.

Considering the different methods of evaluation, the simulative approach
still seems to be the most promising one for the assessment of SRM in DCIs.
Albeit incomplete by definition, the model described in Chapter 2 has been
sufficiently simplified to be tangible, but is yet interesting enough to produce
valid and useful results.

Naturally, a simulative approach to the evaluation of SRM in DCIs requires
making a choice regarding the evaluation toolkit to be used. With the afore
discussed availability of a number of simulation environments, it is necessary
to review their suitability to the problem space. In this work, we target a spe-
cific scenario: independent participants that form a loosely coupled federated
DCI environment, see Section 2.4.2, with each of the participants providing a
local resource with a number of processors, see Section 2.4.1. This introduces
the following requirements:

Loose coupling of scheduling layers

We assume a loose coupling of the different scheduling layers on each par-
ticipant’s system as well as between the federated systems. This is impor-
tant for the strict information policies outlined in Section 2.4.2.

Precise modelling of the decision workflow

Due to the strong focus on SRM algorithm performance, it is very impor-
tant to fully understand the decision making process of the SRM algo-
rithms not only on the LRM level, but also regarding the interaction along
the different layers and between participants within the federation.

Long-term simulation capabilities

The proper assessment of SRM algorithms is possible only if a long-term
analysis can be conducted. While days or weeks of scheduling decisions
may be interesting from the perspective of decision throughput, the effi-
ciency of an SRM algorithm regarding consumer and provider satisfaction
only shows after weeks or months of evaluation, as the systems discussed

3.1 Methods of Evaluation 35

in this work have starting periods during which users adapt their appli-
cations to the new environment.

Rationale for a Dedicated Toolkit

Out of the various simulation environments mentioned above, two require a
more detailed discussion because of their general fitting to the afore described
problem space.

GridSim

The first simulator is GridSim, which is a very widespread tool used in many
research approaches. It allows for modelling Grid environments down to the
single machine and supports both time-sharing and space-sharing configura-
tions for their usage. Each participant (including the consumers) runs a so-
called Resource Broker which takes care of matching resource and workload
sets on the basis of cost minimisation for each participant independently, thus
working towards a compromise solution for the allocation problem. However,
all decisions are broken down to the comparison of cost, and it is required that
all participants are able to formulate a specific cost function for their needs.
Given the fact that recorded workload traces are used for the assessment, this
is a requirement not feasible to properly fulfil: In fact, it is not possible to
extract potential cost functions, even for groups of users, from the data avail-
able. On the contrary, any approach to model these functions (e.g. through
standard statistical distributions) would interfere with the implicit behaviour
depicted by the recorded trace and thus is not a proper fix to the problem.
Besides this, it shows that the GridSim architecture is closely coupled to
the cost approach and thus hard to extend towards non-economic models as
assumed in this thesis.

SimGrid

The second simulator is SimGrid, which is similarly accepted as GridSim. Its
design is much closer related to the evaluation approach used in this context
and explicitly allows to introduce new SRM algorithms for assessment both on
synthetic and real workload traces. Unfortunately, SimGrid provides almost
no support for other DCI architectures than centralised ones, and the exten-
sion of SimGrid towards a model as described in Section 2.4 would require
significant changes to the simulation framework.

The teikoku Grid Scheduling Framework

The need for a lightweight, yet extensible toolkit for simulating the federation
of DCIs regarding the quality of SRM algorithms led to the development of the
teikoku Grid Scheduling Framework (tGSF). tGSF is a research environment
that has been designed with the following goals in mind:

36 3 Methodology for Evaluation of SRM in DCIs

Modular architecture

Because of the manifold of experiment configurations possible even within
the limited scope of this work, modularity was one of the main consid-
erations during the design of tGSF, as it allows reuse of components for
different scenarios.

High performance

Due to the large workload traces used for the analysis in the work at hand,
it was of utmost importance to have a research environment capable of
handling such data sets in reasonable time: Many experiments require
parameter sweeps, such that performance was crucial.

Easy transferability

Successful experiments and their results need to be transferred from the
simulation environment to physical systems. To ease this process was an
additional concern during design: It should be simple to test the same
algorithms in a real test-bed after verifying their general performance in
the simulator.

Fig. 3.1 Architectural overview of tGSF. Foundation, Runtime Environment, Lo-
cal Resource Management, and Federated Resource Management stack one on the
other, where lower layers provide more general components. Cross-domain function-
ality has been outsourced to external libraries not displayed here. The dashed lines
indicate that the layers above and below are completely separate from each other
and can work independently. The coloured boxes indicate primary (dark) and sec-
ondary (light) components; the other boxes comprise components that are reusable
independently of tGSF.

Figure 3.1 shows the overall architecture of the framework. Starting from
the bottom, the first layer handles aspects of the simulation system and is

3.1 Methods of Evaluation 37

agnostic of any SRM-related questions. Only the handling of discrete events
for the simulation itself, the decoupling of real time and simulation time,
and parallelisation of the engine for large-scale simulations is done here. In
the next layer, application management (starting and stopping simulations,
binding workload sources to the simulated environment, etc.), probing the
system’s performance (both on the framework and the business level), and
persistency handling (flushing simulation trace data to a file or database) is
done. The third layer provides abstractions for the first business layer in the
system, modeling a single resource centre with its properties, the LRM system
it runs, and the data model for describing workload down to the properties
of a single job. In the topmost layer, the federation aspect is implemented
through a broker component that encapsulates the communication regarding
other participants in the federation, a policy framework that abstracts decision
making, and session management for distributed, concurrent brokering with
many participants.

For each layer, it has been ensured that independent usage (i.e. with-
out the other layers) is possible; the only dependency is being introduced by
externalised, independent common component libraries which provide cross-
concern functionality. An in-depth discussion of the architecture of tGSF can
be found in the appendix, Appendix A.

3.2 Selection of Input Data 39

3.2 Selection of Input Data

The choice of simulative evaluation immediately raises the question on in-
put data, which—being the representation of workload run in a given DCI
environment—significantly influences the behaviour and perceived perfor-
mance of SRM algorithms and methodologies.

The two options at hand for such input data are synthetic and recorded
workload traces, and both of them have their assets and drawbacks. Regardless
of which option is being followed, the evaluation of SRM algorithms needs to
be done carefully7, as Frachtenberg and Feitelson (2005) fortify with a number
of potential pitfalls.

3.2.1 Synthetic Workload Traces

Attempts to correct statistical modelling of workload traces for DCIs date back
almost 30 years, and the finding of good models for parallel machine environ-
ments is by far the predominant area of research. In most cases, the mod-
els attempt to identify and parametrise statistical distributions for distinct
properties of a workload (e.g. the degree of parallelism or the user-estimated
runtime). Sampling from such distributions then essentially produces a new,
synthetic workload trace, see for example Feitelson (2002b). However, it shows
that this approach is too simplistic to create data sufficiently close to real-
world recordings.

A main issue here is that the properties are often modelled independently
from each other, although there exist certain correlations between the different
properties in recorded traces. For example, parallelism and runtime are often
related to each other, and Lo et al (1998) have shown that this correlation
has significant effects on the quality of SRM algorithms, proposing a coupled
modelling of them. Later work by Li et al (2007) revealed importance of
integrating statistical distributions with correlation models to properly satisfy
the interdependencies of different properties. Although not a directly visible
property of the workload, the inter-arrival time8 is another important aspect
of the workload that needs to be properly considered: Jann et al (1997) have
discussed its importance and show that its correct modelling requires different
distributions for different degrees of parallelism. Dependencies also can be
identified between a job’s runtime, its runtime estimate and the degree of
parallelism: Lublin and Feitelson (2003) have shown a connection between the
modelling of runtime and the “power-of-two” clustering in parallelism9; Song
et al (2004) extended this to runtime estimates as well. Tsafrir et al (2005),

7 Although the cited work focuses on parallel machine scheduling, the results are
still valid and important for the scenarios discussed in the context of this work,
since many DCIs have their roots in the domain of HPC.

8 That is, the time between the release of two consecutive jobs within the workload.
9 See Downey and Feitelson (1999) for a comprehensive analysis of this effect.

40 3 Methodology for Evaluation of SRM in DCIs

who use a slightly different approach to modelling the runtime estimates,
confirmed the observation that there is a strong correlation between estimated
and real runtimes.

However, even approaches that correlate certain properties with each other
are not able to delineate the full scope of workload behaviour: Feitelson (1996)
has shown that it is possible to identify groups of almost identical jobs in the
workload. This behaviour can be directly traced back to the user habit of
submitting a number of instances of the same application more or less at
the same time10. As such, the correlation space needs to be extended to se-
quences of submissions, and leads to the use of Markov chains. Song et al
(2005a) made a first attempt of improving workload modelling with this tech-
nique, and Krampe et al (2010) extended the use of Markov chains towards
developing one of the first comprehensive models.

While the field of workload modelling for parallel machine environments is
well-covered, research specifically for DCIs is still rare. Medernach (2005) did
some pioneering work here, again using Markov Chains for modelling inter-
arrival times, but Jagerman et al (1997) have shown that this approach leaves
room for improvement regarding the correctness of time autocorrelations; Li
and Muskulus (2007) further refined the model towards eliminating this defi-
ciency. Still, all approaches are limited to the submission time property and
do not properly honour other aspects.

Overall, the current state of the art does not seem to be sufficiently sound
to use them as input for the evaluation of SRM: Even for parallel machine
environments without integration into a DCI, no model allows for expressing
all relevant parameters. As such, they are clearly unfit for even more complex,
federated scenarios.

3.2.2 Recorded Workload Traces

Recorded workload traces do not suffer from the problems mentioned above:
they contain all information that was available on the system on which the
logging has been made, include all possible properties the LRM is able to
expose, and implicitly have all hidden characteristics in place, provided that
all relevant data has been recorded in the first place.

However, the acquisition of recorded workload traces from real-world sys-
tems is a challenge on its own: The accounting data formats of well-established
LRM implementations vary greatly, and although considerable effort has been
put into the standardisation of these, see for example Mach et al (2007), mar-
ket adoption is still very limited. Another issue is privacy: Most LRM operators
do not feel comfortable giving out these data. The obvious reason is the pro-
tection of users; another one is that full disclosure of the original accounting
records of any given system provides very deep insight into organisational
structures and operation flaws.
10 A typical use case for this are parametric sweep experiments.

3.2 Selection of Input Data 41

For that matter, only very few publicly available collections of workload
data are available: the Parallel Workloads Archive11 and the Grid Workload
Archive12.

The Parallel Workload Archive

The Parallel Workloads Archive offers 30 traces that have been recorded on
parallel machines in different locations since 1993, and has become the de-facto
standard for research on this kind of data (more than a hundred publica-
tions build upon the workloads published there). For each workload trace, the
archive offers an anonymised version of the original trace data, and one version
converted to the Standard Workload Format (SWF) as defined by Chapin et al
(1999) for greater convenience. For some workloads, a third version (again us-
ing the SWF format) is available, which is a “cleaned” copy of the original SWF
conversion. While the non-cleaned SWF trace is sanitised only with respect
to syntactically broken records in the original workload trace, the cleaned
version also purges anomalies due to administrative intervention or abnor-
mal user behaviour. Feitelson and Tsafrir (2006) explain the method used
for cleaning, and—backed by comprehensive analysis of the behaviour of the
cleaned versions—recommend the so revised traces for exclusive use.

The Grid Workload Archive

The Grid Workloads Archive focuses on traces that have been recorded on
academic Grid environments. It offers 11 traces, and each of them spans a
number of participating HTC centres. It provides the trace data in a differ-
ent format, called the “Grid Workload Format,” which allows for additional
fields regarding job interdependencies, data and network requirements, VO
and project information, and job provenance13. The format is partly based
on SWF, JSDL, and the Open Grid Forum’s Usage Record (UR) format, but
defines no community- or user-driven standard and poses an isolated effort.

Archive Selection Rationale

Here, we prefer the former of the two over the latter, for several reasons.
First, the federated character of the researched infrastructure paradigm is
much better fitted to independent parallel machine setups (as given in the
Parallel Workloads Archive) with loose interaction, rather than a fixed Grid
paradigm as assumed in the Grid Workloads Archive. Second, the traces in the
Parallel Workloads Archive are much better understood and well-researched
in terms of anomalies and side effects to SRM analysis than the ones in the
11 http://www.cs.huji.ac.il/labs/parallel/workload/.
12 http://gwa.ewi.tudelft.nl/.
13 That is, information on the submission and execution system, and intermediaries.

42 3 Methodology for Evaluation of SRM in DCIs

Grid Workload Archive. Third, the Grid Workloads Archive traces contain
a large amount of information unneeded for the research within this work;
especially, data and network usage information is not considered at all. Fi-
nally, it must be noted that the traces from the Grid Workloads Archive lack
interestingness regarding SRM algorithm design, since most of them have an
overall resource usage below 50 %. In such cases, scheduling degenerates to
simple batch queueing with (almost) no delay, and it does not make sense
to introduce sophisticated heuristics for better performance in the federated
case, since each resource centre obviously provides sufficient resources to its
users anyway.

3.2.3 Utilised Workload Traces

For the work at hand, we use a selection of traces to conduct the SRM algo-
rithm assessments. As reference, we discuss these traces here regarding their
origin, a number of key properties, and the sanitisation that has been con-
ducted before usage.

All data sets are taken from the previously discussed Parallel Workload
Archive, in their sanitised versions (if applicable). More specifically, we used
the following traces (see Table 3.1 for detailed information):

KTH96

A trace from an IBM RS/6000 SP with 100 processors at the Swedish
Royal Institute of Technology, Stockholm. The data has been collected
between September 1996 and August 1997 over a period of eleven months.

CTC96

Another recording from an IBM RS/6000 SP, this time with 430 proces-
sors, made at the Cornell Theory Center, Ithaca, NY. The data has been
collected between June 1996 and May 1997 over a period of eleven months.

LANL94

A trace from a Thinking Machine CM-5 with 1,024 processors at the Los
Alamos National Laboratory, Los Alamos, NM. The data has been col-
lected between October 1994 and September 1996 over a period of 24
months. This workload exposes two specialties that have been part of the
LRM configuration: Only jobs with a parallelism of 32 or greater were ac-
cepted for submission (mj ≥ 32), and the parallelism was required to be
a power of two (mj ∈ {32, 64, . . . }). These restrictions led to a close-to-
optimal allocation, resulting in very short turnaround times.

SDSC00

A recording from an IBM RS/6000 SP with 128 processors at the San
Diego Supercomputer Center, La Jolla, CA. The data has been collected
between April 1998 and April 2000 over a period of 24 months.

SDSC03

A trace from the “Blue Horizon” instalment with 1,152 processors, again

3.2 Selection of Input Data 43

at the San Diego Supercomputer Center. The data has been collected
between April 2000 and January 2003 over period of 32 months.

SDSC05

A recording from the “DataStar” instalment with 1,664 processors, yet
again at the San Diego Supercomputer Center. The data has been col-
lected between March 2004 and April 2005 over a period of 13 months.

Table 3.1 Recorded workload traces used in this work, with their properties.

Identifier mk Period (mos.) Users Number of Jobs
cleaned sanitised

KTH96 100 11 214 28,489 28,479
CTC96 430 11 679 77,222 77,199
LANL94 1,024 24 213 122,060 110,769
SDSC00 128 24 437 59,725 54,006
SDSC03 1,152 32 468 234,314 232,281
SDSC05 1,664 13 460 96,089 84,876

Although the recordings are rather old, their age is no hindrance to the use
in the work at hand. This is mainly because the SRM algorithms analysed in
this context are influenced by the characteristics of the workload, and not so
much by the performance of the hardware or the structure of the applications.
In addition, the implicit behavioural patterns of local user communities are
a very good fit for the federated scenario described in Chapter 2, since they
properly model independent groups of users that participate in a federation
of infrastructure providers.

The Need for Shortening

The fact that the workloads span different periods of time needs additional
attention. While this does not matter in a non-interacting setup where each
resource centre is agnostic of others, all federating setups where participants
interact on the SRM level need to be aligned with respect to the simulated
period. The reason for this is quite obvious: If differing time periods were
used, results would be greatly distorted from the moment one resource centre
is running idle. Actually, this would allow all other participants to deploy
workload to the idle resource centre, effectively improving their performance
(since they have less workload to handle). Naturally, such a setup is unrealistic:
Infrastructure installations do not run idle until being decommissioned, due
to the large financial investment for their acquisition, but instead are in full
service until the end of their use period.

To overcome this obstacle, we created shortened versions of the original
traces, which we then use for different mix-and-match setups. Table 3.2 pro-

44 3 Methodology for Evaluation of SRM in DCIs

vides a list of these modified traces; the added index on the name indicates
the length of the workload in months, for later reference.

Table 3.2 Shortened versions of the traces described in Table 3.1, with their
properties.

Identifier mk Period (mos.) Number of Jobs
KTH9611 100 11 28,479
CTC9611 430 11 77,199
LANL9624 1,024 24 110,769
SDSC0011 128 11 29,810
SDSC0024 128 24 54,006
SDSC0311 128 11 65,584
SDSC0324 1,152 24 176,268
SDSC0511 1,664 11 74,903

The Need for Sanitisation

Even although the Parallel Workloads Archive traces have been cleaned re-
garding irregular entries (see Section 3.2.2), a closer analysis of the data reveals
that, for proper simulation, additional sanitisation steps need to be done.

First, it shows that not all submitted jobs are eligible for execution: A
number of them have a requested number of processors value higher than
the total number of processors theoretically available on the machine, that
is mj > mk. Obviously, such requests cannot be fulfilled at all and most
certainly are the result of misconfiguration in the LRM14. Lines in the trace
that fall under this category were removed.

Second, some jobs have different values for their requested and allotted
number of processors. This discrepancy is not invalid by itself; for workloads
that contain moldable or malleable jobs, such configurations are very common.
However, in case of the systems under review, it is unclear whether such jobs
were allowed, and if so, which of them were actually exploiting this option
rather than just having illicit values in the trace for other reasons. Actually,
three cases need to be considered here:

a. Lines in the trace that have a number of processors requested, none al-
lotted, and run successfully. Here, the latter was set to the value of the
former; and

b. Lines in the trace that feature more requested than allotted processors,
or vice-versa. Here, the former was set to the value of the latter.

14 In fact, all modern LRMs can be configured such that jobs with resource requests
not eligible for execution are discarded directly, before being accepted for sub-
mission.

3.2 Selection of Input Data 45

c. Lines in the trace with invalid values for both fields were discarded.

Third, there exist entries in the workloads with a processing time pj ≤ 0.
Since such jobs have no influence on the schedule (they obviously do not
contribute to the overall resource usage), we removed them from the trace.

Fourth, the workloads in use for this work expose so-called “runtime esti-
mates” provided by the user. A number of jobs have longer actual runtimes
than initially requested (p̄j < pj). The soundness of such jobs largely depends
on the configuration of the underlying LRM: The so-called “overuse” of re-
sources is allowed only in few cases; usually, jobs that have runtime estimates
lower than their real runtime are forcefully terminated by the LRM. Again, it
is difficult to assess whether such lines in the trace are the result of overuse
allowances in the system, or just wrong recordings. As such, we discarded lines
in the trace exposing such values.

Fifth, there exist jobs with no runtime estimate at all, although the system
requires one to be set. Since such workloads are supposed to be usable with
scheduling heuristics that built upon estimated runtimes, jobs without this
value set correctly can be considered invalid. Therefore, we filtered out lines
in the trace lacking this value as well.

Applying the afore listed rules to the original (“cleaned”) workloads from
the Parallel Workloads Archive results in modified versions of those workloads;
see Table 3.1 for information on the number of jobs discarded due to the
additional sanitisation.

3.3 Assessment Metrics 47

3.3 Assessment Metrics

The last precondition for being able to conduct an assessment of SRM in
DCI environments is the definition of quality measures for the performance of
different capacity planning heuristics.

From a practical perspective, two important viewpoints need to be con-
sidered:

The consumer-centric viewpoint

A user in a DCI environment as assumed in Section 2.4 is mainly inter-
ested in having his personal workload executed on the system as fast as
possible.

The provider-centric viewpoint

In contrast to this, a provider within the DCI most importantly wishes to
show a good efficiency for the system he provides.

Naturally, the search for proper metrics starts in the area of parallel ma-
chine scheduling, as this is the basic model for the infrastructure in the here
discussed federation scenario. Classical measures from scheduling theory such
as Total Completion Time

∑
Cj or Maximum Lateness Lmax as discussed

by Brucker (2007) obviously do not fully address the aforementioned view-
points; Feitelson (2001) in fact shows that it is necessary to consider properties
of the environment to ensure sufficiently expressive objectives.

Following, we introduce a number of metrics that we use in this work
in detail. The stems in parallel machine scheduling require special attention:
Since there is a difference between the workload submitted and the workload
executed on a participating system in the federation, it is necessary to differ-
entiate the two. To this end, the former is addressed as τk, while the latter is
addressed by πk for participant k.

3.3.1 Makespan

For any given workload, the amount of time necessary to run it on a given set
of machines is an important indicator for the quality of the SRM system. This
quality level is being expressed by the makespan of a schedule and is defined
as the completion time of the last job. Especially theoretical considerations
make use of the makespan, usually to prove upper bounds for the worst case
of an algorithm, see for example Garey and Graham (1975) or Naroska and
Schwiegelshohn (2002).

For the here discussed problem family, it is hard to qualify the “last” job, as
we are considering an online problem with a continuous stream of workload15

being submitted to the SRM system. As such, we narrow our view to the latest
completion time of a certain set of jobs for a given system, see Equation 3.1.
15 Strictly speaking, the makespan for a given system can be calculated only after

its decommissioning.

48 3 Methodology for Evaluation of SRM in DCIs

Cmax,k = max
j∈πk

{Cj} (3.1)

Another issue is that makespan is location-bound16. While this is not a prob-
lem by itself, it must be considered when comparing results with respect to a
certain user community.

3.3.2 Squashed Area

Another important measure is the amount of resources used, in absolute num-
bers. This characteristic is defined as squashed area (SA as introduced by Erne-
mann et al (2003)), being denoted as the product of a job’s parallelism and
processing time as shown in Equation 3.2.

SAj = mj · pj (3.2)

Considering again the set of all jobs executed on a given participants machine
k, we define the overall squashed area as shown in Equation 3.3

SAk =
∑
j∈πk

mj · pj (3.3)

In fact, the squashed area can be used to express an interesting metric for
the federated case as well: The relative change of squashed area, see Equa-
tion 3.4, indicates resource usage shifts due to delegation, because it describes
the ratio between τk and πk independent from the makespan.

ΔSAk =
SAk∑

j∈τk

mj · pj
(3.4)

Grimme et al (2007) show that the relative change of squashed area is a good
companion metric for assessing the change from non-federated to federated
scenarios. The local usage, however, is still interesting and thus will be dis-
cussed in the following section.

3.3.3 Utilisation

The utilisation (U) of a resource is an important indicator for the efficiency of
a given participant’s system. At any given time t, the utilisation is the ratio
between used and available resources, see Equation 3.5.

Uk(t) =
1

mk
·

∑
j∈πt

k

mj with πt
k = {j ∈ πk|Cj(Sk) − pj ≤ t ≤ Cj(Sk)} (3.5)

16 That is, it refers to a certain participant in the federation, and not to a certain
workload.

3.3 Assessment Metrics 49

Again, this very metric can be formulated towards including all jobs for
a given participant k after all jobs j ∈ πk have been executed, resulting
in Equation 3.6.

Uk =
SAk

mk ·
(

Cmax,k − min
j∈πk

{Cj(Sk) − pj}
) (3.6)

Reusing the qualified makespan in the equation obviously limits the metric to
a certain timeframe. Given the online character of the scheduling problem, this
seems to be an obstacle here. However, the denominator ensures meaningful
bounds for the timeframe by limiting it to the earliest start time and the latest
known end time for participant k.

For the whole federation, the makespan can be extended even further by
embracing all participating systems, see Equation 3.7.

Uo =

∑
k∈K

SAk

∑
k∈K

mk ·
(

max
k∈K

{Cmax,k} − min
k∈K

{min
j∈πk

{Cj(Sk) − pj}}
) (3.7)

3.3.4 Average Weighted Response Time

So far, we solely focused on resources with respect to performance measure-
ment of SRM algorithms: Squashed area and utilisation directly show whether
the resource was efficiently used. Makespan has a more general view on the
system, since it considers how fast a given workload could be handled from
the scheduling perspective.

A metric which is independent from the resource characteristics is the
average, resource-consumption weighted response time (AWRT) as defined
by Schwiegelshohn and Yahyapour (2000), see Equation 3.8.

AWRTk =

∑
j∈τk

SAj · (Cj − rj)∑
j∈τk

SAj
(3.8)

It should be noted that calculation is done with respect to the whole feder-
ation, since the metric operates on the set of jobs submitted to participant k
(indicated by τk in Equation 3.8) rather than the set jobs executed at par-
ticipant k. This way, we analyse the SRM performance improvements of each
participant with respect to its original workload and user base.

Seemingly, Average Weighted Response Time (AWRT) gives a more user-
centric view on the performance of SRM in the federation. Careful considera-
tion, however, reveals that this is not entirely true: In a system that assumes
a uniform resource space (as being done in this work, see Section 2.4.1), the
only factor that actually affects the overall performance is the wait time as a

50 3 Methodology for Evaluation of SRM in DCIs

direct indicator of how efficiently the SRM system is able to schedule17. Still,
the resulting average is just an indicator for the overall response time of the
system, and cannot be interpreted as an estimate how long a specific user has
to wait for a specific job.

Uptaking the views discussed at the beginning of the metrics discussion,
see Section 3.3, it shows that the metrics cannot be directly assigned to either
of the views. Rather than that, they show a certain bias in their expressiveness
towards one view or the other, but—due to the connectedness via the wait
time—cannot be clearly separated.

17 Processing time is meaningless here—in the local case, there is no choice to run
the job on a system with higher processing power, and in the federated case, all
systems are assumed to be equitable in their processing power, see Section 2.4.2.

3.4 Reference Results for the Non-federated Scenario 51

3.4 Reference Results for the Non-federated Scenario

In order to determine the performance gain of federated capacity planning
mechanisms, we compare their behaviour regarding the assessment metrics de-
scribed in Section 3.3 with the non-federated case, as this is the lower bound
for the performance of SRM systems in a federation as discussed in Ques-
tion 5. To this end, we assume a scenario where users only submit workload
to their local resource centres, without the provider having any collaboration
agreement with others in place.

To have a proper basis for comparison, this non-federated scenario should
be as realistic as possible. From an SRM perspective, the main influences are
the configuration of the LRM system regarding the decision strategy of the
internal scheduler, see Section 2.4.1.

3.4.1 Classic LRM Algorithms

For the reference results, we use three popular18 standard heuristics as the
basis for further comparison:

First-Come-First-Serve

FCFS selects the first job in the waiting queue of the LRM system and, as soon
as sufficient processors are available, schedules it for execution.

Table 3.3 Reference results for AWRT, U, and Cmax,k for the input data described
in Section 3.2.3 using the FCFS algorithm.

Trace AWRT (s) U (%) Cmax,k (s)
KTH9611 418,171.98 68.67 29,381,344
CTC9611 58,592.52 65.70 29,306,682
LANL9624 12,265.92 55.54 62,292,428
SDSC0011 266,618.82 71.53 30,361,813
SDSC0024 2,224,462.43 75.39 68,978,708
SDSC0311 72,417.87 68.58 29,537,543
SDSC0324 166,189.54 73.22 64,299,555
SDSC0511 70,579.08 60.12 29,380,453

While this rather simplistic strategy yields surprisingly good results in
many cases, see Schwiegelshohn and Yahyapour (2000) or Grimme et al
(2008c), its worst-case behaviour can result in unreasonably low utilisation,
18 See Ernemann et al (2005) for a survey on SRM environments for the world’s 500

then fastest supercomputers. Although other algorithms are used in practice as
well, they mostly focus on prioritisation of certain user groups, which is out of
scope for this work.

52 3 Methodology for Evaluation of SRM in DCIs

see Schwiegelshohn and Yahyapour (1998a). Still, FCFS is of practical impor-
tance because of its popularity among system administrators, which stems
from the predictable behaviour, the ease of deployment (as it lacks any con-
figuration), and its implicit fairness (Schwiegelshohn and Yahyapour, 1998b).
Reference results for the utilised input data using FCFS are shown in Table 3.3.

Extensible Argonne Scheduling sYstem

Extensible Argonne Scheduling sYstem (EASY) is a widespread variant of
Backfilling-based algorithms. It essentially allows to schedule any (obeying
the order of the queue) but the first job for immediate execution, provided
that the first job will not be delayed.

Table 3.4 Reference results for average weighted response time, utilisation, and
makespan for the input data described in Section 3.2.3 using the EASY algorithm.

Trace AWRT (s) U (%) Cmax,k (s)
KTH9611 75,157.63 68.72 29,363,626
CTC9611 52,937.96 65.70 29,306,682
LANL9624 11,105.15 55.54 62,292,428
SDSC0011 73,605.86 73.94 29,374,554
SDSC0024 112,040.42 81.78 63,591,452
SDSC0311 50,772.48 68.74 29,471,588
SDSC0324 70,774.86 73.91 63,696,120
SDSC0511 54,953.84 60.17 29,357,277

More formally, let t be the current moment in time, j the job at the head
of the queue, and Tj the earliest possible start time of j, calculated from
the runtime estimate p̄k of the already scheduled jobs. If j cannot be started
immediately, that is Tj > t, the first job i from the waiting queue which
satisfies t+p̄i ≤ Tj is scheduled for execution, provided that sufficient resources
are available. This translates to two criteria for jobs that can be backfilled,
that is (1) short jobs which fit into the free space until the occupation of the
first job in the queue is expected to start and (2) narrow jobs which do not
affect the first job because their parallelism is sufficiently small to fit next to
it.

The rationale behind is the fact that jobs with a high degree of paral-
lelism tend to congest the queue with respect to jobs with a low degree of
parallelism, and EASY tries to bring the latter forward without delaying the
former. Lifka (1995) provides a comprehensive description of EASY with per-
formance results. Reference results for the utilised input data using EASY are
shown in Table 3.4.

3.4 Reference Results for the Non-federated Scenario 53

List Scheduling

List Scheduling (LIST) as introduced by Graham (1969) denotes a generalised
variant of a greedy scheduling algorithm: The LIST algorithm iterates over
the waiting queue and, in the order of assigned weight19 for each job from
head to tail, schedules every job for execution as soon as sufficient resources
are available. As such, the algorithm’s behaviour is identical to the First Fit
strategy, see Aida (2000).

Table 3.5 Reference results for average weighted response time, utilisation, and
makespan for the input data described in Section 3.2.3 using the LIST algorithm.

Trace AWRT (s) U (%) Cmax,k (s)
KTH9611 80,459.27 68.72 29,363,626
CTC9611 53,282.02 65.70 29,306,682
LANL9624 11,652.44 55.54 62,292,428
SDSC0011 74,527.98 73.96 29,364,791
SDSC0024 116,260.72 82.26 63,618,662
SDSC0311 48,015.99 68.87 29,413,625
SDSC0324 72,220.28 73.91 63,695,942
SDSC0511 53,403.51 60.20 29,339,408

In contrast to EASY, it does not enforce a non-delay policy for the first job,
potentially causing starvation for it. Reference results for the utilised input
data using LIST are shown in Table 3.5.

3.4.2 Discussion of the Results

It shows that EASY outperforms the FCFS heuristic in all cases with respect to
AWRT, and in most cases with respect to Utilisation (U); in fact, this confirms
the observations made by Feitelson and Weil (1998). Where our experiments
yield the same results for FCFS and EASY with respect to U, this stems from
the structure of the workload: Their makespan is influenced only by the last
job in the original trace (which, in turn, has a very late release time), and
thus utilisation cannot improve through better scheduling, but is determined
by the submission only.

In some cases, LIST outperforms the other heuristics, but overall EASY
turns out to be the best-performing LRM algorithm; however, it requires ad-
ditional information (the runtime estimates) to make its decision. Mu’alem
and Feitelson (2001) back these observations in their work as well.

It should be noted that, in the following chapters, an important effect that
other research work usually takes into account is not considered here: the no-
tion of timezones. Lublin and Feitelson (2003) show that certain patterns can
19 As weight, this work uses the job arrival time (or release date).

54 3 Methodology for Evaluation of SRM in DCIs

be observed for the day cycle. For example, around lunch time the submission
density is much higher than during night.

For the non-federated case, this pattern has no effect on the results. How-
ever, considering the upcoming federated scenarios, Ernemann et al (2004)
show that it is possible to exploit the time difference between the different
participants (locations in Europe and the United States of America would be a
perfect match), thus getting better results. On the other hand, ever-advancing
tools on the user side let this effect fade away, see Li and Muskulus (2007).

In this work, it was decided to not consider timezones, regardless of the
afore described positions: Not leveraging the beneficial factor of shifts tends
to make the case for algorithm performance rather more difficult than easier.

Part II

Algorithms for Capacity Planning Problems

With the modeling and evaluation background set, we address
our second goal by focusing on algorithmic questions regarding SRM
for DCIs. To this end, we evaluate the performance of algorithms in

the context of different DCI structures derived from real-world installations.
With the insight gained through the definition of our model for federated

capacity planning in DCIs as discussed in Section 2.5, we make some general
assumptions on the architecture of SRM systems, especially on the decision
making process and its layer, policy and interaction model. With that, we
set the stage for the analysis of the two most widespread models of SRM:
centralised and distributed systems.

First, we review centralised SRM systems, which are popular for production
environments because of the ability to construct them along already existing
organisational structures. Here, we focus on the specific aspect of information
disclosure between and autonomy among the participants of a federation, aim-
ing to approach Question 3 and Question 4 of the original research problem.
To this end, we adapt three different approaches—one passive, one active, and
one hierarchical—and explore their potential.

Second, we review distributed SRM systems, which became the method of
choice for DCI design over the last years because of their flexibility regard-
ing changing user and provider communities. There, we focus on the lack of
global view for the decision making strategies and explore their potential, at-
tempting to answer the resiliency aspect of Question 2. On the one hand, we
adopt the lessons learned from the analysis of centralised SRM, introduce two
distributed heuristics with different information requirements and compare
them to each other. On the other hand, we introduce a novel approach for
dynamic, situation-aware SRM systems that are able to self-adapt to system
usage pattern changes. Additionally, we relax the management model for re-
source centres, allowing them to lease resources to other participants instead
handling their workload, and evaluate two algorithms for this.

Finally, we critically review the different approaches, attempt a qualitative
comparison among them, and discuss their applicability, implementation ef-
fort, and requirements for production use, targeting the infrastructure aspect
of Question 2. In addition, we explore the limits of possible gain in order to
set a cornerstone for what can be achieved by modern SRM systems, tack-
ling Question 5. To this end, we approximate those limits for small federation
scenarios using evolutionary computation and identify approximate bounds
for SRM in federated DCI environments.

4

General Assumptions

Architecture starts when you carefully put
two bricks together.

—Ludwig Mies van der Rohe

Since the emergence of production e-Infrastructures, a plethora of
DCIs in both scientific and enterprise domains have been built. While all
being different in their requirements, use cases, and middlewares, there

are common aspects to be identified on the architectural and business level.
Kee et al (2004) present an analysis of existing resource configurations and,

specifically for the Grid computing use case, propose a platform generator that
synthesises realistic configurations of both compute and network properties of
such e-Infrastructures. Here we follow a much simpler model that allows us to
focus on the SRM problems rather than the overall infrastructure modelling.

In general, most existing DCIs comprise a federation of partners that share
a common goal, such as a specific project, and pool their resource centres.
Regardless of whether users in such a project have to decide on the distri-
bution of their jobs by themselves, or this is done in an automatic manner,
the LRM layer is not adapted to the DCI federation environment. That is, the
LRM schedulers themselves are usually incapable of interacting with sched-
ulers from a different administrative domain without additional software, even
within the same project. In addition, each participating centre runs its own
scheduling systems which is driven by certain, provider-specific policies and
rules regarding the planning scheme for incoming workload.

Furthermore, we can assume that there is a general notion of trust be-
tween the partners within a collaborating DCI. That is, pooled resources are
shared in a collaborative manner and the delegation or exchange of workload
is a generally desired effect. However, each resource centre acts strictly on its
own: The owners decide how much control they are willing to cede over their
resources to a scheduler in the federation and employ their own LRM systems
with a given queue configuration and scheduling heuristics. Furthermore, par-
ticipants do not necessarily expose the characteristics of their job queues to
other centres, and direct access to this information is forbidden.

60 4 General Assumptions

Location

Transfer

n

r

Location

Transfer

Location

Transfer

Fig. 4.1 Structure of the DCI in the federated case. As an extended version
of Figure 2.4, it now incorporates the components within the Federated SRM part,
namely the Policy Engine with its Location and Transfer policy templates.

4.1 Layer Model

This federated architecture paradigm requires that each participant exposes
an interface of some kind to the other participants, see Figure 4.1. Because
of the autonomy requirement, the Federated SRM layer leaves the LRM un-
touched, thus enforcing a clear separation between the two. For the Local SRM
layer, we follow the model described in Section 2.4 such that machine model,
job model, and the structure of the LRM stay the same.

The Federated SRM layer is deployed on a per-participant basis and con-
sists of two parts: First, it features a Policy Engine component which acts
regarding to a set of rules that regulate when to request, offer, or accept re-
mote jobs. Second, it provides interfaces1 for job migrations on the one hand
and job submissions on the other hand. The former acts as a communication
endpoint for the other participants in the federation, while the latter ensures
that all workload requests, regardless whether they are of local or remote
origin, are channeled through the broker component.

In order to make the integration as seamless as possible, we go further
than just restricting the information flow between partners in the federation
as discussed in Section 2.4.2. To this end, we consequently limit the amount
of information about the LRM visible to the policy engine, such that only

1 For a more elaborate specification of the interfaces see Section A.4 in the ap-
pendix.

4.2 Policy Model 61

the current utilisation and the locally waiting workload are known. While the
former is typically exposed2 by most batch management systems and Grid
monitoring stacks (e.g. Massie et al, 2004), the latter can be tracked by the
decision maker component itself, since it acts as a bridge between the user
and the local batch management system. Overall, this ensures a very loose
coupling between the LRM and Federated SRM level.

Fig. 4.2 Decision making process for local and remote jobs. Within the exchange
of workload, the location and transfer policies as part of the policy engine are applied.

4.2 Policy Model

In order to further abstract the policy management within the Federated SRM
layer, we split the decision making process into two independent parts. The
whole process is depicted in Figure 4.2, and differentiates between workload
originating from remote and workload coming from the local domain (i.e.
being directly submitted by the resource centre’s own users).

In the former case, the decision process is simple: The transfer policy is
applied to the set of jobs, and depending whether being accepted or declined,
the jobs are enqueued with the LRM or discarded. In the latter case, the
decision process needs additional steps: First, the location policy is applied to
determine candidates for delegation, and for all candidates, the transfer policy
is applied to decide whether the delegation should occur. Depending on the
result, a delegation is attempted or the job is directly enqueued with the LRM.

2 At least within the local system domain, that is.

62 4 General Assumptions

If the attempt succeeds, the job is handed over; otherwise, the next candidate
is queried. Only if all candidates decline, the job is eventually enqueued with
the LRM such that users have their workload successfully submitted regardless
of the current status of the federation.

4.2.1 Location Policy

This policy becomes relevant if more than two resource centres participate
in the federation. In this case, more than one target for workload delegation
becomes available, and the location policy determines as a first step the sorted
subset of possible delegation targets.

4.2.2 Transfer Policy

After the location policy has been applied a decision must be made whether a
job should be delegated to the selected candidate. For this purpose we apply
the transfer policy separately to each participant following the result from the
location policy. The transfer policy then decides whether the job should be
executed locally or delegated to the selected resource centre. In the first case,
the job is sent to the own LRM. In the second case the job is offered to the
selected partner for delegation. This request can result in two states:

1. The job is accepted by the remote resource centre. In this case, the job is
delegated to this partner and no other further delegation attempts have
to be made.

2. If the acceptance is declined the transfer policy is applied to the next
partner in the list of candidates determined by the location policy. This
iterative procedure is continued until all partners in the federation have
been requested. If no candidate is willing to accept the job, the offering
site must execute it locally.

Further, the transfer policy has to decide about jobs that are offered from
remote participants and can choose between accepting or declining a job offer.
In the former case, the job is immediately forwarded to the LRM.

On this basis, the policy engine may offer and accept subsets of jobs from
the current waiting queue to other decision makers from other sites. Note,
however, that the selection which jobs to expose to alien decision makers
remains in the domain of the local site.

4.3 Architectural Considerations

With the layer and policy model being set, we now discuss their application re-
garding different DCI architectures. In Section 2.4.2, two general architectural
models have been introduced already: centralised and distributed.

4.3 Architectural Considerations 63

From the layer model standpoint, the two are indistinguishable, since the
separation of concerns is happening within each federation partner’s resource
centre, and the pattern of communication between participants does not mat-
ter. From the policy model standpoint, however, this difference is important:
In fact, it directly affects the way the location and transfer policies are con-
structed, as the flow of communication may be organised in a hierarchical or
equitable fashion.

4.3.1 Interaction in Centralised Flavors

For the centralised flavor, we distinguish two interaction models. In the active
case, the system features a global SRM (the “coordinator”), which decides on
the distribution of workload and assigns jobs to the local SRMs for execution
(the “workers”), see Figure 4.3. Looking at the policy layer, we find that,
with respect to the coordinator/worker relationship, only the former applies
a location policy: Workers do not decide on the delegation target unless they
act as coordinators towards the next tier3. Transfer policies, however, can be
in place for both: For the coordinator, they are mandatory in order to decide
on whether to delegate to a certain worker or not, and for the workers whether
to accept, if such freedom is applicable.

Another interesting feature is due to the flexibility of our layer model: With
respect to the origin of workload, the submission of jobs can stay either with
the participants’ local SRM system (following the grey arrows in the figure)or
go directly to the global SRM (following the black arrows in the figure). In
the former case, the centralised scheduler never receives jobs directly, but
instead they are delegated to it by the local systems. Both approaches are
fair, as capacity management should be seamless to the users anyway, and the
stream of incoming workload does not change its characteristic, as the jobs
are passed to the coordinator untouched. Here, we leverage this advantage
such that the local SRM is capable of forwarding only those jobs relevant for
federated scheduling, instead of sending everything upstream.

In the passive case, the decision making is left to the local SRM systems,
but the participants do not interact directly. Instead, they utilise a central
exchange platform for offering own and accepting foreign workload, see Fig-
ure 4.4. This interaction model is very similar to the whiteboard pattern
introduced by Tavares and Valente (2008).

Again, workload submission occurs at the local SRM. Due to the passive
nature of the central component, no policies are needed here. Instead, each
resource centre features its own policy layer comprising one or more transfer
policies and no location policy (since the only delegation target is the exchange
platform).

3 E.g. in a hierarchically organised scheduling architecture.

64 4 General Assumptions

Fig. 4.3 Structure of the federation for centralised SRM with active interaction.
In the hierarchical case, the Local SRMs on the nth tier act as intermediaries towards
the n+1th tier by assuming the coordinator role, but stay in the worker role towards
the n − 1th tier.

Fig. 4.4 Structure of the federation for centralised SRM with passive interaction.
The Global Pool component only serves as a centralised, ubiquitously accessible
data structure that is utilised by the active Local SRM systems.

4.3 Architectural Considerations 65

4.3.2 Interaction in Distributed Flavors

For the distributed flavor, we only have a single interaction model. Each par-

Fig. 4.5 Structure of the federation for distributed SRM. Here, all participants
are actively employed in the SRM process and exchange workload delegation offers
and requests via their public interfaces.

ticipant in the distributed case acts as an autonomous entity within the fed-
eration. For our purposes, we assume that every participating resource centre
caters to its own, local user community which submits workload to the sys-
tem. In addition, the SRM system is capable of exchanging workload with
other SRM systems in the federation, see Figure 4.5.

Every SRM system acts independently of the others, making its own de-
cisions. For incoming workload, it decides whether it is executed on the local
resources, or delegated to other participants, and delegation attempts can be
declined by the target system. Each SRM features both location and transfer
policies, making decisions on workload that is incoming from local or remote
(delegated, that is) submissions.

5

Selected Methods for Centralised Architectures

Uneasy lies the head that wears a crown.
—William Shakespeare

Many production environments consider centralised architectures
the model of choice for structuring resources in a DCI. In fact, well-
known examples from High Energy Physics (Andreeva et al, 2008;

Altunay et al, 2011), Drug Discovery (Chen et al, 2004, 2010), or Computa-
tional Chemistry (Dooley et al, 2006), build on this paradigm for many years
now. From an SRM perspective, it is interesting to explore the performance of
the centralised architecture regarding the interaction models discussed in Sec-
tion 4.3. With respect to the research questions, we focus on the autonomy
and disclosure aspects, and introduce three approaches.

We start with discussing a centralised passive interaction model that allows
resource providers to easily connect to a federation while keeping their local
scheduling configuration almost untouched, see Section 5.1. To this end, we
introduce new variants of popular LRM strategies which communicate via a
central exchange.

Next, we compare the performance of the centralised active interaction
model under different autonomy and disclosure properties. To this end, we
evaluate in how far the federations’ performance is impaired if the workers
are allowed to decline workload and the master’s global view is limited. The
resulting implication of restrictive information policies and the amount of
autonomy on the local system level is analysed in Section 5.2.

Finally, we review the hierarchical model with changing masters and eval-
uate the performance of a propagation-based approach in Section 5.3. On the
basis of a working algorithm for media streaming in P2P networks, we develop
a novel next-neighbour SRM strategy for scheduling in large networks with
hierarchical workload forwarding.

5.1 On the Prospects of Passive Workload Exchange 69

5.1 On the Prospects of Passive Workload Exchange†

As a first step towards the design of federated SRM algorithms for capacity
planning in DCIs with a centralised architecture, we assume a simple, ad-hoc
collaboration use case, where different resource providers which to exchange
workload within a federation without the need for an active scheduling com-
ponent that needs to be maintained.

More specifically, we discuss the passive interaction model, see Section 4.3.1,
and its impact on the federation by introducing a global job pool the resource
centres in the federation use to cooperate. While workload is being fed into the
system via each local LRM system, the local scheduler can now decide whether
to execute the job locally or offer it to a pooled queue that all participants use
as the collaboration medium for workload distribution (this kind of setup is
supported by most modern LRM systems for so-called multi-cluster systems).
In the same manner, every participant can pick a job from the pool if there
is no local job waiting that fits into the current schedule and can use idle
resources. In this analysis we evaluate the performance of three job sharing
algorithms that are based on those introduced in Section 3.4.1.

Using slightly modified variants of these popular LRM scheduling heuristics
for capacity planning, we show that—compared to the non-federated case—in
case of an unchanged local scheduling algorithm many configurations benefit
from the ability to additionally use a global job pool, especially in the cases
of machines with a high local load.

5.1.1 Pooling-aware Standard Heuristics

With respect to the architectural considerations made in Section 4.3, we as-
sume a centralised passive interaction model. The central exchange platform
is realised through a global job pool which local schedulers can use to receive
jobs from and transfer jobs to. We adapt FCFS, EASY, and LIST to using this
platform, and implement the pool as as a global job queue where all jobs are
ordered according to their local submission time.

The interaction with the pool requires a policy that decides, whether a job
is offered to the job pool or is kept in the local queue. Informally, this policy
enforces that whenever a job from the local queue cannot be executed imme-
diately on the local processors, it is offered to the global pool and removed
from the local queue. This can be translated to an algorithmic template as
described in Algorithm 1, which we then use as the basis for all algorithm
variants.

In the beginning, FCFS, EASY, or LIST is applied locally (see Line 2). Fol-
lowing (see Line 4), all jobs that have been considered for the current schedule

† Parts of this section have been presented at the 13th Workshop on Job
Scheduling Strategies for Parallel Processing in Seattle, WA on June 17, 2007.
The corresponding publication, see Grimme et al (2008c), is available at http:
//www.springerlink.com.

70 5 Selected Methods for Centralised Architectures

Algorithm 1 General template for the job-sharing procedure
Require: a local job queue l, a global job pool g
1: algorithm ∈ {FCFS, EASY, LIST}
2: apply algorithm to l
3: for all considered, but locally non-schedulable jobs do
4: offer job to g
5: end for
6: if no job could be scheduled locally then
7: apply algorithm to g
8: end if

during the previous step —including all potential backfilling candidates—but
could not be scheduled immediately are moved to the pool. If no job from
the local queue could be scheduled, the algorithm is executed again, using the
global job pool (see Line 7).

For the modified FCFS policy, only the first job of each queue is considered
respectively. In the case of adapted EASY policy, the application of the algo-
rithm is completely separate for each queue. As such, backfilling is repeated
on the global job pool if and only if local scheduling failed. Note that only
the currently treated queue is used for finding backfilling candidates, and not
the union of locally and globally available jobs. The changed LIST policy also
iterates over the queue stopping as soon as an assignable job has been found,
and also resorts to the global job pool if no local job could be fit into the
schedule.

In the remainder of this section we will denote the FCFS based job-sharing
algorithm as P-FCFS, the EASY based as P-EASY, and the LIST based
algorithm as P-LIST respectively.

5.1.2 Experimental Setup

Before presenting detailed evaluation results on the described scenario, an
overview on the setup of the experiments is given, the performance objectives
are shortly discussed, and used input data is listed.

In order to measure the schedule quality, we use the metrics defined in Sec-
tion 3.3 as objectives, namely Squashed Area (SA) and the change of it, and
AWRT.

For the performance assessment, we use input data from KTH96, CTC96,
LANL96, SDSC00, and SDSC03, spanning machine sizes from 100 to 1,024
nodes. With that, we cover two small, two large, and one medium-sized con-
figuration in order to reflect the federation of heterogeneous resource centres.
The setups and their corresponding combinations of workload traces are listed
in Table 5.1.

5.1 On the Prospects of Passive Workload Exchange 71

Table 5.1 Setups f1 to f4 used for the analysis of the pooling approach, using
the traces described in Table 3.2. A checkmark in a federation’s row indicates that
the trace from the workload column is used for the setup.

KTH96 CTC96 LANL96 SDSC00 SDSC03
Setup 11 mos. 11 mos. 24 mos. 11 mos. 24 mos. 24 mos.

f1 � �
f2 � �
f3 � � �
f4 � � �

5.1.3 Evaluation

Based on the results from the reference data in Section 3.4, we evaluate the
performance of the different federation setups in the following. The discussion
of results is split into two-participant and three-participant sections.

Results for Two Participants

For the constellation of two equally-sized participants, represented by KTH96
and SDSC00 workloads, a significant improvement in AWRT with respect to
the corresponding local setup can be observed, see Figure 5.1a. This is achieved
even without affecting the utilisation or squashed area significantly, see Fig-
ure 5.1b.

(a) AWRT. (b) ΔSAb.

Fig. 5.1 Results for the two-participant setup f1, as percental change wrt. to the
non-federated case.

A completely different behaviour can be observed when a small partici-
pant (SDSC00) cooperates with a large participant (LANL96), see Figure 5.2.
Here, the small participant migrates a higher percentage of its jobs to the

72 5 Selected Methods for Centralised Architectures

(a) AWRT. (b) ΔSAb.

Fig. 5.2 Results for the two-participant setup f2, as percental change wrt. to the
non-federated case.

large participant than vice versa. Obviously, the AWRT of the small partici-
pant improves strongly while the utilisation decreases. Concerning the large
participant we observe that due to the large amount of jobs migrated from
the small to the large resource centre the AWRT becomes, and the utilisation
increases. However, the impact of migration is small which may result from
the special usage policy of LANL96, see Section 3.2.3, so that small jobs from
SDSC00 can be used to fill gaps.

The comparison of the job-sharing algorithms with the results for EASY as
the best non-federated algorithm yields structurally similar results. However,
for two small resource centres, the P-EASY and P-LIST approaches outper-
form EASY with respect to AWRT. Summarising, the following conclusions can
be drawn from the experiments:

1. Adapting the local algorithms to job-sharing can lead to an overall AWRT
improvement for resource centres with high utilisation and rather equal
size.

2. Combining a resource centre with low utilisation and short AWRT with a
more loaded one resembles a load balancing behaviour which may involve a
significant deterioration concerning AWRT for the less loaded participant.

3. For disparate sized resources a significant higher percentage of job mi-
grates from the small to the large participant than vice versa. While many
jobs from the larger resource cannot be executed on the smaller resource
due to oversized resource demands, jobs from the smaller may fill gaps in
the schedule of the larger.

Results for Three Participants

For the setups with three collaborating participants the job-sharing algorithms
again yield shorter AWRT values for all participating resource centres. In f3

5.1 On the Prospects of Passive Workload Exchange 73

however, the utilisation at the largest resource centre (CTC96) increases in a
load balancing behaviour, see Figure 5.3, but this does not affect the AWRT
for P-EASY and P-LIST.

Since the sharing of jobs results in lower utilisation for two and higher util-
isation for one participant while preserving or even improving the AWRT, we
can identify an additional benefit of pooling: On the now less utilised system
the providers have freed previously occupied resources, effectively allowing
them to serve additional customers.

(a) AWRT. (b) ΔSAb.

Fig. 5.3 Results for the three-participant setup f3, as percental change wrt. to
the non-federated case.

In f4, which comprises two large participants and one small participant, the
constellation leads to a strong deterioration in AWRT for P-FCFS for LANL96,
as this participant takes most of the shared jobs. This effect is probably due
to the characteristics of the LANL96 system and is intensified by jobs moving
towards LANL96 from the small site, an effect that was also observed in the
two-participant setup f2. For the other algorithms the situation is alike while
the AWRT deterioration is less strong.

Job Pool Size Variation during Interchange

In order to complement our results, we assessed the size of the job pool during
the simulation. This provides additional insight to the behaviour and influence
of the three algorithms regarding the usefulness of the pool. Large pool sizes
are more likely to indicate that the workload is not handled well, thus leaving
many jobs in the lower prioritised global queue.

The size of the pool was determined every time a job is added to or removed
from it for every participant, and then averaged.

Figure 5.5 gives an overview of minimal, maximal and average pool sizes for
the discussed setups. It shows that P-FCFS has significantly larger pool sizes,
both for maximum and average values, than the two other variants. For P-
LIST, this result was to be expected: As the algorithm iterates over the global

74 5 Selected Methods for Centralised Architectures

(a) AWRT. (b) ΔSAb.

Fig. 5.4 Results for the three-participant setup f4, as percental change wrt. to
the non-federated case.

(a) P-FCFS. (b) P-EASY. (c) P-LIST.

Fig. 5.5 Pool sizes for setups f1, f2, f3 and f4.

queue repeatedly unless local resources are fully occupied, the likelihood for
keeping the pool size small is obviously higher. For P-EASY, the results are
varying: While for the smaller setup the maximum pool sizes are considerably
smaller than for the other algorithms, the mixed setup shows the highest
maximum pool size. On the average, however, both backfilling algorithms
clearly outperform P-FCFS; it is obvious that backfilling opportunities highly
influence the size of the pool.

We generally observe that the smaller the setups in terms of participants’
sizes are, the smaller the pool sizes get for the backfilling algorithms. Again,
this stems from the likelihood of backfilling opportunities of the workloads:
Smaller systems feature more jobs with low resource requirements (as not so
much space is available anyway), thus providing more potential backfilling
candidates, while larger systems tend to have bigger jobs in the workload
which are hard or impossible to backfill. This is also reflected by the results

5.1 On the Prospects of Passive Workload Exchange 75

for both the two- and three-participant setups and allows us to conclude that
in comparison with the total number of jobs processed the pool is not over-
crowded: As the average values were comparably small, jobs did not reside in
the pool for a long time and for practical use scenarios, job starvation does
not seem to occur.

5.1.4 Related Work

Regarding the indirect communication model in the centralised case, a first
study by Blumofe and Park (1994) shows potential advantages that result
from work stealing in a network of workstations. However, they assume a two-
layer approach with “micro”- and “macro”-scheduling and focus on FIFO and
LIFO strategies on the macro level. Also, their evaluation does not consider
real workloads, but uses four applications (two of them real ones) and assess
speedup and slowdown. Ernemann et al (2002b) identify improvements for the
average weighted response time objective assuming hierarchical centralised
scheduling structures in multi-site computing.

Among the large variety of studies on load balancing Lu et al (2006) de-
veloped algorithms for distributed load balancing in a Grid environment as-
suming an additional communication delay. Their approach requires that the
whole local installation is controlled by a central scheduler. Also, they built
the evaluation solely upon statistical workload models.

5.2 On the Influence of Active Decision Making 77

5.2 On the Influence of Active Decision Making

Although the passive interaction model discussed in Section 5.1 provides a
simple means to setup an ad-hoc federation and, for that use case, performs
well, it is not suitable for larger setups: With more resource centres being
added to the federation, the global job pool will undoubtedly emerge as the
bottleneck of the whole system, due to the increasing number of requests, the
growing pool size, and the need for every participant to traverse the whole
queue on every request. These scalability issues are a necessary byproduct of
the model itself, and cannot be easily remedied.

For larger-scale federations it is therefore reasonable to look at the active
interaction model instead. WLCG is a good example here: With almost 150
participants and about 1,000,000 jobs per day, it is certainly not suitable
for the central exchange platform model discussed above. Instead, it uses
a centralised scheduler called Workload Management System (Marco et al,
2009), which distributes the incoming workload among the available resources
along a set of policies. In this operational model, the coordinator makes all
scheduling decisions and all workers have to execute them.

However, under policies other than those imposed by CERN for the Large
Hadron Collider (LHC) data processing, this amount of influence is not neces-
sarily desirable from the providers’ point of view: In a system with a central
component for decision making, each participant on the second hierarchy level
must cease a certain amount of autonomy to let the first hierarchy level make
reasonable schedules for the whole federation. In addition, the decision making
on the first level may require the second-level systems to disclose information
about their current state; this information is usually not publicly available,
which leads to a conflicting situation: On the one hand, being part of a fed-
erated capacity planning environment may be beneficial in terms of better
service to the own user communities and system utilisation; on the other
hand, fully ceasing control and providing system data may not be compatible
with the participants’ policies.

To better understand the influence of this tension on federated SRM for
the centralised case, we explore two scenarios: A full-control case, where the
global SRM system conducts all planning, and attached resource centres have
to submit to its decisions; and a no-control case where the local systems retain
full autonomy.

Surprisingly, we find that less autonomy on the local (and thus more con-
trol on the federation) level does not necessarily lead to better results regard-
ing response time of the participating centres. On the contrary, the results
indicate that—within the limits of the configuration evaluated here—the no-
control case yields good results even though the centralised scheduler only
plays an consultatory role. Clearly, the participation in the federation is ben-
eficial even for the largest centres, improving AWRT by approximately 7 %
at the very least. With the shifts in utilisation, this shows that loose federa-

78 5 Selected Methods for Centralised Architectures

tions of resource providers have ample room for improvement with respect to
utilisation of their systems without impairing user satisfaction.

5.2.1 An Autonomy-centric Viewpoint on the Federation

In the sense of the architectural considerations made in Section 4.3, we assume
a centralised active interaction model. For the different levels of autonomy, we
use the classification proposed by Gehring and Preiss (1999), who formulate
their model along the level of information exchange and propose two system
classes.

Scenario 1: Scheduling with Full Control

With full control, the centralised scheduler has access to the complete work-
load of each participant, and the participants’ LRMs are not allowed to decline
jobs from the centralised scheduler. In the real world, enterprises using feder-
ated LRM installations within a single administrative domain often run such
setups.

Due to the added knowledge gained from the cooperative behaviour of the
participants, the centralised scheduler can incorporate additional data into
its dispatching decisions. In order to leverage this, it uses a BestFit strategy,
see Jackson et al (2001), which analyses the current queue and schedule of
each participant and schedules the job under decision to the system where it
would leave the least1 amount of resources unoccupied.

In the full-control case, no queue is used by the centralised scheduler:
Since every job is dispatched directly after its arrival, and keeping a backlog
of waiting jobs is not necessary.

Scenario 2: Scheduling with no Control

Here, the centralised scheduler does not have any knowledge about locally
submitted jobs. In addition, it does not know about the current utilisation of
the participants and cannot query this information. The participants’ LRMs
are free to delegate workload to the centralised scheduler and accept or decline
offers from the centralised scheduler. Loose, project-based federations in the
research space often follow this model.

Since nothing is known about the resource centre and the workload2, the
algorithmic capabilities of the centralised scheduler are rather limited. A sim-
ple approach to the problem would be to use a Largest Resource First (LRF)
strategy: Because larger participants are more likely to have non-occupied

1 Naturally, this decision might not be optimal.
2 Except for the maximum number of processors for each participant, which is

usually public.

5.2 On the Influence of Active Decision Making 79

resources than smaller ones, backfilling on each participant using workload
coming from the centralised scheduler is more likely to happen.

Here, we use the average wait time as criterion for the participant selection.
Due to the restricted information policy in this scenario, we introduce a variant
that limits itself to the workload channeled through the centralised scheduler,
see Equation 5.1.

AWWTd
k,l =

∑
j∈τk∩πl

SAj · (Cj(S) − pj − rj)∑
j∈τk∩πl

SAj
(5.1)

As for AWRT, the wait time is weighted with the resource consumption of
each job. By keeping the list of participants sorted along the Average Weighted
Wait Time (AWWT) of delegated jobs, in ascending order, a Smallest Expected
Response First (SERF) strategy is realised.

For both approaches, the centralised scheduler needs to keep an additional
local queue to buffer jobs that have been delegated by one of the participants,
but cannot be scheduled directly. In contrast to the previous section, this
queue cannot be accessed by the participants, because the centralised sched-
uler also follows a strict information policy.

5.2.2 Experimental Setup

For the evaluation of the centralised setups, the metrics U and AWRT as de-
fined in Section 3.3 are used as objectives. The setups and their corresponding
combinations of workload traces are listed in Table 5.2. Note that, because of
the unusual configuration and behaviour of LANL96, we replaced this work-
load by SDSC05.

Table 5.2 Setups f5 to f7 used for the analysis of the autonomy approach, using
the traces described in Table 3.2. A checkmark in a federation’s row indicates that
the trace from the workload column is used for the setup.

KTH96 CTC96 SDSC00 SDSC03 SDSC05
Setup 11 mos. 11 mos. 11 mos. 11 mos. 11 mos.

f5 � � �
f6 � � � �
f7 � � � � �

As the heuristic in the LRM systems of each participant, we use EASY for
all setups. This is because the analysis from the reference results in Section 3.4
indicates that it usually outperforms FCFS, and LIST as a local heuristic is
not very commonly used.

80 5 Selected Methods for Centralised Architectures

5.2.3 Evaluation

Following, the afore described setups are evaluated on their performance re-
garding AWRT and U as described in Section 3.3 with respect to the non-
federated case, see Section 3.4. To be able to directly compare the impact
of full-control and no-control scheduling scenarios, three setups are being as-
sessed for both cases regarding the effect of federation in centralised architec-
tures.

(a) AWRT. (b) U.

Fig. 5.6 Results for the three-participant setup f5 in scenarios 1 and 2, as per-
cental change wrt. to the non-federated case.

In the smallest setup f5, improvements in AWRT can be realised for all
three participants in both scenarios, even if it clearly shows that the smallest
centre, SDSC00 benefits most of the federation, see Figure 5.6a. This effect
can also be seen for the systems’ utilisation, see Figure 5.6b: While the change
for the larger systems CTC96 and SDSC03 is almost negligible, the smaller
centre shows a clear deviation for both scenarios, albeit in different directions.

For setup f6, similar observations can be made. Again, the AWRT increases
for all participants in both scenarios, see Figure 5.7a, even though the benefit
for the largest centre, SDSC05, is not significant in the full-control scenario.
This does not, however, hold for U, see Figure 5.7b, where SDSC03, a large
centre with more than 1,000 processors, has less utilisation. For the smaller
participants, again considerable deviations can be observed.

The largest setup in this analysis, f7, shows the same behaviour, see Fig-
ure 5.8. AWRT improvements can be taken by all participants where again the
largest centre has the least benefit, and utilisation also behaves similarly to
the previous cases.

Surprisingly, it seems that—given this specific experimental setup—more
knowledge on the federation level and less autonomy on the provider level
does not necessarily yield better scheduling results. In fact, it shows that for

5.2 On the Influence of Active Decision Making 81

(a) AWRT. (b) U.

Fig. 5.7 Results for the four-participant setup f6 in scenarios 1 and 2, as percental
change wrt. to the non-federated case.

(a) AWRT. (b) U.

Fig. 5.8 Results for the five-participant setup f7 in scenarios 1 and 2, as percental
change wrt. to the non-federated case.

all three setups, the no-control scenario leads to better results for AWRT in
all cases.

The systems’ utilisation, U, cannot be interpreted as direct gain or loss
for the centres, but rather as an indicator for the shift of workload between
them. Here it shows that the full-control scenario leads to a better utilisation
of the smaller centres while moving away workload from the mid-size systems
(such as CTC96 and SDSC03, depending on the setup). In the no-control
case, the situation is opposite: Utilisation generally moves towards the largest
participant in the setup, see Figure 5.7b and Figure 5.8b, or at least moves
away from the smallest centres, see Figure 5.6b.

5.2.4 Related Work

Regarding the algorithmic setup of the centralised system, Ernemann et al
(2002a) show early results on similar strategies (namely BestFit), but limit
themselves to the CTC96 workload and a synthetic trace. In addition, their
focus lies on cross-domain execution, which is not discussed here. A rather

82 5 Selected Methods for Centralised Architectures

general overview on the topic is given by Hamscher et al (2000): Here, a hier-
archical setup is studied (among others), using a utilisation-based distribution
strategy for the centralised scheduler.

On the theoretical side, Tchernykh et al (2006) introduce a hierarchical
setup with a centralised scheduler and local resource centres. In this context,
allocation strategies for bound analysis are used both on the federation and
the local level, showing that certain approximation guarantees can be reached.

5.3 On the Application of Hierarchical Capacity Planning 83

5.3 On the Application of Hierarchical Capacity
Planning†

As we have seen, the centralised active approach works well even if the au-
tonomy of the participants in the federation is high: The participants were
free to decide on whether to accept or refuse the decisions made by a higher
authority in a tiered environment, and the distribution of workload still pro-
duced good results. With this observation, we can extend our model to the
hierarchical case: The decision making process is still centrally managed (that
is, a coordinator starts and directs the process), but each worker in a given
tier can further delegate workload autonomously.

This approach of continually asking the “next neighbour” to perform a
task is very common in modern P2P systems (Balakrishnan et al, 2003). There,
especially in the field of capacity management, a request is inserted by a user
at one peer and propagates through the network until eventually another
peer decides to handle it, see for example Xu et al (2006). With the trend
in research towards P2P-based capacity management architectures, see Foster
and Iamnitchi (2003), it is therefore reasonable to explore the transferability
of solutions from the P2P domain to SRM in federated DCI environments.
This is all the more interesting, because modern P2P systems are able to
deliver functionality on a very large scale: Even small peer networks often cater
hundreds of thousands of participants at a time, spanning large geographical
areas and logical network topologies.

We investigate in an experimental study whether the adaptation of P2P-
based capacity management is feasible by adapting a stream allocation strat-
egy for video sharing in peer-based networks to the dispatching of DCI. In this
relatively unexplored area of distributed capacity planning, we evaluate the
performance of this strategy using three exemplary scenarios over a total time
period of eleven months and considering different participant configurations
regarding the number of available resources and submitted jobs.

The results show that our algorithm outperforms the well-known EASY
heuristic regarding AWRT and U results, and proves yet again that, also for
the hierarchical case, the participation in a federated DCI environment can
be considered beneficial for all participants. Admittedly, the construction of
virtual schedules is compute-resource intensive, requiring significantly more
computation time3 than the strategies discussed in the previous chapters;
however, performance is still acceptable insofar that real-time usage is not
limited.

† Parts of this section have been presented at the 39th International Conference on
Parallel Processing in San Diego, CA on September 13, 2010. The corresponding
publication, see Grimme et al (2010), is available at http://ieeexplore.ieee.
org.

3 Simulation length actually increased by factor 10, from a decision time of
0.3 ms/job to 3.1 ms/job.

84 5 Selected Methods for Centralised Architectures

5.3.1 Shaking as a means of Capacity Planning

As the starting point for the adaptation experiment proposed above, we use a
strategy developed by Cai et al (2007), which addresses the problem of service
scheduling in peer-to-peer video provisioning. This method—called Shaking in
the original work—dynamically balances the workload throughout a network
consisting of independent peers to optimise video availability for requesting
clients by reorganising local queues recursively.

Original Algorithm

More specifically, a client submits a request to a streaming server which is
selected regarding individual4 objectives. The request is added to the end of
the server’s queue and has to wait for the completion of preceding requests
before being processed. If no preceding requests exist, there is nothing to
do for the shaking algorithm. However, in case a request cannot be handled
immediately, the client tries to migrate preceding requests to distant servers
in order to reduce the waiting time of its own request. To this end, a closure
set consisting of alternative provider candidates for the queued requests is
constructed: Starting with a set of servers for the initial request, the client
analyses the queue of each element in the set and initiates a search in order
to determine a suitable candidate server set for the pending requests. This is
repeated until either a search threshold is met5 or only idle servers are found.

The union of these sets yields the constant closure set, and on this closure
set, the algorithm attempts to migrate pending requests to other servers with
the goal to minimise the waiting time for the newly enqueued request. Gen-
erally spoken, all predecessors of a given request are moved—or shaken—to
servers that are able to provide the same type of service without additional
waiting time. In order to achieve this, those requests from the receiving servers
that precede the now migrated requests have to be shaken again. This leads to
a (recursive) chain of migrations with a specific order of execution that deter-
mines the benefit of the procedure. In order to find the best migration plan,
multiple shaking orders—restricted by the fixed size of the closure set—are
evaluated by the client and the best plan is selected for execution.

In Figure 5.9 we give an example of the situation before and after the
application of the algorithm’s working principle. Request R5 for video V5 is
added to the queue of server 1. After constructing the closure set containing
server 1 to 4, Shaking tries to remove the preceding requests R1 and R2 from
the queue of server 1. R1 can be easily moved to server 4 which also serves V1,
see (1), while R2 cannot be moved to server 2, see (3), until R4 in server 2 has
been moved to server 3, see (2). The so determined shaking plan results in a
benefit for R5 at server 1 as well as in a faster execution of R4 at server 3.

4 Such as bandwidth, latency, or content-specific properties.
5 It is noteworthy that, if no threshold is given, the closure set may contain all

available servers in the network.

5.3 On the Application of Hierarchical Capacity Planning 85

(a) Before the Shaking process. (b) After the Shaking process.

Fig. 5.9 Example of the application of the original algorithm applied for the
optimisation of video provision in a peer-to-peer network.

5.3.2 Adapted Algorithm

For our novel algorithm, Shaking-G, we retain two key features from the
original algorithm: its dynamic scheduling behaviour and the minimisation
of wait time. The process is divided in two main phases. The first phase,
called starting phase prepares the allocation decision. The second phase, called
shaking phase, then reallocates the workload based on the previously outlined
plan.

In contrast to the P2P video provisioning problem tackled by the original
algorithm, Shaking-G considers computational jobs as entities to be shaken
between distant sites. A participant can “serve” a job if it has enough free
resources to start it immediately. Each participant provides a broker compo-
nent which accepts user submissions and encapsulates the dispatching strat-
egy for workload distribution; as such, the here described shaking procedure
is transparent for the client, see Figure 5.10. This setup corresponds to the
hierarchical centralised active interaction model described in Section 4.3.1.

The starting phase is initiated at the moment a user submits a job j
to its local resource centre k. where it is added to the resource manager’s
queue. In case k provides a sufficient number of free resources to start j, it
is transferred to the underlying LRM and executed immediately. Otherwise,
the broker initiates a search for remote participants that meet the processing
requirements of j in terms of provided processors. The returned candidates
are queried sequentially whether they are able to start the job immediately.
A positive answer leads to a migration of j to the respective resource centre.
In this case the application of the shaking mechanism is not necessary.

If none of the candidates is able to provide the necessary resources, the job
remains in the local broker’s queue and the shaking phase is started to migrate
preceding jobs of j from the local queue until the waiting time of j is reduced.
This is equivalent to reducing the Estimated Completion Time (ECT) of a
job, which is based on the workloads’ runtime estimates p̄j , see Section 3.2.3,

86 5 Selected Methods for Centralised Architectures

Fig. 5.10 Schematic depiction of the creation of a shaking plan in the recursive
Shaking-G algorithm. Users induce their workload to their local resource centre
through their accustomed submission interface, and the SRM system enqueues it
with the broker component. The architecture is an extended version of the centralised
active case in Figure 4.3.

available at release time. Based on a resource centre’s current occupation of
resources the scheduler can build a virtual schedule for the currently waiting
jobs considering their runtime estimations. The completion time Cj(S̄k) of
job j in this predicted schedule S̄k determines the ECT value of the job at
participant k.

For a given job l in the queue, the algorithm creates a set of candidates
which are able to fulfil the job’s resource demand. For the determined candi-
dates a set of shaking plans for job l is constructed: Each candidate is queried
whether a faster execution of job l is possible. A positive answer completes the
shaking plan and annotates it with the new ECT for the job. A negative an-
swer results in a recursive application of the shaking phase for the considered
candidate. The depth of recursion is limited by a threshold in order to restrict
the runtime of the algorithm. In order to avoid the repeated consideration
of participants during the construction of shaking plans, a shaken candidate
is added to a shaking set. This set is excluded from further shaking phases.
Finally, the shaking plans that offer the most beneficial reduction of waiting
time for job j are executed.

In Figure 5.10 the creation of a shaking plan is shown exemplarily. After
a new job has been inserted into the queue of participant 1, the broker then
checks whether immediate execution is possible (1). If other jobs are preceding
the submitted one in the broker’s queue (2), Shaking-G attempts to shake the
preceding jobs in order to improve the starting time for the new job. To this
end, the broker of participant 1 attempts to delegate them to other partici-
pants in the federation (3). Recursively, the jobs from participant 1’s queue are

5.3 On the Application of Hierarchical Capacity Planning 87

offered to neighbouring participants 2 and 3 which then, hypothetically, try to
improve the starting time of those jobs by shaking their own queues. During
the whole procedure the queue modifications and job exchange activities are
recorded to specific shaking plans for each traversal path in the recursion.
The constructed shaking plans are compared regarding the ECT of the initial
job and the most beneficial plan is selected to be executed. Note that only
beneficial job exchanges lead to a beneficial recursion path and shaking plans
on each shaking level. As soon as enough resources are available, the broker
hands the job over to the LRM system (4), where the local strategy eventually
schedules the job for execution (5).

In detail, the modified algorithm proceeds as follows: As soon as job j is
enqueued (that is, not executed directly) at participant k the shaking phase
can begin. This phase starts by examining all jobs that are queued before j.
These jobs need to be rescheduled to other participants, eventually allowing a
sooner execution of j. To this end, a closure set is created with jobs preceding
j and participant k is added to the “shaking pool”. The algorithm then selects
a job l from the closure set in an FCFS fashion. Next, a new search for suitable
servers6 begins, and the results are queried for the ECT that job l would have
if it was to be processed there. The returned ECT values from each participant
are compared to the locally calculated ECT value. The calculation of ECT is
done as follows:

1. Obtain the current scheduling state of the participant (local queue and
schedule, that is);

2. Create a shadow copy of the actual schedule and allocate each job in the
queue using FCFS, and repeat this process until the job that caused the
shaking is under review;

3. Look at the makespan in the expected schedule and return it as ECT.

If at least one suitable server has a better ECT than the local system, an
allocation to the system with smallest ECT is created. If no suitable server
can provide a better ECT, a new shaking set is created with only those systems
that are not already in the shaking pool.

With respect to the original shaking strategy, we introduced two impor-
tant changes into the afore described algorithm’s variant: In addition to the
migration criterion of available and currently free resources, the ECT metric
is used in order to evaluate whether the exchange of jobs is profitable. Addi-
tionally, we integrated the steering of the shaking process—formerly initiated
and centrally steered by the submitting client—into the participants’ brokers.
To this end, we replaced the direct, client-side creation of shaking plans with
a recursive, server-side plan construction. Along with that, the global view
on the queues of distant sites was restricted and replaced by an interface for
controlled interaction, following the limited information doctrine of this work.

6 That is, resource centres that meet the processing requirements of l.

88 5 Selected Methods for Centralised Architectures

5.3.3 Experimental Setup

For the evaluation of the described scenario, a number of workloads and met-
rics have been used. On the metrics side, AWRT and U have been used, as de-
fined in Section 3.3. For input data, the traces7 described in Section 3.2.3 were
used, namely KTH96, CTC96, SDSC00, and SDSC03. For this algorithm, we
omitted SDSC05 because of the long simulation times. The setups and their
corresponding combinations of workload traces are listed in Table 5.3.

Table 5.3 Setups f8 to f10 used for the analysis of the shaking approach, using
the traces described in Table 3.2. A checkmark in a federation’s row indicates that
the trace from the workload column is used for the setup.

KTH96 CTC96 SDSC00 SDSC03
Setup 11 mos. 11 mos. 11 mos. 11 mos.

f8 � �
f9 � � �
f10 � � � �

5.3.4 Evaluation

In the following, the changes of the two metrics compared to the reference
results as described in Section 3.4 are discussed. It shows that it is possi-
ble to increase the benefit regarding AWRT for all resource centres in the
examined cases, which results in significantly shorter response times for the
corresponding users. Along with this, slight changes in the total utilisation for
all participants can be observed.

Figure 5.11 reveals that the smaller resource centre benefits from the size
of the larger one: The achieved AWRT is approximately 25 % shorter compared
to EASY. Although AWRT also improves at the larger site, U drops by 10 %:
Shaking-G obviously leverages previously unused capacities to reduce the high
load on SDSC00. However, at the same time the SRM strategy creates a job
allocation that does not penalise CTC96 users.

It is noteworthy that, for the analysis at hand, no threshold for the maxi-
mum number of shakes was introduced. Naturally, Shaking-G runs at risk to
perform an infinite number of shakes under this parametrisation. In practice,
however, jobs are only shaken once on average, and it is rarely the case that
jobs are shaken more often. For the here examined real workloads and sce-
narios the highest amount of migrations from one participant to another was
35. As previously stated, this indicates that starvation does occur, but even if
it would, this can be countered by lowering the maximum number of allowed
shakes.

7 Note that only traces exposing runtime estimates were used, as these are required
for the calculation of ECT, and thus for the proper functioning of the algorithm.

5.3 On the Application of Hierarchical Capacity Planning 89

(a) AWRT. (b) U.

Fig. 5.11 Results for the two-participant setup f8, as percental change wrt. to
the non-federated case.

(a) AWRT. (b) U.

Fig. 5.12 Results for the three-participant setup f9, as percental change wrt. to
the non-federated case.

Qualitatively similar results are obtained for f9, see Figure 5.12, where
two smaller participants significantly benefit from the interaction with one
larger resource centre. Although the utilisation increases at CTC96, the AWRT
values can be improved. Load balancing is consequently not the only factor
that characterises the benefit of Shaking-G: Due to the different participants,
remote resources can be involved in the scheduling process and used for a
more efficient job allocation.

Finally, we review the results for f10 where a large resource centre joins the
federation, see Figure 5.13. Especially for SDSC00, even higher improvements
are obtained in comparison to f9, and a clear shift of the load is observable:
CTC96 increases its utilisation while the load for KTH96 and SDSC00 is
reduced. Still, a significantly shorter AWRT is achieved for all participants,
and even the largest participant is able to benefit from the cooperation.

90 5 Selected Methods for Centralised Architectures

(a) AWRT. (b) U.

Fig. 5.13 Results for the four-participant setup f10, as percental change wrt. to
the non-federated case.

5.3.5 Related Work

Lo et al (2005) introduce a system called “Cluster Computing on the Fly”,
which leverages the benefits of day/night cycles (see Section 3.4.2) and al-
lows for Point-of-Presence scheduling; however, no specialised routing of work-
load is conducted. Dou et al (2003) discuss a similar approach to global Grid
scheduling, but base their scheduling decisions on each participating node’s
load factor, but not on response time or utilisation. Subramani et al (2002)
propose a distributed SRM system that interacts with all participants on both
the local and distributed level. Although they consider the inaccuracy of run-
time estimations and also communication delays, their evaluation is based on
partially rescaled workloads and limited to a subset of 5,000 jobs only. While
England and Weissman (2005) assume distributed structures and analyse costs
and benefits of load sharing, their work is based on statistical workload mod-
els, and they review the average slowdown objective only. Ranjan et al (2008)
review existing scheduling schemes on real workload traces and propose a
no-central-component concept for sharing cluster resources by allowing direct
negotiation between arbitrary partners. They premise a shared federation di-
rectory that manages the local resources and collects quote and cost informa-
tion used for economic scheduling. This assumption, however, is problematic
in most real-world Grid scenarios, since the systems’ current state, e.g. current
utilisation, are—as discussed before—usually treated confidential.

6

Selected Methods for Distributed Architectures

A committee can make a decision that is dumber
than any of its members.

—David Coblitz

Building upon a centralised architecture paradigm regarding SRM ad-
mittedly is the predominant choice in large production DCIs, with the
EGEE environment (Gagliardi et al, 2005), as one of the most widely

deployed. Other—mostly emerging—efforts, such as the D-Grid Initiative1,
however, have chosen to build smaller, more community-tailored DCIs, see Fre-
itag and Wieder (2011), that adhere to the distributed architecture paradigm.
But although this approach enables flexible collaboration with participants at-
taching to and detaching from the federation easily when necessary, the decou-
pling naturally comes at a price: The allocation of workload on the DCI level
becomes more complicated because the SRM heuristics are lacking a global
view, see Section 4.3. All the more, each participant will want to protect his
investment, striving to deliver the best possible performance to the own user
community.

To see whether the distributed interaction model behaves equally well
under similar conditions as the centralised active one we first explore the
potential of workload migration and exchange without global control, but
assuming similar restrictions regarding autonomy and information disclosure
as discussed in Section 5.2. Herefor, we introduce a new heuristic and evaluate
its performance in Section 6.1.

Next, we review the performance of more dynamic, situation-aware SRM
system: Besides the obvious requirement of adaptation whenever the local
usage pattern changes, a proper federated SRM system should also be able to
cope with tension between local and global interests. We discuss this aspect
in Section 6.2, and introduce a self-adapting system for SRM using a fuzzy
controller architecture and evolutionary computation.

Last, we approach the problem in the light of the latest developments in the
Cloud computing domain and investigate whether a change from a workload-
centric allocation paradigm towards a resource-centric leasing paradigm is
reasonable, and develop a new SRM approach in Section 6.3.

1 http://www.d-grid.de.

6.1 On the Benefits of Workload Migration 93

6.1 On the Benefits of Workload Migration†

Since our approach of passive and active workload exchange in the centralised
case turned out to be successful, this will be our starting point for the design
of algorithms for distributed SRM. However, we now target a completely dif-
ferent architectural paradigm: As discussed in Section 4.3.2, we allow resource
centres to interact directly, and we have no single instance in control of the
whole system.

When taking a closer look at the interaction model depicted in Figure 4.5,
it turns out that there are similarities. The Federated SRM component’s be-
havior in the centralised active approach, namely pushing workload from the
coordinator to a worker can be reinterpreted for the distributed case as one
federated SRM system offering workload to another. Likewise, the pulling of
jobs from the global job pool to a participant can be transformed to one
federated SRM requesting workload from another.

Although the interaction model is similar, the nature of the federation—
because of the inherent autonomy of its participants—stays different: The
resource centres do not consider a potential performance gain for all users in
the federation, but rather for the local community only; the same holds for the
utilisation of the systems. Against this background, it is necessary to have a
closer look on the question whether DCIs comprising participants with mostly
egoistic motives can still benefit from a collaboration.

In order to find first directions for an answer, we make an analysis of the
behaviour under this assumption in the following. By leveraging the results
from the central case in Chapter 5, especially regarding the workload exchange
process, we introduce two new strategies: one request-centric (RQF) that pulls
workload from other participants, and one offer-centric (ACF), which pushes
workload to other participants. Regarding the disclosure of information, we
let the former gain insight into the participating resource centres’ current load
in order to “steal” workload that matches the local utilisation, and leave the
latter with no information about the other participant other than its size,
letting it offer non-fitting workload to the others.

The evaluation of both algorithms’ AWRT and ΔSA characteristics shows
that each approach yields a significantly better user experience than non-
federated SRM while freeing up resources for more workload, thus providing
overall more efficient workload distribution. Surprisingly, the RQF variant
has no advantage over ACF, although having access to more information and
doing more delegations; this validates the our results from the centralised
setups described in Section 5.2 and shows the strong potential in offer-centric
systems.

† Parts of this section have been presented at the 8th IEEE International
Symposium on Cluster Computing and the Grid in Lyon, France on May 20,
2008. The corresponding publication, see Grimme et al (2008a), is available at
http://ieeexplore.ieee.org.

94 6 Selected Methods for Distributed Architectures

6.1.1 One-to-one Collaboration between SRM Systems

With respect to both options described above, we apply two basic strategies
on the federated SRM level: one pull-based, where one broker requests work-
load from another, and one push-based, where one broker offers workload to
another.

The Request Fitting (RQF) strategy essentially monitors the local queue
and, whenever the first job cannot be executed immediately, potential back-
filling candidates2 are requested from the other participants. Every candidate
job that fulfils either of the two EASY backfilling criteria, see Section 3.4.1,
is then delegated to the requesting system and added to the end of its local
queue. The Accept Fitting (ACF) strategy in contrast monitors all incoming
workload and, for any job that cannot be executed immediately, offers this
job to the other participants. The receiver of this offer accepts it if the offered
job could be executed immediately, accepts the delegation in the positive case
and finally adds the job to the end of its local queue.

The main difference, although using very similar reasoning regarding
choice of delegations, lies in the initiating participant: For RQF, the dele-
gation source is passive; for ACF, the delegation target is passive.

6.1.2 Experimental Setup

For the evaluation of the two migration heuristics, we use AWRT and the
change in SA as metrics, see Section 3.3. In addition, we measure the amount
of migration between the different participants. To this end, we introduce
migration matrices Mn that show the ratio of job interchange, in percent,
with respect to the original submission system, see Equation 6.1. Rows denote
the participant where jobs have been originally submitted to while columns
specify the participant the job was actual executed at.

Moreover, in order to measure the actual amount of workload that has
been migrated between resource centres, we introduce the matrix MSA similar3

to Mn that relates the overall SA per workload with the migrated portions.
Exemplarily, the Squashed Area for the set πkk is computed as SAπkk

=∑
j∈πkk

pj · mj .

Mn =

⎡
⎢⎢⎢⎢⎢⎣

|π11|
|τ1| · · · |π1k|

|τ1|
...

. . .
...

|πl1|
|τl| · · · |πlk|

|τl|

⎤
⎥⎥⎥⎥⎥⎦ , {l, k} ∈ [1 · · · |K|] and

|K|∑
l=1

πlk

τl
= 1 (6.1)

2 Naturally, these are pre-filtered with respect to their minimum resource require-
ments and the available resources at the requesting side.

3 Effectively, the π from Equation 6.1 is replaced with the corresponding SA value.

6.1 On the Benefits of Workload Migration 95

(a) RQF.

(b) ACF.

Fig. 6.1 Brokering process of the migration strategies applied in one-to-one col-
laborations. Both process renderings feature two starting points: One handles the
submission of workload by the local user community, while the other handles incom-
ing remote requests from other SRM systems.

96 6 Selected Methods for Distributed Architectures

Finally, we record the number of migrations until final execution in order
to assess the danger of starvation.

Table 6.1 Setups f11 to f13 used for the analysis of the collaboration approach,
using the traces described in Table 3.2. A checkmark in a federation’s row indicates
that the trace from the workload column is used for the setup.

KTH96 CTC96 SDSC00 SDSC03 SDSC05
Setup 11 mos. 11 mos. 11 mos. 11 mos. 11 mos.

f11 � � �
f12 � � �
f13 � � � � �

As input data, we use the workload traces from KTH96, CTC96, SDSC00,
SDSC03, and SDSC05. The combinations of these for the different federation
setups are listed in Table 6.1. As local scheduling strategy, we apply EASY,
see Section 3.4.1.

6.1.3 Evaluation

We now evaluate the performance of the different federation setups in the
following, compared to the reference data as described in Section 3.4.

Performance Characteristics

Setup f11, comprising two small and one medium resource centres, shows
that the users of all three sites benefit from a significantly decreased AWRT
value, see Figure 6.2a. Along with this, the utilisation of the smaller sites
is reduced to the account of the larger site, see Figure 6.2b. For the other
three-participant setup, f12, the results are similar: AWRT improvements can
be reached for all sites, while workload tends to move towards the larger ones,
see Figure 6.3. Generally, the migration leads to a better usage of resources
which is reflected in the almost unchanged Uo value for all setups, see Ta-
ble 6.2. This behaviour can be accounted to the fact that jobs originating
from smaller resource centres essentially act as adequate fill-ups for vacancies
in the schedule of larger resource centres. Considering the job migration char-
acteristics, one may claim that requesting jobs from cooperating sites enables
local schedulers to backfill more efficiently.

Qualitatively, the results for f13 show similar dynamics as perceived for
the two three-participant setups, see Figure 6.4. However, the improvement of
AWRT seems to increase with the number of interacting sites. An explanation
for this behaviour is the greater load balancing potential that arises from a
larger number of partners. Overall, all evaluated setups expose a beneficial
behaviour with both migration strategies.

6.1 On the Benefits of Workload Migration 97

(a) AWRT. (b) ΔSA.

Fig. 6.2 Results for the three-participant setup f11, for RQF and ACF, respec-
tively, as percental change wrt. to the non-federated case.

(a) AWRT. (b) ΔSA.

Fig. 6.3 Results for the three-participant setup f12, for RQF and ACF, respec-
tively, as percental change wrt. to the non-federated case.

(a) AWRT. (b) ΔSA.

Fig. 6.4 Results for the five-participant setup f13, for RQF and ACF, respectively,
as percental change wrt. to the non-federated case.

98 6 Selected Methods for Distributed Architectures

Table 6.2 Utilisation per resource centre and for the whole
federation for the setups f11 and f12, in percent. A delta
(δ)symbolindicatesarelativepercentalchangewrt. tothenon − federatedcase.

Setup Participant Uk (%) ΔUo (%)
KTH9611 62.18

f11 CTC9611 69.73 0.0372
SDSC0011 66.55
KTH9611 59.30

f12 SDSC0311 67.50 0.092
SDSC0511 61.67

Migration Characteristics

For a better understanding of the delegation behaviour between the differ-
ent participants, we take a closer look to job migrations. To this end, the
following figures show the number of migrated jobs according to their node
requirements. The values are normalised with respect to the number of occur-
rences in the original workload trace. While the improvements of AWRT and
ΔSA are very similar for both RQF and ACF, the migration behaviour shows
significant differences.

For KTH96, both algorithms show a strong tendency of migrating work-
load to CTC96, see Figure 6.5. This is not surprising, since in the f11 setup,
CTC96 is by far the largest participant. However, RQF migrates a much larger
amount of workload especially towards CTC96; this effect is not directly vis-
ible from the ΔSA results in Figure 6.2b.

CTC96, in turn, migrates a very small percentage of its jobs to the other
partners. Obviously, this is due to its size, providing 430 processors; jobs
with pj > 128 cannot be migrated at all4. Besides this, CTC96 shows a
very uniform migration behaviour: Jobs of all size classes are migrated to
other participants in a more or less equal fashion, see Figure 6.6. This is in
direct contrast to KTH96, where a bias towards migrating jobs with 40 to 80
requested processors can be seen.

In the case of SDSC00, we observe a similar effect as for KTH96. While mi-
grations to CTC96 are very common and show a similar pattern as in the case
of KTH96, delegation towards KTH96 is very limited. Also, RQF migrates
more aggressively than ACF, see Figure 6.7, which is similar to KTH96. Again,
this emphasises the aforementioned balancing effect that workload tends to
move from smaller to larger resource centres.

The other setup, f12, shows a slightly different pattern. This is mainly
because the vast difference in size of the resource centres, especially regarding
KTH96, which is less than one tenth in size of each of the two others. Other
than that, RQF shows a very balanced migration behaviour towards both
other participants. Only the largest category seems to distort this; however,

4 Due to the lack of sufficient resources at both KTH96 and SDSC00.

6.1 On the Benefits of Workload Migration 99

(a) RQF. (b) ACF.

Fig. 6.5 Migrations (clustered along the jobs’ pj values) from KTH96 to the other
partners for the three-participant setup f11, for RQF and ACF, in percent of the
total amount of jobs in the particular class.

(a) RQF. (b) ACF.

Fig. 6.6 Migrations (clustered along the jobs’ pj values) from CTC96 to the other
partners for the three-participant setup f11, for RQF and ACF, in percent of the
total amount of jobs in the particular class.

(a) RQF. (b) ACF.

Fig. 6.7 Migrations (clustered along the jobs’ pj values) from SDSC00 to the
other partners for the three-participant setup f11, for RQF and ACF, in percent of
the total amount of jobs in the particular class.

100 6 Selected Methods for Distributed Architectures

(a) RQF. (b) ACF.

Fig. 6.8 Migrations (clustered along the jobs’ pj values) from KTH96 to the other
partners for the three-participant setup f12, for RQF and ACF, in percent of the
total amount of jobs in the particular class.

(a) RQF. (b) ACF.

Fig. 6.9 Migrations (clustered along the jobs’ pj values) from SDSC03 to the
other partners for the three-participant setup f12, for RQF and ACF, in percent of
the total amount of jobs in the particular class.

(a) RQF. (b) ACF.

Fig. 6.10 Migrations (clustered along the jobs’ pj values) from SDSC05 to the
other partners for the three-participant setup f12, for RQF and ACF, in percent of
the total amount of jobs in the particular class.

6.1 On the Benefits of Workload Migration 101

it must be noted that the number of jobs requiring 100 processors (i.e. the
full resource centre’s size) is very small5.

For SDSC03, we observe that the amount of migrations for all pj classes
except the smallest is significantly lower with ACF, dropping to almost zero
for the bigger categories. One reason for this behaviour is the amount of
information available to RQF: The request-based algorithm has access to the
full remote queue at all times and thus can easily find a particular slot in
the local schedule at request time. ACF, in turn, offers such workload when
appropriate to the local system—regardless of whether the remote system is
capable to handle it at that particular moment in time. Migrations to KTH96
are obviously few due to the limited size of the resource centre.

Interestingly enough, SDSC05 shows largely the same (albeit dampened)
pattern as SDSC03. This confirms the observation from f11 that workload
tends to move towards the larger centre. Still, the larger participants show a
vital exchange of workload.

Summarising, it shows that RQF has a much more aggressive exchange be-
haviour than ACF. Also, it shows a stronger tendency towards delegating jobs
with large resource requirements while ACF favours small and medium-sized
workload. From that, we conclude that ACF tends to keep more workload
in the local domain the larger a resource centre’s size is. While the higher
exchange apparently indicates a better performance in terms of delegation,
the opposite is the case: considering that the performance characteristics for
AWRT and ΔSA are almost equal for both algorithms, ACF achieves compa-
rable results while being less invasive to the local resource centres and leaving
more autonomy to the LRM systems.

The migration matrices, see Equation 6.1, further reveal that the number
of not migrated jobs exceeds that of migrated jobs in any direction by far.
This can be perceived for the principal diagonal of the matrix Mn in both
setups, where at least 70 % of all jobs are executed locally, see Table 6.3.
Regarding the amount of migrated work, as denoted by MSA in Table 6.4, we
identify a correlation between migrated work and the difference in size of two
sites. With an increasing difference in size, the larger partner tends to absorb
more workload from the smaller partner; such a behaviour can be observed
for f11, where CTC96 takes around 35 % of the work from each of KTH96 and
SDSC00. At the same time, similarly-sized sites exchange roughly the same
amount of work; in f12, this happens between the larger sites.

While ACF ensures that migrations happen only once, RQF gives no guar-
antee for this: It is possible that a job is transferred from a remote site more
than once. Of course, this behaviour might lead to starvation because of con-
tinuous job circulation.

However, the quantification in Figure 6.11 shows that excessive job circu-
lation only occurs very rarely. Even if some jobs migrate more than 100 times,
the average values are approximately equal to one. This leads to the assump-

5 In fact, only a single job in KTH9611 requires the full machine’s extent.

102 6 Selected Methods for Distributed Architectures

Table 6.3 Migration matrices Mk denoting the amount of jobs from each resource
centre’s original workload migrated to the other partners for both two-participant
setups, for RQF and ACF, in percent.

(a) f11.

Mk to KTH96 to CTC96 to SDSC00
RQF ACF RQF ACF RQF ACF

from KTH96 72.75 % 78.24 % 21.37 % 13.08 % 5.88 % 8.68 %
from CTC96 6.73 % 4.01 % 87.36 % 87.56 % 5.91 % 8.43 %
from SDSC00 5.05 % 2.73 % 18.63 % 14.47 % 76.32 % 82.80 %

(b) f12.

Mk to KTH96 to SDSC03 to SDSC05
RQF ACF RQF ACF RQF ACF

from KTH96 77.12 % 82.02 % 11.27 % 13.76 % 11.61 % 4.22 %
from SDSC03 1.48 % 1.04 % 78.18 % 82.95 % 20.34 % 16.01 %
from SDSC05 1.87 % 1.86 % 12.03 % 9.69 % 86.10 % 88.45 %

Table 6.4 Migration matrices MSA denoting the amount of work from each
resource centre’s original workload migrated to the other partners for both two-
participant setups, for RQF and ACF, in percent.

(a) f11.

MSA to KTH96 to CTC96 to SDSC00
RQF ACF RQF ACF RQF ACF

from KTH96 52.16 % 55.48 % 38.18 % 43.07 % 9.66 % 12.41 %
from CTC96 6.83 % 5.74 % 84.92 % 89.03 % 8.25 % 5.23 %
from SDSC00 7.48 % 18.49 % 35.46 % 22.96 % 57.06 % 58.55 %

(b) f12.

MSA to KTH96 to SDSC03 to SDSC05
RQF ACF RQF ACF RQF ACF

from KTH96 53.95 % 61.12 % 23.03 % 12.55 % 23.02 % 26.33 %
from SDSC03 1.11 % 1.21 % 69.71 % 98.67 % 29.18 % 0.12 %
from SDSC05 1.37 % 0.71 % 20.99 % 0.64 % 77.64 % 98.65 %

tion that there exists a temporal locality within the waiting queue: Even if
a job that could be started immediately is added to the end of the queue,
it is often backfilled directly. As such, we can assume that—with respect to
the used input data sets—the migration of jobs does neither provoke artificial
delays nor starvation.

6.1 On the Benefits of Workload Migration 103

1

10

100

1000

KTH96

CTC96

SDSC00SDSC03

SDSC05

Max

Mean

StdDev

Fig. 6.11 Number of migrations until a job is finally scheduled and executed for
f13 with RQF, for each participant’s original workload.

6.1.4 Related Work

On the theoretical side, Hong and Prasanna (2003), assume a similar model
of heterogeneous participants of a compute infrastructure federation and ap-
proach the allocation problem with a linear programming formulation, focus-
ing on the maximisation of the steady state throughput. However, they assume
equal-sized jobs only. A more production-centric investigation has been made
by Hamscher et al (2000).

Chiba et al (2010) evaluate the performance of a work-stealing algorithm
in an Amazon EC2- and Simple Storage Service (S3)-based ecosystem. Their
approach yields good results regarding throughput, but mainly focuses on op-
timising the compute/data relationship between the different components. A
more HPC-related view is taken by Ravichandran et al (2011), who evaluate
the work-stealing approach on multi-core clusters. They find that good per-
formance can be achieved for large-scale applications, but stay on the local
level without federating with others.

6.2 On the Robustness of Capacity Planning 105

6.2 On the Robustness of Capacity Planning†

The search for robust scheduling approaches naturally leads to the question
whether heuristic approaches using purely static algorithms as discussed so
far can properly cope with non-standard situations regarding resources and
workload. This is especially important if considering federations with resource
centres rolling their own delegation strategies and, even more importantly, if
such expose (accidentally or on purpose) a malign behaviour towards the other
partners.

Naturally, static algorithms cannot be expected to handle such situations
in a proper way without implementing specific precautions against them, ne-
cessitating a-priori knowledge about the behaviour of the other partners. Here,
situation-aware systems come into play: Algorithms that constantly analyse
the current system state and adapt their decisions to the situation detected.
With such, it is possible to rule out partners that do not behave in a coopera-
tive way within the federation without knowing how this behaviour will look
like in advance. Simple rules like ACF and RQF, as discussed in Section 6.1,
however, are too inflexible to react to situations that only differ slightly, and
encoding a full rule set for all possible cases (and their combinations) would
be a herculean, probably infeasible task. Instead, malleable rules for decision
making are required.

In the following, we explore such malleable rule sets regarding their per-
formance in SRM for federated DCI environments. We achieve the interference
of simple IF-THEN rules using fuzzy systems, and conduct the construction
of proper rule sets using evolutionary computation. With the combination of
these tools, we create a fuzzy-based rule system for decision making, build a
novel SRM strategy on top of it, and evaluate its performance. Our pairwise
learning approach lets a system evolve that realises a well-performing rule set
for capacity planning in the given scenario.

With setups ranging between two and five participants, we show signifi-
cant improvements in AWRT in all cases, and—at the same time—see strong
robustness to unknown situations with untrained workload and alien partners.
The metric-driven rule base approach proves to be stable under fluctuating
conditions in the workload and, although being limited to a rather small
set of simple features, showed situational awareness under circumstances of
changing federation structure. Overall, we find that the rule-based approach
provides good results in either case, setting the foundation for production en-
vironments with changing situations in terms of workload and environment.
While the strategy provides sufficient robustness, it still is non-invasive with
respect to the local management layer.

† Parts of this section are based on an article in the IEEE Transactions of Parallel
and Distributed Systems in July 2010. The corresponding publication, see Fölling
et al (2010b), is available at http://ieeexplore.ieee.org.

106 6 Selected Methods for Distributed Architectures

6.2.1 Evolutionary Fuzzy Systems for Distributed Brokerage

The afore described task can be condensed into two major requirements:

• Situation-dependent, adaptive decision-making: The current state of the
system is crucial when deciding on whether to accept or decline foreign
workload, e.g. allowing for additional remote jobs if the local system is
already highly loaded seems to be inappropriate.

• Robustness and stability in changing environments: Even with respect to
future, still unknown (and usually unpredictable) job submissions, it is
crucial that aspects such as complete site failures or even rogue partici-
pants are handled gracefully with respect to the own and overall perfor-
mance.

Both requirements are well-addressed by fuzzy systems. There, the con-
troller acts depending on the current system state, and the states are modelled
by fuzzy sets which in turn are represented by simple membership functions.
Although the system states themselves do not contain any uncertainty the
whole representation of the system is uncertain. As they have proven to be
a reliable concept to tackle challenging online scheduling problems, we apply
them to federated SRM in the context of this work.

For setting up proper rule sets in the fuzzy system, we use evolutionary
algorithms to find working parameterisations of the aforementioned member-
ship functions.

General Architecture of EFSs

This combination of fuzzy systems and evolutionary algorithms is commonly
denoted as Evolutionary Fuzzy System (EFS), see Cordon et al (2001). Such
systems build on traditional fuzzy approaches, for example the Takagi–
Sugeno–Kang (TSK) model as proposed by Takagi and Sugeno (1985), but
derive and optimise the expert knowledge in their rule base by using evolu-
tionary computation. The main advantage of this approach is that the latter
does not require particular knowledge about the problem structure and can
be applied to various systems. On the contrary, the unknown and potentially
huge search space can be explored with a minimum amount of external knowl-
edge.

The overall EFS builds upon a set of rules, where each rule describes a
certain system state, and in this specific context, we construct the rules with
respect to two inputs. On the one hand, we incorporate the current state of
the LRM layer, using the current utilisation of the resource centre’s underlying
hardware. On the other hand, we build upon the job a decision must be made
for, expressing the current situation regarding workload pending for execution,
see Figure 6.12.

In the fuzzy rule concept of TSK, a rule consists of a feature describing
conditional part and a consequence part. For the application at hand, this

6.2 On the Robustness of Capacity Planning 107

Fig. 6.12 General architecture of the EFS controller. As the core of the transfer
policy, it takes different features (x1, x2, x3) as input and computes a decision on
accepting or declining a given job. While the features can be derived from metrics in
the LRM system (see x1, x2), it is also possible to use workload-related information
(see x3). The location policy is an independent part in the overall engine and has
no direct influence.

translates to a rule that decides on accepting or declining a job offered to the
resource centre’s SRM system through its Federated SRM layer. For example,
a rule set could consist of statements made by a domain expert expressing the
following:

IF queue is long AND job highly parallel THEN decline job
...

...
...

IF queue is empty AND job not parallel THEN accept job

A complete rule base now constitutes the core of the rule system and
essentially makes the fuzzy controller. Whenever a new job has been submitted
to the local system or has been offered from remote sites, this rule system is
used to make a decision.

Encoding of Rules

The general TSK model consists of Nr IF-THEN rules Ri such that

Ri := IF x1 is g
(1)
i and . . . and xNf

is g
(Nf)
i

THEN yi = bi0 + bi1x1 + . . . + biNf
xNf

(6.2)

where x1, x2, . . . , xNf
are input variables and elements of a vector x, and yi are

local output variables. Further, g
(h)
i is the h-th input fuzzy set that describes

the membership for a feature h. Thus, system state is described by a number of
Nf features. The actual degree of membership is computed as function value
of an input fuzzy set. Furthermore, bih are real valued parameters that specify
the local output variable yi as a linear combination of the input variables x.

108 6 Selected Methods for Distributed Architectures

For our TSK instance within the EFS, we need to keep the number of
parameters in the rule system small. This is mainly because of the evolu-
tionary computation approach taken for rule optimisation. Every additional
parameter increases the search space of the optimisation problem and might
deteriorate the solution quality. To overcome this problem, we use Gaussian
Membership Functions (GMFs) to characterise the fuzzy sets, as they two pa-
rameters (mean and variance) to specify the function shape. This makes GMFs
particularly suited for the representation of rules with a minimum number of
parameters.

With that at hand, we now model feature h ∈ Nf for single rules Ri as a
(γ(h)

i ,σ
(h)
i)-GMF:

g
(h)
i (x) = exp

⎧⎨
⎩−(x − γ

(h)
i)2

σ
(h)
i

2

⎫⎬
⎭ (6.3)

The γ
(h)
i -value adjusts the centre of the feature value, while σ

(h)
i models

the region of influence for this rule in the feature domain. In other words, for
increasing σ

(h)
i values the GMF “becomes wider” while the peak value remains

constant at a value of 1. With that, we are able to steer the influence of a rule
for a certain feature by adjusting σ

(h)
i .

...

...

...

Fig. 6.13 Encoding pattern of the rules in the EFS implementation. Each rule
consists of one parameter tuple ((γ(h)

i , σ
(h)
i)) for each feature h, and a decision vari-

able yi for that specific rule. Each individual for the optimisation is then constructed
by concatenating the rules to a set.

Because the GMF can be described with two parameters only, it allows to
encode a feature as a pair of real values γ

(h)
i and σ

(h)
i as proposed by Juang

et al (2000) and Jin et al (1999). With this feature description at hand, a
single rule’s conditional part can composed as depicted in in Figure 6.13.

For the consequence part, we further simplify the general model in Equa-
tion 6.5. Regardless of the system state, the transfer policy yields binary
decisions only: Either an offered job is accept or not. Therefore, we choose the
output value for a rule Ri as

6.2 On the Robustness of Capacity Planning 109

yi =

{
1, if job is accepted
−1, otherwise

(6.4)

With this approach, all weights except bi0 in Equation 6.2 are set to 0 and
the TSK model output becomes yi = bi0.

With this approach, a GMF-based TSK can be encoded with only 2 ·Nf +1
variables per rule, see Figure 6.13. This leads to l = Nr(2 ·Nf +1) parameters
per complete rule base, given through the concatenation of the individual
rules.

Decision Computation

The general TSK output function of the system yD(x) is computed as

yD(x) =

Nr∑
i=1

φi(x)yi

Nr∑
i=1

φi(x)
(6.5)

where for a given input vector x

φi(x) = g
(1)
i (x1) ∧ g

(2)
i (x2) ∧ . . . ∧ g

(Nf)
i (xNf

) (6.6)

is the degree of membership of rule Ri. Each rule’s recommendation is weighted
by its degree of membership with respect to the input vector x. The corre-
sponding output value of the TSK system is then computed by the weighted
average output recommendation over all rules.

For our implementation, we determine the actual controller output for a
set of input states x by first computing the superposition of all degrees of
memberships for a single rule Ri. For each rule Ri a degree of membership
g

(h)
i (xh) of the h-th of all Nf features is determined for all h as the function

value of the h-th GMF for the given input feature value xh.
Considering Equation 6.6, the multiplicative superposition of all these val-

ues as “AND”-operation then leads to an overall degree of membership

φi(x) =
Nf∧

h=1
g

(h)
i (xh) =

Nf∏
h=1

exp

{
− (xh − γ

(h)
i)2

σ
(h)2

i

}
(6.7)

for rule Ri, and

YD = sgn(yD(x)) (6.8)

can be computed as the final controller output by considering the leading sign
only, such that a positive number again represents the acceptance of the job.

110 6 Selected Methods for Distributed Architectures

6.2.2 Realisation of the Policy Model

For the implementation of the decision policies described in Section 4.2, two
different approaches are taken. The location policy is handled by a simple
implementation using the partner-specific AWRT; for the transfer policy, a
fuzzy inference method is used.

Implementation of the Location Policy

In order to create a prioritisation of the available potential delegation targets
we follow a two-step approach. As first step, we generate the subset of partic-
ipants that physically provide enough machines to execute the job. That is,
we rule out all resource centres with mk < mj ∀ k ∈ K. As second step we
sort remaining partners regarding their aggregated AWRT of already delegated
workload. That is, so far well-performing resource centres are being favoured
over those yielding higher AWRT values.

For this purpose, every participant calculates the AWRT value for every
other resource centre separately, considering only those jobs that have been
successfully delegated to the corresponding resource centre. More formally, we
assume

AWRTk,l =

∑
j∈τk∩πl

SAj · (Cj(S) − rj)∑
j∈τk∩πl

SAj
(6.9)

in order to indicate how well the delegation target l was able to handle the
workload delegated from k so far. We assume that a short AWRT for delegated
jobs in the past is expected to yield also short AWRT values for future del-
egations. The outcome of this procedure is a ranking of potential delegation
targets ascending in their hitherto performance.

Implementation of the Transfer Policy

The transfer policy, see Section 4.2.2, is founded on an TSK-based EFS. As
described in Section 6.2.1, this model allows including an arbitrary number
of features as controller input. This naturally allows rather complex state
descriptions through a comprehensive number of system parameters.

However, since every additional input induces an additional variable into
the state superposition, an additional (γ,σ)-pair per rule is also required. As
we optimise the proposed system with an Evolution Strategy (ES), the number
of optimisation variables must be kept as small as possible to keep the search
space of the optimisation problem tangible. Therefore, we only use Nf = 2
different features to constitute the conditional part of a rule.

The first feature builds upon the jobs j ∈ νk that have been inserted
into the waiting queue ν at participant k. More specifically, the Normalised
Waiting Parallelism at participant k (NWPk) is used as the first feature,
see Equation 6.10.

6.2 On the Robustness of Capacity Planning 111

NWPk =
1

mk

∑
j∈νk

mj (6.10)

This feature indicates how many processors are expected to be occupied
by the submitted workload6 related to the maximum number of available
processors mk. It therefore reflects the expected load of the machine in the
near future.

The second feature focuses on the actual job that a decision has to be
made upon. More specifically, the Normalised Job Parallelism denotes the ra-
tio of a job’s resource requirements mj and the maximum number of available
resources mk at the resource centre k the job was submitted to, see Equa-
tion 6.11.

NJPj =
mj

mk
· 100 (6.11)

Translated to the afore described EFS architecture, two features (NWP and
NJP) need to be covered by rules of the fuzzy controller to express the possible
system states. The question that remains is how many rules are needed for
the system to perform reasonably well. It turns out that there is no reliable
way to determine this value from the problem formulation directly; however,
Franke et al (2006a) have shown that a number between five and ten yields
good results. Therefore, we pinpoint Nr = 10 for the work at hand.

6.2.3 Experimental Setup

In contrast to the previous experiments, this analysis requires a more detailed
description regarding the experimental setup: Besides the discussion of input
data and metrics, we additionally detail the configuration of the EFS and its
optimisation.

Input Data and Metrics

For the evaluation of the two migration heuristics, we use AWRT and the
change of SA, as defined in Section 3.3.

As input data, we use the workload traces from KTH96, CTC96, SDSC00,
and SDSC05, spanning machine sizes from 100 to 1664 nodes. Again, we limit
ourselves to smaller experiments because of the large computational effort
necessary for optimisation. The combinations of these for the different fed-
eration setups are listed in Table 6.5. As local scheduling strategy, we apply
FCFS, see Section 3.4.1. When discussing the two-participant setups, addi-
tional brackets (e.g. fn(RC)) denote the resource centre RC under training.

As it is necessary to train the EFS, we additionally split the original eleven-
month workloads used into five- and six-month sequences. We then use the

6 Remember that the number of required processors mj is known at release time.

112 6 Selected Methods for Distributed Architectures

Table 6.5 Setups f14 to f19 used for the analysis of the robustness approach, based
on the traces described in Table 3.2. A checkmark in a federation’s row indicates
that the trace from the workload column is used for the setup. The “5 mos./6 mos.”
header row indicates that, for each workload, a five-month trace for training and a
corresponding six-month trace for verification was used.

KTH96 CTC96 SDSC00 SDSC05
Setup 5 mos./6 mos. 5 mos./6 mos. 5 mos./6 mos. 5 mos./6 mos.

f14 � �
f15 � �
f16 � �
f17 � � �
f18 � � �
f19 � � � �

former as training sequences, and the latter as data for the verification of the
algorithmic performance. We exclude the SDSC006 trace, which we only use
to investigate the behaviour of the trained system with a previously unknown
participant; therefore, no five month training sequence for this workload was
created.

Configuration of the Evolutionary Fuzzy System

With the aforementioned rule setup of Nr = 10 rules with two features re-
spectively, the corresponding optimisation problem has Nr · (Nf · 2 + 1) =
10 · (2 · 2 + 1) = 50 parameters.

For the optimisation itself, we apply a (μ + λ)-ES, see Beyer and Schwefel
(2002). During the run of 150 generations, a continuous progress in fitness
improvement is observable. As recommended by Schwefel (1995), we assume
1/7 for the ratio between μ and λ. Therefore, we use a parent population of
μ = 13 individuals, resulting in a children population of λ = 91 individuals.
Hence, 91 individuals must be evaluated within each generation. As objective
function we use the AWRT, see Section 3.3.4.

For the variation operators we further use the following configuration: The
mutation is performed with an individual mutation step-size for each feature.
As the two features vary in their domain by a ratio of 1:10, see Section 6.2.2,
we use a mutation step-size 7 of 0.01 for NWP and 0.1 for NJP, as this is
sufficient for the expected accuracy. A more elaborate analysis of potentially
well-performing mutation step-sizes to the here discussed problem is out of
scope. This mutation is applied for the conditional part of the rule as they
are real values. For the binary consequence part we mutate values by flips

7 Here, we use standard values as suggested in literature (Engelbrecht, 2007), and
choose NJP as the reference, since the use of the default step size of 0.1 for NWP
would imply a value of 1 for NJP, which is too high for proper operation of the
EFS.

6.2 On the Robustness of Capacity Planning 113

of −1 to 1 and vice versa. Further, we apply discrete recombination in each
reproduction step.

The population is uniformly initialised within the ranges [0, 10] for the
(γ,σ)-values of NWP and [0, 100] for NJP respectively. As the fitness eval-
uation of an individual is time consuming (from several minutes up to half
an hour) we evaluated the whole population in parallel as for |K| participants
(|K|2−|K|) pairings have to be simulated. During production usage8, however,
only basic mathematical operations are required that can be performed in a
negligible amount of time.

6.2.4 Evaluation

With the optimised EFS at hand, we now apply the transfer policies to dif-
ferent scenarios, reaching for two goals. On one hand, the behaviour should
be robust against unknown workload, effectively being able to handle submis-
sions different from the original training data. On the other hand, it should
be transferable to scenarios with larger federations and potentially unknown
partners.

Training Phase: Unilateral Cooperation

Starting with no rule set at all, we need to bootstrap the system: A basic set
of rules has to be learned. Although it is generally necessary to create rule
sets for both location and transfer policy, see Section 4.2, we start with a pair-
wise training approach in order to reduce other partners’ influences as much as
possible. To this end, we limit job exchange to a single resource centre only—
thus needing no location policy at all—and concentrate on the optimisation
of the transfer policy. Furthermore, we evolve only one participant at a time
while applying the ACF policy, see Section 6.1.1, to the other.

Pairwise training with static policies for one participant has benefits
and drawbacks. The main advantage is stability: A simultaneous training of
two rule bases would lead to an ever-changing environment. This makes an
evolutionary-guided adaptation very difficult, as a rule base that leads to good
results during one generation might fail completely in the next generation if
the partner changes its behaviour completely. The main disadvantage is that
the effort for training is very high, as each potential pairing of partners needs
to be considered to eventually yield a comprehensive rule set.

Results for Training Sequences

As expected, the optimisation leads to significant improvements in AWRT for
all examined setups9. Partly, this results in larger AWRT for the non-adapting

8 That is, after the rule sets have been learned, and the participants’ resource
management systems apply to incoming workload.

9 The optimised partner is listed as an additional index on the setup.

114 6 Selected Methods for Distributed Architectures

partner. For instance, in setup f14, the optimisation of KTH96 leads to a
worsened result for CTC96 of almost 10 %. In this specific case, this behaviour
corresponds to a strong shift of work as from KTH96 to CTC96. With a change
of learning focus towards CTC96, we achieve also improvements of 5.44 % for
AWRT and a slight load relief for CTC96. Also, KTH96 still significantly
improves, although it is not under optimisation. Mainly, this is because of its
unsatisfactory performance in the non-cooperative case.

In setup f15, an optimised KTH96 naturally benefits from more available
resources because of the size of SDSC05. Still, the latter shows a remarkable
improvement in AWRT of 3 % while at the same time SA is slightly increased.
This indicates that an improvement in AWRT is not necessarily caused by
smaller utilisation, but a better allocation of workload to resources due to
the optimised rules. This also holds for the interaction of a medium and a
large resource centre, see setup f16(CTC96), where CTC96 also benefits with
a decrease in AWRT of more than 20 %. Likewise, SDSC05 benefits from the
cooperation with the medium-sized system, see setup f16(SDSC05).

For a better understanding of the optimised transfer behaviour, we show
in Figure 6.14 the set of characteristic curves for the different federation se-
tups. The system states are shown on the x- and y-axes for NJP and NWP,
respectively. In accordance to the EFS formulation in Section 6.2.1, the z-axis
denotes the borderline between acceptance (>0) and refusal (≤0) of jobs.

In Figure 6.14a we observe that KTH96 exposes a restrictive exchange
behaviour as only small jobs are accepted and almost all remote jobs are
declined. As locally submitted and remotely offered workload is treated simi-
larly, this behaviour tends to offer all jobs to remote sites first. Also, it shows
that mainly small jobs are accepted. In Figure 6.14c also larger jobs from the
SDSC05 are offered as almost the whole range for NJP is activated. However,
the exchange policy for the KTH96 refuses them in all cases. For CTC96 the
situation is different: It does not only handle locally submitted jobs, but also
accepts remote jobs that require many processors. Here, small jobs are offered
to the remote site first, see Figure 6.14b. The large resource centre, SDSC05,
always accepts incoming workload as long as the waiting queue is not too full,
see Figure 6.14d and Figure 6.14f. Whenever the NWP value grows beyond
4, the transfer policy switches from acceptance to refusal. This is reasonable
as it prevents starvation of jobs in the queue and protects the SDSC05 from
overuse of resources.

Summarising, it becomes apparent that workload exchange is only benefi-
cial if the federation participants show a minimum will for cooperation; that
is, it is necessary that each participant accepts remote workload at least if
suitable for him.

6.2 On the Robustness of Capacity Planning 115

0

2

4

6

8

10

0

20

40

60

80

100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

NWP
NJP

(a) f14, optimising KTH96.
0

2

4

6

8

10

0

20

40

60

80

100

−0.6

−0.4

−0.2

0

0.2

0.4

NWP
NJP

(b) f14, optimising CTC96.

0

2

4

6

8

10

0

20

40

60

80

100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

NWP
NJP

(c) f15, optimising KTH96.
0

2

4

6

8

10

0

20

40

60

80

100

−1

−0.5

0

0.5

1

NWP
NJP

(d) f15, optimising SDSC05.

0

2

4

6

8

10

0

20

40

60

80

100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

NWP
NJP

(e) f16, optimising CTC96.
0

2

4

6

8

10

0

20

40

60

80

100

−0.6

−0.4

−0.2

0

0.2

0.4

NWP
NJP

(f) f16, optimising SDSC05.

Fig. 6.14 Set of characteristic curves after optimisation for the different setups.
The system state description is depicted on the x- and y-axis for NJP and NWP
respectively. The grid at level zero on the z-axis marks the border between accep-
tance of jobs (>0) and refusal of jobs (≤0). Additionally, the activated areas during
application on the training workloads are depicted by black points.

116 6 Selected Methods for Distributed Architectures

Stability of Trained Rulesets

To assess the stability of the pairwise learned rule bases with respect to un-
known situations10, we apply them to the six-month versions of the workloads
denoted in Table 6.5. We further assume that every resource centre applies the
rule base as transfer policy that it “learned” during the interaction described
in Section 6.2.4; note that the ACF policy is not used anymore.

(a) f14. (b) f15.

(c) f16.

Fig. 6.15 Improvements in AWRT for the two-participant setups using trained
rule bases on untrained data sets (RB), compared to the results from the ACF and
RQF strategies as described in Section 6.1.

Obviously, the EFS approach still leads to a significant decrease of AWRT
in all cases, see Figure 6.15, indicating a high robustness with respect to
10 Specifically, regarding unknown workload, that is.

6.2 On the Robustness of Capacity Planning 117

submission changes. Further, it exposes an improvement with respect to ACF
as discussed in Section 6.1. This is all the more remarkable as this policy
additionally benefits from the positive influence of EASY as a local heuristic.
Regarding RQF, the EFS still yields an acceptable performance. Given that
the static policy can select from the remote waiting queue at will, effectively
exposing the other system completely to the world, the EFS produces still
good results.

(a) f14. (b) f15. (c) f16.

Fig. 6.16 Change in squashed area (ΔSA) for the two-participant setups using
trained rule bases on untrained data, as percental change wrt. to the non-federated
case.

The ΔSA values stay similar to the previous experiments in distributed
architectures and do not yield any new insight, see Figure 6.16.

Drawbacks of the Training Method

A major weakness of the approach naturally lies in the complexity of the pro-
cess: While it is not necessary11 to have training set for all possible federation
partners, the pairwise optimisation approach is still time-consuming and does
not scale. However, it is possible to ameliorate this problem by taking a differ-
ent approach on the optimisation: Fölling, Grimme, Lepping, and Papaspy-
rou12 developed a learning mechanism using Competitive Co-evolutionary
Learning. There, the evolutionary algorithm does not run pairwise trainings
with elitist selection using one reference partner. It rather evaluates the full
federation, letting the best-performing rule sets for each individual resource
centre compete against the corresponding rule sets of other participants, then
11 In fact, we assume from our experiments that it is sufficient to have a set of

capacity-wise characteristic ones; still, it is an open problem how to select those.
12 See Fölling et al (2009) for a learning-focused discussion and Fölling et al (2010a)

for a fuzzy-focused discussion.

118 6 Selected Methods for Distributed Architectures

the second-best, and so forth. Naturally, the training is not adjusted to a spe-
cific partner behaviour anymore, but instead trained to well-perform in the
context of a federation. Still, the approach shows a similar performance to the
one discussed here.

Application Phase: Multilateral Cooperation

After setting up the basic rule sets for workload exchange in a controlled en-
vironment with only a single resource centre, we now extend this approach
towards applying the rule bases in a federation scenario with more partic-
ipants. Since a third partner is incorporated into the setup, two additional
aspects require handling:

1. Before making a decision on whether to hand over workload from one
participant to another, it must be decided which partner to use. This is
done using the location policy as described in Section 6.2.2.

2. As each resource centre is now cooperating with several (known) partners,
it needs to choose the appropriate transfer policy with respect to the cor-
responding partner. As such, each participant keeps a separately trained
transfer policy for each resource centre it interacts with. As soon as the
location policy yields the partner for the delegation under decision, the
corresponding transfer policy for this very partner is selected.

Fig. 6.17 AWRT improvements and ΔSA values for the three-participant setup
f17, using trained rule bases on untrained data and the location policy described
in Section 6.2.2, as percental change wrt. to the non-federated case.

The results in Figure 6.17 clearly indicate that the AWRT still improves
significantly for all partners while the utilisation decreases for the smaller part-
ner. Although CTC96 and SDSC05 are slightly more loaded, their objective
values still improve.

6.2 On the Robustness of Capacity Planning 119

Verification Phase: Handling Alien Participants

So far, our approach was tailored to learning a pool of rule bases for partners
that are known in advance. This, however, requires knowledge about the sub-
mitted workload in order to tune the transfer policies properly. With respect
to the robustness requirement, we now extend our approach to an environment
with resource centres previously unknown to the federation.

As mentioned in Section 4.2, the transfer policy is applied to each partici-
pant separately. If a new resource centre enters the federation, this means for
the rule base approach as discussed here that the existing participants need
to select an appropriate policy from the set of available policies. Naturally, a
direct mapping is not possible, as the new resource centre has not been part
of the training, and a corresponding rule base does not exist.

To identify the best suitable transfer policy without having a direct match,
we assume a correlation between delegation targets’ maximum amount of
available resources and their transfer behaviour. We conjecture that the be-
haviour within the federation mainly depends on a resource centre’s size. Thus,
we categorise the trained rule bases along the sizes of the machines they belong
to. Among the pool of transfer policies the best fitting one, with respect to
the number of maximum available resources, is selected to make the decision
for a submitted job.

In order to assess this new situation, we investigate the performance of
setup f15, which features the previously unknown SDSC00 resource centre.
By applying the aforementioned categorisation, the other partners fall back
to the KTH96-specific rule base, because it is closest to SDSC00 in terms of
machine size (100 processors compared to 128 processors). For SDSC00 itself,
we use ACF as the transfer policy, see Section 6.1.1.

Fig. 6.18 AWRT improvements and ΔSA values for the three-participant setup
f18, using trained rule bases on untrained data, the location policy described in Sec-
tion 6.2.2, and SDSC00 as the unknown participant, as percental change wrt. to the
non-federated case.

120 6 Selected Methods for Distributed Architectures

Figure 6.18 depicts the results for this setup. We observe strong AWRT
improvements for SDSC00 due to the high potential given by the poor results
for non-federated execution, see Section 3.4. However, the other participants
as well improve their AWRT by at least 8 %.

Fig. 6.19 AWRT improvements and ΔSA values for the four-participant setup
f19, using trained rule bases on untrained data, the location policy described in Sec-
tion 6.2.2, and SDSC00 as the unknown participant, as percental change wrt. to the
non-federated case.

The same holds for a federation with four participants and one unknown
partner, see Figure 6.19: Again, AWRT improvements of more than 10 % are
achieved for all resource centres while the utilisation moves from the smaller
participants to the larger ones.

6.2.5 Related Work

Due to the highly dynamical character of the discussed problem, several opti-
misation techniques have been used already. In the field of nature-inspired
algorithms, Carretero et al (2007) propose a GA-driven meta scheduler
and Jakob et al (2005) apply hybrid heuristics. Fuzzy systems, in turn, have
only been partially applied: Huang et al (2005) determine a knowledge base
for Grid computing by transforming Grid monitoring data into a performance
data set. They extract the association patterns of performance data through
fuzzy association rule in order to optimise the Grid scheduling. Fayad et al
(2007) address a Grid scheduling problem with sequential jobs where process-
ing times underlay uncertainty.

The capabilities of EFS have only recently been applied to scheduling: So
far no endeavours have been made to apply them to federated capacity plan-
ning problems. However, results have been obtained for parallel computer
scheduling with EFS: Franke et al (2006a) derived a methodology to genet-
ically learn a fuzzy system from real workload data to establish user group
prioritisation. With such a system, the owner of a parallel computer is able

6.2 On the Robustness of Capacity Planning 121

to flexibly realise prioritisation for certain user groups without worsening the
overall system utilisation. After a training phase, the controller enforces the
desired priorities while still delivering significantly shorter response times for
the favoured user groups.

6.3 On Resource-centric Capacity Planning in DCIs 123

6.3 On Resource-centric Capacity Planning in DCIs†

Until recently, compute resources were usually tangible “tin” in a server room
that was physically accessible to the users: Albeit offerings for IT outsourc-
ing are being marketed for many years already, many segments, especially
those concerned with research and development, still followed the traditional
approach of hardware being purchased, used, and—usually after its recovery
period—decommissioned. With the ascend of Cloud computing in 2006, a shift
of paradigm regarding the means of resource acquisition had silently occurred:
A technology platform and business model for “leasing” resources emerged,
and depending on the kind of workload, it provides a viable alternative to
on-premises infrastructure, see Hill and Humphrey (2009).

In the case of DCIs as discussed in the previous chapters, this shift of
paradigm allows to replace the common approach of mutual workload ex-
change with a method that bases on load-dependent resource configuration.
That is, in case of a resource centre’s over-utilisation, the SRM system can
leverage the on-demand model to lease resources from other participants in
the federation to keep up service quality for its local user community. Con-
trary, the granting of idle resources can increase utilisation in times of low
local workload and thus ensure higher efficiency.

This approach—in conjunction with the general demand for adaptive
reconfiguration—opens new challenges in the management of such systems.
With respect to automated capacity planning, the lease-oriented model and
corresponding SRM strategies need to be validated. In the following, a first
step towards addressing these issues is being made: For the DCI scenario in-
troduced in Section 2.4.2, we investigate the performance of two algorithms
for leasing and granting resources. To this end, we introduce a new delegation
layer and two negotiation-capable delegation policies.

Both delegation policies demonstrate their potential by realising signifi-
cant increases in service quality for almost all participants. The second, more
aggressive delegation approach turns out to be less robust against extremal
differences in site size, leading to degradation of service quality in specific
cases. Both show the dynamics of system reconfiguration in the proposed sce-
nario: Participants frequently change their configuration in order to fit their
workload. In fact, the fluctuations in local configurations range from com-
pletely granting all resources to leases that multiply the system’s own size.

6.3.1 Workload Management through Leasing of Resources

The widespread offering of Cloud computing services and Infrastructure as a
Service (IaaS) allows system administrators to provision additional resources,

† Parts of this section have been presented at the 15th Workshop on Job
Scheduling Strategies for Parallel Processing in Atlanta, GA on April 23, 2010.
The corresponding publication, see Fölling et al (2010c), is available at http:
//www.springerlink.com.

124 6 Selected Methods for Distributed Architectures

e.g. compute, storage, and even networking, on-demand without having to
make a permanent investment into extending the local facilities. With respect
to automated capacity planning and situation-adaptive scheduling of incom-
ing workload, it is interesting whether the “leasing” of resources (instead of
delegating jobs) is a feasible alternative to the approach used so far. Naturally,
this is only true if the temporary give-away of local resources to a befriend
resource centre within a larger federation yields a better overall performance
for both involved partners.

System Model

The model of leasing resources instead of delegating jobs necessitates the
introduction of corresponding policies to cater the change in viewpoint, and
require the federation model used so far to be specified further. While the
LRM layer stays responsible for the local allocation of workload to resources,
the Federated SRM layer now takes care of the lease-and-grant mechanism and
policy. Within the latter, resource requests are formulated and negotiated in
order to adapt the local system to the current load situation.

Further—and in contrast to the previous setups—multi-site execution is
allowed: Each job can be executed on any subset of processors13 within the
whole DCI environment. This is typically possible14 for embarrassingly parallel
jobs that comprise many sequential, independent invocations of the same ap-
plication. Examples for this application class are parametric sweeps15 or Single
Process, Multiple Data (SPMD)-style programs. Iosup et al (2006) have shown
that this class is the most widely spread one in production grids and DCI en-
vironments. Although distributed filesystem access and network latency may
impair the execution speed of such applications in a multi-site execution sce-
nario, Ernemann et al (2002b) have shown that the significant improvements
in schedule quality often compensate for the inferior performance. Formally,
such a multi-site job j is scheduled on mj|k own resources at the submission
site k ∈ K and mj�k foreign resources using altogether mj = mj|k + mj�k

resources as defined before.
The Federated SRM layer is able to extend the local scheduling domain

by leasing resources from other participants. In this way, each participant is
able to gain exclusive control on foreign resources. For each job, the policy
engine decides whether additional resources should be leased to increase the
scheduling performance at the local site or not. Negotiation requests contain
the number of desired resources and a timespan for which the participant
wishes to gain exclusive access to them. Providing resource centres also apply
13 Granted that those resources are under control of a single scheduler at that par-

ticular moment in time.
14 Provided that data availability—for example, via a global shared file system such

as HDFS as discussed by Shvachko et al (2010)—is guaranteed.
15 Programs that repeatedly process the same input data, with varying parameter

settings, that is.

6.3 On Resource-centric Capacity Planning in DCIs 125

their policies in order to determine whether to accept or decline the request.
Decision making is based on multiple input features such as the users’ job sub-
mission behaviour, the current resource usage, and the local backlog. Finally,
it is not allowed to grant already leased resources to a third party.

Leasing Policies

At the Federated SRM level, the resource delegation policy steers the indi-
vidual negotiation behaviour of each participant within the DCI. Here, two
approaches are introduced that feature a very simple design, are minimally
invasive to the LRM, and still achieve good scheduling results. Both are trig-
gered by the submission of a single job and can be applied under restrictive
information policies, that is without exchange of information between the in-
teracting partners.

Fig. 6.20 Decision process of the BLOS and CLOS policies.

Basic Leasing on Submission (BLOS)

The first policy prioritises jobs that the federation can yield a matching lease
for. Figure 6.20 presents the behaviour of this policy: Resource leasing is
attempted every time the currently available resources cannot meet the sub-
mitted job’s processor demand. After the submission of a new job to the
participant, it is automatically forwarded to and enqueued at the LRM (1).
Then, the federated SRM checks there are more resources idle than requested
by the job (2). In the positive case, the federated SRM leaves further handling
to the LRM. Otherwise, it creates a lease request with a space constraint of
the difference between requested and idle resources and a time constraint of
the user’s runtime estimate of the job. This request is then posted to the
delegation partners in the system (3). If the request is granted, the job is pri-
oritised for direct execution (4). After completion of the job leased resources
are returned to the granting site.

126 6 Selected Methods for Distributed Architectures

Chatty Leasing on Submission (CLOS)

The second policy builds upon the first, but repeats of steps (2–4), com-
pare Figure 6.20: Each job in the queue (including the new job) is used to
create a resource lease, starting at the queue’s head. Obviously, this approach
less penalises already waiting jobs, since they are considered first. This policy
demands extensive inter-resource centre communication due to many addi-
tional resource requests and makes the extended approach less practical for
the use in real scheduling systems. As such, it should be seen as an extremal
case for excessive resource delegation in a federation in order to assess the
achievable performance.

6.3.2 Experimental Setup

We build on the findings in Chapter 3 and reuse the same techniques for
evaluation. However, it turns out that the metrics as defined in Section 3.3
require minor modifications in order to address the elasticity aspect of the
infrastructure.

Assessment Metrics

The Squashed Area (SAk), see Section 3.3.2 was introduced as “the amount
of resources used” by the workload or a fraction thereof. Given that jobs may
now partially execute on the processors of remote participants, it needs to be
refined as follows:

SAk =
∑
j∈τk

pj · mj|k +
∑
l/∈τk

pl · ml|k (6.12)

SAk is determined as the sum both local (j ∈ τk) and foreign (l /∈ τk)
jobs’ resource consumption fractions (pj · . . . and pl · . . .) that are executed on
resources belonging to site k (mj|k and ml|k), see Equation 6.12.

SAλ
k =

∑
j∈τk

pj · mj�k (6.13)

To further measure the amount of work running on leased processors from
within the DCI environment, we define the “leased” squashed area SAλ

k as the
sum of local (j ∈ τk) jobs’ resource consumption fractions (pj · . . .) that are
executed on resources not belonging to participant k (mj�k), see Equation 6.13.

The Utilisation (Uk) describes the ratio between resource usage and overall
available resources after the completion of all and measures how efficiently the
processors of site k are used over time.

The entities

t0(Sk) = min
{

min
j∈τk

{Cj(Sk) − pj}, min
l/∈τk

{Cl(Sk) − pl}
}

(6.14)

6.3 On Resource-centric Capacity Planning in DCIs 127

and

Cmax,k = max
{

max
j∈τk

{Cj(Sk)}, max
l/∈τk

{Cl(Sk)}
}

(6.15)

refer to the timespan relevant from the schedule’s point of view, delimited by
the start time of the first job, see Equation 6.14, to the end time of the last
job, see Equation 6.15, in schedule Sk. Note that both points in time consider
local jobs (j ∈ τk) and fractions of delegated jobs (l /∈ τk).

Uk =
SAk

mk · (Cmax,k − t0(Sk))
(6.16)

Uk, formally defined in Equation 6.16, then serves as a quality measure from
the site provider’s point of view.

Input Data

As input data, three traces from the collection in Section 3.2.3 are used,
namely KTH96, CTC96, and SDSC05. Our combinations are limited to two
participants because we lack a leasing-tailored location policy implementation
and thus cannot handle more than one partner for each participant in the fed-
eration. The setups and their corresponding combinations of workload traces
are listed in Table 6.6.

Table 6.6 Setups f20 to f22 used for the analysis of the leasing approach, using
the traces described in Table 3.2. A checkmark in a federation’s row indicates that
the trace from the workload column is used for the setup.

KTH96 CTC96 SDSC05
Setup 11 mos. 11 mos. 11 mos.

f20 � �
f21 � �
f22 � �

6.3.3 Evaluation

The performance of the different federation setups is evaluated in the follow-
ing. All results are in comparison to the reference data as described in Sec-
tion 3.4.

Almost all results show an improvement in AWRT compared to local ex-
ecution, which indicates that both partners benefit from their cooperation.
Figure 6.21 depicts the improvements obtained in three scenarios for both
policies. The BLOS strategy yields good results, improving the AWRT of the

128 6 Selected Methods for Distributed Architectures

(a) f20. (b) f21. (c) f22.

Fig. 6.21 Improvements in AWRT for setups f20, f21, and f22 and the BLOS and
CLOS policies, as percental change wrt. to the non-federated case.

(a) f20. (b) f21. (c) f22.

Fig. 6.22 Changes in U for setups f20, f21, and f22 and the BLOS and CLOS
policies, as percental change wrt. to the non-federated case.

smaller partner for at least 15 % in all scenarios. However, a deterioration
in AWRT occurs for the f21 compared to uncooperative processing. This be-
haviour is due to unbalanced exchange of resources indicated by SAλ

k , see setup
f21: While the smaller KTH96 resource centre is able to increase its resource
capacity, the larger participant’s requests are frequently rejected for BLOS
leading to higher utilisation and increased AWRT.

One can conclude that the extended strategy may yield better results for
all participating resource centres but is less robust against large discrepancies
in machine size: In CLOS, continuous workload submission results in frequent
traversals of the complete queue. As a consequence, this gives small resource
centres more opportunities to gain additional resources from the larger re-
source centres to execute long waiting jobs. The opposite is not necessarily
true, as the resource capacity of a small participant restricts the larger par-
ticipant’s chances.

The large decrease in U for the small partners indicates that they ben-
efit from the enormous resource potential provided by large partners; this
was to be expected from the results of the previous experiments. However,
simulations show that large partners also profit from cooperation with small

6.3 On Resource-centric Capacity Planning in DCIs 129

partners: Although this improvement is marginal for the SDSC05 site, the
increase of utilisation indicates a compact schedule and thus better resource
usage, see Figure 6.22.

2
9

,9
3

%

4
,9

3
%

3
4

,3
0

%

1
,3

0
%

2
2

,1
3

%

5
,0

3
%

KTH96

CTC96

KTH96

SDSC05

CTC96

SDSC05

(a) BLOS.

3
3

,8
5

%

5
,2

6
%

4
0

,8
3

%

0
,8

4
%

2
6

,6
4

%

5
,7

9
%

KTH96

CTC96

KTH96

SDSC05

CTC96

SDSC05

(b) CLOS.

Fig. 6.23 Amount of SA running on leased resources, in comparison to the total
SA comprising the workload of the corresponding participant, in percent, for all
setups and the BLOS and CLOS policies.

Figure 6.23 shows the percentage of workload running on leased resources.
Again, the behaviour is typical for the experiments so far: Smaller participants
tend to outsource more workload than larger ones, and thus make more use of
leasing opportunities. Besides this, both algorithms are very similar in terms
of “leased” SA.

A look at the resource configurations over time, see Figure 6.24, indicates
continuous changes: During the simulated workload period, KTH96 occasion-
ally grants almost all its resources to the larger site, but also approximately
triples its original size through leases. In the latter case, the reconfiguration
almost switches the original sizes of the setup. On the other hand, they nearly
keep their size on the average. This demonstrates the potential of a workload-
triggered reconfiguration where the provider domain remains stable: resources
adapt to submitted workload but offer an accustomed environment to users.

6.3.4 Related Work

Within a single resource centre, Subramaniyan et al (2006) analysed the dy-
namic scheduling of large-scale HPC applications in parallel and reconfigurable
computing environments. They assess the performance of several common
HPC scheduling heuristics that can be used by an automated job management
service to schedule application tasks on parallel reconfigurable systems. How-
ever, their approach does not involve the interaction of multiple autonomous
partners in a DCI environment. In the multi-site computing domain, Zhang
et al (2006) present an adaptive algorithm that incorporates also common

130 6 Selected Methods for Distributed Architectures

Fig. 6.24 Leasing behaviour of KTH96 and CTC96 during workload processing of
setup f20. The data has been condensed to 36 hour steps; values within the intervals
are indicated through the connecting lines in the diagram.

local scheduling heuristics. Recently, Iosup et al (2007) proposed a delegated
matchmaking method, which temporarily binds resources from remote sites
to the local environment.

7

Discussion of the Results

Rolling in the muck is not the best way
of getting clean.

—Aldous Huxley

So far, we took a very broad approach to SRM in DCIs, discussing
a plethora of results for different usage paradigms, federation archi-
tectures, and interaction models. Naturally, this diversity calls for a

roundup regarding the question of how the results relate to each other.
In this chapter, we will cater to this need by making a comparison of the

different algorithms introduced so far. We do this in two parts: one qualitative
analysis, which compares the assets and drawbacks of the different approaches
with respect to our initial research questions, see Section 1.1, and one quan-
titative analysis for selected algorithms to see how they perform with respect
to each other regarding the metrics defined in Section 3.3.

After having discussed the benefits of our approaches to SRM in federated
DCIs, we approach the question of “better scheduling performance” from the
opposite side by asking for the limits of federation, directly aiming at Ques-
tion 5. By using evolutionary computation, we explore these limits for a very
simple reference setup and rank a selection of our own algorithms with respect
to the results.

7.1 Comparison of Approaches 133

7.1 Comparison of Approaches

With a relatively large number of setups and overall six different approaches
to SRM for DCIs, it is interesting to see whether and, if so, how the results
relate to each other. This is especially important because of the distinction
of centralised and distributed setups and the distinction of active and pas-
sive interaction as described in Section 4.3. In order to compare the results
of the different algorithms and experiments with each other, we follow two
approaches: qualitative and quantitative.

7.1.1 Qualitative Analysis

For the qualitative comparison, we resort to the research questions formulated
earlier in this work, and transform them into five quality measures:

Deployment Effort

The effort needed to have the algorithm under review deployed to the in-
frastructure. Assuming that, with a toolkit such as tGSF, the implementa-
tion effort for the Federated SRM (fSRM) level is equal for all approaches,
we only review the additional effort of rolling out additional components,
or preparing the algorithm for running in the environment. This measure
is derived from Question 2; less effort gives a better score.

LRM Interference

The level of intervention of the algorithm on the local level. Here, we rate
how much the original strategy (such as FCFS or EASY) in the LRM system
on-site is affected by the federation level algorithm. Since the re-routing
of workload at the moment of submission is common to all algorithms
discussed in this work, this aspect is omitted. This measure is derived
from Question 2 and Question 3, as both implementation effort and par-
ticipant autonomy1 are affected; less interference gives a better score.

Autonomy Conservation

The level of autonomy given up by the algorithm with respect to the rest
of the federation. With the requirement of resource centres being inde-
pendent, see Section 2.4.2, additional heteronomy introduced to the par-
ticipants by the fSRM algorithm may be a showstopper. This measure is
derived from Question 3; higher autonomy gives a better score.

Disclosure Level

The amount of information disclosed by the algorithm to other partici-
pants in the federation. As discussed in Section 2.4.2, resource centres may
not be willing to disclose data such as utilisation or response time. This
measure is derived from Question 4; less disclosure gives a better score.

1 Not every administrator of a resource centre is comfortable with modifying or
replacing the implemented LRM algorithms.

134 7 Discussion of the Results

Scheduling Performance

The computational effort consumed by the algorithm for decision making,
based on the throughput of jobs. Under simulation conditions, this aspect
is important because of the extensive workload data necessary for proper
evaluation. In production environments, it is crucial for the responsive-
ness of the overall fSRM system. This requirement is only a byproduct of
the original research questions, but deserves separate discussion because
of its high impact to the applicability of the designed algorithms; higher
performance gives a better score.

A quality matrix resembling these measures for each of the discussed al-
gorithms is depicted in Table 7.1.

Table 7.1 Measure matrix for the qualitative comparison of the SRM algorithms
presented in this work. Plus and minus symbols indicate better or worse results; the
circle symbol indicates neutral quality.

The centralised passive algorithm, see Section 5.1, exposes a very good
performance, with approximately 0.15 ms/job, but requires very high inter-
ference with the LRM system, as the non federation-aware versions of classic
strategies (FCFS, EASY, and LIST) must be replaced by their pooling-aware
counterparts. The deployment effort, in turn, is moderate, as the implemen-
tation of a global pool component is rather simple. Regarding autonomy con-

7.1 Comparison of Approaches 135

servation and disclosure level, we also have a medium score, as the offering of
jobs to the federation is always global, and not directed to a single, selected
participant.

The centralised active algorithms, see Section 5.2, perform rather differ-
ently. In the no-control case, we have little LRM interference and good au-
tonomy conservation, as the delegation from the coordinator to the workers
requires consensus between the two levels. The disclosure level is very low, as
the coordinator does not have any information whatsoever about the workers
other than the response time per job after its completion. In the full-control
case, we have the opposite situation; there, LRM interference and disclosure
level are high, as the coordinator is allowed to analyse the workers’ queues and
schedules, and the workers cannot reject delegation requests, essentially giv-
ing up their autonomy completely. Regarding deployment effort, both require
significant effort for implementing an active central server. The scheduling
performance, however, is good, with approximately 0.25 ms/job for the full-
control and 0.30 ms/job for the no-control case.

By its very nature, the hierarchical algorithm, see Section 5.3 excels at
deployment effort, LRM interference, and autonomy conservation: There are
no additional components to implement, Shaking-G does not interfere with
the LRM at all, and autonomy is fully retained, as the flexibility of the prop-
agation approach does not restrict participants in their workload handling.
Information disclosure is little, but the algorithm relies on the exposure of
the ECT to other participants for the calculation of shadow schedules. The
latter is unfortunately also the reason for the comparably bad performance of
3.10 ms/job.

Regarding deployment effort, the migration algorithms, see Section 6.1
both get similar scores to the hierarchical case, for the same reason: The
implementation of the fSRM layer is sufficient for both RQF and ACF, and
only the fact that the algorithms rely on the assumption that, whenever a
job could be executed immediately, adding to the end of the queue leads—on
the average—to a good scheduling result. This is also why the score for LRM
interference is slightly lower than for the hierarchical case. Autonomy conser-
vation is also good, as the only dependency lies in the loose, consensus-based
collaboration. By its very nature, RQF receives the lowest score for the dis-
closure level, as the algorithms requires each participant to effectively expose
its complete waiting queue to the whole federation at all times. Here, ACF
is much better, as its offer-centric approach does not require any information
sharing whatsoever. The scheduling performance of 0.31 ms/job is equal for
both algorithms and results in a good score.

For the robustness algorithm, see Section 6.2, the main showstopper is the
deployment effort. With the current approach, the implementation requires
significant preparations for learning a fitting rule set for a completely new en-
vironment, and the training itself relies on long-term recordings of workload
trace data. Although this problem can be ameliorated by using a different
approach for optimisation, see Section 6.2.4, the overhead is still high. LRM

136 7 Discussion of the Results

interference is low again, although it is likely that the training result is depen-
dent on the underlying LRM strategy. Because of the focus on building robust
rules, autonomy conservation is expected to be very good, and the disclo-
sure level is identical to the ACF algorithm discussed before. The scheduling
performance receives a neutral score, as it is increased to 0.62 ms/job.

The leasing approach, see Section 6.3, requires some effort for the de-
ployment, as it is necessary to modify the configuration of the LRM on both
sides; however, most modern implementations have dynamic partitioning func-
tionality already included as a feature. LRM interference is, by design of the
algorithm, high, since the available resources are changing over time, and
traditional LRM algorithms do not have explicit support for this. Autonomy
conservation and disclosure level are acceptable, since the algorithm does not
see the current workload of the system, although it can deduce some infor-
mation from the amount of leasable resources2. The scheduling performance
is good, with a throughput of 0.34 ms/job.

Summarising, none of the algorithms can be clearly preferred over the
others, as all of them have strengths and weaknesses in certain areas. For the
centralised case, the most balanced approach seems to be the no-control algo-
rithm, which requires some deployment effort, but delivers good performance
while keeping dependencies small; for large, highly independent setups, the
hierarchical algorithm would be a better choice. For the distributed case, it
depends on the requirements: Frequently changing environments might pre-
fer to built upon the robustness approach; stable, long-term collaborations
could also rely on the ACF algorithm. Overall, an accurate analysis of the
requirements is recommended before selecting an individual approach.

7.1.2 Quantitative Comparison

For the quantitative comparison, we use the outcome in terms of metrics
performance of the different setups. Naturally, the comparability is limited
to the scenarios that use similar setups. Looking however at the evaluation
data, it turns out that the number of comparable setups is small, and not all
algorithms can be compared with each other. This has three reasons:

Repetition of Experiments

The lack of experience in selecting reasonable setups led to changes in
the “default” approach for the experiments over time. For example, the
experiments in Section 5.1 showed that the LANL96 machine has special
properties which influence the kind of workload eligible for submission (see

2 This is ameliorated when deploying on fully virtualised environments; there, the
administrator can underprovision and overcommit resources at any time as part
of the hypervisor configuration, making it impossible to draw valid conclusions
from the amount of leased resources. For as-a-Service environments, e.g. public
Cloud infrastructures, it fades away completely, as the resource space appears to
be unlimited.

7.1 Comparison of Approaches 137

also Section 3.2.3), but only after comparing the qualitative behaviour of
this and the other approaches. We removed this workload from further
experiments, but a re-simulation of all results was out of question because
of the computation effort necessary for recreating the data.

Complexity of the Setup

The evaluation of certain algorithms turned out to be time-consuming
and led to the decision to employ limits on the workload number and size
per simulation. For example, the computation effort for the hierarchical
case, see Section 5.3) did not allow for a five-participant setup simula-
tion because of the algorithm’s inferior performance, although it would
have been a good match for the centralised active (see Section 5.2) or dis-
tributed migration (see Section 6.1) approaches. Likewise, we had to limit
the number of participants for the robustness experiments to a maximum
of four (see Section 6.2), because the amount of participant combinations
for the training phase grows linearly with the number of resource centres,
and the evolutionary approach is highly time-consuming.

Properties of the Algorithm

Limitations in the algorithmic approach do not always allow for all com-
binations. For example, the leasing algorithm (see Section 6.3) does not
feature a means for participant selection, mainly due to the lack of reason-
able metrics. This lack of location policy however limits the experimental
setup to a maximum of two participants, and experiments with more re-
source centres could not be conducted.

That said, we actually have five3 experiments that are eligible for a quan-
titative analysis: the three-participant setups f3 ≡ f9 ≡ f11, allowing us to
compare the centralised passive with the hierarchical and the distributed mi-
gration approach, and the five-participant setups f7 ≡ f13, allowing us to
compare the centralised active with the distributed migration approach.

Three-participant Setups

For the three-participant setups, we do not see significant differences between
the different setups regarding AWRT, see Table 7.2. It shows that, regarding
overall performance of AWRT, no approach clearly outperforms the others, al-
though the hierarchical algorithm provides good results regarding all metrics.
Again, it is remarkable that, although being privileged in that sense, neither
RQF nor P-EASY are able to significantly benefit from having a global view
on the current workload. Contrary, the offer-based approach for ACF and the
layered rescheduling approach for Shaking-G deliver similar or better with

3 From the combination of participants, there are three more, namely f14 ≡ f20,
f15 ≡ f21, and f16 ≡ f22. However, we exclude them because the first setup of
each pair is only the six-month training run for our robustness experiment and
thus not eligible for comparison.

138 7 Discussion of the Results

less information. This again supports our assumption that strict information
policies in federated DCIs do not necessarily impair scheduling.

Regarding utilisation, the results are similar; see Table 7.3. There, we find
that, while the hierarchical approach (Shaking-G) shows the highest changes
in utilisation, all results lie within the same order of magnitude.

Five-participant Setups

For the five-participant setups, we find small deviations between the different
setups regarding AWRT in most cases, with a few outstanding values, see Ta-
ble 7.5. Still, the overall improvement within the federation stays similar, such
that no algorithm is clearly favorable. It seems that the No-control case and
RQF are slightly better than the others, but considering the small difference,
this does not suffice for a recommendation.

Regarding utilisation, the values are fluctuating significantly. However, this
is no direct indicator for the quality of the algorithm; it rather shows that
the different strategies used within each setup exposes a different behaviour
regarding workload migration, preferring certain participants for delegation.
By all means, the significant changes with respect to the non-federated case
show that there is ample room for improvement when joining a federation.

7.1 Comparison of Approaches 139

Table 7.2 Setups f3, f9, and f11 in comparison to each other regarding their
AWRT performance improvement, per involved workload, as percental change wrt.
to the non-federated case. The respective best result is highlighted in bold.

Setup Algorithm KTH9611 CTC9611 SDSC0011

f3 P-EASY 24.39 % 1.33 % 37.74 %
f9 Shaking-G 29.26 % 19.74 % 33.30 %
f11 RQF 25.36 % 4.69 % 38.69 %
f11 ACF 19.84 % 2.08 % 35.26 %

Table 7.3 Setups f3, f9, and f11 in comparison to each other regarding their
U behaviour, per involved workload, as percental change wrt. to the non-federated
case.

Setup Algorithm KTH9611 CTC9611 SDSC0011

f3 P-EASY −7.72 % −4.53 % −8.11 %
f9 Shaking-G −13.70 % 2.74 % −17.73 %
f11 RQF −9.51 % 6.13 % −11.25 %
f11 ACF −10.51 % 5.51 % −8.95 %

Table 7.4 Setups f7 and f13 in comparison to each other regarding their AWRT
performance improvement, per involved workload, as percental change wrt. to the
non-federated case. The respective best result is highlighted in bold.

Setup Algorithm KTH9611 CTC9611 SDSC0011 SDSC0311 SDSC0511

f7 Full-control 33.65 % 15.95 % 28.02 % 24.58 % −5.38 %
f7 No-control 38.56 % 23.19 % 34.52 % 31.92 % −0.10 %
f13 RQF 30.59 % 20.34 % 44.75 % 21.30 % 12.82 %
f13 ACF 29.50 % 17.67 % 44.08 % 15.62 % 7.18 %

Table 7.5 Setups f7 and f13 in comparison to each other regarding their U per-
formance improvement, per involved workload, as percental change wrt. to the non-
federated case.

Setup Algorithm KTH9611 CTC9611 SDSC0011 SDSC0311 SDSC0511

f7 Full-control 23.40 % 22.29 % 16.18 % −2.43 % 19.01 %
f7 No-control −5.99 % 3.49 % −5.45 % −8.15 % 37.60 %
f13 RQF −13.98 % 7.57 % −19.15 % −2.76 % 3.03 %
f13 ACF −13.12 % −6.39 % −18.56 % −2.97 % 6.78 %

7.2 Limits of Federation 141

7.2 Limits of Federation4

The methods for capacity planning in federated DCI environments we pro-
posed in the previous chapters have—for the federation setups under review—
shown to be beneficial in comparison to a non-federated environment. Im-
provements in AWRT up to 70 % could be achieved in many cases, and only
for workloads with non-standard characteristics (LANL96, see Section 5.1.3)
or the most simplistic algorithms (see Section 5.1.1), negative results were
achieved at all. Naturally, this directly leads to the search for an upper bound
regarding Question 5: What are the limits of the possible gain?

Obviously, this cannot be answered in full, because of the complexity of
our research problem. Still, even some insight in the sense of an approximation
is helpful, as it would allow to determine the distance of the results achieved
so far from the bounds of an optimal solution.

In the following, we will therefore explore the limits of possible perfor-
mance gain in SRM for federated DCI environments. To this end, we intro-
duce a methodology for the approximation of optimal solutions for a capacity
planning problem in the domain of distributed architectures using an NSGA-II-
based approach. In detail, we evaluate a number of small federation scenarios
using an evolutionary computation method and discuss the necessary steps
towards this evaluation, including the development of appropriate encoding
schemes and variation operators. By means of the approximated Pareto front
we identify bounds for the possible gain of SRM in federated DCI environments
and compare existing heuristics with respect to the Pareto front, finding new
insights in quality assessment, allotment of profit, and fairness aspects. With
these concepts and the obtained results, any kind of strategy for the problem
domain of SRM research can be compared and ranked.

7.2.1 Preliminaries on Multi-objective Optimisation

Although so far, the presented strategies always yielded a balanced assign-
ment of workload to the federation’s participants, resulting in better results
for the utilised assessment metrics, it is clear that, if not confined by the
other participants’ strategy behaviour, each resource centre will strive for the
optimal assignment with regard to the metered objective. For AWRT, as an
example, each resource centre will try to minimise the wait time component
by delegating workload to other participants as often as possible5, even at the
cost of the other centres. This “egoistic” behaviour is the result of conflicting
objectives for each participant: A benefit in performance for one will, at some
4 Parts of this chapter have been presented at the 10th Annual Conference on

Genetic and Evolutionary Computation in Atlanta, GA on July 14, 2008. The
corresponding publication, see Grimme et al (2008b), is available at http:
//dl.acm.org.

5 Provided that the other participants will not deteriorate the AWRT by endlessly
postponing such workload.

142 7 Discussion of the Results

point, lead to a detriment for the others. As such, we can consider the find-
ing of good SRM strategies for federated DCI environments a Multi-Objective
Problem (MOP).

With the notion of conflicting goals as described above, the original un-
derstanding of “optimality” needs to change: Rather than finding a single
optimum, the aim in MOPs is to find good compromise or “trade-off” solu-
tions to the problem. The solution, a set of “best compromises” has been
formalised by Pareto (1964), who defined Pareto Optimality. Omitting a for-
mal definition, it says that a solution x∗ is Pareto optimal if there exists no
other solution x which would decrease some criterion without causing a si-
multaneous increase in at least one other criterion (assuming minimisation).
Such a solution is also called nondominated; if another solution y is worse
with respect to one objective, and not better with respect to any other, it is
dominated by x. When plotting all non-dominated solutions in the objective
space, i.e. depicting their objective functions’ values, the resulting graph (and
naturally its set of approximated values) is called the Known Pareto front,
and the front of all optimal solutions is called the True Pareto front. With
that, we follow the notation introduced by Coello Coello et al (2007).

While the domain of Operations Research has developed a considerable
variety of techniques to handle such problems, the complexity of there devel-
oped solutions has spawned a number of alternative approaches. One of them
can be found in optimisation algorithms that mimic the natural process of
Darwinian evolution; these so-called Evolutionary Algorithms (EAs) are often
applied for parameter optimisation when the fitness landscape of the optimi-
sation problem is unknown. Nowadays, their usage is widespread in computer
science and many engineering disciplines6.

EAs translate the evolutionary process of genetic adaptation to problem-
solving by assuming individuals to represent solutions to a given optimisation
problem. Each individual comprises a chromosome, which is realised as a
vector encoding a single solution. A chromosome consists of a number of genes,
with each gene being an atomically modifiable component of the solution.
The values that each gene can assume are called alleles, which comprise the
alphabet of the gene. While the structure of the chromosome determines an
individual’s genotype, a concrete forming of values describes its phenotype; a
common analogy from software engineering is the type-instance relationship.
The union of all individuals form a population that undergoes an adaptation
process.

This adaptation process is happening within the evolutionary loop. It is
executed until a given termination criterion, like a fixed number of generations
or a quality level within the objective space, is satisfied. After initialising

6 In fact, many interesting industrial applications such as beam welding, aerofoil
design, or reactor shielding construction comprise such problems.

7.2 Limits of Federation 143

the population with sensible7 values, the evolutionary loop comprises three
fundamental operations that are applied, in order:

evaluation

A fitness function is used to assess the individuals with respect to the qual-
ity of the solution they represent. With that, a ranking of the population
is produced that is used for the selection operations.

variation

From all individuals, λ offspring are bred by introducing modifications in
their genome towards further improvement of their fitness. This modifica-
tion happens either through mutation, i.e. by changing one or more alleles
within a single individual’s genome, or recombination, i.e. by interweaving
alleles from two or more individuals, or both by applying them one after
another.

selection

From the parent population and8 the offspring, μ individuals are selected
for the inclusion into the next generation. This selection is done using the
ranking from the evaluation step, only allowing the fittest individuals to
survive, while all others are extinct.

One concrete implementation of this concept for the multi-objective case
is the Nondominated Sorting Genetic Algorithm, Version 2 (NSGA-II) as in-
troduced by Deb et al (2002). NSGA-II’s unique feature lies in the ranking pro-
cedure after the evaluation process: It classifies the individuals on the basis of
non-domination. To this end, it evaluates the fitness values of all individuals
and assigns the non-dominated ones to the first class or “rank” and removes
them from the considered set. The removal develops a new non-dominated
front in the modified set, consisting of the “second rank” individuals. This
process is repeated until no more individuals are left for consideration. Dur-
ing the selection phase, individuals for the next generation are selected from
the ranks in an ascending manner until μ is reached9.

Of course, the domain of EAs is much broader and the afore discussed
aspects only touch the surface of a large and intricate research area. However,
the main topic of this chapter is the exploration of the attainable frontiers of
SRM heuristics in general and federated workload management algorithms in
particular and the shift of paradigm in analysis it necessitates. We therefore
concentrate on the basics and the concrete algorithms used in this context,

7 In most cases, however, this implies random initialisation, as no better starting
points are known.

8 This depends on whether a “plus”- or a “comma” strategy is used: The former,
(μ+λ), selects from both parents and children, while the latter, (μ,λ), only allows
selection from the offspring.

9 Formally, a tournament selection is conducted, with the rank as primary and the
crowding distance as secondary criterion.

144 7 Discussion of the Results

and refer to Coello Coello and Lamont (2004) for an in-depth introduction
into the topic.

7.2.2 Methodology

In order to apply NSGA-II to the setup discussed in Section 2.4, we need to
slightly reformulate our problem to better fit the algorithm. We therefore no
longer handle the workload distribution as part of the incoming workload
stream processing, but rather assume an a-priori assignment of the workload
submitted within in the whole DCI to the different resource centres. This way,
the problem translates to finding an optimal partition of the overall workload;
solutions can be therefore computed offline. Obviously, this approach will not
yield the overall optimal workload distribution for each participant of the
federation; instead, our methodology helps in generating reference values to
rate newly designed location and transfer policies with respect to the best
achievable interchange behaviour for all participants of the federation.

Technically, we modify the location and transfer policies, see Section 4.2,
of the federation participants to forbid interaction with other participants
completely; essentially, the DCI acts like a set of independent non-cooperating
resource centres. To still induce interchange of workload between the partners
in the federation, we model the change of workload in an offline manner by
partitioning the union of all resource centres’ local job streams. Obviously,
this yields the same result as if the policy engines would have computed an
exchange pattern leading to exactly this distribution of workload. If now a
certain partitioning comprises a behaviour which leads to one participant
migrating very large amounts of workload to another, the performance of the
former will obviously improve, albeit at the expense of the performance of the
latter. This obviously exhibits competitive behaviour, and we obtain a multi-
objective optimisation problem of finding partitions with the best trade-offs
for workload distribution to all participating resource centres.

Encoding Scheme

By merging each resource centre’s workload trace to a single one for the whole
federation and, in the second step, repartitioning them to mimic a specific dis-
tribution pattern, we attain a model that can be fit into the concept of geno-
type and phenotype of an individual in Evolutionary Computation: As our
goal is explorative workload partitioning for the whole federation, we assume
the genotype of our individuals to carry a specific assignment of workload to
participants.

When merging the workload, we must keep the time order of it intact10.
We therefore sort the merged job stream with respect to the release dates rj

10 Although we supposedly break the intrinsic correlations between jobs of a single
workload, see Section 3.2.1.

7.2 Limits of Federation 145

Fig. 7.1 Process of merging the workload of each participant in the federation
into a single stream of jobs.

of the jobs, as depicted in Figure 7.1. The resulting sequence is considered
as the reference workload, and its partitioning into specific resource centre
assignments is represented by an individual.

Fig. 7.2 Scheme of encoding of an individual and the resulting assignment of
workload to resource centres. In the given example, we assume two partitions.

More specifically, each individual’s genotype I stores a sequence of assign-
ments I = [a1, a2, . . . , al(I)] that expresses the belonging of a specific job to
a specific resource centre. As such, the partitioning of the merged workload
is represented by each individual’s allele values. Since every job must be as-
signed to a specific resource centre, we require l(I) genes; with nk jobs for
each k ∈ K out of the set of participants in the federation, l(I) =

∑
k∈K nk.

Each resource centre is then represented by a number from the interval
of possible alleles a ∈ [0,|K| − 1]. For our examples here and the forthcoming
evaluation, we limit the number of participants to |K| = 2; this reduces the
genotype to a binary representation. The mapping between geno- and pheno-
type then results in the desired two workloads, again preserving the order of
the release dates, see Figure 7.2.

It is noteworthy that, without further provisions, this encoding scheme
allows the creation of infeasible workloads: The manipulation of a gene may
result in the assignment of a “foreign” job to a resource centre which requires
more resources than available (mj > mk, k ∈ K). As such, we veto such as-
signments during gene altering and reassign the job to its originating resource
centre, using this as a kind of direct repair mechanism.

Variation Operators

Having the encoding of the problem into individuals of the NSGA-II algorithm
set, their modification during the evolutionary cycle is yet to be defined. With

146 7 Discussion of the Results

the plethora of variation operators available in literature, see Bäck (1996) for
a survey, a proper selection that is suited to the problem at hand is necessary.

Mutation

Within the evolutionary loop, we apply two different mutations. The random
mutation changes each gene ai ∈ I with probability Prand to

ai = [ai + 	(|K| + 1) · U(0,1)
] mod |K| (7.1)

where U(0,1) is a uniformly distributed number between 0 and 1. This
mutation favours the exchange of jobs between different partitions and leads
to a beneficial assignment of better fitting jobs.

Algorithm 2 Job Shift Mutation
Require: individual I, shift step-size σ, federation size |K|
1: ks = �(|K| + 1)U(0,1)�
2: ns = �|N (0,σ)| + 0.5�
3: while ns > 0 do
4: p := uniform random position in individual I
5: if I[p] �= ks then
6: I[p] = ks

7: ns = ns − 1
8: end if
9: end while

Second, we apply a so-called shift mutation, which is described in Algo-
rithm 2. During each mutation the following steps are taken: First, the par-
ticipant ks is randomly selected as the target for the workload shift (Line 1).
Next, the number ns of jobs to be shifted is determined (Line 2) and, until this
number is reached (Line 3), shift operations are performed. For this purpose,
a uniform random position in the individual is selected (Line 4) and, if a shift
is possible11 (Line 5), the corresponding gene is modified to reflect the change
towards the target participant (Line 6). By varying the partition size through
this operator, we gain a better diversity on the Pareto front.

The algorithm requires three parameters:

1. the individual I to modify,
2. the step-size σ which specifies the standard deviation of the normal dis-

tribution, and
3. the number |K| of resource centres participating in the federation.

In order to incorporate both variation methods within the evolutionary
cycle we switch between both operators with probability Pshift. In each gen-
eration, we mutate every individual with probability Pshift using the shift
11 That is, the job was not already assigned to the target site.

7.2 Limits of Federation 147

algorithm and with probability (1 − Pshift) with random mutation. For the
latter, we change each gene with the above mentioned probability Prand.

Recombination

The typical application of NSGA-II implies the dominant influence of the
recombination operator. Since its specific effect on scheduling problems is
not sufficiently studied, we resort to choosing among the standard operators,
see Michalewicz (1996).

Uniform Crossover (UCX), where each bit is swapped between two par-
ents with fixed probability, is not appropriate as a recombination operator. It
only swaps jobs between parents, which would result in the same number of
assigned jobs to each partition. As discussed before, this behaviour is unde-
sirable, as it would result in almost no variation in partition size which is a
necessity for discovering a diverse front.

n-Point Crossovers (NPXs), in contrast, are capable of combining both
the desired variation characteristics in partition size and enabling exchange
between the partitions at the same time. For the evaluation in this work, we
therefore apply a Two-Point Crossover (TPX) operator with a probability of
Precomb.

Objective Functions

In order to rank the individuals during the optimisation process, it is neces-
sary to formulate an objective function that allows to evaluate the quality of
each evolving individual. As our focus lies on the improvement of workload
distribution in federated DCIs, it is reasonable to choose among the metrics for
performance assessment that have been used already throughout this work.

The natural choice seems to be AWRT: As discussed in Section 3.3.4, it is
independent from the resource characteristics and expresses a holistic point
of view on the SRM performance, embracing both aspects of utilisation and
wait time.

Lower AWRT values for a certain resource centre necessitate in higher
AWRT values for another, if both participants are sufficiently loaded; this
exposes the conflicting nature of collaboration. We therefore determine the
Pareto front of AWRT values that can be achieved in a federation of differ-
ent participants, for each participant. More formally, we try solve the multi-
objective optimisation problem

MOP := min

⎛
⎜⎝

AWRT1
...

AWRTK

⎞
⎟⎠ (7.2)

by finding good assignments of workload to resource centres.
Unfortunately, the use of AWRT as the objective function for each individ-

ual’s quality results in a search space that is extraordinarily large and therefore

148 7 Discussion of the Results

hard to discover: When most jobs are migrated to one participant, leaving the
other one with almost no local workload, the AWRT values for the former may
deteriorate extremely. This is because even the most efficient local scheduling
system is unable to compensate for a workload that over-utilises the available
resources. Within the evolutionary optimisation process, such configurations
would however still be considered as valid solutions, even although being of
low quality.

In practice, however, configurations overloading one resource centre are not
acceptable for production systems and therefore of minor interest for the eval-
uation in the context of this work anyway. In order to accommodate the need
for expedient results, we impose a threshold on AWRT values for being still
acceptable. The rationale behind this lies in the direct relationship between
resource over-utilisation and increases in AWRT: Emerging local congestions
directly result in very large AWRT.

It is therefore reasonable to limit the search space to meaningful AWRT
values. We therefore assume that AWRT values which exceed the results ob-
tained when completely obviating collaboration by 30 % and more foil the
purpose of participating in the federation on the whole. Hence, we restrict
possible response time values using

AWRTk ∈ [0 . . . 100,000] ∀ k = 1 . . . K (7.3)

such that if an individual achieves a higher AWRT, its objective is assigned an
infinite value. This way, we effectively discard such results from the prospective
evolutionary process and thus expedite the overall optimisation.

Generation of an Initial Population

Even with the limitations in search space applied as discussed above, the size
of the search space further necessitates to start the evolution in an area of
interest, i.e. improving from already “good” configurations. As the minimum
improvement for any Pareto-optimal solution implies to perform better than
the SRM performance in a non-federated setup, see Section 3.4, we take the
allocation as computed by the EASY heuristic as the start solution.

In order to create a sufficient amount of start solutions, we use the work-
loads from the original recordings, simulate their processing under the EASY
regime and shuffle them by uniformly swapping the allocation of 5,000 jobs.
This is achieved by flipping their corresponding genes in each individual, guar-
anteeing a certain degree of diversity close to the reference solution.

7.2.3 Experimental Setup

Again, the experimental setup for the evaluation at hand requires a more
thorough discussion. This includes input data and metrics as usual, but also

7.2 Limits of Federation 149

comprises the configuration of NSGA-II and the discussion of reference algo-
rithms for the classification of the obtained Pareto front.

For the evaluation of the individuals themselves and the comparison with
the reference algorithms, we use AWRT as metric, as defined in Section 3.3.

Table 7.6 Setups f23 to f26 used for the analysis of the bounds approach, using
the traces described in Table 3.2. A checkmark in a federation’s row indicates that
the trace from the workload column is used for the setup.

KTH96 CTC96 SDSC00 SDSC03 SDSC05
Setup 11 mos. 11 mos. 11 mos. 11 mos. 11 mos.

f23 � �
f24 � �
f25 � �
f26 � �

As input data, we use the workload traces from KTH96, CTC96, SDSC00,
and SDSC05. The combinations of these for the different federation setups
are listed in Table 7.6. As local scheduling strategy, we apply EASY, see Sec-
tion 3.4.1.

Regarding the configuration of NSGA-II, we use a population size of μ = 70
individuals with a total of 200 generations for each simulated setup. We apply
tournament selection without replacement and a tournament size of 2. In
detail, we randomly select two individuals without replacement and copy the
best individual to the mating pool. This process is repeated until μ individuals
are selected. Historically, NSGA-II applications favour recombination while
mutation plays a minor role. Preparatory studies however showed that for
having a good balance between exploration and exploitation, we need to apply
both. This leads to the following parametrisation: As the crossover operator,
we use TPX with a probability of Precomb = 0.9. For mutation, we apply shift
and random mutation with equal probability of 0.5, using a shift step size
of σ = 2,000. The random mutation flips each gene with a probability of
Prand = 0.1. Both chosen values for probability are the suggested standard
values, see Engelbrecht (2007).

In order to verify the approximation results produced by our methodology,
we generate a solution for job interchange between two resource centres using
the RQF heuristic as discussed in Section 6.1.1. Due to the combination of
requesting potential backfilling candidates from participants in the federation
and the inherent characteristics of the EASY algorithm, we anticipate the RQF
heuristic to perform very well for the given setup. As discussed before, the
assumption of a holistic view on the waiting queues of remote participants is
unrealistic, see Section 6.1 and Section 5.2. Still, this approach is justifiable
against the background of our stated goal to discover theoretically achievable

150 7 Discussion of the Results

results. Additionally, we use results determined using the P-EASY heuristic
as discussed in Section 5.1.

7.2.4 Evaluation

The obtained results are depicted in four figures for each setup separately. In
addition to the Pareto front, each figure contains the results of the P-EASY
strategy, the RQF heuristic, and the EASY algorithm in the non-federated
case, for both objectives. Further, we mark the area of benefit limited by the
EASY algorithm results and the coordinate system’s origin.

In all examined cases, it is possible to find a diverse front within the speci-
fied search interval. Obviously, there exists a large set of trade-off solutions for
workload exchange apart from the already known heuristics’ results. In order
to judge on the quality of the NSGA-II-generated Pareto front we can only
refer to the single RQF heuristic reference result. As all Pareto fronts contain
this solution we conjecture that also the rest of the front is approximated
appropriately. Further, this indicates that the application of NSGA-II to the
presented problem of job exchange in federated DCI environments works well.

40

50

60

70

80

90

100

110

40 60 80 100 120

S
D

S
C

0
0

KTH96

NSGA

EASY

POOL

RQF

(a) f23.

30

40

50

60

70

80

90

100

110

30 50 70 90 110

S
D

S
C

0
5

SDSC03

NSGA

EASY

POOL

RQF

(b) f24.

Fig. 7.3 AWRT results, in thousands, for the setups f23 and f24 with the cor-
responding workloads after 200 generations of evolution with NSGA-II. In addition,
the results for the RQF and P-EASY heuristics are shown, as well as the perfor-
mance with local execution using EASY. The dotted lines indicate the area of benefit
compared to non-federated, local-only execution.

In detail, Figure 7.3a and Figure 7.3b show the results for two similar-
sized federation setups. In both cases, a convex Pareto front is obtained which
covers the whole range of the search space. The heuristic algorithms produce
results in the centre of the front where the RQF solution is actually reaching
it. Figure 7.4a and Figure 7.4b yield similar results. However, compared to
the non-federated EASY solution, the potential of AWRT improvement is much

7.2 Limits of Federation 151

smaller for the larger site than for the smaller site; note the different scale of
the vertical axis in both figures.

Using our proposed methodology we discover two bounds for the benefit of
federated DCIs: (a) the non-collaborative case where no workload is exchanged
marks the upper bound, and (b) the Pareto solutions within the area of ben-
efit which mark approximated lower bounds among the beneficial trade-off
solutions. Reasonable real-world SRM heuristics should therefore yield perfor-
mance results within these bounds in order to be competitive in a federated
DCI scenario. Further, those heuristics become comparable as they can be
ranked with respect to both the Pareto front and the EASY results.

45

50

55

60

65

70

25 45 65 85 105

C
T

C
9

6

KTH96

NSGA

EASY

POOL

RQF

(a) f25.

47

49

51

53

55

57

59

30 50 70 90 110

S
D

S
C

0
3

KTH96

NSGA

EASY

POOL

RQF

(b) f26.

Fig. 7.4 AWRT results, in thousands, for the setups f25 and f26 with the cor-
responding workloads after 200 generations of evolution with NSGA-II. In addition,
the results for the RQF and P-EASY heuristics are shown, as well as the perfor-
mance with local execution using EASY. The dotted lines indicate the area of benefit
compared to non-federated, local-only execution.

Exemplarily, we analyse the performance of the P-EASY strategy for the
examined setups: By utilising a central pool, this strategy is empowered to
reach an almost perfect compromise between partners. Furthermore, knowl-
edge about the Pareto front allows more advanced evaluations of a heuristic’s
quality. In our case studies, it is possible to show that the common heuristics
already tend to balance the load between participants. As a consequence, the
resulting AWRT values range in the same order of magnitude while represent-
ing the most balanced trade-off solutions in the whole front. However, for the
size-wise heterogeneous setups f25, see Figure 7.4a and f26, see Figure 7.4b,
these solutions seem to be fair when the whole Pareto front is taken into ac-
count, but considering only the area of mutual benefit reveals that those “fair”
solutions cannot develop the full potential of trade-offs disclosed within this
area. In other words, a well-performing SRM heuristic for workload exchange

152 7 Discussion of the Results

in federated DCIs should not just result in a compromise within the whole
Pareto front, but rather achieve balanced results in the whole area of benefit.
It is therefore needless to say that advanced heuristics should provide means
for configuration that allow the operator to reach any point on (or near) the
front.

7.2.5 Related Work

In the area of traditional production scheduling, Lei (2008) tackles the multi-
objective job shop problems using Particle Swarm Optimisation and aims to
minimising the makespan and total tardiness of jobs as competing goals. The
non-federated case as introduced in this work is discussed by Grimme et al
(2008d), who evaluate parallel machine scheduling using the Predator-Prey
model on the bi-criterial 1|dj | ∑

Cj ,Lmax problem, focusing on the effects of
the heuristic itself.

Computational Grids also have been tackled with these techniques: Liu
et al (2010) propose a method for scheduling in computational Grids us-
ing Particle Swarm optimisation for single-objective optimisation of the to-
tal completion time and evaluate their approach using Genetic Algorithms.
Xhafa et al (2007) apply cellular memetic algorithms to the optimisation of
makespan in batch scheduling environments in a Grid context. Abraham et al
(2008) apply different nature-inspired optimisation methods such as Simu-
lated Annealing and Ant Colony optimisation on problems with minimum
completion time and maximum utilisation objectives. The latter method is
also used by Fidanova and Durchova (2006) who introduce a task scheduling
algorithm for workflows using this method.

Although the application of nature-inspired approaches in SRM is a fairly
new development, the broadness of methods is surprising. An overview of ap-
plied techniques in the context of SRM in DCI environments is given by Xhafa
and Abraham (2008).

Part III

Blueprints for SRM in Federated DCIs

After demonstrating the benefit of federated SRM in DCIs on the
algorithmic level, we now switch focus to the technical point of view,
addressing our third goal and attempting to answer the second part

of Question 1. The design of blueprints for the architecture of such systems
naturally deserves its own analysis.

Since we aim for a technical foundation that has the potential of being
adopted in real-world scenarios, we review the experience from several years
of production in the Collaborative Climate Community Data & Processing
Grid (C3Grid) and Plasma Technology Grid (PTGrid) projects. For the in-
evitable architectural changes over time, we find that, although its architec-
ture has proven successful for the use case, the original design has a number
of fundamental gaps with respect to the incorporation of the SRM method-
ologies developed in Part II: From the three general steps regarding SRM,
namely interaction, decision, fulfilment, we so far only addressed the second.
To overcome this, we introduce a generalised interaction model for capacity
planning in federated DCIs called fedSRM.

Naturally, the two remaining parts require concretisation. We therefore
adapt existing means of SLA handling to fedSRM and construct a protocol
called AoR for managing the interaction part between participants of a feder-
ation through negotiation and agreement. For the fulfilment part, we focus on
the problem of provisioning resources, whether capacity for a job delegation,
or machines for a resource lease, and introduce a novel, fully standardised
protocol called OCCI to cater this.

8

Lessons Learned from Modern Production
Environments

We are stuck with technology when what we really
want is just stuff that works.

—Douglas Noel Adams

In 2005, the D-Grid Initiative formulated the vision of a national e-Science
platform capable of delivering collaboration technology for the handling
of computation-intensive processing to specific scientific domains through

an overarching, distributed infrastructure, see Schwiegelshohn (2010). As part
of this initiative, two projects, namely C3Grid and PTGrid, developed a ser-
vice oriented DCI to support workflow-based scientific applications their user
communities (Grimme and Papaspyrou, 2009).

Since its initial deployment in 2007, this infrastructure had proven to be
flexible enough to cater most of the communities’ needs: Several changes in the
use cases, including high-end visualisation, federated security, and basic ac-
counting functionality, could be addressed by the architecture by only making
minor changes in the implementation.

Naturally, every architecture has its limits. This became visible for the
first time with the integration between C3Grid and the Earth Science Grid
Federation (ESGF). Since this use case was not foreseen during initial design,
it was necessary to “misuse” components for originally unintended purposes
to achieve a prompt implementation. This, however, unearthed that, from the
SRM perspective, fundamental gaps had to be bridged, as now the integra-
tion of cross-domain resource management became an issue. As we have seen
in Part II, this was not an algorithmic problem: Intelligent distribution of
workload, even among non-cooperative partners, has proven successful, and
even the concept of leasing alien resources for a limited time is manageable
with good results. The architecture, however, does not support either of the
approaches without further ado.

In order to make the discussed SRM algorithms available to real systems,
we therefore need to identify the obstacles that prevent the adoption in pro-
duction environments to be able to propose a general blueprint for federated
SRM architectures.

158 8 Lessons Learned from Modern Production Environments

8.1 Architectural Obstacles towards Modern SRM

Considering the algorithms discussed in Part II against the background of the
model defined in Part I the overall process of SRM can be split into three
coarse parts:

interaction

where the SRM systems wishing to collaborate exchange information on
the terms and conditions, essentially acting as service consumers and ser-
vice providers;

decision

where both the system’s strategies are making the decision whether and
how to contribute to the collaboration; and

fulfilment

where the SRM system that provides the service ensures the accomplish-
ment.

Fig. 8.1 Core aspects of an SRM architecture for federated DCIs.

For an architectural blueprint, these parts translate to a number of com-
ponents, depicted in Figure 8.1. Interaction maps to the process of negotia-
tion and agreement, essentially covering the inter-SRM protocols. Decision
maps to the strategies discussed in Part II. However, both are interweaved,
and partly take place in the domain of the other, respectively. Fulfilment maps

8.1 Architectural Obstacles towards Modern SRM 159

to the process of provisioning, therefore affecting the protocols between the
SRM system and the underlying infrastructure.

The decision part is largely solved: An architecture can be directly derived
from the model proposed in Section 2.5. The other two—together with the
cross-cutting concern of standardisation—must be still considered as open
problems.

8.1.1 Handling of Negotiation and Agreement

Apart from the decision making itself, the delegation of workload or leasing
of resources is assumed to be a rather simple process: A call to action, either
request or offer, is made from one participant to the other. The providing
party then uses its strategy to evaluate whether it should be accepted or
declined. Finally, the original call is replied to with a “yes” or “no”. In the
case of multi-round decision making, this process is iterated several times
with changing parameters and may include countering requests or offers that
eventually converge to a decision.

This process of agreeing upon such a delegation or lease is very important
for real-world scenarios. For example, the IPCC Assessment Reports define
certain criteria for participating DCIs—here, C3Grid—regarding the underlying
infrastructure, deadlines for result submission, and quality of the data. On
the architectural level, this translates to a certain QoS level, which needs
to be enforced on the infrastructure. That is, it is necessary to request and
provide binding commitments regarding the availability of certain services and
resources between the IPCC and C3Grid officials. This is especially important
because of the federated nature of DCIs. Since resource usage extends beyond
the own administrative domain, QoS cannot be enforced anymore through
local policies, but has to be agreed upon with the external service provider.

Although the theory behind negotiation and agreement between indepen-
dent agents is well understood, see Jennings et al (2001), the technical real-
isation is rather complicated. This is mainly because of the term “binding”,
as the electronic assurance to deliver a certain service at a certain quality has
to translate to a judicial “pacta sunt servanda1” when used in the context of
business scenarios. For C3Grid, this became relevant with reinsurance compa-
nies expressing their interest in the technology for the assessment of cataclysm
probabilities in certain geographical regions. For PTGrid, this was a necessity
from the beginning, as project contracts between manufacturing companies
and consulting bureaus built the basis for collaboration.

The transformation between the two worlds is done by electronic contracts
that bear a non-repudiable statement on those terms, and are known as SLA.
Their use is widely accepted in this context, and alone until 2007, more than
ten projects were either already providing an implementation, working on an
implementation or planning to implement Service Level Agreements (SLAs) in

1 Latin for “agreements must be kept”.

160 8 Lessons Learned from Modern Production Environments

existing systems, as two surveys (Talia et al, 2008; Parkin et al, 2008) show.
This trend is continued in recent years by efforts such as PHOSPHORUS,
BREIN, and SmartLM, with different technical realisations.

8.1.2 Provisioning of Infrastructure

The second obstacle relates to the steps after the SRM decision: When having
negotiated, decided, and eventually agreed on delegating workload or leasing
resources, how are they provisioned so that they can be used?

While the algorithmic approach has ruled out this aspect as irrelevant,
the deployed environment circumvented this problem by the use of a design
pattern and the assumption of a certain software stack for the LRM level: The
participating resource providers agreed to provide Globus Toolkit as the main
interface for workload submission, and changes in the protocol or resources
that have not adopted this middleware were addressed by proprietary handlers
in the execution service layer2.

This approach has two problems. First, it is tailored to DCIs that provide
resources in an on-premises fashion, and does not work well if resources must
be provisioned on demand. Second, it is inefficient.

The former, on-premises issue, becomes apparent when looking at the
PTGrid user community. There, customers that build new machinery for
plasma coating give their blueprints to specialised consultants who answer
questions regarding the feasibility of certain configurations with highly compute-
intensive simulations that mimic the subtle physical interaction through state-
of-the-art research models. In this business ecosystem comprising Small and
Medium Enterprises (SMEs) in mechanical engineering, physicist modellers
of plasma gas behaviour, and consultancy bureaus, the community relies on
large-scale Distributed Computing Infrastructure, but does not operate any.
With the spot market for computing power offered by the Cloud computing
business, this is not a problem per se. The traditional on-premises model,
however, does not work anymore, as the customers can (and, for cost rea-
sons, will) choose among resource centres and switch service providers over
time. For C3Grid, similar requirements arose when users started to ask for the
inclusion of AWS resources into the DCI.

The latter, efficiency issue, is a weakness of the proxy/adapter pattern
itself. On the one hand, the use of an internal interface to handle differing
providers introduces an additional level of indirection into the system, there-
fore affecting latency. On the other hand, it is hard to maintain: Whenever
a provider changes his proprietary API, the corresponding driver needs to be
updated. With support for a large number of providers being crucial for such
bridging systems, the necessary maintenance overhead constantly increases.

2 This follows the proxy/adapter pattern approach, see Gamma et al (1994), essen-
tially exposing a common API and providing backend drivers for each infrastruc-
ture provider.

8.1 Architectural Obstacles towards Modern SRM 161

In the domain of Grid computing, a number of proposals for common pro-
visioning interfaces have been made, and two of them, namely OGSA-Basic
Execution Service (BES) and DRMAA are well adopted in production. For
cloud computing, each vendor offers his own API: Amazon exposes the AWS
API for its offerings, OpenNebula provides OCA, and so forth. A good replace-
ment for the prevalent proxy/adapter approach that is able to cope with both,
however, is still to be found.

8.1.3 Standardisation of Interfaces

The third obstacle relates to the interfacing between participants. For mono-
lithically designed architectures, such as C3Grid, this is not a problem3, as all
stakeholders took part in the requirements engineering process, and certain
decisions regarding interface compatibility could be mandated by project pol-
icy. In other contexts, this is not possible: The PTGrid example shows that,
whenever external services get involved, a number of incompatible interfaces
must be catered by the SRM system, which (as discussed above) is not desir-
able.

Integrators faced the same problem with network software APIs before the
advent of TCP: Customers wanted to be able to buy from any vendor, possibly
several at once, without having to change how their applications were written
to use that vendor’s software. A very practical solution for the market would
have been to pick one vendor as the “standard,” and for every competing
system to then duplicate that vendor’s API.

Unfortunately, this approach has some problems. The first is asymmetry:
It privileges a single vendor who can then dictate the terms for use of its
API. In most cases, this means that whenever the vendor changes its API,
everyone else must follow. But the vendor is under no symmetric obligation
to cooperate — for instance, by warning others of changes. Worse, the vendor
can introduce commercial and legal frictions, including fees and patents. The
second problem is fitness: In early stage markets, arguing that a single vendor
is fit for all common purposes is difficult, because use cases are still emerging.
Especially from a federation integrator’s point of view, both aspects pose
serious obstacles.

With the standardisation of TCP, the community solved these problems by
picking a technology specification that described real systems with broad cases
that were not vendor controlled. Furthermore, by choosing a suitable legal
framework under the patronage of the Internet Engineering Task Force (IETF),
TCP users could have confidence that using the technology does not entail
legal problems or even litigation. By enabling interoperable networking, TCP
solved the integration problem.

This yielded two chief benefits. The first was commoditisation: The cre-
ation of an open marketplace for TCP software and solutions providers, as

3 But will become one in the future, for the reasons stated in the previous section
regarding external infrastructure providers.

162 8 Lessons Learned from Modern Production Environments

well as an ecosystem of add-on applications, drove down costs. The second
was federation: It became possible to build upon a common interface layer
and build larger structures without having to separately establish agreements
on the behaviour with each and every provider. So, not only did this solve the
integration problem, but everyone could build better systems faster and bring
new business to market at lower cost, and eventually, TCP became widely
accepted as the lingua franca for networking.

8.2 A Blueprint for SRM in Federated DCIs

With the core aspects of an SRM architecture as discussed in Section 8.1 and
the proposed solution strategies—the use of SLAs, a common provisioning
interface, and standards—at hand, the shape of blueprint becomes clear: an
architecture for infrastructure federation through automatically negotiated,
SLA-secured, dynamically provisioned resources and services. In order to make
this more tangible, we identify the two main kinds of capacity sharing used
in the models for the algorithmic analysis:

Workload Delegation

Here, one SRM system hands over a certain amount of workload4 and
the management of its execution over to the management domain of an-
other SRM system, underpinned by a previously negotiated SLA. This
corresponds to most algorithmic scenarios of this work where jobs are
exchanged between resource providers.

Resource Leasing

Here, one SRM places resources available within its own domain under the
exclusive capacity planning authority of another SRM system outside of
his administrative control, for a time window previously agreed upon in
an SLA.

In both cases, we refer to the system that shares resources as the providing
SRM, and we refer to the system that shares workload as the requesting
SRM.

8.2.1 The fedSRM Protocol

In order to realise the two kinds of capacity sharing in a common way within
the architectural blueprint, we propose fedSRM, see Figure 8.2, a technology
agnostic interaction model for federated capacity planning. A capacity plan-
ning session in fedSRM has the following steps:

1. The requesting SRM fetches available SLA templates from the provid-
ing scheduler. The SLA templates describe the possible service levels the

4 For example, one or more jobs.

8.2 A Blueprint for SRM in Federated DCIs 163

Fig. 8.2 Schematic depiction of a capacity planning session in fedSRM, see
also Birkenheuer et al (2011), for workload delegation and resource leasing. Steps 8
and 9 are not shown, as monitoring is a continuous activity performed by both sides,
and decommissioning only involves internal operations on the providing SRM side.
Also, standardisation is not depicted as a separate entity, as it is a cross-cutting
concern and does affect all used protocols and interfaces.

providing SRM can assure. For workload delegation, this can range from
pre-populated application templates that only require the inclusion of in-
put data paths, to abstract “job slots” that describe an execution period
on the underlying infrastructure. For resource leasing, the service levels
could map to certain machine configurations, e.g. “small”, “medium”, and
“large”. Rana and Ziegler (2010) give an overview of potential parameters
and template design.

2. The providing SRM returns a set of templates describing services it can
offer with respect to the current situation. These can now be concretised
with additional requirements from the requesting SRM’s side.

3. The requesting SRM reviews the offered templates (a, b) and offers a
concretised version (depicting the aspired SLA) to the providing SRM (c).

4. The providing scheduler checks the general feasibility and adherence to
creation constraints of the SLA (a) and, if correct, ensures that the re-
quested resources will be provisioned until the earliest agreed time of
availability (b); this step can also be performed asynchronously. In addi-
tion, the providing SRM creates a representation of the resource (c) for
the requesting SRM.

164 8 Lessons Learned from Modern Production Environments

5. The providing SRM accepts the proposed SLA template and makes a rep-
resentation of it available to both agreement parties.

6. The requesting SRM retrieves the representation of the provided resource
and examines its capabilities for further use. Depending on the kind of
capacity sharing, the capabilities will differ: In case of workload delegation,
it will provide submission and monitoring endpoints for jobs; in case of
resource leasing, it will expose provisioning and management endpoints
for machines.

7. After granting permissions by the providing SRM, the requesting SRM
is able to use the delegated capacity like its own: In case of workload
delegation, it submits jobs to the recently provisioned service endpoint,
using the data management capabilities of the service interface for stage-
in/out; in case of resource leasing, it binds the newly available resources
to its underlying infrastructure and uses them as its own.

8. Both the requesting and the providing SRM monitor the use of the shared
capacity to ensure that usage is within the negotiated and agreed terms
of service.

9. After the agreed period of capacity usage, the providing SRM revokes per-
missions from the resources’ representation. For workload delegation, this
period ends after all jobs that have been part of the SLA were executed;
for resource leasing, this happens after the agreed period of time.

fedSRM realises the different approaches discussed in Part II: The provi-
sioning part is general enough to cover both workload-centric and resource-
centric delegation models, and the negotiation part is independent of both.
Furthermore, it is independent of the DCI architecture, as only the interac-
tion between the SRM systems is directly affected. As such, we can integrate it
into existing architectures without breaking compatibility, and this has been
demonstrated for a number of SRM systems already, as shown by Birkenheuer
et al (2009).

8.2.2 Technology Considerations

Since fedSRM is technology-agnostic but the realisation of production DCIs is
not, we need to decide on the realisation of our interaction model: As protocols
for both negotiation and provisioning need to be designed, we cannot stay on
the architectural level. The decision on the technology used for realisation,
however, turns out to be non-trivial, as there is a growing chasm between the
architectural styles in academia and industry driven DCIs.

Many Grid architectures base on the idea of services that interact with
each other (Foster et al, 2005) and adopt the paradigm of Service Oriented
Architectures (SOAs), and therefore built upon Simple Object Access Pro-
tocol (SOAP) and heavyweight web services. Industry’s Cloud offerings as-
sume the exposed resources as the central idea and follow the paradigm of
Resource Oriented Architectures (ROAs) instead, and therefore built upon

8.2 A Blueprint for SRM in Federated DCIs 165

Representational State Transfer (REST) and lightweight web services. Neither
of the two can be considered generally better, as both styles have their merits,
see Thies and Vossen (2009), and both fit to various kinds of use cases. Here,
we choose to prefer the latter over the former for the protocol realisation, for
three reasons.

The first reason lies in the way the interaction model is designed: While it
is easy to model the process of negotiation over both alternatives, the expo-
sure of a resource’s representation from the providing SRM to the requesting
SRM implies a separate service in the SOA paradigm. As the representation
approach is fundamental to the later use of the resource in steps 6 and 7, the
ROA paradigm is the more natural choice.

The second reason lies in the use of capabilities: Since the resources change
their behaviour depending on what they represent, each representation needs
its own interface. Using SOAP, however, this is very hard to achieve, as the
protocol provides no integrated support for this use case, and this would
require the management of different service endpoints for different interfaces
in a SOA based model. REST also has no explicit support for changing the
behaviour of a resource, but since the endpoint is bound to the resource rather
than the resource to a service, capability handling can be implemented on top
of a ROA based model.

The third reason lies in the adoption: As with TCP and networking, the
Hypertext Transfer Protocol (HTTP) has become the lingua franca for dis-
tributed computing APIs, and more and more modern web services build
RESTful interfaces upon the ROA style5, thereby embracing HTTP.

5 This is particularly visible in the domain of Cloud computing, as discussed
by Buyya et al (2009).

9

Protocols for Negotiating Authoritative
Agreements1

Unless both sides win, no agreement can be permanent.
—James Earl “Jimmy” Carter

The business model of providing IT “as-a-Service” has become a new
driver for the global market. With its vision of delivering services to
the customer over simple, commoditised interfaces and its paradigm

of paying per usage for the provided resources, it poses a main actor in the
ongoing change of the IT landscape. Still, most interaction with respect to
service guarantees is still done in a very traditional way, that is providing the
customer with the Terms of Service (ToS) usually through a written document
which are implicitly accepted with the usage of the service.

While this is necessary for legal reasons, it is obviously not sufficient, as
the management of the ToS is disconnected from the service itself. Moreover,
no electronic representation for the individual contract is available. Also, it
is impossible to induce flexibility into the QoS terms on a per-customer basis
without complex out-of-band communication (typically via special contracts
between the legal representatives of both the consumer and the provider).
With respect to the afore discussed fedSRM architecture, this obviously is a
problem, as the dynamic character of the federation model requires on-the-
spot negotiation and agreement between automated services.

Electronic SLAs provide a solution to this problem for many years al-
ready. These can be used to make an machine-readable agreement on the
ToS while at the same time providing enough flexibility for both parties to
change them to their needs. Here, we embed them into a RESTful protocol,
called Agreements over REST (AoR) and define means for negotiating, cre-
ating, modifying, agreeing, and managing SLAs by leveraging the features of
HTTP-based interaction. With respect to the obstacles depicted in Section 8.1,
AoR closes the first gap towards a federated architecture blueprint for DCIs
as denoted in Section 8.1.1, namely the negotiation and agreement of SLAs in
1 Parts of this chapter have been presented at the 9th International Conference

on Dependable, Autonomic, and Secure Computing in Sydney on December 14,
2011. The corresponding publication, see Blümel et al (2011), is available at
http://ieeexplore.ieee.org.

168 9 Protocols for Negotiating Authoritative Agreements

a RESTful architecture. Thereby, AoR provides the first building block for the
realisation of the fedSRM protocol.

9.1 Background

The IT Infrastructure Library (Cabinet Office, 2011) defines SLAs as

“[...] agreement[s] between an IT service provider and a customer.
The SLA describes the IT service, documents Service Level Targets,
and specifies the responsibilities of the IT Service Provider and the
Customer. [...]”

As such, they describe a contract between a consumer and a provider re-
garding a specific service and the quality of its delivery. This includes certain
characteristics of the service and its performance, but also information about
potential forfeits on non-fulfilment. With that, the service consumer has a
binding description of the features he will get, and the necessary background
information to monitor their performance. The service provider, in turn, has
an overview of the warranted service level and the necessary background in-
formation to guarantee compliance.

The essential parts of an SLA (Sturm et al, 2000) are:

contractor information

that is, verifiable identities of the signatories of the contract.

period of validity

including information about coming into effect and phasing out of the con-
tract.

scope

in the sense of statements regarding the obligations and non-obligations
of the service provider.

key performance indicators

that build the basis for deciding on fulfilment regarding the scope, includ-
ing details on the means of measurement.

objectives

that define valid ranges for the key performance indicators; these are also
called “Service Level Targets”.

means of sanctioning

if either of the signatories culpably violates the scope; these are also called
“penalties”.

statement of consent

for both parties to put the agreement into effect.

9.2 The Architecture of AoR 169

The notion of scope is in fact very broad, even for the already narrowed-
down use case of DCI federations: Obvious parameters with respect to fedSRM
and the algorithms presented in Part II are the number of resources to be
leased or a description of the job characteristics (such as number of requested
machines mj) to be delegated. In real-world scenarios, a natural candidate is
the pricing of a lease or a delegation. However, more intricate considerations
could be expressed as well: Data privacy law in many countries requires certain
protection for stored information being exposed to such services, to the extent
of determined physical locations requirements on the data centres. Here, we
will focus on the protocol level only and leave the scoping as an exercise of
creating an appropriate Domain Specific Language (DSL). For SRM, this has
been already done by Schwiegelshohn and Yahyapour (2004), who describe a
number of attributes that can be exploited by strategies.

The most widely adopted2 product for electronic SLA management and
negotiation is WS-Agreement (Ludwig et al, 2006). Its objective is to define
a language and a protocol for advertising the capabilities of service providers
and creating agreements based on templates and for monitoring agreement
compliance at runtime. WS-Agreement addresses all parts of SLA description
as part of its Extensible Markup Language (XML)-based document format,
provides a state model for the agreement, service, and guarantee terms, and
formulates a SOAP-based protocol for agreement negotiation and exchange.
With its negotiation extension, see Wäldrich et al (2011), it supports multi-
round negotiation and renegotiation capabilities next to simple “take it or
leave it” semantics3.

Because of the maturity of WS-Agreement, it is an ideal candidate for
addressing the SLA negotiation and agreement aspect within a DCI federation,
and we therefore choose to adopt it as the underlying technology for the
fedSRM protocol realisation.

9.2 The Architecture of AoR

Since WS-Agreement was designed with the SOA paradigm in mind, it is neces-
sary to make a number of adaptations in order to render its functionality over
a REST based protocol. This is mainly because of four fundamental principles
formulated by the ROA paradigm, see Fielding (2000):

Addressability of resources

Every resource in a ROA based model must be addressable; that is, each
resource has to carry a unique token that can be resolved to its location.
In most realisations, this is achieved by assigning each resource a Uniform

2 Others such as WSLA and SLAng enjoy some popularity as well, but do not
support negotiation.

3 The normative specification has been released by Andrieux et al (2007) for agree-
ments and by Wäldrich et al (2011) for negotiation.

170 9 Protocols for Negotiating Authoritative Agreements

Resource Identifier (URI) and a resolver service, or a directly addressable
Uniform Resource Locator (URL). The union of all URIs representing a
resource in the ROA then builds its namespace hierarchy.

Statelessness of requests

All requests performed on a resource must be stateless; that is, the client
cannot be expected to save any application context. Resources are man-
aged by the server only, and the client modifies the application state by
sending messages to the resource. Every request must be self-contained,
and the underlying operation must be consistent.

Uniform operations for resource manipulation

All resources (“nouns”) must expose a coherent set of operations (“verbs”).
This ensures a high degree of reusability on the client side, and ensures
that, in a distributed environment, communication is transparent for me-
diators in the system, as no application-specific knowledge is needed for
optimisations such as caching and proxying.

Hypertext As The Engine Of Application State (HATEOAS)

Every resource must provide references to related resources as part of its
representation when delivered to the client, and the reference must de-
scribe the type of the related resources. Apart from well-known starting
points, all other resources must be discoverable by only following such
references, regardless of the used representation format.

Addressability, although not being directly supported by SOAP, has
some resemblance in WS-Agreement already, as the protocol builds on the
Web Service Resource Framework (WSRF)4 which adds state to web services
and implicitly introduces a model of directly addressable resources with means
for the modification of their properties. Still, additional considerations regard-
ing the transformation of service instances to resources need to be made, as
REST assumes resource fragments, often called sub-resources to be addressable
as well.

Statelessness is more problematic: WS-Agreement has the notion of
“symmetric interaction” which requires the consumer side to implement its
interfaces as well. In this particular flavour, both sides are eligible for up-
dating the other’s negotiation and agreement resources in order to reflect a
synchronous state for the client and the server side. Obviously, this clashes
with the second requirement and needs to be replaced by a mechanism con-
forming to the ROA paradigm. We therefore choose to omit the symmetric
case in favour of interactive manipulation of negotiations and agreements.

Although the service operations exposed by WS-Agreement are complex,
uniformity of simple “verbs” can be still achieved. This is mainly because
it follows the Factory/Instance pattern (Gamma et al, 1994) for the manage-
ment of negotiations and agreements. Every time it is necessary to create a

4 As introduced by Foster et al (2005).

9.2 The Architecture of AoR 171

Table 9.1 The impact of the CRUD operational model on the namespace hierarchy
used in the context of AoR.

collection/ collection/entity

new instance of either of the two, the client calls the corresponding factory
service which creates a matching WSRF resource and returns its identifier.
We will reuse this concept for the ROA paradigm, as it maps nicely to the
Create/Retrieve/Update/Delete (CRUD) model proposed for REST. To this
end, we assume two general types of resources: collection resources and en-
tity resources. The former will act as the ROA implementation of the factory
service and the latter as the WSRF resource implementation. Table 9.1 shows
the impact of the fundamental CRUD operations proposed by REST on the
namespace hierarchy.

In order to adhere to the fourth principle, HATEOAS, the coupling be-
tween the resources must be loose, but discoverable. For collections of entities,
this is already solved by the Retrieve operation described in Table 9.1. For
the relations between entities, we assume links on the architecture level and
discuss their realisation in the context of the resource and representation de-
sign.

With these principles at hand, we propose the overall architecture of AoR as
depicted in Figure 9.1. There exist collections and entities for the management
of negotiations and agreements, and as a means for bootstrapping the process,
each of the two allow the handling of templates. The well-known entry points
to the system are the collection resources, and the associations describe the
relation structure. As discussed previously, this model allows us to follow
the factory/service pattern in the AoR operational model as well: For both

172 9 Protocols for Negotiating Authoritative Agreements

Fig. 9.1 Schematic depiction of the general architecture of AoR, based on the
corresponding patterns used in WS-Agreement. The three components are directly
exposed to the consumer and can be used as a coherent system. Because of the
HATEOAS principle, the different components can be implemented as distributed
services, as the coupling between each is kept loose, by referrals through resolvable
URIs.

negotiation and agreement, a factory operation is executed first (steps 1 and
3) which yields an instance of the service instance to be manipulated (steps
2 and 4), and while the factory part binds to collection resources, the service
part binds to entity resources.

All operations for manipulating them are mapped to one of the CRUD
primitives described in Table 9.1. Following the REST paradigm, resources
can be rendered in different ways, denoted by a media type. The conveyance
of media type information is part of the transport protocol; in the case of
HTTP, this is implemented through MIME content type definitions.

9.2.1 Resources

Resources build the foundation of every ROA. For AoR, we group them along
the components described in the previous section, and adopt their internal
structure from the XML document model of WS-Agreement.

The overall structure of resources and their relations are depicted in Fig-
ure 9.2, and their meaning and relationship is detailed in the following sections.
In the UML model, specialised associations, i.e. aggregations and compositions,
imply forward links from the whole to its parts and vice-versa, undirected as-
sociations model mutual links without hierarchical implications, and directed
associations model navigable links without back references.

9.2 The Architecture of AoR 173

Fig. 9.2 Structure and relation of collections and entities in the AoR resource
model. The different types are grouped along the two main use cases, negotiation
and agreement, and relationships between them indicate HATEOAS coupling.

Agreement

Following the data model of WS-Agreement, all agreement-related resources
comprise three basic parts:

metadata

Every agreement has an identifier and a name. We expose both as sub-
resources of a Metadata resource. The identifier is immutable and must
be unique, while the name is for readability purposes and can be changed
by the client. The identifier is not necessarily equal to the agreement
resource’s URI and thus not necessarily needed for AoR, but kept for com-
patibility reasons.

context

The Context of an agreement denotes information about the signatories’
identity and contract validity, i.e. expiration time. While the identity part
will usually require the usage of digital signatures using X.509 certificates
or similar means, the technology for this is specific to the rendering and
therefore out of scope.

174 9 Protocols for Negotiating Authoritative Agreements

terms

Here, the terms of agreement are exposed. In addition to the descriptions
of services and guarantees for their quality, this also includes associated
business values. The Terms resource is a collection resource, comprising a
set of addressable Term resources, which are domain-specific.

Templates

The Templates collection contains the set of available templates that are
generally available at the provider. Each individual template is modelled as
a Template sub-resource and, in addition to the basic parts, may expose
constraints for client customisation. These are kept in the Constraints sub-
collection, and its elements are Constraint sub-resources.

Drafts

The Drafts collection provides a workspace for the client to interactively
modify agreements before entry into force. Drafts have no resemblance in
WS-Agreement, and were added to compensate for the lack of symmetric
agreement handling in AoR: They allow the client to “work” on an SLA draft
until ready for agreement, and eventually ask for consent by the server. This
way, functionality of symmetric agreement handling is retained, while the
client can be kept stateless. If the server cannot be trusted for managing the
draft workspace, the HATEOAS principle allows it to reside on a trusted third
party system as well. Every Draft contains only the basic parts, and a relation
to the template it was derived from.

Agreements

The Agreements collection models the set of agreements that have come into
effect, including operative, rejected, terminated and completed ones. Depend-
ing on the application, it may be necessary from a regulatory point of view to
keep past agreements accessible; the decision on removal is therefore domain
specific and out of scope. If the agreement is based on a template, its Context
contains a relation to it.

The aforementioned state of an agreement is modelled by a corresponding
State sub-resource. This unmodifiable collection contains two sub-resources,
namely Guarantees and Services. The State resource exposes the current
state along the state model depicted in Figure 9.3. There, an agreement can
be Pending (the agreement is not yet in effect), Observed (the agreement
is in effect), and Rejected (the agreement cannot come into effect), with
corresponding transition states for the former two (e.g. for long-running oper-
ations). Moreover, an agreement can be Terminated (the agreement ended
before fulfilment, with the consent of both parties) or Complete (the agree-
ment ended after fulfilment).

9.2 The Architecture of AoR 175

Fig. 9.3 State machine for agreement resources in AoR resource model, following
the original states in the WS-Agreement specification.

Negotiation

Negotiations, as defined in the corresponding part of WS-Agreement, can be
handled in a simpler way than agreements. We therefore distinguish only two
basic resource types for the implementation in AoR. As a commonality, both
resources feature an expiration date indicating that, after a certain point in
time, either of the parties is not interested anymore in further pursuing the
negotiation.

Offers

The Offers collection contains all offers that have been made by either party
within the corresponding negotiation. Each Offer comprises the basic parts
of an agreement, namely metadata, context, and Terms, and holds a number
of domain-specific negotiation Constraints, see Section 9.2.1. In addition, it
relates to the underlying Template, if appropriate.

Every offer has a state within its corresponding state model, see Figure 9.4.
The states have the following semantics:

Advisory

indicates that further negotiation is necessary before the creator of the of-
fer is willing to accept the current agreement draft.

Solicited

indicates that the creator of the offer wishes to converge toward an agree-
ment. Any counter-offer to a Solicited offer must be either Acceptable

or Rejected.

176 9 Protocols for Negotiating Authoritative Agreements

Fig. 9.4 State machine for offer resources in AoR resource model, following the
original states in the WS-Agreement specification.

Acceptable

indicates that the creator of the offer would be willing to accept the cur-
rent agreement draft without further changes.

Rejected

indicates that the current offer/counter-offer path in the negotiation must
not be pursued any more by either of the parties, as an agreement is
unlikely to be reached.

Negotiations

The Negotiations collection models the set of negotiations that have come
into effect, see Section 9.2.1. Each negotiation comprises Metadata and
Context and exposes relations to the negotiation participants5. In case of
a renegotiation, a relation to the original Agreement resource is also included.
Finally, a negotiation resource keeps an Offers sub-resource containing all
offers made so far.

9.2.2 Representation

So far, the structure of the resources involved in AoR has been defined, but
their concrete representation is still missing. While for resources such as
Context or Metadata, this is either not possible (since they are domain spe-
cific) or not necessary (as they comprise a primitive data type), it is crucial
for others.

In general, we assume content negotiation for requests and responses
within the AoR protocol. This allows us to represent all collection resources
by exposing them as lists of URIs, using the text/uri-list Multipurpose In-
ternet Mail Extensions (MIME) media type as described in RFC 2483. Besides

5 In the WS-Agreement concept, this is the Negotiation Initiator and Negotiation
Responder.

9.3 Rendering of the Protocol 177

this, we expose the top-level resources available in WS-Agreement, namely
Template, Agreement, and Negotiation, as their XML representation as de-
fined in the original specification, using application/xml as media type.

For the domain specific parts, we do not make any assumptions on their
concrete representation. This is not necessary anyway, as content negotiation
allows the client to request those representation formats that he understands.
Naturally, this poses a problem with relations between domain-specific re-
sources. To address this issue, we leverage the HTTP Link header as specified
in RFC 59886: With that, we can render relations between resources inde-
pendently from their representation format. This way, it is possible to have
service references within domain specific Terms as required by the original WS-
Agreement specification. The expirations required for the negotiation part are
rendered through the HTTP Expires header.

As a side effect of the content negotiation model, AoR can support ar-
bitrary representation types without any changes to the resource model or
interaction protocol. For example, the state of an agreement can, besides
its primitive representation as an enumeration item, be exposed as a his-
tory of changes by implementing support for the Atom syndication format
as published in RFC 4287. Another use case is to provide rich web based
views through Hypertext Markup Language (HTML) representations of cer-
tain resources; in conjunction with client side technologies such as AJAX (see
Eernisse, 2006), it is even possible to deliver browser clients for interaction.

9.3 Rendering of the Protocol

Like the vast majority of ROAs, we follow the recommendation of Fielding
(2000) and render our RESTful protocol over HTTP (RFC 2616). This enables
us to directly translate the CRUD verbs described in Table 9.1 into HTTP
requests, namely POST, GET, PUT, and DELETE. To indicate the success or failure
of requests, we reuse HTTP status codes.

As an optimisation, we further allow the HEAD request, which only returns
the header data. In conjunction with the afore discussed Link header approach,
this allows clients to discover the resource space along the HATEOAS principle
without having to retrieve a full resource representation on each request.

It is noteworthy that this feature must be used with care: Proxies and other
intermediates are allowed to discard HTTP headers, if necessary7, and the size
of the full HTTP header is limited. Most implementations allow a total length
between 8 Kbytes and 64 Kbytes, but since the number of headers used for
the linking model is limited to a few per resource, this concern is secondary.

In the following, we discuss the different use cases for negotiation and
agreement and illustrate the protocol for conducting them with examples of

6 All noted Requests for Comments (RFCs) are published by the IETF and are
available at http://www.ietf.org/rfc.html.

7 Although in practice this is seldom the case.

178 9 Protocols for Negotiating Authoritative Agreements

Fig. 9.5 Schematic depiction of a negotiation and agreement session’s protocol
steps in AoR. With the client side being stateless, a session can be suspended and
resumed at any time, thereby allowing for parallel negotiations. With the creation
(and acceptance) of an Agreement resource in steps 7 and 8, the SLA is put into
effect and binds both signatories.

9.3 Rendering of the Protocol 179

requests and responses in HTTP. For the content type of domain specific frag-
ments, we use the Java Script Object Notation (JSON), see RFC 4627, with its
corresponding media type application/json. An abstract view on the pro-
tocol for the whole process described in the following is shown in Figure 9.5;
the steps in the protocol are detailed in the following.

9.3.1 Negotiation

To start a negotiation session, the client sends the server a request to create
a new Negotiation resource (step 1 in Figure 9.5). Following the model de-
scribed in Table 9.1, this is done via POSTing to the Negotiations collection,
with the corresponding Link and Expires headers:
1 > POST /negotiations/ HTTP/1.1
2 > Link: <http://client.example.com>; rel="aor-initiator"
3 > Link: <http://server.example.com>; rel="aor-responder"
4 > Link: <http://server.example.com/templates/de0f11>; rel="aor-template"
5 > Expires: Sun, 24 Jun 2012 16:00:00 GMT

7 < HTTP/1.1 201 Created
8 < Host: server.example.com
9 < Location: /negotiations/6d73b2

In the background, the server will create an initial offer as a sub-resource of the
newly created negotiation resource (step 1.1 in Figure 9.5); this offer is built
by using the provided aor-template link the client has used to indicate on
which template to base the negotiation (l. 4) and expires after a certain time
period (l. 5). If the POSTed negotiation request refers to an existing agreement,
i.e. for re-negotiation purposes, the client adds an additional link header with
rel=aor-agreement that points to the corresponding Agreement resource.

The server is free to defer the decision on whether to negotiate. In that
case, the reply carries the status code 202 Accepted instead. Either way,
the server returns the location (l. 9) of the newly created resource (step 2
in Figure 9.5). When the client then performs a GET on the Location target,
the server replies with 304 Not Modified until the decision has been made.
In the negative case, the server replies with 403 Forbidden.

The client can also list the negotiations (l. 1) that have come into effect.
As this is a request to a collection resource, the server will reply with a list of
negotiation resources (ll. 7–9) visible8 to this client:
1 > GET /negotiations/ HTTP/1.1

3 < HTTP/1.1 200 OK
4 < Host: server.example.com
5 < Content-type: text/uri-list
6 <
7 < http://server.example.com/negotiations/6d73b2
8 < http://server.example.com/negotiations/07dfbe
9 < http://server.example.com/negotiations/1edd2e

8 In most cases, this list will not comprise all negotiations, but only those the client
is supposed to see because of Access Control Lists (ACLs) or multi-tenancy.

180 9 Protocols for Negotiating Authoritative Agreements

Now the client can examine a specific negotiation. Again, he will run a GET
operation on one of the locations indicated by the previous reply (ll. 1–2):
1 > GET /negotiations/07dfbe HTTP/1.1
2 > Accept: application/json

4 < HTTP/1.1 200 OK
5 < Host: server.example.com
6 < Content-type: application/json
7 < Link: <http://client.example.com>; rel="aor-initiator"
8 < Link: <http://server.example.com>; rel="aor-responder"
9 < Link: <http://server.example.com/templates/de0f11d>; rel="aor-template"

10 < Link </negotiations/07dfbe/terms/>; rel="aor-terms"
11 < Link </negotiations/07dfbe/offers/>; rel="aor-offers"
12 < Link </negotiations/07dfbe/offers/e115e8>; rel="current"
13 < Expires: Sun, 24 Jun 2012 16:00:00 GMT
14 < Cache-control: no-cache
15 <
16 < {
17 < "metadata" : {
18 < "identifier" : "07dfbe",
19 < "name" : "Example Negotiation"
20 < },
21 > "context" : {
22 < "initiator" : "...",
23 < "responder" : "..."
24 < }
25 < }

Here, the representation contains a flattened rendering of the Metadata and
Context sub-resources as part of the response body (ll. 16ff.). It is noteworthy
that a Cache-control header (l. 14) is returned indicating that the reply must
not be cached. The server provides this value in spite of the Expires header
(l. 13), because AoR extends the semantics of the latter to the resource rather
than only the content of the reply. The server further indicates that, besides
the original information submitted by the client on creation of the agreement
(ll. 7–10), a collection resource offers/ exists (l. 11), and the current (latest)
offer can be found under the provided URI (l. 12).

By listing the latter, the client can fetch the URIs of the corresponding
offers and query them individually:
1 > GET /negotiations/07dfbe/offers/cce50a HTTP/1.1
2 > Accept: application/json

4 < HTTP/1.1 200 OK
5 < Host: server.example.com
6 < Content-type: application/json
7 < Link </negotiations/07dfbe/offers/c09fc2>; rel="prev"
8 < Link </negotiations/07dfbe/offers/e716db>; rel="next"
9 < Link </negotiations/07dfbe/offers/e115e8>; rel="next"

10 < Expires: Sun, 24 Jun 2012 16:00:00 GMT
11 < Cache-control: "no-cache"
12 <
13 < {
14 < "metadata" : {
15 < "identifier" : "cce50a",
16 < "name" : "Example Offer"
17 < },
18 > "context" : {
19 < "initiator" : "...",
20 < "responder" : "..."
21 < },

9.3 Rendering of the Protocol 181

22 < "state": "ADVISORY",
23 < "terms": {
24 < ...
25 < }
26 < }

The server response in this case again contains a flattened representation of
the offer and its sub-resources, including the current state of the negotiation
following the state model described in Section 9.2.1. More importantly, it
expresses ancestry relations to other offers: The Link header with the prev
relation points to an offer this one is based on, and the Link headers with a
next relation points to offers based on this one9. With that, clients are able
to discover the complete offer tree.

In order to proceed with the negotiation process, the client can create a
new offer (step 3 in Figure 9.5) or update an existing one’s terms (step 4
in Figure 9.5); here, basic POST and PUT operations as described in Table 9.1
are used. In any case, a representation of the modified offer resource is returned
(step 6 in Figure 9.5).

9.3.2 Agreement

In order to eventually converge to an agreement, clients can either under-
take the negotiation process as described in Section 9.3.1, or directly use
available standard offerings. These are provided as templates which describe
commoditised service levels the server is willing to provide to clients without
a convergence process.

In this case, the client starts with selecting an agreement template from
the list of available templates (ll. 1, 11):
1 > GET /templates/ HTTP/1.1

3 < HTTP/1.1 200 OK
4 < Host: server.example.com
5 < Content-type: text/uri-list
6 <
7 < http://server.example.com/templates/4102e8
8 < http://server.example.com/templates/28ff42
9 < http://server.example.com/templates/df61d7

11 > GET /templates/df61d7 HTTP/1.1
12 > Accept: application/wsag+xml

14 < HTTP/1.1 200 OK
15 < Host: server.example.com
16 < Content-type: application/wsag+xml
17 <
18 < <?xml version="1.0" encoding="UTF-8"?>
19 < <Template
20 < xmlns="http://schemas.ogf.org/graap/ws-agreement/2011/03"
21 < TemplateId="df61d7">
22 < <Name>An Example Template</Name>
23 < <Context>...</Context>

9 To ensure that the relations are dependable, offers cannot be modified after cre-
ation.

182 9 Protocols for Negotiating Authoritative Agreements

24 < ...
25 < </Template>

At this point, WS-Agreement requires a “take-it-or-leave-it” approach: The
client sends a request to the server containing the proposed agreement, and
the server either accepts or rejects this proposal. This is mainly due to the
SOA paradigm, as the agreement procedure is conducted through a service
model. AoR is resource-oriented instead, and this allows us to make the cre-
ation of the agreement interactive. As such, the server provides the client with
an additional collection resource called drafts with no special properties un-
der which he is allowed to create (ll. 1–2) and stepwise modify (ll. 8–13) an
agreement draft until ready for the binding step:
1 > POST /drafts/ HTTP/1.1
2 > Link </templates/df61d7>; rel="aor-template"

4 < HTTP/1.1 201 Created
5 < Host: server.example.com
6 < Location: /drafts/2f79ac

8 > POST /drafts/2f79ac/terms/ HTTP/1.1
9 > Content-type: application/json

10 >
11 > {
12 > "availability": "0.99"
13 > }

15 < HTTP/1.1 409 Conflict
16 < Host: server.example.com

In this example, the creation of the agreement draft succeeded (ll. 4–6), but the
addition of a term failed due to a conflict with statements in the Constraints
collection resource, which is indicated by the corresponding HTTP status code
(ll. 15–16). In contrast to the negotiation process, the server does not propose
any alternatives, but only indicates that certain modifications of the template
are not acceptable. Most importantly, the server is not allowed to modify the
draft resource independently; only the client is allowed to make changes. As
such, the drafts collection should not be seen as a simple replacement for
negotiation, but rather as an orthogonal functionality that provides interactive
creation.

Regardless of whether starting from a negotiation that has converged to-
wards an acceptable offer or a draft that is sufficiently concretised from both
the client and the server perspective, the final step of binding must be per-
formed (step 7 in Figure 9.5). To this end, the client indicates to the server
that he wishes to make a binding agreement (l. 1):
1 > POST /agreements/ HTTP/1.1
2 > Link </drafts/2f79ac>; rel="aor-draft"

4 < HTTP/1.1 202 Accepted
5 < Host: server.example.com
6 < Location: /agreements/a5f24a

In the depicted case, the client has referred to the previous draft for creation
(l. 2), and the server has accepted the agreement for evaluation, but has not

9.4 Evaluation 183

finally decided upon it (l. 4); the State of the agreement is therefore Pending

with respect to the model in Figure 9.3, and the agreement is considered
binding for the client. If the server replies with 201 Created instead, the
agreement is directly binding for both parties (step 7 in Figure 9.5) and the
agreement state is Observed. In either case, the reply contains a location (l.
6 and step 8 in Figure 9.5). If the proposed agreement is not acceptable10, the
server replies with 403 Forbidden. For starting from a converged offer (i.e.
an offer in the Solicited state) as part of a negotiation, we simply change
the Link header from rel="aor-draft" to rel="aor-offer" and refer to the
corresponding resource (l. 2).

Note that in both cases the request body is empty, as we refer to an already
existing draft or offer. If the client has stored available agreement proposals
locally (e.g. from previous requests), he can also directly ask for binding:
1 > POST /agreements/ HTTP/1.1
2 > Content-type: application/wsag+xml
3 >
4 > <Agreement
5 > xmlns="http://schemas.ogf.org/graap/ws-agreement/2011/03"
6 > AgreementId="c504d9">
7 > <Name>An Example Agreement</Name>
8 > <Context>...</Context>
9 > ...

10 > </Template>

12 < HTTP/1.1 201 Created
13 < Host: server.example.com
14 < Location: /agreements/c504d9

Again, the agreement is binding for both sides, its state is Observed, and
the terms can be examined by corresponding GET operations (steps 9 an 10
in Figure 9.5).

Terminating an agreement corresponds to requesting a transition of its
State resource to Terminated, using a PUT request. If the request is ac-
cepted, the response is 200 OK or 204 No Content. Otherwise, if rejected,
this is expressed with 403 Forbidden; a domain specific reason can be sup-
plied as message body. The decision can also be deferred, resulting in an imme-
diate state transition to ObservedAndTerminating or PendingAndTer-

minating, a 202 Accepted response, and a later transition to Terminated

or back to the original state.
Termination requests for Rejected or Complete agreements are rejected

with 409 Conflict; likewise, any transitions to other states than Termi-

nated are rejected with 403 Forbidden.

9.4 Evaluation

For the AoR, we do a qualitative evaluation only, and focus on two main ques-
tions: to which extent the REST approach introduces limitations compared
10 For example, because mandatory fields are missing, or the server is not able to

fulfil the service terms.

184 9 Protocols for Negotiating Authoritative Agreements

to the original protocol, and how the new protocol integrates with already
existing RESTful systems.

9.4.1 Limitations

Although the overall interaction model of WS-Agreement can be properly
translated to the ROA paradigm, we did not consider two important aspects.

The first is related to the missing feedback channel towards the client:
With the HTTP primitives only, a push-based model for notifying the client on
changes on the server side cannot be realised. One option to workaround this
issue is the use of HTTP polling: Since HEAD operations are cheap, the client
can repeatedly ask whether the resource has changed, and fetch the full rep-
resentation only if this is the case. This approach is very common in RESTful
systems, and well supported by the HTTP protocol through the ETag header.
Furthermore, it can be supported by feed formats such as Atom, see RFC 4287,
which allow the server to additionally indicate what has changed.

The second is related to the requirement of electronic signatures for legally
binding SLAs. While SOAs support this natively through XML and SOAP11,
RESTful systems have no corresponding mechanism integrated. It is however
possible to detach the signatures from the document itself, store them as
separate resources on the server (or a trusted third party), and link back to
the original agreement. Still, no standard protocols and formats are available
to do this, and implementation support is very limited.

9.4.2 Integration

Since SLAs do not exist independently of the service they describe, it is not
only reasonable to expect an SLA instance to contain a reference to the service,
but also vice-versa. This integration is, thanks to the resource-centric model,
very simple: The service provides a back reference to the SLA as part of its
response message to the client. For this, we have two options. First, we can
use the Link header model:
1 > GET /service/bd1f82 HTTP/1.1
2 > Content-type: text/html
3 >
4 < HTTP/1.1 200 OK
5 < Host: server.example.com
6 < Link: </agreements/c504d9>; rel="aor-agreement"
7 <
8 < ...

Here, the server indicates that a certain service instance is covered by
the agreement referred to within the link. The other option is a virtual sub-
resource of the service, e.g. /service/bd1f82/agreement, which has no con-
tent by itself but produces a 301 Moved Permanently response, redirecting
the client to the original agreement. While the first approach is more concise,
11 Using WS-Security as described by Naedele (2003).

9.5 Related Work 185

the second is easier to implement: The link header approach requires to incor-
porate this information into the ETag computation of the resource itself to be
cacheable; the sub-resource approach only requires the handling of a virtual
URI in the resource namespace, and caching is handled transparently through
HTTP.

9.5 Related Work

A number of projects employ SLAs in their architecture: PHOSPHORUS (Eick-
ermann et al, 2007) makes use of SLAs to manage co-allocation of resources
from the compute and network domain for traditional HPC job scenarios which
require dedicated QoS parameters. BREIN (Schubert et al, 2009) aims to
support outsourcing for an increased competitiveness of SMEs by enhanc-
ing classical IaaS scenarios with a standards-based environment for eBusiness,
including SLAs, to allow for provision and sale of services.

Regarding SLA languages and protocols, only WS-Agreement is currently
under active development and uses a broad approach to SLAs. Other languages
like SLAng (Lamanna et al, 2003) and WSLA have been developed as well,
but they are not well-established and support therefore ceased. As such, most
projects and efforts (including the ones listed above) base on WS-Agreement,
however focus on working the business requirements rather than introducing
new ideas to the protocol level.

Only little effort has been put into the RESTful world so far besides the
work from Kübert et al (2011), who propose a direct transformation of WS-
Agreement to a REST-based interface. They describe how the entities in the
WS-Agreement specification can be mapped to a RESTful interface; however
their approach does not incorporate the protocol part for interactive agree-
ment creation, and does not address negotiation.

10

Standards for Differentiated Resource
Provisioning1

I do very few standards. Hardly any. I do a couple
of Duke Ellington tunes that are well known.

—Mose Allison

With the mechanisms for negotiating agreements between the par-
ticipants in a DCI, the first part of fedSRM is largely set. Still, a
unified interface that allows to expose resources from the service

provider side, and provision them from the service consumer side, is missing.
Today’s cloud ecosystem impressively proves the need for an open means

of describing, provisioning, and accessing resources, as the requirement for
dynamically adding them to a federated environment raises. This is mainly
because we consider a young market: Offerings change quickly and often,
and the risk of providers being ephemeral must be mitigated by allowing
consumers to switch providers. Several projects aim to provide a single API for
the plethora of proprietary service provider interfaces, and the most popular
of ones follow a proxy pattern approach.

The increasing number of providers on the market makes it reason-
able to question this approach: Besides the aspects if latency and cost of
ownership, see Section 8.1.2, issues around intellectual property arise, and
the coupling of interface definition and implementation is disputable. Due
to the current lack of serious alternatives—with the notable exception of
DMTF’s early Cloud Infrastructure Management Interface (CIMI) draft (see
http://dmtf.org/standards/cloud for an overview of the working group’s
activity and a non-normative interface primer)—we make an attempt towards
an open standard for provisioning in “as-a-Service” environments called Open
Cloud Computing Interface (OCCI). With that, we close the final gap towards
a federated architecture blueprint for DCIs as denoted in Section 8.1.2: the
provisioning of delegated workload and leased resources. While the latter is
an inherent capability of the original OCCI standard, we demonstrated the
former through the rendering of a job submission over the OCCI protocol and
interface.

1 Parts of this chapter are based on an article in the IEEE Internet Computing in
July 2012. The corresponding publication, see Edmonds et al (2012), is available
at http://ieeexplore.ieee.org.

188 10 Standards for Differentiated Resource Provisioning

10.1 The Architecture of OCCI

Any attempt to standardise interfaces for commercial IT service offerings has
to cope with the field of tension between unification and differentiation: While
from the standardisation point of view, the agreed interface should be alike
for all service providers, each vendor naturally strives for a way to expose his
unique features and ensure customer retention.

With the OCCI, we aim to address both aspects by providing a unified API
while at the same time offering a means for extensible, discoverable capabili-
ties. To achieve this, we stipulate three main design goals:

Discoverability

Service consumers can query the service provider to find out what capabil-
ities are available. The information is self-describing and complete. If the
service consumer is a broker, it can request that multiple service providers
describe what is offered and then choose from among them.

Extensibility

Because Cloud computing spans a broad set of offerings, from infrastruc-
ture to applications, the OCCI specification allows service providers to
extend the API to cater their specific needs while allowing service con-
sumers to discover these extensions at the same time.

Modularity

Because of its extensibility, OCCI must be modular. Indeed, even the dif-
ferent components of OCCI should not unnecessarily mandate the use of
unrelated parts. Instead, each component should be usable individually,
or be replaced as the situation requires.

The former two requirements necessitate a general description for resources
and capabilities that features extension points. The latter requirement imposes
structure in terms of the separation of concerns. We therefore start with the
creation of an API-independent model.

10.1.1 Core Model

With the core model for OCCI (Behrens et al, 2011a) we introduce a general
means of handling general resources, providing semantics for defining the type
of a given entity, interdependencies in between different entities, and operating
characteristics on them.

The core model can be separated into two distinct parts, namely the meta
model and the base types. The different components of the core model as
shown in Figure 10.1 are described in the following.

Meta Model

In order to address the requirement of extensibility, we introduce a type system
as the meta model. This ensures that each resource in the OCCI namespace

10.1 The Architecture of OCCI 189

Fig. 10.1 Relationships of the different core components in the Open Cloud Com-
puting Interface. Note the separation into base and meta model below and above the
dotted line. The former describes the base types of the OCCI type system, introduc-
ing the base Entity class, whereas the latter comprises the descriptive framework
within the model that allows introspection into model instances.

has a common way of defining its capabilities (attributes, actions, and so
on). The foundation for these descriptive types is the Category. Categories
are freely definable and uniquely identifiable using a term and a scheme, e.g.
http://example.com/category/scheme#term. They can relate to each other
and thereby define a hierarchy.

Using categories, however, we only define a general type and build the
basis for discoverability, but do not directly impose structure to resources.
For this purpose, we introduce the first specialisation of it: the Kind. Each
resource instance will have one Kind2 that is defined by a category in the OCCI
model. A Kind is immutable and specifies the characteristics of a resource,
which include its location in the hierarchy, assigned attributes, and applicable
actions. Kinds are mandatory and singular to each resource. This way, we

2 In that sense, a Kind is very similar to the Class type in the Java™ language.

190 10 Standards for Differentiated Resource Provisioning

enforce a base classification of each instance in the OCCI system and ensure
static capabilities at design time.

With Kinds only, it is however hard to let resources assume certain char-
acteristics during runtime. We address this by introducing an additional com-
ponent into the meta model: the mixin. A mixin is a way of dynamically
manipulating a resource instance’s capabilities. We can think of mixins as a
way to inherit additional capabilities by composition as described by Gamma
et al (1994). This concept can be found in many modern programming lan-
guages3 and allows for bundling reusable features. Each OCCI resource can
have zero or more mixins. An OCCI mixin also has a set of capabilities such
as its location in the URI hierarchy, applicable actions, and attributes. This
means that a resource instance’s capabilities can be altered over time. We
also leverage mixins as a templating mechanism in OCCI by defining tem-
plates as mixins that can be applied to resource instances, which then assume
the template’s characteristics. Finally, we use mixins in OCCI to tag resource
instances for enabling folksonomic organisation (see Peters and Stock, 2007).

With the ability to describe resources comes the need for manipulating
them. In the meta model, we allow for two interaction mechanisms: one
resource-centric, and one operation-centric. The resource-centric CRUD fun-
damentals, as introduced with AoR in Section 9.2, are complemented by their
operation-centric counterparts, the Actions, which denote complex operations
on a resource that are difficult to model with the resource-centric primitives.
In contrast to the CRUD operations, which are an integral part of every re-
source, we make Actions artefacts of their own; thus, they expose a Category
and are attached to either a Kind or a Mixin. This way, we allow Actions
to have specific arguments that are defined as part of their Categories, while
CRUD operations are limited to the resource’s representation as their single
parameter.

Base Types

In order to build a starting point for the development of new resource types
within the core model, we define two fundamental types in OCCI, namely
Resource and Link. Both inherit from the abstract Entity that serves as a
foundation type to enforce the correct usage of the meta model.

Resource represents the resources that are exposed to the service consumer.
Essentially, they are abstractions of the service provider’s backend model ex-
posed through the underlying resource management framework. Keeping in
mind that the core model imposes inheritance through relation, any resource
sub-type exposes at least three Kinds: its own, one from Resource, and one
from Entity. Link allows to create a typed association between resource en-
tities. A link is a directed association between two resources, but because

3 Scala, Ruby, and Objective-C support mixins out of the box.

10.1 The Architecture of OCCI 191

we derive it from an entity, it is also a resource itself and, as such, can be
manipulated in the same way.

A side effect of the inheritance from Entity is that we are able to group
resources of the same Kind. In the OCCI core model, we leverage this by-
product as an integral feature: Entity instances associated with the same
Kind automatically form a collection, and each Kind identifies a collection
consisting of all of its Entity instances. Collections are navigable and support
the retrieval of a specific item, any subset, or all entries.

Discovery Model

Through the query interface, we allow service consumers to find all categories
that are usable in a service provider’s namespace. It exposes all registered cat-
egories and their corresponding hierarchy and describes how each individual
category is composed (such as its capabilities and so on).

Because of this, Kinds and Categories that are supported by a particular
service provider can be discovered. By examining them, a client is enabled
to deduce the Resource and Link types a service provider offers, including
domain-specific extensions, the attributes they expose, the invocable opera-
tions on them4, and additional mixins a Resource or Link can currently as-
sume. Categories in the query interface can of course be filtered and searched
for.

10.1.2 Infrastructure Extension

With the infrastructure model (Behrens et al, 2011b) we define an extension
to the core model that describes entities in the IaaS domain. In the context
of the core model, it introduces a set of resources with their capabilities and
defines how to link those resources together if required.

The infrastructure specification describes three kinds, which can be used
to create instances of compute, storage, and network resources. Figure 10.2
shows how these entities relate to their corresponding parts in the core model.
In the extension, we further specify links between resources, such as a com-
pute instance that links to a layer 2 network router5. Another example is
attaching a storage resource—for example, a database, or block device. This
approach is also helpful when mashing up with other standards: For instance,
OCCI accomplishes interoperability with the Cloud Data Management Inter-
face (CDMI) through its linking mechanism as described by Edmonds et al
(2011a).

Basing on the core model, we allow service consumers to apply mixins to
some of the described infrastructural entities. We mainly use this feature with

4 I.e. the Actions related to it through its Kinds or Mixins
5 Following the Open Systems Interconnection Reference Model (OSI), see Zimmer-

mann (1980).

192 10 Standards for Differentiated Resource Provisioning

Fig. 10.2 Relationships of the infrastructure components in the Open Cloud
Computing Interface. On the left side, the types denote a service provider’s physical
resources (such as a compute resource instance); on the right side, ephemeral entities
are described. (for example, a storage mount point).

Fig. 10.3 Relationships between different mixins in the infrastructure extension of
the Open Cloud Computing Interface. The upper resource, net1, depicts a physical
network without OSI layer 3 capabilities. The lower resource, net2, attaches an
IPNetwork mixin that adds these capabilities — in this case, a network address, a
gateway, and an allocation.

network-related entities in order to give them OSI layer 3 and 4 networking
capabilities6; this concept is illustrated in Figure 10.3. By dynamically adding
an IPNetwork mixin to the Network resource, we add extra capabilities to the
resource instance. Note we can bind multiple mixins to a single resource,

6 If we stayed on the resource level without linking, such entities would repre-
sent only layer 2 networking entities, which are not particularly useful for inter-
networking.

10.2 Delineation from the Proxy Approach 193

and—because they are entities themselves—we can add mixins to links as
well.

The categories hierarchy ensures that only mixins relevant to the resource
instance in question can be added. This way, service consumers and providers
are limited to adding a mixin to a resource instance that is in the mixin’s
hierarchy; we thereby ensure that applying networking mixins to a StorageLink
is not possible. Because the hierarchy itself is not limited, mixins can however
build on other mixins.

10.2 Delineation from the Proxy Approach

OCCI resides on the boundary between the resource management framework
and the service consumer. It is not a “Web-API-to-Web-API” proxy pattern,
such as those used in DeltaCloud7 or libcloud8. Although a proxy pattern
offers flexibility, it also affects latency and manageability: The proxy pattern
is another level of indirection, so requests to or from a client incur an additional
delay. Moreover, the software implementing the proxy pattern is another entity
to manage and maintain. Finally, proxy pattern systems implement support
for various providers through drivers: If one provider changes its interface,
the driver within the implementing proxy software must also be updated, and
with multiple providers being present, the maintenance requirement again
increases.

Fig. 10.4 The Open Cloud Computing Interface as a replacement for proxy-
based API approaches. Here, we see the overhead of an additional software (or even
middleware) layer in the process, adding overall latency and, more importantly,
maintenance costs per additional driver.

7 See http://deltacloud.apache.org/.
8 See http://libcloud.apache.org/.

194 10 Standards for Differentiated Resource Provisioning

Using OCCI as the interface to the resource management framework re-
moves the need for proxies and drivers, see Figure 10.4. We should thus view
proxies as a temporary solution to support cloud operators wishing to ex-
pose proprietary, legacy interfaces. With OCCI, we enable resource manage-
ment through a standardised API that directly targets a resource management
framework-specific API; this is quite different in intent from proxy-style frame-
works. Also, we reduce the amount of indirection and abstraction required to
get to the final target resource management framework.

Overall, this enables system architecture optimisation by bringing the API
closer to the managed resources: We avoid additional dependencies and inef-
ficiencies9, and reduce the overall management and maintenance necessities
for system components.

10.3 Usage of Web Technologies

With the OCCI HTTP specification (Edmonds et al, 2011b) we define how the
core model and its extensions can be transported over the wire. When im-
plemented and deployed, OCCI uses many of today’s available HTTP features.
It builds on the ROA paradigm and uses REST to handle the client and ser-
vice interactions. Additionally, it defines ways to filter and query the service
provider. Each entity (that is, resources and links) is exposed through URIs.
To manage these resources, service consumers can use the normal set of HTTP
verbs (POST, GET, PUT, and DELETE), as they directly map to the meta model’s
CRUD paradigm. This way, they can alter resource instances by updating their
representation.

For other than primitive operations in HTTP-based architectures, Bray
(2009) notes the necessity of controller functions for REST-based protocols:
Like all requests that reflect an update of a resource instance using HTTP
PUT, updating a resource should be idempotent. This means that repeated
requests against a resource will always have the identical output result and
effect on the system. Triggering operations such as shutdown, however, might
lead to halting, killing, or suspending. Naturally, the result of the operation
cannot be identical to the request in such a case, due to the transition in state.
We adopt this viewpoint in OCCI through the notion of actions, triggered by
the HTTP POST verb, which lead to different state changes in a life cycle.

Actions within the OCCI model can have parameters and, as detailed in the
core model, are exposed using a category definition, are therefore discoverable,
and can be associated with resource instances. Service consumers can use
such a request to retrieve a service provider’s single category through the
filtering mechanism. This behaviour is exemplified in Listing 10.1: A request
against the query interface (ll. 1–4) is enriched with a category definition for

9 Given that proxies need to hold information about ongoing interactions and there-
fore must manage state.

10.3 Usage of Web Technologies 195

compute instance (l. 5). The response of the server (ll. 7ff.), although referring
to the query interface location (l. 1) which—by definition—should return all
known categories, contains the definition of the “compute” category (ll. 10ff.)
only, indicating its attributes (ll. 13–18), actions (ll. 19–22), and the canonical
location of all instances (l. 12).

Listing 10.1 A HTTP message exchange for filtering categories through the query
interface. Note that, in the reply part, (l.. 10–22), the line breaks are for readability
purposes only; normally, the Category header is sent in a single line in order to
comply with the HTTP protocol conventions.

1 > GET /.well-known/org/ogf/occi/ HTTP/1.1
2 > Host: example.com:8888
3 > Accept: */*
4 > Content-type: text/occi
5 > Category: compute; scheme="http://schemas.ogf.org/occi/infrastructure"

7 < HTTP/1.1 200 OK
8 < Server: pyssf OCCI/1.1
9 < Content-Type: text/plain

10 < Category: compute; scheme="http://schemas.ogf.org/occi/infrastructure#";
11 class="kind"; rel="http://schemas.ogf.org/occi/core#resource";
12 location=/compute/; title="A compute instance";
13 attributes="occi.compute.architecture
14 occi.compute.cores
15 occi.compute.hostname
16 occi.compute.speed
17 occi.compute.memory
18 occi.compute.state";
19 actions="http://schemas.ogf.org/occi/infrastructure/compute/action#start
20 http://schemas.ogf.org/occi/infrastructure/compute/action#stop
21 http://schemas.ogf.org/occi/infrastructure/compute/action#restart
22 http://schemas.ogf.org/occi/infrastructure/compute/action#suspend"

In the current OCCI HTTP specification, we leverage a number of RFCs
specifications for the implementation. These include URIs that can identify and
handle resources (RFC 3986), well-known locations for the query interface’s
entry point (RFC 5785), and HTTP Authentication (RFC 2617) to deal with
authentication mechanisms. Although we build OCCI on these specifications,
service providers might choose to leverage other RFCs10 to offer clients an
even richer API.

In the light of the HTTP protocol and its inherent feature of content types,
one might view OCCI’s core model as a remake of MIME media types. In
fact, they are orthogonal to them, because the main difference lies in their
purpose: MIME media types indicate how the data delivered is being rendered,
whereas categories indicate what data is being rendered11. In fact, categories
10 For example, RFC 5246 for transport-layer security.
11 Remember that in OCCI, the model is decoupled from the rendering, and other

renderings might not have MIME media types.

196 10 Standards for Differentiated Resource Provisioning

do not attempt to replace MIME media types, but rather complement them
and broaden the usage model.

The category type system is more feature-rich than a system using MIME
media types alone: Categories are self-descriptive, discoverable through a
query interface, and self-sufficient. We allow a resource in the OCCI model
to have multiple categories assigned, thereby exposing several facets simulta-
neously. In combination with MIME media types, categories deliver a powerful
system for resource metadata exposure that supports different renderings of
the same information for any given resource type. This way, clients can expect
a coherent type system that is standardised independently from the data rep-
resentation while at the same time exploit the benefits of different rendering
formats for different purposes, e.g. JSON for rich internet applications, HTML
for human-readable representations of OCCI resources, or XML for service-to-
service communication.

10.4 Impact of OCCI

The quality of a newly defined standard is measured through its impact to
the market. We therefore focus on reviewing the adoption of OCCI in cloud
management software products and on discussing application areas beyond
infrastructure management.

10.4.1 Application in the Infrastructure

Currently, a number of OCCI implementations—many of them open source–
—are available, including OpenNebula (http://opennebula.org) and libvirt
(http://libvirt.org). In production deployments, OCCI is mainly found in
academic environments. For example the SARA HPC Cloud system, see http:
//www.sara.nl/services/cloud-computing, offers high-performance com-
puting resources to scientists from areas such as geography, ecology bio-
informatics, and computer science and comprises 608 cores and 4.75 Tbytes
of RAM.

In the commercial domain, the OpenStack (http://openstack.org) in-
frastructure management framework shares several of OCCI’s ideals and has
many early adopters12. With the OCCI implementation for the “Nova” release,
interoperability is provided not only for the various OpenStack deployments
world-wide, but also towards other infrastructure management frameworks as
mentioned above. An example of such an environment is the EGI Federated
Cloud testbed with currently more than 1,400 cores, which uses different in-
frastructure management frameworks at the participating resource centres,
but provides coherent access to them using OCCI.
12 Including Dell, Rackspace, AT&T, and Hewlett-Packard.

10.4 Impact of OCCI 197

10.4.2 Adoption in other Areas

The SLA@SOI project (Happe et al, 2011) shows the applicability of OCCI in
the context of SLA monitoring and enforcement as part of its Service Manager
component. There, the provisioning of arbitrary services on the basis of a
consumer-supplied SLA instance is conducted using the functionality of OCCI’s
query interface: The enforcing component, the SLA Manager, discovers the
corresponding Service Manager’s capabilities regarding the agreed SLA terms.
This way, it can tell whether a client’s request can be satisfied or not and
ensure that usage is within the limits of the electronic contract. The key benefit
of OCCI in this context is its flexibility: New services with new capabilities can
be easily exposed and discovered without changing the general management
interface.

Another proof-of-concept application of OCCI has been proposed by Ed-
monds et al (2011b). They present a non-relational database store over HTTP
using the OCCI interface. Each entry is represented by a single REST resource,
and the resource is described by a simple keyvalue category that exposes two
OCCI attributes: key and value. With the fundamental CRUD operations pro-
vided by each OCCI resource and an additional flip action13 on the category,
it is possible to expose NoSQL databases over a very lightweight interface.

A very interesting use of OCCI is the CompatibleOne Cloud Service Bro-
ker (http://compatibleone.org). There, OCCI is used as the core of its
architecture, and extended beyond infrastructure provisioning: Multi-tenant
aware federation, integration, and distribution of services is realised through
an OCCI-based runtime system. OCCI is used as a message bus for service
management and can be considered as the first standards-based Platform as
a Service (PaaS) platform.

The most tangible application area in the context of DCIs however is
the management of traditional queueing systems, where OCCI has been
adopted as a viable remote interface as well: The DRMAA consortium (http:
//drmaa.org) has released a rendering of the second version of their inter-
face specification (Tröger et al, 2012) over OCCI which exposes a batch sys-
tem’s capabilities via a RESTful interface. This work is insofar interesting as
it shows a practical example of transforming a generic Interface Description
Language (IDL)-based interface description to the OCCI core model.

13 Which switches key and value content.

11

Conclusion

To see what is in front of one’s nose
needs a constant struggle.

—George Orwell

With the commoditisation of compute resources both on the in-
frastructural and the operational level over the last years, it became
easy to build DCI environments and cater modern science and in-

dustry’s ever-increasing demand for computing power. The management of
such environments, however, turned out to be a challenging problem, espe-
cially with respect to capacity planning. This is due to the problem of SRM
being twofold: Efficiently utilising resources while at the same time satisfying
customers is mainly an algorithmic problem, whereas the construction of DCIs
that support a federated approach to this problem is a technical challenge. In
this work, we approached the problem from both angles.

11.1 Synopsis

On the one hand, we discussed a number of SRM algorithms for different ar-
chitectural models, namely centralised and distributed DCI federations and
evaluated the different options for analysing the performance of SRM algo-
rithms for such environments. We decided for using a simulative approach, as
theoretical methods are not well-enough developed and real-world analysis is
not feasible due to the necessity of long-term evaluation. Lacking appropriate
simulation tools, we designed and build tGSF, a framework for the assess-
ment of SRM algorithms in federated DCIs and created reference results for
the non-federated case.

We then reviewed the centralised model regarding passive and active inter-
action and looked at hierarchical federations as a specialisation of centralised
architectures. There, we focused on the relevance of autonomy disclosure for
the participating resource centres. For the distributed model, we analysed
the benefit of active workload delegation with simple heuristics, introduced
mechanisms for robustness against changing workload patterns and malicious
behaviour, and reviewed the applicability of resource-centric capacity planning
with the “Infrastructure-as-a-Service” approach in mind. Finally, we compared

200 11 Conclusion

our results regarding qualitative and quantitative aspects and approached the
question of further possible performance gain in DCI environments for the
model used in this work.

On the other hand, we discussed technical blueprints for SRM in feder-
ated DCIs, starting from a comprehensive federation model for SRM in DCIs.
We weighed its assets and drawbacks induced by the simplifications done,
and formulated concretisations for interaction regarding centralised and dis-
tributed flavours. By reviewing two real-world deployments, we showed the
lessons learned from their design, identified two main architectural obstacles
for transferring the results from the algorithmic part of our work to produc-
tion systems, and proposed a general-purpose protocol, fedSRM, for federated
capacity planning in DCI environments.

On the basis of fedSRM, we propose solutions that bridge the remaining
gaps. First, we reviewed the problem of negotiating and agreeing on SLAs and
built AoR, which follows the ROA paradigm and allows handling of electronic
contracts between SRM systems in DCI federations. Second, we introduced
OCCI, a standardised protocol and API for the provisioning of resources with
respect to both the delegation and the leasing use case and highlighted its
advantages to proxy-based approaches.

11.2 Results

With two angles approached in this work, we also have two kinds of results:
algorithmic ones that allow for more efficient capacity planning, and technical
ones that allow for new approaches to DCI building.

Regarding algorithms, we find that, regardless of the architecture, i.e. cen-
tralised or distributed, or approach, i.e. workload delegation or resource leas-
ing, the participation of a resource centre in a federation is always beneficial
for its performance both from the user and the operator perspective. This
is true for both completely deterministic and partly randomised heuristics.
Moreover, it turns out that the often-cited issue of secrecy regarding parame-
ters of day to day operation (such as utilisation, queue length, and others) do
not have to be considered a decisive factor. On the contrary, we have shown
that even though dynamic performance information is not available, it is still
possible to make good SRM decisions. Also, we show that new developments1

in data centre management can already be handled by SRM in an efficient
way. Overall, however, it turns out that the room for further improvement
is presumably marginal, as current SRM algorithms are close to reaching the
approximated Pareto front.

Regarding technology, we show that, although requiring significant im-
plementation effort on the operational side, the transfer of our algorithms

1 Such as the shift of paradigm from workload centricity to resource centricity, e.g.
providing users with virtual machines rather than workload submission services.

11.3 Contribution 201

to real-world systems can be achieved with a rather simple architecture and
only requires minimally invasive changes to the currently used middleware
toolkits. This is mainly due to the ROA paradigm that we used in our design:
Expressing all relevant entities as independent resources allows us to take full
advantage of the HATEOAS principle without abandoning the loosely coupled
model. In addition, we stress the importance of standards-compliant solutions
for the current resource market and consequently build our protocols and APIs
on this requirement. For SLAs, this is achieved by picking up a widely adopted
standard, WS-Agreement, and translating it to the REST architectural style.
For provisioning of resources, we built a new protocol2, successfully pursued
its standardisation through an Standards Development Organisation (SDO),
and promoted its implementation into main infrastructure management mid-
dleware.

11.3 Contribution

With these results, we contribute to the state of the art in research regarding
federated SRM in DCIs in a number of ways:

11.3.1 Model Definition

The modeling of DCI environments has been subject to research since the
early days of Grid computing, when Foster and Kesselman (1998) formulated
their vision of a future distributed resource space. Naturally, the complex-
ity of modeling requires to put the focus on a certain level: It is practically
impossible to produce a comprehensive model that covers all aspects of DCI
federations.

So far, literature has focused on the two extremal points of modeling:
Either, DCIs were described on a very high level by building reference models
on how interaction generally works; one of the most mature works in this area
has been done by Riedel et al (2009). Or the model was defined implicitly
by the design of a new middleware, where the implementation imposed the
structure of components and their interaction directly; this can be seen for
the different middleware toolkits discussed in the previous chapters.

In this work, we addressed the gap between them, focusing on the federa-
tion itself and interactions by modeling along a certain functionality, namely
SRM. Being (mostly) architecture-agnostic, we contribute participant and in-
teraction models for the specific functionality of federated capacity planning in
DCIs throughout the different layers of the system and reach our first research
goal, answering the model-related part of Question 1.

2 Due to the current lack of anything comparable on the market.

202 11 Conclusion

11.3.2 Algorithm Development

Regarding algorithm development, the situation is much more diversified; this
could be already seen from the plethora of related work regarding each SRM
strategy discussed in the second part. Other than for highly specialised use
cases, it therefore can be well assumed that breakthrough improvements in
capacity planning for DCIs are unlikely to emerge.

That said, most of the research results contributed are either theoretical3
or lacking long-term evaluation with realistic workload input data. For making
statements on the performance of scheduling algorithms that empirically hold,
it is however necessary to analyse their behaviour for periods that approach
the lifetime of the participating systems.

In this work, we address this aspect by combining the design of new SRM
strategies with a thorough, extensive evaluation using real-world input traces
from resource centres that were in service for long periods in time. On this ba-
sis, we developed, analysed, and compared novel algorithms for federated DCI
capacity planning, addressing aspects of autonomy, disclosure, resilience, and
changes of paradigm and answering to Question 2, Question 3, and Question 4.
In addition, we made an attempt to approximating the potential limits of fed-
eration for the very first time, thereby getting closer to answering Question 5.
Both aspects together allow us to reach or second research goal.

11.3.3 System Design

Technological gaps are the most common impediments to transferability of
scientific advances in the area of SRM strategies. Although other aspects such
as reluctance to implement largely untested algorithms in production use, the
lack of integration between the different systems poses the main obstacle.

This problem of interoperability naturally leads to the area of standardis-
ation, and especially with respect to DCIs, several SDOs have approached the
problem. The most prevalent one in this area, the Open Grid Forum, aimed
to address this problem with a comprehensive service model called Open Grid
Services Architecture (OGSA) (Foster et al, 2006), which found some adop-
tion during the earlier days of Grid computing, but never had full-fledged
implementations (mainly due to the sheer number of services it defines).

In this work, we take a more practical approach to the problem of interop-
erability by designing a lightweight abstract protocol for handling the specific
problem of interaction between participants in a federation for SRM. We fur-
ther provide implementations using state-of-the-art technology, reusing proven
components from OGSA and contributing novel interfaces where necessary,
reaching our third and last research goal and answering the techology-related
part of Question 1.

3 Focusing on performance bounds of certain algorithms for certain setups,
see Ramírez-Alcaraz et al (2011), or metrics for their analysis, see Schwiegelshohn
(2011).

11.4 Outlook 203

11.4 Outlook

Although we have reached our goal of providing a solid architectural, algorith-
mic, and technical basis for constructing federations of Distributed Computing
Infrastructures on the basis of currently available technology with a potential
for real world adoption, a number of issues are still open.

First, the model that was assumed in the first part of this work is, albeit
sufficiently sophisticated on the structural level, still very simple with respect
to the resources within a data centre. In order to improve this, it is necessary
to further investigate the question of workload modelling, regarding two as-
pects. On the one hand, better workload models are needed in order to create
sufficiently long traces for algorithmic analysis, including federation aspects
(such as heterogeneity) in the best case. A viable alternative would be the
extension of the available archives, but admittedly, this is more a political
than a research challenge. On the other hand, the transformation of workload
related characteristics between non-uniform systems is unsolved, especially
in the light of modern applications more and more leveraging heterogeneous
hardware for better performance4. But although preliminary work has been
done by Gruber et al (2006), this is still a largely open problem.

Second, all algorithms that have been proposed in the second part of this
work do not self-adapt to changes in the environment. Even the EFS-based
approach will only adapt to changes in the federation structure, but not in
the participants’ behaviour. While it is arguable whether this is frequently the
case, it is necessary to solve this problem on the medium term, as the con-
struction of DCIs will become more and more a commodity, and consequently
the number of ill-behaving participants—whether careless or deliberate—will
increase. As such, it is necessary to move from the method of offline opti-
misation to online adaptability. A possible approach to this could lie in the
investigation of probabilistic methods such as Reinforcement Learning or vari-
ants of swarm intelligence5 regarding their fitness for the problem.

Third, the protocols and APIs discussed in the third part of this work are
bound to the HTTP protocol. While this is not a problem by itself, as HTTP
is widely available and currently well-viewed by most vendors, a more gen-
eral approach would allow for different protocol renderings. This, however,
requires a general meta model for the operational primitives and types for
both protocols developed in the context of this work. For OCCI, a first step
into this direction has been made, but it is yet to be proven whether its core
is flexible enough to handle completely different interaction models. To this
end, both the meta model and its realisations should be reviewed in matters of

4 Lately, this can be seen with graphics hardware and specialised programming
languages such as OpenGL and CUDA, which nowadays offer primitives not only
for rendering tasks, but also for general number-crunching problems.

5 Such as Particle Swarm Optimisation or Ant Colony Optimisation.

204 11 Conclusion

this aspect, and good candidate for doing so is AMQP6. For OCCI, this would
require a full decoupling of protocol transport and data representation. For
AoR, a corresponding extension of the OCCI core model needs to be devel-
oped. A rendering of the OCCI meta model over Advanced Message Queuing
Protocol (AMQP) would then cater to both methods.

6 The Advanced Message Queuing Protocol is a standardised and widely adopted
protocol for message-oriented systems (see Vinoski, 2006).

A

The teikoku Grid Scheduling Framework

What I cannot create, I do not understand.
—Richard Phillips Feynman

The physical assessment of a system requires a set of tools that per-
form the evaluation itself. This includes the generation (or usage) of
the input data sets, logic that runs the evaluation process, and means

for extracting probes of the metrics used for analysis. tGSF is designed to ad-
dress these issues using a layer architecture, see Figure 3.1. In the following,
we introduce those layers and detail their functionality.

A.1 Foundation

The foundation layer of tGSF provides core functionality for event-based ex-
ecution, see Kelton and Law (1992), with different event types, notification
models, and time advancements.

A.1.1 Component Structure

The main classes in this context are Kernel and Event. While the latter
describes events in the system, gives them order, and allows for tagging and
classification, the former takes care of managing event objects themselves,
including handling at a certain moment in time as well as a Observer pattern-
based notification of potential subscribers, see Gamma et al (1994).

Figure A.1 depicts these relationships in detail. The Kernel manages all
Event objects that need handling, and new ones can be dispatched to it
from the outside. On triggering through its Awakeable interface, it dequeues
all events relevant to the current simulation time and notifies all registered
Listeners about their before, during, and after happening (depending on
their ModeOfConcern). The Clock provides the current simulation time and
manages the pace of the system by controlling the ratio between real and
simulation time.

206 A The teikoku Grid Scheduling Framework

Fig. A.1 Relationships between the different parts of the simulation engine within
tGSF. Kernel and Event comprise the main functionality within the component.
Registrations of classes with missing or faulty annotations are signalled by the
InvalidMetadata type. The Clock keeps the pace of the system and provides a
general notion of time to the simulation engine.

A.1.2 Layer Interfacing

The interfacing towards the model of the executed environment evolved over
time. Initial designs used strict interfacing to provide events to the consumers,
but during implementation of the different scenarios discussed in Part II it
turned out that event consumers usually listen to a specific event type or have
a single mode of concern, leaving the implementors with cluttered code in the
local and federated resource management layer1.

The second iteration featured an Aspect Oriented Programming (AOP)-
based implementation, see Kiczales et al (1997). Here, code cleanness could be
achieved easily (due to the fact that consumer code was not touched at all),
but user acceptance was low again: The invisible code weaving of joinpoints
that add functionality to certain parts of the code, and pointcuts that provide

1 More specifically, it showed that there is no good tradeoff between the number
and size of interfaces for the given use case: Either users had to implement many
small, only slightly different interfaces with a single method only or few, but large
interfaces leaving most methods empty.

A.1 Foundation 207

the metadata for selecting these parts based on certain criteria made it very
hard for the users to understand the overall data flow in the framework.

Eventually, it was decided to replace the AOP-based model by an stereotype-
based approach. Here, users of the framework annotate the model of their
simulated environments according to the need for notification by the simula-
tion engine. To this end, three annotation types were introduced. Classes
declared as @EventSinks are eligible for registering themselves as objects
with the Kernel, and are notified on event occurrence. Methods carrying
an @AcceptedEventType indicate that they wish to be called only for certain
types of events, letting the Kernel invoke them during every callForth(Instant)
cycle, but only if a matching event has occurred. Complementing this, ad-
ditional interfaces for general, non-event specific notifications are available,
which derive from Listener.

A.1.3 The Notion of Time

An important feature of the execution engine is that the Clock does not
depend on the system clock of the machine tGSF is running on, but rather
provides a configurable pace for the system.

Fig. A.2 Structure of the time system within tGSF. The main types are Clock,
Instant, and Distance, which allow for an independent view on the pace within the
system. Additionally, abstract classes for constructing History records comprising
one or more Episodes are provided.

To this end, it introduces its own notion of time, see Instant and Distance
in Figure A.2, which can advance at the same as or a different speed than real

208 A The teikoku Grid Scheduling Framework

time2, or in discrete mode (i.e. moving forward to the next event instantly,
essentially allowing event-discrete simulations). This way, it is possible to
evaluate the performance of SRM algorithms also under real-world timing
constraints, as shown by Staszkiewicz (2008). In addition, it allows for keeping
a History of Episodes that couple arbitrary objects to a certain Instant in
time. These relationships are depicted in Figure A.2.

In the Kernel, events are queued and dispatched to all registered con-
sumers as soon as they become relevant3. At that point, all consumers are
triggered depending on their ModeOfConcern, which is inspired from pointcut
definitions in AOP. If an @MomentOfNotification annotation is present on
a receiving method in an @EventSink, the consumer registers for different
notification modes, and depending on the selected mode, it will be notified

• before the event is being handled by any consumer,
• for handling of the event by this consumer, and
• after the event has been handled by all consumers.

The rationale behind this model is mainly audit: For evaluation purposes,
it is necessary that the situation before and after a certain instant in time
has passed can be analysed. Also, during execution it was used to handle
persistency management.

A.1.4 Parallelisation

For the simulation case, tGSF supports both sequential and parallel event
execution as described by Fujimoto (2000). While the model for sequential
execution follows a straightforward approach of tight coupling between event
queue and virtual clock, see Figure A.3a, the parallel approach needs more
attention.

In literature, a number of different approaches to parallel event-discrete
simulation methods are discussed, with Global Time (Steinman et al, 1995),
Link Time (Peacock et al, 1979), and Time Warp (Jefferson, 1985), being the
most popular ones. Marth (2010) has shown for tGSF that Global Time is
a good compromise between efficiency of parallelisation and implementation
effort: while Link Time is not applicable to the problem at hand4, Time Warp
is very hard to implement for the online scheduling case and cannot leverage
its main advantage of concurrent speculative event processing due to the high
cost of rollbacks because of the tight coupling of the federation regarding the
impact of scheduling decisions.

Technically, the parallelisation requires only three small modifications to
the sequential implementation, see Figure A.3b:

2 I.e., it can be configured to run slower or faster than the system clock.
3 An event becomes relevant when the Clock reaches an instant at or after its

dispatch time.
4 It is specifically designed for offline cases where a-priori knowledge about the

simulation is available.

A.1 Foundation 209

(a) Sequential Processing. (b) Parallel Processing.

Fig. A.3 Structural overview of the execution engine for different event-discrete
approaches within tGSF.

1. A basic communication module that hides the Java Remote Method In-
vocation (RMI) technicalities from the simulation kernel and clock,

2. A simple synchronisation mechanism to keep the current simulation time
coherent on all machines, and

3. A means for holding the simulation on a machine until the other machines
have reached the synchronisation point.

0

100

200

300

400

500

600

700

0 5 10 15 20

R
u

n
t
im

e
(m

in
u

t
e

s
)

Participants

KTH96 and CTC96 SDSC03 and SDSC05

(a) Runtime per simulation.

0

5

10

15

20

25

30

0 5 10 15 20

R
u

n
t
im

e
(m

il
li

s
e

c
o

n
d

s
)

Participants

KTH96 and CTC96 SDSC03 and SDSC05

(b) Runtime per job.

Fig. A.4 Performance of tGSF for distributed parallel simulations using Global
Time.

Figure A.4 shows performance results for the Global Time approach with
respect to scaling the number of participants of a federation. It shows that
the increasing factor for simulation runtime is hidden in the communication
cost of the Java RMI-based implementation, see Figure A.4a. Looking at the

210 A The teikoku Grid Scheduling Framework

normalised simulation time for each job as shown in Figure A.4b, it shows
that the parallelisation itself yields almost linear scalability of the simulation.

During non-parallelised simulations, the simulation time drops to 0.7 ms/job,
which translates to a factor of approximately 15. The reason behind the large
increase with respect to sequential execution lies in the use of Java RMI, which
provides a simple, yet costly means of remote object management. This leaves
ample room for improvement in future developments, but given the fact that
for the work at hand, sequential execution turned out to be still feasible, this
was not further pursued.

Overall, the use of parallelised simulations with the current simulation
engine can be considered as justified only when evaluating very large setups
with many participants.

A.2 Runtime Environment

The Runtime Environment layer in tGSF provides cross-concern functionality
for executing an DCI model for assessment. It provides general components
for application management, probing, and persistence. Figure A.5 gives an
overview of the component’s structure.

The entry point for application management is Bootstrap, which provides
the Command Line Interface (CLI) for tGSF and takes care of importing the
configuration. Initially, this was handled through simple key/value property
files, but with the growth of the framework, it was necessary to replace this
mechanism with an Inversion of Control (IoC)-based approach5, see Johnson
and Foote (1988) or Sweet (1985), to properly handle the increased complexity.
Depending on the CLI options selected by the user, tGSF starts as a system
service (effectively providing a research LRM running in real-time mode) or
as a standalone application. In either case, the environment under assessment
needs to be set up, workload sources must be initialised, and the outcome
needs to be exported to a storage.

These tasks are orchestrated by the RuntimeManager type. It takes care of
loading trace input using EventSources (whether from a real data source, a
recorded trace, or a generator), creates the simulated environment, and starts
the simulation by instantiating Clock via a separate thread while attaching
itself as an observer. After that, it essentially waits for a termination signal:
In service mode, a process shutdown request is expected, and in application
mode, all data sources need to indicate that no more workload will be coming.
In either case, it terminates the application gracefully.

Every execution of tGSF provides a RuntimeEnvironment which takes care
of the configuration of utility components. On the one hand, it initialises and
tracks all Probes in the runtime and acts as a service for measuring different
parts of the system under assessment. Each probe makes use of the Kernel’s

5 Using the Spring Framework (http://www.springsource.org/).

A.3 Local Resource Management 211

Fig. A.5 Relationships between the different parts of the runtime environ-
ment within tGSF. The main types here are Bootstrap, RuntimeManager, and
ResourceCenter, which act as the overall “glue” between all other components of
the system when executing an experiment.

ModeOfConcern in Foundation, see Section A.1, to measure the current sys-
tem state at the correct moment in time. About 30 different probes have been
implemented, and among them are all metrics introduced in Section 3.3. On
the other hand, it comprises the PersistentStore that exposes services for
write-out of data to a storage system. Two implementations have been pro-
vided here: one exports text-based files, pre-formatted for further analysis in
spreadsheet applications (using the CSV format) and MATLAB®; the other,
as shown by Wiggerich (2009), provides database-based storage6 using SQL.

A.3 Local Resource Management

So far, we focused on the infrastructure of the simulation engine itself. Start-
ing from this layer, we introduce business functionality and begin with the

6 Technically, this has been realised by using the embedded database engine
SQlite, see http://www.sqlite.org.

212 A The teikoku Grid Scheduling Framework

components for describing a single participant with respect to its SRM capa-
bilities. The foundation for this is laid by a data model for workload, which
provides a holistic view to units of work within a DCI, see Figure A.6.

Fig. A.6 Data model for workload description and tracking within the runtime en-
vironment of tGSF. Job denotes the main type here, with Lifecycle and Provenance
accompanying it.

This data model component consists of

• a description of static job characteristics, see Section 3.2.2, and resource
requirements. These are modelled by the Job and Description types;

• the RuntimeInformation of an active job, exposing its current wait time
and runtime, and its State;

• a lifecycle memory representing past and current states of the job, mod-
elled by the Lifecycle type; and

• a provenance record which tracks the route a job has taken from its initial
submission until final execution in the DCI, modelled by the Provenance
type.

On the Local Resource Manger layer, each ResourceCenter represents a
single provider in the federation. On the LRM level, it comprises the underly-
ing QueueingSystem. It manages a Queue and a Schedule7, and maintains a
number of Strategy instances responsible for making local scheduling deci-
sions. Besides this, it uses an ExecutionSPI towards the Machines’ operating

7 Technically, the framework allows for multiple queues and schedules, but following
the model in Section 2.4.1, we only assume one.

A.4 Federated Resource Management 213

Fig. A.7 Relationships between the different parts of Local Resource Manage-
ment within tGSF. Main types in this context are QueueingSystem and Strategy,
which in turn operates on the Schedule, using Slots.

systems and an information provider abstraction (the Monitors) to query the
current state of the resource landscape.

The strategies implemented within this component are of advisory nature:
Although they calculate the assignment of workload to resources indepen-
dently, only using data queried from the information provider, their decision
is not binding to the encapsulating QueueingSystem implementation. Instead,
they only “propose” their solutions, and the scheduler decides on how to act.
This offers additional flexibility, since more than one strategy can be con-
sulted at any time, leaving room for additional methods to choose the most
appropriate solution. For this work, the FCFS, EASY, and LIST local strategies
have been implemented.

With respect to the ExecutionSPI, several options are available. The sim-
plest one is an implementation for pure simulation use cases: as soon as the
scheduler deems a job ready for execution, it takes its description and, de-
pending on the processing time provided in the recorded trace, injects corre-
sponding completion events into the simulation system. More elaborate im-
plementations allow the execution through operating system processes or via
popular LRM interfaces such as Globus GRAM, see Foster (2006).

A.4 Federated Resource Management

The highest layer in tGSF is responsible for Federated Resource Manage-
ment. It takes care of mediating between the different participants (i.e.

214 A The teikoku Grid Scheduling Framework

ResourceCenters) in the federation. Figure A.8 shows the different compo-
nents within the layer.

Fig. A.8 Relationships between the different parts of Federated Resource Man-
agement within tGSF. Main types in this context are Broker, Session, and the policy
interfaces.

The main component is the Broker, which exposes interfaces for the man-
agement of resources towards participants of the federation and the submis-
sion of workload for the local user community, adopting the model discussed
in Section 2.4.2. It provides two different mechanisms for workload manage-
ment, namely delegating workload to other participants or leasing capacity
from other participants. This immediately raises three questions each Broker
must be able to answer:

1. Given an offer from remote, should it (or a subset of it) be accepted?
2. Given the current local situation, should a request be made, and if so,

regarding what?
3. Provided that an interaction should be done, which partners in the feder-

ation should be contacted?

To make corresponding decisions, each Broker acts upon a pluggable pol-
icy framework that provides support for codifying rules of procedure regarding
workload management with federated partners. Following the questions from
above, the policy framework consists of two general rulesets:

A.4 Federated Resource Management 215

1. For an incoming request (whether submitted from local or remote), de-
cide whether to accept or reject it. This is handled by TransferPolicy
implementations.

2. For an outgoing request, choose appropriate candidates from given set of
participants in the federation. This is handled by LocationPolicy imple-
mentations

Every Broker can (and usually will) have multiple implementations of
each policy, and—in addition—provide the general behaviour for incoming
and outgoing requests. Naturally, the rules are intertwined with each other: a
certain offer might be accepted for a certain participant, but not for another.
That said, different implementations of each policy can be combined indepen-
dently to vary the behaviour of the Broker, and they can rely on dynamic
system information through a number of Monitors.

Since it is technically possible (and sometimes even reasonable, e.g. in
negotiation scenarios) to offer different, potentially overlapping sets of jobs
to more than one participant at the same time, the concept of Sessions
was introduced into the broker. Here, a two-phase commit protocol, see Raz
(1995), is used to ensure that a clean overall system state can be maintained
at all times.

In order to keep track of the flow of workload within the system, the Fed-
erated Resource Management layer makes use of the afore described common
components for provenance and lifecycle tracking, and the monitoring compo-
nent. Depending on the policy implementation and possibly the local strategy,
this information is also incorporated into the SRM decisions. With that, tGSF
provides the framework for assessing the model for federated DCIs as defined
in Section 2.4.

Acronyms

DUNA.
—Internet Jargon

ACL Access Control List . 179
AJAX Asynchronous JavaScript and XML
AMQP Advanced Message Queuing Protocol . 204
AOP Aspect Oriented Programming . 206
AoR Agreements over REST . 167
AWWT Average Weighted Wait Time . 79
API Application Programming Interface. .25
AWRT Average Weighted Response Time . 49
AWS Amazon Web Services . 32
BES Basic Execution Service . 161
BOINC Berkeley Open Infrastructure for Network Computing 31
C3Grid Collaborative Climate Community Data & Processing Grid.155
CDMI Cloud Data Management Interface . 191
CERN Conseil Européen pour la Recherche Nucléaire
CFD Computational Fluid Dynamics . 18
CIMI Cloud Infrastructure Management Interface 187
CLI Command Line Interface . 210
CRUD Create/Retrieve/Update/Delete . 171
CSV Comma Separated Values
DCI Distributed Computing Infrastructure . 2
DLT Divisible Load Theory. .31
DMTF Distributed Management Task Force
DRMAA Distributed Resource Management Application API25
DSL Domain Specific Language . 169
DUNA Don’t Use No Acronyms
EA Evolutionary Algorithm . 142
EASY Extensible Argonne Scheduling sYstem . 52
EC2 Elastic Compute Cloud. .32
ECT Estimated Completion Time . 85
EFS Evolutionary Fuzzy System . 106
EGI European Grid Infrastructure

218 A The teikoku Grid Scheduling Framework

ES Evolution Strategy . 110
ESGF Earth Science Grid Federation . 157
FCFS First-Come-First-Serve . 31
fSRM Federated SRM . 133
GMF Gaussian Membership Function . 108
HATEOAS Hypertext As The Engine Of Application State 170
HPC High Performance Computing . 15
HTC High Throughput Computing . 19
HTML Hypertext Markup Language . 177
HTTP Hypertext Transfer Protocol . 165
IaaS Infrastructure as a Service . 123
IDL Interface Description Language. .197
IETF Internet Engineering Task Force. .161
IoC Inversion of Control . 210
IPCC Intergovernmental Panel of Climate Change 22
JSDL Job Submission Definition Language
JSON Java Script Object Notation. .179
LHC Large Hadron Collider . 77
LIST List Scheduling. .53
LRF Largest Resource First . 78
LRM Local Resource Manager . 20
MIME Multipurpose Internet Mail Extensions . 176
MOP Multi-Objective Problem . 142
MPI Message Passing Interface . 32
MPP Massively Parallel Processing. .17
NIST National Institute of Standards and Technology
NSGA-II Nondominated Sorting Genetic Algorithm, Version 2 143
NPX n-Point Crossover . 147
OCA OpenNebula Cloud API
OCCI Open Cloud Computing Interface . 187
OGF Open Grid Forum
OGSA Open Grid Services Architecture . 202
OPC Operation Planning and Control . 20
OSI Open Systems Interconnection Reference Model 191
P2P Peer-To-Peer . 26
PaaS Platform as a Service . 197
POSIX Portable Operating System Interface
PTGrid Plasma Technology Grid . 155
QoS Quality of Service . 26
RDBMS Relational Data Base Management System 16
REST Representational State Transfer . 165
RFC Request For Comments . 177
RMI Remote Method Invocation . 209
ROA Resource Oriented Architecture . 164
S3 Simple Storage Service . 103

A.4 Federated Resource Management 219

SA Squashed Area . 70
SDO Standards Development Organisation . 201
SERF Smallest Expected Response First . 79
SLA Service Level Agreement . 159
SME Small and Medium Enterprise . 160
SOA Service Oriented Architecture . 164
SOAP Simple Object Access Protocol . 164
SPMD Single Process, Multiple Data . 124
SQL Structured Query Language
SRM Scheduling and Resource Management . 3
SWF Standard Workload Format . 41
tGSF teikoku Grid Scheduling Framework . 35
ToS Terms of Service . 167
TPX Two-Point Crossover . 147
TSK Takagi–Sugeno–Kang . 106
UCX Uniform Crossover . 147
UML Unified Modeling Language
UR Usage Record . 41
URI Uniform Resource Identifier . 169
URL Uniform Resource Locator . 170
U Utilisation . 53
VO Virtual Organisation . 21
WLCG Worldwide LHC Computing Grid . 32
WSRF Web Service Resource Framework . 170
XML Extensible Markup Language . 169

References

Thou mayest as well expect to grow stronger
by always eating, as wiser by always reading.

—Thomas Fuller

Abraham A, Liu H, Grosan C, Xhafa F (2008) Metaheuristics for Scheduling in
Distributed Computing Environments, Studies in Computational Intelligence,
vol 146, Springer, Berlin/Heidelberg, chap 9: Nature Inspired Meta-heuristics
for Grid Scheduling – Single and Multi-objective Optimization Approaches, pp
247–272. DOI 10.1007/978-3-540-69277-5_9

Aida K (2000) Effect of Job Size Characteristics on Job Scheduling Performance.
In: Feitelson D, Rudolph L (eds) Job Scheduling Strategies for Parallel Process-
ing, Lecture Notes in Computer Science, vol 1911, Springer, Cancun, pp 1–17,
DOI 10.1007/3-540-39997-6_1

Altunay M, Avery P, Blackburn K, Bockelman B, Ernst M, Fraser D, Quick R,
Gardner R, Goasguen S, Levshina T, Livny M, McGee J, Olson D, Pordes R,
Potekhin M, Rana A, Roy A, Sehgal C, Sfiligoi I, Wuerthwein Fa (2011) A Science
Driven Production Cyberinfrastructure—the Open Science Grid. Journal of Grid
Computing 9(2):201–218, DOI 10.1007/s10723-010-9176-6

Anderson DP (2004) BOINC: A System for Public-Resource Computing and Stor-
age. In: Buyya R (ed) Proceedings of the 5th International Workshop on
Grid Computing, IEEE/ACM, IEEE Press, Pittsburgh (PA), Grid, pp 4–10,
DOI 10.1109/GRID.2004.14

Andreeva J, Campana S, Fanzago F, Herrala J (2008) High-Energy Physics on the
Grid: the ATLAS and CMS Experience. Journal of Grid Computing 6(1):3–13,
DOI 10.1007/s10723-007-9087-3

Andrieux A, Czajkowski K, Dan A, Keahey K, Ludwig H, Nakata T, Pruyne J,
Rofrano J, Tuecke S, Xu M (2007) Web Services Agreement Specification (WS-
Agreement). In: OGF Document Series, no. 107 in Recommendation Track, Open
Grid Forum, Muncie (IN), United States of America, URL http://www.ogf.org/
documents/GFD.107.pdf

Andronico G, Ardizzone V, Barbera R, Becker B, Bruno R, Calanducci A, Carvalho
D, Ciuffo L, Fargetta M, Giorgio E, La Rocca G, Masoni A, Paganoni M, Ruggieri
F, Scardaci D (2011) e-Infrastructures for e-Science: A Global View. Journal of
Grid Computing 9(2):155–184, DOI 10.1007/s10723-011-9187-y

Anedda P, Leo S, Manca S, Gaggero M, Zanetti G (2010) Suspending, migrat-
ing and resuming HPC virtual clusters. Future Generation Computer Systems
26(8):1063–1072, DOI 10.1016/j.future.2010.05.007

222 References

Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford University
Press, Oxford

Bailey Lee C, Schwartzman Y, Hardy J, Snavely A (2005) Are User Runtime
Estimates Inherently Inaccurate? In: Feitelson D, Rudolph L, Schwiegelshohn
U (eds) Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science, vol 3277, Springer, Cambridge (MA), pp 253–263,
DOI 10.1007/11407522_14

Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I (2003) Look-
ing up data in p2p systems. Communications of the ACM 46(2):43–48,
DOI 10.1145/606272.606299

Barkstrom BR, Hinke TH, Gavali S, Smith W, Seufzer WJ, Hu C, Cordner DE
(2003) Distributed Generation of NASA Earth Science Data Products. Journal
of Grid Computing 1(2):101–116, DOI 10.1023/B:GRID.0000024069.33399.ee

Behrens M, Carlson M, Edmonds A, Johnston S, Mazzafero G, Metsch T, Nyrén
R, Papaspyrou A, Richardson A, Swidler S (2011a) Open Cloud Computing
Interface – Core. In: Nyrén R, Edmonds A, Papaspyrou A, Metsch T (eds) OGF
Document Series, no. 183 in Recommendation Track, Open Grid Forum, Muncie
(IN), United States, URL http://www.ogf.org/documents/GFD.183.pdf

Behrens M, Carlson M, Edmonds A, Johnston S, Mazzafero G, Metsch T, Nyrén R,
Papaspyrou A, Richardson A, Swidler S (2011b) Open Cloud Computing Inter-
face – Infrastructure. In: Metsch T, Edmonds A (eds) OGF Document Series, no.
184 in Recommendation Track, Open Grid Forum, Muncie (IN), United States,
URL http://www.ogf.org/documents/GFD.184.pdf

Bell WH, Cameron DG, Millar AP, Capozza L, Stockinger K, Zini F (2003) Op-
torSim: A Grid Simulator for Studying Dynamic Data Replication Strategies.
International Journal of High Performance Computing Applications 17(4):403–
416, DOI 10.1177/10943420030174005

Berman F, Wolski R, Casanova H, Cirne W, Dail H, Faerman M, Figueira S, Hayes J,
Obertelli G, Schopf J, Shao G, Smallen S, Spring N, Su A, Zagorodnov D (2003)
Adaptive Computing on the Grid Using AppLeS. IEEE Transactions on Parallel
and Distributed Systems 14(4):369–382, DOI 10.1109/TPDS.2003.1195409

Beyer HG, Schwefel HP (2002) Evolution Strategies – A Comprehensive Introduc-
tion. Natural Computing 1(1):3–52, DOI 10.1023/A:1015059928466

Bharadwaj V, Ghose D, Robertazzi TG (2003) Divisible Load Theory: A New
Paradigm for Load Scheduling in Distributed Systems. Cluster Computing
6(1):7–17, DOI 10.1023/A:1020958815308

Birkenheuer G, Carlson A, Fölling A, Högqvist M, Hoheisel A, Papaspyrou A, Rieger
K, Schott B, Ziegler W (2009) Connecting Communities on the Meta-Scheduling
Level: The DGSI Approach. In: Bubak M (ed) Proceedings of the 9th Cracow
Grid Workshop, Cyfronet, Cracow, Poland, CGW, pp 96–103

Birkenheuer G, Brinkmann A, Högqvist M, Papaspyrou A, Schott B, Sommer-
feld D, Ziegler W (2011) Infrastructure Federation through Virtualized Del-
egation of Resources and Services. Journal of Grid Computing 9(3):355–377,
DOI 10.1007/s10723-011-9192-1

Blümel F, Metsch T, Papaspyrou A (2011) A RESTful Approach to Service Level
Agreements for Cloud Environments. In: Chen J, Dou W, Liu J, Yang LT,
Ma J (eds) Proceedings of the 9th International Conference on Dependable,
Autonomic, and Computing, IEEE, Sydney, Australia, DASC, pp 650–657,
DOI 10.1109/DASC.2011.116

References 223

Blumofe RD, Park DS (1994) Scheduling Large-scale Parallel Computations on Net-
works of Workstations. In: Proceedings of the Third International Symposium
on High Performance Distributed Computing, IEEE, IEEE Press, San Francisco
(CA), HPDC, pp 96–105, DOI 10.1109/HPDC.1994.340255

Bonacorsi D, Ferrari T (2007) WLCG Service Challenges and Tiered Architecture
in the LHC Era. In: Montagna G, Nicrosini O, Vercesi V (eds) Inconti di Fisica
delle Alte Energie, IFAE, Springer, Pavia, pp 365–368, DOI 10.1007/978-88-470-
0530-3_68

Braun TD, Siegel HJ, Beck NB, Bölöni L, Maheswaran M, Reuther AI, Robert-
son JP, Theys MD, Yao B (1998) A Taxonomy for Describing Matching
and Scheduling Heuristics for Mixed-Machine Heterogeneous Computing Sys-
tems. In: Proceedings of the 17th Symposium on Reliable Distributed Sys-
tems, IEEE Computer Society, West Lafayette (IN), SRDS, pp 330–335,
DOI 10.1109/RELDIS.1998.740518

Bray T (2009) REST Casuistry. Online (last accessed on May 21, 2012), URL http:
//www.tbray.org/ongoing/When/200x/2009/03/20/Rest-Casuistry

Brucker P (2007) Scheduling Algorithms, 5th edn. Springer, Berlin/Heidelberg
Buyya R, Murshed M (2002) GridSim: A Toolkit for the Modeling and Simula-

tion of Distributed Resource Management and Scheduling for Grid Comput-
ing. Concurrency and Computation: Practice and Experience 14:1175–1220,
DOI 10.1002/cpe.710

Buyya R, Abramson D, Venugopal S (2005) The Grid Economy. Proceedings of the
IEEE 93(3):698–714, DOI 10.1109/JPROC.2004.842784

Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud Computing
and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Com-
puting as the 5th Utility. Future Generation Computer Systems 25(6):599–616,
DOI 10.1016/j.future.2008.12.001

Cabinet Office HM (ed) (2011) ITIL Service Design, 3rd edn. IT Infrastructure
Library, The Stationery Office, London

Cai Y, Natarajan A, Wong J (2007) On Scheduling of Peer-to-Peer Video Ser-
vices. IEEE Journal on Selected Areas in Communications 25(1):140–145,
DOI 10.1109/JSAC.2007.070114

Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) CloudSim:
A Toolkit for Modeling and Simulation of Cloud Computing Environments and
Evaluation of Resource Provisioning Algorithms. Software: Practice and Expe-
rience 41(1):23–50, DOI 10.1002/spe.995

Carretero J, Xhafa F, Abraham A (2007) Genetic Algorithm Based Schedulers for
Grid Computing Systems. International Journal of Innovative Computing, In-
formation and Control 3(5):1053–1071

Casanova H, Legrand A, Quinson M (2008) SimGrid: A Generic Framework for
Large-Scale Distributed Experiments. In: Proceedings of the 10th International
Conference on Computer Modeling and Simulation, Cambridge, UKSIM, pp 126–
131, DOI 10.1109/UKSIM.2008.28

Casavant TL, Kuhl JG (1988) A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems. IEEE Transactions on Software Engineering
14(2):141–154, DOI 10.1109/32.4634

Chapin S, Cirne W, Feitelson D, Jones J, Leutenegger S, Schwiegelshohn U, Smith
W, Talby D (1999) Benchmarks and Standards for the Evaluation of Parallel
Job Schedulers. In: Feitelson D, Rudolph L (eds) Job Scheduling Strategies for

224 References

Parallel Processing, Lecture Notes in Computer Science, vol 1659, Springer, San
Juan, pp 67–90, DOI 10.1007/3-540-47954-6_4

Chen HY, Hsiung M, Lee HC, Yen E, Lin S, Wu YT (2010) GVSS: A High Through-
put Drug Discovery Service of Avian Flu and Dengue Fever for EGEE and EU-
AsiaGrid. Journal of Grid Computing 8(4):529–541, DOI 10.1007/s10723-010-
9159-7

Chen S, Zhang W, Ma F, Shen J, Li M (2004) The Design of a Grid Computing
System for Drug Discovery and Design. In: Jin H, Pan Y, Xiao N, Sun J (eds)
Grid and Cooperative Computing, Lecture Notes in Computer Science, vol 3251,
Springer, Wuhan, pp 799–802, DOI 10.1007/978-3-540-30208-7_108

Chiba T, den Burger M, Kielmann T, Matsuoka S (2010) Dynamic Load-Balanced
Multicast for Data-Intensive Applications on Clouds. In: Proceedings of the 10th
International Conference on Cluster, Cloud and Grid Computing, IEEE/ACM,
IEEE Press, Melbourne, CCGrid, pp 5–14, DOI 10.1109/CCGRID.2010.63

Chun G, Dail H, Casanova H, Snavely A (2004) Benchmark Probes for Grid As-
sessment. In: Proceedings of the 18th International Symposium on Parallel and
Distributed Processing, IEEE Computer Society, Santa Fe (NM), IPDPS, pp
276–283, DOI 10.1109/IPDPS.2004.1303355

Cirne W, Berman F (2001) A Model for Moldable Supercomputer Jobs. In: Pro-
ceedings of the 15th International Symposium on Parallel and Distributed
Processing, IEEE Computer Society, San Francisco (CA), IPDPS, pp 8–16,
DOI 10.1109/IPDPS.2001.925004

Cirne W, Brasileiro F, Andrade N, Costa L, Andrade A, Novaes R, Mowbray M
(2006) Labs of the World, Unite!!! Journal of Grid Computing 4(3):225–246,
DOI 10.1007/s10723-006-9040-x

Coello Coello CA, Lamont GB (eds) (2004) Applications of Multi-Objective Evolu-
tionary Algorithms, Advances in Natural Computation, vol 1. World Scientific,
Singapore

Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Genetic and Evolutionary Com-
putation Series, Springer, Berlin/Heidelberg

Cook A, Gray AJG, Ma L, Nutt W, Magowan J, Oevers M, Taylor P, Byrom R,
Field L, Hicks S, Leake J, Soni M, Wilson A, Cordenonsi R, Cornwall L, Djaoui
A, Fisher S, Podhorszki N, Coghlan B, Kenny S, O’Callaghan D (2003) R-GMA:
An Information Integration System for Grid Monitoring. In: Meersman R, Tari
Z, Schmidt DC (eds) On the Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE, Lecture Notes in Computer Science, vol 2888, Springer,
Catania, pp 462–481, DOI 10.1007/978-3-540-39964-3_29

Cordon O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic Fuzzy Systems
– Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Advances in
Fuzzy Systems – Applications & Theory, World Scientific, Singapore

Czajkowski K, Fitzgerald S, Foster I, Kesselmann C (2001) Grid Information Ser-
vices for Distributed Resource Sharing. In: Proceedings of the 10th International
Symposium on High Performance Distributed Computing, IEEE, San Francisco
(CA), HPDC, pp 181–194, DOI 10.1109/HPDC.2001.945188

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2):182–197, DOI 10.1109/4235.996017

References 225

Deelman E, Singh G, Livny M, Berriman B, Good J (2008) The Cost of Do-
ing Science on the Cloud: The Montage Example. In: Proceedings of the
21st International Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2008., IEEE/ACM, IEEE Press, SC, pp 1 –12,
DOI 10.1109/SC.2008.5217932

Dimitrakos T, Mac Randal D, Yuan F, Gaeta M, Laria G, Ritrovato P, Bassem S,
Wesner S, Wulf K (2003) An Emerging Architecture Enabling Grid Based Ap-
plication Service Provision. In: Proceedings of the 7th International Enterprise
Distributed Object Computing Conference, IEEE Computer Society, Brisbane,
EDOC, pp 240–251, DOI 10.1109/EDOC.2003.1233853

Dong F, Akl SG (2006) Scheduling Algorithms for Grid Computing: State of the Art
and Open Problems. Technical Report 2006-504, School of Computing, Queens
University, Kingston (ON)

Dooley R, Milfeld K, Guiang C, Pamidighantam S, Allen G (2006) From Pro-
posal to Production: Lessons Learned Developing the Computational Chem-
istry Grid Cyberinfrastructure. Journal of Grid Computing 4(2):195–208,
DOI 10.1007/s10723-006-9043-7

Dou W, Jia Y, Wang HM, Song WQ, Zou P (2003) A P2P approach for Global
Computing. In: Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, IEEE Computer Society, IEEE Press, Nice, France,
IPDPS, DOI 10.1109/IPDPS.2003.1213451

Downey AB, Feitelson DG (1999) The Elusive Goal of Workload Character-
ization. ACM SIGMETRICS Performance Evaluation Review 26(4):14–29,
DOI 10.1145/309746.309750

Dumitrescu CL, Foster I (2005) GangSim: A Simulator for Grid Scheduling Stud-
ies. In: Proceedings of the 5th International Symposium on Cluster Computing
and the Grid, IEEE, Cardiff, CCGrid, vol 2, pp 1151–1158, DOI 10.1109/CC-
GRID.2005.1558689

Edmonds A, Metsch T, Luster E (2011a) An Open, Interoperable Cloud. On-
line (last accessed on May 21, 2012), URL http://www.infoq.com/articles/
open-interoperable-cloud

Edmonds A, Metsch T, Papaspyrou A (2011b) Grid and Cloud Database Manage-
ment, Springer, Berlin/Heidelberg, Germany, chap 1: Open Cloud Computing
Interface in Data Management-related Setups, pp 23–48. DOI 10.1007/978-3-
642-20045-8_2

Edmonds A, Metsch T, Papaspyrou A, Richardson A (2012) Toward an Open Cloud
Standard. IEEE Internet Computing 16(4):15–25, DOI 10.1109/MIC.2012.65

Eernisse M (2006) Build Your Own Ajax Web Applications. SitePoint, Melbourne
Eickermann T, Westphal L, Wäldrich O, Ziegler W, Barz C, Pilz M (2007) Towards

Next Generation Grids, Springer, Heidelberg, chap 18: Co-Allocating Compute
and Network Resources, pp 193–202. CoreGRID, DOI 10.1007/978-0-387-72498-
0_18

Elmroth E, Tordsson J (2008) Grid Resource Brokering Algorithms En-
abling Advance Reservations and Resource Selection based on Perfor-
mance Predictions. Future Generation Computer Systems 24(6):585–593,
DOI 10.1016/j.future.2007.06.001

Engelbrecht AP (2007) Computational Intelligence: An Introduction, 2nd edn.
John Wiley & Sons, Inc., Hoboken (NJ), United States of America,
DOI 10.1002/9780470512517

226 References

England D, Weissman J (2005) Costs and Benefits of Load Sharing in the Computa-
tional Grid. In: Feitelson D, Rudolph L, Schwiegelshohn U (eds) Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, vol 3277,
Springer, New York (NY), pp 14–32, DOI 10.1007/11407522_9

Ernemann C, Hamscher V, Schwiegelshohn U, Yahyapour R, Streit A (2002a)
On Advantages of Grid Computing for Parallel Job Scheduling. In: Proceed-
ings of the 2nd International Symposium on Cluster Computing and the
Grid, IEEE/ACM, IEEE Press, Berlin, CCGrid, pp 39–46, DOI 10.1109/CC-
GRID.2002.1017110

Ernemann C, Hamscher V, Streit A, Yahyapour R (2002b) Enhanced Algo-
rithms for Multi-site Scheduling. In: Parashar M (ed) Grid Computing, Lecture
Notes in Computer Science, vol 2536, Springer, Baltimore (MD), pp 219–231,
DOI 10.1007/3-540-36133-2_20

Ernemann C, Song B, Yahyapour R (2003) Scaling of workload traces. In: Feitelson
D, Rudolph L, Schwiegelshohn U (eds) Job Scheduling Strategies for Paral-
lel Processing, Lecture Notes in Computer Science, vol 2862, Springer, Seattle
(WA), pp 166–182, DOI 10.1007/10968987_9

Ernemann C, Hamscher V, Yahyapour R (2004) Benefits of Global Grid Computing
for Job Scheduling. In: Buyya R, Baker M (eds) Proceedings of the 5th Inter-
national Workshop on Grid Computing, IEEE/ACM, IEEE Press, Pittsburgh
(PA), Grid, pp 374–379, DOI 10.1109/GRID.2004.13

Ernemann C, Krogmann M, Lepping J, Yahyapour R (2005) Scheduling on the Top
50 Machines. In: Feitelson D, Rudolph L, Schwiegelshohn U (eds) Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, vol 3277,
Springer, Cambridge (MA), pp 11–16, DOI 10.1007/11407522_2

Fayad C, Garibaldi JM, Ouelhadj D (2007) Fuzzy Grid Scheduling Using Tabu
Search. In: Proceedings of the 16th International Fuzzy Systems Conference,
IEEE, London, FuzzIEEE, pp 1–6, DOI 10.1109/FUZZY.2007.4295513

Feitelson D (1996) Packing Schemes for Gang Scheduling. In: Feitelson D,
Rudolph L (eds) Job Scheduling Strategies for Parallel Processing, Lecture
Notes in Computer Science, vol 1162, Springer, Honolulu (HI), pp 89–110,
DOI 10.1007/BFb0022289

Feitelson D (2001) Metrics for Parallel Job Scheduling and Their Convergence. In:
Feitelson D, Rudolph L (eds) Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, vol 2221, Springer, Cambridge (MA), pp
188–205, DOI 10.1007/3-540-45540-X_11

Feitelson D (2002a) The Forgotten Factor: Facts on Performance Evaluation and
Its Dependence on Workloads. In: Monien B, Feldmann R (eds) Euro-Par 2002
– Parallel Processing, Lecture Notes in Computer Science, vol 2400, Springer,
Paderborn, pp 81–116, DOI 10.1007/3-540-45706-2_4

Feitelson D (2002b) Workload Modeling for Performance Evaluation. In: Calzarossa
M, Tucci S (eds) Performance Evaluation of Complex Systems: Techniques and
Tools, Lecture Notes in Computer Science, vol 2459, Springer, Rome, pp 114–
141, DOI 10.1007/3-540-45798-4_6

Feitelson D, Rudolph L, Schwiegelshohn U, Sevcik K, Wong P (1997) Theory
and Practice in Parallel Job Scheduling. In: Feitelson D, Rudolph L (eds) Job
Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Sci-
ence, vol 1291, Springer, Geneva, pp 1–34, DOI 10.1007/3-540-63574-2_14

References 227

Feitelson D, Rudolph L, Schwiegelshohn U (2005) Parallel Job Scheduling — A Sta-
tus Report. In: Feitelson D, Rudolph L, Schwiegelshohn U (eds) Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, vol 3277,
Springer, Cambridge (MA), pp 1–16, DOI 10.1007/11407522_1

Feitelson DG, Tsafrir D (2006) Workload Sanitation for Performance Evaluation. In:
Proceedings of 6th International Symposium on Performance Analysis of Sys-
tems and Software, IEEE, Austin (TX), ISPASS, pp 221–230, DOI 10.1109/IS-
PASS.2006.1620806

Feitelson DG, Weil AM (1998) Utilization and Predictability in Scheduling the IBM
SP2 with Backfilling. In: Werner B, Torres A (eds) Proceedings of the Interna-
tional Parallel Processing Symposium, IEEE, Orlando (FL), IPPS, pp 542–546,
DOI 10.1109/IPPS.1998.669970

Ferrari T (2011) Annual Report on the EGI Production Infrastructure. Deliverable
to the European Commission INFSO-RI-261323/D4.2, European Grid Infras-
tructure, Amsterdam, URL http://go.egi.eu/1059

Fidanova S, Durchova M (2006) Ant Algorithm for Grid Scheduling Problem. In:
Lirkov I, Margenov S, Wasniewski J (eds) Large-Scale Scientific Computing,
Lecture Notes in Computer Science, vol 3743, Springer, Sozopol, pp 405–412,
DOI 10.1007/11666806_46

Fielding RT (2000) Architectural styles and the design of network-based software
architectures. Doctoral thesis, University of California, Irvine, Irvine (CA)

Fölling A, Grimme C, Lepping J, Papaspyrou A, Schwiegelshohn U (2009)
Competitive Co-evolutionary Learning of Fuzzy Systems for Job Ex-
change in Computational Grids. Evolutionary Computation 17(4):545–560,
DOI 10.1162/evco.2009.17.4.17406

Fölling A, Grimme C, Lepping J, Papaspyrou A (2010a) Connecting Community-
Grids by Supporting Job Negotiation with Co-evolutionary Fuzzy-Systems.
Soft Computing – A Fusion of Foundations, Methodologies and Applications
15(12):2375–2387, DOI 10.1007/s00500-010-0667-y

Fölling A, Grimme C, Lepping J, Papaspyrou A (2010b) Robust Load Delegation
in Service Grid Environments. IEEE Transactions on Parallel and Distributed
Systems 21(9):1304–1316, DOI 10.1109/TPDS.2010.16

Fölling A, Grimme C, Lepping J, Papaspyrou A (2010c) The Gain of Resource Del-
egation in Distributed Computing Environments. In: Schwiegelshohn U, Fracht-
enberg E (eds) Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science, vol 6253, Springer, Atlanta (GA), United States, pp 77–92,
DOI 10.1007/978-3-642-16505-4_5

Foster I (2006) Globus Toolkit Version 4: Software for Service-Oriented
Systems. Journal of Computer Science and Technology 21(4):513–520,
DOI 10.1007/s11390-006-0513-y

Foster I, Iamnitchi A (2003) On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. In: Kaashoek MF, Stoica I (eds) Peer-to-Peer Systems
II, Lecture Notes in Computer Science, vol 2735, Springer, Berkeley (CA), pp
118–128, DOI 10.1007/978-3-540-45172-3_11

Foster I, Kesselman C (eds) (1998) The Grid: Blueprint for a Future Computing
Infrastructure. Elsevier Series in Grid Computing, Morgan Kaufman, San Mateo
(CA)

Foster I, Czajkowski K, Ferguson DF, Frey J, Graham S, Maguire T, Snelling
D, Tuecke S (2005) Modeling and Managing State in Distributed Systems:

228 References

The Role of OGSI and WSRF. Proceedings of the IEEE 93(3):604–612,
DOI 10.1109/JPROC.2004.842766

Foster I, Kishimoto H, Savva A, Berry D, Djaoui A, Grimshaw AS, Horn B, Maciel
F, Siebenlist F, Subramanian R, Treadwell J, Von Reich J (2006) The Open
Grid Services Architecture, Version 1.5. In: OGF Document Series, no. 80 in
Informational Track, Open Grid Forum, Muncie (IN), URL http://www.ogf.
org/documents/GFD.80.pdf

Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud Computing and Grid Comput-
ing 360-Degree Compared. In: Proceedings of the 4th Grid Computing En-
vironments Workshop, IEEE Computer Society, Austin (TX), GCE, pp 1–10,
DOI 10.1109/GCE.2008.4738445

Frachtenberg E, Feitelson D (2005) Pitfalls in Parallel Job Scheduling Evaluation. In:
Feitelson D, Frachtenberg E, Rudolph L, Schwiegelshohn U (eds) Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, vol 3834,
Springer, Cambridge (MA), pp 257–282, DOI 10.1007/11605300_13

Franke C, Lepping J, Schwiegelshohn U (2006a) On Advantages of Scheduling using
Genetic Fuzzy Systems. In: Feitelson DG, Schwiegelshohn U (eds) Job Schedul-
ing Strategies for Parallel Processing, Lecture Notes in Computer Science, vol
4376, Springer, Seattle (WA), pp 68–93, DOI 10.1007/978-3-540-71035-6_4

Franke C, Schwiegelshohn U, Yahyapour R (2006b) Job Scheduling for Computa-
tional Grids. Forschungsbericht 0206, Technische Universität Dortmund, Dort-
mund

Franke C, Lepping J, Schwiegelshohn U (2010) Greedy Scheduling with
Custom-made Objectives. Annals of Operations Research 180(1):145–164,
DOI 10.1007/s10479-008-0491-2

Freitag S, Wieder P (2011) Guide to e-Science, Springer, Berlin/Heidelberg, chap
2: The German Grid Initiative D-Grid: Current State and Future Perspectives,
pp 29–52. Computer Communications and Networks, DOI 10.1007/978-0-85729-
439-5_2

Frumkin M, Van der Wijngaart RF (2001) NAS Grid Benchmarks: A Tool for Grid
Space Exploration. In: Proceedings of the 10th International Symposium on High
Performance Distributed Computing, IEEE Computer Society, San Francisco
(CA), HPDC, pp 315–322, DOI 10.1109/HPDC.2001.945199

Fujimoto N, Hagihara K (2003) Near-Optimal Dynamic Task Scheduling of Inde-
pendent Coarse-Grained Tasks onto a Computational Grid. In: Sadayappan P,
Yang CS (eds) Proceedings of the 32nd International Conference on Parallel Pro-
cessing, IEEE, Kaohsiung, ICPP, pp 391–398, DOI 10.1109/ICPP.2003.1240603

Fujimoto RM (2000) Parallel and Distributed Simulation Systems. Parallel and Dis-
tributed Computing, Wiley, New York (NY)

Gagliardi F, Jones R, Grey F, Bégin ME, Heikkurinen M (2005) Building an Infras-
tructure for Scientific Grid Computing: Status and Goals of the EGEE Project.
Philosophical Transactions, Series A: Mathematical, Physical, and Engineering
Sciences 363(1833):1729–1742, DOI 10.1098/rsta.2005.1603

Gamma E, Helm R, Johnson RE, Vlissides J (1994) Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series, Addison-
Wesley, Amsterdam

Garey MR, Graham RL (1975) Bounds for Multiprocessor Scheduling with Resource
Constraints. SIAM Journal on Computing 4(2):187–200, DOI 10.1137/0204015

References 229

Gehring J, Preiss T (1999) Scheduling a Metacomputer with Uncooperative Sub-
schedulers. In: Feitelson D, Rudolph L (eds) Job Scheduling Strategies for Par-
allel Processing, Lecture Notes in Computer Science, vol 1659, Springer, San
Juan, pp 179–201, DOI 10.1007/3-540-47954-6_10

Gentzsch W, Girou D, Kennedy A, Lederer H, Reetz J, Riedel M, Schott A, Vanni
A, Vazquez M, Wolfrat J (2011) DEISA—Distributed European Infrastructure
for Supercomputing Applications. Journal of Grid Computing 9(2):259–277,
DOI 10.1007/s10723-011-9183-2

Gombás G, Balaton Z (2004) A Flexible Multi-level Grid Monitoring Architecture.
In: Fernández Rivera F, Bubak M, Gómez Tato A, Doallo R (eds) Grid Com-
puting, Lecture Notes in Computer Science, vol 2970, Springer, Santiago de
Compostela, pp 214–221, DOI 10.1007/978-3-540-24689-3_27

Graham RL (1969) Bounds on Multiprocessing Timing Anomalies. SIAM Journal
on Applied Mathematics 17(2):416–429, DOI 10.1137/0117039

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AH (1979) Optimization and Ap-
proximation in Deterministic Sequencing and Scheduling: a Survey. In: Hammer
PL, Johnson EL, Korte BH (eds) Discrete Optimization II, Annals of Discrete
Mathematics, vol 5, Elsevier, pp 287–326, DOI 10.1016/S0167-5060(08)70356-X

Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to Parallel Comput-
ing, 2nd edn. Pearson Education, Harlow

Greenberg MS, Byington JC, Harper DG (1998) Mobile Agents and Security. IEEE
Communications Magazine 36(7):76–85, DOI 10.1109/35.689634

Grimme C, Papaspyrou A (2009) Cooperative Negotiation and Scheduling
of Scientific Workflows in the Collaborative Climate Community Data
and Processing Grid. Future Generation Computer Systems 25(3):301–307,
DOI 10.1016/j.future.2008.05.002

Grimme C, Lepping J, Papaspyrou A (2007) Identifying Job Migration Characteris-
tics in Decentralized Grid Scheduling Scenarios. In: Zheng SQ (ed) Proceedings
of the 19th International Conference on Parallel and Distributed Computing
and Systems, IASTED, ACTA Press, Cambridge (MA), United States, PDCS,
pp 124–129

Grimme C, Lepping J, Papaspyrou A (2008a) Benefits of Job Exchange Between
Autonomous Sites in Decentralized Computational Grids. In: Priol T, Lefevre
L, Buyya R (eds) Proccedings of the 8th IEEE International Symposium on
Cluster Computing and the Grid, IEEE, Lyon, France, CCGrid, pp 25–32,
DOI 10.1109/CCGRID.2008.55

Grimme C, Lepping J, Papaspyrou A (2008b) Discovering Performance Bounds for
Grid Scheduling by using Evolutionary Multiobjective Optimization. In: Keijzer
M (ed) Proceedings of the 10th Annual Conference on Genetic and Evolution-
ary Computation, ACM, Atlanta (GA), United States, GECCO, pp 1491–1498,
DOI 10.1145/1389095.1389385

Grimme C, Lepping J, Papaspyrou A (2008c) Prospects of Collaboration be-
tween Compute Providers by means of Job Interchange. In: Frachtenberg E,
Schwiegelshohn U (eds) Job Scheduling Strategies for Parallel Processing, Lec-
ture Notes in Computer Science, vol 4942, Springer, Seattle (WA), United States,
pp 132–151, DOI 10.1007/978-3-540-78699-3_8

Grimme C, Lepping J, Papaspyrou A (2008d) The Parallel Predator-Prey Model: A
Step Towards Practical Application. In: Rudolph G, Jansen T, Lucas S, Beume N
(eds) Parallel Problem Solving From Nature, Lecture Notes in Computer Science,

230 References

vol 5199, Springer, Dortmund, Germany, pp 681–690, DOI 10.1007/978-3-540-
87700-4_68

Grimme C, Lepping J, Moreno Picon J, Papaspyrou A (2010) Applying P2P Strate-
gies to Scheduling in Decentralized Grid Computing Infrastructures. In: Lee
WC, Yuan X (eds) Proceedings of the 39th International Conference on Parallel
Processing, IEEE Computer Society, San Diego (CA), United States, ICPP, pp
295–302, DOI 10.1109/ICPPW.2010.47

Gruber R, Keller V, Kuonen P, Sawley MC, Schaeli B, Tolou A, Torruella M, Tran
TM (2006) Towards an Intelligent Grid Scheduling System. In: Wyrzykowski
R, Dongarra J, Meyer N, Wasniewski J (eds) Parallel Processing and Applied
Mathematics, Lecture Notes in Computer Science, vol 3911, Springer, Poznan,
pp 751–757, DOI 10.1007/11752578_90

Guim F, Corbalan J, Labarta J (2007) Modeling the Impact of Resource Sharing
in Backfilling Policies using the Alvio Simulator. In: Proceedings of the 15th
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, IEEE Computer Society, Istanbul, MASCOTS,
pp 145–150, DOI 10.1109/MASCOTS.2007.40

Hagerup T (1997) Allocating Independent Tasks to Parallel Processors: An Exper-
imental Study. Journal of Parallel and Distributed Computing 47(2):185–197,
DOI 10.1006/jpdc.1997.1411

Hamscher V, Schwiegelshohn U, Streit A, Yahyapour R (2000) Evaluation of Job-
Scheduling Strategies for Grid Computing. In: Buyya R, Baker M (eds) Grid
Computing, Lecture Notes in Computer Science, vol 1971, Springer, Bangalore,
pp 191–202, DOI 10.1007/3-540-44444-0_18

Happe J, Theilmann W, Edmonds A, Kearney KT (2011) Service Level Agree-
ments for Cloud Computing, Springer, Berlin/Heidelberg, chap 2: A Reference
Architecture for Multi-Level SLA Management, pp 13–26. DOI 10.1007/978-1-
4614-1614-2_2

Hey T, Trefethen AE (2005) Cyberinfrastructure for e-Science. Science
308(5723):817–821, DOI 10.1126/science.1110410

Hill Z, Humphrey M (2009) A Quantitative Analysis of High Performance Comput-
ing with Amazon’s EC2 Infrastructure: The Death of the Local Cluster? In: Pro-
ceedings of the 10th International Workshop on Grid Computing, IEEE/ACM,
IEEE Press, Banff (AB), Grid, pp 26–33, DOI 10.1109/GRID.2009.5353067

Holl S, Riedel M, Demuth B, Romberg M, Streit A, Kasam V (2009) Life Science
Application Support in an Interoperable E-Science Environment. In: Proceed-
ings of the 22nd International Symposium on Computer-Based Medical Systems,
IEEE, Albuquerque (NM), CBMS, pp 1–8, DOI 10.1109/CBMS.2009.5255322

Hong B, Prasanna VK (2003) Bandwidth-Aware Resource Allocation for Hetero-
geneous Computing Systems to Maximize Throughput. In: Proceedings of the
32nd International Conference on Parallel Processing, IEEE Computer Society,
Kaohsiung, ICPP, pp 539–546, DOI 10.1109/ICPP.2003.1240621

Hotovy S (1996) Workload Evolution on the Cornell Theory Center IBM SP2. In:
Feitelson D, Rudolph L (eds) Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, vol 1162, Springer, Honolulu (HI), pp 27–40,
DOI 10.1007/BFb0022285

Huang J, Jin H, Xie X, Zhang Q (2005) An Approach to Grid Scheduling Opti-
mization Based on Fuzzy Association Rule Mining. In: Stockinger H, Buyya R,
Perrott R (eds) Proceedings of the International Conference on e-Science and

References 231

Grid Computing, IEEE Computer Society, Melbourne, e-Science, pp 195–201,
DOI 10.1109/E-SCIENCE.2005.16

Humphrey M, Thompson MR (2002) Security Implications of Typical
Grid Computing Usage Scenarios. Cluster Computing 5(3):257–264,
DOI 10.1023/A:1015621120332

Hüsing T (2010) The Role of e-Infrastructures in the Creation of Global Virtual
Research Communities. European commission study, empirica GmbH, Bonn

Iosup A, Epema D (2006) GrenchMark: A Framework for Analyzing, Testing, and
Comparing Grids. In: Turner SJ, Lee BS, Cai W (eds) Proceedings of the 6th
International Symposium on Cluster Computing and the Grid, IEEE Computer
Society, Singapore, CCGrid, pp 313–320, DOI 10.1109/CCGRID.2006.49

Iosup A, Dumitrescu C, Epema D, Epema DHJ, Li H, Wolters L (2006) How are Real
Grids Used? The Analysis of Four Grid Traces and Its Implications. In: Gannon
D, Badia RM, Buyya R (eds) Proceedings of the 7th International Workshop on
Grid Computing, IEEE/ACM, IEEE Press, Grid, pp 262–269, DOI 10.1109/IC-
GRID.2006.311024

Iosup A, Epema DHJ, Tannenbaum T, Farrellee M, Livny M (2007) Inter-
operating Grids through Delegated Matchmaking. In: Proceedings of the
20th International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE/ACM, IEEE Press, Reno (NV), SC, pp 1–12,
DOI 10.1145/1362622.1362640

Iverson MA, Özgüner F, Follen GJ (1996) Run-time Statistical Estimation of Task
Execution Times for Heterogeneous Distributed Computing. In: Proceedings of
the 5th International Symposium on High Performance Distributed Computing,
IEEE, Syracuse (NY), HPDC, pp 263–270, DOI 10.1109/HPDC.1996.546196

Jackson D, Snell Q, Clement M (2001) Core Algorithms of the Maui Scheduler. In:
Feitelson D, Rudolph L (eds) Job Scheduling Strategies for Parallel Processing,
Lecture Notes in Computer Science, vol 2221, Springer, Cambridge (MA), pp
87–102, DOI 10.1007/3-540-45540-X_6

Jagerman DL, Melamed B, Willinger W (1997) Frontiers in Queueing: Models and
Applications in Science and Engineering, CRC Press, Inc., Boca Raton (FL),
chap 10: Stochastic Modeling of Traffic Processes, pp 271–320

Jakob W, Quinte A, Stucky KU, Süß W (2005) Optimised Scheduling of Grid Re-
sources Using Hybrid Evolutionary Algorithms. In: Wyrzykowski R, Dongarra
J, Meyer N, Wasniewski J (eds) Parallel Processing and Applied Mathematics,
Lecture Notes in Computer Science, vol 3911, Springer, Poznan, pp 406–413,
DOI 10.1007/11752578_49

Jann J, Pattnaik P, Franke H, Wang F, Skovira J, Riordan J (1997) Modeling of
Workload in MPPs. In: Feitelson D, Rudolph L (eds) Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer Science, vol 1291, Springer,
Geneva, pp 95–116, DOI 10.1007/3-540-63574-2_18

Jefferson DR (1985) Virtual Time. ACM Transactions on Programming Languages
and Systems 7(3):404–425, DOI 10.1145/3916.3988

Jennings N, Faratin P, Lomuscio AR, Parsons S, Wooldridge MJ, Sierra C (2001)
Automated Negotiation: Prospects, Methods and Challenges. Group Decision
and Negotiation 10(2):199–215, DOI 10.1023/A:1008746126376

Jin Y, Von Seelen W, Sendhoff B (1999) On Generating FC3 Fuzzy Rule Systems
from Data using Evolution Strategies. IEEE Transactions on Systems, Man, and
Cybernetics 29(6):829–845, DOI 10.1109/3477.809036

232 References

Johnson RE, Foote B (1988) Designing Reusable Classes. Journal of Object-Oriented
Programming 1(2):22–35

Jones B (2005) An Overview of the EGEE Project. In: Türker C, Agosti M, Schek
HJ (eds) Peer-to-Peer, Grid, and Service-Orientation in Digital Library Archi-
tectures, Lecture Notes in Computer Science, vol 3664, Springer, Cagliari, pp
904–904, DOI 10.1007/11549819_1

Juang CF, Lin JY, Lin CT (2000) Genetic Reinforcement Learning through Sym-
biotic Evolution for Fuzzy Controller Design. IEEE Transactions on Systems,
Man, and Cybernetics 30(2):290–302, DOI 10.1109/3477.836377

Kacsuk P, Kovacs J, Farkas Z, Marosi A, Gombas G, Balaton Z (2009) SZTAKI
Desktop Grid (SZDG): A Flexible and Scalable Desktop Grid System. Journal
of Grid Computing 7(4):439–461, DOI 10.1007/s10723-009-9139-y

Kalé LV, Kumar S, DeSouza J (2002) A Malleable-Job System for Timeshared Par-
allel Machines. In: Proceedings of the 2nd International Symposium on Cluster
Computing and the Grid, IEEE/ACM, IEEE Press, Berlin, CCGrid, pp 230–237,
DOI 10.1109/CCGRID.2002.1017131

Kee YS, Casanova H, Chien AA (2004) Realistic Modeling and Synthesis of
Resources for Computational Grids. In: Proceedings of the 17th Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, IEEE/ACM, ACM Press, Pittsburgh (PA), SC, pp 54–63,
DOI 10.1109/SC.2004.48

Kelton WD, Law AM (1992) Simulation Modeling and Analysis, 2nd edn. McGraw-
Hill, New York (NY)

Kertész A, Kacsuk P (2007) Distributed and Parallel Systems, Springer, Berlin/Hei-
delberg, chap 20: A Taxonomy of Grid Resource Brokers, pp 201–210.
DOI 10.1007/978-0-387-69858-8_20

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Ir-
win J (1997) Aspect-Oriented Programming. In: Aksit M, Matsuoka S (eds)
ECOOP’97 – Object-Oriented Programming, Lecture Notes in Computer Sci-
ence, vol 1241, Springer, Jyväskylä, pp 220–242, DOI 10.1007/BFb0053381

Kielmann T, Bal HE, Gorlatch S (2000) Bandwidth-efficient Collective Communica-
tion for Clustered Wide Area Systems. In: Proceedings of the 14th International
Symposium on Parallel and Distributed Processing, IEEE Computer Society,
Cancun, IPDPS, pp 492–499, DOI 10.1109/IPDPS.2000.846026

Kishimoto Y, Ichikawa S (2004) An Execution-time Estimation Model for Heteroge-
neous Clusters. In: Proceedings of the 18th International Symposium on Parallel
and Distributed Processing, IEEE Computer Society, Santa Fe (NM), IPDPS,
pp 105–115, DOI 10.1109/IPDPS.2004.1303053

Krampe A, Lepping J, Sieben W (2010) A Hybrid Markov Chain Model for Workload
on Parallel Computers. In: Proceedings of the 19th International Symposium on
High Performance Distributed Computing, ACM, Chicago (IL), HPDC, pp 589–
596, DOI 10.1145/1851476.1851563

Krauter K, Buyya R, Maheswaran M (2002) A Taxonomy and Survey of Grid Re-
source Management Systems for Distributed Computing. Software: Practice and
Experience 32:135–164, DOI 10.1002/spe.432

Kübert R, Katsaros G, Wang T (2011) A RESTful implementation of the WS-
Agreement specification. In: Pautasso C, Wilde E (eds) Proceedings of the
2nd International Workshop on RESTful Design, ACM, Hyderabad, India, WS-
REST, pp 67–72, DOI 10.1145/1967428.1967444

References 233

Kurowski K, Nabrzyski J, Oleksiak A, Weglarz J (2007) Grid Scheduling Simu-
lations with GSSIM. In: Proceedings of the 13th International Conference on
Parallel and Distributed Systems, IEEE, Hsinchu, ICPADS, vol 2, pp 1–8,
DOI 10.1109/ICPADS.2007.4447835

Lamanna DD, Skene J, Emmerich W (2003) SLAng: A Language for Service
Level Agreements. In: Proceedings of the 9th Workshop on Future Trends
in Distributed Computing Systems, IEEE, San Juan, FTDCS, pp 100–106,
DOI 10.1109/FTDCS.2003.1204317

Lei D (2008) A Pareto Archive Particle Swarm Optimization for Multi-Objective
Job Shop Scheduling. Computers & Industrial Engineering 54(4):960–971,
DOI 10.1016/j.cie.2007.11.007

Lepping J (2011) Dezentrales Grid-Scheduling mittels Computational Intelligence.
PhD thesis, Technische Universität Dortmund, Dortmund

Li H, Muskulus M (2007) Analysis and Modeling of Job Arrivals in a Produc-
tion Grid. ACM SIGMETRICS Performance Evaluation Review 34(4):59–70,
DOI 10.1145/1243401.1243402

Li H, Muskulus M, Wolters L (2007) Modeling Correlated Workloads by Combining
Model based Clustering and a Localized Sampling Algorithm. In: Proceedings
of the 21st Annual International Conference on Supercomputing, ACM, Seattle
(WA), ICS, pp 64–72, DOI 10.1145/1274971.1274983

Lifka D (1995) The ANL/IBM SP scheduling system. In: Feitelson D, Rudolph
L (eds) Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science, vol 949, Springer, Santa Barbara (CA), pp 295–303,
DOI 10.1007/3-540-60153-8_35

Liu H, Abraham A, Hassanien AE (2010) Scheduling Jobs on Computational Grids
using a Fuzzy Particle Swarm Optimization Algorithm. Future Generation Com-
puter Systems 26(8):1336–1343, DOI 10.1016/j.future.2009.05.022

Llorente IM, Montero RS, Huedo E, Leal K (2006) A Grid Infrastructure for Utility
Computing. In: Proceedings of the 15th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, IEEE Computer So-
ciety, Manchester, WETICE, pp 163–168, DOI 10.1109/WETICE.2006.7

Lo V, Mache J, Windisch K (1998) A Comparative Study of Real Workload
Traces and Synthetic Workload Models for Parallel Job Scheduling. In: Feit-
elson D, Rudolph L (eds) Job Scheduling Strategies for Parallel Processing, Lec-
ture Notes in Computer Science, vol 1459, Springer, Orlando (FL), pp 25–46,
DOI 10.1007/BFb0053979

Lo V, Zappala D, Zhou D, Liu Y, Zhao S (2005) Cluster computing on the fly: P2p
scheduling of idle cycles in the internet. In: Voelker G, Shenker S (eds) Peer-to-
Peer Systems III, Lecture Notes in Computer Science, vol 3279, Springer, San
Diego (CA), pp 227–236, DOI 10.1007/978-3-540-30183-7_22

Lu K, Subrata R, Zomaya A (2006) Towards Decentralized Load Balancing in a
Computational Grid Environment. In: Chung YC, Moreira J (eds) Advances in
Grid and Pervasive Computing, Lecture Notes in Computer Science, vol 3947,
Springer, Taichung, pp 466–477, DOI 10.1007/11745693_46

Lublin U, Feitelson DG (2003) The Workload on Parallel Supercomputers: Modeling
the Characteristics of Rigid Jobs. Journal of Parallel and Distributed Computing
63(11):1105–1122, DOI 10.1016/S0743-7315(03)00108-4

Ludwig H, Nakata T, Wäldrich O, Wieder P, Ziegler W (2006) Reliable Orches-
tration of Resources Using WS-Agreement. In: Gerndt M, Kranzlmüller D (eds)

234 References

High Performance Computing and Communications, Lecture Notes in Computer
Science, vol 4208, Springer, Munich, pp 753–762, DOI 10.1007/11847366_78

Mach R, Lepro-Metz R, Jackson S (2007) Usage Record – Format Recommendation.
In: McGinnis L (ed) OGF Document Series, no. 98 in Recommendation Track,
Open Grid Forum, Muncie (IN), URL http://www.ogf.org/documents/GFD.
98.pdf

Marco C, Fabio C, Alvise D, Antonia G, Francesco G, Alessandro M, Moreno M, Sal-
vatore M, Fabrizio P, Luca P, Francesco P (2009) The gLite Workload Manage-
ment System. In: Abdennadher N, Petcu D (eds) Advances in Grid and Pervasive
Computing, Lecture Notes in Computer Science, vol 5529, Springer, Geneva, pp
256–268, DOI 10.1007/978-3-642-01671-4_24

Marth F (2010) Parallelisierung der Event-Behandlung im teikoku Grid Scheduling
Framework. Diploma thesis, Technische Universität Dortmund, Dortmund

Massie ML, Chun BN, Culler DE (2004) The Ganglia Distributed Monitoring Sys-
tem: Design, Implementation, and Experience. Parallel Computing 30(7):817–
840, DOI 10.1016/j.parco.2004.04.001

Medernach E (2005) Workload Analysis of a Cluster in a Grid Environment. In:
Feitelson D, Frachtenberg E, Rudolph L, Schwiegelshohn U (eds) Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, vol 3834,
Springer, Cambridge (MA), pp 36–61, DOI 10.1007/11605300_2

Mell P, Grance T (2011) The NIST Definition of Cloud Computing. Special Pub-
lication 800-145, National Institute of Standards and Technology, Gaithersburg
(MD)

Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Berlin/Heidelberg

Mu’alem AW, Feitelson DG (2001) Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling.
IEEE Transactions on Parallel and Distributed Systems 12(6):529–543,
DOI 10.1109/71.932708

Naedele M (2003) Standards for XML and Web services security. Computer
36(4):96–98, DOI 10.1109/MC.2003.1193234

Naroska E, Schwiegelshohn U (2002) On an Online Scheduling Problem for Par-
allel Jobs. Information Processing Letters 81(6):297–304, DOI 10.1016/S0020-
0190(01)00241-1

Netto MAS, Buyya R (2011) Coordinated Rescheduling of Bag-of-Tasks for Execu-
tions on Multiple Resource Providers. Concurrency and Computation: Practice
and Experience (to appear), DOI 10.1002/cpe.1841

Oleksiak A, Nabrzyski J (2004) Comparison of Grid Middleware in European Grid
Projects. In: Fernández Rivera F, Bubak M, Gómez Tato A, Doallo R (eds) Grid
Computing, Lecture Notes in Computer Science, vol 2970, Springer, Santiago de
Compostela, pp 317–325, DOI 10.1007/978-3-540-24689-3_39

Ostermann S, Prodan R, Fahringer T (2009) Extending Grids with Cloud Resource
Management for Scientific Computing. In: Proceedings of the 10th International
Workshop on Grid Computing, IEEE/ACM, IEEE Press, Banff (AB), Grid, pp
42–49, DOI 10.1109/GRID.2009.5353075

Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D (2010) A
Performance Analysis of EC2 Cloud Computing Services for Scientific Comput-
ing. In: Avresky DR, Diaz M, Bode A, Ciciani B, Dekel E, Akan O, Bellavista
P, Cao J, Dressler F, Ferrari D, Gerla M, Kobayashi H, Palazzo S, Sahni S,

References 235

Shen XS, Stan M, Xiaohua J, Zomaya A, Coulson G (eds) Cloud Comput-
ing, Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol 34, Springer, Munich, pp 115–131,
DOI 10.1007/978-3-642-12636-9_9

Paisios E, Zangrando L, Urbah E, Grimshaw AS, Morgan m, Crouch S, Riedel
M, Smirnova O, Degtyarenko I, Saga K, Konstantinov A, Newhouse S (2011)
Production Grid Infrastructure Use Case Collection. In: Riedel M, Watzl J
(eds) OGF Document Series, no. 180 in Informational Track, Open Grid Fo-
rum, Muncie (IN), URL http://www.ogf.org/documents/GFD.180.pdf

Pareto V (1964) Cours D’Economie Politique. No. 26 in Travaux de Droit,
d’Economie, de Sociologie et de Sciences Politiques, Librairie Droz, Paris

Parkin M, Badia RM, Martrat J (2008) A Comparison of SLA Use in Six of the
European Commissions FP6 Projects. Technical Report TR-0129, CoreGRID
Network of Excellence, Barcelona

Peacock JK, Wong JW, Manning EG (1979) Distributed Simulation using a
Network of Processors. Computer Networks 3(1):44–56, DOI 10.1016/0376-
5075(79)90053-9

Petcu D, Macariu G, Panica S, Crăciun C (2012) Portable Cloud Applications—
From Theory to Practice. Future Generation Computer Systems (to appear),
DOI 10.1016/j.future.2012.01.009

Peters I, Stock WG (2007) Folksonomy and Information Retrieval. Proceedings
of the American Society for Information Science and Technology 44(1):1–28,
DOI 10.1002/meet.1450440226

Pfister GF (2001) Aspects of the InfiniBand architecture. In: Proceedings of the 3rd
International Conference on Cluster Computing, IEEE, Newport Beach (CA),
CLUSTER, pp 369–371, DOI 10.1109/CLUSTR.2001.960002

Pinedo ML (2012) Scheduling — Theory, Algorithms, and Systems, 4th edn. Math-
ematics and Statistics, Springer, Berlin/Heidelberg

Pugliese A, Talia D, Yahyapour R (2008) Modeling and Supporting Grid Scheduling.
Journal of Grid Computing 6(2):195–213, DOI 10.1007/s10723-007-9083-7

Ramírez-Alcaraz J, Tchernykh A, Yahyapour R, Schwiegelshohn U, Quezada-Pina
A, González-García J, Hirales-Carbajal A (2011) Job allocation strategies with
user run time estimates for online scheduling in hierarchical grids. Journal of
Grid Computing 9(1):95–116, DOI 10.1007/s10723-011-9179-y

Rana O, Ziegler W (2010) Research Challenges in Managing and Using Service Level
Agreements. In: Desprez F, Getov V, Priol T, Yahyapour R (eds) Grids, P2P
and Services Computing, CoreGRID, Springer, pp 187–200, DOI 10.1007/978-
1-4419-6794-7_15

Ranjan R, Harwood A, Buyya R (2008) A Case for Cooperative and Incentive-
based Federation of Distributed Clusters. Future Generation Computer Systems
24(4):280–295, DOI 10.1016/j.future.2007.05.006

Ravichandran K, Lee S, Pande S (2011) Work Stealing for Multi-core HPC Clusters.
In: Jeannot E, Namyst R, Roman J (eds) Euro-Par 2011 – Parallel Processing,
Lecture Notes in Computer Science, vol 6852, Springer, Bordeaux, pp 205–217,
DOI 10.1007/978-3-642-23400-2_20

Raz Y (1995) The Dynamic Two Phase Commitment (D2PC) protocol. In: Gottlob
G, Vardi M (eds) Database Theory, Lecture Notes in Computer Science, vol 893,
Springer, Prague, pp 162–176, DOI 10.1007/3-540-58907-4_14

236 References

Riedel M, Wolf F, Kranzlmüller D, Streit A, Lippert T (2009) Research advances by
using interoperable e-science infrastructures. Cluster Computing 12(4):357–372,
DOI 10.1007/s10586-009-0102-2

Rimal BP, Choi E, Lumb I (2009) A Taxonomy and Survey of Cloud Computing Sys-
tems. In: Kim J, Delen D, Jinsoo P, Ko F, Rui C, Hyung Lee J, Jian W, Kou G
(eds) Proceedings of the 5th International Joint Conference on Networked Com-
puting, Advanced Information Management and Service, and Digital Content,
Multimedia Technology, and its Applications, IEEE Computer Society, Seoul,
NCM, pp 44–51, DOI 10.1109/NCM.2009.218

Robertazzi TG, Yu D (2006) Multi-Source Grid Scheduling for Divisible Loads. In:
Calderbank R, Kobayashi H (eds) Proceedings of the 40th Annual Conference
on Information Sciences and Systems, IEEE Computer Society, Princeton (NJ),
CISS, pp 188–191, DOI 10.1109/CISS.2006.286459

Sabin G, Kettimuthu R, Rajan A, Sadayappan P (2003) Scheduling of Parallel
Jobs in a Heterogeneous Multi-site Environment. In: Feitelson D, Rudolph L,
Schwiegelshohn U (eds) Job Scheduling Strategies for Parallel Processing, Lec-
ture Notes in Computer Science, vol 2862, Springer, Seattle (WA), pp 87–104,
DOI 10.1007/10968987_5

Schley L (2003) Prospects of Co-Allocation Strategies for a Lightweight Middleware
in Grid Computing. In: Proceedings of the 20th International Conference on
Parallel and Distributed Systems, IASTED, ACTA Press, Orlando (FL), PDCS,
vol I, pp 198–205

Schubert L, Kipp A, Koller B, Wesner S (2009) Service-oriented Operating
Systems: Future Workspaces. IEEE Wireless Communications 16(3):42–50,
DOI 10.1109/MWC.2009.5109463

Schwefel HP (1995) Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc., New York (NY)

Schwiegelshohn U (2010) D-Grid: A National Grid Infrastructure in Germany. An-
nals of Telecommunications 65(11):763–769, DOI 10.1007/s12243-010-0201-3

Schwiegelshohn U (2011) A system-centric metric for the evaluation of online job
schedules. Journal of Scheduling 14(6):571–581, DOI 10.1007/s10951-010-0206-9

Schwiegelshohn U, Yahyapour R (1998a) Analysis of first-come-first-serve parallel
job scheduling. In: Proceedings of the Ninth Annual Symposium on Discrete Al-
gorithms, SIAM, Society for Industrial and Applied Mathematics, Philadelphia
(PA), SODA, pp 629–638

Schwiegelshohn U, Yahyapour R (1998b) Improving First-come-first-serve Job
Scheduling by Gang Scheduling. In: Feitelson D, Rudolph L (eds) Job
Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Sci-
ence, vol 1459, Springer Berlin / Heidelberg, Orlando (FL), pp 180–198,
DOI 10.1007/BFb0053987

Schwiegelshohn U, Yahyapour R (2000) Fairness in Parallel Job Scheduling. Journal
of Scheduling 3(5):297–320, DOI 10.1002/1099-1425(200009/10)3:5<297::AID-
JOS50>3.0.CO;2-D

Schwiegelshohn U, Yahyapour R (2004) Grid Resource Management – State of the
Art and Future Trends, Kluwer Academic Publishers, Dordrecht, chap 4: At-
tributes for Communication between Grid Scheduling Instances, pp 41–52. No. 64
in Operations Research & Management Science

Schwiegelshohn U, Tchernykh A, Yahyapour R (2008) Online Scheduling in
Grids. In: Proceedings of the 23th International Symposium on Paral-

References 237

lel and Distributed Processing, IEEE, Miami (FL), IPDPS, pp 1–10,
DOI 10.1109/IPDPS.2008.4536273

Shvachko K, Kuang H, Radia S, Chansler R (2010) The Hadoop Distributed File
System. In: Proceedings of the 26th International Symposium on Mass Stor-
age Systems and Technologies, IEEE, Lake Tahoe (NV), MSST, pp 1–10,
DOI 10.1109/MSST.2010.5496972

Singh G, Kesselman C, Deelman E (2007) A Provisioning Model and its Comparison
with Best-effort for Performance-cost Optimization in Grids. In: Proceedings of
the 16th International Symposium on High Performance Distributed Computing,
ACM, New York (NY), HPDC, pp 117–126, DOI 10.1145/1272366.1272382

Smarr L, Catlett CE (1992) Metacomputing. Communications of the ACM 35(6):44–
52, DOI 10.1145/129888.129890

Song B, Ernemann C, Yahyapour R (2004) Modeling of Parameters in Super-
computer Workloads. In: Brinkschulte U, Becker J, Fey D, Großpietsch KE,
Hochberger C, Maehle E, Runkler TA (eds) ARCS 2004 – Organic and Perva-
sive Computing, Lecture Notes in Informatics, vol P-41, Küllen Druck+Verlag
GmbH, Augsburg, pp 400–409

Song B, Ernemann C, Yahyapour R (2005a) Parallel Computer Workload Model-
ing with Markov Chains. In: Feitelson D, Rudolph L, Schwiegelshohn U (eds)
Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer
Science, vol 3277, Springer, Boston (MA), pp 9–13, DOI 10.1007/11407522_3

Song B, Ernemann C, Yahyapour R (2005b) User Group-based Workload Analysis
and Modelling. In: Proceedings of the 5th International Symposium on Cluster
Computing and the Grid, IEEE/ACM, IEEE Press, Cardiff, CCGrid, vol 2, pp
953–961, DOI 10.1109/CCGRID.2005.1558664

Staszkiewicz P (2008) Entwicklung einer Simulationsumgebung für serviceorien-
tiertes, verteiltes Grid-Scheduling. Diploma thesis, Technische Universität Dort-
mund, Dortmund

Steinman JS, Lee CA, Wilson LF, Nicol DM (1995) Global Virtual Time and
Distributed Synchronization. In: Proceedings of the 9th Workshop on Paral-
lel and Distributed Simulation, IEEE, Lake Placid (NY), PADS, pp 139–148,
DOI 10.1109/PADS.1995.404307

Sturm R, Morris W, Jander M (2000) Foundations of Service Level Management.
Sams Publishing, Indianapolis (IN)

Subramani V, Kettimuthu R, Srinivasan S, Sadayappan P (2002) Distributed Job
Scheduling on Computational Grids using Multiple Simultaneous Requests. In:
Proceedings of the 11th International Symposium on High Performance Dis-
tributed Computing, IEEE, Edinburgh, HPDC, pp 359–366, DOI 10.1109/H-
PDC.2002.1029936

Subramaniyan R, Troxel I, George AD, Smith M (2006) Simulative Analysis
of Dynamic Scheduling Heuristics for Reconfigurable Computing of Paral-
lel Applications. In: Proceedings of the 14th International Symposium on
Field Programmable Gate Arrays, ACM, Monterey (CA), FPGA, pp 230–230,
DOI 10.1145/1117201.1117249

Sullivan H, Bashkow TR (1977) A Large Scale, Homogeneous, Fully Distributed
Parallel Machine, I. ACM SIGARCH Computer Architecture News 5(7):105–
117, DOI 10.1145/633615.810659

Sweet RE (1985) The Mesa programming environment. ACM SIGPLAN Notices
20(7):216–229, DOI 10.1145/17919.806843

238 References

Takagi T, Sugeno M (1985) Fuzzy Identification of Systems and Its Applications to
Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics
15(1):116–132

Talia D, Yahyapour R, Ziegler W, Wieder P, Seidel J, Wäldrich O, Ziegler W,
Yahyapour R (2008) Using SLA for Resource Management and Scheduling -
A Survey. In: Grid Middleware and Services – Challenges and Solutions, Core-
GRID, Springer, New York (NY), pp 335–347, DOI 10.1007/978-0-387-78446-
5_22

Talwar V, Basu S, Kumar R (2003) Architecture and Environment for
Enabling Interactive Grids. Journal of Grid Computing 1(3):231–250,
DOI 10.1023/B:GRID.0000035188.36288.39

Tavares AL, Valente MT (2008) A Gentle Introduction to OSGi. SIGSOFT Software
Engineerings Notes 33(5):8:1–8:5, DOI 10.1145/1402521.1402526

Tchernykh A, Ramírez J, Avetisyan A, Kuzjurin N, Grushin D, Zhuk S (2006) Two
Level Job-Scheduling Strategies for a Computational Grid. In: Wyrzykowski R,
Dongarra J, Meyer N, Wasniewski J (eds) Parallel Processing and Applied Math-
ematics, Lecture Notes in Computer Science, vol 3911, Springer, Poznan, pp
774–781, DOI 10.1007/11752578_93

Tchernykh A, Trystram D, Brizuela C, Scherson I (2009) Idle regulation in
non-clairvoyant scheduling of parallel jobs. Discrete Applied Mathematics
157(2):364–376, DOI 10.1016/j.dam.2008.03.005

Thies G, Vossen G (2009) Governance in Web-oriented Architectures. In: Proceed-
ings of the 4th Asia-Pacific Services Computing Conference, IEEE Computer
Society, Singapore, APSCC, pp 180–186, DOI 10.1109/APSCC.2009.5394126

Tonellotto N, Yahyapour R, Wieder P (2007) A Proposal for a Generic Grid Schedul-
ing Architecture. In: Gorlatch S, Danelutto M (eds) Integrated Research in Grid
Computing, CoreGRID, Springer, Pisa, pp 227–239, DOI 10.1007/978-0-387-
47658-2_17

Tröger P, Rajic H, Haas A, Domagalski P (2007) Standardization of an API for
Distributed Resource Management Systems. In: Proceedings of the 7th Interna-
tional Symposium on Cluster Computing and the Grid, IEEE, Rio de Janeiro,
CCGrid, pp 619–626, DOI 10.1109/CCGRID.2007.109

Tröger P, Brobst R, Gruber D, Mamonsi M, Templeton D (2012) Distributed
Resource Management Application API, Version 2.0. In: OGF Document Se-
ries, no. 194 in Recommendation Track, Open Grid Forum, Muncie (IN), URL
http://www.ogf.org/documents/GFD.194.pdf

Tsafrir D, Etsion Y, Feitelson D (2005) Modeling User Runtime Estimates. In: Fei-
telson D, Frachtenberg E, Rudolph L, Schwiegelshohn U (eds) Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science, vol 3834,
Springer, Cambridge (MA), pp 1–35, DOI 10.1007/11605300_1

Tsouloupas G, Dikaiakos M (2005) GridBench: A Workbench for Grid Benchmark-
ing. In: Sloot P, Hoekstra A, Priol T, Reinefeld A, Bubak M (eds) Advances
in Grid Computing, Lecture Notes in Computer Science, vol 3470, Springer,
Amsterdam, pp 454–456, DOI 10.1007/11508380_23

Uhlig S, Quoitin B, Lepropre J, Balon S (2006) Providing Public Intradomain Traffic
Matrices to the Research Community. ACM SIGCOMM Computer Communi-
cation Review 36(1):83–86, DOI 10.1145/1111322.1111341

Ullman JD (1975) NP-complete Scheduling Problems. Journal of Computer and
System Sciences 10(3):384–393, DOI 10.1016/S0022-0000(75)80008-0

References 239

Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A Break in the Clouds:
Towards a Cloud Definition. ACM SIGCOMM Computer Communication Re-
view 39(1):50–55, DOI 10.1145/1496091.1496100

Venugopal S, Buyya R, Ramamohanarao K (2006) A Taxonomy of Data Grids for
Distributed Data Sharing, Management, and Processing. ACM Computing Sur-
vey 38(1):3, DOI 10.1145/1132952.1132955

Vinoski S (2006) Advanced Message Queuing Protocol. IEEE Internet Computing
10(6):87–89, DOI 10.1109/MIC.2006.116

Wäldrich O, Battré D, Brazier FMT, Clark KP, Oey MA, Papaspyrou A, Wieder
P, Ziegler W (2011) WS-Agreement Negotiation Version 1.0. In: OGF Docu-
ment Series, no. 193 in Recommendation Track, Open Grid Forum, Muncie (IN),
United States, URL http://www.ogf.org/documents/GFD.193.pdf

Wiggerich B (2009) Analyse dynamischer Gridumgebungen mittels graphischer
Darstellung. Diploma thesis, Technische Universität Dortmund, Dortmund

Xhafa F, Abraham A (2008) Metaheuristics for Scheduling in Distributed Com-
puting Environments, Studies in Computational Intelligence, vol 146. Springer,
Berlin/Heidelberg

Xhafa F, Alba E, Dorronsoro B (2007) Efficient Batch Job Scheduling in Grids
using Cellular Memetic Algorithms. In: Proceedings of the 21st International
Symposium on Parallel and Distributed Processing, IEEE, Long Beach (CA),
IPDPS, pp 1–8, DOI 10.1109/IPDPS.2007.370437

Xu D, Kulkarni S, Rosenberg C, Chai HK (2006) Analysis of a cdn–p2p hybrid
architecture for cost-effective streaming media distribution. Multimedia Systems
11(4):383–399, DOI 10.1007/s00530-006-0015-3

Zhang Q, Cheng L, Boutaba R (2010) Cloud Computing: State-of-the-art and
Research Challenges. Journal of Internet Services and Applications 1(1):7–18,
DOI 10.1007/s13174-010-0007-6

Zhang W, Cheng AMK, Hu M (2006) Multisite Co-allocation Algorithms for
Computational Grid. In: Proceedings of the 20th International Sympo-
sium on Parallel and Distributed Processing, IEEE, Rhodes Island, IPDPS,
DOI 10.1109/IPDPS.2006.1639652

Zimmermann H (1980) OSI Reference Model—The ISO Model of Architecture
for Open Systems Interconnection. IEEE Transactions on Communications
28(4):425–432, DOI 10.1109/TCOM.1980.1094702

