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SUMMARY 

The epidermal growth factor receptor (ErbB1) is a receptor tyrosine kinase involved in various 

cellular processes, such as growth and differentiation. Its extracellular domains are capable of 

binding a range of ligands, including the epidermal growth factor (EGF). Parts of these 

extracellular domains, as well as the transmembrane domain and the juxtamembrane domain 

are involved in dimerization of the receptor. Upon ligand binding, the intracellular kinase 

domain forms an asymmetric dimer with the kinase of a second receptor, leading to auto-

phosphorylation of several tyrosine and serine residues at the C-terminal tail, where effector 

proteins bind to propagate the signal. 

In this work the transient nature of receptor dimerization and clustering was visualized by 

tracking a fluorescently labeled receptor in living cells on a single molecule level. At the same 

time the activity of the receptor was monitored with a probe for phosphorylation. Even after 

activation, ErbB1 continuously switches between multiple short-lived mobility states, with 

diffusion coefficients that span two orders of magnitude, indicating that ErbB1 activation is a 

highly dynamic process. In resting cells the receptor is mainly monomeric arguing against a 

role of pre-dimerization in the activation of ErbB1. Upon stimulation with EGF, the receptor 

self-associates and localizes in highly active, immobile clusters that colocalize with clathrin-

coated pits. Thus, ErbB1 signaling is stabilized and amplified at the plasma membrane by 

recruitment of the receptors to clathrin-coated pits prior to endocytosis. However, the 

receptors are not necessarily trapped, as they maintain their ability to alternate between 

mobility states. Experiments with a kinase inhibitor and a kinase-dead mutant of ErbB1 

showed that although receptors with an inactive kinase are able to convert to the immobile 

state, kinase activity is necessary for cluster formation. Experiments with a phosphatase 

inhibitor showed that ligand binding is not necessary for clustering of active ErbB1. 

In cells expressing the receptor at a low level, much of the ErbB1 activity is spatially confined 

to clathrin-coated pits on the plasma membrane, in contrast to the uniform activity observed 

in over-expressing cells. This clustering into highly active areas represents a potential 

mechanism for robust signaling from the plasma membrane at low expression levels of the 

receptor. 

 



 VIII

ZUSAMMENFASSUNG 

Der EGF-Rezeptor (engl. epidermal growth factor), auch ErbB1 genannt, gehört zu den 

Rezeptor-Tyrosinkinasen und ist an verschiedenen zellulären Prozessen, wie der Proliferation 

und der Differenzierung, beteiligt ist. Die extrazellulären Domänen des Rezeptors können 

verschiedene Liganden binden, unter anderem EGF. Teile dieser extrazellulären Domänen, 

sowie die Transmembrandomäne und die Juxtamembran-Domäne spielen eine Rolle bei der 

Dimerisierung des Rezeptors. Nach Bindung eines Liganden bildet die intrazelluläre 

Kinasedomäne ein asymmetrisches Dimer mit der Kinase eines zweiten Rezeptors, wodurch 

die Autophosphorylierung verschiedener Serine und Tyrosine am C-terminalen Ende des 

Rezeptors stattfindet. Dort binden Effektorproteine, welche das Signal in die Zelle weiterleiten. 

In dieser Arbeit konnte der kurzlebige Charakter der Rezeptor-Dimerisierung und der Cluster-

Bildung durch die Verfolgung fluoreszenzmarkierter Rezeptoren in lebenden Zellen auf 

Einzelmolekül-Ebene visualisiert werden. Gleichzeitig wurde die Aktivität des Rezeptors durch 

eine Sonde für den Phosphorylierungszustand verfolgt. Auch nach Aktivierung wechselt ErbB1 

permanent zwischen mehreren kurzlebigen Mobilitätszuständen, deren Diffusionskoeffi-

zienten einen Bereich von zwei Größenordnungen umfassen. Dies verdeutlicht, dass die 

Aktivierung von ErbB1 ein hochdynamischer Prozess ist. In unstimulierten Zellen liegt der 

Rezeptor hauptsächlich monomer vor, was gegen eine entscheidende Rolle der Vor-

dimerisierung bei der Aktivierung von ErbB1 spricht. Nach Stimulierung mit EGF assoziieren die 

Rezeptoren und lokalisieren in hochaktiven, immobilen Clustern, welche mit Clathrin-

umhüllten Einstülpungen kolokalisieren. Demnach wird das Signal durch die Rekrutierung der 

Rezeptoren zu Clathrin-umhüllten Einstülpungen vor der Endozytose an der Membran 

stabilisiert und amplifiziert. Allerdings sind die Rezeptoren dort nicht unbedingt gefangen, da 

sie immer noch zwischen den Mobilitätszuständen wechseln können. Experimente mit einem 

Kinaseinhibitor und einer Kinase-inaktiven Mutante des Rezeptors zeigten, dass diese zwar den 

immobilen Zustand erreichen, aber dass für die Cluster-Bildung auch die Kinaseaktivität 

benötigt wird. Zudem zeigten Experimente mit einem Phosphataseinhibitor, dass die Bindung 

eines Liganden für die Cluster-Bildung aktiver ErbB1 Rezeptoren nicht notwendig ist. 

In Zellen mit geringem Expressionslevel von ErbB1, ist die meiste Aktivität des Rezeptors 

räumlich beschränkt in Clathrin-umhüllten Einstülpungen zu finden, wohingegen eine 

gleichmäßige Verteilung der Aktivität bei Überexpression beobachtet wird. Die Anhäufung in 

hochaktiven Membranbereichen beschreibt einen möglichen Mechanismus, um bei geringem 

Expressions-level des Rezeptors eine stabile Signalweiterleitung zu gewährleisten. 
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1. INTRODUCTION 

1.1. Receptor tyrosine kinases 

Receptor tyrosine kinases (RTKs) are cell surface receptors that play an important role in a 

broad range of processes in mammalian cells, such as proliferation, differentiation, migration 

and control of the cell cycle1,2. In the human genome 58 RTKs are known, which are divided 

into 20 subfamilies3 (Figure 1). 

 

Figure 1: Overview of receptor tyrosine kinase families. The 20 subfamilies of human RTKs are 

schematically shown with the respective family members listed below the receptor. The intracellular kinase 

domains are visualized as red rectangles. The variable composition in the extracellular regions are depicted 

by structural domains grouped by their functions, as indicated in the key (Figure adapted from Lemmon and 

Schlessinger 2010
3
). 
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The structure of RTKs as well as their activation mechanisms and the key components of the 

corresponding signaling pathways are highly conserved. They all share the same basic 

molecular structure, consisting of intracellular domains linked to the extracellular domains via 

a transmembrane helix. In the extracellular region the ligand binding domains (LBD) and 

various regulatory domains, for instance for dimerization, are found. The intracellular part 

contains mainly the catalytic domain, the tyrosine kinase. Binding of a ligand to the 

extracellular LBD leads to autophosphorylation of tyrosine residues in the cytoplasmic region. 

In its active state the receptor recruits various effector proteins to induce different signal 

transduction pathways. 

1.1.1. Epidermal growth factor receptors 

An important subfamily of the RTKs is the epidermal growth factor receptor or ErbB receptor 

family, which are expressed in epithelial, neuronal and mesenchymal tissues. They play a 

critical role in cell proliferation, differentiation and migration during embryogenesis and 

carcinogenesis3–5. The ErbB receptor family consists of four members, the epidermal growth 

factor receptor (EGFR/HER1/ErbB1), ErbB2 (HER2/Neu), ErbB3 (HER3) and ErbB4 (HER4). 

 

Figure 2: Schematic representation of the structure of the ErbB family members. The N-terminal 

extracellular domain consists of four subdomains (I – IV), involved in ligand binding and dimerization. The 

transmembrane domain makes a single pass through the membrane, followed by the juxtamembrane 

domain, the kinase domain and the C-terminal tail which contains tyrosines available for phosphorylation. 
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All four members of the ErbB receptor family share the same molecular structure: an 

extracellular domain with four subdomains including a ligand binding domain, a single 

transmembrane helix and an intracellular juxtamembrane domain, followed by a kinase 

domain and a C-terminal tail (Figure 2). 

To activate the relevant signaling pathways the members of this receptor family undergo 

homo- or hetero- dimerization. ErbB1 and ErbB4 are able to become active after homo-

dimerization upon ligand binding, whereas ErbB2 and ErbB3 depend on hetero-dimerization 

with other family members. ErbB2 likely lacks the ability to bind a ligand, since no ligand is 

known, and its activation occurs by dimerization with other ligand-bound members of the 

receptor family6, mainly ErbB17,8. In contrast, ErbB3 has an inactive kinase domain and is 

unable to generate signals by homo-dimerization9, but it can still bind a ligand and form active 

hetero-dimers with other family members. ErbB1, ErbB3 and ErbB4 can bind several ligands 

(Figure 3). The epidermal growth factor (EGF) is the main ligand for ErbB1, but other ligands 

are also known to bind ErbB1 such as the transforming growth factor alpha (TGF-α), epiregulin, 

the heparin-binding epidermal growth factor-like factor (HB-EGF), betacellulin and 

amphiregulin10. Betacellulin, HB-EGF and epiregulin also bind to ErbB4, whereas neuregulins 

(NRGs, also called heregulins) are ligands for both ErbB4 and ErbB311. 

 

Figure 3: Members of the ErbB receptor family and their ligands. The family members ErbB1, ErbB2, ErbB3 

and ErbB4 share the same structure and can bind several ligands except for ErbB2, for which no ligand is 

known. ErbB3 has an inactive tyrosine kinase domain. 
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1.2. The epidermal growth factor receptor 

The epidermal growth factor receptor (EGFR, in the following referred to as ErbB1) is the most 

thoroughly investigated member of the ErbB receptor family, since its aberrant expression and 

receptor mutations have been linked to different types of cancers12. Therefore, it is of great 

importance to understand the cellular mechanisms that regulate ErbB1 activation, and how an 

extracellular signal is propagated and translated into a specific cellular response. 

The extracellular EGF-binding domain of ErbB1 consists of four subdomains I-IV, where I and III 

play a role in EGF binding and subdomains II and IV have regulatory functions (Figure 4). 

Without ligand, ErbB1 adopts a tethered conformation where the subdomains II and IV 

interact13, inhibiting dimerization of the receptor. In addition to the tethered conformation the 

extracellular domains can also be found in an extended conformation, where the binding 

affinity of EGF is increased and the dimerization arm of subdomain II is exposed13. When EGF is 

bound, this extended conformation of ErbB1 is stabilized14,15. 

 

Figure 4: Structure and conformations of ErbB1. ErbB1 switches between a tethered and an extended 

conformation. The extended conformation has a higher affinity to bind EGF. 

Binding of a ligand leads to phosphorylation of several tyrosine and serine residues at the C-

terminal tail of ErbB1. These phosphorylated tyrosines and serines act as recruitment sites for 
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downstream effector proteins containing phosphotyrosine binding (PTB) domains or Src 

homology 2 (SH2) domains. Upon binding of effector proteins several signaling pathways like 

the MEK/Erk, the phosphatidylinositol 3-kinase/AKT (PI3K/AKT) and the phospho-lipase C γ 

(PLCγ) signal transduction pathways as well as signal transducers and activators of 

transcription (STAT) are activated, leading to different cell responses (Figure 5). 

 

Figure 5: ErbB1 signaling pathways. Through recruitment of several adaptor proteins to phosphorylated 

tyrosines or serines at the C-terminal tail of ErbB1, different signaling pathways like the MAPK signaling 

pathway or the PI3K/Akt signaling pathway are activated. 

The growth-factor-receptor bound-2 (Grb2) and the Src-homology-2-containing (Shc) adaptor 

proteins link ErbB1 to the signaling molecule SOS (Ras GTP exchange factor)16–18, leading to 

activation of the mitogen-activated protein kinase (MAPK) cascade culminating in the 

activation of a number of transcriptional regulators by ERK1/2 to induce cell growth and 

proliferation. Phospholipase C γ (PLCγ) binds to phosphorylated ErbB1 via its SH2 domain, 

thereby activating the PLC/PKC pathway19. The PI3K/Akt signaling pathway is mainly activated 

by direct binding of PI3K to active ErbB3 in a hetero-dimer, or indirectly via recruitment to 

ErbB1 by Grb2 and Gab13,20. PI3K initiates a positive feedback loop including Akt activation, 

promoting cell proliferation and survival. Binding of the ubiquitin ligase c-Cbl via its PTB 
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domain or by interaction with Grb2 designates the receptor for endocytosis and degradation 

by attachment of ubiquitin21. This negative regulation mechanism is important to control 

receptor activity and to terminate signaling after stimulation (see also chapter 1.2.2). 

1.2.1. Activation of ErbB1 

Ligand binding and dimer formation are essential for signal transduction of ErbB13. The so-

called ‘signaling dimer’ consists of two ligand-bound ErbB1 receptors, a complex also known as 

the active or asymmetric dimer, referring to the conformation of the kinase domains. The 

extracellular domains in the signaling dimer associate in a way such that the transmembrane 

domains interact at their N-terminal parts, allowing the juxtamembrane domains to associate 

and form an asymmetric dimer22–24. In this conformation one receptor is acting as an 

“activator” and the other as a “receiver” kinase, where the latter is phosphorylated by the 

former25. The activator kinase stabilizes the receiver kinase in the “αC-in active” conformation, 

in which the αC-helix is in a position that the catalytically important KE salt bridge between 

Lys721 and Glu738 is preserved25 (Figure 6 A). In the “αC-out inactive” conformation the αC-

helix disrupts the KE salt bridge24 (Figure 6 C). Between both conformations the kinase domain 

was shown to be intrinsically disordered at the region of the αC-helix, which is thought to play 

an important role for the regulation of receptor activation26 (Figure 6 B). 

 

Figure 6: Schematic view of the three conformational states of the kinase domain of ErbB1. A: “αC-out 

inactive” conformation of the kinase, where the αC-helix disrupts the KE salt bridge. B: Kinase conformation, 

which is intrinsically disordered at the region of the αC-helix, where the KE salt bridge is broken. C: “αC-in 

active” conformation of the receiver kinase in an asymmetric dimer with intact KE salt. (Figure adapted from 

Shan et al.
26

) 
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However, it is still under discussion how the signaling dimer is formed and how the signal 

transduction is regulated3,22,27,28. Early models for signaling dimer formation proposed that EGF 

binding to receptor monomers is required to promote active dimer formation between two 

EGF-bound receptor monomers29 (Figure 7 A). Later it was shown that besides ligand-induced 

dimerization, ErbB1 dimers can also form independently of ligand binding30–35 (Figure 7 B). 

These so-called predimers or inactive dimers show no kinase activity, because they do not 

adopt the asymmetric configuration that is required for kinase activation. In this conformation 

a C-terminal dimerization of the transmembrane helices is favored, which prevents the 

juxtamembrane domains from associating and forming the asymmetric kinase domain 

dimer22-24. 

 

Figure 7: Two alternative models for formation of signaling ErbB1 dimers. A: One ErbB1 in extended 

conformation binds EGF, then dimerizes with a second ErbB1 bond to one EGF to form the signaling dimer. 

B: Two ErbB1 receptors in extended conformation form an predimer without ligand. EGF binds with higher 

affinity to this predimer but the dimer is still inactive. With binding of second EGF the asymetric kinase 

dimer can form, building the signaling dimer. 

Teramura et al. showed that EGF binds with two orders of magnitude higher affinity to 

unoccupied predimers compared to monomers, and that binding of a second EGF to 

predimers, with one EGF already bound, is again one order of magnitude higher36. In this 

model for active dimer formation the monomers in extended conformations tend to form 

predimers (Figure 7 B). They suggested that the binding of EGF to an unoccupied predimer 
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induces an allosteric conformational change in the other receptor, which increases the EGF 

association rate to its binding site. 

So far, the experimental evidence for predimerization and its significance for receptor 

activation have been conflicting31,37–40. Single molecule studies in living cells contradict each 

other on that point: one reports shows that predimerized unliganded receptors are primed for 

EGF binding41, whereas a second study could not detect dimer formation of two unliganded 

receptors but detected stable dimer formation of two ligand bound receptors42. Number and 

brightness analysis in living cells showed that predimers only form in cells expressing receptors 

at high levels, suggesting that a different density of receptors on the surface of the cell might 

be a reason for the observed differences43. 

In addition to ligand-induced activation of ErbB1, ligand-independent activation has been 

observed in cells expressing the receptor at high levels (over 1 million receptors per cell)23,43–45. 

Normally there are several mechanisms to regulate ligand-independent activation, such as 

phosphatases that convert receptors in their dephosphorylated, inactive state45. Recent 

simulations showed that high overexpression of ErbB1 accompanied by the relative deficiency 

of anionic lipids in the plasma membrane could weaken the coupling between the intra- and 

extracellular domains so that the active kinase dimer conformation can form independently 

from the conformation of the extracellular domains22,23. This could lead to a drastic change in 

the balance of the system, which cannot be compensated by phosphatases. 

Besides dimer formation, oligomerization of ErbB1 has been reported in several studies43,46–50, 

but its significance for receptor activation and signal transduction is still disputed. Clayton et 

al. reported the formation of clusters with 15-30 unliganded receptors in human A431 cells 

that express ErbB1 at high levels46. Oligomer formation in A431 cells was confirmed by several 

other methods, including number and brightness analysis43, FRET-FLIM combined with flow 

cytometry48 and surface plasmon coupling microscopy49. Abulrob et al. observed ErbB1 

clusters of an average diameter of 150 ± 80 nm in fixed HeLa cells (10 min EGF stimulation) 

using near-field scanning optical fluorescence microscopy50. Together, these studies yield an 

incoherent and confusing picture of ErbB1 clustering, possibly due to the large variations in 

experimental methods employed, and the experimental conditions that have been applied43. 
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1.2.2. Endocytosis, intracellular trafficking and recycling 

Signals from outside the cell need to be processed robustly, making it necessary to regulate 

the activity of membrane proteins. One of the major regulating mechanisms for ErbB1 is 

endocytotic trafficking51. By endocytosis, followed by recycling or degradation, ErbB1 activity 

can be spatially and temporally regulated to determine cell fate decisions (Figure 8). 

 

Figure 8: Model for recycling and clathrin mediated endocytosis (CME) of ErbB1. After binding of EGF to 

ErbB1 the receptor is phosphorylated. A complex of Grb2 and Cbl recognizes phosphotyrosines on the 

receptor and further recruits E2 enzymes (UbcH4/5) which ubiquitinate the receptor. Epsins bind to 

ubiquitins and recruit the receptor to clathrin-coated pits (CCP). The receptor can then be either recycled 

quickly from the early endosomes (EE) back to the membrane or remain in EE which mature to multi 

vesicular bodies (MVB) and late endosomes (LE). Poly-ubiquitination of the receptors is the signal for 

degradation in lysosomes. 



1. Introduction 

 22

The majority of receptors is internalized via clathrin-mediated endocytosis (CME, Figure 8). A 

complex of Grb2 and Cbl proteins (E3 ubiquitin ligases) is recruited to phosphorylated 

receptors, followed by the binding of E2 ubiquitin conjugating enzymes (UbcH4/5) to the RING 

domain of Cbl proteins for receptor polyubiquitination. The ubiquitinated receptors are 

recognized by the ubiquitin binding domains (UBD) of epsins (Eps15 and EPS15R) which recruit 

the receptor to clathrin-coated pits52. Although Cbl can also bind directly to phosphorylated 

ErbB1, it was shown this is not essential for receptor endocytosis53. 

Clathrin-independent pathways for endocytosis are involved when ErbB1 is highly 

overexpressed like in A431 cells54,55 or when high concentrations of EGF are used56,57. These 

pathways are mainly observed together with membrane ruffling and pinocytosis and are 

significantly slower than CME. 

EGF receptors are continuously internalized from the plasma membrane to endosomes and at 

the same time recycled from endosomes to the plasma membrane. Without stimulation by a 

specific ligand the rate of recycling (rate constant kr ≥ 0.2 min−1) is much higher than the rate 

of endocytosis (rate constant ke ~ 0.02 – 0.05 min−1)58, leading to a high level of receptors at 

the plasma membrane. When the receptor becomes phosphorylated upon ligand binding, its 

internalization rate increases, and it accumulates in early endosomes 2-5 minutes after the 

start of endocytosis59. These early endosomes (EE) are highly dynamic and fuse rapidly to the 

larger sorting or intermediate endosomes. ErbB1 will then either be sorted to lysosomes for 

degradation or to recycling endosomes. From early and sorting endosomes, receptors can 

either be recycled directly to the membrane at a high rate (t1/2 of 2-6 min) or be transported 

back to the membrane via early recycling endosomes (ERC) at a much slower rate (t1/2 of 

15 - 30 min). The decision for degradation or recycling depends on the ligand bound to ErbB1. 

While EGF bound receptors are degraded and recycled in equal amounts, the recycling rate of 

TGF-α bound ErbB1 receptors increases significantly60,61. This difference is caused by the 

sensitivity of TGF-α binding for the low pH (6.4 – 6.8) in early endosomes60,62, while EGF 

binding is not influenced at this pH. At an acidic pH the dissociation constant KD between 

TGF-α and ErbB1 is low either due to a reduced affinity or to a high off rate. In contrast, EGF 

remains bound to ErbB1. This is essential for polyubiquitination of the receptor, which is the 

signal for sorting into late endosomes for lysosomal degradation. By manipulating the 

degradation and recycling rates of ErbB1, the specific responses to different stimuli can be 

regulated accurately. However, the exact recycling processes contributing to the regulation of 

ErbB1 activity and its signaling are still poorly understood. 
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1.2.3. ErbB1 mutations 

Mutated forms of ErbB1 or disturbed regulation of its expression or activation occur in several 

cancer species. Here two point mutations that are relevant for the work described in this 

thesis are discussed. 

The L834R somatic point mutation (also named L858R when including the 24 aa signaling 

sequence) accounts for around 40 % of all mutations found in ErbB1 in non-small-cell lung 

cancer (NSCLC)63,64. This mutation is located in the activation loop of the kinase domain, where 

it is close to the A-loop stabilizing DFG (Asp-Phe-Gly) motif. Lung cancers with this mutation 

are reported to respond to the competitive tyrosine kinase inhibitors (TKI) gefitinib (Iressa) and 

erlotinib (Tarceva)65–68, which bind to the ATP binding site of the kinase. The binding affinity of 

gefitinib to the L834R mutant (KD = 2.6 nM) is about 20-fold stronger than to the wild type 

ErbB1 (KD = 53.5 nM)69. It was shown that the L834R mutant exhibits higher activation levels 

even without EGF stimulation26,70,71. Some studies showed considerably increased 

phosphorylation levels of Y992, Y1068 and especially Y845 while others observed no change in 

the relative levels of phosphorylation for different tyrosine residues but increased 

phosphorylation at all positions71. It has been suggested that the higher phosphorylation levels 

without EGF binding result from a strongly increased dimerization affinity of the L834R 

mutant26,72. Crystal structures indicate that the L834R mutation locks the kinase in a 

constitutively active state69. Shan et al. concluded from simulations that the “αC-in active” 

conformation is favored over the disordered state by the mutation such that the kinase 

domain is primed for dimerization26. They also propose that Y845 phosphorylation could play 

an important role for increased activation, and that it could be a trigger for lateral signal 

propagation that was reported earlier to be important for ErbB1 signal amplification44,73. 

The ErbB1 mutant K721A was introduced in 1987 by Honegger et al. to examine the possible 

tyrosine kinase function of ErbB174,75. The lysine at position 721 is part of the ATP-binding site 

of the tyrosine kinase of ErbB1. The mutation of L721 to alanine leads to inactivity of the 

kinase domain, thereby preventing autophosphorylation of tyrosines.  



1. Introduction 

 24

1.3. Fluorescence microscopy 

Fluorescence microscopy is a variant of light microscopy based on the characteristic of 

fluorescent particles to be excited by light and emit the absorbed energy as photons at red-

shifted wavelengths. Today fluorescent microscopy is one of the most commonly used 

microscopy techniques. Fluorescence microscopy provides several advantages over other 

techniques like electron microscopy, such as specific labeling of cellular components and the 

possibility to observe processes in living cells. 

1.3.1. Total internal reflection fluorescence (TIRF) microscopy 

For single molecule microscopy of molecules in the membrane of the cells it is important to 

enhance the signal to noise ratio (SNR) and minimize the fluorescent background from the 

cytosol of a cell. By use of total internal reflection fluorescent (TIRF) microscopy the 

background from the cytosol can be significantly reduced. For TIRF illumination an evanescent 

field is produced by an incident light beam which is totally reflected at the interface between 

two media with different refractive indices n, usually the glass bottom of a dish (n = 1.52) and 

the aqueous solution (n = 1.33) surrounding the cells (Figure 9). The resulting evanescent wave 

decreases exponentially, thereby achieving a penetration depth of 100 – 200 nm76. As the 

background from the cytosol is drastically reduced, TIRF microscopy is a good choice for single 

particle measurements at the basal plasma membrane of adhered cells. 

 

Figure 9: Principle of total internal reflection fluorescence (TIRF) microscopy. Light from a laser excitation 

source passes through the glass (refractive index n = 1.52) and is reflected at the glass-buffer (aqueous 

solution n = 1.33) interface. Light incident with an angle greater than the critical angle θC is totally reflected 

generating an evanescent wave that travels approximately 100 - 200 nm into the cell. Fluorophores in the 

cell near the glass interface are excited by the evanescent wave and emit fluorescence, while those further 

away from the interface are not excited.  
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1.3.2. Single molecule fluorescent microscopy 

Conventional fluorescence microscopy is limited by the diffraction limit of light77. Typically a 

maximal spatial resolution of 200-300 nm in lateral direction and 500-700 nm along the optical 

axis can be achieved. The challenge for the development of single molecule fluorescence 

microscopy methods is to resolve molecules with a precision that exceeds the diffraction limit. 

In the early 1990s the first single fluorophore detection experiments at room temperature 

were published78–81 that were able to overcome the diffraction barrier. Since then new 

possibilities for the development of techniques with unprecedented precision and resolution 

have been opened82–84.  

1.3.3. Single particle tracking 

Single molecule imaging evolved as one of the main techniques to visualize and analyze sub-

cellular structures, protein networks and functions. Protein interactions and activation occur 

on short time scales of a few milliseconds up to seconds, thus high spatial and temporal 

resolutions are essential to resolve signaling processes. Single particle tracking (SPT) follows 

the movements of single emitting particles at a relative low density in living cells. In contrast to 

bulk measurements like fluorescence recovery after photobleaching (FRAP)85, fluorescence 

correlation spectroscopy (FCS)86 or image correlation based techniques (e.g. ICS, ICCS87), SPT 

allows the observation of single events with high spatial and temporal resolution, revealing the 

full distribution of the measured quantity rather than an average value (as in FRAP and FCS 

based techniques). Another significant advantage of single particle tracking experiments at low 

protein density is that protein behavior might be more physiological than in cells 

overexpressing the targeted protein, which is usually needed to gain a reasonable signal-to-

noise ratio in ensemble measurements. When imaging the dynamics of plasma membrane 

proteins, SPT is often combined with TIRF microscopy to reduce cytosolic background signals. 

The localization of single molecules can be accomplished by fitting a Gaussian function to the 

intensity distribution of an emitting molecule described by the point spread function (PSF)88. 

Tracking algorithms localize the particles in each frame of an image series and temporally link 

them to form trajectories. Problems that often hinder robust tracking and track assembly are 

high particle density, particle motion heterogeneity, temporary particle disappearance and 

particle merging or splitting89. Some of these issues can be overcome by decreasing the 

particle density, but this is not always feasible or desirable. Therefore Jackaman et al.
90 
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developed an algorithm that copes with most of these problems using a mathematical 

framework, the linear assignment problem (LAP)91,92. 

During the last decades single particle tracking methods were extensively implemented in the 

field of microscopy. Single molecule tracking can be used to investigate a wide range of 

molecules like lipids, membrane receptors and ligands. In 1981 Barak and Webb published the 

first single molecule tracking experiment on cell membranes93. They tracked a fluorescent low-

density lipoprotein (LDL) derivate complexed to its receptor and could determine its diffusion 

coefficient. In 2000 Schütz et al. were the first to show the compartmentalization of lipids in 

the plasma membrane of living cells94. In 2002 Fujiwara et al. showed compartmentalization of 

the plasma membrane of rat kidney fibroblasts (NRK) by studying the movement of 

unsaturated phospholipids (DOPE) at the single molecule level with a temporal resolution of 

25 μs95. Murase et al. used Cy3-labeled unsaturated phospholipids to further characterize 

plasma membrane compartments in various cell types96. They concluded that 

compartmentalization of the plasma membrane is universal and might play various biologically 

important roles in a variety of membrane functions. In accordance to that Lommerse et al. 

could show partitioning of H-Ras in different types of microdomains by tracking H-Ras labeled 

with EYFP97. In other studies quantum dots (QD) were used to label proteins of interest. For 

example, the dimerization of ErbB1 was visualized by using Qdot-labeled EGF and 

nanobodies41,42,98. 

1.3.4. Labeling methods 

The choice of the fluorophore used in SPT is critical. For example quantum dots and gold 

nanoparticles have a high photo-stability and thereby enable long observation times, but for 

some biological applications the use of genetically encoded fluorescent proteins like GFP, tags 

or antibodies labeled with a bright dye might be more suitable. Thus, the choice of a labeling 

strategy strongly depends on the target protein and the imaging method. 

There are several methods to label a protein of interest for single molecule fluorescence 

microscopy. A common approach is to link a fluorescent protein genetically to the DNA 

sequence of the targeted protein. The green fluorescent protein GFP was discovered 1961 by 

Osamu Shimomura in Aequorea victoria
99. Douglas Prasher was the first to isolate and 

sequence the cDNA of GFP with a primary sequence of 238 amino acids (27 kDa) and to use it 

to tag other proteins100,101. GFP has two absorption maxima, at 395 nm and at 475 nm, the 

maximum of the emission spectrum lies at 509 nm. Meanwhile several variations of GFP have 
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been engineered with enhanced or different properties, e.g. color, stability and brightness 

(EGFP, CFP, BFP, YFP). Many fluorescent proteins from other species were also discovered, like 

the red fluorescent protein mCherry, which was derived from a protein isolated from 

Discosoma sp.102.  

Some applications need fluorophores with higher extinction coefficients, higher quantum 

yields or better photostability than fluorescent proteins. Dyes with high quantum yield include 

cyanide dyes like Cy3 and Cy5 or Alexa (Life Technologies, Grand Island, NE, USA) and Atto 

(Atto-Tec, Siegen, Germany) dyes. They are small in size and are commercially available in a 

wide range of colors. Quantum dots are semiconductor nanocrystals with a very low bleaching 

rate but they are relatively large and the labeling ratio is difficult to control as they generally 

have multiple binding sites. 

There are several possibilities to introduce organic dyes or QDs to a protein of interest. For a 

broad range of biochemical approaches antibodies are used. Antibodies are generated to bind 

specifically to an antigene to identify and label proteins. The main disadvantages of antibodies 

are their size of 150 - 160 kDa and that they have two binding sites. Due to their size, a 

targeted protein could be influenced in its binding behavior and dynamic properties. Especially 

when measuring on a single molecule level, these attributes can be problematic. The two 

binding sites on one antibody molecule can lead to crosslinking of the targeted proteins, 

thereby perturbing their behavior. 

To overcome the drawbacks of conventional antibodies Roovers et al. engineered nanobodies 

against ErbB1. Nanobodies are derived from antibodies from species of the camelidae family 

consisting only of heavy chains103, from which they used only a single immunoglobulin (Ig) 

variable region, which leads to the drastically reduced size of a nanobody of 15 kDa. 

Additionally, nanobodies have only one binding site, making them an ideal tool for labeling 

single molecules. Analogous to genetically encoded tags, the protein of interest can be labeled 

with a range of fluorophores that are coupled to the nanobody. The only constraint is that a 

specific nanobody has to be developed for the protein of interest. So far the available range of 

specific nanobodies is relatively small but due to the big advantages over classical antibodies 

the number will certainly grow in the coming years. 

Other methods use genetically encoded tags to introduce a specific site into a protein to which 

fluorescent dyes or quantum dots (QD) can be coupled104. Examples for such tags are 

SNAP/CLIP105, FLASH106 or Halo107. The advantage of these tags is that the same construct can 

be used to label the protein of interest with a variety of fluorophores. For example cell 
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impermeable dyes can be used to label only proteins on the cell surface, which is beneficial for 

imaging membrane receptors like ErbB1. 

In this work, the SNAP-tag was used to label ErbB1 at the extracellular N-terminus. The SNAP-

tag is a mutant of the O6-alkylguanine-DNA alkyltransferase (AGT) of 20 kDa, which is a DNA 

repair protein that irreversibly transfers an alkyl residue from the O6 position of guanine to 

one of the cysteins of AGT105. The SNAP-tag was mutated so that it has an increased affinity 

against O6 benzylguanine (BG) as a substrate, on which several residues, such as functional 

groups or fluorescent dyes can be coupled. The SNAP-tag can be fused genetically to the target 

protein, to which the residue from a BG derivative will be covalently bound after the reaction 

(Figure 10). 

 

Figure 10: SNAP-tag labeling reaction. The SNAP-tag on a target protein (X) reacts with a benzylguanine 

derivative and transfers the label from the BG derivative to a cycsteine on the SNAP-tag (Figure adapted 

from Keppler at al. 2003
105

). 
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2. AIM OF THE THESIS 

Although ErbB1 is one of the most studied members of the receptor tyrosine kinase family, the 

model for ErbB1 activation is still vividly discussed in the literature.  

Binding of an external ligand to ErbB1 leads to the phosphorylation of several tyrosines and 

serines at its C-terminal tail, which are then recognized by effector proteins that transmit the 

signal into the cell. Dimerization is a key step in the activation process108 and was shown to be 

highly dynamic by FRET studies44 and more recently by single molecule studies41,42. As a result, 

the receptor is susceptible to activation in the absence of a ligand23,43,44 and active regulation 

mechanisms for the receptor activity have to exist at plasma membrane level45. Receptor 

clustering was suggested as one possible mechanism to amplify the signal upon ligand binding, 

but the reported results were often contradictory43,73,109–111. These discrepancies are likely a 

result of the variety of employed methods and experimental conditions that were employed43. 

However, the relation between receptor activity and self-association has not been investigated 

directly in living cells, due to the lack of adequate methods, especially at low expression levels. 

In this work, single particle tracking of the ErbB1 receptor, in combination with a probe for 

phosphorylation to visualize its activity, is used to answer the following questions:  

1. How does ErbB1 dimerization and clustering relate to its signaling activity? 

2. How is a stable signal generated from the plasma membrane? 

These questions are investigated in cells with low ErbB1 densities at the plasma membrane, to 

avoid possible artifacts due to over-expression of the receptor. 
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3. MATERIALS AND METHODS 

3.1. Materials 

3.1.1. Equipment 

Table 1: Equipment used for experiments. 

Instrument Name Company 

Argon laser, 476 nm 

Krypton laser, 568 nm 

Innova Sabre: Argon 
DBW20/4, Krypton DBW 

Coherent Inc., Dieburg, 
Germany 

Blotting chambers XCell Secure Lock Invitrogen, Life Technologies 
GmbH, Darmstadt, Germany 

Cell counter Vi-CELL Beckman Coulter, Krefeld, 
Germany 

Chambered Cover Glass Nunc Lab-Tek Chambered 
Cover Glass 

Thermo Fisher Scientific, 
Waltham, USA 

Clean bench Cellgard Class II Biological 
Safety Cabinet 

Nuaire, Integra Biosciences 
GmbH, Fernwald, Germany 

Dichroic mirror DM570 DM 570 from U-MNIGA3 Olympus GmbH, Hamburg, 
Germany 

Diode laser 640 nm Toptica iBeam smart-640-S Topica Photonics, München 

DPSS laser 532 nm DPSS laser UltraLasers, Toronto, Canada 

Electrophoresis chambers Electrophoresis chambers 
MINI and MIDI 

Roth, Karlsruhe, Germany 

Electroporator Gene-pulser and Pulse 
controller 

Bio-Rad, München, Germany 

EM-CCD camera iXon+, DU-897 Andor, Belfast, Northern 
Ireland 

ESI-MS Finnigan LCQ Advantage 
MAX 

Thermo Fisher Scientific, 
Waltham, USA 

Emission filter green 500-550 AHF, Tübingen, Germany 

Emission filter red BP 575-625 from U-MNIGA3  Olympus GmbH, Hamburg, 
Germany 

Fluorescence microscope Olympus IX81 Olympus GmbH, Hamburg, 
Germany 

Gel imager GelDoc XR Bio-Rad, München, Germany 

Helium neon (HeNe) laser HeNe laser Newport, Irvine, USA 
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Instrument Name Company 

Image splitter Optosplit II Cairn Research, Faversham, 
UK 

Incubator Shaker Innova 4000 Incubator 
Shaker 

New Brunswick Scientific, 
Nütringen, Germany 

Infrared Imaging System Odyssey LI-COR Biosciences GmbH, Bad 
Homburg, Germany 

Inverted confocal 
microscope 

Leica TCS SP5 Leica Microsystems GmbH, 
Wetzlar, Germany 

Objective heater system Objective Heater System Bioptechs, Butler, USA 

Oil immersion objective for 
TIRF, 60x 

PLAPON 60xO/TIRFM-SP, 
NA = 1.45 

Olympus GmbH, Hamburg, 
Germany 

PCR-Cycler Mastercycler® pro 
vapo.protect™, 
Mastercycler® EP gradient 

Eppendorf, Hamburg, 
Germany 

 

Pipettes Reference and Research plus Eppendorf, Hamburg, 
Germany 

Power supplies for 
electrophoresis and 
blotting 

Power Pac 300, HC and 
Universal 

Bio-Rad, München, Germany 

Reverse phase (RP) HPLC Beckman System Gold HPLC Beckman Coulter, Krefeld, 
Germany 

Spectrophotometer Spectrophotometer DU 800 Beckman Coulter, Krefeld, 
Germany 

Spectrophotometer NanoDrop 

Spectrophotometer ND 1000 
PEQLAB Biotechnologie 
GmbH, Erlangen, Germany 

Tabletop centrifuge Centrifuge 5424 Eppendorf, Hamburg, 
Germany 

Thermo shaker ThermoShaker TS1 Biometra, Göttingen, Germany 

Vacuum Centrifuge Concentrator plus Eppendorf, Hamburg, 
Germany 

Vortex Vortex Genie1 Touch Mixer Scientific Industries, Karlsruhe, 
Germany 

Water bath Isotemp 205 Water bath Fisher Scientific, Schwerte, 
Germany 

3.1.2. Chemicals, Enzymes 

All basic chemicals were purchased from Serva (Heidelberg, Germany), Sigma-Aldrich 

(Taufkirchen, Germany) or Roth (Karlsruhe, Germany) and used as recieved. 
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Table 2: Chemicals and enzymes used for experiments. 

Name Company 

AccuPrime Pfx DNA polymerase, 
AccuPrime Reaktion Mix, 10x 

Invitrogen, Life Technologies GmbH, 
Darmstadt, Germany 

Albumin Bovine Fraction V, pH 7.0 (BSA) Serva, Heidelberg, Germany 

 

Anti-rabbit/goat/mouse-
IRDye800/IRDye700,  

New England Biolabs, Frankfurt am Main, 
Germany 

Anti-EGFR (#2232) Cell Signaling Technology, Inc., Danvers, USA 

Anti-phosphotyrosines (pY72) Invivo Biotech Services, Hennigsdorf, 
Germany 

Blocking buffer (Odyssey) for western blots LI-COR Biosciences GmbH, Bad Homburg, 
Germany 

Bradford reagent Sigma-Aldrich, Taufkirchen, Germany 

Cell Lysis buffer, 10x Cell Signaling Technology, Inc., Danvers, USA 

Dynasore Calbiochem, Merck KGaA, Darmstadt, 
Germany 

DMEM, FCS, L-Glutamine, Trypsin, NEAA, 
DPBS 

PAN Biotech, Aidenbach, Germany 

DPBS, Calcium, Magnesium (DPBS+) Gibco, Life Technologies GmbH, Darmstadt, 
Germany 

EGF, human Sigma-Aldrich, Taufkirchen, Germany 

EGF-Alexa488, EGF-Alexa647 Michael Sonntag, AG Brunsveld, TU 
Eindhoven, Netherlands 

Erlotinib Cayman Chemical, Ann Arbor, USA 

Glycine, Poly-L-Lysine Sigma-Aldrich, Taufkirchen, Germany 

IgG donkey anti-mouse Alexa647 or 
Alexa488 

Invitrogen, Life Technologies GmbH, 
Darmstadt, Germany 

Immobilon-FL PVDF Millipore, Merck KGaA, Darmstadt, Germany 

Licor ladder (Odyssey) LI-COR Biosciences GmbH, Bad Homburg, 
Germany 

Mono-reactive Cy3 NHS ester Amersham, GE Healthcare 

(Sodium-)Orthovanadate, H2O2 Sigma-Aldrich, Taufkirchen, Germany 

Paq5000 DNA polymerase, 
Paq buffer, 10 x 

Agilent, Böblingen, Germany 

Penicillin/Streptomycin PAN Biotech, Aidenbach, Germany 

Phosphatase Inhibitor 2 + 3 Sigma-Aldrich, Taufkirchen, Germany 

Precision Plus ladder Bio-Rad, München, Germany 

Primers, HPSF purification Eurofins MWG Operon, Ebersberg, Germany 
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Name Company 

Protease Inhibitor Cocktail tablet, Complete, 
Mini, EDTA-free  

Roche, Mannheim, Germany 

RedSafe, DNA Stain Chembio Ltd, Hertfordshire, UK 

Restriction enzymes New England Biolabs, Frankfurt am Main, 
Germany 

T4-DNA-Ligase Invitrogen, Life Technologies GmbH, 
Darmstadt, Germany 

TetraSpecks Life Technologies GmbH, Darmstadt, 
Germany 

Tween-20 Sigma-Aldrich, Taufkirchen, Germany 

 

3.1.3. Kits 

Table 3: Used Kits. 

Application Name Company 

Clean-up of Sequencing 
Reactions 

NucleoSEQ MACHEREY-NAGEL, 
Düren, Germany 

Gel extraction QIAquick Gel Extraction Kit QIAGEN, Hilden, Germany 

Plasmid preparation, mini QIAprep Spin Miniprep Kit QIAGEN, Hilden, Germany 

 High Pure Plasmid Isolation Kit Roche Applied Science, 
Mannheim, Germany 

Plasmid preparation, midi, 
endotoxin-free 

NucleoBond® Xtra Midi EF MACHEREY-NAGEL, 
Düren, Germany 

Transfection Effectene® Transfection Reagent QIAGEN, Hilden, Germany 

 

3.1.4. Buffers and solutions 

TAE buffer 1x 

40 mM Tris-acetate 
1 mM EDTA 
pH 8.3 

 

TBS-T 

25 mM Tris 
137 mM NaCl 
2.7 mM KCl 
0.05 % TWEEN-20 

 

Lysis buffer (10 ml) 

1 ml   Cell Lysis buffer 10x 
9 ml    ddH2O 
100 µl    Phosphatase Inhibitor Cocktail 2 
100 µl    Phosphatase Inhibitor Cocktail 3 
1 tablet Protease Inhibitor cocktail,  

  complete, Mini, EDTA-free 
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Phosphate buffered saline (PBS) 1x 

137 mM NaCl 
2.7 mM KCl 
10 mM Na2HPO4 x 12 H2O 
2 mM KH2PO4 
pH 7.4 

 

Paraformaldehyde 

4 % (w/v) Paraformaldehyde 
10 mM   NaOH 
in 1x PBS  
pH 7.4 

 

 

SDS sample buffer, 5x 

60 mM Tris-HCl 
14.4 mM 2-Mercaptoethanol 
25 % Glycerol 
2 % SDS 
0.1 % Bromphenol blue 

 

 

SDS running buffer (pH 8.3), 1x 

25 mM  Tris base 
192 mM Glycine 
0.1 %  SDS 
in ddH20 

 

 

Transfer buffer, 1x 

12 mM Tris base 
96 mM Glycine 
in 20 % methanol 
 

 

 

 

 

LB medium 

10 g Bact. Tryp 
5 g  Yeast extract 
10 g NaCl 
ad 1 L  H2O 
pH 7.4 

 

 

LB agar 

LB medium + 1.5 % Bacto Agar 

 
 

 

SOB medium 

20 g Trypton 
5 g Yeast extract 
0.58 g NaCl 
0.19 g KCl 
2.03 g MgCl2 x 6 H2O 
2.46 g MgSO4 x 7 H2O 
ad 1 L H2O 

 

 

SOC medium 

SOB medium + 2 % (v/v) glucose 

 
 

 

DMEM (PAN Biotech) 

DMEM with 4.5 g/l glucose 
without L-glutamine 
with sodium pyruvate 
with phenol red 
with 3,7 g/l NaHCO3 

 

 

Imaging medium (PAN Biotech) 

DMEM with 4.5 g/l glucose 
with stab. glutamine 
with sodium pyruvate 
with 25 mM Hepes 
without Phenol red 
with 0,5 g/l NaHCO3 
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3.1.5. Software 

Table 4: Used Software. 

Name Source 

Matlab Version R2013A, MathWorks, Ismaning, Germany 

ImageJ Rasband, W.S., ImageJ, U. S. National Institutes of Health, 
Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-
2012 

Fiji Schindelin et al. Nature Methods (2012)112 

IGOR Pro WaveMetrics, Portland, USA 

vbSPT Persson et al. Nature Methods (2013)113 

3.2. Molecular biology 

3.2.1. Plasmids 

Table 5: Plasmids used for cloning and transfections. 

Name Description Origin 

pSNAP-tag(m)® SNAP tag encoding plasmid New England Biolabs, 
Frankfurt am Main, Germany 

pEGFP-N1 EGFP encoding plasmid Clontech Laboratories, Inc., 
Mountain View, USA 

pmCherry-N1 mCherry encoding plasmid Clontech Laboratories, Inc. 
Mountain View, USA 

EGFP-PTB Encoding PTB domain from Shc with 
N-terminal EGFP 

Martin Offterdinger 

EGFP-hLCA Encoding human clathrin light chain A 
with N-terminal 

Martin Offterdinger 

EGFP-ErbB1 Encoding ErbB1 with N-terminal EGFP 
after signaling sequence 

Martin Offterdinger 

ErbB1-EGFP Encoding ErbB1 with C-terminal EGFP  Wouters et al. 1999114 

ErbB1-mCherry Encoding ErbB1 with C-terminal 
mCherry 

Cloned from ErbB1-EGFP 

SNAP-ErbB1 Encoding ErbB1 with N-terminal SNAP-
tag after signaling sequence 

Cloned from EGFP-ErbB1 

SNAP-ErbB1 L834R  Encoding SNAP-ErbB1 with point 
mutation L834R 

Cloned from SNAP-ErbB1 

SNAP-ErbB1 K721A Encoding SNAP-ErbB1 with point 
mutation K721A 

Cloned from SNAP-ErbB1 
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3.2.1.1.  Cloning of constructs 

For the construction of SNAP-ErbB1 the DNA sequences for SNAP were amplified by PCR from 

pSNAP-tag(m) with primers SNAP_AgeI_F and SNAP_XhoI_R (Table 11) and afterwards 

digested with AgeI and XhoI. EGFP-ErbB1 (Table 5) was also digested with AgeI and XhoI to cut 

out the EGFP sequence and replace with the SNAP sequence. 

Point mutations K721A and L834R were inserted into SNAP-ErbB1 plasmids by mutation PCR 

(see chapter 3.2.4.2) using primers listed in Table 12. 

The PTB sequence was amplified by PCR from PTB-Citrine with the primers PTB_EcoRI_for and 

PTB_SalI_rev (Table 11), digested with EcoRI and SalI and ligated into the mCherry-N1 vector. 

Correctness of constructed plasmids was verified by DNA sequencing (chapter 3.2.4.4). 

3.2.2. Plasmid preparation 

Plasmid DNA was purified from 3 ml or 200 ml E. coli overnight cultures in LB medium with the 

Plasmid Mini / Midi Kit (QIAGEN) or the High Pure Plasmid Isolation Kit (Roche). 

3.2.3. Agarose gel electrophoresis 

The separation of DNA fragments due to their length was performed by agarose gel 

electrophoresis. In this method an electric field is applied so that at neutral pH the negatively 

charged DNA fragments migrate in the direction of the positive charged anode due to the 

DNA’s negatively charged phosphates on their backbone. With agarose as a matrix the 

migration speed of the DNA fragments only depends on their molecular weight due to same 

mass to charge ratio per DNA fragment. All gels were prepared with 1 – 2 % agarose in TAE 

buffer. To stain the DNA the DNA binding dye RedSafe™ was added to the agarose gel, so that 

the DNA bands could be visualized under UV light. 1 kb DNA ladder (Fermentas) was loaded on 

the gel in parallel to estimate the length of the fragments. If necessary fragments of expected 

length were sliced out of the gel and extracted with the QIAquick Gel Extraction Kit. 

3.2.4. Polymerase chain reaction 

The polymerase chain reaction (PCR) is a standard method to amplify DNA. For the reaction a 

small amount of matrix DNA is mixed with two single stranded DNA primers, the four desoxy 

nucleotides dATP, dCTP, dGTP, dTTP and a thermo stable DNA polymerase like Taq, Pfx or Pfu. 
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In three steps the double stranded DNA is first denatured to single strand DNA, followed by 

hybridization with the primers, which are then elongated by the polymerase from 5’ to 3’. 

These steps are repeated several times leading to an exponential amplification of DNA. 

3.2.4.1. Amplification PCR 

A typical PCR, where an insert for cloning, like PTB or SNAP, was amplified, is listed in Table 6 

and Table 7. 

Table 6: Typical composition of an amplification PCR.  

reagent amount 

Matrix DNA 30 - 50 ng 

Primer 1 

Primer 2 

300 nM 

300 nM 

AccuPrime reaction mix  1x 

AccuPrime Pfx DNA 
polymerase  

1 U 

 

filled up with ddH2O to 50 µl 
 

Table 7: Cycling parameters for an amplification PCR. 

temperature time 

Denaturation (95°C) 2 min 

Denaturation (95°C) 

Annealing (55°C) 

Elongation (68°C) 

15 s 

30 s          25x 

1 min/kb 

Final elongation (68°C) 10 min 

8°C ∞ 
 

 

3.2.4.2. Mutation PCR 

Point mutations were introduced into the coding DNA of a protein by mutation PCR. Two 

complementary primers containing the mutation flanked by 15 - 17 bp at each side 

complementary to the target sequence were used together with a plasmid containing the 

target DNA sequence in a PCR (Table 6 for reaction, Table 8 for cycling parameters). After the 

PCR the plasmid DNA was digested with DpnI for 1 h at 37°C. 1 - 2 μl of the reaction were used 

to transform E. coli to religate and amplify the mutated plasmid. 

Table 8: Cycling parameters for a mutagenese PCR. 

temperature time 

Denaturation (95°C) 2 min 

Denaturation (95°C) 

Annealing (55°C) 

Elongation (68°C) 

30 s 

60 s          16x 

1 min/kb 

Final elongation (68°C) 7 min 

8°C ∞ 
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3.2.4.3. Colony PCR 

During particular cloning procedures it was useful to select promising clones by colony PCR. 

For this method a small amount of an E. coli colony from an agar plate is used in a PCR     

(Table 9, Table 10). With a pipette tip that was dipped in the colony a few cells were 

transferred into the PCR reaction tube. Specific primers were chosen to amplify a region of the 

plasmid where the cloning success could be evaluated, for example a forward primer binding 

to the multiple cloning site (MCS) together with a reverse primer binding to the terminator 

sequence. 

Table 9: Typical composition of a colony PCR. 

reagent amount 

Primer 1 

Primer 2 

250 nM 

250 nM 

dNTPs Each 250 µM 

Paq buffer 1x 

Paq5000 DNA 
polymerase 

1 U 

 

filled up with ddH2O to 25 µl 
 

Table 10: Cycling parameters for a colony PCR. 

temperature time 

Denaturation (95°C) 10 min 

Denaturation (95°C) 

Annealing (55°C) 

Elongation (72°C) 

30 s 

30 s          30x 

1 min/kb 

Final elongation (72°C) 10 min 

8°C ∞ 
 

 

3.2.4.4. Sequencing 

To verify the accuracy of DNA after cloning, DNA sequences were sequenced by the Sanger 

method115. In this method chain terminating didesoxynucleotides (ddNTPs) labeled with one 

color for each nucleotide are added to a normal PCR mixture consisting of matrix DNA, 

desoxynucleotides (dNTPs) and polymerase but only one primer. After denaturation of the 

matrix DNA and annealing of the primer the polymerase elongates the strand until one 

didesoxynucleotide is incorporated and the lacking 3’-OH group precludes further elongation. 

After repeated cycles of this PCR reaction several newly synthesized DNA sequences of 

different lengths are generated. By capillary agarose electrophoresis the sequences are 

separated by their length and by detecting the color of the terminating didesoxynucleotide the 

DNA sequence can be concluded. 

Using this method it is usually possible to sequence up to 1000 bases starting from the primer, 

so that it is necessary to repeat this reaction multiple times with different primers for longer 

sequences like the ErbB receptors. 4 - 5 reactions with primers binding to different parts of the 

receptor sequence were prepared. 
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3.2.4.5. Cloning primers 

Table 11: Primer sequences used for cloning. 

Name Sequence (5’ → 3’) 

SNAP_AgeI_F  GCG ACC GGT AAT GGA CAA AGA CTG CGA AAT G 

SNAP_XhoI_R CTC CTC GAG CAC CCA GCC CAG GCA 

PTB_EcoRI_for CGC GAA TTC ATG GGC CAG CTT GGG 

PTB_SalI_rev CGC GTC GAC GTC CTG AGG TAT TGT TTG AAG C 

3.2.4.6. Mutation primers 

Table 12: Primer sequences used for mutation. 

Mutation Primer Sequence (5’ → 3’) 

ErbB1 L834R ErbB1_L858R_F CAC AGA TTT TGG GCG GGC CAA ACT GCT GG 

(dimerization 
enhanced) 

ErbB1_L858R_R CCA GCA GTT TGG CCC GCC CAA AAT CTG TG 

 

ErbB1 K721A 

(kinase-dead) 

ErbB1_K721A_F GTT AAA ATT CCC GTC GCT ATC GCG GAA TTA AGA 
GAA GCA ACA TC 

 ErbB1_K721A_R GAT GTT GCT TCT CTT AAT TCC GCG ATA GCG ACG 
GGA ATT TTA AC 

3.2.5. Ligation 

Ligation of DNA fragments and plasmids, both treated with the same restriction enzymes, was 

carried out using the T4-DNA Ligase. A typical ligation reaction with cohesive ends after 

restriction contained 30 fmol insert, 10 fmol vector and 0.4 U T4 DNA Ligase in 20 µl. After 1 h 

incubation at room temperature 2 - 5 µl of the ligation reaction were used for transformation. 

For religation of a digested plasmid with blunt ends, 50 fmol plasmid were incubated with 1 U 

T4 DNA Ligase overnight at 14°C. 

3.2.6. Transformation 

For chemical transformation of E. coli XL10 Gold 1 µl purified plasmid DNA or 2 - 5 µl ligation 

reaction were added to 100 µl chemically competent cells. Cells were kept on ice for 30 min, 

heat shocked for 45 s in a water bath at 42°C and then kept on ice for another 2 min. 400 µl 

SOC medium were added, cells were plated on LB agar plates containing antibiotics (50 µg/ml 

kanamycin or 100 µg/ml ampicillin) and incubated overnight at 37°C. 
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3.3. Protein analysis 

3.3.1. Bradford assay 

The Bradford assay is a photometric method to quantify protein concentrations in solution116. 

When the applied dye, Coomassie Brilliant Blue G-250, binds to proteins in acidic solution, its 

absorbance maximum is shifting from 465 to 595 nm. This shift can be measured 

photometrically and along with a calibration measurement the absorbance can be correlated 

to the protein concentration.  

For calibration a dilution series was prepared from a 1 mg/ml BSA stock solution and 4 dilution 

steps to obtain standard samples with 16, 8, 4, 2 and 1 µg/ml. Samples were prepared by 

adding 1 µl of the cell lysates (or lysis buffer as blank) to 500 µl ddH2O. To all samples 500 µl 

Bradford reagent were added, mixed well and incubated 5 min at RT. The absorption values 

were measured in plastic cuvettes in a spectrophotometer at 595 nm. A linear calibration 

curve was calculated via the BSA sample measurements and the concentrations of the cell 

lysate samples were calculated by the resulting equation. 

3.3.2. SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Table 13: Recipe for 4 SDS stacking gels. 

Amount Reagent 

1 ml 50   Acrylamide-Bis (29:1) 

4.2 ml 0.375 M Tris-HCl, pH 6.8 

6.3 ml ddH2O 

125 µl 10 % SDS 

1 ml APS (50 mg/ml) 

5 µl TEMED 
 

Table 14: Recipe for 3 small 6 % SDS seperating gels. 

Amount Reagent 

3 ml 50 % Acrylamide-Bis (29:1) 

9.4 ml 1 M Tris-HCl, pH 8.8 

7.8 ml ddH2O 

250 µl 10 % SDS 

4 ml 50 % Sucrose 

625 µl APS (50 mg/ml) 

6.25 µl TEMED 
 

 

Proteins can be separated by their size in an electric field by SDS-PAGE. Sodium dodecyl sulfate 

(SDS) is an anionic detergent, which binds to proteins. This leads to an equal mass to charge 

ratio and the linearization of the proteins. Thus the negatively charged proteins can be 

separated through a gel based on an acrylamide matrix only by their size when migrating 

towards the positively charged anode in an electric field. After electrophoresis gels can be 

either used for western blotting or stained directly with Coomassie Brilliant Blue R-250. 
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20 µg of protein samples were mixed with 5x sample buffer and incubated 10 min at 95°C. 6 % 

acrylamide gels were prepared according to Laemmli117 (Table 13 and Table 14) and loaded 

with the protein samples, as well as with the Precision Plus Dual Color ladder (Bio-Rad) in 

parallel. A constant current of 60 mA was applied for 90 min. 

3.3.3. Western Blotting 

In a western blot proteins, e.g. in cell lysates, are first separated by size in an SDS-PAGE and 

then transferred to the surface of a membrane on which proteins can be specifically stained 

with primary antibodies. Using secondary antibodies with fluorescent dyes to tag the primary 

antibodies gives the opportunity to stain for different proteins or tags at the same time and 

read out with a fluorescence scanner. After an SDS-PAGE (see 2.3.1.) proteins were transferred 

to an Immobilon-FL PVDF membrane with constant 180 mA in 70 min. In Western blots for 

EGFR activation antibodies against total EGFR and phosphorylated tyrosines (PY72) were used. 

As secondary antibodies donkey anti-rabbit/goat/mouse-IRDye800/IRDye700 were used with a 

1:5000 dilution. The blot was scanned on a Licor machine with the ability to scan 2 colors in 

parallel. 

Densitometric analysis of western blot bands 

The intensity of individual protein signals in Coomassie stained SDS-gels or with some regards 

in immunostained western blots can be used for a quantitative analysis. Therefor the program 

Adobe Photoshop CS3 was used to cut out the interesting bands with the correspondent 

background from high-resolution tiff-file images. The resulting tiff-file image with the signal 

and correspondent background cutouts was analyzed with the program Scion Image (Scion 

Corporation) to obtain the intensities of each cutout. After subtracting the background 

intensities from the signal intensities the relative ratios of phosphorylated to total receptor 

were calculated. 
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3.4. Cell biology 

3.4.1. Cell culture 

The human breast cancer cell line MCF-7 (Michigan Cancer Foundation - 7) isolated in 1970 

from a 69-year-old Caucasian woman was used for all experiments as it has a low endogenous 

level of ErbB1 but expresses medium levels or ErbB2 and ErbB3118. All cells were cultured in 

DMEM with phenol red, 10 % (v/v) FCS, 1 % L-glutamine and 1 % non-essential amino acids 

(NEAA) at 37°C with 5 % CO2. Cells were split two to three times a week with a ratio of 1:5 to 

1:10. 

For single particle tracking experiments cells were seeded in eight-well Lab-Tek chambers at a 

density of 3 x 104 cells per well 24 h before transfection and two days before the 

measurement. For experiments followed by western blot analysis, 5 x 105 cells were seeded in 

35 mm Mattek dishes and transfected 6 h after seeding. 

3.4.2. Transfection 

Cells were transfected with Effectene® Transfection Reagent, which is a non-liposomal lipid 

formulation, according to manufacturer’s protocol with an Effectene:DNA ratio of 1:10. For 

most of the experiments cells were transfected 24 h before the experiment. When 

cotransfecting two plasmids the total amount of DNA was kept constant. When cotransfecting 

an ErbB receptor construct together with a PTB domain or clathrin construct, the ratio of 

receptor-DNA:PTB-/clathrin-DNA was 2:1. 

3.4.3. SNAP-labeling 

For SNAP-labeling cells were washed with imaging medium containing 0.5 % BSA and then 

incubated for 5 min with 500 nM SNAP substrate in imaging medium containing 0.5 % BSA at 

37°C. Cells were washed 3 times with imaging medium containing 0.5 % BSA (2x quick, 1x 

10 min at 37°C) and 2 times with DPBS, then imaged in DPBS with calcium and magnesium. 

Benzylguanine-Cy3 was synthesized in a standard chemical coupling reaction with BG-NH2 and 

Cy3 NHS ester. The purity of the product was analyzed by reverse phase (RP) HPLC Beckmann 

System Gold (modules 126, 168, 508 with a dual-pump and high-pressure mixing system) using 

a C18 column (Bischoff, 250 × 4.6 mm, 5 μm) at 214 nm and 550 nm. The correct molecular 
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mass of the product was determined by electrospray ionization mass spectrometry (ESI-MS). A 

1 mM stock solution of benzylguanine-Cy3 in DMSO was kept at -20°C. 

3.4.4. Cell lysis 

Cell lysates for western blot assays were prepared from 35 mm cell culture dishes. The day of 

transfection 3 - 5 x 105 cells were seeded and transfected after 6 - 8 h. 24 h after transfection 

cells were starved overnight in serum free DMEM with 1 % L-glutamine and 1 % NEAA at 37°C 

with 5 % CO2. The next day cells were stimulated with 16 nM EGF (or labeled EGF) in imaging 

medium for defined periods (e.g. 0, 2, 5, 10 min) at 37°C. After stimulation cells were placed 

on ice and washed once with ice cold PBS. PBS was drained, 50 µl lysis buffer added and cells 

were scraped. After 10 min incubation on ice cell suspensions were transferred in pre cooled 

tubes and centrifuged 15 min at 13,000 rpm and 4°C. The supernatants were transferred in 

fresh tubes and protein concentration was determined by Bradford assay (chapter 3.3.1). 

Lysates were stored at -20°C until further use in western blot analysis (chapter 3.3.3). 

3.5.  Microscopy 

3.5.1. Single particle tracking  

3.5.1.1. Setup 

Single molecule tracking data were acquired with an Olympus IX81 microscope equipped with 

a TIRF illuminator and a 60x oil immersion objective suitable for TIRF imaging. Laser 

illumination was provided by an argon-ion laser emitting at 476 nm, and a krypton-ion laser 

emitting at 568 nm, coupled into the TIRF illuminator via an optical fiber. The emission light 

was separated by an image splitter equipped with a dichroic mirror DM570 and emission filters 

500 - 550 and 575 - 625 (Figure 11). The sample was imaged on a back-illuminated electron-

multiplying CCD (EM-CCD) camera with 512 x 512 pixels. For dual-color imaging the excitation 

was alternated between the 476 nm and 568 nm sources, using custom build electronics to 

trigger the shutters in synchronization with the EM-CCD camera. The image was magnified by 

the image splitter to an effective pixel size of 107 nm. An objective heater was used to keep 

the sample at 37°C. 
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Figure 11: Experimental setup for dual-color fluorescence single particle tracking. The dichroic mirror in 

the image splitter separates the emission light at 570 nm resulting in two images of the sample on the EM-

CCD camera. 

3.5.1.2. Measurements 

For experiments with EGF stimulation cells were starved overnight in DMEM with phenol red, 

1 % L-glutamine and 1 % non-essential amino acids at 37°C with 5 % CO2. After SNAP-labeling, 

directly before the measurements, the medium was removed, cells were washed twice with 

DPBS+ and imaged in 190 µl DPBS+. Stimulation with 16 nM EGF (100 ng/ml) or EGF-Alexa488 

(113 ng/ml) was performed by adding 10 µl of a 20x EGF solution to the cells and mixing by 

pipetting 3 times up and down. For single particle tracking measurements a sequence of 300 - 

2000 images was taken with alternating excitation, with a frequency of 30 frames/s, resulting 

in 15 frames/s for each channel, and an exposure time of 31.6 ms. One cell was imaged before 

addition of EGF, and another cell for every time point after addition of EGF (2, 5 and 10 min). 

Drug treatments 

For experiments with dynasore, cells were washed twice with DPBS+ immediately prior to 

imaging as described above, but then 190 µl of an 80 µM dynasore solution in PBS were added 

to the cells. Cells were incubated for 30 minutes in the drug solution before stimulation with 

16 nM EGF and imaging. 

A 25 mM pervanadate solution was prepared directly before the experiment by mixing 

orthovanadate with 30 % hydrogen peroxide at a molar ratio of 2.5:1. Until use it was kept on 

ice. 1 mM pervanadate incubations were performed by adding 8 µl of the freshly prepared 

stock solution to 192 µl DPBS+ on the cells. 

For kinase inhibition after SNAP labeling cells were incubated with 10 µM erlotinib in imaging 

medium for 1 h. Before the measurement cells were washed twice with DPBS+ and imaged in 

190 µl DPBS+ including 10 µM erlotinib. EGF stimulation was carried out as described above. 
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3.5.1.3. Calibration 

TetraSpecks (100 nm diameter) diluted 1:10 from stock were imaged in an 8-well- chamber 

with the same settings as the tracking measurement. Channels were separated and the 

transformation matrix was calculated with Matlab script cp2form ‘projective’. The 

transformation matrix was used to align the channels during analysis. 

3.5.1.4. Image processing 

Before the particles in each particular image where localized and connected to trajectories, 

dual-color tif-stacks (512 x 512 pixels) where split in two (each 512 x 256 pixels) and one 

channel was shifted according to the transformation matrix calculated as described in chapter 

3.5.1.3 using custom written Matlab scripts. 

3.5.2. Confocal microscopy 

3.5.2.1. Setup and measurements 

Confocal microscopy measurements were performed on a Leica SP5 inverted confocal 

microscope equipped with a 63x oil objective (HCX PL APO lambda blue 1.4NA) and an 

incubation chamber at 37°C and 5 % CO2. The scanner unit of the microscope was coupled to 

an argon laser, a DPSS laser (UltraLasers, Toronto, Canada) and a helium neon (HeNe) laser 

(Newport, Irvine, USA). The wavelength for excitation was selected by acousto-optical tunable 

filters (AOTF) and scanned over the sample with a frequency of 400 Hz with 4 lines averaged. 

Emission signals were also selected using AOTFs with sequential imaging of different 

fluorophore channels. The emission signal was passed through a pinhole to block out-of-focus 

light. The signals were detected by photomultiplier tubes (PMTs) with sensitivity adjusted to 

1250 V. The channels for multi-color imaging were set as follows: 

ch00 (EGFP/Alexa488) excitation with 476 nm (argon laser at 27 %), emission 500 – 550 nm 

ch01 (bleedthrough) excitation with 476 nm (argon laser at 27 %), emission 575 – 625 nm 

ch02 (Cy3/mCherry) excitation with 561 nm (DPSS laser at 34 - 40 %), emission 575 – 625 nm 

ch03 (Alexa647) excitation with 633 nm (HeNe laser at 31 %), emission 680 – 750 nm. 

 

Cells were imaged in imaging medium and stimulated with 16 nM EGF (100 ng/ml), EGF-

Alexa488 (113 ng/ml) or EGF-Alexa647 (118 ng/ml). 
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3.6. Data analysis 

3.6.1. Single molecule tracking data analysis and classification 

To separate the two channels of each image series and align to them using the parameters 

calculated from calibration measurements (Chapter 3.5.1.3) a custom written MATLAB script 

was used. With the ImageJ image-processing package cells of interest were manually selected 

by drawing masks. 

Single particle tracks were obtained using the u-Track package90, and tracks within the masked 

areas were further analyzed with the vbSPT package113 to classify each localization in each 

track according to a 3-state model. For further analysis by custom written MATLAB scripts the 

obtained classified tracks were stored in an intermediate file. In further analysis only tracks 

with a length of at least 10 localizations were selected. The diffusion coefficients calculated by 

vbSPT but were not used, because the analysis does not consider the localization error, which 

can lead to significant errors. The occupations were recalculated from the classified tracks 

using only tracks with at least 10 localizations, the same applies to further analysis based on 

the classified tracks. Tracks were segmented by state and mean-squared-displacement analysis 

was performed as described by Michalet et al.
119. Diffusion coefficients were derived from fits 

to the first 5 points of the MSD curves. 

3.6.2. Single molecule colocalization analysis 

A colocalization event was defined when two particles from the two channels moved together 

for 5 consecutive frames. Two particles were determined to move together, if the second was 

found within the area that the first could explore during one frame acquisition. For this the 

distance one particle may travel within one frame acquisition has to be calculated. The mean-

squared-distance over one acquisition frame is given by119: 

MSD = 4σ 2 −
4

3
D∆t









+ 4D∆t  

Where σ is the standard deviation of the localization error, D is the diffusion coefficient, and Δt 

is the time lag between two frame acquisitions. It was assumed that the probability of finding 

the particle at a given distance could be approximated by a normal distribution with a variance 

equal to this MSD value. The distance threshold was calculated by the probability that the 

distance would be less than 95 %. For each state a specific threshold was calculated, using the 
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diffusion coefficients found in unstimulated cells. Using an estimated localization error of 

30 nm for the used system120, the following values for the thresholds were found: 

Tfree = 248 nm, Tconfined = 172 nm, and Timmobile = 122 nm. By counting the number of particles 

that colocalize to tracks in a given state or track class absolute binding was quantified. The 

probabilities for the detection of a colocalization event were calculated by normalizing the 

number of colocalization events by the number of particles in each state. 

For dual-color tracking of SNAP-ErbB1 labeled with BG-Cy3 and BG-Alexa488, the tracking and 

vbSPT analysis was applied to the Cy3 data, and the Alexa488-labeled particles were 

colocalized as described above. 

Clathrin colocalization analysis 

A new approach was developed to quantify colocalizations between single particles and the 

fluorescence image of EGFP-clathrin. Starting from the equation of Manders121, the intensities 

of the red channel R were colocalized with the green channel G: 

, 

where Ri,coloc = Gi if Gi > 0. M1 is a measure for the amount of fluorescence of the colocalizing 

objects relative to its total fluorescence. In this case the number of particles where the clathrin 

signal C is greater than zero would be counted. Thus, the equation above was used to define a 

measure of colocalization between a set of particles and an image, setting Ri equal to the 

number of particles in pixel i,: 

, 

where Ncoloc is the number of particles located in the pixels i where Ci > 0, and N is the total 

number of particles. However, a large number of particles will be assigned incorrectly to the 

colocalizing fraction, because the clathrin signal is strongly blurred by the finite resolution of 

the microscope. Thus, the requirement Ci > 0 was replaced by a weighting factor that assigns a 

higher probability of colocalization to high intensities in the clathrin signal: 
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where S is the set of pixels that contain localizations. However, this measure is depending on 

the absolute intensities Ci. For randomly distributed particles, this equation can be interpreted 

as randomly drawing N pixels, adding their intensities and dividing by N. In this case, P = <C> 

for sufficiently large values of N, with <C> representing the average intensity of the image C. 

Therefore the colocalization measure was redefined, such that for randomly distributed 

particles P = 0: 

P =

R
i
C

i

i∈S

∑

N C
−1. 
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4. RESULTS 

4.1. Validation of the SNAP-ErbB1 construct 

The fusion of a protein with a tag is useful to investigate its function, but it can lead to 

unwanted alterations. For example, such a fusion might modify ligand binding, interactions 

with other proteins or activity. Hence, it is important to verify the functionality of a modified 

protein prior to further experiments. In this case, the phosphorylation of the SNAP-ErbB1 

construct upon EGF stimulation was verified by western blot analysis and confocal microscopy. 

4.1.1. Western blot analysis of ErbB1 expression and phosphorylation levels 

In order to determine the functionality of SNAP-tagged ErbB1, specifically its expression levels 

and its phosphorylation upon EGF stimulation, western blot analysis was conducted. ErbB1-

EGFP, which was successfully used in earlier studies for fluorescence microscopy 

experiments44,114 was used as a reference for the expression and phosphorylation levels of the 

SNAP-tagged ErbB1. Lysates from MCF-7 cells expressing SNAP-ErbB1, ErbB1-EGFP or 

untransfected cells were analyzed by western blots. Before stimulation with 16 nM EGF 

(equivalent to 100 ng/ml) one set of cells expressing SNAP-ErbB1 was labeled with BG-Cy3 

while the other set was left unlabeled. The amount of expressed ErbB1 receptor and its 

phosphorylation level were visualized using antibodies against total EGFR and against 

phosphorylated tyrosines (Figure 12). 

 

Figure 12: Western blots of lysates from MCF-7 cells transfected with SNAP-ErbB1 or ErbB1-EGFP 

stimulated with EGF. MCF-7 cells transfected with SNAP-ErbB1 or ErbB1-EGFP, and untranfected cells were 

stimulated with 16 nM EGF for the indicated times. Before stimulation one set of cells expressing SNAP-

ErbB1 was labeled with BG-Cy3 while the other set was left unlabeled. Western blots were stained against 

total ErbB1 (EGFR) and phosphorylated tyrosines (PY72). 
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The expression levels of SNAP-ErbB1 were about 70 % of the expression of ErbB1-EGFP. 

Densitometric analysis of the western blots revealed that stimulation with EGF led to receptor 

phosphorylation with a maximum after 2 minutes (Figure 13). SNAP-tagged ErbB1 receptors 

showed the same phosphorylation profile upon EGF stimulation as EGFP-tagged ErbB1 

receptors, while in untransfected cells no receptor phosphorylation was detected. The 

phosphorylation level of Cy3-labeled SNAP-ErbB1 receptors was slightly lower compared to 

unlabeled SNAP-ErbB1 receptors. Taking into account that densitometric analyses of western 

blots tend to show large variations, the results of the western blot analysis showed that the 

activity of SNAP-ErbB1 was comparable to that of ErbB1-EGFP. 

 

Figure 13: Densitometric analysis of western blots of MCF-7 cells transfected with ErbB1 receptor 

stimulated with 16 nM EGF. Plotted are the ratios of the intensities of PY72-stained bands to total EGFR-

stained bands against EGF stimulation. 

4.1.2. ErbB1 activation visualized by confocal microscopy 

In addition to western blot analysis the activity of the SNAP-ErbB1 construct was verified in 

living cells by confocal fluorescence microscopy. MCF-7 cells coexpressing the ErbB1 receptor 

and the PTB domain from human Shc were imaged by confocal microscopy during stimulation 

with EGF. PTB domains bind to phosphorylated ErbB1 receptors, hence upon EGF stimulation 

recruitment of PTB domains to the membrane was expected. Cells coexpressing EGFP-PTB 

together with SNAP-ErbB1 or ErbB1-mCherry were stimulated with EGF and the PTB domain 

recruitment to the membrane was compared. SNAP-ErbB1 was labeled with BG-Cy3 or BG-Cy5, 

and EGF was either unlabeled, or labeled with Alexa647 or Alexa488. Cells were serum starved 

overnight and stimulated with 16 nM labeled or unlabeled EGF. One image was taken before 

addition of EGF (0 min), followed by images taken every 30 seconds for 10 minutes (Figure 14).  
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Figure 14: SNAP-ErbB1 or ErbB1-mCherry coexpressed with EGFP-PTB stimulated with EGF. MCF-7 cells 

coexpressing EGFP-PTB with SNAP-ErbB1, labeled with BG-Cy3 (A), or ErbB1-mCherry (B) stimulated with 

16 nM EGF. Scale bars are 10 µm. 

Both with SNAP-ErbB1 (Figure 14 A) and with the ErbB1-mCherry control (Figure 14 B), PTB 

domains were initially located in the cytosol and the receptor was found at the plasma 

membrane. The recruitment of PTB domains to the plasma membrane was observed already in 

the second image, recorded 30 seconds after EGF addition (Figure 14). After 1 – 3 minutes of 

EGF stimulation, internalization of receptors and bound PTB domains became visible. 

Stimulation with Alexa647-labeled EGF showed that EGF binding occurred immediately and 
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that the receptors were saturated already 30 seconds after stimulation (Figure 15, Figure 16). 

In parallel with ErbB1 and PTB domain internalization, EGF internalization was observed after 

1 - 3 minutes of stimulation with EGF. 

 

Figure 15: SNAP-ErbB1 coexpressed with EGFP-PTB domain stimulated with EGF-Alexa647. MCF-7 cell 

coexpressing EGFP-PTB with SNAP-ErbB1, labeled with BG-Cy3, stimulated with 16 nM EGF-Alexa647. Scale 

bar is 10 µm. 

These confocal measurements show that the N-terminally SNAP-tagged ErbB1 receptor is 

activated by EGF in a fashion comparable to C-terminal mCherry-tagged ErbB1 receptor. In 

addition, EGF-Alexa647 and EGF-Alexa488 bind and activate ErbB1 receptors efficiently  

(Figure 15). 
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Figure 16: MCF-7 cell expressing SNAP-ErbB1 stimulated with EGF-Alexa488. MCF-7 cell expressing SNAP-

ErbB1, labeled with BG-Cy5, stimulated with 16 nM EGF-Alexa488. Scale bar is 10 µm. 
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4.2. Single particle tracking of ErbB1 

Single particle tracking experiments were performed with TIRF microscopy which mostly 

detects fluorescence from the basal plasma membrane of a cell. The ErbB1 receptor was 

labeled via a SNAP-tag, which allows flexibility in the choice of the fluorophore. Another 

advantage of the SNAP-tag is that only receptors at the plasma membrane are labeled when 

using cell impermeable BG-derivatives, thus reducing background fluorescence from receptors 

not localized at the plasma membrane. The use of a highly sensitive EM-CCD camera allows the 

localization and tracking of individual particles using the u-track software package developed 

by Jaqaman et al.
90 (Figure 17). 

 

Figure 17: Procedure for single molecule tracking analysis of TIRF images of a cell expressing SNAP-ErbB1, 

labeled with BG-Alexa488. A: One frame of a live cell single particle tracking series. B: Localizations of single 

particles in one frame marked with circles. C: Trajectories reconnected from single particle localizations 

from a time series of 300 frames recorded at a rate of 25 frames per second. 
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Data were generally recorded in a dual-color setup at a rate of 30 frames per second using 

alternating excitation, resulting in an effective rate of 15 frames per second for the individual 

channels. The typical duration of a tracking series was 10 seconds. As bleaching of the tracked 

fluorophore within this acquisition time could lead to artifacts in the analysis, the bleaching 

kinetics for two different fluorophores were determined to select the appropriate fluorophore. 

The two SNAP substrates BG-Cy3 and BG-Alexa488 were adhered to the glass surface of a 

LabTek chamber and imaged under the same conditions used in tracking experiments. The 

average bleaching time of BG-Cy3 (τ ≈ 30 s) was three times longer than the acquisition time, 

while the mean bleaching time of BG-Alexa488 (τ ≈ 13 s) was only slightly longer than the 

acquisition time (Figure 18). Therefore, BG-Cy3 was used to label SNAP-ErbB1 for tracking in 

live cell experiments. In dual-color experiments, tracking analysis was generally applied only to 

the Cy3 signal, while the Alexa488 fluorescence was used for colocalization. 

 

Figure 18: Bleaching kinetics of BG-Cy3 and BG-Alexa488. BG-Cy3 and BG-Alexa488 adhering to the glass 

were imaged under tracking conditions. The average bleaching time of BG-Cy3 (τ≈ 30 s) is roughly three 

times longer than the acquisition time of 10 s. BG-Alexa488 has an average bleaching time that is in the 

order of the acquisition time (τ ≈ 13 s). 

For the localization of single molecules, the density of particles of interest needs to be 

sufficiently low. Therefore, MCF-7 cells with an appropriate expression level were selected for 

tracking experiments. To get a measure of the number of receptors expressed in these cells, 

the average fluorescence intensities of the selected cells were compared to the average 

intensities of the whole transfected cell population (Figure 19). Assuming that the average 

expression level of SNAP-ErbB1 was about 70 % (estimated from the western blots in chapter 
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4.1.1, Figure 12) of the published EGFP-ErbB1 construct, which was 5.0×105 receptors per 

cell44, the selected cells expressed about 9×104 receptors. 

 

Figure 19: Relative expression of SNAP-ErbB1 in MCF-7 cells selected for single particle tracking, compared 

to a random population of cells imaged by TIRF. The bottom and the top of the box represent the 25
th

 and 

75
th

 percentiles, the bottom and top whiskers represent the 10
th

 and 90
th

 percentiles. The red line 

represents the median value and the cross represents the mean value. The total number of cells was 80, 

from which 25 were selected as candidates for tracking analysis (SPT cells). 

With these experiments the expression level of SNAP-tagged ErbB1 in cells used for single 

particle tracking experiments was confirmed to be low compared to expression levels used in 

studies with other fluorescent microscopy techniques. Cy3 was shown to be a suitable dye to 

be used in single particle tracking experiments, as the average bleaching time was three times 

longer than the typical duration of a tracking series. 

Data obtained from single particle tracking experiments can be analyzed by several analysis 

methods. Here, the variational Bayes single particle tracking (vbSPT) algorithm113, which 

classifies track fragments by their diffusive behavior, was used. The vbSPT algorithm assumes 

that the particles make memoryless jumps between different states of diffusion, determines 

the diffusion properties of each state, and calculates for each track the most likely sequence of 

states113. These classified track segments were then further analyzed for their co-localization 

with the signal in the second channel, to quantify the binding of other molecules, such as other 

ErbB1 molecules, EGFP-PTB, EGF-Alexa488, or EGFP-clathrin. 
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4.3. Characterization of the mobility states of ErbB1  

In order to characterize the dynamics of the ErbB1 receptor in the plasma membrane, the 

receptor movements in the membrane of a cell during EGF stimulation were recorded     

(Figure 20 A, B). 

 

Figure 20: Single molecule tracking of ErbB1 receptors in MCF-7 cells. Single slices from a time series of 

MCF-7 cells expressing SNAP-ErbB1 labeled with BG-Cy3. A: Cell without EGF stimulation. B: Cell after 

10 min of EGF stimulation. Right panels: Single molecule tracks of Cy3-SNAP-ErbB1 in the indicated regions 

of the left panels. The color-coding follows the classification of the specific states by the vbSPT algorithm in 

free (blue), confined (green) and immobile (red) states. Scale bars are 10 µm. 

The resulting tracks were analyzed by the vbSPT algorithm, assuming a three-state model 

(Figure 21). The diffusion coefficients calculated by the vbSPT algorithm were not used 

directly, because vbSPT does not incorporate corrections for the localization error, which can 

lead to significant errors. Instead, further analysis was performed by custom written MATLAB 

scripts using the classified tracks from the vbSPT analysis with at least 10 localizations.  
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Figure 21: Variational Bayes single particle tracking (vbSPT) analysis of Cy3-SNAP-ErbB1 after stimulation 

with 16 nM EGF in MCF-7 cells. Circles represent the different states, with their area proportional to the 

occupation (the percentage of particle localizations) of that state. Arrows between circles represent 

transitions and are annotated by the corresponding transition probability. Dotted arrows indicate transition 

probabilities < 0.01. 

Mean-squared-displacement (MSD) analysis was performed with the classified track segments 

to calculate the diffusion coefficients for each state (Figure 22). The linear curves formed by 

the blue symbols are typical for Brownian motion, indicating free diffusion on this time-scale. 

The green symbols show a flattening of the curve due to confinement of the particles within a 

limited area. The red symbols show only minor displacement on this time-scale, indicating that 

the particles are immobile. According to their diffusive behavior, the states were designated as 

“free” (blue), “confined” (green) and “immobile” (red). The diffusion coefficients for each state 

were calculated with linear fits to the first 5 points of each MSD curve for each time point. The 

states differed in their diffusion coefficients by two orders of magnitudes with minimal 

dependency on EGF stimulation (Figure 23 A). 
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Figure 22: MSD analysis of the diffusion of Cy3-SNAP-ErbB1 upon stimulation with EGF, after classification 

of the data by mobility state. Straight lines: linear fits to the first 5 points of each curve. Legend: diffusion 

coefficients (D, µm
2
s

-1
) derived from these fits. Error bars denote SEM, n = 43 cells per time point. 

The populations of ErbB1 receptors in the different states changed upon EGF stimulation 

(Figure 23 B). In unstimulated cells 50 % of particles were in the confined state, while 26 % 

were freely diffusing and 24 % were in the immobile state. After addition of EGF the 

population of the immobile state increased up to 31 % after 5 minutes, then decreased again, 

while the amount of molecules in the free state decreased to 17 % after 5 minutes and 

increased again at 10 minutes with EGF. The occupancy of the confined state remained within 

a few percent over 50 % for all measured time points (Figure 23 B). 

The calculated transition probabilities revealed that particles mainly switched between free 

and confined states or between confined and immobile states (Figure 21). The transition 

probability from the free to the immobile state increased notably after 2 minutes of EGF 

stimulation, while the probability for the transition from confined to immobile state increased 

only marginally (Figure 24). Both before and after stimulation, the probability of direct 

transitions between the free and immobile state was very low. Thus, conversion from the free 

to the immobile state happened via an intermediate confined state that by itself did not 

change much in population after ligand stimulation (Figure 23 B). 
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Figure 23: Diffusion coefficients and state occupations derived from single particle tracking analysis. A: 

Diffusion coefficients as a function of EGF stimulation, calculated as in Figure 22. B: State occupancy of 

ErbB1 mobility states over EGF stimulation. n = 43 cells per time point. 

Besides the calculation of the state occupancies, the tracking analysis also allows the 

determination of the lifetime of each state, providing further insights into the dynamics of the 

system. The mean lifetime of each state was relatively short (0.4 – 1.2 s, Figure 25), with a 

significant longer lifetime of the immobile state, that increased after stimulation with EGF.  

 

Figure 24: Transition probabilities between mobility states of ErbB1 found by vbSPT as a function of EGF 

stimulation. Probabilities for ErbB1 receptors to switch between mobility states during tracking. Circles 

represent states: free (blue), confined (green) and immobile (red). The transitions between free and 

immobile state were < 0.01 and are not plotted here. n = 43 cells per time point. 
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Figure 25: State lifetimes of ErbB1 diffusion with EGF stimulation. Lifetimes of the immobile, confined and 

free states of ErbB1 receptor diffusion plotted against EGF stimulation. n = 43 cells per time point. 

Taken together the single particle tracking data show that ErbB1 maintained its dynamic 

nature after ligand stimulation, switching between multiple mobility states. However, due to 

an increased net rate of conversion from the free to the confined state, the balance was 

shifted towards an increased population of the immobile state with an increased lifetime after 

EGF stimulation. 
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4.4. Characterization of the activity of ErbB1 

4.4.1. Identification of active receptors by the recruitment of PTB domains 

After their identification, the three mobility states of ErbB1 were further investigated. The 

signaling fraction of ErbB1 receptors is characterized by phosphorylated tyrosine residues to 

which further proteins are recruited. Therefore, phosphorylated receptors can be identified by 

colocalization of the EGFP-labeled phosphotyrosine-binding (PTB) domain from human Shc 

with the ErbB1 receptors. The PTB domains are recruited to the plasma membrane when 

ErbB1 is activated as was shown by confocal microscopy in chapter 4.1.2. Thus, PTB-binding 

can be interpreted as a measure for ErbB1 activity. 

 

Figure 26: Principle of measuring ErbB1 activity at a single molecule level. ErbB1 is expressed in MCF-7 

cells with an N-terminal SNAP-tag labeled with BG-Cy3. At the same time, a phosphotyrosine-binding 

domain tagged with EGFP (EGFP-PTB) is expressed in the cytosol. Using TIRF microscopy, individual 

receptors are tracked. In resting cells, EGFP-PTB fluorescence is visible as a constant background due to its 

relatively fast diffusion. Upon stimulation with EGF, EGFP-PTB molecules bind to phosphorylated tyrosine 

residues at the C-terminal tail of ErbB1 and are observed in the TIRF field as single molecules, identifying 

active receptors. 

Due to the evanescent wave excitation in the used experimental setup, only EGFP-PTB 

domains near the basal membrane were excited. As a consequence of the relatively long 

acquisition time of 31 ms per frame the fast diffusing cytosolic EGFP-PTB domains were only 

visible as a constant blurred background. Upon EGF stimulation the PTB domains were bound 

to phosphorylated ErbB1 receptors and could be detected as single molecules (Figure 26). 

With an image splitter installed in the emission path of the microscope, Cy3-labeled SNAP-
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ErbB1 receptors and EGFP-labeled PTB domains could be observed at the plasma membrane 

on a single molecule level. 

In unstimulated cells cytosolic PTB domains labeled with EGFP were visible as a diffuse 

background over the whole cell (Figure 27 A). However, after 10 minutes of EGF stimulation, 

recruitment of PTB domains to the membrane was clearly visible as bright spots at the 

membrane (Figure 27 B). After overlaying the images taken in the channels for Cy3-labeled 

SNAP-ErbB1 and EGFP-PTB, it was evident that the PTB domains colocalized strongly with 

clusters of immobile ErbB1, while without EGF no colocalization was observed (Figure 27 C, D). 

 

Figure 27: Recruitment of PTB domains to active ErbB1 receptors. Single slices from a dual-color time 

series in MCF-7 cells expressing SNAP-ErbB1 labeled with BG-Cy3 and EGFP-PTB. A: Fluorescence of EGFP-

PTB without EGF. B: Fluorescence of EGFP-PTB after 10 minutes of stimulation with EGF. C: Overlay of the 

fluorescence intensities from EGFP-PTB (green) and Cy3-labeled SNAP-ErbB1 (red) without EGF. D: Overlay 

of the fluorescence intensities from EGFP-PTB (green) and Cy3-labeled SNAP-ErbB1 (red) after 10 minutes of 

stimulation with EGF. Scale bars are 10 µm. 

The recruitment of EGFP-PTB to active ErbB1 receptors on the basal membrane was observed 

by TIRF imaging in cells expressing SNAP-ErbB1, labeled with BG-Cy3, or ErbB1-mCherry at high 

or low levels (Figure 28). In cells with low expression level of ErbB1, which for Cy3-SNAP-ErbB1 

was comparable to the intensities generally used for single molecule imaging, a punctuated 

recruitment of PTB domains was observed (Figure 28 B, D). In contrast, in cells expressing 

either SNAP-ErbB1 or ErbB1-mCherry at high levels, EGFP-PTB was recruited uniformly to the 

plasma membrane (Figure 28 A, C). 
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Figure 28: PTB domain recruitment to ErbB1 upon EGF stimulation in TIRF imaging. MCF-7 cells 

coexpressing higher (A) or lower (B) levels of SNAP-ErbB1, labeled with BG-Cy3, and higher (C) or lower (D) 

levels of ErbB1-mCherry together with EGFP-PTB, stimulated with 16 nM EGF, imaged at the indicated time 

points. The mean fluorescence intensity of Cy3-SNAP-ErbB1 was 2.2 times higher in A compared to B, the 

latter being comparable to intensities generally used for single molecule imaging. For ErbB1-mCherry the 

mean fluorescence intesitiy in C was 6.3 times higher compared to D. Scale bars are 10 µm. 

Tracking experiments with Cy3-labeled SNAP-ErbB1 receptors in MCF-7 cells coexpressing 

EGFP-labeled PTB domains were analyzed to reveal the activity of the receptors in each state. 

A plot of the number of colocalization events per state showed that receptors in the free state 

were virtually inactive, whereas receptors in both the confined and immobile states showed 

increased phosphorylation when stimulated with EGF (Figure 29 A). To quantify the activity of 

individual receptors in a given state, the probability of colocalization was estimated from the 

data taking the amount of receptors per state into account (Figure 29 B, Figure 23 B). This 

quantification indicated that receptors in the immobile state were phosphorylated with a 

significantly higher probability compared to receptors in the confined state.  
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Figure 29: Quantification of the colocalization of EGFP-PTB molecules with SNAP-ErbB1 molecules as a 

function of EGF stimulation. A: Number of colocalization events per state, as determined by vbSPT analysis 

(see Figure 20). B: Probability of colocalization of PTB with ErbB1 per state. n = 43 cells per time point. 

In order to find out if the activation of ErbB1 receptors, characterized by PTB domain binding, 

influenced their diffusive behavior, the state lifetimes of the particles that colocalized with PTB 

were calculated. Indeed the duration of active ErbB1 receptors in the immobile state was 

significantly increased (Figure 30). 

  

Figure 30: Lifetimes of mobility states after selecting for active ErbB1 receptors that colocalized with PTB 

domains. Lifetimes of active receptors in each state. n = 43 cells per time point. 

The higher activity of receptors in the immobile state could be due to receptor aggregation, 

accompanied by a higher EGF binding probability and auto-phosphorylation. To verify if the 

receptors aggregated, fluorescence intensity histograms of the receptors were plotted for 

each state (Figure 31). Indeed, the intensity of receptors in the immobile state increased 

compared to the confined or free states, in particular when selecting the particles that 

colocalized with PTB domains. Also for the free and confined states a slight increase in particle 

intensity was observed when colocalized with PTB, possibly indicating that active receptors in 

these states were more likely to be dimeric, while the much higher increase in intensity of 
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active receptors in the immobile state points to the presence of higher order aggregates. Note 

that the degree of receptor oligomerization is likely underestimated, taking into account a 

population of dark receptors, composed of endogenous, unlabeled and bleached receptors. 

 

Figure 31: Intensity histograms of Cy3-labeled ErbB1 receptors colocalizing with EGFP-PTB per mobility 

state. Intensity histograms of the fluorescence of tracked Cy3-SNAP-ErbB1 particles before and after 2, 5 

and 10 minutes of EGF stimulation, for all particles (lines) and for the particles that colocalized with EGFP-

PTB domains (bars). 

The colocalization experiments of ErbB1 receptors with PTB domains showed that upon EGF 

stimulation mainly receptors in the immobile and confined state were phosphorylated, and 

that the lifetime of the immobile state was significantly increased. Furthermore, the analysis of 

the intensity histograms indicated that active receptors in the immobile state form clusters 

upon EGF stimulation. 
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4.4.2. Dual-color single particle tracking of ErbB1 

For ErbB1 receptor activation it is known that the formation of signaling dimers is 

essential31,108. Therefore, it is of interest to correlate the mobility states of ErbB1 to its level of 

aggregation. 

To evaluate the extent of self-association of ErbB1 after stimulation with EGF, single particle 

tracking experiments were performed with MCF-7 cells expressing SNAP-tagged ErbB1 labeled 

with equal amounts of BG-Alexa488 and BG-Cy3. The TIRF images already showed that 

colocalization between receptors without EGF stimulation was low, while 10 minutes after EGF 

addition clear colocalizations between receptors were observed (Figure 32). 

 

Figure 32: Dual-color single molecule tracking of ErbB1 receptors. Single slices from a dual-color time series 

in MCF-7 cells expressing SNAP-ErbB1 labeled with BG-Cy3 (red) and BG-Alexa488 (green) without EGF and 

after 10 minutes of EGF stimulation. Scale bars are 10 µm. 

Tracking analysis was applied to the Cy3-labeled SNAP-ErbB1 receptors and the results were 

correlated to the localizations of Alexa488-labeled receptors in order to gain information 

about the mobility states of colocalized receptors as well as their level of aggregation. Plotting 

the number of colocalization events of Alexa488-labeled with Cy3-labeled SNAP-ErbB1 per 

state showed that receptors in the free state were mainly monomeric, whereas receptors in 

the confined and immobile state showed clear self-association after stimulation with EGF 

(Figure 33 A). After 5 minutes the probability of colocalization for receptors in the immobile 

states was significantly larger than for receptors in the confined state (Figure 33 B). These 

results clearly show that ErbB1 receptors form at least dimers or higher order clusters after 

EGF stimulation. 
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Figure 33: Quantification of colocalization of dual-color labeled ErbB1 receptors as a function of EGF 

stimulation. A: Number of colocalization events of Alexa488-labeled receptors with Cy3-labeled ErbB1 

receptors per state. B: Probability of colocalization of an Alexa488-labeled receptor with a Cy3-labeled 

ErbB1 receptor per state. n = 43 cells per time point.  

To establish if the increase of colocalization was caused by an increased number of dimers in 

the immobile population or due to receptor clustering, the fluorescence intensities of the Cy3-

labeled receptors that colocalized after 10 minutes of EGF stimulation were quantified and 

compared to the intensities of all particles per state (Figure 34). In the immobile state, a 

population of bright particles was observed, compared to the intensity distributions of the free 

and confined states. Thus, in the immobile state, particles were present that consisted of 

aggregates of more than two receptors. 

 

Figure 34: Intensity histograms of colocalized ErbB1 receptors. Intensity histograms of Cy3-labeled ErbB1 

receptors per mobility state for all particles (lines) and for the particles that colocalized with Alexa488-

labeled ErbB1 receptors (bars) after 10 minutes of EGF stimulation. n = 43 cells per time point. 

Taking the probabilities of self-association into account, which were much higher for the 

confined than for the free state, it can be concluded that particles in the free state were 

mainly monomeric. In the confined state dimers could be found, whereas in the immobile 

state the receptor also formed higher order aggregates. 
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4.4.3. Single molecule visualization of EGF binding to ErbB1 

Besides the activity status of ErbB1, the identification of the populations that bind EGF can 

provide further insight into the course of events in ErbB1 signaling. By colocalizing Cy3-labeled 

SNAP-ErbB1 receptors with Alexa488-labeled EGF, ligand binding dynamics were visualized. 

Tracking analysis of the Cy3-labeled receptor and concomitant colocalization analysis with 

EGF-Alexa488 was performed. The colocalization events and probabilities for each mobility 

state of ErbB1 are shown in Figure 35. 

 

Figure 35: Analysis of EGF-Alexa488 binding to Cy3-labeled SNAP-ErbB1 receptors in MCF-7 cells. 

Quantification of the colocalization of EGF-Alexa488 to Cy3-SNAP-ErbB1 receptors as a function of 

stimulation time: A: Number of colocalization events of EGF with ErbB1 per state. B: Probability of 

colocalization of EGF with ErbB1 per state. n = 36 cells per time point. 

Colocalization analysis of Cy3-SNAP-ErbB1 with Alexa488-EGF revealed that EGF was mainly 

bound to ErbB1 receptors in the confined and immobile state in equal absolute amounts 

(Figure 35 A), and that EGF binding was already saturated after 2 minutes. The probability for 

binding of an EGF molecule to receptors in the immobile state was higher than for the 

confined state (Figure 35 B), due to the lower occupancy of the immobile state (Figure 23 B). 

This could be explained if the receptors in the immobile state formed clusters occupied with 

several EGF molecules.  

The results from EGF binding (Figure 35) and self-association (Figure 33) experiments both 

support the concept of ligand binding as the main driving force for dimerization and clustering 

of the receptor. However, receptors in the immobile state exhibited a higher activity compared 

to the confined state than would be expected from the EGF binding probabilities (compare 

Figure 35 B with Figure 29 B). A plot of the ratio of the probabilities of PTB- and EGF-

colocalization in the immobile and confined states confirmed that the phosphorylation of 
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immobile receptors did not increase linearly with the amount of bound EGF (Figure 36), 

indicating that the signaling activity is amplified in the immobile ErbB1 clusters. 

 

Figure 36: Ratio of the colocalization probabilities for immobile to confined receptors for PTB and EGF. 

The ratios between the colocalization probabilities of immobile and confined receptors for EGFP-PTB 

colocalizations and for EGF-Alexa488 colocalizations plotted against EGF stimulation. 
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4.4.4. Phosphatase inhibition by pervanadate 

Pervanadate is an inhibitor of a wide range of tyrosine phosphatases in the cell. The inhibitor 

prevents the receptors from being dephosphorylated after activation. Without ligand 

stimulation, phosphorylated receptors will accumulate due to the basal kinase activity of the 

receptor. Phosphatase inhibition should reveal if ligand-independent activation of the ErbB1 

receptor occurs in all mobility states and give a hint how the receptor signaling is regulated. 

MCF-7 cells coexpressing EGFP-PTB with SNAP-ErbB1, labeled with BG-Cy3, were serum 

starved overnight and incubated with 1 mM pervanadate for 10 – 30 minutes. After incubation 

with pervanadate an increased number of PTB domains was recruited to the membrane 

(Figure 37).  

 

Figure 37: PTB domain recruitment to phosphorylated ErbB1 receptors at the plasma membrane during 

incubation with pervanadate or EGF. MCF-7 cells expressing SNAP-ErbB1, labeled with BG-Cy3, and EGFP-

PTB. A: Cell with low ErbB1 expression level incubated with 1 mM pervanadate. B: Cell with high ErbB1 

expression level incubated with 1 mM pervanadate. C: Cell with high ErbB1 expression level stimulated with 

16 nM EGF. Scale bars are 10 µm. 

In cells with a low receptor expression the recruitment of PTB domains reached its maximum 

after 20 - 30 minutes of incubation with pervanadate (Figure 37 A), while in cells with a high 

expression of receptors maximal PTB recruitment was observed after 10 minutes with 

pervanadate (Figure 37 B) or EGF (Figure 37 C). Thus, the basal level of receptor activity is 
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dependent on receptor density. In cells with a high receptor density, ErbB1 exhibited a high 

level of ligand-independent activation. In cells with low receptor density, autophosphorylation 

of the receptors was much lower. These results show that phosphatases play an important role 

in the regulation of ErbB1 receptor signaling, but also that the system is very sensitive to 

receptor density at the plasma membrane. 

In single particle tracking experiments with pervanadate incubation instead of EGF stimulation 

the colocalization of PTB domains with ErbB1 receptors per state was quantified. For these 

experiments only cells with a low expression level of ErbB1 were selected and analyzed for PTB 

domain colocalization upon treatment with 1 mM pervanadate (Figure 38). The recruitment of 

PTB domains to ErbB1 receptors upon pervanadate treatment was much slower compared to 

stimulation with EGF (compare to Figure 29). Colocalization events with PTB domains were 

mainly observed for receptors in the confined or immobile state and increased for all states 

until 20 minutes of pervanadate treatment. 

 

Figure 38: Analysis of EGFP-PTB colocalization with Cy3-labeled SNAP-ErbB1 receptors in MCF-7 cells upon 

pervanadate treatment. Quantification of the colocalization of EGFP-PTB to Cy3-SNAP-ErbB1 receptors 

upon treatment with 1 mM pervanadate: A: Number of colocalization events of PTB with ErbB1 per state. 

B: Probability of colocalization of PTB with ErbB1 per state. n = 10 cells per time point. 

A plot of the histograms of the fluorescence intensities of Cy3-SNAP-ErbB1 after 10 minutes of 

incubation with pervanadate showed an increase of the intensities of immobile receptors 

colocalizing with PTB domains (Figure 39). Although clustering was less than observed upon 

EGF stimulation, the results indicate that ligand binding is not required for cluster formation. 



4. Results 

73 

 

Figure 39: Intensity histograms of Cy3-labeled ErbB1 receptors incubated with pervanadate colocalizing 

with EGFP-PTB per mobility state. Intensity histograms of the fluorescence of tracked Cy3-SNAP-ErbB1 

particles after incubation with 1 mM pervanadate for 10 minutes, for all particles (lines) and for the particles 

that colocalized with EGFP-PTB domains (bars). n = 10 cells per time point. 

By tracking and colocalization experiments on a single molecule level it was shown that ligand-

independent phosphorylation of ErbB1 receptors in cells with low receptor density was low 

compared to EGF stimulation. In cells with high ErbB1 density, ligand-independent receptor 

phosphorylation, observed upon phosphatase inhibition by pervanadate, was high and 

occurred much faster, in accordance with previous studies using pervanadate to induce ligand-

independent receptor phosphorylation45,122,123. 

  



4. Results 

 74

4.4.5. Kinase inhibition by erlotinib 

Erlotinib is a competitive kinase inhibitor, which competes with ATP for the ATP binding site of 

ErbB1 and thereby traps the receptor in its extended conformation69,124. Thus, it would be 

interesting to see if the active conformation, even when the kinase is inhibited, promotes 

cluster formation. Single particle tracking experiments were performed as previously with Cy3-

SNAP-ErbB1 and EGFP-PTB, but before the experiment cells were pre-incubated for 1 hour 

with 10 µM erlotinib. The analysis of the occupations of the three states showed that the 

inhibited receptor is driven into the confined and immobile states (Figure 40). 

 

Figure 40: State occupations for ErbB1 inhibited with 10 µM erlotinib and stimulated with EGF. 

Occupations of mobility states for Cy3-SNAP-ErbB1 in MCF-7 cells preincubated for 1 h with 10 µM erlotinib 

and stimulated with 16 nM EGF. n = 14 cells per time point. 

Without stimulation the population of free receptors was reduced to 10 % while the 

populations of confined and immobile receptors were increased to 60 % and 30 %, respectively 

(Figure 40). Upon EGF stimulation the state occupations of inhibited receptors did not change 

significantly. 

Colocalization analysis of the tracked ErbB1 receptors with EGFP-tagged PTB domains showed 

that erlotinib efficiently inhibited phosphorylation of the receptor upon stimulation with EGF 

as expected (Figure 41). 
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Figure 41: Colocalization analysis of EGFP-PTB domains with SNAP-ErbB1 after inhibition with 10 µM 

erlotinib and stimulation with EGF. MCF-7 cells were cotransfected with EGFP-PTB and SNAP-ErbB1, 

incubated for 1 h with 10 µM erlotinib and stimulated with 16 nM EGF. A: Colocalization events of PTB 

domains with ErbB1 per state. B: Colocalization probability for PTB domains with ErbB1 per state. n = 14 

cells per time point. 

The fluorescence intensity histograms for each state revealed that the aggregation state of the 

inhibited receptors was generally similar in all states (Figure 42, lines). The increased intensity 

observed for receptors that colocalized with PTB (Figure 42, bars) derives from the small 

population of receptors that were not inhibited by erlotinib. 

 

Figure 42: Intensity histograms of Cy3-labeled ErbB1 receptors per mobility state after inhibition with 

10 µM erlotinib and stimulation with EGF. Intensity histograms of the fluorescence of tracked Cy3-SNAP-

ErbB1 particles after 10 minutes of stimulation with EGF, for all particles (lines) and for the particles that 

colocalized with EGFP-PTB domains (bars). n = 14 cells per time point. 

From these single particle tracking experiments it can be concluded that receptors are driven 

to more confined and immobile states when they are trapped in the extended conformation 

by erlotinib, but that kinase activity is required for cluster formation. 
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4.5. Localization of ErbB1 in the plasma membrane 

4.5.1. Colocalization with clathrin 

As shown by PTB domain colocalization, after 2 – 5 minutes of stimulation half of the signaling 

activity was associated with immobile receptors (Figure 29), which represent only a relatively 

small population (Figure 23 B). An overlay of the classified tracks with the PTB colocalization 

events after 10 minutes of EGF stimulation showed that the activity of ErbB1 was mostly 

focused in small spots where the receptors were in the immobile state (Figure 43). 

 

Figure 43: Single particle tracks of Cy3-SNAP-ErbB1 after 10 minutes of stimulation with EGF in a single 

MCF-7 cell. The tracks are colored according to the mobility states: free (blue), confined (green) and 

immobile (red). The circles represent colocalization events with EGFP-PTB. 

Given that after ligand binding and phosphorylation, active ErbB1 receptors are internalized 

mainly via clathrin-mediated endocytosis, the colocalization of immobile receptors with 

clathrin-coated pits was investigated. An overlay of the localizations of immobile receptors 

with a TIRF image of EGFP-tagged human clathrin light chain A (EGFP-hLCA) for an MCF-7 cell 

stimulated for 10 minutes with EGF indeed showed a strong colocalization of immobile 

receptors with clathrin-coated pits (Figure 44). 
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Figure 44: Colocalization of immobile ErbB1 receptors with clathrin-coated pits in an MCF-7 cell after 10 

minutes of stimulation with EGF. Overlay of a TIRF image of EGFP-hLCA (grey intensities) with localizations 

of immobile Cy3-SNAP-ErbB1 receptors (red circles). Scale bar is 5 µm. 

Single particle tracking experiments were done in MCF-7 cells coexpressing SNAP-tagged 

ErbB1, labeled with BG-Cy3, and EGFP-tagged hLCA to localize clathrin-coated pits. Clathrin-

coated pits could not be treated as diffraction limited particles, as was the case in previous 

dual-color experiments, and therefore a new method was developed to quantify the 

colocalization of single particles with an image of fluorescent structures (see chapter 3.6.2). 

 

Figure 45: Colocalization index of immobile Cy3-SNAP-ErbB1 with EGFP-hLCA. A: Colocalization index of 

ErbB1 receptors with clathrin coated-pits in MCF-7 cells per state after stimulation with EGF. n = 16 cells per 

time point. 
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From the calculated colocalization indices could be established that receptors in the immobile 

and confined states localized significantly more to clathrin-coated pits compared to receptors 

in the free state (Figure 45). Upon stimulation with EGF the colocalization index for receptors 

in the confined and immobile states with clathrin increased, indicating that the active receptor 

aggregated in clathrin coated pits. 

4.5.2. Inhibition of endocytosis with dynasore 

The fission of clathrin-coated pits from the plasma membrane is mediated by dynamin. 

Dynamin can be inhibited by the non-competitive small-molecule inhibitor dynasore, which 

arrests clathrin-coated pits in intermediate stages of maturation125. 

When MCF-7 cells expressing EGFP-hLCA and SNAP-ErbB1, labeled with BG-Cy3, were 

preincubated for 30 minutes with 80 µM dynasore, the colocalization indices of immobile 

ErbB1 receptors in the confined and immobile states with clathrin were lower than without 

dynasore and increased only slowly upon EGF stimulation (Figure 46). Only after 10 minutes of 

EGF stimulation the colocalization indices for all states approached the values measured for 

cells without dynasore treatment (compare with Figure 45).  

 

Figure 46: Colocalization index of immobile Cy3-SNAP-ErbB1 with EGFP-hLCA after incubation with the 

dynamin inhibitor dynasore. A: Colocalization index of ErbB1 receptors with clathrin coated-pits in MCF-7 

cells per state after 30 minutes incubation with 80 µM dynasore followed by stimulation with 16 nM EGF. 

n = 16 cells per time point. 

To further investigate the role of endocytosis via clathrin-coated pits on ErbB1 activity, cells 

coexpressing SNAP-ErbB1 and EGFP-PTB were preincubated for 30 min with 80 µM dynasore 

before tracking. 
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Figure 47: State occupations for ErbB1 after incubation with the dynamin inhibitor dynasore and 

stimulation with EGF. Occupations of mobility states for Cy3-SNAP-ErbB1 in MCF-7 cells preincubated for 

30 minutes with 80 µM dynasore and stimulated with 16 nM EGF. n = 28 cells per time point. 

The comparison of the state occupations of ErbB1 receptors with and without dynasore 

revealed no difference for the immobile population (Figure 47). But the basal level of receptors 

in the free state was considerably reduced when incubated with dynasore. At the same time, 

the population of receptors in the confined state was higher than without dynasore         

(Figure 47). 

 

Figure 48: Colocalization analysis of EGFP-PTB domains with SNAP-ErbB1 after incubation with the 

dynamin inhibitor dynasore. MCF-7 cells were incubated for 30 min with 80 µM dynasore and stimulated 

with 16 nM EGF. A: Colocalization events of PTB domains with ErbB1 per state. B: Colocalization probability 

for PTB domains with ErbB1 per state. n = 28 cells per time point. 

The analysis of PTB domain recruitment to ErbB1 receptors after incubation with dynasore and 

stimulation with EGF showed a delayed response to the stimulus (Figure 48). 
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Figure 49: Intensity histograms of Cy3-labeled ErbB1 receptors after incubation with the dynamin 

inhibitor dynasore. Intensity histograms of the fluorescence of tracked Cy3-SNAP-ErbB1 particles after 

incubation for 30 min with 80 µM dynasore and stimulated with 16 nM EGF for 5 and 10 minutes, for all 

particles (lines) and for the particles that colocalized with EGFP-PTB domains (bars). n = 28 cells per time 

point. 

Besides the delayed activation of the receptors after dynasore treatment, a delayed cluster 

formation was implied by the comparison of the intensity histograms after 5 and 10 minutes of 

EGF stimulation (Figure 49). After dynasore treatment, the difference between the intensities 

of all particles in the immobile state (red lines) and all particles in the free or confined states 

(blue and green lines) after 5 minutes of EGF stimulation was less than after 10 minutes  

(Figure 49). For untreated cells the difference after 5 minutes was already nearly as large as 

after 10 minutes (Figure 31), indicating that the clustering of receptors treated with dynasore 

was delayed. After 10 minutes both treated and untreated receptors reached the same level of 

aggregation. 

By inhibition of dynamin with dynasore more of the free diffusing receptors were converted to 

a confined state but they were not activated. The signaling fraction was still mainly 

represented by immobile receptors which colocalized with clathrin-coated pits later than 

without dynasore. Along with the delayed colocalization of immobile receptors with clathrin-

coated pits, a delayed phosphorylation and clustering of the receptors was observed, which 

indicates that receptors convert to the immobile state also when endocytosis is inhibited, but 

for a stable activation and cluster formation fully formed clathrin-coated pits are important. 
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4.6. ErbB1 mutants 

4.6.1. Kinase-dead ErbB1 K721A mutant 

The K721A point mutation in ErbB1 was found to lead to an inactive kinase domain of ErbB1 

and is often used to investigate the influence of kinase activity on ErbB1 receptor behavior74,75. 

In confocal microscopy experiments no recruitment of EGFP-tagged PTB domains to the 

plasma membrane was observed after addition of EGF-Alexa647, which was instantly binding 

to the SNAP-tagged receptor mutant, labeled with BG-Cy3 (Figure 50). This indicated that the 

kinase of the K721A mutant was indeed inactive. 

 

Figure 50: SNAP-ErbB1 K721A mutant coexpressed with EGFP-PTB stimulated with EGF-Alexa647. MCF-7 

cell coexpressing SNAP-ErbB1 K721A, labeled with BG-Cy3, with EGFP-PTB stimulated with 16 nM EGF-

Alexa647. Scale bar is 10 µm. 
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In accordance with the confocal data, western blots showed no phosphorylated fraction of the 

K721 mutant after EGF stimulation (Figure 51). 

 

Figure 51: Western blots of MCF-7 lysates transfected with ErbB1 K721A stimulated with EGF. MCF-7 cells 

transfected with SNAP-ErbB1 K721A were stimulated for indicated times with 16 nM EGF. Western blots 

were stained against total EGFR (anti-EGFR) and phosphorylated tyrosines (pY72). 

In order to evaluate the characteristics of the mobility states of the K721 mutant on a single 

molecule level, tracking experiments were performed and analyzed. The occupations of the 

mobility states of the K721A mutant without stimulation did not differ from the wild type 

(compare Figure 52 with Figure 23 B). Upon EGF stimulation the population of mutant 

receptors in the free state decreased slowly, while the population of confined receptors 

increased and the population of immobile receptors remained almost constant.  

 

Figure 52: State occupations for ErbB1 receptor mutant K721A upon EGF stimulation. Occupations of 

mobility states for Cy3-SNAP-ErbB1 K721A mutant in MCF-7 cells stimulated with 16 nM EGF. n = 8 cells per 

time point. 

PTB domain recruitment to the K721A mutant was very low compared to the wild type 

(compare Figure 53 C with Figure 29 B), which was expected as auto-phosphorylation by the 

kinases of the receptors should be inhibited by the mutation.  
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Figure 53: PTB domain localization with SNAP-ErbB1 K721A mutant in MCF-7. Coexpression and 

colocalization analysis of EGFP-PTB with SNAP-ErbB1 K721A. Colocalization events of PTB domains with 

ErbB1 K721A mutant per state. B: Colocalization probability for PTB domains with ErbB1 K721A mutant per 

state. n = 8 cells per time point. 

From the single particle tracking experiments it can be concluded that although the K721A 

receptor mutants might form dimers upon EGF stimulation, indicated by the increase in 

confined receptors, they do not get activated or convert to the immobile state. 

4.6.2. Dimerization-enhanced ErbB1 mutant L834R 

The ErbB1 mutant L834R occurs in several cancer species with a phenotype of high activation 

levels without EGF stimulation26,70,71. It was reported that the phosphorylation levels of some 

tyrosine residues (Y845 and Y1068) are considerably increased for this receptor mutant71. 

These increased phosphorylation levels might result from an increased tendency to dimerize 

or oligomerize. 

Confocal microscopy experiments in MCF-7 cells coexpressing EGFP-PTB together with the 

SNAP-tagged ErbB1 L834 mutant, which was labeled with BG-Cy3, showed that the basal level 

of PTB domains at the plasma membrane was significantly higher than in cells expressing 

SNAP-tagged wild type ErbB1 (Figure 54).  

After stimulation with EGF-Alex647, less EGF binding to the mutant receptors than to the wild 

type receptors was observed (compare with Figure 15) and an increase in PTB domain 

recruitment to the plasma membrane was not visible or very low (Figure 54). 
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Figure 54: SNAP-ErbB1 L834R coexpressed with EGFP-PTB stimulated with EGF-Alexa647. MCF-7 

coexpressing SNAP-ErbB1 L834R, labeled with BG-Cy3, and EGFP-PTB stimulated with 16 nM EGF-Alexa647. 

Scale bar is 10 µm. 

In accordance with the confocal data a high probability for PTB domain colocalization with the 

ErbB1 receptor mutant was observed in single particle tracking experiments in the absence of 

a stimulus (Figure 55). In unstimulated cells the probability of PTB domains to colocalize with 

mutant ErbB1 receptors in the three states was already 5 times higher than with unstimulated 

wild type receptors (compare Figure 55 with Figure 29). Upon EGF stimulation the recruitment 

of PTB domains to mutant receptors increased to the values observed after 2 - 5 minutes of 

EGF stimulation with wild type receptors but did not reach the same level of activation after 10 

minutes.  
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Figure 55: Colocalization probability of PTB domains with ErbB1 receptor mutant L834R upon EGF 

stimulation. A: Colocalization events of PTB domains with ErbB1 L834R mutant. B: Colocalization probability 

for PTB domains with ErbB1 L834R mutant per state. n = 24 cells per time point. 

The intensity histograms for each state showed that cluster formation of mutant receptors in 

the immobile state after 10 minutes of EGF stimulation was slightly less than for the wild type 

(compare Figure 56 with Figure 31). In resting cells, the intensities of the receptors that 

colocalized with PTB domains (bars) showed high intensities, indicating that the mutant 

receptors already form clusters without EGF. However, for all receptors (plotted as lines) the 

intensity histograms did not differ between the states, which implied that the clustered 

population was small. 

 

Figure 56: Intensity histograms of Cy3-labeled ErbB1 L834R mutants per mobility state. Intensity 

histograms of the fluorescence of tracked Cy3-SNAP-ErbB1 L834R particles before and after 10 minutes of 

EGF stimulation, for all particles (lines) and for the particles that colocalized with EGFP-PTB domains (bars). 

n = 24 cells per time point. 

The state occupations of unstimulated ErbB1 L834R (Figure 57 A) were comparable to 

occupations of wild type ErbB1 after 2 - 5 minutes of EGF stimulation and did not change upon 

EGF stimulation (Figure 23 B). However, for the mutant more receptors were in the confined 

state and less in the free state. Since the free state mainly consists of monomers (chapter 
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4.4.1), the results indicate that the L834R mutant receptor exhibits a higher dimerization 

affinity, resulting in more confined and immobile receptors.  

The state lifetimes for the immobile state did not increase upon EGF stimulation as was 

observed for the wild type. However, when comparing the lifetimes of receptors states for the 

L834R mutant with wild type, the longer lifetime of mutant receptors in the immobile and the 

confined states and the shorter lifetime of the free state before stimulation are visible    

(Figure 57 B). 

 

Figure 57: State occupations and lifetimes for ErbB1 receptor mutant L834R upon EGF stimulation. A: 

Occupations of mobility states for Cy3-SNAP-ErbB1 L834R mutant in MCF-7 cells stimulated with 16 nM EGF. 

B: Lifetimes of mobility states for Cy3-SNAP-ErbB1 L834R mutant in MCF-7 cells stimulated with 16 nM EGF. 

n = 24 cells per time point. 

Taken together, the observations in single particle tracking measurements support the findings 

that the L834R mutation leads to an increased basal activation of the ErbB1 receptor caused by 

an increased dimerization affinity, while cluster formation is less than for the wild type. 
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5. DISCUSSION AND PERSPECTIVES 

5.1. Benefits and challenges of single particle tracking 

In this work, the analysis of single particle tracking data was shown to be a versatile tool to 

quantify the mobility of ErbB1 at the plasma membrane. It was possible to monitor even small 

changes in receptor dynamics in real time, changes that cannot be easily detected by 

ensemble fluorescence measurements, such as FLIM or FRAP. Furthermore, the dual-color 

setup allows monitoring additional characteristics such as activation status, self-association 

and colocalization with other proteins or cellular structures. 

A general problem for single molecule tracking is the bleaching of the fluorophore, which 

restricts the acquisition time. Most published tracking experiments employed quantum 

dots41,42,98,126,127, which allow long observation periods. Fluorescent proteins, which can be 

genetically encoded, are less frequently used because they bleach relatively fast. For example, 

Xiao et al. tracked GFP tagged ErbB2 receptors and reported bleaching after 2 - 4 seconds128, 

which might be too short for proper analysis. For this reason, in this work a genetically 

encoded SNAP-tag was used to add a variable extracellular labeling position to the N-terminus 

of the ErbB1 receptor, which was shown to have no influence on the functionality of the 

receptor compared to previously published data with C-terminal EGFP (chapter 4.1). Several 

derivatives of O6-Benzylguanine can be used as SNAP substrates to label the receptor with 

organic dyes, such as Alexa488 or Cy3, that are much more photo-stable than fluorescent 

proteins. For experiments performed in this work the acquisition time of 10 seconds was long 

enough to gain highly qualitative information about the diffusion of the ErbB1 receptor as the 

mean bleaching time of Cy3 was approximately 30 seconds. 

Besides the opportunity to introduce several organic fluorophores, another advantage of the 

SNAP-tag is that it is much smaller than antibodies and quantum dots, which have been used 

in other studies to label ErbB1 for tracking. Because diffusion depends on the size of the 

particle, the use of quantum dots might bias the diffusion of ErbB1. Additionally a labeling 

ratio of 1:1 is usually not achieved with quantum dots. On the other hand the SNAP-tag has to 

be introduced genetically, while antibodies can be used to label endogenous receptors. Hence, 

for experiments with SNAP-tagged ErbB1 the endogenous expression level of receptors has to 

be taken into account. Because the endogenous receptors are not labeled, this could lead to a 

biased result, especially the level of aggregation could be underestimated when SNAP-tagged 
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receptors cluster with unlabeled endogenous receptors. For this reason, MCF-7 cells were used 

in this work as they have only low expression levels of ErbB1. But it has to be taken into 

account that MCF-7 cells express ErbB2 and ErbB3 in medium levels, so that hetero-

dimerization can occur. As a control, the tracking experiments should be repeated in cells 

without endogenous ErbB1 and ErbB2 expression, such as the cell line CHO-K1 that originates 

from a parental CHO cell line initiated 1957 by T. T. Puck from a Chinese hamster ovary129. Of 

this cell line also a variant exists that stably expresses ErbB2130, which could be used to 

determine the influence of hetero-dimerization with ErbB2 on ErbB1 diffusion. Another 

possibility to investigate the role of hetero-dimerization of ErbB1 would be to colocalize ErbB2 

receptors with ErbB1 receptors in a dual-color experiment similar to those shown in chapter 

4.4.2. 

5.2. Dynamics of ErbB1 diffusion 

The data presented in this work show that ErbB1 receptors alternate between three 

short-lived mobility states: a free, a confined and an immobile state (chapter 4.3). These states 

were clearly distinguishable by their diffusion coefficients that spanned two orders of 

magnitude. The lifetime of the immobile state was significantly longer compared to the other 

states, which further increased upon stimulation with EGF (Figure 25), while also the 

population of receptors in this state grew (Figure 23 B). At the same time the population of 

freely diffusing receptors decreased upon EGF stimulation. But receptors did not directly 

convert from the free to the immobile state, pointing to a role of the confined state as an 

intermediate state. This was underscored by the fact that the confined state represented the 

biggest population, which only marginally changed upon stimulation. Since EGF stimulation 

mainly increased the transition between free and confined states, it can be concluded that 

ligand binding drives freely diffusing ErbB1 receptors into the confined state, thereby shifting 

the balance towards the immobile population. Between 5 and 10 minutes of EGF stimulation, 

the population of immobile receptors decreased again, while the population of free receptors 

increased. This could be explained by the internalization of the immobile receptors that are 

recycled back to the membrane as monomers, which contributes to the population of 

receptors in the free state. The time frame in which this increase of the free receptor 

population was observed, 5 - 10 minutes after addition of EGF, matches the reported times for 

fast recycling of 5 – 7 minutes52,131. 
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The recycling process of ErbB1 needs to be further investigated. By other studies it was already 

shown that the rate of recycling depends on the ligand that is bound to ErbB160,61. TGF-α for 

example leads to significant increased recycling of the receptor. Single particle tracking 

experiments with TGF-α stimulation might reveal how an increased recycling rate influences 

the occupations of the mobility states of the receptor. This could possibly show which state is 

preferentially occupied by the recycled receptors. 

5.3. Interplay of ErbB1 aggregation and activation 

Together with the intensity histograms of dual-color tracking experiments (chapter 4.4.2, 

Figure 34) and the PTB colocalization experiments (chapter 4.4.1, Figure 31), the EGF 

colocalization experiments (chapter 4.4.3, Figure 35) indicate that immobile ErbB1 receptors 

form clusters upon EGF stimulation that represent the main signaling fraction. Receptors in the 

confined state also bind EGF and are activated but they mostly form dimers and do not cluster, 

while the free population mainly consists of monomeric receptors that do not bind EGF and 

are not active. 

The comparison of the fluorescence intensities of receptors in the different states before and 

after stimulation (chapter 4.4.1, Figure 30) revealed that receptors in resting cells were mainly 

monomeric in all states, arguing against a relevance of pre-dimerization for ErbB1 activation. 

This was supported by the results of experiments with dual-color labeled ErbB1 receptors 

(chapter 4.4.2), where no self-association was observed without EGF (Figure 33). Other single 

molecule studies contradict each other regarding the role of pre-dimerization41,42. However, it 

was also reported that pre-dimerization only occurs in cells expressing the receptor at high 

levels43. Thus, dimerization rates observed in single molecule measurements depend on the 

expression level that varies strongly between cell lines, which could explain the contradictory 

observations. 

5.3.1. Relevance of the expression level 

In nearly all of the experiments in this work the dependency on the receptor density became 

clear. It was repeatedly shown that receptor overexpression leads to altered behavior     

(Figure 28, Figure 37), particularly to ligand-independent activation of the receptor (chapter 

4.4.1), which was already reported by other studies23,43–45. TIRF image series of cells expressing 

the SNAP-tagged ErbB1 receptor at different levels, labeled with BG-Cy3, together with EGFP-
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PTB, showed altered clustering behavior upon EGF stimulation (chapter 4.4.4, Figure 37). 

Phosphorylated ErbB1 receptors were found to be equally distributed over the cell, when the 

expression level was high. Whereas in cells with low expression levels, phosphorylated 

receptors were focused in small spots. This gives a hint that proper receptor localization on the 

plasma membrane cannot be maintained in overexpressing cells. 

5.3.2. Conditions for cluster formation 

An important finding is that the immobile population is not equal to the clustered population. 

It contains the clustered population that is formed upon EGF binding, but it already exists in 

unstimulated cells, where the receptors are mainly monomeric. Experiments with cells 

incubated with the kinase inhibitor erlotinib showed that the balance of mobility states was 

driven to more immobile states (chapter 4.4.5, Figure 40), but the receptors showed 

significantly less clustering (Figure 42). Erlotinib competitively binds to the ATP binding site of 

the kinase domain of the receptor, thereby trapping the receptor in its extended 

conformation69,124. In the extended conformation the dimerization arm of subdomain II is 

exposed (Figure 4) leading to a higher dimerization affinity of the receptor13. This was 

confirmed by the reduction of receptors in the free state and an increase in the confined and 

immobile receptor populations when treated with erlotinib (Figure 40). However, dimer 

formation alone is apparently not sufficient to induce cluster formation, indicating that kinase 

activity is required. Experiments with the phosphatase inhibitor pervanadate showed that 

ErbB1 forms clusters after ligand-independent activation (chapter 4.4.4, Figure 39), indicating 

that EGF binding is not required for cluster formation. 

5.3.3. Amplification of signaling by clustering 

A comparison of the amount of bound EGF with the activation status, which was detected by 

PTB recruitment, revealed that in the immobile state the amount of activated receptors 

increased stronger than the amount of bound EGF relative to the confined state (chapter 4.4.3, 

Figure 36). These results indicate that the signal is amplified in the immobile state, which could 

result from clustering132. Since the active clusters of immobile receptors were mainly 

colocalized with clathrin-coated pits (chapter 4.5.1, Figure 44), one reason could also be the 

strong curvature of the plasma membrane in the area of the clathrin-coated pits133 or the 

presence or absence of regulating effectors leading to an enhanced signal processing. Either 

way, the signaling activity of ErbB1 receptors is localized and amplified in highly active clusters 

rather than being uniformly distributed over the cell.  
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5.4. Stabilization of ErbB1 signaling in clathrin-coated pits 

It was shown that activation of the receptors increased the lifetime of the immobile state 

(Figure 30), indicating that the active receptors are maintained at the plasma membrane. The 

reason could be that clathrin-coated pits stabilize receptor activity and aggregation to enable 

signal amplification prior to termination of signaling by endocytosis. 

Colocalization analysis of ErbB1 receptors with clathrin-coated pits revealed that receptors in 

the confined and immobile states colocalize strongly with clathrin coated pits after stimulation 

with EGF (chapter 4.5.1). 

Inhibition of dynamin with dynasore leads to the arrest of clathrin mediated endocytosis at 

intermediate stages125. As a result, clathrin-coated pits accumulate at the plasma membrane 

after dynasore treatment, which drives the ErbB1 receptor into the confined state (chapter 

4.5.2, Figure 47). However, the colocalization of receptors in the confined and immobile states 

with clathrin-coated pits is less than without dynasore (Figure 45 and Figure 46). The reason is 

likely that the receptors are not trapped in clathrin-coated pits, as they maintain their ability to 

switch between states and the diffusion of receptors out of immature clathrin-coated pits is 

facilitated. This is in agreement with a recent study that described the highly dynamic nature 

of the interaction of clathrin-coated pits with their cargo and that the probability for the cargo 

to escape decreases with the maturation of a clathrin-coated pit134. Upon stimulation with EGF 

the colocalization increased, together with an increase in clustering (Figure 49) and activation 

(Figure 48), but all three were delayed compared to untreated cells. The delayed response 

observed in cells treated with dynasore indicates that fully formed clathrin-coated pits support 

activation and clustering of the receptor, while intermediate states of clathrin-coated pits only 

lead to confinement of the receptors, which do not reach their maximal active state. The 

reason could be that in fully formed clathrin-coated pits the receptor density is locally 

increased, supporting cluster formation and propagation of the signal as has been reported for 

cells with high expression levels of the receptor44. 

Colocalization experiments with dynamin could potentially provide further information about 

which maturation stage of clathrin-coated pits is relevant for signal amplification. With 

dynamin clathrin-coated pits in the process of scission could be identified and correlated to 

cluster formation and signal amplification. 
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5.5. Characteristics of ErbB1 receptor mutants 

The K721A mutation of the ErbB1 receptor leads to the inactivation of the tyrosine kinase. In 

this work, the behavior of the mutant upon EGF stimulation in comparison to the wild type 

receptor was investigated by single particle tracking experiments. The colocalization analysis of 

the mutant receptor with PTB domains revealed that the phosphorylation level upon EGF 

stimulation is very low (chapter 4.6.1, Figure 53), consistent with other studies, describing the 

mutant as “kinase-dead”25,135. The result from the single particle tracking experiments 

indicated that the kinase-dead mutant forms dimers upon stimulation with EGF but not higher 

order oligomers. To underline this result, dual-color experiments as performed for the wild 

type receptor should be done with the K721A mutant to demonstrate its self-aggregation level 

after EGF stimulation. Additionally, EGF-colocalization experiments should be done to evaluate 

the EGF binding affinity of the mutant receptor in comparison to the wild type. 

The ErbB1 mutant L834R was shown to exhibit an increased basal activity in several cancer 

species26,70,71. Single particle tracking experiments indeed confirmed that the basal activity of 

the mutant receptor is high compared to the wild type (chapter 4.6.2, Figure 55). The 

population of mutant receptors in the free state was significantly reduced compared to the 

wild type (Figure 57 A), which points to an increased dimerization affinity of the mutant 

receptor. The analysis of the intensities of the receptors in each state indicated that the 

mutant is able to cluster without EGF stimulation, but since the population of clustered 

receptors was low, the mutant receptors are more likely to form dimers. To further investigate 

the aggregation state of the mutant receptors, dual-color tracking experiments with the 

receptor labeled with two colors should be performed. Upon stimulation the activation of the 

mutant receptors increased but did not reach the activation level of wild type receptors 

(Figure 55). Apparently the mutant receptor tends to dimerize strongly but does not cluster so 

effectively, at least with itself. This is consistent with a recently study, in which the L834R 

mutation was shown to destabilize the inactive conformation of the kinase rather than locking 

the kinase in its active conformation136. Thus, the mutant receptor still depends on asymmetric 

dimer formation to exhibit full activation. Brewer et al. described a ‘superacceptor activity’ of 

the mutant that leads to an increased affinity to form asymmetric dimers with the wild type 

receptors, in which the mutant adopts the acceptor kinase conformation136. Thus, 

coexpression of wild type receptors with the L834R mutant is possibly required to induce 

cluster formation.  
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Apart from the dimerization and clustering behavior of the L834R mutant, confocal 

measurements indicated that EGF binding to the mutant is lower that to wild type receptors 

(chapter 4.6.2, Figure 54). This should be further investigated on a single molecule level by 

colocalization experiments with labeled EGF. Furthermore, experiments with phosphatase 

inhibition by pervanadate could be of interest to compare the basal activity of the L834R 

mutant to wild type ErbB1. 

5.6. Future directions 

There are several more aspects of ErbB1 signaling that are worth investigating by the 

presented single particle tracking and colocalization methods. 

So far only self-aggregation of ErbB1 was addressed in this work. But as hetero-dimerization is 

also known to play an important role for receptor signaling, the presented methods could be 

applied to investigate dimerization and cluster formation between other members of the ErbB 

receptor family. Furthermore, colocalization experiments with effector proteins, such as Grb2 

or Ras, could provide information about the activation of different pathways. For example, the 

confinement of the ErbB1 receptor upon EGF stimulation could lead to spatial effects on 

proteins involved in downstream signaling, such as Ras, which has been reported to form 

clusters137. As already mentioned the stimulation of the receptor with other ligands, such as 

TGF-α, could reveal differences in its diffusion and clustering behavior. Moreover, 

colocalization experiments with cytoskeleton proteins, such as actin, could reveal if they play a 

role for receptor confinement. 

Another significant point could be to determine the causality between EGF binding and the 

transition of ErbB1 to a slower mobility state by further analyzing the tracking data. The order 

of events could be determined by analyzing the number of EGF binding events before and 

after a state transition event. 

To complete the picture of ErbB1 signaling besides the activation, also the termination and 

recycling process should be further explored by single particle methods. As this work gives 

some hints for the role of clathrin-mediated endocytosis and recycling, endocytosis and 

recycling process would need further investigation. 

  



5. Discussion and Perspectives 

 94

5.7. Concluding remarks 

Pre-dimerization was shown to be irrelevant for activation of ErbB1 receptors, which are 

mainly monomeric in unstimulated cells and switch rapidly between a free, a confined and an 

immobile state. Upon EGF binding receptors in the immobile state form clusters, for which 

kinase activity and subsequent phosphorylation of the receptors are required. In the immobile 

clusters the signal is amplified, which is supported by recruitment of the receptors to fully 

formed clathrin-coated pits. As a result, the signaling activity of ErbB1 receptors is localized 

and amplified in highly active clusters rather than being uniformly distributed over the cell. In 

cells with low expression levels of the receptor, which is closer to the physiological situation 

than the case of overexpression, the spatial focusing of the receptor’s activity enables robust 

signaling. 

In this work, the activity of ErbB1 receptors was for the first time measured on single molecule 

level by using EGFP-PTB as a probe for receptor phosphorylation. The connection of activity 

measurements with mobility states in living cells in a single measurement provides a general 

tool to investigate receptor activation on a single molecule level. 
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ABBREVIATIONS 

A   Adenine 

aa   Amino acid 

Amp   Ampicillin 

bp   Base pair 

BSA   Bovine serum albumine  

ddH2O    Double distilled water 

DMEM   Dulbecco's modified Eagle's medium 

C   Cytosine 

CCP   Clathrin-coated pit 

DNA   Deoxy ribonucleic acid 

EDTA   Ethylene diamine tetraacetic acid 

EE   Early endosomes 

EGF   Epidermal growth factor 

EGFP   Enhanced green fluorescent protein 

ER   Endoplasmic reticulum 

FLIM   Fluorescence Lifetime Imaging Microscopy 

G   Guanine 

h   Hour 

hLCA   Human clathrin light chain A 

kDa   Kilo Dalton 

LE   Late endosomes 

MAPK   Mitogen Activated Protein Kinase 

min   Minute/s 

MVB   Multi vesicular bodies 

MW   Molecular weight 

nt   Nucleotide 

PALM   Photoactivated Localization Microscopy 

PCR   Polymerase chain reaction 

PTB   Phosphotyrosine-binding domain 

PTP   Protein tyrosine phosphatase 

PVDF   Polyvinylidene Difluoride 

RTK   Receptor Tyrosine Kinase 

rpm   Revolutions per minute 
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RT   Room temperature 

S   Second/s 

SDS   Sodium dodecyl sulfate 

SPT   Single Particle Tracking 

T   Thymine 

TBS-T   Tris-buffered saline Tween-20 

TIRF   Total Internal Reflection Fluorescence 

UV   Ultraviolet 

wt   Wild type 
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