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Abstract

Gathering information, especially about the immediately surrounding world,
is a central aspect of any smart device, whether it is a robot, a partially au-
tonomous vehicle, or a mobile handheld device. The consequential use of
electrical sensors always implies the need to filter the imperfect sensor data
output in order to gain reliable information. While the challenge of percep-
tion and cognition in machines is not a new one, new technology constantly
opens up new possibilities and challenges. This is stressed further by the
advent of cheap sensor technology and the possibility to use a multitude
of small sensors, with the simultaneous constraint of limited resources on
mobile, battery-powered computing devices.

In this work, stochastic methods are used to filter sensor data, which
is gathered by mobile devices, to model the devices’ location and eventu-
ally also relevant parts of their dynamic environment. This is done with a
focus on online algorithms and computation on these mobile devices them-
selves, which implies limited available processing power and the necessity for
computational efficiency. This dissertation’s purpose is to impart a better
understanding about the conception and design of stochastic filtering solu-
tions, to propose localization algorithms beyond the current state of the art,
and to show the use of simultaneous localization and mapping algorithms
in the context of cooperatively estimating the surrounding world of a team
of robots in a fast changing, dynamic environment. To achieve these goals,
the concepts are depicted in multiple application scenarios, design choices
and their implications systematically cover all aspects of sensing and esti-
mation, and the proposed systems are evaluated in real-world experiments
on humanoid robots and other mobile devices.
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Chapter 1

Introduction

An idea about one’s whereabouts and about the immediate surrounding en-
vironment is natural for every person. This comes instinctively and provides
the means for moving in and interacting with the world. Such knowledge
is also desirable for many technical devices to perform their function more
effectively or to provide new functionality, either in automation, service, or
in ubiquitous computing applications which support our everyday life.

Current technology provides various means of sensing specific properties
in the world. Sifting through the vast amounts of sensor data and inferring
general truths about the state of the world is, however, still a problem in
which human brains are superior to even the most advanced machine. The
challenge of perception and cognition in machines is the manipulation of
the sensory input’s mathematical representations to find conclusive insights
based on noisy, redundant, and sometimes contradictory sensor readings.

In the course of this work, stochastic methods are applied to solve this
challenge, which is considered as a problem of estimating physical properties
of mobile devices and their surrounding environment based on sensor infor-
mation. Special focus is on online solutions for this problem, e.g. to provide
the best estimation at the time of sensing, in contrast to computing the
optimal result based on a complete set of previously recorded sensor data.
State of the art methods are reviewed and supplemented, and findings and
improvements are illustrated in general terms as well as in several different
concrete application scenarios.

1.1 Why Stochastic Modeling?

For some readers the use of stochastic theory might not be obvious when
working with sensor data. After all, uncertainty in sensor readings is pri-
marily undesirable. If sensor readings contain a large amount of uncertainty,
an engineer will always try to use better, more accurate sensors to eliminate
uncertainty and to directly gain a precise, detailed and complete model of
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the world.

However, as long as sensors are not perfect, their measurements are
not perfect either. Just using these plain measurements without further
knowledge of the sensor’s properties will sometimes still give results within
an acceptable margin of error. Using stochastic expressions to formulate the
knowledge about how this specific sensor is “not perfect”, though, can often
improve the results. The following example illustrates this concept.

Figure 1.1: Raw sensor measurements (blue) of two sensors (green squares).

Figure shows two sensors, depicted by green squares, which measure
the angle and distance to an object. Assuming that both sensors measure the
same object at the same time, the measurements obviously contain errors,
since the positions as indicated by each sensor separately do not coincide.
If no further information is given, the usual practice of combining both
measurements is to calculate their average. But if something is known about
the sensing process and its imperfections, this knowledge about the involved
statistic uncertainties of the sensing process can be exploited to estimate
the most likely origin of the measurement.

Figure illustrates how different the result of a sensor fusion can look
for different sensing processes. For normally distributed errors in the mea-
surement domain of sensed angle and distance, figures [1.2al [I.2c| and [1.2¢]
show the position likelihood of the sensed objects without further conditions.
Figures [1.2b] [1.2d| and |1.2f| show the corresponding (normalized) likelihood
under the assumption that the measurements of both sensors originate from
the same object. For equal uncertainties in both angle and distance mea-
surements as in figure the fusion of both measurements as shown in
figure corresponds to an average of the Cartesian coordinates of both
measurements. If the measurement process is more precise in sensing the an-
gle than the distance, or the other way around, then the object’s most likely
position based on these two measurements differs significantly, as demon-
strated in figures and[L.21] This is relevant for many real sensors: Sonar
sensors for example measure the distance more precisely than the angle to
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N

(a) Separate measurement probabilities for (b) Combined measurement probability
sensors with equal uncertainties in angle for sensors with equal uncertainties in an-
and distance. gle and distance.
¢) Separate measurement probabilities for Combined measurement probability
sensors with uncertain angle observation. for sensors with uncertain angle observa-
tion.

(e) Separate measurement probabilities for f) Combined measurement probability for
sensors with uncertain distance observa- sensors with uncertain distance observa-
tion. tion.

Figure 1.2: Different uncertainties of a sensing process and their impact on
the sensor fusion result.
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the reflecting object. When recognizing an object by means of image pro-
cessing on the other hand, the originating angle with respect to the camera’s
optical axis can be calculated very accurately, while the distance is either
unknown or can only be estimated roughly, e.g. by comparing the objects
real and measured size.

This utilization of the information contained in a measurement’s uncer-
tainty is not only important when fusing multiple measurements made by
different sensors of one object. The same applies for the integration of sen-
sor data gathered over time. Therefore tasks necessitating the processing
of vast amounts of sensor data often involve stochastic filtering to achieve
reliable results even if the involved sensors are far from perfect.

1.2 Goals

In this work, stochastic methods are used to filter sensor data, which is
gathered by mobile devices, to model the devices’ location and eventually
also relevant parts of their dynamic environment. This is done with a focus
on online algorithms and computation on these mobile devices themselves,
which implies limited available processing power and the necessity for com-
putational efficiency. This dissertation’s purpose is structured along the
following three goals.

The first goal is to impart a better understanding about the conception
and design of stochastic filtering solutions. At least in the robotics domain,
stochastic filters are well known, standard literature like [86, [78] covers the
common algorithms, and straight forward applications often bear accept-
able, but not optimal results. A number of design choices are always part
of an implementation process, some of which are discussed frequently in lit-
erature, while others are generally neglected or only mentioned briefly. As
a consequence, these implementations rarely function to their full potential,
and sometimes might even be dismissed prematurely for unsatisfactory esti-
mation outputs, while small, seemingly negligible changes would completely
change and significantly improve the system’s behavior. This work covers
several different design choices with respect to a filter’s state space and
update processes, and explains their influence on a filter’s computational
efficiency and its estimation quality. This implies an importance of some
design aspects over others, which in some cases is contrary to the coverage
in common literature. By highlighting these findings and their implications
and providing general concepts and guidelines for the modeling of propri-
oceptive and exteroceptive processes, this work aids future engineers and
researchers in the design of appropriate estimation systems and the optimal
handling of sparse and noisy sensor data.

The proposal of localization algorithms beyond the current state of the
art is this work’s second goal. In the application scenario of smartphone
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localization for location-based services, a probabilistic robotics formulation
of the problem is novel and challenging, insofar that locomotion informa-
tion about intention as well as execution lies within the user and are thus,
unlike in other robotic applications, inaccessible to an estimation algorithm
by any direct means. This is overcome by exploiting knowledge about biped
walking motion generation to infer the underlying walking motion from ac-
celeration measurements. Consequently, suitable motion and sensor models
and a localization system are implemented to prove the superiority of this
concept over conventional indoor localization techniques for smartphones.
For the application scenario of humanoid soccer robots, where Kalman and
particle filters are already common, a novel approach to Gaussian mixture
filtering is presented, which utilizes techniques from particle filtering in a
multi-hypotheses Kalman system to incorporate valuable aspects of both
filter strategies. The resulting solution is superior to common Kalman fil-
ters in its ability of fast re-localization and its representation of multi-modal
belief distributions, and outperforms state of the art particle filters in local-
ization accuracy and computational efficiency.

The task of simultaneous localization and mapping (SLAM), i.e. local-
ization in a previously unmapped, typically static environment, is a very
active field of research. It is this work’s third goal to show the benefit of
applying SLAM concepts also to complex dynamic environments, and to co-
operatively estimate the localization of a team of robots as well as to track
other dynamic objects and agents in a unified estimation state. The main
challenge consists of managing the corresponding algorithms’ complexity
on embedded robotic platforms with very limited computational capability.
This is achieved by an appropriate handling of the different information
sources’ heterogeneity and a careful application of a number of approxima-
tions, which lower the solution’s complexity and at the same time simplify
the distributed modeling among cooperating robots.

In summary, this dissertation aims to provide a solid stochastic and
algorithmic basis for the design of estimation systems as well as several spe-
cific novel solutions. To achieve this, the concepts are depicted in multiple
application scenarios, design choices and their implications systematically
cover all aspects of sensing and estimation, and the proposed systems are
evaluated in real-world experiments on mobile devices and robots.

1.3 Structure

In the course of this work, various estimation problems are covered in the
context of three different applications: humanoid robotics with robot soc-
cer as a benchmark task, mobile measurement units on intralogistic con-
veyor belt systems, and smartphone localization for location-based services.
These three scenarios are briefly summarized in chapter [2| as a motivation
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for the introduced methods and concepts. Subsequent findings and conclu-
sions prove applicable to many fields involving mobile devices in general,
among these robotics applications. As such, the benefit is shown of de-
picting such application fields in a robotics context and modeling them as
stochastic estimation problems, even if robotic aspects such as autonomous
decision making and actuation are not present in all of them. This first
part is concluded in chapter 3| with the introduction of several common al-
gorithms from the field of probabilistic robotics, especially the Bayes filter
concept and its most common implementations, the Kalman filter and the
particle filter. This chapter represents the general part of this thesis’ related
work. More specific related solutions and publications are briefly introduced
in each following chapter to provide the context for each topic.

Throughout the rest of the dissertation from chapter [ to chapter [§]
own work is presented exclusively. On the top level, this work is structured
by covering all relevant aspects of stochastic modeling with increasing com-
plexity of the presented scenarios. Chapter [] covers the proprioception of
robots, i.e. all inward perceptions like those resulting in the knowledge of
one’s own body configuration, relative positioning of body parts, and the
dynamics thereof. Chapter [5] is complementary to this by covering extero-
ceptive aspects, i.e. outward oriented perception. Concepts from both pre-
vious chapters are applied in chapter [6 where a probabilistic smartphone
localization solution is derived for indoor scenarios, for which no similar
stochastic approaches exist yet. Chapter [7] then develops a localization so-
lution for a robotics context with the aim of surpassing existing state of
the art algorithms. Finally, in chapter [8) the stochastic modeling task is
extended from localization of single mobile devices in static environments
to multiple communicating agents in a dynamic environment. The thesis is
concluded in chapter [9}



Chapter 2

Application Scenarios

In the course of this dissertation, the presented concepts are illustrated us-
ing several application scenarios. In general, those concepts are depicted
in robotic contexts, even if robotic aspects — such as autonomous decision
making and actuation — are not present in two out of three cases, or merely
in the very limited form of user interaction in case of location-based ubiq-
uitous computing. However, it will be shown how tasks in the following
three areas, namely humanoid robots, intralogistic systems, and ubiquitous
computing for location-based services, benefit from a probabilistic robotics
viewpoint.

2.1 Humanoid Robots

The research field of autonomous mobile robots provides the main applica-
tion scenario for this work. Previously, the majority of robots were build for
industrial applications, production or transporting material, in clearly de-
fined environments such as assembly line factories. Common robotic arms
are mostly preprogrammed, statically fixed to the floor, and only able to
adapt in a very limited way to changes in their designated working area.
This contrasts with the mobile and intelligent robot known from science fic-
tion books and movies, which often appears in humanoid form and possesses
strength, dexterity, and cognitive abilities beyond those of humans.

Mobile robots are the focus of current research and development with
the trend towards smaller, lighter, faster and more autonomous systems. In
recent years, some first models already found their way into the consumer
market. One popular example are autonomous robotic vacuum cleaners in
private households. More complicated systems already exist for office en-
vironments or military applications [79]. Those however are only used as
telepresence systems, as precise and reliable autonomous understanding of
complex environments and situations in general is still beyond the capabili-
ties of current robots and an active research problem.

7
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The ultimate challenge of autonomous mobile robots is the development
of robots with similar (or even surpassing) physical and mental capabilities
as humans. There are two main motivations behind building humanoid
robots, i.e. robots with human physique: On the one hand, as indoor or
office environments are made for humans, robots with humanoid form and
the necessary control over their body would obviously be able to navigate
in those environments as well. This also includes for example stairs, which
present insurmountable obstacles for rolling robots. On the other hand,
robots have a higher acceptance by people the more human they look, at
least up to a certain point of similarity.

In the following, the RoboCup Standard Platform League will be de-
scribed as the context of humanoid robotics research at the Robotics Re-
search Institute of TU Dortmund University, and to describe the scenarios
in which algorithms are evaluated in later chapters.

2.1.1 The RoboCup Standard Platform League

Several robotic contests have been established over the last years to foster
research and development. Among those are the following: The European
Land Robot Trials (ELROB) focus on short-term realizable robot systems
for reconnaissance, surveillance and security tasks. The first two DARPA
Challenges, namely the DARPA Grand Challenge and Urban Challenge were
aiming at autonomous vehicles for off-road and urban driving, respectively.
The DARPA Robotics Challenge instead focuses on humanoid robots for
disaster relief and rescue operations. A strictly civilian contest concentrating
equally on fundamental research and applications of autonomous robots is
the Robot World Cup Initiative, in short RoboCup.

RoboCup aims at forwarding research into artificial intelligence and ro-
botics by setting a plain and generally understandable task. Choosing soccer
as a challenge for artificial intelligence in contrast to logical problems like
chess necessitates the integration of various technologies and sub tasks, such
as multi agent cooperation in dynamic environments, processing sensor data
and choosing and executing actions, all together in systems under real-time
constraints. The competitive character additionally results in continuous
adaptation and sophistication of the teams playing against each other. Ad-
ditional tracks for search and rescue as well as service and industrial appli-
cations are meant to transfer basic research results from soccer robotics into
real-world application scenarios.

The RoboCup consists of different leagues focusing on different aspects
of the overall problems, ranging from tactics and strategy in the simulation
leagues to basic skills and hardware development in hardware leagues. In
the Standard Platform League (SPL) the humanoid robots of type Nao by
Aldebaran Robotics are used. As all teams work with the same robot models,
the focus is on developing software which utilizes the given hardware in the
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most optimal way possible. In contrast to other leagues where each team
has different robots, published code by high ranked teams can easily be
incorporated into other teams’ code. This custom of sharing research results
— not only by way of publication but also in form of code releases — applies
further pressure towards improvement and introducing and integrating new
ideas.

Figure 2.1: Dimensions of an SPL field given in millimeter.

Figures[2.1]and [2.2]illustrate the scenario of RoboCup Standard Platform
League soccer games. While the fields are specified as given in figure
and known to the robots, the surrounding is generally unknown and may
change during the game. As can be seen in figure[2.2] there is no separation
between field and audience. As a consequence, many false positive obser-
vations arise and influence the robot’s perception and model of the world.
It is of importance to note that those observations are not just occurring
randomly in the environment, but can also be generated systematically from
specific points, e.g. a person in blue jeans standing at the border of the field
and blue goal posts may be indistinguishable from a robot’s perspective and
field of view. The consequences of this and corresponding solutions will be
covered in detail in chapter [7}

2.1.2 Nao: A Commercial Humanoid Robot Platform

This section gives a short overview of the Nao robot, as it is used for the
evaluation of various algorithms in the course of this work. Especially chap-
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Figure 2.2: SPL game during RoboCup 2011, without any separation be-
tween field and audience.

ters [4] and [p] refer to the Nao’s characteristics directly, but overall this also
has an impact on design decisions throughout this work.

The Nao is a humanoid robot platform developed by Aldebaran Robotics
and intended for teaching, research and entertainment. It replaced Sony’s 4-
legged robot Aibo as the standard robot in the SPL in QOOSH The Nao model
repeatedly received upgrades and currently different versions are available.
While some algorithms presented in this work have been applied to various
Nao versions, all evaluations as well as the following description refer to the
NaoV3 RoboCup Edition model which has been used in RoboCup 2010, and
in RoboCup 2011 with only minor modiﬁcationsﬂ

This Nao model contains an x86 AMD Geode 500MHz CPU and 256MB
SDRAM. Its main source of information about the surrounding world are
two cameras in its head, which do not have an overlapping field of view and
can only be used one at a time. The Nao also contains sonar sensors in its
chest with an effective cone of 60°and a detection range from 0.25m up to
2.55m. However, due to the wide detection cone, these sensors will detect
the ground at around 0.7m distance when the robot is standing straight,
which therefore limits the effective range for obstacle detection. This ground
detection distance also varies depending on the exact torso orientation and
height. Additionally, the arm movement needs to be confined to stay out of
the sonar detection cone. Due to those restrictions and the high noise ratio

! Aibo and Nao competitions have been held in parallel at RoboCup 2008
2Later usage of the term Nao refers to the NaoV3 RoboCup Edition.
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the sonar sensors are only used to verify the distance of visually detected
close obstacles.
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Figure 2.3: The degrees of freedom of the Nao RoboCup Edition (copyright
by Aldebaran Robotics).

Nao’s 21 degrees of freedom are visualized in figure[2.3] It has to be noted
that the left and right Hip YawPitch joints (shown in yellow in figure
are physically coupled and controlled by a single motor. This allows the
narrow waist and graceful body, but at the same time complicates the robot’s
kinematics. Consequently, both feet cannot achieve arbitrary positions and
rotations simultaneously, but the workspaces of both feet depend on each
other. This further complicates precise movement execution and odometry
measurements, which will be addressed in chapter [4]

2.1.3 Robotic Software Framework

The algorithms proposed in later chapters are implemented as modules in a
robot software framework used to control the Nao. This framework is based
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on the German Team framework [73] [72], which has been adapted to the
Nao [8] 15, [16].

The middleware NaoQi is provided by the manufacturer Aldebaran Ro-
botics as a way to control the Nao using high level commands, but also as
the sole interface to the Nao’s sensors and actuators by means of the De-
vice Communication Manager (DCM). Part of the software framework runs
as a module in NaoQi and exchanges sensor data and actuator commands
via shared memory with the actual robot control program. The cameras
are accessed using standard video for Linux drivers. The control program
itself consists of three processes, as visualized in figure 2.4 The motion
process reads sensor data and generates actuator outputs at 100 Hz, and is
responsible for the generation and execution of stable walking motions. The
cognition process contains the analysis of information about the external
world, e.g. by means of image processing and stochastic modeling, and the
behavior decision making [58,[12]. A third process allows the exchange of de-
bug information with external devices, which is not used during competition

games.
\

Robot
Control
Program

Video for
Linux

Camera

Figure 2.4: The software framework used on the Nao.

Inside the processes like motion and cognition the information flow is
organized in modules. Each module requires and provides certain represen-
tations. Such representations are data structures containing for example the
images, raw sensor data, various image processing or filtering results, motion
control commands, and finally actuator requests. Using a debug connection,
it is possible to switch between different module configurations at runtime
and to visualize or even modify the representations.

Part of the framework is the simulation software SimRobot [56]. It is
based on a solid-state physics simulation with extensions for realistic im-
age generation, including rolling shutter effects, motion blur, etc., and is
equipped with Nao models. The robots are simulated according to the speci-
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fications of the Nao’s physical properties as provided by Aldebaran Robotics.
The simulation allows testing and debugging of parts of the robot control
software, or even the interaction of a whole team of robots in a controlled
environment. This reduces hardware wear and shortens development cycles.
In a limited way, it also allows experiments with algorithms, which do not
meet the runtime constraints of the Nao’s limited processing power.

2.2 Intralogistic Systems

El Intralogistics refers to the internal flow of material and information at a
given site, e.g. a warehouse, factory, or distribution center. The materials or
products are commonly handled using conveyor systems (see figure for
one example of a roller conveyor system). Intralogistic systems are generally
modular so that they can be assembled to the specific need and requirements
at hand. However, this flexibility usually ends with the construction of the
system, which thereafter operates in a static configuration with little or no
redundancy due to reasons of cost efficiency. A failure of one transportation
segment can thus often lead to a down-time of a large portion of the site,
resulting in significant economic loss.

Figure 2.5: Accumulation roller conveyor for the transport of car-
tons and totes in distribution centers (by Kay-Uwe Rosseburg,
available under a Creative Commons Attribution Licence 3.0 at
http://commons.wikimedia.org/wiki/File:Accumulation_Roller_
Conveyor_for_Cartons_Totes. jpg).

Such unplanned down-times can be avoided by anticipating failures and
scheduling maintenance at the least critical times. For state-of-the-art in-

3Parts of this section are based on an article in the Proceedings of the IEEE Inter-
national Conference on Automation and Logistics 2010. The corresponding publication,
see [53], is available at http://ieeexplore.ieee.orgl
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tralogistic systems with high load and usage rates it is therefore important
not just to monitor the handling and transportation processes themselves,
but the condition of the entire system as well. As requirements with regard
to reliability and availability gain in importance, demands arise concerning
the application of modern maintenance concepts.

2.2.1 Condition Monitoring for Logistics on Demand

The following application scenario originated from within the scope of the
collaborative research centre 696 “Logistics on Demand” which was estab-
lished at the TU Dortmund University in July 2006 and financially sup-
ported by the German Research Foundation (DFG). Its goal is to allow a
more efficient design and organization of intralogistic systems by developing
analytical methods and technologies based on actual requirements. This
will help rather inflexible current intralogistic systems, with regard to in-
effectiveness in purchasing, operating and maintenance, to transition into
systems able to meet the fast changing demands like “just in time” and
“just in sequence” production concepts, and utilize the exponential increase
of data and availability of new delivering methods.

“Logistics on Demand” strives to achieve this by adapting both operation
and maintenance of intralogistic systems to current and anticipated future
demand. Transportation systems can adjust by allowing certain parameters,
which currently are fixed when installing a system based on the maximum
expected load, to vary depending on actual load and usage statistics [23].
This can reduce the wear especially on failure relevant mechatronic compo-
nents, and potentially also decrease the energy consumption of the material
handling systems. To anticipate the maintenance demand it is necessary
to monitor not only the transported products but also the transportation
system itself in detail and in a cost-efficient, preferably automated way.
As complex intralogistic systems are characterized by long conveying dis-
tances and huge dimensions, it is not economical to equip the whole system
with stationary sensors in the necessary density. [24], [54] and [55] discuss
some components with strong influence on the overall condition of an in-
tralogistic system and also explain the dedicated techniques which allow to
monitor these components. Some examples are rollers, electric drives or
friction belts. New maintenance concepts based on the system’s condition
and requirements are therefore supposed to utilize both stationary and mo-
bile measurement units. The latter travel on the conveying system without
the need of an own locomotion mechanism and can collect measurements of
huge parts of the transportation system with minimal effort for the system’s
operator.

The data gathered by the mobile measurement units has to be correlated
with reliable location information to be useful. Track and trace applications
in the field of logistics commonly apply light barriers, bar-codes, RFID-



2.2. INTRALOGISTIC SYSTEMS 15

Chips [48] or GPS-Receivers. These techniques, however, are better suited
for logistic processes between plants or the shipping of goods, rather than
to the intralogistic material handling and the gathering of precise location
information. The latter is required for identifying specific parts and potential
failure areas of the handling system for maintenance purposes.

Of the broader scope of the “Logistics on Demand” project, this work
only addresses the task of localizing mobile measurement units and mapping
potential failure areas as an application oriented scenario for the use of
stochastic modeling. This includes and extends the work presented in [53].

2.2.2 Mobile Sensor Unit

A prototypical setup is shown in figure 2.6al A regular load container with
a base area of 600 mm by 400 mm is used as a chassis for transportation
on the conveyor. It is equipped with a 3-dimensional acceleration sensor in
order to measure in horizontal, vertical and cross direction. The measured
accelerations are the result of the forces acting upon the container. These
include a regular part consisting of gravity, accelerations due to controlled
changes of vertical and horizontal speed, and centrifugal accelerations in
curving segments. Additional accelerations may occur due to unplanned
or undesired behavior of the container, such as speed changes or bumps.
Those can be caused by slippage, or by mechanical wear or mis-alignment
between different segments or parts. The identification of these latter ones
is an indication for potential failure areas.

WLAN-Bridge

Acceleration-
: Sensors

Power-Supply

(a) Mobile unit in container. (b) Concept of the measurement unit.

Figure 2.6: Mobile measurement unit [53].

The mobile unit participates in the transportation process between the
regular material containers on the conveying system. While traveling, it
permanently collects data and evaluates it in batches as presented in [53],
so that reporting is available in regular intervals. Section also presents
efficient online algorithms performing the same tasks, so that the evaluation
can be done in real-time. To be independent from unreliable Wi-Fi signals
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and external devices, a regular netbook is attached to the equipment so
that the sensor readings can be gathered directly (cp. figure . The
data is processed and after it is evaluated only the results are transmitted
to a receiver once a strong Wi-Fi signal is present. The utilization of the
mobile measurement unit is clarified by the example of a roller conveyor
which is a central element of most intralogistic systems. Figure shows
the experimental setup which is used for evaluation purposes.

Figure 2.7: Roller conveyor in an experimental setup [53].

The described layout of the mobile measurement unit is the one used
for the experiments in [53] and for the illustration and evaluation of the
algorithms presented in section It should be noted though, that the
same functionality can be provided by much more compact devices such as
regular smartphones. In fact, most recent smartphones contain gyroscopes
as well as acceleration sensors and therefore superior sensory equipment as
well as equal or superior computational capabilities compared to the mobile
measurement unit used here. Therefore the intralogistic system condition
monitoring described here can be implemented exclusively using affordable
components, which signifies its practical relevance.

2.3 Location-based Services

Over the last years, the demand for precise localization has extended be-
yond robotics research and military applications. Modern life is permeated
by ubiquitous computing and location-based services. Nowadays, naviga-
tion systems in cars are common and reliably pick the fastest routes to
desired destinations based on current traffic statistics. The introduction of
smartphones with localization capabilities gives rise to a multitude of new
applications. Some of those are just known applications in new contexts,
like routing systems for pedestrians using public transport, but many new
ones are appearing out of the omnipresence of these devices and their vast
developer community. Popular examples are location-based games, which
integrate the player’s location into the context of the game, and travel ap-
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plications, which augment the smartphone’s live video stream with labels
for local sights, places of interest, and nearby stores and restaurants.

The widespread availability of satellite-based navigation makes position-
ing in open areas possible with high accuracy and precision. This positional
accuracy deteriorates in urban environments due to signal reflections off the
concrete or even loss of part of the satellites’ signals. To compensate this loss
of accuracy, some techniques are already implemented in most smartphones,
using cell tower and Wi-Fi signal strength for example. But existing meth-
ods still do not guarantee the spacial resolution desired by many providers of
location-based services. In this context, the lack of positioning information
inside buildings is even more prominent.

2.3.1 Indoor Smartphone Positioning

Indoor localization presents a harder problem than the outdoor case due to
two reasons: To begin with, signal strength from outdoor sources such as
satellites or cell towers are either blocked completely by the building’s steel
and concrete structure, or can be received only with interference and after
several reflections off walls and ceilings, which significantly compromises
methods relying on measured signal strength or a signal’s time of travel.
But even if a similar accuracy as outdoors could be achieved indoors, this
would often not be enough. The same position uncertainty, e.g. a precision
of around 15m, still allows to reliably tell the correct street corner and is
thus sufficient for most outdoors routing needs, but covers several different
hallways, rooms, and even floors inside a building, hence rendering an indoor
service unable to provide any information about the specific room or even
the user’s position inside the room.

Assuming indoor positioning mechanisms with an accuracy as low as a
single meter, several interesting applications would become possible, ranging
from museum guides, routing systems for large airports, to a multitude of
commercial uses. The availability of such mechanisms without the need for
additional hardware beyond common smartphone technology is especially
appealing, as many people already invested in smartphones voluntarily, and
new software can be easily distributed commercially using the existing build-
in stores.

Location-based services for retail trade will be illustrated as an example.
In this context, several stores already provide smartphone applications for
the management of shopping lists. These are stored online and can be
updated remotely from a home computer while another person is already
in the store. A superior shopping experience is provided to the customers
by coupling this shopping list with a functionality for scanning and adding
articles, and finally bypassing queues at counters by electronically paying
the already registered products. Such applications already exist, as does the
desire to extend them with exact positioning information inside stores.
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Knowing the precise location and context a customer is acting within
at any given time in the shopping center allows for a number of use case
scenarios:

o (Context-aware Offerings summarize the ability of actively notifying
the client application on a customer’s smartphone when approaching
a specific location or acting in a certain context. By combining the
location with information about articles in the cart and on the shop-
ping list, fitting offerings can be made based on customer profiles or
even possible recipes, e.g. offering a certain white wine near the liquor
section to go with the already purchased fish. This is similar to offer-
ings in online shops, in which these are already widely accepted and
appreciated.

o Advertisement Impact Measurement allows to directly quantify the
impact of placing display stands or giveaway booths for certain brands
at certain places, whereas currently this can only be evaluated using
the increase in sales for this specific article.

o Audience-specific Routing, based on the costumer’s shopping list and
his profile, could lead him through the store in a way, which may
not be the shortest one possible, but still more time-efficient than the
customer’s own wandering, while at the same time passing all offerings
which the store company’s profile deems relevant.

To enable such indoor location-based services, the localization methods
needs to provide high-resolution indoor position information, which are up-
to-date and continuously verified. Furthermore, the system needs to be scal-
able, i.e. it must be possible to roll out to a potentially large customer basis,
in a cost-effective way. This implies that no additional hardware must be
needed on the customers’ side, and the effort of calibration and customiza-
tion of new stores needs to be kept at a minimum. These requirements
and restrictions will be addressed later for the development of a suitable
localization system.

2.3.2 Mainstream Technologies for Localization

This section reviews different means of localization and their performance,
starting from well-established technologies. Modern smartphones already
provide means for localizing themselves; a capability that is leveraged by
many location-based services applications, though mostly for outdoor use so
far.

2.3.2.1 Satellite-based Navigation

The localization technology used by most of these devices and services is
satellite-based, mostly on the Global Positioning System (GPS) which has
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been developed since 1973 by the United States of America and came fully
operational in 1994 [64], available from the start for civilian use with selective
availability and lower resolution, and since 2000 without restrictions [61].
Similar systems have been developed by other nations [36], namely the Rus-
sian GLObal NAvigation Satellite System (GLONASS), which has been
opened to civilian use in 2007, or are currently under development, such
as the European Galileo positioning system or Indian and Chinese versions
thereof.

In outside scenarios, the Global Positioning System (GPS) is the means
of choice for most applications. For faster initialization, the position fix
is often seeded with rough position estimates from surrounding cell tower
signals. In open areas with direct satellite visibility, the accuracy of GPS
can be in the magnitude of few meters [93]. In urban areas, however, signal
reflections, the multi-path problemEL and also the loss of weaker satellite
signals usually impairs the quality drastically [67].

2.3.2.2 Wi-Fi-based Localization

Another ubiquitous mechanism that receives more and more attention is
the localization through Wi-Fi access points in the proximity of the device:
With the focus on urban environments, they reach a very high density, thus
providing a small-tiled mesh of potential signal sources. Given an up-to-date
database, Wi-Fi localization has a good potential for higher resolutions than
GPS.

Generally, two different methods can be distinguished when inferring
the position from radio signal strength [59] 3, 80, B3]: the propagation-
based approach and fingerprinting. Propagation-based approaches use radio
propagation models, either empirical or theoretical ones, to calculate dis-
tances from the received transmission energy. A multilateration algorithm
can then use the resulting distances to different sources for calculating the
most likely receiver position. Similar to GPS, which itself utilizes a time
difference of arrival multilateration, such methods provide good results as
long as the path between sender and receiver is reasonably free. In indoor
environments, however, a direct line of sight is rarely the case. Instead the
signal is affected by constructive or destructive interference, obstructed, par-
tially absorbed, or reflected, which results in significant deviations from the
rather abstract mathematical propagation models, and eventually leads to
decreased reliability and precision of the position estimate.

Instead of using mathematical models for the strength of signals, fin-
gerprinting methods rely on building a comprehensive database of sample
measurements at different known locations consisting of all received sig-
nals and their strengths. A new measurement at an unknown location

4That is, several possible paths are close enough to each other that a deterioration of
accuracy makes them indistinguishable from each other.
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is then compared to the ones in the database and the nearest neighbors
in signal-space are used to infer the current location. Various techniques
have been proposed, ranging from simply picking the single nearest neigh-
bor [19] to different interpolation methods among different numbers of near-
est neighbors [59, [74]. Many methods only consider the similarity in signal
space [19, [59], some also take the spacial distribution of the database sam-
ples into account [74], e.g. by finding the smallest polygon out of a given
number of nearest neighbors and using its centroid as the localization re-
sult. Averaging the signal strength over time and over signals known to
originate from the same access point naturally improves the reliability, but
an accuracy of around 2m can only be achieved in ideal situations of strong
and stable signals from three or more access points, otherwise dropping to
merely room precision or worse [59].

Overall, it shows that the required accuracy cannot be achieved with
traditional approaches only, necessitating to prospect for other options. To
cope with this issue, chapter [f] formulates the problem in a more general
way using stochastic filtering mechanisms.

2.4 Common Task Formulation

The three described application scenarios, while vastly different in purpose
and utilized hardware, nevertheless all require solutions to a common task,
namely the tracking and localization of mobile devices. Furthermore, this
information needs to be available at the time of operation, not later after
extensive processing. So the required algorithms must provide the best
possible result at each time based on all data accessible so far, and must be
efficient enough to run on-line, i.e. to process each new data instance in the
time till the next one is available.

As an input for all localization systems serves a variety of sensors, which
differ in hardware implementation, measured physical property and pur-
pose. In the following chapters, these will be classified into sensors measur-
ing properties of the mobile device’s own kinematic and dynamic state and
into ones measuring properties of the device’s surrounding, external envi-
ronment. The former ones are called proprioceptive sensors, such as inertia
measurement units or joint angle sensors. The latter ones are exteroceptive
sensors, such as cameras or Wi-Fi receivers.

The scope and complexity of the task differs for each application scenario.
Localization, i.e. finding the device’s own position, is the major challenge
in the location-based service and intralogistic scenarios. The latter one
only briefly covers aspects of mapping static environment characteristics.
The robot soccer scenario, on the other hand, also requires the tracking
of a number of dynamic elements in each robot’s environment additionally
to calculating its own location therein. It is possible, though, to formulate
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these tasks using the same framework of a stochastic estimation problem. So
understanding the applied filtering algorithms and the proprioceptive and
exteroceptive aspects of the different scenarios allows to transfer findings
from one to another, and thus also to successfully apply them to other
possible engineering problems.
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Chapter 3

Filtering Algorithms

This chapter covers basic algorithmic solutions to hard problems in the
robotics domain based on probabilistic methods. As such, it does not present
own work, but rather gives an overview about concepts and algorithms which
will be applied and extended in later chapters. The terminology in this one
and in later chapters, as well as the overview provided here, will follow [86]
by Thrun, Burgard, and Fox.

3.1 Basic Concepts

The inference of knowledge about the world based on sensor information is
the challenge, which will be addressed for all three application scenarios pre-
sented in chapter|2l A complete description of the world is of course infinite,
but only a subset of it is relevant for a specific task. This part of the world
or the environment is characterized by its state, which contains information
about all its relevant aspects. For this state x of relevant physical properties
to be susceptible of stochastic estimation, it is assumed to be described at
each time t by a vector of real numbers:

7 € R" (3.1)

If only the agent’s position is of interest, this is called a localization problem.
The location in a 2-dimensional environment is then typically described by
the robot’s pose: a vector (px,py,pg)T consisting of coordinates p, and p,
along the two spacial axes and an orientation angle pg. In this case, the
information which is used to localize in an environment is usually given in
form of a map m.

The generalized case is called world modeling and typically also involves
the positions and states of other static and dynamic objects in the envi-
ronment. When addressed separately, those elements of the map will be
denoted m;; among other real valued properties, such a model of an ob-
ject may contain spacial coordinates (m; ., m;y,)T or velocity components

23
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(mi,vx,mmy)T. Henceforth, the terms world and environment will be used
synonymously to address those aspects which are important for the task at
hand. In this context, modeling the world is therefore equivalent to inferring
its state as accurately and precisely as possible.

The approaches based on these concepts are applicable to very general
scenarios. For the illustrations and examples in this chapter though, a ro-
botics context as described in section [2.1] will be used.

Learning about the world is possible through information sources in
form of electronic sensors, which unfortunately do not observe the state
directly, but measure different quantities in the environment. Additionally,
the environment may be influenced by own actions. Even if their intent is
known, their outcome is rarely deterministic. Together with a-priori know-
ledge about relations and causalities of objects and processes, those are the
available information sources for the estimation of the environment’s state.

Perception

World Model

!_ﬁ_!
-/

Figure 3.1: Robot environment interaction.

Environment

Robot
Control
Program

The relations between robot and world are visualized in figure[3.1] Com-
monly, robot software is designed based on this control loop: The robot
observes its environment, integrates this new information into its internal
model of the world, updates behavior decisions based on this internal model,
and executes the corresponding actions. Executing actions mostly concerns
motion execution, while perception summarizes various means of sensor or
image processing. Both are active fields of research, and certain aspects will
be addressed in chapters [4] and [5] respectively. The main concern of this
work, however, focuses on world modeling, so other aspects are only covered
insofar as they are relevant for the design of world modeling systems.

After its initialization, the world model is frequently updated using two
kinds of information: those about the robot’s actions and those about its
perception. The former is called process update or motion update, and the
latter is called sensor update or measurement update. Perception informa-
tion comes in the form of new sensor readings or image processing results.
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Such measurement data at time ¢ will be denoted z:, or z¢,.4, for the set of
all measurements taken between time ¢; and to for ¢; < ¢9. In the following,
each measurement is a vector of k real numbers:

2t € Rk (32)

Information about the robot’s actions or change of state, in general called
control data and denoted uy, is also given in form of a vector as in equa-
tion but can originate from different sources.

u; € RY (3.3)

If a robot’s locomotion system is controlled using speed vector inputs, for
example, this speed control data can be used directly. Such motion com-
mands, however, are rarely executed perfectly, but their effect is sometimes
easy to measure. For wheeled robots an obvious possibility is the use of
wheel encoders to measure the executed rotation instead of using the mo-
tor commands directly. Such information concerning the change of state is
called odometry measurement and commonly used equivalently to control
data [86 [78].

In general, odometry “refers to the use of data from the actuators (wheels,
treads, etc.) to estimate the overall motion of the vehicle” [22] page 477].
The exclusive use of odometry to estimate a robot’s pose is called dead reck-
oning, which corresponds to only executing the above mentioned motion
update. An error between the dead reckoning estimate and the true path
of the robot is unavoidable due to various causes, such as variations be-
tween commanded and executed motor movements, inaccurate or erroneous
modeling of the robot’s own properties and those of its environment, and re-
sulting effects like slippage which are difficult to measure. Position tracking
therefore incorporates additional sensor information to correct those errors
and to improve this estimate of the robot’s path. While position tracking
implies a known position at one point in time, which is tracked afterwards,
the problem of finding one’s position without any knowledge about initial
positioning is called global localization.

Those different modes of the localization problem frequently occur in
common realistic application scenarios. A localization problem may start
with global localization, and proceeds as position tracking or local localiza-
tion once a position hypothesis is sufficiently validated. In case the tracking
fails, re-localization needs to be performed similar to initial global localiza-
tion. The kidnapped robot problem describes the worst-case scenario in which
a robot, which is tracking its position, is “teleported” without its knowledge,
i.e. instantaneously placed at another position, and subsequently needs to
register that its previous position estimate has become invalid, and then to
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re-localize. Note that this is actually more difficult than the global local-
ization problem, as initially the robot wrongly assumes that is knows where
it is. This problem occurs only in limited form in real applications, but
serves as a good benchmark for re-localization after failed position tracking

attemptsﬂ

Localization is only one application of state estimation in the robotics
domain. Mapping refers to the estimation of an environment’s map, based
on sensor data gathered from known locations. The more complicated prob-
lem of mapping with a mobile robot, which does not know its true location
but has to localize itself at the same time while building the map, is com-
monly known as simultaneous localization and mapping (SLAM). This topic
is covered in more detail in section In the following, the localization
example will be used to introduce general concepts and algorithms related
to state estimation.

An important concept is that of the robot’s belief, abbreviated as bel(z),
which reflects the robot’s current knowledge about the world’s state . In
probabilistic robotics, this belief is expressed through conditional probability
distributions. These assign a probability to all hypotheses, i.e. to all possible
configurations in state space. So the belief about the state x; at time t is
a posterior probability based upon all information available so far, which
consists of all measurements and control data as explained above and given

in equation [3.4}

bel(xt) = p(we|z1:6, ui:t) (3.4)

@(fﬂt) = P(ﬂft|21:t71, Ul:t)

Equation describes the probability before incorporating the most
recent measurement z;. This is called the prediction, since bel(x;) predicts
the state at time ¢ based on the belief at time ¢ — 1 and the current control
data. Calculating bel(z;) is done in the motion update. Without loss of
generality, this assumes that the robot first executes u; and then makes
the observation z;. Calculating bel(z;) from bel(z;) by incorporating z; is
called correction and done in the sensor update. Together, the motion and
sensor updates describe the mathematical basis of the modeling aspect in
the iterative process visualized in figure (3.1

'In robot soccer scenarios the kidnapped robot problem actually occurs in its true form
due to incompletely executed wrong referee decisions: An assistant referee may pick up
the wrong robot for a penalty, start to carry it away, but then put it back on the field
once the mistake is pointed out.
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3.2 Recursive Bayes Filtering

This section explains the mathematical principles and assumptions which
allow to calculate the beliefs and update steps defined above. Sections
and in turn describe different approximations for the belief in equa-
tion and the resulting practical filtering implementations.

For a robot to actually compute a belief during its operation, it is un-
desirable for this computation to depend on all previously acquired infor-
mation. This is due to the limited memory available to store all incoming
data, as well as the increasing computational cost of the belief’s calculation
for each new time step, if it would depend on the continuously growing in-
put data. The Markov assumption is the key to overcoming this problem.
It states that “past and future data are independent if one knows the cur-
rent state z;” [86, page 33]. This assumes the state x;_1 to be complete,
i.e. that neither past states xi.;_o, measurements z1.;_1, nor control data
u1.¢—1 carry any additional information useful for the prediction of a future
state x;. Consequences of this assumption are the following two simplifi-
cations. First, the prediction bel(z;) in equation now only depends on
the previous belief bel(x¢—1) and the current control data wus. Second, in
the measurement process as expressed in equation measurements only
depend on the state of the environment at that time, since no previous data
carries additional information about that state.

p(l“t|$1:t71, Z1:it—1, Ul:t) = p(l‘t|$t717 Ut) (3~6)

p(zt|$1:t7 Zl:tflaul:t) = p(Zt!fUt) (3~7

The resulting dependencies are visualized in the hidden Markov model (HMM)

in figure
Figure 3.2: Hidden Markov Model of the Bayesian estimation process.

These assumptions allow the recursive computation of the prediction
bel(x;) based on the previous belief bel(x;_1) and the current control data
u as follows: Starting from equation (cp. equation , the theorem of
total probability gives equation Equation [3.10| results from the Markov
assumption expressed in equation for the first factor, and the conditional
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independence of the state at time ¢t — 1 from the future control data u; in
the second factor. The definition in equation [3.4] finally gives equation [3.11}

bel(xt) = p(xt| 2101, u1:t) (3.8)
= /p($t|$t—1721;t—1,u1;t) p(i-1]21:4-1,u14) dTp1 (3.9)
= /p(ﬂft|xt—1,ut) p(Te-1]21:4-1, u1:0-1) dwp1 (3.10)
= /p(:ct]a:t_l,ut) bel(xi—1) dxi—1 (3.11)

Similarly, the Bayes rule applied on the conditional probability in equa-
tion (cp. equation results in equation and in equation
when abbreviating the normalization factor as . The same conditional in-
dependence of ;1 from u; as described above, and the assumption of the
complete state with respect to observations as in equation give equa-
tion [3.15] and the definition in equation [3.5| results in equation [3.16

bel(x) = p(we|21:0, ur:t) (3.12)

_ p(ze|mes 211, we)p(@e| 211, vae) (3.13)
p(zt]21:4-1, u1:t)

=1 p(2t| e, 2141, u1:4)p(Te| 21201, U1t) (3.14)

=1 p(at|lre)p(ze]21:4-1, ur:—1) (3.15)

=1 p(zt|e) bel(wt) (3.16)

The resulting two equations and define the core of the recursive
Bayes filtering algorithm. Equation [3.11] defines the motion update and in-
corporates motion control data and information about the state change from
time ¢ — 1 to t. Equation [3.16] corrects the prediction using the sensor infor-
mation provided by the measurement z;. More details on the background
and mathematical derivation can be found in [86] section 2.4.3].

An exact computation of the belief according to equations and
is only possible for very special cases, such as simple reasoning on discrete
state spaces. In general, further assumptions about state transition prob-
abilities and posterior distributions need to be made to achieve tractable
computational complexity. Practical solutions always represent a trade-off
between the accuracy of the approximation and its computational efficiency.
A further consideration is the ease of implementation, which often has a
significant influence on an approach’s popularity and success.

Two different classes of Bayes filter implementations for continuous state
spaces will be applied repeatedly in the course of this work, namely the
Kalman filter and the particle filter. The following sections and will
introduce both concepts, respectively.
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In addition to the choice of filter implementation, the probability dis-
tributions in equations and [3.16] play important roles in the actual
estimation system. Given a belief representation and filter algorithm, these
probabilities are the central points to apply expert background knowledge to
customize the filter for a specific application. In this context, the expression
p(x¢|ug, ©p—1) in equation or more specifically the process specifying this
probability distribution for each specific situation, is often referred to as the
motion model. It provides the means to express the system’s locomotion
characteristics and intrinsic uncertainty, and to address eventual systematic
tendencies, such as a known drift to one side while moving forwards. Chap-
ter [] covers several aspects concerning motion models and proprioception.
Analogically, the probability distribution p(z|x;) in equation results
from the sensor model. The influence of expert knowledge about the sens-
ing process on estimation quality will be one of the aspects addressed in
chapter [5}

3.3 Kalman Filter

This section describes the Kalman filter (KF) [46], which is the most estab-
lished representative of the class of Gaussian filters and is used in various
contexts throughout this work. As the name suggests, Gaussian techniques
describe the belief as a multivariate normal distribution characterized by
their first two moments, the mean g and covariance P as in equation [3.17

b@l(ﬂi‘t) = N(Mt, Pt)

_ b )R ) (3.17)
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For a state vector x of dimensionality n, the Gaussian’s first moment p
is also a vector of dimension n, and P is a quadratic, symmetric and positive
semidefinite n X n matrix. Naturally, the Kalman filter is exclusively applied
in the context of continuous state spaces. It is not suited for discrete or
hybrid estimation problems.

The commitment to restrict the representation of belief states to their
first two moments yields certain consequences. Foremost, this only allows
to describe unimodal probability distributions, i.e. beliefs which only have
one maximum. When considering the classification of different localization
scenarios in section for example, this is almost incompatible with global
localization problems, but fits well in case of position tracking. If the ap-
proximation is sufficient, however, this representation allows a very efficient
computation of the belief in closed form.
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The central idea is that a linear transformation of any Gaussian dis-
tributed random variable results in another Gaussian distributed random
variable. Certain properties of the estimation problem’s target system are
therefore assumed in order to maintain a Gaussian belief throughout the
updates steps:

1. The initial belief bel(xp) must be Gaussian.

2. The motion model in form of the state transition probability
p(z¢|zi—1,u) in equation must be a linear function, with added
Gaussian noise.

3. The sensor model in form of the measurement probability p(z¢|z:) in
equation [3.16| must be a linear function, with added Gaussian noise.

As a linear transformation of a Gaussian distribution results in another
Gaussian distribution, such a system can be described by the state transition
in equation and a measurement function in equation [3.19] and maintain
the assumption of Gaussian state and measurement representations through-
out the process. Both transformations are linear, but non-deterministic on
account of the added Gaussian noise vectors €¢; and §;, which model the un-
certainty involved in both processes and have covariance matrices R; and
Q:, respectively, and zero means.

xy = Ay 1 + Brug + € (3.18)
Zt = Ctl‘t + 6t (319)

The Kalman filter estimates the state of such a system by means of the
following recursive equations.

1y = Agpg—1 + Bruy ( )
Py = AP AT + Ry ( )
Ky = P,.Cl(C,P,CT +Q))7! (3.22)
pe = iy + Ki(ze — Cifiy) ( )
P, = (I - K,C,)P, (3.24)

Equations [3.20] and [3:21] perform the motion update on the previous be-
lief state bel(z¢—1) = N(us—1,Pi_1) to calculate the prediction bel(zy) =
N (g, P;). Equations @ and compute the sensor update and the new
belief state bel(x;) = N(u¢, Pr) using the Kalman gain Ky in equation
This Kalman gain controls how the state estimate is changed by the differ-
ence between expected and real measurement. I denotes the identity matrix.
A derivation of the Kalman equations can be found in [86, section 3.2.4],
as well as a proof of its optimality in case of linear systems as described
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here. The Kalman filter’s computational complexity is lower bounded by
approximately O(k?#) for k-dimensional measurements, due to the matrix
inversion in equation and at least O(n?) an n-dimensional state space
due to the matrix multiplications [86l, page 43].

The assumption of linearity of the involved transformations is a crucial
aspect of the Kalman filter concept. However, practically relevant estimation
problems are rarely linear. Kalman filters nevertheless enjoy ongoing pop-
ularity, as they are well understood and still provide good approximations
in many scenarios by applying linearization of the non-linear transforma-
tions around the state estimate’s current mean. Two Kalman approaches
for non-linear systems are commonly used and will be described in the fol-
lowing sections, namely the Extended Kalman filter (EKF) in section [3.3.]]
and the Unscented Kalman filter (UKF) in section [3.3.2] They differ mainly
in the method employed for linearization and the algorithmic and numer-
ical consequences. Both are applied in the course of this work, and the
differences in their influence on the estimation quality are evaluated and
compared to other relevant factors in section [6.1

3.3.1 Extended Kalman Filter

The Extended Kalman filter relaxes the strict assumptions that process and
measurement model need to be linear transformations as in equations
and and allows general differentiable functions instead:

Ty = f(.%'tfl, ut) —+ €4 (325)
2t = h(IL‘t) + 0. (326)

Equations [3.:25] and [3.26] can be used directly to calculate state and mea-
surement predictions for a given belieﬂ For the unknown noise terms e;
and d;, their mean is substituted, which is zero as defined above. The
modification of equations and results in equations [3.27] and
For the predictions and correction of the covariance estimate however, the
state transition matrix A; in equations and and the measurement
transformation matrix C; in equations [3.19] [3.22] and [3.24] are replaced by
Jacobian matrices of the partial derivatives of the functions f(x¢—1,u;) and
h(Z:), respectively.

The Extended Kalman filter equations are then given analogous to equa-

2Note that the measurement function h(z+) in equation implicitly uses knowledge
about the environment to predict expected observations. The explicit inclusion of the
environment map m as a function parameter, i.e. as h(z:, m), is omitted here.
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tions [3.20] to [3.24]

Ay = f(pe—1,u) (3.27)
P,=FP,_ F' +R, (3.28)
K, = P,HT (H,P,HT + Q;)"" (3.29)
pe = fy + Kt (26 — h(1,)) (3.30)
P, = (I — KyH;)P; (3.31)

where F; and H; are the process and measurement Jacobian matrices as
defined in equations and with indices ¢ and j denoting the corre-
sponding component of each element.

F = {8fi(ut1,ut)] (3.32)
()
8hi(ut):|
H; = [ (3.33)
s g

In effect, the Extended Kalman filter constructs linear approximations of
the functions h and f by applying a first order Taylor expansion, i.e. using
the functions’ values and slopes at the current state estimate. In contrast
to the classic Kalman filter for linear systems, this application to non-linear
systems is not formally optimal. The quality of the approximation, and
therefore of the resulting estimation system, depends on how good this lin-
earization approximates the true non-linear functions around the current
state estimate. For many systems, this approximation is sufficient for small
time steps, which together with its simplicity and computational efficiency
explains the Extended Kalman filter’s great popularity as a tool for state
estimation in various application scenarios.

3.3.2 Unscented Kalman Filter

An alternative to the Extended Kalman filter comes in form of the Unscented
Kalman filter (UKF) [42]. The development of the UKF is motivated by a
number of potential disadvantages of the EKF as argued in [43]:

1. If the error propagation is not approximated well by a linear function,
the linearization using the Taylor expansion around the mean may also
produce only a poor approximation of the true error propagation.

2. There are state spaces in which Jacobian matrices do not exist or are
not meaningful in every case, e.g. around discontinuities or singulari-

tiesE|

3A practical example for such a system is the localization of transport cases as moti-
vated in section and derived in section
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3. The derivation of the Jacobian matrices can result in several pages of
dense algebraEl, and the subsequent conversion to code can be difficult
and error prone. Such human coding errors will degrade the estimation
performance, but may not change the system’s behavior completely in
most cases, so that identification and debugging is difficult at best,
especially in the absence of any measure of expected performance.

Instead of using the Taylor expansion to determine the first two moments
analytically, the UKF avoids an explicit linearization by transforming the
Gaussian using a deterministic sampling process called unscented transform.
Its basic idea is to represent a Gaussian N (u, P) by a set of weighted points,
called sigma points, which are chosen to have the mean p and covariance P.
As illustrated in figure the non-linear function is then applied to each
sigma point separately, and the transformed Gaussian is extracted from the
mean and covariance of the transformed points.

o
R S

——~——e

N B

Figure 3.3: Illustration of the unscented transform applied to a Gaussian
distribution.

The minimum number of sigma points necessary to capture an n-dimen-
sional Gaussian distribution’s mean and covariance is n+1, as shown in [43].
The more robust standard approach uses 2n + 1 sigma points, as described
in [42], which are placed at the mean and symmetrically along the main axes
of the covariance, which are given by the columns of its matrix square root.
The n-dimensional Gaussian N (u, P) is then represented by the following
set X of sigma points X1

x0 =

)i fori=1,...,n

(n+ AP
X =y — (/(n+NP)i-n fori=n+1,...,2n

4See appendix [B] for an example.
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and corresponding weights W

WO = \/(n+ \)
W = 1/2(n+ \) fori=1,...,2n.

with A as a scaling parameter determining the spread of the sigma pointsﬂ

For a non-linear system, which can be described by equations and
the unscented Kalman filter is given by equations to where
Xy = {Xtm} and Xy = {?,[ﬂ} are the sigma point sets of N(u, P;) and
N (f1;, Py), respectively.

Xy = (X1, ) (3.34)
2n
m=Y wix (3.35)
=0
o 2n L L
Py =R+ Z WM(X:[Z} - ﬁt)(X:[Z] — )" (3.36)
=0
Z, = h(X)) (3.37)
2n
7 =Y Wz (3.38)
=0
2n L iy
Si=Qu+ Y WHE! —z)(E —=z)" (3.39)
=0
o _ eyl il ol
Py = ZWM()Q — ) (24 _Et)T (3.40)
=0
Ky = P;"S;* (3.41)
we =y + K3 (Zt — ft) (3.42)
P =P; - K:P{"K! (3.43)

In this formulation, equations to describe the motion update,
and equations[3.37]to[3.43]the different parts necessary for the sensor update.
This way, it is obvious how to use part of the algorithm for only one of the
updates in case the other one only involves linear transformations and can
be handled more efficiently using the classic Kalman updates described in
equations to An equivalent, more efficient implementation uses
the sigma point set ?: directly for the sensor update instead of extracting
71, and P, and recalculating X; from N (7, Py).

A drawback of the UKF is that it is more prone to numerical instability
compared to the EKF, which is caused by the Cholesky decomposition used
for the matrix square root in the sigma point computation. This, however,

5(A); denotes the ith column of matrix A.
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is countered by the algebraically equivalent, but numerically more stable
square root formulation of the UKF [90]. Similar square root variants also
exist for the EKF.

An additional flexibility is allowed in the UKF formulation in [43], where
the noise term is no longer assumed to be additive, but is an additional ar-
gument of the non-linear transformation instead, i.e. changing the assumed
models in equations and to those of equations and re-
spectively. In this case, the involved state and covariances can be augmented
by the noise terms’ means and covariances, and sigma points are generated
using the augmented Gaussian distributions.

Tr = f/(fUt—hUn Gt) (3'44)
Rt = h/(wt, Ot) (3.45)

Due to this argumentation, the UKF is often described as superior to
the EKF in terms of estimation quality, which can also be shown using
the popular showcase of a tracking task with measurements in polar coor-
dinates [42] 43]. The improvement of an UKF over an EKF in practical
applications, especially in contrast to other filter design choices, will be cov-
ered in more detail in section [5.1] using the example of humanoid robot
localization.

3.4 Particle Filter

An alternative approach to the implementation of the Bayes filter concept
is the particle filter. Particle filters are generally considered to be easy to
understand and implement, quickly provide reasonably good results, and
are widely used in the robotics domain. Based on [86], this section only
gives a brief overview on this topic and on certain techniques, which enable
them to work very efficiently, i.e. with only a very low number of parti-
cles. This work does not extend particle filtering algorithms themselves, but
uses existing state of the art particle filters as a basis on several occasions:
Section [5.2) uses active sensing to optimize filtering results, and chapter [7]
applies techniques, which were originally developed in the particle filtering
domain, to multi-hypotheses Kalman filtering and uses an existing state of
the art particle filter for the evaluation and comparison of the estimation
quality and computational performance.

3.4.1 Basic Algorithm

The particle filter is another implementation of the Bayes filter concept.
While the Kalman filter represents the belief bel(z:) in the parametric form
of a Gaussian distribution, the particle filter uses a set of particles X; =



36 CHAPTER 3. FILTERING ALGORITHMS

{Xt[i]}, which are sampled from this belief distribution. In this, particles are
similar to sigma points of the UKF in the previous section, as the terminol-
ogy suggests, but while sigma points are sampled deterministically assuming
a specific probability distribution, i.e. a Gaussian, particles are drawn ran-
domly from the belief distribution without this assumption of an underlying
parametric form. Therefore, the particle distribution only approximates
the original probability distribution, but at the same time it is possible to
represent a much wider range of distributions, including asymmetrical or
multi-modal ones.

Each particle Xtm represents a hypothesis for the true world state at
time t. As the particle set X; approximates the belief, the likelihood of a
hypothesis to be included in this set is proportional to bel(z;):

Xt[i] o p(xt]21:8, ur:t). (3.46)

Therefore, the density of particles in an area of the state space intuitively
correlates to the likelihood of the true state being in this region. Of course,
this is only asymptotically true for an infinite number of particles, but the
difference can be neglected as long as the particle set is sufficiently large.
The necessary size, however, depends on the properties and dimensionality
of the estimation problem.

In general, the number of particles needs to increase exponentially with
the estimation problems dimension [86, page 437]. This becomes clear by
the following reasoning: Consider a certain number of particles which cover
all relevant hypotheses in n dimensions. If another dimension is added to
the estimation problem, and this dimension for itself allows for 10 likely
hypotheses, then for each particle in the n-dimensional state space there are
10 new particles needed to cover the (n+1)-dimensional state space. On the
other hand, the computations necessary for each particle are comparatively
simple, so particle filters are easy to implement and offer an efficient solution
for many low-dimensional estimation tasks.

The basic idea of all particle filter variants is given in algorithm |1} which
again implements the Bayes filter concept introduced in section Its
input are last time step’s belief bel(z;—1) in form of the last particle set
X;_1, the new control u;, and sensor data z;. The motion update can be
found in line The resulting particles X; are distributed according to
bel(x;) (cp. equation [3.11)). Line [5|implements the sensor updateﬁ To en-
sure that the new particle distribution X} reflects the posteriori distribution
bel(z¢) = 1 p(zt|zs) bel(xy) (cp. equation , the particles are resampled

in lines (9| to [13| according to the importance weights Wt[j } calculated in the

6 Note that just a hypothesis’ likelihood, but not its state space coordinates, change
with the availability of new sensor information. This will become important later in SLAM
contexts in section and chapter [§] and likewise in one example in section
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sensor update. This central element of the particle filter algorithm is called
resampling or importance sampling.

Algorithm 1: Particle filter algorithm, based on the Sampling Impor-
tance Resampling (SIR) filter [75][86, page 98].
Input: X1, u, 2
1 X=X = 0;
Wi = 0;
fori=1...]x;_1| do
sample ?Ei] x p(xt]Xt[ﬁl, ut) ;
Wil = p(al )
Add 2 to 2,
Add W to Wy
nd
ori=1...|% do
10 draw ?Eﬂ € X; with probability o Wt[j ];
n | o= XV,
12 | Add & to A, ;
13 end
14 return X;

(S > w N

© 0w N o
[¢]

—r

An implementation would be possible without the resampling step by ini-
tializing the importance weights with 1 and updating them multiplicatively:

W = W p(z ). (3.47)

This original version of the particle filter is called Sequential Importance
Sampling (SIS). Such a filter however would require substantially more par-
ticles, as many of them would end up in low probability regions of the state
space, i.e. with weights near zero. The resampling step instead focuses par-
ticles on regions of high probability, thus improving its efficient utilization
of the limited number of particles.

For many real applications it is often important not only to know the lo-
calization belief distribution, but also to output a single discrete localization
result for higher level modules to work with. In simple scenarios, a weighted
average of all particles can provide a reasonable result. Regarding the possi-
ble multi-modal nature of this belief representation, it is usually reasonable
to employ clustering techniques to extract a maximum likelihood estimate
from the particle set based on the highest local particle density.



38 CHAPTER 3. FILTERING ALGORITHMS

3.4.2 Sampling Variance and Particle Diversity

The non-deterministic nature of the sampling also possesses drawbacks in
form of the variance or deviation introduced by the sampling process, i.e.
the slight differences between repeated approximations of an identical source
probability distribution. This is in fact amplified by the repeated resampling
step during each filter update. It can be illustrated using the example of
a robot, which is temporarily stationary and only makes observation pro-
ducing the same weights for all particles. In this example, bel(x;) should be
identical to bel(x;—1). In the basic implementation presented in algorithm
no new particles would be introduced in any of the update steps. However,
the resampling would occasionally miss to reproduce one of the particles.
Over time, this process unavoidably leads to an unreasonable decay of the
particle set’s diversity.

Two different techniques are possible and commonly employed to counter
sample set deprivation. The first one is minimizing the sampling variation
itself, e.g. by using low variance sampling methods [86, page 110]. The sec-
ond one compensates the effects of degrading particle diversity by artificially
inserting additional diversity during the resampling step, e.g. by adding new
particles at random positions in state space [26], [32].

The last measure presents a certain problem for particle filters with a
low number of particles, as regularly replacing even only 10 particles by
random ones will seriously affect the filter stability if the complete particle
set consists of only 100 particles. At the same time, 10 random particles have
only a very low likelihood of turning up in relevant poses if large portions
of the state space are made up of low probability area.

A solution for this problem is to restrict the probability distribution from
which those additional random particles are drawn. Sensor resetting [57] is
a technique which samples these additional particles from the last measure-
ments, i.e. directly from the distribution p(z|z;). At the same time, this
elegant solution is also able to handle localization losses and the kidnapped
robot problem introduced in section Instead of randomly sampling
p(x|z¢), a simplified but efficient implementation of sensor resetting is to
add particles deterministically at maximum likelihood positions calculated
from the last measurements, i.e. by multiangulation or multilateration in
case of different landmark observations. Those additional particles obvi-
ously result in a deviation from the true posterior distribution. A formally
correct version of the sensor resetting idea has been implemented by [87] as
Mixture Monte Carlo localization, which generates a certain number of par-
ticles by sampling from the sensor model and weights those particles using
the motion model. Thus, for an infinite number of particles, the belief still
converges to the true posterior.
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3.4.3 Influence of False Positives

An important aspect for localization in real-world scenarios is the robustness
not only to noisy measurements, but also to false positives. False positive
perceptions are those observations which the perception process incorrectly
registers as measurements of a known feature in the environment; instead,
they do not correspond to any feature in the robot’s map. These are usually
caused by sensor errors or random clutter in the environment.

The classic Kalman filter described in section [3.3] does not include an
explicit formulation for false positive observations. The usual compensation
in scenarios with expected false positives is to enlarge the measurement
noise. Of course, this reduces the Kalman filter’s reactivity not only for
false positives, but also for correct measurements.

For particle filters, the sensor model p(z;|z;) used in algorithm [I]in line[f]
(or its adaptation in equation is not restricted to Gaussian measure-
ment noise. A common choice is to model two components, one for correct
observations and one for false positives, as in equation with &k being the
measurement’s dimensionality. The first one is usually implemented as a
Gaussian for the deviation of the actual measurement z; from the expected
measurement h(z;) of the corresponding landmark. The probability for false
positive observations is a uniform eg.

1
p(zt|ze) = (1 —€o) <(27r)k!Qt\

For small particle numbers, however, few false positive observations or
even just high noise levels in the measurements can still decrease the weights
of particles around the true position enough to loose the coverage of that area
after resampling. This might happen if a random sample receives a favoring
weight while most others’ weights are only updated with a likelihood close to
the false positive probability €y. In this case, a classic low variance resampler
would instantly replace a number of those “low weight” samples with the
random “good” one.

Techniques like temporal smoothing and lazy resampling strive to prevent
such behavior [65]. Temporal smoothing calculates a particle’s weight as a
product of separate weight factors for each observation class, and smooths
these separate weights over time by capping the allowed de- or increase per
single measurement. When a given class is not observed, the corresponding
weight ages to 1 to loose influence on the overall weight product. Lazy
resampling in turn is a resampling strategy which restricts how often a
certain particle is allowed to be duplicated in a single resampling step. A
more detailed derivation and evaluation can be found in [65] [66].

Overall, state of the art particle filters employing the techniques briefly
presented in this and the previous section are able to perform well even

e—é(a—h(m))TQ;l(zt_h(mt))) +eo (3.48)
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with relatively little particles, e.g. with only 100 particles in a RoboCup
SPL scenario (cp. section . Compared to classic Kalman filters, they
show an increased robustness to false positives and high sensor noise. Such
a filter is the basis for active sensing algorithms presented in section [5.2] and
provides the baseline for an evaluation of a different approach’s localization
quality in chapter
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3.5 Algorithms for Simultaneous Localization and
Mapping

Localization in a known environment is used as the state estimation example
in the previous sections. The Bayes filter concept and algorithms, however,
are applicable beyond this low-dimensional pose estimation task. In the
case that a robot does not know anything about its environment prior to
its deployment, it also has to build a map of the world along with finding
its position in it. As mentioned in section this is commonly called si-
multaneous localization and mapping (SLAM). The inclusion of additional
mapping variables considerably increases the state’s dimension n and there-
fore the estimation problem’s computational load according to the chosen
algorithm’s complexity.

SLAM is an ongoing research challenge, both for its computational and
conceptual complexity, as well as for the compelling idea of robots, which can
perform given tasks in every new environment without any prior knowledge
about it. Out of the various approaches to and forms of the general SLAM
problem, only a subset is introduced here as a background to chapter [§ In
particular, only the online SLAM problem is considered, i.e. continuously
estimating the best guess of an environment map and a robot’s position
therein during operation. Furthermore, maps in this context consist of a
number of discrete features, which may be ambiguous but allow the compu-
tation of correspondence likelihoods.

In the following sections and two popular SLAM approaches
are introduced, which are based on the Kalman and particle filter algorithms
covered in sections [3.3] and respectively.

3.5.1 EKF-SLAM

The EKF-SLAM is a straight forward application of the Kalman filter to
the SLAM problerrﬂ The state is extended beyond the pose (pz,py,ps)”
to also include models for each landmark, e.g. consisting of the landmark’s
position estimate (m; 4, m;,) and its signature s; which is used to identify
it among other landmarks. It is possible, that a landmark’s appearance can
be perceived without any uncertainty, or that it falls into a clearly separable
category which does not need to be modeled. In these cases, the signature
might be omitted from the state and filed separately without associated
uncertainty.

"The idea of applying Extended Kalman filters to the SLAM problem predates the
emergence of Unscented Kalman filters. The EKF-SLAM is therefore still predominant
in literature, even if the same concept can naturally be implemented using the unscented
transform, too. Eventual differences between EKF and UKF implementations of the same
concept are not discussed here any further.
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In general, for N landmarks with positions (m; ., m;,)’ the state x is
extended to

T
T = (pw,pyapeyml,maml,y7317m2,a71m2,y7327"'amN,wva,yasN) . (349)

When operating in a totally unknown environment, a robot initially starts
with the state 2o = (pz, py,pe)T = (0,0,0)T and includes additional land-
marks when first perceiving them.

The working principle of the EKF-SLAM algorithm is illustrated in fig-
ure [3.4l The true path, which the robot traveled so far, is indicated by
a black dashed line. Red circles mark the positions of eight previously un-
known point landmarks in the environment. For each time frame, the uncer-
tainty ellipses visualize the robot’s pose and the subset of those landmarks,
which are included in the current state at that time. If an observation is
made in a time frame, it is represented by a red line between the robot’s
and the observed landmark’s positions. The accumulated motion execution
uncertainty propagates into the landmark position’s model. As the robot
progresses, it only observes new landmarks at first. That means, the first
landmark is observed twice, then only the second one, then only the third
one, and so on. Only after observing the eighth landmark and taking the
third turn, the robot finally observes the first landmark again.

The overall uncertainty in the modeled state therefore builds up, until
it can be reduced by observing one of the landmarks again which have been
mapped earlier. Figures and [3.4f] present the state before and after
such a new observation of an earlier observed landmark. Their comparison
shows the refinement not only of the current pose estimate, but also of the
estimate of all landmarks which have been observed previously.

The correction of the whole map along with the robot’s current pose
estimate is possible through the modeling of the estimate’s uncertainty in a
joint covariance matrix. The drawback of this, however, is the growth of the
state’s dimensionality linear in the number of landmarks, and the resulting
squared growth of necessary memory space and computational complexity.
Therefore, the application of Kalman filters becomes unfeasible for SLAM
problems with a large number of landmarks, but offers a simple and reliable
solution for moderately sized maps.

3.5.2 FastSLAM

In contrast to the previous section, the SLAM task cannot be addressed with
particle filters directly, as the higher dimensionality of the SLAM problem
would require too many particles to cover all relevant hypothesesﬂ Instead
it is possible to exploit the stochastic characteristics of the SLAM problem
with known correspondences to achieve a more efficient implementation.

8The necessary number of particles increases exponentially with the dimension of the
estimation task, as previously mentioned in section
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(a) First landmark observation.
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__________________
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(c) Uncorrected pose uncertainty propagates
into landmark models.
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(e) Just before closing the loop.
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(d) Pose uncertainty grows as long as only
new landmarks are observed.

__________________
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(f) After closing the loop.

Figure 3.4: Illustration of the EKF-SLAM algorithm at work.
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When examining the full SLAM posterior p(x1.¢|z1:¢, u1:), i.e. the estima-
tion of the complete map and the robot’s whole path in it, not all aspects of
the state @ = (pu, Dy, Doy M1z My ST, 02,5, TN 1)y 82, -+« « y MUN 2y TN g5 SN ) L
(cp. equation depend upon each other. Assuming that the origins of
all measurements of a certain landmark are known, then this landmark’s
position can obviously be estimated independently of all other landmarks.
Consequently, if the robot’s full path (p.,py, pg)zz:t is known, then all land-
mark positions (mivx,mivy)T can be estimated independent of each other.
This allows to express the SLAM posterior in a factored form as in equa-

tion 13.50

N
p(a1e|21, ) = p((Pas Pys Do) 1l 21t ) [ [ (s M) 2120, )
i=1
(3.50)

This is relevant in the particle filter context. As explained earlier in
section only a particle’s likelihood, but not its state space coordinates,
change with the availability of new sensor information. Thus, each particle
represents a hypothesis not only for the current pose, but for the robot’s
path up to this point, i.e. p((ps, Py, o)L, |21:4, u1t). As a consequence, it is
possible to model these path hypotheses using a particle filter, with each
particle additionally modeling all landmarks using separate filters. This
general technique is known as a Rao-Blackwellized particle filter.

The FastSLAM algorithm [63],[86], chapter 13] applies this idea of fac-
toring the posterior to SLAM, resulting in a particle filter which models the
robot’s localization and path hypotheses, and in which each particle carries
a number of Gaussians to model landmark positions and their current un-
certainty. Each new measurement is used in two ways, first to update the
particle’s likelihood, and then to refine the particle’s model of the belonging
landmark. The latter is identical to a Kalman filter’s sensor update step
(cp. equations to . As neither the robot’s motion nor the passing
of time affects the landmarks’ positions, their models do not need a motion
update.

Figure illustrates the working of a FastSLAM filter in a scenario
identical to and with the same input data as in the one in figure[3.4] Particles
are represented as green circles, and the means of their landmark models
as black crosses. As in figure the figures and show the SLAM
estimation before and after the observation of a landmark which has been
mapped earlier in the experiment. With the collapse of the particle set, also
the possible landmark positions are reduced to the ones which are closest
the the real positions.

Two aspects highlight the computational efficiency of the FastSLAM al-
gorithm: Firstly, its particle filter part only covers the localization aspect of
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Figure 3.5: Illustration of the FastSLAM algorithm at work.
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the filter, therefore much fewer particles are necessary compared to apply-
ing it to the full state including all landmark dimensions. Basically, those
are only as many particles as would be necessary to handle the equivalent
localization problem without the simultaneous mapping task. Secondly, the
state’s representation grows only linearly with the inclusion of new land-
marks into the map. This latter point makes the FastSLAM approach espe-
cially important for large maps.



Chapter 4
Proprioception

Proprioception is the sensing of one’s own body. This includes the awareness
about its configuration and its kinematic and dynamic state, i.e. where
each body part is relative to the others, which forces and moments are
applied, and how these result in movements relative to the surrounding
world. In human beings, proprioception is partly a conscious, but mostly
an unconscious process. One example is the tendency to adjust the head
orientation to bring the eyes on a level with the horizon, independent of the
torso’s tilt.

In a robotics context, proprioception can be achieved by measuring
forces, rotational velocities, pressures, and joint angles, and then calculat-
ing either analytically or probabilistically the robot’s kinematic and dynamic
configuration, orientation and position. In chapter [3| a reasonable sense of
the own posture and movement are a prerequisite for Bayes filter localiza-
tion. This is provided in form of odometry, which serves as an input to the
motion update, and in the mapping between measurement and state space
in the sensor model. Thus, knowledge about the proprioception process and
its inherent uncertainties and shortcoming is essential for the proper design
of localization algorithms.

This chapter provides an insight to the place of proprioception in the
Bayes filter theme, thus aiding the understandability of further chapters.
Section presents the structurally simplest possible example of a device
with zero degrees of mobility and a single 3-dimensional accelerometer as its
only information source for the task of localizing on an intralogistic trans-
portation system in the application scenario described in section Even
this setup offers different possible design choices and interpretations of the
proprioceptive measurements as either part of the control input or a mea-
surable part of the state.

The significantly more complex proprioception processes involved in hu-
manoid robots are analyzed in section Motion generation in humanoid
robots, biped walking and the difficulties of measuring biped odometry are

47
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covered briefly to establish the causes of the humanoid proprioception un-
certainties. The properties established here will form the basis for various
methods applied throughout this work, namely for sensor model design in
chapter [5] and as a motivation for design choices in chapters [7] and [§

4.1 Intralogistic Tracking

[ This section uses the scenario described in section 2.2 to illustrate different
ways to interpret proprioceptive information in the Bayes filter theme. For
this, the application is analyzed from a robotics viewpoint, though the mo-
bile device in question lacks any actuation like a normal robotic system. A
single proprioceptive sensor presents its sole information source to perform
position tracking.

4.1.1 Problem Analysis

The illustration of an example environment to localize in is given in sec-
tion and repeated here in figure for convenience (cp. figure .
As the mobile sensor unit can only move along a very restricted space, i.e.
along the roller conveyor, it makes sense to reflect this by restricting the
state space accordingly. Instead of using a full metric state space, a major-
ity of which is inaccessible, a topological formulation offers a more condensed
representation.

Figure 4.1: Roller conveyor in an experimental setup (cp. figure .

The state space will be represented as a directed graph consisting of edges
and nodes. An edge describes a segment of the system’s track with additional
data attached to it. A node represents the connection between the segments
and has no physical expansion. In complex systems a node can connect
more than two modules which will apply to junctions, sorters or pushers.

LParts of this section are based on an article in the Proceedings of the IEEE Inter-
national Conference on Automation and Logistics 2010. The corresponding publication,
see [53], is available at http://ieeexplore.ieee.orgl
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Each segment has a number of properties: The unique identification number
of the segment, its length and the reciprocal of the radius of the segment,
which can also be understood as the curvature. A straight segment has an
infinite radius which causes the curvature to become zero. Considering a
curve segment, the length of the segment refers to the mean circular path
between the outer and inner border of the segment. Intralogistic systems
can be arranged as an open configuration or a closed configuration. In an
open configuration the containers arrive on the system at a source and leave
the system at a sink though more than one source or sink can exist in such
a configuration. The main characteristic of this kind of configuration is that
one container which is traveling from a source to a sink never passes one
and the same segment twice.

A different configuration is called closed or loop configuration. The han-
dled containers arrive at and leave the system at sources and sinks as well
but because of the loop-based topology of the system a container can pass
the same segment more than once. Figure shows a simple layout of such
a roller conveyor with a loop configuration which is composed of four seg-
ments. Accordingly, table shows its tabular representation, which will
be used for the solution explained next.

#4 #3

#2

Figure 4.2: Example configuration of a roller conveyor.

| ID # | Length [m] | Curvature ¢; [1/m] | Description

1 3.125 0 Straight
2 3.142 1 Curve
3 3.125 0 Straight
4 3.142 1 Curve

Table 4.1: Tabular representation of the configuration in figure

For the mapping of disturbances or areas of possible malfunctioning on
the conveyor track, it is necessary for the mobile sensor unit to know its
position in the track’s map. While creating this map itself from sensor data
is possible to a certain degree, in this context, very precise information is
commonly available, e.g. in form of printed building plans or even as elec-
tronic design layouts. It can therefore be assumed that a-priori knowledge
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in the form of a given map as described above is available. This assumption
reduces the task of localization to 1-dimensional positions on a sequence of
map segments and decisions at eventual intersections.

In easy scenarios the trivial approach would consist of using the mea-
sured sensor data directly to infer the unit’s movement and based on this
its position. This approach is known as dead reckoning (cp. section . In
case of an acceleration sensor the measured acceleration in forward direc-
tion can be integrated once to yield the velocity and again to get the unit’s
position. This procedure is obviously error-prone, since the integration of
sensor noise produces a continuously increasing error in the position estima-
tion. Additionally it is necessary for the sensor to be calibrated perfectly
due to the same reason. Systematic error introduced by imperfect calibra-
tion produces significant drift in the estimation result. For a system to be
both cheap and reliable it needs to be robust against those deficiencies.

The next section will present a probabilistic formulation to solve the lo-
calization problem as an offline batch computation on a complete sensor data,
set, as done in the context of the collaborative research centre 696 “Logistics
on Demand”, as well as the necessary complexity reduction to allow an effi-
cient computation of the resulting optimization problem [53]. A Bayes filter
formulation to solve the localization task is described in section and
implementations of the different filters presented in chapter [3 are discussed.
As online algorithms, these solutions have the advantages not to grow ex-
ponentially in complexity relative to the duration of a localization test run,
and to be able to provide results in real-time. Section presents a brief
consideration on the suitability of these filter implementations for the orig-
inal task of mapping disturbances and potential failure areas on conveyor
tracks.

4.1.2 Offline Formulation

A stochastic measurement model can be defined as the conditional proba-
bility p (z¢|x¢, m) of a measurement z; at time ¢ under the assumption of a
position x; in a map m. A complete representation of the state of the mo-
bile sensor unit is given by xy = (y, ¢, J:) with the unit’s position y; along
the track, velocity and acceleration, respectively. Note that a state z; can
be calculated once xg, 91.+ and potential choices at intersections are known.
The unit is externally propelled, exercises no own control over its motion,
and no friction needs to be taken into account, so discretizing the kinematic
motion equation results in the process model given in equation



4.1. INTRALOGISTIC TRACKING 51

Yt
o=\ 9 | = f(xe-1,€)
Yt
1 At 0 0
(o 1 At o+ o0 | (4.1)
0 0 1 1

Given a position y; and a map m as described in section the map
segment m; on which the sensor unit is located at time ¢ can be identi-
fied. Knowledge of the sensor’s characteristics allows to infer p (z¢|z¢, m):
Measurements of an acceleration sensor positioned at the unit’s center are
generated according to

aizt
Zt = a2t = h(ft, m, 5t)
ast
Ut
=Q Ui/ri | + 6
g
Ut
=Q vici | + 6 (4.2)
g

with the sensor’s rotation relative to the unit’s coordinate frame given as
the rotation matrix 2 and added measurement noise d; in the form of a
multi-variate Gaussian with zero mean and covariance );. As mentioned
in section [4.1.1) map segments m; are characterized by their curvature c;
rather than their radius r;, simply because it is easier to implement using a
curvature of zero for straight lines than an infinite number as its radius.

Similar to the derivation of equation [3.16]in section the offline esti-
mation of the mobile sensor unit’s states at all times ¢ € {0,..,7} means to
find the most likely states given all sensor measurements and the map, i.e.
the maximum in equation

p (zo.rl20:7, M) (4.3)
_ p(2or|zo.r,m) - p(To:TIM)
B p (zo.r|m)
=" p(z07|x0:0, M) - P (x0:7|M)
T

=1 p (207|017, M) - P (T0|M) - HP (zilziz1,m)
i=1
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Let a hypothesis H be the tuple (z¢, 1.7). No a priori knowledge about
the unit’s movement is available. To simplify the problem and its compu-
tational complexity, all hypotheses are assumed to be equally probable, as
long as no measurements are available. Equivalently, both the initial state
xo and all §j; shall be independent and uniformly distributed, so that the
states zo.7(H) resulting from the application of the noise-free process model,
i.e. the motion equations, are equally probable a-priori.

This simplifies equation [4.3] to

p (H|zo.0, m) = p (xor(H)|z0:7. m) = 0" - p (2.7 |w0.0(H),m) . (4.4)

Note that this assumption is generally not true and neglects knowledge
about regularities in the mobile sensor unit’s motion that are commonly
available in real applications. At the same time the amount of data gath-
ered even in short test scenarios quickly exceeds the limit where an optimal
solution can still be computed efficiently. Both problems are addressed in
the next section.

4.1.2.1 Complexity Reduction for Efficient Optimization

The approach presented here represents both the reduction of computational
complexity and a way to introduce a priori knowledge about likely state
sequences. Conveyor tracks typically consist of segments that are run with
approximately constant speed and short periods of constant acceleration or
deceleration, either due to speed changes between map segments or due to
irregularities causing the unit to temporarily jam or bump into a wall.

In case of state estimation as an offline problem, it is beneficial to iden-
tify such segments of approximately constant acceleration. This is done in
a preprocessing step based on the gathered sensor data. As can be seen in
equation changes in sensor readings are mainly caused by variations in
ijt, by r; due to transition from one map segment ¢ to another one, and by
measurement noise §;. Changes caused by increasing velocity 17; are com-
paratively small for high sampling rates. Low-pass filtering of z; and subse-
quent derivation results in a signal representing the change caused mainly by
changes in g or 7;. Thresholding and local non-maxima suppression allows
to identify points t;, j € {1,.., N} of maximal change in the filtered sensor
readings. Intervals S; = [t;_1,t;] between those points consequently contain
only insignificant change and can be assumed to correspond to segments
of constant acceleration 7;. Note that this does not represent an attempt
to identify transitions between map segments, even if those transitions of-
ten introduce additional fragment boundaries. Additional fragmentation
of intervals, which already corresponded to segments of constant acceler-
ation, obviously do not violate the constant acceleration criteria. On the
other hand, map segment transitions may also cause periods of acceleration
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change depending on the segments’ properties. While these multiple seg-
mentations might be a problem for any heuristic for map segment transition
finding, this only introduces a beneficial increase in resolution at regions of
high interest where the constant acceleration assumption might introduce
approximation error.

For intervals S; with j € {1,..,N + 1} and tp = 0 and tn41 = T the
hypothesis H reduces to the more compact form of (zg,%.ny41) With the
constant accelerations gj on each segment S;. This allows the integration of
a priori knowledge about the conveyor track’s regularities while still resulting
in equation when assuming the QJ to be independent and uniformly
distributed. The advantage is in the restriction of the search space to a more
likely subset of hypotheses instead of explicitly computing the probability
of each state in the sequence with full resolution as in equation

The hypothesis H,p¢, which maximizes the probability in equation
can now be found by minimizing the (squared) difference between the mea-
sured sensor values zg.r and the expected sensor readings Zy.p for a given
hypothesis:

T
Hopt = arg minz [z — 2 (H))?
[ —
T
=argmin Y [z — h (z(H), m, 0)]’ (4.5)
I

The optimization problem posed in equation can be solved using
any kind of non-linear optimization technique. If required, it is possible to
generate an initial hypothesis by using the average sensor reading in forward
direction. If the resulting dead reckoning state estimate diverges too much
to allow finding the global optimum, it is possible to iteratively generate
a solution using only a small subset of sequent segments at a time. Note
that for unknown or imperfect sensor calibration, the rotation matrix ¥
from equation and also potential sensor specific gains or offsets may be
included into the hypothesis H and therefore into the estimation process.
The resulting estimation algorithm is robust to sensor noise, errors the sensor
calibration or deviations in the exact map specification.

4.1.2.2 Evaluation

The offline solution for the position tracking task is tested in an experi-
mental setup as described in figures |4.1] and The measurements show
significant random noise as well as systematic errors due to imperfect sensor
calibration. Furthermore, the map specification given in table is only
approximate. All this is done deliberately to prove the algorithm’s robust-
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ness in real world scenarios. Its performance under those circumstances is
shown and compared to a dead reckoning approach.

The raw sensor measurements gathered by the mobile sensor unit’s ac-
celeration sensor with 1kHz in a 40 sec test run are visualized in figure [4.3
where axis 1 points in direction of the track, axis 2 is horizontally perpen-
dicular to axis 1, and axis 3 is vertical, forming a right hand coordinate
system. Even while the measurement unit is stationary, the sensor noise is
significant. But when being transported along the track, it can be seen that
the sensor noise increases to an order of magnitude above the actual sig-
nal. Also note the disturbance around the 22 second mark, which is caused
manually as part of the experimental setup. Detecting this is trivial, but
the central task is the estimation of the exact location corresponding to this
time frame as described earlier.
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(a) Raw data (axis 1).
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(c) Raw data (axis 3).

Figure 4.3: The raw data measured during the experiment.

For this experiment the sensor is deliberately calibrated imperfectly. No
rotation relative to the unit’s coordinate frame is determined and no gains
are applied. The sensor values’ offsets are calculated from the instant of
the sensor data when the unit is still stationary. Consequently the velocity
inferred from this data directly is subject to significant drift as can be seen

in figure A comparison of figures and suggests that the sen-

sor measures a slight acceleration when entering a curved segment and an
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according deceleration when leaving, but also a constant acceleration while
being in the curved segment. The former can be explained by the sensor
not traveling on the center of the curved segment but further outside, either
due to a translated placement of the sensor with respect to the center of the
mobile unit or due to a translation of the unit itself due to centrifugal force
and some freedom on the broader track, both resulting in increased veloc-
ity. While this is physically plausible and expected, the additional constant
acceleration is caused by measuring part of the centripetal acceleration due
to imperfect calibration of the sensor’s rotation. This causes part of the
centrifugal acceleration to be interpreted as an acceleration along the track,
thus increasing the sensor unit’s estimated velocity. As mentioned above
and visualized in figure this is fatal to non-robust estimation algorithms
such as dead reckoning.

Figure presents the result of low-pass filtering the sensor data (in
blue), followed by maximum detection in the derived signal as described
in the previous section. The accepted maxima after applying a threshold
are marked (in green) in figures and with positive and negative
impulses of magnitude 1 while the rejected ones have a smaller magnitude.
The former ones combined are also visualized as segment borders (in red)
in figures and

Given this segment information and a state estimate, the expected noise-
free sensor readings according to the measurement model of equation can
be calculated. These expected measurements are visualized in black together
with the filtered sensor data. In this experimental setup, the starting point
lies close to the beginning of segment 1, i.e. on the first straight segment.
This prior information is provided to the algorithm. The expected measure-
ments according to this starting point and the dead reckoning estimate are
displayed in figure

The result after applying the optimization described above is visualized
accordingly in figure 4.7 The improved correlation of sensor measurements
to the map data and consequently the expected sensor data is obvious in
figure The mobile sensor unit’s stop position is also closely matched
but for a small remaining velocity after the last deceleration phase causing
the points labeled 12 and 13 to drift further along the track. This could be
corrected by assuming the end velocity to be known, i.e. to be zero in this
case, which however is not desirable for a general setup and thus not done
here.

The presented test run shows the applicability of the approach under con-
ditions of uncertainty, such as maps which are known only approximately,
significant sensor noise and even systematical errors in the measurements
as due to incorrect sensor calibration. However, the introduction of seg-
ments of constant acceleration, while based upon reasonable observations of
the behavior of conveyor systems, still represents an approximation. While
avoiding this assumption would generally be desirable, the resulting increase



56

CHAPTER 4. PROPRIOCEPTION

w3
¥
z
81
L
=0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Time [s]
Figure 4.4: Velocities generated from raw data after offset correction.
i T
A
.% 0 W‘WM\ '&_‘..«‘.\h \»W\ ’\\\\
® 8
Qe | | | | | | |
< 5 10 15 20 25 30 35 40
Time [s]
(a) Filtered data (axis 1).
ST T T T
o
5 o
3
<05 5 10 15 2 % 30 % 40
Time [s]
(b) Filtered data (axis 2).
mz 1
g N
5 0 A sponcon i, i A S AT
& N Eciaaa Sans LA v
: N\
1]
Q 1 1 1 1 1 1 1
<7 5 10 15 20 25 30 35 40
Time [s]
(c) Derived filtered signal with local maxima (axis 1).
% 1 T T T T
E
%’0 T | {r/ﬂ'\‘\‘a\ J Aw/v\__ ‘_T.«VNI\N“\.. I/JNL
5 N N N N
Q
<o 5 10 15 2 % 30 % 40

Time [s]

(d) Derived filtered signal with local maxima (axis 2).

Figure 4.5: The low-pass filtered sensor data with segmentation information

computed in a preprocessing step.
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Figure 4.6: Filtered and expected sensor readings for the dead reckoning
estimate.
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Figure 4.7: Filtered and expected sensor readings for the optimization result.
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of complexity renders the optimization problem unsolvable in any reason-
able time, even for a short test sequence like the one presented here, which
only consists of 40 seconds of data. For realistic scenarios, measurement
units could travel for hours on circular systems, continuously checking for
potential failure areas.

4.1.3 Bayes Filter Implementation

The formulation as an online-problem for Bayes filtering is generally pre-
ferred, because such a solution’s complexity does not depend on the length
of the operation time and results are available directly during the time of
operation. This allows a nearly continuous operation in intralogistic systems
with closed configurations, and the possibility to flag potential problems as
soon as they occur.

Additionally, a formulation with this simple example illustrates two rel-
evant points: The first one, which is covered in section is a certain
degree of freedom in the interpretation of part of the input data as either
control or measurement information. This can be exploited to reduce im-
plementation complexity without having to accept any approximation. Sec-
ondly, section illustrates differences in Kalman formulations, namely
EKS versus UKF, which go beyond mere linearization accuracy as depicted
in many common references (e.g. [42, [90] 43, 86]), but actually involve the
utilization of additional map information. This provides both context and
contrast to the analysis in section [5.1

In the following, the scenario is slightly simplified by assuming the same
roughly correct calibration of the sensor’s orientation with respect to the
mobile unit as in the offline solution’s evaluation above. The purpose of
this section is not to provide quantitative comparisons, but to illustrate
conceptual choices and advantages.

4.1.3.1 Particle Filter Formulation

When applying a particle filter to this tracking problem, the first design
choices are the form and dimensionality of the state space, and which sensor
input to interpret as a measurement z; and which as control information
u¢. The formulation of equations and represent the choice of a 3-
dimensional state space x; = (y¢, U, §) without the existence of any control
information wu;, using the raw sensor data as z;.

For a calibrated sensor output z;, it is possible to simplify the mapping
expressed in equation as the rotation V¥ is an identity. Thus, a1, is the
acceleration component in forward direction, ag; in sideways direction, and
the vertical component asz; of the sensor data does not carry any relevant
information in the planar scenario presented above and can be neglected.
In this case it is possible to interpret the sensor data in the following two
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ways:

1. Every input is measurement data: 2, = (aj+,as+)?. There is no control
data wu;.

2. Only the sideways acceleration measurement is sensor data: z; = ag 4.
The forwards acceleration measurement is interpreted as odometry
information: w; = ay .

In the first case, the motion model is identical to equation [£.1] and the sensor
model changes only slightly to equation

Z; = e = h/(l’t, m, 5t)
azt
?jt /
= . + 4 4.6
(e )+e (16)

In the second case, expressed in equations [£.7) and the mobile sensor
unit’s acceleration is not a property of the state anymore, which reduces to
x; = (yt, Ut), and the motion and sensor models change accordingly.

2= ( v ) = P (@)

Yi
1 At 0 0
:<O 1 >x£_1+<At)ut+<At>e£ (4.7)

z) = agy = h"(x}, m, o)
= gPci+ 0] (4.8)

Both interpretations are valid and yield the same conceptual outcome.
In fact, the offline formulation in section [4.1.2] with the hypothesis repre-
sentation H as the tuple (xg,¥1.7), can be interpreted as finding the errors
corrupting the odometry information u1.7, which would otherwise be identi-
cal to the unit’s true acceleration §j1.7. The design difference resulting from
those different interpretations has significant consequences though, which
will be covered in more detail below.

Note that € is chosen as an acceleration noise (instead of an additive
velocity noise) and multiplied with At in equation so that it is in the
same units and range as €; in equation This simplifies the comparisons
done later on.

Figure demonstrates the working of a particle filter for tracking a
mobile sensor unit. Particles are depicted as black crosses, their mean by
a larger purple cross. Figure shows the spread of different hypothe-
ses after the initial acceleration phase, each representing different positions
(as visualized) as well as different velocities. The hypotheses representing
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(e) Particle distribution after 10.5 seconds.  (f) Particle distribution after 12 seconds.

Figure 4.8: Tracking a mobile sensor unit using a particle filter. Particles
are shown in black, their mean in purple.
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higher velocities and therefore faster advancing positions receive decreasing
weights when they enter the second map segment without measuring the
correct corresponding centripetal acceleration in figure Similarly, the
hypotheses in the remaining distribution, which is close to the true position
and velocity, receive superior likelihood weights once the mobile sensor unit
enters the curved segment in figure while the slower particles still re-
maining on the straight segment receive low weights, consequently collapsing
the particle distribution to a small region in state space. As the curvature
allows to track the velocity with higher certainty, also the position uncer-
tainty along the curve grows only slightly (cp. figure . Once the unit
enters the next straight map segment, the particle distribution starts to ex-
pand again, albeit with a good initial guess of both position and velocity
(cp. figure .

In general, the particle filter is always able to recover as long as a single
particle remains on or close to the unit’s true position in state space. This
is still true for slight systematic errors in the sensor data, as hypotheses
with wrong velocities and resulting positions might temporarily fit the mea-
surement information better along a single map segment, but the additional
information provided by the transition from one segment to another is able
to correct the estimate, as long as not all particles around the system’s true
state are removed during the resampling step.

As explained above, a particle filter can be designed either using z; =
(yt, Ut, U¢) or &, = (y¢, yt) as its state space. Each particle can be considered
as a hypothesis for a point in state space to represent the current “true”
system state. Assume a set of different hypotheses is supposed to cover all
combinations of 10 different positions and 10 different velocities, resulting in
100 different hypotheses. As described in section[3.4] only a particle’s weight
is changed by the measurement update, but not its position in state space.
In order to allow sudden changes in acceleration, those changes therefore
need to be introduced during the process update as random variations by
process noise. Thus a significant amount of particles would receive a change
in ¢y during the process update, which would receive low weights in the
following sensor updates and ultimately be lost during the resampling in
one of the following time steps. Consequently, the particle set needs to
be sufficiently large to compensate the regular loss of particles due to the
necessary high process noise in the acceleration component. Following the
example above, an additional 10 acceleration choices per combination of
position and velocity would result in 1000 particles.

In general, designing the process model as in equation [4.7] updates the
state with control data u; = a1, which can be expected to be closer to the
true acceleration as a normally distributed acceleration change ¢;. In effect,
abrupt changes in acceleration are encoded in the forward component a;;
of the accelerometer reading. In the absence of other information about the
application’s system, the process noise €; in equation which is necessary
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to compensate for the noise corruption of the odometry information, can be
chosen much lower than the process noise ¢;, which also needs to account
for true changes in acceleration. In other words, the process noise €} in
equation .7} which is necessary to compensate for the noise corruption of
the odometry information, could be chosen lower than the process noise €,
which also needs to account for true changes in acceleration.

In this scenario however, another factor functions as a counterweight for
this: The offline solution’s complexity reduction presented in section
exploited the fact that the acceleration changes only at a few distinct points,
and stays constant most of the time. This fact allows to parameterize the
process noise €; to a low level, one actually lower than the real measure-
ment noise a1 ;. This enables setting €; even lower than €}, thus allowing to
cover the 3rd dimension of the state space less dense, while relying on the
filter’s tracking functionality to iteratively adjust the estimate to eventual
acceleration changes.

These effects with respect to the particle number and the necessary
process noise values are empirically validated and visualized in figures
and In these and the following experiments, each combination of pa-
rameters is evaluated in 100 independent particle filter computations using
the recorded sensor data of a 25m test run. The parameter range is eval-
uated using logarithmically spaced sample values. The ratio of particles in
each test, which finish in a 1m vicinity to the sensor unit’s true final po-
sition, is recorded and visualized as box plots. The green line additionally
shows the ratio of test runs per parameter combination that end with par-
ticles inside the valid region. This is done as an indication of successful and
failed tracking runs, as a small number of particles close to the true position
are enough to maintain these true hypotheses and continue localizing, while
the tracking ultimately failed otherwise.

Figure shows localization tries for both approaches with 1000 parti-
cles, which is a sufficiently large number, with varying process noise. It can
be seen that the necessary process noise, as predicted, is significantly smaller
for the 3-dimensional state space version compared to the 2-dimensional one.
On the other hand, the former one also corrects the acceleration component
directly in the sensor update, while the 2-dimensional particle filter only uses
the lateral acceleration component as explained above. This is the reason
why the 3-dimensional filter is also robust for a wider range of process noise
specifications.

To evaluate the filter performance with respect to the number of used
particles, a suitable standard deviation for the process noise is picked for
each filter version according to the findings in figure With the fixed
process noise parameters of ¢ = 0.03m/s? and ¢}, = 0.5m/s?, the filters are
evaluated with varying particle numbers. As can be seen in figure the
2-dimensional filter version can achieve comparable tracking success rates
for a lower number of particles: A success rate of above 90% is possible with
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Figure 4.9: Tracking success and ratio of particles in correct final area for
filters with varying process noise and a fixed number of 1000 particles.
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as little as 15 particles for the 2-dimensional filter, and with 25 particles and
above the tracking is successful 100% of the time, while over 60 particles are
needed to achieve 90% success for a 3-dimensional filter, and a guaranteed
successful tracking requires a particle number an order of magnitude above
this.
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Figure 4.10: Tracking success and ratio of particles in correct final area for
filters with fixed process noise and varying particle numbers.

In summary, these results illustrate that even using the same filter tech-
nique, different interpretations and design choices, together with the corre-
sponding parameterizations, have a huge impact on a filter’s computational
performance and robustness.

4.1.3.2 Kalman Formulation

For a Kalman filter, the difference between a dimensionality of 2 or 3 is
negligible, as both run faster than real-time even in un-optimized imple-
mentations. For the sake of simplicity, the state space xy = (y¢, U, §) and
the process and measurement models in equations and are used in
the following.

For the derivation of the measurement Jacobian H it is important to
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remember that the map segment m; and its curvature ¢; in equation |4.6| are
identified using the position ¥, so the curvature can be seen as a function
¢(y¢). This function, however, is defined section by section, so its derivative
does not exist at the discontinuity of the transition point from one segment
to another, and is zero otherwise.

While this is more than a hint that the design of an Extended Kalman
filter for this problem is not advisable, one might argue that due to the
discretization of time steps it is improbable to hit any exact border points.
For all other cases, the measurement Jacobian would be given by:

0z, Oh' (x4, m,0)
c')mt aZEt ( 9)

6a17t aal,t Bau
_ dy: Dy Dt _ 0 0 1
Oaz,t Oaz: Oazt 0 2y.tci 0 .

Oyt Oyt Oyt

H

As can be seen in equation both ag;;t and ag;’t are zero, so the
measurements have no direct influence on the position estimate. The ve-
locity can only be corrected on segments with a curvature ¢; # 0, which
also partially corrects the position component because of their dependence
encoded in the covariance matrix. Most importantly, the transition point
from one segment to another does not provide any special information, since
the Extended Kalman filter only linearizes around the mean, and does not
take the surrounding area in state space into account.

As a consequence, the estimation performance of such an Extended
Kalman filter is obviously inferior to the particle filter presented above.
Consider a position estimate shortly before the transition from curved to
straight segment. As the centripetal force in the acceleration measurement
is suddenly absent, thus lower as expected, the EKF sensor update would
cause the estimate to decelerate, instead of accelerating to reach the next
segment quicker. At the same time, measuring a centripetal acceleration
on a straight segment would have no effect in any direction, independent
of the current position either close after the last or close to the next curve,
which could explain the measurement by a minor change in the position
component on the track.

In contrast, the implementation as an Unscented Kalman filter does not
need the computation of a Jacobian. Instead, sigma points are generated
using the current state covariance, and the sensor model in equation
is sampled directly using these points. Consequently, the UKF behaves
similarly to the particle filter, but uses a fixed number of deterministically
sampled sigma points instead of a configurable number of randomly sampled
particles. In case of a 3-dimensional state space as used here, the UKF
uses 9 sigma pointﬂ generated as described in section Figure

ZNot all 9 sigma points are visible separately in figure [4.11] since they are spread
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demonstrates the UKF position tracking at the same times as shown in
figure [£.8] Each time sigma points are on two different segments at once,
the belief is shifted to the segment which fits the measurement data best.
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Figure 4.11: Tracking a mobile sensor unit using an Unscented Kalman
filter. The current mean is shown in purple, the covariance is visualized in
form of the calculated sigma points in black.

It can be concluded that the mobile sensor unit can be tracked success-
fully using an UKF as well as a particle filter, while the tracking usually fails
using the EKF formulation with the measurement Jacobian in equation [£.9]
once the sensor calibration is slightly incorrect as in all used demonstrations.
The computational performance of the UKF is similar to the particle filter
for the low number of used particles. However, as soon as the conveyor sys-
tem becomes more complicated and includes intersections, tracking will no
longer be possible using a uni-modal belief representation. In this case, the
UKF would need to be extended into a multi-hypotheses tracking system,

across all 3 dimensions, and only the position component is visualized. This component is
identical for several points due to the deterministic sampling along the main uncertainty
directions computed by the covariance matrix decomposition.
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while the necessary changes to the particle filter would be minor.

4.1.4 Considerations towards Mapping

Section illustrates different ways to solve the position tacking problem
online, i.e. during the sensor unit’s travel across the conveyor track. This
is desirable in general, especially in systems where such sensor units can
be routed along cyclic paths, thus staying on track for extended periods
of time while continuously reporting back to a central maintenance server.
With regard to the original application purpose described in section
however, it is not only necessary to successfully track a sensor unit over
extended periods of time, but to generate a precise mapping of detected
disturbances and potential failure areas.

Let tgisturbance be the time of detection of a potential failure area. The
goal now is to get the best possible estimate of the sensor unit’s position
at tgisturbance- Lhe trivial solution would be to simply record the belief
bel(zty,. urpane.) OF €ven only the single most likely position at that time.
This, however, does not provide the overall best estimation of the distur-
bance position, since bel(xt,,.,, 1ane.) OLly incorporates past measurements,
not future ones. One example would be a defective roll in the middle of a long
straight segment between two adjoining curves in a roller conveyor. If the
measurement unit overestimates its velocity when coming out of the curve,
it would map the detected disturbance, its most likely position estimate at
time tg;sturbance, t00 far along the segment due to the aggregated position
error. Both the velocity error as well as the position estimate would be cor-
rected at a later time when nearing the next curve, but this information and
the resulting correction is not yet available at the time of the disturbance.

The goal is to extend this correction at the later time backwards to the
remembered position at time tg;siurbance: For the UKF implementation in
section this would mean an extension of the state space to include the
coordinate of the disturbance area, which would necessitate a large change
in all involved components. The particle filter offers a simpler integration
following the FastSLAM idea covered in section[3.5.2] As mentioned, all par-
ticles represent state hypotheses. Those are not changed during the sensor
update, they just receive weights, which result in unlikely hypotheses being
discarded eventually. A surviving hypothesis represents a plausible chain
of motion updates which agrees with the measured sensor data. Attaching
a history of measured disturbance positions to each particle will therefore
allow a backtracking of the most likely path out of a later belief. In the
example above, the estimation of the disturbance position would initially be
identical to the particle distribution at that time, but would narrow down
as soon as the particle distribution collapses at the transition to the next
segment. Note that two particles can be at the same state space coordinates
at this segment transition time, but might represent slightly different paths,
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and thus different mapped disturbance positions. As long as the distur-
bance is only measured once, these different mapped positions represent the
remaining uncertainty of the mapping.

This application illustrates the possibility of factorizing the full simul-
taneous localization and mapping problem, as described previously in sec-
tion[3.5] In case disturbances are measured multiple times, e.g. when repeat-
edly traveling along the same segment, it makes sense to employ separate
estimators for each map entry, resulting in a FastSLAM implementation
as presented in section [3.5.2l The likelihood of repeated observations of
mapped features can then be used as part of the particle weight calculation
to further improve the estimation result. Further aspects of simultaneous lo-
calization and mapping will be addressed later in chapter [8| for the dynamic
environment of the robot soccer scenario.

4.2 Walking Robots

A large part of this work concentrates on humanoid robots. While its focus
lies on localization and world modeling, the understanding of the specialties
of humanoids compared to other robots forms a necessary basis for those.
Two issues related to body design stand out: Sensor information is usually
not omni-directional. Instead, exteroceptive sensors are mainly mounted in
the head and can/must be moved independently from other body motion to
achieve a wider field of awareness. This exteroceptive aspect will be covered
in section

An even more prominent aspect is the biped locomotion. Though moti-
vated by nature in the hope of developing robots with navigation abilities
equal to those of humans, biped walking still remains a research problem
which is not yet solved completely. Even on flat terrain, current state of the
art humanoid robots still experience problems when facing small or medium
unplanned disturbances or contact with obstacles or other robots. Rugged
terrain still presents a major challenge.

Overall, biped motion generation possesses special odometry uncertain-
ties, which have to be taken into account by any localization algorithm
designed for humanoid robots. Therefore, this section illustrates concepts
and algorithms for motion generation, in order to point out inevitable uncer-
tainties in the execution of walking motions and the ways to measure them.
Section presents the walking engine which is used in all experiments
with Nao robots in the course of this work. This implementation is exem-
plary for state of the art biped walking, as an early version of it is the first
closed-loop motion control implemented and employed on the Nao [13| 14],
and subsequent developments by other research groups are based on the
same principles [82] BI], [30]. Section evaluates resulting consequences
with respect to biped odometry.
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4.2.1 Biped Walking Control for Humanoid Robots

E] Gait planning for humanoid robots is fundamentally different from the
path planning for simple robotic arms. The robot’s center of mass is in
motion all the time while the feet periodically interact with the ground in
an unilateral way, meaning that there are only repulsive and no attractive
forces between feet and ground. Therefore, the movement of the center of
mass cannot be controlled directly, but is governed by its momentum and
the eventual contact forces arising from ground interaction. These have to
be carefully planned in order not to suffer from postural instability.

Section gives a short introduction to well established criteria for
evaluating robot’s stability, as well as general strategies to create motions
abiding such stability constraints. Section outlines the algorithmic
process and abstractions necessary to calculate the body’s motion, i.e. how
to move each single joint, from a general directive to move to a certain
point in the environment. One part of this process, namely how to move
the body’s center of mass (CoM) to satisfy a previously derived stability
criterion, will be detailed in section

4.2.1.1 Stability of Biped Robots

Biped walking can be divided into different phases based on the feet’s ground
contact, as visualized in figure [4.12l The convex hull around the contact
area between feet and ground is called the support polygon. A walking
gait always maintains ground contact at any time. If a gait contains a
certain ballistic phase without ground contact, it is called running instead
of walking.

. 4
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Figure 4.12: Biped gait phases.

3Parts of this section are based on an article in the Journal of Robotics and Autonomous
Systems in 2009. The corresponding publication, see [I3], is available at http://www.
sciencedirect.com.
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A robot’s posture during these walking phases is called balanced and a
gait is called statically stable, if the projection of the robot’s center of mass
to the ground lies within this support area [44]. This kind of gait however
results in relatively low walking speeds. It is characterized by relatively
large double support phases. Similarly, natural human gaits are normally
not statically stable. Instead they typically consist of phases in which the
projection of the center of mass leaves the support polygon, but in which the
dynamics and the momentum of the body are used to keep the gait stable.
Those gaits are called dynamically stable [44].

The concept of the zero moment point (ZMP) is useful for understand-
ing dynamic stability and also for monitoring and controlling a walking
robot [92]. The ZMP is the point on the ground where the tipping moment
acting on the robot, due to gravity and inertia forces, equals zero. The tip-
ping moment is defined as the component of the moment that is tangential
to the supporting surface, i.e. the ground. The moment’s component per-
pendicular to the ground may also cause the robot to rotate, but only in
a way to change the robots direction without affecting its stability, and is
therefore ignored in this context. For a stable posture, the ZMP has to be
inside the support polygon. In case it leaves the polygon, the vertical reac-
tion force necessary to keep the robot from tipping over cannot be exerted
by the ground any longer, thus causing instability and fall.

In fact, following Vukobratovic’s classical notation [91], the ZMP is only
defined inside the support polygon. This coincides with the equivalence of
this ZMP definition to the center of pressure (CoP), which naturally is not
defined outside the boundaries of the robot’s foot. If the ZMP is at the
support polygon’s edge, any additional moment would cause the robot to
rotate around that edge, i.e. to tip over. Nevertheless, applying the criteria
of zero tipping moment results in a point outside the support polygon in this
case. Such a point has been proposed as the foot rotation indicator (FRI)
point [29] or the fictitious ZMP (FZMP) [91]. In this so called fictitious case
the distance to the support polygon is an indicator for the magnitude of the
unbalanced moment which causes instability and therefore a useful measure
for controlling the gait.

There are different approaches to generate dynamically stable walking
motions for biped robots. One method is the periodical replaying of trajec-
tories for the joint motions recorded in advance, which are then modified
during the walk according to sensor measurements [49]. This strategy explic-
itly divides the problem into subproblems of planning and control. Another
method is the realtime generation of trajectories based on the present state
of the kinematic system and a given goal of the motion, where planning
and control are managed in a unified system. Implementations of this ap-
proach differ in the kinematic models being used and the way the sensor
feedback is handled. Omne group requires precise knowledge of the robot’s
dynamics, mass distribution and inertias of each link to generate motion
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patterns, mainly relying on the accuracy of the model for motion pattern
generation [38, [40], 94]. A second group uses limited knowledge about a
simplified model (total center of mass, total angular momentum, etc.) and
relies on feedback control to achieve a stable motion [45], 95].The model used
for this is often the inverted pendulum model. The latter approach is chosen
here and will be detailed in the next sections.

4.2.1.2 Generating the Walking Motion Patterns

The motion generation takes place in the control program’s motion process
(see ﬁgure. Its input is either a target location or a velocity, as specified
by the behavior module in the cognition process. Its output is a new set of
target joint angles every 10 ms (see figure . These are forwarded to the
Device Communication Manager in the NaoQi middleware, which in turn
controls the joints using separate motor controllers, and sends feedback in
form of measured joint angles and sensor information. Figure illus-
trates the information flow and intermediate steps necessary for the online
generation of target joint angles to achieve a stable walking motion along a
desired trajectory.

Behavior Command

Pattern 2D Footsteps ﬁ" F . ZMP
i [ > .
Planning Generator r-’ | Generation |
A 4

Desired
ZMP

Swing Leg
Controller

3D Foot|Positions

A 4

Forward | Actual CoM Position Target CoM Position l ZMP/IP
Kinematics | 'I‘ Controller

A A

Inverse Arm -——
A Kinematics Movement

Target Angles

A

Figure 4.13: Information flow of motion generation.

Measured Joint Angles Measured ZMP

As a first step, the behavior command is interpreted by a path plan-
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ning module. Generating a small path segment from a velocity command
is trivial, while generating a valid path to a target location also involves
the navigation around other robots or obstacles. There are a number of dif-
ferent strategies for navigation tasks, such as the computationally intensive
calculation of optimal paths in a discretized space, and efficient approxima-
tions using graph-based representations or potential-field-methods. A more
detailed overview can be found in [60]. The path planning module used for
evaluations in game situations is potential field based with adaptations for
enhanced path stability for noisy obstacle information.

Given a desired path to follow, the pattern generator module defines a
series of reachable footsteps along this path, together with the duration for
travel from one step position to another. The 3-dimensional trajectory for
the so called swing leg is generated by a separate module, while the infor-
mation about feet on the ground provide the immediate future’s support
polygons. The support polygon information allows to define a ZMP trajec-
tory, so that each motion which results in such a ZMP would be dynamically
stable. The core of the walking algorithm is the ZMP /IP controller, which
uses a short preview of the desired ZMP trajectory to generate a CoM mo-
tion consistent with those future ZMP positions. At the same time, current
ZMP information measured by the robot, e.g. using pressure sensors in the
feet, is used as control feedback to compensate disturbances like unexpected
collisions or an uneven ground. The result is a CoM trajectory which allows
a stable motion in the desired direction. The robot’s current CoM relative
to its own coordinate frame can be calculated by forward kinematicsﬂ The
three inputs, i.e. the desired CoM, the current offset between CoM and the
own coordinate frame, and the planned 3D positions of both feet in this ref-
erence frame, are used to calculate the feet positions relative to the robot’s
torso. Knowing these, the inverse kinematicsﬁ can be solved to calculate
the leg joint angles. Arm motions can be generated in parallel once the leg
motions are known. In this implementation, arm motions are generated by
a heuristic to counter torques originating from rapid leg accelerations. Head
motions are not visualized explicitly in figure [.13] as their interpolation can
be computed directly from the behavior decision’s current viewing direction
request. This final set of target joint angles is then forwarded to the robot
hardware, i.e. the NaoQi middleware in case of a Nao robot.

4Forward kinematics is the calculation of body part positions and orientations from
joint angles.

5Inverse kinematics is the calculation of the joint angles which are necessary to reach a
given end-effector position and orientation. For the existence of a (not necessarily unique)
solution, the requested configuration must be inside the limbs workspace. In case of the
Nao, this is not trivially done due to the combined hip joint for both legs (cp. section.
However, when allowing one degree of freedom in the swing foot’s orientation, the inverse
kinematics for the Nao can even be solved analytically.
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4.2.1.3 Stability Control

As mentioned in section and indicated by the ZMP/IP controller
module’s name, a stable CoM motion is controlled by applying a constrained
inverted pendulum model to the input ZMP trajectory. This module is a
central part in the walking control pipeline described in the previous section,
both for the stability of the generated walking motions and also for their
precision and the handling of possible uncertainties. This section will focus
on the model underlying the controller, which is relevant for this work.
Further aspects of the controller’s design are neglected here. They can be
found in [I3} [14], and in [I0] concerning motions other than walking.

The main task of this module is computing the movement of the robot’s
body to achieve a given ZMP trajectory. To calculate this, a simplified
model of the robot’s dynamics is used, representing the body by its center
of mass only. In the single support phase of the walk, only one foot has
contact to the ground. Considering only this contact point and the center
of mass, the resulting motion can be described as an inverted pendulum.
Its height can be changed by contracting or extending the leg, therefore
allowing further control over the CoM trajectory. Restricting the inverted
pendulum such that the CoM only moves along an arbitrary defined plane
results in simple linear dynamics called the 3D Linear Inverted Pendulum
Mode (3D-LIPM) [45]. In a Cartesian coordinate system with the main axes
y1, y2 and ys3, this plane is given by its normal vector (k,,, ky,, —1) and its
intersection with the vertical ys-axis hoopr, the height of the CoM.

For walking on an overall flat terrain the constraint plane is horizontal
(ky, = ky, = 0) even if the ground itself is uneven. The global coordinate
frame depicts the ground as the y;-yo-plane and the vertical direction as ys3.
Let M be the mass of the pendulum, g the gravity acceleration and 7,, and
Ty, the torques around y;- and yp-axis, then the pendulum’s dynamics are
given by

N g 1

= — 4.10
7 heon T Mhcow ™ (410
.. 1
o= 2 (4.11)

1+ T -
heont " Mheon

It can be noted that even in the case of a sloped constraint plane, the
same dynamics can be obtained applying certain further constraints covered
n [45]. According to this model the position (py,,py,) of the ZMP on the
floor can be easily calculated using

Ty2
= 2 4.12
pyl Mg ( )
T
Dy = Milg. (4.13)

Substituting equations and into equations and yields the
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following;:
hcom ..
Py = Y1 — ———1 (4.14)
hcom .
Py = Y2— ———02. (4.15)

It can be seen that for a constant height hcops of the constraint plane the
ZMP position depends on the position and acceleration of the center of mass
on this plane and the y;- and ys-components can be addressed separately.

It should be noted for clarification that the ZMP notion of the 3D-
LIPM [45] does not take the limitation of the ZMP to an area inside the
support polygon into account. Using equations and for planning
and controlling stable walking may result in a fictitious ZMP lying outside
the support polygon. As mentioned in section this is an indicator
for an unbalanced moment which causes instability. Since the mathematical
notation of the 3D-LIPM does not involve any distinction based on the
support polygon, the general term ZMP will be used further on.
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Figure 4.14: CoM motion necessary to achieve a sudden change of the ZMP
location.

Consider a sideways shift of the ZMP from one foot to another, e.g.
along direction yo without loss of generality. A movement of the center of
mass, which would result in such a ZMP shift is visualized in figure 4.14]
As can be seen, the CoM actually needs to start moving before the ZMP.
This makes the necessity for a planning component obvious, in contrast to a
controller which just has the current desired ZMP as an input value. In the
ZMP /TP controller module, this is implemented using a preview controller,
which gets not only the current, but also a certain set of future desired ZMP
values as its input [13].

Movement of the robot’s body to achieve a given ZMP trajectory is thus
reduced to planning the CoM trajectory for each direction, resulting in two
systems of lesser complexity whose state at every given time is naturally
represented by (y;, 9, §;) with i € {1,2}. The ZMP position p,, is both the
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target of the control algorithm as well the measurable output of the sys-
tem. Equations and suggest that the state vector (y;, 9;, py,) is an
equivalent system representation. Choosing this one incorporates the control
target into the system state and significantly simplifies further derivations
of the controller.

The details of the controller’s design are not of interest for this work, but
can be found in [I3]. Important for the understanding of biped odometry
uncertainties are the underlying system assumptions, namely the 3D-LIPM,
and the ZMP as the criterion for stability control. Specifically, the ZMP
focuses on tipping moments to avoid falling, which is sufficient when con-
sidering stability alone. Using the walking control system described here, it
is possible to compensate instabilities arising from model inaccuracies due
to the difference between real robots and the abstract model assumptions,
and also to recover from disturbances caused by an uneven floor or un-
planned contact with other robots [I4]. When considering translational and
rotational step execution accuracy, however, other factors gain importance
which are neglected by common walking control algorithms, including the
one presented above. These factors and their consequences are detailed in
the next section.

4.2.2 Biped Proprioception

The previous section illustrated the mechanisms of the walking motion gen-
erator used throughout this work. This state of the art algorithm performs
well and meets its requirements to achieve high speeds and to allow quick
direction changes while keeping the robot stable in dynamic situations with
unforeseeable elements such as collisions or other disturbances. However,
application on real robots shows that the executed motion deviates signifi-
cantly from the planned walking motion. Some of the causes for these devi-
ations are outlined in this section. Their discussion, however, stays limited
to their impact on odometry uncertainty. Background and details of their
derivation, findings by simulated experiments, and extended measurement
methods can be found in the corresponding references [35], 9, [14].

As mentioned earlier, proprioception affects the Bayes filter both in the
motion and the sensor model. In the process update this is obvious in form
of the control data wu;, while in the sensor update proprioception is usu-
ally involved in the process of interpreting or mapping measurement data
with respect to the robot’s state. Considering an algorithm to localize a hu-
manoid robot on a planar map as in section the latter is necessary to
interpret camera images and their processing results as correspondences to
features in the environment’s 2-dimensional map. Central to this is the coor-
dinate transformation between the robot’s local coordinate system, usually
a point on the ground between its feet, and the coordinate frame of its head
and therefore its cameras. Knowing this transformation allows to recover
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the missing depth information of image processing results by projecting per-
ceived objects to a position on the ground. Any error in this transformation,
however, directly translates into a flawed mapping of perception results, even
if the image processing itself is perfectly accurate.

The reduction of the robot’s kinematic structure to its center of mass, as
applied in section [4.2.1} controls the dynamic motion to avoid tipping and
therefore generates joint angles to walk upright without tilting, but does
not explicitly plan the robot’s dynamics to avoid any unwanted orientation
change. On real robots, a certain oscillation and rocking of the robot’s torso
is therefore unavoidable. Not keeping its torso perfectly upright is not a
problem in itself, but the process of measuring this orientation change is
again subject to errors, which occur in the middleware’s build-in orientation
estimation based on inertia measurements, as well as any augmentation by
kinematic calculations due to joint angle measurement errors. Appropriate
handling of the resulting errors in the sensor model will be discussed further
in section 5.1

The second area in a Bayes filter, which is influenced through proprio-
ception uncertainty, is the motion model. As described in section the
control data u; or odometry used in the Bayes filter’s motion update may
originate either from the input data, i.e. the motion command issued by the
behavior, which is used to generate the robot’s motion, or from a measure-
ment of the executed motion. In the first case, the naive approach would be
to integrate the requested velocity. A more appropriate solution is the use of
the planned foot step path in the motion generation pipeline in figure [£.13]
as these foot steps already observe kinematic or dynamic constraints and
provide the progress of a reference coordinate system for each given time
frame.

At this point it is beneficial to further analyze the model used for motion
generation in the controller. The 3D-LIPM is introduced in section
with respect to stability control, as is the ZMP in section 4.2.1.1] as a crite-
rion for a robot posture’s stability. Examining both concepts with respect
to locomotion accuracy reveals several aspects, which can be neglected or
compensated by sensor feedback when considering the stability of a motion,
but which cause a series of executed foot steps to deviate from the planned
ones.

An obvious drawback of the ZMP is its consideration of tipping moments
exclusively, i.e. only those moments around rotation axes parallel to the
ground are considered, as these are the moments causing a robot to tip over
and fall. Reference literature about ZMP-based biped walking [91], [92] 29]
mostly ignores moments around the vertical axis, as in the worst case this
only causes the robot to rotate around said axis. Although not leading
to instability, these rotations cause significant errors in a robot’s executed
orientation and translation change. Especially if the planned gait contains
asymmetrical elements, such as walking in a curve or combining forwards
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and sideways motions, these errors easily produce systematical deviations
between the robot’s planned and executed gait patterns. Considering that
a Nao robot has no build-in way to sense moments, forces or movement
tangential to its fee‘ﬂ and also misses the gyroscope axis to measure verti-
cal rotation, there is no obvious way to measure those deviations from the
planned steps.

The allowance of vertical moments and the resulting rotation is only one
specific aspect of the neglect of friction forces in general. The 3D-LIPM
as well as the ZMP assumptions are only valid as long as the translational
forces tangential to the robot’s foot do not exceed the foot’s friction on the
ground. Exceeding the static friction on the ground causes the foot to slip
backwards instead of accelerating the robot’s CoM forwards, which causes
the ZMP projection to move forwards while the support polygon in form
of the stance foot moves backward at the same time. Since the controller
introduced in section and described in more detail in [I3], [14], as
well as others based on the same principles, does not explicitly incorporate
frictions constraints, open parameters such as the specification of the swing
foot trajectory and the gait frequency are usually tuned implicitly in a way
to minimize such sliding while maximizing high possible walking velocities
at the same time. As a result, sliding of a robot’s feet does not occur to
an extent which causes terminal instability, but small amounts can usually
be compensated either by implicit gait dynamics or (to a slightly higher
degree) by explicit sensor feedback. Residual sliding obviously causes further
odometry errors. In this case, symmetrical sliding mostly causes errors in
the translational magnitude.

Obviously, it is not necessary to rely only on information about the
planned gait. Biped odometry can also be measured to a certain degree.
With the hardware capability common in humanoid robots, like the Nao’s
as described in section this process is still closely related to using
the planned foot steps, as it involves the calculation of the foot positions
relative to each other at the time of switching the main stance from one
foot to the other. Possible heuristics for this stance foot decision are the
planned stance foot switch from the motion generation module, the lower
downward coordinate in the robot’s reference frame based on forward kine-
matic calculation, or the comparison of the overall pressure on each foot in
case pressure sensors are available. Compared to the usage of the planned
foot steps, besides the incorporation of measurement noise, these measured
steps can be more accurate, but are not necessarily so. A frequent observa-
tion is that motor asymmetries seem to imply a systematic deviation from
the planned motion, and these asymmetries are then mostly compensated
by ground friction forces. In this case, the measurement can actually be less
accurate than using the planned motion directly. However, slight changes in

5The Nao’s pressure sensors only measure forces perpendicular to the soles of its feet.
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the motion execution can lead to the reversed effect that the real deviation
even exceeds the measured one.

A detailed simulation of the involved motion execution inaccuracies is
done in [89] for the presented walking algorithm. It suggests that the mea-
suring process of the overall translation between both feet is a minor source
of odometry error compared to foot trajectory inaccuracies prior to the
stance foot switch. Such trajectory inaccuracies, which are caused by in-
sufficiently controlled joint motors in combination with the whole robot’s
body motion, frequently cause premature ground contacts. These contacts
in turn cause translational and rotational sliding also of the main stance
foot, as well as disturbances which might cause the robot to oscillate and to
become unstable. In [9], an experimental hardware extension of the Nao’s
feet with optical sensors is used to verify this effect and to gain insight into
its magnitude. An improved odometry measurement is possible by mod-
eling the robot’s body and movement as a stochastic multi-body system
with articulation constraints, as proposed in [35]. In effect, this resembles
the online calculation of a stochastic physical simulation. While the motor
characteristics are not modeled as detailed as in [89], the parallel execution
to the real robot’s motion execution allows to use a sensor fusion of joint an-
gles and inertial measurements to correct the simulation’s stochastic state.
In simulated experiments, an improvement of the odometry estimation is
demonstrated in [35]. Unfortunately, this method’s complexity prevents its
online application on current Nao hardware.

In summary, both currently available methods, using the planned as well
as the measured steps, have in common that they fail to incorporate all rel-
evant physical processes involved in the robot’s locomotion. This is caused
by the high degree of abstraction in the model used to generate and control
the walking motion, and the current unfeasibility to use more complicated
models. Furthermore, the Nao’s joint characteristics even change during
runtime, e.g. due to heating, thus making a “perfect” control of this robot
as well as the measurement of its odometry virtually impossible, even if
extremely complex models could be used to plan and control the motions
in real-time. As a consequence, the described translational as well as ro-
tational odometry errors cannot be appropriately predicted or corrected by
calibration. Instead, localization algorithms for humanoid robots have to
take these odometry uncertainties into account.

4.3 Conclusion

This chapter highlights several points related to the proprioception of robots
and mobile devices in general, which provide a basis for different other solu-
tions throughout this work. The application example of intralogistic tracking
is used to illustrate significantly different ways of solving the same problem,
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the differences between the application of different Bayes filter implemen-
tations, and also different design choices for variants of the same Bayes
implementation. This way, section serves to point out possibilities and
provide guidelines for the design of solutions to other problems, i.e. how
different design choices favor either robustness or efficiency, or allow easier
access to extend the tracking task towards mapping. As an example, the
conclusion of the discussion in section is applied to localization of
smartphones in indoor scenarios in section [6.3

The discussion of biped walking and humanoid robot odometry in sec-
tion provides a basis for the understanding of biped walking control
and the involved challenges, thus in general allowing a better grasp on the
robotic benchmark of robot soccer. In the context of this work it specifi-
cally serves two different purposes: On the one hand, the understanding of
the generation of stable walking motions can be exploited to infer odometry
from walking systems, for which the process of motion control is inacces-
sible, namely human users carrying smartphones in section On the
other hand, insights to biped odometry and characteristics of the involved
uncertainties are a main reason for design choices in chapters [7] and
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Chapter 5

Exteroception

Exteroception summarizes all means of gathering information about the
outside world. This involves all outward oriented sensors, mainly acous-
tic and visual senses for human beings, and also ultrasonic or laser-based
ones for robotic distance measurements. This chapter’s purpose is to high-
light several exteroceptive aspects important for the best possible usage of
a given sensor. A general introduction to robotic sensors can be found in [6]
and [86], as well as good overviews about different sensor types and about
the modeling of sensors in the context of stochastic estimation processes.

Camera-based localization for a humanoid robot, as detailed in sec-
tion is chosen as an example application to illustrated several means
to utilize a given sensory setting to its full potential. Section evaluates
different sensor model design choices with respect to their influence on the
system’s estimation quality and points out simple yet effective solutions.
Section explores the possibilities of active sensing, i.e. the feedback of a
localization algorithm’s current estimation uncertainty into the sensor’s con-
trol module to optimize the perception process along with the estimation
process.

Thus, this chapter highlights the benefit of investing into the analysis
and design of a robot’s exteroception processes. It progresses from applying
the most appropriate sensor model to a given perception output to actually
controlling the perception process’ attention itself in an optimal way.

5.1 Practical Considerations on Sensor Model De-
sign Choices

F_-] This section focuses on Kalman filters, which have been applied in many
tasks and are covered extensively in literature. Designing a Kalman filter for

LParts of this section are based on an article appearing in the Proceedings of RoboCup
2012: Robot Soccer World Cup XVI. The corresponding publication, see [84], will be
available at http://www.springerlink.coml
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localization is therefore not a significant challenge. However, this filter will
often not perform to its full potential. The implementation process presents
several design choices, some of which are discussed frequently, while others
are generally neglected or only mentioned briefly. Specialized references such
as [43] as well as the most standard books [86, [78] leave the impression that
the most important decision is whether to address the system’s non-linearity
by Taylor series expansion such as in the Extended Kalman filter or by use of
the Unscented transform as in the Unscented Kalman filter (cp. section.

As explained in section [3.3.2] the UKF is often showcased as superior
to the EKF in terms of estimation quality. In fact, as exemplified in sec-
tion there are applications for which applying an UKF even provides
conceptual advantages compared to an EKF, and other applications, as pre-
sented in [42] [43], for which the UKF’s superiority is a result of its handling
of non-linearity. Findings like these have led to the impression that choos-
ing an UKF instead of an EKF will be a major source of improvement in
most systems, and that this will be the main design choice in developing an
estimation system for any given application.

This section shows that other aspects besides the choice between EKF
and UKF have much bigger effects. Some of the highlighted issues even
allow easy alterations to existing localization algorithms and promise sig-
nificant improvements. Section [5.1.1] discusses influences of representing
measurements in different coordinate systems, and section [5.1.2] covers mea-
surements which are made simultaneously by the same sensor. Those aspects
may seem trivial at first and their importance not obvious, but their sig-
nificant influence on the outcome will be shown below. As such, it is this
section’s main contribution to point out simple design choices which will
lead to significant localization quality improvement with minimal effort.

5.1.1 Measurement Coordinate System Choices

The effect of measurement coordinate system choices is illustrated using the
localization estimation of a humanoid robot as an example application. The
state to be estimated is the robot’s pose x = (px,py,pg)T. The robot per-
ceives point features on the ground around it, e.g. by means of processing
images recorded by one or several cameras mounted in its head. Fach point
feature corresponds to a landmark with known global position I = (I, ly)T.
Those expected and actual perceptions, z and z respectively, can be ex-
pressed in different coordinate systems, each of which may be used to for-
mulate the sensor model of the Kalman filter. This is expressed in different
implementations of the measurement function h(z;) in equation

In the following, let

a) = <cos(a) - sin(a)) 51)

sin(a)  cos()
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be the rotation around « and (l;,l,) the global coordinates of a known
landmark [, which is part of the robot’s map. The sensor model’s implicit
dependence on a-priori map information is made explicit here by including
the landmark’s location [ as a parameter in h(z,l). The time index t is
omitted in all following equations for the sake of simplicity.

5.1.1.1 Measurements in Cartesian Coordinates

As the localization problem is expressed as an orientation and a position in
global Cartesian coordinates, a first intuitive choice is to express a measure-
ment on the ground around the robot in robot-centric Cartesian coordinates
as shown in figure[5.1] The sensor model to calculate the expected measure-

Figure 5.1: Observation given in euclidean coordinates.

ment zZ = (zg, zy)T for the current robot pose and the correspondence to a
landmark is then given in equation and the corresponding Jacobi matrix

in equation [5.3

() wen-acm (1)-(3)] s

o) o) o)
Ox Ozy  Ozy Oz
Opz  Opy  Opg
[ —cospy — sin py —(lz — pa) sinpy + (ly — py) cos pg
sinpy —cospp  —(loz — pz) cospyg — (ly — py) sinpy

5.1.1.2 Measurements in Cylindrical Coordinates

Measurements can also be expressed in cylindrical coordinates, i.e. range
and bearing, to indicate the distance and direction of the observed feature
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(cp. figure[5.2)). This is often the first choice of those which are familiar with

Figure 5.2: Observation given as range and bearing.

laser scanners, or of developers of robot-centric path planning algorithms.
In this case, the sensor model function and Jacobi matrix are given by
equations and respectively, with the abbreviation d? = (I, — p;)? +

(ly — py)*.

L ( - ) e ( V(TR (AL ) 5.4

2 atan2(ly — py, le — Pz) — Do

Ozr  Ozr Ozr
IR O (5.5)
oz Oz Oz, Oz '

Opz  Opy Opo
(—lz +pw)d_1 (=ly +py)d_1 0

5.1.1.3 Measurements in Spherical Coordinates

A third coordinate system choice is given by using the vertical and horizontal
angles oy and ap as indicated in figure[5.3] While the meaning of the vertical
angle may not be intuitive for any direct further use, this is the coordinate
system which is closest to the actual perception process in this example.
With the same abbreviation of d? = (I, — ps)? + (Iy — py)? as used above
and the height of the camera hcqmerq, the sensor model function and Jacobi
matrix are given in equations [5.6| and [5.7}
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Figure 5.3: Observation given in angular coordinates.

zZ= ( “an ) = h(malyhcamera) (56)

_ ( atan2(heamera, \/(lm —px)? + (ly — py)?) )
atan2(ly — py,lu — Dz) — Do

0zay  Oza;  Ozay

H= 8h(.’t, l) _ Opz Opy Opg (5 7)
oz 0z Ozay 0zay :
Ope  Opy  Ope
hcamera(lz _p:c) hcamera(l'y _Py) 0
(ly — py)d*2 (=l +pz)d*2 -1

5.1.1.4 Experimental Comparison

Two experiments are set up to compare the effects of the sensor model design
choices described so far.

Simulated Perception

A simulation is set up to test the correctness of the implementation and
the conformity with related work’s results. Localization algorithms are
used with the above mentioned different linearization and coordinate system
choices and parametrized using fixed measurement covariances, which were
chosen to be optimal for each approach separately. This simulation assumes
a humanoid robot with noisy odometry and a perception process which mea-
sures randomly distributed landmarks with unique correspondences. This
process contains errors mainly from the camera’s imperfectly measured ori-
entation due to errors in the robot head’s pan and tilt joints, i.e. the errors
originate from normally distributed noise in the spherical coordinate system.
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As the perception process is simulated using the spherical coordinate sys-
tem, it is expected that this system is the best one to be used in the localiza-
tion algorithm. This is verified by the results shown in figure 5.4, Further-
more, the classical example of transforming between spherical/cylindrical
and Cartesian coordinates is handled much better by the UKF than by the
EKF as predicted for example by [43].
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Figure 5.4: Comparison between localization quality using different lin-
earization approaches and sensor model coordinate systems with simulated
perceptions.

Real Perception Process on the Nao

To evaluate the impact on a real system, observations are recorded using a
Nao. The environment is a robot soccer field as used in the Standard Plat-
form League. Any ambiguous observations are associated with maximum
likelihood correspondences based on the true robot position. The perception
process also produces sporadic false positives. Those sets of observations and
correspondences together with different sets of artificially generated odome-
try errors serve as input for all different configurations. Each generated set
is processed by all approaches so that the random component in the input
presents no source of bias. Note that these localization results will not di-
verge due to the usual problem of wrong correspondence choices once the
position estimate contains a certain error, as this experiment is set up to
test the sensor models, not the correctness of correspondence choices. The
odometry errors contain white noise and a drift component, as this is the
usual behavior of real Nao robots which are worn out or even heated up
slightly asymmetrically.

An important factor for each algorithm is its parametrization. All dif-
ferent approaches in this experiment use the same motion update and the
same process noise, which is chosen to be a certain amount above the artifi-
cially generated white noise component to compensate the drift. In common
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implementations, the measurement noise magnitudes are part of the robot’s
configuration and subject to a tuning process by the developer. Here, they
are optimized separately for the approaches using a randomly picked mea-
surement subset which is not used for the following evaluation afterwards.
Thus each approach is performing with the parametrization which empiri-
cally provides the least squared localization errors.
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Figure 5.5: Comparison between localization quality using different lin-
earization approaches and sensor model coordinate systems with real ob-
servations recorded on a Nao.

Figure [5.5] shows the distribution of the sums of localization errors for
1000 sets of measurements and odometry errors. It can be seen that the
effect of the coordinate system choice is in general more significant than
the distinction between Extended or Unscented Kalman filter. These real
world results mostly verify the tendency of the assumptions in the simulated
experiments, but also show discrepancies for example in the results using
Cartesian coordinates. This implies that the underlying process is not fully
described by assuming only normally distributed angular errors in the cam-
era orientation. Expressing the measurement in spherical coordinates, which
is intuitively the closest to the underlying process of perception, still clearly
outperforms the other coordinate systems’ sensor models. To use these re-
sults as a basis for development recommendations, the EKF/UKF choice is
clearly second to the angular coordinate representation of the robot’s mea-
surements.

5.1.1.5 Hybrid Modifications

The empirical results above raise the question if already implemented sys-
tems, which did not use the spherical coordinate system for the sensor model
design, can still make use of this information. One possibility is to adapt the
measurement noise covariance matrix to better reflect the properties of the
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perception process, e.g. to scale the uncertainty depending on the distance
of the observed feature. This has not led to any significant improvements in
case of the Cartesian representation, for which more complex modifications
would be necessary to reflect the spherical coordinate system’s properties.
The cylindrical representation, however, offers an easy improvement.

Both the cylindrical and the spherical coordinate system already share
the horizontal angle; they only differ in distance against vertical angle. Ap-
plying the knowledge that errors in the distance mainly result from variations
in said vertical angle, it is possible to derive an appropriate scaling factor g
for the distance measurement’s uncertainty.

zr — h.camer(z (5.8)
sin zq,
azr hcamera
= — - COS 2 5.9
0%Za, sin? Zay a (59)
h
carmera - cos atan2(heameras 2r) (5.10)

X —
Sin atanQ(hcamersz)

Equation [5.8|gives the relation between range observation z, and vertical
angle z,, and equation denotes their partial derivative. Therefore, using
the first rows of equations and the scaling factor 8 in equation [5.10
can be derived. Scaling the (newly tuned) expected range error with g or
the corresponding entry in the measurement covariance matrix with 32 re-
sults in the hybrid localization approach with cylindrical coordinates and
distance scaled measurement covariance in figures and While this
one presents a significant improvement over the cylindrical coordinates with
constant measurement covariance and comes close to the approach in spher-
ical coordinates, the latter one is still slightly superiorﬂ

5.1.2 Multiple Measurements per Time Frame

Practical Kalman implementations rarely go by the theory of one motion
update and one sensor update per time step. Instead there are usually
many time steps in which no observation is made, because the robot does
not observe anything useful for the localization in these frames, so the sen-
sor update is omitted. In other time steps, several observations are made
at once, i.e. several different features are detected in the same time step.

2The median over all experiments is at 8.1 mm average translation error for the hybrid
localization approach with cylindrical coordinates for the simulated experiments and at
12.9 mm for the experiments with recorded percepts, while it is at 6.6 mm and 12.2 mm for
the spherical coordinates, respectively. In direct comparison of medians, averages, 25 and
75 percentiles the spherical coordinate model is superior, but not to a significant degree,

as can be seen in figures and
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The common implementation is usually to execute several consecutive sen-
sor updates. The quality of this approximation, however, depends on the
perception process by which those features have been observed.

Now consider 2-dimensional feature observations as described above,
each with a separate measurement covariance as in equation [5.11

Q= ( %% 02 ) (5.11)

03

The stochastically correct sensor update for Ny detected features would
be to execute a single 2Ny-dimensional measurement update instead of Ny
separate 2-dimensional updates. In case the different measurements are
stochastically independent of each other, i.e. all off-diagonal inter-feature
entries of the 2Ny x 2Ny measurement covariance are zero, then a single 2.V ¢-
dimensional measurement update is approximated well by Ny 2-dimensional
updates.

If multiple measurements originate from the same perception source and
are correlated, then this simple approximation neglects potentially useful
information and consequently looses in approximation quality. Taking a
humanoid robot with camera based perception again as in section
multiple observations originate from the processing of a single camera im-
age and it stands to reason that the main source of measurement error
is the inaccurately estimated camera orientation due to the walking mo-
tion. Such simultaneous measurements would therefore contain nearly the
same angular errors. Assuming a spherical coordinate representation for the
measurements as described in section the resulting covariance for 2
simultaneous observations is given in equation with 7 close to 1, while
v = 0 would neglect any dependence between both observations.

Q= < vg Vg ) (5.12)

Figure shows evaluations with simulated test runs consisting exclu-
sively of multiple observations per time step, and illustrates the differences in
localization quality for iterative execution of 2-dimensional sensor updates,
for 2N ¢-dimensional updates which neglect the covariance (i.e. with v =0),
and for 2Ny-dimensional updates with full covariances as in equation [5.12}
All sensor updates in this example utilize spherical coordinate representa-
tions for the observations. As expected, the multiple 2-dimensional updates
are an appropriate approximation as long as the separate measurements are
independent. When observations are correlated, then significant benefits
can be drawn from the information encoded in the full covariance matrix.
Note that some Unscented Kalman filter implementations may become un-
stable for a v too close to 1, as Q" will still be a valid covariance matrix and
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Figure 5.8: Comparison between different methods to handle multiple mea-
surements at one time step.

therefore positive semi-definite, but very close to not being positive definite
any more, which will cause the frequently used Cholesky decomposition to
become numerically unstable.

Thus, together with the findings in section [5.1.1] sensor updates can be
formulated to use the full information about the correlation of simultane-
ously observed features to exploit the perception’s information content in an
optimal way. In the following, context information about perceptions will
be used in various ways, one of which allows to reduce even observed con-
tinuous features to sets of point correspondences, so that the results derived
in this section can also be applied directly.

5.2 Active Sensing

E] The interaction of the localization process with the control of the robot
is commonly called active localization. Examples for control or influence
of the whole navigation process are coastal navigation algorithms where
the localization uncertainty is anticipated and taken into account for path
planning [5]. The more complex the robot’s task is, however, the more
problematic to include localization quality as an additional criterion into
the general planning processes for achieving the given task. A common
trade-off is to allow (partial) control over the information gathering process,

3Parts of this section are based on an article in the Proceedings of RoboCup 2010:
Robot Soccer World Cup XIV. The corresponding publication, see [I1], is available at
http://www.springerlink.comnl
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e.g. viewpoint and orientation of directed sensing devices, while leaving the
navigation decisions unaffected. This is called active sensing, and in case of
imaging sensors this belongs to the field of active vision.

Active vision in general refers to actuated camera systems with a task-
oriented control of the camera movement. This might be staying on target
or automatically choosing regions of interest for tracking or surveillance
applications [37] or fixating on particular objects in remote collaboration
scenarios [18].

Active vision for localization tasks means to move the camera with regard
to the expected information gain. Therefore, it is necessary to specify such
information gain, to infer which observations would improve knowledge the
most, and estimate the result of different actions based on possibly multi-
modal localization belief states. Previous work exists for different fields of
application. The approaches depend on the range of possible actions, the
types of observations and the representations of the localization belief [69]
2, 25].

This section presents the application of an approach similar to [27] to
a humanoid robot with directed vision in the context of a known environ-
ment with mainly ambiguous landmarks. First, concepts are described for
the measurement and estimation of localization quality to infer expected
information gains. Modeling of the environment and sensors is necessary to
reason about expected results of selected actions. Furthermore, the algo-
rithm to find optimal active vision decisions is described in detail including
necessary discretization and adaptations for real-time processing on plat-
forms with restrictive resources. The presented approach differs from [27]
in the underlying localization approach of a particle filter instead of a grid
localization and the use of directed vision instead of an array of sonar sen-
sors, which therefore results in different adaptations and approximations for
an efficient implementation. Finally, the performance both in static and
dynamic situations is evaluated.

5.2.1 Modeling Effects of Actions

The computation of an optimal active vision decision depends on the local-
ization task and its belief representation, the actions to choose from and the
estimation of their outcomes. The latter involves using knowledge about en-
vironment and sensors to first predict observations given a localization belief
state, and then predict their influence on said belief state. Those predic-
tions obviously depend on the underlying localization approach and models
of environment and sensors. Figure [5.9| gives an example for the effect of a
specific viewing direction decision on a particle filter’s belief. The belief is
represented by a spread out particle cloud, and the true pose is indicated
in red. Continuing to look straight ahead produces only parallel lines and
one goal post observation, which would reinforce most particles parallel to
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the penalty area. Adjusting the viewing direction to the right additionally
includes the line crossings of the penalty area, thus collapsing the particle
set to an area close to the true position. This intuitive decision process will
be formalized in the following.

(a) Initial situation. (b) Particle distribution after head motions.

Figure 5.9: Effect of an observation on a particle filter’s belief for a robot in
front of a goal.

To evaluate effects of possible actions it is necessary to specify criteria
for the usefulness of their result. With respect to localization, this refers to
the quality of the belief state. Without knowledge about the robot’s real
position, it is only possible to judge the belief state’s uncertainty, i.e. the
covariance matrix in case of an unimodal Gaussian distribution for Kalman
filters or the particle distribution. A common measure for this is the entropy.

Entropy S(bel(x)) is defined as the expected information content

S(bel(zx)) = —/p(ac) log p(z)dz. (5.13)

with p(z)logp(z) = 0 for p(x) = 0. This allows to compute a single scalar
value as a measure for the uncertainty of a given probability distribution
p(x). Obviously for a distribution which is non-zero only at a single point,
i.e. a Gaussian with zero variance or a Dirac delta function, the entropy
S(bel(z)) is zero. For a uniform distribution, on the other hand, the entropy
is maximal.

In case of a probability distribution given as a particle set, the analogy of
this concept to thermodynamic entropy is obvious. For computing it using
equation the value of p(z) can be extracted from the local particle
density relative to the overall number of particles.

The common Bayes filter in section does not include negative in-
formation, i.e. the information that a certain observation was mot made.
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Therefore the viewing direction is often omitted from the preconditions of
the measurement probability, since it is only applied in the case an observa-
tion has already been made, not to compute if it should have been made. To
compute the latter, the environment model needs to contain all necessary
information to decide if a feature is visible based on current position and
sensor configuration. This often includes 3D information concerning features
or landmarks, whereas their simple 2D positions are normally sufficient in
a map for 2D localization only. This additional information is necessary for
the computation of possible observations and thus for the estimation of an
optimal viewing direction. In case of directed vision, those possible observa-
tions need to be simulated for all pan and tilt angles of the camera for each
possible robot position. In analogy to the process of geometric modeling,
the 3D feature can be projected to the image plane to check if enough of the
feature is inside the field of view for recognition.

5.2.2 Active Vision Decision Finding

Choosing an action in active vision means to choose where to point the
camera. This is comparatively easy as long as the robot’s (or the camera’s)
position is known. A naive approach would be to choose a feature from the
map, e.g. the most descriptive or the closest, and to point the camera in the
direction of the expected position. While this might still work as long as the
belief distribution is concentrated close to the true robot pose, it becomes
less effective once the distribution is less certain or even multi-modal.

The following section describes the computation of an optimal active
vision decision under uncertain belief distributions.

5.2.2.1 The Optimal Action

To choose an optimal action for a given localization belief state, it is nec-
essary to evaluate the profit of every possible candidate. For every action,
the probable observations need to be computed, their influence on the belief
state inferred and the result evaluated. The presented approach is based on
and follows the outline of [27].

In general, possible actions might be simple motor commands to po-
sition sensors, short motion sequences or complex actions like navigation
commands to move the robot to certain positions. In the following, every
action u; from the set of possible actions U = {u1,ua,...,uy, } will be con-
sidered atomic and consequences will only be considered for the complete
execution of an action. The notation of u is identical to the control data in
section [3.2)since the following holds for robot actions in general. The specific
application to active vision is referred to in sections[5.2.2.2/ to [5.2.2.4. The
presented approach always chooses the best action based on the immediate
benefit and can thus be characterized as greedy. Here, the reduction of the
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belief state’s entropy is the robot’s only goal. In the context of a humanoid
robot, this is the case if the motion execution decouples head actions and
other actions of torso, legs and arms, which might then be chosen separately
to achieve other goals.

Section illustrates the relationship between entropy and uncer-
tainty. The optimal action u,y for a given belief bel(x;) is the one minimizing
the entropy S(bel(xt+1)|Uopt, 2t+1) of the belief bel(xi11) after execution of
uopt and incorporation of the observation z;41 resulting from this action (see

equation [5.14)).

Uopt = argmin S(bel(z¢41)|u, z¢41) (5.14)
uelU

The terminology here is that only one observation is made at any time, but
this single observation might include measurements of a number of land-
marks or features. This observation z;;1, however, can only be predicted
with certainty if the true position is known. An uncertain position given
as a probability distribution only allows a decision based on the expected
entropy of the next belief, as shown in equation [5.15

Uopt = argmin E[S(bel(z441)|u)] (5.15)
uel

Computing this expected entropy necessitates the simulation of all possi-
ble observations z;,1 for a given action. Depending on the complexity of
the observation’s representation and the sensing process, generating the ob-
servations can be based on recorded data as in [69] or [2]. For laser or
sonar sensors this might be done using the known environment model and

ray-casting operations [25] or a simple visibility simulation for cameras.
Let p(x) from equation be represented by bel(x) and let p(zp41|u)
be the probability of observing 2,1 after executing u. Then the expected
entropy can be calculated as follows using equation and the belief rep-

resentation (cp. equation in section [3.2)):
E[S(bel(xr41)|u)]

— [bernalu) Stbel(o)u, ) devsn (5.16)
=— //p(zt+1|u) bel(xy1)logbel(xi41) drip1dzisn (5.17)
bel
— //p(zt+1|u) P(2t41|@es1) bel(w41)
p(zt41lu)
bel
log Pl Ti) bel(@e) driy1dzerr (5.18)
p(zt41|u)
— Zy1|Tiy1) bel(x
= — //p(zt+1|xt+1) bel($t+1) IOg p( t+1‘ t+1) ( t+1) d$t+1d2t+1.
p(zt41]u)

(5.19)
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By inclusion of bel(z41), possible movements of the robot are already con-
sidered. If u includes motion control, then choosing those according to
equation [5.19| results in a navigation, which optimizes the robot’s localiza-
tion. If u includes only such commands without influence on the state x;,
then those can be controlled to optimize localization without interfering with
the robot’s task-oriented navigation. When u has no influence on x4, as
in active vision then bel(x;,1) is the same for all v and needs to be com-
puted only once. In the case that the difference between x; and x+y1 can be
neglected, i.e. the robot’s motion during this time is small, further simplifi-
cation is possible and results in equation which omits the calculation
of the process model.

p(zeo1|xe) bel(x
E[S(bel(z41)|u)] // (z¢41]2¢) bel(xy) 1o (zlwe) bel(@,) dridziq
p(2t+1[u)

(5.20)

Actions may also vary in necessary effort so that their costs need to be
considered. This can be done by adding action-specific penalty terms to the
minimization target. In the following, however, the unmodified expected
entropy term as in equation [5.15] has been used.

5.2.2.2 Discretization

The integrals in equations and cannot be computed in closed form
for any non-trivial applications. Discretization is necessary at certain points
to allow the computation of those terms.

A first step is obvious for the application of a particle filter, in which the
belief bel(z;) is approximated by a particle set X;. Let ?ﬂl € X411 be a
particle from the set X; after applying u, then equation becomes

E[S(Xy1|u)]

—5l4] —5l4]
p(z t+1|Xt+1)p(Xt+1 u)
z X X log dziy.
/E p(zt41] t+1 p(X t+1 u) P P t+1

(5.21)

In this case p(X. t +1 ]u) cannot be inferred from a single particle but from the
local particle density around it. A working particle localization normally
tends to result in few areas with high probability after a certain time in-
stead of a uniform distribution. A further approximation concentrates on
those particle clusters, denoted as Xtm € X;, and use average positions Xt[i]
computed from these subsets instead of all particles separately, which lowers
the computational cost at least by an order of magnitude and provides the

needed local particle density at the same time.
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Discretization of the observations cannot be motivated by the particle
filter concept but depends on the sensor type and the possible observations
to be made. For vision based perception those observations are commonly
recognized landmarks. A complete enumeration of all possible observations
would need to account for all landmarks with all possible distances and
bearings which is clearly not practical. To avoid the generation of many ob-
servations whose measurement probability is near zero for the current belief,
an alternative is the simulation of observations for all position hypotheses
given by the particle set or the chosen position discretization. This generates
a number of observations in the order of the number of landmarks times the
amount of position hypotheses. Let Z;11 be this set of possible observations

and Zt[ e Zy11 one element thereof. This discretization step results in

E[S(Xs11|w)]
[4] [%]
ZZ (20 T ) p L oy o DB T P(H )
e (27, u)
(5.22)
or
E[S(XtJrl’u)]
4] [1] H
. Z X
ZZP Zt[ﬁlp(m p(A) log P(Z2014) p(X) (5.23)

Z[]]l‘u

for the case that the robot’s state change in the motion update can be
neglected, e.g. if executing a head motion is fast compared to taking a step
forward, so that the state change in that interval is minor.

Finally the actions to be evaluated in equation |5.15 need to be enumer-
ated. In case of active vision these are motor commands for all possible pan
and tilt angles to control the camera’s field of view. Since it is not possible
to process this search space in any more efficient way than to do a complete
evaluation, the chosen discretization is essential for real-time computation.

5.2.2.3 Decision Computation

Based on the considerations of the previous sections, it is possible to compute
the optimal action according to equation In algorithm [2] the belief
bel(z;) is given as a set of particles &; and the optimal action ey out of
the set of possible actions U is calculated under the assumption of negligible
robot motion according to equation [5.23

Note that the expression of |Xtm|/|Xt| for the term p(Z%) is only valid
for clusters representing equally sized volumes of state space, e.g. in case
of a regular grid or similar clustering techniques, and when all particles
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Algorithm 2: Active localization by entropy minimization.

Input: particle set A}, set of possible actions U
1 szn = 00;
Generate a set of clusters X; from the particle set A};

N

foreach Xt[i] € X; do // For each generated cluster:

3
4 ‘ Calculate the average pose f(t[i] of all its particles Xt[j Ve Xt[i];
5 end

6 foreach u € U do // For each possible action:

7

8

9

foreach Xt[i] € X; do // For each cluster:

Generate observation Zt[i]l based on Xt[i] and u;
Z,=Z,0zZM;

10 end

11 Stemp = 0;

12 foreach Z}ﬂl € Z, do // For each possible observation:

13 foreach Xt[i] € X; do // For each cluster:

14 g =p(E X - 1x P12,

15 Stemp = Stemp — 9 log(g/p(zt[ﬁ—]l‘u));

16 end

17 end

18 if Stemp < Smin then

19 Smin = Stemp;

20 Uopt = U;

21 end

22 end

23 return gy

are represented exactly once. The probability p(Z}%X}ﬂ) in line |14|is the

measurement probability and p(Zt[i]l]u) from line |15| is equivalent to 1/7,
i.e. the inverse of the normalizing factor n in equation in section
and can be determined by

k k] | o[t > [i
p(2{h1w) = > p(zL X ber(x}). (5.24)
i
This implies the advantage of pre-computing all probabilities and their sum
before computing the entropy, which is omitted here for clarity.

5.2.2.4 Adaptations for Real-Time Processing

The use of clusters instead of separate particles, both for the generation of
observations and the evaluation of their effect, already represents a first ap-
proximation. While this allows a computation that is an order of magnitude
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more efficient than without this approximation, several other adaptations
and simplifications are possible to allow the application on robotic platforms
with limited processing power such as the humanoid robot Nao.

As long as relevant observations are only caused by static elements of
the environment, it is possible to pre-compute them to be stored in a lookup
table for all robot states and relevant control commands. For 2D localiza-
tion and pan and tilt controls for a camera this table has a dimension of 5
assuming an approximately constant height of the camera. Of course, the
limited resolution in each dimension and the constant height approximation
causes further loss of precision, which might influence the result. This ap-
proximation changes line [§ to a table look-up. It is labeled Pre-calculated
Observations and evaluated in section

Note that the dimensionality of 5 could possibly be reduced to 4 by
summarizing the robot pose’s orientation on the field and the robot’s head
pan into a single global pan angle. This would reduce the necessary lookup
table by one dimension, but has the drawback to render considerations of
self-occlusion impossible. For the Nao for example, the shoulders block a
significant part of the close visible area when looking sideways. Thus, the
presented approach refrains from summarizing these two dimensions for a
pre-calculation of observations.

Similarly, the measurement probability might also be pre-computed and
stored in a lookup table. Additionally to the 5 dimensions mentioned above,
this table would need to consider the distance and bearing of the observation
and in case of certain features, like line crossings on a soccer field, the
feature’s orientation is relevant, too. The resulting 8 dimensions would
cause the table to exceed several 100 MB for useful resolutions though, so
for embedded platforms with limited memory, this is no practical solution.

As can be seen in figure for a common situation, the localization
belief state often focuses on few areas of high probability. The clustering
step in line [2 of algorithm [2] already causes the areas without particles to be
neglected. This is valid since those areas correspond to quasi-zero probabil-
ities. Omitting further areas with low but non-zero probability represents
an approximation to equation but considerably decreases the compu-
tational costs. This changes lines to to omit low-probability clusters
and is labeled Selective Computing in the following evaluation.

5.2.3 Evaluation

The usefulness of this active vision approach to aid localization and the
validity of the approximations proposed in section [5.2.2.4] are evaluated in
several experiments in the RoboCup scenario described in section[2.1} Three
versions of this method are compared, each with different approximations
as described in the previous section:
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Figure 5.10: Identification of regions with high particle density.

e Without Approzimations means the algorithm [2] without further mod-
ifications.

e For the Pre-calculated Observations variant, line [§ is changed to a
table look-up with the according loss of precision.

e The Selective Computing variant, additionally to using pre-calculated
observations, also omits low-probability clusters from the loop in lines
to

The runtime necessary for algorithm [2| in these three variants is presented
in table The significant range in those measurements is a direct result
of the dependency of computational complexity on localization uncertainty.
If a localization belief is less certain, more positions and consequently more
possible observations need to be evaluated. The timings in table [5.1] are the
result of walking across the ﬁeldﬁ for 5 minutes.

Maximum | Average | Minimum
Without Approximations 331.2ms | 38.5ms 11.5ms
Pre-calculated Observations 294.3ms | 35.6ms 9.3 ms
Selective Computing 45.8 ms 4.2ms 1.2ms

Table 5.1: Runtime of active vision module with and without approxima-
tions.

The following experiments are performed in a 3D simulation for easy ac-
cess to ground truth information of the robot position and the repeatability
of experiments based on the exact same conditions. The environment is a

4The robot walks on predefined trajectories across the field, and is occasionally guided
manually, since actually playing soccer is not possible with those configurations, which do
not apply all approximations, i.e. the variants Without Approzimations and Pre-calculated
Observations.
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robot soccer field as used in Standard Platform League competitions. All
processes running on the real robot are also executed in simulation includ-
ing motion, image processing and cognition. Active vision is implemented
to decide the target viewing direction, move the head and stare in that di-
rection for one second, then continue to choose the next direction. Since all
cognition processes run at 30 Hz, the algorithm with pre-calculated observa-
tions and selective computing is suitable even for platforms with restricted
resources like the Nao. However, in case of runtime peaks like the 45.8 ms
maximum in table the 30 Hz cannot be maintained and single image
frames are dropped.

5.2.3.1 Static Situations

The discretization of possible actions used in all following experiments is 7
different pan angles and 2 tilt angles, one to point the camera at features
close to the robot and one for far away observations. The choice is based
on the camera’s opening angles and slightly overlapping fields of view. This
represents a minimal number of distinct actions. A more detailed resolution
could provide better decisions, but this would imply higher computational
costs.

The first experimental setup shows the validity of the active vision de-
cision process and the applied approximations. Situations are generated
which allow decisions that are easy to comprehend. First a robot is placed
on the field near a penalty kick mark looking at the center circle until this
repetitive exclusive perception generates two symmetrical clusters of posi-
tion hypotheses. This situation might occur for a robot staring at a ball
lying at the kick-off position. Figure shows the expected entropy
for different action choices with and without approximations. Figure
illustrates the average position error of all particles after executing each ac-
tion and processing the resulting observations. The quantitative correlation
of the values is clearly visible, i.e. the lower expected entropy values in
figure [5.1Ta] can be used as an indication that lower average errors can be
achieved by choosing the corresponding action, as illustrated in figure

A similar situation occurs frequently in soccer games: When penalized
players come back into the game they are placed on the side line in the
middle of the field. The side is not known to the robot in advance. In
the given particle filter localization this penalty information is handled by
placing 40% of the particles near each re-entry spot and distributing the rest
randomly to cope with wrong referee decisions, which are not fully executed.
The results for this setup are shown in figure [5.12

A second experiment is set up to show the localization performance start-
ing from total uncertainty in different situations focusing on a comparison
between active vision guided localization and the simple approach to move
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Figure 5.11: The expected entropy and the real error of particles after exe-
cuting an action on a penalty kick position facing the center circle.
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Figure 5.12: The expected entropy and the real error of particles after ex-
ecuting an action on the removal-penalty’s return position, i.e. on the side
line facing the center circle.
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the head from side to side to continuously scan the environment.

Figure illustrates the course of localization errors over time for dif-
ferent situations for both approaches and the resulting belief state after 18
seconds. Figure depicts an example where the active approach fails.
As can be seen in all experiments the passive approach of fast scanning from
side to side is more effective when uncertainty is high. This is reasonable
since high uncertainty deprives the reasoning attempt of its information to
make useful decisions while scanning around for several different observa-
tions resolves the uniform distribution fastest. After different distinct po-
sition hypotheses can be deduced from the belief state the active approach
tends to concentrate on the features providing most information to optimally
reduce the remaining uncertainty.

However, the simple passive scanning approach also yields good results
in the first two situations (figures to , and significantly better
ones in the last as analyzed above. This is explained by the setup of the first
two situations, in which helpful information is found uniformly distributed
all around the robot. This is not given in the third situation (figures
and , but neither is a reasonable initial particle distribution for the
active approach to base its decisions on. The following section shows the
benefit of active vision in a more realistic situation.

5.2.3.2 Dynamic Situations

The final experiment places the robot on the sideline of the field with uncer-
tain prior knowledge of the starting position to be on one of the side lines
and the task to walk to a series of target positions (see ﬁgures and.
Prior localization knowledge is provided since random particle distributions
result in random active vision decisions as shown before. In contrast to the
previous experiments neither the robot itself nor its environment is static
any more, as the robot walks across the field, on which other agents move
around, too. The benefit of the active approach is clearly visible, especially
when only few useful features are in front of the robot. In such situations,
most of the scanning motion of the passive approach is wasted on featureless
areas.

In summary, active vision provides the possibility to improve localization
in most common situations where the localization algorithm itself already
provides some result. For situations of random particle distributions, which
can be detected with the same entropy criterion, a fast scanning motion
should be used instead to resolve the high uncertainty by many different
observations instead of a few specific ones. Most importantly, active vision
is also possible and useful even for platforms with low processing power
like the Nao and in environments where relevant features are distributed
uniformly as is the case for a Standard Platform League soccer field.
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5.3 Conclusion

This chapter uses camera-based localization for humanoid robots as an ap-
plication example to highlight the benefit of investing into the analysis and
design of a robot’s exteroception processes. This is detailed in section [5.1] by
the discussion of sensor model design. This can be applied as is or in adapted
form to various existing perception and estimation systems to improve the
localization and tracking quality. Section [5.2] proposes to actually interfere
with the perception process by actively guiding its attention to improve the
underlying stochastic estimation process, and details how this can be done
in an optimal and efficient way.

This chapter’s results stand for themselves, but the general considera-
tions about exteroception and sensor model design are also applied in chap-
ter [6] to a different application scenario. The insight into the perception
process of humanoid robots provided here also benefits the understanding
of further parts of this work, specifically chapters [7] and [§
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positions on the field for the active and passive approach, respectively.
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Figure 5.15: Localization (green) versus true position (blue) of the robot
while walking to a series of target positions.



Chapter 6

Position Estimation for
Ubiquitous Computing

This chapter details the development of a stochastic localization filter for the
indoor smartphone positioning application scenario described in section
as a basis for indoor location-based services. In contrast to the intralogistic
example in section in which the sensory information is scarce and the
environment comparably simple, ubiquitous computing usually provides a
wide spectrum of sensor input from a complex environment. In such a
scenario, stochastic modeling provides elaborate sensor fusion methods with
the potential to achieve results superior to conventional heuristic measures
as those in section So far, however, such methods are uncommon in
this context.

To implement a Bayes filter for localizing a smart phone, some consider-
ation needs to be given to a suitable motion and sensor model. Designing a
motion model for a smart phone might not seem intuitive, as it moves around
being carried by a person, and no direct information about this person’s in-
tentional movement direction or locomotion process is available. Section[6.1
describes the computation of odometry information for smartphones based
on their proprioceptive sensors and the knowledge about the walking motion
generation detailed in section

A smartphone’s exteroception is mainly given in form of signal strength
measurements from sources such as cell towers, Wi-Fi or Bluetooth. In ref-
erence literature as well as many applications, a number of heuristics exist
relating location and received signal strength. Those however are mostly
focused on providing a single “best guess” position for each new measure-
ment, and thus are rarely stochastically sound, nor able to provide a measure
for the sensor reading’s likelihood for a given state. Section [6.2] covers the
derivation of stochastically sound sensor models based on signal strength
mapping. The same mapping mechanism is used to augment missing mag-
netic field information in the motion model, which is necessary for indoor

109
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scenarios.

These proprioceptive and exteroceptive components are combined into a
stochastic filter system and evaluated in an office environment in section
Thus, this chapter illustrates these principles — proprioception, exterocep-
tion, and stochastic filtering — in an application, which so far has not been
covered from a stochastic modeling viewpoint to this extent elsewhere.

6.1 Odometry Estimation for Mobile Handheld De-
vices

Designing a motion model for smartphones, or mobile handheld devices in
general, presents an obvious problem: the control input for the device’s
motion is not known. This problem is commonly addressed by applying a
high isotropic process noise to the tracking algorithm, as done in the particle
filter implementation without control data in section[£.1.3.1], but in this case
the result of the movement is not measurable directly.

In general, the model of a random walk, as implied by isotropic process
noise, conflicts with the goal oriented movement of a smartphone’s carrier. It
is thus desirable to extract information about a person’s movement, namely
walking direction and velocity, from the smartphone’s acceleration sensors.
The naive approach is to apply dead reckoning based on the acceleration
readings. When directly applying the measurements to inertial navigation,
the walking component of the measured acceleration represents a noise signal
which is far greater than the person’s forward or backward acceleration itself,
thus resulting in very poor navigation for carried devices. This is even true if
the device is held perfectly horizontal and aligned with the walking direction,
which would not be the case in a typical scenario. Any imperfectly tracked
orientation change additionally corrupts a horizontal velocity estimation by
overspilling from measured vertical accelerations.

The similarity of this situation to odometry estimation for humanoid
robots, where inertial navigation fails due to the same reasons, is obvious,
although here no information is available about the internal motion gener-
ation processes. In fact, it can be seen as its inverse problem: instead of
generating body accelerations and trajectories, which lead to stable walk-
ing patterns, a normal person’s walk is stable due to the same dynamics,
and the belonging walking patterns need to be inferred from their measured
acceleration pattern. Thus, the alternative approach presented here is to
explicitly analyze the inertia measurements for the signal component orig-
inating from the walking motion and using the knowledge about human
movement patterns to infer odometry information from those signals.
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6.1.1 Coordinate Systems for Odometry Measurement

The sensor unit containing the accelerometer, magnetometer and gyroscope,
or at least two of these components, is called inertial measurement unit
(IMU). It enables the motion measurement of smartphones, usually in or-
der to utilize this information to flip the screen layout if the smartphone’s
orientation changes, or simply as an input for games. While the IMU’s co-
ordinate frame is fixed to the smartphone’s, it usually changes with respect
to the user and to the environment. In order to properly cope with orien-
tation and movement of the mobile device, it is necessary to consider three
different coordinate frames:

e the world coordinate frame as the reference relative to which the mobile
device needs to be localized,

e the idealized torso coordinate frame, which is fixed to the person’s
torso and aligned with the world’s vertical direction (z-axis) and the
forward walking direction (x-axis)

e and the device or sensor coordinate frame, in which the measurements
are made.

For some smart clothing applications, the sensor coordinate frame might
be fixed to the torso coordinate frame, but in general the mobile device’s
translation and especially rotation relative to the torso can change over time.
An easy example is a device carried in a way that the person can observe
and interact with the content displayed on the screen. In this case, the
device’s orientation will change when the screen is held in slightly different
angles, rotated from landscape to portrait, or even temporarily put away
for a reason unrelated to the smartphone’s current application. A more
challenging scenario is the odometry estimation for a smartphone carried in
the trouser’s pocket at the side of the leg of the walking person. In that
case the device coordinate frame is actually moving relative to the torso
coordinate frame with the same periodicity as the walking motion which is
to be estimated. This causes additional problems when abstracting from the
device coordinate frame and trying to estimate the torso coordinate frame
motion relative to the world coordinate frame.

6.1.2 Understanding and Exploiting the Human Gait

Research of the human gait as well as that of motion generation for biped
robots provides an understanding of the involved processes to an extent
which allows the formulation of a general pattern of expected motion phases
and occurring accelerations. These have already been illustrated in fig-
ure [4.12] in section for the purpose of explaining the gait generation
for humanoid robots. Figure [6.1] augments this simplified phase pattern of
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the human walking cycle with the expected accelerations of the torso frame
relative to the world frame. While oscillations occur in all three coordinate
axis, the vertical and the sideways accelerations are most obviousﬂ The
vertical component is caused by a slight vertical oscillation of the person’s
center of mass and by the actual touchdown of the foot on the ground. Thus,
its periodicity is given by the time between the two consecutive touchdowns
of a foot, thus defining the step frequency. Its phase coincides with the per-
son’s CoM accelerations, albeit with the touchdown as an additional jerk.
The horizontal sideways motion component is caused by changing the stance
foot from left to right and back. Its periodicity is given by swinging from
the left foot to the right one and back, which includes two steps, thus only
half the step frequency reflected in the vertical acceleration. The forward
acceleration component is less obvious and also of a smaller magnitude. Its
phase and periodicity are coupled to the vertical one by the forward push
of the stance foot.

. 4

Vertical Acceleration F 1 F
Forward Acceleration —> ¥ - F -
Sideways Acceleration y -
<> <> <& )
Double Right Single Double Left Single
Support Support Support Support
Phase Phase Phase Phase

Figure 6.1: Accelerations generated by human walking.

Being able to identify those different components in an acceleration sig-
nal measured by an IMU provides most information needed for an odometry
estimation, i.e. walking direction and step frequency. Also, though less di-
rectly, information about the stride length can be heuristically gained from
the oscillations’ amplitudes. The separation of those components, and espe-

1t should be noted that for controlling a humanoid robot as described in section
it is possible to derive control accelerations minimized along two of the axis. The pre-
sented 3D-LIPM control model explicitly avoids vertical movement in order to simplify
the controller design, and it is possible to define ZMP trajectories to achieve a minimally
varying forward velocity. However, even for such controls, a real physical system will still
deviate from such theoretical acceleration controls and then tend to express the presented
acceleration components.
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cially the essential recovery of the phase shift between the vertical and the
horizontal forward component, which have the same frequency, is very sus-
ceptible to orientation errors. As illustrated in figure[6.2} the first step in the
proposed odometry estimation system therefore consists of a separate device
orientation estimation which abstracts the acceleration signal from the de-
vice’s coordinate frame. The newest generation of smartphones possesses
full IMUs, including 3-axis accelerometers, magnetometers and gyroscopes,
but at least the former two are available in most current devices. This allows
the application of a Kalman filter to estimate the device orientation based
on the gravity component present in the acceleration measurements and the
expected magnetic flow vector.
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) Transformation & Data in Walking Pattern
Signal Decomposition Frequency Domain Analysis
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Figure 6.2: Odometry estimation from inertia measurement information.

The subsequently transformed inertia measurements are decomposed us-
ing the Fourier transform. Two features in the presented implementation
allow the online computation with high frame rates, while keeping the nec-
essary processing power and therefore the mobile device’s energy consump-
tion low. The first one is the approximation of applying three 1-dimensional
Fourier transformations instead of one 3-dimensional. This is sufficient in
the given case, since the identification of the step frequency can be done
in the vertical component, which allows to simply look up the transformed
complex values corresponding to this frequency in the other two dimensions
and to infer the forward direction and step length from their phase shifts
and magnitudes. The sideways motion can be found the same way at half
the step frequency and used together with the magnitudes of the other os-
cillation vectors to validate the walking motion.

The second implementation detail relevant for real-time performance is
the iterative implementation of the Fourier transform instead of the more
commonly used FFT algorithm, which would need to be recomputed on a
buffer each time a new measurement arrives. This way, it is possible to
process the data stream in linear time to the number of frequencies which
need to be analyzed. This implementation is more efficient for the described
purpose of online processing, even when analyzing all frequencies which
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the FFT would compute. Additionally, it is possible to further reduce the
computational costs by skipping the frequencies outside the range of possible
human gait frequencies illustrated in figure [6.1

6.1.3 Experimental Analysis

Figure shows an experiment to proof the concept of the odometry esti-
mation. A person carrying a smartphone walks along a 12m by 9m rectan-
gular path on an empty parking lot outside (see figure , SO Nno system-
atic measurement disturbances are expected. The particular phone used in
the experiment, a Samsung Galaxy S model, does not contain a gyroscope,
so orientation estimation and odometry calculation are done using the ac-
celerometer and magnetometer. Both sensors provide readings with 16 Hz
in this experiment.

y (north) [m]

-2 0

2 4 6
X (east) [m]

(a) Test path in an outdoor scenario. (b) Odometry estimation.

Figure 6.3: Test performed in an outdoor scenario without magnetic inter-
ferences.

While measurement frequencies of up to 100 Hz are available on this
phone, the choice to reduce the sampling rate as much as possible is due
to reasons of energy consumption. Even if the power needed by processing
the presented algorithms lies several orders of magnitude below the power
consumption even of an infrequently used display, keeping the whole system
energy-conservative is typically in the user’s interest.

The corresponding odometry estimation is visualized in figure The
result contains certain errors in the walking direction estimation, on the one
hand the smooth but small direction errors visible in the graph, and on the
other hand two short oscillations of the estimated forward direction between
the real forward and backward direction. The latter one is not visible in the
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graph directly, but results in a shortening of two of the sides of the rectangle.
This effect is caused by the dependency of the described system on a reliable,
exact orientation estimation. Nevertheless, the generated odometry still
approximates the real path conceivably well, and for example many robot
localization systems work successfully with far inferior motion information.
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(a) Test path in an indoor scenario. (b) Odometry estimation when assuming

a constant magnetic field.

Figure 6.4: Straight test path in an indoor environment, demonstrating the
influence of magnetic disturbances caused by electric devices.

A problem becomes obvious when considering the following indoor ex-
ampldﬂ in figure When no gyroscope is available in the mobile device,
the magnetometer is the only source of heading information, since horizon-
tal orientation changes cannot be inferred from linear acceleration measure-
ments alone. The earth’s natural magnetic field is known and the inclination
and declination at a given point on earth’s surface are mappedEL so using
the magnetic measurements to estimate the north direction seems reason-
able. This however does not account for the numerous small-scale deviations
and disturbances in the local magnetic field caused by magnetic metals or
electronic devices. Figure illustrates the straight path walked in this
experiment, while figure displays the odometry generated when assum-
ing a magnetic field with a constant horizontal component pointing north.
The obvious heading errors in the second half of the path are caused by de-
viations in the magnetic field leading to errors in the orientation estimation
and consequently in the odometry generation.

A first indication about an explanation for these deviations is given in
figure which shows the distorted magnetic field along the straight path
in figure A more detailed analysis is possible with the results in sec-
tion where a mapping is presented in figure on page which il-
lustrates the horizontal component of the magnetic field for the whole floor.
The derivation process used to generate this map, along with those to be
used in the sensor update, will be detailed later, but its outcome, together

2The floor layout in figure is not aligned with the north direction.
3See for example the United States Geological Survey National Geomagnetism Map at
http://geomag.usgs.gov/.
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Figure 6.5: Horizontal component of the magnetic field along the straight
path. Deviations from the natural earth magnetic field are caused by differ-
ent electrical devices along the way.

with a closer look at the environment in question, explains the behavior of
the indoor odometry estimation experiment presented here: The deviations
in the first part of the path are caused by metal filing cabinets, while along
the second part of the path several electronic devices are emitting electro-
magnetic fields of their own, among those are copy machines, printers, Wi-Fi
access points, and an elevator.

A possible solution on devices featuring gyroscopes would be to base the
orientation estimation exclusively on the rotation velocity and acceleration
measurements, ignoring the magnetometer. This however would deprive
the system of any absolute heading information and the ensuing drift would
cause other problems like the divergence of the heading estimation over time.
Neither can the problems be solved by filtering or calibrating the magnetic
measurements in a way, since the deviation is spacial in nature (instead of
temporal) and not constant.

An alternative solution is to actually map the magnetic deviation occur-
ring in the environment. While such a mapping might be perceived as a
significant additional effort, this is actually not the case if the Wi-Fi signal
strength information is gathered using a device with similar capabilities as
the one which those information are meant to localize, so both measure-
ments can be collected at the same time and the maps can be generated in
parallel.

6.2 Mapping and Sensor Model Design for Mobile
Handheld Devices

This section covers the design of a probabilistic sensor model to incorporate
a smartphone’s exteroceptive measurements into a Bayes filter. At the same
time, the processes derived here provide the means to correct the systematic
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errors in the odometry estimation process mentioned above.

6.2.1 Overview of Map Types

In section [3.2] the correction of a predicted position belief state by measure-
ment information has been described in a general way. In most non-trivial
cases, the measurement space does not directly map to the state space, so
the measurement model p(z|z;) in equation normally incorporates a-
priori knowledge in form of a map. In section and chapter bl the map
representations are directly derived from the respective problem analysis and
not discussed in any detail. In the context of smartphone localization using
signal strength reception, however, different methods have been applied so
far, and a single best approach may not be obvious.

An overview of general map types clarifies the possible design choices
and helps to categorize the Wi-Fi localization techniques discussed in sec-
tion [2.3:2.2] Maps for localization purposes can take different forms:

e Landmark maps consist of a list of distinct features, the landmarks,
annotated with a vector of characteristics and a location, optionally
also with corresponding measurement uncertainties. They can be used
if measurements correspond directly to the landmarks, even if those
correspondences are ambiguous.

e Grid maps are used to approximate continuous features, which are too
complex to be expressed as landmarks. Simple examples are rasterized
maps, e.g. a 2D grid with each cell corresponding to a square area
which might be occupied or free in case of a building layout.

e Parametrized models also approximate continuous properties. In con-
trast to grid maps, the approximation is not in the spacial resolution
of the map, but in the (limited) complexity of the model.

Those map classes all have their applications, advantages and disad-
vantages, depending on the measurement information and its computation.
Using Wi-Fi signal strength as an example, localization using propagation
models is based on maps of access points as landmarks with known positions
and characteristics such as emitted power and signal wavelength. Efforts
have also been made to try to augment the simple propagation models with
signal reflections and interferences in given environments, resulting in com-
plex parametrized models which better predict the sampled signal strengths.
Alternatively it is possible to take the sample measurements along a regular
grid to directly get a raster map of the signal strengths, or to simply inter-
polate between sample measurements to gain a higher resolution grid. In
the latter case, normal linear or polynomial interpolation methods do not
yield satisfying results when applied to the sample measurements directly,
because those methods do not consider noise in the data. Commonly, either
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averages of a larger number of measurements are taken as input samples
for the interpolation to reduce the noise, or a dense set of measurements
is smoothed, e.g. using Gaussian kernels which are large compared to the
measurements’ euclidean distances.

It is interesting to note that, given a continuous or rasterized map of
the signal strengths, the fingerprinting localization method using the nearest
neighbor in signal space, as described in section [2.3.2] can now be formulated
as an optimization problem of finding = to maximize p(x|z;), and solved
for example using gradient search strategies on z instead of comparing the
current measurement z; to all samples in the database [3].

The Wi-Fi localization approaches discussed in section such as
fingerprinting techniques or multi-lateration, have in common that they aim
to find the best position estimate for a single measurement. Integration over
time is done by smoothing these position results, if it is done at all.

In contrast, a Bayes filter requires the seemingly easier task of designing
the sensor model p(z|z;) to evaluate the likelihood of a new measurement z;
for a given position estimate x;. A fingerprinting method could be adopted
for this purpose in two different ways: Trivially, a position estimate can
be calculated by finding the best matching measurement in the database,
and its distance to x; can be used as a heuristic for the measurement like-
lihood. A more reasonable method would be to find the position in the
database closest to x; and to compare its prerecorded measurement to the
recent one to derive a measure for its likelihood. Propagation-based Wi-Fi
localization on the other hand directly provides an expected measurement,
which could be used together with an additional variance parameter to cal-
culate the measurement probability, e.g. using a Gaussian assumption for
the measurement’s noise.

Both described versions have disadvantages. The fingerprinting method
only offers crude heuristics for calculating a likelihood. A simple distance-
based propagation model on the other hand can only approximate the real,
highly non-linear reception characteristics in a very limited way. An alter-
native method without these drawbacks is introduced in the next section.

6.2.2 Gaussian Processes for Mapping

To provide a stochastically sound incorporation of the Wi-Fi mapping in-
formation into a localization system as described in section [3.2] the map
representation must have a high resolution (or ideally be continuous) and
provide not only the expected measurement value, but also its variance at
each given location. At the same time, the mapping itself must not be too
difficult or time consuming, as this would not be scalable to large areas.
Based on these requirements (cp. section , the mapping uses the same
smartphone technology as intended for the final localization, with user in-
terface and mapping procedure kept as simple as possible to be performed
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by untrained personal. Thus the mapping information are collected using
a normal smartphone, which records continuous sensor logs together with
sparse ground truth positions provided by the user by clicking on a previ-
ously loaded map of the environment. These sensor logs contain all measure-
ments, including the inertia and magnetic sensor information as well as the
relevant radio signal strength measurements. This data, when augmenting
the odometry estimation with the ground truth information, can then be
used to generate both the necessary Wi-Fi maps and the magnetic map of
the environment in parallel. In the following, all quantities, which need to
be mapped, are considered independently from each other.

Given now is a vector of sample measurements z = z1.p of a measured
quantity (either a component of the magnetic field or the received Wi-Fi
strength of a certain sender) along a path x = x1.7 in the environment, which
is used to generate a smooth, complete map by means of Bayesian inference
on Gaussian processes [71]. For this, z is seen as a noisy T-dimensional
measurement of the process f(x) at the positions z1.7. f(x) is assumed to
depend only on the location, not the temporal context, and is completely
specified as a Gaussian Process by its mean and covariance function:

f(x) ~ GP(u(x), P(x,x)). (6.1)

Given the mean and covariance functions, u(x) and P(x,X’), respec-
tively, many different functions f’ are still possible. In this context, the
sample data (x,z) acts as training points or parameters of the process, con-
sequently defining the form of the Gaussian Process. Gaussian Processes
can now be used as a form of regression to predict the function value f(xx)
at a set of certain test points x, by simply conditioning the process on the
sample set (x,z).

The main design choice for using Gaussian Processes to predict the sig-
nal strength maps is the specification of the mean and covariance functions.
Here, a constant mean function is specified and the covariance function is
a composite of a squared exponential and a noise function. The covariance
function defines the covariance between the different x; both in the training
and test sets. The squared exponential function therefore assigns exponen-
tially decreasing covariance values to z; and z; based on the euclidean dis-
tance of x; and x;. This leaves open the choice of several hyper-parameters
specifying the magnitude of the expected mean, the expected noise and two
scaling factors for the magnitude of the covariance values and the expected
smoothness of the resulting process. Those hyper-parameters can either be
manually set or learned automatically using the sample data set (x,z) and
its likelihood for a given set of hyper-parameters as an maximization cri-
terion. This provides a stochastically sound and largely automated way of
inferring signal strength maps.
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The Wi-Fi signal strength mapping for different received wireless net-
work BSSIDgY in the indoor test scenario is illustrated in figure It is
important to stress that the data collection for these maps is done in a 6
minute run during which the user specified 23 ground truth positions. While
maps of similar quality have been presented elsewhere, those have mostly
needed a considerably larger dataset and consequently a much larger data
acquisition phase.

Note further, that the Gaussian Processes in figure [6.6] are created with-
out the information of the building layout or the real positions of any of the
access points. In fact, for all but two access points, these positions are not
even known, nor do they need to be, which presents a significant advantage
of this method. While the Wi-Fi signal in figure could also be approx-
imated by a propagation-based model, the models in figures and
significantly deviate from any distance-based function.

The resulting Gaussian Process, with parameters given by the recorded
sample data and automatically learned hyper-parameters, can now be used
directly as the measurement model p(z;|x;) of equation in section [3.2[to
predict the measurement at a position x4, and also its expected uncertainty.
Alternatively, the Gaussian Process can be used to generate a look-up table
in form of a discretized grid map for those expected measurements. This
is especially useful when applying the same method to a magnetic mapping
which is based on a much larger sample set due to the higher sensor frequency
of the IMU compared to Wi-Fi scanning. A map of the magnetic declinations
in the test environment is visualized in figure The difference between
minimal and maximal declinations measured in this relatively small area
even exceeds 90°, further stressing the necessity of such a mapping when
using the magnetometer in any way for position tracking, but especially
when using a procedure as described in section

6.3 A Bayesian Sensor Fusion Approach to Mobile
Phone Localization

To provide a proof of the concept described in the previous sections, a par-
ticle filter as introduced in section has been implemented. This filter
consists of a set of particles, each of which represents a distinct position
hypothesis and is continuously updated by odometry and measurement in-
formation. This fuses the sensor information, i.e. the Wi-Fi measurements
and the odometry estimation, with the knowledge about the environment
in form of the building layout, the mappings of the magnetic field and the
signal strengths of different Wi-Fi access points.

*A basic service set identification (BSSID) uniquely identifies not only a wireless net-
work, which might be backed by several access points, but also the specific access point
from which it originates.
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Once again the same state space choice arises as discussed in section[f.1.3.7]
for the application of a particle filter to intralogistic tracking. In this case,
it is possible to either model the state space with the 2-dimensional position
only, or additionally with the orientation. In the 2-dimensional case, the ori-
entation is used from the odometry estimation directly. In the other case,
the current walking orientation would make up the third dimension of the
state space vector and would be tracked accordingly. In this scenario, how-
ever, assumptions like mainly straight walking directions cannot be made
in general. A more compelling argument for the use of the 2-dimensional
state space in this specific case is the sufficiency of fewer particles, which is
a critical point in terms of the energy consumption criteria and limited use
of processing power as stated in section [2.3

The choice here is therefore to model only the 2-dimensional position
with the particles. The heading information is not included as a third di-
mension, but expressed in the orientation estimation as described in sec-
tion As mentioned in section the magnetic field mapping is
needed to compensate the environmental influences on the odometry esti-
mation. Using the particle’s location, it is possible to look up the expected
declination to the true north direction in the magnetic field map at that
position, and thus to correct the odometry estimation’s direction for each
particle separately. The motion update step in the particle filter allows for
a specified amount of noise in the motion execution, thus effectively spread-
ing the particles. In this implementation the noise is modeled with three
separate components: an angular error in the heading, a scale error in the
covered distance, and an additional white noise translational error. The
latter one allows small movements in the particle distribution even when
the person is not walking, which is useful for position corrections based on
new Wi-Fi measurements. Wi-Fi measurements as well as the fact that it is
not possible to walk through walls are used to weight the particles, and the
accumulated weights are used periodically to resample the particle set.

The resulting localization algorithm essentially only needs 5 parameters:
3 for the amount of motion noise, one resampling threshold, and the number
of particles. In contrast to most approaches found elsewhere, the expected
variance in signal strength does not need to be specified for each access
point manually, but is already included in the Wi-Fi maps, as the Gaussian
process infers both the mean and the variance at each position. There has
also been no selection among the signals as for example done in [59], where
only the strongest signals are used for localization due to being a “more
stable” source of information. Instead, the presented algorithm relies on
the stochastically sound mapping integration and uses all available BSSIDs
without discrimination, filtering, or averaging those which come from the
same access point. Note that only two access points are located inside the
area used for localization and provide measurements above -70 dBm.

In the following, the results of a 10 minute walk around the second floor



124 CHAPTER 6. UBIQUITOUS COMPUTING

of the indoor test environment are presented, during which the user provided
41 reference points by inputting his current position on the smartphone’s
touch display. Of course this only approximates the real positions up to a
certain precision, and the comparatively easy layout of the building further
simplifies the task. Nevertheless, this experiment gives a good impression
of the potential of the proposed system. In fact the odometry information
alone, i.e. without the use of any Wi-Fi measurements, is sufficient to pro-
vide a good localization estimate when combined with the building layout
information. This is not only true for local localization, i.e. position track-
ing from a known starting point, but also for global localization, where no
prior information about the position is available. Figures and il-
lustrate the first minute of the filter’s particle distribution, without using
Wi-Fi measurements and with using them, respectively. Figure [6.9] shows
the filter’s particle distribution in the first 45 seconds to illustrate the global

localization (see figures to , and some exemplary later frames.
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(e) Particle distribution after 124 seconds.  (f) Particle distribution after 533 seconds.

Figure 6.8: Global localization without using Wi-Fi information.
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tion after 20 seconds.

(b) Particle distribu

(a) Initial particle distribution.

(d) Particle distribution after 45 seconds.

(c) Particle distribution after 32 seconds.

(f) Particle distribution after 533 seconds.

(e) Particle distribution after 124 seconds.

Figure 6.9: Global localization using odometry and Wi-Fi information.
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Figure [6.10] shows the localization errors at the times of available ref-
erence points for four different setups of the localization system, with and
without known starting position (i.e. position tracking and global localiza-
tion), and with and without using Wi-Fi signal strength measurements. It
can be seen that in this test the global localization estimation converges on
the position tracking estimation after 50 seconds, from which time on the
particle distributions corresponding to position tracking and global localiza-
tion do not show significant differences any more. In general, the additional
Wi-Fi scan information provides a significant precision improvement, as ex-
pected. In a few cases, consecutive Wi-Fi scan results, which deviate from
the expected mean, actually degrade the positioning accuracy. This can be
seen around the 533 second mark in figure [6.10] The corresponding multi-
modal particle distribution is visualized in figure [6.9, where one cluster is
in the correct position of the small room, while a second cluster is in the
corridor and actually gets higher weights in the Wi-Fi sensor updates. How-
ever, it has to be noted that the position extraction from the particle set
by calculating the weighted average does not take into account these possi-
ble multi-modal particle distributions, thus not providing the center of the
biggest cluster, but just averaging between two clusters. So replacing this
simple strategy by a more sophisticated clustering technique might improve
the results without actually necessitating any changes in the localization
filter itself.

The higher localization errors from seconds 250 to 300, on the other
hand, are caused by errors in the odometry calculation. Due to inaccuracies
in the estimation of the device orientation and the phase shift between the
vertical and forward component of the step frequency, the traveled distance
has not been estimated correctly, which results in significantly increased
errors in all graphs. The additional usage of Wi-Fi measurements in two of
the systems in figure [6.10| could only partially compensate these errors.

10r
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Figure 6.10: Localization errors for a 10 minute test run. Each data set is
the average of 100 filter executions with the same input data.

Over all, average errors of around 1 m can be reached in this example run
when using Wi-Fi measurements (0.99m and 1.11m for position tracking
and global localization, respectively). Average errors of around 1.6m are
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possible even without Wi-Fi, only using the estimated odometry and the
floor plan information (1.61m and 1.66 m for position tracking and global
localization, respectively). A precision of up to 1.5 m after 40 seconds when
starting from global localization has been achieved in 60% of the reference
measurements without Wi-Fi information and in 74% when using Wi-Fi for
localization.

These results are well within the desired range to provide location-based
services for applications as described in section [2.3] This approach is set
apart from other published results in its accuracy and especially in the
simplicity of its preparation. It does not need any additional access points or
even knowledge about the positions of existing ones. In fact, in the presented
setup, such positions are only known for 2 access points, so propagation-
based approaches could not even perform trilateration to deliver a single
pose hypothesis based on the signal strength measurements, even if the
distance would perfectly correlate with the signal strength, which is not the
case here. Fingerprinting approaches on the other hand usually require a
much larger data set.

The data set used in [33] amounts to 51,249 Wi-Fi scans at 510 pre-
defined positions in a roughly 20 times larger building than the one used
here, and took around 28 man-hours overall to record. The scans include
signals from 33 different access points within the area. The corresponding
evaluation of localization accuracy only covers test positions identical to the
training positions with multiple Wi-Fi scans at each location. In contrast
to this, the whole data acquisition phase for the experiments described here
is done in a single 6 minute test run with 23 user supplied ground truth
points, and the localization takes place in a continuous state space. An ac-
curacy comparison, however, is difficult, as the cells defined by the positions
in [33] mostly correspond to separate rooms of around 10 m? in average. For
these, the correct response is reported in overall 97% of the tests, while the
illustrations of cell accuracy and building plans suggest that the few cells
located in the same rooms have a far lower accuracy of as low as 70%.

Direct comparisons are possible to the following publications: In [59],
a smartphone is used to record both training and test data, and several
fingerprinting methods are compared and presented. While nothing is said
about the training set size, a precision below 2m is reported only in 48% of
the cases for the best applied technique, which applies temporal smoothing
of the signals as well as averages those known to originate from the same
access point. The work in [77] is done using a differential drive robot and
a probabilistic localization approach, comparing a signal strength grid map
with a discretization of 2 by 2 meters to a propagation-based model in a
setup only marginally larger than the one presented here, with 3 access
points with known positions within the building. The maps are generated
using the robot, but no information about mapping time or the used sample
size is given. The best presented propagation-based model only achieves an
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error below 1.5m for 61% of the time. The results using the signal strength
maps show an error below 1.5m for 82% of the time, which is slightly better
than the results presented here as 74%. In these experiments, however,
odometry information are available due to the differential drive locomotion
in a far easier way and with superior accuracy. Nevertheless, this just stresses
the usefulness of applying probabilistic robotics methods to the presented
application scenario for the localization of smartphones.

6.4 Conclusion

In this chapter, a Bayesian sensor fusion approach to mobile phone localiza-
tion is introduced, that aims to pave the path for high-resolution positioning
in future location-aware services such as detailed in section 2.3l No addi-
tional hardware is assumed beyond standard, market-available smartphones.
This scenario presents a challenge in various respects: A smartphone’s ex-
teroception, when not using its camera, does not provide any directional
measurements from which geometric relations to its environment can be
derived. This together with the usually rather complex environment itself
stresses the need for a robust stochastic sensor model to allow position cor-
rections. The most significant problem, which probably explains the lack
of probabilistic localization techniques applied to smartphones in current
literature, is the lack of direct access to the involved locomotion process.
The locomotion’s intention as well as execution reside within the person
carrying the phone, and can thus only be accessed indirectly through the
smartphone’s proprioception.

Solutions to both these challenges are presented here, as well as their
incorporation into a stochastic filter. Using this probabilistic localization
technique, it can be shown how odometry estimation using the smartphone’s
embedded sensors fused with Wi-Fi scan results can yield compelling posi-
tion data, if backed by map information for magnetic field emission and
Wi-Fi radio data. Overall, the sensor fusion approach outperforms common
heuristic Wi-Fi localization techniques on smartphones, and shows a supe-
rior performance with reaching an average error of 1m even using simple
and time-saving procedures for gathering the necessary mapping data.



Chapter 7

Multi Hypothesis Kalman
Systems

E] In the robotics domain, a variety of algorithms has been proposed to
solve localization tasks, ranging from efficient and robust multiangulation
methods [4] to constraint-based techniques [28]. The majority of commonly
applied algorithms relies on probabilistic methods and Bayesian algorithms
such as introduced in chapter Key aspects for practical systems are
efficiency, robustness and appropriate handling of uncertainty in the data in
form of noise in odometry and sensor readings as well as false positives.

As expressed by Gutmann and Fox, it seems to be common consensus
that “Markov localization is more robust than Kalman filtering while the
latter can be more accurate than the former” [32 page 454|, where “Markov
localization” in this context refers to non-parametric Bayes filters such as
particle filters or grid-based Bayes filters. Of course, this is only expressed as
a general trend, and hybrid solutions, special variants and problem-specific
adaptations always have the potential to outperform pure implementations
of the general methods. However, when belief distributions are expected to
be multi-modal, particle filters are often the method of choice [86], even if
Kalman filters based on multiple models have been well established in other
fields of research [I], also referred to as Gaussian sum or Gaussian mixture
filters.

As described in section the Kalman filter was originally derived for
estimating linear Gaussian systems. Non-linearity aspects are addressed by
variants such as the Extended or Unscented Kalman filter. Those linearize
the process and measurement functions in order to maintain the convenient
Gaussian representation throughout the filter update steps.

However, there are systems in which the non-linearity is too severe, thus

!Parts of this section are based on an article in the Proceedings of RoboCup 2011:
Robot Soccer World Cup XV. The corresponding publication, see [41], is available at
http://www.springerlink.comnl
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causing Gaussian approximations to perform unsatisfactory or even to di-
verge completely. This is obvious especially for multi-modal systems, as a
single Gaussian distribution can not represent a distribution with multiple
separated maximums. Such non-linear non-Gaussian systems can be ap-
proximated by weighted sums of Gaussians [I]. Those filters are referred
to as Gaussian sum or Gaussian mixture filters. Every belief distribution
can be approximated closely by an appropriate number of Gaussians theo-
retically. In practice, higher numbers of Gaussian terms lead to an increase
in computational complexity which is impossible to manage. Due to this,
multiple-model Kalman filter implementations loose some of their general-
ity, computational efficiency and theoretical elegance. This might explain
the under-representation of these algorithms in the robotics domain. Such
a Gaussian mixture filter aiming at high performance and applicability on
limited platforms also faces some of the problems of operating particle filters
with an extremely low number of particles. This chapter’s main contribution
is to point out and apply techniques, which have originally been introduced
in particle filtering contexts, to multiple-model Kalman filtering, to estab-
lish the stochastic reasoning in the context of common Gaussian mixture
filtering, and to present an evaluation of the proposed method in a number
of experiments with real robots.

The next section gives an overview about Gaussian mixture filters in gen-
eral, followed in section by the problems arising from necessary approx-
imations, ambiguous measurements, false positives and possible kidnapped-
robot situations. Section proposes an alternative approximation to the
common implementation of model splitting and merging and establishes its
stochastic soundness. This has been implemented for a RoboCup Standard
Platform League scenario (cp. section , i.e. for humanoid robots with
highly uncertain odometry in a dynamic soccer scenario where most land-
marks are ambiguous field features, occlusion frequently occurs and false
positives are likely to be generated from observations of the audience. Situ-
ations with various degrees of similarity to robot kidnapping happen due to
frequent struggles and shoving among the robots and interventions by the
referees. This work is related to [70] in terms of the application scenario
and the general idea of using a multiple-model Kalman filter to address
the correspondence problem for ambiguous landmarks and false positive ob-
servations. However, the proposed solution differs in the overall approach
and therefore also in various implementation details. Efficiency, localization
quality and robustness are evaluated in section [7.4

7.1 Gaussian Mixture Filtering

This section gives an overview of the applicability of Gaussian mixture filter-
ing to state estimation in domains of multi-modal probability distributions.
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Note that in most applications only a subset of these aspects is actually im-
plemented [70}, 68, 21], 50} 88, [47]. In order not to commit to any specific form
of non-linearity approximation to the Kalman filter, the following discussion
makes use of the general Bayes filter convention under the Markov assump-
tion (cp. section [3.2)), specifically the initial belief distribution bel(x), the
motion update in equation and the sensor update in equation |3.16

In case of linear Gaussian systems, the estimation problem is solved op-
timally by the standard Kalman algorithm. Real problems, however, rarely
fulfill those criteria. Non-linearity aspects concern the process and sensor
model. Those need to be linearized in order to apply the familiar Kalman
filter equations, which then do not yield the optimal solution but only an
approximation. This can be done either using Jacobians in the Extended
Kalman filter or the unscented transform in the Unscented Kalman filter.

Non-Gaussian aspects can influence the Bayes filter concept at several
further points, even if the sensor update seems to be the most focused on
in work related to robot localization. Approximating non-Gaussian systems
with Gaussian mixtures offers a solution to those issues. The belief is now
represented by

Ng
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where p; and P; are the means and covariances of the individual Gaussians
(cp. equation and «; are the weights which sum up to 1 over all N,
models. Ny might change during operation of the filter, as will be explained
in the following sections. The explicit dependency on time in the indexes of
those parameters is dropped for simplicity.

The changes introduced by Gaussian mixtures will be addressed in the
following sections. In practical applications, those are rarely implemented
all at once. Most implementations only use the possibilities of the Gaussian
mixture representation in the one or two aspects most crucial to the filtering
process and enforce a strict limit to the number of separate Gaussians to
maintain acceptable processing time.

7.1.1 Initial Belief and Re-localization

The first aspect, which would only be insufficiently described by a single
Gaussian, is the prior belief bel(xzp). A very simple and often used as-
sumption is that of a uniform initial belief distribution over the entire state
space. Since this cannot be expressed with any accuracy with classic Gaus-
sian filters, those are neither applicable for global localization nor for re-
localization, e.g. in kidnapped robot scenarios.

Any given initial belief can be approximated with a mixture of Gaussians
with uniformly distributed means pu;, e.g. on a grid, weights «; according
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to the value of the belief at each mean’s position, and symmetric covari-
ances P; scaled to minimize the difference between the given target function
and this mixture representation. This has originally been proposed in [IJ.
Sometimes the initial belief is alternatively generated using the first sensor
measurements, e.g. as done in [21] and [47]. While this seems intuitive, it
relies much more on the first measurement than on all the following ones
and might fail in case this first one is a false positive, when no hypothesis is
maintained in regions not conforming with this measurement as done in [47].
Several other strategies have been proposed for the specification of the initial
belief, some of which are related to the re-parametrization problem covered
later in section [Z.1.4l

Re-localization from kidnapped robot scenarios is closely related, since
allowing for the possibility of robot kidnapping means assigning a small
probability to the case that the robot is repositioned without any knowledge,
which is similar to the initial global position finding. Special care has to be
taken that the weights of Gaussian terms introduced to allow re-localization
are small enough not to disturb the normal localization tracking process, but
that those small weighted terms do not always die out without the chance
to be validated by enough measurements to become important.

The injection of additional Gaussian terms for the purpose of re-locali-
zation bears some similarity to the “spawn and birth” models in Gaussian
Mixture Probability Hypothesis Density (GM-PHD) Filters [7], where the
“birth” of additional Gaussian terms accounts for the appearance of pre-
viously unknown or un-tracked targets. Mathematically, the intensity for
spontaneous birth in this multi-target tracking scenario is identical to al-
lowing a small repositioning possibility in localization applications. Instead
of representing a new hypothesis for the whole state estimation, however,
those new terms in the GM-PHD Filter represent only possible new features
in the state estimate.

7.1.2 Process Update

As mentioned earlier, non-linear process models p(x¢|ut, x;—1) are commonly
addressed by linearizing around the current mean in Kalman filter applica-
tions. This approximation is appropriate as long as the non-linearity around
the current state is not too severe and the state is corrected frequently
enough by measurements.

Walking robots often produce highly uncertain odometry where large
errors are to be expected especially in the rotation component (cp. sec-
tion . Longer periods without observation leave an initial Gaussian
belief spread out in a way that it cannot be approximated properly by a sin-
gle Gaussian. In this case it seems reasonable to design the prediction step
in equation to make full use of the Gaussian mixture representation.
This is done by modeling the process noise itself as a Gaussian sum. Assum-
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ing multiple terms in the process noise’s mixture representation, the overall
number of Gaussians in the filter increases by this factor, i.e. the number
of terms in the Gaussian, with each process update. Fach term’s weight
is the product of the weights of the original belief hypothesis and of the
process noise term. To maintain efficient computability, this increase needs
to be countered by pruning the resulting belief representation as described
in more detail in section [7.1.4]

7.1.3 Sensor Update and Correspondence Problem

Two different ways to apply Gaussian mixtures to the sensor update step
can be distinguished. Analogous to the process update, non-linear sensor
models producing non-Gaussian beliefs over time can be approximated us-
ing Gaussian sums. This makes sense in situations where several consecutive
measurements produce non-linearity spreading the belief in a similar way.
However, when measurements are often complementary, e.g. bearing-only
measurements associated with landmarks in different directions, the sensor
model’s non-linearity aspect does not build up but is kept at bay by those
measurements soon enough, so that the state can be approximated satisfac-
tory by a single Gaussian.

A different case arises from the observation of ambiguous landmarks and
the resulting correspondence problem, which is of great importance in many
localization applications. For multi-modal systems, the common lineariza-
tion techniques already make a Kalman filter operate “more as a maximum
likelihood estimator than as a minimum variance estimator and the mean
follows (hopefully) one of the peaks of the density function”, as stated by
Alspach and Sorenson in [I page 440]. Thus it seems intuitive to handle
this case in single-Gaussian Kalman filters by choosing the correspondence
with maximum likelihood and proceeding by linearizing a sensor model for
a unique landmark update.

The natural way to apply Gaussian mixtures in this context is to con-
struct a sensor model with one Gaussian term for each possible correspon-
dence. In [68], Gaussian mixture sensor models are used to avoid an exclu-
sive correspondence choice for the likelihood calculation in a particle filter
localization. In the Kalman approach, the sensor update using this model
results in applying all possible correspondences to all hypotheses maintained
by the current belief prediction bel(z;) as done in [70]. The terms in bel(x;)
therefore increase by the factor of the number of terms in the sensor model.

Furthermore, the weights «; in the Gaussian sum are updated in two
steps: first according to the splitting of models, then according to each
separate update. In case of model splitting as for ambiguous landmark ob-
servations, the weight of a new term is the product of the weights of the
original belief hypothesis and the correspondence choice. This first adjust-
ment can be skipped in case of uniform correspondence possibilities as done
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in [70], since the weights are normalized later.

The weight update in each separate sensor update (with fixed corre-
spondence) functions to adjust each weight according to “how well a model
explains the observations”. [I] proposes to recursively adjust the weight «;
by multiplication with the probability of the measured k-dimensional inno-
vation (z; — z;) by

a; = vy L e ) (7.2)
(2m)F [P

where Z; is the expected observation for the fixed correspondence according
to the ith model, P is the sum of the measurement and the prediction
covariance, and v is a normalization factor. Equation [7.2]is slightly adapted
by [70], adding a term ey expressing a static probability of the observation
being an outlier, i.e. a false positive in the measurement process such as
echoes in sonar data or incorrectly classified objects in a vision system. This
is done to improve the lack of robustness to outliers. A further discussion
of the implications of this will be given in section

N

7.1.4 Pruning the Belief Representation

To maintain efficient computability, the number of terms in the Gaussian
mixture representation of the belief needs to be limited. Both the process
and sensor update potentially lead to a multiplicative growth in the number
of terms as described in sections [7.1.2] and [7.1.3] respectively. This multi-
plicative increase per time step results in an exponential growth of Gaussian
terms over time, consequently preventing any efficient computation. There-
fore, this is countered by pruning the resulting belief representation.

Several different methods have been proposed for this. The general for-
mulation for the task is to find a suitable Gaussian mixture representation
with a specified maximum number of terms approximating a given proba-
bility distribution. This is similar to finding the initial parametrization as
described in section [7.1.1], only in this case the target distribution is already
given as a Gaussian mixture, but with a higher number of terms. In [88]
this is done by computing a re-parametrization by an iterative expectation
maximization approach with a heuristic initialization using an efficient ver-
sion of k-means clustering. In [51] a distance-based method is proposed for
density estimation as a weight optimization problem for Gaussian mixtures
with a regularization term to achieve smoothness in the resulting densities.
The method achieves a good approximation quality with sparse representa-
tions compared to several other approaches using expectation maximization,
support vector machines, and Gaussian process regression.

In most practical applications however, such sophisticated re-parametri-
zation strategies are often too time-consuming. Instead of applying iterative
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optimization or regression procedures, simple heuristics are used to reduce
the number of terms in the Gaussian mixture. This is done by combining
multiple terms into one and by neglecting terms with small enough weighting
factors whenever possible [1, [70].

7.2 Efficiency-related Trade-offs and Model Limi-
tations

The extension to use sums of Gaussian for Kalman filtering offers a the-
oretically sound and intuitive solution to most of the problems classical
Kalman filters face in realistic application scenarios. However, the compro-
mises which have to be made to ensure an efficient computation, as well as
some of the common assumptions described in section potentially nullify
certain aspects which make the Gaussian mixture representation desirable
in the first place. Two potential problems related to pruning and to the
handling of false positives are described in the following section. This serves
as a motivation for the alternative approach described in section which
differs from other common implementations [I}, [70].

7.2.1 Influence of Pruning on Quality of Estimation

As shown in section multi-modal filter updates potentially produce ex-
ponential growth of the number of terms in the belief representation. This
implies the necessity of pruning those terms to maintain a limit of the com-
putational complexity. The resulting decrease in estimation quality is often
neglected or taken as unavoidable without further discussion. Alspach and
Sorenson state in [I, page 442] that it is possible to perform model merg-
ing “without seriously affecting the approximation”. This statement is only
valid as long as the entire state space is still covered, which is obviously the
case for distributions along a grid as in [I]. For higher dimensional state
spaces and strict real-time limitations on mobile platforms, such a coverage
can often not be maintained. Consequently, pruning is applied to an extent
far beyond the reduction of clusters along a grid to separate Gaussians. In-
stead, also small terms are removed which do not coincide with other more
significant terms. This is either done by incorporating them into the closest
other term, changing its mean and variance slightly so that the new Gaus-
sian’s tail end accounts for the removed term, or the small term is neglected
completely [70].

Such pruning policies do not only affect the quality of the approximation
by the obvious loss of information from removing those terms, but also by
further effects resulting from this. One of the advantages of the Gaussian
sum representation lies in the fact that the approximation introduced by
linearizing the process or sensor models is better for a belief represented by
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Gaussians with small covariances compared to large ones, which obviously
extend further away from the point around which the model is linearized.
Thus the quality of approximation corresponds directly to how small the
covariance around the separate Gaussians is. Since pruning reduces the
number of Gaussians resulting in bigger covariances, this conflicts with the
advantage of the Gaussian sum against single big Gaussians even in situa-
tions of uni-modal belief distributions.

An even more significant problem shall be illustrated using a simplified
example. Consider a robot which is well localized with a current belief state
consisting of a single Gaussian. Its position is then altered at a time tg, e.g.
by a collision with another agent, changing the robot’s orientation signifi-
cantly without perceiving it. In figure the observation the robot makes
after its orientation change might well correspond to a different feature,
which had a similar relative position prior to the pose change. So in the
following time steps the robot repeatedly makes ambiguous observations,
which correspond to one of two possible landmarks in its map. In this sce-
nario (see figure , let each blue link correspond to the correspondence
choice ¢; and each red link to choice cs. ¢1 corresponds to the real observed
landmark, but cp is the choice which fits the (wrong) initial belief state
bel(xy,) better. Figure Visualizes the model splitting resulting from each
multi-modal sensor update without any pruning.

In this situation, updates based on the correspondence choice ¢ result in
small differences between expected and real measurement, while those based
on choice ¢; initially produce large ones, which only decrease when frequent
updates using ¢ shift the corresponding mean closer to the true position. In
this scenario, continuous multi-modal updates obviously do not resolve the
localization ambiguity, but lead to a belief state bel(zy,) including a term
a4, Na t;, which is the result of a series of “correct” choices and which, after
the corresponding mean is close to the true position, also has a high weight.
In a situation like this, few additional complementary observations of differ-
ent landmarks might resolve the ambiguity and leave the true position as the
most probable estimate in the belief. Thus the Gaussian mixture filtering
allows for more than just mere maximum likelihood estimation, if extensive
pruning does not interfere with this characteristic.

Assuming equal a-priori probabilities for both data associations and as-
suming simple uni-modal process updates, the weight factors «; of the differ-
ent terms in the belief of the following time steps t; is changed exclusively by
the sensor update in equation Since initially the correspondence choices
c1 do not fit the belief as well as the alternative choices do, the weight s ¢,
in ﬁgure is much smaller than aq ¢, at time step ¢3. This makes paths in a
tree of correspondence choices, which do not instantly lead to high likelihood
estimates, ideal candidates for pruning techniques as described in [70].

In other words, should a robot come into a situation, in which an “in-
correct” correspondence choice initially provides a higher likelihood, then
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(b) Observations after orientation change.

Figure 7.1: Correspondence situation.



138 CHAPTER 7. MULTI HYPOTHESIS KALMAN SYSTEMS

(b) Model splitting without pruning.

Figure 7.2: Model splitting resulting from a series of ambiguous landmark
observations.
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an aggressive pruning strategy prevents the exploration of other less likely
paths of correspondence choices. Even if one of these paths leads to an over-
all better and more likely later estimate, none of them is followed long if it
does not lead to a competitive likelihood sufficiently fast.

So this kind of aggressive pruning does not only decrease the estima-
tion quality, but actually removes one of the most significant advantages of
Gaussian mixture filtering: the possibility to maintain different hypotheses
of which some may temporarily be unlikely, but still allow the observation
of the influence of new observations on regions of the state space away from
the maximum likelihood estimate. Note that this is also essential for re-
localization in kidnapped-robot scenarios.

Since the described behavior is a recognized deficiency of such aggres-
sive pruning, there also exist strategies to prevent this without allowing
too excessive growth in the belief representation. Among those are heuris-
tics such as time-to-life counters for certain new terms which prevent early
deleting or merging with other more confident models. Another possibility
is to randomly generate new terms by applying the full innovation for a
belief term’s mean and a correspondence choice without taking the scale of
the covariances into account, thus allowing a “jump” into a region of the
state space which might provide higher likelihood for a combination of fu-
ture measurements and correspondences. All those strategies, however, are
heuristic in nature without a solid stochastic foundation, and are therefore
rarely mentioned in publications.

7.2.2 Integrations of False Positive Observations into the
Sensor Update

The robustness of localization algorithms expresses the filter’s ability to
maintain a good estimate under various amounts of noise. One aspect of
this is the inaccuracy of the process and measurement model, often expressed
by an additive random component which is assumed to be of a Gaussian dis-
tribution. Kalman filters are particularly effective in dealing with such noise.
False positive observations or outliers are another aspect. Those account for
the fact that in real-world applications measurements are significantly more
often far from the expected mean than the main distribution would suggest
if it would be pure Gaussian.

In many implementations of Kalman localization algorithms, such out-
liers are not handled explicitly, but instead the measurement noise parameter
is increased to cope with those large errors. A common compensation is to
enlarge the tail end of an otherwise Gaussian distribution. [70] assumes a
probability of €y that an observation is an outlier, and adapts equation
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as follows:
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This change prevents the weighting of Gaussians to drop too much by an
update with a single outlier. While this approach seems intuitive and is
often applied to the weighting functions in particle filters, it does not affect
the actual Kalman update with the outlier observation itself. Instead the
implicit assumption is that outliers appear randomly and therefore do not
systematically influence the system estimation.

An alternative handling of such false positives is proposed here for two
reasons. First, false positive observations are not necessarily random in na-
ture. Depending on environment and sensor setup, it sometimes is likely
that some characteristic in the environment produces outliers in the robot’s
cognition process. Once those outliers originate from a certain source, which
is not included in the robot’s internal map of its environment, those obser-
vations cannot be handled as random noise any longer, since they are sys-
tematic. Repeated updates with those “false” observations would introduce
a bias into the estimation process. The second reason is that the sensor
update step described in section already provides the means for an
alternative solution.

Instead of incorporating the possibility for false positive observations
into each sensor update for each correspondence, a more natural alternative
is to handle false positives as just another correspondence alternative. The
underlying assumption is that each landmark observation, not just the in-
herently ambiguous ones, either corresponds to one of the known locations
of such landmarks on the map or to another source not included in the map.
In SLAM contexts, these additional observation origins might be mapped
and used for further localization purposes, resulting in a multiple-hypothesis
EKF-SLAM approach. In localization tasks, however, such observations cor-
responding to unmapped landmarks can simply be discarded, i.e. no update
is performed at all to the term generated by this correspondence choice.

This approach provides the possibility of a position tracking unbiased by
false positives, thus more robust especially in situations where false positive
observations do not occur randomlyﬂ Obviously, this also has drawbacks:
Whereas previously all terms in the Gaussian mixture have been subject to
the same number of updates, this is not the case now, leaving the choice
either to use a fixed factor ¢y of equation for the weight update or
to fundamentally change the working of the weight update. At the same

2The term robustness describes a filtering method’s ability to cope with erroneous
input data. This includes ordinary Gaussian measurement noise, but also larger errors
such as corrupted data or false positive measurements. The latter ones are focused here
because of their frequent occurrence in robotic perception.
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time, the increase in the number of correspondence choices also potentially
increases the growth rate of terms in the Gaussian mixture.

7.3 Selective Multiple-Hypotheses Filtering

Sections [7.1] and provide an overview about Gaussian mixture filtering
and important aspects and approximations, and also established the view
that due to linearization and aggressive pruning, Kalman filters might tend
to behave as maximum likelihood estimators. In this chapter the maximum
likelihood character is accepted and combined with a different trade-off be-
tween pruning and state space coverage to propose an alternative approach
to multiple-hypotheses Kalman filtering which utilizes some techniques orig-
inating from particle filtering.

7.3.1 Similarities to Particle Filtering

Particle filtering, or Monte Carlo localization, is an alternative implemen-
tation of the Bayes filter equations and Instead of expressing the
belief in parametrized form by one or several Gaussians, bel(x) is given as a
set of samples or particles whose distribution in state space is proportional
to the belief’s probability distribution. As mentioned in the beginning of
this chapter, particle filters are often the favored choice for applications in
which state estimations are expected to be multi-modal and measurements
subject to significant noise.

Many similarities between multiple-hypotheses Kalman filtering and par-
ticle filtering exist, since each particle in itself represents a hypothesis for
the robot’s position. Both algorithms have originally been designed under
the assumption of enough hypotheses to appropriately cover the state space.
But the computational complexity of both increases for a growing number
of hypotheses (linear in the particle filter; even quadratic for model merging
in Gaussian mixture filters). In implementations aiming at real-time per-
formance on limited computational resources, the number of hypotheses is
often reduced to a point where those assumptions are violated. For particle
filters with extremely low numbers of particles, several techniques have been
proposed to compensate for the low state space coverage (cp. section .
Applicability of some of those techniques to multiple-hypothesis Kalman
filtering is motivated by pointing out the following similarities.

The most obvious parallel in the actual implementation is the weight-
ing of particles and Gaussian terms, which is a straight forward application
of the sensor model p(z|z;) and therefore identical in the general imple-
mentation of equation In the basic particle filter the new particle set
for each time step is sampled from the old one proportional to the particle
weights, thus requiring a resetting of the weights. In implementations aim-
ing at real-time performance on limited computational resources, techniques
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have been introduced which resample only when necessary, thus updating
the weight exactly as in equation In this context, adaptations similar
to equation have been proposed to accommodate outliers. An even more
drastic restriction of the weight update has been proposed in [65] as tem-
poral smoothing where the weight update is truncated to prevent too high
fluctuations of particle weights. The same problem has been pointed out by
Quinlan and Middleton in [70] for multi-hypotheses Kalman filters.

Particle filters with extremely low numbers of particles cannot maintain
hypotheses in areas of (temporarily) low probability, therefore an increase
of probability due to recent measurements cannot be modeled. Introducing
new particles randomly in the resampling step allows the possibility of high
weighted particles away from previous high probability regions. A more ef-
fective solution in the form of sensor resetting has been proposed in [57].
Sensor resetting describes the introduction of new particles based on recent
measurements and the sensor model. Instead of adding many new particles
uniformly distributed and discarding most of them in the resampling step
after a few measurement updates, particles are inserted directly in regions
of potential high probability based on the recent measurements. In [65] for
example, additional particles are generated with high priority from multi-
angulation of unique landmark observations calculated as in [4], and with
lower priority as multiple hypotheses from non-unique observations. This
technique is directly applicable in multiple-model Kalman filtering, too, as
motivated in the following section.

7.3.2 Stochastic Context of Maximum-Likelihood Choices for
Multiple-Model Filtering

As argued in section operating Gaussian mixture filters with a strictly
low limit on the number of terms and the consequential aggressive pruning
deprives such filters of much of their multiple-hypothesis tracking poten-
tial. The parallel to particles filters with low numbers of particles has been
pointed out in the previous section. The established policy in this case con-
sists of two measures. The first one is to limit the influence of single incon-
clusive measurements. The second is to accept the impossibility to track all
important hypotheses in the exponentially growing number of paths, while
at the same time providing the means to recover from the neglect to model
those which might rise in importance again in the future, e.g. by sensor
resetting.

This works contribution is to transfer these concepts from particle filter-
ing to Gaussian mixture Kalman filters. This mainly means a modification
of the sensor update step. First, it is obvious that the weight update needs
to be adjusted. But more importantly, an additional new sensor update in
parallel to the old one will perform the same function as the sensor resetting
part of the particle filter’s resampling step, i.e. introducing new Gaussian
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terms not based on the previous state estimate, but on the recent sensor
measurements’ sensor model only. Note that this is not equivalent to model
splitting since the new terms are not correlated to the old ones.

The resulting filter frequently injects new low-weighted models into re-
gions with high probability based on the last observations, which might
be expected to rise in weight in case theses hypotheses also fit future ob-
servations. This however relieves the necessity to track multiple paths of
correspondence choices for updates of existing models as described in sec-
tion and illustrated in figure In [70] many multi-modal sensor
updates basically result in uni-modal ones due to the aggressive pruning.
While this already corresponds to implicit maximum-likelihood updates, it
is now possible to explicitly do exactly this. As a consequence, both the pro-
cess update and the old sensor update can be applied with the uni-modal
maximume-likelihood choice, which can be done in far less computation time.
This explicitly neglects alternative paths in the decision tree of correspon-
dence choices, but relies on the sensor resetting functionality to pick up
those paths which lead to conclusive estimates as illustrated in figure
relating to the example in section

. <o,
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: (o) (e
b G ()

Figure 7.3: Tracking only maximum-likelihood correspondence choices for
ambiguous landmarks, relying on sensor resetting to generate terms close to
those corresponding to the neglected paths leading to conclusive estimates.

This application of the sensor resetting concept also solves the problem
that common Kalman implementations have concerning the kidnapped robot
problem. Both, a sudden change of robot orientation with consequential
wrong data association as described in the example in section and a
real teleportation event will be handled accordingly.

7.3.3 Modified Sensor Update

Section motivated the advantage of handling the possibility of false
positive observations in the correspondence choice instead of incorporating
this possibility into every separate likelihood calculation. In the context
of maximum-likelihood correspondence choice sensor updates, this means
the possibility to directly discard measurements for a certain localization
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hypothesis, if the likelihood of this observations being a false positive is
higher than it belonging to any landmark occurrence in the map.

This allows the possibility that at least one model estimates the correct
current state without any bias even by frequent false positive observations.
However, one problem occurs which might be an explanation why this ap-
proach has not been used so far: Enabling false positive correspondence
choices automatically leads to terms with different numbers of sensor up-
dates each time a measurement is associated with a landmark by some terms
and with a false positive by others. Consequently, updating the weights with
equation as described in section is not directly possible any more.
One option would be to assign a fixed likelihood to false positives and use
that for those updates, but this would leave a balancing problem between
the weighting of hypotheses which explain only a subset of observation, but
really accurately, and those which explain more observations, but not as
conclusively.

Following the temporal smoothing idea for particle filters [65] described
in section the weight update for hypotheses can be adjusted so as not
to be influenced that much by different degrees of outlier measurements.
Instead it is possible to weight different models based exclusively on how
many observations can be conclusively explained by them.

7.4 Evaluation

To show the applicability and practical relevance, the proposed multiple-
hypotheses Kalman filter is applied to the RoboCup scenario (cp. sec-
tion . The walking algorithms presented in section and more
detailed in [I3],[14], can be tuned to reach a speed of up to 44 cm/s, which
has been achieved during the RoboCup 2010, but are commonly used in a
configuration with a maximum speed of 30cm/s due to reasons of motor
temperature management. While those relatively high speeds are advanta-
geous in many game situations, chasing the ball and focusing on it for several
seconds at a time allows the build-up of significant odometry errors without
the possibility for continuous corrective measurements. High uncertainty
in the odometry information can be considered a common characteristic of
humanoid robots and biped walking in general and needs to be considered
when designing and evaluating appropriate localization filters.

Most measurements are ambiguous: Observing a single goal post leaves
at least two correspondence choices, while a field line crossing can be as-
sociated with 6 true positions on the field in case of a T-crossing or with
8 positions in case of an L-crossing. Even more correspondences are possi-
ble when allowing incomplete or uncertain classification of crossings (which
is done here), e.g. in case of occlusion or for the observation of two per-
pendicular lines whose intersection is outside of the image. Also the center
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circle, which is a unique observation, implies two possible positions due to
its symmetry. As mentioned in section [2.1.1] one important feature of the
SPL environment is that no barrier exists between the soccer field and its
surroundings, which frequently includes colorfully clothed audience. So a
localization algorithm needs to be robust not only to noisy measurements
due to staggering robots but also to frequent false positives. This is the
setup in which the proposed multiple-hypotheses Kalman filter is evaluated.

The software running on the robot includes the manufacturer’s middle-
ware NaoQi as well as the robot control software consisting of a motion
thread running at 100 Hz and a cognition thread running at 15Hz in this
experiment. All modules needed for playing a regular SPL soccer match
are activated. To provide ground truth data for the evaluation of the lo-
calization quality, a camera system is mounted above the field and detects
markers attached to the robot. An additional module in the robot’s software
uses this ground truth for comparison with the localization filter output.

The presented approach is evaluated in experiments on real robots in a
typical SPL scenario. Additionally, it is compared against a particle filter
solution utilizing sensor resetting, temporal smoothing, and lazy resampling,
and which has been in use in RoboCup competitions up to the development
of the presented multiple-hypotheses Kalman filter. For all experiments,
both localization algorithms run in parallel on the robot, thus working with
the exact same input from image processing and ensuring the comparability
of the results.

A first experiment evaluates the re-localization ability after several tele-
portation events. In figure each red mark on the time axis indicates
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Figure 7.4: Ability for re-localization from kidnapped-robot situations.

that the robot has been picked up to be placed at a random new position
on the field. The illustrated performance represents typical behavior for
both filters, which expectedly show similar behavior since both get their
re-localization ability from the same principles. At timestamp 70, both
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filters re-localize at the exact same time, because their sensor-resetting sub-
modules utilize the same observations. Between timestamps 90 and 110 the
multiple-hypotheses Kalman filter generates a hypothesis close to the correct
position, but does not rate it high enough in those 20 seconds to output it
as the likeliest location. Similarly the particle filter jumps between different
clusters after timestamp 170. Based on this experiment, none of the methods
is superior to the other in this aspect, but it shows that the proposed filter is
able to perform at the same level as a particle filter implementation, which
has been tuned especially to handle such kidnapped-robot situations. Note
that this is classically regarded as a particle filter’s specialty and similar
performance has not been reported for related Kalman variants.

Additional experiments have been set up to quantitatively evaluate the
localization quality. In all experiments the robot is placed on the field with-
out prior knowledge of its position and the movement is started after a
fixed time which has normally been enough to establish a good first local-
ization hypothesis. Figures and show different ground truth paths on
the field and the localizations results of the multiple-hypotheses unscented
Kalman filter and the particle filter. The Kalman filter’s characteristic of
smooth and accurate position tracking is clearly visible and the filter’s out-
put in form of its strongest hypothesis is superior to the particle filter’s most
probable cluster.

Figure [7.7] shows one run where many persons walked around the field,
thus occluding field features and provoking false positives at the same time,
e.g. blue jeans sometimes are falsely recognized as blue goal posts. While
both localization approaches show diminished results, the multi-hypotheses
UKF clearly produces estimations closer to the real robot path.

A comparison of the different algorithms’ runtime is given in figure
It has to be noted that the presented measurement is not unbiased, since
larger runtimes tend to be influenced more by random threading issues and
thus the larger module update time of the particle filter might include mo-
tion thread update cycles. Nevertheless, the multiple-hypotheses Kalman
filter is clearly much more efficient. While this does not allow to compare
this implementation of a Gaussian mixture Kalman filter to the one proposed
by Quinlan and Middleton [70], it can be argued to be more efficient, too,
since a similar comparison to a state of the art particle filter in [70] showed
only slightly better runtime and averaged around a third of the image pro-
cessing time, which would still be in the range of multiple milliseconds. The
average runtime of the approach presented here is 0.4 ms. Figure illus-
trates the runtime measurement of the cognition thread in the robot control
framework. As can be seen, the presented approach obviously eliminates
the localization problem as a computational bottleneck. Most of the time is
spend on image processing, the remaining time difference goes to infrastruc-
ture and other tasks such as ball tracking or behavior decisions. The periodic
tendencies in the measurements (which can also be seen in figure are a
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Figure 7.5: Localization of Multiple-Hypotheses UKF compared to previous
particle filter solution (which was used in previous competitions). Both are
running in parallel on the Nao using the same perception as input. Ground
truth is provided by a camera mounted above the field.
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Figure 7.6: Comparison of localization performance.
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Figure 7.7: Comparison of localization performance in a worst case situation

with much occlusion and many false positive observations.
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Figure 7.8: Runtime comparison between the multiple-hypotheses Kalman
filter and the particle filter.
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result of the robot’s head motion, which also searches for the ball in front of
the robot’s feet where only little localization information can be extracted.

7.5 Conclusion

This chapter presents an approach for Gaussian mixture filtering which uti-
lizes techniques from particle filtering to incorporate valuable aspects of both
filter strategies. The resulting multiple-hypotheses unscented Kalman filter
is superior to common Kalman filters in its ability of fast re-localization in
kidnapped robot scenarios and its representation of multi-modal belief dis-
tributions, and it outperforms state of the art particle filters in localization
accuracy and computational efficiency. A direct comparison to the approach
proposed in [70] or similar classical Gaussian mixture filters could not be
done, yet, as its implementation has not been available. Besides performing
extremely well in various experiments, the presented localization approach
has been applied in RoboCup tournaments and its reliability, robustness and
runtime-efficiency have played an important role in achieving a second place
in the world championship 2011.
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Chapter 8

Distributed Agents in
Dynamic Environments

DSO far, this work covered localization problems of single mobile devices in
mostly static environments. In chapter [6] the environment is not previously
known per se, but after an initial mapping phase, no new information about
the environment is accumulated and used during the localization phase. For
the purpose of localization, those maps are therefore also static a-priori
knowledge.

In this chapter, the estimation task is extended beyond static environ-
ments and single robots. The robot soccer scenario described in section
is encompassed as a benchmark and challenge for stochastic state estimation
and robotics in general. Thus, multiple robots in a team are not only used
for coordinated behavior planning, but also their perception and estimation
of the dynamic environment and their position therein is done cooperatively.
Certain considerations are made in section towards the tasks involved in
cooperatively modeling a dynamic environment. Sections and then
present different solutions for the stated problem, based on two different
existing filter solutions, a particle (cp. section and a Kalman filter
(cp. section and chapter 7)), and their respective SLAM extensions (cp.
section [3.5)).

8.1 Considerations Towards Dynamic Environments

Knowing their own position relative to the environment and certain points
and objects of interest is essential for mobile robots to autonomously achieve

!Parts of this chapter are based on two articles, which are published in the Proceedings
of RoboCup 2012: Robot Soccer World Cup XVI and in the Proceedings of the IEEE
International Conference on Multisensor Fusion and Integration for Intelligent Systems
2010, respectively. The corresponding publications, see [85] and [I7], are available at
http://www.springerlink.com and http://ieeexplore.ieee.org.
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their tasks. The task of localization in a perfectly known structured envi-
ronment alone has been discussed in previous chapters. The other extreme
is simultaneous localization and mapping (see section , where no prior
information is available and a robot has to build a map while at the same
time navigating and localizing itself using this map. Real-world robotics
applications can be placed between simple localization and SLAM: Some
information about a robot’s environment is nearly always available, be it
floor plans for indoor or aerial images for outdoor environments, even if
those may be on another planet. This prior information however is rarely
sufficient enough to neglect further information to be collected during the
robot’s operation. Floor plans miss static features like most furniture, quasi-
static features like chairs, and of course dynamic features like people or other
moving agents. The same holds for any outdoor prior information.

This chapter’s purpose is to give an overview about localization in this
context, tracking and aspects of distributed modeling among a team of
robots.

8.1.1 Localization and World Modeling

Separating the state for localization and tracking decreases the estimation
problem’s dimensionality and therefore the complexity of algorithmic solu-
tions like the Kalman or particle filter. This is the major reason that mod-
eling dynamic elements of a robot’s environment is normally approached by
assuming a known location or working in a robot-centric local coordinate
system. Additionally, tracking of dynamic objects by stationary observers
is widely explored, which suggests approaching this problem for a moving
observer in similar ways.

Modeling the full state of both the localization and the surrounding
world, however, has advantages in certain situations, some of which are
covered in more detail in section In case of an unknown number of
ambiguous objects, this problem bears some resemblance to SLAM. Most
SLAM algorithms, however, deal with completely unknown, but static envi-
ronments only. Previously the fields of localization, i.e. estimating a position
based on a known map, and SLAM, i.e. no prior information but mapping
of static environments only, seem to have been strictly separated. Only re-
cently approaches were published covering SLAM with a-priori information.
In [52] the prior information based on aerial images is used for localization
but not fully integrated into the SLAM aspect of this work. Only single
unimodal position hypotheses are considered as constraints for the graph
SLAM algorithm, despite the multi-modal nature of the particle filter used
to generate these. Thus [52] is closely related to [62] where GPS is used in
the same way instead of localization by prior information.

In most SLAM algorithms, moving objects are not explicitly mapped
but filtered out beforehand and considered noise [34]. Alternatively, mov-
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ing objects are tracked in separate models without influence on the SLAM
outcome as in [76].

8.1.2 Heterogeneous Information Sources

The proposed system should use information about previously known and
previously unknown, static and dynamic features, and incorporate all those
into a coherent estimate of both the robot’s own positions and the potentially
dynamic states of the other objects. This implies various different, and more
importantly, heterogeneous information sources.

Distinctions can be made according to the characteristics of each feature:
whether it can be used for localization directly or needs to be mapped, too,
either as a static but previously unknown feature, or a dynamic one includ-
ing motion updates. A feature’s associated uncertainty can vary both with
respect to the reliability and precision of its observation as well as the inher-
ent predictability of its motion model. Simple in-animated objects on the
one hand may just follow physical equations of motion. Other autonomous
agents on the other hand may change their intention and action unpre-
dictably, while being harder to measure reliably due to their more complex
shape, varying silhouette and changing backgrounds.

The important consequence of these considerations is that each such dis-
tinction offers the possibility to apply approximations without losing too
much precision in the estimation result. A thorough analysis on the im-
plication for those heterogeneous information sources and possible approx-
imations can be found in sections and where the applicable ones
are described in each respective implementation’s context. One relevant ap-
proximation shared in both solutions is the aggregation of measurements to
build local short-term models of each observation type, which is described
in the following section.

8.1.3 Percept Aggregation in Local Temporary Models

In case of highly uncertain observations of dynamic objects or agents in
the environment, it is useful to aggregate these measurements to build lo-
cal short-term models of each observation type, thereby decreasing the un-
certainty associated with the observed target and allowing to filter false
positives. Once such a short-term model is sufficiently recognized, it can
be forwarded to the central estimation system as a meta-measurement and
deleted from the temporary local model. The deletion of such models is
important to preserve the independence assumption between consecutive
measurements which is part of the Bayes filter concept. Insufficiently vali-
dated local hypotheses can then be pruned away without having a negative
influence on the system’s estimate. The short life span of those local models,
e.g. below one second, prevents odometry errors to accumulate, but often
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allows the integration for example of a series of image processing results to
obtain superior measurement quality.

In the following, the local modeling is exemplified for dynamic features,
i.e. the ball and other robots in a robot soccer scenario. Once they are
recognized in the image processing module, measurements of robots or the
ball are handled like other point features by only providing their ground
contact point, so their measurements consist of two angles z = (ayq, ozg)T as
described in section Each object’s model 1 = (mg, my, may,,my, )"
consists of a 2-dimensional spacial component and a corresponding velocity
component, which are denoted p/ = (mg, my)? and v = (my,, my,)" when
used separately. For the spacial component of the state p/ and the height of
the robot’s camera hegmerq, €quations and can be used to calculate
the sensor model in form of the observation matrix A as in equation
Note that the velocity is not observable by processing a single camera image.

ha, (.“) = atanQ(hcamerm |.LL,D (8'1)
hao (1) = atan2(my,, my,) (8.2)
— Neamera M _ hcamera My O 0
H — |p’/‘3+h%ame7‘a |p’l‘ |/”’/|3+hgame7‘a |/”’/| (8 3)
S m 00 '
m24+m? m24+m?

For objects which are simply governed by the physical laws of motion,
instead of being motorized or controlled, the motion model in the control
update for a time difference A; consists of a continuous motion slowed down
by a friction factor ¢ as the force generated by the friction divided by the
mass of the object. ¢ is negative to indicate the decelerating force. Since
the state is modeled in local coordinates, the robot’s own motion, given by
the translational and rotational odometry (A, Ay, Ay), also transforms the
local estimate. This results in the following time update for the velocity

vector:
VUt = |4 Vt—1 (84)
with
(14 £25) Q(=20) for o1 = |6A]
V= (8.5)
00 else
0 0 ’
where Q(a) = cos(a) - —sin(a) is the rotation around « (cp. equa-
~ \sin(a) cos(a) p-cd

tion in chapter |5)). The full time update therefore predicts the state p;—1
according to equation

2A detailed derivation can be found in appendix
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Ay
Q(—A AQ(—A A
R T e e I (8.6)
0 Vv 0
0

With the derivation given in appendix[C] this results in the Jacobi matrix
F for the process update as the partial derivatives of my,my,m,,, and m,,
at (Mg 1, My -1, Moy 11, My t—1) " :

Q(—Ap) AQ(—A
L L (8.7)
0 F’
( afmvz 8fm%
Oy Oy, | > A
/ f— 8fm'u af’mv 1 |/Ut71’ — | t|
F= ity Dritey (8.8)
\ 0 else

with

O frms = <1 + ¢ At) cos(—Ap)

omy, v
Al
v
afmvz B o ALY .
omy, - <1+ v >sm(—A9)
9 Ay my, (COS(_Ale;vI — sin(=Ag)my, ) (8.10)
afmvy ¢ At 1
.~ <1 + o] > sin(—Ay)
¢ Amy, (Sin(_mw);rr;% Lot S (8.11)
8fmvy QZ) At
omy, (1 T ) N
_$ A my, (sin(—=Ag)m,, + cos(=Ag)m,, ) _ (8.12)

o]

Thus, local models of dynamic objects in the robot’s environment can
be modeled using separate Kalman filters. In case of the unpredictability of
the motion of autonomous robots, it is possible to neglect the estimation of
their velocity and apply high process noise instead.
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8.1.4 Distributed Modeling

The sharing of information among a team of autonomous agents is espe-
cially desirable in cases where single robots have a very limited field of view
and when occlusion frequently occurs. The distribution of information can
be done with two conceptually different approaches. One approach can be
classified as bottom-up and distributes measurements between robots, which
are subsequently handled by common sensor fusion techniques. This is for
example done in [83] and [20]. The top-down approach as applied in [39]
and [96] consists of merging the individual robots’ world maps. The prereq-
uisite for such map merging is that all poses of participating robots need to
be known, either in a consistent global coordinate frame or relative to each
other. A common implementation in exploration scenarios is with uniquely
identifiable robots which initiate map merging when observing each other,
or when all robots are confidently localized in the global reference frame.
This latter approach would exclude poorly localized robots from map
merging. However, those might also profit from the shared information,
even specifically to resolve their poor localization in case of symmetries. If
the measurements are distributed among robots, basically only each sending
robot needs to be localized successfully in a global reference frame. An addi-
tional advantage is the computational and architectural simplicity of obser-
vation distribution compared to map merging, especially if observations are
already aggregated in temporary local models as described in section
which in case of reliable localization can be distributed at the same time
when used for the local integration into the global world model. Note that
this approach does not guarantee a globally consistent model among all
robots, since insufficiently localized robots do not send out information and
therefore integrate more (but potentially also more unreliable) knowledge.
The difference between the models of well localized robots, however, can be
minimized by globally scheduling the exchange and integration phases of the
observation distribution, which will be described in section

8.1.5 Estimating a Robot’s Position and Dynamic Environ-
ment in a RoboCup Scenario

Although the algorithms and concepts described throughout this chapter are
formulated as general as possible, and are applicable to a wide range of stan-
dard robotic applications, their motivation and evaluation are based on the
RoboCup scenario. This section therefore states several requirements and
objectives derived from this scenario and its hardware constraints. Those
are referenced later as a guideline for the implementations of the approaches
for simultaneous localization in a structured robot soccer environment and
mapping of the unknown dynamic elements therein.

In this robot soccer scenario (cp. section , incomplete prior knowl-
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edge about the field is given by a map consisting of mostly ambiguous fea-
tures. Global localization and re-localization (kidnapped-robot problem)
is considered necessary. This and probable ambiguity of observed features
suggests the necessity of a multi-modal belief state representation. Dynamic
objects in the scene are mostly ambiguous, too, and assumed to be other
autonomous agents, some but not all of which the robot may be in con-
tact with. Due to noise in the perception processes and the possibility of
false positive perceptions, the estimation process needs to be robust, with
uncertainty explicitly included in the model. Runtime performance is essen-
tial, since the algorithm aims at real-time execution on limited embedded
platforms.

As mentioned in section [8.1.1], the separate modeling of the robot’s local-
ization and the dynamic part of its environment is often chosen when perfor-
mance is critical. However, this chapter evaluates the possibilities of unified
modeling under those harsh performance constraints, as there are several
benefits over separate modeling, which are not to be neglected. Modeling
of dynamic objects might potentially be useful for localization. Unknown
movement of those objects prevents accurate localization, but shared in-
formation among robots might still resolve a multi-modal or symmetrically
ambiguous localization state. Additionally, robot-centric modeling needs
the incorporation of the robot’s control information or odometry measure-
ments during the filter’s time update. This information is often uncertain,
imprecise motion execution or even unplanned contact with other elements
of the environment. As described in section [£.2] this is a particular problem
with humanoid robots. Thus, even when those separately modeled objects
are stationary, they are prone to drift due to integration of the odometry
errors, while this same error is already compensated in the localization’s
pose estimate.
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8.2 Real-time Dynamic FastSLAM

E| This section presents an implementation of the approach of localization
and simultaneous tracking in a unified estimation state as motivated in sec-
tion B:I.1] In order to aim for an implementation efficient enough to run
on embedded platforms with limited processing power such as the Nao (cp.
section , the FastSLAM algorithm described in section is chosen
as a basis for a cooperative world modeling system. In the following, the
basic concept as well as several adaptations for the optimal utilization of
the considerations in section [8.1.2| are presented and evaluated.

8.2.1 FastSLAM Adaptation to Prior Knowledge and Het-
erogeneous Information Sources

FastSLAM is a popular SLAM algorithm for handling multi-modal distri-
butions while keeping low complexity (cp. section . In FastSLAM,
a particle filter estimates the robot’s pose, but with each particle carrying
its own map and thus representing not only a localization state but a hy-
pothesis for the map and the robot’s whole path therein. The central idea
of FastSLAM is that by providing path hypotheses, the map features are
independent of each other and can thus be estimated separately. The result
is a particle filter with each particle possessing several separate Gaussians
modeling the features which are not covered by the particle distribution
alone. When observing a landmark, FastSLAM first updates the Gaussians
of each particle analogous to the Kalman sensor update and then calculates
the particles’ weights for resampling from the innovation probability. Clas-
sic FastSLAM approaches the standard SLAM problem, i.e. simultaneous
localization and mapping of static features without any prior information.
Every feature that can be detected and used for localization is commonly
mapped during the robot’s operation and represented by its Gaussian.

In case of available prior information it follows naturally to divide the
set of observable features into those used only for localization and those
that also need to be mapped. In real-world scenarios the latter may also
contain dynamic objects which are obviously not included in any a-priori
map. Those of course need a full Kalman Filter including motion updates
for estimation. Additionally, there might also be static map features as
mentioned in section Note that the same concept also applies to
situations without prior information, if well established parts of a map are
regarded as “fixed” and used instead.

So far perceptions are distinguished by whether or not they correspond to
prior known features. Additionally, it is possible to identify different classes

3Parts of this section are based on an article in the Proceedings of the IEEE Interna-
tional Conference on Multisensor Fusion and Integration for Intelligent Systems 2010. The
corresponding publication, see [I7], is available at http://ieeexplore.ieee.orgl
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of objects to be modeled with respect to their uncertainty. Observations of
dynamic elements of a robot’s scene like people or other autonomous agents
are commonly much less precise than those of static features. This is due
to a number of reasons: The shape to be observed might move relative
to varying backgrounds or might even change due to its own movement
as is the case for people or walking robots. The resulting change is both
in outline and appearance due to lighting and shadows. When tracking
humans, the appearances to be recognized might also be generalized to cope
for different clothing. For fast moving elements their velocity results in
motion blur. Most images will not display the complete outline against the
background. Instead, most perceptions will only be of parts of those agents,
so the observed human’s (or humanoid robot’s) distance and position cannot
be estimated with accuracy. Additionally to these reasons for uncertainty in
their perception, other autonomous agents are also more difficult to model
simply because they are, after all, autonomous and their behavior therefore
unpredictable to some extent. Contrary to the mapping of static features,
the position uncertainty grows when dynamic features are not seen and their
constant observation just confines this uncertainty instead of collapsing it
towards zero.

Tracking objects with an inherent limited precision due to their high
process or observation uncertainty, while at the same time obtaining rel-
atively precise models of other features, does not match the homogeneous
modeling of all features. The result is a filter with many particles carrying
the same models for those dynamic elements whose uncertainty often ex-
ceeds the localization uncertainty expressed by the distances between those
particles. Multiple calculation of the same models is computationally inef-
ficient. The novel approach proposed here is to identify such particles, to
encapsulate them into super-particles, and consequently to estimate only one
corresponding model for each dynamic element as illustrated in figure
A super-particle’s weight derives from the sum of its particles’ weights. This
approach can be seen as the particle filter’s equivalent of using different res-
olutions for localization and mapping of certain elements.

Grouping of particles into super-particles is done using clustering meth-
ods analog to the identification of the region with highest density for extrac-
tion of a single pose from the particle filter for behavior decisions. In this
case a deterministic grid clustering approach with overlapping grid cells is
usedEL as shown in figure Cells with the highest probability density are
selected to generate super-particles as weighted averages. This is done using
a greedy algorithm, which chooses the biggest cell, then marks all particles
in this cell as assigned before finding the next biggest cell. This way, a parti-
cle can not be assigned to two clusters at once, but is always associated with
the bigger cluster. This procedure is better suited than k-means clustering

4Overlapping cells are chosen to minimize the effects of discretization.
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Figure 8.1: Using super-particles to introduce a lower resolution scale.

for example, because the maximum distance of particles in the same cluster
is limited, which is an essential characteristic as described above.

A new set of super-particles S; is generated at each time step by consider-
ing only the current particle distribution. It is therefore possible for particles
to transfer between close super-particles, so that transferring corresponding
world maps from one time step to the next is not straight forward. Allo-
cation of a super-particle’s world map at time t to those of the previous
time step ¢t —1 is done by identifying corresponding particles. Exchanging of
particles among close super-particles results in merging of the maps. This is
illustrated in ﬁgure in which the new super-particle 2 receives particles
from different super-particles in the previous time step, which are merged ac-
cordingly. Note that for simplification, figure [8.1b| assumes identical weights
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Figure 8.2: Two overlapping grid cells in the deterministic grid clustering
approach.

for all particles.

This introduction of super-particles reduces the mapping cost by the fac-
tor between the number of particles and the number of super-particles. Note
that the world map of the super-particle representing the highest probabil-
ity density can directly be used as the filter’s resulting maximum-likelihood
estimation. Therefore the eventual merging of maps between super-particles
is computationally far less demanding than the generation of one consistent
map from all particles in the cluster with highest probability density in case
each particle carries its own world map as in classic FastSLAM. This last
step is avoided in most algorithms by directly using the single particle with
the best current rating instead.

It remains to discuss the number of super-particles needed for a sufficient
approximation of the current belief distribution. This depends, of course,
on the task and application in general and on the specific belief state at
a certain time, i.e. a highly regular and symmetric environment results
in more clusters of high probability density, which survive longer than in
environments where symmetric position hypothesis can be resolved easily.
All such clusters need to be covered by super-particles. On the other hand,
such environments also need a high number of particles for localization so
that the gain by mapping through super-particles remains significant.

For uniform particle distributions, however, the number of super-particles
needed to cover all those particles comes close to the number of particles.
In this case, it stands to reason that those particles not covered by a certain
number of super-particles correspond to regions of a belief distribution too
low to have significant impact on the global map model.

Figure shows the percentage of particles neglected by fixed numbers
of super-particles for different situations in the scenario that is used for
evaluation in section [8.2.3l Each situation starts with a uniform initial dis-
tribution and displays the distribution development over time. Figure
illustrates the normal case, i.e. when the robot is able to localize itself and
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the uniform distribution resolves to a few local maxima in the position prob-
ability density. In this case the number of super-particles needed to achieve
good coverage is very low. Figure [8.3b|on the other hand shows the worst
case: the robot is placed in a way that no observation is conclusive enough
to result in any significant clustering of the particle set and localization of
the robot is not possible until it moves (or rotates) into a position where
additional observations can resolve the uncertainty.

A second adaptation to heterogeneous information sources is possible via
the update frequency. Since a single perception of a class of unreliable ob-
servations has far less impact than those of classes of highly reliable observa-
tions, it is possible to buffer those unreliable perceptions into one temporary
model in local robot coordinates and update the super-particles’ global maps
with a lower frequency using this local model described in section The
sensor update step is identical to updating with single observations. The
main argument besides lower computational cost is that multiple unreliable
sensor readings generate an accumulated perception more reliable than the
original ones, while single outlier observations can be filtered out. This
accumulation, however, has to be only temporary with a limited timespan
to prevent the continuous integration of odometry error into the model as
discussed in section and

8.2.2 Multi-Robot Sensor Fusion

Due to the reasons mentioned in section the bottom-up approach
of distributing observations is used to implement the multi-robot sensor
fusion. The percept buffering introduced in the section and motivated
above presents another advantage with respect to distributed modeling, since
not only the update frequency of distributed percepts is lowered, but the
decrease in bandwidth is also substantial. Temporary local maps can be
distributed together with a robot’s localization information in form of its
super-particles’ poses and covariances. Alternatively only the winning super-
particle’s pose and covariance can be sent, or sending might be omitted
completely for localization states below a given validity threshold.

As can be seen in figure the super-particles’ maps are updated
with remote global observations analogous to the local ones. Additionally
the received localization information allows not only to update but also to
mark modeled dynamic objects with a robot’s ID for future reference.

The distribution can be synchronized by calculating the clock offsets
between all communicating robots from receptions times and packet time
stamps, and picking the “oldest” clock as the reference time frame (see
figure . This is done to ensure a maximum level of consistency, as all
robots incorporate approximately the same data into their world models,
and thus decide based on the same knowledge. Complete consistency of
maps on different robots cannot be guaranteed even if all robots send and
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receive simultaneously, however, due to possible different data association
decisions resulting from propagation of pose uncertainty into communicated
percepts. Synchronization is achieved by continuous estimation of the offsets
between the robots’ time frames and alignment of the distribution phases
relative to a reference time frame, e.g. that one with the earliest starting

time (cp. figure [8.4b)).

8.2.3 Evaluation

This section evaluates the usefulness and performance of the proposed sys-
tem in several experiments each focusing on different aspects. The exper-
iments are conducted in a simulated environment of a RoboCup Standard
Platform League scenario (see figure . Except for the approach presented
above, the software running in each simulated robot is identical to that which
was running on the real robots during the RoboCup world championship
2009 in Graz, Austria. The cognition process including image processing
runs at 30 Hz and the motion at 50 Hz. The sensor data used for localiza-
tion and modeling of the robots environment, in this case the ball and the
other robots, is gathered by image processing, whereas the recognition of
static features like field lines and their intersections or goals is more reliable
than those of other robots because of the reasons mentioned in section 8.2.1]
The simulated robot’s odometry is adapted to show uncertainty similar to
that measured in the movement of a real robot (cp. section .

The general experimental setup of the 7.4m x 5.4m game area with 4
Nao robots is shown in section [8.5] The robots’ movements are indicated by
arrows of corresponding colors. The presented approach runs with 100 par-
ticles and a maximum of 10 super-particles. This low number of particles,
which is sufficient for accurate localization while still ensuring computational
efficiency, is achieved by several common techniques for particle filters such
as sensor-resetting, temporal smoothing, and lazy resampling [65]. This sce-
nario is based on common game situations: all robots are moving and no
assumption about their motion models is made since behavior decisions and
consequently walking directions can be subject to frequent change. So the
localization mainly relies on static features and no significant difference in
localization accuracy can be observed in this setup compared to a localiza-
tion reference system with the same number of particles. The maximum
number of super-particles is determined empirically to cover most of the
particles even in worst case situations.

As the cognition process runs with 30 Hz the theoretical runtime avail-
able on the robot’s limited CPU is 33 ms, but the motion control process
running in parallel at 50 Hz further restricts the available time. The pre-
sented algorithm has an average runtime of approximately 20ms on the
target platform, which violates the timing constraints in the current con-
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ﬁguratiorﬁ but still puts the algorithm in the range where an application
even on such a limited platform becomes possible. This, the possibility to
run several solutions in parallel for evaluation without timing issues, and
the repeatability of the experiments are the main reasons for executing the
experiments in simulation.

The first aspect to be evaluated is the potential gain by an unified mod-
eling of a robot’s localization and its dynamic environment compared to
the common approach of tracking the dynamic elements separately in a
local robot-centric model. The resulting modeling errors can be seen in fig-
ure Both algorithms run in parallel on the same robot using the same
perception and there is no team communication during this experiment. As
can be seen in figure [8.6a], there is no advantage for robots that are observed
frequently. This is expected since frequent observation prevents potential
drift introduced by integrating odometry errors over longer time periods.
For other robots however this drift has significant impact and can be com-
pensated only to some degree by infrequent observations as can be seen in
figure The gain of unified modeling is clearly visible.

The information gain of the multi-robot sensor fusion, compared to using
local perception only, is evaluated using the same setup repeated with and
without communication between the robots in the same team. In average
the number of robots not included in the reference robot’s map decreases
significantly from 1.2 to 0.3 while the number of redundant or false positive
mappings increases only slightly from 0.16 to 0.25. The increase in mapping
accuracy for multiple robots observing another robot is shown in figure 8.7}

A final experiment is set up to prove the preservation of the SLAM
functionality of the presented algorithm. For this the unchanged algorithm
is tested in an environment where all the static features that can be seen in
figure are removed, so the image processing only produces percepts for
robots and occasionally some field line false positives when parts of robots,
e.g. extracted arms, are misinterpreted. The reference localization system
only relies on the robot’s uncertain odometry and is distracted further by
those false positives. As can be seen in figure the resulting pose quickly
diverges. Oscillation of the position error is caused by switching of the filter’s
output between different equally uncertain particle clusters. The presented
algorithm’s better accuracy is clearly visible. Divergence is still not avoided
completely, which is a consequence of mapped features neither assumed to
be static nor kept in the map after longer periods without observing them.
This is appropriate for highly dynamic situations, but of course prevents
closing of large loops. Therefore the robot’s perception can only negotiate

5While the motion frame rate was capped to 50 Hz in the NaoV3+ used in 2009, the
upgrade to the NaoV3.2 in early 2010 increased the possible motion frame rate to 100 Hz,
which allowed a much smoother motion control. As a consequence, even less processing
time was available for the cognition process, and the dynamic FastSLAM approach could
not be employed on real Naos in subsequent years.
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a trade-off between the drift introduced by inaccurate odometry data and
the uncertainty in the process model of dynamic objects.
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8.3 Real-time Dynamic EKF-SLAM

ﬁ Two arguments hold against the solution presented in section the
insufficient performance of the implementation to be executable on a Nao’s
Geode CPU in real-time, and the parallel implementation of a superior lo-
calization solution, namely the multi-hypotheses Kalman system described
in chapter Due to these reasons, a different system is presented in this
section as an extension of the multi-hypotheses Kalman filter to enable a
simultaneous tracking and localization in a unified world state estimation.

8.3.1 Implementation

The objective now is the realization of the demands specified in section 8.1
namely to model the robot’s surrounding environment in one unified model
using the information of a whole team of robots as input, in the context of
a multi-hypotheses Kalman filter system. It is hardly possible to implement
this as a real-time system on an embedded platform without applying mea-
sures to decrease the computational complexity. The presented approach
consists of three stages, which will be covered in the following sections.
The first stage handles the static map information to realize most (but not
all) of the localization problem, and is based on the algorithm presented
in chapter [7] which can perform as a very efficient stand-alone localization.
Parallel to this runs a stage performing local percept aggregation accord-
ing to the temporary short-term models described in section Finally,
section [8.3.1.3| presents the integration of local and distributed perceptions
into a consistent global world model.

8.3.1.1 Multi-model Kalman Localization

In contrary to the system described in section [8.2] which is based on a
particle filter localization, the approach presented here bases on a multi-
hypotheses Unscented Kalman Filter (UKF) localization. This utilizes an
approach to Gaussian mixture filtering which combines the accuracy of the
Kalman filter and the robustness of particle filters without sacrificing com-
putational efficiency.

To use this in the context of a unified world model, it is necessary to keep
track of the history of each hypothesis’ origin for fusion and spawning of new
hypotheses, and the change of the likelihoods among the set of hypotheses. If
a former most likely hypothesis is surpassed in likelihood by another one, this
corresponds to a re-localization event, e.g. with a kidnapped robot or after
temporary localization loss caused by extreme odometry errors or collisions.

SParts of this section are based on an article appearing in the Proceedings of RoboCup
2012: Robot Soccer World Cup XVI. The corresponding publication, see [85], is available
at http://www.springerlink.com.
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Otherwise, each estimate’s change can be considered as a pre-filtered input
for the global estimation system. This input bears the characteristics, on the
one hand, of partially corrected odometry data, and on the other hand the
characteristic of buffered and pre-processed sensor data. In addition to this,
integration of further information, including the communicated observations
of other robots, can affect the pose estimates, so those changes need to be
fed back into the localization module. The following sections will address
the integration into the global model and its stochastic soundness.

8.3.1.2 Local Percept Aggregation

When building upon the UKF localization described above, the full state
cannot be factorized as in FastSLAM, but needs to be expressed as a joint
probability function, as in the EKF-SLAM solution (cp. section. The
increase of estimation complexity by the high-dimensional state is coun-
tered by aggregation of some of the image processing results into temporary
percept-buffers with the aforementioned advantages, as motivated in sec-
tion [8.1.2] This is applied to full extent to the dynamic features, i.e. the
ball and other robots, as described in section |8.1.3

The separate localization module described in section is in itself
also a buffer integrating information from static, known world features into
a localization belief model, and is used analogically to those percept-buffers,
but the state is not deleted periodically after forwarding the belief to the
SLAM part of the algorithm. This localization reflects part of the SLAM
state, and changes to this part of the SLAM state are fed back into the lo-
calization module’s state. Thus the virtual localization measurements used
to update the SLAM state are basically the innovation introduced by new
static feature observations. Therefore, those measurements are still condi-
tionally independent from previous measurements given the current belief
state, so the Markov assumption is not violated.

8.3.1.3 Local and Distributed Knowledge Integration

The state of the full model of the robot’s environment consists of its own pose
po = (Po.z, Po.y> Po.g) T, the poses of all cooperating robots (p; = (Di .z, Piy, Pio)”
with ¢ € {1,...,n}), and the states of the dynamic objects. While only a
small subset of cooperating robots or other elements are observed at the
same time and modeled according to section in each time interval,
they remain part of the full model also during time intervals where these are
not observed. It is possible to dynamically shrink or expand the state vector
if new unknown robots are observed. Alternatively a separate mechanism
could keep track of active and inactive slots in the state vector by using
time-to-live counters. This latter approach has been chosen here to prevent
frequent rescaling of both the state vector and its covariance matrix.
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The integration of the locally accumulated and the distributed informa-
tion into the model is done in the process and sensor update. The own pose
and those of cooperating robots can be updated with the pose changes prop-
agated from the individual localization modules relative to the pose used for
the last update. The ball is updated using a motion model similar to the
one in equation but without the odometry-related rotations necessary
for tracking in the local coordinate system. Other autonomous agents can
either be updated according to the latest velocity estimations, or just us-
ing an identity and appropriately high process noise following the reasoning
proposed in section [8.1.2

The sensor update consists of two different kinds of observations. If
a robot, either the local robot itself or any of the communicating robots
in the team, has made observations of static world elements which have
been used to update the separate localization estimate in the first stage (cp.
section , then this absolute pose estimate is used as a direct measure-
ment of the corresponding pose in the state vector, i.e. the measurement
Jacobian is an identity in the corresponding submatrix.

The other case is the observation of a dynamic feature by one of the
robots in the team. If the observed dynamic feature is a robot (without
further identified characteristics such as team markers etc.), this dynamic
object may either be any of other robots in the team, or one of a num-
ber of non-cooperating other robots in the environment. In this case, the
maximum likelihood correspondence will be chosen to be updated, or a new
model will be inserted or activated if the other choices are too unlikely.
The corresponding expected observation is in a robot-relative euclidean co-
ordinate system, since this is the format of the local models distributed as
aggregated percepts. It is expressed as a function of the observed object’s
model (1my, My, My, ,my,) and its observer’s pose p;, with i = 0 for local
observations and ¢ > 0 for communicated ones, which are otherwise not
distinguished any further.

The observation model is given by equations [8.13] and

Py (00) = U=pig) |y ) = (Pi i) | (8.13)

hmvzgmvy (p'L) = Q(_p’b,e) (mvz ) m’Uy)T (814)

from which the corresponding entries in the measurement Jacobian can be
calculated as in equation with ¢y and sg short for cosp; g and sinp; g,
respectively.
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Re-localization events can be handled by resetting the corresponding
state variables and removing the covariances, i.e. setting all entries in the
covariance matrix in the rows and columns to zero. If such a previous mis-
localization by a team member resulted in modeled false positives, those
will stay as isolated features in the state for some time and will be deleted
or inactivated after a certain time without observation. This serves as a
self-repair routine to remove clutter from the environmental model, and
to prevent the growth of the state by the accumulation of models of such
elements. The same is done if two models of unknown features are decided
to correspond to the same origin after a series of observations, so that the
information needs to be fused into the first model and the seconds needs to be
deactivated. Alternatively it would be possible to keep multiple environment
models for each localization hypothesis, as done in [17].

8.3.2 Evaluation

The mechanisms for modeling the robot’s own position and its environment
in a unified state are conceptually similar in this solution to the one presented
in section[8.2] The first important difference of this system is its applicability
on a real Nao. This is partly due to the already superior efficiency of the
underlying localization as shown in chapter The runtime necessary to
additionally perform the unified world modeling on the current most likely
hypothesis and the communicated information is on average below 1ms,
with peaks in the range of 3ms to 5ms. This solution is therefore able to
run in real-time on real Nao robots and can be evaluated in realistic soccer
environments.

In the following, the evaluation does not concentrate on object modeling
advantages compared robot-centric tracking or the benefits of cooperative
modeling, which have already been verified in section [8.2.3| using similar
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mechanisms. Instead, this evaluation goes beyond these by analyzing the
system’s potential to even improve a robot’s localization using the unified
modeling state and communicated information.

To evaluate the presented approach, a simulated situation first illustrates
the possibilities and the qualitative effect in section [8.3.2.1] followed by a
quantitative analysis in soccer games using experiments with real robots in
section Both setups use an SPL scenario as specified by the 2011
rules.

8.3.2.1 Qualitative Demonstration in a Static Simulated Setup

Figure illustrates a simple scenario in a simulated environment. The
robots in a team share their information for distributed cooperative mod-
eling. Figure shows the resulting model with 2D covariance ellipses
extracted from the full state. In the following, one robot looks down and
does not see any static field features any more, and both it and the ball
are teleported to another location on the field (cp. figure . The use
of distributed percepts and the modeling of the own pose together with the
ones of other robots and the ball position and velocity allows the robot not
only to correct its position, but also to find its orientation again.

-
7

(a) Setup of the robots on the field. (b) World model generated from local and
distributed information.

Figure 8.9: Scenario with a team of robots looking around and sharing
perception information to cooperatively model their environment.

This simple experiment shows the potential usefulness of such a com-
bined modeling of a robot’s dynamic environment and its pose in it. RoboCup
SPL games contain periods where robots are chasing the ball, approaching
it for precise positioning to shoot at the goal, or even dribbling it. During
those periods, odometry errors are integrated into the robot’s localization
if not countered by frequently looking up at static field features to correct
the robot’s pose estimation. If looking at the ball also allows the correction
of those odometry errors, especially the orientation, this is expected to be a
clear advantage.
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1

(a) Scenario after teleportation of ball and (b) World model generated from local and
downwards-looking robot. distributed information.

Figure 8.10: Following the situation in figure one robot looks down
and only sees the ball but no landmarks, then this robot and the ball are
teleported. The shared information however still allows for a correction of
both position and orientation of the robot.

8.3.2.2 Quantitative Performance Evaluation in a Dynamic Real-
World Experiment

The artificial situation created in the previous section just serves as an ex-
ample of how localization benefits may be gained. To allow a quantitative
evaluation of the approach’s performance, the perceptions of a robot have
been recorded during normal game situations with real robots on a regu-
lar SPL field. Those perceptions include the proprioception, i.e. odometry,
orientation and joint angle information, exteroception, i.e. perceptions of
objects by means of image processing, as well as the distributed local models
of other cooperating robots running the same code, and ground truth infor-
mation provided by a camera system mounted above the field. The latter is
used only for the evaluation.

This set of input information is then processed by three different module
configurations:

e Reference configuration: The localization as described in chapter
together with a simple module for cooperative tracking of dynamic
objects without any feedback into the localization, serves as the refer-
ence solution.

o SLAM configuration 1: The second configuration is the one described
in section [8.3.1] which models the own state and all dynamic elements
of the environment in a unified state.

o SLAM configuration 2: The third is identical in principle to the second
one, but neglects visual obstacle perceptions. Thus, only observations
of static field features and of the ball as a dynamic object are uti-
lized to model the environment. This configuration is motivated by
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implications of the following experiments.

All these solutions are based on the same competitive solution for the
localization problem with all features described in chapter [7] It is therefore
not this experiment’s purpose to show that the localization works, but to
evaluate the additional benefit gained by unified modeling of the full state.
To do so, the differences in the localization error between the reference and
the SLAM configurations are evaluated. In the following, a representative
extract is chosen to illustrate the positive and negative effects of the model-
ing methods and information sources. Note that communicated information
among the team of robots has no influence on the reference configuration’s
localization outcome. To separate the benefit of this additional informa-
tion source and that of the modeling method, the analysis is done with and
without providing communicated information for each configuration.

Figure [8.11] visualizes the differences of the translational localization er-
rors between the reference configuration and the SLAM configuration 1.
Both plots show the SLAM configuration’s errors minus the reference con-
figuration errors, thus negative values mean lower errors and a superior lo-
calization quality of the SLAM configuration. As can be seen in figure
for the utilization of only local information, the SLAM configuration 1 actu-
ally shows a severely degraded localization accuracy compared to the plain
localization system of the reference solution. This even leads to occasional
switches to incorrect pose hypotheses on the wrong side of the field, indicated
by sudden large errors at 180s, 200s, 220s, 275s and 320s. Overall, a local-
ization error below 25 cm can only be achieved in 49% of the time compared
to the 72% of the reference configuration. As expected, the SLAM configura-
tion 1 benefits from shared information and the frequent miss-localizations
do not occur any more, but even with this additional information source
it still performs significantly worse compared to the stand-alone reference
localization system (cp. figure . A detailed analysis reveals that the
robot perceptions of the used image processing system are too unreliable to
be of any benefit for the localization accuracy. This is due to frequent false
positives and a huge positional uncertainty which far exceeds that of other
measurement types generated by the same image processing routines.

A consequence of this finding is the motivation of SLAM configuration
2, which disregards visual obstacle perceptions and thus does not include
opponent robots into the full state. Thus, the state contains only the robot’s
own pose, the poses of all team mates, and the ball’s position and velocity.
For the setup with only local information, figure shows that the severe
miss-localizations of SLAM configuration 1 in figure do not occur
any more. In fact, the SLAM configuration 2 has a lower error compared
to the reference configuration 62% of the time, but the difference itself is
insignificantly low.

The real advantage of the SLAM configuration 2 compared to the ref-
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(b) Localization error difference with the utilization of communicated information.

Figure 8.11: Difference of translational localization errors of reference and
SLAM configuration 1, i.e. including the use of visual obstacle perceptions.
Negative values mean larger errors of the unassisted localization compared
to modeling the full state.

erence system can be seen in figure where communicated team in-
formation is included as an input for the unified modeling. Here, the pro-
posed system provides beneficial information for the robot’s own localization
75% of the time. A direct comparison of the localization quality of SLAM
configuration 2 and the reference configuration shows that the robot pose
translation errors for the full system model are below 25cm in 83% of the
time, and only 72% of the time for the unassisted underlying localization
module, and the average errors over the whole experiment are 166 mm com-
pared to 213 mm. However, note that with the SLAM configuration 2 of the
system, in the teleportation experiment such as presented in section
the robot’s orientation can obviously not be recovered as easily as described
above.

Similar to the simulated experiments in section [8.2.3] the benefit of mod-
eling the full state compared to separate tracking is evaluated for estimating
the state of the dynamic objects. To evaluate this, a separate ball track-
ing module runs in parallel to the SLAM configuration 2, and the results
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(b) Localization error difference with the utilization of communicated information.

Figure 8.12: Difference of translational localization errors of reference and
SLAM configuration 2, i.e. without the use of visual obstacle perceptions.
Negative values mean larger errors of the unassisted localization compared
to modeling the full state.

of the two different modeling methods are compared without communicated
information and using the same robot pose information. The results confirm
the tendencies already detailed in section for the FastSLAM approach,
namely that the difference is minimal as long as dynamic objects are ob-
served frequently, but that an improved robustness is observable for periods
of infrequent observation. Consequently, the modeling results display equal
accuracy (within a margin of 5 cm) for 66% of the time, during which the ball
is either observed nearly every frame or has been out of sight long enough to
be marked as “lost” by both solutions. However, 71% of the remaining time
the full state modeling is supperior to the separate tracking module. Over
the whole experiment, the position error is within a 20 cm bound for 52% of
the time for the unified modeling, but only 40% of the time for the separate
modeling. The use of communicated information increases the time with
errors below 20 cm to 73%.

Overall, the experiments with real robots presented here show the benefit
of modeling the full state of the robot’s environment. Unfortunately, obser-
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vations of other robots are currently not precise enough that using models
of opponent robots for a robot’s own localization improves the estimation.
However, using distributed information among a team of robots in a model
of the full state, including the own localization, the team mate poses and the
ball, proves advantageous. It improves the relative pose estimations com-
pared to separate modeling and also provides a globally consistent model
useful for the robot’s behavior decision making.
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8.4 Conclusion

This chapter presents two different implementations of an approach for si-
multaneous localization and modeling of dynamic elements of a robot’s envi-
ronment using a-priori information and efficient handling of classes of sensor
information with huge differences in uncertainty. In section FastSLAM
is adapted for the use of prior map information and extended with the con-
cept of super-particles to reduce the number of world maps for dynamic
elements. These features reduce the algorithm’s runtime enough to be in
the range where an application becomes possible even on restricted embed-
ded platforms such as the humanoid robot Nao by Aldebaran Robotics. In
several experiments the advantage of a united state estimation using the
presented approach is shown against the common solution of tracking dy-
namic objects only in a local robot centric model. The aspects of distributed
modeling using this system are presented and the preservation of the SLAM
functionality of the proposed FastSLAM adaptation is proven in a scenario
where no a-priori known features are present but only dynamic elements.

Thus, the presented method is an extension to the popular FastSLAM
algorithm overcoming the strict linear relation between the number of par-
ticles necessary for localization and the complexity for mapping the robot’s
environment. Applicability is also given in pure SLAM contexts without
prior information. In case of a first reasonably good map estimate, addi-
tional features can be tracked using super-particles while maintaining the
good localization performance possible by a high number of particles. Parts
of a map estimate, which develop a reliable global consistency, could also
be flagged as known and used similarly as prior information not in need of
further estimation. The algorithm’s performance on such a limited platform
implies its applicability to much larger problems when using state of the art
hardware.

In section the competitive stand-alone localization module from
chapter [7] is extended to perform as a full state model. In addition to the
advantages shown before, the additional gain in localization performance
is evaluated both in a simulated situation as well as in several real world
experiments with multiple robots and ground truth provided by an external
camera system. While the robot perception in the current vision system
is not good enough to benefit from using temporary opponent models as
additional features for localization, usage of the ball as a dynamic feature
significantly improves the localization quality.

An additional advantage of estimating the full state in a cooperative
modeling approach is the existence of a single model which contains all
information in a globally consistent way. This renders the switching between
local tracking of the ball and a global team ball model obsolete, for example,
and therefore simplifies behavior specification.



Chapter 9

Conclusion and Outlook

In this work, stochastic filtering is applied on mobile devices to model their
location and eventually also relevant parts of their dynamic environment.
Three application scenarios are introduced as a motivation, but also as
sources of experiments for the evaluation of the proposed methods: hu-
manoid robotics with robot soccer as a benchmark task, mobile measurement
units on intralogistic conveyor belt systems, and location-based services on
smartphones. After an overview of concepts and state of the art algorithms
from the field of probabilistic robotics, this work’s contribution is presented
in a series of applications, findings and conclusions. Those are organized
along the following topics: proprioception, which summarizes all inward
perception, the sensing of one’s own body and its dynamics; exteroception,
which covers all outward perception; localization by utilizing concepts from
the former two topics as the means to estimate one’s own location in various
different environments and scenarios; and world modeling, i.e. the esti-
mation not only of one mobile system’s location, but the localization of a
whole team of robots and other dynamic properties of a complex dynamic
environment simultaneously in a unified modeling approach.

By presenting various results and insights, this work provides general
concepts and guidelines for the modeling of proprioceptive and exteroceptive
processes. These aid in the conception, design and implementation of appro-
priate stochastic filtering solutions. To this end, different filter solutions are
derived for an application in intralogistic systems and their predicted char-
acteristics are verified experimentally. The influence of coordinate system
choices for perception representations and the impact of different handling of
simultaneous measurements on the resulting estimation quality is presented
using the example of humanoid robot localization. Additional possibilities
beyond sensor model design are presented to optimally exploit an existing
perception process, such as the active control of attention and sensor orien-
tation to optimize the gathered information with respect to the estimation
process.

183
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Based on these presented concepts and guidelines about proprioception
and exteroception, filter systems are systematically designed for humanoid
robot and smartphone localization, and shown to surpass current state of
the art. The probabilistic robotics formulation of the indoor smartphone
localization problem for location-based services is novel and particularly
challenging, since no locomotion information is readily available, but inten-
tion and motion execution lie with the phone’s human user and cannot be
accessed by the estimation system directly. Instead, knowledge about biped
walking motion generation is used to infer the underlying walking motion
from acceleration measurements, and thus to provide odometry data as in-
put for a stochastic motion model. Gaussian processes are employed as an
automated Bayesian inference process to generate mappings of a building’s
inherent magnetic field as well as the various Wi-Fi signal strengths. The
former are used to correct heading information in the motion model, while
the latter are used in the sensor model to predict means and variances, and
thus likelihoods of received Wi-Fi signals. The resulting localization filter
proves the superiority of this concept over conventional indoor localization
techniques for smartphones based on Wi-Fi localization.

A novel approach to Gaussian mixture filtering is presented for the local-
ization of humanoid soccer robots. By analyzing the behavior of Gaussian
mixture filtering under constraints of limited processing power, i.e. with only
few Gaussian terms in the mixture and aggressive pruning of growth dur-
ing updates, parallels can be drawn to particle filtering with a low number
of particles. Consequently, techniques from particle filtering are integrated
into a multi-hypotheses Kalman filter, which allows separate Gaussian terms
to act as maximum likelihood trackers, while maintaining the systems over-
all ability to recover from a series of incorrect observation correspondence
choices, and even to re-localize globally in kidnapped robot situations. The
proposed system possesses a particle filter’s re-localization ability and an
even surpassing robustness to systematic false positive observations, while
at the same time maintaining a Kalman filter’s typical position tracking
accuracy and computational efficiency.

Finally, the task of estimating a single mobile robot’s location is ex-
tended to that of estimating all locations of robots in a team as well as other
agents and objects in their dynamic environment. First, several possibili-
ties are presented to exploit the heterogeneity of a complex environment’s
information sources by translating the differences in implied uncertainty
into approximations, which significantly improve the efficiency of common
SLAM algorithms. As a consequence, these algorithms, which originally
aim at simultaneous localization of a single robot and mapping of static,
homogeneous environment features, are applied to the task of cooperatively
modeling the dynamic and heterogeneous environment of a team of robots
with very limited computational resources. The benefit of this world mod-
eling in a unified estimation state compared to the classic approach of sep-
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arate localization and robot-centric tracking is presented with respect to
the improved dynamic world map, and even with respect to each robot’s
localization quality.

In summary, this work offers a variety of general design guidelines, new
concepts, and solutions for concrete applications scenarios. It provides a
stochastic and algorithmic basis for the modeling of proprioceptive and ex-
teroceptive processes and the systematic design of estimation systems.

This dissertation’s results and achieved goals open the opportunity for
further work in and beyond the presented application scenarios. The in-
tralogistic tracking task, which in this work is mostly used to exemplify
state space and filter design choices, demands further experiments in more
complex industrial setups including an evaluation of its original intention of
mapping potential failure areas. The potential of the smartphone localiza-
tion approach in particular seems promising, as it surpasses other proposed
approaches in achieved accuracy and its easy deployment. To enable realistic
experiments over multiple days, dependencies on certain IMU characteristics
need to be overcome and spontaneous re-calibration of the magnetic sensor
needs to be repressed or at least monitored, which is not possible with the
specific model and Android version used in the experiments so far. On the
other hand, the availability of gyroscopes along acceleration and magnetic
field sensors in all new smartphones provides possibilities to further improve
the odometry estimation. Additional evaluations are needed to prove the
scalability of the presented approach, and further functionality is necessary
for the detection of walking up and down stairs or using elevators to allow
an application in large buildings along multiple floors.

In the context of humanoid robots in RoboCup competitions, the recent
upgrade of the Nao to version 4 in 2012 opens up new possibilities. This
upgrade improves Nao’s CPU and its cameras, even if these are still below
the ones of current state of the art smartphones. In fact, the potential of
the additional processing power has already been explored by implementing
a more powerful localization system for the more challenging scenario of a
completely symmetrical field, which has been introduced to competitions in
2012. However, since the underlying perceptions system is changed drasti-
cally with respect to its software by a new image processing module as well
as its hardware by allowing access to both cameras simultaneously, which
are already better each individually, these recent implementations cannot
be compared to the presented ones and their state of the art counterparts,
and are therefore omitted from this work. Nevertheless, the more challeng-
ing setup and the more capable hardware will impel the state of the art in
the RoboCup Standard Platform League and offer various opportunities for
research using the Nao platform, including the further exploration of coop-
erative modeling and estimation systems. Especially these latter ones and
the benefit of applying SLAM concepts to complex dynamic environments
might be applied to and evaluated in other robotic contexts beyond the
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strictly specified RoboCup scenario. As argued earlier, many office or do-
mestic indoor scenarios share these characteristics of an environment which
is partially known a-priori, but contains unmapped elements necessary for
localization, and many dynamic and changing objects or agents. An ap-
plication of the presented concepts to different robotic platforms in such
scenarios will provide new insights and potential benefit.



Appendix A

Discrete Correspondences for
Continuous Map Features

The robot soccer scenario in section 2.1] allows measurements of different
static field features. The goal posts and the center circle can be modeled
as 2-dimensional point features, as they are fully characterized by this even
though they actually cover an area or extend further into the third dimen-
sion. Other observable features, namely the field lines, are continuous in
nature. Even the observation of the end of a field line segment can be
ambiguous, as the continuation of the field line may simply be blocked by
something else which has not been recognized clearly.

On a first look, such continuous features should be handled by different
sensor models than the ones introduced and compared in section[5.1] In [31]
lines are incorporated into a monocular Kalman SLAM system. However,
those lines are actually represented as segments by their end points, thus
reducing the problem to well known point updates. Since the line detection
algorithm employed in [8I] recognizes lines by detecting corners first and
then verifying their connecting line in between, only observations of full
segments are used as input for this Kalman system and observations of
parts of a line do not occur by definition.

In an SPL scenario, both ends of a line segment are rarely observed in the
same frame. To reduce such a field line observation to a set of point feature
measurements, one could simply project the end points of the observed line
segment onto the nearest field line as a maximum likelihood approximation
for the association for each pose hypothesis. However, in most situations,
more than one field line is visible at the same time, and using this proce-
dure for each line observation independently may generate correspondences
which are inconsistent and thus harmful to the estimation stability when
expressing the feature correlation by a full covariance matrix as described
in section This motivates the computation of a mutually consistent
maximum likelihood correspondence generation for field line segment obser-
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vations.

Finding conclusive correspondences among the different permutations of
possible correspondences is a combinatorial problem. The naive approach
would be to enumerate every possible combination of observed line with a
line in the map, and then check each correspondence combination whether
its chosen map associations could have generated the given observations.
This naive solution can be improved in two aspects: As a start, the set
of possible combinations of correspondences can be restricted by dividing
observed lines and those in the map into two perpendicular sets each, and
omitting associations of observed parallel lines to perpendicular lines in the
map. Furthermore, additional combinations can be skipped during opera-
tion. This is case if the first correspondence choices already lead to expected
observations which do not fit the real observations. Any combination, which
does not change these first correspondences, is equally invalid and can thus
be omitted from further consideration.

The resulting more efficient computation of all possible line correspon-
dences is given by algorithm [3] The division of lines in the map into those
along the longitudinal and those along the lateral axis of the field is given
by the two sets M; and Ms. The division of observed lines on the other
hand is done in line 2} As the projections of observed lines onto the field
rarely produce only parallel or perpendicular lines, but skewed and warped
angles due to errors in the transformation between camera and robot co-
ordinate frame, i.e. the robot’s proprioception (cp. chapter . To allow
robustness to medium projection errors, the division into perpendicular line
sets £1 and Ly is done using the main direction a,qin, which is determined
in line[I] This is done in the given implementation using an accumulator for
the range of directions from 0° to 90°, i.e. the first quadrant. Each line has
either its direction in this quadrant, or its normal, so that for example lines
with directions 25°, 115°, 205° and 295° all map to 25° and consequently
vote on all accumulator cells of an allowed error threshold around the cell
corresponding to 25°. If not only the votes are stored, but their originating
lines as well, the main direction can be estimated robust to projection errors
or even to sporadic direction outlierd!]

Once the set of all observed lines Lpserveq is divided into two perpendic-
ular sets £1 and Lo parallel and perpendicular to the main direction qyngin,
there are two different possibilities. In case £1 and Lo contain both at least
one observation, it is possible to calculate a discrete pose for each valid
correspondence choice. This is done in line [7] in algorithm [3] which is elab-
orated in more detail in algorithm |4l In the other case, only parallel lines
are observed, so in general it is only possible to determine a continuous pose
interval for each valid correspondence choice, since a translation along those

!The wrap around from 90° to 0° has to be considered when storing directions for
calculating their average.
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parallel lines is only restricted by the difference in length of the observed
segment and the full line in the map.

Algorithm 3: Line correspondence computation.

Input: The set of observed lines Lypserved; two sets of lines in the
map M; and My, along the longitudinal and lateral axis of
the field, respectively.

1 Determine the main direction qqin among Lopserved;
Build line clusters £1 and Lo from L pserved, parallel and
perpendicular to the main direction cupqin, respectively;
Poses = ();
Poselntervals = §;
LineCorrespondences = ();
if (|£1] >0 AND |L2| > 0) then
Find possible poses Poses and line correspondences
LineCorrespondences using L1, Lo, Gtmain, M1 and Mao;
else if (|£1] >0 OR |L2| > 0) then
9 Find possible pose intervals Poselntervals and
LineCorrespondences using L1, Lo, Qmain, M1 and Mo;

N O s W N

[04]

10 end
11 return Poses, Poselntervals, LineCorrespondences

As mentioned above, certain combinations of line correspondences can
be skipped during operation, if part of that combination already turned
out to be geometrically inconclusive. In order to exploit this as much as
possible, the enumeration of possible combinations should treat long seg-
ments as more significant than small segments. The two most significant
associations are for the longest lines in £y and L5, in order to be able to
determine the candidate pose (ps, py, pg) directly. Then the correspondences
are checked one by one whether the given observations fit the expected ones
based on the candidate pose (py,py,ps) in line If this is the case, the
pose and its line correspondence list is stored as a viable correspondence
choice. In either case, line sets C to the next correspondence combi-
nation, as long as there are any left. In order to skip the evaluation of
combinations which can be marked as invalid based on a previous evalua-
tion, nextCorrespondencelndex marks the index of the correspondence in
the current combination, which needs to be changed next in the enumera-
tion to generate the next possibly valid combination. In case the current C
is valid, this is simply the last index (cp. line . Otherwise, this is the
first index which results in a conflict between expected observation and real
observation (cp. line [15)).

Algorithm [ details line [7] in algorithm [3] i.e. when distinct poses can
be inferred from every valid correspondence choice. Line [J] in algorithm
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Algorithm 4: Find possible poses and line correspondences.
Input: £y, L2, amain, M1, Ma (as defined in algorithm .

1 Let C be a list of correspondences between a fixed order of
observations from £1 and £9 and mapped lines M7 and Mo,

respectively.;
2 Poses = (J;
3 LineCorrespondences = (;
4 P9 = —Qmain;
5 for i =1 to 4 do
6 Initialize C;
7 repeat
8 Determine p, and p, from observations E[ll] and E[QH and their
correspondences in M; and My according to C;
9 Check geometrical validity of all observations for the
correspondence combination defined by C;
10 if (C is geometrically possible) then
11 Poses = Poses U (D, Dy o) ;
12 LineCorrespondences = LineCorrespondences U C;
13 nextCorrespondencelnder = |C|;
14 else
15 Set nextCorrespondencelndex to the lowest index in C
which results in a conflict between expected observation
and real observation;

16 end

17 Set C to the next possible combination (skip all combinations
which only differ in indices higher than
nextCorrespondencelndex;

18 until no correspondence combination left;
19 end
20 return Poses, LineCorrespondences
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involves an computation analog to algorithm |4l but for the case that only
parallel lines are observed, and thus only different continuous intervals of
possible poses can be inferred for each valid correspondence choice. In this
case, every additional line correspondence serves as a constraint to further
restrict the interval given by the first association of line observation with
one in the map.

The presented approach does not generate any possible poses or corre-
spondences in case the set of observed lines includes a false positive. In such
cases, the whole set of observations is rejected rather than to accept partial
fits. While this design choice disregards potentially useful information, the
harm of incorporating erroneous data is too sever in these cases which are
already confirmed to contain such false information.

This algorithm’s result in form of poses and correspondences for the cur-
rent observations can be utilized in different ways: Either the resulting poses
can be used directly as new additional pose hypotheses if the localization
algorithm allows this, such as in sensor resetting (cp. Sectionor , or
each hypothesis in a multi-hypotheses localization system can pick its most
likely correspondence to use the set of point feature correspondences in a
unified sensor update as in section[5.1.2] This last option is possible directly
with point features and a sensor model as described in section only if
perpendicular lines are observed. This is the case, since those perpendicular
lines and their associated lines in the map result in a single pose hypothe-
sis as explained above, and consequently in strict correspondences between
observed line segments and particular segments of lines in the map, so that
sensor updates can be performed directly with all segment endpoints and
their correspondences. In case of only parallel observed lines, the translation
along the corresponding lines in the map remains uncertain and a different
sensor model representation has to be used, which is explained in further
detail in appendix

Figure[A.T]illustrates the output of algorithm 3| for different combinations
of observed field lines, which might indicate different poses on the field. As
described above, those poses may be discrete as in figures [A.1al and |A.1b]
or continuous as in figure where only parallel lines are observed. In a
multi-hypotheses localization system as in chapter [7] this is supplied to each
hypothesis in the localization filter, which picks the best fitting pose as a
source of its correspondence choices for the different line observations. Note
that the combinatoric results themselves are not used to update the filter,
but only to generate correspondences between observed lines and the field
line map.
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(b) Observation of two perpendicular lines.

(c) Observation of two parallel lines.

Figure A.1: Output (red poses) of the graph matching algorithm for obser-
vations of field lines, and the resulting line correspondences (pink/blue) for
the current pose estimation.



Appendix B

Kalman Sensor Update
Using Line Observations

As explained in appendix [A] observations of single or multiple parallel lines
cannot be handled by sensor models for point features as those discussed
in chapter This appendix therefore derives a sensor model for Kalman
updates with pure line features, i.e. without knowledge about which exact
segment is observed.

Figure B.1: Line observation.

In projective geometry, the projection of an observed line onto the cam-
era plane can be represented conveniently by the normal vector of the plane
given by the observed points on the line and the camera center. An ex-
ample for a line observation is given in figure Given a robot pose
x = (ps,py,pe)7, the height of the camera hegmerq, and the start and end
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points of a line in global coordinates, Iy = (I4,,ly,)T and lo = (Lyy,ly,)7T
respectively, the expected line observation can be derived as follows. Let r;
and 79 be the rays from the camera center to the line end points /1 and [y
in world coordinates:

la:i — Dz
Ti = lyi — Dy S {172} (Bl)
_hcamera

A vector, which is normal to the plane spanned by ri and 79, is thus
given by:

n =71y Xry (B.2)

hcamera(lyg - py) - hcamera(ly1 - py)
— hcamera(lm - px) - hcamera(lxz - px)
(loy — pﬂ?)(lyz - py) — (lay — pm)(lyl - py)
* (lyy = lyy)
— hcamera * (lazl - l:r:g)
Loy — pa) * (lyy, — Py) — (lay — Px) * (Ly, — py)
Given this, the expected line measurement representation as a unit nor-
mal vector in robot coordinates can be derived as in equation

_hcame'ra

Ty
h(.%‘, heamera, U1, l2) = Ny
Uz
cos(pp) sin(pg) O o
= | —sin(pg) cos(pg) O m (B.3)
0 0 1
—heamera (Cos(pé)(lm - lyz) —sin(pg) (ley — lay)) 172
= heamera(cos(pg) (ley — lay) + Sin(pG)(lm - lyz)) So
S1
with the abbreviations
$1 = lay by, — loyly, — lay Py + Ly, Do + laypy — lyy D2 (B.4)
52 = hgameru(l$1 - l$2)2 + h‘zameraayl - ly2>2 + S%' (B5)

The derivatives for the measurement Jacobian are then given by the
following equations:

Ong  Ong Ong
gpz gpy gpe
— Ny Ony  Ony
H = Opz Opy  Opg (B 6)
on on ony

Opz  Opy  Ope




195

on .
6p$ = heamera(ly, — ly,)(cos(pg)(ly, — ly,) — sin(pg) (L — lay)) 51 "S2
X
on .
Wf/ - hcamem(lyl - lyQ)(COS(pg)(lxl - lxz) + Sln(pg)(lyl - l'yQ))Sl "S9
on,
8]) = hgamera(lyl - ly2)((lx1 - lxz)z + (lyl - lyz)z) "8
ony .
ap = — heamera(lz, — lwz)(cos(pé)(lyl - ly2) —sin(pg)(lay — luy))s1 -5y
Y
on )
# = heamera(lzy, — lzy)(cos(po) (luy — lzy) + Sm(pé?)(lyl - lyz))sl "Sg
Yy
on,
0 = - h’gamem(lail - le)((lwl - l12)2 + (l’yl - ly2)2) "So
Py
ong .
ops heamera(cos(pe) (loy — lu,) + sin(pg) (ly, — ly,)) 89
Po
on .
a_y = hcamem(cos(pb’)(lw - lyz) —sin(pg) (ley — lay))
Po
on,
= 0.
Opy

(a) A robot with an isotropic (b) Belief after the first (c) Belief after the second
pose uncertainty. observation of two parallel sensor update.
lines.

Figure B.2: Localization belief when updating with line observations.

This sensor model can be used for Kalman updates in situations such
as the one depicted in figure in which only parallel lines are observed.
The recommendations in section [5.1.2] are still valid for this sensor model,
i.e. that it is beneficial to handle multiple feature observations in a single
frame in unified sensor updates. Figure [B.2] illustrates the showcase of a
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robot with an isotropic pose uncertainty, which then observes two parallel
lines and corrects its belief accordingly. Note that the uncertainty remains
high along the direction of the observed lines. This would not have been the
case if sensor update would be done with the line segment’s associated end
points as point features.



Appendix C

Jacobi Matrix Derivations of
Local Tracking

The local tracking measurement equations for observations in angular co-
ordinates, as used in the percept aggregation in section are given in
equations [8.1| and and repeated here for convenience:

h‘al(lu’) = atanQ(hcamermm/D (Cl)
hao(pt) = atan2(my,my).

a
DO

As defined in section , = (mm,my,mvw,mvy)T describes an ob-
ject’s model consisting of a 2-dimensional spacial component and a cor-
responding velocity component, which are denoted p' = (mm,my)T and
v = (My,, my,)" when used separately.

The measurement Jacobian is then given by

Ohay (1) Ohay (1)  Ohay (1)  Ohay (1)

Oh(p) omyg om OMyy, Omey,

H = — v 4 C.3

E Ohay (1) Ohay (1) Ohag () Ohay(p) ( )
Omg 8my amvx 8mvy

for which the separate entries can be derived as shown here. Note that the
step from equation [C.4]to[C.5 assumes that the target is not inside the robot
itself, i.e. that || # 0. This is the case for the given application.
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8ha1 (,u) _ 8atan2(hcame7‘aa ’Nl‘) (C 4)
Gatan(%)
T ome ()
T
h
1 O
_ . C.6)
hgamera am (
P i
1 1 11
= — . _h . - 2m C.7
Momea 11 WP 20wl T (0
heamera My
_ C.8
|MI‘3 + hgameru |MI, ( )
The derivative for m, follows analogically:
3ha1 (,u) _ aatanz(hcamerm ’NID (C 9)
omy omy |
_ heamera my (Cl())

W3+ Wiimera 1]

For the horizontal angle ap their is a singularity for observations behind
the robot, i.e. from —m to w. For the Nao robot, this can be neglected, as its
head can not turn enough to observe anything in this angle, but otherwise
this angle periodicity has to be considered and handled appropriately. The
presented derivation assumes in the step from equation to that
the target is not exactly behind the robot, i.e. m; > 0 or m, # 0.

Oha, (1) Oatan2(my, my)
= A1
omy omy (C.11)
aatan(%z)

1 my
— . _Ma C.13
41 Oma (1

1 my
= N L (C.14)

Z—g’ +1 M
= v (C.15)

T2 2
mg + my
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Ohay ()  Oatan2(my, my)
om. = om. (C.16)
Datan(—2)
= —— T (C.17)
Omy
L O (C.18)
- %4—1 omy '
1 1
= 0 = (C.19)
4 +1 M
My

Thus follows the resulting measurement Jacobian presented in equation [8.3

The derivation of the Jacobian F for the process model f(u;—1) in equa-
tion is simplified by the fact that for a linear function f(z) = Ax, where
A is constant (and thus independent of x), the Jacobian is FF = A. Equa-
tion can be rearranged as in equation so that it is obvious that
this applies to parts of the Jacobian.

Ay
_ Q(=Ag) AQ(—Ap) A
fip = f(u-1) = per— |7 (C.21)
0 %4 0
0
Q(—Ag) AQ(—Ay)
= Ht—1
0 0
JAVS
0 0 A,
+ p1 — (C.22)
0oV 0
0

afrrw (M 71)
In the process model Jacobian in equation all but the #

z/y
part is linear and thus easily derived:
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0 _
F = S (1) (C.23)
O
afmz(,utfl) afm:v(iu‘tfl) afm:t(ﬁu‘tfl) 8fmz(llt—1)
omg omy OMey,, Omey,,
Ofmy (t=1)  Ofmy(pe—1)  Ofmy(ue—1)  Ofmy (pe—1)
N Omy Omy My, Omey,,
= | ) Oy () Oy i) Oy ) | 2
Omyg Omy My Omy,
8fmvy (:U'tfl) 8fmuy (:U‘tfl) 6fmvy (I-Ltfl) 8fmvy (Nt—l)
Omy omy OMey,, Omy,,
Q(=Ag) A2(—=Ay)
S|, e e 2
Ofmyy, (Ht—1)  Ofma,, (He—1)
OMyy, vay

For |vi_1| < |kA¢|, this last part of the Jacobian is zero. Otherwise,
these last partial derivatives are calculated as shown in equation (cp.

equation [8.9). Equations to can be derived similarly.

a1+ &5 —Ng)my, — sin(—Ag)may,
%{Zw _ (1 %) (o a:jm sin(—Aa)m, )| (C.26)
B (1 N o At) O (cos(—Ag)my, — sin(—Ag)my, )]
‘U’ 8m7}x
d|(1+ ¢4
K . i )} (cos(—Ag)mvw —sin(—Ag)mvy)
(1 + (b‘ﬁt) cos(—Ayp)
o ]
m%w—l—m%y
. ¢ Ay (cos(—Ag)my, — sin(—Ag)my, )
<1 + ¢|ﬁt> cos(—Ay)
1

— 2my,, ¢ Ay (cos(—Ag)mU, — sin(—Ag)my, )
3 ks z y
2y/mg, +m3,
= <1 + (b‘ﬁt) cos(—Ayp)

¢ Ay My, (cos(—Ag)my, — sin(—Ag)m,,)
- o]
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