
Higher-Order Process Engineering

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Johannes Neubauer

Dortmund

2014

Tag der mündlichen Prüfung:

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter:

Prof. Dr. Bernhard Steffen

Prof. Dr. Mike G. Hinchey

iii

Acknowledgements

First of all I want to thank Prof. Bernhard Steffen and Prof. Tiziana Margaria

for their guidance and company in the past years. Thank you for the discussions,

the support, the challenges, the motivations, and for preparing the ground that

made this thesis possible. Special thanks go to Prof. Mike Hinchey for acting as

my referee. Furthermore, I thank my fiancée and my family for their patience and

support.

I am very grateful to my office mate Stephan Windmüller for a great time and an

outstanding teamwork. I will always remember our special way of pair programming.

Furthermore a great thanks goes to the complete staff of the Chair for Programming

Systems, TU Dortmund for the warm and encouraging atmosphere as well as for

countless helpful discussions.

Last but not least, I want to thank all those who spent their time for proofreading

this thesis, namely, Malte Isberner, Stephan Windmüller, Stefan Naujokat, Oliver

Bauer, Dr. Anna-Lena Lamprecht, and Dr. Michael Neubauer.

v

Contents

1. Introduction 1

1.1. Research Problems and Related Work 3

1.2. Contributions . 5

1.3. Conventions . 6

1.4. Organisation . 6

2. Preliminaries 7

2.1. Extreme Model-Driven Design . 7

2.1.1. Adapter Pattern . 9

2.1.2. Hierarchy & Reuse . 10

2.2. ChainReaction . 11

3. Higher-Order XMDD 13

3.1. Dynamic Service Binding . 14

3.2. Structure of HOPE . 15

3.3. jABC4 . 16

3.4. Higher-Order Process Modeling . 18

3.5. Domain Preparation . 24

3.5.1. SLG Libraries . 25

3.5.2. IO SIB Libraries . 26

3.6. Codegenerator . 27

3.6.1. Generating the Graph Interface for Game Strategies 28

3.6.2. Generating the Graph Implementation for a Game Strategy . 29

3.6.3. Embedding Generated Game Strategies into ChainReaction . 30

4. Projects 33

4.1. Risk-Based Testing via Active Continuous Quality Control 33

4.2. Learning-based cross-platform conformance testing 33

4.3. Dynamic Web Application . 34

4.4. Model-driven Reengineering of the Business Logic of Java applications 34

4.5. Property-Driven Benchmark Generation 35

4.6. Java and Scala Codegenerator . 35

4.7. Capturing and Processing of Biomedical Data 36

5. Conclusion and Future Work 37

A. Selected Publications 55

B. Comments on My Participation 57

vii

Contents

C. Other Publications 59

viii

List of Figures

2.1. SIB adapter pattern. Source: publication I 10

2.2. A screenshot of the open source computer board game ChainReaction

in retro-look . 11

2.3. Course of a chain reaction resulting in a win situation for the blue

player . 12

3.1. Dynamic SIB pattern. Source: publication I 14

3.2. Coarse-grained structure of the higher-order process engineering

(HOPE) approach. 14

3.3. Screenshot of the jABC4 main window showing a process model of a

simple game strategy (GS) for the computer board game ChainReac-

tion (cf. publication VII). 17

3.4. Higher-order process engineering in action, illustrating a snapshot

while conducting a ChainReaction game with two game strategies. . 19

3.5. The service graph for iterating through an arbitrary collection. . . . 21

3.6. Both tabs of the settings dialog for service browsers. Source: publi-

cation VII. 23

3.7. A view of a service browser offering some services of the JRE. Source:

publication VII. 23

3.8. Interface graph for game strategies in the ChainReaction scenario.

Source: publication VII . 24

3.9. Example IO browser for the configuration graph shown in Fig. 3.10.

Source: publication VII . 24

3.10. Example for an interface graph enhanced with preconfigured activities

for the ChainReaction scenario. Source: publication VII. 26

3.11. Class diagram of the generated graph interface for game strategies and

the generated graph implementation for the example game strategy

shown in Fig. 3.3 . 29

3.12. Statistics for the automatic tournament at the end of the project week 31

ix

1. Introduction

“With great power comes great responsibility”

— Voltaire

Business process modeling solutions aim at tightly involving the application expert

in the software development process to avoid common and costly ‘communication

accidents’ during requirements engineering and to decrease time to market. Their

popularity, in particular of the recent standard BPMN 2.0, clearly indicates the

need for this new involvement. At the same time there are unexpected hurdles

when it comes to dealing with integration, (runtime) variability, and interoperabil-

ity. Higher-order process engineering (HOPE) elegantly overcomes these hurdles as

even in its simplicity-oriented version it allows for a powerful plug&play fashion,

where processes and services can be moved around just like data. This is reminis-

cent to standardization efforts known from hardware like the universal serial bus

(USB) [AD01].

Computer-supported processes increasingly influences our daily life: be it for shop-

ping, travel planning, travelling itself, tax declaration, or as part of our business life,

we are confronted all the time with different computer/web applications of enor-

mously varying quality and flexibility. Indeed, there are very different solutions for

almost the same problem, even by the same provider, depending on the particular

profile of a particular user/customer situation. The variance concerns not just the

look-and-feel but also the required user process, and, at the technical level1, the

application programming interfaces (APIs) for the interoperation between systems.

As a consequence, users continuously have to fight with this historically grown but

unintended technical diversity, and producers with exploding maintenance costs.

Increased interest in business process modeling came with BPMN 2.0 [All09], due

to its promise to make application-level business processes directly executable. It

looked like an almost universal cure, as it seemed to close the semantic gap, the

main source of misunderstandings between business and IT. Looking closer, this

dream becomes true only for very specific scenarios. In particular, it still does not

support variability, as it lacks means to manage process variation and variant-rich

systems.2 All current BPM standards like BPEL [Pas05], BPMN [RM06] and even

the recent BPMN 2.0 are constrained to fixed bindings between business activities

in a model and the services or substructures they refer to. Thus each variant has

1The business level and the technical level are distinguished: the technical level encompasses the IT
aspects and the implementation, while the business level focuses on the essence of the application,
i.e., it comprises all the levels above the implementation that do not require programming
expertise.

2The need for variant-rich systems is often addressed via static approaches in general subsumed
by the notion of product-lines [VdLSR07] in the literature.

1

1. Introduction

to be modeled explicitly via decision points that are modeling pendants to if - and

switch-clauses, in comprehensive but very large models, or maintained individually,

as a collection of separate entities. Both alternatives cause severe problems: whereas

the comprehensive modeling leads to unmanageably large models, the maintenance

and support of many structurally similar individual variant models is a nightmare.

This is far away from the ideal of simplicity that made business process modeling

so appealing [MS10, MS11].

Enhancing BPM with a simplicity-oriented version of higher-order process passing

breaks the spell. Being higher-order, it supports a very flexible form of (type-

based) process integration. It also introduces a new discipline of variability model-

ing [JLM+12] that captures variants comprising functionality that was still unknown

at the process’ start. Already deployed and even running processes can be seamlessly

enhanced with new functionality, without touching their code base.

In fact, based on the higher-order concepts, (new) services and (component) pro-

cesses can be selected, modified, constructed and then safely passed as if they were

data. Though unlike data they may be plugged into activities and executed (played)

dynamically. This plug&play approach allows one to add new services, components,

and processes without the need to change the system or interrupt the running pro-

cesses. Even if this flexibility is not essential and all functionalities are known in

advance, it leads to drastic size reductions and better understandability of the mod-

els.

Controlling variability means controlling the exploding wealth of combinations

(cf., e.g., [LNS13]), a concern orthogonal to computational aspects. Thus in par-

ticular at the level of (business) process modeling, variability concerns and com-

putational aspects should be separated in favor of simplicity and understandabil-

ity [MS10, MS11].

Thus, simplicity-orientation in this regard refers to the user-centeredness – fo-

cused on application experts – of the approach hiding the complexity going hand

in hand with achieving compatibility between components essential for plug&play

semantics. In this regard two different types of abstraction layers support a strict

enforcement of separation of concerns [HL95]: hierarchical modeling and preconfig-

uration of activities.

The need for hierarchical modeling is owed to the fact that on the one hand

systems are getting more and more complex, resulting in the need to break the

specifications down into manageable pieces in a divide and conquer fashion. On the

other hand, with the increasing globalization of processes and systems, e.g. end-

to-end-processes that naturally comprise various management levels, the number of

participants involved in the development process is also steadily increasing. This

results in a complex network structure for the participants, where the technical

expert on one level is at the same time the application expert on the next lower level

– in terms of getting more technical – and so forth. Preconfiguration of activities

further helps to guard the modeler from the complexity of data-flow handling as well

as from doing repetitive work.

Compatibility is achieved via sophisticated (type-aware) interface descriptions of

activities leading to compositionality. Data-dependencies are consequently modeled

2

1.1. Research Problems and Related Work

via a common execution context sharing resources between activities. The models

are hierarchical starting on a domain-specific level, leading down to a technical level.

The process components on the technical level base on structures of a conventional

programming language (i.e. the target language). The idea is to give more power to

application experts as well as avoiding technological breaks, leading to more complete

process models which

- are a better basis for communication with technical experts,

- allow for more concise validations on the modeling level, and

- need no round-trip engineering as they are based on semantically well-defined

structures of a target language and are therefore directly executable.

The major challenge is to prevent becoming overly complex. The key to this is to

consequently support the paradigm of separation of concerns.

1.1. Research Problems and Related Work

This section sketches the research problems addressed in this thesis and relates them

to the state-of-the-art in the literature. In a nutshell, the main question of this thesis

is

How can (business) process modeling be enabled for variability?

To answer this, the following three general questions regarding variability and how

state-of-the-art approaches deal with them have to be answered:

1. What can be variable?

2. How is variability realized?

3. When does the variability take effect?

Current business process modeling approaches mainly focus on being simple, as

they aim at involving application experts throughout the complete development

life-cycle. Therefore, variability is not in their main concern. Some BPM solutions,

however, allow variability via interactive ad-hoc modeling which is either done at

design-time [WKM+10] or at run-time [De10, KSKS09]. This is in general used to

create ad-hoc workflows (design-time), e.g. for ‘in silico’ experiments in biology, or

to react to one-time situations, e.g. implementing an exceptional case, via manual

intervention (run-time). The different variants are not reflected in these models.

Moreover, especially in the BPMN 2.0 [OMG11] context, the service integration

process is dominated by scripting. This may be abused to realize run-time variabil-

ity [Act12, Red12]. Scripting activities can execute methods on arbitrary objects

offering runtime variability, but the method call is written as an expression. Input

parameters and return value are defined in the expression, i.e. the model is neither

aware of the type of the service instance, its input parameters or the return val-

ues nor which resources are accessed. Furthermore, these approaches do not allow

processes as first-class citizens.

3

1. Introduction

Web services ideally offer a high dynamicity as their strength lies in ser-

vice discovery, focusing on fault-tolerance and availability properties of systems

as well as business to business (B2B) integration. The compatibility between

services should be given by static interface descriptions in the web service de-

scription language (WSDL) [W3C07], non-functional properties like quality of

service (QoS), and further semantic annotations [MPW07, We07, LMS09a]. A

matching web service is looked up at runtime and executed [Men02, ZBN+04,

AP05, CDPEV05, JMG05, CAkH05]. The decision, which service should be ex-

ecuted [BCT06, BSBM05, LZS+05, PBH07, KOT13], is in general made for each

execution. An exception is [AP07], where the authors consider also stateful web

services that may be reused at several points of execution. Unfortunately, these

approaches usually suffer from the bad realization of web service repositories in the

real world.

A research field, where the environment may impact the behavior of a system, so

that it exploits at run-time the variability added at design-time, is adaptive or even

more self-adaptive software [MSKC04, VH10]. Here the business logic is separated

from the adaption logic in order to decrease complexity as well as increase reuse

due to decoupling from a specific environment [cDL03, ZC06, BCJO12, MPT12].

Separation of concerns [KLM+97], computational reflection [FF04, Mae87], and

component-based design [PPBG09, Gon13, ACN02, C+02] are the enabling tech-

nologies for self-adaptive systems. Adaptive software in essence reacts locally on

the environment via some conditions in the context of their given capabilities and

therefore does not reconfigure the system globally.

The autonomic system specification language (ASSL) [VH12] is used for au-

tonomous systems in the context of space missions [VH13a], in different case stud-

ies like developing a control-software for the wide-angle camera carried on board

NASA’s Voyager II Spacecraft [VH12], or the BepiColombo mission [VH13b]. The

underlying concept goes one step further as it captures requirements as goals (like

mission objectives) via autonomy requirements engineering (ARE). At run-time,

new requirements are created based on self-diagnosis [VH13c] and realized via self-

adaption. These approaches mainly focused on embedded systems and the technical

realization of self-adaptivity. They do not explicitly address involving the applica-

tion experts.

In the context of variant-rich systems there are different design-time variability ap-

proaches and methodologies [VdLSR07, PBL05, WKM+10] using aspect-orientation

and model transformation [VG07, JLM+12]. These approaches use the commonality

within a portfolio of a product family and are limited to creating products from an

a priori determined set of variants.

Planning-based approaches [MR02, BM06, MS07, MMK+09, JLM+12] are goal-

oriented, similar to the work in the context of ASSL [VH10]. They adapt the model-

structure itself with techniques like process model synthesizis, in general a design-

time technique using temporal logics, and planning, employing heuristic search pri-

marily at run-time.

There exists foundational work on higher-order approaches like process calculi of

communicating systems such as CHOCS [Tho93] and the π-calculus [Mil99]. More-

4

1.2. Contributions

over, conceptual studies have been carried out for autonomic computing [BFR07,

AK09] reminiscent to chemical reactions, where data and operations are interpreted

as molecules and chemical reactions.

Extreme model-driven design (XMDD) [MS12] generalizes both BPMN 2 as well

as related approaches and supports domain-specific business activities. The lat-

ter offer reusability and a sufficient abstraction from technological detail in a

way that allows for agile process development involving non-programmers. A

systematic study [DS12] revealed that only the Java application building center

(jABC) [SMN+06] with its underlying XMDD approach supports business activi-

ties that are both easy to integrate and easy to use. Moreover, XMDD unites service

discovery [KMWS07], integration of web services [KMK+08, LMS09a], ad-hoc mod-

eling [Lam13], process model synthesis [LNMS10, NLS12], and planning [MMK+09],

although the service integration [DS12] is its unique selling point. In this thesis

XMDD is extended by type-safe data-flow modeling culminating in higher-order se-

mantics allowing to model variants in a concise, comprehensible, and manageable

fashion. Systems can even integrate completely new behavior at run-time.

1.2. Contributions

The main contribution of this thesis is to extend the in essence control-oriented

XMDD paradigm with data-orientation, adapting well-known paradigms from pro-

gramming languages in a simplicity-first fashion, ranging from features of object-

orientation [KA90] to functional programming [Ses12] (cf. publication VII). The

new approach is type-aware, so that type-safety can be validated at design-time.

The central achievement is, however, the introduction of higher-order semantics by

treating services and processes as first-class citizens. They may be moved around

just like data and plugged and played into activities at runtime, thus enabling higher-

order process engineering (HOPE).

The realization has been carried out minimally invasive on top of the current refer-

ence implementation of XMDD – the modeling environment jABC3 [SMN+06, SM08]

– facilitating its simplicity-oriented plugin framework (cf. publication IV). The uni-

versality of the jABC allowed to realize the new kinds of activities with only six

generic components following the design-pattern of jABC3 (cf publication VII).

This way the plugin mechanism and already existing plugins, e.g. for execu-

tion [KM06, SMC+96] (i.e. interpretation), full-code generation [JMS08], global ver-

ification via model checking [BMRS07, BMRS09] as well as local validations [Neu07]

could be reused and even components developed via existing and new (HOPE) con-

cepts may coexist in the new framework allowing a fluent migration process. Thus,

one could focus on adding newly available data-flow and type information incremen-

tally in the jABC3 framework and its plugins.

The HOPE approach has been validated in different scenarios where the dynamic

exchange of processes, services, and service implementations is essential:

5

1. Introduction

- dealing with the combinatorial explosion regarding variant rich systems as well

as the flexibility needed to be able to react to requirements or environmental

changes at run-time (cf. publications II and V),

- applying the approach to active automata learning [Ang87, SHM11, NMS13,

NSB+12, WNS+13, HSM11] and risk-based testing [FR14, GT02] (cf. pub-

lications I and VI) integrating process models into the active automata

learning framework LearnLib [RSBM09, MSHM11] via full-code genera-

tion [Jö13, JS12],

- run-time enabling process model synthesis (cf. publication III), i.e. loading tai-

lored, synthesized processes at run-time and plug them into running processes

as appropriate, and

- several Bachelor and Master theses as well as research projects ranging from

reverse engineering, over modeling of dynamic databases, benchmark genera-

tion, automata learning, to modeling game strategies.

1.3. Conventions

The following conventions will be used throughout this document:

new notion

New notions will be written emphasized.

“label”

Labels of activities, branches, and context variables will be presented in quotation

marks. The differented types of labels will be disambiguated in the text.

ClassName, InterfaceName, and EnumerationName

Simple as well as full qualified names of Java types will be prefixed with a corre-

sponding icon, and written in a type writer font.

ServiceGraphName and InterfaceGraphName

Simple as well as full qualified names of graph types will be prefixed with a cor-

responding icon, and written in a type writer font.

1.4. Organisation

The structure of this thesis reflects my contributions as follows: In Chap. 1 the

research questions, related work and my contributions are described. Chapter 2

introduces the extreme model driven design (XMDD) paradigm and one thing ap-

proach (OTA) as well as the accompanying example for this thesis. The concepts of

HOPE are highlighted in Chap. 3 by means of the accompanying example. Chap-

ter 4 summarizes projects validating the HOPE approach. Chap. 5 concludes the

thesis and gives an outlook to future work in this research area.

6

2. Preliminaries

This chapter will

- briefly outline the technological and conceptual basis in Sec. 2.1 as well as

point out the new requirements that led to HOPE and

- introduce the accompanying example for this thesis in Sec. 2.2: pupils model

strategy-based computer opponents for the computer board game ChainReac-

tion.

2.1. Extreme Model-Driven Design

The basis for higher-order process engineering (HOPE) is the extreme model-driven

design paradigm (XMDD) [MS04, MS06, MS09a, MS12] which embodies ideas from

1. service orientation [MSR05],

2. model-driven design [VG07], and

3. the end-user-centeredness advocated in extreme programming [BA04].

Combining these strands enables application experts to control the design and

evolution of processes during the whole life-cycle according to their own level

of technical competence and business responsibility. The one thing approach

(OTA) [SN07, MS09b] provides the conceptual modeling infrastructure for XMDD

that enables all the stakeholders (application experts, designers, component experts,

implementers, quality assurers, . . .) to closely cooperate in the design process.

In particular it enables immediate user experience and feedback and thereby

seamless acceptance: all stakeholders know, refine, and modify one and the same

“thing”, without duplications or need to juggle with different modeling languages

or paradigms. It allows them to observe the progress of the development and the

implications of decisions at their own level of expertise, which is a central trait of

the one thing approach.

The language for this comprehensive model where all the information converges are

executable process models called service logic graphs (SLGs). Operationally, the pro-

cess models are similar to control flow graphs: the nodes represent activities and the

branches describe how to continue the execution depending on the result of the pre-

vious activity. Following the terminology of telecommunication systems [SMC+96],

these activities are called service-independent building blocks (SIBs).

SIBs may represent a single functionality (i.e., a service) or a whole subgraph (i.e.,

another SLG) introducing hierarchy [SMBK97], thus serving as a macro that hides

more detailed process models. SIBs are parameterizable and communicate resources

7

2. Preliminaries

via shared execution contexts, a hierarchical concept. The application expert is

equipped with a collection of SIBs, which forms the available domain of reusable,

configurable processes and components shaping a kind of domain specific language

(DSL).

SLGs are also directly formal models: they are semantically interpreted as Kripke

Transition Systems (KTS), a generalization of both Kripke structures (KS) and

labeled transition systems [MSS99] (LTS) that allows labels both on nodes and

edges.

Definition 2.1. A KTS over a finite set of atomic propositions AP is a structure

KTS = (S, s0, Act, R, I), where

- S is a finite set of states.

- s0 ∈ S a dedicated start state.

- Act is a finite set of actions.

- R ⊆ S × Act × S is a total transition relation.

- I : S → 2AP is an interpretation function.

In publication VII the underlying formal model is incrementally enhanced for

better presentation of the new concepts presented here. Therefore, an alternative

formal definition of the core elements in an SLG is introduced, providing a more

natural (canonical) interpretation. In a KTS the action labels are interpreted as

the active part and the states are idle. In SLGs the activities are the active part

(cf. the states in a KTS), and decide which branch (cf. the actions in a KTS)

is followed after execution to find the successor activity, leading to the following

definition:

Definition 2.2. A dKTS (say dual KTS) over a finite set of atomic propositions

AP is a structure dKTS = (A, a0, B, δ, I), where

- A is a finite set of activities (instantiations of SIBs).

- a0 ∈ A a dedicated start activity.

- B is a finite set of branching labels denoted by branches.

- δ : A × B → A is a transition function.

- I : A → 2AP is an interpretation function.

A dKTS is called dual KTS, since edge labels and nodes swap their semantics.

Moreover, in order to have a clearer separation of notions, the term service inde-

pendent building block will be used for templates of activities, i.e., an activity is an

instantiation of a SIB component.

The Java application building center (jABC) [SMN+06] in its current version 3 as

well as its predecessors starting with the MetaFrame [SM99] tool have been the

8

2.1. Extreme Model-Driven Design

technical incarnation of the XMDD and OTA approach representing SLGs as graph

visualizations. A systematic inquiry of the status quo in business process model-

ing [DS12] resulted in the insight that jABC is the only environment for model-driven

design [MBD+12] supporting proper integration of services in a service-oriented fash-

ion [MBD+12]: so called domain-specific business activities.

Originally the framework dealt in particular with two communication paradigms

regarding the execution context:

Pipelining The electronic tool integration platform (ETI) [SMB97], its Java

based ancestor jETI [KMFS06, KMSN07, KMSN08], and Bio-jETI [LMS08b,

LMS08a, LMS+08c, LMS09a, LMS09b] – a specialisation focusing on appli-

cations in the biology context – use direct pipelining for the data transfer

between activities.

Call Context Modeling telecommunication services [SM99, HMN+01, HHNS02]

naturally resort to a global fixed data model, since the structure of the under-

lying hardware self-evidently suggests it.

In both cases there was either

- no issue regarding the context handling, as it could be realized via model

checking and temporal logic formulas, or

- it could be handled via the configuration universe induced by user-defined

abstract types over taxonomies.

In combination with the declaration of gen, mod, and kill properties on SIB pa-

rameters, this was an appropriate abstraction for introducing PROPHETS [NLS12]

facilitating process synthesis.

Lateron XMDD has been employed to different fields and projects [MNS05,

MKS08, LNMS11, HMM+08, JSM11, NSM+01, NMS13], so that the framework

has been extended to fit the increasing needs, e.g., a hierarchical context with the

scopes local, declared, parent, and global has been added. Variability had either been

hidden beneath the SIB adapter, thus buried on the code-level (cf. Sec. 2.1.1), via

design-time process model synthesis, or via ad-hoc modeling.

2.1.1. Adapter Pattern

The integration of services into the jABC3 framework bases on the adapter pattern

(cf. Fig. 2.1): Each SIB is represented by a Java class, which defines the parameters,

branches, documentation, icon (for representation as a node), SIB adapter, and other

meta-information of the SIB (like which validations regarding correct usage of a SIB

should be conducted during modeling) shaping its interface to the modeling level

(i.e., the SLGs).

A SIB adapter may be realized in any target language and encapsulate the service

call that the SIB represents. It takes the execution context as well as the SIB

parameters as input, invokes the service and stores the result into the context again.

In general there exists at least an adapter implemented in Java for each SIB, since

the jABC is based on Java and comes with an integrated interpreter.

9

2. Preliminaries

SLG

SIB Adapter

Services:

Web Service, REST,

RMI, CORBA, JNI, ...

SIB

Code

(Java)

*

Figure 2.1.: SIB adapter pattern. Source: publication I

In a SIB class there is no differentiation between input and output parameters

and for which branch which parameters are used as outputs, information that is

missing for modeling-level validations like data-flow analysis. Thus, it is defined in

the SIB class whether a parameter should be entered as a constant in the modeling

environment or whether it should be connected to a variable in the context. This

may lead to a lot of SIB classes for the same service, just to model that some

parameters are constants (i.e., static) and others are read from the context (i.e.,

dynamic).

Since a SIB receives the complete hierarchical execution context as input it may

access the data – reading as well as writing – on the current and on any hierarchy

level above, including the global context, which is accessible from everywhere. This

enables to write SIB libraries that need nearly no configuration on the modeling

level as the communication with the execution context is defined almost entirely in

the SIB adapter, but at the modeling level there is no track of this, and therefore

it cannot be validated easily. In addition it is a hard task to interoperate between

different SIB libraries, when the communication definition is buried on the coding

level.

Adding new services to jABC3 requires the implementation at least of a SIB class

and an adapter class, which depend on the jABC framework themselves. Hence this

mixes the concerns, as a technically versed person has to implement them. Therefore

– for some domains – generators have been developed, creating these classes auto-

matically from web-service description language (WSDL) descriptions [KMSN08]

or a wizard for importing services from enterprise resource planning (ERP) sys-

tems [MBD+12]. In this thesis this concept is generalized to dynamic service binding

(cf. Sec. 3).

2.1.2. Hierarchy & Reuse

The input/output parameterization of an SLG is modeled via model parameters and

model branches. A modeler marks parameters and branches of the activities in an

SLG as model parameters (branches) in order to export them to the next hierarchy

level.

10

2. Preliminaries

Figure 2.3.: Course of a chain reaction resulting in a win situation for the blue player

an atom either in his own or in empty cells. Each cell has a capacity depending on

its horizontal and vertical neighbors. Hence a corner cell has a capacity of two, an

edge cell a capacity of three, and a center cell a capacity of four atoms. If a cell

reaches its capacity, it will explode and each atom spreads to one neighbor cell. A

spreaded atom assimilates all atoms of its new cell, no regard who owned the cell

before or how many atoms were already in that cell. The exploded cell will be empty

and thus is no longer owned by the player. If one of the assimilated neighbor cells

reaches its capacity because of the new atom, it will explode, too. The name of the

game comes from the resulting – for the player hard to predict – chain reactions

which have the potential to change the complete board. The goal of the game is to

reach a board configuration where the opponent owns no more cells.

Fig. 2.3 shows the course of an exemplary chain reaction. In board situation a) it

is the blue player’s turn. He could place it on any cell but the right neighbor of his

own cell, because that one is owned by the red player. Player blue places an atom

in his sole cell as it is critical, i.e., only one atom is lacking until the capacity is

reached. As shown in board situation b) it explodes, resulting in board situation c).

A winning situation for the blue player has been reached, but there is a cell which

has reached its capacity so that it explodes, leading to the final board situation d).

The task for the pupils was to create a game strategy which evaluates a given cell

in a given board configuration regarding the benefit to place an atom there. The

HOPE technology turned out to be easy to learn for the pupils, and led intuitively

to surprisingly good solutions.

12

3. Higher-Order XMDD

The higher-order process engineering (HOPE) approach is a consequent evolution

of the XMDD approach. The main goal of XMDD still holds for HOPE: involve the

application expert, who knows the requirements on an application, into the system

design process. However, application experts are not necessarily well-versed in tech-

nical realization, so that typically technical experts implement the requirements. On

the contrary, technical experts in general lack expertise in the application domain.

According to concepts like extreme programming, lean design, and agile computing,

this is tackled by strengthening the communication between technical experts and

application experts. Unfortunately, the state-of-the-art solutions to this are either:

1. based on informal communication [SS06, STA05], which is error-prone and

puts forward a semantic gap between the participants in terms of terminology

and experience,

2. use a formal, executable language like BPEL+BPMN [AAA+07], but it bur-

dens the modeler to juggle with technical details like web service endpoints,

or

3. use the formal description language BPMN 2.0 [OMG11] which is less technical,

but introduces a semantic gap between the description and its realizations, as

the standards as well as their current realizations have no proper support for

the integration of business activities in a service-oriented fashion [DS12].

In the XMDD approach and its reference implementation, the jABC framework,

immediate user experience and feedback as well as seamless acceptance have been

realized introducing a hierarchical coordination layer, i.e. the SLGs, with its compo-

nents, i.e. the SIBs, which are decoupled from the service implementations beneath.

Hence the application experts design the application behavior according to the re-

quirements in coarse-grained, easy-to-understand process models, and the technical

experts implement the needed SIBs and services. Furthermore, the role of domain

experts is situated in between application experts and technical experts: they are

responsible for bundling SIBs from technical experts to libraries and present them

to the application experts tailored to a specific domain [MS06].

The HOPE approach extends XMDD with runtime variability capabilities, in order

to meet the growing requirements on (business) process modeling in terms of sup-

porting system evolution beyond the state-of-the-art of design-time variability like

product-lining and variability modeling with the flexibility to safely add new func-

tionality at runtime. The weapon of choice hereof is going higher-order by treating

process instances and service objects as first-class citizens and add data-orientation

to a control-oriented approach. This leads to the flexibility of adding new entities

13

3. Higher-Order XMDD

Java API

Process

Models

(SLG)

Services:

Java, CMD, RMI, WSDL,

REST, CORBA, JNI, ...

...

Dynamic SIB

Technical

Appli-

cation

Code

(Java)

*

Figure 3.1.: Dynamic SIB pat-
tern. Source: publi-
cation I

Figure 3.2.: Coarse-grained structure of the
higher-order process engineering
(HOPE) approach.

to a running system seamlessly as well as results in very consise and understandable

models as the variants do not have to be captured explicitly. Hence there is no

explosion in terms of model size or number of variants. A process model can be

completely unaware at design-time of the implementations that will be executed for

the constituent activities at runtime (cf. publication V). To guarantee executability

it is just necessary that the implementations adhere to required interfaces, which is

achieved by a strict higher-order type discipline. Moreover, the process models may

be generated to executable code maintaining the flexibility of the modeling approach

of HOPE (cf. publication VI).

In the following, Sec. 3.1 will sketch how service objects are lifted to first-class

citizens. Sec. 3.2 illustrates the structuring of the development process in the HOPE

approach, whereas Sec. 3.3 briefly introduces the user interface of the jABC4 frame-

work. In Sec. 3.4 the impact of higher-order process passing is demonstrated by

means of the accompanying example. Sec. 3.5 shows how domain-specific business

activities are realized in the HOPE approach. Finally, Sec. 3.6 outlines HOPE’s

full-code generation capabilities.

3.1. Dynamic Service Binding

The decoupling of modeling and implementation level had been realized via the

adapter pattern (cf. Sec. 2.1.1) in the XMDD paradigm, which ensures executability,

readiness for full-code generation, and independence of the implementation, so that

the modeling can take place even when the service implementations are not (yet)

available.

The challenge has been to further on support domain-specific business activi-

ties that are easy-to-integrate and easy-to-use (after adding data-orientation to the

XMDD approach). This is tackled by elevating the design of SIBs (i.e. the templates

for activities) to the modeling level (cf. Fig 3.1). Since the SIB adapter is a static

wrapper around service objects, it is replaced by dynamic service binding in technical

SLGs, where a method of the target language is bound to an activity. This enables

14

3.2. Structure of HOPE

second-order semantics by treating objects and their methods as first-class citizens

(cf. publication I). Thus, these services (i.e. methods) had to be made available in

the modeling environment so that a modeler can find and use them easily in process

models. This has been tackled via service browsers in the user interface of jABC4.

A service browser shows methods in a tree-view sorted by class and package and

offers to filter them by various properties.

SIBs are now realized via service logic graphs (SLGs) and published in libraries to

be reused by application experts. A user may access them via the graph browser in

jABC4. Additionally, application experts should be shielded from the complexity of

the complete communication between activities which had been encapsulated by the

SIB adapter before. This issue is resolved by preconfiguring activities accordingly to

create new, tailored SIB libraries from existing ones. The latter represent domain-

specific business activities in the HOPE approach. As they in particular differentiate

between input and output parameters over their predecessors (i.e. the SIBs), they

are called IO SIBs and are accessible via IO SIB browsers in the user interface.

3.2. Structure of HOPE

HOPE partitions the development process into different layers (cf. Fig. 3.2) in or-

der to support separation of concerns to face complexity. The basis are standard

APIs in a target language, i.e. Java [Blo08] or Scala [OSV10] in the reference imple-

mentation, denoted by Java Virtual Machine (JVM). Java or more generally JVM

based languages are a good choice here as Java is a largely platform-independent

language. Further on, almost every technology or method can be wrapped into a

Java method as it provides generators producing WSDL and representational state

transfer (REST) stubs, interpreters for scripting languages like Groovy, Jython, and

JRuby as well as the Java native interface (JNI) for accessing platform dependent

functions implemented, e.g., in C, Objective-C, C#, or C++. However, Java is only

used on the tooling/realization level. The concepts are quite general and can be

implemented in and for different general programming languages.

On top of that, a layer of technical process models is situated, which directly

binds methods of the target language dynamically to activities (cf. layer “Canoni-

cal”). The underlying target language provides well-defined semantics guaranteeing

executability. This way, the hard technological break is moved behind a Java API,

where only technical experts operate, supporting the principle, “simple for the many,

difficult for the few” [MS05].

Technical details are encapsulated via hierarchical modeling (cf. layer “Hierar-

chy”). Moreover, the HOPE approach is component-based, it enforces sophisticated

input/output parameterization supporting parametric polymorphy1 of process mod-

els. Together with the already available type system of the underlying target lan-

guage this enables to model explicitly the (type-aware) data-flow information of all

components in addition to the control-flow information.

1Realizations of parametric polymorphy are often referred to as “generics” in the corresponding
target languages [NW06].

15

3. Higher-Order XMDD

The complexity being a consequence thereof is tackled via preconfiguration of

activities and their input/output parameterization (cf. layer “Configuration”). Fur-

thermore, inversion of control (IoC) is used to inject components into processes,

reminiscent to component models like Java EE [Gon13]. Global or more specifically

non-local resources are almost inevitable in big software systems. Dependency in-

jection (DI) is a modern concept that offers a fine-granular management of which

components access which resources. This decoupling is often desirable as selecting

resources is a concern orthogonal to the business-logic.

Consider a web application where the access to a shared database is regulated via

transactions2. With dependency injection, the environment provides components,

for accessing the database attached to the correct transaction, to each process in-

stance. This prevents from accidential misuse of transactions.

The process models become flexible and stay comprehensible by adding a higher-

order flavor: services and process instances are treated as first-class citizens. Imple-

mentations of an activity may be exchanged at runtime (cf. layer “Variability”).

These layers may be iteratively applied by diverse participants in the development

process to create a complete hierarchy of domain-specific, preconfigured components,

and make them available in libraries to be reused as activities on the respective next

layer of abstraction.

The system uses the available type information to check whether the use of services

and process instances passed is correct with regard to the formal parameters of the

underlying API or graph interface and the actual arguments. This type-checking

mechanism intersects the technical and business worlds and narrows the semantic

gap between the complex network of application experts and technical experts.

As an example for higher-order process passing, consider a shopping order process

(cf. publication II). It is finalized with a payment step. There are different ways

to pay, like by credit card, direct debit, online payment services, et cetera. Still

from the point of view of an application expert it is simply the act of paying a given

amount to a given company which should be modeled via a business activity called

“payment”. Lateron, at runtime, a concrete payment service has to be selected. This

can be done via an arbitrary lookup/discovery mechanism depending on information

like user preference (i.e. configuration), or direct manual selection in an online

form. When the activity “payment” is executed, it should reproduceably invoke

the selected process. If a new payment service becomes available, it should even be

possible to use it for the activity “payment” without a redeployment of the shopping

order process.

3.3. jABC4

The user interface of the modeling environment jABC4 (i.e. the incarnation of

HOPE) is shown in Fig. 3.3. It is divided in three main areas:

2A transaction encompasses a unit of work on a database and has to fullfil the properties atomic,
consistent, isolation, durable (ACID).

16

3. Higher-Order XMDD

situated behind the name in parantheses. The user can change the name and pack-

age of the graph, add, delete, and rename context variables, edit their type, as well

as drag&drop between variables and activities wiring data dependencies.

3.4. Higher-Order Process Modeling

First evidence of the impact and ease-of-use of the HOPE approach has been gained

by applying it to non-programmers. Pupils in secondary education with little tech-

nical expertise have been encouraged to create game strategies, shaping the behavior

of computer opponents for the game ChainReaction (cf. Sec. 2.2) with jABC4.

Fig. 3.4 shows multiple hierarchy levels of a higher-order process execution that

tests an example strategy ExampleGS (cf. Fig. 3.3) against the reference strategy

named StandardGS. Both strategies are graph implementations (called service

graphs) of the graph interface GameStrategy. The example strategy prefers corner

cells (bonus of +10), then edge cells (bonus of +5). Moreover, it considers whether

a cell is critical (i.e. the cell will explode, if one more atom is added) and will add

a bonus of +10, if the cell is endangered, i.e. there are critical neighbor cells of the

opponent, since the reaction will be carried further via these cells. The strategy will

give a malus of -10, if the cell is not critical but endangered, since the opponent can

occupy this cell (and assimilate all atoms) when it is his turn.

Challenge 1: Graph Interfaces

Two types of SIBs have been introduced to define graph interfaces: the input- and

output SIB. The input SIB is used as start activity declaring the formal input param-

eters and an output SIB represents an end activity declaring a branch and its formal

output parameters. An interface graph analogously uses input- and output SIBs to

declare the input/output parameterization for all its implementations (comparable

with a method signature), but does not contain any control-flow (comparable with

a method body). Although HOPE adds programming language features to process

modeling, these are intentionally introduced in a tamed manner in order to keep it

simple and manageable for non-programmers (cf. publication III). In this spirit the

inheritance relation is kept flat: a service graph may implement exactly one inter-

face graph, and there is no inheritance relation between service graphs or between

interface graphs.

The top-level SLG in Fig. 3.4 is created by the pupils (i.e. the application experts)

and instantiates new process instances via the constructor activities “ExampleGS”

and “StandardGS” for the two game strategies. Constructor activities are high-

lighted via the green “*” overlay-icon in the top-right of the activities’ icon. The

thick grey arcs represent the data-flow. The process instances of the constructor

activities are written to the context variables “player 1 GS” and “player 2 GS”, re-

spectively. They are used as inputs for the abstraction activity labelled “start game”.

Abstraction activities introduce hierarchy and the small green “G” overlay-icon

illustrates that it references a fixed graph implementation, which is depicted below

18

3.4. Higher-Order Process Modeling

Context

...
player 1 GS

(GameStrategy)

current GS

(GameStrategy)

player 2 GS

(GameStrategy)

inputs

value (T)

T (GameStrategy)
outputs: success

value (T)

inputs

outputs: success

board (Field)

player (Player)

x (Integer)

y (Integer)

...

evaluation (Integer)

inputs

value (T)

T (GameStrategy)
outputs: success

value (T)

CR

Context

...
player 1 GS

(GameStrategy)

Figure 3.4.: Higher-order process engineering in action, illustrating a snapshot while
conducting a ChainReaction game with two game strategies.

19

3. Higher-Order XMDD

(on the next hierarchy level). The corresponding process model handles the inter-

action with the game, so that the three-node top-level SLG named starter graph is

all the pupils had to prepare for testing their strategies.

This kind of (higher-order) modeling is reminiscent to functional programming:

One or more functions (processes) may be passed to a higher-order function (pro-

cess), handing off the details of applying the former. Although functional program-

ming languages like Haskell [Mar10] and ML [Ull94] have the reputation to be com-

plex and hard to learn, concepts like higher-order functions simplify programming

tasks as they decouple what should be done from details of how it is realized. There-

fore, constructs like λ-expressions [Ste90] basing on the λ-calculus [Bar84] enter into

more-and-more object-oriented languages like C# or Java 8 [War14].

The service graph named StartCR on the second-hierarchy level – referenced by

activity “start game” of the top-level graph – retrieves the two game strategies as

inputs and stores them to the context variables “player 1 GS” and “player 2 GS” (on

the second hierarchy level). A technical expert (i.e. a Bachelor student) implements

the respective process model StartCR, serving as a bridge between jABC4 and

the game. In essence,

1. it invokes for each turn the corresponding strategy for every placeable cell

resulting in a cell evaluation in form of an integer,

2. chooses randomly from the cells with the same highest evaluation, and

3. places an atom in the chosen cell.

Hence, the game strategies of the pupils just have to deal with evaluating one cell in

a divide-and-conquer fashion, whilst the bridging graph takes care of the recurring

task to interact with the game, iterate through the board, and decide which cell

should be chosen. Additionally, the bridging graph StartCR is completely unaware

which game strategies will be executed as long as they fulfill the graph interface

GameStrategy.

Challenge 2: Compositionality of SLGs

Higher-order process passing requires compositionality of processes. In this regard,

besides graph interfaces, the handling of scopes for variable declarations is essential.

In [WS73] the authors consider global variables as harmful – in the spirit of [Dij68]

where Dijkstra considers the ‘goto’-statement harmful – as it leads to side effects

which are undesired especially in functional programming. Therefore, in HOPE all

context variables are local and an SLG cannot access any variable higher (or lower)

in the call context, consistent with [WS73] which proposes a more cautious treatment

of scopes. As non-local resources are almost inevitable and often desirable, a modern

approach is to decouple the primary (i.e. functional) business-logic from the logic of

the selection and retrieval of resources by introducing dependency injection. Hence,

the ‘consuming’ process hands over the control reagarding the selection and retrieval

of resources to the environment of a process instance (cf. Sec. 3.2). This allows the

container3 to tailor resources to the needs of the current process instance, based

20

3. Higher-Order XMDD

the next one by means of getting more technical. For accessing the API of the game

ChainReaction, a technical expert builds a library of SLGs tailored to evaluating the

worthiness of a game cell (cf. Sec. 3.5) and provides it to the application experts (i.e.

the pupils). But then again he could rely on existing basic SLGs for dealing with

standard operations regarding context handling (e.g. the SLG PutToContext for

activities “player 1 GS” and “player 2 GS”) or standard Java APIs like the collections

framework.

In activity “iterate cells” the service graph Iterate<T>, e.g., is used to iterate

through the cells of the game board. The implementation of the underlying graph

is shown in Fig. 3.5. It is a generic process model with the (graph) type parameter

T for the elements of the collection to be iterated. Hence, highly reusable process

models are realized via introducing generics (i.e. type parameters) for graphs.

Challenge 3: Representation and Editing of Types

A context variable may represent a Java type like a class, an interface, or an enum

as well as a graph type like a service or interface graph. For the former the Java

reflection API [FF04] could be used, the latter had to be represented separately as no

Java types exist for graphs in the modeling environment. Moreover, each of these

types can have type arguments. The Java reflection API does not offer creating

parameterized types at runtime dynamically, so that this had to be provided in

order to edit type arguments in the modeling environment. Finally, a process model

like Iterate<T> is itself generic and in the scope of the graph (i.e. its execution

context and activities), the type parameter may be used as a type or as a type

argument both for parameterizable Java and graph types.

Iterate<T> uses atomic activities (i.e. they bind to a Java method and not to

a sub graph like abstraction activities) to

- retrieve the iterator from the collection the first time it is executed,

- check each time it is executed whether it has still elements left, and

- if yes returns the next element via the branch “next”, or

- if not leaves via the branch “exit” without a return value.

Challenge 4: Service & SLG Selection

The atomic activities in a service graph may represent an arbitrary public method

of a Java type on the classpath. These are made available in service browsers, which

can be added to and configured in a jABC4-project. The settings dialog is shown

in Fig. 3.6 and allows to select entries from the classpath as well as filter them by

package and name. In the corresponding service browser as illustrated in Fig. 3.7,

methods are the leaves in a tree-view. They may be dragged-and-dropped to the

graph canvas to create a corresponding activity (cf. publication I). For abstraction

22

3.5. Domain Preparation

Hence the pupils refine an always executable game strategy, starting with a strat-

egy that chooses a cell randomly, to make more sophisticated cell evaluations. For

this purpose the domain is prepared with business activities tailored to the task of

creating strategies as described in the following.

3.5.1. SLG Libraries

ChainReaction offers a Java API to access the current board situation via the class

Field and to simulate triggering actions in the game. Technical experts, or more

precisely domain experts of the game, used the corresponding methods as atomic

activities to create service graphs encapsulating a task like identifying whether a

given cell is (cf. activities in Fig. 3.4):

- an edge, corner, or center cell (cf. activity “type of cell?”),

- critical, i.e., the cell will explode, if one more atom is added (cf. activity “is

critical?”), or

- endangered, i.e., a neighbor cell of the opponent is critical (cf. activity “is

endangered?”).

The resulting SLGs may be offered as SIBs to application experts, enabling them to

model game strategies.

Challenge 6: Dependency Management

The enhanced library concept in the HOPE approach involved the consideration

of managing dependencies of a jABC4-project. Therefore Apache Maven4 support

has been added, so that if a corresponding configuration file is in the root folder

of a project, the dependencies defined there will be added to the class path of the

project. The different SIB browsers may then rely on this enhanced class path for

finding services (i.e., Java methods) and SLGs5. The latter may be delivered as

SLG libraries each library bundled in a standard Java archive via maven artifacts.

The maven files can be packaged along with jABC4 project properties for a given

domain, so that the user is shielded from the complexity of doing the configuration

on his own.

For simple tasks like adding a bonus to the cell evaluation (or substract a malus)

existing SLGs performing arithmetic operations may be used. But if a modeler uses

these SIBs as activities, the complete communication with the execution context has

to be defined manually. Moreover, an activity that has to be manually configured

to take a constant value, add it to the context variable “evaluation”, and store the

result back into the context variable, is not as easy to use as an activity AddBonus

where the modeler simply adjusts the bonus as needed. The latter uses the same

graph Add, but its affiliation to a library for game strategies as well as its name,

package, and icon are domain-specific, the first argument (of the addition) is set to

the static value 1, the second argument is preconfigured to the current evaluation,

25

3.6. Codegenerator

- icon,

- data-dependencies,

- whether an input parameter is dynamic (i.e. reads from a context variable) or

static (i.e. a constant),

- if the input parameter is set as a constant: its value, and

- the type argument for (graph) type parameters.

All these preconfigured information can be changed in the respective instance activ-

ity without affecting the template activity lateron.

Regarding the ChainReaction scenario, a domain expert enhanced the interface

graph GameStrategy via additional activitities, i.e. instantiations of arbitrary

libraries as, e.g., the aforementioned basic SLGs as well as the domain-specific SLGs

described in Sec. 3.5.1. This hybrid form is called configuration interface graph. A

resource browser (i.e. an IO SIB browser) for this library is depicted in Fig. 3.9 and

an excerpt of the corresponding configuration interface graph is shown in Fig. 3.10.

The IO SIB with the simple name “Bonus”, e.g. is created by preconfiguring an

activity that adds two integers and stores the result in the context. The preconfig-

ured activity may be dragged from the browser and dropped on to the graph canvas.

As preconfigured in GameStrategy, the first input parameter will be static and set

to a bonus of 1. The second argument reads from the context variable “evaluation”.

If the variable does not exist yet it will be created and the type is automatically set

to Integer. It will be reused if another activity of the library, that reads from or

writes to the respective variable, is instantiated in the current graph. Analogously,

the output parameter “result” is associated to variable “evaluation”. The modeler

does not have to set anything, but adjust the bonus appropriately.

Other IO SIBs in the ChainReaction library (cf. Fig. 3.9) like “Endangered”,

“Critical”, or “TypeOfCell” do not preconfigure activities from a basic library for

arithmetic operations, but from the SLG library described in Sec. 3.5.1. The un-

derlying SLGs have input parameters for the board, the current player, and the

coordinates of the current cell, in order to retrieve the corresponding information.

These data-dependencies are preconfigured in GameStrategy (indicated by the

dots in Fig. 3.10). Thus there is no need at all to configure these activities, they

can just be dropped to the graph canvas and connected regarding the control-flow.

Hence, they work out-of-the-box.

3.6. Codegenerator

In the jABC3 framework, full-code generation of SLGs is supported via the Genesys

plugin [JMS08]. Genesys produces code for several target languages and platforms

and has different kinds of generators that:

- use the interpreter of the jABC to execute SLGs,

- generate the control-flow directly into structured code, or

27

3. Higher-Order XMDD

- into an adjacency data-structure, which is traced at runtime.

In this thesis a new codegenerator for jABC4 (cf. publication VI) is introduced,

a consequent evolution of the Genesys codegenerators. The new generator uses

additional information available in jABC4 SLGs, i.e.:

- type information for context variables and business activities,

- input/output parametrization of SLGs,

- second-order context facilitating to move services and (sub-) models around

just like data (cf. publications III and V),

- graph interfaces for SLGs enabling to decide safely at runtime which imple-

mentation of an SLG is to be executed, and

- access to external SLG libraries supporting reuse of generated SLGs via sepa-

rate compilation [LF79]. 6

With this information, type-safe Java code is generated from an SLG independently

from the framework. A service graph is represented by a Java class and an interface

graph by a Java interface. In the following, the code generator used for publi-

cation VI will be sketched along the ChainReaction scenario, using an adjacency

data-structure to represent the control-flow.

3.6.1. Generating the Graph Interface for Game Strategies

A Java interface generated from a graph interface is resemblant to a functional

interface [War14], a design-pattern for defining a function signature. The result-

ing input/output parameterization is used for function objects (e.g. anonymous

functions like λ-expressions [Ste90]) that may be passed as arguments to methods

and therefore introduce higher-order functions in object-oriented languages [Kü95].

Functional interfaces declare a single method, representing the function as well as

its formal parameters and return type.

A generated graph interface similarily declares a method named execute() dedi-

cated to invoke the underlying process. In the top-left of Fig. 3.11, a class diagram

for the Java interface GameStrategy representing the equally named interface

graph is shown. The parameter list of the method execute() reflects the input pa-

rameters defined in the input SIB of the SLG, i.e. the board, player, and the x and y

coordinates of the current cell (cf. Fig. 3.8). The return type of execute()-methods

for all SLGs is String as it reflects the branch to follow after the execution, a

concept not available in Java.

Unlike functional interfaces, a generated graph interface further on declares one

method per output SIB (declaring an output branch) that is named by conven-

tion get<BranchName>Result(),7 representing the output for the returned branch.

6Separate compilation is a programming language feature that allows to compile dependent lan-
guage entities (e.g. classes and interfaces where one invokes methods on the other) independently.

7If necessary, the name of the branch will be transformed to a valid Java identifier (e.g. space
characters are replaced by underscores).

28

3.6. Codegenerator

Figure 3.11.: Class diagram of the generated graph interface for game strategies and
the generated graph implementation for the example game strategy
shown in Fig. 3.3

GameStrategy declares only one branch named “success”. So, the respective

method is named getSuccessResult(). A branch may declare arbitrary many out-

put parameters, but Java allows for methods a single return type, only. Hence, the

return type is realized via an inner interface, with one “getter”-method per output

parameter. For graph GameStrategy, this is SuccessResult, with the method

getEvaluation() returning an integer.

3.6.2. Generating the Graph Implementation for a Game Strategy

The graph implementations of the interface graph GameStrategy are each gener-

ated to a Java class that implements the interface as shown on the right of Fig. 3.11

for graph ExampleGS (cf. Fig. 3.3).

The local variables of the class are the context variables, whilst the activities are

realized via inner classes named SIB container implementing the interface SIB.

The method execute() of the class ExampleGS stores the input arguments (i.e.

the board, player, and x and y coordinate) to the corresponding local variables as

defined in the model and executes the first activity after the input SIB via its SIB

container.

The method execute() of a SIB container invokes either a Java method in case

of an atomic activity or another generated SLG in case of an abstraction activity.

Inner classes have access to the members of their surrounding class, so that the

method execute() has access to the context variables for reading the process or

service instance, reading input parameters, and writing the output parameters of an

activity. The value of an input parameter declared as static is directly generated

into the method. Moreover, a SIB container evaluates the branch to follow after the

29

3. Higher-Order XMDD

execution of an activity, retrieves the successor SIB container from the adjacency

list (not shown in the class diagram), and returns it.

The activities are executed one after another in a loop until an end activity (i.e.

an output SIB) is reached, and the corresponding branch name is returned. For

graph ExampleGS the branch is named “success” and the method getSuccessRe-

sult() returns an instance of the inner class SuccessResult, implementing the

corresponding, equally named inner interface. Via the method getEvaluation() it

accesses and returns the current value of the context variable evaluation.

3.6.3. Embedding Generated Game Strategies into ChainReaction

Both the generated interface graph and the example game strategy ExampleGS

are independent from the jABC4 framework. The next step is to integrate the

pupils’ game strategies into the game ChainReaction outside of jABC4, i.e. without

a starter graph and the bridging graph StartCR (cf. Sec. 3.4). A game strategy in

ChainReaction represents a computer opponent and is called an artificial intelligence

(AI). An AI has to implement the interface shown in Listing. 3.1:

1 public interface AI {

2 public void doMove ();

3 // ...

4 }

Listing 3.1: The interface for ChainReaction AIs

The method doMove() is called each time it is the AI’s turn. An excerpt of a

generic implementation wrapping an arbitrary generated game strategy implement-

ing the interface GameStrategy is shown in Listing. 3.2:

1 public void doMove () {

2 EvalField evalResults = new EvalField (game. getField ());

3 for (Cell cell: game. getField ()) {

4 if (isPlacementPossible (cell , game. getCurrentPlayer ())) {

5 // Execute the generated game strategy

6 result = gameStrategy . execute (

7 copyField (game. getField ()), cell.getX (), cell.getY (),

8 game. getCurrentPlayer ());

9 if (result . equals (" success ")) {

10 evalResults . setValueAt (cell ,

11 gameStrategy . getSuccessResult (). getEvaluation ());

12 }

13 }

14 }

15 game. selectMove (chooseBestCell (evalResults));

16 }

Listing 3.2: A generic wrapper for generated jABC4 game strategies

It iterates through the cells of the game board and if the current player is allowed

to place an atom in the cell, in ll. 6-8 the generated game strategy (a member of

the wrapper class) will be executed. Afterwards, the resulting branch is evaluated,

the evaluation value of the game strategy is retrieved, and cached to the evaluation

30

3.6. Codegenerator

St
an

da
rd

A
I

R
an

do
m

A
I

K
ai

th
e
A
I

W
W

C
D

C
ha

in
R
ea

ct
or

D
ef
en

de
r

0

500

1,000

1,500

2,000

2,500

3,000

3,500

AIs

#
ga

m
es

w
on

Standard AI Random AI Kai the AI WWCD ChainReactor Defender

Figure 3.12.: Statistics for the automatic tournament at the end of the project week

results (cf. ll. 10f.). Finally, as the iteration is finished, one of the cells with the

highest rating is chosen randomly (cf. l. 15).

Such an AI can directly be used as a computer opponent in ChainReaction and

the pupils organized a small tournament at the end of the project week, where they

competed against their own strategies. Furthermore, the wrapped game strategies

have been assessed via a small tournament application, that conducts a given amount

of games, where the AIs play against each another. The results (i.e. which AI has

won/lost against which other AI) are presented live in stacked bar charts which

“grow” during the tournament, in order to arouse the pupils’ suspense.

Fig. 3.12 shows the statistics for the automatic tournament. For reference, a stan-

dard strategy manually implemented in Java and a random strategy have partaken.

Every stacked bar shows how many games the corresponding AI has won against

the other AIs. Apparently, the AI named “WWCD” of the pupils has beaten all the

others including our reference implementation, although the pure modeling part in

the project week adds up to a few hours, only.

31

4. Projects

The HOPE approach has been applied in several projects as well as Bachelor and

Master theses for very different environments and matters. The following sections

sketch the respective scenarios and the impact of applying HOPE. For the pupils

project ChainReaction please refer to Sec. 2.2.

4.1. Risk-Based Testing via Active Continuous Quality

Control

Active Continuous Quality Control (ACQC) [WNS+13] employs active automata

learning technology [Ang87, SHM11, KV94, HSM11] to automatically maintain test

models along the whole life-cycle of an application. The approach has been enhanced

to involve risk analysts (cf. publication VI) to prioritize critical aspects of a system

under test (SUT) tailoring ACQC’s model extraction to support risk-based test-

ing [FHBM12]. Risk analysts have been provided with an abstract modeling level

tailored to design test components (i.e. concrete learning symbols), that encompass

data-flow constraints reflecting a given risk profile. Technically, HOPE has been

applied for both abstracting from calls to a concrete implementation of the SUT, in

terms of system migration, and pure functional evolution and modeling of data de-

pendencies between the learning symbols. Via the jABC4 codegenerator, both have

been generated to code: the alphabet models and a transformation process model.

The latter takes a sequence of abstract learning symbols (i.e. the control-flow of a

test case provided by the learning algorithm) and a generated alphabet model (pro-

viding data-flow information and concretizing abstract learning symbols) as inputs

and transforms them to an executable test case model.

The transformed models may be seamlessly integrated in the ACQC setup, which

uses the LearnLib framework [RSBM09, MSHM11] for automata-learning, as the

generated code from the jABC4 codegenerator is flexibly applicable in distinct en-

vironments. This was already sufficient to steer the ACQC process in a fashion

that increases the risk coverage while at the same time the testing effort is radically

reduced. The approach has successsfully been applied to several case studies with

Springer’s Online Conference Service (OCS) illustrating the impact of combining

risk prioritization via HOPE and ACQC, employing risk-based regression testing

tailored for system migration and for pure functional evolution.

4.2. Learning-based cross-platform conformance testing

Learning-based cross-platform conformance testing (LCCT) is an approach specifi-

cally designed to validate successful system migration. HOPE has been employed to

33

4. Projects

combine adequate user-level system abstraction via process-models and the higher-

order integration of executable test-blocks with learning-based automatic model in-

ference and comparison [SHM11, MSHM11, BGJ+05].

An API layer abstracting from different implementations of the system under

test (SUT) has been introduced and used in the process models via dynamic service

binding (cf. publication I). The respective implementation is provided to the jABC4

processes via dependency injection at runtime. The impact of LCCT has been

illustrated along the migration of Springer’s Online Conference Service (OCS) from

a browser-based implementation to using a RESTful web service API [Mar12].

4.3. Dynamic Web Application

In a nutshell, with HOPE data-orientation and type awareness accrued to process

modeling and with the dynamic web application (DyWA) the corresponding domain

model in terms of types and their associations is supplied. This helps to narrow

the semantic gap even more, as the application experts are now involved in domain

modeling, too.

The DyWA [Fro13] is a prototype-driven approach to the development of process-

oriented web applications. Key to this approach is to combine business process

modeling with DyWA a web-based prototype, that accompanies the development

right from the beginning. The DyWA offers a new, simple definition facility in-

tegrated into its web interface for application domains in terms of type schemata.

It captures the data types and their associations. Based on the defined types and

corresponding CRUD operations, a generator automatically creates corresponding

Java classes. These may directly be used in jABC4 facilitating the dynamic service

binding of HOPE.

Application experts are thus able to model data according to their knowledge

and understanding, and act upon this data in easy to compose business processes

in jABC4, which are directly executable within DyWA. Hence, jABC4 and DyWA

complement each other. This way of proceeding bootstraps the process design from

the (much simpler) understanding of the data structures and their relations, speeding

up the creation of running prototypes, and making this creation accessible also to

application experts.

As every step is automated via a corresponding code generator, no manual pro-

gramming is required. This opens the whole development process, including the

domain modeling, to the application expert, who can validate and check the design

at any time by ‘playing’ with the executable prototype.

4.4. Model-driven Reengineering of the Business Logic

of Java applications

This Master thesis [Tom13] focuses on the semiautomatic generation of executable

process models from existing source code. A user chooses the program parts and

the import granularity. The transformation from structures of the programming

34

4.5. Property-Driven Benchmark Generation

language to SLGs is done automatically. Every construct, e.g. a method call, an if-

then clause, or an arithmetic expression, is translated to activities in the model. The

edges represent the control-flow and the data-flow (i.e. the usage and assignment of

variables) is realized via the execution context.

The approach benefits from the ability to dynamically bind method calls directly

to activities in HOPE, enabling a canonical mapping between source code and pro-

cess models. Moreover, using HOPE the data-flow can straightforwardly be trans-

lated to the type-safe context variables and their read/write operations regarding

the activities. For structures in Java, that do not have a direct counterpart in

jABC4 (like arithmetic expressions), a small library of methods has been devel-

oped and considered during the transformation. This is reminiscent of the language

Scala [OSV10] where every operator is realized as a method.

In the course of the Master thesis a prototypic implementation named Code Im-

porter has been created and applied in a case study to an application for quality

management in short-range transit. The resulting SLGs were comprehensible for

non-technical employees in the cooperating company, directly executable, and could

be generated back to code via the jABC4 codegenerator (cf. Sec. 3.6). A compre-

hensive test-suite has been applied successfully to the reengineered application.

4.5. Property-Driven Benchmark Generation

In [SIN+13] a systematic approach is introduced for automatic generation of

platform-independent benchmarks. The generator is adjustable in complexity in

order to evaluate verification tools for reactive systems. In essence, a tool chain

transforms a set of automatically generated linear-time logics (LTL) properties into

source code, in several property-preserving steps comprising LTL synthesis, model

checking, property-oriented expansion, path condition extraction, theorem proving,

SAT solving, and code motion. The approach supports various formats, platforms,

and competition scenarios. The jABC4 has been used in [Ges13] to graphically

model a higher-order process defining the general workflow of a benchmark genera-

tor, which may then be configured with property preserving transformation processes

in a service-oriented fashion.

Different communities should be addressable via a growing set of programming

languages, tailored sets of programming constructs, and different notions of obser-

vation that may be integrated seamlessly into the process models. Since jABC4

addresses non-programmers, it is envisaged that the community will develop their

own benchmark generators.

4.6. Java and Scala Codegenerator

In the course of this thesis (cf. Sec. 3.6 and publications VI and VII), codegenerators

following the full-code generation principle [Jö13] have been developed for the target

languages Java [Blo08] and Scala [OSV10]. These generators have been implemented

as jABC4 process models that are executed in a first step via the jABC interpreter

to generate themselves to code in a bootstrapping process. Lateron the generators

35

4. Projects

are executable Java or Scala classes that can be used in a second step to generate

arbitrary jABC4 SLGs to code.

The jABC4 dependency injection feature and its runtime variability capabilities

enabled to implement the codegenerators as a product-line, since the generators for

different target languages have a lot in common. For instance, traversing the jABC4

SLG that serves as source for the generation as well as retrieving the necessary

information from activities and context variables, is independent from the target

language. Therefore, both generators base on a common SLG library. At several

points in the general processes, output for the given target language has to be

created. These are realized via abstraction activities representing a corresponding

interface graph taking the extracted information necessary to produce the respective

code snippet as input. These activities are marked as injected. Each code generator

provides implementations (i.e. service graphs) for the graph interfaces defined in the

common library, producing code for the respective target language. At runtime, the

general SLG for generating an SLG to code is executed and at every injection point

the corresponding graph implementation of the selected codegenerator is executed.

Adding new codegenerators for other programming languages or environments

requires just to create a new product by implementing the language specific process

models. Since the SLG for starting a code generation is in the common SLG library,

even the API for using the new codegenerator stays the same.

4.7. Capturing and Processing of Biomedical Data

DyWA and jABC4 have been applied for capturing and processing biomedical data

in the context of the PROBRAL project no. 54388776 of the German Academic Ex-

change Service (DAAD) in cooperation with the cancer metabolism research group

in the institute of biomedical sciences of university of Saõ Paulo in Brazil, the chair

for information systems and management of the Orfalea college of business in Cal

Poly – San Luis Obispo, the German institute of human nutrition (DIfe) in Pots-

dam Germany, and the chair service and software engineering in the Universität

Potsdam in Germany. The project is concerned with the phenomenon of systemic

inflammation in cachectic cancer patients.

The combination of these tools bringing together the dynamic and easy-to-use

data modeling capabilities of the DyWA and the seamless integration of this domain

into jABC4’s flexible process modeling environment help to involve the experts in

biomedicine in both

1. to create and refine a domain model and

2. to operate on the data structures in process models.

This project has many participants (mainly non-technical people), and more and

more institutes will partake in this joint venture in the near future, so that it is (and

will be) predestined as a case study for HOPE.

36

5. Conclusion and Future Work

This thesis tackles the growing requirements on (business) process modeling in terms

of supporting system evolution beyond the state-of-the-art of design-time variability

like product-lining and variability modeling with the flexibility to safely add new

functionality at runtime. Key to this intent is to enhance the in essence control-

oriented XMDD paradigm with data-orientation and to adapt well-known paradigms

from programming languages in a simplicity-first fashion [MS10, MS11], ranging

from features of object-orientation [KA90] to functional programming [Ses12] (cf.

publication VII). The new HOPE approach is type-aware, so that type-safety can be

validated at design-time. But the central achievement is the introduction of higher-

order semantics by treating services and processes as first-class citizens. They may

be moved around just like data and plugged and played into activities at runtime,

thus enabling higher-order process engineering. This leads to comprehensible and

concise models still manageable for application experts which are in general non-

programmers.

Moreover, a complex network of participants in the development process arises

from the increasing globalization of processes and systems, e.g. end-to-end-processes

naturally comprise various management levels. This trend potentially introduces a

semantic gap on every ‘level’, since the technical expert on one level is at the same

time the application expert on the next lower level – in terms of getting more tech-

nical – and so forth. This has been tackled via hierarchical modeling in combination

with the deployment of SLG libraries serving as domain-specific business activities

in a service-oriented fashion. Preconfiguration of activities further helps to guard

the modeler from complexity of data-flow handling as well as doing repetitive work.

In several projects it has been shown (cf. Chapter 4) that the fields of application

for process modeling are not constrained to describing high-level workflows of busi-

ness applications and scientific workflows anymore, as it has been employed in areas

ranging from reverse engineering, over modeling of dynamic data bases, benchmark

generation, automata learning, to modeling game strategies.

This is still just the tip of the iceberg since adding more and more tamed pro-

gramming language features, as well as components and services for a great deal of

domains has the potential to involve the application experts into the whole (devel-

opment) life-cycle of any application. The according future work can be categorized

into enhancements to the modeling environment, the (modeling) language, and the

ecosystem:

Modeling Environment The current implementation of jABC4 is prototypically

realized on top of the jABC3 with its powerful plugin concept, which made extending

the framework very comfortable (cf. publications IV and VII). But jABC3 is an

37

5. Conclusion and Future Work

in-house development, so that it takes a lot of strength to maintain. Therefore, the

new Cinco SCCE Meta Tooling Suite basing on the eclipse framework [MLA10] is

currently in development at the chair for programming systems at TU Dortmund.

The new concepts facilitate the meta-modeling capabilities of the eclipse modeling

framework (EMF) [SBPM08, Gro08] to support a user in describing a modeling

environment for arbitrary model types like petri nets, class diagrams, or SLGs.

Tailored view and editor components are generated from the descriptions. These

components integrate into the eclipse ecosystem and hence are allowed to benefit

from existent features like version control and dependency management support

as well as the community that impels the development of the platform. Hence,

a migration from the jABC3-based HOPE framework to a solution in the Eclipse

environment is a natural step.

Besides a complete technological shift to another platform, some enhancements to

the development environment itself might increase the acceptance by application

experts. In the context of the ChainReaction project, e.g., a simple jABC plugin

for creating preconfigured SLGs from templates has been developed. This simplified

the process of creating new process models for the pupils immensly. Hence, prepar-

ing and offering templates of SLGs, jABC projects (including the configuration of

the necessary dependencies for a domain), wizards for common tasks, and resource

browsers (cf. Sec. 3.1) for a specific domain should be an integral feature of jABC4.

Further on, the HOPE approach structures the development process into several lay-

ers (cf. Sec. 3.2) taking into account that the development of big software projects

entails a complex network of participants with different technical expertise and com-

petense. Accordingly, the different roles of participants should be considered to cre-

ate tailored views on the entities of the development process. In the spirit of the

one thing approach (OTA) [SM08] the models should contain all the information to

generate the corresponding application, but every participant should only see the

information that is necessary for his task and that he or she can handle.

Validation and verification of SLGs has always been an essential part of the XMDD

approach [SMCB96, RSM08]. The jABC4 approach adds new information to SLGs

like the input output parameterization and type-awareness. There are already

some basic checks using the facilities of the Java type system to validate type-

safety as well as employing model checking for some data-flow analysis as proposed

in [Ste91, Ste93, SCK+95, LMS06]. But the potential for adding (and checking)

more sophisticated and domain-specific constraints is not fully exploited, in par-

ticular since the dynamic service binding via computational reflection enables to

extract information from the underlying services like validation information (e.g.

bean validation (BV)1 constraints like the @NotNull annotation).

Moreover, jABC4 already has some type inference capabilities for the type parame-

ters of activities (cf. Challenge 5) and prefiltering of types when choosing a type for

a context variable or a parameter (cf. publication VII). Where possible, this should

be enhanced to fully infer the types of context variables and parameters, in order to

release the modeler from the task to edit types, like in Scala [OSV10].

1http://beanvalidation.org/1.1/

38

Language The HOPE approach offers sophisticated type-aware interface descrip-

tions for graphs with named input parameters, branches, and output parameters.

These are declared via input and output SIBs. But currently exceptional branches

have to be defined similar to the normal branches. This leads either to starlike

patterned SLGs (with a high amount of edges), if nearly every activity has some

exceptional branches that have to be connected to a corresponding end activitiy, or

the exceptions are ignored and – following the current default behavior – thrown up

to the highest hierarchy-level to be handled in the calling logic. For atomic activities

(i.e. activities representing a method invocation) the exceptions explicitly thrown

of a method are automatically translated to branches and for all other cases two

general branches handling exceptions and errors respectively are added. Similarily,

a better default behavior for exceptions and implicitly added branches for exception

handling on every hierarchy-level should be accrued.

A context variable may be marked as injected, so that at runtime an implementa-

tion is provided. On the one hand it should be possible to add some information

regarding the requirements on the expected resource if the type itself is not suffi-

cient. For instance, some library families, as e.g. the Java API for XML processing

(JAXP)2, have different implementations with varying feature sets. At runtime

several implementations may be available. Thus, when loading a component, the

required features have to be requested, so that an implementation that fulfills the

requirements can be chosen and provided by the container. Moreover, although the

selection of resources is a concern orthogonal to the business-logic (cf. Sec. 3.2), it

may be beneficial to be able to define the corresponding discovery logic in a separate

process model. This approach bases on the concept of producer methods, e.g. in the

context and dependency injection (CDI)3 specification, which allows an implementer

to provide injection logic for resources.

Further orthogonal concerns like access control, parameter validation, transaction

handling, monitoring, and logging should not be mixed with the business logic.

Consequently, aspect oriented programming (AOP) [KLM+97] should be integrated

into the HOPE approach, too. An activity could be marked as intercepted with a

corresponding interceptor graph. At runtime the intercepter graph is executed before

the activity is invoked. At some point the intercepted activity may be invoked or it is

not executed at all, e.g. if the caller does not have access privileges. If the intercepted

activity has been called, the interceptor graph is able to evaluate the outcome of the

execution afterwards, e.g., in order to commit or rollback a transaction.

Ecosystem Right now, there exists exactly one Java and one Scala generator.

Both use an adjacency data-structure for the control-flow, that is mutable in order

to enable runtime adaptions of the control-flow (cf. publication VI). Further on,

each process instance – no matter whether it is injected or not – is retrieved via a

CDI container, because only managed instances (of the container) can have injected

resources. These features cost a lot of performance, but are not necessary for all

SLG libraries. Therefore it should be configurable, whether the graphs of a library

2https://jaxp.java.net
3JSR-299: https://jcp.org/en/jsr/detail?id=299

39

5. Conclusion and Future Work

can be generated with structured, fixed code or need the flexibility to be adjustable

at runtime and whether there is a need for dependency injection or other container

managed features like the aforementioned interceptors graphs. This way, basic SLG

libraries can be generated to highly optimized code and the domain-specific high-

level SLGs offer the flexibility and a rich feature set (including DI and AOP).

The combination of the HOPE approach with DyWA has turned out to be very

effective as it narrows the semantic gap between application experts and technical

experts in two dimensions: control-flow and data-flow. Currently, the integration of

the tools is realized conveniently via generators, but the DyWA is a web application

and the jABC4 a desktop application. Thus, a modeler has to switch between tools.

As the web is a very promising platform (even for development environments), a web

version of the jABC4 should be developed in the spirit of the jABC3 WebABC [MS13]

and it should be aimed at a seamless integration with the DyWA. At the time of

writing, several Bachelor theses attend to the realization of the different facets of

this objective.

In order to enter industrial practice on a larger scale, the HOPE approach needs

a profound set of SLG libraries for wide-ranging domains and APIs (like Microsoft

Office or leading enterprise resource planning (ERP) systems), including enhanced

support for long-running processes, event-handling, and concurrency. At present, a

Bachelor thesis works accordingly on migrating the existing extensive SIB libraries

of the jABC3 framework to jABC4.

40

Bibliography

[AAA+07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,

M. Ford, Y. Goland, A. Guzar, N. Kartha, C.K. Liu, R. Khalaf, Di-

eter Koenig, M. Marin, V. Mehta, S. Thatte, D. Rijn, P. Yendluri,

and A. Yiu. Web Services Business Process Execution Language Ver-

sion 2.0 (OASIS Standard). WS-BPEL TC OASIS, http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[ACN02] J. Aldrich, Craig Chambers, and D. Notkin. Archjava: connecting soft-

ware architecture to implementation. In Software Engineering, 2002.

ICSE 2002. Proceedings of the 24rd International Conference on, pages

187–197. IEEE, May 2002.

[Act12] Activiti Team. Activiti BPM Platform, 2012. http://www.activiti.

org/.

[AD01] Don Anderson and Dave Dzatko. Universal Serial Bus System Archi-

tecture. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2nd edition, 2001.

[AK09] Oana Andrei and Hélène Kirchner. A higher-order graph calculus for

autonomic computing. In Marina Lipshteyn, Vadim E. Levit, and

Ross M. Mcconnell, editors, Graph Theory, Computational Intelligence

and Thought, pages 15–26. Springer-Verlag, Berlin, Heidelberg, 2009.

[All09] T. Allweyer. BPMN 2.0-Business Process Model and Notation. Bod,

2009.

[Ang87] Dana Angluin. Learning Regular Sets from Queries and Counterexam-

ples. Inf. Comput., 75(2):87–106, 1987.

[AP05] Danilo Ardagna and Barbara Pernici. Global and local qos guaran-

tee in web service selection. In Christoph Bussler and Armin Haller,

editors, Business Process Management Workshops, BPM 2005 Inter-

national Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS,

Nancy, France, September 5, 2005, Revised Selected Papers, volume

3812, pages 32–46. Springer, 2005.

[AP07] Danilo Ardagna and Barbara Pernici. Adaptive service composition in

flexible processes. IEEE Trans. Software Eng., 33(6):369–384, 2007.

[BA04] K. Beck and C. Andres. Extreme programming explained: embrace

change. Addison-Wesley Professional, 2004.

41

Bibliography

[Bar84] Hendrik Pieter Barendregt. The lambda calculus, volume 3. North-

Holland Amsterdam, 1984.

[BCJO12] Joakim Bjørk, Dave Clarke, Einar Broch Johnsen, and Olaf Owe. A

type-safe model of adaptive object groups. In Proceedings of the 11th

International Workshop on Foundations of Coordination Languages and

Self Adaptation. arxiv, 2012.

[BCT06] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Representing,

analysing and managing web service protocols. Data Knowl. Eng.,

58(3):327–357, sep 2006.

[BFR07] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Programming

self-organizing systems with the higher-order chemical language. Inter-

national Journal of Unconventional Computing, 3(3):161–177, 2007.

[BGJ+05] Therese Berg, Olga Grinchtein, Bengt Jonsson, Martin Leucker, Har-

ald Raffelt, and Bernhard Steffen. On the Correspondence Between

Conformance Testing and Regular Inference. In Maura Cerioli, editor,

FASE05, volume 3442 of LNCS, pages 175–189. Springer, Apr 2005.

[Blo08] J. Bloch. Effective Java. Java Series. Pearson Education, 2008.

[BM06] Jorge A. Baier and Sheila A. Mcilraith. Planning with first-order tem-

porally extended goals using heuristic search. In Proceedings of the 21st

National Conference on Artificial Intelligence - Volume 1, AAAI’06,

pages 788–795. AAAI Press, 2006.

[BMRS07] Marco Bakera, Tiziana Margaria, Clemens Renner, and Bernhard Stef-

fen. Verification, Diagnosis and Adaptation: Tool-supported enhance-

ment of the model-driven verification process. In Revue des Nouvelles

Technologies de l’Information (RNTI-SM-1), page 85–98. Dec 2007.

[BMRS09] Marco Bakera, Tiziana Margaria, Clemens Renner, and Bernhard Stef-

fen. Tool-supported enhancement of diagnosis in model-driven verifi-

cation. Innovations in Systems and Software Engineering, 5:211–228,

2009.

[BSBM05] Lucas Bordeaux, Gwen Salaün, Daniela Berardi, and Massimo Mecella.

When are two web services compatible? In Ming-Chien Shan, Umesh-

war Dayal, and Meichun Hsu, editors, Technologies for E-Services, vol-

ume 3324 of Lecture Notes in Computer Science, pages 15–28. Springer

Berlin Heidelberg, 2005.

[C+02] T. Coupaye et al. The Fractal Composition Framework (Version 1.0).

The ObjectWeb Consortium, Jul 2002.

[CAkH05] Daniela Barreiro Claro, Patrick Albers, and Jin kao Hao. Selecting web

services for optimal composition. In IN PROCEEDINGS OF THE 2ND

42

Bibliography

INTERNATIONAL WORKSHOP ON SEMANTIC AND DYNAMIC

WEB PROCESSES (SDWP 2005), pages 32–45. Springer, 2005.

[cDL03] Pierre charles David and Thomas Ledoux. Towards a framework for

self-adaptive component-based applications. In In DAIS’03, volume

2893 of LNCS, pages 1–14. Springer-Verlag, 2003.

[CDPEV05] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. Qos-aware

replanning of composite web services. In Web Services, 2005. ICWS

2005. Proceedings. 2005 IEEE International Conference on, pages 121–

129 vol.1. IEEE, Jul 2005.

[De10] Peter Dadam and et.al. From ADEPT to AristaFlow BPM Suite: A

Research Vision Has Become Reality. In et. al. Rinderle-Ma, editor,

Business Process Management Workshops, volume 43 of LNBIP, pages

529–531. Springer Berlin Heidelberg, 2010.

[Dij68] Edsger W. Dijkstra. Letters to the editor: Go to statement considered

harmful. Commun. ACM, 11(3):147–148, Mar 1968.

[DS12] Markus Doedt and Bernhard Steffen. An Evaluation of Service Integra-

tion Approaches of Business Process Management Systems. In Proc. of

the 35th Annual IEEE Software Engineering Workshop (SEW 2012).

IEEE, 2012.

[FF04] Ira R. Forman and Nate Forman. Java Reflection in Action (In Action

series). Manning Publications Co., Greenwich, CT, USA, 2004.

[FHBM12] Michael Felderer, Christian Haisjackl, Ruth Breu, and Johannes Motz.

Integrating manual and automatic risk assessment for risk-based test-

ing. In Stefan Biffl, Dietmar Winkler, and Johannes Bergsmann, edi-

tors, Software Quality. Process Automation in Software Development,

volume 94 of Lecture Notes in Business Information Processing, pages

159–180. Springer Berlin Heidelberg, 2012.

[FR14] Michael Felderer and Rudolf Ramler. A multiple case study on risk-

based testing in industry. STTT-RBT, 2014. Under Review.

[Fro13] Markus Theo Frohme. Agile Domänenmodellierung für prozessges-

teuerte Webanwendungen. Bachelor thesis, TU Dortmund, Feb 2013.

[Ges13] Maren Geske. Property-specific Generation of Benchmarks for the Val-

idation of Reactive Systems. Bachelor thesis, TU Dortmund, Apr 2013.

[Gon13] Antonio Goncalves. Context and dependency injection. In Beginning

Java EE 7, pages 23–66. Apress, 2013.

[Gro08] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific

Language (DSL) Toolkit. Addison-Wesley, Boston, MA, USA, 2008.

43

Bibliography

[GT02] Paul Gerrard and Neil Thompson. Risk Based E-Business Testing.

Artech House, Aug 2002.

[HHNS02] Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen.

Model generation by moderated regular extrapolation. LNCS, pages

80–95, 2002.

[HL95] Walter L Hürsch and Cristina Videira Lopes. Separation of concerns.

Technical Report NU-CCS-95-03, College of Computer Science, North-

eastern University, Boston, Massachusetts, 1995.

[HMM+08] Martina Hörmann, Tiziana Margaria, Thomas Mender, Ralf Nagel,

Bernhard Steffen, and Hong Trinh. The jabc approach to rigorous col-

laborative development of scm applications. In Tiziana Margaria and

Bernhard Steffen, editors, Leveraging Applications of Formal Methods,

Verification and Validation, volume 17 of Communications in Computer

and Information Science, pages 724–737. Springer Berlin Heidelberg,

2008.

[HMN+01] Andreas Hagerer, Tiziana Margaria, Oliver Niese, Bernhard Steffen,

Georg Brune, and Hans-Dieter Ide. Efficient regression testing of CTI-

systems: Testing a complex call-center solution. Annual review of com-

munication, Int. Engineering Consortium (IEC), 55:1033–1040, 2001.

[HSM11] Falk Howar, Bernhard Steffen, and Maik Merten. Automata Learn-

ing with Automated Alphabet Abstraction Refinement. In Twelfth In-

ternational Conference on Verification, Model Checking, and Abstract

Interpretation. Springer, 2011.

[JLM+12] Sven Jörges, Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer,

and Bernhard Steffen. A Constraint-based Variability Modeling Frame-

work. International Journal on Software Tools for Technology Transfer

(STTT), 14(5):511–530, 2012.

[JMG05] Michael C. Jaeger, Gero Mühl, and Sebastian Golze. Qos-aware com-

position of web services: An evaluation of selection algorithms. In

Proceedings of the 2005 Confederated International Conference on On

the Move to Meaningful Internet Systems - Volume Part I, OTM’05,

pages 646–661. Springer-Verlag, Berlin, Heidelberg, 2005.

[JMS08] Sven Jörges, Tiziana Margaria, and Bernhard Steffen. Genesys: service-

oriented construction of property conform code generators. Innovations

in Systems and Software Engineering, 4(4):361–384, 2008.

[JS12] Sven Jörges and Bernhard Steffen. Exploiting Ecore’s Reflexivity for

Bootstrapping Domain-Specific Code-Generators. In Proc. of 35th Soft-

ware Engineering Workshop (SEW 2012), pages 72–81. IEEE, 2012.

44

Bibliography

[JSM11] Sven Jörges, Bernhard Steffen, and Tiziana Margaria. Building Code

Generators with Genesys: A Tutorial Introduction. In JoãoM. Fernan-

des, Ralf Lämmel, Joost Visser, and João Saraiva, editors, Generative

and Transformational Techniques in Software Engineering III, volume

6491 of Lecture Notes in Computer Science, pages 364–385. Springer

Berlin Heidelberg, 2011.

[Jö13] Sven Jörges. Construction and Evolution of Code Generators - A

Model-Driven and Service-Oriented Approach, volume 7747 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, Germany,

2013.

[KA90] Setrag Khoshafian and Razmik Abnous. Object Orientation: Concepts,

Languages, Databases, User Interfaces. John Wiley & Sons, Inc., New

York, NY, USA, 1990.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented

programming. In Mehmet Akşit and Satoshi Matsuoka, editors,

ECOOP’97 — Object-Oriented Programming, volume 1241 of Lecture

Notes in Computer Science, pages 220–242. Springer Berlin Heidelberg,

1997.

[KM06] Martin Karusseit and Tiziana Margaria. Feature-based Modelling of a

Complex, Online-Reconfigurable Decision Support Service. Electronic

Notes in Theoretical Computer Science, 157(2):101 – 118, 2006.

[KMFS06] Christian Kubczak, Tiziana Margaria, Arno Fritsch, and Bernhard

Steffen. Biological LC/MS Preprocessing and Analysis with jABC,

jETI and xcms. In Proceedings of the 2nd International Symposium

on Leveraging Applications of Formal Methods, Verification and Val-

idation (ISoLA 2006): 15-19 November 2006, Paphos, Cyprus, pages

308–313. IEEE Computer Society, 2006.

[KMK+08] C Kubczak, T Margaria, M Kaiser, J Lemcke, and B Knuth. Abductive

Synthesis of the Mediator Scenario with jABC and GEM. In Semantic

Web Services Challenge: Proceedings of the 2008 Workshops, pages 52–

63. 2008.

[KMSN07] Christian Kubczak, Tiziana Margaria, Bernhard Steffen, and Stefan

Naujokat. Service-oriented Mediation with jETI/jABC: Verification

and Export. In Proceedings of the 2007 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, WI-

IAT Workshop, pages 144–147. IEEE Computer Society Press, Silicon

Valley, California, USA, Nov 2007.

[KMSN08] Christian Kubczak, Tiziana Margaria, Bernhard Steffen, and Ralf

Nagel. Service-oriented Mediation with jABC/jETI, pages 71–99.

Springer, 2008.

45

Bibliography

[KMWS07] Christian Kubczak, Tiziana Margaria, Christian Winkler, and Bern-

hard Steffen. An approach to Discovery with miAamics and jABC. In

Proc. of 2007 International Conference on Web Intelligence and Intelli-

gent Agent Technology (IEEE/WIC/ACM 2007) - WI-IAT Workshop,

pages 157–160. 2007.

[KOT13] K. Klai, H. Ochi, and S. Tata. Formal abstraction and compatibility

checking of web services. In Web Services (ICWS), 2013 IEEE 20th

International Conference on, pages 163–170. IEEE, June 2013.

[KSKS09] Yeondae Kwon, Yasumasa Shigemoto, Yoshikazu Kuwana, and Hideaki

Sugawara. Web API for biology with a workflow navigation system.

Nucleic Acids Research, 37(suppl_2):W11–16, Jul 2009.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Com-

putational Learning Theory. MITP, Cambridge, MA, USA, 1994.

[Kü95] Thomas Kühne. Higher order objects in pure object-oriented languages.

SIGPLAN OOPS Mess., 6(1):1–6, Jan 1995.

[Lam13] Anna-Lena Lamprecht. User-Level Workflow Design - A Bioinformat-

ics Perspective, volume 8311 of Lecture Notes in Computer Science.

Springer, 2013.

[LF79] Richard J. LeBlanc and Charles N. Fischer. On implementing separate

compilation in block-structured languages. In Proceedings of the 1979

SIGPLAN Symposium on Compiler Construction, SIGPLAN ’79, pages

139–143. ACM, New York, NY, USA, 1979.

[LMS06] Anna-Lena Lamprecht, Tiziana Margaria, and Bernhard Steffen. Data-

Flow Analysis as Model Checking Within the jABC. In Alan Mycroft

and Andreas Zeller, editors, Compiler Construction, volume 3923 of

Lecture Notes in Computer Science, pages 101–104. Springer Berlin

Heidelberg, 2006.

[LMS08a] Anna-Lena Lamprecht, Tiziana Margaria, and Bernhard Steffen. Seven

Variations of an Alignment Workflow - An Illustration of Agile Process

Design and Management in Bio-jETI. In Bioinformatics Research and

Applications, volume 4983 of Lecture Notes in Bioinformatics, page

445–456. Springer, Atlanta, Georgia, 2008.

[LMS08b] Anna-Lena Lamprecht, Tiziana Margaria, and Bernhard Steffen. Sup-

porting Process Development in Bio-jETI by Model Checking and Syn-

thesis. In Semantic Web Applications and Tools for Life Sciences

(SWAT4LS 2009). CEUR Workshop Proceedings, volume 435. CEUR-

WS.org, 2008.

[LMS+08c] Anna-Lena Lamprecht, Tiziana Margaria, Bernhard Steffen, Alexander

Sczyrba, Sven Hartmeier, and Robert Giegerich. GeneFisher-P: varia-

46

Bibliography

tions of GeneFisher as processes in Bio-jETI. BMC Bioinformatics, 9

Suppl 4:S13, 2008.

[LMS09a] Anna-Lena Lamprecht, Tiziana Margaria, and Bernhard Steffen. Bio-

jETI: a framework for semantics-based service composition. BMC

Bioinformatics, 10 Suppl 10:S8, 2009.

[LMS09b] Anna-Lena Lamprecht, Tiziana Margaria, and Bernhard Steffen. From

Bio-jETI Process Models to Native Code. In 14th IEEE International

Conference on Engineering of Complex Computer Systems, ICECCS

2009, Potsdam, Germany, 2-4 June 2009, pages 95–101. IEEE Com-

puter Society, Jun 2009.

[LNMS10] Anna-Lena Lamprecht, Stefan Naujokat, Tiziana Margaria, and Bern-

hard Steffen. Synthesis-Based Loose Programming. In Proc. of the 7th

Int. Conf. on the Quality of Information and Communications Tech-

nology (QUATIC 2010), Porto, Portugal, pages 262–267. IEEE, sep

2010.

[LNMS11] Anna-Lena Lamprecht, Stefan Naujokat, Tiziana Margaria, and Bern-

hard Steffen. Semantics-based composition of EMBOSS services. Jour-

nal of Biomedical Semantics, 2(Suppl 1):S5, 2011.

[LNS13] Anna-Lena Lamprecht, Stefan Naujokat, and Ina Schaefer. Variability

Management Beyond Feature Models. IEEE Computer, 46(11):48–54,

2013.

[LZS+05] Fangfang Liu, Liang Zhang, Yuliang Shi, Lili Lin, and Baile Shi. Formal

analysis of compatibility of web services via ccs. In Next Generation

Web Services Practices, 2005. NWeSP 2005. International Conference

on, page 6 pp. IEEE, Aug 2005.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection.

SIGPLAN Not., 22(12):147–155, Dec 1987.

[Mar10] Simon et. al. Marlow. Haskell 2010 language report. Available online

http: // www. haskell. org/ onlinereport/ haskell2010 , 2010.

[Mar12] Janina Kim Marks. Vergleich von Präsentations- und Geschäft-

slogikschicht prozessorientierter Webanwendungen auf Basis regulärer

Extrapolation. Bachelor thesis, TU Dortmund, Jul 2012.

[MBD+12] Tiziana Margaria, Steve Boßelmann, Markus Doedt, Barry D. Floyd,

and Bernhard Steffen. Customer-Oriented Business Process Manage-

ment: Visions and Obstacles. In Mike Hinchey and Lorcan Coyle, edi-

tors, Conquering Complexity, pages 407–429. Springer London, 2012.

[Men02] D. Menasce. Qos issues in web services. Internet Computing, IEEE,

6(6):72–75, Nov 2002.

47

Bibliography

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how

to develop domain-specific languages. ACM Comput. Surv., 37(4):316–

344, Dec 2005.

[Mil99] Robin Milner. Communicating and mobile systems - the Pi-calculus.

Cambridge University Press, 1999.

[MKS08] Tiziana Margaria, Christian Kubczak, and Bernhard Steffen. Bio-jeti:

a service integration, design, and provisioning platform for orchestrated

bioinformatics processes. BMC Bioinformatics, 9(S-4), 2008.

[MLA10] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse Rich

Client Platform. Addison-Wesley Professional, 2nd edition, 2010.

[MMK+09] Tiziana Margaria, Daniel Meyer, Christian Kubczak, Malte Isberner,

and Bernhard Steffen. Synthesizing Semantic Web Service Composi-

tions with jMosel and Golog. In The Semantic Web - ISWC 2009, vol-

ume 5823 of LNCS, pages 392–407. Springer Berlin/Heidelberg, 2009.

[MNS05] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. jETI: A Tool for

Remote Tool Integration. In Tools and Algorithms for the Construction

and Analysis of Systems, volume 3440/2005 of LNCS, page 557–562.

Springer Berlin/Heidelberg, 2005.

[MPT12] Emanuela Merelli, Nicola Paoletti, and Luca Tesei. A multi-level model

for self-adaptive systems. In Proceedings of the 11th International

Workshop on Foundations of Coordination Languages and Self Adap-

tation. arxiv, 2012.

[MPW07] D. Martin, M. Paolucci, and M. Wagner. Towards Semantic An-

notations of Web Services: OWL-S from the SAWSDL Perspective.

In OWL-S Experiences and Future Developments Workshop at ESWC

2007. 2007.

[MR02] Mihhail Matskin and Jinghai Rao. Value-added web services composi-

tion using automatic program synthesis. In Web Services, E-Business,

and the Semantic Web, CAiSE 2002 International Workshop, WES

2002, pages 213–224. Springer, 2002.

[MS04] Tiziana Margaria and Bernhard Steffen. Lightweight coarse-grained co-

ordination: a scalable system-level approach. Software Tools for Tech-

nology Transfer, 5(2-3):107–123, 2004.

[MS05] Tiziana Margaria and Bernhard Steffen. Second-Order Semantic Web.

In Proc. of 29th Annual IEEE/NASA Software Engineering Workshop,

pages 219–227. IEEE Computer Society, Los Alamitos, CA, USA, 2005.

[MS06] T. Margaria and B. Steffen. Service engineering: Linking business and

it. Computer, 39(10):45–55, Oct 2006.

48

Bibliography

[MS07] Tiziana Margaria and Bernhard Steffen. LTL-Guided Planning: Re-

visiting Automatic Tool Composition in ETI. In Proc. of the 31st

Annual IEEE / NASA Software Engineering Workshop (SEW 2007),

Columbia, MD, USA, pages 214––226. IEEE Computer Society, 2007.

[MS09a] Tiziana Margaria and Bernhard Steffen. Agile IT: Thinking in User-

Centric Models. In Tiziana Margaria and Bernhard Steffen, editors,

Leveraging Applications of Formal Methods, Verification and Valida-

tion, volume 17 of Communications in Computer and Information Sci-

ence, pages 490–502. Springer Berlin/Heidelberg, 2009.

[MS09b] Tiziana Margaria and Bernhard Steffen. Business Process Modelling in

the jABC: The One-Thing-Approach. In Jorge Cardoso and Wil van der

Aalst, editors, Handbook of Research on Business Process Modeling. IGI

Global, 2009.

[MS10] Tiziana Margaria and Bernhard Steffen. Simplicity as a Driver for Agile

Innovation. Computer, 43(6):90–92, 2010.

[MS11] T. Margaria and B. Steffen. Special session on "simplification through

change of perspective". In Software Engineering Workshop (SEW),

2011 34th IEEE, pages 67–68. IEEE, Jun 2011.

[MS12] Tiziana Margaria and Bernhard Steffen. Service-orientation: Conquer-

ing complexity with xmdd. In Mike Hinchey and Lorcan Koyle, editors,

Conquering Complexity. Springer, 2012.

[MS13] Maik Merten and Bernhard Steffen. Simplicity driven application de-

velopment. Journal of Integrated Design and Process Science (SDPS),

16, 2013.

[MSHM11] Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria.

Next Generation LearnLib. In Proc. of 17th Int. Conf. on Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS 2011),

Saarbrücken, Germany, pages 220–223. Springer, 2011.

[MSKC04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty

H. C. Cheng. Composing adaptive software. Computer, 37(7):56–64,

Jul 2004.

[MSR05] Tiziana Margaria, Bernhard Steffen, and Manfred Reitenspieß. Service-

Oriented Design: The Roots. In Proc. of the 3rd Int. Conf. on Service-

Oriented Computing (ICSOC 2005), Amsterdam, The Netherlands, vol-

ume 3826 of LNCS, pages 450–464. Springer, 2005.

[MSS99] Markus Müller-Olm, David Schmidt, and Bernhard Steffen. Model-

Checking - A Tutorial Introduction. In Proceedings of the 6th In-

ternational Symposium on Static Analysis (SAS ’99), pages 330–354.

Springer, 1999.

49

Bibliography

[Neu07] Johannes Neubauer. Localchecker plugin for the jabc. TU Dortmund,

Germany, 2007. http://hdl.handle.net/2003/30118.

[NLS12] Stefan Naujokat, Anna-Lena Lamprecht, and Bernhard Steffen. Loose

Programming with PROPHETS. In Juan de Lara and Andrea Zisman,

editors, Proc. of the 15th Int. Conf. on Fundamental Approaches to

Software Engineering (FASE 2012), Tallinn, Estonia, volume 7212 of

LNCS, pages 94–98. Springer Heidelberg, 2012.

[NMS13] Johannes Neubauer, Tiziana Margaria, and Bernhard Steffen. Design

for Verifiability: The OCS Case Study. In Formal Methods for In-

dustrial Critical Systems: A Survey of Applications, chapter 8, pages

153–178. Wiley-IEEE Computer Society Press, Mar 2013.

[NSB+12] Johannes Neubauer, Bernhard Steffen, Oliver Bauer, Stephan Wind-

müller, Maik Merten, Tiziana Margaria, and Falk Howar. Automated

continuous quality assurance. In Formal Methods in Software Engineer-

ing: Rigorous and Agile Approaches (FormSERA), 2012, pages 37–43.

Springer, 2012.

[NSM+01] Oliver Niese, Bernhard Steffen, Tiziana Margaria, Andreas Hagerer,

Georg Brune, and Hans-Dieter Ide. Library-based design and con-

sistency checking of system-level industrial test cases. In Heinrich

Hussmann, editor, Fundamental Approaches to Software Engineering,

volume 2029 of Lecture Notes in Computer Science, pages 233–248.

Springer Berlin/Heidelberg, 2001.

[NW06] M. Naftalin and P. Wadler. Java Generics and Collections. O’Reilly

Media, 2006.

[OMG11] OMG. Business Process Model and Notation (BPMN) Version 2.0,

2011. http://www.omg.org/spec/BPMN/2.0/.

[OSV10] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima

Series. Artima, Incorporated, 2010.

[Pas05] J. Pasley. How BPEL and SOA are changing Web services development.

Internet Computing, IEEE, 9(3):60–67, 2005.

[PBH07] J. Pathak, S. Basu, and V. Honavar. On context-specific substitutabil-

ity of web services. In Web Services, 2007. ICWS 2007. IEEE Interna-

tional Conference on, pages 192–199. IEEE, Jul 2007.

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software

Product Line Engineering: Foundations, Principles and Techniques.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[PPBG09] Jérémy Philippe, Noël Palma, Fabienne Boyer, and Olivier Gruber.

Self-adapting service level in java enterprise edition. In JeanM. Bacon

and BrianF. Cooper, editors, Middleware 2009, volume 5896 of Lecture

50

Bibliography

Notes in Computer Science, pages 143–162. Springer Berlin Heidelberg,

2009.

[Red12] RedHat Software - JBoss. jBPM Website, 2012. http://www.jboss.

org/jbpm.

[RM06] J.C. Recker and J. Mendling. On the translation between BPMN and

BPEL: Conceptual mismatch between process modeling languages. In

The 18th CAiSE. Proceedings of Workshops and Doctoral Consortium,

pages 521–532. Namur University Press, 2006.

[RSBM09] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria.

LearnLib: a framework for extrapolating behavioral models. Inter-

national Journal on Software Tools for Technology Transfer (STTT),

11(5):393–407, 2009.

[RSM08] Harald Raffelt, Bernhard Steffen, and Tiziana Margaria. Dynamic Test-

ing Via Automata Learning. In Proc. of the Haifa Verification Confer-

ence 2007 (HVC ’07), volume 4899 of LNCS, pages 136–152. Springer,

2008.

[SBPM08] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

EMF: Eclipse Modeling Framework (2nd Edition). Addison-Wesley,

Boston, MA, USA, 2008.

[SCK+95] Bernhard Steffen, Andreas Claßen, Marion Klein, Jens Knoop, and

Tiziana Margaria. The Fixpoint-Analysis Machine. In Insup Lee and

ScottA. Smolka, editors, CONCUR ’95: Concurrency Theory, volume

962 of Lecture Notes in Computer Science, pages 72–87. Springer Berlin

Heidelberg, 1995.

[Ses12] Peter Sestoft. Higher-order functions. In Programming Language Con-

cepts, volume 50 of Undergraduate Topics in Computer Science, pages

77–91. Springer London, 2012.

[SHM11] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to

Active Automata Learning from a Practical Perspective. In Marco

Bernardo and Valérie Issarny, editors, Formal Methods for Eternal Net-

worked Software Systems, volume 6659 of Lecture Notes in Computer

Science, pages 256–296. Springer Berlin Heidelberg, 2011.

[SIN+13] Bernhard Steffen, Malte Isberner, Stefan Naujokat, Tiziana Margaria,

and Maren Geske. Property-Driven Benchmark Generation. In Inter-

national SPIN Symposium on Model Checking of Software (SPIN2013),

volume 7976 of LNCS, pages 341–357. Springer, 2013.

[SM99] Bernhard Steffen and Tiziana Margaria. Metaframe in practice: Design

of intelligent network services. In Correct System Design - Correct

System Design, Recent Insight and Advances, volume 1710 of Lecture

Notes in Computer Science, pages 390–415. Springer, 1999.

51

Bibliography

[SM08] B. Steffen and T. Margaria. Business process modelling in the jabc:

The one-thing approach. In Handbook of Research on Business Process

Modeling. IGI Global, 2008.

[SMB97] Bernhard Steffen, Tiziana Margaria, and Volker Braun. The Electronic

Tool Integration platform: concepts and design. International Journal

on Software Tools for Technology Transfer (STTT), 1(1-2):9–30, 1997.

[SMBK97] Bernhard Steffen, Tiziana Margaria, Volkar Braun, and Nina Kalt.

Hierarchical Service Definition. Annual Review of Communications of

the ACM, 51:847–856, 1997.

[SMC+96] Bernhard Steffen, Tiziana Margaria, Andreas Claßen, Volker Braun,

Manfred Reitenspieß, and Helmut Wendler. Service Creation: Formal

Verification and Abstract Views, 1996.

[SMCB96] Bernhard Steffen, Tiziana Margaria, Andreas Claßen, and Volker

Braun. Incremental Formalization: A Key to Industrial Success. Soft-

ware - Concepts and Tools, 17(2):78–95, 1996.

[SMN+06] Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and

Christian Kubczak. Model-Driven Development with the jABC, vol-

ume 4383 of LNCS, pages 92–108. Springer Berlin/Heidelberg, 2006.

[SN07] Bernhard Steffen and Prakash Narayan. Full Life-Cycle Support for

End-to-End Processes. IEEE Computer, 40(11):64–73, 2007.

[SS06] August-Wilhelm Scheer and Kristof Schneider. Aris — architecture

of integrated information systems. In Peter Bernus, Kai Mertins, and

Günter Schmidt, editors, Handbook on Architectures of Information

Systems, pages 605–623. Springer Berlin Heidelberg, 2006. 10.1007/3-

540-26661-5_25.

[STA05] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process

Modeling using Event-Driven Process Chains, pages 119–145. John

Wiley & Sons, Inc., 2005.

[Ste90] G.L. Steele. Lambda-Expressions. HP Technologies Series. Digital

Press, 1990.

[Ste91] Bernhard Steffen. Data Flow Analysis as Model Checking. In Proceed-

ings of the International Conference on Theoretical Aspects of Com-

puter Software, page 346–365. Springer-Verlag, 1991.

[Ste93] Bernhard Steffen. Generating Data Flow Analysis Algorithms from

Modal Specifications. Science of Computer Programming, 21(2):115–

139, 1993.

[Tho93] Bent Thomsen. Plain chocs: A second generation calculus for higher

order processes. Acta Inf., 30(1):1–59, 1993.

52

Bibliography

[Tom13] Vera Tomskikh. Modellgetriebenes Reengineering der Geschäftslogik

von Java-Applikationen. Master thesis, TU Dortmund, Dec 2013.

[Ull94] J.D. Ullman. Elements of ML Programming. An Alan R. Apt book.

Prentice Hall, 1994.

[VdLSR07] F. Van der Linden, K. Schmid, and E. Rommes. Software product

lines in action: the best industrial practice in product line engineering.

Springer Berlin Heidelberg, Germany, 2007.

[VG07] Markus Voelter and Iris Groher. Product line implementation using

aspect-oriented and model-driven software development. In Proceedings

of the 11th International Software Product Line Conference, SPLC ’07,

pages 233–242. IEEE Computer Society, Washington, DC, USA, 2007.

[VH10] E. Vassev and M. Hinchey. The challenge of developing autonomic

systems. Computer, 43(12):93–96, Dec 2010.

[VH12] Emil Vassev and Mike Hinchey. The assl approach to specifying

self-managing embedded systems. Concurr. Comput.: Pract. Exper.,

24(16):1860–1878, Nov 2012.

[VH13a] Emil Vassev and Mike Hinchey. Autonomy requirements engineering: A

case study on the bepicolombo mission. In Proceedings of the Interna-

tional C* Conference on Computer Science and Software Engineering,

C3S2E ’13, pages 31–41. ACM, New York, NY, USA, 2013.

[VH13b] Emil Vassev and Mike Hinchey. Autonomy requirements engineering: A

case study on the bepicolombo mission. In Proceedings of the Interna-

tional C* Conference on Computer Science and Software Engineering,

C3S2E ’13, pages 31–41. ACM, New York, NY, USA, 2013.

[VH13c] Emil Vassev and Mike Hinchey. Knowledge-based self-adaptation. In

Proceedings of the 6th Latin-American Symposium on Dependable Com-

puting (LADC 2013), pages 11–18. SBC – Brazilian Computer Society

Press, Rio de Janeiro, Brazil, Apr 2013.

[W3C07] W3C. Web Services Description Language (WSDL) Version 2.0, 2007.

http://www.w3.org/TR/2007/REC-wsdl20-20070626/.

[War14] R. Warburton. Java 8 Lambdas: Pragmatic Functional Programming.

O’Reilly Media, 2014.

[We07] K Wolstencroft and et.al. The (my)Grid ontology: bioinformatics ser-

vice discovery. International Journal of Bioinformatics Research and

Applications, 3(3):303–325, 2007.

[WKM+10] David Withers, Edward Kawas, Luke McCarthy, Benjamin Vandervalk,

and Mark Wilkinson. Semantically-guided workflow construction in

Taverna: the SADI and BioMoby plug-ins. In Tiziana Margaria and

53

Bibliography

Bernhard Steffen, editors, 4th International Symposium on Leveraging

Applications of Formal Methods, Verification, and Validation (ISoLA

2010) - Volume Part I, volume 6416 of Lecture Notes in Computer

Science, pages 301–312. Springer Berlin/Heidelberg, Oct 2010.

[WNS+13] Stephan Windmüller, Johannes Neubauer, Bernhard Steffen, Falk

Howar, and Oliver Bauer. Active Continuous Quality Control. In 16th

International ACM SIGSOFT Symposium on Component-Based Soft-

ware Engineering, CBSE ’13, pages 111–120. ACM SIGSOFT, New

York, NY, USA, 2013.

[WS73] W. Wulf and Mary Shaw. Global variable considered harmful. SIG-

PLAN Not., 8(2):28–34, feb 1973.

[ZBN+04] Liangzhao Zeng, B. Benatallah, A. H H Ngu, M. Dumas,

J. Kalagnanam, and H. Chang. Qos-aware middleware for web services

composition. Software Engineering, IEEE Transactions on, 30(5):311–

327, May 2004.

[ZC06] Ji Zhang and Betty H. C. Cheng. Model-based development of dy-

namically adaptive software. In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, pages 371–380. ACM,

New York, NY, USA, 2006.

54

A. Selected Publications

I Learning-Based Cross-Platform Conformance Testing

by Johannes Neubauer, and Bernhard Steffen. In Submission, 2014, Software

Testing, Verification and Reliability, John Wiley & Sons, Inc..

II Second-Order Servification

by Johannes Neubauer, and Bernhard Steffen. In Georg Herzwurm, and

Tiziana Margaria, editors: International Conference on Software Business,

2013, Lecture Notes in Business Information Processing 150, Springer, pp.

13–25, doi: 10.1007/978-3-642-39336-5_2.

III Higher-Order Process Modeling: Product-Lining, Variability Mod-

eling and Beyond

by Johannes Neubauer, Bernhard Steffen, and Tiziana Margaria. Electronic

Proc. in Theoretical Computer Science, vol. 129, 2013, pp. 259-283.

IV Simplicity-First Model-Based Plug-In Development

by Stefan Naujokat, Johannes Neubauer, Anna-Lena Lamprecht, Bern-

hard Steffen, Sven Jörges, and Tiziana Margaria. In D. Garbervetsky and

S. Kim, editors, Special Issue: Developing Tools as Plug-ins: TOPI 2012, ser.

Software: Practice and Experience, 2013, John Wiley & Sons, Ltd.

V Plug&Play Higher-Order Process Integration

by Johannes Neubauer, and Bernhard Steffen, IEEE Computer, vol. 46, no.

11, 2013.

VI Risk-Based Testing via Active Continuous Quality Control

by Johannes Neubauer, Stephan Windmüller, and Bernhard Steffen. In

Michael Felderer, Ina Schieferdecker editors, Special Issue: Risk-Based Test-

ing, Software Tools for Technology Transfer, 2014, Springer. To appear.

Technical Report

VII Higher-Order Process Engineering: The Technical Background

by Johannes Neubauer. Technical Report, TU Dortmund, Germany, 2014,

Eldorado.

55

B. Comments on My Participation

- Publication I

I am the main author of the paper. I developed the concepts and implemented

the enhancements to the jABC, i.e., a canonical mapping of methods to busi-

ness activities as well as introducing a second-order context for services. I

designed and described the case study and participated in conducting the ex-

periments.

- Publication II

I am the main author of the paper. I developed the concepts and implemented

the enhancements to the jABC, i.e., introducing type-safe interfaces for process

models as well as a second-order context for process instances. I designed and

described the running example.

- Publication III

I am the main author of the paper. I developed the concepts and implemented

the enhancements to the jABC, i.e., type-safe stacked second-order process

contexts for higher-order process modeling. The concepts and contents have

been discussed amongst all authors. I designed and described the running

example.

- Publication IV

I am one of the two main authors of the paper. The concepts and contents

have been discussed amongst all authors. I was incorporated in writing nearly

every section (excluding 4.3 and 4.4), whilst I was the main author of sections

2 and 6. The paper illustrates how well the concepts developed in the context

of this thesis integrate in the overall jABC framework.

- Publication V

I am the main author of the paper. The concepts and contents have been

discussed amongst all authors. I designed and described the running example.

- Publication VI

I am the main author of the paper. The concepts and contents have been

discussed amongst all authors. I participated in carrying out the case study as

well as planning and writing of all sections. I am solely responsible for sections

4 and 5.

57

C. Other Publications

- Design for Verifiability: The OCS Case Study

by Johannes Neubauer, Tiziana Margaria, Bernhard Steffen. Formal Methods

for Industrial Critical Systems: A Survey of Applications, 2011, pp. 151–177,

John Wiley & Sons, Inc..

- Simplified Validation of Emergent Systems through Automata

Learning-Based Testing

by Bernhard Steffen, and Johannes Neubauer. Software Engineering Workshop

(SEW), 2011 34th IEEE, 2011, pp. 84–91, IEEE.

- Reusing System States by Active Learning Algorithms

by Oliver Bauer, Johannes Neubauer, Bernhard Steffen, Falk Howar. Eternal

Systems, 2012, Springer.

- Automated Continuous Quality Assurance

by Johannes Neubauer, Bernhard Steffen, Oliver Bauer, Stephan Windmüller,

Maik Merten, Tiziana Margaria, and Falk Howar. Software Engineering: Rig-

orous and Agile Approaches (FormSERA), 2012 Formal Methods in Industrial

Critical Systems, 2012, pp. 37–43, IEEE.

- Active Continuous Quality Control

by Stephan Windmüller, Johannes Neubauer, Bernhard Steffen, Falk Howar,

and Oliver Bauer Proceedings of the 16th International ACM Sigsoft sympo-

sium on Component-based software engineering, 2013, pp. 111–120, ACM.

59

