
Zusammenfassung/Abstract

Business process modeling solutions aim at tightly involving the application expert in
the software development process to avoid common and costly ‘communication accidents’
during requirements engineering and to decrease time to market. Their popularity, in
particular of the recent standard BPMN 2.0, clearly indicates the need for this new
involvement. At the same time there are unexpected hurdles when it comes to dealing
with integration, (runtime) variability, and interoperability. Higher-order process engi-
neering (HOPE) elegantly overcomes these hurdles as even in its simplicity-oriented
version it allows for a powerful plug&play fashion, where processes and services can be
moved around just like data. This is reminiscent to standardization efforts known from
hardware like the universal serial bus (USB).

Computer-supported processes increasingly influences our daily life: be it for shopping,
travel planning, travelling itself, tax declaration, or as part of our business life, we are
confronted all the time with different computer/web applications of enormously vary-
ing quality and flexibility. Indeed, there are very different solutions for almost the same
problem, even by the same provider, depending on the particular profile of a particular
user/customer situation. The variance concerns not just the look-and-feel but also the
required user process, and, at the technical level the application programming interfaces
(APIs) for the interoperation between systems. As a consequence, users continuously ha-
ve to fight with this historically grown but unintended technical diversity, and producers
with exploding maintenance costs.

Increased interest in business process modeling came with BPMN 2.0, due to its pro-
mise to make application-level business processes directly executable. It looked like an
almost universal cure, as it seemed to close the semantic gap, the main source of mi-
sunderstandings between business and IT. Looking closer, this dream becomes true only
for very specific scenarios. In particular, it still does not support variability, as it lacks
means to manage process variation and variant-rich systems. The need for variant-rich
systems is often addressed via static approaches in general subsumed by the notion of
product-lines in the literature. All current BPM standards like BPEL, BPMN and even
the recent BPMN 2.0 are constrained to fixed bindings between business activities in a
model and the services or substructures they refer to. Thus each variant has to be mo-
deled explicitly via decision points that are modeling pendants to if - and switch-clauses,
in comprehensive but very large models, or maintained individually, as a collection of
separate entities. Both alternatives cause severe problems: whereas the comprehensive
modeling leads to unmanageably large models, the maintenance and support of many
structurally similar individual variant models is a nightmare. This is far away from the
ideal of simplicity that made business process modeling so appealing.

Enhancing BPM with a simplicity-oriented version of higher-order process passing breaks
the spell. Being higher-order, it supports a very flexible form of (type-based) process
integration. It also introduces a new discipline of variability modeling that captures
variants comprising functionality that was still unknown at the process’ start. Already

1



deployed and even running processes can be seamlessly enhanced with new functionality,
without touching their code base.

In fact, based on the higher-order concepts, (new) services and (component) processes
can be selected, modified, constructed and then safely passed as if they were data. Though
unlike data they may be plugged into activities and executed (played) dynamically. This
plug&play approach allows one to add new services, components, and processes without
the need to change the system or interrupt the running processes. Even if this flexibility
is not essential and all functionalities are known in advance, it leads to drastic size
reductions and better understandability of the models.

Controlling variability means controlling the exploding wealth of combinations, a con-
cern orthogonal to computational aspects. Thus in particular at the level of (business)
process modeling, variability concerns and computational aspects should be separated
in favor of simplicity and understandability.

Thus, simplicity-orientation in this regard refers to the user-centeredness – focused on
application experts – of the approach hiding the complexity going hand in hand with
achieving compatibility between components essential for plug&play semantics. In this
regard two different types of abstraction layers support a strict enforcement of separation
of concerns: hierarchical modeling and preconfiguration of activities.

The need for hierarchical modeling is owed to the fact that on the one hand systems
are getting more and more complex, resulting in the need to break the specifications
down into manageable pieces in a divide and conquer fashion. On the other hand, with
the increasing globalization of processes and systems, e.g. end-to-end-processes that na-
turally comprise various management levels, the number of participants involved in the
development process is also steadily increasing. This results in a complex network struc-
ture for the participants, where the technical expert on one level is at the same time
the application expert on the next lower level – in terms of getting more technical –
and so forth. Preconfiguration of activities further helps to guard the modeler from the
complexity of data-flow handling as well as from doing repetitive work.

Compatibility is achieved via sophisticated (type-aware) interface descriptions of ac-
tivities leading to compositionality. Data-dependencies are consequently modeled via a
common execution context sharing resources between activities. The models are hierar-
chical starting on a domain-specific level, leading down to a technical level. The process
components on the technical level base on structures of a conventional programming lan-
guage (i.e. the target language). The idea is to give more power to application experts
as well as avoiding technological breaks, leading to more complete process models which

• are a better basis for communication with technical experts,

• allow for more concise validations on the modeling level, and

• need no round-trip engineering as they are based on semantically well-defined
structures of a target language and are therefore directly executable.

2


